Science.gov

Sample records for insulin receptors mediate

  1. Insulin-like Growth Factor 1-mediated Hyperthermia Involves Anterior Hypothalamic Insulin Receptors*

    PubMed Central

    Sanchez-Alavez, Manuel; Osborn, Olivia; Tabarean, Iustin V.; Holmberg, Kristina H.; Eberwine, James; Kahn, C. Ronald; Bartfai, Tamas

    2011-01-01

    The objective is to investigate the role of insulin-like growth factor 1 (IGF-1) in the regulation of core body temperature. Sequencing cDNA libraries from individual warm-sensitive neurons from the preoptic area (POA) of the hypothalamus, a region involved in the central control of thermoregulation, identified neurons that express both IGF-1 receptor (IGF-1R) and insulin receptor transcripts. The effects of administration of IGF-1 into the POA was measured by radiotelemetry monitoring of core temperature, brown adipose tissue (BAT) temperature, metabolic assessment, and imaging of BAT by positron emission tomography of 2-[18F]fluoro-2-deoxyglucose uptake combined with computed tomography. IGF-1 injection into the POA caused dose-dependent hyperthermia that could be blocked by pretreatment with the IGF-1R tyrosine kinase inhibitor, PQ401. The IGF-1-evoked hyperthermia involved activation of brown adipose tissue and was accompanied by a switch from glycolysis to fatty acid oxidation as a source of energy as shown by lowered respiratory exchange ratio. Transgenic mice that lack neuronal insulin receptor expression in the brain (NIRKO mice) were unable to mount the full hyperthermic response to IGF-1, suggesting that the IGF-1 mediated hyperthermia is partly dependent on expression of functional neuronal insulin receptors. These data indicate a novel thermoregulatory role for both IGF-1R and neuronal insulin receptors in IGF-1 activation of BAT and hyperthermia. These central effects of IGF-1 signaling may play a role in regulation of metabolic rate, aging, and the risk of developing type 2 diabetes. PMID:21330367

  2. Coated vesicles participate in the receptor-mediated endocytosis of insulin

    PubMed Central

    1983-01-01

    We have purified coated vesicles from rat liver by differential ultracentrifugation. Electron micrographs of these preparations reveal only the polyhedral structures typical of coated vesicles. SDS PAGE of the coated vesicle preparation followed by Coomassie Blue staining of proteins reveals a protein composition also typical of coated vesicles. We determined that these rat liver coated vesicles possess a latent insulin binding capability. That is, little if any specific binding of 125I-insulin to coated vesicles is observed in the absence of detergent. However, coated vesicles treated with the detergent octyl glucoside exhibit a substantial specific 125I-insulin binding capacity. We visualized the insulin binding structure of coated vesicles by cross- linking 125I-insulin to detergent-solubilized coated vesicles using the bifunctional reagent disuccinimidyl suberate followed by electrophoresis and autoradiography. The receptor structure thus identified is identical to that of the high-affinity insulin receptor present in a variety of tissues. We isolated liver coated vesicles from rats which had received injections of 125I-insulin in the hepatic portal vein. We found that insulin administered in this fashion was rapidly and specifically taken up by liver coated vesicles. Taken together, these data are compatible with a functional role for coated vesicles in the receptor-mediated endocytosis of insulin. PMID:6131074

  3. Blockade of cannabinoid 1 receptor improves GLP-1R mediated insulin secretion in mice.

    PubMed

    González-Mariscal, Isabel; Krzysik-Walker, Susan M; Kim, Wook; Rouse, Michael; Egan, Josephine M

    2016-03-01

    The cannabinoid 1 receptor (CB1) is an important regulator of energy metabolism. Reports of in vivo and in vitro studies give conflicting results regarding its role in insulin secretion, possibly due to circulatory factors, such as incretins. We hypothesized that this receptor may be a regulator of the entero-insular axis. We found that despite lower food consumption and lower body weight postprandial GLP-1 plasma concentrations were increased in CB1(-/-) mice compared to CB1(+/+) mice administered a standard diet or high fat/sugar diet. Upon exogenous GLP-1 treatment, CB1(-/-) mice had increased glucose-stimulated insulin secretion. In mouse insulinoma cells, cannabinoids reduced GLP-1R-mediated intracellular cAMP accumulation and subsequent insulin secretion. Importantly, such effects were also evident in human islets, and were prevented by pharmacologic blockade of CB1. Collectively, these findings suggest a novel mechanism in which endocannabinoids are negative modulators of incretin-mediated insulin secretion. PMID:26724516

  4. Inhibition of insulin/IGF-1 receptor signaling protects from mitochondria-mediated kidney failure.

    PubMed

    Ising, Christina; Koehler, Sybille; Brähler, Sebastian; Merkwirth, Carsten; Höhne, Martin; Baris, Olivier R; Hagmann, Henning; Kann, Martin; Fabretti, Francesca; Dafinger, Claudia; Bloch, Wilhelm; Schermer, Bernhard; Linkermann, Andreas; Brüning, Jens C; Kurschat, Christine E; Müller, Roman-Ulrich; Wiesner, Rudolf J; Langer, Thomas; Benzing, Thomas; Brinkkoetter, Paul Thomas

    2015-02-02

    Mitochondrial dysfunction and alterations in energy metabolism have been implicated in a variety of human diseases. Mitochondrial fusion is essential for maintenance of mitochondrial function and requires the prohibitin ring complex subunit prohibitin-2 (PHB2) at the mitochondrial inner membrane. Here, we provide a link between PHB2 deficiency and hyperactive insulin/IGF-1 signaling. Deletion of PHB2 in podocytes of mice, terminally differentiated cells at the kidney filtration barrier, caused progressive proteinuria, kidney failure, and death of the animals and resulted in hyperphosphorylation of S6 ribosomal protein (S6RP), a known mediator of the mTOR signaling pathway. Inhibition of the insulin/IGF-1 signaling system through genetic deletion of the insulin receptor alone or in combination with the IGF-1 receptor or treatment with rapamycin prevented hyperphosphorylation of S6RP without affecting the mitochondrial structural defect, alleviated renal disease, and delayed the onset of kidney failure in PHB2-deficient animals. Evidently, perturbation of insulin/IGF-1 receptor signaling contributes to tissue damage in mitochondrial disease, which may allow therapeutic intervention against a wide spectrum of diseases.

  5. Inflammatory mediators and insulin resistance in obesity: role of nuclear receptor signaling in macrophages.

    PubMed

    Fuentes, Lucía; Roszer, Tamás; Ricote, Mercedes

    2010-01-01

    Visceral obesity is coupled to a general low-grade chronic inflammatory state characterized by macrophage activation and inflammatory cytokine production, leading to insulin resistance (IR). The balance between proinflammatory M1 and antiinflammatory M2 macrophage phenotypes within visceral adipose tissue appears to be crucially involved in the development of obesity-associated IR and consequent metabolic abnormalities. The ligand-dependent transcription factors peroxisome proliferator activated receptors (PPARs) have recently been implicated in the determination of the M1/M2 phenotype. Liver X receptors (LXRs), which form another subgroup of the nuclear receptor superfamily, are also important regulators of proinflammatory cytokine production in macrophages. Disregulation of macrophage-mediated inflammation by PPARs and LXRs therefore underlies the development of IR. This review summarizes the role of PPAR and LXR signaling in macrophages and current knowledge about the impact of these actions in the manifestation of IR and obesity comorbidities such as liver steatosis and diabetic osteopenia.

  6. Reduced insulin-receptor mediated modulation of striatal dopamine release by basal insulin as a possible contributing factor to hyperdopaminergia in schizophrenia.

    PubMed

    Caravaggio, Fernando; Hahn, Margaret; Nakajima, Shinichiro; Gerretsen, Philip; Remington, Gary; Graff-Guerrero, Ariel

    2015-10-01

    Schizophrenia is a severe and chronic neuropsychiatric disorder which affects 1% of the world population. Using the brain imaging technique positron emission tomography (PET) it has been demonstrated that persons with schizophrenia have greater dopamine transmission in the striatum compared to healthy controls. However, little progress has been made as to elucidating other biological mechanisms which may account for this hyperdopaminergic state in this disease. Studies in animals have demonstrated that insulin receptors are expressed on midbrain dopamine neurons, and that insulin from the periphery acts on these receptors to modify dopamine transmission in the striatum. This is pertinent given that several lines of evidence suggest that insulin receptor functioning may be abnormal in the brains of persons with schizophrenia. Post-mortem studies have shown that persons with schizophrenia have less than half the number of cortical insulin receptors compared to healthy persons. Moreover, these post-mortem findings are unlikely due to the effects of antipsychotic treatment; studies in cell lines and animals suggest antipsychotics enhance insulin receptor functioning. Further, hyperinsulinemia - even prior to antipsychotic use - seems to be related to less psychotic symptoms in patients with schizophrenia. Collectively, these data suggest that midbrain insulin receptor functioning may be abnormal in persons with schizophrenia, resulting in reduced insulin-mediated regulation of dopamine transmission in the striatum. Such a deficit may account for the hyperdopaminergic state observed in these patients and would help guide the development of novel treatment strategies. We hypothesize that, (i) insulin receptor expression and/or function is reduced in midbrain dopamine neurons in persons with schizophrenia, (ii) basal insulin should reduce dopaminergic transmission in the striatum via these receptors, and (iii) this modulation of dopaminergic transmission by basal insulin

  7. Insulin Receptor Substrate Adaptor Proteins Mediate Prognostic Gene Expression Profiles in Breast Cancer

    PubMed Central

    Becker, Marc A.; Ibrahim, Yasir H.; Oh, Annabell S.; Fagan, Dedra H.; Byron, Sara A.; Sarver, Aaron L.; Lee, Adrian V.; Shaw, Leslie M.; Fan, Cheng; Perou, Charles M.; Yee, Douglas

    2016-01-01

    Therapies targeting the type I insulin-like growth factor receptor (IGF-1R) have not been developed with predictive biomarkers to identify tumors with receptor activation. We have previously shown that the insulin receptor substrate (IRS) adaptor proteins are necessary for linking IGF1R to downstream signaling pathways and the malignant phenotype in breast cancer cells. The purpose of this study was to identify gene expression profiles downstream of IGF1R and its two adaptor proteins. IRS-null breast cancer cells (T47D-YA) were engineered to express IRS-1 or IRS-2 alone and their ability to mediate IGF ligand-induced proliferation, motility, and gene expression determined. Global gene expression signatures reflecting IRS adaptor specific and primary vs. secondary ligand response were derived (Early IRS-1, Late IRS-1, Early IRS-2 and Late IRS-2) and functional pathway analysis examined. IRS isoforms mediated distinct gene expression profiles, functional pathways, and breast cancer subtype association. For example, IRS-1/2-induced TGFb2 expression and blockade of TGFb2 abrogated IGF-induced cell migration. In addition, the prognostic value of IRS proteins was significant in the luminal B breast tumor subtype. Univariate and multivariate analyses confirmed that IRS adaptor signatures correlated with poor outcome as measured by recurrence-free and overall survival. Thus, IRS adaptor protein expression is required for IGF ligand responses in breast cancer cells. IRS-specific gene signatures represent accurate surrogates of IGF activity and could predict response to anti-IGF therapy in breast cancer. PMID:26991655

  8. Monoclonal antibody to the type I insulin-like growth factor (IGF-I) receptor blocks IGF-I receptor-mediated DNA synthesis: clarification of the mitogenic mechanisms of IGF-I and insulin in human skin fibroblasts

    SciTech Connect

    Flier, J.S.; Usher, P.; Moses, A.C.

    1986-02-01

    Insulin and insulin-like growth factor type I (IGF-I) stimulate an overlapping spectrum of biological responses in human skin fibroblasts. Although insulin and IGF-I are known to stimulate the incorporation of (/sup 3/H)thymidine into DNA in these cells, the identify of the receptor(s) that mediates this effect has not been fully clarified. The mouse anti-human IGF-I receptor antibody ..cap alpha..IR-3 binds with specificity to IGF-I but not to insulin receptors in human placental membranes; it also specifically inhibits the binding of /sup 125/I-labeled IGF-I but not /sup 125/I-labeled insulin to suspensions of human skin fibroblasts in a dose-dependent manner. ..cap alpha..IR-3 competitively inhibits IGF-I-mediated stimulation of (/sup 3/H)thymidine incorporation into DNA. This inhibition is dependent on the concentration of ..cap alpha..IR-3 and in the presence of a fixed antibody concentration can be partially overcome by high concentrations of IGF-I. In contrast, at concentrations of < 1 ..mu..g/ml, the effect of insulin to stimulate (/sup 3/H)thymidine incorporation is not inhibited by ..cap alpha..IR-3. However, the incremental effects of higher concentrations (> 1 ..mu..g/ml) of insulin on (/sup 3/H)thymidine incorporation are inhibited by ..cap alpha..IR-3. ..cap alpha..IR-3 is a highly specific antagonist of IGF-I receptor-mediated mitogenesis in human skin fibroblasts. By using this antibody, it is shown directly that insulin can act through the IGF-I receptor to stimulate DNA synthesis but can also activate this effect through the insulin receptor itself.

  9. Evidence for an insulin receptor substrate 1 independent insulin signaling pathway that mediates insulin-responsive glucose transporter (GLUT4) translocation.

    PubMed Central

    Morris, A J; Martin, S S; Haruta, T; Nelson, J G; Vollenweider, P; Gustafson, T A; Mueckler, M; Rose, D W; Olefsky, J M

    1996-01-01

    Interaction of the activated insulin receptor (IR) with its substrate, insulin receptor substrate 1 (IRS-1), via the phosphotyrosine binding domain of IRS-1 and the NPXY motif centered at phosphotyrosine 960 of the IR, is important for IRS-1 phosphorylation. We investigated the role of this interaction in the insulin signaling pathway that stimulates glucose transport. Utilizing microinjection of competitive inhibitory reagents in 3T3-L1 adipocytes, we have found that disruption of the IR/IRS-1 interaction has no effect upon translocation of the insulin-responsive glucose transporter (GLUT4). The activity of these reagents was demonstrated by their ability to block insulin stimulation of two distinct insulin bioeffects, membrane ruffling and mitogenesis, in 3T3-L1 adipocytes and insulin-responsive rat 1 fibroblasts. These data suggest that phosphorylated IRS-1 is not an essential component of the metabolic insulin signaling pathway that leads to GLUT4 translocation, yet it appears to be required for other insulin bioeffects. Images Fig. 1 Fig. 2 Fig. 3 PMID:8710883

  10. Toll-like receptor 2 mediates high-fat diet-induced impairment of vasodilator actions of insulin

    PubMed Central

    Jang, Hyun-Ju; Kim, Hae-Suk; Hwang, Daniel H.; Quon, Michael J.

    2013-01-01

    Obesity is characterized by a chronic proinflammatory state that leads to endothelial dysfunction. Saturated fatty acids (SFA) stimulate Toll-like receptors (TLR) that promote metabolic insulin resistance. However, it is not known whether TLR2 mediates impairment of vascular actions of insulin in response to high-fat diet (HFD) to cause endothelial dysfunction. siRNA knockdown of TLR2 in primary endothelial cells opposed palmitate-stimulated expression of proinflammatory cytokines and splicing of X box protein 1 (XBP-1). Inhibition of unfolding protein response (UPR) reduced SFA-stimulated expression of TNFα. Thus, SFA stimulates UPR and proinflammatory response through activation of TLR2 in endothelial cells. Knockdown of TLR2 also opposed impairment of insulin-stimulated phosphorylation of eNOS and subsequent production of NO. Importantly, insulin-stimulated vasorelaxation of mesenteric arteries from TLR2 knockout mice was preserved even on HFD (in contrast with results from arteries examined in wild-type mice on HFD). We conclude that TLR2 in vascular endothelium mediates HFD-stimulated proinflammatory responses and UPR that accompany impairment of vasodilator actions of insulin, leading to endothelial dysfunction. These results are relevant to understanding the pathophysiology of the cardiovascular complications of diabetes and obesity. PMID:23531618

  11. The Novel Functions of High-Molecular-Mass Complexes Containing Insulin Receptor Substrates in Mediation and Modulation of Insulin-Like Activities: Emerging Concept of Diverse Functions by IRS-Associated Proteins

    PubMed Central

    Hakuno, Fumihiko; Fukushima, Toshiaki; Yoneyama, Yosuke; Kamei, Hiroyasu; Ozoe, Atsufumi; Yoshihara, Hidehito; Yamanaka, Daisuke; Shibano, Takashi; Sone-Yonezawa, Meri; Yu, Bu-Chin; Chida, Kazuhiro; Takahashi, Shin-Ichiro

    2015-01-01

    Insulin-like peptides, such as insulin-like growth factors (IGFs) and insulin, induce a variety of bioactivities, such as growth, differentiation, survival, increased anabolism, and decreased catabolism in many cell types and in vivo. In general, IGFs or insulin bind to IGF-I receptor (IGF-IR) or insulin receptor (IR), activating the receptor tyrosine kinase. Insulin receptor substrates (IRSs) are known to be major substrates of receptor kinases, mediating IGF/insulin signals to direct bioactivities. Recently, we discovered that IRSs form high-molecular-mass complexes (referred to here as IRSomes) even without IGF/insulin stimulation. These complexes contain proteins (referred to here as IRSAPs; IRS-associated proteins), which modulate tyrosine phosphorylation of IRSs by receptor kinases, control IRS stability, and determine intracellular localization of IRSs. In addition, in these complexes, we found not only proteins that are involved in RNA metabolism but also RNAs themselves. Thus, IRSAPs possibly contribute to modulation of IGF/insulin bioactivities. Since it is established that disorder of modulation of insulin-like activities causes various age-related diseases including cancer, we could propose that the IRSome is an important target for treatment of these diseases. PMID:26074875

  12. Modulatory effect of insulin on T cell receptor mediated calcium signaling is blunted in long lasting type 1 diabetes mellitus.

    PubMed

    Demkow, Urszula; Winklewski, Paweł; Ciepiela, Olga; Popko, Katarzyna; Lipińska, Anna; Kucharska, Anna; Michalska, Beata; Wąsik, Maria

    2012-01-01

    Insulin significantly influences Ca(2+) signals evoked by various stimulants. In type 1 recent onset diabetes mellitus the proliferative response of T cells is significantly decreased. The number of clinical trials exploring the role of anti-CD3 monoclonal antibodies (mAb) as a therapeutic agent in recent onset diabetes mellitus type 1 is increasing last years. Therefore, a better understanding of the interplay between T cell receptor (TCR) dependent Ca(2+) increase, and insulin is of vital clinical significance. The aim of the study was to assess the effect of insulin on TCR evoked Ca(2+) responses in T lymphocytes obtained from healthy volunteers and patients suffering from long lasting diabetes mellitus type 1. Analysis was performed with use of the flow cytometer. We demonstrated that T cells ability to mobilize Ca(2+) was significantly reduced in long lasting diabetes mellitus type 1. Ca(2+) decrease achieved by the long term incubation with anti-CD3 mAb in T cells from healthy volunteers was restored by insulin. Strong interrelationship between baseline Ca(2+) level and plateau phase response to TCR stimulation was observed in the cytoplasm of cells pre-incubated with insulin from both healthy subjects and diabetic patients (r = 0.95, p < 0.0001 and r = 0.94, p < 0.0001, respectively). We postulate the existence of the interplay between TCR mediated activation and insulin. The TCR-insulin interplay is blunted in long lasting diabetes mellitus type 1. These observations may have an important implication for future therapeutic options in diabetes.

  13. Insulin-Independent GABAA Receptor-Mediated Response in the Barrel Cortex of Mice with Impaired Met Activity

    PubMed Central

    Lo, Fu-Sun; Erzurumlu, Reha S.

    2016-01-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder caused by genetic variants, susceptibility alleles, and environmental perturbations. The autism associated gene MET tyrosine kinase has been implicated in many behavioral domains and endophenotypes of autism, including abnormal neural signaling in human sensory cortex. We investigated somatosensory thalamocortical synaptic communication in mice deficient in Met activity in cortical excitatory neurons to gain insights into aberrant somatosensation characteristic of ASD. The ratio of excitation to inhibition is dramatically increased due to decreased postsynaptic GABAA receptor-mediated inhibition in the trigeminal thalamocortical pathway of mice lacking active Met in the cerebral cortex. Furthermore, in contrast to wild-type mice, insulin failed to increase GABAA receptor-mediated response in the barrel cortex of mice with compromised Met signaling. Thus, lacking insulin effects may be a risk factor in ASD pathogenesis. SIGNIFICANCE STATEMENT A proposed common cause of neurodevelopmental disorders is an imbalance in excitatory neural transmission, provided by the glutamatergic neurons, and the inhibitory signals from the GABAergic interneurons. Many genes associated with autism spectrum disorders impair synaptic transmission in the expected cell type. Previously, inactivation of the autism-associated Met tyrosine kinase receptor in GABAergic interneurons led to decreased inhibition. In thus report, decreased Met signaling in glutamatergic neurons had no effect on excitation, but decimated inhibition. Further experiments indicate that loss of Met activity downregulates GABAA receptors on glutamatergic neurons in an insulin independent manner. These data provide a new mechanism for the loss of inhibition and subsequent abnormal excitation/inhibition balance and potential molecular candidates for treatment or prevention. PMID:27030755

  14. Receptor-mediated endocytosis of insulin in lower vertebrates: internalization and intracellular processing of 125I-insulin in isolated hepatocytes of lamprey and frog.

    PubMed

    Lappova, Y L; Leibush, B N

    1995-10-01

    The binding of 125I-insulin to cellular insulin receptors and the internalization of insulin-receptor complexes have been studied in isolated hepatocytes of frog and lamprey. Two classes of binding sites (Kd 10(-9) and 10(-8) M) were found in cells of both species. The molecular weight of the insulin receptor alpha-subunit was 130 kDa in both species. Internalization of bound 125I-insulin in both species was found in the temperature range 0 to 20 degrees. Cells "loaded" with 125I-insulin were used to estimate the fate of the internalized ligand. Release of internalized ligand from frog cells increased at temperatures ranging from 0 to 20 degrees. At 0 degrees the degraded 125I-insulin was 5%, at 5 degrees 7%, and at 20 degrees 17% of total radioactivity accumulated in the medium. In lamprey hepatocytes there was neither radioactivity accumulation in the incubation medium nor release from cells at all temperatures studied. The intracellular degradation of internalized 125I-insulin in frog hepatocytes was much lower than that in lamprey cells. In frog hepatocytes the specific binding of 125I-insulin was increased twofold in the presence of the lysosomal inhibitor chloroquine. In contrast no increase was found in lamprey hepatocytes. In conclusion, the processing pathways of internalized insulin in the cells of ectothermal and endothermal vertebrates are generally similar but in ectothermal animals all events take place at lower temperatures and at lower rates. The peculiarities of insulin processing in lamprey hepatocytes most likely result from the transformation of hepatocytes during the nonfeeding prespawning period. PMID:8575649

  15. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43

    PubMed Central

    Kimura, Ikuo; Ozawa, Kentaro; Inoue, Daisuke; Imamura, Takeshi; Kimura, Kumi; Maeda, Takeshi; Terasawa, Kazuya; Kashihara, Daiji; Hirano, Kanako; Tani, Taeko; Takahashi, Tomoyuki; Miyauchi, Satoshi; Shioi, Go; Inoue, Hiroshi; Tsujimoto, Gozoh

    2013-01-01

    The gut microbiota affects nutrient acquisition and energy regulation of the host, and can influence the development of obesity, insulin resistance, and diabetes. During feeding, gut microbes produce short-chain fatty acids, which are important energy sources for the host. Here we show that the short-chain fatty acid receptor GPR43 links the metabolic activity of the gut microbiota with host body energy homoeostasis. We demonstrate that GPR43-deficient mice are obese on a normal diet, whereas mice overexpressing GPR43 specifically in adipose tissue remain lean even when fed a high-fat diet. Raised under germ-free conditions or after treatment with antibiotics, both types of mice have a normal phenotype. We further show that short-chain fatty acid-mediated activation of GPR43 suppresses insulin signalling in adipocytes, which inhibits fat accumulation in adipose tissue and promotes the metabolism of unincorporated lipids and glucose in other tissues. These findings establish GPR43 as a sensor for excessive dietary energy, thereby controlling body energy utilization while maintaining metabolic homoeostasis. PMID:23652017

  16. Neuritin activates insulin receptor pathway to up-regulate Kv4.2-mediated transient outward K+ current in rat cerebellar granule neurons.

    PubMed

    Yao, Jin-Jing; Gao, Xiao-Fei; Chow, Chi-Wing; Zhan, Xiao-Qin; Hu, Chang-Long; Mei, Yan-Ai

    2012-11-30

    Neuritin is a new neurotrophic factor discovered in a screen to identify genes involved in activity-dependent synaptic plasticity. Neuritin also plays multiple roles in the process of neural development and synaptic plasticity. The receptors for binding neuritin and its downstream signaling effectors, however, remain unclear. Here, we report that neuritin specifically increases the densities of transient outward K(+) currents (I(A)) in rat cerebellar granule neurons (CGNs) in a time- and concentration-dependent manner. Neuritin-induced amplification of I(A) is mediated by increased mRNA and protein expression of Kv4.2, the main α-subunit of I(A). Exposure of CGNs to neuritin markedly induces phosphorylation of ERK (pERK), Akt (pAkt), and mammalian target of rapamycin (pmTOR). Neuritin-induced I(A) and increased expression of Kv4.2 are attenuated by ERK, Akt, or mTOR inhibitors. Unexpectedly, pharmacological blockade of insulin receptor, but not the insulin-like growth factor 1 receptor, abrogates the effect of neuritin on I(A) amplification and Kv4.2 induction. Indeed, neuritin activates downstream signaling effectors of the insulin receptor in CGNs and HeLa. Our data reveal, for the first time, an unanticipated role of the insulin receptor in previously unrecognized neuritin-mediated signaling. PMID:23066017

  17. Insulin Receptor Substrate 2-mediated Phosphatidylinositol 3-kinase Signaling Selectively Inhibits Glycogen Synthase Kinase 3β to Regulate Aerobic Glycolysis*

    PubMed Central

    Landis, Justine; Shaw, Leslie M.

    2014-01-01

    Insulin receptor substrate 1 (IRS-1) and IRS-2 are cytoplasmic adaptor proteins that mediate the activation of signaling pathways in response to ligand stimulation of upstream cell surface receptors. Despite sharing a high level of homology and the ability to activate PI3K, only Irs-2 positively regulates aerobic glycolysis in mammary tumor cells. To determine the contribution of Irs-2-dependent PI3K signaling to this selective regulation, we generated an Irs-2 mutant deficient in the recruitment of PI3K. We identified four tyrosine residues (Tyr-649, Tyr-671, Tyr-734, and Tyr-814) that are essential for the association of PI3K with Irs-2 and demonstrate that combined mutation of these tyrosines inhibits glucose uptake and lactate production, two measures of aerobic glycolysis. Irs-2-dependent activation of PI3K regulates the phosphorylation of specific Akt substrates, most notably glycogen synthase kinase 3β (Gsk-3β). Inhibition of Gsk-3β by Irs-2-dependent PI3K signaling promotes glucose uptake and aerobic glycolysis. The regulation of unique subsets of Akt substrates by Irs-1 and Irs-2 may explain their non-redundant roles in mammary tumor biology. Taken together, our study reveals a novel mechanism by which Irs-2 signaling preferentially regulates tumor cell metabolism and adds to our understanding of how this adaptor protein contributes to breast cancer progression. PMID:24811175

  18. TRAIL upregulates decoy receptor 1 and mediates resistance to apoptosis in insulin-secreting INS-1 cells.

    PubMed

    Kang, Soojeong; Park, So-Young; Lee, Hye-Jeong; Yoo, Young Hyun

    2010-06-01

    TRAIL/Apo2L (tumor necrosis factor-related apoptosis-inducing ligand) is a multifunctional protein regulating the homeostasis of the immune system, infection, autoimmune diseases, and apoptosis. In particular, the potential role of TRAIL in type 1 diabetes (T1D) has been studied by several research groups. A previous study found that TRAIL did not have significant cytotoxic effects on the insulin-secreting pancreatic beta cell line, INS-1. However, the mechanism was not clear. Here we demonstrate that INS-1 cells are resistant to TRAIL-induced apoptosis and show alteration in the expression of death and decoy receptors upon TRAIL treatment. To compare TRAIL-resistant INS-1 cells with TRAIL-sensitive cells, we utilized U87MG cells, which are known to be TRAIL-sensitive. TRAIL treatment showed NF-kappaB translocation to the nucleus in TRAIL-resistant INS-1 cells, and TRAIL-induced NF-kappaB activation was preceded by IkappaBalpha degradation. A pharmacological inhibitor of NF-kappaB, Bay 11-7082, blocked TRAIL-induced NF-kappaB translocation to the nucleus and IkappaBalpha degradation. Four related receptors bind TRAIL: two death receptors (DR4 and DR5) that promote apoptosis, and two decoy receptors (DcR1 and DcR2) that act as dominant-negative inhibitors of TRAIL-mediated apoptosis. In the present study, TRAIL treatment in INS-1 cells upregulated DcR1 and downregulated DR5 without altering the expression of DcR2 and DR4. The resistance to apoptosis in INS-1 cells might therefore, be a consequence of DcR1 upregulation and DR5 downregulation, and the transcription factor, NF-kappaB, could regulate the sensitivity of cells to TRAIL by controlling the ratio of decoy to death receptors. Thus, TRAIL may play an important role in the survival of pancreatic beta cells by regulating receptor expression in an NF-kappaB-dependent manner.

  19. Insulin stimulates movement of sorting nexin 9 between cellular compartments: a putative role mediating cell surface receptor expression and insulin action.

    PubMed Central

    MaCaulay, S Lance; Stoichevska, Violet; Grusovin, Julian; Gough, Keith H; Castelli, Laura A; Ward, Colin W

    2003-01-01

    SNX9 (sorting nexin 9) is one member of a family of proteins implicated in protein trafficking. This family is characterized by a unique PX (Phox homology) domain that includes a proline-rich sequence and an upstream phospholipid binding domain. Many sorting nexins, including SNX9, also have a C-terminal coiled region. SNX9 additionally has an N-terminal SH3 (Src homology 3) domain. Here we have investigated the cellular localization of SNX9 and the potential role it plays in insulin action. SNX9 had a cytosolic and punctate distribution, consistent with endosomal and cytosolic localization, in 3T3L1 adipocytes. It was excluded from the nucleus. The SH3 domain was responsible, at least in part, for the membrane localization of SNX9, since expression of an SH3-domain-deleted GFP (green fluorescent protein)-SNX9 fusion protein in HEK293T cells rendered the protein cytosolic. Membrane localization may also be attributed in part to the PX domain, since in vitro phospholipid binding studies demonstrated SNX9 binding to polyphosphoinositides. Insulin induced movement of SNX9 to membrane fractions from the cytosol. A GST (glutathione S-transferase)-SNX9 fusion protein was associated with IGF1 (insulin-like growth factor 1) and insulin receptors in vitro. A GFP-SNX9 fusion protein, overexpressed in 3T3L1 adipocytes, co-immunoprecipitated with insulin receptors. Furthermore, overexpression of this GFP-SNX9 fusion protein in CHOT cells decreased insulin binding, consistent with a role for SNX9 in the trafficking of insulin receptors. Microinjection of 3T3L1 cells with an antibody against SNX9 inhibited stimulation by insulin of GLUT4 translocation. These results support the involvement of SNX9 in insulin action, via an influence on the processing/trafficking of insulin receptors. A secondary role in regulation of the cellular processing, transport and/or subcellular localization of GLUT4 is also suggested. PMID:12917015

  20. Insulin receptor in Drosophila melanogaster

    SciTech Connect

    Petruzzelli, L.; Herrera, R.; Rosen, O.

    1986-05-01

    A specific, high affinity insulin receptor is present in both adult Drosophila and in Drosophila embryos. Wheat germ lectin-enriched extracts of detergent-solubilized membranes from embryos and adults bind insulin with a K/sub d/ of 15 nM. Binding is specific for insulin; micromolar concentrations of proinsulin, IGFI, and IGFII are required to displace bound /sup 125/I-insulin. Insulin-dependent protein tyrosine kinase activity appears during embryogenesis. It is evident between 6 and 12 hours of development, peaks between 12 and 18 hours and falls in the adult. During 0-6 hours of embryogenesis, and in the adult, a specific protein band (Mr = 135,000) is crosslinked to /sup 125/I-insulin. During 6-12 and 12-18 hours of embryogenesis stages in which insulin-dependent protein tyrosine kinase is high, an additional band (Mr = 100,000) becomes crosslinked to /sup 125/I-insulin. Isolation and DNA sequence analysis of genomic clones encoding the Drosophila insulin receptor will be presented as will the characterization of insulin receptor mRNA's during development.

  1. Insulin Receptor Substrate-1 Activation Mediated p53 Downregulation Protects Against Hypoxic-Ischemia in the Neonatal Brain.

    PubMed

    Tu, Yi-Fang; Jiang, Si-Tse; Chow, Yen-Hung; Huang, Chao-Ching; Ho, Chien-Jung; Chou, Ya-Ping

    2016-08-01

    This study determined if dietary restriction (DR) protects against hypoxic-ischemia (HI) in the neonatal brain via insulin receptor substrate-1 (IRS-1)/Akt pathway-mediated downregulation of p53 in the neurovascular unit. On postnatal (P) day 7, HI was induced in rat pups grouped from P1 into normal litter size (NL, 12 pups/dam) and increased litter size (DR, 18 pups/dam). In vivo IRS-1 anti-sense oligonucleotide and IRS-1 overexpressed recombinant adenovirus were given, and neurovascular damage was assessed. In vitro models of oxygen-glucose deprivation (OGD) examined the inhibition and overexpression of IRS-1 on p53 and cell death in neurons and endothelial cells. Compared to NL pups, DR pups had significantly higher IRS-1, p-IRS-1, and pAkt levels, decreased p53, more tight junction proteins, reduced blood-brain barrier (BBB) damage after HI, and less infarct volumes at P21. Immunofluorescence revealed that IRS-1 was upregulated in the endothelial cells and neurons of DR pups. IRS-1 downregulation in DR pups reduced p-Akt, increased p53, worsened BBB damage, and increased brain injury, whereas IRS-1 overexpression in NL pups upregulated p-Akt, decreased p53, attenuated BBB damage, and decreased brain injury. In vitro, IRS-1 downregulation aggravated cell death in neurons and endothelial cells and is associated with decreased p-Akt and increased p53. In contrast, IRS-1 overexpression reduced cell death in endothelial cells with increased p-Akt and decreased p53. In conclusion, DR reduces neurovascular damage after HI in the neonatal brain through an IRS-1/Akt-mediated p53 downregulation, suggesting that IRS-1 signaling is a therapeutic target for hypoxic brain injury in neonates.

  2. Ryanodine receptor type I and nicotinic acid adenine dinucleotide phosphate receptors mediate Ca2+ release from insulin-containing vesicles in living pancreatic beta-cells (MIN6).

    PubMed

    Mitchell, Kathryn J; Lai, F Anthony; Rutter, Guy A

    2003-03-28

    We have demonstrated recently (Mitchell, K. J., Pinton, P., Varadi, A., Tacchetti, C., Ainscow, E. K., Pozzan, T., Rizzuto, R., and Rutter, G. A. (2001) J. Cell Biol. 155, 41-51) that ryanodine receptors (RyR) are present on insulin-containing secretory vesicles. Here we show that pancreatic islets and derived beta-cell lines express type I and II, but not type III, RyRs. Purified by subcellular fractionation and membrane immuno-isolation, dense core secretory vesicles were found to possess a similar level of type I RyR immunoreactivity as Golgi/endoplasmic reticulum (ER) membranes but substantially less RyR II than the latter. Monitored in cells expressing appropriately targeted aequorins, dantrolene, an inhibitor of RyR I channels, elevated free Ca(2+) concentrations in the secretory vesicle compartment from 40.1 +/- 6.7 to 90.4 +/- 14.8 microm (n = 4, p < 0.01), while having no effect on ER Ca(2+) concentrations. Furthermore, nicotinic acid adenine dinucleotide phosphate (NAADP), a novel Ca(2+)-mobilizing agent, decreased dense core secretory vesicle but not ER free Ca(2+) concentrations in permeabilized MIN6 beta-cells, and flash photolysis of caged NAADP released Ca(2+) from a thapsigargin-insensitive Ca(2+) store in single MIN6 cells. Because dantrolene strongly inhibited glucose-stimulated insulin secretion (from 3.07 +/- 0.51-fold stimulation to no significant glucose effect; n = 3, p < 0.01), we conclude that RyR I-mediated Ca(2+)-induced Ca(2+) release from secretory vesicles, possibly potentiated by NAADP, is essential for the activation of insulin secretion.

  3. Toll Like Receptor-4 Mediates Vascular Inflammation and Insulin Resistance in Diet-Induced Obesity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vascular dysfunction is a major complication of metabolic disorders such as diabetes and obesity. The current studies were undertaken to determine if inflammatory responses are activated in the vasculature of mice with diet-induced obesity (DIO), and if so, whether Toll Like Receptor-4 (TLR4), a ke...

  4. Down-regulation of insulin receptors is related to insulin internalization

    SciTech Connect

    Geiger, D.; Carpentier, J.L.; Gorden, P.; Orci, L. )

    1989-11-01

    In the present study, we have tested the influence of inhibition of endocytosis by hypertonic medium on the regulation of cell surface insulin receptors. We show that active internalization of {sup 125}I-insulin is markedly inhibited by hypertonic media and that, in parallel, cell surface invaginations are significantly diminished. These two events are accompanied by a marked inhibition of cell surface insulin receptor down-regulation. These data provide further strong evidence that receptor-mediated endocytosis is the major mechanism by which insulin receptors are regulated at the surface of target cells.

  5. Nuclear hormone receptor DHR96 mediates the resistance to xenobiotics but not the increased lifespan of insulin-mutant Drosophila.

    PubMed

    Afschar, Sonita; Toivonen, Janne M; Hoffmann, Julia Marianne; Tain, Luke Stephen; Wieser, Daniela; Finlayson, Andrew John; Driege, Yasmine; Alic, Nazif; Emran, Sahar; Stinn, Julia; Froehlich, Jenny; Piper, Matthew D; Partridge, Linda

    2016-02-01

    Lifespan of laboratory animals can be increased by genetic, pharmacological, and dietary interventions. Increased expression of genes involved in xenobiotic metabolism, together with resistance to xenobiotics, are frequent correlates of lifespan extension in the nematode worm Caenorhabditis elegans, the fruit fly Drosophila, and mice. The Green Theory of Aging suggests that this association is causal, with the ability of cells to rid themselves of lipophilic toxins limiting normal lifespan. To test this idea, we experimentally increased resistance of Drosophila to the xenobiotic dichlordiphenyltrichlorethan (DDT), by artificial selection or by transgenic expression of a gene encoding a cytochrome P450. Although both interventions increased DDT resistance, neither increased lifespan. Furthermore, dietary restriction increased lifespan without increasing xenobiotic resistance, confirming that the two traits can be uncoupled. Reduced activity of the insulin/Igf signaling (IIS) pathway increases resistance to xenobiotics and extends lifespan in Drosophila, and can also increase longevity in C. elegans, mice, and possibly humans. We identified a nuclear hormone receptor, DHR96, as an essential mediator of the increased xenobiotic resistance of IIS mutant flies. However, the IIS mutants remained long-lived in the absence of DHR96 and the xenobiotic resistance that it conferred. Thus, in Drosophila IIS mutants, increased xenobiotic resistance and enhanced longevity are not causally connected. The frequent co-occurrence of the two traits may instead have evolved because, in nature, lowered IIS can signal the presence of pathogens. It will be important to determine whether enhanced xenobiotic metabolism is also a correlated, rather than a causal, trait in long-lived mice.

  6. Nuclear hormone receptor DHR96 mediates the resistance to xenobiotics but not the increased lifespan of insulin-mutant Drosophila

    PubMed Central

    Afschar, Sonita; Toivonen, Janne M.; Tain, Luke Stephen; Wieser, Daniela; Finlayson, Andrew John; Driege, Yasmine; Alic, Nazif; Emran, Sahar; Stinn, Julia; Froehlich, Jenny; Piper, Matthew D.; Partridge, Linda

    2016-01-01

    Lifespan of laboratory animals can be increased by genetic, pharmacological, and dietary interventions. Increased expression of genes involved in xenobiotic metabolism, together with resistance to xenobiotics, are frequent correlates of lifespan extension in the nematode worm Caenorhabditis elegans, the fruit fly Drosophila, and mice. The Green Theory of Aging suggests that this association is causal, with the ability of cells to rid themselves of lipophilic toxins limiting normal lifespan. To test this idea, we experimentally increased resistance of Drosophila to the xenobiotic dichlordiphenyltrichlorethan (DDT), by artificial selection or by transgenic expression of a gene encoding a cytochrome P450. Although both interventions increased DDT resistance, neither increased lifespan. Furthermore, dietary restriction increased lifespan without increasing xenobiotic resistance, confirming that the two traits can be uncoupled. Reduced activity of the insulin/Igf signaling (IIS) pathway increases resistance to xenobiotics and extends lifespan in Drosophila, and can also increase longevity in C. elegans, mice, and possibly humans. We identified a nuclear hormone receptor, DHR96, as an essential mediator of the increased xenobiotic resistance of IIS mutant flies. However, the IIS mutants remained long-lived in the absence of DHR96 and the xenobiotic resistance that it conferred. Thus, in Drosophila IIS mutants, increased xenobiotic resistance and enhanced longevity are not causally connected. The frequent co-occurrence of the two traits may instead have evolved because, in nature, lowered IIS can signal the presence of pathogens. It will be important to determine whether enhanced xenobiotic metabolism is also a correlated, rather than a causal, trait in long-lived mice. PMID:26787908

  7. Insulin receptor-mediated nutritional signalling regulates juvenile hormone biosynthesis and vitellogenin production in the German cockroach.

    PubMed

    Abrisqueta, Marc; Süren-Castillo, Songül; Maestro, José L

    2014-06-01

    Female reproductive processes, which comprise, amongst others, the synthesis of yolk proteins and the endocrine mechanisms which regulate this synthesis, need a considerable amount of energy and resources. The role of communicating that the required nutritional status has been attained is carried out by nutritional signalling pathways and, in particular, by the insulin receptor (InR) pathway. In the present study, using the German cockroach, Blattella germanica, as a model, we analysed the role of InR in different processes, but mainly those related to juvenile hormone (JH) synthesis and vitellogenin production. We first cloned the InR cDNA from B. germanica (BgInR) and then determined that its expression levels were constant in corpora allata and fat body during the first female gonadotrophic cycle. Results showed that the observed increase in BgInR mRNA in fat body from starved compared to fed females was abolished in those females treated with systemic RNAi in vivo against the transcription factor BgFoxO. RNAi-mediated BgInR knockdown during the final two nymphal stages produced significant delays in the moults, together with smaller adult females which could not spread the fore- and hindwings properly. In addition, BgInR knockdown led to a severe inhibition of juvenile hormone synthesis in adult female corpora allata, with a concomitant reduction of mRNA levels corresponding to 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) synthase-1, HMG-CoA synthase-2, HMG-CoA reductase and methyl farnesoate epoxidase. BgInR RNAi treatment also reduced fat body vitellogenin mRNA and oocyte growth. Our results show that BgInR knockdown produces similar phenotypes to those obtained in starved females in terms of corpora allata activity and vitellogenin synthesis, and indicate that the InR pathway mediates the activation of JH biosynthesis and vitellogenin production elicited by nutrition signalling. PMID:24657890

  8. Metabolic syndrome and colorectal cancer: Is hyperinsulinemia/insulin receptor-mediated angiogenesis a critical process?☆

    PubMed Central

    Liu, Jane Jijun; Druta, Mihaela; Shibata, David; Coppola, Domenico; Boler, Ivette; Elahi, Abul; Reich, Richard R.; Siegel, Erin; Extermann, Martine

    2015-01-01

    Objective Components of metabolic syndrome (MS) have been individually linked to colorectal cancer risk and prognosis; however, an understanding of the dominant mechanisms is lacking. Materials and methods Twenty-one patients (10 MS; 11 non-MS) with resectable colorectal cancer were prospectively enrolled. Patients were classified for MS by the World Health Organization criteria and tested for circulating vascular endothelial growth factor (VEGF), interleukin-6 (IL-6), insulin-like growth factor-1 (IGF-1), fasting insulin, and tumor expression of IGF-1 receptor (IGF-1R), insulin-receptor (IR) and receptor for advanced glycation end-products (RAGE). Circulating markers were re-tested 6 months after surgery. Results The MS group had significantly higher baseline and post-operative fasting insulin levels (p < 0.001 and 0.003). No differences were observed in circulating IL-6, VEGF, IGF-1 and free IGF-1. By immunohistochemistry (IHC), IGF-1R expression was significantly higher in tumor vs. normal tissues (p < 0.001) while IR expression showed no difference. Interestingly, 64% of tumors demonstrated high IR positivity in the vessels within or surrounding the tumor stroma, but not in the vessels away from the tumor. By reverse transcription polymerase chain reaction (RT-PCR), tumor IGF-1R over-expression (80%) was confirmed, but there was no difference between MS and non-MS patients. Tumor RAGE over-expression was found in 67% of patients and was equally distributed between the two groups. Conclusions Hyperinsulinemia was the only significant factor distinguishing patients with colorectal cancer who have MS. The preferential over-expression of IR in the peri-tumoral microvessels suggests that hyperinsulinemia might contribute to colorectal cancer growth by enhancing angiogenesis. PMID:24484717

  9. Therapeutic potential of the dual peroxisome proliferator activated receptor (PPAR)α/γ agonist aleglitazar in attenuating TNF-α-mediated inflammation and insulin resistance in human adipocytes.

    PubMed

    Massaro, Marika; Scoditti, Egeria; Pellegrino, Mariangela; Carluccio, Maria Annunziata; Calabriso, Nadia; Wabitsch, Martin; Storelli, Carlo; Wright, Matthew; De Caterina, Raffaele

    2016-05-01

    Adipose tissue inflammation is a mechanistic link between obesity and its related sequelae, including insulin resistance and type 2 diabetes. Dual ligands of peroxisome proliferator activated receptor (PPAR)α and γ, combining in a single molecule the metabolic and inflammatory-regulatory properties of α and γ agonists, have been proposed as a promising therapeutic strategy to antagonize adipose tissue inflammation. Here we investigated the effects of the dual PPARα/γ agonist aleglitazar on human adipocytes challenged with inflammatory stimuli. Human Simpson-Golabi-Behmel syndrome (SGBS) adipocytes were treated with aleglitazar or - for comparison - the selective agonists for PPARα or γ fenofibrate or rosiglitazone, respectively, for 24h before stimulation with TNF-α. Aleglitazar, at concentrations as low as 10nmol/L, providing the half-maximal transcriptional activation of both PPARα and PPARγ, reduced the stimulated expression of several pro-inflammatory mediators including interleukin (IL)-6, the chemokine CXC-L10, and monocyte chemoattractant protein (MCP)-1. Correspondingly, media from adipocytes treated with aleglitazar reduced monocyte migration, consistent with suppression of MCP-1 secretion. Under the same conditions, aleglitazar also reversed the TNF-α-mediated suppression of insulin-stimulated ser473 Akt phosphorylation and decreased the TNF-α-induced ser312 IRS1 phosphorylation, two major switches in insulin-mediated metabolic activities, restoring glucose uptake in insulin-resistant adipocytes. Such effects were similar to those obtainable with a combination of single PPARα and γ agonists. In conclusion, aleglitazar reduces inflammatory activation and dysfunction in insulin signaling in activated adipocytes, properties that may benefit diabetic and obese patients. The effect of aleglitazar was consistent with dual PPARα and γ agonism, but with no evidence of synergism. PMID:26976796

  10. Antisense-mediated reduction in insulin-like growth factor-I receptor expression suppresses the malignant phenotype of a human alveolar rhabdomyosarcoma.

    PubMed Central

    Shapiro, D N; Jones, B G; Shapiro, L H; Dias, P; Houghton, P J

    1994-01-01

    The expression of the insulin-like growth factors (IGFs) and their receptors has been linked to cellular proliferation and tumorigenicity in a number of model systems. Since rhabdomyosarcoma cells express IGF-I receptors, an autocrine or paracrine loop involving this receptor and its ligands could be responsible in part for the growth characteristics of this tumor. To assess directly the role of the IGF-I receptor in rhabdomyosarcoma cell growth and tumorigenicity, a human alveolar rhabdomyosarcoma cell line with high IGF-I receptor expression was transfected with an amplifiable IGF-I receptor antisense expression vector. Four unique, transfected clones were analyzed and found to have reduced IGF-I receptor expression relative to the parental line. Integration of the antisense sequence was demonstrated by Southern blot analysis, and expression of antisense message in these clones was shown by S1 nuclease protection assay. Reduced IGF-I receptor surface expression in the transfectants was shown by decreased immunofluorescence with an IGF-I receptor monoclonal antibody and by decreased IGF-I binding as measured by Scatchard analysis. These clones had markedly reduced growth rates in vitro, impaired colony formation in soft agar, and failed to form tumors in immunodeficient mice when compared with vector-transfected clones. These results demonstrate that reduction of IGF-I receptor expression can inhibit both the in vitro and in vivo growth of a human rhabdomyosarcoma cell line and suggest a role for the IGF-I receptor in mediating neoplastic growth in this mesenchymally derived tumor. Images PMID:8083365

  11. Redox Signal-mediated Enhancement of the Temperature Sensitivity of Transient Receptor Potential Melastatin 2 (TRPM2) Elevates Glucose-induced Insulin Secretion from Pancreatic Islets.

    PubMed

    Kashio, Makiko; Tominaga, Makoto

    2015-05-01

    Transient receptor potential melastatin 2 (TRPM2) is a thermosensitive Ca(2+)-permeable cation channel expressed by pancreatic β cells where channel function is constantly affected by body temperature. We focused on the physiological functions of redox signal-mediated TRPM2 activity at body temperature. H2O2, an important molecule in redox signaling, reduced the temperature threshold for TRPM2 activation in pancreatic β cells of WT mice but not in TRPM2KO cells. TRPM2-mediated [Ca(2+)]i increases were likely caused by Ca(2+) influx through the plasma membrane because the responses were abolished in the absence of extracellular Ca(2+). In addition, TRPM2 activation downstream from the redox signal plus glucose stimulation enhanced glucose-induced insulin secretion. H2O2 application at 37 °C induced [Ca(2+)]i increases not only in WT but also in TRPM2KO β cells. This was likely due to the effect of H2O2 on KATP channel activity. However, the N-acetylcysteine-sensitive fraction of insulin secretion by WT islets was increased by temperature elevation, and this temperature-dependent enhancement was diminished significantly in TRPM2KO islets. These data suggest that endogenous redox signals in pancreatic β cells elevate insulin secretion via TRPM2 sensitization and activity at body temperature. The results in this study could provide new therapeutic approaches for the regulation of diabetic conditions by focusing on the physiological function of TRPM2 and redox signals.

  12. Insulin receptors internalize by a rapid, saturable pathway requiring receptor autophosphorylation and an intact juxtamembrane region

    PubMed Central

    1991-01-01

    The effect of receptor occupancy on insulin receptor endocytosis was examined in CHO cells expressing normal human insulin receptors (CHO/IR), autophosphorylation- and internalization-deficient receptors (CHO/IRA1018), and receptors which undergo autophosphorylation but lack a sequence required for internalization (CHO/IR delta 960). The rate of [125I]insulin internalization in CHO/IR cells at 37 degrees C was rapid at physiological concentrations, but decreased markedly in the presence of increasing unlabeled insulin (ED50 = 1-3 nM insulin, or 75,000 occupied receptors/cell). In contrast, [125I]insulin internalization by CHO/IRA1018 and CHO/IR delta 960 cells was slow and was not inhibited by unlabeled insulin. At saturating insulin concentrations, the rate of internalization by wild-type and mutant receptors was similar. Moreover, depletion of intracellular potassium, which has been shown to disrupt coated pit formation, inhibited the rapid internalization of [125I]insulin at physiological insulin concentrations by CHO/IR cells, but had little or no effect on [125I]insulin uptake by CHO/IR delta 960 and CHO/IRA1018 cells or wild-type cells at high insulin concentrations. These data suggest that the insulin-stimulated entry of the insulin receptor into a rapid, coated pit-mediated internalization pathway is saturable and requires receptor autophosphorylation and an intact juxtamembrane region. Furthermore, CHO cells also contain a constitutive nonsaturable pathway which does not require receptor autophosphorylation or an intact juxtamembrane region; this second pathway is unaffected by depletion of intracellular potassium, and therefore may be independent of coated pits. Our data suggest that the ligand-stimulated internalization of the insulin receptor may require specific saturable interactions between the receptor and components of the endocytic system. PMID:1757462

  13. Stimulation of glucose uptake by insulin-like growth factor II in human muscle is not mediated by the insulin-like growth factor II/mannose 6-phosphate receptor.

    PubMed Central

    Burguera, B; Elton, C W; Caro, J F; Tapscott, E B; Pories, W J; Dimarchi, R; Sakano, K; Dohm, G L

    1994-01-01

    Although the growth-promoting effects of insulin-like growth factor II (IGF-II) have been intensively studied, the acute actions of this hormone on glucose metabolism have been less well evaluated, especially in skeletal muscle of humans. We and other groups have shown that IGFs reduce glycaemic levels in humans and stimulate glucose uptake in rat muscle. The purpose of the present study was to evaluate the effect of IGF-II on glucose transport in muscle of normal and obese patients with and without non-insulin-dependent diabetes mellitus (NIDDM), as well as to identify the receptor responsible for this action. 2-Deoxyglucose transport was determined in vitro using a muscle-fibre strip preparation. IGF-II were investigated in biopsy material of rectus abdominus muscle taken from lean and obese patients and obese patients with NIDDM at the time of surgery. In the lean group, IGF-II (100 nM) stimulated glucose transport 2.1-fold, which was slightly less than stimulation by insulin (2.8-fold) at the same concentration. Binding of IGF-II was approx. 25% of that of insulin at 1 nM concentrations of both hormones. Obesity with or without NIDDM significantly reduced IGF-II-stimulated glucose uptake compared with the lean group. In order to explore which receptor mediated the IGF-II effect, we compared glucose uptake induced by IGF-II and two IGF-II analogues: [Leu27]IGF-II, with high affinity for the IGF-II/Man 6-P receptor but markedly reduced affinity for the IGF-I and insulin receptors, and [Arg54,Arg55]IGF-II was similar to that of IGF-II, whereas [Leu27]IGF-II had a very diminished effect. Results show that IGF-II is capable of stimulating muscle glucose uptake in lean but not in obese subjects and this effect seems not to be mediated via an IGF-II/Man 6-P receptor. Images Figure 2 PMID:8010960

  14. Reactive oxygen species mediate insulin signal transduction in mouse hypothalamus.

    PubMed

    Onoue, Takeshi; Goto, Motomitsu; Tominaga, Takashi; Sugiyama, Mariko; Tsunekawa, Taku; Hagiwara, Daisuke; Banno, Ryoichi; Suga, Hidetaka; Sugimura, Yoshihisa; Arima, Hiroshi

    2016-04-21

    In the hypothalamus, several reports have implied that ROS mediate physiological effects of insulin. In this study, we investigated the mechanisms of insulin-induced ROS production and the effect of ROS on insulin signal transduction in mouse hypothalamic organotypic cultures. Insulin increased intracellular ROS, which were suppressed by NADPH oxidase inhibitor. H2O2 increased phospho-insulin receptor β (p-IRβ) and phospho-Akt (p-Akt) levels. Insulin-induced increases in p-IRβ and p-Akt levels were attenuated by ROS scavenger or NADPH oxidase inhibitor. Our data suggest that insulin-induced phosphorylation of IRβ and Akt is mediated via ROS which are predominantly produced by NADPH oxidase in mouse hypothalamus.

  15. Impact of peroxisome proliferator-activated receptor γ on angiotensin II type 1 receptor-mediated insulin sensitivity, vascular inflammation and atherogenesis in hypercholesterolemic mice

    PubMed Central

    Becher, Ulrich M.; Camara, Bakary; Yildirimtürk, Cihan; Aksoy, Adem; Kebschull, Moritz; Werner, Nikos; Nickenig, Georg; Müller, Cornelius

    2015-01-01

    Introduction The angiotensin II type 1 receptor (AT1R) and the peroxisome proliferator-activated receptor γ (PPARγ) have been implicated in the pathogenesis of atherosclerosis. A number of studies have reported that AT1R inhibition or genetic AT1R disruption and PPARγ activation inhibit vascular inflammation and improve glucose and lipid metabolism, underscoring a molecular interaction of AT1R and PPARγ. We here analyzed the hypothesis that vasculoprotective anti-inflammatory and metabolic effects of AT1R inhibition are mediated by PPARγ. Material and methods Female ApoE–/–/AT1R–/– mice were fedwith a high-fat and cholesterol-rich diet and received continuous treatment with the selective PPARγ antagonist GW9662 or vehicle at a rate of 700 ng/kg/min for 4 weeks using subcutaneously implanted osmotic mini-pumps. Additionally, one group of female ApoE–/– mice served as a control group. After treatment for 4 weeks mice were sacrificed and read-outs (plaque development, vascular inflammation and insulinsensitivity) were performed. Results Using AT1R deficient ApoE–/– mice (ApoE–/–/AT1R–/– mice) we found decreased cholesterol-induced endothelial dysfunction and atherogenesis compared to ApoE–/– mice. Inhibition of PPARγ by application of the specific PPARγ antagonist GW9662 significantly abolished the anti-atherogenic effects of AT1R deficiency in ApoE–/–/AT1R–/– mice (plaque area as % of control: ApoE–/–: 39 ±5%; ApoE–/–/AT1R–/–: 17 ±7%, p = 0.044 vs. ApoE–/–; ApoE–/–/AT1R–/– + GW9662: 31 ±8%, p = 0.047 vs. ApoE–/–/AT1R–/–). Focusing on IL6 as a pro-inflammatory humoral marker we detected significantly increased IL-6 levels in GW9662-treated animals (IL-6 in pg/ml: ApoE–/–: 230 ±16; ApoE–/–/AT1R–/–: 117 ±20, p = 0.01 vs. ApoE–/–; ApoE–/–/AT1R–/– + GW9662: 199 ±20, p = 0.01 vs. ApoE–/–/AT1R–/–), while the anti-inflammatory marker IL-10 was significantly

  16. The insulin receptor substrate-1-related 4PS substrate but not the interleukin-2R gamma chain is involved in interleukin-13-mediated signal transduction.

    PubMed

    Wang, L M; Michieli, P; Lie, W R; Liu, F; Lee, C C; Minty, A; Sun, X J; Levine, A; White, M F; Pierce, J H

    1995-12-01

    Interleukin-13 (IL-13) induced a potent mitogenic response in IL-3-dependent TF-1 cells and DNA synthesis to a lesser extent in MO7E and FDC-P1 cells. IL-13 stimulation of these lines, like IL-4 and insulin-like growth factor-1 (IGF-1), resulted in tyrosine phosphorylation of a 170-kD substrate. The tyrosine-phosphorylated 170-kD substrate strongly associated with the 85-kD subunit of phosphoinositol-3 (PI-3) kinase and with Grb-2. Anti-4PS serum readily detected the 170-kD substrate in lysates from both TF-1 and FDC-P1 cells stimulated with IL-13 or IL-4. These data provide evidence that IL-13 induces tyrosine phosphorylation of the 4PS substrate, providing an essential interface between the IL-13 receptor and signaling molecules containing SH2 domains. IL-13 and IL-4 stimulation of murine L cell fibroblasts, which endogenously express the IL-4 receptor (IL-4R alpha) and lack expression of the IL-2 receptor gamma subunit (IL-2R gamma), resulted in tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1)/4PS. Enhanced tyrosine phosphorylation of IRS-1/4PS was observed in response to IL-4, but not IL-13 treatment of L cells transfected with the IL-2R gamma chain. These results indicate that IL-13 does not use the IL-2R gamma subunit in its receptor complex and that expression of IL-2R gamma enhances, but is not absolutely required for mediating IL-4-induced tyrosine phosphorylation of IRS-1/4PS.

  17. Phenobarbital and Insulin Reciprocate Activation of the Nuclear Receptor Constitutive Androstane Receptor through the Insulin Receptor

    PubMed Central

    Yasujima, Tomoya; Saito, Kosuke; Moore, Rick

    2016-01-01

    Phenobarbital (PB) antagonized insulin to inactivate the insulin receptor and attenuated the insulin receptor downstream protein kinase B (AKT)–forkhead box protein O1 and extracellular signal-regulated kinase 1/2 signals in mouse primary hepatocytes and HepG2 cells. Hepatic AKT began dephosphorylation in an early stage of PB treatment, and blood glucose levels transiently increased in both wild-type and constitutive androstane receptor (CAR) knockout (KO) mice. On the other hand, blood glucose levels increased in wild-type mice, but not KO mice, in later stages of PB treatment. As a result, PB, acting as an insulin receptor antagonist, elicited CAR-independent increases and CAR-dependent decreases of blood glucose levels at these different stages of treatment, respectively. Reciprocally, insulin activation of the insulin receptor repressed CAR activation and induction of its target CYP2B6 gene in HepG2 cells. Thus, PB and insulin cross-talk through the insulin receptor to regulate glucose and drug metabolism reciprocally. PMID:26994072

  18. Phenobarbital and Insulin Reciprocate Activation of the Nuclear Receptor Constitutive Androstane Receptor through the Insulin Receptor.

    PubMed

    Yasujima, Tomoya; Saito, Kosuke; Moore, Rick; Negishi, Masahiko

    2016-05-01

    Phenobarbital (PB) antagonized insulin to inactivate the insulin receptor and attenuated the insulin receptor downstream protein kinase B (AKT)-forkhead box protein O1 and extracellular signal-regulated kinase 1/2 signals in mouse primary hepatocytes and HepG2 cells. Hepatic AKT began dephosphorylation in an early stage of PB treatment, and blood glucose levels transiently increased in both wild-type and constitutive androstane receptor (CAR) knockout (KO) mice. On the other hand, blood glucose levels increased in wild-type mice, but not KO mice, in later stages of PB treatment. As a result, PB, acting as an insulin receptor antagonist, elicited CAR-independent increases and CAR-dependent decreases of blood glucose levels at these different stages of treatment, respectively. Reciprocally, insulin activation of the insulin receptor repressed CAR activation and induction of its target CYP2B6 gene in HepG2 cells. Thus, PB and insulin cross-talk through the insulin receptor to regulate glucose and drug metabolism reciprocally.

  19. Direct Demonstration of Separate Receptors for Growth and Metabolic Activities of Insulin and Multiplication-stimulating Activity (an Insulinlike Growth Factor) Using Antibodies to the Insulin Receptor

    PubMed Central

    King, George L.; Kahn, C. Ronald; Rechler, Matthew M.; Nissley, S. Peter

    1980-01-01

    Insulin and such insulinlike growth factors as multiplication stimulating activity (MSA) are related polypeptides that have common biological activities. Both insulin and MSA produce acute metabolic responses (stimulation of glucose oxidation in isolated fat cells) as well as growth effects (stimulation of [3H]thymidine incorporation into DNA in cultured fibroblasts). In addition, most cells have separate receptors for insulin and insulinlike growth factors, and both peptides have weaker affinity for each other's specific receptors than for their own. To determine, therefore, whether these effects are mediated by receptors for insulin, insulinlike growth factors, or both, we have selectively blocked insulin receptors with a specific antagonist, namely Fab fragments derived from naturally occurring antibodies to the insulin receptor. In rat adipocytes, 10 μg/ml of antireceptor Fab inhibited insulin binding by 90%, whereas it inhibited MSA binding <5%. The anti-insulin receptor Fab is without intrinsic biological activity, but acts as a competitive inhibitor of insulin receptors. Blockade of insulin receptors with Fab fragments produced a 30-fold rightward shift in the dose response for stimulation of glucose oxidation by both insulin and MSA. The dose-response curves for stimulation of oxidation by vitamin K5 and spermine, agents that stimulate glucose oxidation through noninsulin receptor pathways, were not affected by the blockade of insulin receptors with Fab antibody fragments. These data suggest that this acute metabolic effect of both insulin and MSA is mediated via the insulin receptor. In cultured human fibroblasts, 10 μg/ml of Fab inhibited insulin binding by 90% and MSA binding by 15%. In fibroblasts, however, blockade of the insulin receptor did not alter the dose response for stimulation of thymidine incorporation into DNA by either insulin or MSA. Furthermore, intact antireceptor antibody immunoglobulin (Ig)G, which produces multiple other insulinlike

  20. MHC Class I Limits Hippocampal Synapse Density by Inhibiting Neuronal Insulin Receptor Signaling

    PubMed Central

    Dixon-Salazar, Tracy J.; Fourgeaud, Lawrence; Tyler, Carolyn M.; Poole, Julianna R.; Park, Joseph J.

    2014-01-01

    Proteins of the major histocompatibility complex class I (MHCI) negatively regulate synapse density in the developing vertebrate brain (Glynn et al., 2011; Elmer et al., 2013; Lee et al., 2014), but the underlying mechanisms remain largely unknown. Here we identify a novel MHCI signaling pathway that involves the inhibition of a known synapse-promoting factor, the insulin receptor. Dominant-negative insulin receptor constructs decrease synapse density in the developing Xenopus visual system (Chiu et al., 2008), and insulin receptor activation increases dendritic spine density in mouse hippocampal neurons in vitro (Lee et al., 2011). We find that genetically reducing cell surface MHCI levels increases synapse density selectively in regions of the hippocampus where insulin receptors are expressed, and occludes the neuronal insulin response by de-repressing insulin receptor signaling. Pharmacologically inhibiting insulin receptor signaling in MHCI-deficient animals rescues synapse density, identifying insulin receptor signaling as a critical mediator of the tonic inhibitory effects of endogenous MHCI on synapse number. Insulin receptors co-immunoprecipitate MHCI from hippocampal lysates, and MHCI unmasks a cytoplasmic epitope of the insulin receptor that mediates downstream signaling. These results identify an important role for an MHCI–insulin receptor signaling pathway in circuit patterning in the developing brain, and suggest that changes in MHCI expression could unexpectedly regulate neuronal insulin sensitivity in the aging and diseased brain. PMID:25164678

  1. Insulin receptors in the mammary gland

    SciTech Connect

    Smith, D.H.

    1986-01-01

    Insulin binding studies were conducted using mammary membrane preparations to further the authors understanding of insulin's role in regulating mammary metabolism, particularly ruminant mammary metabolism. Specific objectives were to: (1) characterize insulin binding to bovine mammary microsomes and determine if the specificity and kinetics of binding indicate the presence of insulin receptors in bovine mammary gland; (2) examine and compare insulin binding by liver and mammary microsomes of the pig and dairy cow; (3) examine insulin binding to bovine milk fat globule membranes (MFGM) and evaluate this model's usefulness in assessing insulin receptor regulation in the mammary gland of the cow; (4) examine the effect of dietary fat in insulin binding by rat mammary and liver microsomes. The specificity and kinetics of /sup 125/I-insulin binding of bovine mammary microsomes indicated the presence of insulin receptors in bovine mammary gland. Bovine liver and mammary microsomes specifically bound less /sup 125/I-insulin than did the corresponding porcine microsomes, and mammary microsomes, regardless of species, specifically bound less /sup 125/I-insulin than did liver microsomes. These differences in binding suggest differences in insulin responsiveness between pigs and cattle, as well as between the liver and mammary glands.

  2. Mitogenic insulin receptor-A is overexpressed in human hepatocellular carcinoma due to EGFR-mediated dysregulation of RNA splicing factors.

    PubMed

    Chettouh, Hamza; Fartoux, Laetitia; Aoudjehane, Lynda; Wendum, Dominique; Clapéron, Audrey; Chrétien, Yves; Rey, Colette; Scatton, Olivier; Soubrane, Olivier; Conti, Filomena; Praz, Françoise; Housset, Chantal; Rosmorduc, Olivier; Desbois-Mouthon, Christèle

    2013-07-01

    Insulin receptor (IR) exists as two isoforms resulting from the alternative splicing of IR pre-mRNA. IR-B promotes the metabolic effects of insulin, whereas IR-A rather signals proliferative effects. IR-B is predominantly expressed in the adult liver. Here, we show that the alternative splicing of IR pre-mRNA is dysregulated in a panel of 85 human hepatocellular carcinoma (HCC) while being normal in adjacent nontumor liver tissue. An IR-B to IR-A switch is frequently observed in HCC tumors regardless of tumor etiology. Using pharmacologic and siRNA approaches, we show that the autocrine or paracrine activation of the EGF receptor (EGFR)/mitogen-activated protein/extracellular signal-regulated kinase pathway increases the IR-A:IR-B ratio in HCC cell lines, but not in normal hepatocytes, by upregulating the expression of the splicing factors CUGBP1, hnRNPH, hnRNPA1, hnRNPA2B1, and SF2/ASF. In HCC tumors, there is a significant correlation between the expression of IR-A and that of splicing factors. Dysregulation of IR pre-mRNA splicing was confirmed in a chemically induced model of HCC in rat but not in regenerating livers after partial hepatectomy. This study identifies a mechanism responsible for the generation of mitogenic IR-A and provides a novel interplay between IR and EGFR pathways in HCC. Increased expression of IR-A during neoplastic transformation of hepatocytes could mediate some of the adverse effects of hyperinsulinemia on HCC.

  3. Mechanical stretch augments insulin-induced vascular smooth muscle cell proliferation by insulin-like growth factor-1 receptor

    SciTech Connect

    Liu, Gang; Hitomi, Hirofumi; Hosomi, Naohisa; Lei, Bai; Nakano, Daisuke; Deguchi, Kazushi; Mori, Hirohito; Masaki, Tsutomu; Ma, Hong; Griendling, Kathy K.; Nishiyama, Akira

    2011-10-15

    Insulin resistance and hypertension have been implicated in the pathogenesis of cardiovascular disease; however, little is known about the roles of insulin and mechanical force in vascular smooth muscle cell (VSMC) remodeling. We investigated the contribution of mechanical stretch to insulin-induced VSMC proliferation. Thymidine incorporation was stimulated by insulin in stretched VSMCs, but not in un-stretched VSMCs. Insulin increased 2-deoxy-glucose incorporation in both stretched and un-stretched VSMCs. Mechanical stretch augmented insulin-induced extracellular signal-regulated kinase (ERK) and Akt phosphorylation. Inhibitors of epidermal growth factor (EGF) receptor tyrosine kinase and Src attenuated insulin-induced ERK and Akt phosphorylation, as well as thymidine incorporation, whereas 2-deoxy-glucose incorporation was not affected by these inhibitors. Moreover, stretch augmented insulin-like growth factor (IGF)-1 receptor expression, although it did not alter the expression of insulin receptor and insulin receptor substrate-1. Insulin-induced ERK and Akt activation, and thymidine incorporation were inhibited by siRNA for the IGF-1 receptor. Mechanical stretch augments insulin-induced VSMC proliferation via upregulation of IGF-1 receptor, and downstream Src/EGF receptor-mediated ERK and Akt activation. Similar to in vitro experiment, IGF-1 receptor expression was also augmented in hypertensive rats. These results provide a basis for clarifying the molecular mechanisms of vascular remodeling in hypertensive patients with hyperinsulinemia. -- Highlights: {yields} Mechanical stretch augments insulin-induced VSMC proliferation via IGF-1 receptor. {yields} Src/EGFR-mediated ERK and Akt phosphorylation are augmented in stretched VSMCs. {yields} Similar to in vitro experiment, IGF-1 receptor is increased in hypertensive rats. {yields} Results provide possible mechanisms of vascular remodeling in hypertension with DM.

  4. Insulin Action is Blocked by a Monoclonal Antibody That Inhibits the Insulin Receptor Kinase

    NASA Astrophysics Data System (ADS)

    Morgan, David O.; Ho, Lisa; Korn, Laurence J.; Roth, Richard A.

    1986-01-01

    Thirty-six monoclonal antibodies to the human insulin receptor were produced. Thirty-four bound the intracellular domain of the receptor β subunit, the domain containing the tyrosine-specific kinase activity. Of these 34 antibodies, 33 recognized the rat receptor and 1 was shown to precipitate the receptors from mice, chickens, and frogs with high affinity. Another of the antibodies inhibited the kinase activities of the human and frog receptors with equal potencies. This antibody inhibited the kinase activities of these receptors by more than 90%, whereas others had no effect on either kinase activity. Microinjection of the inhibiting antibody into Xenopus oocytes blocked the ability of insulin to stimulate oocyte maturation. In contrast, this inhibiting antibody did not block the ability of progesterone to stimulate the same response. Furthermore, control immunoglobulin and a noninhibiting antibody to the receptor β subunit did not block this response to insulin. These results strongly support a role for the tyrosine-specific kinase activity of the insulin receptor in mediating this biological effect of insulin.

  5. Insulin-glycerolipid mediators and gene expression

    SciTech Connect

    Standaert, M.L.; Pollet, R.J. )

    1988-06-01

    Insulin is an anabolic polypeptide hormone with pleiotrophic effects. During the decades since the initial description by Banting and Best, the acute effects of insulin have been widely studied with particular focus on the mechanism or mechanisms of insulin activation of hexose transport and regulation of metabolic enzyme activity. However, recently there has been a major expansion of investigation to include insulin regulation of gene expression with multiple insulin-sensitive specific mRNAs now reported. In this review, we explore the involvement of insulin-induced changes in plasma membrane glycerolipid metabolism in the transmembrane signaling process required for insulin regulation of mRNA levels. Insulin increase diacylglycerol levels in insulin-responsive cells, and synthetic diacylglycerols or their phorbol ester diacylglycerol analogs, such as 4{beta}, 9{alpha}, 12{beta}, 13{alpha}, 20-pentahydroxytiglia-1,6-dien-3-one 12{beta}-myristate 13-acetate (TPA), mimic insulin regulation of ornithine decarboxylase mRNA, c-fos mRNA, and phosphoenolpyruvate carboxykinase mRNA levels. This suggests that insulin regulation of specific mRNA levels may be mediated by insulin-induced changes in phospholipid metabolism and that diacylglycerol may play a pivotal role in insulin regulation of gene expression.

  6. Insulin resistance and muscle insulin receptor substrate‐1 serine hyperphosphorylation

    PubMed Central

    Stuart, Charles A.; Howell, Mary E. A.; Cartwright, Brian M.; McCurry, Melanie P.; Lee, Michelle L.; Ramsey, Michael W.; Stone, Michael H.

    2014-01-01

    Abstract Insulin resistance in metabolic syndrome subjects is profound in spite of muscle insulin receptor and insulin‐responsive glucose transporter (GLUT4) expression being nearly normal. Insulin receptor tyrosine kinase phosphorylation of insulin receptor substrate‐1 (IRS‐1) at Tyr896 is a necessary step in insulin stimulation of translocation of GLUT4 to the cell surface. Serine phosphorylation of IRS‐1 by some kinases diminishes insulin action in mice. We evaluated the phosphorylation status of muscle IRS‐1 in 33 subjects with the metabolic syndrome and seventeen lean controls. Each underwent euglycemic insulin clamps and a thigh muscle biopsy before and after 8 weeks of either strength or endurance training. Muscle IRS‐1 phosphorylation at six sites was quantified by immunoblots. Metabolic syndrome muscle IRS‐1 had excess phosphorylation at Ser337 and Ser636 but not at Ser307, Ser789, or Ser1101. Ser337 is a target for phosphorylation by glycogen synthase kinase 3 (GSK3) and Ser636 is phosphorylated by c‐Jun N‐terminal kinase 1 (JNK1). Exercise training without weight loss did not change the IRS‐1 serine phosphorylation. These data suggest that baseline hyperphosphorylation of at least two key serines within muscle IRS‐1 diminishes the transmission of the insulin signal and thereby decreases the insulin‐stimulated translocation of GLUT4. Excess fasting phosphorylation of muscle IRS‐1 at Ser636 may be a major cause of the insulin resistance seen in obesity and might prevent improvement in insulin responsiveness when exercise training is not accompanied by weight loss. PMID:25472611

  7. Differential hepatic distribution of insulin receptor substrates causes selective insulin resistance in diabetes and obesity

    PubMed Central

    Kubota, Naoto; Kubota, Tetsuya; Kajiwara, Eiji; Iwamura, Tomokatsu; Kumagai, Hiroki; Watanabe, Taku; Inoue, Mariko; Takamoto, Iseki; Sasako, Takayoshi; Kumagai, Katsuyoshi; Kohjima, Motoyuki; Nakamuta, Makoto; Moroi, Masao; Sugi, Kaoru; Noda, Tetsuo; Terauchi, Yasuo; Ueki, Kohjiro; Kadowaki, Takashi

    2016-01-01

    Hepatic insulin signalling involves insulin receptor substrates (Irs) 1/2, and is normally associated with the inhibition of gluconeogenesis and activation of lipogenesis. In diabetes and obesity, insulin no longer suppresses hepatic gluconeogenesis, while continuing to activate lipogenesis, a state referred to as ‘selective insulin resistance'. Here, we show that ‘selective insulin resistance' is caused by the differential expression of Irs1 and Irs2 in different zones of the liver. We demonstrate that hepatic Irs2-knockout mice develop ‘selective insulin resistance', whereas mice lacking in Irs1, or both Irs1 and Irs2, develop ‘total insulin resistance'. In obese diabetic mice, Irs1/2-mediated insulin signalling is impaired in the periportal zone, which is the primary site of gluconeogenesis, but enhanced in the perivenous zone, which is the primary site of lipogenesis. While hyperinsulinaemia reduces Irs2 expression in both the periportal and perivenous zones, Irs1 expression, which is predominantly in the perivenous zone, remains mostly unaffected. These data suggest that ‘selective insulin resistance' is induced by the differential distribution, and alterations of hepatic Irs1 and Irs2 expression. PMID:27708333

  8. Signal transduction through the IL-4 and insulin receptor families.

    PubMed

    Wang, L M; Keegan, A; Frankel, M; Paul, W E; Pierce, J H

    1995-07-01

    Activation of tyrosine kinase-containing receptors and intracellular tyrosine kinases by ligand stimulation is known to be crucial for mediating initial and subsequent events involved in mitogenic signal transduction. Receptors for insulin and insulin-like growth factor 1 (IGF-1) contain cytoplasmic tyrosine kinase domains that undergo autophosphorylation upon ligand stimulation. Activation of these receptors also leads to pronounced and rapid tyrosine phosphorylation of insulin receptor substrate 1 (IRS-1) in cells of connective tissue origin. A related substrate, designated 4PS, is similarly phosphorylated by insulin and IGF-1 stimulation in many hematopoietic cell types. IRS-1 and 4PS possess a number of tyrosine phosphorylation sites that are within motifs that bind specific SH2-containing molecules known to be involved in mitogenic signaling such as PI-3 kinase, SHPTP-2 (Syp) and Grb-2. Thus, they appear to act as docking substrates for a variety of signaling molecules. The majority of hematopoietic cytokines bind to receptors that do not possess intrinsic kinase activity, and these receptors have been collectively termed as members of the hematopoietin receptor superfamily. Despite their lack of tyrosine kinase domains, stimulation of these receptors has been demonstrated to activate intracellular kinases leading to tyrosine phosphorylation of multiple substrates. Recent evidence has demonstrated that activation of different members of the Janus family of tyrosine kinases is involved in mediating tyrosine phosphorylation events by specific cytokines. Stimulation of the interleukin 4 (IL-4) receptor, a member of the hematopoietin receptor superfamily, is thought to result in activation of Jak1, Jak3, and/or Fes tyrosine kinases.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. G(q/11) is involved in insulin-stimulated inositol phosphoglycan putative mediator generation in rat liver membranes: co-localization of G(q/11) with the insulin receptor in membrane vesicles.

    PubMed

    Sleight, S; Wilson, B A; Heimark, D B; Larner, J

    2002-07-12

    Insulin signaling to generate inositol phosphoglycans (IPGs) was demonstrated to occur via the participation of the heterotrimeric G-proteins G(q/11). IPGs were measured as two specific inositol markers, myo-inositol and chiro-inositol after strong acid hydrolysis. Insulin and Pasteurella multocida toxin (PMT) generated both myo-inositol and chiro-inositol IPGs in a dose-dependent manner. PMT has been shown to activate G(q) specifically. Insulin action was abrogated by pre-treatment with anti G(q/11) antibody. Western blotting demonstrated the enrichment of both insulin receptor beta subunit and G(q/11) in the liver membrane vesicles. Vesicles also contained clathrin, caveolin PLC beta 1 and PLC Delta. Immunogold staining revealed the co-localization of both insulin receptor beta subunit and G(q/11) in an approximate stochiometric ratio of 1:3. No vesicles were detected with either component alone. The present and considerable published data provide strong evidence for insulin signaling both via a tyrosine kinase cascade mechanism and via heterotrimeric G-protein interactions. PMID:12150987

  10. Binding characteristics of swine erythrocyte insulin receptors

    SciTech Connect

    Dieberg, G.; Bryan, G.S.; Sartin, J.L.; Williams, J.C.; Prince, T.J.; Kemppainen, R.J.

    1985-09-01

    Crossbred gilts had 8.8 +/- 1.1% maximum binding of ( SVI)insulin to insulin receptors on erythrocytes. The number of insulin-binding sites per cell was 137 +/- 19, with a binding affinity ranging from 7.4 X 10(7)M-1 to 11.2 X 10(7)M-1 and mean of 8.8 X 10(7)M-1. Pregnant sows had a significant increase in maximum binding due to an increase in number of receptor sites per cell. Lactating sows fed a high-fiber diet and a low-fiber diet did not develop a significant difference in maximum binding of insulin. Sows fed the low-fiber diet had a significantly higher number of binding sites and a significantly lower binding affinity than did sows fed a high-fiber diet. Receptor-binding affinity was lower in the low-fiber diet group than in cycling gilts, whereas data from sows fed the high-fiber diet did not differ from data for cycling gilts. Data from this study indicated that insulin receptors of swine erythrocytes have binding characteristics similar to those in other species. Pregnancy and diet will alter insulin receptor binding in swine.

  11. Phosphorylation of insulin receptor substrate 1 by glycogen synthase kinase 3 impairs insulin action

    PubMed Central

    Eldar-Finkelman, Hagit; Krebs, Edwin G.

    1997-01-01

    The phosphorylation of insulin receptor substrate 1 (IRS-1) on tyrosine residues by the insulin receptor (IR) tyrosine kinase is involved in most of the biological responses of insulin. IRS-1 mediates insulin signaling by recruiting SH2 proteins through its multiple tyrosine phosphorylation sites. The phosphorylation of IRS-1 on serine/threonine residues also occurs in cells; however, the particular protein kinase(s) promoting this type of phosphorylation are unknown. Here we report that glycogen synthase kinase 3 (GSK-3) is capable of phosphorylating IRS-1 and that this modification converts IRS-1 into an inhibitor of IR tyrosine kinase activity in vitro. Expression of wild-type GSK-3 or an “unregulated” mutant of the kinase (S9A) in CHO cells overexpressing IRS-1 and IR, resulted in increased serine phosphorylation levels of IRS-1, suggesting that IRS-1 is a cellular target of GSK-3. Furthermore, insulin-induced tyrosine phosphorylation of IRS-1 and IR was markedly suppressed in cells expressing wild-type or the S9A mutant, indicating that expression of GSK-3 impairs IR tyrosine kinase activity. Taken together, our studies suggest a new role for GSK-3 in attenuating insulin signaling via its phosphorylation of IRS-1 and may provide new insight into mechanisms important in insulin resistance. PMID:9275179

  12. Insulin receptor membrane retention by a traceable chimeric mutant

    PubMed Central

    2013-01-01

    Background The insulin receptor (IR) regulates glucose homeostasis, cell growth and differentiation. It has been hypothesized that the specific signaling characteristics of IR are in part determined by ligand-receptor complexes localization. Downstream signaling could be triggered from the plasma membrane or from endosomes. Regulation of activated receptor's internalization has been proposed as the mechanism responsible for the differential isoform and ligand-specific signaling. Results We generated a traceable IR chimera that allows the labeling of the receptor at the cell surface. This mutant binds insulin but fails to get activated and internalized. However, the mutant heterodimerizes with wild type IR inhibiting its auto-phosphorylation and blocking its internalization. IR membrane retention attenuates AP-1 transcriptional activation favoring Akt activation. Conclusions These results suggest that the mutant acts as a selective dominant negative blocking IR internalization-mediated signaling. PMID:23805988

  13. Insulin and rabbit anti-insulin receptor antibodies stimulate additively the intrinsic receptor kinase activity.

    PubMed Central

    Ponzio, G; Dolais-Kitabgi, J; Louvard, D; Gautier, N; Rossi, B

    1987-01-01

    This paper describes the properties of rabbit polyclonal antibodies directed against purified human insulin receptor which strongly stimulate the intrinsic tyrosine kinase activity. The stimulatory effect of the antibodies on the kinase activity was obtained on the insulin receptor autophosphorylation as well as on the kinase activity towards a synthetic substrate. This stimulation is additive to that induced by insulin. Moreover, rabbit antibodies do not impair insulin binding. These data strongly suggest that antibodies and insulin act through separate pathways. This conclusion is reinforced by the differences observed on the phosphopeptide maps of the receptor's beta subunit whose phosphorylation was performed either in the presence of insulin or rabbit antibodies. Interestingly, these polyclonal antibodies can also induce an activation of the receptor autophosphorylation by interacting only with extracellular determinants. The anti-insulin receptor antibodies mimic insulin in their stimulatory effect on amino acid (AIB) uptake, but they have a different effect to that found on the kinase activity; the simultaneous addition of the antiserum and insulin failed to stimulate this amino acid transport over the level induced by a saturating concentration of hormone. Images Fig. 1. Fig. 3. Fig. 4. Fig. 6. Fig. 7. PMID:3034584

  14. Peroxynitrite mediates muscle insulin resistance in mice via nitration of IRbeta/IRS-1 and Akt

    SciTech Connect

    Zhou Jun; Huang Kaixun

    2009-11-15

    Accumulating evidence suggests that peroxynitrite (ONOO{sup -}) is involved in the pathogenesis of insulin resistance. In the current study, we investigated whether insulin resistance in vivo could be mediated by nitration of proteins involved in the early steps of the insulin signal transduction pathway. Exogenous peroxynitrite donated by 3-morpholinosydnonimine hydrochloride (SIN-1) induced in vivo nitration of the insulin receptor beta subunit (IRbeta), insulin receptor substrate (IRS)-1, and protein kinase B/Akt (Akt) in skeletal muscle of mice and dramatically reduced whole-body insulin sensitivity and muscle insulin signaling. Moreover, in high-fat diet (HFD)-fed insulin-resistant mice, we observed enhanced nitration of IRbeta and IRS-1 in skeletal muscle, in parallel with impaired whole-body insulin sensitivity and muscle insulin signaling. Reversal of nitration of these proteins by treatment with the peroxynitrite decomposition catalyst FeTPPS yielded an improvement in whole-body insulin sensitivity and muscle insulin signaling in HFD-fed mice. Taken together, these findings provide new mechanistic insights for the involvement of peroxynitrite in the development of insulin resistance and suggest that nitration of proteins involved in the early steps of insulin signal transduction is a novel molecular mechanism of HFD-induced muscle insulin resistance.

  15. S961, an insulin receptor antagonist causes hyperinsulinemia, insulin-resistance and depletion of energy stores in rats

    SciTech Connect

    Vikram, Ajit; Jena, Gopabandhu

    2010-07-23

    Research highlights: {yields}Insulin receptor antagonist S961 causes hyperglycemia, hyperinsulinemia and insulin resistance in rats. {yields}Peroxysome-proliferator-activated-receptor-gamma agonist pioglitazone improves S961 induced hyperglycemia and glucose intolerance. {yields}Long term treatment with insulin receptor antagonist S961 results in the decreased adiposity and hepatic glycogen content. {yields}Improvement in the hyperglycemia and glucose intolerance by pioglitazone clearly demonstrates that S961 treated rats can be successfully used to screen the novel therapeutic interventions having potential to improve glucose disposal through receptor independent mechanisms. -- Abstract: Impairment in the insulin receptor signaling and insulin mediated effects are the key features of type 2 diabetes. Here we report that S961, a peptide insulin receptor antagonist induces hyperglycemia, hyperinsulinemia ({approx}18-fold), glucose intolerance and impairment in the insulin mediated glucose disposal in the Sprague-Dawley rats. Further, long-term S961 treatment (15 day, 10 nM/kg/day) depletes energy storage as evident from decrease in the adiposity and hepatic glycogen content. However, peroxysome-proliferator-activated-receptor-gamma (PPAR{gamma}) agonist pioglitazone significantly (P < 0.001) restored S961 induced hyperglycemia (196.73 {+-} 16.32 vs. 126.37 {+-} 27.07 mg/dl) and glucose intolerance ({approx}78%). Improvement in the hyperglycemia and glucose intolerance by pioglitazone clearly demonstrates that S961 treated rats can be successfully used to screen the novel therapeutic interventions having potential to improve glucose disposal through receptor independent mechanisms. Further, results of the present study reconfirms and provide direct evidence to the crucial role of insulin receptor signaling in the glucose homeostasis and fuel metabolism.

  16. Insulin receptor activation in solitary fibrous tumours.

    PubMed

    Li, Y; Chang, Q; Rubin, B P; Fletcher, C D M; Morgan, T W; Mentzer, S J; Sugarbaker, D J; Fletcher, J A; Xiao, S

    2007-04-01

    Solitary fibrous tumours (SFTs) are known to overexpress insulin-like growth factor 2 (IGF-2). The down-stream oncogenic pathways of IGF-2, however, are not clear. Here we report uniform activation of the insulin receptor (IR) pathway in SFTs, which are mesenchymal tumours frequently associated with hypoglycaemia. Whereas the IR and its downstream signalling pathways were constitutively activated in SFTs, insulin-like growth factor 1 receptor (IGF-1R) was not expressed in these tumours. We also find that SFT cells secrete IGF-2 and proliferate in serum-free medium, consistent with an IGF-2/IR autocrine loop. The aetiological relevance of IGF-2 is supported by expression of IR-A, the IR isoform with high affinity for IGF-2, in all SFTs. Our studies suggest that IR activation plays an oncogenic role in SFTs.

  17. Hepatocyte Toll-like receptor 4 regulates obesity-induced inflammation and insulin resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chronic low-grade inflammation is a hallmark of obesity and thought to contribute to the development of obesity-related insulin resistance. Toll-like receptor 4 (Tlr4) is a key mediator of pro-inflammatory responses. Mice lacking Tlr4s are protected from diet-induced insulin resistance and inflammat...

  18. SRC Homology 2 Domain Binding Sites in Insulin, IGF-1 and FGF receptor mediated signaling networks reveal an extensive potential interactome

    PubMed Central

    2012-01-01

    Specific peptide ligand recognition by modular interaction domains is essential for the fidelity of information flow through the signal transduction networks that control cell behavior in response to extrinsic and intrinsic stimuli. Src homology 2 (SH2) domains recognize distinct phosphotyrosine peptide motifs, but the specific sites that are phosphorylated and the complement of available SH2 domains varies considerably in individual cell types. Such differences are the basis for a wide range of available protein interaction microstates from which signaling can evolve in highly divergent ways. This underlying complexity suggests the need to broadly map the signaling potential of systems as a prerequisite for understanding signaling in specific cell types as well as various pathologies that involve signal transduction such as cancer, developmental defects and metabolic disorders. This report describes interactions between SH2 domains and potential binding partners that comprise initial signaling downstream of activated fibroblast growth factor (FGF), insulin (Ins), and insulin-like growth factor-1 (IGF-1) receptors. A panel of 50 SH2 domains screened against a set of 192 phosphotyrosine peptides defines an extensive potential interactome while demonstrating the selectivity of individual SH2 domains. The interactions described confirm virtually all previously reported associations while describing a large set of potential novel interactions that imply additional complexity in the signaling networks initiated from activated receptors. This study of pTyr ligand binding by SH2 domains provides valuable insight into the selectivity that underpins complex signaling networks that are assembled using modular protein interaction domains. PMID:22974441

  19. Insulin and insulin like growth factor II endocytosis and signaling via insulin receptor B

    PubMed Central

    2013-01-01

    Background Insulin and insulin-like growth factors (IGFs) act on tetrameric tyrosine kinase receptors controlling essential functions including growth, metabolism, reproduction and longevity. The insulin receptor (IR) binds insulin and IGFs with different affinities triggering different cell responses. Results We showed that IGF-II induces cell proliferation and gene transcription when IR-B is over-expressed. We combined biotinylated ligands with streptavidin conjugated quantum dots and visible fluorescent proteins to visualize the binding of IGF-II and insulin to IR-B and their ensuing internalization. By confocal microscopy and flow cytometry in living cells, we studied the internalization kinetic through the IR-B of both IGF-II, known to elicit proliferative responses, and insulin, a regulator of metabolism. Conclusions IGF-II promotes a faster internalization of IR-B than insulin. We propose that IGF-II differentially activates mitogenic responses through endosomes, while insulin-activated IR-B remains at the plasma membrane. This fact could facilitate the interaction with key effector molecules involved in metabolism regulation. PMID:23497114

  20. Inter-domain tagging implicates caveolin-1 in insulin receptor trafficking and Erk signaling bias in pancreatic beta-cells

    PubMed Central

    Boothe, Tobias; Lim, Gareth E.; Cen, Haoning; Skovsø, Søs; Piske, Micah; Li, Shu Nan; Nabi, Ivan R.; Gilon, Patrick; Johnson, James D.

    2016-01-01

    Objective The role and mechanisms of insulin receptor internalization remain incompletely understood. Previous trafficking studies of insulin receptors involved fluorescent protein tagging at their termini, manipulations that may be expected to result in dysfunctional receptors. Our objective was to determine the trafficking route and molecular mechanisms of functional tagged insulin receptors and endogenous insulin receptors in pancreatic beta-cells. Methods We generated functional insulin receptors tagged with pH-resistant fluorescent proteins between domains. Confocal, TIRF and STED imaging revealed a trafficking pattern of inter-domain tagged insulin receptors and endogenous insulin receptors detected with antibodies. Results Surprisingly, interdomain-tagged and endogenous insulin receptors in beta-cells bypassed classical Rab5a- or Rab7-mediated endocytic routes. Instead, we found that removal of insulin receptors from the plasma membrane involved tyrosine-phosphorylated caveolin-1, prior to trafficking within flotillin-1-positive structures to lysosomes. Multiple methods of inhibiting caveolin-1 significantly reduced Erk activation in vitro or in vivo, while leaving Akt signaling mostly intact. Conclusions We conclude that phosphorylated caveolin-1 plays a role in insulin receptor internalization towards lysosomes through flotillin-1-positive structures and that caveolin-1 helps bias physiological beta-cell insulin signaling towards Erk activation. PMID:27110488

  1. Dissociation of insulin receptor phosphorylation and stimulation of glucose transport in BC3H-1 myocytes

    SciTech Connect

    Mojsilovic, L.P.; Standaert, M.L.; Rosic, N.K.; Pollet, R.J.

    1986-05-01

    The authors have investigated insulin receptor phosphorylation in differentiated cultured BC3H-1 myocytes. As for other insulin-responsive cell systems in partially purified wheat germ agglutinin receptor preparations, insulin stimulates the phosphorylation of its own receptor (95K ..beta..-subunits) in a dose dependent manner (0-400 nM), as identified by immunoprecipitation with antiinsulin receptor antibodies and SDS-PAGE. In the same preparations they show that 12-0-tetradecanyl phorbol acetate (TPA), which in many respect ..beta..-subunits in the same dose dependent manner (0-5 ..mu..M). In addition, antiinsulin receptor antibodies (B-10) also induced phosphorylation of mimics insulin action, also induced phosphorylation of the insulin receptor and HPLC tryptic maps of the /sup 32/P-labeled ..beta..-subunit were identical to those for insulin-induced receptor phosphorylation. However, while insulin and TPA are potent stimulators of glucose transport in these muscle cells, the antireceptor antibodies alone failed to provoke glucose transport at any concentration. The specificity and activity of these antibodies were confirmed in their system by their ability to inhibit insulin binding and insulin-stimulated glucose transport in a concentration-dependent manner. Their results indicate that phosphorylation of insulin receptor is not a crucial event in mediating insulin action, at least with respect to glucose transport. While the effects of the B-10 antibody in the BC3H-1 myocyte differ from those in the adipocyte, their results provide independent confirmation of their essential conclusion that phosphorylation of the insulin receptor may not be necessary nor sufficient for its acute action in promoting glucose transport.

  2. Agonism and Antagonism at the Insulin Receptor

    PubMed Central

    Knudsen, Louise; Hansen, Bo Falck; Jensen, Pia; Pedersen, Thomas Åskov; Vestergaard, Kirsten; Schäffer, Lauge; Blagoev, Blagoy; Oleksiewicz, Martin B.; Kiselyov, Vladislav V.; De Meyts, Pierre

    2012-01-01

    Insulin can trigger metabolic as well as mitogenic effects, the latter being pharmaceutically undesirable. An understanding of the structure/function relationships between insulin receptor (IR) binding and mitogenic/metabolic signalling would greatly facilitate the preclinical development of new insulin analogues. The occurrence of ligand agonism and antagonism is well described for G protein-coupled receptors (GPCRs) and other receptors but in general, with the exception of antibodies, not for receptor tyrosine kinases (RTKs). In the case of the IR, no natural ligand or insulin analogue has been shown to exhibit antagonistic properties, with the exception of a crosslinked insulin dimer (B29-B’29). However, synthetic monomeric or dimeric peptides targeting sites 1 or 2 of the IR were shown to be either agonists or antagonists. We found here that the S961 peptide, previously described to be an IR antagonist, exhibited partial agonistic effects in the 1–10 nM range, showing altogether a bell-shaped dose-response curve. Intriguingly, the agonistic effects of S961 were seen only on mitogenic endpoints (3H-thymidine incorporation), and not on metabolic endpoints (14C-glucose incorporation in adipocytes and muscle cells). The agonistic effects of S961 were observed in 3 independent cell lines, with complete concordance between mitogenicity (3H-thymidine incorporation) and phosphorylation of the IR and Akt. Together with the B29-B’29 crosslinked dimer, S961 is a rare example of a mixed agonist/antagonist for the human IR. A plausible mechanistic explanation based on the bivalent crosslinking model of IR activation is proposed. PMID:23300584

  3. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome

    PubMed Central

    Kadowaki, Takashi; Yamauchi, Toshimasa; Kubota, Naoto; Hara, Kazuo; Ueki, Kohjiro; Tobe, Kazuyuki

    2006-01-01

    Adiponectin is an adipokine that is specifically and abundantly expressed in adipose tissue and directly sensitizes the body to insulin. Hypoadiponectinemia, caused by interactions of genetic factors such as SNPs in the Adiponectin gene and environmental factors causing obesity, appears to play an important causal role in insulin resistance, type 2 diabetes, and the metabolic syndrome, which are linked to obesity. The adiponectin receptors, AdipoR1 and AdipoR2, which mediate the antidiabetic metabolic actions of adiponectin, have been cloned and are downregulated in obesity-linked insulin resistance. Upregulation of adiponectin is a partial cause of the insulin-sensitizing and antidiabetic actions of thiazolidinediones. Therefore, adiponectin and adiponectin receptors represent potential versatile therapeutic targets to combat obesity-linked diseases characterized by insulin resistance. This Review describes the pathophysiology of adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. PMID:16823476

  4. [Severe type A insulin resistance syndrome due to a mutation in the insulin receptor gene].

    PubMed

    Ros, P; Colino-Alcol, E; Grasso, V; Barbetti, F; Argente, J

    2015-01-01

    Insulin resistance syndromes without lipodystrophy are an infrequent and heterogeneous group of disorders with variable clinical phenotypes, associated with hyperglycemia and hyperinsulinemia. The three conditions related to mutations in the insulin receptor gene are leprechaunism or Donohue syndrome, Rabson-Mendenhall syndrome, and Type A syndrome. A case is presented on a patient diagnosed with type A insulin resistance, defined by the triad of extreme insulin resistance, acanthosis nigricans, and hyperandrogenism, carrying a heterozygous mutation in exon 19 of the insulin receptor gene coding for its tyrosine kinase domain that is crucial for the catalytic activity of the receptor. The molecular basis of the syndrome is reviewed, focusing on the structure-function relationships of the insulin receptor, knowing that the criteria for survival are linked to residual insulin receptor function. It is also pointed out that, although type A insulin resistance appears to represent a somewhat less severe condition, these patients have a high morbidity and their treatment is still unsatisfactory.

  5. Quercetin suppresses insulin receptor signaling through inhibition of the insulin ligand–receptor binding and therefore impairs cancer cell proliferation

    SciTech Connect

    Wang, Feng; Yang, Yong

    2014-10-03

    Graphical abstract: - Highlights: • Quercetin inhibits insulin ligand–receptor interactions. • Quercetin reduces downstream insulin receptor signaling. • Quercetin blocks insulin induced glucose uptake. • Quercetin suppresses insulin stimulated cancer cell proliferation and tumor growth. - Abstract: Although the flavonoid quercetin is known to inhibit activation of insulin receptor signaling, the inhibitory mechanism is largely unknown. In this study, we demonstrate that quercetin suppresses insulin induced dimerization of the insulin receptor (IR) through interfering with ligand–receptor interactions, which reduces the phosphorylation of IR and Akt. This inhibitory effect further inhibits insulin stimulated glucose uptake due to decreased cell membrane translocation of glucose transporter 4 (GLUT4), resulting in impaired cancer cell proliferation. The effect of quercetin in inhibiting tumor growth was also evident in an in vivo model, indicating a potential future application for quercetin in the treatment of cancers.

  6. Insulin-Like Growth Factor Receptor Signaling is Necessary for Epidermal Growth Factor Mediated Proliferation of SVZ Neural Precursors in vitro Following Neonatal Hypoxia–Ischemia

    PubMed Central

    Alagappan, Dhivyaa; Ziegler, Amber N.; Chidambaram, Shravanthi; Min, Jungsoo; Wood, Teresa L.; Levison, Steven W.

    2014-01-01

    In this study, we assessed the importance of insulin-like growth factor (IGF) and epidermal growth factor (EGF) receptor co-signaling for rat neural precursor (NP) cell proliferation and self-renewal in the context of a developmental brain injury that is associated with cerebral palsy. Consistent with previous studies, we found that there is an increase in the in vitro growth of subventricular zone NPs isolated acutely after cerebral hypoxia–ischemia; however, when cultured in medium that is insufficient to stimulate the IGF type 1 receptor, neurosphere formation and the proliferative capacity of those NPs was severely curtailed. This reduced growth capacity could not be attributed simply to failure to survive. The growth and self-renewal of the NPs could be restored by addition of both IGF-I and IGF-II. Since the size of the neurosphere is predominantly due to cell proliferation we hypothesized that the IGFs were regulating progression through the cell cycle. Analyses of cell cycle progression revealed that IGF-1R activation together with EGFR co-signaling decreased the percentage of cells in G1 and enhanced cell progression into S and G2. This was accompanied by increases in expression of cyclin D1, phosphorylated histone 3, and phosphorylated Rb. Based on these data, we conclude that coordinate signaling between the EGF receptor and the IGF type 1 receptor is necessary for the normal proliferation of NPs as well as for their reactive expansion after injury. These data indicate that manipulations that maintain or amplify IGF signaling in the brain during recovery from developmental brain injuries will enhance the production of new brain cells to improve neurological function in children who are at risk for developing cerebral palsy. PMID:24904523

  7. Adiponectin inhibits insulin function in primary trophoblasts by PPARα-mediated ceramide synthesis.

    PubMed

    Aye, Irving L M H; Gao, Xiaoli; Weintraub, Susan T; Jansson, Thomas; Powell, Theresa L

    2014-04-01

    Maternal adiponectin (ADN) levels are inversely correlated with birth weight, and ADN infusion in pregnant mice down-regulates placental nutrient transporters and decreases fetal growth. In contrast to the insulin-sensitizing effects in adipose tissue and muscle, ADN inhibits insulin signaling in the placenta. However, the molecular mechanisms involved are unknown. We hypothesized that ADN inhibits insulin signaling and insulin-stimulated amino acid transport in primary human trophoblasts by peroxisome proliferator-activated receptor-α (PPARα)-mediated ceramide synthesis. Primary human term trophoblast cells were treated with ADN and/or insulin. ADN increased the phosphorylation of p38 MAPK and PPARα. ADN inhibited insulin signaling and insulin-stimulated amino acid transport. This effect was dependent on PPARα, because activation of PPARα with an agonist (GW7647) inhibited insulin signaling and function, whereas PPARα-small interfering RNA reversed the effects of ADN on the insulin response. ADN increased ceramide synthase expression and stimulated ceramide production. C2-ceramide inhibited insulin signaling and function, whereas inhibition of ceramide synthase (with Fumonisin B1) reversed the effects of ADN on insulin signaling and amino acid transport. These findings are consistent with the model that maternal ADN limits fetal growth mediated by activation of placental PPARα and ceramide synthesis, which inhibits placental insulin signaling and amino acid transport, resulting in reduced fetal nutrient availability.

  8. Nature and regulation of the insulin receptor: structure and function

    SciTech Connect

    Czech, M.P.

    1985-01-01

    Native, cell-surface insulin receptor consists of two glycoprotein subunit types with apparent masses of about 125,000 daltons (alpha subunit) and 90,000 daltons (beta subunit). The alpha and beta insulin-receptor subunits seem to have distinct functions such that alpha appears to bind hormone whereas beta appears to possess intrinsic tyrosine kinase activity. In detergent extracts, insulin activates receptor autophosphorylation of tyrosine residues on its beta subunit, whereas in the presence of reductant, the alpha subunit is also phosphorylated. In intact cells, insulin activates serine/threonine phosphorylation of insulin receptor beta subunit as well as tyrosine phosphorylation. The biological role of the receptor-associated tyrosine kinase is not known. The insulin receptor kinase is regulated by beta-adrenergic agonists and other agents that elevate cAMP in adipocytes, presumably via the cAMP-dependent protein kinase. Such agents decrease receptor affinity for insulin and partially uncouple receptor tyrosine kinase activity from activation by insulin. These effects appear to contribute to the biological antagonism between insulin and beta-agonists. These data suggest the hypothesis that a complex network of tyrosine and serine/threonine phosphorylations on the insulin receptor modulate its binding and kinase activities in an antagonistic manner.

  9. A domain of the insulin receptor required for endocytosis in rat fibroblasts.

    PubMed

    Thies, R S; Webster, N J; McClain, D A

    1990-06-15

    To study the mechanism and role of ligand-dependent endocytosis, we have engineered a mutant insulin receptor that retains its insulin binding and insulin-stimulated tyrosine kinase activities but does not exhibit ligand-induced internalization. The mutant has a deletion of the 16th exon which encodes 22 amino acids (residues 944-965) on the cytoplasmic side of the transmembrane region of the receptor beta-subunit. When the cDNA is transfected in Rat 1 cells, the mutant receptor (HIR delta ex16) is processed to a glycosylated alpha 2 beta 2 heterotetramer and expressed at the cell surface. HIR delta ex16 receptors bind insulin with lower affinity than normal receptors (ED50 for insulin competition = 1.1 nM compared with 0.2 nM for normal receptors), but binding is normal in detergent solution. The mutant HIR delta ex16 receptor undergoes insulin-dependent autophosphorylation and activation as a tyrosine kinase toward exogenous substrates in vitro. In vivo, the receptor is also enzymatically active, as assessed 1) by the ability of antiphosphotyrosine antibodies to precipitate equivalent proportions (58-60%) of occupied wild type or mutant receptors and 2) by immunoblotting extracts of insulin-stimulated cells using antiphosphotyrosine antibodies. In the latter experiment, cells expressing HIR delta ex16 receptors exhibit tyrosine phosphorylation of insulin receptor beta-subunits as well as of pp 185, a putative substrate of the receptor. Despite the ability to bind insulin and activate as a tyrosine kinase, HIR delta ex16 receptors do not internalize in Rat 1 cells. Whereas normal surface receptors covalently labeled with the photoaffinity reagent 125I-NAPA-DP insulin are 36% intracellular after 1 h at 37 degrees C, only background levels of internalization are seen when HIR delta ex16 receptors are labeled. The HIR delta ex16 receptors mediate no internalization or degradation of 125I-insulin compared with control untransfected Rat 1 cells, and they do not down

  10. Optimizing transmembrane domain helicity accelerates insulin receptor internalization and lateral mobility.

    PubMed Central

    Goncalves, E; Yamada, K; Thatte, H S; Backer, J M; Golan, D E; Kahn, C R; Shoelson, S E

    1993-01-01

    Transmembrane (TM) domains of integral membrane proteins are generally thought to be helical. However, a Gly-Pro sequence within the TM domain of the insulin receptor is predicted to act as a helix breaker. CD analyses of model TM peptides in a lipid-like environment show that substitution of Gly and Pro by Ala enhances helicity. On this basis, Gly933 and Pro934 within the TM domain of the intact human insulin receptor were mutated to Ala (G-->A, P-->A, GP-->AA) to assess effects of altered helicity on receptor functions. Mutated and wild-type receptors, expressed stably in cultured CHO cells at equivalent levels, were properly assembled, biosynthetically processed, and exhibited similar affinities for insulin. Receptor autophosphorylation and substrate kinase activity in intact cells and soluble receptor preparations were indistinguishable. In contrast, insulin-stimulated receptor internalization was accelerated 2-fold for the GP-->AA mutant, compared to a wild-type control or the G-->A and P-->A mutants. Insulin degradation, which occurs during receptor endocytosis and recycling, was similarly elevated in cells transfected with GP-->AA mutant receptors. Fluorescence photobleaching recovery measurements showed that the lateral mobility of GP-->AA mutant receptors was also increased 2- to 3-fold. These results suggest that lateral mobility directly influences rates of insulin-mediated receptor endocytosis and that rates of endocytosis and lateral mobility are retarded by a kinked TM domain in the wild-type receptor. Invariance of Gly-Pro within insulin receptor TM domain sequences suggests a physiologic advantage for submaximal rates of receptor internalization. Images Fig. 2 Fig. 3 PMID:8390680

  11. Molecular Basis of Signaling Specificity of Insulin and IGF Receptors: Neglected Corners and Recent Advances

    PubMed Central

    Siddle, Kenneth

    2011-01-01

    Insulin and insulin-like growth factor (IGF) receptors utilize common phosphoinositide 3-kinase/Akt and Ras/extracellular signal-regulated kinase signaling pathways to mediate a broad spectrum of “metabolic” and “mitogenic” responses. Specificity of insulin and IGF action in vivo must in part reflect expression of receptors and responsive pathways in different tissues but it is widely assumed that it is also determined by the ligand binding and signaling mechanisms of the receptors. This review focuses on receptor-proximal events in insulin/IGF signaling and examines their contribution to specificity of downstream responses. Insulin and IGF receptors may differ subtly in the efficiency with which they recruit their major substrates (IRS-1 and IRS-2 and Shc) and this could influence effectiveness of signaling to “metabolic” and “mitogenic” responses. Other substrates (Grb2-associated binder, downstream of kinases, SH2Bs, Crk), scaffolds (RACK1, β-arrestins, cytohesins), and pathways (non-receptor tyrosine kinases, phosphoinositide kinases, reactive oxygen species) have been less widely studied. Some of these components appear to be specifically involved in “metabolic” or “mitogenic” signaling but it has not been shown that this reflects receptor-preferential interaction. Very few receptor-specific interactions have been characterized, and their roles in signaling are unclear. Signaling specificity might also be imparted by differences in intracellular trafficking or feedback regulation of receptors, but few studies have directly addressed this possibility. Although published data are not wholly conclusive, no evidence has yet emerged for signaling mechanisms that are specifically engaged by insulin receptors but not IGF receptors or vice versa, and there is only limited evidence for differential activation of signaling mechanisms that are common to both receptors. Cellular context, rather than intrinsic receptor activity, therefore appears

  12. Identification of nuclear hormone receptor pathways causing insulin resistance by transcriptional and epigenomic analysis.

    PubMed

    Kang, Sona; Tsai, Linus T; Zhou, Yiming; Evertts, Adam; Xu, Su; Griffin, Michael J; Issner, Robbyn; Whitton, Holly J; Garcia, Benjamin A; Epstein, Charles B; Mikkelsen, Tarjei S; Rosen, Evan D

    2015-01-01

    Insulin resistance is a cardinal feature of Type 2 diabetes (T2D) and a frequent complication of multiple clinical conditions, including obesity, ageing and steroid use, among others. How such a panoply of insults can result in a common phenotype is incompletely understood. Furthermore, very little is known about the transcriptional and epigenetic basis of this disorder, despite evidence that such pathways are likely to play a fundamental role. Here, we compare cell autonomous models of insulin resistance induced by the cytokine tumour necrosis factor-α or by the steroid dexamethasone to construct detailed transcriptional and epigenomic maps associated with cellular insulin resistance. These data predict that the glucocorticoid receptor and vitamin D receptor are common mediators of insulin resistance, which we validate using gain- and loss-of-function studies. These studies define a common transcriptional and epigenomic signature in cellular insulin resistance enabling the identification of pathogenic mechanisms. PMID:25503565

  13. Cellular effects of phosphotyrosine-binding domain inhibitors on insulin receptor signaling and trafficking.

    PubMed Central

    Giorgetti-Peraldi, S; Ottinger, E; Wolf, G; Ye, B; Burke, T R; Shoelson, S E

    1997-01-01

    Shc and insulin receptor substrate 1 (IRS-1) are cytoplasmic substrates of tyrosine kinase receptors that engage, localize, and activate downstream SH2 enzymes. Each contains a phosphotyrosine-binding (PTB) domain that is structurally unrelated to SH2 domains. We have designed high-affinity, cellular inhibitors of the Shc PTB domain by incorporating nonnatural, phosphatase-resistant amino acids into short peptides. None of the inhibitors bind the IRS-1 PTB domain, consistent with distinct specificities for domains. The best inhibitor of the Shc domain was introduced by electroporation into Rat1 fibroblasts that express human insulin receptors. Insulin-stimulated phosphorylation of Shc was inhibited, with no effect on IRS-1, and downstream effects on mitogen-activated protein kinase and DNA synthesis were both inhibited. The PTB domain inhibitor had less influence on epidermal growth factor-induced effects and essentially no impact on serum- or phorbol ester-induced effects. The inhibitor did not affect insulin internalization and its degradation. We conclude that the PTB domain of Shc is critical for its phosphorylation by the insulin receptor, that Shc is an important mediator of insulin's mitogenic effects, and that Shc is not central to insulin receptor cycling in these cells. PTB domains can be inhibited selectively in cells and represent potential targets for drug discovery. PMID:9032245

  14. Development of real-time reverse transcription polymerase chain reaction assays to quantify insulin-like growth factor receptor and insulin receptor expression in equine tissue.

    PubMed

    Hughes, Stephen B; Quan, Melvyn; Guthrie, Alan; Schulman, Martin

    2013-01-01

    The insulin-like growth factor system (insulin-like growth factor 1, insulin-like growth factor 2, insulin-like growth factor 1 receptor, insulin-like growth factor 2 receptor and six insulin-like growth factor-binding proteins) and insulin are essential to muscle metabolism and most aspects of male and female reproduction. Insulin-like growth factor and insulin play important roles in the regulation of cell growth, differentiation and the maintenance of cell differentiation in mammals. In order to better understand the local factors that regulate equine physiology, such as muscle metabolism and reproduction (e.g., germ cell development and fertilisation), real-time reverse transcription polymerase chain reaction assays for quantification of equine insulin-like growth factor 1 receptor and insulin receptor messenger ribonucleic acid were developed. The assays were sensitive: 192 copies/μL and 891 copies/μL for insulin-like growth factor 1 receptor, messenger ribonucleic acid and insulin receptor respectively (95% limit of detection), and efficient: 1.01 for the insulin-like growth factor 1 receptor assay and 0.95 for the insulin receptor assay. The assays had a broad linear range of detection (seven logs for insulin-like growth factor 1 receptor and six logs for insulin receptor). This allowed for analysis of very small amounts of messenger ribonucleic acid. Low concentrations of both insulin-like growth factor 1 receptor and insulin receptor messenger ribonucleic acid were detected in endometrium, lung and spleen samples, whilst high concentrations were detected in heart, muscle and kidney samples, this was most likely due to the high level of glucose metabolism and glucose utilisation by these tissues. The assays developed for insulin-like growth factor 1 receptor and insulin receptor messenger ribonucleic acid expression have been shown to work on equine tissue and will contribute to the understanding of insulin and insulin-like growth factor 1 receptor

  15. An autocrine lactate loop mediates insulin-dependent inhibition of lipolysis through GPR81.

    PubMed

    Ahmed, Kashan; Tunaru, Sorin; Tang, Cong; Müller, Michaela; Gille, Andreas; Sassmann, Antonia; Hanson, Julien; Offermanns, Stefan

    2010-04-01

    Lactate is an important metabolic intermediate released by skeletal muscle and other organs including the adipose tissue, which converts glucose into lactate under the influence of insulin. Here we show that lactate activates the G protein-coupled receptor GPR81, which is expressed in adipocytes and mediates antilipolytic effects through G(i)-dependent inhibition of adenylyl cyclase. Using GPR81-deficient mice, we demonstrate that the receptor is not involved in the regulation of lipolysis during intensive exercise. However, insulin-induced inhibition of lipolysis and insulin-induced decrease in adipocyte cAMP levels were strongly reduced in mice lacking GPR81, although insulin-dependent release of lactate by adipocytes was comparable between wild-type and GPR81-deficient mice. Thus, lactate and its receptor GPR81 unexpectedly function in an autocrine and paracrine loop to mediate insulin-induced antilipolytic effects. These data show that lactate can directly modulate metabolic processes in a hormone-like manner, and they reveal a new mechanism underlying the antilipolytic effects of insulin.

  16. Role of insulin receptor and insulin signaling on αPS2CβPS integrins' lateral diffusion.

    PubMed

    Mainali, Dipak; Syed, Aleem; Arora, Neha; Smith, Emily A

    2014-12-01

    Integrins are ubiquitous transmembrane receptors with adhesion and signaling properties. The influence of insulin receptor and insulin signaling on αPS2CβPS integrins' lateral diffusion was studied using single particle tracking in S2 cells before and after reducing the insulin receptor expression or insulin stimulation. Insulin signaling was monitored by Western blotting for phospho-Akt expression. The expression of the insulin receptor was reduced using RNA interference (RNAi). After insulin receptor RNAi, four significant changes were measured in integrin diffusion properties: (1) there was a 24% increase in the mobile integrin population, (2) 14% of the increase was represented by integrins with Brownian diffusion, (3) for integrins that reside in confined zones of diffusion, there was a 45% increase in the diameter of the confined zone, and (4) there was a 29% increase in the duration integrins spend in confined zones of diffusion. In contrast to reduced expression of the insulin receptor, which alters integrin diffusion properties, insulin stimulation alone or insulin stimulation under conditions of reduced insulin receptor expression have minimal effects on altering the measured integrin diffusion properties. The differences in integrin diffusion measured after insulin receptor RNAi in the presence or absence of insulin stimulation may be the result of other insulin signaling pathways that are activated at reduced insulin receptor conditions. No change in the average integrin diffusion coefficient was measured for any conditions included in this study.

  17. G Protein–Coupled Receptor Kinase 2 Plays a Relevant Role in Insulin Resistance and Obesity

    PubMed Central

    Garcia-Guerra, Lucia; Nieto-Vazquez, Iria; Vila-Bedmar, Rocio; Jurado-Pueyo, María; Zalba, Guillermo; Díez, Javier; Murga, Cristina; Fernández-Veledo, Sonia; Mayor, Federico; Lorenzo, Margarita

    2010-01-01

    OBJECTIVE Insulin resistance is associated with the pathogenesis of metabolic disorders as type 2 diabetes and obesity. Given the emerging role of signal transduction in these syndromes, we set out to explore the possible role that G protein–coupled receptor kinase 2 (GRK2), first identified as a G protein–coupled receptor regulator, could have as a modulator of insulin responses. RESEARCH DESIGN AND METHODS We analyzed the influence of GRK2 levels in insulin signaling in myoblasts and adipocytes with experimentally increased or silenced levels of GRK2, as well as in GRK2 hemizygous animals expressing 50% lower levels of this kinase in three different models of insulin resistance: tumor necrosis factor-α (TNF-α) infusion, aging, and high-fat diet (HFD). Glucose transport, whole-body glucose and insulin tolerance, the activation status of insulin pathway components, and the circulating levels of important mediators were measured. The development of obesity and adipocyte size with age and HFD was analyzed. RESULTS Altering GRK2 levels markedly modifies insulin-mediated signaling in cultured adipocytes and myocytes. GRK2 levels are increased by ∼2-fold in muscle and adipose tissue in the animal models tested, as well as in lymphocytes from metabolic syndrome patients. In contrast, hemizygous GRK2 mice show enhanced insulin sensitivity and do not develop insulin resistance by TNF-α, aging, or HFD. Furthermore, reduced GRK2 levels induce a lean phenotype and decrease age-related adiposity. CONCLUSIONS Overall, our data identify GRK2 as an important negative regulator of insulin effects, key to the etiopathogenesis of insulin resistance and obesity, which uncovers this protein as a potential therapeutic target in the treatment of these disorders. PMID:20627936

  18. α6 Integrin Transactivates Insulin-like Growth Factor Receptor-1 (IGF-1R) to Regulate Caspase-3-mediated Lens Epithelial Cell Differentiation Initiation*

    PubMed Central

    Basu, Subhasree; Rajakaruna, Suren; De Arcangelis, Adèle; Zhang, Liping; Georges-Labouesse, Elisabeth; Menko, A. Sue

    2014-01-01

    The canonical mitochondrial death pathway was first discovered for its role in signaling apoptosis. It has since been found to have a requisite function in differentiation initiation in many cell types including the lens through low level activation of the caspase-3 protease. The ability of this pathway to function as a molecular switch in lens differentiation depends on the concurrent induction of survival molecules in the Bcl-2 and IAP families, induced downstream of an IGF-1R/NFκB coordinate survival signal, to regulate caspase-3 activity. Here we investigated whether α6 integrin signals upstream to this IGF-1R-mediated survival-linked differentiation signal. Our findings show that IGF-1R is recruited to and activated specifically in α6 integrin receptor signaling complexes in the lens equatorial region, where lens epithelial cells initiate their differentiation program. In studies with both α6 integrin knock-out mice lenses and primary lens cell cultures following α6 integrin siRNA knockdown, we show that IGF-1R activation is dependent on α6 integrin and that this transactivation requires Src kinase activity. In addition, without α6 integrin, activation and expression of NFκB was diminished, and expression of Bcl-2 and IAP family members were down-regulated, resulting in high levels of caspase-3 activation. As a result, a number of hallmarks of lens differentiation failed to be induced; including nuclear translocation of Prox1 in the differentiation initiation zone and apoptosis was promoted. We conclude that α6 integrin is an essential upstream regulator of the IGF-1R survival pathway that regulates the activity level of caspase-3 for it to signal differentiation initiation of lens epithelial cells. PMID:24381169

  19. Insulin resistance in uremia: Insulin receptor kinase activity in liver and muscle from chronic uremic rats

    SciTech Connect

    Cecchin, F.; Ittoop, O.; Sinha, M.K.; Caro, J.F. )

    1988-04-01

    The authors have studied the structure and function of the partially purified insulin receptors from liver and skeletal muscle in a rat model of severe chronic uremia. {sup 125}I-insulin binding was higher in the liver from uremic rats when compared with ad libitum- and pair-fed controls. Furthermore, the ability of insulin to stimulate the autophosphorylation of the {beta}-subunit and insulin receptor kinase activity using Glu{sup 80}, Tyr{sup 20} as exogenous phosphoacceptor was increased in the liver of the uremic animals. The structural characteristics of the receptors, as determined by electrophoretic mobilities of affinity labeled {alpha}-subunit and the phosphorylated {beta}-subunit, were normal in uremia. {sup 125}I-insulin binding and insulin receptor kinase activity were similar in the skeletal muscle from uremic and pair- and ad libitum-fed animals. Thus the data are supportive of the hypothesis that in liver and muscle of chronic uremic rats, insulin resistance is due to a defect(s) distal to the insulin receptor kinase.

  20. Small molecule activators of the insulin receptor: potential new therapeutic agents for the treatment of diabetes mellitus.

    PubMed

    Laborde, Edgardo; Manchem, Vara Prasad

    2002-12-01

    Diabetes mellitus refers to a spectrum of syndromes characterized by abnormally high levels of glucose in blood. These syndromes are associated with an absolute (Type 1 diabetes) or relative (Type 2 diabetes) deficiency of insulin, coupled with varying degrees of peripheral resistance to the actions of insulin. Clinical studies have shown that controlling hyperglycemia significantly reduces the appearance and progression of the vascular complications associated with diabetes. Insulin's regulation of glucose homeostasis is mediated by a cascade of signaling events that take place upon insulin binding to its cell surface receptor. Autophosphorylation of the receptor and activation of its intrinsic tyrosine kinase are critical processes for transmitting these intracellular signals. Type 1 diabetes patients depend on exogenous insulin to achieve these effects, whereas Type 2 diabetes patients can accomplish a similar response through oral medications that increase the production of endogenous insulin or enhance its actions on the target tissues. Current biochemical and clinical evidence suggests that defects within the insulin receptor itself may be a cause of insulin resistance leading to Type 2 diabetes. This review focuses on the insulin receptor as a target for therapeutic intervention, and describes the recent discovery of small molecules that act on the receptor and either enhance or directly emulate the actions of insulin both in vitro and in vivo.

  1. Acute stimulation of brain mu opioid receptors inhibits glucose-stimulated insulin secretion via sympathetic innervation.

    PubMed

    Tudurí, Eva; Beiroa, Daniel; Stegbauer, Johannes; Fernø, Johan; López, Miguel; Diéguez, Carlos; Nogueiras, Rubén

    2016-11-01

    Pancreatic insulin-secreting β-cells express opioid receptors, whose activation by opioid peptides modulates hormone secretion. Opioid receptors are also expressed in multiple brain regions including the hypothalamus, where they play a role in feeding behavior and energy homeostasis, but their potential role in central regulation of glucose metabolism is unknown. Here, we investigate whether central opioid receptors participate in the regulation of insulin secretion and glucose homeostasis in vivo. C57BL/6J mice were acutely treated by intracerebroventricular (i.c.v.) injection with specific agonists for the three main opioid receptors, kappa (KOR), delta (DOR) and mu (MOR) opioid receptors: activation of KOR and DOR did not alter glucose tolerance, whereas activation of brain MOR with the specific agonist DAMGO blunted glucose-stimulated insulin secretion (GSIS), reduced insulin sensitivity, increased the expression of gluconeogenic genes in the liver and, consequently, impaired glucose tolerance. Pharmacological blockade of α2A-adrenergic receptors prevented DAMGO-induced glucose intolerance and gluconeogenesis. Accordingly, DAMGO failed to inhibit GSIS and to impair glucose tolerance in α2A-adrenoceptor knockout mice, indicating that the effects of central MOR activation on β-cells are mediated via sympathetic innervation. Our results show for the first time a new role of the central opioid system, specifically the MOR, in the regulation of insulin secretion and glucose metabolism. PMID:27511839

  2. Biological effects of insulin and its analogs on cancer cells with different insulin family receptor expression.

    PubMed

    Sciacca, Laura; Cassarino, Maria Francesca; Genua, Marco; Vigneri, Paolo; Giovanna Pennisi, Maria; Malandrino, Pasqualino; Squatrito, Sebastiano; Pezzino, Vincenzo; Vigneri, Riccardo

    2014-11-01

    Hyperinsulinemia is a likely cause of the increased cancer incidence and mortality in diabetic patients, but its role is difficult to define in vivo. Previous in vitro studies testing the mitogenic potential of insulin and its analogs provided incomplete and sometimes contradictory results. To better evaluate cancer cell responsiveness to insulin, to its analogs and to IGF-I, we measured under identical experimental conditions cell proliferation, invasiveness, and foci formation in six cancer cell lines with different insulin receptor family expression levels. The cancer cells studied have a different expression of insulin receptor (IR), its isoforms (IR-A and IR-B), and of the IGF-I receptor. The data indicate that insulin stimulates proliferation in all cancer cell lines, invasiveness in some, and foci formation in none. Cancer cell responses to insulin (and IGF-I) are not related to receptor expression levels; moreover, hormone-stimulated proliferation and invasiveness are not correlated. IGF-I is a more potent stimulator than insulin in most but not all cancer cell lines. Insulin analogs including M1 and M2 Glargine metabolites stimulate cancer cells similar to insulin. However, exceptions occur for specific analogs in particular cancer cells. In conclusion, in vitro insulin is an effective growth factor for all cancer cells but the biological response to insulin cannot be predicted on the basis of receptor expression levels. In the clinical setting, these observations should be taken in account when deciding treatment for diabetic patients who are at risk of undiscovered cancer or survivors of oncological diseases.

  3. Development of a Quantitative PCR Assay for Detection of Human Insulin-Like Growth Factor Receptor and Insulin Receptor Isoforms.

    PubMed

    Flannery, Clare A; Rowzee, Anne M; Choe, Gina H; Saleh, Farrah L; Radford, Caitlin C; Taylor, Hugh S; Wood, Teresa L

    2016-04-01

    The biological activity of insulin and the insulin-like growth factor (IGF) ligands, IGF-I and IGF-II, is based in part on the relative abundance and distribution of their target receptors: the insulin receptor (IR) splice variants A (IR-A) and B (IR-B) and IGF 1 receptor (IGF-1R). However, the relative quantity of all three receptors in human tissues has never been measured together on the same scale. Due to the high homology between insulin receptor (IR)-A and IR-B proteins and lack of antibodies that discern the two IR splice variants, their mRNA sequence is the most reliable means of distinguishing between the receptors. Hence, highly specific primers for IR-A, IR-B, and IGF-1R mRNA were designed to accurately detect all three receptors by quantitative RT-PCR and enable direct quantification of relative receptor expression levels. A standard concentration curve of cDNA from each receptor was performed. Assay specificity was tested using competition assays and postamplification analysis by gel electrophoresis and cloning. Forward and reverse primer concentrations were optimized to ensure equal efficiencies across primer pairs. This assay enables a specific molecular signature of IGF/insulin signaling receptors to be assayed in different tissues, cell types, or cancers. PMID:26862994

  4. Structural and Biochemical Characterization of the KRLB Region in Insulin Receptor Substrate-2

    SciTech Connect

    Wu,J.; Tseng, Y.; Xu, C.; Neubert, T.; White, M.; Hubbard, S.

    2008-01-01

    Insulin receptor substrates 1 and 2 (IRS1 and -2) are crucial adaptor proteins in mediating the metabolic and mitogenic effects of insulin and insulin-like growth factor 1. These proteins consist of a pleckstrin homology domain, a phosphotyrosine binding domain and a C-terminal region containing numerous sites of tyrosine, serine and threonine phosphorylation. Previous yeast two-hybrid studies identified a region unique to IRS2, termed the kinase regulatory-loop binding (KRLB) region, which interacts with the tyrosine kinase domain of the insulin receptor. Here we present the crystal structure of the insulin receptor kinase in complex with a 15-residue peptide from the KRLB region. In the structure, this segment of IRS2 is bound in the kinase active site with Tyr628 positioned for phosphorylation. Although Tyr628 was phosphorylated by the insulin receptor, its catalytic turnover was poor, resulting in kinase inhibition. Our studies indicate that the KRLB region functions to limit tyrosine phosphorylation of IRS2.

  5. Phospholipase C-related catalytically inactive protein (PRIP) controls KIF5B-mediated insulin secretion

    PubMed Central

    Asano, Satoshi; Nemoto, Tomomi; Kitayama, Tomoya; Harada, Kae; Zhang, Jun; Harada, Kana; Tanida, Isei; Hirata, Masato; Kanematsu, Takashi

    2014-01-01

    ABSTRACT We previously reported that phospholipase C-related catalytically inactive protein (PRIP)-knockout mice exhibited hyperinsulinemia. Here, we investigated the role of PRIP in insulin granule exocytosis using Prip-knockdown mouse insulinoma (MIN6) cells. Insulin release from Prip-knockdown MIN6 cells was higher than that from control cells, and Prip knockdown facilitated movement of GFP-phogrin-labeled insulin secretory vesicles. Double-immunofluorescent staining and density step-gradient analyses showed that the KIF5B motor protein co-localized with insulin vesicles in Prip-knockdown MIN6 cells. Knockdown of GABAA-receptor-associated protein (GABARAP), a microtubule-associated PRIP-binding partner, by Gabarap silencing in MIN6 cells reduced the co-localization of insulin vesicles with KIF5B and the movement of vesicles, resulting in decreased insulin secretion. However, the co-localization of KIF5B with microtubules was not altered in Prip- and Gabarap-knockdown cells. The presence of unbound GABARAP, freed either by an interference peptide or by Prip silencing, in MIN6 cells enhanced the co-localization of insulin vesicles with microtubules and promoted vesicle mobility. Taken together, these data demonstrate that PRIP and GABARAP function in a complex to regulate KIF5B-mediated insulin secretion, providing new insights into insulin exocytic mechanisms. PMID:24812354

  6. Insulin receptor alternative splicing is regulated by insulin signaling and modulates beta cell survival

    PubMed Central

    Malakar, Pushkar; Chartarifsky, Lital; Hija, Ayat; Leibowitz, Gil; Glaser, Benjamin; Dor, Yuval; Karni, Rotem

    2016-01-01

    Type 2 Diabetes (T2DM) affects more than 300 million people worldwide. One of the hallmarks of T2DM is peripheral insulin resistance, in part due to unproductive insulin signaling through the insulin receptor. The insulin receptor (INSR) exists as two isoforms, INSR-A and INSR-B, which results from skipping or inclusion of exon 11 respectively. What determines the relative abundance of the different insulin receptor splice variants is unknown. Moreover, it is not yet clear what the physiological roles of each of the isoforms are in normal and diseased beta cells. In this study, we show that insulin induces INSR exon 11 inclusion in pancreatic beta cells in both human and mouse. This occurs through activation of the Ras-MAPK/ERK signaling pathway and up-regulation of the splicing factor SRSF1. Induction of exon 11 skipping by a splice-site competitive antisense oligonucleotide inhibited the MAPK-ERK signaling pathway downstream of the insulin receptor, sensitizing the pancreatic β-cell line MIN6 to stress-induced apoptosis and lipotoxicity. These results assign to insulin a regulatory role in INSR alternative splicing through the Ras-MAPK/ERK signaling pathway. We suggest that in beta cells, INSR-B has a protective role, while INSR-A expression sensitizes beta cells to programmed cell death. PMID:27526875

  7. Purified hybrid insulin/insulin-like growth factor-I receptors bind insulin-like growth factor-I, but not insulin, with high affinity.

    PubMed Central

    Soos, M A; Field, C E; Siddle, K

    1993-01-01

    Hybrid insulin/insulin-like growth factor-I (IGF-I) receptors have previously been described in human placenta, but it has not been possible to study their properties in the presence of classical insulin receptors and type I IGF receptors. To facilitate the purification of hybrids, we produced an anti-peptide monoclonal antibody IGFR 1-2, directed against the C-terminal peptide of the type I IGF receptor beta-subunit. The antibody bound native human and rat type I IGF receptors, and reacted specifically with the beta-subunit on immunoblots. Solubilized placental microsomal membranes were depleted of classical type I IGF receptors by incubation with an immobilized monoclonal antibody IGFR 24-55, which reacts well with type I receptors but very poorly with hybrid receptors. Residual hybrid receptors were then isolated by incubation with immobilized antibody IGFR 1-2, and recovered by elution with excess of synthetic peptide antigen. Binding properties of hybrids were compared with those of immuno-affinity-purified insulin receptors and type I IGF receptors, by using the radioligands 125I-IGF-I and 125I-insulin. Hybrids bound approx. 20 times as much 125I-IGF-I as 125I-insulin at tracer concentrations (approx. 0.1 nM). The binding of 125I-insulin, but not 125I-IGF-I, to hybrids increased after treatment with dithiothreitol to reduce disulphide bonds between the alpha-subunits. Hybrids behaved very similarly to type I receptors with respect to the inhibition of 125I-IGF-I binding by unlabelled IGF-I and insulin. By contrast, the affinity of hybrids for insulin was approx. 10-fold lower than that of classical insulin receptors, as assessed by inhibition of 125I-insulin binding by unlabelled hormone. It is concluded that the properties of insulin receptors, but not IGF receptors, are markedly affected by assembly as hybrid compared with classical structures, and that hybrids are more likely to be responsive to IGF-I than insulin under physiological conditions. Images

  8. Receptor-mediated mitophagy.

    PubMed

    Yamaguchi, Osamu; Murakawa, Tomokazu; Nishida, Kazuhiko; Otsu, Kinya

    2016-06-01

    Mitochondria are essential organelles that supply ATP through oxidative phosphorylation to maintain cellular homeostasis. Extrinsic or intrinsic agents can impair mitochondria, and these impaired mitochondria can generate reactive oxygen species (ROS) as byproducts, inducing cellular damage and cell death. The quality control of mitochondria is essential for the maintenance of normal cellular functions, particularly in cardiomyocytes, because they are terminally differentiated. Accumulation of damaged mitochondria is characteristic of various diseases, including heart failure, neurodegenerative disease, and aging-related diseases. Mitochondria are generally degraded through autophagy, an intracellular degradation system that is conserved from yeast to mammals. Autophagy is thought to be a nonselective degradation process in which cytoplasmic proteins and organelles are engulfed by isolation membrane to form autophagosomes in eukaryotic cells. However, recent studies have described the process of selective autophagy, which targets specific proteins or organelles such as mitochondria. Mitochondria-specific autophagy is called mitophagy. Dysregulation of mitophagy is implicated in the development of chronic diseases including neurodegenerative diseases, metabolic diseases, and heart failure. In this review, we discuss recent progress in research on mitophagy receptors. PMID:27021519

  9. Disruption of insulin receptor function inhibits proliferation in endocrine resistant breast cancer cells

    PubMed Central

    Chan, Jie Ying; LaPara, Kelly; Yee, Douglas

    2015-01-01

    The insulin-like growth factor (IGF) system is a well-studied growth regulatory pathway implicated in breast cancer biology. Clinical trials testing monoclonal antibodies directed against the type I IGF receptor (IGF1R) in combination with estrogen receptor-α (ER) targeting have been completed, but failed to show benefits in patients with endocrine resistant tumors compared to ER targeting alone. We have previously shown that the closely related insulin receptor (InsR) is expressed in tamoxifen resistant breast cancer cells. Here we examined if inhibition of InsR affected tamoxifen-resistant (TamR) breast cancer cells. InsR function was inhibited by three different mechanisms: InsR shRNA, a small InsR blocking peptide, S961 and an InsR monoclonal antibody (mAb). Suppression of InsR function by these methods in TamR cells successfully blocked insulin-mediated signaling, monolayer proliferation, cell cycle progression and anchorage-independent growth. This strategy was not effective in parental cells likely due to the presence of IGFR/InsR hybrid receptors. Down-regulation of IGF1R in conjunction with InsR inhibition was more effective in blocking IGF- and insulin-mediated signaling and growth in parental cells compared to single receptor targeting alone. Our findings show TamR cells were stimulated by InsR and were not sensitive to IGF1R inhibition, whereas in tamoxifen-sensitive parental cancer cells, the presence of both receptors, especially hybrid receptors, allowed cross-reactivity of ligand-mediated activation and growth. To suppress the IGF system, targeting of both IGF1R and InsR is optimal in endocrine sensitive and resistant breast cancer. PMID:26876199

  10. Rat Erythrocyte Insulin Receptors: Radioreceptor Assay and Characterization

    PubMed Central

    Ogunwole, John O.; Nerurkar, Shriniwas G.; Hollis, Vincent W.

    1985-01-01

    Highly specific insulin receptors have been identified on the rat erythrocyte. A radioreceptor assay for the evaluation of these receptors has been developed, and the characteristics of these receptors have been investigated. Insulin receptor binding on the rat erythrocytes was found to be dependent on pH, temperature, time, and ionic strength. When incubated for 3½ hours at 15° C, 5.0 × 109 erythrocytes/mL from each of 10 rats were found to bind specifically 7.54 percent (±0.15 SEM) of 40 pg of 125I-insulin. Specific binding was found to be a function of cell concentration. The pH optima for insulin binding were found to be 7.4 and 7.0 in the absence of cations. The presence of cations not only shifted pH optimum to 7.4 from 7.0, but also increased specific insulin binding. These observations suggest the stabilization of negatively charged groups on ligand and receptor, as well as providing a suitable ionic environment for the hormone-receptor interaction. Based on the resistance of rat erythrocytes to the pH of the external buffer, a simple method for determining the internal pH of rat red- blood cells is described. Scatchard analyses of insulin-binding data yielded curvilinear plots, and the number of receptor sites per cell was found to be 762 (±12.1 SD), as opposed to the large variation (410 ± 260 SD) in normal humans. The rat erythrocytes may serve as a useful, precise, sensitive, and efficient model system for future erythrocytic-receptor studies that would be difficult to obtain from human subjects. PMID:3981646

  11. Rat erythrocyte insulin receptors: radioreceptor assay and characterization.

    PubMed

    Ogunwole, J O; Nerurkar, S G; Hollis, V W

    1985-02-01

    Highly specific insulin receptors have been identified on the rat erythrocyte. A radioreceptor assay for the evaluation of these receptors has been developed, and the characteristics of these receptors have been investigated. Insulin receptor binding on the rat erythrocytes was found to be dependent on pH, temperature, time, and ionic strength. When incubated for 3½ hours at 15° C, 5.0 × 10(9) erythrocytes/mL from each of 10 rats were found to bind specifically 7.54 percent (±0.15 SEM) of 40 pg of (125)I-insulin. Specific binding was found to be a function of cell concentration. The pH optima for insulin binding were found to be 7.4 and 7.0 in the absence of cations. The presence of cations not only shifted pH optimum to 7.4 from 7.0, but also increased specific insulin binding.These observations suggest the stabilization of negatively charged groups on ligand and receptor, as well as providing a suitable ionic environment for the hormone-receptor interaction. Based on the resistance of rat erythrocytes to the pH of the external buffer, a simple method for determining the internal pH of rat red- blood cells is described. Scatchard analyses of insulin-binding data yielded curvilinear plots, and the number of receptor sites per cell was found to be 762 (±12.1 SD), as opposed to the large variation (410 ± 260 SD) in normal humans. The rat erythrocytes may serve as a useful, precise, sensitive, and efficient model system for future erythrocytic-receptor studies that would be difficult to obtain from human subjects.

  12. Snapin mediates incretin action and augments glucose-dependent insulin secretion.

    PubMed

    Song, Woo-Jin; Seshadri, Madhav; Ashraf, Uzair; Mdluli, Thembi; Mondal, Prosenjit; Keil, Meg; Azevedo, Monalisa; Kirschner, Lawrence S; Stratakis, Constantine A; Hussain, Mehboob A

    2011-03-01

    Impaired insulin secretion contributes to the pathogenesis of type 2 diabetes mellitus (T2DM). Treatment with the incretin hormone glucagon-like peptide-1 (GLP-1) potentiates insulin secretion and improves metabolic control in humans with T2DM. GLP-1 receptor-mediated signaling leading to insulin secretion occurs via cyclic AMP stimulated protein kinase A (PKA)- as well as guanine nucleotide exchange factor-mediated pathways. However, how these two pathways integrate and coordinate insulin secretion remains poorly understood. Here we show that these incretin-stimulated pathways converge at the level of snapin, and that PKA-dependent phosphorylation of snapin increases interaction among insulin secretory vesicle-associated proteins, thereby potentiating glucose-stimulated insulin secretion (GSIS). In diabetic islets with impaired GSIS, snapin phosphorylation is reduced, and expression of a snapin mutant, which mimics site-specific phosphorylation, restores GSIS. Thus, snapin is a critical node in GSIS regulation and provides a potential therapeutic target to improve β cell function in T2DM. PMID:21356520

  13. Identification of Host Insulin Binding Sites on Schistosoma japonicum Insulin Receptors

    PubMed Central

    Stephenson, Rachel J.; Toth, Istvan; Liang, Jiening; Mangat, Amanjot; McManus, Donald P.; You, Hong

    2016-01-01

    Schistosoma japonicum insulin receptors (SjIRs) have been identified as encouraging vaccine candidates. Interrupting or blocking the binding between host insulin and the schistosome insulin receptors (IRs) may result in reduced glucose uptake leading to starvation and stunting of worms with a reduction in egg output. To further understand how schistosomes are able to exploit host insulin for development and growth, and whether these parasites and their mammalian hosts compete for the same insulin source, we identified insulin binding sites on the SjIRs. Based on sequence analysis and the predicted antigenic structure of the primary sequences of the SjIRs, we designed nine and eleven peptide analogues from SjIR-1 and SjIR-2, respectively. Using the Octet RED system, we identified analogues derived from SjIR-1 (10) and SjIR-2 (20, 21 and 22) with insulin-binding sequences specific for S. japonicum. Nevertheless, the human insulin receptor (HIR) may compete with the SjIRs in binding human insulin in other positions which are important for HIR binding to insulin. However, no binding occurred between insulin and parasite analogues derived from SjIR-1 (2, 7 and 8) and SjIR-2 (14, 16 and 18) at the same locations as HIR sequences which have been shown to have strong insulin binding affinities. Importantly, we found two analogues (1 and 3), derived from SjIR-1, and two analogues (13 and 15) derived from SjIR-2, were responsible for the major insulin binding affinity in S. japonicum. These peptide analogues were shown to have more than 10 times (in KD value) stronger binding capacity for human insulin compared with peptides derived from the HIR in the same sequence positions. Paradoxically, analogues 1, 3, 13 and 15 do not appear to contain major antigenic determinants which resulted in poor antibody responses to native S. japonicum protein. This argues against their future development as peptide-vaccine candidates. PMID:27441998

  14. Advanced glycation end-products: modifiable environmental factors profoundly mediate insulin resistance

    PubMed Central

    Ottum, Mona S.; Mistry, Anahita M.

    2015-01-01

    Advanced glycation end-products are toxic by-products of metabolism and are also acquired from high-temperature processed foods. They promote oxidative damage to proteins, lipids and nucleotides. Aging and chronic diseases are strongly associated with markers for oxidative stress, especially advanced glycation end-products, and resistance to peripheral insulin-mediated glucose uptake. Modifiable environmental factors including high levels of refined and simple carbohydrate diets, hypercaloric diets and sedentary lifestyles drive endogenous formation of advanced glycation end-products via accumulation of highly reactive glycolysis intermediates and activation of the polyol/aldose reductase pathway producing high intracellular fructose. High advanced glycation end-products overwhelm innate defenses of enzymes and receptor-mediated endocytosis and promote cell damage via the pro-inflammatory and pro-oxidant receptor for advanced glycation end-products. Oxidative stress disturbs cell signal transduction, especially insulin-mediated metabolic responses. Here we review emerging evidence that restriction of dietary advanced glycation end-products significantly reduces total systemic load and insulin resistance in animals and humans in diabetes, polycystic ovary syndrome, healthy populations and dementia. Of clinical importance, this insulin sensitizing effect is independent of physical activity, caloric intake and adiposity level. PMID:26236094

  15. Involvement of mTOR in Type 2 CRF Receptor Inhibition of Insulin Signaling in Muscle Cells.

    PubMed

    Chao, Hongxia; Li, Haochen; Grande, Rebecca; Lira, Vitor; Yan, Zhen; Harris, Thurl E; Li, Chien

    2015-06-01

    Type 2 corticotropin-releasing factor receptor (CRFR2) is expressed in skeletal muscle and stimulation of the receptor has been shown to inhibit the effect of insulin on glucose uptake in muscle cells. Currently, little is known about the mechanisms underlying this process. In this study, we first showed that both in vivo and in vitro CRFR2 expression in muscle was closely correlated with insulin sensitivity, with elevated receptor levels observed in insulin resistant muscle cells. Stimulation of CRFR2 by urocortin 2 (Ucn 2), a CRFR2-selective ligand, in C2C12 myotubes greatly attenuated insulin-induced glucose uptake. The inhibitory effect of CRFR2 signaling required cAMP production and is involved the mammalian target of rapamycine pathway, as rapamycin reversed the inhibitory effect of CRFR2 stimulation on insulin-induced glucose uptake. Moreover, stimulation of CRFR2 failed to inhibit glucose uptake in muscle cells induced by platelet-derived growth factor, which, similar to insulin, signals through Akt-mediated pathway but is independently of insulin receptor substrate (IRS) proteins to promote glucose uptake. This result argues that CRFR2 signaling modulates insulin's action likely at the levels of IRS. Consistent with this notion, Ucn 2 reduced insulin-induced tyrosine phosphorylation of IRS-1, and treatment with rapamycin reversed the inhibitory effect of Ucn 2 on IRS-1 and Akt phosphorylation. In conclusion, the inhibitory effect of CRFR2 signaling on insulin action is mediated by cAMP in a mammalian target of rapamycine-dependent manner, and IRS-1 is a key nodal point where CRFR2 signaling modulates insulin-stimulated glucose uptake in muscle cells.

  16. Insulin decreases atherosclerosis by inducing endothelin receptor B expression

    PubMed Central

    Park, Kyoungmin; Mima, Akira; Li, Qian; Rask-Madsen, Christian; He, Pingnian; Mizutani, Koji; Katagiri, Sayaka; Maeda, Yasutaka; Wu, I-Hsien; Khamaisi, Mogher; Preil, Simone Rordam; Sørensen, Ditte; Huang, Paul L.; King, George L.

    2016-01-01

    Endothelial cell (EC) insulin resistance and dysfunction, caused by diabetes, accelerates atherosclerosis. It is unknown whether specifically enhancing EC-targeted insulin action can decrease atherosclerosis in diabetes. Accordingly, overexpressing insulin receptor substrate-1 (IRS1) in the endothelia of Apoe–/– mice (Irs1/Apoe–/–) increased insulin signaling and function in the aorta. Atherosclerosis was significantly reduced in Irs1/ApoE–/– mice on diet-induced hyperinsulinemia and hyperglycemia. The mechanism of insulin’s enhanced antiatherogenic actions in EC was related to remarkable induction of NO action, which increases endothelin receptor B (EDNRB) expression and intracellular [Ca2+]. Using the mice with knockin mutation of eNOS, which had Ser1176 mutated to alanine (AKI), deleting the only known mechanism for insulin to activate eNOS/NO pathway, we observed that IRS1 overexpression in the endothelia of Aki/ApoE–/– mice significantly decreased atherosclerosis. Interestingly, endothelial EDNRB expression was selectively reduced in intima of arteries from diabetic patients and rodents. However, endothelial EDNRB expression was upregulated by insulin via P13K/Akt pathway. Finally EDNRB deletion in EC of Ldlr–/– and Irs1/Ldlr–/– mice decreased NO production and accelerated atherosclerosis, compared with Ldlr–/– mice. Accelerated atherosclerosis in diabetes may be reduced by improving insulin signaling selectively via IRS1/Akt in the EC by inducing EDNRB expression and NO production. PMID:27200419

  17. Insulin decreases atherosclerosis by inducing endothelin receptor B expression

    PubMed Central

    Park, Kyoungmin; Mima, Akira; Li, Qian; Rask-Madsen, Christian; He, Pingnian; Mizutani, Koji; Katagiri, Sayaka; Maeda, Yasutaka; Wu, I-Hsien; Khamaisi, Mogher; Preil, Simone Rordam; Maddaloni, Ernesto; Sørensen, Ditte; Rasmussen, Lars Melholt; Huang, Paul L.; King, George L.

    2016-01-01

    Endothelial cell (EC) insulin resistance and dysfunction, caused by diabetes, accelerates atherosclerosis. It is unknown whether specifically enhancing EC-targeted insulin action can decrease atherosclerosis in diabetes. Accordingly, overexpressing insulin receptor substrate-1 (IRS1) in the endothelia of Apoe−/− mice (Irs1/Apoe−/−) increased insulin signaling and function in the aorta. Atherosclerosis was significantly reduced in Irs1/ApoE−/− mice on diet-induced hyperinsulinemia and hyperglycemia. The mechanism of insulin’s enhanced antiatherogenic actions in EC was related to remarkable induction of NO action, which increases endothelin receptor B (EDNRB) expression and intracellular [Ca2+]. Using the mice with knockin mutation of eNOS, which had Ser1176 mutated to alanine (AKI), deleting the only known mechanism for insulin to activate eNOS/NO pathway, we observed that IRS1 overexpression in the endothelia of Aki/ApoE−/− mice significantly decreased atherosclerosis. Interestingly, endothelial EDNRB expression was selectively reduced in intima of arteries from diabetic patients and rodents. However, endothelial EDNRB expression was upregulated by insulin via P13K/Akt pathway. Finally EDNRB deletion in EC of Ldlr−/− and Irs1/Ldlr−/− mice decreased NO production and accelerated atherosclerosis, compared with Ldlr−/− mice. Accelerated atherosclerosis in diabetes may be reduced by improving insulin signaling selectively via IRS1/Akt in the EC by inducing EDNRB expression and NO production. PMID:27200419

  18. Effects of Autoantibodies to the Insulin Receptor on Isolated Adipocytes

    PubMed Central

    Kahn, C. Ronald; Baird, Kathleen; Flier, Jeffrey S.; Jarrett, David B.

    1977-01-01

    Autoantibodies to the insulin receptor have been detected in the sera of several patients with the Type B syndrome of insulin resistance and acanthosis nigricans. In this study we have used three of these sera (B-1, B-2, and B-3) as probes of the insulin receptor in isolated rat adipocytes. Preincubation of adipocytes with each of the three sera resulted in an inhibition of subsequent [125I]insulin binding. 50% inhibition of binding occurred with serum dilutions of 1:5 to 1:7,500. As in our previous studies with other tissues, Scatchard analysis of the insulin-binding data was curvilinear consistent with negative cooperativity. Computer analysis suggested that in each case the inhibition of binding was due to a decrease in receptor affinity rather than a change in available receptor number. In addition to the effects on insulin binding, adipocytes pretreated with antireceptor sera also showed alterations in biological responses. All three sera produced some stimulation of basal glucose oxidation. With serum B-3, maximal stimulation of glucose oxidation occurred at a serum concentration that inhibited binding by only 10-15%, whereas with serum B-2 the dilution curves for inhibition of binding and stimulation of glucose oxidation were superimposable. Serum B-1 behaved as a partial agonist; that is, it inhibited binding more effectively than it stimulated glucose oxidation. Cells pretreated with this serum in a concentration which inhibited binding by 80% also showed a five-fold shift to the right in the dose response of insulin-stimulated glucose oxidation, whereas spermine-stimulated glucose oxidation was unaffected. Serum B-2, which contained the highest titer of antireceptor antibodies, also stimulated 2-deoxy-glucose transport, as well as glucose incorporation into lipid and glycogen. Both the ability of the serum to inhibit binding and stimulate glucose utilization were enriched in purified immunoglobulin fractions and retained in the F(ab′)2 fragment of the

  19. Insulin receptor binding motif tagged with IgG4 Fc (Yiminsu) works as an insulin sensitizer to activate Akt signaling in hepatocytes.

    PubMed

    Wang, J; Zou, T; Yang, H X; Gong, Y Z; Xie, X J; Liu, H Y; Liao, D F

    2015-01-01

    Insulin resistance is a key feature of obesity and type 2 diabetes mellitus (T2DM). Interaction of insulin with the insulin receptor (IR) leads to both its auto-phosphorylation and phosphorylation of tyrosine residues on the IR substrate (IRS) proteins, initiating the activation of intracellular signaling cascades. The metabolic effects of IRS are known to be mediated through pathways involving phosphatidyl-inositol 3-kinase (PI-3K), which result in the activation of Akt signaling. The C-terminal region of the IR ectodomain is required to facilitate the conformational changes that are required for high-affinity binding to insulin. Furthermore, the CH2 and CH3 domains in the Fc fragments of immunoglobulins are responsible for their binding to the Fc receptor, which triggers transcytosis. In this study, we created a fusion peptide of the C-terminal end of the human IR ectodomain with the IgG4 Fc fragment, including an intervening polyG fragment to ensure enough space for insulin binding. We named this new peptide "Yiminsu", meaning an insulin sensitizer. The results of our analyses show that Yiminsu significantly facilitates insulin signaling via the activation of Akt in hepatocytes in a dose- and time-dependent manner. Further studies are required to determine whether Yiminsu can act as an insulin sensitizer. PMID:26345813

  20. Insulin Receptor Substrate 2 Is a Negative Regulator of Memory Formation

    ERIC Educational Resources Information Center

    Irvine, Elaine E.; Drinkwater, Laura; Radwanska, Kasia; Al-Qassab, Hind; Smith, Mark A.; O'Brien, Melissa; Kielar, Catherine; Choudhury, Agharul I.; Krauss, Stefan; Cooper, Jonathan D.; Withers, Dominic J.; Giese, Karl Peter

    2011-01-01

    Insulin has been shown to impact on learning and memory in both humans and animals, but the downstream signaling mechanisms involved are poorly characterized. Insulin receptor substrate-2 (Irs2) is an adaptor protein that couples activation of insulin- and insulin-like growth factor-1 receptors to downstream signaling pathways. Here, we have…

  1. Insulin-like growth factor binding protein-3 is a novel mediator of apoptosis in insulin-secreting cells ☆

    PubMed Central

    Shim, Melanie L.; Katz, Lorraine E. Levitt; Davis, Jason; Dotzler, Whittney C.; Cohen, Pinchas; Ferry, Robert J.

    2012-01-01

    Insulin-like growth factor binding protein-3 (IGFBP-3) is emerging as a critical regulator of cell survival. There has been no study which directly examined the potential role for this major growth factor in the programmed cell death (apoptosis) of insulin-secreting cells. To determine whether IGFBP-3 mediates apoptosis in insulin-secreting cells, we performed a rigorous series of experiments with the rat insulinoma (RIN) cell line m5F and the hamster insulin-secreting tumor (HIT) T-15. Within 24 h exogenous IGFBP-3 induced significant DNA fragmentation in RIN and HIT cells, at doses ranging from 4.4 to 2000 ng/ml (P < 0.05) without a classic dose–response relationship (Fig. 3). DNA fragmentation induced by rhIGFBP-3 occurred in the presence of immunoglobulin to block the type 1 IGF receptor. As detected by flow cytometry for Annexin V exposure to the cell surface, rhIGFBP-3 treatment doubled the proportion of apoptotic HIT cells from 1.7 ± 0.4% (serum-free control) to 3.4 ± 0.2% (P < 0.02), an effect completely reversed by co-treatment with 1000 ng/ml rhIGF-I. Immunofluorescent microscopy disclosed that pro-inflammatory Th1 cytokines increased intranuclear aggregation of endogenous IGFBP-3. Cytokine-induced DNA fragmentation was completely blocked by relatively brief pre-treatment with antisense IGFBP-3 phosphorothioate oligodeoxynucleotides. In conclusion, we have presented the first evidence that IGFBP-3 contributes to cytokine-mediated apoptosis in insulin-secreting cells. PMID:15125883

  2. Insulin receptor substrates 1 and 2 but not Shc can activate the insulin receptor independent of insulin and induce proliferation in CHO-IR cells

    SciTech Connect

    Niessen, Markus . E-mail: markus.niessen@usz.ch; Jaschinski, Frank; Item, Flurin; McNamara, Morgan P.; Spinas, Giatgen A.; Trueb, Thomas

    2007-02-15

    Ligand-activated insulin receptor (IR) attracts and phosphorylates various substrates such as insulin receptor substrates 1-4 (IRS) and Shc. To investigate how binding affinity for substrate affects signalling we generated chimeric receptors with the {beta}-chain of the insulin receptor containing NPXY motives with different affinities for receptor substrates. We found that the extent of receptor tyrosine phosphorylation positively correlates with binding affinity towards IRS1/2 but not towards Shc. Moreover, overexpression of IRS1 or IRS2 but not of Shc increased IR tyrosine phosphorylation in a dose-dependent manner, also independent of insulin. Molecular truncations of IRS1 revealed that neither the isolated PH and PTB domains nor the C-terminus with the tyrosine phosphorylation sites alone are sufficient for substrate-dependent receptor activation. Overexpression of IRS1 and IRS2 impaired insulin-induced internalization of the IR in a dose-dependent manner suggesting that IRS proteins prevent endosome-associated receptor dephosphorylation/inactivation. IRS1 and IRS2 could therefore target the activated IR to different cellular compartments. Overexpression of IRS1 and IRS2 inhibited insulin-stimulated activation of the MAP kinases Erk1/2 while it increased/induced activation of Akt/PKB. Finally, overexpression of IRS1 and IRS2 but not of Shc induced DNA synthesis in starved CHO-IR cells independent of exogenous growth factors. Our results demonstrate that variations in cellular IRS1 and IRS2 concentration affect insulin signalling both upstream and downstream and that IRS proteins could play instructive rather than just permissive roles in signal transmission.

  3. The Interactions of Proinsulin with Insulin Receptors on the Plasma Membrane of the Liver

    PubMed Central

    Freychet, Pierre

    1974-01-01

    The interactions of proinsulin with the insulin-specific receptors were investigated in purified rat liver plasma membranes. These studies were designed to characterize the binding of proinsulin to the insulin receptors, to search for proinsulin-specific receptor sites, and to examine the possibility of proinsulin conversion at the insulin receptor site. Proinsulin was only 3-5% as potent as insulin in binding to insulin receptors. Proinsulin reacted with all of the insulin-specific receptors, and direct binding studies of [125I]porcine proinsulin and [125I]rat proinsulin did not reveal proinsulin-specific receptor sites other than the insulin receptors in rat liver membranes. Quantitative data derived from steady-state and transient-state comparative binding studies of both [125I]proinsulin and [125I]insulin indicated that a 20-fold lower association rate constant essentially accounts for the reduced affinity of proinsulin for the insulin receptors. The possibility of proinsulin conversion at the insulin receptor sites was investigated. Material recovered from the membranes upon dissociation of the proinsulin-receptor complex was intact proinsulin and did not exhibit any conversion by a variety of analytical methods. These results indicate that the lower affinity of proinsulin for the insulin receptor in the liver is an intrinsic property of the proinsulin molecule. The lower uptake of proinsulin by the insulin receptor represents, in addition to a slower degradation of the prohormone, a further mechanism by which proinsulin exerts prolonged, albeit reduced, action in vivo. PMID:4421396

  4. Sam68 Mediates the Activation of Insulin and Leptin Signalling in Breast Cancer Cells

    PubMed Central

    Pérez-Pérez, Antonio; Sánchez-Jiménez, Flora; Vilariño-García, Teresa; de la Cruz, Luis; Virizuela, Juan A.; Sánchez-Margalet, Víctor

    2016-01-01

    Obesity is a well-known risk factor for breast cancer development in postmenopausal women. High insulin and leptin levels seem to have a role modulating the growth of these tumours. Sam68 is an RNA-binding protein with signalling functions that has been found to be overexpressed in breast cancer. Moreover, Sam68 may be recruited to insulin and leptin signalling pathways, mediating its effects on survival, growth and proliferation in different cellular types. We aimed to study the expression of Sam68 and its phosphorylation level upon insulin and leptin stimulation, and the role of Sam68 in the proliferative effect and signalling pathways that are activated by insulin or leptin in human breast adenocarcinoma cells. In the human breast adenocarcinoma cell lines MCF7, MDA-MB-231 and BT-474, Sam68 protein quantity and gene expression were increased upon leptin or insulin stimulation, as it was checked by qPCR and immunoblot. Moreover, both insulin and leptin stimulation promoted an increase in Sam68 tyrosine phosphorylation and negatively regulated its RNA binding capacity. siRNA was used to downregulate Sam68 expression, which resulted in lower proliferative effects of both insulin and leptin, as well as a lower activation of MAPK and PI3K pathways promoted by both hormones. These effects may be partly explained by the decrease in IRS-1 expression by down-regulation of Sam68. These results suggest the participation of Sam68 in both leptin and insulin receptor signaling in human breast cancer cells, mediating the trophic effects of these hormones in proliferation and cellular growth. PMID:27415018

  5. Drosophila Adiponectin Receptor in Insulin Producing Cells Regulates Glucose and Lipid Metabolism by Controlling Insulin Secretion

    PubMed Central

    Kwak, Su-Jin; Hong, Seung-Hyun; Bajracharya, Rijan; Yang, Se-Yeol; Lee, Kyu-Sun; Yu, Kweon

    2013-01-01

    Adipokines secreted from adipose tissue are key regulators of metabolism in animals. Adiponectin, one of the adipokines, modulates pancreatic beta cell function to maintain energy homeostasis. Recently, significant conservation between Drosophila melanogaster and mammalian metabolism has been discovered. Drosophila insulin like peptides (Dilps) regulate energy metabolism similarly to mammalian insulin. However, in Drosophila, the regulatory mechanism of insulin producing cells (IPCs) by adipokine signaling is largely unknown. Here, we describe the discovery of the Drosophila adiponectin receptor and its function in IPCs. Drosophila adiponectin receptor (dAdipoR) has high homology with the human adiponectin receptor 1. The dAdipoR antibody staining revealed that dAdipoR was expressed in IPCs of larval and adult brains. IPC- specific dAdipoR inhibition (Dilp2>dAdipoR-Ri) showed the increased sugar level in the hemolymph and the elevated triglyceride level in whole body. Dilps mRNA levels in the Dilp2>dAdipoR-Ri flies were similar with those of controls. However, in the Dilp2>dAdipoR-Ri flies, Dilp2 protein was accumulated in IPCs, the level of circulating Dilp2 was decreased, and insulin signaling was reduced in the fat body. In ex vivo fly brain culture with the human adiponectin, Dilp2 was secreted from IPCs. These results indicate that adiponectin receptor in insulin producing cells regulates insulin secretion and controls glucose and lipid metabolism in Drosophila melanogaster. This study demonstrates a new adipokine signaling in Drosophila and provides insights for the mammalian adiponectin receptor function in pancreatic beta cells, which could be useful for therapeutic application. PMID:23874700

  6. The Guanine Nucleotide Exchange Factor ARNO mediates the activation of ARF and phospholipase D by insulin

    PubMed Central

    Li, Hai-Sheng; Shome, Kuntala; Rojas, Raúl; Rizzo, Mark A; Vasudevan, Chandrasekaran; Fluharty, Eric; Santy, Lorraine C; Casanova, James E; Romero, Guillermo

    2003-01-01

    Background Phospholipase D (PLD) is involved in many signaling pathways. In most systems, the activity of PLD is primarily regulated by the members of the ADP-Ribosylation Factor (ARF) family of GTPases, but the mechanism of activation of PLD and ARF by extracellular signals has not been fully established. Here we tested the hypothesis that ARF-guanine nucleotide exchange factors (ARF-GEFs) of the cytohesin/ARNO family mediate the activation of ARF and PLD by insulin. Results Wild type ARNO transiently transfected in HIRcB cells was translocated to the plasma membrane in an insulin-dependent manner and promoted the translocation of ARF to the membranes. ARNO mutants: ΔCC-ARNO and CC-ARNO were partially translocated to the membranes while ΔPH-ARNO and PH-ARNO could not be translocated to the membranes. Sec7 domain mutants of ARNO did not facilitate the ARF translocation. Overexpression of wild type ARNO significantly increased insulin-stimulated PLD activity, and mutations in the Sec7 and PH domains, or deletion of the PH or CC domains inhibited the effects of insulin. Conclusions Small ARF-GEFs of the cytohesin/ARNO family mediate the activation of ARF and PLD by the insulin receptor. PMID:12969509

  7. Insulin Resistance Induced by Hyperinsulinemia Coincides with a Persistent Alteration at the Insulin Receptor Tyrosine Kinase Domain

    PubMed Central

    Catalano, Karyn J.; Maddux, Betty A.; Szary, Jaroslaw; Youngren, Jack F.; Goldfine, Ira D.; Schaufele, Fred

    2014-01-01

    Insulin resistance, the diminished response of target tissues to insulin, is associated with the metabolic syndrome and a predisposition towards diabetes in a growing proportion of the worldwide population. Under insulin resistant states, the cellular response of the insulin signaling pathway is diminished and the body typically responds by increasing serum insulin concentrations to maintain insulin signaling. Some evidence indicates that the increased insulin concentration may itself further dampen insulin response. If so, insulin resistance would worsen as the level of circulating insulin increases during compensation, which could contribute to the transition of insulin resistance to more severe disease. Here, we investigated the consequences of excess insulin exposure to insulin receptor (IR) activity. Cells chronically exposed to insulin show a diminished the level of IR tyrosine and serine autophosphorylation below that observed after short-term insulin exposure. The diminished IR response did not originate with IR internalization since IR amounts at the cell membrane were similar after short- and long-term insulin incubation. Förster resonance energy transfer between fluorophores attached to the IR tyrosine kinase (TK) domain showed that a change in the TK domain occurred upon prolonged, but not short-term, insulin exposure. Even though the altered ‘insulin refractory’ IR TK FRET and IR autophosphorylation levels returned to baseline (non-stimulated) levels after wash-out of the original insulin stimulus, subsequent short-term exposure to insulin caused immediate re-establishment of the insulin-refractory levels. This suggests that some cell-based ‘memory’ of chronic hyperinsulinemic exposure acts directly at the IR. An improved understanding of that memory may help define interventions to reset the IR to full insulin responsiveness and impede the progression of insulin resistance to more severe disease states. PMID:25259572

  8. Protective hinge in insulin opens to enable its receptor engagement.

    PubMed

    Menting, John G; Yang, Yanwu; Chan, Shu Jin; Phillips, Nelson B; Smith, Brian J; Whittaker, Jonathan; Wickramasinghe, Nalinda P; Whittaker, Linda J; Pandyarajan, Vijay; Wan, Zhu-li; Yadav, Satya P; Carroll, Julie M; Strokes, Natalie; Roberts, Charles T; Ismail-Beigi, Faramarz; Milewski, Wieslawa; Steiner, Donald F; Chauhan, Virander S; Ward, Colin W; Weiss, Michael A; Lawrence, Michael C

    2014-08-19

    Insulin provides a classical model of a globular protein, yet how the hormone changes conformation to engage its receptor has long been enigmatic. Interest has focused on the C-terminal B-chain segment, critical for protective self-assembly in β cells and receptor binding at target tissues. Insight may be obtained from truncated "microreceptors" that reconstitute the primary hormone-binding site (α-subunit domains L1 and αCT). We demonstrate that, on microreceptor binding, this segment undergoes concerted hinge-like rotation at its B20-B23 β-turn, coupling reorientation of Phe(B24) to a 60° rotation of the B25-B28 β-strand away from the hormone core to lie antiparallel to the receptor's L1-β2 sheet. Opening of this hinge enables conserved nonpolar side chains (Ile(A2), Val(A3), Val(B12), Phe(B24), and Phe(B25)) to engage the receptor. Restraining the hinge by nonstandard mutagenesis preserves native folding but blocks receptor binding, whereas its engineered opening maintains activity at the price of protein instability and nonnative aggregation. Our findings rationalize properties of clinical mutations in the insulin family and provide a previously unidentified foundation for designing therapeutic analogs. We envisage that a switch between free and receptor-bound conformations of insulin evolved as a solution to conflicting structural determinants of biosynthesis and function. PMID:25092300

  9. SORLA facilitates insulin receptor signaling in adipocytes and exacerbates obesity

    PubMed Central

    Schmidt, Vanessa; Schulz, Nadja; Yan, Xin; Schürmann, Annette; Kempa, Stefan; Kern, Matthias; Blüher, Matthias; Poy, Matthew N.

    2016-01-01

    In humans, genetic variation of sortilin-related receptor, L(DLR class) A repeats containing (SORL1), which encodes the intracellular sorting receptor SORLA, is a major genetic risk factor for familial and sporadic forms of Alzheimer’s disease. Recent GWAS analysis has also associated SORL1 with obesity in humans and in mouse models, suggesting that this receptor may play a role in regulating metabolism. Here, using mouse models with genetic loss or tissue-specific overexpression of SORLA as well as data from obese human subjects, we observed a gene-dosage effect that links SORLA expression to obesity and glucose tolerance. Overexpression of human SORLA in murine adipose tissue blocked hydrolysis of triacylglycerides and caused excessive adiposity. In contrast, Sorl1 gene inactivation in mice accelerated breakdown of triacylglycerides in adipocytes and protected animals from diet-induced obesity. We then identified the underlying molecular mechanism whereby SORLA promotes insulin-induced suppression of lipolysis in adipocytes. Specifically, we determined that SORLA acts as a sorting factor for the insulin receptor (IR) that redirects internalized receptor molecules from endosomes to the plasma membrane, thereby enhancing IR surface expression and strengthening insulin signal reception in target cells. Our findings provide a molecular mechanism for the association of SORL1 with human obesity and confirm a genetic link between neurodegeneration and metabolism that converges on the receptor SORLA. PMID:27322061

  10. MARCH1 regulates insulin sensitivity by controlling cell surface insulin receptor levels.

    PubMed

    Nagarajan, Arvindhan; Petersen, Max C; Nasiri, Ali R; Butrico, Gina; Fung, Annie; Ruan, Hai-Bin; Kursawe, Romy; Caprio, Sonia; Thibodeau, Jacques; Bourgeois-Daigneault, Marie-Claude; Sun, Lisha; Gao, Guangping; Bhanot, Sanjay; Jurczak, Michael J; Green, Michael R; Shulman, Gerald I; Wajapeyee, Narendra

    2016-01-01

    Insulin resistance is a key driver of type 2 diabetes (T2D) and is characterized by defective insulin receptor (INSR) signalling. Although surface INSR downregulation is a well-established contributor to insulin resistance, the underlying molecular mechanisms remain obscure. Here we show that the E3 ubiquitin ligase MARCH1 impairs cellular insulin action by degrading cell surface INSR. Using a large-scale RNA interference screen, we identify MARCH1 as a negative regulator of INSR signalling. March1 loss-of-function enhances, and March1 overexpression impairs, hepatic insulin sensitivity in mice. MARCH1 ubiquitinates INSR to decrease cell surface INSR levels, but unlike other INSR ubiquitin ligases, MARCH1 acts in the basal state rather than after insulin stimulation. Thus, MARCH1 may help set the basal gain of insulin signalling. MARCH1 expression is increased in white adipose tissue of obese humans, suggesting that MARCH1 contributes to the pathophysiology of T2D and could be a new therapeutic target. PMID:27577745

  11. MARCH1 regulates insulin sensitivity by controlling cell surface insulin receptor levels

    PubMed Central

    Nagarajan, Arvindhan; Petersen, Max C.; Nasiri, Ali R.; Butrico, Gina; Fung, Annie; Ruan, Hai-Bin; Kursawe, Romy; Caprio, Sonia; Thibodeau, Jacques; Bourgeois-Daigneault, Marie-Claude; Sun, Lisha; Gao, Guangping; Bhanot, Sanjay; Jurczak, Michael J.; Green, Michael R.; Shulman, Gerald I.; Wajapeyee, Narendra

    2016-01-01

    Insulin resistance is a key driver of type 2 diabetes (T2D) and is characterized by defective insulin receptor (INSR) signalling. Although surface INSR downregulation is a well-established contributor to insulin resistance, the underlying molecular mechanisms remain obscure. Here we show that the E3 ubiquitin ligase MARCH1 impairs cellular insulin action by degrading cell surface INSR. Using a large-scale RNA interference screen, we identify MARCH1 as a negative regulator of INSR signalling. March1 loss-of-function enhances, and March1 overexpression impairs, hepatic insulin sensitivity in mice. MARCH1 ubiquitinates INSR to decrease cell surface INSR levels, but unlike other INSR ubiquitin ligases, MARCH1 acts in the basal state rather than after insulin stimulation. Thus, MARCH1 may help set the basal gain of insulin signalling. MARCH1 expression is increased in white adipose tissue of obese humans, suggesting that MARCH1 contributes to the pathophysiology of T2D and could be a new therapeutic target. PMID:27577745

  12. Contrasting effects of insulin and cellular differentiation on expression of the novel insulin receptor substrate APS in skeletal muscle.

    PubMed

    Rea, Rustam; Gray, Samuel; Donnelly, Richard

    2005-11-01

    The novel insulin receptor substrate protein APS is highly expressed in insulin-sensitive tissues and plays an important role in insulin-mediated glucose uptake and GLUT4 translocation via the Cbl/CAP pathway. Tyrosine phosphorylation of APS leads to recruitment of c-Cbl and Crk, while overexpression of APS mutant inhibits GLUT4 translocation in response to insulin, but the regulation of APS expression in skeletal muscle has not been previously reported. L6 myoblasts were differentiated in 2% FBS and serum starved for 24h prior to stimulation for 24h with either insulin 1 microM (n=6), rosiglitazone 10 microM (n=6), resistin 500 nM (n=6) or the MAP kinase inhibitor PD098059 50 microM (n=6) for 30 min, followed by insulin 1 microM for 24h. Semi-quantitative real-time RT-PCR was used to determine the expression of APS mRNA relative to the control gene TF2D. APS expression was markedly upregulated by myoblast differentiation (0.55+/-0.08 versus 1.14+/-0.08, p=0.001), and this effect was augmented by addition of rosiglitazone 10 microM for 24h to the differentiated myotubes (1.50+/-0.09, p=0.025). Insulin caused a 3.1-fold decrease in APS mRNA expression (0.37+/-0.01 versus 1.14+/-0.08, p=0.001), an effect that was attenuated by the MAP kinase inhibitor PD098059 (0.80+/-0.03, p=0.001). Exposure to resistin produced a modest decrease (1.4-fold) in myotube expression of APS (0.8+/-0.09, p=0.025). In conclusion, this is the first study to show that exposure to insulin markedly reduces the expression of APS in skeletal muscle via a MAP kinase dependent pathway, whereas myocyte differentiation and rosiglitazone increase APS expression. Changes in APS expression may be important in the aetiology and therapeutic reversal of insulin resistance in skeletal muscle.

  13. Interaction of insulin with the rat diaphragm. Subcellular distribution of insulin and its receptor

    SciTech Connect

    Brush, J.S.; Guzman-Diaz, A.; Celis, J.

    1987-05-01

    In studying the uptake and processing of A-14( SVI)monoiodoinsulin by isolated rat hemidiaphragms it was found that major amounts of the hormone are associated with the debris fraction. A method was developed for separating debris components by discontinuous sucrose density gradient centrifugation. Major amounts of radioactivity were associated with its myofibril component with much lower amounts in its sarcolemmal elements. Using a modified method of Marshall, et. al. insulin receptor was measurable in these fractions with greatest amounts in myofibril and microsomal fractions. Receptor was also detectable in the latter after gel electrophoresis and immunoblotting with receptor antiserum. Sarcolemmal marker enzyme (K -stimulated, ouabain-suppressible p-nitrophenylphosphate phosphatase) activity was insignificant in sarcolemmal and myofibril fractions, but was significant in the microsomal fraction. Sarcolemmal activity becomes significant after hemidiaphragm incubation with 1 M insulin for 90 sec. but does not change in the microsomal fraction. It is concluded that 1) a component bound to the myofibrils in muscle is important in insulin processing, and 2) the largest part of sarcolemmal insulin receptors are incorporated in the microsomal fraction of homogenized tissue.

  14. Differential interaction of Apolipoprotein-E isoforms with insulin receptors modulates brain insulin signaling in mutant human amyloid precursor protein transgenic mice.

    PubMed

    Chan, Elizabeth S; Chen, Christopher; Cole, Gregory M; Wong, Boon-Seng

    2015-09-08

    It is unclear how human apolipoprotein E4 (ApoE4) increases the risk for Alzheimer's disease (AD). Although Aβ levels can lead to insulin signaling impairment, these experiments were done in the absence of human ApoE. To examine ApoE role, we crossed the human ApoE-targeted replacement mice with mutant human amyloid precursor protein (APP) mice. In 26 week old mice with lower Aβ levels, the expression and phosphorylation of insulin signaling proteins remained comparable among APP, ApoE3xAPP and ApoE4xAPP mouse brains. When the mice aged to 78 weeks, these proteins were markedly reduced in APP and ApoE4xAPP mouse brains. While Aβ can bind to insulin receptor, how ApoE isoforms modulate this interaction remains unknown. Here, we showed that ApoE3 had greater association with insulin receptor as compared to ApoE4, regardless of Aβ42 concentration. In contrast, ApoE4 bound more Aβ42 with increasing peptide levels. Using primary hippocampal neurons, we showed that ApoE3 and ApoE4 neurons are equally sensitive to physiological levels of insulin. However, in the presence of Aβ42, insulin failed to elicit a downstream response only in ApoE4 hippocampal neurons. Taken together, our data show that ApoE genotypes can modulate this Aβ-mediated insulin signaling impairment.

  15. Glutamate receptors in the hypothalamic paraventricular nucleus contribute to insulin-induced sympathoexcitation

    PubMed Central

    Gordon, Kathryn W.

    2014-01-01

    The sympathoexcitatory response to insulin is mediated by neurons in the arcuate nucleus (ARC) and hypothalamic paraventricular nucleus (PVH). Previous studies have reported that stimulation of ARC neurons increases sympathetic nerve activity (SNA) and arterial blood pressure (ABP) through glutamate receptor activation in the PVH. Therefore, the purpose of the present study was to determine whether glutamatergic neurotransmission in the PVH contributes to insulin-induced sympathoexcitation. Male Sprague-Dawley rats (275–400 g) were infused with isotonic saline or insulin (3.75 mU·kg−1·min−1) plus 50% dextrose to maintain euglycemia. Intravenous infusion of insulin significantly increased lumbar SNA without a significant change in mean ABP, renal SNA, heart rate, or blood glucose. Bilateral PVH injection of the excitatory amino acid antagonist kynurenic acid (KYN) lowered lumbar SNA and ABP of animals infused with insulin. Similarly, a cocktail of the NMDA antagonist dl-2-amino-5-phosphonopentanoic acid (AP5) and non-NMDA antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) reduced lumbar SNA and mean ABP during infusion of insulin. In a final experiment, bilateral PVH injection of AP5 only, but not CNQX, lowered lumbar SNA and mean ABP of animals infused with insulin. The peak changes in lumbar SNA and mean ABP of insulin-treated animals were not different between KYN, AP5 plus CNQX, or AP5 alone. These drug treatments did not alter any variable in animals infused with saline. Altogether, these findings suggest that glutamatergic NMDA neurotransmission in the PVH contributes to insulin-induced sympathoexcitation. PMID:25475355

  16. Direct method for detection and characterization of cell surface receptors for insulin by means of 125I-labeled autoantibodies against the insulin receptor.

    PubMed Central

    Jarrett, D B; Roth, J; Kahn, C R; Flier, J S

    1976-01-01

    Autoantibodies directed against the cell surface receptors for insulin are found in some patients with extreme insulin resistance. These antibodies specifically inhibit the binding of insulin to its receptor. A purified IgG fraction from one patient's plasma was labeled with 125I. The 125I-labeled antireceptor antibody, which initially represented about 0.3% of the total 125I-IgG, was enriched by selective adsorption and subsequent elution from cells rich in insulin receptors. The 125I-antireceptor antibody bound to cells and the binding was inhibited by whole plasma and purified IgG from this patient, as well as whole plasma from another patient with autoantibodies to the insulin receptor. Insulins that differed 300-fold in biological potency and affinity inhibited binding of 125I-antireceptor antibody in direct proportion to their ability to bind to the insulin receptor. The binding of 125I-antireceptor antibody was closely correlated with the binding of 125I-insulin over a wide range of receptor concentrations on different cell types. Experimentally induced reduction of the insulin receptor concentration was associated with parallel decreases in the binding of 125I-antireceptor antibody and 125I-insulin. The preparation of 125I-antireceptor antibody with a high specific activity by cytoadsorption and elution has provided a sensitive method for the detection of receptors and autoantibodies to cell surface components. PMID:1069300

  17. Agonistic aptamer to the insulin receptor leads to biased signaling and functional selectivity through allosteric modulation.

    PubMed

    Yunn, Na-Oh; Koh, Ara; Han, Seungmin; Lim, Jong Hun; Park, Sehoon; Lee, Jiyoun; Kim, Eui; Jang, Sung Key; Berggren, Per-Olof; Ryu, Sung Ho

    2015-09-18

    Due to their high affinity and specificity, aptamers have been widely used as effective inhibitors in clinical applications. However, the ability to activate protein function through aptamer-protein interaction has not been well-elucidated. To investigate their potential as target-specific agonists, we used SELEX to generate aptamers to the insulin receptor (IR) and identified an agonistic aptamer named IR-A48 that specifically binds to IR, but not to IGF-1 receptor. Despite its capacity to stimulate IR autophosphorylation, similar to insulin, we found that IR-A48 not only binds to an allosteric site distinct from the insulin binding site, but also preferentially induces Y1150 phosphorylation in the IR kinase domain. Moreover, Y1150-biased phosphorylation induced by IR-A48 selectively activates specific signaling pathways downstream of IR. In contrast to insulin-mediated activation of IR, IR-A48 binding has little effect on the MAPK pathway and proliferation of cancer cells. Instead, AKT S473 phosphorylation is highly stimulated by IR-A48, resulting in increased glucose uptake both in vitro and in vivo. Here, we present IR-A48 as a biased agonist able to selectively induce the metabolic activity of IR through allosteric binding. Furthermore, our study also suggests that aptamers can be a promising tool for developing artificial biased agonists to targeted receptors. PMID:26245346

  18. Agonistic aptamer to the insulin receptor leads to biased signaling and functional selectivity through allosteric modulation

    PubMed Central

    Yunn, Na-Oh; Koh, Ara; Han, Seungmin; Lim, Jong Hun; Park, Sehoon; Lee, Jiyoun; Kim, Eui; Jang, Sung Key; Berggren, Per-Olof; Ryu, Sung Ho

    2015-01-01

    Due to their high affinity and specificity, aptamers have been widely used as effective inhibitors in clinical applications. However, the ability to activate protein function through aptamer-protein interaction has not been well-elucidated. To investigate their potential as target-specific agonists, we used SELEX to generate aptamers to the insulin receptor (IR) and identified an agonistic aptamer named IR-A48 that specifically binds to IR, but not to IGF-1 receptor. Despite its capacity to stimulate IR autophosphorylation, similar to insulin, we found that IR-A48 not only binds to an allosteric site distinct from the insulin binding site, but also preferentially induces Y1150 phosphorylation in the IR kinase domain. Moreover, Y1150-biased phosphorylation induced by IR-A48 selectively activates specific signaling pathways downstream of IR. In contrast to insulin-mediated activation of IR, IR-A48 binding has little effect on the MAPK pathway and proliferation of cancer cells. Instead, AKT S473 phosphorylation is highly stimulated by IR-A48, resulting in increased glucose uptake both in vitro and in vivo. Here, we present IR-A48 as a biased agonist able to selectively induce the metabolic activity of IR through allosteric binding. Furthermore, our study also suggests that aptamers can be a promising tool for developing artificial biased agonists to targeted receptors. PMID:26245346

  19. Involvement of PRMT1 in hnRNPQ activation and internalization of insulin receptor

    SciTech Connect

    Iwasaki, Hiroaki

    2008-07-25

    Insulin signaling in skeletal L6 myotubes is known to be affected by arginine methylation catalyzed by protein N-arginine methyltransferase 1 (PRMT1), however, the mechanism by which this occurs has not yet been defined. This study aimed to determine the exact substrate involved in the methylation and regulating insulin signaling in cells. Insulin enhanced arginine methylation of a 66-kDa protein (p66) concomitant with translocation of PRMT1 to the membrane fraction. Peptide mass fingerprinting identified p66 as a heterogeneous nuclear ribonucleoprotein, hnRNPQ that was bound to and methylated by PRMT1. Pharmacological inhibition of methylation (MTA) and small interfering RNA against PRMT1 (PRMT1-siRNA) attenuated insulin-stimulated tyrosine phosphorylation of hnRNPQ and insulin receptor (IR), and the interaction between hnRNPQ and IR. MTA, PRMT1-siRNA, and hnRNPQ-siRNA inhibited internalization of IR in the same manner. These data suggest that the PRMT1-mediated methylation of hnRNPQ is implicated in IR trafficking and insulin signaling in skeletal L6 myotubes.

  20. Investigations of receptor-mediated phagocytosis by hormone-induced (imprinted) Tetrahymena pyriformis.

    PubMed

    Kovács, P; Sundermann, C A; Csaba, G

    1996-08-15

    Receptor-mediated endocytosis by Tetrahvmena pyriformis was studied using tetramethylrhodamine isothiocyanate-labeled concanavalin A (TRITC-Con A) with fluorescence and confocal microscopy. In the presence of insulin, or 24 h after insulin pretreatment (hormonal imprinting), the binding and uptake of TRITC-Con A increased when compared to controls, owing to the binding of TRITC-Con A to sugar oligomers of insulin receptors. Mannose inhibited the binding of Con A, thus demonstrating the specificity of binding. Histamine, a phagocytosis-promoting factor in mammals and Tetrahymena, and galactose, did not influence the uptake of TRITC-Con A.

  1. Inhibition of insulin receptor binding by phorbol esters.

    PubMed

    Thomopoulos, P; Testa, U; Gourdin, M F; Hervy, C; Titeux, M; Vainchenker, W

    1982-12-15

    Phorbol esters inhibit the binding of insulin to its receptors on U-937 monocyte-like and HL-60 promyelocytic leukemia human cell lines. Within 20-30 min, exposure of these cells to 12-O-tetradecanoylphorbol 13-acetate (TPA) at 37 degrees C results in a 50% reduction of the specific binding of 125I-insulin. Half-maximal inhibition occurs at 1 nM TPA. Other tumor-promoting phorbol esters also inhibit 125I-insulin binding in a dose-dependent manner which parallels their known promoting activity in vivo. TPA does not alter the degradation of the hormone nor does it induce any shedding of its receptors in the medium. The effect of phorbol esters is dependent on temperature and cell type. It is less prominent at 22 degrees C than at 37 degrees C. It is reversible within 2 h at 37 degrees C. TPA reduces the binding of insulin predominantly by increasing its dissociation rate. This effect results in an accelerated turnover of the hormone on its receptors. PMID:6891320

  2. Introduction of exogenous growth hormone receptors augments growth hormone-responsive insulin biosynthesis in rat insulinoma cells

    SciTech Connect

    Billestrup, N.; Moeldrup, A.; Serup, P.; Nielsen, J.H. ); Mathews, L.S.; Norstedt, G. )

    1990-09-01

    The stimulation of insulin biosynthesis in the pancreatic insulinoma cell line RIN5-AH by growth hormone (GH) is initiated by GH binding to specific receptors. To determine whether the recently cloned rat hepatic GH receptor is able to mediate the insulinotropic effect of GH, the authors have transfected a GH receptor cDNA under the transcriptional control of the human metallothionein promoter into RIN5-AH cells. The transfected cells were found to exhibit an increased expression of GH receptors and to contain a specific GH receptor mRNA that was not expressed in the parent cell line. The expression of GH receptors in one clone (1.24) selected for detailed analysis was increased 2.6-fold compared to untransfected cells. The increased GH receptor expression was accompanied by an increased responsiveness to GH. Thus, the maximal GH-stimulated increase of insulin biosynthesis was 4.1-fold in 1.24 cells compared to 1.9-fold in the nontransfected RIN5-AH cells. The expression of the transfected receptor was stimulated 1.6- and 2.3-fold when cells were cultured in the presence of 25 or 50 {mu}M Zn{sup 2+} was associated with an increased magnitude of GH-stimulated insulin biosynthesis. A close stoichiometric relationship between the level of receptor expression and the level of GH-stimulated insulin biosynthesis was observed. They conclude from these results that the hepatic GH receptor is able to mediate the effect of GH on insulin biosynthesis in RIN5-AH cells.

  3. Rapid insulin-mediated increase in microvascular glycocalyx accessibility in skeletal muscle may contribute to insulin-mediated glucose disposal in rats.

    PubMed

    Eskens, Bart J M; Mooij, Hans L; Cleutjens, Jack P M; Roos, Jozef M A; Cobelens, Johanna E; Vink, Hans; Vanteeffelen, Jurgen W G E

    2013-01-01

    It has been demonstrated that insulin-mediated recruitment of microvascular blood volume is associated with insulin sensitivity. We hypothesize that insulin rapidly stimulates penetration of red blood cells (RBC) and plasma into the glycocalyx and thereby promotes insulin-mediated glucose uptake by increasing intracapillary blood volume. Experiments were performed in rats; the role of the glycocalyx was assessed by enzymatic degradation using a bolus of hyaluronidase. First, the effect of insulin on glycocalyx accessibility was assessed by measuring the depth of penetration of RBCs into the glycocalyx in microvessels of the gastrocnemius muscle with Sidestream Dark-field imaging. Secondly, peripheral insulin sensitivity was determined using intravenous insulin tolerance tests (IVITT). In addition, in a smaller set of experiments, intravital microscopy of capillary hemodynamics in cremaster muscle and histological analysis of the distribution of fluorescently labeled 40 kDa dextrans (D40) in hindlimb muscle was used to evaluate insulin-mediated increases in capillary blood volume. Insulin increased glycocalyx penetration of RBCs by 0.34±0.44 µm (P<0.05) within 10 minutes, and this effect of insulin was greatly impaired in hyaluronidase treated rats. Further, hyaluronidase treated rats showed a 35±25% reduction in whole-body insulin-mediated glucose disposal compared to control rats. Insulin-mediated increases in capillary blood volume were reflected by a rapid increase in capillary tube hematocrit from 21.1±10.1% to 29.0±9.8% (P<0.05), and an increase in D40 intensity in individual capillaries of 134±138% compared to baseline at the end of the IVITT. These effects of insulin were virtually abolished in hyaluronidase treated animals. In conclusion, insulin rapidly increases glycocalyx accessibility for circulating blood in muscle, and this is associated with an increased blood volume in individual capillaries. Hyaluronidase treatment of the glycocalyx abolishes

  4. Cannabinoids Inhibit Insulin Receptor Signaling in Pancreatic β-Cells

    PubMed Central

    Kim, Wook; Doyle, Máire E.; Liu, Zhuo; Lao, Qizong; Shin, Yu-Kyong; Carlson, Olga D.; Kim, Hee Seung; Thomas, Sam; Napora, Joshua K.; Lee, Eun Kyung; Moaddel, Ruin; Wang, Yan; Maudsley, Stuart; Martin, Bronwen; Kulkarni, Rohit N.; Egan, Josephine M.

    2011-01-01

    OBJECTIVE Optimal glucose homeostasis requires exquisitely precise adaptation of the number of insulin-secreting β-cells in the islets of Langerhans. Insulin itself positively regulates β-cell proliferation in an autocrine manner through the insulin receptor (IR) signaling pathway. It is now coming to light that cannabinoid 1 receptor (CB1R) agonism/antagonism influences insulin action in insulin-sensitive tissues. However, the cells on which the CB1Rs are expressed and their function in islets have not been firmly established. We undertook the current study to investigate if intraislet endogenous cannabinoids (ECs) regulate β-cell proliferation and if they influence insulin action. RESEARCH DESIGN AND METHODS We measured EC production in isolated human and mouse islets and β-cell line in response to glucose and KCl. We evaluated human and mouse islets, several β-cell lines, and CB1R-null (CB1R−/−) mice for the presence of a fully functioning EC system. We investigated if ECs influence β-cell physiology through regulating insulin action and demonstrated the therapeutic potential of manipulation of the EC system in diabetic (db/db) mice. RESULTS ECs are generated within β-cells, which also express CB1Rs that are fully functioning when activated by ligands. Genetic and pharmacologic blockade of CB1R results in enhanced IR signaling through the insulin receptor substrate 2-AKT pathway in β-cells and leads to increased β-cell proliferation and mass. CB1R antagonism in db/db mice results in reduced blood glucose and increased β-cell proliferation and mass, coupled with enhanced IR signaling in β-cells. Furthermore, CB1R activation impedes insulin-stimulated IR autophosphorylation on β-cells in a Gαi-dependent manner. CONCLUSIONS These findings provide direct evidence for a functional interaction between CB1R and IR signaling involved in the regulation of β-cell proliferation and will serve as a basis for developing new therapeutic interventions to

  5. FOXO1 Mediates Vitamin D Deficiency-induced Insulin Resistance in Skeletal Muscle

    PubMed Central

    Chen, Songcang; Villalta, Armando; Agrawal, Devendra K.

    2015-01-01

    Prospective epidemiological studies have consistently shown a relationship between vitamin D deficiency, insulin resistance, and type 2 diabetes mellitus (DM2). This is supported by recent trials showing that vitamin D supplementation in prediabetic or insulin-resistant patients with inadequate vitamin D levels improves insulin sensitivity. However, the molecular mechanisms underlying vitamin D deficiency-induced insulin resistance and DM2 remain unknown. Skeletal muscle insulin resistance is a primary defect in the majority of patients with DM2. While sustained activation of forkhead box O1 (FOXO1) in skeletal muscle causes insulin resistance, a relationship between vitamin D deficiency and FOXO1 activation in muscle is unknown. We generated skeletal muscle-specific vitamin D receptor (VDR)-null mice and discovered that these mice developed insulin resistance and glucose intolerance accompanied by increased expression and activity of FOXO1. We also found sustained FOXO1 activation in the skeletal muscle of global VDR-null mice. Treatment of C2C12 muscle cells with 1,25-dihydroxyvitamin D (VD3) reduced FOXO1 expression, nuclear translocation, and activity. The VD3-dependent suppression of FOXO1 activation disappeared by knockdown of VDR, indicating that it is VDR-dependent. Taken together, these results suggest that FOXO1 is a critical target mediating VDR-null signaling in skeletal muscle. The novel findings provide the conceptual support that persistent FOXO1 activation may be responsible for insulin resistance and impaired glucose metabolism in vitamin D signaling-deficient mice, as well as evidence for the utility of vitamin D supplementation for intervention in DM2. PMID:26462119

  6. Insulin receptor autophosphorylation in BC/sub 3/H-1 whole cell assays is inhibited by the specific calmodulin inhibitors calmidazolium and W-7

    SciTech Connect

    Arnold, T.P.; Pollet, R.I.

    1987-05-01

    Recent reports suggest the involvement of Ca/sup + +/ and the Ca/sup + +/ binding protein calmodulin in the insulin stimulated receptor tyrosine kinase activity in cell free (adipocyte) phosphorylation systems. Working with the insulin-responsive well characterized muscle cell line BC/sub 3/H-1, they have investigated the effects of calmodulin antagonists on insulin receptor phosphorylation in cultured intact cells. BC/sub 3/H-1 myocytes were grown to confluency (10-12 days) then exposed to media containing /sup 32/P-orthophosphate for 24 hours (100 mCi/ml). Insulin treatment stimulated the phosphorylation of a 95K protein which is immunoprecipitable with antireceptor antibodies indicating insulin-induced phosphorylation of the insulin receptor beta subunit in vivo. This phosphorylation occurs rapidly within 30 minutes at physiologic insulin concentrations at 37/sup 0/C. Phosphorylation can also be stimulated by the B-10 anti-insulin receptor antibody (1:500). Pretreatment of cells for 30 min with 1uM calmidazolium (R24571) and 10nM W-7 (n-(6-AminoHexyl)-s-chloro-1-naphalenesulfonamide) each significantly inhibited insulin-stimulated phosphorylation. This would suggest that calmodulin may play a role in mediation of the insulin receptor tyrosine kinase activity in the BC/sub 3/H-1 myocyte.

  7. Monoclonal antibodies to insulin and to the insulin receptor (anti-ID) modify the morphologies of insulin crystals

    NASA Astrophysics Data System (ADS)

    Markman, Ofer; Elias, Dana; Addadi, Lia; Cohen, Irun R.; Berkovitch-Yellin, Ziva

    1992-08-01

    Crystallization of bovine and porcine insulin in the presence of monoclonal antibodies (mAbs) yielded crystals of morphologies which differed from that of insulin crystals grown without the antibodies in solution. The anti-insulin monoclonal antibody ID 7 induced the formation of square plates. The anti-receptor antibodies 312 and A-40 induced deposition of crystals with totally different habit, polar prisms. Four other control mAbs did not have any morphological effect. Systematic work on the growth of crystals of organic and inorganic molecules has shown that morphological modifications, induced when crystals are grown in the presence of selected additives, originate from stereoselective interactions of the additives with the growing crystal faces. The induced morphological modifications can serve as a sensitive tool for the study of these interactions.

  8. Targeting Insulin Receptor with a Novel Internalizing Aptamer

    PubMed Central

    Iaboni, Margherita; Fontanella, Raffaela; Rienzo, Anna; Capuozzo, Maria; Nuzzo, Silvia; Santamaria, Gianluca; Catuogno, Silvia; Condorelli, Gerolama; de Franciscis, Vittorio; Esposito, Carla Lucia

    2016-01-01

    Nucleic acid-based aptamers are emerging as therapeutic antagonists of disease-associated proteins such as receptor tyrosine kinases. They are selected by an in vitro combinatorial chemistry approach, named Systematic Evolution of Ligands by Exponential enrichment (SELEX), and thanks to their small size and unique chemical characteristics, they possess several advantages over antibodies as diagnostics and therapeutics. In addition, aptamers that rapidly internalize into target cells hold as well great potential for their in vivo use as delivery tools of secondary therapeutic agents. Here, we describe a nuclease resistant RNA aptamer, named GL56, which specifically recognizes the insulin receptor (IR). Isolated by a cell-based SELEX method that allows enrichment for internalizing aptamers, GL56 rapidly internalizes into target cells and is able to discriminate IR from the highly homologous insulin-like growth factor receptor 1. Notably, when applied to IR expressing cancer cells, the aptamer inhibits IR dependent signaling. Given the growing interest in the insulin receptor as target for cancer treatment, GL56 reveals a novel molecule with great translational potential as inhibitor and delivery tool for IR-dependent cancers. PMID:27648925

  9. Targeting Insulin Receptor with a Novel Internalizing Aptamer.

    PubMed

    Iaboni, Margherita; Fontanella, Raffaela; Rienzo, Anna; Capuozzo, Maria; Nuzzo, Silvia; Santamaria, Gianluca; Catuogno, Silvia; Condorelli, Gerolama; de Franciscis, Vittorio; Esposito, Carla Lucia

    2016-09-20

    Nucleic acid-based aptamers are emerging as therapeutic antagonists of disease-associated proteins such as receptor tyrosine kinases. They are selected by an in vitro combinatorial chemistry approach, named Systematic Evolution of Ligands by Exponential enrichment (SELEX), and thanks to their small size and unique chemical characteristics, they possess several advantages over antibodies as diagnostics and therapeutics. In addition, aptamers that rapidly internalize into target cells hold as well great potential for their in vivo use as delivery tools of secondary therapeutic agents. Here, we describe a nuclease resistant RNA aptamer, named GL56, which specifically recognizes the insulin receptor (IR). Isolated by a cell-based SELEX method that allows enrichment for internalizing aptamers, GL56 rapidly internalizes into target cells and is able to discriminate IR from the highly homologous insulin-like growth factor receptor 1. Notably, when applied to IR expressing cancer cells, the aptamer inhibits IR dependent signaling. Given the growing interest in the insulin receptor as target for cancer treatment, GL56 reveals a novel molecule with great translational potential as inhibitor and delivery tool for IR-dependent cancers.

  10. Targeting Insulin Receptor with a Novel Internalizing Aptamer.

    PubMed

    Iaboni, Margherita; Fontanella, Raffaela; Rienzo, Anna; Capuozzo, Maria; Nuzzo, Silvia; Santamaria, Gianluca; Catuogno, Silvia; Condorelli, Gerolama; de Franciscis, Vittorio; Esposito, Carla Lucia

    2016-01-01

    Nucleic acid-based aptamers are emerging as therapeutic antagonists of disease-associated proteins such as receptor tyrosine kinases. They are selected by an in vitro combinatorial chemistry approach, named Systematic Evolution of Ligands by Exponential enrichment (SELEX), and thanks to their small size and unique chemical characteristics, they possess several advantages over antibodies as diagnostics and therapeutics. In addition, aptamers that rapidly internalize into target cells hold as well great potential for their in vivo use as delivery tools of secondary therapeutic agents. Here, we describe a nuclease resistant RNA aptamer, named GL56, which specifically recognizes the insulin receptor (IR). Isolated by a cell-based SELEX method that allows enrichment for internalizing aptamers, GL56 rapidly internalizes into target cells and is able to discriminate IR from the highly homologous insulin-like growth factor receptor 1. Notably, when applied to IR expressing cancer cells, the aptamer inhibits IR dependent signaling. Given the growing interest in the insulin receptor as target for cancer treatment, GL56 reveals a novel molecule with great translational potential as inhibitor and delivery tool for IR-dependent cancers. PMID:27648925

  11. Insulin receptor gene expression in normal and diseased bovine liver.

    PubMed

    Liu, G W; Zhang, Z G; Wang, J G; Wang, Z; Xu, C; Zhu, X L

    2010-11-01

    The aim of the present study was to compare insulin receptor (IR) gene expression in normal bovine liver (n=7) with samples of liver from cows in the perinatal period with ketosis (n=7) and cows with fatty liver (n=7). Gene expression was determined by internally controlled reverse transcriptase polymerase chain reaction (RT-PCR). The expression of IR mRNA in the liver of ketotic dairy cows was higher than in cows with fatty liver, but in both disease groups the expression was substantially lower than that in normal liver. Reduced expression of IR mRNA in fatty liver indicates that responses to insulin are markedly decreased, which might be due to insulin resistance. The relatively lower IR mRNA expression in the liver tissue of dairy cows with ketosis might enhance gluconeogenesis and lipid mobilization to relieve energy negative balance.

  12. Insulin receptor substrate-1 involvement in epidermal growth factor receptor and insulin-like growth factor receptor signalling: implication for Gefitinib ('Iressa') response and resistance.

    PubMed

    Knowlden, Janice M; Jones, Helen E; Barrow, Denise; Gee, Julia M W; Nicholson, Robert I; Hutcheson, Iain R

    2008-09-01

    Classically the insulin receptor substrate-1 (IRS-1) is an essential component of insulin-like growth factor type 1 receptor (IGF-IR) signalling, providing an interface between the receptor and key downstream signalling cascades. Here, however, we show that in tamoxifen-resistant MCF-7 (Tam-R) breast cancer cells, that are highly dependent on epidermal growth factor receptor (EGFR) for growth, IRS-1 can interact with EGFR and be preferentially phosphorylated on tyrosine (Y) 896, a Grb2 binding site. Indeed, phosphorylation of this site is greatly enhanced by exposure of these cells, and other EGFR-positive cell lines, to EGF. Importantly, while IGF-II promotes phosphorylation of IRS-1 on Y612, a PI3-K recruitment site, it has limited effect on Y896 phosphorylation in Tam-R cells. Furthermore, EGF and IGF-II co-treatment, reduces the ability of IGF-II to phosphorylate Y612, whilst maintaining Y896 phosphorylation, suggesting that the EGFR is the dominant recruiter of IRS-1 in this cell line. Significantly, challenge of Tam-R cells with the EGFR-selective tyrosine kinase inhibitor gefitinib, for 7 days, reduces IRS-1/EGFR association and IRS-1 Y896 phosphorylation, while promoting IRS-1/IGF-IR association and IRS-1 Y612 phosphorylation. Furthermore, gefitinib significantly enhances IGF-II-mediated phosphorylation of IRS-1 Y612 and AKT in Tam-R cells. Importantly, induction of this pathway by gefitinib can be abrogated by inhibition/downregulation of the IGF-IR. Our data would therefore suggest a novel association exists between the EGFR and IRS-1 in several EGFR-positive cancer cell lines. This association acts to promote phosphorylation of IRS-1 at Y896 and drive MAPK signalling whilst preventing recruitment of IRS-1 by the IGF-IR and inhibiting signalling via this receptor. Treatment with gefitinib alters the dynamics of this system, promoting IGF-IR signalling, the dominant gefitinib-resistant growth regulatory pathway in Tam-R cells, thus, potentially limiting

  13. Is insulin signaling molecules misguided in diabetes for ubiquitin-proteasome mediated degradation?

    PubMed

    Balasubramanyam, Muthuswamy; Sampathkumar, Rangasamy; Mohan, Viswanathan

    2005-07-01

    Recent mining of the human and mouse genomes, use of yeast genetics, and detailed analyses of several biochemical pathways, have resulted in the identification of many new roles for ubiquitin-proteasome mediated degradation of proteins. In the context of last year's award of Noble Prize (Chemistry) work, the ubiquitin and ubiquitin-like modifications are increasingly recognized as key regulatory events in health and disease. Although the ATP-dependent ubiquitin-proteasome system has evolved as premier cellular proteolytic machinery, dysregulation of this system by several different mechanisms leads to inappropriate degradation of specific proteins and pathological consequences. While aberrations in the ubiquitin-proteasome pathway have been implicated in certain malignancies and neurodegenerative disorders, recent studies indicate a role for this system in the pathogenesis of diabetes and its complications. Inappropriate degradation of insulin signaling molecules such as insulin receptor substrates (IRS-1 and IRS-2) has been demonstrated in experimental diabetes, mediated in part through the up-regulation of suppressors of cytokine signaling (SOCS). It appears that altered ubiquitin-proteasome system might be one of the molecular mechanisms of insulin resistance in many pathological situations. Drugs that modulate the SOCS action and/or proteasomal degradation of proteins could become novel agents for the treatment of insulin resistance and Type 2 diabetes.

  14. Adipocyte insulin receptor activity maintains adipose tissue mass and lifespan.

    PubMed

    Friesen, Max; Hudak, Carolyn S; Warren, Curtis R; Xia, Fang; Cowan, Chad A

    2016-08-01

    Type 2 diabetes follows a well-defined progressive pathogenesis, beginning with insulin resistance in metabolic tissues such as the adipose. Intracellular signaling downstream of insulin receptor activation regulates critical metabolic functions of adipose tissue, including glucose uptake, lipogenesis, lipolysis and adipokine secretion. Previous studies have used the aP2 promoter to drive Cre recombinase expression in adipose tissue. Insulin receptor (IR) knockout mice created using this aP2-Cre strategy (FIRKO mice) were protected from obesity and glucose intolerance. Later studies demonstrated the promiscuity of the aP2 promoter, casting doubts upon the tissue specificity of aP2-Cre models. It is our goal to use the increased precision of the Adipoq promoter to investigate adipocyte-specific IR function. Towards this end we generated an adipocyte-specific IR knockout (AIRKO) mouse using an Adipoq-driven Cre recombinase. Here we report AIRKO mice are less insulin sensitive throughout life, and less glucose tolerant than wild-type (WT) littermates at the age of 16 weeks. In contrast to WT littermates, the insulin sensitivity of AIRKO mice is unaffected by age or dietary regimen. At any age, AIRKO mice are comparably insulin resistant to old or obese WT mice and have a significantly reduced lifespan. Similar results were obtained when these phenotypes were re-examined in FIRKO mice. We also found that the AIRKO mouse is protected from high-fat diet-induced weight gain, corresponding with a 90% reduction in tissue weight of major adipose depots compared to WT littermates. Adipose tissue mass reduction is accompanied by hepatomegaly and increased hepatic steatosis. These data indicate that adipocyte IR function is crucial to systemic energy metabolism and has profound effects on adiposity, hepatic homeostasis and lifespan. PMID:27246738

  15. Proteomic analysis of the palmitate-induced myotube secretome reveals involvement of the annexin A1-formyl peptide receptor 2 (FPR2) pathway in insulin resistance.

    PubMed

    Yoon, Jong Hyuk; Kim, Dayea; Jang, Jin-Hyeok; Ghim, Jaewang; Park, Soyeon; Song, Parkyong; Kwon, Yonghoon; Kim, Jaeyoon; Hwang, Daehee; Bae, Yoe-Sik; Suh, Pann-Ghill; Berggren, Per-Olof; Ryu, Sung Ho

    2015-04-01

    Elevated levels of the free fatty acid palmitate are found in the plasma of obese patients and induce insulin resistance. Skeletal muscle secretes myokines as extracellular signaling mediators in response to pathophysiological conditions. Here, we identified and characterized the skeletal muscle secretome in response to palmitate-induced insulin resistance. Using a quantitative proteomic approach, we identified 36 secretory proteins modulated by palmitate-induced insulin resistance. Bioinformatics analysis revealed that palmitate-induced insulin resistance induced cellular stress and modulated secretory events. We found that the decrease in the level of annexin A1, a secretory protein, depended on palmitate, and that annexin A1 and its receptor, formyl peptide receptor 2 agonist, played a protective role in the palmitate-induced insulin resistance of L6 myotubes through PKC-θ modulation. In mice fed with a high-fat diet, treatment with the formyl peptide receptor 2 agonist improved systemic insulin sensitivity. Thus, we identified myokine candidates modulated by palmitate-induced insulin resistance and found that the annexin A1- formyl peptide receptor 2 pathway mediated the insulin resistance of skeletal muscle, as well as systemic insulin sensitivity. PMID:25616869

  16. Design and synthesis of inositolphosphoglycan putative insulin mediators.

    PubMed

    López-Prados, Javier; Cuevas, Félix; Reichardt, Niels-Christian; de Paz, José-Luis; Morales, Ezequiel Q; Martín-Lomas, Manuel

    2005-03-01

    The binding modes of a series of molecules, containing the glucosamine (1-->6) myo-inositol structural motif, into the ATP binding site of the catalytic subunit of cAMP-dependent protein kinase (PKA) have been analysed using molecular docking. These calculations predict that the presence of a phosphate group at the non-reducing end in pseudodisaccharide and pseudotrisaccharide structures properly orientate the molecule into the binding site and that pseudotrisaccharide structures present the best shape complementarity. Therefore, pseudodisaccharides and pseudotrisaccharides have been synthesised from common intermediates using effective synthetic strategies. On the basis of this synthetic chemistry, the feasibility of constructing small pseudotrisaccharide libraries on solid-phase using the same intermediates has been explored. The results from the biological evaluation of these molecules provide additional support to an insulin-mediated signalling system which involves the intermediacy of inositolphosphoglycans as putative insulin mediators. PMID:15731862

  17. Design and synthesis of inositolphosphoglycan putative insulin mediators.

    PubMed

    López-Prados, Javier; Cuevas, Félix; Reichardt, Niels-Christian; de Paz, José-Luis; Morales, Ezequiel Q; Martín-Lomas, Manuel

    2005-03-01

    The binding modes of a series of molecules, containing the glucosamine (1-->6) myo-inositol structural motif, into the ATP binding site of the catalytic subunit of cAMP-dependent protein kinase (PKA) have been analysed using molecular docking. These calculations predict that the presence of a phosphate group at the non-reducing end in pseudodisaccharide and pseudotrisaccharide structures properly orientate the molecule into the binding site and that pseudotrisaccharide structures present the best shape complementarity. Therefore, pseudodisaccharides and pseudotrisaccharides have been synthesised from common intermediates using effective synthetic strategies. On the basis of this synthetic chemistry, the feasibility of constructing small pseudotrisaccharide libraries on solid-phase using the same intermediates has been explored. The results from the biological evaluation of these molecules provide additional support to an insulin-mediated signalling system which involves the intermediacy of inositolphosphoglycans as putative insulin mediators.

  18. Insulin Receptor Isoform Variations in Prostate Cancer Cells

    PubMed Central

    Perks, Claire M.; Zielinska, H. A.; Wang, Jing; Jarrett, Caroline; Frankow, A.; Ladomery, Michael R.; Bahl, Amit; Rhodes, Anthony; Oxley, Jon; Holly, Jeff M. P.

    2016-01-01

    Men who develop prostate cancer (PCa) increasingly have one of the co-morbidities associated with a Western lifestyle that are characterized by hyperinsulinemia, hyperglycemia and increased expression of insulin-like growth factors-I (IGF-I) and IGF-II. Each have been associated with poor prognosis and more aggressive cancers that exhibit increased metabolism and increased glucose uptake. The insulin receptor (IR) has two splice isoforms IR-A and IR-B: IR-A has a higher affinity for IGF-II comparable to that for insulin, whereas the IR-B isoform predominantly just binds to insulin. In this study, we assessed alterations in the IR-A and IR-B isoform ratio and associated changes in cell proliferation and migration of PCa cell lines following exposure to altered concentrations of glucose and treatment with IGF-II and insulin. We observed that where IR-B predominated insulin had a greater effect on migration than IGF-II and IGF-II was more effective when IR-A was the main isoform. With regard to proliferation IGF-II was more effective than insulin regardless of which isoform was dominant. We assessed the abundance of the IR isoforms both in vivo and in vitro and observed that the majority of the tissue samples and cell lines expressed more IR-A than IR-B. Alterations in the isoforms in response to changes in their hormonal milieu could have a profound impact on how malignant cells behave and play a role in promoting carcinogenesis. A greater understanding of the mechanisms underlying changes in alternative splicing of the IR may provide additional targets for future cancer therapies. PMID:27733843

  19. Molecular Recognition of Insulin by a Synthetic Receptor

    SciTech Connect

    Chinai, Jordan M.; Taylor, Alexander B.; Ryno, Lisa M.; Hargreaves, Nicholas D.; Morris, Christopher A.; Hart, P. John; Urbach, Adam R.

    2011-08-29

    The discovery of molecules that bind tightly and selectively to desired proteins continues to drive innovation at the interface of chemistry and biology. This paper describes the binding of human insulin by the synthetic receptor cucurbit[7]uril (Q7) in vitro. Isothermal titration calorimetry and fluorescence spectroscopy experiments show that Q7 binds to insulin with an equilibrium association constant of 1.5 x 10{sup 6} M{sup -1} and with 50-100-fold selectivity versus proteins that are much larger but lack an N-terminal aromatic residue, and with >1000-fold selectivity versus an insulin variant lacking the N-terminal phenylalanine (Phe) residue. The crystal structure of the Q7{center_dot}insulin complex shows that binding occurs at the N-terminal Phe residue and that the N-terminus unfolds to enable binding. These findings suggest that site-selective recognition is based on the properties inherent to a protein terminus, including the unique chemical epitope presented by the terminal residue and the greater freedom of the terminus to unfold, like the end of a ball of string, to accommodate binding. Insulin recognition was predicted accurately from studies on short peptides and exemplifies an approach to protein recognition by targeting the terminus.

  20. Insulin-like 3-induced rat preantral follicular growth is mediated by growth differentiation factor 9.

    PubMed

    Xue, Kai; Kim, Ji Young; Liu, Jia-yin; Tsang, Benjamin K

    2014-01-01

    The communication of somatic cells and oocytes by intrafollicular paracrine factors is essential for follicular growth in the ovary. Insulin-like 3 (INSL3) is a theca cell-secreted paracrine factor. Androgens and growth differentiation factor 9 (GDF9), an oocyte-derived growth factor, are essential for follicular development. Using a rat preantral follicle culture model, we examined in the present study the influence of INSL3 on preantral follicular growth and the molecular mechanisms involved. We have observed that the receptor for INSL3, relaxin/insulin-like family peptide receptor 2 (RXFP2), was exclusively expressed in oocytes. Recombinant INSL3 stimulated Gdf9 expression, preantral follicular growth, and testosterone synthesis in vitro. Inhibition of the cAMP/protein kinase A signaling pathway (with cAMP antagonist, 8-bromoadenosine 3',5'-cyclic monophosphorothioate, Rp-isomer) attenuated INSL3-induced Gdf9 expression and preantral follicular growth. Moreover, knocking down Gdf9 expression (with small interfering RNA) or inhibiting GDF9 signaling (with SB431542, an activin receptor-like kinase receptor 5 inhibitor, or specific inhibitor of mothers against decapentaplegic homolog 3) or androgen action (with flutamide, an androgen receptor antagonist) suppressed INSL3-induced preantral follicular growth. In addition, LH and DHT regulated the expression of Insl3 mRNA in preantral follicles. These observations suggest that INSL3 is a key theca cell-derived growth factor for preantral follicle and that its action is mediated by GDF9.

  1. Deletion of exon 3 of the insulin receptor gene in a kindred with a familial form of insulin resistance

    SciTech Connect

    Wertheimer, E.; Barbetti, F.; Accili, D.; Taylor, S.I.; Litvin, Y.; Ebstein, R.P.; Bennet, E.R.

    1994-05-01

    Molecular scanning techniques, such as denaturing gradient gel electrophoresis (DGGE), greatly facilitate screening candidate genes for mutations. The authors have used DGGE to screen for mutations in the insulin receptor gene in a family in which four of five daughters were affected by type A insulin resistance in association with acanthosis nigricans and hyperandrogenism. DGGE did not detect mutations in any of the 22 exons of the insulin receptor gene. Nevertheless, Southern blot analysis suggested that there was a deletion of exon 3 in the other paternal allele of the insulin receptor gene. Analysis of the father`s cDNA confirmed that exon 3 was deleted from mRNA molecules derived from one of his two alleles of the insulin receptor gene. Furthermore, the father was found to be hemizygous for a polymorphic sequence (GAC{sup Asp} at codon 234) in exon 3 that was not inherited by any of the five daughters. Instead, all five daughters inherited the paternal allele with the deletion mutation. They did not detect mutations in the mother`s insulin receptor gene. Furthermore, the clinical syndrome did not segregate with either of the mother`s two alleles of the insulin receptor gene. Although the youngest daughter inherited the mutant allele from her father, she was not clinically affected. The explanation for the incomplete penetrance is not known. These results emphasize the importance of specifically searching for deletion mutations when screening candidate genes for mutations. Furthermore, the existence of apparently asymptomatic carriers of mutations in the insulin receptor gene, such as the father in the present study, suggests that the prevalence of mutations in the insulin receptor gene may be higher than would be predicted on the basis of the observed prevalence of patients with extreme insulin resistance. 34 refs., 6 figs., 1 tab.

  2. Prostaglandin A2 enhances cellular insulin sensitivity via a mechanism that involves the orphan nuclear receptor NR4A3.

    PubMed

    Zhu, X; Walton, R G; Tian, L; Luo, N; Ho, S-R; Fu, Y; Garvey, W T

    2013-03-01

    We have previously reported that members of the NR4A family of orphan nuclear receptors can augment insulin's ability to stimulate glucose transport in adipocytes. In the current study, we endeavored to test for an insulin-sensitizing effect in muscle cells and to identify a potential transactivator. Lentiviral constructs were used to engineer both hyperexpression and shRNA silencing of NR4A3 in C2C12 myocytes. The NR4A3 hyper-expression construct led to a significant increase in glucose transport rates in the presence of maximal insulin while the NR4A3 knock-down exhibited a significant reduction in insulin-stimulated glucose transport rates. Consistently, insulin-mediated AKT phosphorylation was increased by NR4A3 hyperexpression and decreased following shRNA NR4A3 suppression. Then, we examined effects of prostaglandin A2 (PGA2) on insulin action and NR4A3 transactivation. PGA2 augmented insulin-stimulated glucose uptake in C2C12 myocytes and AKT phosphorylation after 12-h treatment, without significant effects on basal transport or basal AKT phosphorylation. More importantly, we demonstrated that PGA2 led to a greater improvement in insulin-stimulated glucose rates in NR4A3 overexpressing C2C12 myocytes, when compared with Lac-Z controls stimulated with insulin and PGA2. Moreover, the sensitizing effect of PGA2 was significantly diminished in NR4A3 knockdown myocytes compared to scramble controls. These results show for the first time that: (i) PGA2 augments insulin action in myocytes as manifested by enhanced stimulation of glucose transport and AKT phosphorylation; and (ii) the insulin sensitizing effect is dependent upon the orphan nuclear receptor NR4A3. PMID:23104421

  3. IRS1Ser³⁰⁷ phosphorylation does not mediate mTORC1-induced insulin resistance.

    PubMed

    Herrema, Hilde; Lee, Jaemin; Zhou, Yingjiang; Copps, Kyle D; White, Morris F; Ozcan, Umut

    2014-01-10

    Increased mammalian target of rapamycin complex 1 (mTORC1) activity has been suggested to play important roles in development of insulin resistance in obesity. mTORC1 hyperactivity also increases endoplasmic reticulum (ER) stress, which in turn contributes to development of insulin resistance and glucose intolerance. Increased IRS1 phosphorylation at Ser307 in vitro is correlated with mTORC1- and ER stress-induced insulin resistance. This phosphorylation site correlates strongly with impaired insulin receptor signaling in diabetic mice and humans. In contrast, evidence from knock-in mice suggests that phosphorylation of IRS1 at Ser307 is actually required to maintain insulin sensitivity. To study the involvement of IRS1(Ser307) phosphorylation in mTORC1-mediated glucose intolerance and insulin sensitivity in vivo, we investigated the effects of liver specific TSC1 depletion in IRS1(Ser307Ala) mice and controls. Our results demonstrate that blockade of IRS1(Ser307) phosphorylation in vivo does not prevent mTORC1-mediated glucose intolerance and insulin resistance. PMID:24333417

  4. High-affinity insulin binding to an atypical insulin-like growth factor-I receptor in human breast cancer cells.

    PubMed Central

    Milazzo, G; Yip, C C; Maddux, B A; Vigneri, R; Goldfine, I D

    1992-01-01

    We studied the nature of insulin receptor binding in MCF-7 breast cancer cells. In both intact cells and solubilized receptor preparations, high-affinity insulin binding was seen. However, unlabeled insulin-like growth factor-I (IGF-I) was five-fold more potent in inhibiting 125I-insulin binding than insulin itself. With monoclonal antibodies to the insulin receptor, 30% of 125I-insulin binding was inhibited. In contrast when alpha-IR3, a monoclonal antibody that recognizes typical IGF-I receptor, was employed over 60% of 125I-insulin binding was inhibited. The B29-MAB-125I-insulin photoprobe was then cross-linked to MCF-7 membranes. Cross-linking was inhibited by both unlabeled insulin and IGF-I. Further, the B29-MAB-125I-insulin photoprobe cross-linked to MCF-7 membranes was strongly immunoprecipitated by alpha-IR3. Employing sequential affinity chromatography with insulin-Affi-gel followed by insulin receptor monoclonal antibody agarose, atypical insulin binding activity was separated from insulin receptor binding activity. This atypical receptor had intrinsic tyrosine kinase activity. Both insulin and IGF-I stimulated the phosphorylation of the receptor's beta subunit. In MCF-7 cells both IGF-I and insulin stimulated [3H]thymidine incorporation; alpha-IR3 blocked all of the IGF-I effect but only 50-60% of the insulin effect. This study demonstrates in MCF-7 cells that, in addition to typical insulin and IGF-I receptors, there is another receptor that binds both insulin and IGF-I with high affinity. Images PMID:1311720

  5. Adipose tissue natriuretic peptide receptor expression is related to insulin sensitivity in obesity and diabetes

    PubMed Central

    Kovacova, Zuzana; Tharp, William G.; Liu, Dianxin; Wei, Wan; Xie, Hui

    2016-01-01

    Objective Cardiac natriuretic peptides (NPs) bind to two receptors (NPRA‐mediator of signaling; NPRC‐clearance receptor) whose ratio, NPRR (NPRA/NPRC), determines the NP bioactivity. This study investigated the relationship of NP receptor gene expression in adipose tissue and muscle with obesity and glucose intolerance. Prospectively, the study also assessed whether changes in NP receptor expression and thermogenic gene markers accompanied improvements of insulin sensitivity. Methods A cross‐sectional study of subjects with a wide range of BMI and glucose tolerance (n = 50) was conducted, as well as a randomized 12‐week trial of subjects with type 2 diabetes mellitus (T2DM) treated with pioglitazone (n = 9) or placebo (n = 10). Results NPRR mRNA was significantly lower in adipose tissue of subjects with obesity when compared with lean subjects (P ≤ 0.001). NPRR decreased with progression from normal glucose tolerance to T2DM (P < 0.01) independently of obesity. Treatment of subjects with T2DM with pioglitazone increased NPRR in adipose tissue (P ≤ 0.01) in conjunction with improvements in insulin sensitivity and increases of the thermogenic markers PPARγ coactivator‐1α and uncoupling protein 1 (P ≤ 0.01). Conclusions Decreased adipose tissue NPRR was associated with obesity, glucose intolerance, and insulin resistance. This relationship was not observed for skeletal muscle NPRR. Pharmacological improvement of insulin sensitivity in subjects with T2DM was tied to improvement in NPRR and increased expression of genes involved in thermogenic processes. PMID:26887289

  6. Mechanisms of insulin resistance in human obesity: evidence for receptor and postreceptor defects.

    PubMed Central

    Kolterman, O G; Insel, J; Saekow, M; Olefsky, J M

    1980-01-01

    To assess the mechanisms of the insulin resistance in human obesity, we have determined, using a modification of the euglycemic glucose clamp technique, the shape of the in vivo insulin-glucose disposal dose-response curves in 7 control and 13 obese human subjects. Each subject had at least three euglycemic studies performed at insulin infusion rates of 15, 40, 120, 240, or 1,200 mU/M2/min. The glucose disposal rate was decreased in all obese subjects compared with controls (101 +/- 16 vs. 186 +/- 16 mg/M2/min) during the 40 mU/M2/min insulin infusion. The mean dose-response curve for the obese subjects was displaced to the right, i.e., the half-maximally effective insulin concentration was 270 +/- 27 microU/ml for the obese compared with 130 +/- 10 microU/ml for controls. In nine of the obese subjects, the dose-response curves were shifted to the right, and maximal glucose disposal rates (at a maximally effective insulin concentration) were markedly decreased, indicating both a receptor and a postreceptor defect. On the other hand, four obese patients had right-shifted dose-response curves but reached normal maximal glucose disposal rates, consistent with decreased insulin receptors as the only abnormality. When the individual data were analyzed, it was found that the lease hyperinsulinemic, least insulin-resistant patients displayed only the receptor defect, whereas those with the greatest hyperinsulinemia exhibited the largest post-receptor defect, suggesting a continuous spectrum of defects as one advances from mild to severe insulin resistance. When insulin's ability to suppress hepatic glucose output was assessed, hyperinsulinemia produced total suppresssion in all subjects. The dose-response curve for the obese subjects was shifted to the right, indicating a defect in insulin receptors. Insulin binding to isolated adipocytes obtained from the obese subjects was decreased, and a highly significant inverse linear relationship was demonstrated between insulin

  7. Insulin-stimulated Na/sup +/ transport in a model renal epithelium: protein synthesis dependence and receptor interactions

    SciTech Connect

    Blazer-Yost, B.L.; Cox, M.

    1987-05-01

    The urinary bladder of the toad, Bufo marinus, is a well characterized model of the mammalian distal nephron. Porcine insulin (approx. 0.5-5.0 ..mu..M) stimulates net mucosal to serosal Na/sup +/ flux within 10 minutes of hormone addition. The response is maintained for at least 5 hr and is completely abolished by low doses (10..mu..M) of the epithelial Na/sup +/ channel blocker amiloride. Insulin-stimulated Na/sup +/ transport does not require new protein synthesis since it is actinomycin-D (10..mu..g/ml) insensitive. Also in 3 separate experiments in which epithelial cell proteins were examined by /sup 35/S-methionine labeling, 2-dimensional polyacrylamide gel electrophoresis/autoradiography, no insulin induced proteins were observed. Equimolar concentrations of purified porcine proinsulin and insulin (0.64..mu..M) stimulate Na/sup +/ transport to the same extent. Thus, the putative toad insulin receptor may have different affinity characteristics than those demonstrated for insulin and proinsulin in mammalian tissues. Alternatively, the natriferic action of insulin in toad urinary bladders may be mediated by occupancy of another receptor. Preliminary experiments indicating that nanomolar concentrations of IGF/sub 1/ stimulate Na/sup +/ transport in this tissue support the latter contention.

  8. Novel Small Molecule Glucagon-Like Peptide-1 Receptor Agonist Stimulates Insulin Secretion in Rodents and From Human Islets

    PubMed Central

    Sloop, Kyle W.; Willard, Francis S.; Brenner, Martin B.; Ficorilli, James; Valasek, Kathleen; Showalter, Aaron D.; Farb, Thomas B.; Cao, Julia X.C.; Cox, Amy L.; Michael, M. Dodson; Gutierrez Sanfeliciano, Sonia Maria; Tebbe, Mark J.; Coghlan, Michael J.

    2010-01-01

    OBJECTIVE The clinical effectiveness of parenterally-administered glucagon-like peptide-1 (GLP-1) mimetics to improve glucose control in patients suffering from type 2 diabetes strongly supports discovery pursuits aimed at identifying and developing orally active, small molecule GLP-1 receptor agonists. The purpose of these studies was to identify and characterize novel nonpeptide agonists of the GLP-1 receptor. RESEARCH DESIGN AND METHODS Screening using cells expressing the GLP-1 receptor and insulin secretion assays with rodent and human islets were used to identify novel molecules. The intravenous glucose tolerance test (IVGTT) and hyperglycemic clamp characterized the insulinotropic effects of compounds in vivo. RESULTS Novel low molecular weight pyrimidine-based compounds that activate the GLP-1 receptor and stimulate glucose-dependent insulin secretion are described. These molecules induce GLP-1 receptor-mediated cAMP signaling in HEK293 cells expressing the GLP-1 receptor and increase insulin secretion from rodent islets in a dose-dependent manner. The compounds activate GLP-1 receptor signaling, both alone or in an additive fashion when combined with the endogenous GLP-1 peptide; however, these agonists do not compete with radiolabeled GLP-1 in receptor-binding assays. In vivo studies using the IVGTT and the hyperglycemic clamp in Sprague Dawley rats demonstrate increased insulin secretion in compound-treated animals. Further, perifusion assays with human islets isolated from a donor with type 2 diabetes show near-normalization of insulin secretion upon compound treatment. CONCLUSIONS These studies characterize the insulinotropic effects of an early-stage, small molecule GLP-1 receptor agonist and provide compelling evidence to support pharmaceutical optimization. PMID:20823098

  9. Calcium-calmodulin-dependent kinase II (CaMKII) mediates insulin-stimulated proliferation and glucose uptake.

    PubMed

    Illario, Maddalena; Monaco, Sara; Cavallo, Anna Lina; Esposito, Iolanda; Formisano, Pietro; D'Andrea, Luca; Cipolletta, Ersilia; Trimarco, Bruno; Fenzi, Gianfranco; Rossi, Guido; Vitale, Mario

    2009-05-01

    Cellular growth and glucose uptake are regulated by multiple signals generated by the insulin receptor. The mechanisms of individual modulation of these signals remain somewhat elusive. We investigated the role of CaMKII in insulin signalling in a rat skeletal muscle cell line, demonstrating that CaMKII modulates the insulin action on DNA synthesis and the negative feedback that down regulates glucose uptake. Insulin stimulation generated partly independent signals leading to the rapid activation of Akt, Erk-1/2 and CaMKII. Akt activation was followed by Glut-4 translocation to the plasma membrane and increase of glucose uptake. Then, IRS-1 was phosphorylated at S612, the IRS-1/p85PI3K complex was disrupted, Akt was no more phosphorylated and both Glut-4 translocation and glucose uptake were reduced. Inhibition of CaMKII abrogated the insulin-induced Erk-1/2 activation, DNA synthesis and phosphorylation of IRS-1 at S612. Inhibition of CaMKII also abrogated the down-regulation of insulin-stimulated Akt phosphorylation, Glut-4 membrane translocation and glucose uptake. These results demonstrate that: 1 - CaMKII modulates the insulin-induced Erk-1/2 activation and cell proliferation; 2 - after the initial stimulation of the IRS-1/Akt pathway, CaMKII mediates the down-regulation of stimulated glucose uptake. This represents a novel mechanism in the selective control of insulin signals, and a possible site for pharmacological intervention.

  10. Thyroid-stimulating hormone improves insulin sensitivity in skeletal muscle cells via cAMP/PKA/CREB pathway-dependent upregulation of insulin receptor substrate-1 expression.

    PubMed

    Moon, Min Kyong; Kang, Geun Hyung; Kim, Hwan Hee; Han, Sun Kyoung; Koo, Young Do; Cho, Sun Wook; Kim, Ye An; Oh, Byung-Chul; Park, Do Joon; Chung, Sung Soo; Park, Kyong Soo; Park, Young Joo

    2016-11-15

    Thyroid-stimulating hormone (TSH) receptor is expressed in extrathyroidal tissues such as hepatocytes, adipocytes, and skeletal muscle, which suggests a possible novel role of TSH in various metabolic processes in extrathyroidal tissues independent of thyroid hormones. We investigated whether TSH has any effects on glucose tolerance and insulin sensitivity in the skeletal muscle using diet-induced obesity (DIO) mouse models and rodent skeletal muscle cells. TSH improved glucose tolerance in DIO mice and this was associated with an improvement of skeletal muscle insulin sensitivity resulting from the increased expression of insulin receptor substrate (IRS)-1 protein and mRNA therein. TSH significantly increased both basal and insulin-stimulated glucose transport in rat L6 myotubes and increased the expression of IRS-1 protein and mRNA in these cells as well. TSH also stimulated Irs1 promoter activation; this stimulation was abolished by protein kinase A (PKA) inhibition using H89 or by mutation of the cAMP-response element site located at -1155 to -875 bp of the Irs1 promoter region, supporting a novel role of TSH activated-cAMP/PKA/CREB signaling in the regulation of Irs1 expression. In conclusion, TSH improves insulin sensitivity in skeletal muscle by increasing Irs1 gene expression. This regulatory effect is mediated by a PKA-CREB-dependent pathway.

  11. Insulin and insulin-like growth factor-I (IGF-I) receptor phosphorylation in µ-calpain knockout mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Numerous cellular processes are controlled by insulin and IGF-I signaling pathways. Due to previous work in our laboratories, we hypothesized that insulin (IR) and type 1 IGF-I (IGF-IR) receptor signaling is decreased due to increased protein tyrosine phosphatase 1B (PTP1B) activity. C57BL/6J mice...

  12. cAMP mediators of pulsatile insulin secretion from glucose-stimulated single beta-cells.

    PubMed

    Idevall-Hagren, Olof; Barg, Sebastian; Gylfe, Erik; Tengholm, Anders

    2010-07-23

    Pulsatile insulin release from glucose-stimulated beta-cells is driven by oscillations of the Ca(2+) and cAMP concentrations in the subplasma membrane space ([Ca(2+)](pm) and [cAMP](pm)). To clarify mechanisms by which cAMP regulates insulin secretion, we performed parallel evanescent wave fluorescence imaging of [cAMP](pm), [Ca(2+)](pm), and phosphatidylinositol 3,4,5-trisphosphate (PIP(3)) in the plasma membrane. This lipid is formed by autocrine insulin receptor activation and was used to monitor insulin release kinetics from single MIN6 beta-cells. Elevation of the glucose concentration from 3 to 11 mm induced, after a 2.7-min delay, coordinated oscillations of [Ca(2+)](pm), [cAMP](pm), and PIP(3). Inhibitors of protein kinase A (PKA) markedly diminished the PIP(3) response when applied before glucose stimulation, but did not affect already manifested PIP(3) oscillations. The reduced PIP(3) response could be attributed to accelerated depolarization causing early rise of [Ca(2+)](pm) that preceded the elevation of [cAMP](pm). However, the amplitude of the PIP(3) response after PKA inhibition was restored by a specific agonist to the cAMP-dependent guanine nucleotide exchange factor Epac. Suppression of cAMP formation with adenylyl cyclase inhibitors reduced already established PIP(3) oscillations in glucose-stimulated cells, and this effect was almost completely counteracted by the Epac agonist. In cells treated with small interfering RNA targeting Epac2, the amplitudes of the glucose-induced PIP(3) oscillations were reduced, and the Epac agonist was without effect. The data indicate that temporal coordination of the triggering [Ca(2+)](pm) and amplifying [cAMP](pm) signals is important for glucose-induced pulsatile insulin release. Although both PKA and Epac2 partake in initiating insulin secretion, the cAMP dependence of established pulsatility is mediated by Epac2.

  13. Hibiscus sabdariffa polyphenols prevent palmitate-induced renal epithelial mesenchymal transition by alleviating dipeptidyl peptidase-4-mediated insulin resistance.

    PubMed

    Huang, Chien-Ning; Wang, Chau-Jong; Yang, Yi-Sun; Lin, Chih-Li; Peng, Chiung-Huei

    2016-01-01

    Diabetic nephropathy has a significant socioeconomic impact, but its mechanism is unclear and needs to be examined. Hibiscus sabdariffa polyphenols (HPE) inhibited high glucose-induced angiotensin II receptor-1 (AT-1), thus attenuating renal epithelial mesenchymal transition (EMT). Recently, we reported HPE inhibited dipeptidyl-peptidase-4 (DPP-4, the enzyme degrades type 1 glucagon-like peptide (GLP-1)), which mediated insulin resistance signals leading to EMT. Since free fatty acids can realistically bring about insulin resistance, using the palmitate-stimulated cell model in contrast with type 2 diabetic rats, in this study we examined if insulin resistance causes renal EMT, and the preventive effect of HPE. Our findings reveal that palmitate hindered 30% of glucose uptake. Treatment with 1 mg mL(-1) of HPE and the DPP-4 inhibitor linagliptin completely recovered insulin sensitivity and palmitate-induced signal cascades. HPE inhibited DPP-4 activity without altering the levels of DPP-4 and the GLP-1 receptor (GLP-1R). HPE decreased palmitate-induced phosphorylation of Ser307 of insulin receptor substrate-1 (pIRS-1 (S307)), AT-1 and vimentin, while increasing phosphorylation of phosphatidylinositol 3-kinase (pPI3K). IRS-1 knockdown revealed its essential role in mediating downstream AT-1 and EMT. In type 2 diabetic rats, it suggests that HPE concomitantly decreased the protein levels of DPP-4, AT-1, vimentin, and fibronectin, but reversed the in vivo compensation of GLP-1R. In conclusion, HPE improves insulin sensitivity by attenuating DPP-4 and the downstream signals, thus decreasing AT-1-mediated tubular-interstitial EMT. HPE could be an adjuvant to prevent diabetic nephropathy. PMID:26514092

  14. Evidence of selection at insulin receptor substrate-1 gene loci.

    PubMed

    Yoshiuchi, Issei

    2013-10-01

    Type 2 diabetes mellitus (T2DM) is a complex disease characterized by insulin resistance and defect of insulin secretion. The worldwide prevalence of T2DM is steadily increasing. T2DM is also significantly associated with obesity, coronary artery disease (CAD), and metabolic syndrome. There is a clear difference in the prevalence of T2DM among populations, and T2DM is highly heritable. Human adaptations to environmental changes in food supply, lifestyle, and geography may have pressured the selection of genes associated with the metabolism of glucose, lipids, carbohydrates, and energy. The insulin receptor substrate-1 (IRS1) gene is considered a major T2DM gene, and common genetic variations near the IRS1 gene were found to be associated with T2DM, insulin resistance, adiposity, and CAD. Here, we aimed to find evidence of selection at the IRS1 gene loci using the HapMap population data. We investigated a 3-step test procedure-Wright's F statistics (Fst), the long-range haplotype (LRH) test, and the integrated haplotype score (iHS) test-to detect selection at the IRS1 gene loci using the HapMap population data. We observed that 1 CAD-associated SNP (rs2943634) and 1 adiposity- and insulin resistance-associated SNP (rs2943650) exhibited high Fst values. We also found selection at the IRS1 gene loci by the LRH test and the iHS test. These findings suggest evidence of selection at the IRS1 gene loci and that further studies should examine the adaptive evolution of T2DM genes. PMID:22797928

  15. Low Oxygen Tension Modulates the Insulin-Like Growth Factor-1 or -2 Signaling via Both Insulin-Like Growth Factor-1 Receptor and Insulin Receptor to Maintain Stem Cell Identity in Placental Mesenchymal Stem Cells.

    PubMed

    Youssef, Amer; Han, Victor K M

    2016-03-01

    Placental mesenchymal stem cells (PMSCs) are readily available multipotent stem cells for potential use in regenerative therapies. For this purpose, PMSCs must be maintained in culture conditions that mimic the in vivo microenvironment. IGFs (IGF-1 and IGF-2) and oxygen tension are low in the placenta in early gestation and increase as pregnancy progresses. IGFs bind to two receptor tyrosine kinases, the IGF-1 receptor (IGF-1R) and the insulin receptor (IR), and their hybrid receptors. We hypothesized that IGF-1 and IGF-2 signal via distinct signaling pathways under low-oxygen tension to maintain PMSC multipotency. In preterm PMSCs, low-oxygen tension increased the expression of IGF-2 and reduced IGF-1. IGF-1 stimulated higher phosphorylation of IGF-1Rβ, ERK1/2, and AKT, which was maintained at steady lower levels by low oxygen tension. PMSC proliferation was increased by IGF-1 more than IGF-2,and was potentiated by low-oxygen tension. This IGF/low oxygen tension-mediated proliferation was receptor dependent because neutralization of the IGF-1R inhibited PMSC proliferation in the presence of IGF-1 and the IR in presence of IGF-2. These findings suggest that both IGF-1R and the IR can participate in mediating IGF signaling in maintaining PMSCs multipotency. We conclude that low-oxygen tension can modify the IGF-1 or IGF-2 signaling via the IGF-1R and IR in PMSCs.

  16. Association between GRB2/Sos and insulin receptor substrate 1 is not sufficient for activation of extracellular signal-regulated kinases by interleukin-4: implications for Ras activation by insulin.

    PubMed

    Pruett, W; Yuan, Y; Rose, E; Batzer, A G; Harada, N; Skolnik, E Y

    1995-03-01

    Insulin receptor substrate 1 (IRS-1) mediates the activation of a variety of signaling pathways by the insulin and insulin-like growth factor 1 receptors by serving as a docking protein for signaling molecules with SH2 domains. We and others have shown that in response to insulin stimulation IRS-1 binds GRB2/Sos and have proposed that this interaction is important in mediating Ras activation by the insulin receptor. Recently, it has been shown that the interleukin (IL)-4 receptor also phosphorylates IRS-1 and an IRS-1-related molecule, 4PS. Unlike insulin, however, IL-4 fails to activate Ras, extracellular signal-regulated kinases (ERKs), or mitogen-activated protein kinases. We have reconstituted the IL-4 receptor into an insulin-responsive L6 myoblast cell line and have shown that IRS-1 is tyrosine phosphorylated to similar degrees in response to insulin and IL-4 stimulation in this cell line. In agreement with previous findings, IL-4 failed to activate the ERKs in this cell line or to stimulate DNA synthesis, whereas the same responses were activated by insulin. Surprisingly, IL-4's failure to activate ERKs was not due to a failure to stimulate the association of tyrosine-phosphorylated IRS-1 with GRB2/Sos; the amounts of GRB2/Sos associated with IRS-1 were similar in insulin- and IL-4-stimulated cells. Moreover, the amounts of phosphatidylinositol 3-kinase activity associated with IRS-1 were similar in insulin- and IL-4-stimulated cells. In contrast to insulin, however, IL-4 failed to induce tyrosine phosphorylation of Shc or association of Shc with GRB2. Thus, ERK activation correlates with Shc tyrosine phosphorylation and formation of an Shc/GRB2 complex. Thus, ERK activation correlates with Shc tyrosine phosphorylation and formation of an Shc/GRB2 complex. Previous studies have indicated that activation of ERks in this cell line is dependent upon Ras since a dominant-negative Ras (Asn-17) blocks ERK activation by insulin. Our findings, taken in the context

  17. Does Inflammation Mediate the Association Between Obesity and Insulin Resistance?

    PubMed

    Adabimohazab, Razieh; Garfinkel, Amanda; Milam, Emily C; Frosch, Olivia; Mangone, Alexander; Convit, Antonio

    2016-06-01

    In adult obesity, low-grade systemic inflammation is considered an important step in the pathogenesis of insulin resistance (IR). The association between obesity and inflammation is less well established in adolescents. Here, we ascertain the importance of inflammation in IR among obese adolescents by utilizing either random forest (RF) classification or mediation analysis approaches. The inflammation balance score, composed of eight pro- and anti-inflammatory makers, as well as most of the individual inflammatory markers differed significantly between lean and overweight/obese. In contrast, adiponectin was the only individual marker selected as a predictor of IR by RF, and the balance score only revealed a medium-to-low importance score. Neither adiponectin nor the inflammation balance score was found to mediate the relationship between obesity and IR. These findings do not support the premise that low-grade systemic inflammation is a key for the expression of IR in the human. Prospective longitudinal studies should confirm these findings.

  18. Insulin Receptor Signaling in Long-Term Memory Consolidation Following Spatial Learning

    ERIC Educational Resources Information Center

    Dou, Jing-Tao; Chen, Min; Dufour, Franck; Alkon, Daniel L.; Zhao, Wei-Qin

    2005-01-01

    Evidence has shown that the insulin and insulin receptor (IR) play a role in cognitive function. However, the detailed mechanisms underlying insulin's action on learning and memory are not yet understood. Here we investigated changes in long-term memory-associated expression of the IR and downstream molecules in the rat hippocampus. After…

  19. Hyperinsulinemia is Associated with Increased Soluble Insulin Receptors Release from Hepatocytes

    PubMed Central

    Hiriart, Marcia; Sanchez-Soto, Carmen; Diaz-Garcia, Carlos Manlio; Castanares, Diana T.; Avitia, Morena; Velasco, Myrian; Mas-Oliva, Jaime; Macias-Silva, Marina; González-Villalpando, Clicerio; Delgado-Coello, Blanca; Sosa-Garrocho, Marcela; Vidaltamayo, Román; Fuentes-Silva, Deyanira

    2014-01-01

    It has been generally assumed that insulin circulates freely in blood. However it can also interact with plasma proteins. Insulin receptors are located in the membrane of target cells and consist of an alpha and beta subunits with a tyrosine kinase cytoplasmic domain. The ectodomain, called soluble insulin receptor (SIR) has been found elevated in patients with diabetes mellitus. We explored if insulin binds to SIRs in circulation under physiological conditions and hypothesize that this SIR may be released by hepatocytes in response to high insulin concentrations. The presence of SIR in rat and human plasmas and the culture medium of hepatocytes was explored using Western blot analysis. A purification protocol was performed to isolated SIR using affinity, gel filtration, and ion exchange chromatographies. A modified reverse hemolytic plaque assay was used to measure SIR release from cultured hepatocytes. Incubation with 1 nmol l−1 insulin induces the release of the insulin receptor ectodomains from normal rat hepatocytes. This effect can be partially prevented by blocking protease activity. Furthermore, plasma levels of SIR were higher in a model of metabolic syndrome, where rats are hyperinsulinemic. We also found increased SIR levels in hyperinsulinemic humans. SIR may be an important regulator of the amount of free insulin in circulation. In hyperinsulinemia, the amount of this soluble receptor increases and this could lead to higher amounts of insulin bound to this receptor, rather than free insulin, which is the biologically active form of the hormone. This observation could enlighten the mechanisms of insulin resistance. PMID:24995000

  20. Impact of keratin intermediate filaments on insulin-mediated glucose metabolism regulation in the liver and disease association.

    PubMed

    Roux, Alexandra; Gilbert, Stéphane; Loranger, Anne; Marceau, Normand

    2016-02-01

    In all cells, a tight regulation exists between glucose uptake and utilization to prevent diseases related to its perturbed metabolism. In insulin-targeted cells, such as hepatocytes, proper glucose utilization requires an elaborate interplay between the insulin receptor, the glucose transporter, and mitochondria that involves the participation of actin microfilaments and microtubules. In addition, there is increasing evidence of an involvement of the third cytoskeletal network provided by intermediate filaments (IFs). Keratins belong to the multigene family of IF proteins, coordinately expressed as distinct pairs within the context of epithelial cell differentiation. Hepatocyte IFs are made up of the [keratin (K)8/K18] pair only, whereas pancreatic β-cell IFs additionally include small amounts of K7. There are accumulating examples of K8/K18 involvement in the glucose-insulin cross-talk, including the modulation of plasma glucose levels, insulin release from pancreatic β-cells, and insulin-mediated glucose uptake and glycogen production in hepatocytes after a K8/K18 loss. This review integrates the mechanistic features that support such an impact of K8/K18 IFs on insulin-dependent glucose metabolism regulation in liver and its implication in glucose- or insulin-associated diseases.

  1. Immunohistochemical localization of transient receptor potential vanilloid type 1 and insulin receptor substrate 2 and their co-localization with liver-related neurons in the hypothalamus and brainstem

    PubMed Central

    Zsombok, Andrea; Gao, Hong; Miyata, Kayoko; Issa, Alexandra; Derbenev, Andrei V.

    2011-01-01

    The central nervous system plays an important role in the regulation of energy balance and glucose homeostasis mainly via controlling the autonomic output to the visceral organs. The autonomic output is regulated by hormones and nutrients to maintain adequate energy and glucose homeostasis. Insulin action is mediated via insulin receptors (IR) resulting in phosphorylation of insulin receptor substrates (IRS) inducing activation of downstream pathways. Furthermore, insulin enhances transient receptor potential vanilloid type 1 (TRPV1) mediated currents. Activation of the TRPV1 receptor increases excitatory neurotransmitter release in autonomic centers of the brain, thereby impacting energy and glucose homeostasis. The aim of this study is to determine co-expression of IRS2 and TRPV1 receptors in the paraventricular nucleus of the hypothalamus (PVN) and dorsal motor nucleus of the vagus (DMV) in the mouse brain as well as expression of IRS2 and TRPV1 receptors at liver-related preautonomic neurons pre-labeled with a trans-neural, viral tracer (PRV-152). The data indicate that IRS2 and TRPV1 receptors are present and co-express in the PVN and the DMV. A large portion (over 50%) of the liver-related preautonomic DMV and PVN neurons expresses IRS2. Moreover, the majority of liver-related DMV and PVN neurons also express TRPV1 receptors, suggesting that insulin and TRPV1 actions may affect liver-related preautonomic neurons. PMID:21620379

  2. High-fat diet-mediated lipotoxicity and insulin resistance is related to impaired lipase expression in mouse skeletal muscle.

    PubMed

    Badin, Pierre-Marie; Vila, Isabelle K; Louche, Katie; Mairal, Aline; Marques, Marie-Adeline; Bourlier, Virginie; Tavernier, Geneviève; Langin, Dominique; Moro, Cedric

    2013-04-01

    Elevated expression/activity of adipose triglyceride lipase (ATGL) and/or reduced activity of hormone-sensitive lipase (HSL) in skeletal muscle are causally linked to insulin resistance in vitro. We investigated here the effect of high-fat feeding on skeletal muscle lipolytic proteins, lipotoxicity, and insulin signaling in vivo. Five-week-old C3H mice were fed normal chow diet (NCD) or 45% kcal high-fat diet (HFD) for 4 weeks. Wild-type and HSL knockout mice fed NCD were also studied. Whole-body and muscle insulin sensitivity, as well as lipolytic protein expression, lipid levels, and insulin signaling in skeletal muscle, were measured. HFD induced whole-body insulin resistance and glucose intolerance and reduced skeletal muscle glucose uptake compared with NCD. HFD increased skeletal muscle total diacylglycerol (DAG) content, protein kinase Cθ and protein kinase Cε membrane translocation, and impaired insulin signaling as reflected by a robust increase of basal Ser1101 insulin receptor substrate 1 phosphorylation (2.8-fold, P < .05) and a decrease of insulin-stimulated v-Akt murine thymoma viral oncogene homolog Ser473 (-37%, P < .05) and AS160 Thr642 (-47%, P <.01) phosphorylation. We next showed that HFD strongly reduced HSL phosphorylation at Ser660. HFD significantly up-regulated the muscle protein content of the ATGL coactivator comparative gene identification 58 and triacylglycerol hydrolase activity, despite a lower ATGL protein content. We further show a defective skeletal muscle insulin signaling and DAG accumulation in HSL knockout compared with wild-type mice. Together, these data suggest a pathophysiological link between altered skeletal muscle lipase expression and DAG-mediated insulin resistance in mice. PMID:23471217

  3. miR-200a regulates Rheb-mediated amelioration of insulin resistance after duodenal–jejunal bypass

    PubMed Central

    Guo, W; Han, H; Wang, Y; Zhang, X; Liu, S; Zhang, G; Hu, S

    2016-01-01

    Objectives: Duodenal–jejunal bypass (DJB) surgery can induce the rapid and durable remission of diabetes. Recent studies indicate that ameliorated hepatic insulin resistance and improved insulin signaling might contribute to the diabetic control observed after DJB. Ras homolog enriched in brain (Rheb) is reported to have an important role in insulin pathway, and some microRNAs (miRNAs) have been found to regulate Rheb. This study was conducted to investigate the effects of DJB on hepatic insulin resistance and the effects of miRNA-200a, a Rheb-targeting miRNA, on the development of DJB-induced amelioration in hepatic insulin resistance. Subjects: We investigated hepatic insulin signaling change and mapped the hepatic miRNAome involved in a rat model of DJB. We studied the effects of miR-200a on Rheb signaling pathway in buffalo rat liver cell lines. Liver tissues were studied and glucose tolerance tests were conducted in DJB rats injected with lentivirus encoding miR-200a inhibitor and diabetic rats injected with miR-200a mimic. Results: Rheb is a potential target of miR-200a. Transfection with an miR-200a inhibitor increased Rheb protein levels and enhanced the feedback action on insulin receptor substrate-dependent insulin signaling, whereas transfection with an miR-200a mimic produced the opposite effects. A luciferase assay confirmed that miR-200a bind to the 3′UTR (untranslated regions) of Rheb. Global downregulation of miR-200a in DJB rats showed impaired insulin sensitivity whereas upregulation of miR-200a in diabetic rats showed amelioration of diabetes. Conclusions: A novel mechanism was identified, in which miR-200a regulates the Rheb-mediated amelioration of insulin resistance in DJB. The findings suggest miR-200a should be further explored as a potential target for the treatment of diabetes. PMID:27121251

  4. Excessive insulin receptor serine phosphorylation in cultured fibroblasts and in skeletal muscle. A potential mechanism for insulin resistance in the polycystic ovary syndrome.

    PubMed Central

    Dunaif, A; Xia, J; Book, C B; Schenker, E; Tang, Z

    1995-01-01

    We investigated the cellular mechanisms of the unique disorder of insulin action found in the polycystic ovary syndrome (PCOS). Approximately 50% of PCOS women (PCOS-Ser) had a significant increase in insulin-independent beta-subunit [32P]phosphate incorporation (3.7-fold, P < 0.05 vs other groups) in skin fibroblast insulin receptors that was present in serine residues while insulin-induced tyrosine phosphorylation was decreased (both P < 0.05 vs other groups). PCOS skeletal muscle insulin receptors had the same abnormal phosphorylation pattern. The remaining PCOS women (PCOS-n1) had basal and insulin-stimulated receptor autophosphorylation similar to control. Phosphorylation of the artificial substrate poly GLU4:TYR1 by the PCOS-Ser insulin receptors was significantly decreased (P < 0.05) compared to control and PCOS-n1 receptors. The factor responsible for excessive serine phosphorylation appeared to be extrinsic to the receptor since no insulin receptor gene mutations were identified, immunoprecipitation before autophosphorylation corrected the phosphorylation defect and control insulin receptors mixed with lectin eluates from affected PCOS fibroblasts displayed increased serine phosphorylation. Our findings suggest that increased insulin receptor serine phosphorylation decreases its protein tyrosine kinase activity and is one mechanism for the post-binding defect in insulin action characteristic of PCOS. Images PMID:7635975

  5. Changes in erythrocyte insulin receptors in normal dogs and keeshond dogs with inheritable, early onset, insulin dependent diabetes mellitus

    SciTech Connect

    Klaassen, J.K.

    1986-01-01

    Validation of a procedure to evaluate insulin receptors on erythrocytes (RBC-IR) in dogs is described. The specific binding of (/sup 125/I)iodoinsulin to RBC-IR of normal dogs is significantly greater than binding in keeshonds with an inheritable form of early onset diabetes mellitus. This decreased binding was due to a significant decrease in RBC-IR affinity in the diabetic keeshonds. To determine the effect on RBC-IR, normal dogs were treated with either dexamethasone (0.1 mg/kg) or prednisone (0.3 mg/kg) for 10 days: concentrations of plasma cortisol, glucose, and insulin, plus binding characteristics of RBC-IR were determined. In the dexamethasone treated group, plasma glucose concentrations were elevated significantly by day 6 and continued through day 10. Insulin concentrations were elevated significantly by day 3 and remained elevated through day 10. In the prednisone treated group, glucose concentrations were elevated significantly by day 3, while insulin concentrations were elevated significantly by day 8. Maximum binding of RBC-IR was unaffected by prednisone and neither affinities nor receptor numbers were significantly different from day 1. No changes in plasma cortisol concentration were seen. Diabetic keeshonds on daily insulin treatment were removed from exogenous insulin therapy for 48 hours. Significant increases in glucose concentrations were observed, but no significant changes in cortisol, insulin, average receptor binding affinity, or RBC-IR number per cell occurred.

  6. Insulin-Like Activity of Concanavalin A and Wheat Germ Agglutinin—Direct Interactions with Insulin Receptors

    PubMed Central

    Cuatrecasas, Pedro; Tell, Guy P. E.

    1973-01-01

    Concanavalin A and wheat germ agglutinin are as effective as insulin in enhancing the rate of glucose transport and in inhibiting epinephrine-stimulated lipolysis in isolated adipocytes. These lectins, also like insulin, inhibit basal as well as epinephrine-stimulated adenylate cyclase activity of membranes obtained from homogenates of fat cells. Low concentrations of wheat germ agglutinin enhance the specific binding of insulin to receptors of fat cells and liver membranes. Higher concentrations of this plant lectin, as well as of concanavalin A, competitively displace the binding of insulin to receptors in these tissues. These effects are equally apparent in insulin-binding proteins solubilized from membranes, indicating that the plant lectins interact directly with insulin receptors. All of the effects observed with the plant lectins are reversed by simple sugars that bind specifically to these plant proteins. Agarose derivatives of the plant lectins effectively adsorb solubilized insulin-binding proteins, and these can be eluted with buffers containing specific simple sugars. The possible implications of these findings to certain biological properties (mitogenicity) of these lectins and to the mechanism of action of other growth-promoting substances are considered. PMID:4510292

  7. Phosphorylation in vitro of the 85 kDa subunit of phosphatidylinositol 3-kinase and its possible activation by insulin receptor tyrosine kinase.

    PubMed Central

    Hayashi, H; Miyake, N; Kanai, F; Shibasaki, F; Takenawa, T; Ebina, Y

    1991-01-01

    Insulin causes a dramatic and rapid increase in phosphatidylinositol 3-kinase activity in the anti-phosphotyrosine immunoprecipitates of cells overexpressing the human insulin receptor. This enzyme may therefore be a mediator of insulin signal transduction [Endemann, Yonezawa & Roth (1990) J. Biol. Chem. 265, 396-400; Ruderman, Kapeller, White & Cantley (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 1411-1415]. At least two questions remain to be elucidated. Firstly, does the insulin receptor tyrosine kinase phosphorylate phosphatidylinositol 3-kinase directly, or does it phosphorylate a protein associated with the 3-kinase? Second, if the enzyme is a direct substrate for the insulin receptor tyrosine kinase, does tyrosine phosphorylation of phosphatidylinositol 3-kinase by the kinase alter the specific enzyme activity, or does the amount of the tyrosine-phosphorylated form of the phosphatidylinositol 3-kinase increase, with no change in the specific activity? We report here evidence that the 85 kDa subunit of highly purified phosphatidylinositol 3-kinase is phosphorylated on the tyrosine residue by the activated normal insulin receptor in vitro, but not by a mutant insulin receptor which lacks tyrosine kinase activity. We found that an increase in enzyme activity was detected in response to insulin not only in the anti-phosphotyrosine immunoprecipitates of the cytosol, but also in the cytosolic fraction before immunoprecipitation. In addition, we partially separated the tyrosine-phosphorylated form from the unphosphorylated form of the enzyme, by using a f.p.l.c. Mono Q column. The insulin-stimulated phosphatidylinositol 3-kinase activity was mainly detected in the fraction containing almost all of the tyrosine-phosphorylated form. This result suggests that tyrosine phosphorylation of phosphatidylinositol 3-kinase by the insulin receptor kinase may increase the specific activity of the former enzyme in vivo. Images Fig. 1. Fig. 2. Fig. 4. PMID:1722393

  8. Insulin-like factor regulates neural induction through an IGF1 receptor-independent mechanism

    PubMed Central

    Haramoto, Yoshikazu; Takahashi, Shuji; Oshima, Tomomi; Onuma, Yasuko; Ito, Yuzuru; Asashima, Makoto

    2015-01-01

    Insulin receptor (IR) and insulin-like growth factor-1 receptor (IGF1R) signalling is required for normal embryonic growth and development. Previous reports indicated that the IGF/IGF1R/MAPK pathway contributes to neural induction and the IGF/IGF1R/PI3K/Akt pathway to eye development. Here, we report the isolation of insulin3 encoding a novel insulin-like ligand involved in neural induction. Insulin3 has a similar structure to pro-insulin and mature IGF ligands, but cannot activate the IGF1 receptor. However, similar to IGFs, Insulin3 induced the gene expression of an anterior neural marker, otx2, and enlarged anterior head structures by inhibiting Wnt signalling. Insulin3 are predominantly localised to the endoplasmic reticulum when otx2 is induced by insulin3. Insulin3 reduced extracellular Wnts and cell surface localised Lrp6. These results suggest that Insulin3 is a novel cell-autonomous inhibitor of Wnt signalling. This study provides the first evidence that an insulin-like factor regulates neural induction through an IGF1R-independent mechanism. PMID:26112133

  9. Phorbol esters stimulate the phosphorylation of receptors for insulin and somatomedin C.

    PubMed Central

    Jacobs, S; Sahyoun, N E; Saltiel, A R; Cuatrecasas, P

    1983-01-01

    The effect of phorbol esters on the extent of phosphorylation of receptors for insulin and somatomedin C (insulin-like growth factor I) was studied in intact IM-9 cells that were labeled by incubation with H332PO4. The tumor-promoting phorbol esters phorbol tetradecanoate acetate (TPA) and phorbol dibutyrate, but not the inactive 4 alpha-phorbol, enhanced phosphorylation of the beta subunit of both receptors approximately 4-fold; 70 nM TPA maximally stimulated phosphorylation of both receptors, whereas concentrations less than or equal to 0.7 nM had no observable effect. Insulin also enhanced the phosphorylation of the beta subunit of the insulin receptor, and its effects appeared to be additive to those of TPA. Peptide maps indicated that at least some of the residues phosphorylated by these two agents are distinct. These results suggest a possible role of protein kinase C in regulating insulin and somatomedin C receptors. Images PMID:6312447

  10. Insulin-independent role of adiponectin receptor signaling in Drosophila germline stem cell maintenance.

    PubMed

    Laws, Kaitlin M; Sampson, Leesa L; Drummond-Barbosa, Daniela

    2015-03-15

    Adipocytes have key endocrine roles, mediated in large part by secreted protein hormones termed adipokines. The adipokine adiponectin is well known for its role in sensitizing peripheral tissues to insulin, and several lines of evidence suggest that adiponectin might also modulate stem cells/precursors. It remains unclear, however, how adiponectin signaling controls stem cells and whether this role is secondary to its insulin-sensitizing effects or distinct. Drosophila adipocytes also function as an endocrine organ and, although no obvious adiponectin homolog has been identified, Drosophila AdipoR encodes a well-conserved homolog of mammalian adiponectin receptors. Here, we generate a null AdipoR allele and use clonal analysis to demonstrate an intrinsic requirement for AdipoR in germline stem cell (GSC) maintenance in the Drosophila ovary. AdipoR null GSCs are not fully responsive to bone morphogenetic protein ligands from the niche and have a slight reduction in E-cadherin levels at the GSC-niche junction. Conversely, germline-specific overexpression of AdipoR inhibits natural GSC loss, suggesting that reduction in adiponectin signaling might contribute to the normal decline in GSC numbers observed over time in wild-type females. Surprisingly, AdipoR is not required for insulin sensitization of the germline, leading us to speculate that insulin sensitization is a more recently acquired function than stem cell regulation in the evolutionary history of adiponectin signaling. Our findings establish Drosophila female GSCs as a new system for future studies addressing the molecular mechanisms whereby adiponectin receptor signaling modulates stem cell fate.

  11. Loss of the insulin receptor in murine megakaryocytes/platelets causes thrombocytosis and alterations in IGF signalling

    PubMed Central

    Moore, Samantha F.; Williams, Christopher M.; Brown, Edward; Blair, Thomas A.; Harper, Matthew T.; Coward, Richard J.; Poole, Alastair W.; Hers, Ingeborg

    2015-01-01

    Aims Patients with conditions that are associated with insulin resistance such as obesity, type 2 diabetes mellitus, and polycystic ovary syndrome have an increased risk of thrombosis and a concurrent hyperactive platelet phenotype. Our aim was to determine whether insulin resistance of megakaryocytes/platelets promotes platelet hyperactivation. Methods and results We generated a conditional mouse model where the insulin receptor (IR) was specifically knocked out in megakaryocytes/platelets and performed ex vivo platelet activation studies in wild-type (WT) and IR-deficient platelets by measuring aggregation, integrin αIIbβ3 activation, and dense and α-granule secretion. Deletion of IR resulted in an increase in platelet count and volume, and blocked the action of insulin on platelet signalling and function. Platelet aggregation, granule secretion, and integrin αIIbβ3 activation in response to the glycoprotein VI (GPVI) agonist collagen-related peptide (CRP) were significantly reduced in platelets lacking IR. This was accompanied by a reduction in the phosphorylation of effectors downstream of GPVI. Interestingly, loss of IR also resulted in a reduction in insulin-like growth factor-1 (IGF-1)- and insulin-like growth factor-2 (IGF-2)-mediated phosphorylation of IRS-1, Akt, and GSK3β and priming of CRP-mediated platelet activation. Pharmacological inhibition of IR and the IGF-1 receptor in WT platelets recapitulated the platelet phenotype of IR-deficient platelets. Conclusions Deletion of IR (i) increases platelet count and volume, (ii) does not cause platelet hyperactivity, and (iii) reduces GPVI-mediated platelet function and platelet priming by IGF-1 and IGF-2. PMID:25902782

  12. A Caenorhabditis elegans developmental decision requires insulin signaling-mediated neuron-intestine communication.

    PubMed

    Hung, Wesley L; Wang, Ying; Chitturi, Jyothsna; Zhen, Mei

    2014-04-01

    Adverse environmental conditions trigger C. elegans larvae to activate an alternative developmental program, termed dauer diapause, which renders them stress resistant. High-level insulin signaling prevents constitutive dauer formation. However, it is not fully understood how animals assess conditions to choose the optimal developmental program. Here, we show that insulin-like peptide (ILP)-mediated neuron-intestine communication plays a role in this developmental decision. Consistent with, and extending, previous findings, we show that the simultaneous removal of INS-4, INS-6 and DAF-28 leads to fully penetrant constitutive dauer formation, whereas the removal of INS-1 and INS-18 significantly inhibits constitutive dauer formation. These ligands are processed by the proprotein convertases PC1/KPC-1 and/or PC2/EGL-3. The agonistic and antagonistic ligands are expressed by, and function in, neurons to prevent or promote dauer formation. By contrast, the insulin receptor DAF-2 and its effector, the FOXO transcription factor DAF-16, function solely in the intestine to regulate the decision to enter diapause. These results suggest that the nervous system normally establishes an agonistic ILP-dominant paradigm to inhibit intestinal DAF-16 activation and allow reproductive development. Under adverse conditions, a switch in the agonistic-antagonistic ILP balance activates intestinal DAF-16, which commits animals to diapause.

  13. Identification and transcriptional modulation of the largemouth bass, Micropterus salmoides, vitellogenin receptor during oocyte development by insulin and sex steroids.

    PubMed

    Dominguez, Gustavo A; Quattro, Joseph M; Denslow, Nancy D; Kroll, Kevin J; Prucha, Melinda S; Porak, Wesley F; Grier, Harry J; Sabo-Attwood, Tara L

    2012-09-01

    Fish vitellogenin synthesized and released from the liver of oviparous animals is taken up into oocytes by the vitellogenin receptor. This is an essential process in providing nutrient yolk to developing embryos to ensure successful reproduction. Here we disclose the full length vtgr cDNA sequence for largemouth bass (LMB) that reveals greater than 90% sequence homology with other fish vtgr sequences. We classify LMB Vtgr as a member of the low density lipoprotein receptor superfamily based on conserved domains and categorize as the short variant that is devoid of the O-glycan segment. Phylogenetic analysis places LMB Vtgr sequence into a well-supported monophyletic group of fish Vtgr. Real-time PCR showed that the greatest levels of LMB vtgr mRNA expression occurred in previtellogenic ovarian tissues. In addition, we reveal the effects of insulin, 17beta-estradiol (E(2)), and 11-ketotestosterone (11-KT) in modulation of vtgr, esr, and ar mRNAs in previtellogenic oocytes. Insulin increased vtgr expression levels in follicles ex vivo while exposure to E(2) or 11-KT did not result in modulation of expression. However, both steroids were able to repress insulin-induced vtgr transcript levels. Coexposure with insulin and E(2) or of insulin and 11-KT increased ovarian esr2b and ar mRNA levels, respectively, which suggest a role for these nuclear receptors in insulin-mediated signaling pathways. These data provide the first evidence for the ordered stage-specific expression of LMB vtgr during the normal reproductive process and the hormonal influence of insulin and sex steroids on controlling vtgr transcript levels in ovarian tissues. PMID:22786822

  14. Identification and transcriptional modulation of the largemouth bass, Micropterus salmoides, vitellogenin receptor during oocyte development by insulin and sex steroids.

    PubMed

    Dominguez, Gustavo A; Quattro, Joseph M; Denslow, Nancy D; Kroll, Kevin J; Prucha, Melinda S; Porak, Wesley F; Grier, Harry J; Sabo-Attwood, Tara L

    2012-09-01

    Fish vitellogenin synthesized and released from the liver of oviparous animals is taken up into oocytes by the vitellogenin receptor. This is an essential process in providing nutrient yolk to developing embryos to ensure successful reproduction. Here we disclose the full length vtgr cDNA sequence for largemouth bass (LMB) that reveals greater than 90% sequence homology with other fish vtgr sequences. We classify LMB Vtgr as a member of the low density lipoprotein receptor superfamily based on conserved domains and categorize as the short variant that is devoid of the O-glycan segment. Phylogenetic analysis places LMB Vtgr sequence into a well-supported monophyletic group of fish Vtgr. Real-time PCR showed that the greatest levels of LMB vtgr mRNA expression occurred in previtellogenic ovarian tissues. In addition, we reveal the effects of insulin, 17beta-estradiol (E(2)), and 11-ketotestosterone (11-KT) in modulation of vtgr, esr, and ar mRNAs in previtellogenic oocytes. Insulin increased vtgr expression levels in follicles ex vivo while exposure to E(2) or 11-KT did not result in modulation of expression. However, both steroids were able to repress insulin-induced vtgr transcript levels. Coexposure with insulin and E(2) or of insulin and 11-KT increased ovarian esr2b and ar mRNA levels, respectively, which suggest a role for these nuclear receptors in insulin-mediated signaling pathways. These data provide the first evidence for the ordered stage-specific expression of LMB vtgr during the normal reproductive process and the hormonal influence of insulin and sex steroids on controlling vtgr transcript levels in ovarian tissues.

  15. Tachykinin receptors mediating airway marcomolecular secretion

    SciTech Connect

    Gentry, S.E. )

    1991-01-01

    Three tachykinin receptor types, termed NK1, NK2, and NK3, can be distinguished by the relative potency of various peptides in eliciting tissue responses. Airway macromolecular secretion is stimulated by the tachykinin substance P (SP). The purposes of this study were to determine the tachykinin receptor subtype responsible for this stimulation, and to examine the possible involvement of other neurotransmitters in mediating this effect. Ferret tracheal explants maintained in organ culture were labeled with {sup 3}H-glucosamine, a precursor of high molecular weight glycoconjugates (HMWG) which are released by airway secretory cells. Secretion of labeled HMWG then was determined in the absence and presence of the tachykinins SP, neurokinin A (NKA), neurokinin B (NKB), physalaemin (PHY), and eledoisin (ELE). To evaluate the possible contribution of other mediators, tachykinin stimulation was examined in the presence of several receptor blockers.

  16. 4PS/insulin receptor substrate (IRS)-2 is the alternative substrate of the insulin receptor in IRS-1-deficient mice.

    PubMed

    Patti, M E; Sun, X J; Bruening, J C; Araki, E; Lipes, M A; White, M F; Kahn, C R

    1995-10-20

    Insulin receptor substrate-1 (IRS-1) is the major cytoplasmic substrate of the insulin and insulin-like growth factor (IGF)-1 receptors. Transgenic mice lacking IRS-1 are resistant to insulin and IGF-1, but exhibit significant residual insulin action which corresponds to the presence of an alternative high molecular weight substrate in liver and muscle. Recently, Sun et al. (Sun, X.-J., Wang, L.-M., Zhang, Y., Yenush, L. P., Myers, M. G., Jr., Glasheen, E., Lane, W.S., Pierce, J. H., and White, M. F. (1995) Nature 377, 173-177) purified and cloned 4PS, the major substrate of the IL-4 receptor-associated tyrosine kinase in myeloid cells, which has significant structural similarity to IRS-1. To determine if 4PS is the alternative substrate of the insulin receptor in IRS-1-deficient mice, we performed immunoprecipitation, immunoblotting, and phosphatidylinositol (PI) 3-kinase assays using specific antibodies to 4PS. Following insulin stimulation, 4PS is rapidly phosphorylated in liver and muscle, binds to the p85 subunit of PI 3-kinase, and activates the enzyme. Insulin stimulation also results in the association of 4PS with Grb 2 in both liver and muscle. In IRS-1-deficient mice, both the phosphorylation of 4PS and associated PI 3-kinase activity are enhanced, without an increase in protein expression. Immunodepletion of 4PS from liver and muscle homogenates removes most of the phosphotyrosine-associated PI 3-kinase activity in IRS-1-deficient mice. Thus, 4PS is the primary alternative substrate, i.e. IRS-2, which plays a major role in physiologic insulin signal transduction via both PI 3-kinase activation and Grb 2/Sos association. In IRS-1-deficient mice, 4PS/IRS-2 provides signal transduction to these two major pathways of insulin signaling.

  17. Munc18b is a major mediator of insulin exocytosis in rat pancreatic β-cells.

    PubMed

    Lam, Patrick P L; Ohno, Mitsuyo; Dolai, Subhankar; He, Yu; Qin, Tairan; Liang, Tao; Zhu, Dan; Kang, Youhou; Liu, Yunfeng; Kauppi, Maria; Xie, Li; Wan, Wilson C Y; Bin, Na-Rhum; Sugita, Shuzo; Olkkonen, Vesa M; Takahashi, Noriko; Kasai, Haruo; Gaisano, Herbert Y

    2013-07-01

    Sec1/Munc18 proteins facilitate the formation of trans-SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complexes that mediate fusion of secretory granule (SG) with plasma membrane (PM). The capacity of pancreatic β-cells to exocytose insulin becomes compromised in diabetes. β-Cells express three Munc18 isoforms of which the role of Munc18b is unknown. We found that Munc18b depletion in rat islets disabled SNARE complex formation formed by syntaxin (Syn)-2 and Syn-3. Two-photon imaging analysis revealed in Munc18b-depleted β-cells a 40% reduction in primary exocytosis (SG-PM fusion) and abrogation of almost all sequential SG-SG fusion, together accounting for a 50% reduction in glucose-stimulated insulin secretion (GSIS). In contrast, gain-of-function expression of Munc18b wild-type and, more so, dominant-positive K314L/R315L mutant promoted the assembly of cognate SNARE complexes, which caused potentiation of biphasic GSIS. We found that this was attributed to a more than threefold enhancement of both primary exocytosis and sequential SG-SG fusion, including long-chain fusion (6-8 SGs) not normally (2-3 SG fusion) observed. Thus, Munc18b-mediated exocytosis may be deployed to increase secretory efficiency of SGs in deeper cytosolic layers of β-cells as well as additional primary exocytosis, which may open new avenues of therapy development for diabetes.

  18. Receptor for advanced glycation end products regulates adipocyte hypertrophy and insulin sensitivity in mice: involvement of Toll-like receptor 2.

    PubMed

    Monden, Masayo; Koyama, Hidenori; Otsuka, Yoshiko; Morioka, Tomoaki; Mori, Katsuhito; Shoji, Takuhito; Mima, Yohei; Motoyama, Koka; Fukumoto, Shinya; Shioi, Atsushi; Emoto, Masanori; Yamamoto, Yasuhiko; Yamamoto, Hiroshi; Nishizawa, Yoshiki; Kurajoh, Masafumi; Yamamoto, Tetsuya; Inaba, Masaaki

    2013-02-01

    Receptor for advanced glycation end products (RAGE) has been shown to be involved in adiposity as well as atherosclerosis even in nondiabetic conditions. In this study, we examined mechanisms underlying how RAGE regulates adiposity and insulin sensitivity. RAGE overexpression in 3T3-L1 preadipocytes using adenoviral gene transfer accelerated adipocyte hypertrophy, whereas inhibitions of RAGE by small interfering RNA significantly decrease adipocyte hypertrophy. Furthermore, double knockdown of high mobility group box-1 and S100b, both of which are RAGE ligands endogenously expressed in 3T3-L1 cells, also canceled RAGE-medicated adipocyte hypertrophy, implicating a fundamental role of ligands-RAGE ligation. Adipocyte hypertrophy induced by RAGE overexpression is associated with suppression of glucose transporter type 4 and adiponectin mRNA expression, attenuated insulin-stimulated glucose uptake, and insulin-stimulated signaling. Toll-like receptor (Tlr)2 mRNA, but not Tlr4 mRNA, is rapidly upregulated by RAGE overexpression, and inhibition of Tlr2 almost completely abrogates RAGE-mediated adipocyte hypertrophy. Finally, RAGE(-/-) mice exhibited significantly less body weight, epididymal fat weight, epididymal adipocyte size, higher serum adiponectin levels, and higher insulin sensitivity than wild-type mice. RAGE deficiency is associated with early suppression of Tlr2 mRNA expression in adipose tissues. Thus, RAGE appears to be involved in mouse adipocyte hypertrophy and insulin sensitivity, whereas Tlr2 regulation may partly play a role.

  19. Role of the occult insulin receptors in the regulation of atrophy and hypertrophy of skeletal muscles

    SciTech Connect

    McLeod, M.J.

    1980-10-01

    Insulin levels in the plasma are variable, as are insulin receptor numbers on the surface of skeletal muscles. Increased blood supply to the muscle during exercise delivers more insulin to the muscles even though insulin levels are suppressed by epinephrine. Increasing muscle temperatures result in an increased insulin effect, if enough receptors are available for binding. In exhaustive exercise, insulin levels are minimal but the movement of glucose across the cell membrane increases. Since insulin-receptor affinity decreases at high temperature, the only way this increased movement of glucose can be accomplished is by increased insulin binding. Thus more receptors must be available to capture the insulin. Epinephrine levels drop drastically after exercise. Insulin levels increase and the cell can import glucose, amino acids, and nucleotides. As the cell temperature decreases after exercise, insulin binding increases but the total effect decreases because the many surface receptors disappear again over a period of time. If the muscle is immobilized, the number of surface receptors decreases. There is less insulin effect and as a result the muscle atrophies. Acetylcholine (ACh) causes the proper arrangement of the myofibrils in the foetus, and has some effect on the rate of atrophy in an immobilized muscle. It also appears to maintain the cell membrane organization. Disuse atrophy is caused by a decrease in cell size, while exercise hypertrophy is caused by an increase in cell size. Growth hormone (STH) is therefore ruled out as the exercise hypertrophy controlling factor, since STH causes cell division and not hypertrophy. Testosterone can also be ruled out as the controlling factor in the development of hypertrophy and atrophy of muscles. Estrogen can likewise be ruled out. (ERB)

  20. Rates and tissue sites of non-insulin- and insulin-mediated glucose uptake in humans

    SciTech Connect

    Baron, A.D.; Brechtel, G.; Wallace, P.; Edelman, S.V.

    1988-12-01

    In vivo glucose uptake can occur via two mechanisms, namely, insulin-mediated glucose uptake (IMGU) and non-insulin-mediated glucose uptake (NIMGU). Although the principal tissue sites for IMGU are skeletal muscle, the tissue sites for NIMGU at a given serum glucose concentration are not known. To examine this issue, rates of whole body glucose uptake (Rd) were measured at basal and during glucose clamp studies performed at euglycemia (approximately 90 mg/dl) and hyperglycemia (approximately 220 mg/dl) in six lean healthy men. Studies were performed during hyperinsulinemia (approximately 70 microU/ml) and during somatostatin-induced insulinopenia to measure IMGU and NIMGU, respectively. During each study, leg glucose balance (arteriovenous catheter technique) was also measured. With this approach, rates of whole body skeletal muscle IMGU and NIMGU can be estimated, and the difference between overall Rd and skeletal muscle glucose uptake represents non-skeletal muscle Rd. The results indicate that approximately 20% of basal Rd is into skeletal muscle. During insulinopenia approximately 86% of body NIMGU occurs in non-skeletal muscle tissues at euglycemia. When hyperglycemia was created, whole body NIMGU increased from 128 +/- 6 to 213 +/- 18 mg/min (P less than 0.01); NIMGU into non-skeletal muscle tissues was 134 +/- 11 and 111 +/- 6 mg/min at hyperglycemia and euglycemia, respectively, P = NS. Therefore, virtually all the hyperglycemia induced increment in NIMGU occurred in skeletal muscle. During hyperinsulinemia, IMGU in skeletal muscle represented 75 and 95% of body Rd, at euglycemia and hyperglycemia, respectively.

  1. Insect insulin receptors: insights from sequence and caste expression analyses of two cloned hymenopteran insulin receptor cDNAs from the fire ant.

    PubMed

    Lu, H-L; Pietrantonio, Patricia V

    2011-10-01

    The insulin and insulin-like growth factor (IGF) signalling (IIS) pathway in the honey bee (Apis mellifera) is linked to reproductive division of labour and foraging behaviour. Two insulin receptor genes are present in the released genomes of other social hymenopterans. Limited information is available on the IIS pathway role in ants. The predicted insulin receptor sequences from the recently released draft genome of the fire ant Solenopsis invicta (Hymenoptera: Formicidae) are incomplete and biologically significant data are also lacking. To elucidate the role of the IIS pathway in the fire ant, two putative insulin receptors (SiInR-1 and SiInR-2) were cloned; the first InR cDNAs cloned from social insects. Analyses of putative post-translational modification sites in SiInRs revealed the potential for differential regulation. We investigated the transcriptional expression of both receptors at different developmental stages, castes and queen tissues. In last instar larvae and pharate pupae of workers and reproductive, transcriptional abundance of both receptors was negatively correlated with body size and nutritional status. The expression level of both receptors in different queen tissues appears to correlate with requirements for queen reproductive physiology and behaviours. This study contributes new information to the understanding of social insects because in fire ants juvenile hormone acts as a gonadotropin and workers are fully sterile, contrary to honey bees.

  2. In situ autoradiography and ligand-dependent tyrosine kinase activity reveal insulin receptors and insulin-like growth factor I receptors in prepancreatic chicken embryos.

    PubMed Central

    Girbau, M; Bassas, L; Alemany, J; de Pablo, F

    1989-01-01

    We previously reported specific cross-linking of 125I-labeled insulin and 125I-labeled insulin-like growth factor I (IGF-I) to the alpha subunit of their respective receptors in chicken embryos of 20 somites and older. To achieve adequate sensitivity and localize spatially the receptors in younger embryos, we adapted an autoradiographic technique using whole-mounted chicken blastoderms. Insulin receptors and IGF-I receptors were expressed and could be localized as early as gastrulation, before the first somite is formed. Relative density was analyzed by a computer-assisted image system, revealing overall slightly higher binding of IGF-I than of insulin. Structures rich in both types of receptors were predominantly of ectodermal origin: Hensen's node in gastrulating embryos and neural folds, neural tube and optic vesicles during neurulation. The signal transduction capability of the receptors in early organogenesis was assessed by their ability to phosphorylate the exogenous substrate poly(Glu80Tyr20). Ligand-dependent tyrosine phosphorylation was demonstrable with both insulin and IGF-I in glycoprotein-enriched preparations from embryos at days 2 through 6 of embryogenesis. There was a developmentally regulated change in ligand-dependent tyrosine kinase activity, with a sharp increase from day 2 to day 4, in contrast with a small increase in the ligand binding. Binding of 125I-labeled IGF-I was, with the solubilized receptors, severalfold higher than binding of 125I-labeled insulin. However, the insulin-dependent phosphorylation was as high as the IGF-I-dependent phosphorylation at each developmental stage. Images PMID:2548191

  3. Selectivity of phospholipase C phosphorylation by the epidermal growth factor receptor, the insulin receptor, and their cytoplasmic domains.

    PubMed Central

    Nishibe, S; Wahl, M I; Wedegaertner, P B; Kim, J W; Rhee, S G; Carpenter, G; Kim, J J

    1990-01-01

    Phosphatidylinositol-specific phospholipase C isozyme gamma (PLC-gamma, Mr 145,000) is an excellent substrate for the epidermal growth factor (EGF) receptor both in vivo and in vitro. PLC-beta-1, another PLC isozyme, is a poor substrate for the EGF receptor. We examined the relative phosphorylation of PLC-gamma and PLC-beta-1 by the 170-kDa native EGF receptor molecule, the 66-kDa cytoplasmic kinase domain of the EGF receptor (Arg647-Ala1186), the alpha 2 beta 2 native insulin receptor, and the 48-kDa cytoplasmic kinase domain of the insulin receptor beta subunit (Gly947-Ser1343). Similar to the intact EGF receptor, the cytoplasmic kinase domain of the EGF receptor preferentially phosphorylated PLC-gamma. High-performance liquid chromatographic comparison of tryptic phosphopeptides from PLC-gamma phosphorylated by both forms of the EGF receptor kinase indicated similar patterns of multiple tyrosine phosphorylations. These results imply that substrate selectivity, at least in terms of PLC isozymes, is independent of the extracellular ligand-binding and membrane anchor domains of the EGF receptor. In comparison, neither the intact insulin receptor nor the beta-chain kinase domain was able to phosphorylate PLC-gamma to a significant extent. Also, insulin failed to stimulate the phosphorylation of PLC-gamma in NIH 3T3/HIR cells, which overexpress the human insulin receptor. Thus PLC-gamma is not a phosphorylation substrate for the insulin receptor in vitro or in the intact cell. Images PMID:2153302

  4. Demonstration of the insulin receptor in vivo in rabbits and its possible role as a reservoir for the plasma hormone.

    PubMed Central

    Zeleznik, A J; Roth, J

    1978-01-01

    Based on studies of the interaction of insulin with its receptors in vitro, we calculated that a receptor compartment should be measurable directly in vivo. For this purpose, rabbits were injected intravenously with a labeled insulin that has low affinity for receptors in combination with a radioiodinated insulin that has high affinity for receptors. Plasma concentrations of labeled insulins were measured at selected intervals after injection. Apparent volumes of distribution were calculated by extrapolation of plasma distribution were calculated by extrapolation of plasma disappearance curves; high affinity insulins consistently distributed into spaces that were two-three times greater than those of the low affinity insulins. Injections of unlabeled pork insulin before tracer insulins decreased the distribution space of the high affinity insulin in a dose-dependent manner while having little or no effect on the distribution space of the low affinity labeled insulin. When unlabeled insulin was injected after the tracer insulins, there was an immediate rise in the plasma concentration of the high affinity insulin with only a slight change in the plasma concentration of the low affinity insulin. These results demonstrate that high affinity insulins distribute into a body compartment which has many properties of the insulin receptor previously studied in vitro. This receptor compartment: (a) recognizes insulins based on their biological potencies; (b) is saturated by elevated concentrations of insulin; and (c) insulin bound to receptors is in equilibrium with free hormone in plasma. Further, the bound to free ratios for hormone, calculated from these data, suggest that in vivo greater than 50% of the extrapancreatic insulin is bound to receptors during normal physiological states. PMID:659598

  5. Differential phosphorylation of the progesterone receptor by insulin, epidermal growth factor, and platelet-derived growth factor receptor tyrosine protein kinases.

    PubMed

    Woo, D D; Fay, S P; Griest, R; Coty, W; Goldfine, I; Fox, C F

    1986-01-01

    Purified preparations of insulin, epidermal growth factor (EGF), and platelet-derived growth factor (PDGF) receptors were compared for their abilities to phosphorylate purified hen oviduct progesterone receptors. The specific activities of all three peptide hormone-induced receptor kinases were first defined using a synthetic tridecapeptide tyrosine protein kinase substrate. Next, equivalent ligand-activated activities of the three receptor kinases were tested for their abilities to phosphorylate hen oviduct progesterone receptor. Both the insulin and EGF receptors phosphorylated progesterone receptor at high affinity, exclusively at tyrosine residues and with maximal stoichiometries that were near unity. In contrast, the PDGF receptor did not recognize progesterone receptor as a substrate. Insulin decreased the Km of the insulin receptor for progesterone receptor subunits as substrates, but had no significant effect on Vmax values. On the other hand, EGF increased the Vmax of the EGF receptor for progesterone receptor subunits as substrates. Phosphorylation of progesterone receptor by the insulin and EGF receptor kinases differed in two additional ways. 1) EGF-activated receptor phosphorylated the 80- and 105-kDa progesterone receptor subunits to an equal extent, whereas insulin-activated receptor preferentially phosphorylated the 80-kDa subunit. 2) Phosphopeptide fingerprinting analyses revealed that while insulin and EGF receptors phosphorylated one identical major site on both progesterone receptor subunits, they differed in their specificities for other sites. PMID:3001059

  6. Partial rescue of insulin receptor-deficient mice by transgenic complementation with an activated insulin receptor in the liver.

    PubMed

    Baudry, Anne; Jackerott, Malene; Lamothe, Betty; Kozyrev, Sergey V; Leroux, Loïc; Durel, Béatrice; Saint-Just, Susan; Joshi, Rajiv L

    2002-10-16

    Insulin receptor (IR)-deficient mice develop severe diabetes mellitus, diabetic ketoacidosis (DKA) and liver steatosis and die within 1 week after birth. We examined in this work whether the metabolic phenotype of IR(-/-) mutants could be improved by transgenic complementation with IR selectively in the liver. We first generated transgenic mice expressing a human DNA complementary to RNA encoding a truncated constitutively activated form of IR (IRdelta) under the control of liver-specific phenylalanine hydroxylase (PAH) gene promoter. These mice presented more pronounced fasting hypoglycemia and showed slightly improved glucose tolerance as compared to controls. The transgenic mice were crossed with IR(+/-) mutants to generate IR(-/-) mice carrying the PAH-IRDelta transgene. Although such mutants developed glycosuria, DKA was delayed by more than 1 week and survival was prolonged to 8-20 days in approximately 10% of mice. In these partially rescued pups, serum glucose and triglyceride levels were lowered, hepatic glycogen stores were reconstituted and liver steatosis was absent as compared with pups which developed strong DKA and died earlier. Thus, lack of insulin action in the liver is responsible in large part for the metabolic disorders seen in IR(+/-) mice. This study should stimulate interest in therapeutic strategies aimed at improving hepatic function in diabetes.

  7. Not only insulin stimulates mitochondriogenesis in muscle cells, but mitochondria are also essential for insulin-mediated myogenesis.

    PubMed

    Pawlikowska, Patrycja; Gajkowska, Barbara; Hocquette, Jean-François; Orzechowski, Arkadiusz

    2006-04-01

    Viability and myogenesis from C2C12 muscle cells and L6 rat myoblasts were dose-dependently stimulated by insulin. The metabolic inhibitors of phosphatidyl-inositol-3-kinase (PI-3K, LY294002) and of MAPKK/ERK kinase (MEK, PD98059) differently affected insulin-stimulated myogenesis of the cells. After LY294002 and PD98059 treatment, viability deteriorated and apparently an additive effect of both metabolic inhibitors was observed, irrespective of the method of measurement (neutral red or MTT assay). These inhibitors were antagonistic in myogenesis. Our results confirm that insulin regulates cell viability by at least two distinct pathways, namely by PI-3K- and MEK-dependent signalling cascades. Both pathways are agonistic in cell viability, whereas PI-3K rather than MEK supports insulin-mediated myogenicity. Accordingly, inhibition of insulin action by LY294002, but not PD98059, was accompanied with a reduced level of Ser473-phosphorylated Akt with additional loss of myogenin protein. Besides, repression of insulin signalling by either PI-3K or MEK inhibitor diminished expression of selected subunits of the mitochondrial oxidative phosphorylation enzymes (OXPHOS). In turn, insulin raised and accelerated protein expression of subunits I and IV of mitochondrial cytochrome-c oxidase (COX). In addition, the level of myogenin, the molecular marker of terminal and general muscle differentiation indices decreased if selected OXPHOS enzymes were individually blocked by rotenone, myxothiazol or oligomycin. Summing up, our results pointed to mitochondria as an essential organelle for insulin-dependent myogenesis. Insulin positively affects mitochondrial function by induction of OXPHOS enzymes, which provide energy indispensable for the anabolic effect of insulin.

  8. [PPAR receptors and insulin sensitivity: new agonists in development].

    PubMed

    Pégorier, J-P

    2005-04-01

    Thiazolidinediones (or glitazones) are synthetic PPARgamma (Peroxisome Proliferator-Activated Receptors gamma) ligands with well recognized effects on glucose and lipid metabolism. The clinical use of these PPARgamma agonists in type 2 diabetic patients leads to an improved glycemic control and an inhanced insulin sensitivity, and at least in animal models, to a protective effect on pancreatic beta-cell function. However, they can produce adverse effects, generally mild or moderate, but some of them (mainly peripheral edema and weight gain) may conduct to treatment cessation. Several pharmacological classes are currently in pre-clinical or clinical development, with the objective to retain the beneficial metabolic properties of PPARgamma agonists, either alone or in association with the PPARalpha agonists (fibrates) benefit on lipid profile, but devoid of the side-effects on weight gain and fluid retention. These new pharmacological classes: partial PPARgamma agonists, PPARgamma antagonists, dual PPARalpha/PPARgamma agonists, pan PPARalpha/beta(delta)/gamma agonists, RXR receptor agonists (rexinoids), are presented in this review. Main results from in vitro cell experiments and animal model studies are discussed, as well as the few published short-term studies in type 2 diabetic patients. PMID:15959400

  9. Protein kinase C activators selectively inhibit insulin-stimulated system A transport activity in skeletal muscle at a post-receptor level.

    PubMed Central

    Gumà, A; Camps, M; Palacín, M; Testar, X; Zorzano, A

    1990-01-01

    We have investigated the role of phorbol esters on different biological effects induced by insulin in muscle, such as activation of system A transport activity, glucose utilization and insulin receptor function. System A transport activity was measured by monitoring the uptake of the system A-specific analogue alpha-(methyl)aminoisobutyric acid (MeAIB), by intact rat extensor digitorum longus muscle. The addition of 12-O-tetradecanoylphorbol 13-acetate (TPA, 0.5 microM) for 60 or 180 min did not modify basal MeAIB uptake by muscle, suggesting that insulin signalling required to stimulate MeAIB transport does not involve protein kinase C activation. However, TPA added 30 min before insulin (100 nM) markedly inhibited insulin-stimulated MeAIB uptake. The addition of polymyxin B (0.1 mM) or H-7 (1 mM), protein kinase C inhibitors, alone or in combination with TPA leads to impairment of insulin-stimulated MeAIB uptake. This paradoxical pattern is incompatible with a unique action of Polymyxin B or H-7 on protein kinase C activity. Therefore these agents are not suitable tools with which to investigate whether a certain insulin effect is mediated by protein kinase C. TPA did not cause a generalized inhibition of insulin action. Thus both TPA and insulin increased 3-O-methylglucose uptake by muscle, and their effects were not additive. Furthermore, TPA did not modify insulin-stimulated lactate production by muscle. In keeping with this selective modification of insulin action, treatment of muscles with TPA did not modify insulin receptor binding or kinase activities. In conclusion, phorbol esters do not mimic insulin action on system A transport activity; however, they markedly inhibit insulin-stimulated amino acid transport, with no modification of insulin receptor function in rat skeletal muscle. It is suggested that protein kinase C activation causes a selective post-receptor modification on the biochemical pathway by which insulin activates system A amino acid

  10. Presence of insulin receptors in cultured glial C6 cells. Regulation by butyrate.

    PubMed Central

    Montiel, F; Ortiz-Caro, J; Villa, A; Pascual, A; Aranda, A

    1989-01-01

    The presence of insulin receptor and its regulation by butyrate and other short-chain fatty acids was studied in C6 cells, a rat glioma cell line. Intact C6 cells bind 125I-insulin in a rapid, reversible and specific manner. Scatchard analysis of the binding data gives typical curvilinear plots with apparent affinities of approx. 6 nM and 70 nM for the low-affinity (approx. 90% of total) and high-affinity (approx. 10% of total) sites respectively. Incubation with butyrate results in a time- and dose-dependent decrease of insulin binding to C6 cells. A maximal effect was found with 2 mM-butyrate that decreased the receptor by 40-70% after 48 h. Butyrate decreased numbers of receptors of both classes, but did not significantly alter receptor affinity. Other short-chain fatty acids, as well as keto acids, had a similar effect, but with a lower potency. Cycloheximide caused an accumulation of insulin receptors at the cell surface, since insulin binding increased and receptor affinity did not change after incubation with the inhibitor. Simultaneous addition of butyrate and cycloheximide abolished the loss of receptors produced by the fatty acid. In cells preincubated with butyrate, cycloheximide also produced a large increase in receptor numbers, showing that in the absence of new receptor synthesis a large pool of receptors re-appears at the surface of butyrate-treated cells. PMID:2930502

  11. Highly specific role of the insulin receptor in breast cancer progression

    PubMed Central

    Rostoker, Ran; Abelson, Sagi; Bitton-Worms, Keren; Genkin, Inna; Ben-Shmuel, Sarit; Dakwar, Maria; Orr, Zila Shen; Caspi, Avishay; Tzukerman, Maty

    2015-01-01

    Accumulating evidence from clinical trials indicates that specific targeting of the IGF1 receptor (IGF1R) is not efficient as an anti-breast cancer treatment. One possible reason is that the mitogenic signals from the insulin receptor (IR) can be processed independently or as compensation to inhibition of the IGF1R. In this study, we highlight the role of the IR in mediating breast tumor progression in both WT mice and a hyperinsulinemic MKR mouse model by induction of Ir (Insr) or Igf1r knockdown (KD) in the mammary carcinoma Mvt-1 cell line. By using the specific IR antagonist-S961, we demonstrated that Igf1r-KD induces elevated responses by the IR to IGF1. On the other hand, Ir-KD cells generated significantly smaller tumors in the mammary fat pads of both WT and MKR mice, as opposed to control cells, where as the Igf1r-KD cells did not. The tumorigenic effects of insulin on the Mvt-1 cells were also demonstrated using microarray analysis, which indicates alteration of genes and signaling pathways involved in proliferation, the cell cycle, and apoptosis following insulin stimulation. In addition, the correlation between IR and the potential prognostic marker for aggressive breast cancer, CD24, was examined in the Ir-KD cells. Fluorescence-activated cell sorting (FACS) analysis revealed more than 60% reduction in CD24 expression in the Ir-KD cells when compared with the control cells. Our results also indicate that CD24-expressing cells can restore, at least in part, the tumorigenic capacity of Ir-KD cells. Taken together, our results highlight the mitogenic role of the IR in mammary tumor progression with a direct link to CD24 expression. PMID:25694511

  12. Venus Kinase Receptors at the Crossroads of Insulin Signaling: Their Role in Reproduction for Helminths and Insects

    PubMed Central

    Dissous, Colette

    2015-01-01

    Venus kinase receptors (VKRs) are invertebrate receptor tyrosine kinases (TKs) first discovered in the human parasite Schistosoma. They contain an extracellular Venus FlyTrap module similar to the ligand-binding domain of G protein-coupled receptors of class C and an intracellular TK domain similar to that of insulin receptors. VKRs are present from cnidarians to echinoderms. They were shown to be activated by amino-acids, to induce insulin-like intracellular pathways, and to be highly expressed in larvae and in gonads of helminths and insects. The function of VKR in gametogenesis was demonstrated in schistosomes by VKR silencing and recent studies in Aedes aegypti have confirmed the importance of VKR in mosquito egg formation. AaeVKR was shown to bind to ovary ecdysteroidogenic hormone and to activate the production of ecdysteroids by the ovary, independently of signaling mediated by insulin-like peptides. These new data confirm and specify the function of VKRs in the reproduction of helminths and insects and they open interesting perspectives for elucidating the role of VKRs in other models. VKR targeting would also provide opportunities for the control of parasites and various vector-borne infectious diseases. PMID:26284029

  13. Venus Kinase Receptors at the Crossroads of Insulin Signaling: Their Role in Reproduction for Helminths and Insects.

    PubMed

    Dissous, Colette

    2015-01-01

    Venus kinase receptors (VKRs) are invertebrate receptor tyrosine kinases (TKs) first discovered in the human parasite Schistosoma. They contain an extracellular Venus FlyTrap module similar to the ligand-binding domain of G protein-coupled receptors of class C and an intracellular TK domain similar to that of insulin receptors. VKRs are present from cnidarians to echinoderms. They were shown to be activated by amino-acids, to induce insulin-like intracellular pathways, and to be highly expressed in larvae and in gonads of helminths and insects. The function of VKR in gametogenesis was demonstrated in schistosomes by VKR silencing and recent studies in Aedes aegypti have confirmed the importance of VKR in mosquito egg formation. AaeVKR was shown to bind to ovary ecdysteroidogenic hormone and to activate the production of ecdysteroids by the ovary, independently of signaling mediated by insulin-like peptides. These new data confirm and specify the function of VKRs in the reproduction of helminths and insects and they open interesting perspectives for elucidating the role of VKRs in other models. VKR targeting would also provide opportunities for the control of parasites and various vector-borne infectious diseases.

  14. Differential Effects of Camel Milk on Insulin Receptor Signaling – Toward Understanding the Insulin-Like Properties of Camel Milk

    PubMed Central

    Abdulrahman, Abdulrasheed O.; Ismael, Mohammad A.; Al-Hosaini, Khaled; Rame, Christelle; Al-Senaidy, Abdulrahman M.; Dupont, Joëlle; Ayoub, Mohammed Akli

    2016-01-01

    Previous studies on the Arabian camel (Camelus dromedarius) showed beneficial effects of its milk reported in diverse models of human diseases, including a substantial hypoglycemic activity. However, the cellular and molecular mechanisms involved in such effects remain completely unknown. In this study, we hypothesized that camel milk may act at the level of human insulin receptor (hIR) and its related intracellular signaling pathways. Therefore, we examined the effect of camel milk on the activation of hIR transiently expressed in human embryonic kidney 293 (HEK293) cells using bioluminescence resonance energy transfer (BRET) technology. BRET was used to assess, in live cells and real-time, the physical interaction between hIR and insulin receptor signaling proteins (IRS1) and the growth factor receptor-bound protein 2 (Grb2). Our data showed that camel milk did not promote any increase in the BRET signal between hIR and IRS1 or Grb2 in the absence of insulin stimulation. However, it significantly potentiated the maximal insulin-promoted BRET signal between hIR and Grb2 but not IRS1. Interestingly, camel milk appears to differentially impact the downstream signaling since it significantly activated ERK1/2 and potentiated the insulin-induced ERK1/2 but not Akt activation. These observations are to some extent consistent with the BRET data since ERK1/2 and Akt activation are known to reflect the engagement of Grb2 and IRS1 pathways, respectively. The preliminary fractionation of camel milk suggests the peptide/protein nature of the active component in camel milk. Together, our study demonstrates for the first time an allosteric effect of camel milk on insulin receptor conformation and activation with differential effects on its intracellular signaling. These findings should help to shed more light on the hypoglycemic activity of camel milk with potential therapeutic applications. PMID:26858689

  15. Differential Effects of Camel Milk on Insulin Receptor Signaling - Toward Understanding the Insulin-Like Properties of Camel Milk.

    PubMed

    Abdulrahman, Abdulrasheed O; Ismael, Mohammad A; Al-Hosaini, Khaled; Rame, Christelle; Al-Senaidy, Abdulrahman M; Dupont, Joëlle; Ayoub, Mohammed Akli

    2016-01-01

    Previous studies on the Arabian camel (Camelus dromedarius) showed beneficial effects of its milk reported in diverse models of human diseases, including a substantial hypoglycemic activity. However, the cellular and molecular mechanisms involved in such effects remain completely unknown. In this study, we hypothesized that camel milk may act at the level of human insulin receptor (hIR) and its related intracellular signaling pathways. Therefore, we examined the effect of camel milk on the activation of hIR transiently expressed in human embryonic kidney 293 (HEK293) cells using bioluminescence resonance energy transfer (BRET) technology. BRET was used to assess, in live cells and real-time, the physical interaction between hIR and insulin receptor signaling proteins (IRS1) and the growth factor receptor-bound protein 2 (Grb2). Our data showed that camel milk did not promote any increase in the BRET signal between hIR and IRS1 or Grb2 in the absence of insulin stimulation. However, it significantly potentiated the maximal insulin-promoted BRET signal between hIR and Grb2 but not IRS1. Interestingly, camel milk appears to differentially impact the downstream signaling since it significantly activated ERK1/2 and potentiated the insulin-induced ERK1/2 but not Akt activation. These observations are to some extent consistent with the BRET data since ERK1/2 and Akt activation are known to reflect the engagement of Grb2 and IRS1 pathways, respectively. The preliminary fractionation of camel milk suggests the peptide/protein nature of the active component in camel milk. Together, our study demonstrates for the first time an allosteric effect of camel milk on insulin receptor conformation and activation with differential effects on its intracellular signaling. These findings should help to shed more light on the hypoglycemic activity of camel milk with potential therapeutic applications. PMID:26858689

  16. DOWNREGULATION OF HYPOTHALAMIC INSULIN RECEPTOR EXPRESSION ELICITS DEPRESSIVE-LIKE BEHAVIORS IN RATS

    PubMed Central

    Grillo, Claudia A.; Piroli, Gerardo G.; Kaigler, Kris F.; Wilson, Steven P.; Wilson, Marlene A.; Reagan, Lawrence P.

    2011-01-01

    Ongoing epidemiological studies estimate that greater than 60% of the adult US population may be categorized as either overweight or obese. There is a growing appreciation that the complications of obesity extend to the central nervous system (CNS) and may result in increased risk for neurological co-morbidities like depressive illness. One potential mechanistic mediator linking obesity and depressive illness is the adipocyte derived hormone leptin. We previously demonstrated that lentivirus-mediated downregulation of hypothalamic insulin receptors increases body weight, adiposity and plasma leptin levels, which is consistent with features of the metabolic syndrome. Using this novel model of obesity, we examined performance in the forced swim test (FST), the sucrose preference test and the elevated plus maze (EPM), approaches that are often used as measures of depressive-like and anxiety-like behaviors, in rats that received third ventricular injections of either an insulin receptor antisense lentivirus (hypo-IRAS) or a control lentivirus (hypo-Con). Hypo-IRAS rats exhibited significant increases in immobility time and corresponding decreases in active behaviors in the FST and exhibited anhedonia as measured by decreased sucrose intake compared to hypo-Con rats. Hypo-IRAS rats also exhibited increases in anxiety-like behaviors in the EPM. Plasma, hippocampal and amygdalar brain-derived neurotrophic factor (BDNF) levels were reduced in hypo-IRAS rats, suggesting that the obesity/hyperleptinemic phenotype may elicit this behavioral phenotype through modulation of neurotrophic factor expression. Collectively, these data support the hypothesis for an increased risk for mood disorders in obesity, which may be related to decreased expression of hippocampal and amygdalar BDNF. PMID:21458499

  17. Localization of insulin receptor mRNA in rat brain by in situ hybridization

    SciTech Connect

    Marks, J.L.; Porte, D. Jr.; Stahl, W.L.; Baskin, D.G. )

    1990-12-01

    Insulin receptor mRNA was demonstrated in rat brain slices by in situ hybridization with three {sup 35}S-oligonucleotide probes and contact film autoradiography. Specificity was confirmed by showing that (a) excess unlabeled probe abolished the signal, (b) an oligonucleotide probe for rat neuropeptide Y mRNA showed a different distribution of hybridization signal, and (c) the distribution of insulin receptor binding was consistent with the distribution of insulin receptor mRNA. Insulin receptor mRNA was most abundant in the granule cell layers of the olfactory bulb, cerebellum and dentate gyrus, in the pyramidal cell body layers of the pyriform cortex and hippocampus, in the choroid plexus and in the arcuate nucleus of the hypothalamus.

  18. Characterization of a second ligand binding site of the insulin receptor

    SciTech Connect

    Hao Caili; Whittaker, Linda; Whittaker, Jonathan . E-mail: jonathan.whittaker@case.edu

    2006-08-18

    Insulin binding to its receptor is characterized by high affinity, curvilinear Scatchard plots, and negative cooperativity. These properties may be the consequence of binding of insulin to two receptor binding sites. The N-terminal L1 domain and the C-terminus of the {alpha} subunit contain one binding site. To locate a second site, we examined the binding properties of chimeric receptors in which the L1 and L2 domains and the first Fibronectin Type III repeat of the insulin-like growth factor-I receptor were replaced by corresponding regions of the insulin receptor. Substitutions of the L2 domain and the first Fibronectin Type III repeat together with the L1 domain produced 80- and 300-fold increases in affinity for insulin. Fusion of these domains to human immunoglobulin Fc fragment produced a protein which bound insulin with a K {sub d} of 2.9 nM. These data strongly suggest that these domains contain an insulin binding site.

  19. [Receptor-mediated endocytosis in the cells of cold-blooded animals. II. The fate of internalized 125I-insulin in the isolated hepatocytes of the lamprey and the frog].

    PubMed

    Lappova, Iu L; Leĭbush, B N

    1994-01-01

    The 125I-insulin outflow from isolated hepatocytes of the frog and lamprey "loaded" with the labeled hormone has been studied. It is shown that the ligand outflow from the frog cells increased with the increase in the incubation temperature from 0 up to 20 degrees C. The curves of the rest cell radioactivity were reciprocal to those of the radioactivity accumulated in the medium at the corresponding temperatures. At 0.5 and 20 degrees C the degraded 125I-insulin made 5.7 and 17% of the whole hormone accumulated in the medium. In the lamprey hepatocytes, neither accumulation in the incubation medium nor outflow of the radioactivity from cell was seen at all temperatures studied. The intracellular degradation of 125I-insulin in the frog hepatocytes was no more than 7% of the internalized ligand, compared to about 25% in the lamprey cells. The specific binding of 125I-insulin was twice increased in the presence of lysosomal inhibitor chloroquin; contrary to this, no increase was found in the lamprey hepatocytes. The results of experiments on the frog hepatocytes lead us to a conclusion that the processing pathway of internalized insulin in cold-blooded vertebrate cells is similar mainly to that in cells of warm-blooded species, but takes place at lower temperatures and with slower rates. The peculiarities of processing in the lamprey hepatocytes (extralysosomal ligand degradation, the inability to release the internalized ligand and its degradation products) are dependent on a deep transformation of hepatocytes during prespawning migration period. PMID:7701627

  20. Decreased Insulin Receptors but Normal Glucose Metabolism in Duchenne Muscular Dystrophy

    NASA Astrophysics Data System (ADS)

    de Pirro, Roberto; Lauro, Renato; Testa, Ivano; Ferretti, Ginofabrizio; de Martinis, Carlo; Dellantonio, Renzo

    1982-04-01

    Compared to matched controls, 17 patients with Duchenne muscular dystrophy showed decreased insulin binding to monocytes due to decreased receptor concentration. These patients showed no signs of altered glucose metabolism and retrospective analysis of the clinical records of a further 56 such patients revealed no modification in carbohydrate metabolism. These data suggest that reduced insulin receptor number does not produce overt modifications of glucose metabolism in Duchenne muscular dystrophy.

  1. Inositols in the Treatment of Insulin-Mediated Diseases

    PubMed Central

    Muscogiuri, Giovanna; Palomba, Stefano

    2016-01-01

    A growing body of research is currently focused on the role of inositol isomers and in particular myo-inositol (MYO-INS) and D-chiroinositol (DCI) in the treatment of insulin resistance states. Both isomers have been shown to exert insulin-mimetic action and to lower postprandial glucose. Further, insulin resistance-related diseases were associated to derangements in inositol metabolism. Thus, the aim of this review is to provide current evidence on the potential benefits of inositol isomers (MYO-INS and DCI) in the treatment of disease associated to insulin resistance such as polycystic ovary syndrome (PCOS), gestational diabetes, and metabolic syndrome. Finally, molecular insights into inositol insulin-sensitizing effects will be covered focusing on the possible role of inositol glycans as insulin second messengers. PMID:27688754

  2. Inositols in the Treatment of Insulin-Mediated Diseases

    PubMed Central

    Muscogiuri, Giovanna; Palomba, Stefano

    2016-01-01

    A growing body of research is currently focused on the role of inositol isomers and in particular myo-inositol (MYO-INS) and D-chiroinositol (DCI) in the treatment of insulin resistance states. Both isomers have been shown to exert insulin-mimetic action and to lower postprandial glucose. Further, insulin resistance-related diseases were associated to derangements in inositol metabolism. Thus, the aim of this review is to provide current evidence on the potential benefits of inositol isomers (MYO-INS and DCI) in the treatment of disease associated to insulin resistance such as polycystic ovary syndrome (PCOS), gestational diabetes, and metabolic syndrome. Finally, molecular insights into inositol insulin-sensitizing effects will be covered focusing on the possible role of inositol glycans as insulin second messengers.

  3. Inositols in the Treatment of Insulin-Mediated Diseases.

    PubMed

    Muscogiuri, Giovanna; Palomba, Stefano; Laganà, Antonio Simone; Orio, Francesco

    2016-01-01

    A growing body of research is currently focused on the role of inositol isomers and in particular myo-inositol (MYO-INS) and D-chiroinositol (DCI) in the treatment of insulin resistance states. Both isomers have been shown to exert insulin-mimetic action and to lower postprandial glucose. Further, insulin resistance-related diseases were associated to derangements in inositol metabolism. Thus, the aim of this review is to provide current evidence on the potential benefits of inositol isomers (MYO-INS and DCI) in the treatment of disease associated to insulin resistance such as polycystic ovary syndrome (PCOS), gestational diabetes, and metabolic syndrome. Finally, molecular insights into inositol insulin-sensitizing effects will be covered focusing on the possible role of inositol glycans as insulin second messengers. PMID:27688754

  4. Structural insights into ligand-induced activation of the insulin receptor

    SciTech Connect

    Ward, C.; Lawrence, M.; Streltsov, V.; Garrett, T.; McKern, N.; Lou, M.-Z.; Lovrecz, G.; Adams, T.

    2008-04-29

    The current model for insulin binding to the insulin receptor proposes that there are two binding sites, referred to as sites 1 and 2, on each monomer in the receptor homodimer and two binding surfaces on insulin, one involving residues predominantly from the dimerization face of insulin (the classical binding surface) and the other residues from the hexamerization face. High-affinity binding involves one insulin molecule using its two surfaces to make bridging contacts with site 1 from one receptor monomer and site 2 from the other. Whilst the receptor dimer has two identical site 1-site 2 pairs, insulin molecules cannot bridge both pairs simultaneously. Our structures of the insulin receptor (IR) ectodomain dimer and the L1-CR-L2 fragments of IR and insulin-like growth factor receptor (IGF-1R) explain many of the features of ligand-receptor binding and allow the two binding sites on the receptor to be described. The IR dimer has an unexpected folded-over conformation which places the C-terminal surface of the first fibronectin-III domain in close juxtaposition to the known L1 domain ligand-binding surface suggesting that the C-terminal surface of FnIII-1 is the second binding site involved in high-affinity binding. This is very different from previous models based on three-dimensional reconstruction from scanning transmission electron micrographs. Our single-molecule images indicate that IGF-1R has a morphology similar to that of IR. In addition, the structures of the first three domains (L1-CR-L2) of the IR and IGF-1R show that there are major differences in the two regions governing ligand specificity. The implications of these findings for ligand-induced receptor activation will be discussed. This review summarizes the key findings regarding the discovery and characterization of the insulin receptor, the identification and arrangement of its structural domains in the sequence and the key features associated with ligand binding. The remainder of the review

  5. Free fatty acid receptor 1 (FFAR1/GPR40) signaling affects insulin secretion by enhancing mitochondrial respiration during palmitate exposure.

    PubMed

    Kristinsson, Hjalti; Bergsten, Peter; Sargsyan, Ernest

    2015-12-01

    Fatty acids affect insulin secretion via metabolism and FFAR1-mediated signaling. Recent reports indicate that these two pathways act synergistically. Still it remains unclear how they interrelate. Taking into account the key role of mitochondria in insulin secretion, we attempted to dissect the metabolic and FFAR1-mediated effects of fatty acids on mitochondrial function. One-hour culture of MIN6 cells with palmitate significantly enhanced mitochondrial respiration. Antagonism or silencing of FFAR1 prevented the palmitate-induced rise in respiration. On the other hand, in the absence of extracellular palmitate FFAR1 agonists caused a modest increase in respiration. Using an agonist of the M3 muscarinic acetylcholine receptor and PKC inhibitor we found that in the presence of the fatty acid mitochondrial respiration is regulated via Gαq protein-coupled receptor signaling. The increase in respiration in palmitate-treated cells was largely due to increased glucose utilization and oxidation. However, glucose utilization was not dependent on FFAR1 signaling. Collectively, these results indicate that mitochondrial respiration in palmitate-treated cells is enhanced via combined action of intracellular metabolism of the fatty acid and the Gαq-coupled FFAR1 signaling. Long-term palmitate exposure reduced ATP-coupling efficiency of mitochondria and deteriorated insulin secretion. The presence of the FFAR1 antagonist during culture did not improve ATP-coupling efficiency, however, it resulted in enhanced mitochondrial respiration and improved insulin secretion after culture. Taken together, our study demonstrates that during palmitate exposure, integrated actions of fatty acid metabolism and fatty acid-induced FFAR1 signaling on mitochondrial respiration underlie the synergistic action of the two pathways on insulin secretion.

  6. Mechanisms of human insulin resistance and thiazolidinedione-mediated insulin sensitization

    PubMed Central

    Sears, D. D.; Hsiao, G.; Hsiao, A.; Yu, J. G.; Courtney, C. H.; Ofrecio, J. M.; Chapman, J.; Subramaniam, S.

    2009-01-01

    Cellular and tissue defects associated with insulin resistance are coincident with transcriptional abnormalities and are improved after insulin sensitization with thiazolidinedione (TZD) PPARγ ligands. We characterized 72 human subjects by relating their clinical phenotypes with functional pathway alterations. We transcriptionally profiled 364 biopsies harvested before and after hyperinsulinemic-euglycemic clamp studies, at baseline and after 3-month TZD treatment. We have identified molecular and functional characteristics of insulin resistant subjects and distinctions between TZD treatment responder and nonresponder subjects. Insulin resistant subjects exhibited alterations in skeletal muscle (e.g., glycolytic flux and intramuscular adipocytes) and adipose tissue (e.g., mitochondrial metabolism and inflammation) that improved relative to TZD-induced insulin sensitization. Pre-TZD treatment expression of MLXIP in muscle and HLA-DRB1 in adipose tissue from insulin resistant subjects was linearly predictive of post-TZD insulin sensitization. We have uniquely characterized coordinated cellular and tissue functional pathways that are characteristic of insulin resistance, TZD-induced insulin sensitization, and potential TZD responsiveness. PMID:19841271

  7. The human insulin receptor mRNA contains a functional internal ribosome entry segment

    PubMed Central

    Spriggs, Keith A.; Cobbold, Laura C.; Ridley, Simon H.; Coldwell, Mark; Bottley, Andrew; Bushell, Martin; Willis, Anne E.; Siddle, Kenneth

    2009-01-01

    Regulation of mRNA translation is an important mechanism determining the level of expression of proteins in eukaryotic cells. Translation is most commonly initiated by cap-dependent scanning, but many eukaryotic mRNAs contain internal ribosome entry segments (IRESs), providing an alternative means of initiation capable of independent regulation. Here, we show by using dicistronic luciferase reporter vectors that the 5′-UTR of the mRNA encoding human insulin receptor (hIR) contains a functional IRES. RNAi-mediated knockdown showed that the protein PTB was required for maximum IRES activity. Electrophoretic mobility shift assays confirmed that PTB1, PTB2 and nPTB, but not unr or PTB4, bound to hIR mRNA, and deletion mapping implicated a CCU motif 448 nt upstream of the initiator AUG in PTB binding. The IR-IRES was functional in a number of cell lines, and most active in cells of neuronal origin, as assessed by luciferase reporter assays. The IRES was more active in confluent than sub-confluent cells, but activity did not change during differentiation of 3T3-L1 fibroblasts to adipocytes. IRES activity was stimulated by insulin in sub-confluent cells. The IRES may function to maintain expression of IR protein in tissues such as the brain where mRNA translation by cap-dependent scanning is less effective. PMID:19654240

  8. Targeting Anti-Insulin B Cell Receptors Improves Receptor Editing in Type 1 Diabetes-Prone Mice.

    PubMed

    Bonami, Rachel H; Thomas, James W

    2015-11-15

    Autoreactive B lymphocytes that commonly arise in the developing repertoire can be salvaged by receptor editing, a central tolerance mechanism that alters BCR specificity through continued L chain rearrangement. It is unknown whether autoantigens with weak cross-linking potential, such as insulin, elicit receptor editing, or whether this process is dysregulated in related autoimmunity. To resolve these issues, we developed an editing-competent model in which anti-insulin Vκ125 was targeted to the Igκ locus and paired with anti-insulin VH125Tg. Physiologic, circulating insulin increased RAG-2 expression and was associated with BCR replacement that eliminated autoantigen recognition in a proportion of developing anti-insulin B lymphocytes. The proportion of anti-insulin B cells that underwent receptor editing was reduced in the type 1 diabetes-prone NOD strain relative to a nonautoimmune strain. Resistance to editing was associated with increased surface IgM expression on immature (but not transitional or mature) anti-insulin B cells in the NOD strain. The actions of mAb123 on central tolerance were also investigated, because selective targeting of insulin-occupied BCR by mAb123 eliminates anti-insulin B lymphocytes and prevents type 1 diabetes. Autoantigen targeting by mAb123 increased RAG-2 expression and dramatically enhanced BCR replacement in newly developed B lymphocytes. Administering F(ab')2123 induced IgM downregulation and reduced the frequency of anti-insulin B lymphocytes within the polyclonal repertoire of VH125Tg/NOD mice, suggesting enhanced central tolerance by direct BCR interaction. These findings indicate that weak or faulty checkpoints for central tolerance can be overcome by autoantigen-specific immunomodulatory therapy.

  9. Photoperiodic regulation of insulin receptor mRNA and intracellular insulin signaling in the arcuate nucleus of the Siberian hamster, Phodopus sungorus.

    PubMed

    Tups, Alexander; Helwig, Michael; Stöhr, Sigrid; Barrett, Perry; Mercer, Julian G; Klingenspor, Martin

    2006-09-01

    During the last 5 years it has been well established that photoperiod-induced changes in body weight in the seasonal hamster, Phodopus sungorus, are accompanied by a marked seasonal cycle in leptin sensitivity. In the present study, we investigated the possible involvement of insulin signaling in seasonal body weight regulation. We analyzed the expression pattern and relative intensity of insulin receptor (IR), phosphatidylinositol 3-kinase (PI3-kinase), and protein tyrosine phosphatase 1B (PTP1B) mRNAs by in situ hybridization in the brains of juvenile female hamsters acclimated to either long- (LD) or short-day length (SD) for 8 wk, with or without superimposed food deprivation for 48 h. Furthermore, the hypothalamic concentration and distribution of phospho-AKT, a marker of PI3-kinase activity was determined by immunoblotting and immunohistochemistry. Eight weeks of acclimation to SD led to a substantial downregulation of IR, PTP1B gene expression, and phospho-AKT concentration in this brain region, whereas PI3-kinase mRNA was unchanged. Food deprivation induced a decrease in PTP1B and a trend toward lowered IR gene expression in LD but not in SD. Additionally, a striking increase in PTP1B gene expression in the thalamus was observed after food deprivation in both photoperiods. The direction of change in neuronal insulin signaling contrasts to the central catabolic nature of this pathway described in other species. SD-induced reduction in insulin signaling may be due to decline in body fat stores mediated by enhanced central leptin sensitivity. Increased anorexigenic tone of leptin may overwrite central insulin signaling to prevent catabolic overdrive.

  10. Insulin modulates norepinephrine-mediated melatonin synthesis in cultured rat pineal gland.

    PubMed

    Garcia, Rodrigo Antonio Peliciari; Afeche, Solange Castro; Scialfa, Julieta Helena; do Amaral, Fernanda Gaspar; dos Santos, Sabrina Heloísa José; Lima, Fabio Bessa; Young, Martin Elliot; Cipolla-Neto, José

    2008-01-01

    The mammalian pineal gland synthesizes melatonin in a circadian manner, peaking during the dark phase. This synthesis is primarily regulated by sympathetic innervations via noradrenergic fibers, but is also modulated by many peptidergic and hormonal systems. A growing number of studies reveal a complex role for melatonin in influencing various physiological processes, including modulation of insulin secretion and action. In contrast, a role for insulin as a modulator of melatonin synthesis has not been investigated previously. The aim of the current study was to determine whether insulin modulates norepinephrine (NE)-mediated melatonin synthesis. The results demonstrate that insulin (10(- 8)M) potentiated norepinephrine-mediated melatonin synthesis and tryptophan hydroxylase (TPOH) activity in ex vivo incubated pineal glands. When ex vivo incubated pineal glands were synchronized (12h NE-stimulation, followed by 12h incubation in the absence of NE), insulin potentiated NE-mediated melatonin synthesis and arylalkylamine-N-acetyltransferase (AANAT) activity. Insulin did not affect the activity of hydroxyindole-O-methyltranferase (HIOMT), nor the gene expression of tpoh, aanat, or hiomt, under any of the conditions investigated. We conclude that insulin potentiates NE-mediated melatonin synthesis in cultured rat pineal gland, potentially through post-transcriptional events.

  11. All-Atom Structural Models of the Transmembrane Domains of Insulin and Type 1 Insulin-Like Growth Factor Receptors

    PubMed Central

    Mohammadiarani, Hossein; Vashisth, Harish

    2016-01-01

    The receptor tyrosine kinase superfamily comprises many cell-surface receptors including the insulin receptor (IR) and type 1 insulin-like growth factor receptor (IGF1R) that are constitutively homodimeric transmembrane glycoproteins. Therefore, these receptors require ligand-triggered domain rearrangements rather than receptor dimerization for activation. Specifically, binding of peptide ligands to receptor ectodomains transduces signals across the transmembrane domains for trans-autophosphorylation in cytoplasmic kinase domains. The molecular details of these processes are poorly understood in part due to the absence of structures of full-length receptors. Using MD simulations and enhanced conformational sampling algorithms, we present all-atom structural models of peptides containing 51 residues from the transmembrane and juxtamembrane regions of IR and IGF1R. In our models, the transmembrane regions of both receptors adopt helical conformations with kinks at Pro961 (IR) and Pro941 (IGF1R), but the C-terminal residues corresponding to the juxtamembrane region of each receptor adopt unfolded and flexible conformations in IR as opposed to a helix in IGF1R. We also observe that the N-terminal residues in IR form a kinked-helix sitting at the membrane–solvent interface, while homologous residues in IGF1R are unfolded and flexible. These conformational differences result in a larger tilt-angle of the membrane-embedded helix in IGF1R in comparison to IR to compensate for interactions with water molecules at the membrane–solvent interfaces. Our metastable/stable states for the transmembrane domain of IR, observed in a lipid bilayer, are consistent with a known NMR structure of this domain determined in detergent micelles, and similar states in IGF1R are consistent with a previously reported model of the dimerized transmembrane domains of IGF1R. Our all-atom structural models suggest potentially unique structural organization of kinase domains in each receptor. PMID

  12. Insulin binding and receptor tyrosine kinase activity in skeletal muscle of carnivorous and omnivorous fish.

    PubMed

    Párrizas, M; Planas, J; Plisetskaya, E M; Gutiérrez, J

    1994-06-01

    We characterized the insulin receptors in skeletal muscle from several fish species with different nutritional preferences: brown trout (Salmo trutta fario), gilthead sea bream (Sparus aurata), tilapia (Tilapia mossambica), and carp (Cyprinus carpio), semipurified by affinity chromatography (wheat germ agglutinin-agarose). Total specific binding and number of receptors per unit weight of piscine white skeletal muscle were lower than those values found in mammalian skeletal muscle. The same parameters in carp muscle receptor preparations were severalfold higher than in trout muscle (binding capacity 440 +/- 47 fmol/mg glycoprotein in carp and 82 +/- 23 fmol/mg glycoprotein in trout). Piscine insulin receptors phosphorylated exogenous substrate poly(Glu,Tyr) but less so than mammalian receptors. Tyrosine kinase activity of receptors, calculated as percent of 32P incorporated into substrate in the presence of insulin compared with basal incorporation, was also highest in carp (210 +/- 4%) and lowest in trout (150 +/- 2%). In both trout and carp deprived of food for 15 days, specific binding of insulin decreased. Nevertheless, differences between the two species were retained. Our results demonstrate that particular properties of insulin receptors in fish skeletal muscle may be related to nutritional preferences. This finding coincides with the phenomenon of differential glucose tolerance in fish: carnivorous fish, such as trout, are less tolerant, whereas omnivorous fish, such as carp, readily utilize a carbohydrate-rich diet. PMID:8024051

  13. Structural differences between liver- and muscle-derived insulin receptors in rats

    SciTech Connect

    Burant, C.F.; Treutelaar, M.K.; Block, N.E.; Buse, M.G.

    1986-11-05

    The structure of insulin receptors, solubilized from rat skeletal muscle and liver, was studied. The ..cap alpha.. subunit was identified by specific cross-linking to A14 /sup 125/I-insulin with disuccinimidyl suberate. Muscle- and liver-derived ..cap alpha.. subunits migrated on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) with a M/sub r/ of 131,000 and 135,000, respectively. There was no significant difference in insulin binding affinity. Treatment of cross-linked, immunoprecipitated receptors with either neuraminidase or endoglycosidase H decreased the M/sub r/ of muscle- and liver-derived ..cap alpha.. subunits but did not affect the difference in M/sub r/. Autophosphorylated ..beta.. subunits migrated with a M/sub r/ of 98,000 for muscle and 101,000 for liver. After partial V8 digestion of autophosphorylated, immunoprecipitated receptors the major phosphopeptide fragment migrated on SDS-PAGE at M/sub r/ 57,000 from muscle and 60,000 from liver. Glycosidase digestion of autophosphorylated receptors suggested that M/sub r/ heterogeneity was due in part to differences in the sialic acid content of ..beta.. subunits. Muscle and liver are the major target organs of insulin; the apparent heterogeneity of insulin receptor structure may be relevant to tissue-specific differences in insulin action.

  14. The role of insulin receptor substrate 2 in hypothalamic and β cell function

    PubMed Central

    Choudhury, Agharul I.; Heffron, Helen; Smith, Mark A.; Al-Qassab, Hind; Xu, Allison W.; Selman, Colin; Simmgen, Marcus; Clements, Melanie; Claret, Marc; MacColl, Gavin; Bedford, David C.; Hisadome, Kazunari; Diakonov, Ivan; Moosajee, Vazira; Bell, Jimmy D.; Speakman, John R.; Batterham, Rachel L.; Barsh, Gregory S.; Ashford, Michael L.J.; Withers, Dominic J.

    2005-01-01

    Insulin receptor substrate 2 (Irs2) plays complex roles in energy homeostasis. We generated mice lacking Irs2 in β cells and a population of hypothalamic neurons (RIPCreIrs2KO), in all neurons (NesCreIrs2KO), and in proopiomelanocortin neurons (POMCCreIrs2KO) to determine the role of Irs2 in the CNS and β cell. RIPCreIrs2KO mice displayed impaired glucose tolerance and reduced β cell mass. Overt diabetes did not ensue, because β cells escaping Cre-mediated recombination progressively populated islets. RIPCreIrs2KO and NesCreIrs2KO mice displayed hyperphagia, obesity, and increased body length, which suggests altered melanocortin action. POMCCreIrs2KO mice did not display this phenotype. RIPCreIrs2KO and NesCreIrs2KO mice retained leptin sensitivity, which suggests that CNS Irs2 pathways are not required for leptin action. NesCreIrs2KO and POMCCreIrs2KO mice did not display reduced β cell mass, but NesCreIrs2KO mice displayed mild abnormalities of glucose homeostasis. RIPCre neurons did not express POMC or neuropeptide Y. Insulin and a melanocortin agonist depolarized RIPCre neurons, whereas leptin was ineffective. Insulin hyperpolarized and leptin depolarized POMC neurons. Our findings demonstrate a critical role for IRS2 in β cell and hypothalamic function and provide insights into the role of RIPCre neurons, a distinct hypothalamic neuronal population, in growth and energy homeostasis. PMID:15841180

  15. Green tea epigallocatechin gallate inhibits insulin stimulation of adipocyte glucose uptake via the 67-kilodalton laminin receptor and AMP-activated protein kinase pathways.

    PubMed

    Hsieh, Chi-Fen; Tsuei, Yi-Wei; Liu, Chi-Wei; Kao, Chung-Cheng; Shih, Li-Jane; Ho, Low-Tone; Wu, Liang-Yi; Wu, Chi-Peng; Tsai, Pei-Hua; Chang, Hsin-Huei; Ku, Hui-Chen; Kao, Yung-Hsi

    2010-10-01

    Insulin and (-)-epigallocatechin gallate (EGCG) are reported to regulate obesity and fat accumulation, respectively. This study investigated the pathways involved in EGCG modulation of insulin-stimulated glucose uptake in 3T3-L1 and C3H10T1/2 adipocytes. EGCG inhibited insulin stimulation of adipocyte glucose uptake in a dose- and time-dependent manner. The concentration of EGCG that decreased insulin-stimulated glucose uptake by 50-60% was approximately 5-10 µM for a period of 2 h. At 10 µM, EGCG and gallic acid were more effective than (-)-epicatechin, (-)-epigallocatechin, and (-)-epicatechin 3-gallate. We identified the EGCG receptor [also known as the 67-kDa laminin receptor (67LR)] in fat cells and extended the findings for this study to clarify whether EGCG-induced changes in insulin-stimulated glucose uptake in adipocytes could be mediated through the 67LR. Pretreatment of adipocytes with a 67LR antibody, but not normal rabbit immunoglobulin, prevented the effects of EGCG on insulin-increased glucose uptake. This suggests that the 67LR mediates the effect of EGCG on insulin-stimulated glucose uptake in adipocytes. Moreover, pretreatment with an AMP-activated protein kinase (AMPK) inhibitor, such as compound C, but not with a glutathione (GSH) activator, such as N-acetyl-L-cysteine (NAC), blocked the antiinsulin effect of EGCG on adipocyte glucose uptake. These data suggest that EGCG exerts its anti-insulin action on adipocyte glucose uptake via the AMPK, but not the GSH, pathway. The results of this study possibly support that EGCG mediates fat content.

  16. Insulin-like growth factor I interfaces with brain-derived neurotrophic factor-mediated synaptic plasticity to modulate aspects of exercise-induced cognitive function.

    PubMed

    Ding, Q; Vaynman, S; Akhavan, M; Ying, Z; Gomez-Pinilla, F

    2006-07-01

    The ability of exercise to benefit neuronal and cognitive plasticity is well recognized. This study reveals that the effects of exercise on brain neuronal and cognitive plasticity are in part modulated by a central source of insulin-like growth factor-I. Exercise selectively increased insulin-like growth factor-I expression without affecting insulin-like growth factor-II expression in the rat hippocampus. To determine the role that insulin-like growth factor-I holds in mediating exercise-induced neuronal and cognitive enhancement, a specific antibody against the insulin-like growth factor-I receptor was used to block the action of insulin-like growth factor-I in the hippocampus during a 5-day voluntary exercise period. A two-trial-per-day Morris water maze was performed for five consecutive days, succeeded by a probe trial 2 days later. Blocking hippocampal insulin-like growth factor-I receptors did not significantly attenuate the ability of exercise to enhance learning acquisition, but abolished the effect of exercise on augmenting recall. Blocking the insulin-like growth factor-I receptor significantly reversed the exercise-induced increase in the levels of brain-derived neurotrophic factor mRNA and protein and pro-brain-derived neurotrophic factor protein, suggesting that the effects of insulin-like growth factor-I may be partially accomplished by modulating the precursor to the mature brain-derived neurotrophic factor. A molecular analysis revealed that exercise significantly elevated proteins downstream to brain-derived neurotrophic factor activation important for synaptic function, i.e. synapsin I, and signal transduction cascades associated with memory processes, i.e. phosphorylated calcium/calmodulin protein kinase II and phosphorylated mitogen-activated protein kinase II. Blocking the insulin-like growth factor-I receptor abolished these exercise-induced increases. Our results illustrate a possible mechanism by which insulin-like growth factor-I interfaces

  17. Efficacy of anti-insulin-like growth factor I receptor monoclonal antibody cixutumumab in mesothelioma is highly correlated with insulin growth factor-I receptor sites/cell.

    PubMed

    Kalra, Neetu; Zhang, Jingli; Yu, Yunkai; Ho, Mitchell; Merino, Maria; Cao, Liang; Hassan, Raffit

    2012-11-01

    Insulin growth factor-I receptor (IGF-IR) is expressed in mesothelioma and therefore an attractive target for therapy. The antitumor activity of cixutumumab, a humanized monoclonal antibody to IGF-IR, in mesothelioma and relationship to IGF-IR expression was investigated using eight early passage tumor cells obtained from patients, nine established cell lines and an in vivo human mesothelioma tumor xenograft model. Although IGF-IR expression at the mRNA and protein level was present in all mesothelioma cells, using a quantitative ELISA immunoassay, there was considerable variability of IGF-IR expression ranging from 1 to 14 ng/mg of lysate. Using flow cytometry, the number of IGF-IR surface receptors varied from ≈ 2,000 to 50,000 sites/cell. Cells expressing >10,000 sites/cell had greater than 10% growth inhibition when treated with cixutumumab (100 μg/ml). Cixutumumab also induced antibody-dependent cell-mediated toxicity (>10% specific lysis) in cell lines, which had >20,000 IGF-IR sites/cell. Treatment with cixutumumab decreased phosphorylation of IGF-IR, Akt and Erk in cell lines, H226 and H28 having 24,000 and 51,000 IGF-IR sites/cell, respectively, but not in the cell line H2052 with 3,000 IGF-IR sites/cell. In vivo, cixutumumab treatment delayed growth of H226 mesothelioma tumor xenografts in mice and improved the overall survival of these mice compared to mice treated with saline (p < 0.004). Our results demonstrate that the antitumor efficacy of cixutumumab including inhibition of IGF-IR downstream signaling is highly correlated with IGF-IR sites/cell. A phase II clinical trial of cixutumumab is currently ongoing for the treatment of patients with mesothelioma.

  18. Blockade of the Renin-Angiotensin system improves insulin receptor signaling and insulin-stimulated skeletal muscle glucose transport in burn injury.

    PubMed

    Kasper, Sherry O; Phillips, Erin E; Castle, Scott M; Daley, Brian J; Enderson, Blaine L; Karlstad, Michael D

    2011-01-01

    Burn injury is associated with a decline in glucose utilization and insulin sensitivity due to alterations in postreceptor insulin signaling pathways. We have reported that blockade of the renin-angiotensin system with losartan, an angiotensin II type 1 (AT1) receptor blocker, improves whole body insulin sensitivity and glucose metabolism after burn injury. This study examines whether losartan improves insulin signaling pathways and insulin-stimulated glucose transport in skeletal muscle in burn-injured rats. Rats were injured by a 30% full-skin-thickness scalding burn and treated with losartan or placebo for 3 days after burn. Insulin signaling pathways were investigated in rectus abdominus muscle taken before and 90 s after intraportal insulin injection (10 U·kg). Insulin-stimulated insulin receptor substrate 1-associated phosphatidylinositol 3-kinase and plasma membrane-associated GLUT4 transporter were substantially increased with losartan treatment in burn-injured animals (59% above sham). Serine phosphorylated AKT/PKB was decreased with burn injury, and this decrease was attenuated with losartan treatment. In a separate group of rats, the effect of insulin on 2-deoxyglucose transport was significantly impaired in burned as compared with sham soleus muscles, in vitro; however, treatment of burned rats with losartan completely abolished the reduction of insulin-stimulated 2-deoxyglucose transport. These findings demonstrate a cross talk between the AT1 and insulin receptor that negatively modulates insulin receptor signaling and suggest a potential role of renin-angiotensin system blockade as a therapeutic strategy for enhancing insulin sensitivity in skeletal muscle and improving whole-body glucose homeostasis in burn injury.

  19. A Comparative Structural Bioinformatics Analysis of the Insulin Receptor Family Ectodomain Based on Phylogenetic Information

    PubMed Central

    Rentería, Miguel E.; Gandhi, Neha S.; Vinuesa, Pablo; Helmerhorst, Erik; Mancera, Ricardo L.

    2008-01-01

    The insulin receptor (IR), the insulin-like growth factor 1 receptor (IGF1R) and the insulin receptor-related receptor (IRR) are covalently-linked homodimers made up of several structural domains. The molecular mechanism of ligand binding to the ectodomain of these receptors and the resulting activation of their tyrosine kinase domain is still not well understood. We have carried out an amino acid residue conservation analysis in order to reconstruct the phylogeny of the IR Family. We have confirmed the location of ligand binding site 1 of the IGF1R and IR. Importantly, we have also predicted the likely location of the insulin binding site 2 on the surface of the fibronectin type III domains of the IR. An evolutionary conserved surface on the second leucine-rich domain that may interact with the ligand could not be detected. We suggest a possible mechanical trigger of the activation of the IR that involves a slight ‘twist’ rotation of the last two fibronectin type III domains in order to face the likely location of insulin. Finally, a strong selective pressure was found amongst the IRR orthologous sequences, suggesting that this orphan receptor has a yet unknown physiological role which may be conserved from amphibians to mammals. PMID:18989367

  20. Aerobic fitness and cognitive function in midlife: an association mediated by plasma insulin.

    PubMed

    Tarumi, Takashi; Gonzales, Mitzi M; Fallow, Bennett; Nualnim, Nantinee; Lee, Jeongseok; Tanaka, Hirofumi; Haley, Andreana P

    2013-12-01

    Insulin resistance in midlife increases the risk of dementia in late-life. In contrast, habitual aerobic exercise is an established strategy to ameliorate insulin resistance which may translate into better cognitive outcome. To determine the role of plasma insulin in mediating the relation between cardiorespiratory fitness and cognitive function, fifty-eight adults completed assessments of plasma insulin levels, maximal oxygen consumption (VO2max), and neuropsychological test performance. Endurance-trained subjects demonstrated better cognitive outcome (total composite z-score: 0.21 ± 0.08 versus -0.26 ± 0.10, P = 0.001) and lower concentrations of plasma insulin (12.6 ± 0.6 versus 21.3 ± 1.5 ulU/mL, P < 0.001) than sedentary subjects. Greater VO2max was significantly associated with higher memory performance (β = 0.37, P = 0.01) and lower plasma insulin levels (β = -0.68, P < 0.001). The significant association between VO2max and memory performance was abolished when the indirect effect of plasma insulin was statistically removed (β = 0.24, P = 0.19). Fitness-related cognitive enhancement may be mediated, at least in part, by plasma insulin levels.

  1. Nox2 mediates skeletal muscle insulin resistance induced by a high fat diet.

    PubMed

    Souto Padron de Figueiredo, Alvaro; Salmon, Adam B; Bruno, Francesca; Jimenez, Fabio; Martinez, Herman G; Halade, Ganesh V; Ahuja, Seema S; Clark, Robert A; DeFronzo, Ralph A; Abboud, Hanna E; El Jamali, Amina

    2015-05-22

    Inflammation and oxidative stress through the production of reactive oxygen species (ROS) are consistently associated with metabolic syndrome/type 2 diabetes. Although the role of Nox2, a major ROS-generating enzyme, is well described in host defense and inflammation, little is known about its potential role in insulin resistance in skeletal muscle. Insulin resistance induced by a high fat diet was mitigated in Nox2-null mice compared with wild-type mice after 3 or 9 months on the diet. High fat feeding increased Nox2 expression, superoxide production, and impaired insulin signaling in skeletal muscle tissue of wild-type mice but not in Nox2-null mice. Exposure of C2C12 cultured myotubes to either high glucose concentration, palmitate, or H2O2 decreases insulin-induced Akt phosphorylation and glucose uptake. Pretreatment with catalase abrogated these effects, indicating a key role for H2O2 in mediating insulin resistance. Down-regulation of Nox2 in C2C12 cells by shRNA prevented insulin resistance induced by high glucose or palmitate but not H2O2. These data indicate that increased production of ROS in insulin resistance induced by high glucose in skeletal muscle cells is a consequence of Nox2 activation. This is the first report to show that Nox2 is a key mediator of insulin resistance in skeletal muscle.

  2. Metabolic, anabolic, and mitogenic insulin responses: A tissue-specific perspective for insulin receptor activators

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insulin acts as the major regulator of the fasting-to-fed metabolic transition by altering substrate metabolism, promoting energy storage, and helping activate protein synthesis. In addition to its glucoregulatory and other metabolic properties, insulin can also act as a growth factor. The metabolic...

  3. Novel Grb14-Mediated Cross Talk between Insulin and p62/Nrf2 Pathways Regulates Liver Lipogenesis and Selective Insulin Resistance.

    PubMed

    Popineau, Lucie; Morzyglod, Lucille; Carré, Nadège; Caüzac, Michèle; Bossard, Pascale; Prip-Buus, Carina; Lenoir, Véronique; Ragazzon, Bruno; Fauveau, Véronique; Robert, Lorenne; Guilmeau, Sandra; Postic, Catherine; Komatsu, Masaaki; Canonne-Hergaux, François; Guillou, Hervé; Burnol, Anne-Françoise

    2016-08-15

    A long-standing paradox in the pathophysiology of metabolic diseases is the selective insulin resistance of the liver. It is characterized by a blunted action of insulin to reduce glucose production, contributing to hyperglycemia, while de novo lipogenesis remains insulin sensitive, participating in turn to hepatic steatosis onset. The underlying molecular bases of this conundrum are not yet fully understood. Here, we established a model of selective insulin resistance in mice by silencing an inhibitor of insulin receptor catalytic activity, the growth factor receptor binding protein 14 (Grb14) in liver. Indeed, Grb14 knockdown enhanced hepatic insulin signaling but also dramatically inhibited de novo fatty acid synthesis. In the liver of obese and insulin-resistant mice, downregulation of Grb14 markedly decreased blood glucose and improved liver steatosis. Mechanistic analyses showed that upon Grb14 knockdown, the release of p62/sqstm1, a partner of Grb14, activated the transcription factor nuclear factor erythroid-2-related factor 2 (Nrf2), which in turn repressed the lipogenic nuclear liver X receptor (LXR). Our study reveals that Grb14 acts as a new signaling node that regulates lipogenesis and modulates insulin sensitivity in the liver by acting at a crossroad between the insulin receptor and the p62-Nrf2-LXR signaling pathways. PMID:27215388

  4. Long lasting cadmium intake is associated with reduction of insulin receptors in rat adipocytes.

    PubMed

    Ficková, M; Eybl, V; Kotyzová, D; Micková, V; Möstbök, S; Brtko, J

    2003-12-01

    The effects of chronic cadmium exposure on adipose tissue have not been extensively reported. In adult Wistar male rats we investigated in vivo effect of 6 weeks lasting cadmium intake in drinking tap water (CdCl2 9,7 mg/l). Insulin receptors in isolated adipocytes from epididymal fat and glucose transporter protein GLUT4 content in fat tissue plasma membranes were determined. Control and Cd treated rats had similar water intake with subsequent heavy augmentation of Cd content in liver of experimental animals. In comparison with controls, Cd intake did not influence body mass increment and fat cell size, but significantly increased serum glycemia and moderately elevated insulinemia. Cadmium intake significantly reduced (approximately 50%) both, total insulin receptors number and density of the receptors in fat cells. No differences in the content of GLUT4 in crude plasma membranes of adipose tissue were observed. Diminished insulin receptors in adipocytes could account for diabetogenic effect of long lasting cadmium intake.

  5. Effects of metformin on insulin receptor tyrosine kinase activity in rat adipocytes.

    PubMed

    Jacobs, D B; Hayes, G R; Truglia, J A; Lockwood, D H

    1986-11-01

    The cellular mechanism(s) by which the biguanide, metformin, exerts its antihyperglycaemic effect was investigated. Rat adipocytes were either treated acutely (2 h) or maintained in a biochemically defined medium (20 h) in the presence or absence of metformin (1 X 10(-4) mol/l). Exposure to the drug resulted in a significant enhancement (p less than 0.01) of hexose transport in both the absence (basal) and presence of insulin. Stimulation of transport was not explained by the increase in the basal state alone, since the incremental response to maximally effective concentrations of insulin was significantly enhanced p less than 0.025. Insulin-receptor tyrosine kinase activity was examined under the same experimental conditions. Activity of the kinase was unaltered as evaluated by phosphorylation of an artificial substrate and by phosphorylation of the receptor in situ. Furthermore, in this investigation neither insulin receptor number nor affinity was changed in adipose tissue treated with metformin. These studies indicate that metformin potentiates the effect of insulin on glucose transport at a site(s) beyond insulin receptor binding and phosphorylation.

  6. Differential Role of Insulin/IGF-1 Receptor Signaling in Muscle Growth and Glucose Homeostasis.

    PubMed

    O'Neill, Brian T; Lauritzen, Hans P M M; Hirshman, Michael F; Smyth, Graham; Goodyear, Laurie J; Kahn, C Ronald

    2015-05-26

    Insulin and insulin-like growth factor 1 (IGF-1) are major regulators of muscle protein and glucose homeostasis. To determine how these pathways interact, we generated mice with muscle-specific knockout of IGF-1 receptor (IGF1R) and insulin receptor (IR). These MIGIRKO mice showed >60% decrease in muscle mass. Despite a complete lack of insulin/IGF-1 signaling in muscle, MIGIRKO mice displayed normal glucose and insulin tolerance. Indeed, MIGIRKO mice showed fasting hypoglycemia and increased basal glucose uptake. This was secondary to decreased TBC1D1 resulting in increased Glut4 and Glut1 membrane localization. Interestingly, overexpression of a dominant-negative IGF1R in muscle induced glucose intolerance in MIGIRKO animals. Thus, loss of insulin/IGF-1 signaling impairs muscle growth, but not whole-body glucose tolerance due to increased membrane localization of glucose transporters. Nonetheless, presence of a dominant-negative receptor, even in the absence of functional IR/IGF1R, induces glucose intolerance, indicating that interactions between these receptors and other proteins in muscle can impair glucose homeostasis. PMID:25981038

  7. PTPRD silencing by DNA hypermethylation decreases insulin receptor signaling and leads to type 2 diabetes.

    PubMed

    Chen, Yng-Tay; Lin, Wei-D; Liao, Wen-Lin; Lin, Ying-Ju; Chang, Jan-Gowth; Tsai, Fuu-Jen

    2015-05-30

    Genome-wide association study (GWAS) data showed that the protein tyrosine phosphatase receptor type delta (PTPRD) is associated with increased susceptibility to type 2 diabetes (T2D) in Han Chinese. A replication study indicated that PTPRD is involved in the insulin signaling pathway; however, the underlying mechanism remains unclear. We evaluated PTPRD expression in patients with T2D and controls. PTPRD expression levels were lower in patients and were correlated with the duration of the disease. Overexpression of the human insulin receptor PPARγ2 in HepG2 cells induced overexpression of PTPRD and the insulin receptor. PTPRD knockdown, using a shRNA, resulted in down-regulation of the insulin receptor. These results indicate that PTPRD activates PPARγ2 in the insulin signaling pathway. Similar results for PTPRD expression were found using a T2D mouse model. Silencing of PTPRD was caused by DNA methylation in T2D mice and patients, and correlated with DNMT1 expression. Furthermore, we showed that a DNMT1 SNP (rs78789647) was correlated with susceptibility to T2D. This study shows for the first time that DNMT1 caused PTPRD DNA hypermethylation and induced insulin signaling silencing in T2D patients. Our findings contribute to a better understanding of the crucial roles of these regulatory elements in human T2D. PMID:26079428

  8. PTPRD silencing by DNA hypermethylation decreases insulin receptor signaling and leads to type 2 diabetes

    PubMed Central

    Chen, Yng-Tay; Lin, Wei-De; Liao, Wen-Lin; Lin, Ying-Ju; Chang, Jan-Gowth; Tsai, Fuu-Jen

    2015-01-01

    Genome-wide association study (GWAS) data showed that the protein tyrosine phosphatase receptor type delta (PTPRD) is associated with increased susceptibility to type 2 diabetes (T2D) in Han Chinese. A replication study indicated that PTPRD is involved in the insulin signaling pathway; however, the underlying mechanism remains unclear. We evaluated PTPRD expression in patients with T2D and controls. PTPRD expression levels were lower in patients and were correlated with the duration of the disease. Overexpression of the human insulin receptor PPARγ2 in HepG2 cells induced overexpression of PTPRD and the insulin receptor. PTPRD knockdown, using a shRNA, resulted in down-regulation of the insulin receptor. These results indicate that PTPRD activates PPARγ2 in the insulin signaling pathway. Similar results for PTPRD expression were found using a T2D mouse model. Silencing of PTPRD was caused by DNA methylation in T2D mice and patients, and correlated with DNMT1 expression. Furthermore, we showed that a DNMT1 SNP (rs78789647) was correlated with susceptibility to T2D. This study shows for the first time that DNMT1 caused PTPRD DNA hypermethylation and induced insulin signaling silencing in T2D patients. Our findings contribute to a better understanding of the crucial roles of these regulatory elements in human T2D. PMID:26079428

  9. PTPRD silencing by DNA hypermethylation decreases insulin receptor signaling and leads to type 2 diabetes.

    PubMed

    Chen, Yng-Tay; Lin, Wei-D; Liao, Wen-Lin; Lin, Ying-Ju; Chang, Jan-Gowth; Tsai, Fuu-Jen

    2015-05-30

    Genome-wide association study (GWAS) data showed that the protein tyrosine phosphatase receptor type delta (PTPRD) is associated with increased susceptibility to type 2 diabetes (T2D) in Han Chinese. A replication study indicated that PTPRD is involved in the insulin signaling pathway; however, the underlying mechanism remains unclear. We evaluated PTPRD expression in patients with T2D and controls. PTPRD expression levels were lower in patients and were correlated with the duration of the disease. Overexpression of the human insulin receptor PPARγ2 in HepG2 cells induced overexpression of PTPRD and the insulin receptor. PTPRD knockdown, using a shRNA, resulted in down-regulation of the insulin receptor. These results indicate that PTPRD activates PPARγ2 in the insulin signaling pathway. Similar results for PTPRD expression were found using a T2D mouse model. Silencing of PTPRD was caused by DNA methylation in T2D mice and patients, and correlated with DNMT1 expression. Furthermore, we showed that a DNMT1 SNP (rs78789647) was correlated with susceptibility to T2D. This study shows for the first time that DNMT1 caused PTPRD DNA hypermethylation and induced insulin signaling silencing in T2D patients. Our findings contribute to a better understanding of the crucial roles of these regulatory elements in human T2D.

  10. Insulin mediated hemodynamic responses in spontaneous hypertensive rats (SHRs): effect of chromosome 4 gene transfer.

    PubMed

    Rao, Sumangala P; McRae, Crystal; Lapanowski, Karen; Churchill, Monique; Kurtz, Theodore W; Dunbar, Joseph C

    2003-02-01

    The spontaneous hypertensive rat (SHR) is a widely studied model of essential hypertension and has been reported to exhibit alterations in carbohydrate and lipid metabolism. Genetic linkage studies implicated that SHR carries deletion variant of Cd36 gene of chromosome 4, the gene that encodes fatty acid transporter. Thus it could be possible that primary genetic defect in SHR is compromised tissue utilization of fatty acid that would form the basis for the pathogenesis of hyperinsulinemia, insulin resistance and insulin-mediated responses. We measured both the hemodynamic and metabolic responses to insulin in SHR in comparison with the chromosome congenic spontaneous hypertensive rats (cSHRs) (rats in which piece of chromosome 4 containing wild type Cd36 was integrated into the SHR genome). A bolus infusion of insulin increased iliac conductance and decreased blood pressure in Wistar Kyoto (WKY) rats. However, in SHR insulin did not reduce blood pressure as in WKY but after about 15 min it significantly enhanced blood pressure and reduced iliac conductance. Whereas in cSHR insulin did not reduce blood pressure as in WKY rats. However, pressor responses to insulin were eliminated by chromosome 4 gene transfer. Glucose clearance was significantly slower in both SHR and cSHR. Glucose tolerance test revealed that SHR are hyperinsulinemic and insulin resistant. These findings indicate that transfer of segment of chromosome 4 from Brown Norway rats onto spontaneous hypertensive background eliminates hyperinsulinemia and pressor effects of insulin.

  11. Human insulin analogues modified at the B26 site reveal a hormone conformation that is undetected in the receptor complex

    SciTech Connect

    Žáková, Lenka; Kletvíková, Emília; Lepšík, Martin; Collinsová, Michaela; Watson, Christopher J.; Turkenburg, Johan P.; Jiráček, Jiří; Brzozowski, Andrzej M.

    2014-10-01

    [AsnB26]- and [GlyB26]-insulin mutants attain a B26-turn like fold without assistance of chemical modifications. Their structures match the insulin receptor interface and expand the spectrum of insulin conformations. The structural characterization of the insulin–insulin receptor (IR) interaction still lacks the conformation of the crucial B21–B30 insulin region, which must be different from that in its storage forms to ensure effective receptor binding. Here, it is shown that insulin analogues modified by natural amino acids at the TyrB26 site can represent an active form of this hormone. In particular, [AsnB26]-insulin and [GlyB26]-insulin attain a B26-turn-like conformation that differs from that in all known structures of the native hormone. It also matches the receptor interface, avoiding substantial steric clashes. This indicates that insulin may attain a B26-turn-like conformation upon IR binding. Moreover, there is an unexpected, but significant, binding specificity of the AsnB26 mutant for predominantly the metabolic B isoform of the receptor. As it is correlated with the B26 bend of the B-chain of the hormone, the structures of AsnB26 analogues may provide the first structural insight into the structural origins of differential insulin signalling through insulin receptor A and B isoforms.

  12. The complexity of signalling mediated by the glucagon-like peptide-1 receptor.

    PubMed

    Fletcher, Madeleine M; Halls, Michelle L; Christopoulos, Arthur; Sexton, Patrick M; Wootten, Denise

    2016-04-15

    The glucagon-like peptide-1 receptor (GLP-1R) is a class B GPCR that is a major therapeutic target for the treatment of type 2 diabetes. The receptor is activated by the incretin peptide GLP-1 promoting a broad range of physiological effects including glucose-dependent insulin secretion and biosynthesis, improved insulin sensitivity of peripheral tissues, preservation of β-cell mass and weight loss, all of which are beneficial in the treatment of type 2 diabetes. Despite this, existing knowledge surrounding the underlying signalling mechanisms responsible for the physiological actions downstream of GLP-1R activation is limited. Here, we review the current understanding around GLP-1R-mediated signalling, in particular highlighting recent contributions to the field on biased agonism, the spatial and temporal aspects for the control of signalling and how these concepts may influence future drug development. PMID:27068973

  13. Receptor-mediated endocytosis of polypeptide hormones is a regulated process: inhibition of (125I)iodoinsulin internalization in hypoinsulinemic diabetes of rat and man

    SciTech Connect

    Carpentier, J.L.; Robert, A.; Grunberger, G.; van Obberghen, E.; Freychet, P.; Orci, L.; Gorden, P.

    1986-07-01

    Much data suggest that receptor-mediated endocytosis is regulated in states of hormone excess. Thus, in hyperinsulinemic states there is an accelerated loss of cell surface insulin receptors. In the present experiments we addressed this question in hypoinsulinemic states, in which insulin binding to cell surface receptors is generally increased. In hepatocytes obtained from hypoinsulinemic streptozotocin-induced diabetic rats, (/sup 125/I)iodoglucagon internalization was increased, while at the same time (/sup 125/I)iodoinsulin internalization was decreased. The defect in (/sup 125/I)iodoinsulin internalization was corrected by insulin treatment of the animal. In peripheral blood monocytes from patients with type I insulinopenic diabetes, internalization of (/sup 125/I)iodoinsulin was impaired; this defect was not present in insulin-treated patients. These data in the hypoinsulinemic rat and human diabetes suggest that receptor-mediated endocytosis is regulated in states of insulin deficiency as well as insulin excess. Delayed or reduced internalization of the insulin-receptor complex could amplify the muted signal caused by deficient hormone secretion.

  14. Rapid elevation of sodium transport through insulin is mediated by AKT in alveolar cells

    PubMed Central

    Mattes, Charlott; Laube, Mandy; Thome, Ulrich H.

    2014-01-01

    Abstract Alveolar fluid clearance is driven by vectorial Na+ transport and promotes postnatal lung adaptation. The effect of insulin on alveolar epithelial Na+ transport was studied in isolated alveolar cells from 18–19‐day gestational age rat fetuses. Equivalent short‐circuit currents (ISC) were measured in Ussing chambers and different kinase inhibitors were used to determine the pathway of insulin stimulation. In Western Blot measurements the activation of mediators stimulated by insulin was analyzed. The ISC showed a fast dose‐dependent increase by insulin, which could be attributed to an increased ENaC (epithelial Na+ channel) activity in experiments with permeabilized apical or basolateral membrane. 5‐(N‐Ethyl‐N‐isopropyl)amiloride inhibition of ISC was not affected, however, benzamil‐sensitive ISC was increased in insulin‐stimulated monolayers. The application of LY‐294002 and Akti1/2 both completely blocked the stimulating effect of insulin on ISC. PP242 partly blocked the effect of insulin, whereas Rapamycin evoked no inhibition. Western Blot measurements revealed an increased phosphorylation of AKT after insulin stimulation. SGK1 activity was also increased by insulin as shown by Western Blot of pNDRG1. However, in Ussing chamber measurements, GSK650394, an inhibitor of SGK1 did not prevent the increase in ISC induced by insulin. The application of IGF‐1 mimicked the effect of insulin and increased the ENaC activity. In addition, an increased autophosphorylation of the IGF‐1R/IR was observed after insulin stimulation. We conclude that insulin rapidly increases epithelial Na+ transport by enhancing the activity of endogenous ENaC through activation of PI3K/AKT in alveolar cells. PMID:24760523

  15. Insulin receptor substrate 4 couples the leptin receptor to multiple signaling pathways.

    PubMed

    Wauman, Joris; De Smet, Anne-Sophie; Catteeuw, Dominiek; Belsham, Denise; Tavernier, Jan

    2008-04-01

    Leptin is an adipokine that regulates food intake and energy expenditure by activating its hypothalamic leptin receptor (LR). Members of the insulin receptor substrate (IRS) family serve as adaptor proteins in the signaling pathways of several cytokines and hormones and a role for IRS2 in central leptin physiology is well established. Using mammalian protein-protein interaction trap (MAPPIT), a cytokine receptor-based two-hybrid method, in the N38 hypothalamic cell line, we here demonstrate that also IRS4 interacts with the LR. This recruitment is leptin dependent and requires phosphorylation of the Y1077 motif of the LR. Domain mapping of IRS4 revealed the critical role of the pleckstrin homology domain for full interaction. In line with its function as an adaptor protein, IRS4 interacted with the regulatory p85 subunit of the phosphatidylinositol 3-kinase, phospholipase Cgamma, and the suppressor of cytokine signaling (SOCS) family members SOCS2, SOCS6, and SOCS7 and thus can modulate LR signaling. PMID:18165436

  16. Structural and functional characterization of the human T lymphocyte receptor for insulin-like growth factor I in vitro.

    PubMed Central

    Tapson, V F; Boni-Schnetzler, M; Pilch, P F; Center, D M; Berman, J S

    1988-01-01

    Growth factor receptors for T lymphocytes, such as interleukin 2 and insulin, are present on activated but not resting T lymphocytes. We sought to determine if insulin-like growth factor I (IGF-I) could act as a growth factor for human T cells and to characterize its receptor on resting and activated cells. Recombinant IGF-I induced two separate functions. It was chemotactic for and increased incorporation of tritiated thymidine into both unactivated (resting) and mitogen-activated T cells. High-affinity 125I-IGF-I binding to human T cells was saturable with an apparent Kd of 1.2 +/- .6 X 10(-10) M for binding to activated T cells and 1.2 +/- .9 X 10(-10) for unactivated T cells. The calculated binding for activated cells was 330 +/- 90 and for resting cells 45 +/- 9 high-affinity receptor sites per cell. Affinity cross-linking of 125I-IGF-I to resting or activated T cells revealed a radioligand-receptor complex of 360,000 mol wt when analyzed by SDS-PAGE without reduction and complexes of 270,000 and 135,000 mol wt upon reduction; prior incubation with excess unlabeled IGF-I prevented formation of the 125I-IGF-I receptor complex. Our data suggest that both resting and activated T lymphocytes bear functional IGF-I receptors similar to those found in other tissues. These receptors may mediate T cell growth and chemotaxis. Images PMID:3262126

  17. Exploring the Evolutionary Relationship of Insulin Receptor Substrate Family Using Computational Biology

    PubMed Central

    Chakraborty, Chiranjib; Agoramoorthy, Govindasamy; Hsu, Minna J.

    2011-01-01

    Insulin receptor substrate (IRS) harbors proteins such as IRS1, IRS2, IRS3, IRS4, IRS5 and IRS6. These key proteins act as vital downstream regulators in the insulin signaling pathway. However, little is known about the evolutionary relationship among the IRS family members. This study explores the potential to depict the evolutionary relationship among the IRS family using bioinformatics, algorithm analysis and mathematical models. PMID:21364910

  18. How neural mediation of anticipatory and compensatory insulin release helps us tolerate food.

    PubMed

    Teff, Karen L

    2011-04-18

    Learned anticipatory and compensatory responses allow the animal and human to maintain metabolic homeostasis during periods of nutritional challenges, either acutely within each meal or chronically during periods of overnutrition. This paper discusses the role of neurally-mediated anticipatory responses in humans and their role in glucoregulation, focusing on cephalic phase insulin and pancreatic polypeptide release as well as compensatory insulin release during the etiology of insulin resistance. The necessary stimuli required to elicit CPIR and vagal activation are discussed and the role of CPIR and vagal efferent activation in intra-meal metabolic homeostasis and during chronic nutritional challenges are reviewed.

  19. How neural mediation of anticipatory and compensatory insulin release helps us tolerate food

    PubMed Central

    Teff, Karen L.

    2011-01-01

    Learned anticipatory and compensatory responses allow the animal and human to maintain metabolic homeostasis during periods of nutritional challenges, either acutely within each meal or chronically during periods of overnutrition. This paper discusses the role of neurally-mediated anticipatory responses in humans and their role in glucoregulation, focusing on cephalic phase insulin and pancreatic polypeptide release as well as compensatory insulin release during the etiology of insulin resistance. The necessary stimuli required to elicit CPIR and vagal activation are discussed and the role of CPIR and vagal efferent activation in intra-meal metabolic homeostasis and during chronic nutritional challenges are reviewed. PMID:21256146

  20. Insulin

    MedlinePlus

    ... pump is connected to your body by a flexible tube that has a tip that sticks under your skin. A cartridge of insulin is put in the pump. The insulin flows through the tube into your body. The pump controls how much insulin goes into your body. The ...

  1. Label-Free Proteomic Identification of Endogenous, Insulin-Stimulated Interaction Partners of Insulin Receptor Substrate-1

    NASA Astrophysics Data System (ADS)

    Geetha, Thangiah; Langlais, Paul; Luo, Moulun; Mapes, Rebekka; Lefort, Natalie; Chen, Shu-Chuan; Mandarino, Lawrence J.; Yi, Zhengping

    2011-03-01

    Protein-protein interactions are key to most cellular processes. Tandem mass spectrometry (MS/MS)-based proteomics combined with co-immunoprecipitation (CO-IP) has emerged as a powerful approach for studying protein complexes. However, a majority of systematic proteomics studies on protein-protein interactions involve the use of protein overexpression and/or epitope-tagged bait proteins, which might affect binding stoichiometry and lead to higher false positives. Here, we report an application of a straightforward, label-free CO-IP-MS/MS method, without the use of protein overexpression or protein tags, to the investigation of changes in the abundance of endogenous proteins associated with a bait protein, which is in this case insulin receptor substrate-1 (IRS-1), under basal and insulin stimulated conditions. IRS-1 plays a central role in the insulin signaling cascade. Defects in the protein-protein interactions involving IRS-1 may lead to the development of insulin resistance and type 2 diabetes. HPLC-ESI-MS/MS analyses identified eleven novel endogenous insulin-stimulated IRS-1 interaction partners in L6 myotubes reproducibly, including proteins play an important role in protein dephosphorylation [protein phosphatase 1 regulatory subunit 12A, (PPP1R12A)], muscle contraction and actin cytoskeleton rearrangement, endoplasmic reticulum stress, and protein folding, as well as protein synthesis. This novel application of label-free CO-IP-MS/MS quantification to assess endogenous interaction partners of a specific protein will prove useful for understanding how various cell stimuli regulate insulin signal transduction.

  2. Context-dependent regulation of feeding behaviour by the insulin receptor, DAF-2, in Caenorhabditis elegans.

    PubMed

    Dillon, James; Holden-Dye, Lindy; O'Connor, Vincent; Hopper, Neil A

    2016-06-01

    Insulin signalling plays a significant role in both developmental programmes and pathways modulating the neuronal signalling that controls adult behaviour. Here, we have investigated insulin signalling in food-associated behaviour in adult C. elegans by scoring locomotion and feeding on and off bacteria, the worm's food. This analysis used mutants (daf-2, daf-18) of the insulin signalling pathway, and we provide evidence for an acute role for insulin signalling in the adult nervous system distinct from its impact on developmental programmes. Insulin receptor daf-2 mutants move slower than wild type both on and off food and showed impaired locomotory responses to food deprivation. This latter behaviour is manifest as a failure to instigate dispersal following prolonged food deprivation and suggests a role for insulin signalling in this adaptive response. Insulin receptor daf-2 mutants are also deficient in pharyngeal pumping on food and off food. Pharmacological analysis showed the pharynx of daf-2 is selectively compromised in its response to 5-HT compared to the excitatory neuropeptide FLP-17. By comparing the adaptive pharyngeal behaviour in intact worms and isolated pharyngeal preparations, we determined that an insulin-dependent signal extrinsic to the pharyngeal system is involved in feeding adaptation. Hence, we suggest that reactive insulin signalling modulates both locomotory foraging and pharyngeal pumping as the animal adapts to the absence of food. We discuss this in the context of insulin signalling directing a shift in the sensitivity of neurotransmitter systems to regulate the worm's response to changes in food availability in the environment. PMID:27209024

  3. Phosphorylation of insulin receptor substrate-1 serine 307 correlates with JNK activity in atrophic skeletal muscle

    NASA Technical Reports Server (NTRS)

    Hilder, Thomas L.; Tou, Janet C L.; Grindeland, Richard E.; Wade, Charles E.; Graves, Lee M.

    2003-01-01

    c-Jun NH(2)-terminal kinase (JNK) has been shown to negatively regulate insulin signaling through serine phosphorylation of residue 307 within the insulin receptor substrate-1 (IRS-1) in adipose and liver tissue. Using a rat hindlimb suspension model for muscle disuse atrophy, we found that JNK activity was significantly elevated in atrophic soleus muscle and that IRS-1 was phosphorylated on Ser(307) prior to the degradation of the IRS-1 protein. Moreover, we observed a corresponding reduction in Akt activity, providing biochemical evidence for the development of insulin resistance in atrophic skeletal muscle.

  4. p53 mediates impaired insulin signaling in 3T3-L1 adipocytes during hyperinsulinemia.

    PubMed

    Posa, Jyothi Kumari; Selvaraj, Sudhagar; Sangeetha, K N; Baskaran, Sarath Kumar; Lakshmi, B S

    2014-07-01

    Hyperinsulinemia is being implicated in the development of insulin resistance but remains poorly understood. The present study focuses on p53-mediated impaired insulin signaling by hyperinsulinemia in 3T3-L1 adipocytes. Hyperinsulinemia impairs insulin-stimulated glucose uptake and its cellular signaling in a dose- and time-dependent manner. An increased level of reactive oxygen species (ROS) and stress response signals were observed, and quenching of the ROS by an antioxidant N-acetylcysteine (NAC) did not revert impaired insulin sensitivity. The tumor suppressor p53 has emerged as a crucial factor in the metabolic adaptation of cancer cells under nutritional starvation and is being studied in the development of insulin resistance in adipocytes at physiological level. Interestingly, we observed hyperinsulinemia-enhanced p53 level in a time-dependent manner without exhibiting cytotoxicity. Transient knockdown of p53 partially improved insulin sensitivity revealing a novel link between p53 and insulin signaling in adipocytes. The findings suggest that hyperinsulinemia-induced p53 impairs insulin sensitivity in 3T3-L1 adipocytes.

  5. The insulin and IGF1 receptor kinase domains are functional dimers in the activated state

    NASA Astrophysics Data System (ADS)

    Cabail, M. Zulema; Li, Shiqing; Lemmon, Eric; Bowen, Mark E.; Hubbard, Stevan R.; Miller, W. Todd

    2015-03-01

    The insulin receptor (IR) and insulin-like growth factor-1 receptor (IGF1R) are highly related receptor tyrosine kinases with a disulfide-linked homodimeric architecture. Ligand binding to the receptor ectodomain triggers tyrosine autophosphorylation of the cytoplasmic domains, which stimulates catalytic activity and creates recruitment sites for downstream signalling proteins. Whether the two phosphorylated tyrosine kinase domains within the receptor dimer function independently or cooperatively to phosphorylate protein substrates is not known. Here we provide crystallographic, biophysical and biochemical evidence demonstrating that the phosphorylated kinase domains of IR and IGF1R form a specific dimeric arrangement involving an exchange of the juxtamembrane region proximal to the kinase domain. In this dimer, the active position of α-helix C in the kinase N lobe is stabilized, which promotes downstream substrate phosphorylation. These studies afford a novel strategy for the design of small-molecule IR agonists as potential therapeutic agents for type 2 diabetes.

  6. INS-1 cell glucose-stimulated insulin secretion is reduced by the downregulation of the 67 kDa laminin receptor.

    PubMed

    Sabra, Georges; Dubiel, Evan A; Kuehn, Carina; Khalfaoui, Taoufik; Beaulieu, Jean-François; Vermette, Patrick

    2015-12-01

    Understanding β cell-extracellular matrix (ECM) interactions can advance our knowledge of the mechanisms that control glucose homeostasis and improve culture methods used in islet transplantation for the treatment of diabetes. Laminin is the main constituent of the basement membrane and is involved in pancreatic β cell survival and function, even enhancing glucose-stimulated insulin secretion. Most of the studies on cell responses towards laminin have focused on integrin-mediated interactions, while much less attention has been paid on non-integrin receptors, such as the 67 kDa laminin receptor (67LR). The specificity of the receptor-ligand interaction through the adhesion of INS-1 cells (a rat insulinoma cell line) to CDPGYIGSR-, GRGDSPC- or CDPGYIGSR + GRGDSPC-covered surfaces was evaluated. Also, the effects of the 67LR knocking down over glucose-stimulated insulin secretion were investigated. Culture of the INS-1 cells on the bioactive surfaces was improved compared to the low-fouling carboxymethyl dextran (CMD) surfaces, while downregulation of the 67LR resulted in reduced cell adhesion to surfaces bearing the CDPGYIGSR peptide. Glucose-stimulated insulin secretion was hindered by downregulation of the 67LR, regardless of the biological motif available on the biomimetic surfaces on which the cells were cultured. This finding illustrates the importance of the 67LR in glucose-stimulated insulin secretion and points to a possible role of the 67LR in the mechanisms of insulin secretion.

  7. Comparative analyses of lysophosphatidic acid receptor-mediated signaling.

    PubMed

    Fukushima, Nobuyuki; Ishii, Shoichi; Tsujiuchi, Toshifumi; Kagawa, Nao; Katoh, Kazutaka

    2015-06-01

    Lysophosphatidic acid (LPA) is a bioactive lipid mediator that activates G protein-coupled LPA receptors to exert fundamental cellular functions. Six LPA receptor genes have been identified in vertebrates and are classified into two subfamilies, the endothelial differentiation genes (edg) and the non-edg family. Studies using genetically engineered mice, frogs, and zebrafish have demonstrated that LPA receptor-mediated signaling has biological, developmental, and pathophysiological functions. Computational analyses have also identified several amino acids (aa) critical for LPA recognition by human LPA receptors. This review focuses on the evolutionary aspects of LPA receptor-mediated signaling by comparing the aa sequences of vertebrate LPA receptors and LPA-producing enzymes; it also summarizes the LPA receptor-dependent effects commonly observed in mouse, frog, and fish. PMID:25732591

  8. Theoretical and Computational Studies of Peptides and Receptors of the Insulin Family

    PubMed Central

    Vashisth, Harish

    2015-01-01

    Synergistic interactions among peptides and receptors of the insulin family are required for glucose homeostasis, normal cellular growth and development, proliferation, differentiation and other metabolic processes. The peptides of the insulin family are disulfide-linked single or dual-chain proteins, while receptors are ligand-activated transmembrane glycoproteins of the receptor tyrosine kinase (RTK) superfamily. Binding of ligands to the extracellular domains of receptors is known to initiate signaling via activation of intracellular kinase domains. While the structure of insulin has been known since 1969, recent decades have seen remarkable progress on the structural biology of apo and liganded receptor fragments. Here, we review how this useful structural information (on ligands and receptors) has enabled large-scale atomically-resolved simulations to elucidate the conformational dynamics of these biomolecules. Particularly, applications of molecular dynamics (MD) and Monte Carlo (MC) simulation methods are discussed in various contexts, including studies of isolated ligands, apo-receptors, ligand/receptor complexes and intracellular kinase domains. The review concludes with a brief overview and future outlook for modeling and computational studies in this family of proteins. PMID:25680077

  9. High insulin-induced down-regulation of Erk-1/IGF-1R/FGFR-1 signaling is required for oxidative stress-mediated apoptosis of adipose-derived stem cells.

    PubMed

    Scioli, Maria Giovanna; Cervelli, Valerio; Arcuri, Gaetano; Gentile, Pietro; Doldo, Elena; Bielli, Alessandra; Bonanno, Elena; Orlandi, Augusto

    2014-12-01

    Homeostasis of adipose tissue requires highly coordinated response between circulating factors and cell population. Human adult adipose-derived stem cells (ASCs) display multiple differentiation properties and are sensitive to insulin stimulation. Insulin resistance and high level of circulating insulin characterize patients with type 2 diabetes and obesity. At physiological concentration, insulin promoted proliferation and survival of ASCs in vitro, whereas high insulin level induced their dose-dependent proliferative arrest and apoptosis. Insulin-induced apoptotic commitment depended on the down-regulation of Erk-1, insulin growth factor-1 receptor (IGF-1R), and fibroblast growth factor receptor-1 (FGFR-1)-mediated signaling. Specific inhibition of Erk-1/2, IGF-1R, and FGFR activity promoted ASC apoptosis but did not increase insulin effects, whereas EGFR and ErbB2 inhibition potentiated insulin-induced apoptosis. FGFRs and EGFR inhibition reduced ASC adipogenic differentiation, whereas Erk-1/2 and IGF-1R inhibition was ineffective. Insulin-induced apoptosis associated to reactive oxygen species (ROS) accumulation and inhibition of NADPH oxidase 4 (Nox4) activity prevented ASC apoptosis. Moreover, specific inhibition of Erk-1/2, IGF-1R, and FGFR-1 activity promoted ROS generation and this effect was not cumulative with that of insulin alone. Our data indicate that insulin concentration is a critical regulatory switch between proliferation and survival of ASCs. High insulin level-induced apoptotic machinery involves Nox4-generated oxidative stress and the down-regulation of a complex receptor signaling, partially distinct from that influencing adipogenic differentiation of ASCs.

  10. Association of the insulin-receptor variant Met-985 with hyperglycemia and non-insulin-dependent diabetes mellitus in the Netherlands: A population-based study

    SciTech Connect

    `t Hart, L.M.; Maassen, J.A.; Does, F.E.E. van der

    1996-11-01

    One of the characteristics of non-insulin-dependent diabetes mellitus (NIDDM) is the presence of insulin. Most NIDDM patients have a normal sequence of the insulin receptor, indicating that, if insulin-receptor mutations contribute to the development of NIDDM, they will be present only in a minor fraction of the NIDDM population. The goal of the present study was to examine whether insulin-receptor mutations contribute to the development of NIDDM. We examined 161 individuals with NIDDM and 538 healthy controls from the population-based Rotterdam study for the presence of mutations in the insulin-receptor gene by SSCP. A heterozygous mutation changing valine-985 into methionine was detected in 5.6% of diabetic subjects and in 1.3% of individuals with normal oral glucose tolerance test. Adjusted for age, gender, and body-mass index, this revealed a relative risk for diabetes of 4.49 (95% confidence interval 1.59-12.25) for Met-985 carriers. When the total study group was analyzed, the prevalence of the mutation increased with increasing serum glucose levels (test for trend P < .005). We conclude that the Met-985 insulin-receptor variant associates with hyperglycemia and represents a risk factor for NIDDM. 30 refs., 3 figs., 1 tab.

  11. The Amelioration of Hepatic Steatosis by Thyroid Hormone Receptor Agonists Is Insufficient to Restore Insulin Sensitivity in Ob/Ob Mice

    PubMed Central

    Cimini, Stephanie L.; Webb, Paul; Phillips, Kevin J.

    2015-01-01

    Thyroid hormone receptor (TR) agonists have been proposed as therapeutic agents to treat non-alcoholic fatty liver disease (NAFLD) and insulin resistance. We investigated the ability of the TR agonists GC-1 and KB2115 to reduce hepatic steatosis in ob/ob mice. Both compounds markedly reduced hepatic triglyceride levels and ameliorated hepatic steatosis. However, the amelioration of fatty liver was not sufficient to improve insulin sensitivity in these mice and reductions in hepatic triglycerides did not correlate with improvements in insulin sensitivity or glycemic control. Instead, the effects of TR activation on glycemia varied widely and were found to depend upon the time of treatment as well as the compound and dosage used. Lower doses of GC-1 were found to further impair glycemic control, while a higher dose of the same compound resulted in substantially improved glucose tolerance and insulin sensitivity, despite all doses being equally effective at reducing hepatic triglyceride levels. Improvements in glycemic control and insulin sensitivity were observed only in treatments that also increased body temperature, suggesting that the induction of thermogenesis may play a role in mediating these beneficial effects. These data illustrate that the relationship between TR activation and insulin sensitivity is complex and suggests that although TR agonists may have value in treating NAFLD, their effect on insulin sensitivity must also be considered. PMID:25849936

  12. Insulin-like Growth Factor-II (IGF-II) and IGF-II Analogs with Enhanced Insulin Receptor-a Binding Affinity Promote Neural Stem Cell Expansion*

    PubMed Central

    Ziegler, Amber N.; Chidambaram, Shravanthi; Forbes, Briony E.; Wood, Teresa L.; Levison, Steven W.

    2014-01-01

    The objective of this study was to employ genetically engineered IGF-II analogs to establish which receptor(s) mediate the stemness promoting actions of IGF-II on mouse subventricular zone neural precursors. Neural precursors from the subventricular zone were propagated in vitro in culture medium supplemented with IGF-II analogs. Cell growth and identity were analyzed using sphere generation and further analyzed by flow cytometry. F19A, an analog of IGF-II that does not bind the IGF-2R, stimulated an increase in the proportion of neural stem cells (NSCs) while decreasing the proportion of the later stage progenitors at a lower concentration than IGF-II. V43M, which binds to the IGF-2R with high affinity but which has low binding affinity to the IGF-1R and to the A isoform of the insulin receptor (IR-A) failed to promote NSC growth. The positive effects of F19A on NSC growth were unaltered by the addition of a functional blocking antibody to the IGF-1R. Altogether, these data lead to the conclusion that IGF-II promotes stemness of NSCs via the IR-A and not through activation of either the IGF-1R or the IGF-2R. PMID:24398690

  13. Grb-IR: A SH2-Domain-Containing Protein that Binds to the Insulin Receptor and Inhibits Its Function

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Roth, Richard A.

    1995-10-01

    To identify potential signaling molecules involved in mediating insulin-induced biological responses, a yeast two-hybrid screen was performed with the cytoplasmic domain of the human insulin receptor (IR) as bait to trap high-affinity interacting proteins encoded by human liver or HeLa cDNA libraries. A SH2-domain-containing protein was identified that binds with high affinity in vitro to the autophosphorylated IR. The mRNA for this protein was found by Northern blot analyses to be highest in skeletal muscle and was also detected in fat by PCR. To study the role of this protein in insulin signaling, a full-length cDNA encoding this protein (called Grb-IR) was isolated and stably expressed in Chinese hamster ovary cells overexpressing the human IR. Insulin treatment of these cells resulted in the in situ formation of a complex of the IR and the 60-kDa Grb-IR. Although almost 75% of the Grb-IR protein was bound to the IR, it was only weakly tyrosine-phosphorylated. The formation of this complex appeared to inhibit the insulin-induced increase in tyrosine phosphorylation of two endogenous substrates, a 60-kDa GTPase-activating-protein-associated protein and, to a lesser extent, IR substrate 1. The subsequent association of this latter protein with phosphatidylinositol 3-kinase also appeared to be inhibited. These findings raise the possibility that Grb-IR is a SH2-domain-containing protein that directly complexes with the IR and serves to inhibit signaling or redirect the IR signaling pathway.

  14. Glucose-Dependent Insulin Secretion in Pancreatic β-Cell Islets from Male Rats Requires Ca2+ Release via ROS-Stimulated Ryanodine Receptors

    PubMed Central

    Llanos, Paola; Contreras-Ferrat, Ariel; Barrientos, Genaro; Valencia, Marco; Mears, David; Hidalgo, Cecilia

    2015-01-01

    Glucose-stimulated insulin secretion (GSIS) from pancreatic β-cells requires an increase in intracellular free Ca2+ concentration ([Ca2+]). Glucose uptake into β-cells promotes Ca2+ influx and reactive oxygen species (ROS) generation. In other cell types, Ca2+ and ROS jointly induce Ca2+ release mediated by ryanodine receptor (RyR) channels. Therefore, we explored here if RyR-mediated Ca2+ release contributes to GSIS in β-cell islets isolated from male rats. Stimulatory glucose increased islet insulin secretion, and promoted ROS generation in islets and dissociated β-cells. Conventional PCR assays and immunostaining confirmed that β-cells express RyR2, the cardiac RyR isoform. Extended incubation of β-cell islets with inhibitory ryanodine suppressed GSIS; so did the antioxidant N-acetyl cysteine (NAC), which also decreased insulin secretion induced by glucose plus caffeine. Inhibitory ryanodine or NAC did not affect insulin secretion induced by glucose plus carbachol, which engages inositol 1,4,5-trisphosphate receptors. Incubation of islets with H2O2 in basal glucose increased insulin secretion 2-fold. Inhibitory ryanodine significantly decreased H2O2-stimulated insulin secretion and prevented the 4.5-fold increase of cytoplasmic [Ca2+] produced by incubation of dissociated β-cells with H2O2. Addition of stimulatory glucose or H2O2 (in basal glucose) to β-cells disaggregated from islets increased RyR2 S-glutathionylation to similar levels, measured by a proximity ligation assay; in contrast, NAC significantly reduced the RyR2 S-glutathionylation increase produced by stimulatory glucose. We propose that RyR2-mediated Ca2+ release, induced by the concomitant increases in [Ca2+] and ROS produced by stimulatory glucose, is an essential step in GSIS. PMID:26046640

  15. Simvastatin may induce insulin resistance through a novel fatty acid mediated cholesterol independent mechanism

    PubMed Central

    Kain, Vasundhara; Kapadia, Bandish; Misra, Parimal; Saxena, Uday

    2015-01-01

    Statins are a class of oral drugs that are widely used for treatment of hypercholesterolemia. Recent clinical data suggest that chronic use of these drugs increases the frequency of new onset diabetes. Studies to define the risks of statin-induced diabetes and its underlying mechanisms are clearly necessary. We explored the possible mechanism of statin induced insulin resistance using a well-established cell based model and simvastatin as a prototype statin. Our data show that simvastatin induces insulin resistance in a cholesterol biosynthesis inhibition independent fashion but does so by a fatty acid mediated effect on insulin signaling pathway. These data may help design strategies for prevention of statin induced insulin resistance and diabetes in patients with hypercholesterolemia. PMID:26345110

  16. Combination therapy with GLP-1 receptor agonists and basal insulin: a systematic review of the literature

    PubMed Central

    Balena, R; Hensley, I E; Miller, S; Barnett, A H

    2013-01-01

    Treatment algorithms for type 2 diabetes call for intensification of therapy over time as the disease progresses and glycaemic control worsens. If diet, exercise and oral antihyperglycaemic medications (OAMs) fail to maintain glycaemic control then basal insulin is added and ultimately prandial insulin may be required. However, such an intensification strategy carries risk of increased hypoglycaemia and weight gain, both of which are associated with worse long-term outcomes. An alternative strategy is to intensify therapy by the addition of a short-acting glucagon-like peptide-1 receptor agonist (GLP-1 RA) rather than prandial insulin. Short-acting GLP-1 RAs such as exenatide twice daily are particularly effective at reducing postprandial glucose while basal insulin has a greater effect on fasting glucose, providing a physiological rationale for this complementary approach. This review analyzes the latest randomized controlled clinical trials of insulin/GLP-1 RA combination therapy and examines results from ‘real-world’ use of the combinations as reported through observational and clinical practice studies. The most common finding across all types of studies was that combination therapy improved glycaemic control without weight gain or an increased risk of hypoglycaemia. Many studies reported weight loss and a reduction in insulin use when a GLP-1 RA was added to existing insulin therapy. Overall, the relative degree of benefit to glycaemic control and weight was influenced by the insulin titration employed in conjunction with the GLP-1 RA. The greatest glycaemic benefits were observed in studies with structured titration of insulin to glycaemic targets while the greatest weight benefits were observed in studies with a protocol-specified focus on insulin sparing. The adverse event profile of GLP-1 RAs in the reviewed trials was similar to that reported with GLP-1 RAs as monotherapy or in combination with OAMs with gastrointestinal events being the most commonly

  17. A receptor state space model of the insulin signalling system in glucose transport.

    PubMed

    Gray, Catheryn W; Coster, Adelle C F

    2015-12-01

    Insulin is a potent peptide hormone that regulates glucose levels in the blood. Insulin-sensitive cells respond to insulin stimulation with the translocation of glucose transporter 4 (GLUT4) to the plasma membrane (PM), enabling the clearance of glucose from the blood. Defects in this process can give rise to insulin resistance and ultimately diabetes. One widely cited model of insulin signalling leading to glucose transport is that of Sedaghat et al. (2002) Am. J. Physiol. Endocrinol. Metab. 283, E1084-E1101. Consisting of 20 deterministic ordinary differential equations (ODEs), it is the most comprehensive model of insulin signalling to date. However, the model possesses some major limitations, including the non-conservation of key components. In the current work, we detail mathematical and sensitivity analyses of the Sedaghat model. Based on the results of these analyses, we propose a reduced state space model of the insulin receptor subsystem. This reduced model maintains the input-output relation of the original model but is computationally more efficient, analytically tractable and resolves some of the limitations of the Sedaghat model.

  18. Increase of Calcium Sensing Receptor Expression Is Related to Compensatory Insulin Secretion during Aging in Mice

    PubMed Central

    Oh, Yoon Sin; Seo, Eun-Hui; Lee, Young-Sun; Cho, Sung Chun; Jung, Hye Seung; Park, Sang Chul; Jun, Hee-Sook

    2016-01-01

    Type 2 diabetes is caused by both insulin resistance and relative insulin deficiency. To investigate age-related changes in glucose metabolism and development of type 2 diabetes, we compared glucose homeostasis in different groups of C57BL/6J mice ranging in age from 4 months to 20 months (4, 8, 12, 16 and 20 months). Interestingly, we observed that non-fasting glucose levels were not significantly changed, but glucose tolerance gradually increased by 20 months of age, whereas insulin sensitivity declined with age. We found that the size of islets and glucose-stimulated insulin secretion increased with aging. However, mRNA expression of pancreatic and duodenal homeobox 1 and granuphilin was decreased in islets of older mice compared with that of 4-month-old mice. Serum calcium (Ca2+) levels were significantly decreased at 12, 20 and 28 months of age compared with 4 months and calcium sensing receptor (CaSR) mRNA expression in the islets significantly increased with age. An extracellular calcium depletion agent upregulated CaSR mRNA expression and consequently enhanced insulin secretion in INS-1 cells and mouse islets. In conclusion, we suggest that decreased Ca2+ levels and increased CaSR expression might be involved in increased insulin secretion to compensate for insulin resistance in aged mice. PMID:27441644

  19. Expression of variant forms of insulin receptor substrate-1 identified in patients with noninsulin-dependent diabetes mellitus.

    PubMed

    Imai, Y; Philippe, N; Sesti, G; Accili, D; Taylor, S I

    1997-12-01

    Several polymorphisms have been identified in the amino acid sequence of human insulin receptor substrate-1 (IRS-1). Some of the variant sequences have been reported to be increased in prevalence among patients with noninsulin-dependent diabetes mellitus (NIDDM). This observation led to the hypothesis that these amino acid substitutions may impair the function of IRS-1, thereby causing the insulin resistance seen in patients with NIDDM. To address this question, we have designed studies to evaluate the effects of three variant sequences identified in our laboratory: Gly819-->Arg, Gly972-->Arg, and Arg1221-->Cys. We constructed four IRS-1 expression vectors for transfection in COS-7 cells: wild-type, single mutant (Gly819-->Arg), double mutant (Gly819-->Arg; Gly972-->Arg), and triple mutant (Gly819-->Arg; Gly972-->Arg; Arg1221-->Cys) IRS-1. The mutations did not alter the level of expression or the extent of insulin receptor-mediated tyrosine phosphorylation of recombinant IRS-1. Moreover, the mutations did not lead to a detectable impairment in the association of recombinant IRS-1 with important downstream effectors, including the p85 subunit of phosphatidylinositol 3-kinase and growth factor receptor-binding protein-2. We conclude that these amino acid substitutions do not appear to cause a major defect in the function of IRS-1, as judged by our assays. However, this type of assay probably lacks the sensitivity to detect subtle functional defects. In light of the suggestive associations observed in epidemiological studies, it is premature to totally discard the hypothesis that variant sequences of IRS-1 may contribute to the pathogenesis of NIDDM. Nevertheless, our studies cannot be interpreted as lending support to that hypothesis. PMID:9398740

  20. Aptamer-based single-molecule imaging of insulin receptors in living cells

    NASA Astrophysics Data System (ADS)

    Chang, Minhyeok; Kwon, Mijin; Kim, Sooran; Yunn, Na-Oh; Kim, Daehyung; Ryu, Sung Ho; Lee, Jong-Bong

    2014-05-01

    We present a single-molecule imaging platform that quantitatively explores the spatiotemporal dynamics of individual insulin receptors in living cells. Modified DNA aptamers that specifically recognize insulin receptors (IRs) with a high affinity were selected through the SELEX process. Using quantum dot-labeled aptamers, we successfully imaged and analyzed the diffusive motions of individual IRs in the plasma membranes of a variety of cell lines (HIR, HEK293, HepG2). We further explored the cholesterol-dependent movement of IRs to address whether cholesterol depletion interferes with IRs and found that cholesterol depletion of the plasma membrane by methyl-β-cyclodextrin reduces the mobility of IRs. The aptamer-based single-molecule imaging of IRs will provide better understanding of insulin signal transduction through the dynamics study of IRs in the plasma membrane.

  1. Genetic analysis of type-1 insulin-like growth factor receptor signaling through insulin receptor substrate-1 and -2 in pancreatic beta cells.

    PubMed

    Xuan, Shouhong; Szabolcs, Matthias; Cinti, Francesca; Perincheri, Suhdir; Accili, Domenico; Efstratiadis, Argiris

    2010-12-24

    Signaling by receptor tyrosine kinases regulates pancreatic β cell function. Inactivation of insulin receptor (InsR), IGF1 receptor (Igf1r), or Irs1 in β cells impairs insulin secretion. Conversely, Irs2 ablation impairs β cell replication. In this study, we examined aspects of the Igf1r regulatory signaling cascade in β cells. To examine genetically the involvement of Irs1 and Irs2 in Igf1r signaling, we generated double mutant mice lacking Igf1r specifically in pancreatic β cells in an Irs1- or Irs2-null background. We show that Igf1r/Irs1 double mutants do not differ phenotypically from Irs1 single mutants and exhibit hyperinsulinemia, while maintaining normal β cell mass and glucose tolerance. In contrast, lack of Igf1r function in β cells aggravates the consequences of Irs2 ablation in double mutants and results in lethal diabetes by 6 weeks of age. This additivity of phenotypic manifestations indicates that Irs2 serves a pathway that is largely independent of Igf1r signaling. Consistent with the view that the latter is the InsR pathway, we show that combined β cell-specific knock-out of both Insr and Igf1r results in a phenocopy of double mutants lacking Igf1r and Irs2. We conclude that Igf1r signals primarily through Irs1 and affects insulin secretion, whereas β cell proliferation is mainly regulated by InsR using Irs2 as a downstream signaling effector. The insulin and IGF pathways appear to control β cell functions independently and selectively.

  2. Insilico docking study of compounds elucidated from helicteres isora fruits with ampkinase- insulin receptor.

    PubMed

    Vennila, Subramanium; Bupesh, Giridharan; Saravanamurali, Krishnan; SenthilKumar, Viajayan; SenthilRaja, Ramalingam; Saran, Natarajan; Magesh, Sachidanandam

    2014-01-01

    Insulin receptor (IR) proteins were essential intracellular signaling peptides in the insulin action cascade. Insulin receptor substrate proteins (IRS-1and IRS-2) serve and regulate the insulin level in the normal insulin action. The broad role of IRS-1 and IRS-2 in cell growth and survival reveals a common regulatory pathway linking development, somatic growth, fertility, neuronal proliferation, and aging to the core mechanisms used by vertebrates for nutrient sensing. Such type of proteins were cyclic adenosine monophosphate-activated protein kinase, this proteins play a key role in the insulin response and regulation. Type -2 Diabetes mellitus occurs during prolonged periods of peripheral insulin resistance due to inactivation of IRS proteins. The compounds isolated from the medicinal plants were safer than synthetic drugs and possess high bio activity. In the present study, four compounds were elucidated from fruits of Helicteres isora. The elucidated compounds were evaluated for the antidiabetic activity using in silico docking study. The receptor was analyzed for the active site and pocket finder tools. The aminoacids such as Phenylalanine, Lysine, Glutamic acid and Asparigine were predicted as active site binding residues. Docking studies were done through Autodock 4 software. All the compounds from fruits of Helicteres isora showed good docking profiles with AMP Kinase, except compound-3 (1,2,3,4-tetrahydro-1,5,6,8-tetramethyl-7-(2-methylprop-1-enylnaphthalene-4-ylpivalate). Finally the result from the study demonstrates that the HS-1, HS-2 and HS-4 posses potent anti diabetic activity against type-2 diabetes mellitus through drug action on AMP kinase cascade system. PMID:24966532

  3. Insilico docking study of compounds elucidated from helicteres isora fruits with ampkinase- insulin receptor

    PubMed Central

    Vennila, Subramanium; Bupesh, Giridharan; Saravanamurali, Krishnan; SenthilKumar, Viajayan; SenthilRaja, Ramalingam; Saran, Natarajan; Magesh, Sachidanandam

    2014-01-01

    Insulin receptor (IR) proteins were essential intracellular signaling peptides in the insulin action cascade. Insulin receptor substrate proteins (IRS-1and IRS-2) serve and regulate the insulin level in the normal insulin action. The broad role of IRS-1 and IRS-2 in cell growth and survival reveals a common regulatory pathway linking development, somatic growth, fertility, neuronal proliferation, and aging to the core mechanisms used by vertebrates for nutrient sensing. Such type of proteins were cyclic adenosine monophosphate-activated protein kinase, this proteins play a key role in the insulin response and regulation. Type -2 Diabetes mellitus occurs during prolonged periods of peripheral insulin resistance due to inactivation of IRS proteins. The compounds isolated from the medicinal plants were safer than synthetic drugs and possess high bio activity. In the present study, four compounds were elucidated from fruits of Helicteres isora. The elucidated compounds were evaluated for the antidiabetic activity using in silico docking study. The receptor was analyzed for the active site and pocket finder tools. The aminoacids such as Phenylalanine, Lysine, Glutamic acid and Asparigine were predicted as active site binding residues. Docking studies were done through Autodock 4 software. All the compounds from fruits of Helicteres isora showed good docking profiles with AMP Kinase, except compound-3 (1,2,3,4-tetrahydro-1,5,6,8-tetramethyl-7-(2-methylprop-1-enylnaphthalene-4-ylpivalate). Finally the result from the study demonstrates that the HS-1, HS-2 and HS-4 posses potent anti diabetic activity against type-2 diabetes mellitus through drug action on AMP kinase cascade system. PMID:24966532

  4. An exon variant in insulin receptor gene is associated with susceptibility to colorectal cancer in women.

    PubMed

    Mahmoudi, Touraj; Majidzadeh-A, Keivan; Karimi, Khatoon; Karimi, Negar; Farahani, Hamid; Dabiri, Reza; Nobakht, Hossein; Dolatmoradi, Hesamodin; Arkani, Maral; Zali, Mohammad Reza

    2015-05-01

    Given the role of insulin resistance in colorectal cancer (CRC), we explored whether genetic variants in insulin (INS), insulin receptor (INSR), insulin receptor substrate 1 (IRS1), insulin receptor substrate 2 (IRS2), insulin-like growth factor 1 (IGF1), and insulin-like growth factor binding protein 3 (IGFBP3) genes were associated with CRC risk. A total of 600 subjects, including 261 cases with CRC and 339 controls, were enrolled in this case-control study. Six polymorphisms in INS (rs689), INSR (rs1799817), IRS1 (rs1801278), IRS2 (rs1805097), IGF1 (rs5742612), and IGFBP3 (rs2854744) genes were genotyped using PCR-RFLP method. No significant difference was observed for INS, INSR, IRS1, IRS2, IGF1, and IGFBP3 genes between the cases and controls. However, the INSR rs1799817 "TT + CT" genotype and "CT" genotype compared with "CC" genotype occurred more frequently in the women with CRC than women controls (P = 0.007; OR = 1.93, 95 %CI = 1.20-3.11 and P = 0.002, OR = 2.15, 95 %CI = 1.31-3.53, respectively), and the difference remained significant after adjustment for confounding factors including age, BMI, smoking status, NSAID use, and family history of CRC (P = 0.018; OR = 1.86, 95 %CI = 1.11-3.10 and P = 0.004, OR = 2.18, 95 %CI = 1.28-3.71, respectively). In conclusion, to our knowledge, this study indicated for the first time that the INSR rs1799817 TT + CT genotype and CT genotype compared with the CC genotype had 1.86-fold and 2.18-fold increased risks for CRC among women, respectively. Furthermore, this finding is in line with previous studies which found significant associations between other variants of the INSR gene and CRC risk. Nevertheless, further studies are required to confirm our findings.

  5. The farnesoid X receptor modulates adiposity and peripheral insulin sensitivity in mice.

    PubMed

    Cariou, Bertrand; van Harmelen, Kirsten; Duran-Sandoval, Daniel; van Dijk, Theo H; Grefhorst, Aldo; Abdelkarim, Mouaadh; Caron, Sandrine; Torpier, Gérard; Fruchart, Jean-Charles; Gonzalez, Frank J; Kuipers, Folkert; Staels, Bart

    2006-04-21

    The farnesoid X receptor (FXR) is a bile acid (BA)-activated nuclear receptor that plays a major role in the regulation of BA and lipid metabolism. Recently, several studies have suggested a potential role of FXR in the control of hepatic carbohydrate metabolism, but its contribution to the maintenance of peripheral glucose homeostasis remains to be established. FXR-deficient mice display decreased adipose tissue mass, lower serum leptin concentrations, and elevated plasma free fatty acid levels. Glucose and insulin tolerance tests revealed that FXR deficiency is associated with impaired glucose tolerance and insulin resistance. Moreover, whole-body glucose disposal during a hyperinsulinemic euglycemic clamp is decreased in FXR-deficient mice. In parallel, FXR deficiency alters distal insulin signaling, as reflected by decreased insulin-dependent Akt phosphorylation in both white adipose tissue and skeletal muscle. Whereas FXR is not expressed in skeletal muscle, it was detected at a low level in white adipose tissue in vivo and induced during adipocyte differentiation in vitro. Moreover, mouse embryonic fibroblasts derived from FXR-deficient mice displayed impaired adipocyte differentiation, identifying a direct role for FXR in adipocyte function. Treatment of differentiated 3T3-L1 adipocytes with the FXR-specific synthetic agonist GW4064 enhanced insulin signaling and insulin-stimulated glucose uptake. Finally, treatment with GW4064 improved insulin resistance in genetically obese ob/ob mice in vivo. Although the underlying molecular mechanisms remain to be unraveled, these results clearly identify a novel role of FXR in the regulation of peripheral insulin sensitivity and adipocyte function. This unexpected function of FXR opens new perspectives for the treatment of type 2 diabetes.

  6. Immunohistochemical localization of glucose transporters and insulin receptors in human fetal membranes at term.

    PubMed

    Wolf, H J; Desoye, G

    1993-11-01

    The localization has been investigated of the isoforms GLUT1, GLUT3 and GLUT4 of glucose transporter proteins as well as of insulin receptors. Fetal membranes (n = 10) were examined by immunohistochemical methods at the light and electron microscopic levels using mono- and polyclonal antibodies. In all amnion epithelial cells, GLUT1 and GLUT3 antibodies were bound to the apical membrane. Very rarely the GLUT1 antibody also immunostained the basolateral membrane and reacted weakly with the endomembrane system and membranes of the lateral cell protrusions. Fibroblasts reacted with the antibodies against GLUT1, GLUT4 and insulin receptor, whereas they were labelled only in one case with GLUT3 antibody. Cytotrophoblast cells were only stained with antibodies against GLUT1 and GLUT3. Antibodies against GLUT4 only reacted with fibroblasts in the membranes. On amnion epithelial cells, weak immunoreactivity with insulin receptor antibodies was detected only at the electron microscopic level. The data indicate: (1) GLUT1 is located on all cells of the amnion, whereas GLUT3 is present in detectable amounts only on amnion epithelial cells and cytotrophoblast; (2) GLUT1 and GLUT3 on amnion epithelial cells are predominantly located on the apical surface; (3) GLUT4 and insulin receptors are not regularly expressed. We suggest that amnion epithelial cells cover their basal glucose requirements from the amniotic fluid and not from the maternal circulation.

  7. Insulin receptor substrate-3, interacting with Bcl-3, enhances p50 NF-{kappa}B activity

    SciTech Connect

    Kabuta, Tomohiro; Hakuno, Fumihiko; Cho, Yoshitake; Yamanaka, Daisuke; Chida, Kazuhiro; Asano, Tomoichiro; Wada, Keiji; Takahashi, Shin-Ichiro

    2010-04-09

    The insulin receptor substrate (IRS) proteins are major substrates of both insulin receptor and insulin-like growth factor (IGF)-I receptor tyrosine kinases. Previously, we reported that IRS-3 is localized to both cytosol and nucleus, and possesses transcriptional activity. In the present study, we identified Bcl-3 as a novel binding protein to IRS-3. Bcl-3 is a nuclear protein, which forms a complex with the homodimer of p50 NF-{kappa}B, leading to enhancement of transcription through p50 NF-{kappa}B. We found that Bcl-3 interacts with the pleckstrin homology domain and the phosphotyrosine binding domain of IRS-3, and that IRS-3 interacts with the ankyrin repeat domain of Bcl-3. In addition, IRS-3 augmented the binding activity of p50 to the NF-{kappa}B DNA binding site, as well as the tumor necrosis factor (TNF)-{alpha}-induced transcriptional activity of NF-{kappa}B. Lastly, IRS-3 enhanced NF-{kappa}B-dependent anti-apoptotic gene induction and consequently inhibited TNF-{alpha}-induced cell death. This series of results proposes a novel function for IRS-3 as a transcriptional regulator in TNF-{alpha} signaling, distinct from its function as a substrate of insulin/IGF receptor kinases.

  8. A highly pleiotropic amino acid polymorphism in the Drosophila insulin receptor contributes to life-history adaptation

    PubMed Central

    Paaby, Annalise B.; Bergland, Alan O.; Behrman, Emily L.; Schmidt, Paul S.

    2016-01-01

    Finding the specific nucleotides that underlie adaptive variation is a major goal in evolutionary biology, but polygenic traits pose a challenge because the complex genotype–phenotype relationship can obscure the effects of individual alleles. However, natural selection working in large wild populations can shift allele frequencies and indicate functional regions of the genome. Previously, we showed that the two most common alleles of a complex amino acid insertion–deletion polymorphism in the Drosophila insulin receptor show independent, parallel clines in frequency across the North American and Australian continents. Here, we report that the cline is stable over at least a five-year period and that the polymorphism also demonstrates temporal shifts in allele frequency concurrent with seasonal change. We tested the alleles for effects on levels of insulin signaling, fecundity, development time, body size, stress tolerance, and life span. We find that the alleles are associated with predictable differences in these traits, consistent with patterns of Drosophila life-history variation across geography that likely reflect adaptation to the heterogeneous climatic environment. These results implicate insulin signaling as a major mediator of life-history adaptation in Drosophila, and suggest that life-history trade-offs can be explained by extensive pleiotropy at a single locus. PMID:25319083

  9. Insulin-like growth factor-1 receptor acts as a growth regulator in synovial sarcoma.

    PubMed

    Friedrichs, N; Küchler, J; Endl, E; Koch, A; Czerwitzki, J; Wurst, P; Metzger, D; Schulte, J H; Holst, M I; Heukamp, L C; Larsson, O; Tanaka, S; Kawai, A; Wardelmann, E; Buettner, R; Pietsch, T; Hartmann, W

    2008-12-01

    Synovial sarcomas account for 5-10% of all soft tissue sarcomas and the majority of synovial sarcomas display characteristic t(X;18) translocations that result in enhanced transcription of the insulin-like growth factor-2 (IGF-2) gene. IGF-2 is an essential fetal mitogen involved in the pathogenesis of different tumours, leading to cellular proliferation and inhibition of apoptosis. Here we asked whether activation of IGF signalling is of functional importance in synovial sarcomas. We screened human synovial sarcomas for expression of IGF-2 and the phosphorylated IGF-1 receptor (IGF-1R), which mainly mediates the proliferative and anti-apoptotic effects of IGF-2. Since both the phosphatidylinositol 3'-kinase (PI3K)-AKT pathway and the MAPK signalling cascade are known to be involved in the transmission of IGF-1R signals, expression of phosphorylated (p)-AKT and p-p44/42 MAPK was additionally assessed. All tumours expressed IGF-2 and 78% showed an activated IGF-1R. All tumours were found to express p-AKT and 92% showed expression of activated p44/42 MAPK. To analyse the functional and potential therapeutic relevance of IGF-1R signalling, synovial sarcoma cell lines were treated with the IGF-1R inhibitor NVP-AEW541. Growth was impaired by the IGF-1R antagonist, which was consistently accompanied by a dose-dependent reduction of phosphorylation of AKT and p44/42 MAPK. Functionally, inhibition of the receptor led to increased apoptosis and diminished mitotic activity. Concurrent exposure of selected cells to NVP-AEW541 and conventional chemotherapeutic agents resulted in positive interactions. Finally, synovial sarcoma cell migration was found to be dependent on signals transmitted by the IGF-1R. In summary, our data show that the IGF-1R might represent a promising therapeutic target in synovial sarcomas.

  10. The effect of the putative endogenous imidazoline receptor ligand, clonidine-displacing substance, on insulin secretion from rat and human islets of Langerhans

    PubMed Central

    Chan, Susan L F; Atlas, Daphne; James, Roger F L; Morgan, Noel G

    1997-01-01

    The effects of a rat brain extract containing clonidine-displacing substance (CDS), a putative endogenous imidazoline receptor ligand, on insulin release from rat and human isolated islets of Langerhans were investigated.CDS was able to potentiate the insulin secretory response of rat islets incubated at 6 mM glucose, in a dose-dependent manner. The magnitude of this effect was similar to that in response to the well-characterized imidazoline secretagogue, efaroxan.CDS, like other imidazoline secretagogues, was also able to reverse the inhibitory action of diazoxide on glucose-induced insulin release, in both rat and human islets.These effects of CDS on secretion were reversed by the imidazoline secretagogue antagonists, RX801080 and the newly defined KU14R, providing the first evidence that imidazoline-mediated actions of CDS can be blocked by specific imidazoline antagonists.The effects of CDS on insulin secretion were unaffected when the method of preparation involved centri-filtration through a 3,000 Da cut-off membrane or when the extract was treated with protease. These results confirm that the active principle is of low molecular weight and is not a peptide.Overall, the data suggest that CDS behaves as a potent endogenous insulin secretagogue acting at the islet imidazoline receptor. PMID:9138700

  11. Role of insulin receptors in the changing metabolism of adipose tissue during pregnancy and lactation in the rat.

    PubMed Central

    Flint, D J; Sinnett-Smith, P A; Clegg, R A; Vernon, R G

    1979-01-01

    Changes in the volume, the rates of fatty acid synthesis and synthesis of the glycerol moiety of acylglycerols, the activity of lipoprotein lipase, and the number and affinity of insulin receptors of adipocytes, and concentrations of serum insulin, prolactin and progesterone were determined in virgin rats and in rats at various stages of pregnancy and lactation. Changes in the metabolic activities of adipose tissue appeared to be synchronized and primarily comprised a marked decrease in anabolic activity around parturition. In contrast, the number of insulin receptors (Kd 1.5 nM) per adipocyte doubled during pregnancy before returning to normal values around parturition. It is postulated that the increase in the number of insulin receptors is an adaptation to counteract the effects of insulin-antagonistic hormones during pregnancy and that the decrease in the number of receptors is primarily responsible for the loss of anabolic activity around parturition. PMID:508293

  12. Deletion of Asn{sup 281} in the {alpha}-subunit of the human insulin receptor causes constitutive activation of the receptor and insulin desensitization

    SciTech Connect

    Desbois-Mouthon, C.; Sert-Langeron, C.; Magre, J.; Blivet, M.J.

    1996-02-01

    We studied the structure and function of the insulin receptor (IR) in two sisters with leprechaunism. The patients had inherited alterations in the IR gene and were compound heterozygotes. Their paternal IR allele carried a major deletion, including exons 10-13, which shifted the reading frame and introduced a premature chain termination codon in the IR sequence. This allele was expressed at a very low level in cultured fibroblasts (<10% of total IR messenger ribonucleic acid content) and encoded a truncated protein lacking transmembrane and tyrosine kinase domains. The maternal IR allele was deleted of 3 bp in exon 3, causing the loss of Asn{sup 281} in the {alpha}-subunit. This allele generated levels of IR messenger ribonucleic acid and cell surface receptors similar to those seen in control fibroblasts. However, IRs from patients` cells had impaired insulin binding and exhibited in vivo and in vitro constitutive activation of autophosphorylation and tyrosine kinase activity. As a result of this IR-preactivated state, the cells were desensitized to insulin stimulation of glycogen and DNA syntheses. These findings strongly suggest that Asn{sup 281} of the IR {alpha}-subunit plays a critical role in the inhibitory constraint exerted by the extracellular {alpha}-subunit over the intracellular kinase activity. 59 refs., 6 figs.

  13. Insulin Resistance: A Proinflammatory State Mediated by Lipid-Induced Signaling Dysfunction and Involved in Atherosclerotic Plaque Instability

    PubMed Central

    Montecucco, Fabrizio; Steffens, Sabine; Mach, François

    2008-01-01

    The dysregulation of the insulin-glucose axis represents the crucial event in insulin resistance syndrome. Insulin resistance increases atherogenesis and atherosclerotic plaque instability by inducing proinflammatory activities on vascular and immune cells. This condition characterizes several diseases, such as type 2 diabetes, impaired glucose tolerance (IGT), impaired fasting glucose (IFG), obesity, hypertension, dyslipidemia, and other endocrinopathies, but also cancer. Recent studies suggest that the pathophysiology of insulin resistance is closely related to interferences with insulin-mediated intracellular signaling on skeletal muscle cells, hepatocytes, and adipocytes. Strong evidence supports the role of free fatty acids (FFAs) in promoting insulin resistance. The FFA-induced activation of protein kinase C (PKC) delta, inhibitor kappaB kinase (IKK), or c-Jun N-terminal kinase (JNK) modulates insulin-triggered intracellular pathway (classically known as PI3-K-dependent). Therefore, reduction of FFA levels represents a selective target for modulating insulin resistance. PMID:18604303

  14. Insulin and insulin-like growth factor 1 receptors are required for normal expression of imprinted genes.

    PubMed

    Boucher, Jeremie; Charalambous, Marika; Zarse, Kim; Mori, Marcelo A; Kleinridders, Andre; Ristow, Michael; Ferguson-Smith, Anne C; Kahn, C Ronald

    2014-10-01

    In addition to signaling through the classical tyrosine kinase pathway, recent studies indicate that insulin receptors (IRs) and insulin-like growth factor 1 (IGF1) receptors (IGF1Rs) can emit signals in the unoccupied state through some yet-to-be-defined noncanonical pathways. Here we show that cells lacking both IRs and IGF1Rs exhibit a major decrease in expression of multiple imprinted genes and microRNAs, which is partially mimicked by inactivation of IR alone in mouse embryonic fibroblasts or in vivo in brown fat in mice. This down-regulation is accompanied by changes in DNA methylation of differentially methylated regions related to these loci. Different from a loss of imprinting pattern, loss of IR and IGF1R causes down-regulated expression of both maternally and paternally expressed imprinted genes and microRNAs, including neighboring reciprocally imprinted genes. Thus, the unoccupied IR and IGF1R generate previously unidentified signals that control expression of imprinted genes and miRNAs through transcriptional mechanisms that are distinct from classical imprinting control. PMID:25246545

  15. Mediation of Autophagic Cell Death by Type 3 Ryanodine Receptor (RyR3) in Adult Hippocampal Neural Stem Cells

    PubMed Central

    Chung, Kyung Min; Jeong, Eun-Ji; Park, Hyunhee; An, Hyun-Kyu; Yu, Seong-Woon

    2016-01-01

    Cytoplasmic Ca2+ actively engages in diverse intracellular processes from protein synthesis, folding and trafficking to cell survival and death. Dysregulation of intracellular Ca2+ levels is observed in various neuropathological states including Alzheimer’s and Parkinson’s diseases. Ryanodine receptors (RyRs) and inositol 1,4,5-triphosphate receptors (IP3Rs), the main Ca2+ release channels located in endoplasmic reticulum (ER) membranes, are known to direct various cellular events such as autophagy and apoptosis. Here we investigated the intracellular Ca2+-mediated regulation of survival and death of adult hippocampal neural stem (HCN) cells utilizing an insulin withdrawal model of autophagic cell death (ACD). Despite comparable expression levels of RyR and IP3R transcripts in HCN cells at normal state, the expression levels of RyRs—especially RyR3—were markedly upregulated upon insulin withdrawal. While treatment with the RyR agonist caffeine significantly promoted the autophagic death of insulin-deficient HCN cells, treatment with its inhibitor dantrolene prevented the induction of autophagy following insulin withdrawal. Furthermore, CRISPR/Cas9-mediated knockout of the RyR3 gene abolished ACD of HCN cells. This study delineates a distinct, RyR3-mediated ER Ca2+ regulation of autophagy and programmed cell death in neural stem cells. Our findings provide novel insights into the critical, yet understudied mechanisms underlying the regulatory function of ER Ca2+ in neural stem cell biology. PMID:27199668

  16. The overexpressed human 46-kDa mannose 6-phosphate receptor mediates endocytosis and sorting of. beta. -glucuronidase

    SciTech Connect

    Watanabe, H.; Grubb, J.H.; Sly, W.S. )

    1990-10-01

    The authors studied the function of the human small (46-kDa) mannose 6-phosphate receptor (SMPR) in transfected mouse L cells that do not express the larger insulin-like growth factor II/mannose 6-phosphate receptor. Cells overexpressing human SMPR were studied for enzyme binding to cell surface receptors, for binding to intracellular receptors in permeabilized cells, and for receptor-mediated endocytosis of recombinant human {beta}-glucuronidase. Specific binding to human SMPR in permeabilized cells showed a pH optimum between pH 6.0 and pH 6.5. Binding was significant in the present of EDTA but was enhanced by added divalent cations. Up to 2.3{percent} of the total functional receptor could be detected on the cell surface by enzyme binding. They present experiments showing that at very high levels of overexpression, and at pH 6.5, human SMPR mediated the endocytosis of {beta}-glucuronidase. At pH 7.5, the rate of endocytosis was only 14{percent} the rate seen at pH 6.5. Cells overexpressing human SMPR also showed reduced secretion of newly synthesized {beta}-glucuronidase when compared to cells transfected with vector only, suggesting that overexpressed human SMPR can participate in sorting of newly synthesized {beta}-glucuronidase and partially correct the sorting defect in mouse L cells that do not express the insulin-like growth factor II/mannose 6-phosphate receptor.

  17. Torso, a Drosophila receptor tyrosine kinase, plays a novel role in the larval fat body in regulating insulin signaling and body growth.

    PubMed

    Jun, Jong Woo; Han, Gangsik; Yun, Hyun Myoung; Lee, Gang Jun; Hyun, Seogang

    2016-08-01

    Torso is a receptor tyrosine kinase whose localized activation at the termini of the Drosophila embryo is mediated by its ligand, Trunk. Recent studies have unveiled a second function of Torso in the larval prothoracic gland (PG) as the receptor for the prothoracicotropic hormone, which triggers pupariation. As such, inhibition of Torso in the PG prolongs the larval growth period, thereby increasing the final pupa size. Here, we report that Torso also acts in the larval fat body, regulating body size in a manner opposite from that of Torso in PG. We confirmed the expression of torso mRNA in the larval fat body and its reduction by RNA interference (RNAi). Fat body-specific knockdown of torso, by either of the two independent RNAi transgenes, significantly decreased the final pupal size. We found that torso knockdown suppresses insulin/target of rapamycin (TOR) signaling in the fat body, as confirmed by repression of Akt and S6K. Notably, the decrease in insulin/TOR signaling and decrease of pupal size induced by the knockdown of torso were rescued by the expression of a constitutively active form of the insulin receptor or by the knockdown of FOXO. Our study revealed a novel role for Torso in the fat body with respect to regulation of insulin/TOR signaling and body size. This finding exemplifies the contrasting effects of the same gene expressed in two different organs on organismal physiology. PMID:27126913

  18. Heterodimerization of Glycosylated Insulin-Like Growth Factor-1 Receptors and Insulin Receptors in Cancer Cells Sensitive to Anti-IGF1R Antibody

    PubMed Central

    Kim, Jun Gyu; Kang, Min Jueng; Yoon, Young-Kwang; Kim, Hwang-Phill; Park, Jinah; Song, Sang-Hyun; Han, Sae-Won; Park, Jong-Wan; Kang, Gyeong Hoon; Kang, Keon Wook; Oh, Do Youn; Im, Seock-Ah; Bang, Yung-Jue; Yi, Eugene C.; Kim, Tae-You

    2012-01-01

    Background Identification of predictive biomarkers is essential for the successful development of targeted therapy. Insulin-like growth factor 1 receptor (IGF1R) has been examined as a potential therapeutic target for various cancers. However, recent clinical trials showed that anti-IGF1R antibody and chemotherapy are not effective for treating lung cancer. Methodology/Principal Findings In order to define biomarkers for predicting successful IGF1R targeted therapy, we evaluated the anti-proliferation effect of figitumumab (CP-751,871), a humanized anti-IGF1R antibody, against nine gastric and eight hepatocellular cancer cell lines. Out of 17 cancer cell lines, figitumumab effectively inhibited the growth of three cell lines (SNU719, HepG2, and SNU368), decreased p-AKT and p-STAT3 levels, and induced G 1 arrest in a dose-dependent manner. Interestingly, these cells showed co-overexpression and altered mobility of the IGF1R and insulin receptor (IR). Immunoprecipitaion (IP) assays and ELISA confirmed the presence of IGF1R/IR heterodimeric receptors in figitumumab-sensitive cells. Treatment with figitumumab led to the dissociation of IGF1-dependent heterodimeric receptors and inhibited tumor growth with decreased levels of heterodimeric receptors in a mouse xenograft model. We next found that both IGF1R and IR were N-linked glyosylated in figitumumab-sensitive cells. In particular, mass spectrometry showed that IGF1R had N-linked glycans at N913 in three figitumumab-sensitive cell lines. We observed that an absence of N-linked glycosylation at N913 led to a lack of membranous localization of IGF1R and figitumumab insensitivity. Conclusion and Significance The data suggest that the level of N-linked glycosylated IGF1R/IR heterodimeric receptor is highly associated with sensitivity to anti-IGF1R antibody in cancer cells. PMID:22438913

  19. Targeting the insulin-like growth factor-1 receptor to overcome bortezomib resistance in preclinical models of multiple myeloma.

    PubMed

    Kuhn, Deborah J; Berkova, Zuzana; Jones, Richard J; Woessner, Richard; Bjorklund, Chad C; Ma, Wencai; Davis, R Eric; Lin, Pei; Wang, Hua; Madden, Timothy L; Wei, Caimiao; Baladandayuthapani, Veerabhadran; Wang, Michael; Thomas, Sheeba K; Shah, Jatin J; Weber, Donna M; Orlowski, Robert Z

    2012-10-18

    Proteasome inhibition with bortezomib is a validated approach to the treatment of multiple myeloma, but drug resistance often emerges and limits its utility in the retreatment setting. To begin to identify some of the mechanisms involved, we developed bortezomib-resistant myeloma cell lines that, unlike previously reported models, showed no β5 subunit mutations. Instead, up-regulation of the insulin-like growth factor (IGF)-1 axis was identified, with increased autocrine and paracrine secretion of IGF-1, leading to increased activation of the IGF-1 receptor (IGF-1R). Exogenous IGF-1 reduced cellular sensitivity to bortezomib, whereas pharmacologic or small hairpin RNA-mediated IGF-1R suppression enhanced bortezomib sensitivity in cell lines and patient samples. In vitro studies with OSI-906, a clinically relevant dual IGF-1R and insulin receptor inhibitor, showed it acted synergistically with bortezomib, and potently resensitized bortezomib-resistant cell lines and patient samples to bortezomib. Importantly, OSI-906 in combination with bortezomib also overcame bortezomib resistance in an in vivo model of myeloma. Taken together, these data support the hypothesis that signaling through the IGF-1/IGF-1R axis contributes to acquired bortezomib resistance, and provide a rationale for combining bortezomib with IGF-1R inhibitors like OSI-906 to overcome or possibly prevent the emergence of bortezomib-refractory disease in the clinic. PMID:22932796

  20. TUSC5 regulates insulin-mediated adipose tissue glucose uptake by modulation of GLUT4 recycling

    PubMed Central

    Beaton, Nigel; Rudigier, Carla; Moest, Hansjörg; Müller, Sebastian; Mrosek, Nadja; Röder, Eva; Rudofsky, Gottfried; Rülicke, Thomas; Ukropec, Jozef; Ukropcova, Barbara; Augustin, Robert; Neubauer, Heike; Wolfrum, Christian

    2015-01-01

    Objective Failure to properly dispose of glucose in response to insulin is a serious health problem, occurring during obesity and is associated with type 2 diabetes development. Insulin-stimulated glucose uptake is facilitated by the translocation and plasma membrane fusion of vesicles containing glucose transporter 4 (GLUT4), the rate-limiting step of post-prandial glucose disposal. Methods We analyzed the role of Tusc5 in the regulation of insulin-stimulated Glut4-mediated glucose uptake in vitro and in vivo. Furthermore, we measured Tusc5 expression in two patient cohorts. Results Herein, we report that TUSC5 controls insulin-stimulated glucose uptake in adipocytes, in vitro and in vivo. TUSC5 facilitates the proper recycling of GLUT4 and other key trafficking proteins during prolonged insulin stimulation, thereby enabling proper protein localization and complete vesicle formation, processes that ultimately enable insulin-stimulated glucose uptake. Tusc5 knockout mice exhibit impaired glucose disposal and TUSC5 expression is predictive of glucose tolerance in obese individuals, independent of body weight. Furthermore, we show that TUSC5 is a PPARγ target and in its absence the anti-diabetic effects of TZDs are significantly blunted. Conclusions Collectively, these findings establish TUSC5 as an adipose tissue-specific protein that enables proper protein recycling, linking the ubiquitous vesicle traffic machinery with tissue-specific insulin-mediated glucose uptake into adipose tissue and the maintenance of a healthy metabolic phenotype in mice and humans. PMID:26629404

  1. Mesenteric Fat Lipolysis Mediates Obesity-Associated Hepatic Steatosis and Insulin Resistance.

    PubMed

    Wueest, Stephan; Item, Flurin; Lucchini, Fabrizio C; Challa, Tenagne D; Müller, Werner; Blüher, Matthias; Konrad, Daniel

    2016-01-01

    Hepatic steatosis and insulin resistance are among the most prevalent metabolic disorders and are tightly associated with obesity and type 2 diabetes. However, the underlying mechanisms linking obesity to hepatic lipid accumulation and insulin resistance are incompletely understood. Glycoprotein 130 (gp130) is the common signal transducer of all interleukin 6 (IL-6) cytokines. We provide evidence that gp130-mediated adipose tissue lipolysis promotes hepatic steatosis and insulin resistance. In obese mice, adipocyte-specific gp130 deletion reduced basal lipolysis and enhanced insulin's ability to suppress lipolysis from mesenteric but not epididymal adipocytes. Consistently, free fatty acid levels were reduced in portal but not in systemic circulation of obese knockout mice. Of note, adipocyte-specific gp130 knockout mice were protected from high-fat diet-induced hepatic steatosis as well as from insulin resistance. In humans, omental but not subcutaneous IL-6 mRNA expression correlated positively with liver lipid accumulation (r = 0.31, P < 0.05) and negatively with hyperinsulinemic-euglycemic clamp glucose infusion rate (r = -0.28, P < 0.05). The results show that IL-6 cytokine-induced lipolysis may be restricted to mesenteric white adipose tissue and that it contributes to hepatic insulin resistance and steatosis. Therefore, blocking IL-6 cytokine signaling in (mesenteric) adipocytes may be a novel approach to blunting detrimental fat-liver crosstalk in obesity.

  2. Central Administration of Galanin Receptor 1 Agonist Boosted Insulin Sensitivity in Adipose Cells of Diabetic Rats

    PubMed Central

    Zhang, Zhenwen; Fang, Penghua; He, Biao; Guo, Lili; Runesson, Johan; Langel, Ülo; Shi, Mingyi; Zhu, Yan; Bo, Ping

    2016-01-01

    Our previous studies testified the beneficial effect of central galanin on insulin sensitivity of type 2 diabetic rats. The aim of the study was further to investigate whether central M617, a galanin receptor 1 agonist, can benefit insulin sensitivity. The effects of intracerebroventricular administration of M617 on insulin sensitivity and insulin signaling were evaluated in adipose tissues of type 2 diabetic rats. The results showed that central injection of M617 significantly increased plasma adiponectin contents, glucose infusion rates in hyperinsulinemic-euglycemic clamp tests, GLUT4 mRNA expression levels, GLUT4 contents in plasma membranes, and total cell membranes of the adipose cells but reduced the plasma C-reactive protein concentration in nondiabetic and diabetic rats. The ratios of GLUT4 contents were higher in plasma membranes to total cell membranes in both nondiabetic and diabetic M617 groups than each control. In addition, the central administration of M617 enhanced the ratios of pAkt/Akt and pAS160/AS160, but not phosphorylative cAMP response element-binding protein (pCREB)/CREB in the adipose cells of nondiabetic and diabetic rats. These results suggest that excitation of central galanin receptor 1 facilitates insulin sensitivity via activation of the Akt/AS160 signaling pathway in the fat cells of type 2 diabetic rats. PMID:27127795

  3. Regulator of insulin receptor affinity in rat skeletal muscle sarcolemmal vesicles

    SciTech Connect

    Whitson, R.H.; Barnard, K.J.; Kaplan, S.A.; Itakura, K.

    1986-05-01

    Wheat germ agglutinin (WGA) affinity purification of detergent solubilized insulin receptors (IR) from rat skeletal muscle sarcolemmal vesicles resulted in an apparent increase in total insulin binding activity of greater than 5-fold, suggesting that an inhibitory component had been removed. This was verified when the flow-through fraction from the WGA column was dialyzed and added back to the partially purified receptor. The addition of a 100-fold dilution of the inhibitor preparation caused a 50% reduction in binding to trace amounts of /sup 125/I-insulin. Scatchard analysis revealed that the effect of the inhibitor was to decrease the affinity of the muscle IR. The inhibitor appeared to be tissue specific, inasmuch as the I/sub 50/'s for WGA-purified IR from rat fat and liver were 10 times the I/sub 50/ for muscle IR. The I/sub 50/ for insulin binding to intact IM-9 cells was 30 times the value for muscle IR. The inhibitor eluted in the void volume of Sephadex G-50 columns. Its activity was not destroyed by heating at 90/sup 0/C for 10 minutes, or by prolonged incubation with trypsin or dithiothreitol. The inhibitor described here may have a role in modulating insulin sensitivity in skeletal muscle.

  4. Insulin-like growth factor receptor type I as a target for cancer therapy.

    PubMed

    Corvaia, Nathalie; Beck, Alain; Caussanel, Véronique; Goetsch, Liliane

    2013-01-01

    After more than 20 years of extensive work, insulin-like growth factor receptor 1 (IGF-IR) is still an attractive target for drug development. Due to its close homology to insulin receptor, IGF-IR is of interest for antibody design while antibody great specificity allows to discriminate between the two receptors. Major efforts from a large number of pharmaceutical companies are invested to evaluate the efficacy of such molecules in human without so far an obvious success. Discovery of biomarkers associated with efficacy and patient selection is one of the main challenges that we will have to deal with in order to target the appropriate patient population that will most benefit anti-IGF-IR monoclonal antibody (Mab) and combined treatments. This review will provide an overview of the current knowledge on IGF-IR axis for development of novel therapeutics in Oncology.

  5. Differential insertion of insulin receptor complexes into Triton X-114 bilayer membranes. Evidence for a differential accessibility of the membrane-exposed receptor domain.

    PubMed

    Flörke, R R; Klein, H W; Reinauer, H

    1993-01-15

    In the present study, the Triton X-114 phase-separation system has been used to characterize molecular properties of the membrane-exposed domain of an integral-membrane hormone receptor. This approach provides novel details of the structure/function relationship of insulin receptors. Upon raising the temperature of a micellar Triton X-114 solution above the cloud-point, a detergent enriched phase pellets and coprecipitates 95% of the purified insulin-free (alpha beta)2 receptors. In contrast, 83% of the hormone bound (alpha beta)2 receptor complexes prefer the detergent-depleted phase, exhibiting prominent properties of non-membraneous proteins. Kinetic studies show that, following insulin binding, the amphiphilicity of the receptor complexes is immediately altered. Only monodisperse (alpha beta)2 complexes were detected when receptor/insulin complexes of the detergent-depleted phase were analyzed by detergent-free sucrose density centrifugation in the presence of 10 nM insulin. These results can be explained in the light of the lipid-bilayer-like organization of the precipitating Triton X-114; hormone-induced intramolecular alterations of (alpha beta)2 receptors appear to fundamentally restrict access to the membrane-exposed receptor domain. Basically, different molecular properties are found for alpha beta receptors. Only 67% of the insulin-free receptors coprecipitate with the Triton-X-114-enriched phase; following insulin binding the coprecipitation is only decreased to 42%. In contrast to (alpha beta)2 receptors, formation of noncovalently aggregated receptor complexes, which are detected by sucrose density centrifugation, could account for the exclusion of alpha beta receptor species from Triton X-114 membranes.

  6. Co-receptors are dispensable for tethering receptor-mediated phagocytosis of apoptotic cells.

    PubMed

    Park, B; Lee, J; Moon, H; Lee, G; Lee, D-H; Cho, J Hoon; Park, D

    2015-01-01

    During efferocytosis, phagocytic cells recognize dying cells by receptors binding to ligands specifically exposed on apoptotic cells. Multiple phagocytic receptors and some of their signaling pathways have been identified. However, the downstream pathways of tethering receptors that secure apoptotic cells remain elusive. It is generally assumed that tethering receptors induce signaling to mediate engulfment via interacting with co-receptors or other engulfment receptors located nearby. However, it is poorly understood whether co-receptors for tethering receptors exist during efferocytosis, and, if they do, whether they are indispensable for this process. Here, we address this issue using glycophosphatidylinositol (GPI)-anchored annexin A5 (Anxa5-GPI), an artificial tethering receptor without a putative co-receptor. Phagocytes expressing Anxa5-GPI exhibited enhanced binding of apoptotic cells, resulting in promoted ingestion of apoptotic cells in a phosphatidylserine-dependent manner. Anxa5-GPI-induced phagocytosis of apoptotic cells relied on the known cytoskeletal engulfment machinery but partially depended on the Elmo-Dock-Rac module or the integrin pathway. In addition, Anxa5-GPI-mediated efferocytosis provoked anti-inflammatory responses. Taken together, our work suggests that co-receptors are dispensable for tethering receptor-induced efferocytosis and that tethering receptors mediate the engulfment of apoptotic cells through multiple engulfment signaling pathways.

  7. Identification and evolution of two insulin receptor genes involved in Tribolium castaneum development and reproduction.

    PubMed

    Sang, Ming; Li, Chengjun; Wu, Wei; Li, Bin

    2016-07-10

    The insulin and insulin-like signaling (IIS) pathway exists in a wide range of organisms from mammals to invertebrates and regulates several vital physiological functions. A phylogenetic analysis have indicated that insulin receptors have been duplicated at least twice among vertebrates, whereas only one duplication occurred in insects before the differentiation of Coleoptera, Hymenoptera, and Hemiptera. Thus, we cloned two putative insulin receptor genes, T.cas-ir1 and T.cas-ir2, from T. castaneum and determined that T.cas-ir1 is most strongly expressed during the late adult and early pupal stages, whereas T.cas-ir2 is most strongly expressed during the late larval stage. We found that larval RNAi against T.cas-ir1 and T.cas-ir2 causes 100% and 42.0% insect death, respectively, and that parental RNAi against T.cas-ir1 and T.cas-ir2 leads to 100% and 33.3% reductions in beetle fecundity, respectively. The hatching rate of ds-ir2 insects was 66.2%. Moreover, RNAi against these two genes increased the expression of the pkc, foxo, jnk, cdc42, ikk, and mekk genes but decreased erk gene expression. Despite these similarities, these two genes act via distinct regulatory pathways. These results indicate that these two receptors have functionally diverged with respect to the development and reproduction of T. castaneum, even though they retain some common regulatory signaling pathways.

  8. Linkage disequilibrium among RFLPs at the insulin-receptor locus despite intervening alu repeat sequences

    SciTech Connect

    Elbein, S.C. )

    1992-11-01

    Multiple mutations of the insulin receptor (INSR) gene have been identified in individuals with extreme insulin resistance. These mutations have included recombination events between Alu repeat units in the tyrosine kinase-encoding [beta]-chain region of the gene. To evaluate the influence of Alu and dinucleotide repetitive sequences on recombination events within the insulin receptor gene, the author examined the degree of linkage disequilibrium between RFLP pairs spanning the gene. The author established 228 independent haplotypes for seven RFLPs (two each for PstI, RsaI, and SstI and one for MspI and 172 independent haplotypes which included an additional RFLP with BglII) from 19 pedigrees. These RFLPs span >130 kb of this gene, and it was previously demonstrated that multiple Alu sequences separate RFLP pairs. Observed haplotype frequencies deviated significantly from those predicted. Pairwise analysis of RFLP showed high levels of linkage disequilibrium among RFLP in the [beta]-chain region of the insulin receptor, but not between [alpha]-chain RFLPs and those of the [beta]-chain. Disequilibrium was present among [beta]-chain RFLPs, despite separation by one or more Alu repeat sequences. The very strong linkage disequilibrium which was present in sizable regions of the INSR gene despite the presence of both Alu and microsatellite repeats suggested that these regions do not have a major impact on recombinations at this locus. 25 refs., 1 fig., 5 tabs.

  9. [Clinical effects of the alterations that emerge in the signaling mechanisms of the insulin receptor].

    PubMed

    Hernández-Valencia, Marcelino

    2006-01-01

    Phosphorilation of subunit beta from insulin receptor induced mainly by insulin, it begins a series of intracellular complex signaling in cascade. Through this way establish multiple effects, which permits to the cell initiate its biological activity. This activity include the glucose metabolism, the regulation of ions and amino acids transport, lipids metabolism, glycogen synthesis, genetic transcription, mRNA expression, synthesis and degradation of proteins, as well as synthesis of DNA. Therefore, a modification in anyone of the proteins involved in the insulin signaling, can take place a dysfunction in the glucose metabolism. The impaired glucose can be due because there are many proteins, ions and enzymes that participate in the downstream pathways of the insulin signaling, it has become difficult to find a single phatophysiologic level as cause of diabetes. In spite of the advances in the study of this disease, it has been reached the conclusion that the glucose control is not enough to impede the complications that characterize to type 2 diabetes, since the organic worsening does not stop, which indicates that insulin signaling dysfunction is directly involved in all cellular process, and a better understanding in the communication ways of this hormone will take to new forms of treatment to impaired insulin response.

  10. Additional disulfide bonds in insulin: Prediction, recombinant expression, receptor binding affinity, and stability

    PubMed Central

    Vinther, Tine N; Pettersson, Ingrid; Huus, Kasper; Schlein, Morten; Steensgaard, Dorte B; Sørensen, Anders; Jensen, Knud J; Kjeldsen, Thomas; Hubalek, František

    2015-01-01

    The structure of insulin, a glucose homeostasis-controlling hormone, is highly conserved in all vertebrates and stabilized by three disulfide bonds. Recently, we designed a novel insulin analogue containing a fourth disulfide bond located between positions A10-B4. The N-terminus of insulin's B-chain is flexible and can adapt multiple conformations. We examined how well disulfide bond predictions algorithms could identify disulfide bonds in this region of insulin. In order to identify stable insulin analogues with additional disulfide bonds, which could be expressed, the Cβ cut-off distance had to be increased in many instances and single X-ray structures as well as structures from MD simulations had to be used. The analogues that were identified by the algorithm without extensive adjustments of the prediction parameters were more thermally stable as assessed by DSC and CD and expressed in higher yields in comparison to analogues with additional disulfide bonds that were more difficult to predict. In contrast, addition of the fourth disulfide bond rendered all analogues resistant to fibrillation under stress conditions and all stable analogues bound to the insulin receptor with picomolar affinities. Thus activity and fibrillation propensity did not correlate with the results from the prediction algorithm. PMID:25627966

  11. Specific factors are required for kinase-dependent endocytosis of insulin receptors.

    PubMed Central

    Welsh, J B; Worthylake, R; Wiley, H S; Gill, G N

    1994-01-01

    Mouse B82 cells that support high affinity saturable endocytosis of epidermal growth factor receptors (EGFR) exhibited only low rates of nonsaturable internalization of insulin receptors (InsR). To investigate the defect in endocytosis of InsR in B82 cells, we examined the role of sequence motifs and tyrosine kinase, the two receptor components shown to be required for efficient saturable endocytosis of InsR in Rat 1 cells. Placement of residues encoded by exon 16 of the InsR onto an EGFR truncated to residue 958 restored EGF-induced internalization of this mutant receptor indicating that the sequence codes in exon 16 are recognized by B82 cells. To determine whether the kinase function could be provided in trans, a B82 cell expressing both receptors was established. EGF-activated EGFR kinase was not able to restore insulin-dependent rapid endocytosis to InsR. However, fusion of untransfected Rat1 cells with InsR-expressing B82 cells enabled rapid endocytosis of InsR, indicating that the internalization defect can be complemented. These results indicate that, although internalization codes can function in the context of other receptors, activation of tyrosine kinase receptors requires an additional specific component. Images PMID:7919536

  12. Preclinical and first-in-human phase I studies of KW-2450, an oral tyrosine kinase inhibitor with insulin-like growth factor receptor-1/insulin receptor selectivity.

    PubMed

    Schwartz, Gary K; Dickson, Mark A; LoRusso, Patricia M; Sausville, Edward A; Maekawa, Yoshimi; Watanabe, Yasuo; Kashima, Naomi; Nakashima, Daisuke; Akinaga, Shiro

    2016-04-01

    Numerous solid tumors overexpress or have excessively activated insulin-like growth factor receptor-1 (IGF-1R). We summarize preclinical studies and the first-in-human study of KW-2450, an oral tyrosine kinase inhibitor with IGF-1R and insulin receptor (IR) inhibitory activity. Preclinical activity of KW-2450 was evaluated in various in vitro and in vivo models. It was then evaluated in a phase I clinical trial in 13 patients with advanced solid tumors (NCT00921336). In vitro, KW-2450 inhibited human IGF-1R and IR kinases (IC50 7.39 and 5.64 nmol/L, respectively) and the growth of various human malignant cell lines. KW-2450 40 mg/kg showed modest growth inhibitory activity and inhibited IGF-1-induced signal transduction in the murine HT-29/GFP colon carcinoma xenograft model. The maximum tolerated dose of KW-2450 was 37.5 mg once daily continuously; dose-limiting toxicity occurred in two of six patients at 50 mg/day (both grade 3 hyperglycemia) and in one of seven patients at 37.5 mg/day (grade 3 rash). Four of 10 evaluable patients showed stable disease. Single-agent KW-2450 was associated with modest antitumor activity in heavily pretreated patients with solid tumors and is being further investigated in combination therapy with lapatinib/letrozole in patients with human epidermal growth factor receptor 2-postive metastatic breast cancer. PMID:26850678

  13. High-level expression of human insulin receptor cDNA in mouse NIH 3T3 cells

    SciTech Connect

    Whittaker, J.; Okamoto, A.K.; Thys, R.; Bell, G.I.; Steiner, D.F.; Hofmann, C.A.

    1987-08-01

    In order to develop a simple, efficient system for the high-level expression of human insulin receptors in eukaryotic cells, a full-length human kidney insulin receptor cDNA was inserted into a bovine papilloma virus vector under the control of the mouse metallothionein promoter. After transfection of mouse NIH 3T3 cells with this construct, seven cell lines expressing insulin receptors were isolated; two cell lines had more than 10/sup 6/ receptors per cell. The cell line with the highest /sup 125/I-insulin binding (NIH 3T3 HIR3.5) had 6 x 10/sup 6/ receptors with a K/sub d/ of 10/sup -9/ M. This level was not dependent on exposure to metals but could be increased further to 2 x 10/sup 7/ receptors per cell by addition of sodium butyrate to the culture medium. The ..cap alpha.. and ..beta.. subunits had apparent molecular weights of 147,000 and 105,000, respectively (compared to 135,000 and 95,000 in IM-9 human lymphocytes), values identical to those of the ..cap alpha.. and ..beta.. subunits of the insulin receptors of nontransformed NIH 3T3 cells. This size difference was due to altered carbohydrate composition, as N-glycanase digestion reduced the apparent receptor subunit size of the transfected cells and IM-9 lymphocytes to identical values. The alteration in N-linked oligosaccharide composition could not be ascribed to differences in the kinetics of posttranslational processing of the insulin receptors, which was comparable to that of other cells studied. The basal rate of glycogen synthesis in the cells overexpressing insulin receptors was increased 4- to 5-fold compared with controls. Low levels of added insulin (0.1 nM) caused a 50% increase in the rate of glycogen synthesis

  14. Dicholine succinate, the neuronal insulin sensitizer, normalizes behavior, REM sleep, hippocampal pGSK3 beta and mRNAs of NMDA receptor subunits in mouse models of depression.

    PubMed

    Cline, Brandon H; Costa-Nunes, Joao P; Cespuglio, Raymond; Markova, Natalyia; Santos, Ana I; Bukhman, Yury V; Kubatiev, Aslan; Steinbusch, Harry W M; Lesch, Klaus-Peter; Strekalova, Tatyana

    2015-01-01

    Central insulin receptor-mediated signaling is attracting the growing attention of researchers because of rapidly accumulating evidence implicating it in the mechanisms of plasticity, stress response, and neuropsychiatric disorders including depression. Dicholine succinate (DS), a mitochondrial complex II substrate, was shown to enhance insulin-receptor mediated signaling in neurons and is regarded as a sensitizer of the neuronal insulin receptor. Compounds enhancing neuronal insulin receptor-mediated transmission exert an antidepressant-like effect in several pre-clinical paradigms of depression; similarly, such properties for DS were found with a stress-induced anhedonia model. Here, we additionally studied the effects of DS on several variables which were ameliorated by other insulin receptor sensitizers in mice. Pre-treatment with DS of chronically stressed C57BL6 mice rescued normal contextual fear conditioning, hippocampal gene expression of NMDA receptor subunit NR2A, the NR2A/NR2B ratio and increased REM sleep rebound after acute predation. In 18-month-old C57BL6 mice, a model of elderly depression, DS restored normal sucrose preference and activated the expression of neural plasticity factors in the hippocampus as shown by Illumina microarray. Finally, young naïve DS-treated C57BL6 mice had reduced depressive- and anxiety-like behaviors and, similarly to imipramine-treated mice, preserved hippocampal levels of the phosphorylated (inactive) form of GSK3 beta that was lowered by forced swimming in pharmacologically naïve animals. Thus, DS can ameliorate behavioral and molecular outcomes under a variety of stress- and depression-related conditions. This further highlights neuronal insulin signaling as a new factor of pathogenesis and a potential pharmacotherapy of affective pathologies. PMID:25767439

  15. Dicholine succinate, the neuronal insulin sensitizer, normalizes behavior, REM sleep, hippocampal pGSK3 beta and mRNAs of NMDA receptor subunits in mouse models of depression

    PubMed Central

    Cline, Brandon H.; Costa-Nunes, Joao P.; Cespuglio, Raymond; Markova, Natalyia; Santos, Ana I.; Bukhman, Yury V.; Kubatiev, Aslan; Steinbusch, Harry W. M.; Lesch, Klaus-Peter; Strekalova, Tatyana

    2015-01-01

    Central insulin receptor-mediated signaling is attracting the growing attention of researchers because of rapidly accumulating evidence implicating it in the mechanisms of plasticity, stress response, and neuropsychiatric disorders including depression. Dicholine succinate (DS), a mitochondrial complex II substrate, was shown to enhance insulin-receptor mediated signaling in neurons and is regarded as a sensitizer of the neuronal insulin receptor. Compounds enhancing neuronal insulin receptor-mediated transmission exert an antidepressant-like effect in several pre-clinical paradigms of depression; similarly, such properties for DS were found with a stress-induced anhedonia model. Here, we additionally studied the effects of DS on several variables which were ameliorated by other insulin receptor sensitizers in mice. Pre-treatment with DS of chronically stressed C57BL6 mice rescued normal contextual fear conditioning, hippocampal gene expression of NMDA receptor subunit NR2A, the NR2A/NR2B ratio and increased REM sleep rebound after acute predation. In 18-month-old C57BL6 mice, a model of elderly depression, DS restored normal sucrose preference and activated the expression of neural plasticity factors in the hippocampus as shown by Illumina microarray. Finally, young naïve DS-treated C57BL6 mice had reduced depressive- and anxiety-like behaviors and, similarly to imipramine-treated mice, preserved hippocampal levels of the phosphorylated (inactive) form of GSK3 beta that was lowered by forced swimming in pharmacologically naïve animals. Thus, DS can ameliorate behavioral and molecular outcomes under a variety of stress- and depression-related conditions. This further highlights neuronal insulin signaling as a new factor of pathogenesis and a potential pharmacotherapy of affective pathologies. PMID:25767439

  16. Insulin-like growth factor-I receptor blockade reduces the invasiveness of gastrointestinal cancers via blocking production of matrilysin.

    PubMed

    Adachi, Yasushi; Li, Rong; Yamamoto, Hiroyuki; Min, Yongfen; Piao, Wenhua; Wang, Yu; Imsumran, Arisa; Li, Hua; Arimura, Yoshiaki; Lee, Choon-Taek; Imai, Kohzoh; Carbone, David P; Shinomura, Yasuhisa

    2009-08-01

    Insulin-like growth factor-I receptor (IGF-IR) signaling is required for carcinogenicity and proliferation of gastrointestinal (GI) cancers. We have previously shown significant therapeutic activity for recombinant adenoviruses expressing dominant-negative insulin-like growth factor-I receptor (IGF-IR/dn), including suppression of tumor invasion. In this study, we sought to evaluate the mechanism of inhibition of invasion and the relationship between IGF-IR and matrix metalloproteinase (MMP) activity in GI carcinomas. We analyzed the role of IGF-IR on invasion in three GI cancer cell lines, colorectal adenocarcinoma, HT29; pancreatic adenocarcinoma, BxPC3 and gastric adenocarcinoma, MKN45, using a modified Boyden chamber method and subcutaneous xenografts in nude mice. The impact of IGF-IR signaling on the expression of MMPs and the effects of blockade of matrilysin or IGF-IR on invasiveness were assessed using recombinant adenoviruses, a tyrosine kinase inhibitor NVP-AEW541 and antisense matrilysin. Invasive subcutaneous tumors expressed several MMPs. IGF-IR/dn reduced the expression of these MMPs but especially matrilysin (MMP-7). Insulin-like growth factor (IGF) stimulated secretion of matrilysin and IGF-IR/dn blocked IGF-mediated matrilysin induction in three GI cancers. Both IGF-IR/dn and inhibition of matrilysin reduced in vitro invasion to the same degree. NVP-AEW541 also reduced cancer cell invasion both in vitro and in murine xenograft tumors via suppression of matrilysin. Thus, blockade of IGF-IR is involved in the suppression of cancer cell invasion through downregulation of matrilysin. Strategies of targeting IGF-IR may have significant therapeutic utility to prevent invasion and progression of human GI carcinomas.

  17. Dual Exosite-binding Inhibitors of Insulin-degrading Enzyme Challenge Its Role as the Primary Mediator of Insulin Clearance in Vivo.

    PubMed

    Durham, Timothy B; Toth, James L; Klimkowski, Valentine J; Cao, Julia X C; Siesky, Angela M; Alexander-Chacko, Jesline; Wu, Ginger Y; Dixon, Jeffrey T; McGee, James E; Wang, Yong; Guo, Sherry Y; Cavitt, Rachel Nicole; Schindler, John; Thibodeaux, Stefan J; Calvert, Nathan A; Coghlan, Michael J; Sindelar, Dana K; Christe, Michael; Kiselyov, Vladislav V; Michael, M Dodson; Sloop, Kyle W

    2015-08-14

    Insulin-degrading enzyme (IDE, insulysin) is the best characterized catabolic enzyme implicated in proteolysis of insulin. Recently, a peptide inhibitor of IDE has been shown to affect levels of insulin, amylin, and glucagon in vivo. However, IDE(-/-) mice display variable phenotypes relating to fasting plasma insulin levels, glucose tolerance, and insulin sensitivity depending on the cohort and age of animals. Here, we interrogated the importance of IDE-mediated catabolism on insulin clearance in vivo. Using a structure-based design, we linked two newly identified ligands binding at unique IDE exosites together to construct a potent series of novel inhibitors. These compounds do not interact with the catalytic zinc of the protease. Because one of these inhibitors (NTE-1) was determined to have pharmacokinetic properties sufficient to sustain plasma levels >50 times its IDE IC50 value, studies in rodents were conducted. In oral glucose tolerance tests with diet-induced obese mice, NTE-1 treatment improved the glucose excursion. Yet in insulin tolerance tests and euglycemic clamp experiments, NTE-1 did not enhance insulin action or increase plasma insulin levels. Importantly, IDE inhibition with NTE-1 did result in elevated plasma amylin levels, suggesting the in vivo role of IDE action on amylin may be more significant than an effect on insulin. Furthermore, using the inhibitors described in this report, we demonstrate that in HEK cells IDE has little impact on insulin clearance. In total, evidence from our studies supports a minimal role for IDE in insulin metabolism in vivo and suggests IDE may be more important in helping regulate amylin clearance.

  18. Dual Exosite-binding Inhibitors of Insulin-degrading Enzyme Challenge Its Role as the Primary Mediator of Insulin Clearance in Vivo*

    PubMed Central

    Durham, Timothy B.; Toth, James L.; Klimkowski, Valentine J.; Cao, Julia X. C.; Siesky, Angela M.; Alexander-Chacko, Jesline; Wu, Ginger Y.; Dixon, Jeffrey T.; McGee, James E.; Wang, Yong; Guo, Sherry Y.; Cavitt, Rachel Nicole; Schindler, John; Thibodeaux, Stefan J.; Calvert, Nathan A.; Coghlan, Michael J.; Sindelar, Dana K.; Christe, Michael; Kiselyov, Vladislav V.; Michael, M. Dodson; Sloop, Kyle W.

    2015-01-01

    Insulin-degrading enzyme (IDE, insulysin) is the best characterized catabolic enzyme implicated in proteolysis of insulin. Recently, a peptide inhibitor of IDE has been shown to affect levels of insulin, amylin, and glucagon in vivo. However, IDE−/− mice display variable phenotypes relating to fasting plasma insulin levels, glucose tolerance, and insulin sensitivity depending on the cohort and age of animals. Here, we interrogated the importance of IDE-mediated catabolism on insulin clearance in vivo. Using a structure-based design, we linked two newly identified ligands binding at unique IDE exosites together to construct a potent series of novel inhibitors. These compounds do not interact with the catalytic zinc of the protease. Because one of these inhibitors (NTE-1) was determined to have pharmacokinetic properties sufficient to sustain plasma levels >50 times its IDE IC50 value, studies in rodents were conducted. In oral glucose tolerance tests with diet-induced obese mice, NTE-1 treatment improved the glucose excursion. Yet in insulin tolerance tests and euglycemic clamp experiments, NTE-1 did not enhance insulin action or increase plasma insulin levels. Importantly, IDE inhibition with NTE-1 did result in elevated plasma amylin levels, suggesting the in vivo role of IDE action on amylin may be more significant than an effect on insulin. Furthermore, using the inhibitors described in this report, we demonstrate that in HEK cells IDE has little impact on insulin clearance. In total, evidence from our studies supports a minimal role for IDE in insulin metabolism in vivo and suggests IDE may be more important in helping regulate amylin clearance. PMID:26085101

  19. Low-Density Lipoprotein Receptor-Related Protein-1 Protects Against Hepatic Insulin Resistance and Hepatic Steatosis.

    PubMed

    Ding, Yinyuan; Xian, Xunde; Holland, William L; Tsai, Shirling; Herz, Joachim

    2016-05-01

    Low-density lipoprotein receptor-related protein-1 (LRP1) is a multifunctional uptake receptor for chylomicron remnants in the liver. In vascular smooth muscle cells LRP1 controls reverse cholesterol transport through platelet-derived growth factor receptor β (PDGFR-β) trafficking and tyrosine kinase activity. Here we show that LRP1 regulates hepatic energy homeostasis by integrating insulin signaling with lipid uptake and secretion. Somatic inactivation of LRP1 in the liver (hLRP1KO) predisposes to diet-induced insulin resistance with dyslipidemia and non-alcoholic hepatic steatosis. On a high-fat diet, hLRP1KO mice develop a severe Metabolic Syndrome secondary to hepatic insulin resistance, reduced expression of insulin receptors on the hepatocyte surface and decreased glucose transporter 2 (GLUT2) translocation. While LRP1 is also required for efficient cell surface insulin receptor expression in the absence of exogenous lipids, this latent state of insulin resistance is unmasked by exposure to fatty acids. This further impairs insulin receptor trafficking and results in increased hepatic lipogenesis, impaired fatty acid oxidation and reduced very low density lipoprotein (VLDL) triglyceride secretion. PMID:27322467

  20. 4-Hydroxyisoleucine attenuates the inflammation-mediated insulin resistance by the activation of AMPK and suppression of SOCS-3 coimmunoprecipitation with both the IR-β subunit as well as IRS-1.

    PubMed

    Gautam, Sudeep; Ishrat, Nayab; Yadav, Pragya; Singh, Rohit; Narender, Tadigoppula; Srivastava, Arvind K

    2016-03-01

    It is known that 4-hydroxyisoleucine (4-HIL) from seeds of Trigonella foenum-graecum has beneficial effects on low-grade inflammation; therefore, the insulin signaling as well as the anti-inflammatory effects of 4-HIL in TNF-α-induced insulin resistance in C2C12 myotubes was studied with an aim to dissect out the mechanism(s) of the inflammation-mediated insulin resistance. TNF-α suppressed insulin-stimulated glucose transport rate and increased Ser-307 phosphorylation of insulin receptor substrate-1 (IRS-1). However, the treatment of 4-hydroxyisoleucine enhanced insulin-stimulated glucose transport rate via the activation of AMP-activated protein kinase (AMPK) in a dose-dependent manner. 4-HIL also increases the tyrosine phosphorylation of both IR-β and IRS-1. Moreover, coimmunoprecipitation (Co-IP) of insulin receptor-β (IR-β) subunit with IRS-1 was found to be increased by 4-hydroxyisoleucine. Concentration of SOCS-3 protein and coimmunoprecipitation of SOCS-3 protein with both the IR-β subunit as well as IRS-1 was found to be decreased by 4-HIL. We conclude that the 4-hydroxyisoleucine reverses the insulin resistance by the activation of AMPK and suppression of SOCS-3 coimmunoprecipitation with both the IR-β subunit as well as IRS-1. PMID:26887316

  1. The human insulin receptor substrate-1 gene (IRS1) is localized on 2q36

    SciTech Connect

    Nishiyama, Masaki; Matsufuji, Senya; Hayashi, Shin-ichi; Furusaka, Akihiro; Tanaka, Teruji ); Inazawa, J.; Nakamura, Yusuke ); Ariyama, Takeshi ); Wands, J.R. )

    1994-03-01

    The chromosomal localization of some of the genes participating in the insulin signaling pathway is known. The insulin and insulin receptor genes have been mapped to chromosomes 11 and 19, respectively. To identify the chromosomal localization of the human IRS1 gene, the fluorescence in situ hybridization technique was employed with Genomic Clone B-10. A total of 50 metaphase cells exhibiting either single or double spots of hybridization signals were examined. Among them, 32 showed the specific signals on 2q36. Therefore, the authors assigned the human IRS1 gene to 2q36. The genes for homeobox sequence (HOX4), fibronectin 1, alkaline phosphatase (intestinal), transition protein 1, villin 1, collagen (type IV), Waardenburg syndrome (type 1), alanine-glyoxylate aminotransferase, and glucagon have been localized in the vicinity of the IRS1 gene.

  2. A Tale of Two Receptors: Insulin and Insulin-Like Growth Factor Signaling in Cancer

    PubMed Central

    Yee, Douglas

    2014-01-01

    Summary Inhibition of the type I IGF receptor (IGF1R) has been the focus of numerous clinical trials. Two reports in this issue describe the results of phase I trials of an IGF1R tyrosine kinase inhibitor OSI-906. This commentary will describe the complex endocrine changes induced by these types of agents. PMID:25303978

  3. Drosophila Tribbles Antagonizes Insulin Signaling-Mediated Growth and Metabolism via Interactions with Akt Kinase

    PubMed Central

    Das, Rahul; Sebo, Zachary; Pence, Laramie; Dobens, Leonard L.

    2014-01-01

    Drosophila Tribbles (Trbl) is the founding member of the Trib family of kinase-like docking proteins that modulate cell signaling during proliferation, migration and growth. In a wing misexpression screen for Trbl interacting proteins, we identified the Ser/Thr protein kinase Akt1. Given the central role of Akt1 in insulin signaling, we tested the function of Trbl in larval fat body, a tissue where rapid increases in size are exquisitely sensitive to insulin/insulin-like growth factor levels. Consistent with a role in antagonizing insulin-mediated growth, trbl RNAi knockdown in the fat body increased cell size, advanced the timing of pupation and increased levels of circulating triglyceride. Complementarily, overexpression of Trbl reduced fat body cell size, decreased overall larval size, delayed maturation and lowered levels of triglycerides, while circulating glucose levels increased. The conserved Trbl kinase domain is required for function in vivo and for interaction with Akt in a yeast two-hybrid assay. Consistent with direct regulation of Akt, overexpression of Trbl in the fat body decreased levels of activated Akt (pSer505-Akt) while misexpression of trbl RNAi increased phospho-Akt levels, and neither treatment affected total Akt levels. Trbl misexpression effectively suppressed Akt-mediated wing and muscle cell size increases and reduced phosphorylation of the Akt target FoxO (pSer256-FoxO). Taken together, these data show that Drosophila Trbl has a conserved role to bind Akt and block Akt-mediated insulin signaling, and implicate Trib proteins as novel sites of signaling pathway integration that link nutrient availability with cell growth and proliferation. PMID:25329475

  4. Principles of antibody-mediated TNF receptor activation

    PubMed Central

    Wajant, H

    2015-01-01

    From the beginning of research on receptors of the tumor necrosis factor (TNF) receptor superfamily (TNFRSF), agonistic antibodies have been used to stimulate TNFRSF receptors in vitro and in vivo. Indeed, CD95, one of the first cloned TNFRSF receptors, was solely identified as the target of cell death-inducing antibodies. Early on, it became evident from in vitro studies that valency and Fcγ receptor (FcγR) binding of antibodies targeting TNFRSF receptors can be of crucial relevance for agonistic activity. TNFRSF receptor-specific antibodies of the IgM subclass and secondary cross-linked or aggregation prone dimeric antibodies typically display superior agonistic activity compared with dimeric antibodies. Likewise, anchoring of antibodies to cell surface-expressed FcγRs potentiate their ability to trigger TNFRSF receptor signaling. However, only recently has the relevance of oligomerization and FcγR binding for the in vivo activity of antibody-induced TNFRSF receptor activation been straightforwardly demonstrated in vivo. This review discusses the crucial role of oligomerization and/or FcγR binding for antibody-mediated TNFRSF receptor stimulation in light of current models of TNFRSF receptor activation and especially the overwhelming relevance of these issues for the rational development of therapeutic TNFRSF receptor-targeting antibodies. PMID:26292758

  5. Insulin-mediated pseudoacromegaly: a case report and review of the literature.

    PubMed

    Yaqub, Abid; Yaqub, Nadia

    2008-01-01

    A 23 year old female patient presented with oligoamenorrhea. She had excessive weight gain and had noticed hirsutism, enlargement of the jaw, increase in her ring and shoe size, increased sweating and darkening of her skin in flexural areas. Examination revealed a large framed woman with coarse facial features, large hands and feet, prognathism, acanthosis nigricans, hirsutism, acne and many skin tags. GH and IGF-1 were normal. MRI of pituitary showed a 7mm microadenoma, believed to be non-secretory with normal pituitary hormonal workup. She had marked elevation of serum insulin, elevated testosterone and mixed hyperlipidemia. The occurrence of acromegaloid manifestations is an unusual phenomenon seen in a subset of patients with insulin resistance. In vitro studies in fibroblasts obtained from such patients have revealed impairment of metabolic, but preservation of mitogenic insulin signaling. Insulin-mediated pseudoacromegaly is an unusual syndrome that combines severe insulin resistance and an acromegaloid phenotype. Physicians should consider this possibility while evaluating patients with similar clinical and laboratory features. PMID:18846753

  6. Insulin-responsiveness of tumor growth.

    PubMed

    Chantelau, Ernst

    2009-05-01

    In October 2008, the 2nd International Insulin & Cancer Workshop convened roughly 30 researchers from eight countries in Düsseldorf/Germany. At this meeting, which was industry-independent like the preceding one in 2007, the following issues were discussed a) association between certain cancers and endogenous insulin production in humans, b) growth-promoting effects of insulin in animal experiments, c) mitogenic and anti-apoptotic activity of pharmaceutic insulin and insulin analogues in in vitro experiments, d) potential mechanisms of insulin action on cell growth, mediated by IGF-1 receptor and insulin receptor signaling, and e) IGF-1 receptor targeting for inhibition of tumor growth. It was concluded that further research is necessary to elucidate the clinical effects of these observations, and their potential for human neoplastic disease and treatment.

  7. Protein kinase C directly phosphorylates the insulin receptor in vitro and reduces its protein-tyrosine kinase activity.

    PubMed Central

    Bollag, G E; Roth, R A; Beaudoin, J; Mochly-Rosen, D; Koshland, D E

    1986-01-01

    The beta subunit of purified insulin receptor is phosphorylated on a serine residue by purified preparations of protein kinase C (ATP: protein phosphotransferase, EC 2.7.1.37). This phosphorylation is inhibited by antibodies to protein kinase C and stimulated by phospholipids, diacylglycerol, and Ca2+. The phosphorylation of the receptor by protein kinase C does not affect its insulin-binding activity but does inhibit by 65% the receptor's intrinsic tyrosine-specific protein kinase activity (ATP: protein-tyrosine O-phosphotransferase, EC 2.7.1.112). These results indicate that activators of protein kinase C, such as phorbol esters, desensitize cells to insulin by direct protein kinase C action on the insulin receptor. Images PMID:3526339

  8. Mutation in the Drosophila insulin-like receptor substrate, chico, affects the neuroendocrine stress-reaction development.

    PubMed

    Karpova, E K; Rauschenbach, I Yu; Burdina, E V; Gruntenko, N E

    2016-07-01

    It is shown for the first time that the insulin receptor substrate gene chico controls the functioning of the systems of metabolism of dopamine and juvenile hormone in Drosophila melanogaster females under normal conditions and in thermal stress. PMID:27599505

  9. Potentiation of insulin secretion and improvement of glucose intolerance by combining a novel G protein-coupled receptor 40 agonist DS-1558 with glucagon-like peptide-1 receptor agonists.

    PubMed

    Nakashima, Ryutaro; Yano, Tatsuya; Ogawa, Junko; Tanaka, Naomi; Toda, Narihiro; Yoshida, Masao; Takano, Rieko; Inoue, Masahiro; Honda, Takeshi; Kume, Shoen; Matsumoto, Koji

    2014-08-15

    G protein-coupled receptor 40 (GPR40) is a Gq-coupled receptor for free fatty acids predominantly expressed in pancreatic β-cells. In recent years, GPR40 agonists have been investigated for use as novel therapeutic agents in the treatment of type 2 diabetes. We discovered a novel small molecule GPR40 agonist, (3S)-3-ethoxy-3-(4-{[(1R)-4-(trifluoromethyl)-2,3-dihydro-1H-inden-1-yl]oxy}phenyl)propanoic acid (DS-1558). The GPR40-mediated effects of DS-1558 on glucose-stimulated insulin secretion were evaluated in isolated islets from GPR40 knock-out and wild-type (littermate) mice. The GPR40-mediated effects on glucose tolerance and insulin secretion were also confirmed by an oral glucose tolerance test in these mice. Furthermore, oral administration of DS-1558 (0.03, 0.1 and 0.3mg/kg) significantly and dose-dependently improved hyperglycemia and increased insulin secretion during the oral glucose tolerance test in Zucker fatty rats, the model of insulin resistance and glucose intolerance. Next, we examined the combination effects of DS-1558 with glucagon like peptide-1 (GLP-1). DS-1558 not only increased the glucose-stimulated insulin secretion by GLP-1 but also potentiated the maximum insulinogenic effects of GLP-1 after an intravenous glucose injection in normal Sprague Dawley rats. Furthermore, the glucose lowering effects of exendin-4, a GLP-1 receptor agonist, were markedly potentiated by the DS-1558 (3mg/kg) add-on in diabetic db/db mice during an intraperitoneal glucose tolerance test. In conclusion, our results indicate that add-on GPR40 agonists to GLP-1 related agents might be a potential treatment compared to single administration of these compounds. Therefore the combinations of these agents are a novel therapeutic option for type 2 diabetes.

  10. Differential Roles of Insulin and IGF-1 Receptors in Adipose Tissue Development and Function.

    PubMed

    Boucher, Jeremie; Softic, Samir; El Ouaamari, Abdelfattah; Krumpoch, Megan T; Kleinridders, Andre; Kulkarni, Rohit N; O'Neill, Brian T; Kahn, C Ronald

    2016-08-01

    To determine the roles of insulin and insulin-like growth factor 1 (IGF-1) action in adipose tissue, we created mice lacking the insulin receptor (IR), IGF-1 receptor (IGF1R), or both using Cre-recombinase driven by the adiponectin promoter. Mice lacking IGF1R only (F-IGFRKO) had a ∼25% reduction in white adipose tissue (WAT) and brown adipose tissue (BAT), whereas mice lacking both IR and IGF1R (F-IR/IGFRKO) showed an almost complete absence of WAT and BAT. Interestingly, mice lacking only the IR (F-IRKO) had a 95% reduction in WAT, but a paradoxical 50% increase in BAT with accumulation of large unilocular lipid droplets. Both F-IRKO and F-IR/IGFRKO mice were unable to maintain body temperature in the cold and developed severe diabetes, ectopic lipid accumulation in liver and muscle, and pancreatic islet hyperplasia. Leptin treatment normalized blood glucose levels in both groups. Glucose levels also improved spontaneously by 1 year of age, despite sustained lipodystrophy and insulin resistance. Thus, loss of IR is sufficient to disrupt white fat formation, but not brown fat formation and/or maintenance, although it is required for normal BAT function and temperature homeostasis. IGF1R has only a modest contribution to both WAT and BAT formation and function.

  11. Insulin and IGF receptor signalling in neural-stem-cell homeostasis.

    PubMed

    Ziegler, Amber N; Levison, Steven W; Wood, Teresa L

    2015-03-01

    Neural stem cells (NSCs) are found in two regions in the adult brain: the subgranular zone (SGZ) in the hippocampal dentate gyrus and the subventricular zone (SVZ) adjacent to the lateral ventricles. Similarly to other somatic stem cells, adult NSCs are found within specialized niches that are organized to facilitate NSC self-renewal. Alterations in stem-cell homeostasis can contribute to the consequences of neurodegenerative diseases, healthy ageing and tissue repair after damage. Insulin and the insulin-like growth factors (IGFs) function in stem-cell homeostasis across species. Studies in the mammalian central nervous system support essential roles for IGF and/or insulin signalling in NSC self-renewal, neurogenesis, cognition and sensory function through distinct ligand-receptor interactions. IGF-II is of particular interest as a result of its production by the choroid plexus and presence in cerebrospinal fluid (CSF). CSF regulates and supports the development, division and migration of cells in the adult brain and is required for NSC maintenance. In this Review, we discuss emerging data on the functions of IGF-II and IGF and/or insulin receptor signalling in the context of NSC regulation in the SVZ and SGZ. We also propose a model for IGF-II in which the choroid plexus is a major component of the NSC niche.

  12. Differential Roles of Insulin and IGF-1 Receptors in Adipose Tissue Development and Function.

    PubMed

    Boucher, Jeremie; Softic, Samir; El Ouaamari, Abdelfattah; Krumpoch, Megan T; Kleinridders, Andre; Kulkarni, Rohit N; O'Neill, Brian T; Kahn, C Ronald

    2016-08-01

    To determine the roles of insulin and insulin-like growth factor 1 (IGF-1) action in adipose tissue, we created mice lacking the insulin receptor (IR), IGF-1 receptor (IGF1R), or both using Cre-recombinase driven by the adiponectin promoter. Mice lacking IGF1R only (F-IGFRKO) had a ∼25% reduction in white adipose tissue (WAT) and brown adipose tissue (BAT), whereas mice lacking both IR and IGF1R (F-IR/IGFRKO) showed an almost complete absence of WAT and BAT. Interestingly, mice lacking only the IR (F-IRKO) had a 95% reduction in WAT, but a paradoxical 50% increase in BAT with accumulation of large unilocular lipid droplets. Both F-IRKO and F-IR/IGFRKO mice were unable to maintain body temperature in the cold and developed severe diabetes, ectopic lipid accumulation in liver and muscle, and pancreatic islet hyperplasia. Leptin treatment normalized blood glucose levels in both groups. Glucose levels also improved spontaneously by 1 year of age, despite sustained lipodystrophy and insulin resistance. Thus, loss of IR is sufficient to disrupt white fat formation, but not brown fat formation and/or maintenance, although it is required for normal BAT function and temperature homeostasis. IGF1R has only a modest contribution to both WAT and BAT formation and function. PMID:27207537

  13. [Differences of males and females regarding the binding capacity of insulin to erythrocyte receptors].

    PubMed

    Juste, M G; Pié, J; Pié, A

    1989-01-01

    The analysis of insulin receptors in erythrocytes demands a relatively small blood sample, which justifies the interest in its use as an index of the cellular capacity for binding hormone. In order to establish criteria for normalcy, the capacity of erythrocytes for binding in vitro insulin labelled with 125I before increasing concentrations of cold insulin (from 0.5 to 10(3) ng/ml), was studied in a group of 41 healthy men and another of 35 women with normal menstrual cycles. In the female group the study was carried out in three different days of the same cycle (days 3, 12 and 21). The binding capacity in the male was higher than in the female (p less than 0.05) in the follicular phase (days 3 and 12) as well as in the luteal phase (day 21) and, among women, it was higher in the follicular phase than in the luteal one (p less than 0.05). The results indicate that progesterone, as well as prolactin and glucagon, may play an important role in the binding capacity of insulin to its receptor. To make the values comparable, it is suggested that blood extraction in women be carried out during the first five days of the cycle.

  14. Insulin

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The manipulation of organic materials--cells, tissues, and even living organisms--offers many exciting possibilities for the future from organic computers to improved aquaculture. Commercial researchers are using the microgravity environment to produce large near perfect protein crystals Research on insulin has yielded crystals that far surpass the quality of insulin crystals grown on the ground. Using these crystals industry partners are working to develop new and improved treatments for diabetes. Other researchers are exploring the possibility of producing antibiotics using plant cell cultures which could lead to both orbital production and the improvement of ground-based antibiotic production.

  15. Glucocorticoid regulation of insulin receptor and substrate IRS-1 tyrosine phosphorylation in rat skeletal muscle in vivo.

    PubMed Central

    Giorgino, F; Almahfouz, A; Goodyear, L J; Smith, R J

    1993-01-01

    To test the hypothesis that glucocorticoid-induced insulin resistance might originate from abnormalities in insulin receptor signaling, we investigated the effects of glucocorticoids on in vivo tyrosine phosphorylation of the insulin receptor and the insulin receptor substrate IRS-1 in rat skeletal muscle. Male Sprague-Dawley rats were treated with cortisone (100 mg/kg for 5 d) and compared to pair-fed controls. Cortisone treatment of rats resulted in both hyperglycemia and hyperinsulinemia. Anesthetized animals were injected with 10 U/kg insulin via cardiac puncture and, after 2 min, hindlimb muscles were removed, snap-frozen, and homogenized in SDS. Protein tyrosine phosphorylation was studied by immunoblotting with phosphotyrosine antibody. Insulin receptors and substrate IRS-1 were identified and quantified with specific antibodies. Cortisone treatment increased the amount of insulin receptor protein by 36%, but decreased the total level of receptor tyrosine phosphorylation (69 +/- 4% of control, P < 0.05). The decreased level of receptor phosphorylation was explained by a reduced number of receptors containing phosphorylated tyrosine residues (64.6 +/- 5% of control, P < 0.05). Glucocorticoid excess decreased skeletal muscle IRS-1 content by 50%, but did not significantly alter the total level of IRS-1 tyrosine phosphorylation. The apparent M(r) of IRS-1 was reduced by approximately 10 kD. Treatment with protein phosphatase-2A reduced IRS-1 M(r) in control but not in glucocorticoid-treated muscle indicating that the lower M(r) likely results from lower phosphoserine and/or phosphothreonine content. To investigate the role of hyperinsulinemia in the glucocorticoid response, rats were made insulin-deficient with streptozotocin (100 mg/kg, i.p.). Subsequent treatment with cortisone for 5 d had no effects on insulin levels, tyrosine phosphorylation of insulin receptors or IRS-1, or the M(r) of IRS-1. In conclusion, glucocorticoid-treated skeletal muscle is

  16. Novel Zn2+ Modulated GPR39 Receptor Agonists Do Not Drive Acute Insulin Secretion in Rodents

    PubMed Central

    Yasuda, Shin-ichiro; Tsuchida, Takuma; Oguma, Takahiro; Marley, Anna; Wennberg-Huldt, Charlotte; Hovdal, Daniel; Fukuda, Hajime; Yoneyama, Yukimi; Sasaki, Kazuyo; Johansson, Anders; Lundqvist, Sara; Brengdahl, Johan; Isaacs, Richard J.; Brown, Daniel; Geschwindner, Stefan; Benthem, Lambertus; Priest, Claire; Turnbull, Andrew

    2015-01-01

    Type 2 diabetes (T2D) occurs when there is insufficient insulin release to control blood glucose, due to insulin resistance and impaired β-cell function. The GPR39 receptor is expressed in metabolic tissues including pancreatic β-cells and has been proposed as a T2D target. Specifically, GPR39 agonists might improve β-cell function leading to more adequate and sustained insulin release and glucose control. The present study aimed to test the hypothesis that GPR39 agonism would improve glucose stimulated insulin secretion in vivo. A high throughput screen, followed by a medicinal chemistry program, identified three novel potent Zn2+ modulated GPR39 agonists. These agonists were evaluated in acute rodent glucose tolerance tests. The results showed a lack of glucose lowering and insulinotropic effects not only in lean mice, but also in diet-induced obese (DIO) mice and Zucker fatty rats. It is concluded that Zn2+ modulated GPR39 agonists do not acutely stimulate insulin release in rodents. PMID:26720709

  17. Structure and receptor-binding activity of insulin from a holostean fish, the bowfin (Amia calva).

    PubMed Central

    Conlon, J M; Youson, J H; Whittaker, J

    1991-01-01

    The holostean fishes are the extant representatives of the primitive ray-finned fishes from which the present-day teleosts may have evolved. The primary structure of insulin from a holostean fish, the bowfin (Amia calva), was established as: A-chain: Gly-Ile-Val-Glu-Gln-Cys-Cys-Leu-Lys-Pro-Cys-Thr-Ile-Tyr-Glu-Met-Glu- Lys-Tyr-Cys-Asn B-chain: Ala-Ala-Ser-Gln-His-Leu-Cys-Gly-Ser-His-Leu-Val-Glu-Ala-Leu-Phe-Leu- Val-Cys-Gly-Glu-Ser-Gly-Phe-Phe-Tyr-Asn-Pro-Asn-Lys-Ser This amino acid sequence contains several substitutions (methionine at A16, phenylalanine at B16 and serine at B22) at sites that have been strongly conserved in other vertebrate species and that may be expected to influence biological activity. Consistent with this prediction, bowfin insulin was approx. 14-fold less potent than pig insulin in inhibiting the binding of [125I-Tyr-A14](human insulin) to transfected mouse NIH 3T3 cells expressing the human insulin receptor. PMID:2039477

  18. DPP4-inhibitor improves neuronal insulin receptor function, brain mitochondrial function and cognitive function in rats with insulin resistance induced by high-fat diet consumption.

    PubMed

    Pipatpiboon, Noppamas; Pintana, Hiranya; Pratchayasakul, Wasana; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2013-03-01

    High-fat diet (HFD) consumption has been demonstrated to cause peripheral and neuronal insulin resistance, and brain mitochondrial dysfunction in rats. Although the dipeptidyl peptidase-4 inhibitor, vildagliptin, is known to improve peripheral insulin sensitivity, its effects on neuronal insulin resistance and brain mitochondrial dysfunction caused by a HFD are unknown. We tested the hypothesis that vildagliptin prevents neuronal insulin resistance, brain mitochondrial dysfunction, learning and memory deficit caused by HFD. Male rats were divided into two groups to receive either a HFD or normal diet (ND) for 12 weeks, after which rats in each group were fed with either vildagliptin (3 mg/kg/day) or vehicle for 21 days. The cognitive function was tested by the Morris Water Maze prior to brain removal for studying neuronal insulin receptor (IR) and brain mitochondrial function. In HFD rats, neuronal insulin resistance and brain mitochondrial dysfunction were demonstrated, with impaired learning and memory. Vildagliptin prevented neuronal insulin resistance by restoring insulin-induced long-term depression and neuronal IR phosphorylation, IRS-1 phosphorylation and Akt/PKB-ser phosphorylation. It also improved brain mitochondrial dysfunction and cognitive function. Vildagliptin effectively restored neuronal IR function, increased glucagon-like-peptide 1 levels and prevented brain mitochondrial dysfunction, thus attenuating the impaired cognitive function caused by HFD.

  19. Insulin-Stimulated Release of D-Chiro-Inositol-Containing Inositolphosphoglycan Mediator Correlates with Insulin Sensitivity in Women with Polycystic Ovary Syndrome

    PubMed Central

    Cheang, Kai I.; Baillargeon, Jean-Patrice; Essah, Paulina A.; Ostlund, Richard E.; Apridonize, Teimuraz; Islam, Leila; Nestler, John E.

    2008-01-01

    Some actions of insulin are mediated by inositolphosphoglycan mediators. Deficient release of a putative D-chiro-inositol-containing inositolphosphoglycan (DCI-IPG) mediator may contribute to insulin resistance in women with polycystic ovary syndrome (PCOS). Previously we demonstrated that oral DCI supplementation improved ovulation and metabolic parameters in women with PCOS. However, whether oral DCI mediates an increase in the release of the DCI-IPG mediator and an improvement in insulin sensitivity in women with PCOS is unknown. We conducted a randomized controlled trial of DCI supplementation vs. placebo in 11 women with PCOS who were assessed at two-time points, 6 weeks apart. Plasma DCI, DCI-IPG release during OGTT (AUCDCI-IPG) and insulin sensitivity (Si) by FSIVGTT were assessed at baseline and end-of-study. The study was terminated early due to a sudden unavailability of the study drug. However, in all subjects without regard to treatment assignment, there was a positive correlation between the change in AUCDCI-IPG / AUCInsulin ratio and the change in Si during the 6-week period (r=0.69, p=0.02), which remained significant after adjustment for BMI (p=0.022), and after further adjustment for BMI and treatment allocation (p=0.0261). This suggests that in women with PCOS, increased glucose-stimulated DCI-IPG release is significantly correlated with improved insulin sensitivity. The significant relationship between DCI-IPG release and insulin sensitivity suggests that the DCI-IPG mediator may be a target for therapeutic interventions in PCOS. PMID:18803944

  20. The type 2 vascular endothelial growth factor receptor recruits insulin receptor substrate-1 in its signalling pathway.

    PubMed Central

    Senthil, Duraisamy; Ghosh Choudhury, Goutam; Bhandari, Basant K; Kasinath, Balakuntalam S

    2002-01-01

    Vascular endothelial growth factor (VEGF) isoforms exert their biological effects through receptors that possess intrinsic tyrosine kinase activity. Whether VEGF binding to its receptors recruits insulin receptor substrate (IRS) family of docking proteins to the receptor is not known. Following incubation of mouse kidney proximal tubular epithelial cells with VEGF, we observed an increase in tyrosine phosphorylation of several proteins, including one of approximately 200 kDa, suggesting possible regulation of phosphorylation of IRS proteins. VEGF augmented tyrosine phosphorylation of IRS-1 in kidney epithelial cells and rat heart endothelial cells in a time-dependent manner. In the epithelial cells, association of IRS-1 with type 2 VEGF receptor was promoted by VEGF. VEGF also increased association of IRS-1 with the p85 regulatory subunit of phosphoinositide 3-kinase (PI 3-kinase), and PI 3-kinase activity in IRS-1 immunoprecipitates was increased in VEGF-treated cells. Incubation of epithelial cells with antisense IRS-1 oligonucleotide, but not sense oligonucleotide, reduced expression of the protein and VEGF-induced PI 3-kinase activity in IRS-1 immunoprecipitates. Additionally, VEGF-induced protein synthesis was also impaired by antisense but not sense IRS-1 oligonucleotide. These data provide the first evidence that binding of VEGF to its type 2 receptor promotes association of IRS-1 with the receptor complex. This association may account for some of the increase in VEGF-induced PI 3-kinase activity, and the increase in de novo protein synthesis seen in renal epithelial cells. PMID:12153400

  1. Platelet hemostasis in patients with metabolic syndrome and type 2 diabetes mellitus: cGMP- and NO-dependent mechanisms in the insulin-mediated platelet aggregation

    PubMed Central

    Suslova, Tatiana E.; Sitozhevskii, Alexei V.; Ogurkova, Oksana N.; Kravchenko, Elena S.; Kologrivova, Irina V.; Anfinogenova, Yana; Karpov, Rostislav S.

    2015-01-01

    Patients with metabolic syndrome (MetS) and type 2 diabetes mellitus (T2DM) have high risk of microcirculation complications and microangiopathies. An increase in thrombogenic risk is associated with platelet hyperaggregation, hypercoagulation, and hyperfibrinolysis. Factors leading to platelet activation in MetS and T2DM comprise insulin resistance, hyperglycemia, non-enzymatic glycosylation, oxidative stress, and inflammation. This review discusses the role of nitric oxide (NO) in the regulation of platelet adhesion and aggregation processes. NO is synthesized both in endotheliocytes, smooth muscle cells, macrophages, and platelets. Modification of platelet NO-synthase (NOS) activity in MetS patients can play a central role in the manifestation of platelet hyperactivation. Metabolic changes, accompanying T2DM, can lead to an abnormal NOS expression and activity in platelets. Hyperhomocysteinemia, often accompanying T2DM, is a risk factor for cardiovascular accidents. Homocysteine can reduce NO production by platelets. This review provides data on the insulin effects in platelets. Decrease in a number and sensitivity of the insulin receptors on platelets in T2DM can cause platelet hyperactivation. Various intracellular mechanisms of anti-aggregating insulin effects are discussed. Anti-aggregating effects of insulin are mediated by a NO-induced elevation of cGMP and upregulation of cAMP- and cGMP-dependent pathways. The review presents data suggesting an ability of platelets to synthesize humoral factors stimulating thrombogenesis and inflammation. Proinflammatory cytokines are considered as markers of T2DM and cardiovascular complications and are involved in the development of dyslipidemia and insulin resistance. The article provides an evaluation of NO-mediated signaling pathway in the effects of cytokines on platelet aggregation. The effects of the proinflammatory cytokines on functional activity of platelets are demonstrated. PMID:25601838

  2. Platelet hemostasis in patients with metabolic syndrome and type 2 diabetes mellitus: cGMP- and NO-dependent mechanisms in the insulin-mediated platelet aggregation.

    PubMed

    Suslova, Tatiana E; Sitozhevskii, Alexei V; Ogurkova, Oksana N; Kravchenko, Elena S; Kologrivova, Irina V; Anfinogenova, Yana; Karpov, Rostislav S

    2014-01-01

    Patients with metabolic syndrome (MetS) and type 2 diabetes mellitus (T2DM) have high risk of microcirculation complications and microangiopathies. An increase in thrombogenic risk is associated with platelet hyperaggregation, hypercoagulation, and hyperfibrinolysis. Factors leading to platelet activation in MetS and T2DM comprise insulin resistance, hyperglycemia, non-enzymatic glycosylation, oxidative stress, and inflammation. This review discusses the role of nitric oxide (NO) in the regulation of platelet adhesion and aggregation processes. NO is synthesized both in endotheliocytes, smooth muscle cells, macrophages, and platelets. Modification of platelet NO-synthase (NOS) activity in MetS patients can play a central role in the manifestation of platelet hyperactivation. Metabolic changes, accompanying T2DM, can lead to an abnormal NOS expression and activity in platelets. Hyperhomocysteinemia, often accompanying T2DM, is a risk factor for cardiovascular accidents. Homocysteine can reduce NO production by platelets. This review provides data on the insulin effects in platelets. Decrease in a number and sensitivity of the insulin receptors on platelets in T2DM can cause platelet hyperactivation. Various intracellular mechanisms of anti-aggregating insulin effects are discussed. Anti-aggregating effects of insulin are mediated by a NO-induced elevation of cGMP and upregulation of cAMP- and cGMP-dependent pathways. The review presents data suggesting an ability of platelets to synthesize humoral factors stimulating thrombogenesis and inflammation. Proinflammatory cytokines are considered as markers of T2DM and cardiovascular complications and are involved in the development of dyslipidemia and insulin resistance. The article provides an evaluation of NO-mediated signaling pathway in the effects of cytokines on platelet aggregation. The effects of the proinflammatory cytokines on functional activity of platelets are demonstrated.

  3. Endothelin-1 contributes to endothelial dysfunction and enhanced vasoconstriction through augmented superoxide production in penile arteries from insulin-resistant obese rats: role of ETA and ETB receptors

    PubMed Central

    Sánchez, A; Martínez, P; Muñoz, M; Benedito, S; García-Sacristán, A; Hernández, M; Prieto, D

    2014-01-01

    Background and Purpose We assessed whether endothelin-1 (ET-1) inhibits NO and contributes to endothelial dysfunction in penile arteries in a model of insulin resistance-associated erectile dysfunction (ED). Experimental Approach Vascular function was assessed in penile arteries, from obese (OZR) and lean (LZR) Zucker rats, mounted in microvascular myographs. Changes in basal and stimulated levels of superoxide (O2−) were detected by lucigenin-enhanced chemiluminescence and ET receptor expression was determined by immunohistochemistry. Key Results ET-1 stimulated acute O2− production that was blunted by tempol and the NADPH oxidase inhibitor, apocynin, but markedly enhanced in obese animals. ET-1 inhibited the vasorelaxant effects of ACh and of the NO donor S-nitroso-N-acetyl-DL-penicillamine in arteries from both LZR and OZR. Selective ETA (BQ123) or ETB receptor (BQ788) antagonists reduced both basal and ET-1-stimulated superoxide generation and reversed ET-1-induced inhibition of NO-mediated relaxations in OZR, while only BQ-123 antagonized ET-1 actions in LZR. ET-1-induced vasoconstriction was markedly enhanced by NO synthase blockade and reduced by endothelium removal and apocynin. In endothelium-denuded penile arteries, apocynin blunted augmented ET-1-induced contractions in OZR. Both ETA and ETB receptors were expressed in smooth muscle and the endothelial layer and up-regulated in arteries from OZR. Conclusions and Implications ET-1 stimulates ETA-mediated NADPH oxidase-dependent ROS generation, which inhibits endothelial NO bioavailability and contributes to ET-1-induced contraction in healthy penile arteries. Enhanced vascular expression of ETB receptors contributes to augmented ROS production, endothelial dysfunction and increased vasoconstriction in erectile tissue from insulin-resistant obese rats. Hence, antagonism of ETB receptors might improve the ED associated with insulin-resistant states. PMID:25091502

  4. Substance P (SP)-Neurokinin-1 Receptor (NK-1R) Alters Adipose Tissue Responses to High-Fat Diet and Insulin Action

    PubMed Central

    Stavrakis, Dimitris; Bakirtzi, Kyriaki; Kokkotou, Efi; Pirtskhalava, Tamara; Nayeb-Hashemi, Hamed; Bowe, Collin; Bugni, James M.; Nuño, Miriam; Lu, Bao; Gerard, Norma P.; Leeman, Susan E.; Kirkland, James L.

    2011-01-01

    Peripheral administration of a specific neurokinin-1 receptor (NK-1R) antagonist to mice leads to reduced weight gain and circulating levels of insulin and leptin after high-fat diet (HFD). Here, we assessed the contribution of substance P (SP) and NK-1R in diet-induced obesity using NK-1R deficient [knockout (KO)] mice and extended our previous findings to show the effects of SP-NK-1R interactions on adipose tissue-associated insulin signaling and glucose metabolic responses. NK-1R KO and wild-type (WT) littermates were fed a HFD for 3 wk, and obesity-associated responses were determined. Compared with WT, NK-1 KO mice show reduced weight gain and circulating levels of leptin and insulin in response to HFD. Adiponectin receptor mRNA levels are higher in mesenteric fat and liver in NK-1 KO animals compared with WT, after HFD. Mesenteric fat from NK-1R KO mice fed with HFD has reduced stress-activated protein kinase/c-Jun N-terminal kinase and protein kinase Cθ activation compared with WT mice. After glucose challenge, NK-1R KO mice remove glucose from the circulation more efficiently than WT and pair-fed controls, suggesting an additional peripheral effect of NK-1R-mediated signaling on glucose metabolism. Glucose uptake experiments in isolated rat adipocytes showed that SP directly inhibits insulin-mediated glucose uptake. Our results further establish a role for SP-NK-1R interactions in adipose tissue responses, specifically as they relate to obesity-associated pathologies such as glucose intolerance and insulin resistance. Our results highlight this pathway as an important therapeutic approach for type 2 diabetes. PMID:21467195

  5. Distinct roles for insulin and insulin-like growth factor-1 receptors in pancreatic beta-cell glucose sensing revealed by RNA silencing.

    PubMed Central

    Da Silva Xavier, Gabriela; Qian, Qingwen; Cullen, Peter J; Rutter, Guy A

    2004-01-01

    The importance of the insulin receptor (IR) and the insulin-like growth factor-1 receptor (IGF-1R) for glucose-regulated insulin secretion and gene expression in pancreatic islet beta-cells is at present unresolved. Here, we have used small interfering RNAs (siRNAs) to silence the expression of each receptor selectively in clonal MIN6 beta-cells. Reduction of IR levels by >90% completely inhibited glucose (30 mM compared with 3 mM)-induced insulin secretion, but had no effect on depolarization-stimulated secretion. IR depletion also blocked the accumulation of preproinsulin (PPI), pancreatic duodenum homoeobox-1 (PDX-1) and glucokinase (GK) mRNAs at elevated glucose concentrations, as assessed by quantitative real-time PCR analysis (TaqMan). Similarly, depletion of IGF-1R inhibited glucose-induced insulin secretion but, in contrast with the effects of IR silencing, had little impact on the regulation of gene expression by glucose. Moreover, loss of IGF-1R, but not IR, markedly inhibited glucose-stimulated increases in cytosolic and mitochondrial ATP, suggesting a role for IGF-1R in the maintenance of oxidative metabolism and in the generation of mitochondrial coupling factors. RNA silencing thus represents a useful tool for the efficient and selective inactivation of receptor tyrosine kinases in isolated beta-cells. By inhibiting glucose-stimulated insulin secretion through the inactivation of IGF-1R, this approach also demonstrates the existence of insulin-independent mechanisms whereby elevated glucose concentrations regulate PPI, PDX-1 and GK gene expression in beta-cells. PMID:14563207

  6. Development of receptors for insulin and insulin-like growth factor-I in head and brain of chick embryos: Autoradiographic localization

    SciTech Connect

    Bassas, L.; Girbau, M.; Lesniak, M.A.; Roth, J.; de Pablo, F. )

    1989-11-01

    In whole brain of chick embryos insulin receptors are highest at the end of embryonic development, while insulin-like growth factor-I (IGF-I) receptors dominate in the early stages. These studies provided evidence for developmental regulation of both types of receptors, but they did not provide information on possible differences between brain regions at each developmental stage or within one region at different embryonic ages. We have now localized the specific binding of (125I)insulin and (125I)IGF-I in sections of head and brain using autoradiography and computer-assisted densitometric analysis. Embryos have been studied from the latter part of organogenesis (days 6 and 12) through late development (day 18, i.e. 3 days before hatching), and the binding patterns have been compared with those in the adult brain. At all ages the binding of both ligands was to discrete anatomical regions. Interestingly, while in late embryos and adult brain the patterns of (125I)insulin and (125I) IGF-I binding were quite distinct, in young embryos both ligands showed very similar localization of binding. In young embryos the retina and lateral wall of the growing encephalic vesicles had the highest binding of both (125I)insulin and (125I)IGF-I. In older embryos, as in the adult brain, insulin binding was high in the paleostriatum augmentatum and molecular layer of the cerebellum, while IGF-I binding was prominent in the hippocampus and neostriatum. The mapping of receptors in a vertebrate embryo model from early prenatal development until adulthood predicts great overlap in any possible function of insulin and IGF-I in brain development, while it anticipates differential localized actions of the peptides in the mature brain.

  7. Asialoglycoprotein receptor mediated hepatocyte targeting - strategies and applications.

    PubMed

    D'Souza, Anisha A; Devarajan, Padma V

    2015-04-10

    Hepatocyte resident afflictions continue to affect the human population unabated. The asialoglycoprotein receptor (ASGPR) is primarily expressed on hepatocytes and minimally on extra-hepatic cells. This makes it specifically attractive for receptor-mediated drug delivery with minimum concerns of toxicity. ASGPR facilitates internalization by clathrin-mediated endocytosis and exhibits high affinity for carbohydrates specifically galactose, N-acetylgalactosamine and glucose. Isomeric forms of sugar, galactose density and branching, spatial geometry and galactose linkages are key factors influencing ligand-receptor binding. Popular ligands for ASGPR mediated targeting are carbohydrate polymers, arabinogalactan and pullulan. Other ligands include galactose-bearing glycoproteins, glycopeptides and galactose modified polymers and lipids. Drug-ligand conjugates provide a viable strategy; nevertheless ligand-anchored nanocarriers provide an attractive option for ASGPR targeted delivery and are widely explored. The present review details various ligands and nanocarriers exploited for ASGPR mediated delivery of drugs to hepatocytes. Nanocarrier properties affecting ASGPR mediated uptake are discussed at length. The review also highlights the clinical relevance of ASGPR mediated targeting and applications in diagnostics. ASGPR mediated hepatocyte targeting provides great promise for improved therapy of hepatic afflictions.

  8. β-Cell deletion of Nr4a1 and Nr4a3 nuclear receptors impedes mitochondrial respiration and insulin secretion.

    PubMed

    Reynolds, Merrick S; Hancock, Chad R; Ray, Jason D; Kener, Kyle B; Draney, Carrie; Garland, Kevin; Hardman, Jeremy; Bikman, Benjamin T; Tessem, Jeffery S

    2016-07-01

    β-Cell insulin secretion is dependent on proper mitochondrial function. Various studies have clearly shown that the Nr4a family of orphan nuclear receptors is essential for fuel utilization and mitochondrial function in liver, muscle, and adipose. Previously, we have demonstrated that overexpression of Nr4a1 or Nr4a3 is sufficient to induce proliferation of pancreatic β-cells. In this study, we examined whether Nr4a expression impacts pancreatic β-cell mitochondrial function. Here, we show that β-cell mitochondrial respiration is dependent on the nuclear receptors Nr4a1 and Nr4a3. Mitochondrial respiration in permeabilized cells was significantly decreased in β-cells lacking Nr4a1 or Nr4a3. Furthermore, respiration rates of intact cells deficient for Nr4a1 or Nr4a3 in the presence of 16 mM glucose resulted in decreased glucose mediated oxygen consumption. Consistent with this reduction in respiration, a significant decrease in glucose-stimulated insulin secretion rates is observed with deletion of Nr4a1 or Nr4a3. Interestingly, the changes in respiration and insulin secretion occur without a reduction in mitochondrial content, suggesting decreased mitochondrial function. We establish that knockdown of Nr4a1 and Nr4a3 results in decreased expression of the mitochondrial dehydrogenase subunits Idh3g and Sdhb. We demonstrate that loss of Nr4a1 and Nr4a3 impedes production of ATP and ultimately inhibits glucose-stimulated insulin secretion. These data demonstrate for the first time that the orphan nuclear receptors Nr4a1 and Nr4a3 are critical for β-cell mitochondrial function and insulin secretion.

  9. β-Cell deletion of Nr4a1 and Nr4a3 nuclear receptors impedes mitochondrial respiration and insulin secretion.

    PubMed

    Reynolds, Merrick S; Hancock, Chad R; Ray, Jason D; Kener, Kyle B; Draney, Carrie; Garland, Kevin; Hardman, Jeremy; Bikman, Benjamin T; Tessem, Jeffery S

    2016-07-01

    β-Cell insulin secretion is dependent on proper mitochondrial function. Various studies have clearly shown that the Nr4a family of orphan nuclear receptors is essential for fuel utilization and mitochondrial function in liver, muscle, and adipose. Previously, we have demonstrated that overexpression of Nr4a1 or Nr4a3 is sufficient to induce proliferation of pancreatic β-cells. In this study, we examined whether Nr4a expression impacts pancreatic β-cell mitochondrial function. Here, we show that β-cell mitochondrial respiration is dependent on the nuclear receptors Nr4a1 and Nr4a3. Mitochondrial respiration in permeabilized cells was significantly decreased in β-cells lacking Nr4a1 or Nr4a3. Furthermore, respiration rates of intact cells deficient for Nr4a1 or Nr4a3 in the presence of 16 mM glucose resulted in decreased glucose mediated oxygen consumption. Consistent with this reduction in respiration, a significant decrease in glucose-stimulated insulin secretion rates is observed with deletion of Nr4a1 or Nr4a3. Interestingly, the changes in respiration and insulin secretion occur without a reduction in mitochondrial content, suggesting decreased mitochondrial function. We establish that knockdown of Nr4a1 and Nr4a3 results in decreased expression of the mitochondrial dehydrogenase subunits Idh3g and Sdhb. We demonstrate that loss of Nr4a1 and Nr4a3 impedes production of ATP and ultimately inhibits glucose-stimulated insulin secretion. These data demonstrate for the first time that the orphan nuclear receptors Nr4a1 and Nr4a3 are critical for β-cell mitochondrial function and insulin secretion. PMID:27221116

  10. Acquired resistance to tamoxifen is associated with loss of the type I insulin-like growth factor receptor: implications for breast cancer treatment.

    PubMed

    Fagan, Dedra H; Uselman, Ryan R; Sachdev, Deepali; Yee, Douglas

    2012-07-01

    The role of the insulin-like growth factor (IGF) system in breast cancer is well defined, and inhibitors of this pathway are currently in clinical trials. The majority of anti-IGF1R clinical trials are in estrogen receptor-positive patients who have progressed on prior endocrine therapy; early reports show no benefit for addition of IGF1R inhibitors to endocrine therapy in this setting. In this study, we examined the effectiveness of IGF1R inhibitors in vitro by generating tamoxifen-resistant (TamR) cells. We found that TamR cells had diminished levels of IGF1R with unchanged levels of insulin receptor (IR), and failed to respond to IGF-I-induced Akt activation, proliferation, and anchorage-independent growth while retaining responsiveness to both insulin and IGF-II. The IGF1R antibody dalotuzumab inhibited IGF-I-mediated Akt phosphorylation, proliferation, and anchorage-independent growth in parental cells, but had no effect on TamR cells. An IGF1R tyrosine kinase inhibitor, AEW541, with equal potency for the IGF1R and IR, inhibited IGF-I-, IGF-II-, and insulin-stimulated Akt phosphorylation, proliferation, and anchorage-independent growth in parental cells. Interestingly, AEW541 also inhibited insulin- and IGF-II-stimulated effects in TamR cells. Tamoxifen-treated xenografts also had reduced levels of IGF1R, and dalotuzumab did not enhance the effect of tamoxifen. We conclude that cells selected for tamoxifen resistance in vitro have downregulated IGF1R making antibodies directed against this receptor ineffective. Inhibition of IR may be necessary to manage tamoxifen-resistant breast cancer.

  11. Multiscale Modeling of Virus Entry via Receptor-Mediated Endocytosis

    NASA Astrophysics Data System (ADS)

    Liu, Jin

    2012-11-01

    Virus infections are ubiquitous and remain major threats to human health worldwide. Viruses are intracellular parasites and must enter host cells to initiate infection. Receptor-mediated endocytosis is the most common entry pathway taken by viruses, the whole process is highly complex and dictated by various events, such as virus motions, membrane deformations, receptor diffusion and ligand-receptor reactions, occurring at multiple length and time scales. We develop a multiscale model for virus entry through receptor-mediated endocytosis. The binding of virus to cell surface is based on a mesoscale three dimensional stochastic adhesion model, the internalization (endocytosis) of virus and cellular membrane deformation is based on the discretization of Helfrich Hamiltonian in a curvilinear space using Monte Carlo method. The multiscale model is based on the combination of these two models. We will implement this model to study the herpes simplex virus entry into B78 cells and compare the model predictions with experimental measurements.

  12. Regulation and ontogeny of subtypes of muscarinic receptors and muscarinic receptor-mediated

    SciTech Connect

    Lee, W.

    1989-01-01

    The densities of total and M1 muscarinic receptors were measured using the muscarinic receptor antagonists {sup 3}H-quinuclidinyl benzilate and {sup 3}H-pirenzepine, respectively. Thus, the difference between the density of {sup 3}H-quinuclidinyl benzilate and {sup 3}H-pirenzepine binding sites represents the density of M2 sites. In addition, there is no observable change in either acetylcholine-stimulated phosphoinositide breakdown (suggested to be an M1 receptor-mediated response) or in carbachol-mediated inhibition of cyclic AMP accumulation (suggested to be an M2 receptor-mediated response) in slices of cortex+dorsal hippocampus following chronic atropine administration. In other experiments, it has been shown that the M1 and M2 receptors in rat cortex have different ontogenetic profiles. The M2 receptor is present at adult levels at birth, while the M1 receptor develops slowly from low levels at postnatal week 1 to adult levels at postnatal week 3. The expression of acetylcholine-stimulated phosphoinositide breakdown parallels the development of M1 receptors, while the development of carbachol-mediated inhibition of cyclic AMP accumulation occurs abruptly between weeks 2 and 3 postnatally.

  13. Zip4 Mediated Zinc Influx Stimulates Insulin Secretion in Pancreatic Beta Cells

    PubMed Central

    Hardy, Alexandre B.; Prentice, Kacey J.; Froese, Sean; Liu, Ying; Andrews, Glen K.; Wheeler, Michael B.

    2015-01-01

    Zinc has an important role in normal pancreatic beta cell physiology as it regulates gene transcription, insulin crystallization and secretion, and cell survival. Nevertheless, little is known about how zinc is transported through the plasma membrane of beta cells and which of the class of zinc influx transporters (Zip) is involved. Zip4 was previously shown to be expressed in human and mouse beta cells; however, its function there is still unknown. Therefore, the aim of this study was to define the zinc transport role of Zip4 in beta cells. To investigate this, Zip4 was over-expressed in MIN6 beta cells using a pCMV6-Zip4GFP plasmid. Organelle staining combined with confocal microscopy showed that Zip4 exhibits a widespread localization in MIN6 cells. Time-lapse zinc imaging experiments showed that Zip4 increases cytoplasmic zinc levels. This resulted in increased granular zinc content and glucose-stimulated insulin secretion. Interestingly, it is unlikely that the increased glucose stimulated insulin secretion was triggered by a modulation of mitochondrial function, as mitochondrial membrane potential remained unchanged. To define the role of Zip4 in-vivo, we generated a beta cell-specific knockout mouse model (Zip4BKO). Deletion of the Zip4 gene was confirmed in Zip4BKO islets by PCR, RT-PCR, and immuno-histochemistry. Zip4BKO mice showed slightly improved glucose homeostasis but no change in insulin secretion during an oral glucose tolerance test. While Zip4 was not found to be essential for proper glucose homeostasis and insulin secretion in vivo in mice, this study also found that Zip4 mediates increases in cytoplasmic and granular zinc pools and stimulates glucose dependant insulin secretion in-vitro. PMID:25806541

  14. The type 1 insulin-like growth factor receptor signalling system and targeted tyrosine kinase inhibition in cancer.

    PubMed

    Haisa, Minoru

    2013-04-01

    Type 1 insulin-like growth factor receptor (IGF1R) signalling plays a critical role in normal cell growth, and in cancer development and progression. IGF1R and the insulin-like growth factors 1 and 2 (IGF1 and IGF2) are involved in various aspects of the malignant phenotype, suggesting that IGF1R is a potential target for cancer therapy. IGF1R is particularly important in the establishment and maintenance of the transformed phenotype, in mediating proliferation, and for the survival of tumour cells with anchorage-independent growth. IGF1R also exerts antiapoptotic activity and has a substantial influence on the control of the cell and body size. This property enables transformed cells to form macroscopic tumours and to survive the process of detachment required for metastasis. Pharmaceutical companies are investigating molecules that target IGF1R, including specific low molecular weight tyrosine kinase inhibitors and monoclonal antibodies, both of which possess various advantages and display different activity profiles. This review article focuses on the preclinical and clinical development of low molecular weight IGF1R tyrosine kinase inhibitors. It is critical to pursue a thorough molecular analysis of the metabolic activity of IGF1R to avoid possible side-effects of its inhibition.

  15. Insulin-releasing and metabolic effects of small molecule GLP-1 receptor agonist 6,7-dichloro-2-methylsulfonyl-3-N-tert-butylaminoquinoxaline.

    PubMed

    Irwin, Nigel; Flatt, Peter R; Patterson, Steven; Green, Brian D

    2010-02-25

    Much recent attention has focused on the GLP-1 receptor as a potential target for antidiabetic drugs. Enzyme resistant GLP-1 mimetics such as exenatide are now employed for the treatment of type 2 diabetes, but must be administered by injection. The present study has examined and compared the in vitro and in vivo metabolic actions of a small molecule GLP-1 receptor agonist 6,7-dichloro-2-methylsulfonyl-3-N-tert-butylaminoquinoxaline (DMB), with native GLP-1, exenatide and liraglutide. DMB significantly stimulated in vitro insulin secretion from BRIN-BD11 cells but with decreased molar potency compared to native GLP-1 or related mimetics. Administration of DMB in combination with glucose to mice significantly (P<0.05) decreased the overall glucose excursion compared to controls. Exenatide and liraglutide evoked similar (P<0.001) reductions of the overall glycaemic excursion, but were significantly (P<0.001 and P<0.05; respectively) more effective than DMB. These observations were associated with prominently (P<0.05) enhanced glucose-mediated insulin release by exenatide and liraglutide, but not by DMB. Combined injection of DMB with either liraglutide or exenatide did not substantially improve glucose-lowering or insulin-releasing responses. However, administration of DMB in combination with exendin(9-39) did not impair its glucoregulatory actions. These results provide evidence to support the development and potential use of low molecular weight GLP-1 receptor agonists for the treatment of type 2 diabetes. PMID:19917278

  16. Cloning, mRNA expression and transcriptional regulation of five retinoid X receptor subtypes in yellow catfish Pelteobagrus fulvidraco by insulin.

    PubMed

    Pan, Ya-Xiong; Luo, Zhi; Wu, Kun; Zhang, Li-Han; Xu, Yi-Huan; Chen, Qi-Liang

    2016-01-01

    Retinoid X receptors (RXRs) are members of the nuclear receptor superfamily and mediate development, reproduction, homeostasis and cell differentiation processes in vertebrates. In this study, full-length cDNA sequences of five rxr subtypes from yellow catfish Pelteobagrus fulvidraco were cloned. Their mRNA expression patterns in different tissues and transcriptional regulation by insulin were determined. Five P. fulvidraco rxr (Pf-rxr) subtypes differed in the length of cDNA sequence and the open reading frame, but shared the similar domain structures as in typical nuclear receptors. Phylogenetic analysis revealed that the five Pf-rxr subtypes were paralogous genes, and that Pf-rxrβa and Pf-rxrβb had arisen during a teleost-specific genome duplication event. Five subtypes of Pf-rxr were detected in all the tested tissues. Overlapping and distinct expression patterns were found for different Pf-rxr subtypes, suggesting functional redundancy and divergence of these duplicates. Intraperitoneal insulin injection and incubation reduced the mRNA expression of Pf-rxrgb, but not other subtypes, in the liver and hepatocytes of P. fulvidraco, respectively, suggesting that Pf-rxrgb is the dominant rxr subtype involved in the insulin signaling pathway in P. fulvidraco. PMID:26519760

  17. Chronic Exposure to Aroclor 1254 Disrupts Glucose Homeostasis in Male Mice via Inhibition of the Insulin Receptor Signal Pathway.

    PubMed

    Zhang, Shiqi; Wu, Tian; Chen, Meng; Guo, Zhizhun; Yang, Zhibin; Zuo, Zhenghong; Wang, Chonggang

    2015-08-18

    Epidemiological studies demonstrate that polychlorinated biphenyls (PCBs) induce diabetes and insulin resistance. However, the development of diabetes caused by PCBs and its underlying mechanisms are still unclear. In the present study, male C57BL/6 mice were orally administered with Aroclor 1254 (0.5, 5, 50, and 500 μg/kg) once every 3 days for 60 days. The body weight and the fasting blood glucose levels were significantly elevated; the levels of serum insulin, resistin, tumor necrosis factor α (TNFα), and interleukin-6 (IL-6) increased, while glucagon levels decreased in the animals treated with Aroclor 1254. Pancreatic β-cell mass significantly increased, while α-cell mass was reduced. Aroclor 1254 inhibited the expression of the insulin receptor signaling cascade, including insulin receptor, insulin receptor substrate, phosphatidylinositol 3-kinase-Akt, and protein kinase B and glucose transporter 4, both in the skeletal muscle and the liver. The results suggested that chronic exposure to Aroclor 1254 disrupted glucose homeostasis and induced hyperinsulinemia. The significant elevation of serum resistin, TNFα and IL-6 indicated that obesity caused by Aroclor 1254 is associated with insulin resistance. The elevation of blood glucose levels could have been mainly as a result of insulin receptor signals pathway suppression in skeletal muscle and liver, and a decrease in pancreatic α-cells, accompanied by a reduction of serum glucagon levels, may play an important role in the development of type 2 diabetes.

  18. Dual silencing of insulin-like growth factor-I receptor and epidermal growth factor receptor in colorectal cancer cells is associated with decreased proliferation and enhanced apoptosis.

    PubMed

    Kaulfuss, Silke; Burfeind, Peter; Gaedcke, Jochen; Scharf, Jens-Gerd

    2009-04-01

    Overexpression and activation of tyrosine kinase receptors are common features of colorectal cancer. Using the human colorectal cancer cell lines DLD-1 and Caco-2, we evaluated the role of the insulin-like growth factor-I (IGF-I) receptor (IGF-IR) and epidermal growth factor receptor (EGFR) in cellular functions of these cells. We used the small interfering RNA (siRNA) technology to specifically down-regulate IGF-IR and EGFR expression. Knockdown of IGF-IR and EGFR resulted in inhibition of cell proliferation of DLD-1 and Caco-2 cells. An increased rate of apoptosis was associated with siRNA-mediated silencing of IGF-IR and EGFR as assessed by activation of caspase-3/caspase-7. The combined knockdown of both EGFR and IGF-IR decreased cell proliferation and induced cell apoptosis more effectively than did silencing of either receptor alone. Comparable effects on cell proliferation and apoptosis were observed after single and combinational treatment of cells by the IGF-IR tyrosine kinase inhibitor NVP-AEW541 and/or the EGFR tyrosine kinase inhibitor erlotinib. Combined IGF-IR and EGFR silencing by either siRNAs or tyrosine kinase inhibitors diminished the phosphorylation of downstream signaling pathways AKT and extracellular signal-regulated kinase (ERK)-1/2 more effectively than did the single receptor knockdown. Single IGF-IR knockdown inhibited IGF-I-dependent phosphorylation of AKT but had no effect on IGF-I- or EGF-dependent phosphorylation of ERK1/2, indicating a role of EGFR in ligand-dependent ERK1/2 phosphorylation. The present data show that inhibition of the IGF-IR transduction cascade augments the antipoliferative and proapoptotic effects of EGFR inhibition in colorectal cancer cells. A clinical application of combination therapy targeting both EGFR and IGF-IR could be a promising therapeutic strategy.

  19. Homologous down-regulation of the insulin receptor is associated with increased receptor biosynthesis in cultured human lymphocytes (IM-9 line)

    SciTech Connect

    Rouiller, D.G.; Gorden, P.

    1987-01-01

    Cultured IM-9 lymphocytes were preincubated with 1 ..mu..M insulin, a condition resulting in a 56% reduction in cell surface insulin receptors. Cellular proteins were then metabolically labeled, and the radioactivity incorporated into the insulin proreceptor and receptor mature subunits was measured over a 4-hr chase period. As early as 30 min of chase, incorporation into the proreceptor was 28 +/- 6% higher in down-regulated cells than in control cells. By 1 hr of chase, the difference reached 41 +/- 14% for the proreceptor and 84 +/- 28% for the ..cap alpha.. subunit, values returned to normal by 2 hr. At 4 hr of chase, labeling of the ..cap alpha.. subunit of down-regulated cells was diminished 36 +/- 9% below control. The increased biosynthetic rate of the proreceptor was more prominent when the chase medium contained 25 ..mu..M monensin, an inhibitor of processing of the proreceptor into mature subunits. Similar effects occurred whether (/sup 3/H)mannose or (/sup 3/H)lysine was used as biosynthetic marker. The effect was specific for the insulin receptor. These data demonstrate that insulin receptor homologous down-regulation is associated with increased proreceptor biosynthesis and processing into mature subunits. This might represent a cellular mechanism compensating for insulin-induced receptor loss.

  20. Increased oxidative stress and apoptosis in the hypothalamus of diabetic male mice in the insulin receptor substrate-2 knockout model

    PubMed Central

    Canelles, Sandra; Argente, Jesús; Barrios, Vicente

    2016-01-01

    ABSTRACT Insulin receptor substrate-2-deficient (IRS2−/−) mice are considered a good model to study the development of diabetes because IRS proteins mediate the pleiotropic effects of insulin-like growth factor-I (IGF-I) and insulin on metabolism, mitogenesis and cell survival. The hypothalamus might play a key role in the early onset of diabetes, owing to its involvement in the control of glucose homeostasis and energy balance. Because some inflammatory markers are elevated in the hypothalamus of diabetic IRS2−/− mice, our aim was to analyze whether the diabetes associated with the absence of IRS2 results in hypothalamic injury and to analyze the intracellular mechanisms involved. Only diabetic IRS2−/− mice showed increased cell death and activation of caspase-8 and -3 in the hypothalamus. Regulators of apoptosis such as FADD, Bcl-2, Bcl-xL and p53 were also increased, whereas p-IκB and c-FLIPL were decreased. This was accompanied by increased levels of Nox-4 and catalase, enzymes involved in oxidative stress. In summary, the hypothalamus of diabetic IRS2−/− mice showed an increase in oxidative stress and inflammatory markers that finally resulted in cell death via substantial activation of the extrinsic apoptotic pathway. Conversely, non-diabetic IRS2−/− mice did not show cell death in the hypothalamus, possibly owing to an increase in the levels of circulating IGF-I and in the enhanced hypothalamic IGF-IR phosphorylation that would lead to the stimulation of survival pathways. In conclusion, diabetes in IRS2-deficient male mice is associated with increased oxidative stress and apoptosis in the hypothalamus. PMID:27013528

  1. Increased oxidative stress and apoptosis in the hypothalamus of diabetic male mice in the insulin receptor substrate-2 knockout model.

    PubMed

    Baquedano, Eva; Burgos-Ramos, Emma; Canelles, Sandra; González-Rodríguez, Agueda; Chowen, Julie A; Argente, Jesús; Barrios, Vicente; Valverde, Angela M; Frago, Laura M

    2016-05-01

    Insulin receptor substrate-2-deficient (IRS2(-/-)) mice are considered a good model to study the development of diabetes because IRS proteins mediate the pleiotropic effects of insulin-like growth factor-I (IGF-I) and insulin on metabolism, mitogenesis and cell survival. The hypothalamus might play a key role in the early onset of diabetes, owing to its involvement in the control of glucose homeostasis and energy balance. Because some inflammatory markers are elevated in the hypothalamus of diabetic IRS2(-/-) mice, our aim was to analyze whether the diabetes associated with the absence of IRS2 results in hypothalamic injury and to analyze the intracellular mechanisms involved. Only diabetic IRS2(-/-) mice showed increased cell death and activation of caspase-8 and -3 in the hypothalamus. Regulators of apoptosis such as FADD, Bcl-2, Bcl-xL and p53 were also increased, whereas p-IκB and c-FLIPL were decreased. This was accompanied by increased levels of Nox-4 and catalase, enzymes involved in oxidative stress. In summary, the hypothalamus of diabetic IRS2(-/-) mice showed an increase in oxidative stress and inflammatory markers that finally resulted in cell death via substantial activation of the extrinsic apoptotic pathway. Conversely, non-diabetic IRS2(-/-) mice did not show cell death in the hypothalamus, possibly owing to an increase in the levels of circulating IGF-I and in the enhanced hypothalamic IGF-IR phosphorylation that would lead to the stimulation of survival pathways. In conclusion, diabetes in IRS2-deficient male mice is associated with increased oxidative stress and apoptosis in the hypothalamus. PMID:27013528

  2. Adiponectin and Adiponectin Receptor Gene Variants in Relation to Type 2 Diabetes and Insulin Resistance-Related Phenotypes

    PubMed Central

    Potapov, Viktor A.; Chistiakov, Dimitry A.; Dubinina, Anna; Shamkhalova, Minara S.; Shestakova, Marina V.; Nosikov, Valery V.

    2008-01-01

    BACKGROUND: Alterations in adiponectin-mediated pathways are known to be associated with glucose intolerance, insulin resistance (IR), obesity, and type 2 diabetes (T2D) mellitus. Genetic variations in adiponectin (ADIPOQ) and adiponectin 1 and 2 receptor (ADIPOR1 and ADIPOR2) could have effects on IR-related phenotypes and T2D. Here we examine whether the polymorphic markers rs2241766 (ADIPOQ), rs22753738 (ADIPOR1), rs11061971 and rs16928751 (both in ADIPOR2) are implicated in susceptibility to T2D in a Russian population. METHODS: The polymorphic markers were genotyped in 129 T2D patients, and 117 non-diabetic controls, by polymerase chain reaction (PCR) restriction fragment length polymorphism approach. In the subjects, biochemical characteristics including serum insulin, plasma glucose and serum lipids/lipoproteins were measured and compared for correlation with the genetic variations studied. RESULTS: Allele T of rs11061971 and allele A of rs16928751 showed association with higher risk of diabetes providing odds ratios (OR) of 2.05 (p = 0.0025) and 1.88 (p = 0.018), respectively. Haplotype A-G consisting of allele A of rs11061971 and allele G of rs16928751 was associated with reduced risk of T2D (OR = 0.59, pc = 0.0224). Compared to other variants, diabetic patients double homozygous for A/A of rs16928751 and G/G of rs16928751 had decreased homeostasis model assessment-insulin resistance (pc = 0.0375) and serum triglycerides (pc = 0.0285). CONCLUSIONS: The variants of ADIPOR2 confer susceptibility to T2D and are associated with some IR-related phenotypes in the Russian study population. PMID:18548168

  3. Increased oxidative stress and apoptosis in the hypothalamus of diabetic male mice in the insulin receptor substrate-2 knockout model.

    PubMed

    Baquedano, Eva; Burgos-Ramos, Emma; Canelles, Sandra; González-Rodríguez, Agueda; Chowen, Julie A; Argente, Jesús; Barrios, Vicente; Valverde, Angela M; Frago, Laura M

    2016-05-01

    Insulin receptor substrate-2-deficient (IRS2(-/-)) mice are considered a good model to study the development of diabetes because IRS proteins mediate the pleiotropic effects of insulin-like growth factor-I (IGF-I) and insulin on metabolism, mitogenesis and cell survival. The hypothalamus might play a key role in the early onset of diabetes, owing to its involvement in the control of glucose homeostasis and energy balance. Because some inflammatory markers are elevated in the hypothalamus of diabetic IRS2(-/-) mice, our aim was to analyze whether the diabetes associated with the absence of IRS2 results in hypothalamic injury and to analyze the intracellular mechanisms involved. Only diabetic IRS2(-/-) mice showed increased cell death and activation of caspase-8 and -3 in the hypothalamus. Regulators of apoptosis such as FADD, Bcl-2, Bcl-xL and p53 were also increased, whereas p-IκB and c-FLIPL were decreased. This was accompanied by increased levels of Nox-4 and catalase, enzymes involved in oxidative stress. In summary, the hypothalamus of diabetic IRS2(-/-) mice showed an increase in oxidative stress and inflammatory markers that finally resulted in cell death via substantial activation of the extrinsic apoptotic pathway. Conversely, non-diabetic IRS2(-/-) mice did not show cell death in the hypothalamus, possibly owing to an increase in the levels of circulating IGF-I and in the enhanced hypothalamic IGF-IR phosphorylation that would lead to the stimulation of survival pathways. In conclusion, diabetes in IRS2-deficient male mice is associated with increased oxidative stress and apoptosis in the hypothalamus.

  4. Characterization of insulin-like growth factor I and insulin receptors on cultured bovine adrenal fasciculata cells. Role of these peptides on adrenal cell function

    SciTech Connect

    Penhoat, A.; Chatelain, P.G.; Jaillard, C.; Saez, J.M.

    1988-06-01

    We have characterized insulin-like growth factor I (IGF-I) and insulin receptors in cultured bovine adrenal cells by binding and cross-linking affinity experiments. At equilibrium the dissociation constant and the number of binding sites per cell for IGF-I were 1.4 +/- (SE) 0.3 x 10(-9) M and 19,200 +/- 2,100, respectively. Under reduction conditions, disuccinimidyl suberate cross-linked (/sup 125/I)iodo-IGF-I to one receptor complex with an Mr of 125,000. Adrenal cells also contain specific insulin receptors with an apparent dissociation constant (Kd) of 10(-9) M. Under reduction conditions (/sup 125/I)iodo-insulin binds to one band with an approximate Mr of 125,000. IGF-I and insulin at micromolar concentrations, but not at nanomolar concentrations, slightly stimulated DNA synthesis, but markedly potentiated the mitogenic action of fibroblast growth factor. Adrenal cells cultured in a serum-free medium containing transferrin, ascorbic acid, and insulin (5 micrograms/ml) maintained fairly constant angiotensin-II (A-II) receptor concentration per cell and increased cAMP release on response to ACTH and their steroidogenic response to both ACTH and A-II. When the cells were cultured in the same medium without insulin, the number of A-II receptors significantly decreased to 65% and the increased responsiveness was blunted. Treatment of such cells for 3 days with increasing concentrations of IGF-I (1-100 ng/ml) produced a 2- to 3-fold increase in A-II receptors and enhanced the cAMP response (3- to 4-fold) to ACTH and the steroidogenic response (4- to 6-fold) to ACTH and A-II. These effects were time and dose dependent (ED50 approximately equal to 10(-9) M). Insulin at micromolar concentrations produced an effect similar to that of IGF-I, but at nanomolar concentrations the effect was far less.

  5. GH Receptor Deficiency in Ecuadorian Adults Is Associated With Obesity and Enhanced Insulin Sensitivity

    PubMed Central

    Rosenbloom, Arlan L.; Balasubramanian, Priya; Teran, Enrique; Guevara-Aguirre, Marco; Guevara, Carolina; Procel, Patricio; Alfaras, Irene; De Cabo, Rafael; Di Biase, Stefano; Narvaez, Luis; Saavedra, Jannette

    2015-01-01

    Context: Ecuadorian subjects with GH receptor deficiency (GHRD) have not developed diabetes, despite obesity. Objective: We sought to determine the metabolic associations for this phenomenon. Design: Four studies were carried out: 1) glucose, lipid, adipocytokine concentrations; 2) metabolomics evaluation; 3) metabolic responses to a high-calorie meal; and 4) oral glucose tolerance tests. Setting: Clinical Research Institute in Quito, Ecuador. Subjects: Adults homozygous for the E180 splice mutation of the GH receptor (GHRD) were matched for age, gender, and body mass index with unaffected control relatives (C) as follows: study 1, 27 GHRD and 35 C; study 2, 10 GHRD and 10 C; study 3, seven GHRD and 11 C; and study 4, seven GHRD and seven C. Results: Although GHRD subjects had greater mean percentage body fat than controls, their fasting insulin, 2-hour blood glucose, and triglyceride levels were lower. The indicator of insulin sensitivity, homeostasis model of assessment 2%S, was greater (P < .0001), and the indicator of insulin resistance, homeostasis model of assessment 2-IR, was lower (P = .0025). Metabolomic differences between GHRD and control subjects were consistent with their differing insulin sensitivity, including postprandial decreases of branched-chain amino acids that were more pronounced in controls. High molecular weight and total adiponectin concentrations were greater in GHRD (P = .0004 and P = .0128, respectively), and leptin levels were lower (P = .02). Although approximately 65% the weight of controls, GHRD subjects consumed an identical high-calorie meal; nonetheless, their mean glucose concentrations were lower, with mean insulin levels one-third those of controls. Results of the 2-hour oral glucose tolerance test were similar. Main Outcome Measures: Measures of insulin sensitivity, adipocytokines, and energy metabolites. Conclusions: Without GH counter-regulation, GHRD is associated with insulin efficiency and obesity. Lower leptin levels

  6. Resveratrol inhibits glycine receptor-mediated ion currents.

    PubMed

    Lee, Byung-Hwan; Hwang, Sung-Hee; Choi, Sun-Hye; Kim, Hyeon-Joong; Jung, Seok-Won; Kim, Hyun-Sook; Lee, Joon-Hee; Kim, Hyung-Chun; Rhim, Hyewhon; Nah, Seung-Yeol

    2014-01-01

    Resveratrol is found in grapes, red wine, and berries. Resveratrol has been known to have many beneficial health effects, such as anti-cancer, neuroprotective, anti-nociceptive, and life-prolonging effects. However, the single cellular mechanisms by which resveratrol acts are relatively unknown, especially in terms of possible regulation of receptors involved in synaptic transmission. The glycine receptor is an inhibitory ligand-gated ion channel involved in fast synaptic transmission in spinal cord. In the present study, we investigated the effect of resveratrol on human glycine receptor channel activity. Glycine α1 receptors were expressed in Xenopus oocytes and glycine receptor channel activity was measured using a two-electrode voltage clamp technique. Treatment with resveratrol alone had no effect on oocytes injected with H2O or on oocytes injected with glycine α1 receptor cRNA. In the oocytes injected with glycine α1 receptor cRNA, co- or pre-treatment of resveratrol with glycine inhibited the glycine-induced inward peak current (IGly) in a reversible manner. The inhibitory effect of resveratrol on IGly was also concentration dependent, voltage independent, and non-competitive. These results indicate that resveratrol regulates glycine receptor channel activity and that resveratrol-mediated regulation of glycine receptor channel activity is one of several cellular action mechanisms of resveratrol for pain regulation. PMID:24694604

  7. Treating Diabetes Mellitus: Pharmacophore Based Designing of Potential Drugs from Gymnema sylvestre against Insulin Receptor Protein

    PubMed Central

    Hossain, Mohammad Uzzal; Khan, Md. Arif; Rakib-Uz-Zaman, S. M.; Ali, Mohammad Tuhin; Islam, Md. Saidul; Keya, Chaman Ara; Salimullah, Md.

    2016-01-01

    Diabetes mellitus (DM) is one of the most prevalent metabolic disorders which can affect the quality of life severely. Injectable insulin is currently being used to treat DM which is mainly associated with patient inconvenience. Small molecules that can act as insulin receptor (IR) agonist would be better alternatives to insulin injection. Herein, ten bioactive small compounds derived from Gymnema sylvestre (G. sylvestre) were chosen to determine their IR binding affinity and ADMET properties using a combined approach of molecular docking study and computational pharmacokinetic elucidation. Designing structural analogues were also performed for the compounds associated with toxicity and less IR affinity. Among the ten parent compounds, six were found to have significant pharmacokinetic properties with considerable binding affinity towards IR while four compounds were associated with toxicity and less IR affinity. Among the forty structural analogues, four compounds demonstrated considerably increased binding affinity towards IR and less toxicity compared with parent compounds. Finally, molecular interaction analysis revealed that six parent compounds and four analogues interact with the active site amino acids of IR. So this study would be a way to identify new therapeutics and alternatives to insulin for diabetic patients. PMID:27034931

  8. Insulin receptor regulates food intake through sulfakinin signaling in the red flour beetle, Tribolium castaneum.

    PubMed

    Lin, Xianyu; Yu, Na; Smagghe, Guy

    2016-06-01

    Insects obtain energy and nutrients via feeding to support growth and development. The insulin signaling pathway is involved in the regulation of feeding; however, the underlying mechanisms are not fully understood. Here, we show that insulin signaling regulates food intake via crosstalk with neuropeptide sulfakinin in the red flour beetle, Tribolium castaneum. Silencing of the insulin receptor (InR) decreased the food intake in the penultimate and final instar stages, leading to a decrease of weight gain and mortality during larval-pupal metamorphosis. Interestingly, the knockdown of InR co-occurred with an increased expression of sulfakinin (sk), a gene encoding neuropeptide SK functioning as a satiety signal. In parallel, double silencing of sk and InR eliminated the inhibitory effect on food intake as induced by silencing of InR and the larvae died as prepupae. In conclusion, this study shows, for the first time, that the insulin/InR signaling regulates food intake through the sulfakinin signaling pathway in the larval stages of this important model and pest insect, indicating a novel target for pest control. PMID:26972481

  9. P2Y₁ receptor-dependent diacylglycerol signaling microdomains in β cells promote insulin secretion.

    PubMed

    Wuttke, Anne; Idevall-Hagren, Olof; Tengholm, Anders

    2013-04-01

    Diacylglycerol (DAG) controls numerous cell functions by regulating the localization of C1-domain-containing proteins, including protein kinase C (PKC), but little is known about the spatiotemporal dynamics of the lipid. Here, we explored plasma membrane DAG dynamics in pancreatic β cells and determined whether DAG signaling is involved in secretagogue-induced pulsatile release of insulin. Single MIN6 cells, primary mouse β cells, and human β cells within intact islets were transfected with translocation biosensors for DAG, PKC activity, or insulin secretion and imaged with total internal reflection fluorescence microscopy. Muscarinic receptor stimulation triggered stable, homogenous DAG elevations, whereas glucose induced short-lived (7.1 ± 0.4 s) but high-amplitude elevations (up to 109 ± 10% fluorescence increase) in spatially confined membrane regions. The spiking was mimicked by membrane depolarization and suppressed after inhibition of exocytosis or of purinergic P2Y₁, but not P2X receptors, reflecting involvement of autocrine purinoceptor activation after exocytotic release of ATP. Each DAG spike caused local PKC activation with resulting dissociation of its substrate protein MARCKS from the plasma membrane. Inhibition of spiking reduced glucose-induced pulsatile insulin secretion. Thus, stimulus-specific DAG signaling patterns appear in the plasma membrane, including distinct microdomains, which have implications for the kinetic control of exocytosis and other membrane-associated processes.

  10. Loss of Insulin Receptor in Osteoprogenitor Cells Impairs Structural Strength of Bone

    PubMed Central

    Thrailkill, Kathryn; Bunn, R. Clay; Lumpkin, Charles; Cockrell, Gael; Kahn, C. Ronald; Fowlkes, John; Nyman, Jeffry S.

    2014-01-01

    Type 1 diabetes mellitus (T1D) is associated with decreased bone mineral density, a deficit in bone structure, and subsequently an increased risk of fragility fracture. These clinical observations, paralleled by animal models of T1D, suggest that the insulinopenia of T1D has a deleterious effect on bone. To further examine the action of insulin signaling on bone development, we generated mice with an osteoprogenitor-selective (osterix-Cre) ablation of the insulin receptor (IR), designated OIRKO. OIRKO mice exhibited an 80% decrease in IR in osteoblasts. Prenatal elimination of IR did not affect fetal survival or gross morphology. However, loss of IR in mouse osteoblasts resulted in a postnatal growth-constricted phenotype. By 10–12 weeks of age, femurs of OIRKO mice were more slender, with a thinner diaphyseal cortex and, consequently, a decrease in whole bone strength when subjected to bending. In male mice alone, decreased metaphyseal trabecular bone, with thinner and more rodlike trabeculae, was also observed. OIRKO mice did not, however, exhibit abnormal glucose tolerance. The skeletal phenotype of the OIRKO mouse appeared more severe than that of previously reported bone-specific IR knockdown models, and confirms that insulin receptor expression in osteoblasts is critically important for proper bone development and maintenance of structural integrity. PMID:24963495

  11. NFATc2 (NFAT1) assists BCR-mediated anergy in anti-insulin B cells.

    PubMed

    Bonami, Rachel H; Wolfle, William T; Thomas, James W; Kendall, Peggy L

    2014-12-01

    NFAT transcription factors play critical roles in both the activation and repression of T and B lymphocyte responses. To understand the role of NFATc2 (NFAT1) in the maintenance of tolerance for anti-insulin B cells, functionally inactive NFATc2 (NFATc2(-/-)) was introduced into C57BL/6 mice that harbor anergic anti-insulin 125Tg B cells. The production and peripheral maturation of anti-insulin B cells into follicular and marginal zone subsets was not altered by the absence of functional NFATc2. Surface B cell receptor expression levels, important for tonic signaling and altered by anergy, were not altered in any spleen B cell subset. The levels of anti-insulin antibodies were not different in 125Tg/B6/NFATc2(-/-) mice and the anti-insulin response remained silenced following T cell dependent immunization. However, studies addressing in vitro proliferation reveal the anergic state of 125Tg B cells is relieved in 125Tg/B6/NFATc2(-/-) B cells in response to BCR stimulation. In contrast, anergy is not released in 125Tg/B6/NFATc2(-/-) B cells following stimulation with anti-CD40. The relief of anergy to BCR stimulation in 125Tg/B6/NFATc2(-/-) B cells is associated with increased transcription of both NFATc1 and NFATc3 while expression of these NFATs does not change in anti-IgM stimulated 125Tg/B6/NFATc2(+/+) B cells. The data suggest that NFATc2 plays a subtle and selective role in maintaining anergy for BCR stimulation by repressing the transcription of other NFAT family members. PMID:24507801

  12. Sphingosine 1-phosphate counteracts insulin signaling in pancreatic β-cells via the sphingosine 1-phosphate receptor subtype 2.

    PubMed

    Japtok, Lukasz; Schmitz, Elisabeth I; Fayyaz, Susann; Krämer, Stephanie; Hsu, Leigh J; Kleuser, Burkhard

    2015-08-01

    Glucolipotoxic stress has been identified as a key player in the progression of pancreatic β-cell dysfunction contributing to insulin resistance and the development of type 2 diabetes mellitus (T2D). It has been suggested that bioactive lipid intermediates, formed under lipotoxic conditions, are involved in these processes. Here, we show that sphingosine 1-phosphate (S1P) levels are not only increased in palmitate-stimulated pancreatic β-cells but also regulate β-cell homeostasis in a divergent manner. Although S1P possesses a prosurvival effect in β-cells, an enhanced level of the sphingolipid antagonizes insulin-mediated cell growth and survival via the sphingosine 1-phosphate receptor subtype 2 (S1P2) followed by an inhibition of Akt-signaling. In an attempt to investigate the role of the S1P/S1P2 axis in vivo, the New Zealand obese (NZO) diabetic mouse model, characterized by β-cell loss under high-fat diet (HFD) conditions, was used. The occurrence of T2D was accompanied by an increase of plasma S1P levels. To examine whether S1P contributes to the morphologic changes of islets via S1P2, the receptor antagonist JTE-013 was administered. Most interestingly, JTE-013 rescued β-cell damage clearly indicating an important role of the S1P2 in β-cell homeostasis. Therefore, the present study provides a new therapeutic strategy to diminish β-cell dysfunction and the development of T2D. PMID:25911610

  13. A candidate targeting molecule of insulin-like growth factor-I receptor for gastrointestinal cancers

    PubMed Central

    Adachi, Yasushi; Yamamoto, Hiroyuki; Ohashi, Hirokazu; Endo, Takao; Carbone, David P; Imai, Kohzoh; Shinomura, Yasuhisa

    2010-01-01

    Advances in molecular research in cancer have brought new therapeutic strategies into clinical usage. One new group of targets is tyrosine kinase receptors, which can be treated by several strategies, including small molecule tyrosine kinase inhibitors (TKIs) and monoclonal antibodies (mAbs). Aberrant activation of growth factors/receptors and their signal pathways are required for malignant transformation and progression in gastrointestinal (GI) carcinomas. The concept of targeting specific carcinogenic receptors has been validated by successful clinical application of many new drugs. Type I insulin-like growth factor (IGF) receptor (IGF-IR) signaling potently stimulates tumor progression and cellular differentiation, and is a promising new molecular target in human malignancies. In this review, we focus on this promising therapeutic target, IGF-IR. The IGF/IGF-IR axis is an important modifier of tumor cell proliferation, survival, growth, and treatment sensitivity in many malignant diseases, including human GI cancers. Preclinical studies demonstrated that downregulation of IGF-IR signals reversed the neoplastic phenotype and sensitized cells to anticancer treatments. These results were mainly obtained through our strategy of adenoviruses expressing dominant negative IGF-IR (IGF-IR/dn) against gastrointestinal cancers, including esophagus, stomach, colon, and pancreas. We also summarize a variety of strategies to interrupt the IGFs/IGF-IR axis and their preclinical experiences. Several mAbs and TKIs targeting IGF-IR have entered clinical trials, and early results have suggested that these agents have generally acceptable safety profiles as single agents. We summarize the advantages and disadvantages of each strategy and discuss the merits/demerits of dual targeting of IGF-IR and other growth factor receptors, including Her2 and the insulin receptor, as well as other alternatives and possible drug combinations. Thus, IGF-IR might be a candidate for a molecular

  14. Role of the Insulin-Like Growth Factor Type 1 Receptor in the Pathogenesis of Diabetic Encephalopathy

    PubMed Central

    Zhang, Duo; Jiang, Shuang; Meng, Heng

    2015-01-01

    Defective cognitive function is common in patients with diabetes, suggesting that insulin normally exerts anabolic actions in neuron, namely, diabetic encephalopathy. However, because insulin can cross-activate the insulin-like growth factor type 1 receptor (IGF-1R), which also functions in most of tissues, such as muscle and bone, it has been difficult to establish the direct (IGF-1-independent) actions of insulin in the pathogenesis of diabetic encephalopathy. To overcome this problem, we examined insulin signaling and action in primary PC-12 cells engineered for conditional disruption of the IGF-1 receptor (ΔIGF-1R). The results showed that the lower glucose metabolism and high expression of IGF-1R occurred in the brain of the DE rat model. The results also showed the defect of IGF-1R could significantly improve the ability of glucose consumption and enhance sensitivity to insulin-induced IR and Akt phosphorylation in PC12 cells. And meanwhile, IGF-1R allele gene knockout (IGF-1Rneo) mice treated with HFD/STZ had better cognitive abilities than those of wild mice. Those results indicate that insulin exerts direct anabolic actions in neuron-like cells by activation of its cognate receptor and prove that IGF-1R plays an important role in the pathogenesis of diabetic encephalopathy. PMID:26089889

  15. Ligand-independent activation of peroxisome proliferator-activated receptor-gamma by insulin and C-peptide in kidney proximal tubular cells: dependent on phosphatidylinositol 3-kinase activity.

    PubMed

    Al-Rasheed, Nawal M; Chana, Ravinder S; Baines, Richard J; Willars, Gary B; Brunskill, Nigel J

    2004-11-26

    Peroxisome proliferator-activated receptor gamma (PPARgamma) has key roles in the regulation of adipogenesis, inflammation, and lipid and glucose metabolism. C-peptide is believed to be inert and without appreciable biological functions. Recent studies suggest that C-peptide possesses multiple functions. The present study investigated the effects of insulin and C-peptide on PPARgamma transcriptional activity in opossum kidney proximal tubular cells. Both insulin and C-peptide induced a concentration-dependent stimulation of PPARgamma transcriptional activity. Both agents substantially augmented thiazolidinedione-stimulated PPARgamma transcriptional activity. Neither insulin nor C-peptide had any effect on the expression levels of PPARgamma. GW9662, a PPARgamma antagonist, blocked PPARgamma activation by thiazolidinediones but had no effect on either insulin- or C-peptide-stimulated PPARgamma transcriptional activity. Co-transfection of opossum kidney cells with dominant negative mitogen-activated protein kinase kinase significantly depressed basal PPARgamma transcriptional activity but had no effect on that induced by either insulin or C-peptide. Both insulin- and C-peptide-stimulated PPARgamma transcriptional activity were attenuated by wortmannin and by expression of a dominant negative phosphatidylinositol (PI) 3-kinase p85 regulatory subunit. In addition PI 3-kinase-dependent phosphorylation of PPARgamma was observed after stimulation by C-peptide or insulin. C-peptide effects but not insulin on PPARgamma transcriptional activity were abolished by pertussis toxin pretreatment. Finally both C-peptide and insulin positively control the expression of the PPARgamma-regulated CD36 scavenger receptor in human THP-1 monocytes. We concluded that insulin and C-peptide can stimulate PPARgamma activity in a ligand-independent fashion and that this effect is mediated by PI 3-kinase. These results support a new and potentially important physiological role for C-peptide in

  16. Arg924X homozygous mutation in insulin receptor gene in a Tunisian patient with Donohue syndrome.

    PubMed

    Azzabi, Ons; Jilani, Houweyda; Rejeb, Imen; Siala, Nadia; Elaribi, Yasmina; Hizem, Syrine; Selmi, Ines; Halioui, Sonia; Lascols, Olivier; Jemaa, Lamia Ben; Maherzi, Ahmed

    2016-06-01

    Donohue syndrome (DS) is a rare and lethal autosomal recessive disease caused by mutations in the insulin receptor (INSR) gene, manifesting marked insulin resistance, severe growth retardation, hypertrichosis, and characteristic dysmorphic features. We describe a new case of Donohue syndrome born at 37 weeks' gestation of unrelated parents and presented with intra-uterine growth retardation, nipple hypertrophy, macropenis, distended abdomen, hirsutism and dysmorphic features. The clinical course showed failure to thrive, and episodes of alternating hypoglycemia and hyperglycemia. Laboratory tests revealed direct hyperbilirubinemia. The diagnosis of Donohue syndrome was established based on the above clinical characteristics and determination of the INSR mutation. He was found to have homozygous nonsense mutation c. 2270 C>T (Arg924X) at exon 14 of the INSR gene. He later developed enterocolitis and died at 3 months old. Prenatal diagnosis was performed for the family via chorionic villous biopsy. We try to explain gastrointestinal dysfunction seen in our patient. PMID:26974131

  17. Hibiscus sabdariffa polyphenols alleviate insulin resistance and renal epithelial to mesenchymal transition: a novel action mechanism mediated by type 4 dipeptidyl peptidase.

    PubMed

    Peng, Chiung-Huei; Yang, Yi-Sun; Chan, Kuei-Chuan; Wang, Chau-Jong; Chen, Mu-Lin; Huang, Chien-Ning

    2014-10-01

    The epithelial to mesenchymal transition (EMT) is important in renal fibrosis. Ser307 phosphorylation of insulin receptor substrate-1 (IRS-1 (S307)) is a hallmark of insulin resistance. We report that polyphenol extracts of Hibiscus sabdariffa (HPE) ameliorate diabetic nephropathy and EMT. Recently it has been observed that type 4 dipeptidyl peptidase (DPP-4) inhibitor linagliptin is effective for treating type 2 diabetes and albuminuria. We investigated if DPP-4 and insulin resistance are involved in renal EMT and explored the role of HPE. In high glucose-stimulated tubular cells, HPE, like linagliptin, inhibited DPP-4 activation, thereby regulating vimentin (EMT marker) and IRS-1 (S307). IRS-1 knockdown revealed its essential role in mediating downstream EMT. In type 2 diabetic rats, pIRS-1 (S307) abundantly surrounds the tubular region, with increased vimentin in kidney. Both the expressions were reduced by HPE. In conclusion, HPE exerts effects similar to those of linagliptin, which improves insulin resistance and EMT, and could be an adjuvant to prevent diabetic nephropathy.

  18. The β2 Adrenergic Receptor Gln27Glu Polymorphism Affects Insulin Resistance in Patients with Heart Failure

    PubMed Central

    Vardeny, Orly; Detry, Michelle A.; Moran, John J.M.; Johnson, Maryl R.; Sweitzer, Nancy K.

    2009-01-01

    Insulin resistance is prevalent in heart failure (HF) patients, and beta2 adrenergic receptors (β2-AR) are involved in glucose homeostasis. We hypothesized that β2-AR Gln27Glu and Arg16Gly polymorphisms affect insulin resistance in HF patients and explored if effects of β2-AR polymorphisms on glucose handling are modified by choice of beta blocker. We studied 30 non-diabetic adults with HF and a history of systolic dysfunction, 15 on metoprolol succinate and 15 on carvedilol. We measured fasting glucose, insulin, and insulin resistance, and determined β2-AR genotypes at codons 27 and 16. The cohort was insulin resistant with a mean HOMA-IR score of 3.4 (95%CI 2.3-4.5, normal value=1.0). Patients with the Glu27Glu genotype exhibited higher insulin and HOMA-IR compared to individuals carrying a Gln allele (p=0.019). Patients taking carvedilol demonstrated lower insulin resistance if also carrying a wild type allele at codon 27 (fasting insulin 9.8±10.5 versus 20.5±2.1 for variant, p=0.072, HOMA-IR 2.4±2.7 versus 5.1±0.6, p=0.074, respectively); those on metoprolol succinate had high insulin resistance irrespective of genotype. The β2-AR Glu27Glu genotype may be associated with higher insulin concentrations and insulin resistance in patients with HF. Future studies are needed to confirm whether treatment with carvedilol may be associated with decreased insulin and insulin resistance in β2-AR codon 27 Gln carriers. PMID:19034036

  19. Mutation of tyrosine-141 inhibits insulin-promoted tyrosine phosphorylation and increased responsiveness of the human beta 2-adrenergic receptor.

    PubMed Central

    Valiquette, M; Parent, S; Loisel, T P; Bouvier, M

    1995-01-01

    The ability of insulin to promote phosphorylation of the human beta 2-adrenergic receptor (beta 2AR) was assessed in Chinese hamster fibroblasts transfected with beta 2AR cDNA. Phosphotyrosine residues were detected in purified beta 2AR using a polyclonal anti-phosphotyrosine antibody and by phosphoamino acid analysis following metabolic labelling with inorganic 32P. Treatment of the cells with insulin induced a 2.4-fold increase in the phosphotyrosine content of the receptor. The insulin-promoted phosphorylation of the beta 2AR was accompanied by an increase in the beta-adrenergic-stimulated adenyl cyclase activity. Substitution of a phenylalanine residue for tyrosine-141 completely prevented both the increased tyrosine phosphorylation and the enhanced responsiveness of the beta 2AR promoted by insulin treatment. Mutation of three other tyrosines located in the cytoplasmic domain of the receptor, tyrosine-366, tyrosine-350 and tyrosine-354, did not abolish the insulin-promoted tyrosine phosphorylation. Taken together, these results suggest that insulin promotes phosphorylation of the beta 2AR on tyrosine-141 and that such phosphorylation leads to a supersensitization of the receptor. Images PMID:8521811

  20. Cross-talk between the two divergent insulin signaling pathways is revealed by the protein kinase B (Akt)-mediated phosphorylation of adapter protein APS on serine 588.

    PubMed

    Katsanakis, Kostas D; Pillay, Tahir S

    2005-11-11

    The APS adapter protein is recruited to the autophosphorylated kinase domain of the insulin receptor and initiates the phosphatidylinositol 3-kinase (PI3K)-independent pathway of insulin-stimulated glucose transport by recruiting CAP and c-Cbl. In this study, we have identified APS as a novel substrate for protein kinase B/Akt using an antibody that exhibits insulin-dependent immunoreactivity with a phosphospecific antibody raised against the protein kinase B substrate consensus sequence RXRXX(pS/pT) and a phosphospecific antibody that recognizes serine 21/9 of glycogen synthase kinase-3alpha/beta. This phosphorylation of APS is observed in both 3T3-L1 adipocytes and transfected cells. The insulin-stimulated serine phosphorylation of APS was inhibited by a PI3-kinase inhibitor, LY290004, a specific protein kinase B (PKB) inhibitor, deguelin, and knockdown of Akt. Serine 588 of APS is contained in a protein kinase B consensus sequence for phosphorylation conserved in APS across multiple species but not found in other members of this family, including SH2-B and Lnk. Mutation of serine 588 to alanine abolished the insulin-stimulated serine phosphorylation of APS and prevented the localization of APS to membrane ruffles. A glutathione S-transferase fusion protein containing amino acids 534-621 of APS was phosphorylated by purified PKB in vitro, and mutation of serine 588 abolished the PKB-mediated phosphorylation of APS in vitro. Taken together, this study identifies APS as a novel physiological substrate for PKB and the first serine phosphorylation site on APS. These data therefore reveal the molecular cross-talk between the insulin-activated PI3-kinase-dependent and -independent pathways previously thought to be distinct and divergent.

  1. Melatonin-mediated insulin synthesis during endoplasmic reticulum stress involves HuD expression in rat insulinoma INS-1E cells.

    PubMed

    Yoo, Yeong-Min

    2013-09-01

    In this study, we investigated how melatonin mediates insulin synthesis through endoplasmic reticulum (ER) via HuD expression in rat insulinoma INS-1E cells. Under ER stress condition (thapsigargin with/without melatonin, tunicamycin with/without melatonin), phosphorylation of AMP-activated protein kinase (p-AMPK) was significantly increased when compared with only with/without melatonin (control/melatonin). Insulin receptor substrate (IRS) two protein was significantly reduced under conditions of ER stress when compared with control/melatonin, but no expression of IRS1 protein was observed. In thapsigargin treatment, melatonin (10, 50 μm) increased IRS2 protein expression in a dose-dependent manner. p-Akt (Ser473) expression significantly decreased under ER stress condition prior to control/melatonin. Melatonin (10, 50 μm) significantly reduced nuclear and cellular p85α expressions in a dose-dependent manner when compared with only thapsigargin or tunicamycin. These results indicate the activation of the aforementioned expressions under regulation of the pathway, AMPK → IRS2 → Akt/PKB → PI3K (p85α). However, mammalian target of rapamycin and raptor protein, mTORC1, was found to be independent of the ER stress response. In thapsigargin treatment, melatonin increased nuclear mammalian RNA-binding protein (HuD) expression and reduced cellular HuD expression and subsequently resulted in a decrease in cellular insulin level and rise in insulin secretion in a dose-dependent manner. In tunicamycin treatment, HuD and insulin proteins showed similar expression tendencies. These results indicate that ER stress/melatonin, especially thapsigargin/melatonin, increased nuclear HuD expression and subsequently resulted in a decrease in intracellular biosynthesis; it is hypothesized that extracellular secretion of insulin may be regulated by melatonin.

  2. Curcumin pretreatment mediates antidiabetogenesis via functional regulation of adrenergic receptor subtypes in the pancreas of multiple low-dose streptozotocin-induced diabetic rats.

    PubMed

    Naijil, George; Anju, T R; Jayanarayanan, S; Paulose, C S

    2015-09-01

    Lifestyle modification pivoting on nutritional management holds tremendous potential to meet the challenge of management of diabetes. The current study hypothesizes that regular uptake of curcumin lowers the incidence of diabetes by functional regulation of pancreatic adrenergic receptor subtypes. The specific objective of the study was to identify the regulatory pathways implicated in the antidiabetogenesis effect of curcumin in multiple low-dose streptozotocin (MLD-STZ)-induced diabetic Wistar rats. Administration of MLD-STZ to curcumin-pretreated rats induced a prediabetic condition. Scatchard analysis, real-time polymerase chain reaction, and confocal microscopic studies confirmed a significant increase in α2-adrenergic receptor expression in the pancreas of diabetic rats. Pretreatment with curcumin significantly decreased α2-adrenergic receptor expression. The diabetic group showed a significant decrease in the expression of β-adrenergic receptors when compared with control. Pretreatment significantly increased β-adrenergic receptor expression to near control. When compared with the diabetic rats, a significant up-regulation of CREB, phospholipase C, insulin receptor, and glucose transporter 2 were observed in the pretreated group. Curcumin pretreatment was also able to maintain near control levels of cyclic adenosine monophosphate, cyclic guanosine monophosphate, and inositol triphosphate. These results indicate that a marked decline in α2-adrenergic receptor function relents sympathetic inhibition of insulin release. It also follows that escalated signaling through β-adrenergic receptors mediates neuronal stimulation of hyperglycemia-induced β-cell compensatory response. Curcumin-mediated functional regulation of adrenergic receptors and modulation of key cell signaling molecules improve pancreatic glucose sensing, insulin gene expression, and insulin secretion. PMID:26255758

  3. Curcumin pretreatment mediates antidiabetogenesis via functional regulation of adrenergic receptor subtypes in the pancreas of multiple low-dose streptozotocin-induced diabetic rats.

    PubMed

    Naijil, George; Anju, T R; Jayanarayanan, S; Paulose, C S

    2015-09-01

    Lifestyle modification pivoting on nutritional management holds tremendous potential to meet the challenge of management of diabetes. The current study hypothesizes that regular uptake of curcumin lowers the incidence of diabetes by functional regulation of pancreatic adrenergic receptor subtypes. The specific objective of the study was to identify the regulatory pathways implicated in the antidiabetogenesis effect of curcumin in multiple low-dose streptozotocin (MLD-STZ)-induced diabetic Wistar rats. Administration of MLD-STZ to curcumin-pretreated rats induced a prediabetic condition. Scatchard analysis, real-time polymerase chain reaction, and confocal microscopic studies confirmed a significant increase in α2-adrenergic receptor expression in the pancreas of diabetic rats. Pretreatment with curcumin significantly decreased α2-adrenergic receptor expression. The diabetic group showed a significant decrease in the expression of β-adrenergic receptors when compared with control. Pretreatment significantly increased β-adrenergic receptor expression to near control. When compared with the diabetic rats, a significant up-regulation of CREB, phospholipase C, insulin receptor, and glucose transporter 2 were observed in the pretreated group. Curcumin pretreatment was also able to maintain near control levels of cyclic adenosine monophosphate, cyclic guanosine monophosphate, and inositol triphosphate. These results indicate that a marked decline in α2-adrenergic receptor function relents sympathetic inhibition of insulin release. It also follows that escalated signaling through β-adrenergic receptors mediates neuronal stimulation of hyperglycemia-induced β-cell compensatory response. Curcumin-mediated functional regulation of adrenergic receptors and modulation of key cell signaling molecules improve pancreatic glucose sensing, insulin gene expression, and insulin secretion.

  4. Robert Feulgen Prize Lecture 1993. The journey of the insulin receptor into the cell: from cellular biology to pathophysiology.

    PubMed

    Carpentier, J L

    1993-09-01

    The data that we have reviewed indicate that insulin binds to a specific cell-surface receptor. The complex then becomes involved in a series of steps which lead the insulin-receptor complex to be internalized and rapidly delivered to endosomes. From this sorting station, the hormone is targeted to lysosomes to be degraded while the receptor is recycled back to the cell surface. This sequence of events presents two degrees of ligand specificity: (a) The first step is ligand-dependent and requires insulin-induced receptor phosphorylation of specific tyrosine residues. It consists in the surface redistribution of the receptor from microvilli where it preferentially localizes in its unoccupied form. (b) The second step is more general and consists in the association with clathrin-coated pits which represents the internalization gate common to many receptors. This sequence of events participates in the regulation of the biological action of the hormone and can thus be implicated in the pathophysiology of diabetes mellitus and various extreme insulin resistance syndromes, including type A extreme insulin resistance, leprechaunism, and Rabson-Mendehall syndrome. Alterations of the internalization process can result either from intrinsic abnormalities of the receptor or from more general alteration of the plasma membrane or of the cell metabolism. Type I diabetes is an example of the latter possibility, since general impairment of endocytosis could contribute to extracellular matrix accumulation and to an increase in blood cholesterol. Thus, better characterization of the molecular and cellular biology of the insulin receptor and of its journey inside the cell definitely leads to better understanding of disease states, including diabetes.

  5. Robert Feulgen Prize Lecture 1993. The journey of the insulin receptor into the cell: from cellular biology to pathophysiology.

    PubMed

    Carpentier, J L

    1993-09-01

    The data that we have reviewed indicate that insulin binds to a specific cell-surface receptor. The complex then becomes involved in a series of steps which lead the insulin-receptor complex to be internalized and rapidly delivered to endosomes. From this sorting station, the hormone is targeted to lysosomes to be degraded while the receptor is recycled back to the cell surface. This sequence of events presents two degrees of ligand specificity: (a) The first step is ligand-dependent and requires insulin-induced receptor phosphorylation of specific tyrosine residues. It consists in the surface redistribution of the receptor from microvilli where it preferentially localizes in its unoccupied form. (b) The second step is more general and consists in the association with clathrin-coated pits which represents the internalization gate common to many receptors. This sequence of events participates in the regulation of the biological action of the hormone and can thus be implicated in the pathophysiology of diabetes mellitus and various extreme insulin resistance syndromes, including type A extreme insulin resistance, leprechaunism, and Rabson-Mendehall syndrome. Alterations of the internalization process can result either from intrinsic abnormalities of the receptor or from more general alteration of the plasma membrane or of the cell metabolism. Type I diabetes is an example of the latter possibility, since general impairment of endocytosis could contribute to extracellular matrix accumulation and to an increase in blood cholesterol. Thus, better characterization of the molecular and cellular biology of the insulin receptor and of its journey inside the cell definitely leads to better understanding of disease states, including diabetes. PMID:8244769

  6. Chronic exposure to nicotine enhances insulin sensitivity through α7 nicotinic acetylcholine receptor-STAT3 pathway.

    PubMed

    Xu, Tian-Ying; Guo, Ling-Ling; Wang, Pei; Song, Jie; Le, Ying-Ying; Viollet, Benoit; Miao, Chao-Yu

    2012-01-01

    This study was to investigate the effect of nicotine on insulin sensitivity and explore the underlying mechanisms. Treatment of Sprague-Dawley rats with nicotine (3 mg/kg/day) for 6 weeks reduced 43% body weight gain and 65% blood insulin level, but had no effect on blood glucose level. Both insulin tolerance test and glucose tolerance test demonstrated that nicotine treatment enhanced insulin sensitivity. Pretreatment of rats with hexamethonium (20 mg/kg/day) to antagonize peripheral nicotinic receptors except for α7 nicotinic acetylcholine receptor (α7-nAChR) had no effect on the insulin sensitizing effect of nicotine. However, the insulin sensitizing effect but not the bodyweight reducing effect of nicotine was abrogated in α7-nAChR knockout mice. Further, chronic treatment with PNU-282987 (0.53 mg/kg/day), a selective α7-nAChR agonist, significantly enhanced insulin sensitivity without apparently modifying bodyweight not only in normal mice but also in AMP-activated kinase-α2 knockout mice, an animal model of insulin resistance with no sign of inflammation. Moreover, PNU-282987 treatment enhanced phosphorylation of signal transducer and activator of transcription 3 (STAT3) in skeletal muscle, adipose tissue and liver in normal mice. PNU-282987 treatment also increased glucose uptake by 25% in C2C12 myotubes and this effect was total abrogated by STAT3 inhibitor, S3I-201. All together, these findings demonstrated that nicotine enhanced insulin sensitivity in animals with or without insulin resistance, at least in part via stimulating α7-nAChR-STAT3 pathway independent of inflammation. Our results contribute not only to the understanding of the pharmacological effects of nicotine, but also to the identifying of new therapeutic targets against insulin resistance.

  7. Insulin Receptor Substrate 2 (IRS2)-Deficient Mice Show Sensorineural Hearing Loss That Is Delayed by Concomitant Protein Tyrosine Phosphatase 1B (PTP1B) Loss of Function

    PubMed Central

    Murillo-Cuesta, Silvia; Camarero, Guadalupe; González-Rodríguez, Águeda; de la Rosa, Lourdes Rodríguez; Burks, Deborah J; Avendaño, Carlos; Valverde, Ángela M; Varela-Nieto, Isabel

    2012-01-01

    The insulin receptor substrate (IRS) proteins are key mediators of insulin and insulinlike growth factor 1 (IGF-1) signaling. Protein tyrosine phosphatase (PTP)-1B dephosphorylates and inactivates both insulin and IGF-1 receptors. IRS2-deficient mice present altered hepatic insulin signaling and β-cell failure and develop type 2–like diabetes. In addition, IRS2 deficiency leads to developmental defects in the nervous system. IGF1 gene mutations cause syndromic sensorineural hearing loss in humans and mice. However, the involvement of IRS2 and PTP1B, two IGF-1 downstream signaling mediators, in hearing onset and loss has not been studied. Our objective was to study the hearing function and cochlear morphology of Irs2-null mice and the impact of PTP1B deficiency. We have studied the auditory brainstem responses and the cochlear morphology of systemic Irs2−/−Ptpn1+/+, Irs2+/+Ptpn1−/−and Irs2−/−Ptpn1−/− mice at different postnatal ages. The results indicated that Irs2−/−Ptpn1+/+ mice present a profound congenital sensorineural deafness before the onset of diabetes and altered cochlear morphology with hypoinnervation of the cochlear ganglion and aberrant stria vascularis, compared with wild-type mice. Simultaneous PTP1B deficiency in Irs2−/−Ptpn1−/− mice delays the onset of deafness. We show for the first time that IRS2 is essential for hearing and that PTP1B inhibition may be useful for treating deafness associated with hyperglycemia and type 2 diabetes. PMID:22160220

  8. Diabetic state, high plasma insulin and angiotensin II combine to augment endothelin-1-induced vasoconstriction via ETA receptors and ERK

    PubMed Central

    Kobayashi, T; Nogami, T; Taguchi, K; Matsumoto, T; Kamata, K

    2008-01-01

    Background and purpose: Mechanisms associated with the enhanced contractile response to endothelin-1 in hyperinsulinaemic diabetes have been examined using the rat aorta. Functions for angiotensin II, endothelin-1 receptor expression and extracellular signal-regulated kinase (ERK) have been investigated. Experimental approach: Streptozotocin-induced diabetic rats were infused with angiotensin II or, following insulin treatment, were treated with losartan, an angiotensin II receptor antagonist. Contractions of aortic strips with or without endothelium, in response to endothelin-1 and angiotensin II, were examined in vitro. Aortic ETA receptors and ERK/MEK expression were measured by western blotting. Key results: Insulin-treated diabetic rats exhibited increases in plasma insulin, angiotensin II and endothelin-1. The systolic blood pressure and endothelin-1-induced contractile responses in aortae in vitro were enhanced in insulin-treated diabetic rats and blunted by chronic losartan administration. LY294002 (phosphatidylinositol 3-kinase inhibitor) and/or PD98059 (MEK inhibitor) diminished the enhanced contractile response to endothelin-1 in aortae from insulin-treated diabetic rats. ETA and ETB receptors, ERK-1/2 and MEK-1/2 protein expression and endothelin-1-stimulated ERK phosphorylation were all increased in aortae from insulin-treated diabetic rats. Such increases were blunted by chronic losartan administration. Endothelin-1-induced contraction was significantly higher in aortae from angiotensin II-infused diabetic rats. angiotensin II-infusion increased ERK phosphorylation, but the expression of endothelin receptors and ERK/MEK proteins remained unchanged. Conclusions and implications: These results suggest that the combination of high plasma angiotensin II and insulin with a diabetic state induced enhancement of endothelin-1-induced vasoconstriction, ETA receptor expression and ERK expression/activity in the aorta. Losartan improved both the diabetes

  9. Insulin receptor signaling activated by penta-O-galloyl-α-D: -glucopyranose induces p53 and apoptosis in cancer cells.

    PubMed

    Cao, Yanyan; Evans, Susan C; Soans, Eroica; Malki, Ahmed; Liu, Yi; Liu, Yan; Chen, Xiaozhuo

    2011-09-01

    p53 is essential for cell cycle arrest and apoptosis induction while insulin receptor (IR) signaling is important for cell metabolism and proliferation and found upregulated in cancers. While IR has recently been found to be involved in apoptosis, p53 induction or apoptosis mediated through IR signaling activation has never been documented. Here, we report that the IR signaling pathway, particularly the IR-MEK pathway, mediates biological and biochemical changes in p53 and apoptosis in tumor cells. Specifically, natural compound penta-O-galloyl-α-D: -glucopyranose (α-PGG), a previously characterized IR signaling activator, induced apoptosis in RKO cells without significantly affecting its normal counterpart FHC cells. α-PGG induced apoptosis in RKO cells through p53, Bax and caspase 3. Importantly, α-PGG's ability to elevate p53 was diminished by IR inhibitor and IR-siRNA, suggesting a non-conventional role of IR as being involved in p53 induction. Further studies revealed that α-PGG activated MEK, a downstream signaling factor of IR. Blocking MEK significantly suppressed α-PGG-induced p53 and Bax elevation. All these results suggested that α-PGG induced p53, Bax, and apoptosis through the IR-MEK signaling pathway. The unique activity of α-PGG, a novel IR phosphorylation and apoptosis inducer, may offer a new therapeutic strategy for eliciting apoptotic signal and inhibiting cancer growth.

  10. Characterization of insulin-degrading enzyme-mediated cleavage of Aβ in distinct aggregation states.

    PubMed

    Hubin, Ellen; Cioffi, Federica; Rozenski, Jef; van Nuland, Nico A J; Broersen, Kerensa

    2016-06-01

    To enhance our understanding of the potential therapeutic utility of insulin-degrading enzyme (IDE) in Alzheimer's disease (AD), we studied in vitro IDE-mediated degradation of different amyloid-beta (Aβ) peptide aggregation states. Our findings show that IDE activity is driven by the dynamic equilibrium between Aβ monomers and higher ordered aggregates. We identify Met(35)-Val(36) as a novel IDE cleavage site in the Aβ sequence and show that Aβ fragments resulting from IDE cleavage form non-toxic amorphous aggregates. These findings need to be taken into account in therapeutic strategies designed to increase Aβ clearance in AD patients by modulating IDE activity.

  11. Urocortin3 mediates somatostatin-dependent negative feedback control of insulin secretion.

    PubMed

    van der Meulen, Talitha; Donaldson, Cynthia J; Cáceres, Elena; Hunter, Anna E; Cowing-Zitron, Christopher; Pound, Lynley D; Adams, Michael W; Zembrzycki, Andreas; Grove, Kevin L; Huising, Mark O

    2015-07-01

    The peptide hormone urocortin3 (Ucn3) is abundantly expressed by mature beta cells, yet its physiological role is unknown. Here we demonstrate that Ucn3 is stored and co-released with insulin and potentiates glucose-stimulated somatostatin secretion via cognate receptors on delta cells. Further, we found that islets lacking endogenous Ucn3 have fewer delta cells, reduced somatostatin content, impaired somatostatin secretion, and exaggerated insulin release, and that these defects are rectified by treatment with synthetic Ucn3 in vitro. Our observations indicate that the paracrine actions of Ucn3 activate a negative feedback loop that promotes somatostatin release to ensure the timely reduction of insulin secretion upon normalization of plasma glucose. Moreover, Ucn3 is markedly depleted from beta cells in mouse and macaque models of diabetes and in human diabetic islets. This suggests that Ucn3 is a key contributor to stable glycemic control, whose reduction during diabetes aggravates glycemic volatility and contributes to the pathophysiology of this disease. PMID:26076035

  12. Urocortin3 mediates somatostatin-dependent negative feedback control of insulin secretion

    PubMed Central

    van der Meulen, Talitha; Donaldson, Cynthia J.; Cáceres, Elena; Hunter, Anna E.; Cowing–Zitron, Christopher; Pound, Lynley D.; Adams, Michael W.; Zembrzycki, Andreas; Grove, Kevin L.; Huising, Mark O.

    2015-01-01

    The peptide hormone Urocortin3 (Ucn3) is abundantly expressed by mature beta cells, yet its physiological role is unknown. Here we demonstrate that Ucn3 is stored and co–released with insulin and potentiates glucose–stimulated somatostatin secretion via cognate receptor on delta cells. Further, we found that islets lacking endogenous Ucn3 demonstrate fewer delta cells, reduced somatostatin content, impaired somatostatin secretion and exaggerated insulin release, and that these defects are rectified by synthetic Ucn3 in vitro. Our observations indicate that the paracrine actions of Ucn3 activate a negative feedback loop that promotes somatostatin release to ensure the timely reduction of insulin secretion upon normalization of plasma glucose. Moreover, Ucn3 is markedly depleted from beta cells in mouse and macaque diabetes models and in human diabetic islets. This suggests that Ucn3 is a key contributor to stable glycemic control whose reduction during diabetes aggravates glycemic volatility and contributes to the pathophysiology of this disease. PMID:26076035

  13. Identification and Characterization of an Insulin-Like Receptor Involved in Crustacean Reproduction.

    PubMed

    Sharabi, O; Manor, R; Weil, S; Aflalo, E D; Lezer, Y; Levy, T; Aizen, J; Ventura, T; Mather, P B; Khalaila, I; Sagi, A

    2016-02-01

    Sexual differentiation and maintenance of masculinity in crustaceans has been suggested as being regulated by a single androgenic gland (AG) insulin-like peptide (IAG). However, downstream elements involved in the signaling cascade remain unknown. Here we identified and characterized a gene encoding an insulin-like receptor in the prawn Macrobrachium rosenbergii (Mr-IR), the first such gene detected in a decapod crustacean. In mining for IRs and other insulin signaling-related genes, we constructed a comprehensive M. rosenbergii transcriptomic library from multiple sources. In parallel we sequenced the complete Mr-IR cDNA, confirmed in the wide transcriptomic library. Mr-IR expression was detected in most tissues in both males and females, including the AG and gonads. To study Mr-IR function, we performed long-term RNA interference (RNAi) silencing in young male prawns. Although having no effect on growth, Mr-IR silencing advanced the appearance of a male-specific secondary trait. The most noted effects of Mr-IR silencing were hypertrophy of the AG and the associated increased production of Mr-IAG, with an unusual abundance of immature sperm cells being seen in the distal sperm duct. A ligand blot assay using de novo recombinant Mr-IAG confirmed the existence of a ligand-receptor interaction. Whereas these results suggest a role for Mr-IR in the regulation of the AG, we did not see any sexual shift after silencing of Mr-IR, as occurred when the ligand-encoding Mr-IAG gene was silenced. This suggests that sexual differentiation in crustaceans involve more than a single Mr-IAG receptor, emphasizing the complexity of sexual differentiation and maintenance. PMID:26677879

  14. Application of network construction to estimate functional changes to insulin receptor substrates 1 and 2 in Huh7 cells following infection with the hepatitis C virus

    PubMed Central

    Liu, Jingkun; Wang, Linbang; Wang, Wenjun; Li, Yaping; Jia, Xiaoli; Zhai, Song; Shi, Juan; Dang, Shuangsuo

    2016-01-01

    Hepatitis C virus (HCV) is closely associated with insulin resistance (IS), acting primarily by interfering with insulin signaling pathways, increasing cytokine-mediated (tumor necrosis factor α, interleukin 6) inflammatory responses and enhancing oxidative stress. In the insulin signaling pathways, the insulin receptor substrate (IRS) is one of the key regulatory factors. The present study constructed gene regulatory sub-networks specific for IRS1 and IRS2 in Huh7 cells and HCV-infected Huh7 (HCV-Huh7) cells using linear programming and a decomposition algorithm, and investigated the possible mechanisms underlying the function of IRS1/2 in HCV-induced IS in Huh7 cells. All data were obtained from GSE20948 of the Gene Expression Omnibus database from the National Center for Biotechnology Information. Genes which were significantly differentially expressed between Huh7 and HCV-Huh7 cells were analyzed using the significance analysis of microarray algorithm. The top 50 genes, including IRS1/2, were used as target genes to determine the gene regulatory networks and next the sub-networks of IRS1 and IRS2 in HCV-Huh7 and Huh7 cells using Gene Regulatory Network Inference Tool, an algorithm based on linear programming and the decomposition process. The IRS1/2 sub-networks were divided into upstream/downstream groups and activation/suppression clusters, and were further analyzed using Molecule Annotation System 3.0 and Database for Annotation, Visualization, and Integrated Discovery software, two online platforms for enrichment and clustering analysis and visualization. The results indicated that in Huh7 cells, the downstream network of IRS2 is more complex than that of IRS1, indicating that the insulin metabolism in Huh7 cells may be primarily mediated by IRS2. In HCV-Huh7 cells, the downstream pathway of IRS2 is blocked, suggesting that this may be the underlying mechanism in HCV infection that leads to insulin resistance. The present findings add a further dimension

  15. Tyrosine kinase BMX phosphorylates phosphotyrosine-primed motif mediating the activation of multiple receptor tyrosine kinases.

    PubMed

    Chen, Sen; Jiang, Xinnong; Gewinner, Christina A; Asara, John M; Simon, Nicholas I; Cai, Changmeng; Cantley, Lewis C; Balk, Steven P

    2013-05-28

    The nonreceptor tyrosine kinase BMX (bone marrow tyrosine kinase gene on chromosome X) is abundant in various cell types and activated downstream of phosphatidylinositol-3 kinase (PI3K) and the kinase Src, but its substrates are unknown. Positional scanning peptide library screening revealed a marked preference for a priming phosphorylated tyrosine (pY) in the -1 position, indicating that BMX substrates may include multiple tyrosine kinases that are fully activated by pYpY sites in the kinase domain. BMX phosphorylated focal adhesion kinase (FAK) at Tyr⁵⁷⁷ subsequent to its Src-mediated phosphorylation at Tyr⁵⁷⁶. Loss of BMX by RNA interference or by genetic deletion in mouse embryonic fibroblasts (MEFs) markedly impaired FAK activity. Phosphorylation of the insulin receptor in the kinase domain at Tyr¹¹⁸⁹ and Tyr¹¹⁹⁰, as well as Tyr¹¹⁸⁵, and downstream phosphorylation of the kinase AKT at Thr³⁰⁸ were similarly impaired by BMX deficiency. However, insulin-induced phosphorylation of AKT at Ser⁴⁷³ was not impaired in Bmx knockout MEFs or liver tissue from Bmx knockout mice, which also showed increased insulin-stimulated glucose uptake, possibly because of decreased abundance of the phosphatase PHLPP (PH domain leucine-rich repeat protein phosphatase). Thus, by identifying the pYpY motif as a substrate for BMX, our findings suggest that BMX functions as a central regulator among multiple signaling pathways mediated by tyrosine kinases. PMID:23716717

  16. Quantitative Phosphoproteomics Analysis Reveals a Key Role of Insulin Growth Factor 1 Receptor (IGF1R) Tyrosine Kinase in Human Sperm Capacitation*

    PubMed Central

    Wang, Jing; Qi, Lin; Huang, Shaoping; Zhou, Tao; Guo, Yueshuai; Wang, Gaigai; Guo, Xuejiang; Zhou, Zuomin; Sha, Jiahao

    2015-01-01

    One of the most important changes during sperm capacitation is the enhancement of tyrosine phosphorylation. However, the mechanisms of protein tyrosine phosphorylation during sperm capacitation are not well studied. We used label-free quantitative phosphoproteomics to investigate the overall phosphorylation events during sperm capacitation in humans and identified 231 sites with increased phosphorylation levels. Motif analysis using the NetworKIN algorithm revealed that the activity of tyrosine phosphorylation kinases insulin growth factor 1 receptor (IGF1R)/insulin receptor is significantly enriched among the up-regulated phosphorylation substrates during capacitation. Western blotting further confirmed inhibition of IGF1R with inhibitors GSK1904529A and NVP-AEW541, which inhibited the increase in tyrosine phosphorylation levels during sperm capacitation. Additionally, sperm hyperactivated motility was also inhibited by GSK1904529A and NVP-AEW541 but could be up-regulated by insulin growth factor 1, the ligand of IGF1R. Thus, the IGF1R-mediated tyrosine phosphorylation pathway may play important roles in the regulation of sperm capacitation in humans and could be a target for improvement in sperm functions in infertile men. PMID:25693802

  17. Quantitative phosphoproteomics analysis reveals a key role of insulin growth factor 1 receptor (IGF1R) tyrosine kinase in human sperm capacitation.

    PubMed

    Wang, Jing; Qi, Lin; Huang, Shaoping; Zhou, Tao; Guo, Yueshuai; Wang, Gaigai; Guo, Xuejiang; Zhou, Zuomin; Sha, Jiahao

    2015-04-01

    One of the most important changes during sperm capacitation is the enhancement of tyrosine phosphorylation. However, the mechanisms of protein tyrosine phosphorylation during sperm capacitation are not well studied. We used label-free quantitative phosphoproteomics to investigate the overall phosphorylation events during sperm capacitation in humans and identified 231 sites with increased phosphorylation levels. Motif analysis using the NetworKIN algorithm revealed that the activity of tyrosine phosphorylation kinases insulin growth factor 1 receptor (IGF1R)/insulin receptor is significantly enriched among the up-regulated phosphorylation substrates during capacitation. Western blotting further confirmed inhibition of IGF1R with inhibitors GSK1904529A and NVP-AEW541, which inhibited the increase in tyrosine phosphorylation levels during sperm capacitation. Additionally, sperm hyperactivated motility was also inhibited by GSK1904529A and NVP-AEW541 but could be up-regulated by insulin growth factor 1, the ligand of IGF1R. Thus, the IGF1R-mediated tyrosine phosphorylation pathway may play important roles in the regulation of sperm capacitation in humans and could be a target for improvement in sperm functions in infertile men.

  18. Sustained Brown Fat Stimulation and Insulin Sensitization by a Humanized Bispecific Antibody Agonist for Fibroblast Growth Factor Receptor 1/βKlotho Complex

    PubMed Central

    Kolumam, Ganesh; Chen, Mark Z.; Tong, Raymond; Zavala-Solorio, Jose; Kates, Lance; van Bruggen, Nicholas; Ross, Jed; Wyatt, Shelby K.; Gandham, Vineela D.; Carano, Richard A.D.; Dunshee, Diana Ronai; Wu, Ai-Luen; Haley, Benjamin; Anderson, Keith; Warming, Søren; Rairdan, Xin Y.; Lewin-Koh, Nicholas; Zhang, Yingnan; Gutierrez, Johnny; Baruch, Amos; Gelzleichter, Thomas R.; Stevens, Dale; Rajan, Sharmila; Bainbridge, Travis W.; Vernes, Jean-Michel; Meng, Y. Gloria; Ziai, James; Soriano, Robert H.; Brauer, Matthew J.; Chen, Yongmei; Stawicki, Scott; Kim, Hok Seon; Comps-Agrar, Laëtitia; Luis, Elizabeth; Spiess, Christoph; Wu, Yan; Ernst, James A.; McGuinness, Owen P.; Peterson, Andrew S.; Sonoda, Junichiro

    2015-01-01

    Dissipating excess calories as heat through therapeutic stimulation of brown adipose tissues (BAT) has been proposed as a potential treatment for obesity-linked disorders. Here, we describe the generation of a humanized effector-less bispecific antibody that activates fibroblast growth factor receptor (FGFR) 1/βKlotho complex, a common receptor for FGF21 and FGF19. Using this molecule, we show that antibody-mediated activation of FGFR1/βKlotho complex in mice induces sustained energy expenditure in BAT, browning of white adipose tissue, weight loss, and improvements in obesity-associated metabolic derangements including insulin resistance, hyperglycemia, dyslipidemia and hepatosteatosis. In mice and cynomolgus monkeys, FGFR1/βKlotho activation increased serum high-molecular-weight adiponectin, which appears to contribute over time by enhancing the amplitude of the metabolic benefits. At the same time, insulin sensitization by FGFR1/βKlotho activation occurs even before the onset of weight loss in a manner that is independent of adiponectin. Together, selective activation of FGFR1/βKlotho complex with a long acting therapeutic antibody represents an attractive approach for the treatment of type 2 diabetes and other obesity-linked disorders through enhanced energy expenditure, insulin sensitization and induction of high-molecular-weight adiponectin. PMID:26288846

  19. Insulin treatment restores glutamate (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptor function in the hippocampus of diabetic rats.

    PubMed

    Viswaprakash, Nilmini; Vaithianathan, Thirumalini; Viswaprakash, Ajitan; Judd, Robert; Parameshwaran, Kodeeswaran; Suppiramaniam, Vishnu

    2015-09-01

    Type 1 diabetes is associated with cognitive dysfunction. Cognitive processing, particularly memory acquisition, depends on the regulated enhancement of expression and function of glutamate receptor subtypes in the hippocampus. Impairment of memory was been detected in rodent models of type 1 diabetes induced by streptozotocin (STZ). This study examines the functional properties of synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and the expression of synaptic molecules that regulate glutamatergic synaptic transmission in the hippocampus of STZ-diabetic rats. The AMPA receptor-mediated miniature excitatory postsynaptic currents (mEPSCs) and single-channel properties of synaptosomal AMPA receptors were examined after 4 weeks of diabetes induction. Results show that amplitude and frequency of mEPSCs recorded from CA1 pyramidal neurons were decreased in diabetic rats. In addition, the single-channel properties of synaptic AMPA receptors from diabetic rat hippocampi were different from those of controls. These impairments in synaptic currents gated by AMPA receptors were accompanied by decreased protein levels of AMPA receptor subunit GluR1, the presynaptic protein synaptophysin, and the postsynaptic anchor protein postsynaptic density protein 95 in the hippocampus of diabetic rats. Neural cell adhesion molecule (NCAM), an extracellular matrix molecule abundantly expressed in the brain, and the polysialic acid (PSA) attached to NCAM were also downregulated in the hippocampus of diabetic rats. Insulin treatment, when initiated at the onset of diabetes induction, reduced these effects. These findings suggest that STZ-induced diabetes may result in functional deteriorations in glutamatergic synapses in the hippocampus of rats and that these effects may be reduced by insulin treatment. PMID:25807926

  20. Retinoic Acid-mediated Nuclear Receptor Activation and Hepatocyte Proliferation

    PubMed Central

    Bushue, Nathan; Wan, Yu-Jui Yvonne

    2016-01-01

    Due to their well-known differentiation and apoptosis-inducing abilities, retinoic acid (RA) and its analogs have strong anti-cancer efficacy in human cancers. However, in vivo RA is a liver mitogen. While speculation has persisted that RA-mediated signaling is likely involved in hepatocyte proliferation during liver regeneration, direct evidence is still required. Findings in support of this proposition include observations that a release of retinyl palmitate (the precursor of RA) occurs in liver stellate cells following liver injury. Nevertheless, the biological action of this released vitamin A is virtually unknown. More likely is that the released vitamin A is converted to RA, the biological form, and then bound to a specific receptor (retinoid x receptor; RXRα), which is most abundantly expressed in the liver. Considering the mitogenic effects of RA, the RA-activated RXRα would likely then influence hepatocyte proliferation and liver tissue repair. At present, the mechanism by which RA stimulates hepatocyte proliferation is largely unknown. This review summarizes the activation of nuclear receptors (peroxisome proliferator activated receptor-α, pregnane x receptor, constitutive androstane receptor, and farnesoid x receptor) in an RXRα dependent manner to induce hepatocyte proliferation, providing a link between RA and its proliferative role.

  1. Receptor-mediated delivery of engineered nucleases for genome modification.

    PubMed

    Chen, Zhong; Jaafar, Lahcen; Agyekum, Davies G; Xiao, Haiyan; Wade, Marlene F; Kumaran, R Ileng; Spector, David L; Bao, Gang; Porteus, Matthew H; Dynan, William S; Meiler, Steffen E

    2013-10-01

    Engineered nucleases, which incise the genome at predetermined sites, have a number of laboratory and clinical applications. There is, however, a need for better methods for controlled intracellular delivery of nucleases. Here, we demonstrate a method for ligand-mediated delivery of zinc finger nucleases (ZFN) proteins using transferrin receptor-mediated endocytosis. Uptake is rapid and efficient in established mammalian cell lines and in primary cells, including mouse and human hematopoietic stem-progenitor cell populations. In contrast to cDNA expression, ZFN protein levels decline rapidly following internalization, affording better temporal control of nuclease activity. We show that transferrin-mediated ZFN uptake leads to site-specific in situ cleavage of the target locus. Additionally, despite the much shorter duration of ZFN activity, the efficiency of gene correction approaches that seen with cDNA-mediated expression. The approach is flexible and general, with the potential for extension to other targeting ligands and nuclease architectures.

  2. GABAA receptor-mediated neurotransmission: Not so simple after all.

    PubMed

    Knoflach, Frédéric; Hernandez, Maria-Clemencia; Bertrand, Daniel

    2016-09-01

    GABAA receptors are ligand-gated ion channels that form a fundamental component of inhibitory neurotransmission in the central and peripheral nervous systems. However, since the initial recordings of inhibitory electrical activity of neurons in response to GABA, these receptors have been found to play a more complex role and can, under some circumstances, function in an excitatory manner. This has been demonstrated via electrophysiological recordings conducted in both mature and developing neurons from different brain regions, as well as in various subcellular locations such as dendritic and axonal membranes. The balance between the inhibitory and excitatory effects mediated by GABAA receptor activation depends not only on multiple factors that govern the equilibrium of the transmembrane chloride gradient, but also on bicarbonate concentration. Moreover, electrophysiological and fluorescence measurements have revealed that a spatial distribution of the chloride gradient exists within neurons, which locally influences the effects mediated by GABAA receptor activation. In recent years, it has also become apparent that intra-neuronal chloride concentration is partially regulated by cation-chloride co-transporters (CCCs), in particular NKCC1 and KCC2. The aim of the present commentary is to discuss, in light of the latest findings, potential implications of the tight spatial and temporal regulation of chloride equilibrium in health and disease, as well as its relevance for the therapeutic effects of molecules acting at GABAA receptors. PMID:27002180

  3. Receptors and growth-promoting effects of insulin and insulinlike growth factors on cells from bovine retinal capillaries and aorta.

    PubMed Central

    King, G L; Goodman, A D; Buzney, S; Moses, A; Kahn, C R

    1985-01-01

    It has been suggested that elevated levels of insulin or insulin-like growth factors (IGFs) play a role in the development of diabetic vascular complications. Previously, we have shown a differential response to insulin between vascular cells from retinal capillaries and large arteries with the former being much more insulin responsive. In the present study, we have characterized the receptors and the growth-promoting effect of insulinlike growth factor I (IGF-I) and multiplication-stimulating activity (MSA, an IGF-II) on endothelial cells and pericytes from calf retinal capillaries and on endothelial and smooth muscle cells from calf aorta. We found single and separate populations of high affinity receptors for IGF-I and MSA with respective affinity constants of 1 X 10(-9) M-1 and 10(-8) M-1 in all four cell types studied. Specific binding of IGF-I was between 7.2 and 7.9% per milligram of protein in endothelial cells and 9.1 and 10.4% in the vascular supporting cells. For 125I-MSA, retinal endothelial cells bound only 1.7-2.5%, whereas the aortic endothelial cells and the vascular supporting cells bound between 5.6 and 8.5% per milligram of protein. The specificity of the receptors for IGF-I and MSA differed, as insulin and MSA was able to compete with 125I-IGF-I for binding to the IGF-I receptors with 0.01-0.1, the potency of unlabeled IGF-I, whereas even 1 X 10(-6) M, insulin did not significantly compete with 125I-MSA for binding to the receptors for MSA. For growth-promoting effects, as measured by the incorporation of [3H]thymidine into DNA, confluent retinal endothelial cells responded to IGF-I and MSA by up to threefold increase in the rate of DNA synthesis, whereas confluent aortic endothelial cells did not respond at all. A similar differential of response to insulin between micro- and macrovascular endothelial cells was reported by us previously. In the retinal endothelium, insulin was more potent than IGF-I and IGF-I was more potent that MSA. In the

  4. Specific activation of insulin-like growth factor-1 receptor by ginsenoside Rg5 promotes angiogenesis and vasorelaxation.

    PubMed

    Cho, Young-Lai; Hur, Sung-Mo; Kim, Ji-Yoon; Kim, Ji-Hee; Lee, Dong-Keon; Choe, Jongeon; Won, Moo-Ho; Ha, Kwon-Soo; Jeoung, Dooil; Han, Sanghwa; Ryoo, Sungwoo; Lee, Hansoo; Min, Jeong-Ki; Kwon, Young-Guen; Kim, Dong-Hyun; Kim, Young-Myeong

    2015-01-01

    Ginsenoside Rg5 is a compound newly synthesized during the steaming process of ginseng; however, its biological activity has not been elucidated with regard to endothelial function. We found that Rg5 stimulated in vitro angiogenesis of human endothelial cells, consistent with increased neovascularization and blood perfusion in a mouse hind limb ischemia model. Rg5 also evoked vasorelaxation in aortic rings isolated from wild type and high cholesterol-fed ApoE(-/-) mice but not from endothelial nitric-oxide synthase (eNOS) knock-out mice. Angiogenic activity of Rg5 was highly associated with a specific increase in insulin-like growth factor-1 receptor (IGF-1R) phosphorylation and subsequent activation of multiple angiogenic signals, including ERK, FAK, Akt/eNOS/NO, and Gi-mediated phospholipase C/Ca(2+)/eNOS dimerization pathways. The vasodilative activity of Rg5 was mediated by the eNOS/NO/cGMP axis. IGF-1R knockdown suppressed Rg5-induced angiogenesis and vasorelaxation by inhibiting key angiogenic signaling and NO/cGMP pathways. In silico docking analysis showed that Rg5 bound with high affinity to IGF-1R at the same binding site of IGF. Rg5 blocked binding of IGF-1 to its receptor with an IC50 of ∼90 nmol/liter. However, Rg5 did not induce vascular inflammation and permeability. These data suggest that Rg5 plays a novel role as an IGF-1R agonist, promoting therapeutic angiogenesis and improving hypertension without adverse effects in the vasculature. PMID:25391655

  5. Specific Activation of Insulin-like Growth Factor-1 Receptor by Ginsenoside Rg5 Promotes Angiogenesis and Vasorelaxation*

    PubMed Central

    Cho, Young-Lai; Hur, Sung-Mo; Kim, Ji-Yoon; Kim, Ji-Hee; Lee, Dong-Keon; Choe, Jongeon; Won, Moo-Ho; Ha, Kwon-Soo; Jeoung, Dooil; Han, Sanghwa; Ryoo, Sungwoo; Lee, Hansoo; Min, Jeong-Ki; Kwon, Young-Guen; Kim, Dong-Hyun; Kim, Young-Myeong

    2015-01-01

    Ginsenoside Rg5 is a compound newly synthesized during the steaming process of ginseng; however, its biological activity has not been elucidated with regard to endothelial function. We found that Rg5 stimulated in vitro angiogenesis of human endothelial cells, consistent with increased neovascularization and blood perfusion in a mouse hind limb ischemia model. Rg5 also evoked vasorelaxation in aortic rings isolated from wild type and high cholesterol-fed ApoE−/− mice but not from endothelial nitric-oxide synthase (eNOS) knock-out mice. Angiogenic activity of Rg5 was highly associated with a specific increase in insulin-like growth factor-1 receptor (IGF-1R) phosphorylation and subsequent activation of multiple angiogenic signals, including ERK, FAK, Akt/eNOS/NO, and Gi-mediated phospholipase C/Ca2+/eNOS dimerization pathways. The vasodilative activity of Rg5 was mediated by the eNOS/NO/cGMP axis. IGF-1R knockdown suppressed Rg5-induced angiogenesis and vasorelaxation by inhibiting key angiogenic signaling and NO/cGMP pathways. In silico docking analysis showed that Rg5 bound with high affinity to IGF-1R at the same binding site of IGF. Rg5 blocked binding of IGF-1 to its receptor with an IC50 of ∼90 nmol/liter. However, Rg5 did not induce vascular inflammation and permeability. These data suggest that Rg5 plays a novel role as an IGF-1R agonist, promoting therapeutic angiogenesis and improving hypertension without adverse effects in the vasculature. PMID:25391655

  6. Dietary modulation of erythrocyte insulin receptor interaction and the regulation of adipose tissue pyruvate dehydrogenase enzyme activity in growing rats; a mechanism of action of dietary fiber in metabolism

    SciTech Connect

    Ogunwole, J.O.A.

    1984-01-01

    The metabolic effects of graded cellulose (a dietary fiber) intake were studied at minimal (10%) and maximal (20%) protein levels in male weanling Sprague Dawley rats. The hypothesis was tested that the hypoglycemic effect of high fiber diets is partly mediated through increased tissue sensitivity to insulin at the cell receptor level. Erythrocyte insulin receptor interaction (IRI) and percent insulin stimulation of adipose tissue pyruvate dehydrogenase (PDH) activity (PDS) were used as indices of tissue sensitivity to insulin. IRI was determined by a standardized radioceptor assay PDS by the rate of oxidation of 1-/sup 14/C-pyruvate to /sup 14/CO/sub 2/ in epidymal fat pads and serum insulin levels by radioimmunoassay. In both protein groups, the addition of fiber in the diet resulted in a significant (P < 0.05) increase in food intake (FI) for calorie compensation. Fiber and protein intake had a significant (P < 0.01) effect on IRI and both basal (PDB) and PDS activities of PDH. At all fiber levels, specific percent /sup 125/I-insulin binding (SIB) was higher in the 20% protein groups while in the fiber-free group, a higher SIB was observed in the 10% protein group.

  7. Neuropeptide Y receptor mediates activation of ERK1/2 via transactivation of the IGF receptor.

    PubMed

    Lecat, Sandra; Belemnaba, Lazare; Galzi, Jean-Luc; Bucher, Bernard

    2015-07-01

    Neuropeptide Y binds to G-protein coupled receptors whose action results in inhibition of adenylyl cyclase activity. Using HEK293 cells stably expressing the native neuropeptide Y Y1 receptors, we found that the NPY agonist elicits a transient phosphorylation of the extracellular signal-regulated kinases (ERK1/2). We first show that ERK1/2 activation following Y1 receptor stimulation is dependent on heterotrimeric Gi/o since it is completely inhibited by pre-treatment with pertussis toxin. In addition, ERK1/2 activation is internalization-independent since mutant Y1 receptors unable to recruit β-arrestins, can still activate ERK signaling to the same extent as wild-type receptors. We next show that this activation of the MAPK pathway is inhibited by the MEK inhibitor U0126, is not dependent on calcium signaling at the Y1 receptor (no effect upon inhibition of phospholipase C, protein kinase C or protein kinase D) but instead dependent on Gβ/γ and associated signaling pathways that activate PI3-kinase. Although inhibition of the epidermal-growth factor receptor tyrosine kinase did not influence NPY-induced ERK1/2 activation, we show that the inhibition of insulin growth factor receptor IGFR by AG1024 completely blocks activation of ERK1/2 by the Y1 receptor. This Gβ/γ-PI3K-AG1024-sensitive pathway does not involve activation of IGFR through the release of a soluble ligand by metalloproteinases since it is not affected by the metalloproteinase inhibitor marimastat. Finally, we found that a similar pathway, sensitive to wortmannin-AG1024 but insensitive to marimastat, is implicated in activation of ERK signaling in HEK293 cells by endogenously expressed GPCRs coupled to Gq-protein (muscarinic M3 receptors) or coupled to Gs-protein (endothelin ETB receptors). Our analysis is the first to show that β-arrestin recruitment to the NPY Y1 receptor is not necessary for MAPK activation by this receptor but that transactivation of the IGFR receptor is required.

  8. Pharmacology of inflammatory pain: local alteration in receptors and mediators

    PubMed Central

    Holzer, Peter; Holzer-Petsche, Ulrike

    2015-01-01

    Background Inflammation is commonly associated with hyperalgesia. Ideally, this change should abate once inflammation is resolved but this is not necessarily the case because phenotypic changes in the tissue can persist, as appears to be the case in postinfectious irritable bowel syndrome. Basically, all primary afferent neurons supplying the gut can sensitize in response to proinflammatory mediators, and the mechanisms whereby hypersensitivity is initiated and maintained are thus of prime therapeutic interest. Experimental and clinical findings There is a multitude of molecular nocisensors that can be responsible for the hypersensitivity of afferent neurons. These entities include: (i) receptors and sensors at the peripheral terminals of afferent neurons that are relevant to stimulus transduction, (ii) ion channels that govern the excitability and conduction properties of afferent neurons, and (iii) transmitters and transmitter receptors that mediate communication between primary afferents and second-order neurons in the spinal cord and brainstem. Persistent increases in the sensory gain may result from changes in the expression of transmitters, receptors and ion channels, changes in the subunit composition and biophysical properties of receptors and ion channels or changes in the structure, connectivity and survival of afferent neurons. Particular therapeutic potential is attributed to targets that are selectively expressed by afferent neurons and whose number and function are altered in abdominal hypersensitivity. Conclusion Emerging targets of therapeutic relevance include distinct members of the transient receptor potential (TRP) channel family (TRPV1, TRPV4, TRPA1), acid-sensing ion channels, protease-activated receptors, corticotropin-releasing factor receptors and sensory neuron-specific sodium channels. PMID:20203494

  9. Molecular docking studies of banana flower flavonoids as insulin receptor tyrosine kinase activators as a cure for diabetes mellitus

    PubMed Central

    Ganugapati, Jayasree; Baldwa, Aashish; Lalani, Sarfaraz

    2012-01-01

    Diabetes mellitus is a metabolic disorder caused due to insulin deficiency. Banana flower is a rich source of flavonoids that exhibit anti diabetic activity. Insulin receptor is a tetramer that belongs to a family of receptor tyrosine kinases. It contains two alpha subunits that form the extracellular domain and two beta subunits that constitute the intracellular tyrosine kinase domain. Insulin binds to the extracellular region of the receptor and causes conformational changes that lead to the activation of the tyrosine kinase. This leads to autophosphorylation, a step that is crucial in insulin signaling pathway. Hence, compounds that augment insulin receptor tyrosine kinase activity would be useful in the treatment of diabetes mellitus. The 3D structure of IR tyrosine kinase was obtained from PDB database. The list of flavonoids found in banana flower was obtained from USDA database. The structures of the flavonoids were obtained from NCBI Pubchem. Docking analysis of the flavonoids was performed using Autodock 4.0 and Autodock Vina. The results indicate that few of the flavonoids may be potential activators of IR tyrosine kinase. PMID:22493522

  10. Molecular docking studies of banana flower flavonoids as insulin receptor tyrosine kinase activators as a cure for diabetes mellitus.

    PubMed

    Ganugapati, Jayasree; Baldwa, Aashish; Lalani, Sarfaraz

    2012-01-01

    Diabetes mellitus is a metabolic disorder caused due to insulin deficiency. Banana flower is a rich source of flavonoids that exhibit anti diabetic activity. Insulin receptor is a tetramer that belongs to a family of receptor tyrosine kinases. It contains two alpha subunits that form the extracellular domain and two beta subunits that constitute the intracellular tyrosine kinase domain. Insulin binds to the extracellular region of the receptor and causes conformational changes that lead to the activation of the tyrosine kinase. This leads to autophosphorylation, a step that is crucial in insulin signaling pathway. Hence, compounds that augment insulin receptor tyrosine kinase activity would be useful in the treatment of diabetes mellitus. The 3D structure of IR tyrosine kinase was obtained from PDB database. The list of flavonoids found in banana flower was obtained from USDA database. The structures of the flavonoids were obtained from NCBI Pubchem. Docking analysis of the flavonoids was performed using Autodock 4.0 and Autodock Vina. The results indicate that few of the flavonoids may be potential activators of IR tyrosine kinase.

  11. The effects of maternal diabetes on expression of insulin-like growth factor-1 and insulin receptors in male developing rat hippocampus.

    PubMed

    Hami, Javad; Sadr-Nabavi, Ariane; Sankian, Mojtaba; Balali-Mood, Mehdi; Haghir, Hossein

    2013-01-01

    Diabetes during pregnancy causes neurodevelopmental and neurocognitive abnormalities in offspring. Insulin and insulin-like growth factor-1 (IGF-1) are important regulators of developmental and cognitive functions in the central nervous system. We examined the effects of maternal diabetes on insulin-like growth factor-1 receptor (IGF-1R) and insulin receptor (InsR) expression in the developing rat hippocampus. Female rats were maintained diabetic from a week before pregnancy through parturition and male offspring was killed at P0, P7, and P14. We found a significant bilateral upregulation of both IGF-1R and InsR transcripts in the hippocampus of pups born to diabetic mothers at P0, as compared to controls. However, at the same time point, the results of western blot analysis revealed only a slight change in their protein levels. At P7, there was a marked bilateral reduction in mRNA expression and protein levels of IGF-1R, although not of InsR in the diabetic group. We also found a downregulation in IGF1-R transcripts, especially in left hippocampus of the diabetic group at P14. Moreover, at the same time point, InsR expression was significantly decreased in both hippocampi of diabetic newborns. When compared with controls, we did not find any difference in hippocampal IGF-1R or InsR mRNA and protein levels in the insulin-treated group. The present study revealed that diabetes during pregnancy strongly influences the regulation of both IGF-1R and InsR in the right/left developing hippocampi. Furthermore, the rigid control of maternal glycaemia by insulin administration normalized these effects.

  12. Cerebellar vermis H₂ receptors mediate fear memory consolidation in mice.

    PubMed

    Gianlorenço, A C L; Riboldi, A M; Silva-Marques, B; Mattioli, R

    2015-02-01

    Histaminergic fibers are present in the molecular and granular layers of the cerebellum and have a high density in the vermis and flocullus. Evidence supports that the cerebellar histaminergic system is involved in memory consolidation. Our recent study showed that histamine injections facilitate the retention of an inhibitory avoidance task, which was abolished by pretreatment with an H2 receptor antagonist. In the present study, we investigated the effects of intracerebellar post training injections of H1 and H2 receptor antagonists as well as the selective H2 receptor agonist on fear memory consolidation. The cerebellar vermi of male mice were implanted with guide cannulae, and after three days of recovery, the inhibitory avoidance test was performed. Immediately after a training session, animals received a microinjection of the following histaminergic drugs: experiment 1, saline or chlorpheniramine (0.016, 0.052 or 0.16 nmol); experiment 2, saline or ranitidine (0.57, 2.85 or 5.07 nmol); and experiment 3, saline or dimaprit (1, 2 or 4 nmol). Twenty-four hours later, a retention test was performed. The data were analyzed using one-way analysis of variance (ANOVA) and Duncan's tests. Animals microinjected with chlorpheniramine did not show any behavioral effects at the doses that we used. Intra-cerebellar injection of the H2 receptor antagonist ranitidine inhibited, while the selective H2 receptor agonist dimaprit facilitated, memory consolidation, suggesting that H2 receptors mediate memory consolidation in the inhibitory avoidance task in mice. PMID:25524412

  13. Cerebellar vermis H₂ receptors mediate fear memory consolidation in mice.

    PubMed

    Gianlorenço, A C L; Riboldi, A M; Silva-Marques, B; Mattioli, R

    2015-02-01

    Histaminergic fibers are present in the molecular and granular layers of the cerebellum and have a high density in the vermis and flocullus. Evidence supports that the cerebellar histaminergic system is involved in memory consolidation. Our recent study showed that histamine injections facilitate the retention of an inhibitory avoidance task, which was abolished by pretreatment with an H2 receptor antagonist. In the present study, we investigated the effects of intracerebellar post training injections of H1 and H2 receptor antagonists as well as the selective H2 receptor agonist on fear memory consolidation. The cerebellar vermi of male mice were implanted with guide cannulae, and after three days of recovery, the inhibitory avoidance test was performed. Immediately after a training session, animals received a microinjection of the following histaminergic drugs: experiment 1, saline or chlorpheniramine (0.016, 0.052 or 0.16 nmol); experiment 2, saline or ranitidine (0.57, 2.85 or 5.07 nmol); and experiment 3, saline or dimaprit (1, 2 or 4 nmol). Twenty-four hours later, a retention test was performed. The data were analyzed using one-way analysis of variance (ANOVA) and Duncan's tests. Animals microinjected with chlorpheniramine did not show any behavioral effects at the doses that we used. Intra-cerebellar injection of the H2 receptor antagonist ranitidine inhibited, while the selective H2 receptor agonist dimaprit facilitated, memory consolidation, suggesting that H2 receptors mediate memory consolidation in the inhibitory avoidance task in mice.

  14. Myeloid Cell-Restricted Insulin/IGF-1 Receptor Deficiency Protects against Skin Inflammation.

    PubMed

    Knuever, Jana; Willenborg, Sebastian; Ding, Xiaolei; Akyüz, Mehmet D; Partridge, Linda; Niessen, Carien M; Brüning, Jens C; Eming, Sabine A

    2015-12-01

    Myeloid cells are key regulators of tissue homeostasis and disease. Alterations in cell-autonomous insulin/IGF-1 signaling in myeloid cells have recently been implicated in the development of systemic inflammation and insulin-resistant diabetes mellitus type 2 (DM). Impaired wound healing and inflammatory skin diseases are frequent DM-associated skin pathologies, yet the underlying mechanisms are elusive. In this study, we investigated whether myeloid cell-restricted IR/IGF-1R signaling provides a pathophysiologic link between systemic insulin resistance and the development of cutaneous inflammation. Therefore, we generated mice lacking both the insulin and IGF-1 receptor in myeloid cells (IR/IGF-1R(MKO)). Whereas the kinetics of wound closure following acute skin injury was similar in control and IR/IGF-1R(MKO) mice, in two different conditions of dermatitis either induced by repetitive topical applications of the detergent SDS or by high-dose UV B radiation, IR/IGF-1R(MKO) mice were protected from inflammation, whereas controls developed severe skin dermatitis. Notably, whereas during the early phase in both inflammatory conditions the induction of epidermal proinflammatory cytokine expression was similar in control and IR/IGF-1R(MKO) mice, during the late stage, epidermal cytokine expression was sustained in controls but virtually abrogated in IR/IGF-1R(MKO) mice. This distinct kinetic of epidermal cytokine expression was paralleled by proinflammatory macrophage activation in controls and a noninflammatory phenotype in mutants. Collectively, our findings provide evidence for a proinflammatory IR/IGF-1R-dependent pathway in myeloid cells that plays a critical role in the dynamics of an epidermal-dermal cross-talk in cutaneous inflammatory responses, and may add to the mechanistic understanding of diseases associated with disturbances in myeloid cell IR/IGF-1R signaling, including DM. PMID:26519530

  15. Myeloid cell-restricted Insulin/IGF-1 receptor deficiency protects against skin inflammation

    PubMed Central

    Ding, Xiaolei; Akyüz, Mehmet D.; Partridge, Linda; Niessen, Carien M.; Brüning, Jens C.; Eming, Sabine A.

    2016-01-01

    Myeloid cells are key regulators of tissue homeostasis and disease. Alterations in cell-autonomous Insulin/IGF-1 signaling in myeloid cells have recently been implicated in the development of systemic inflammation and insulin-resistant diabetes mellitus type 2 (DM). Impaired wound healing and inflammatory skin diseases are frequent DM-associated skin pathologies, yet the underlying mechanisms are elusive. Here we investigated whether myeloid cell-restricted IR/IGF-1R signalling provides a pathophysiological link between systemic insulin resistance and the development of cutaneous inflammation. Therefore, we generated mice lacking both the Insulin and IGF-1 receptor in myeloid cells (IR/IGF-1RMKO). Whereas the kinetics of wound closure following acute skin injury was similar in control and IR/IGF-1RMKO mice, in two different conditions of dermatitis either induced by repetitive topical applications of the detergent SDS or by high-dose UVB radiation, IR/IGF-1RMKO mice were protected from inflammation, whereas controls developed severe skin dermatitis. Notably, whereas during the early phase in both inflammatory conditions the induction of epidermal pro-inflammatory cytokine expression was similar in control and IR/IGF-1RMKO mice, during the late stage, epidermal cytokine expression was sustained in controls, however virtually abrogated in IR/IGF-1RMKO mice. This distinct kinetic of epidermal cytokine expression was paralleled by pro-inflammatory macrophage activation in controls and a non-inflammatory phenotype in mutants. Collectively, our findings provide evidence for a pro-inflammatory IR/IGF-1R-dependent pathway in myeloid cells that plays a critical role in the dynamics of an epidermal-dermal crosstalk in cutaneous inflammatory responses, and may add to the mechanistic understanding of diseases associated with disturbances in myeloid cell IR/IGF-1R signaling including DM. PMID:26519530

  16. Autoradiographic visualization of insulin-like growth factor-II receptors in rat brain

    SciTech Connect

    Mendelsohn, L.G.; Kerchner, G.A.; Clemens, J.A.; Smith, M.C.

    1986-03-01

    The documented presence of IGF-II in brain and CSF prompted us to investigate the distribution of receptors for IGF-II in rat brain slices. Human /sup 125/-I-IGF-II (10 pM) was incubated for 16 hrs at 4/sup 0/C with slide-mounted rat brain slices in the absence and presence of unlabeled human IGF-II (67 nM) or human insulin (86 nM). Slides were washed, dried, and exposed to X-ray film for 4-7 days. The results showed dense labeling in the granular layers of the olfactory bulbs, deep layers of the cerebral cortex, pineal gland, anterior pituitary, hippocampus (pyramidal cells CA/sub 1/-CA/sub 2/ and dentate gyrus), and the granule cell layers of the cerebellum. Unlabeled IGF-II eliminated most of the binding of these brain regions while insulin produced only a minimal reduction in the amount of /sup 125/I-IGF-II bound. These results indicate that a specific neural receptor for IGS-II is uniquely distributed in rat brain tissue and supports the notion that this peptide might play an important role in normal neuronal functioning.

  17. Peroxisome proliferator-activated receptor gamma agonists as insulin sensitizers: from the discovery to recent progress.

    PubMed

    Cho, Nobuo; Momose, Yu

    2008-01-01

    An epidemic of metabolic diseases including type 2 diabetes and obesity is undermining the health of people living in industrialized societies. There is an urgent need to develop innovative therapeutics. The peroxisome proliferator-activated receptor gamma (PPARgamma) is one of the ligand-activated transcription factors in the nuclear hormone receptor superfamily and a pivotal regulator of glucose and lipid homeostasis. The discovery of PPARgamma as a target of multimodal insulin sensitizers, represented by thiazolidinediones (TZDs), has attracted remarkable scientific interest and had a great impact on the pharmaceutical industry. With the clinical success of the PPARgamma agonists, pioglitazone (Actos) and rosiglitazone (Avandia), development of novel and potent insulin-sensitizing agents with diverse clinical profiles has been accelerated. Currently, a number of PPARgamma agonists from different chemical classes and with varying pharmacological profiles are being developed. Despite quite a few obstacles to the development of PPAR-related drugs, PPARgamma-targeted agents still hold promise. There are new concepts and encouraging evidence emerging that suggest this class can yield improved anti-diabetic agents. This review covers the discovery of TZDs, provides an overview of PPARgamma including the significance of PPARgamma as a drug target, describes the current status of a wide variety of novel PPARgamma ligands including PPAR dual and pan agonists and selective PPARgamma modulators (SPPARgammaMs), and highlights new approaches for identifying agents targeting PPARgamma in the treatment of type 2 diabetes. PMID:19075761

  18. Extracellular vimentin interacts with insulin-like growth factor 1 receptor to promote axonal growth.

    PubMed

    Shigyo, Michiko; Kuboyama, Tomoharu; Sawai, Yusuke; Tada-Umezaki, Masahito; Tohda, Chihiro

    2015-01-01

    Vimentin, an intermediate filament protein, is generally recognised as an intracellular protein. Previously, we reported that vimentin was secreted from astrocytes and promoted axonal growth. The effect of extracellular vimentin in neurons was a new finding, but its signalling pathway was unknown. In this study, we aimed to determine the signalling mechanism of extracellular vimentin that facilitates axonal growth. We first identified insulin-like growth factor 1 receptor (IGF1R) as a receptor that is highly phosphorylated by vimentin stimulation. IGF1R blockades diminished vimentin- or IGF1-induced axonal growth in cultured cortical neurons. IGF1, IGF2 and insulin were not detected in the neuron culture medium after vimentin treatment. The combined drug affinity responsive target stability method and western blotting analysis showed that vimentin and IGF1 interacted with IGF1R directly. In addition, immunoprecipitation and western blotting analyses confirmed that recombinant IGF1R bound to vimentin. The results of a molecular dynamics simulation revealed that C-terminal residues (residue number 330-407) in vimentin are the most appropriate binding sites with IGF1R. Thus, extracellular vimentin may be a novel ligand of IGF1R that promotes axonal growth in a similar manner to IGF1. Our results provide novel findings regarding the role of extracellular vimentin and IGF1R in axonal growth. PMID:26170015

  19. Insulin-like Growth Factor Receptor Inhibitors: Baby or the Bathwater?

    PubMed Central

    2012-01-01

    The success of targeted therapies for cancer is undisputed; strong preclinical evidence has resulted in the approval of several new agents for cancer treatment. The type I insulin-like growth factor receptor (IGF1R) appeared to be one of these promising new targets. Substantial population and preclinical data have all pointed toward this pathway as an important regulator of tumor cell biology. Although early results from clinical trials that targeted the IGF1R showed some evidence of response, larger randomized phase III trials have not shown clear clinical benefit of targeting this pathway in combination with conventional strategies. These disappointing results have resulted in the discontinuation of several anti-IGF1R programs. However, the conduct of these trials has brought to the forefront several important factors that need to be considered in the conduct of future clinical trials. The need to develop biomarkers, a clearer understanding of insulin receptor function, and defining rational combination regimens all require further consideration. In this commentary, the current state of IGF1R inhibitors in cancer therapy is reviewed. PMID:22761272

  20. Global Cysteine-Reactivity Profiling during Impaired Insulin/IGF-1 Signaling in C. elegans Identifies Uncharacterized Mediators of Longevity.

    PubMed

    Martell, Julianne; Seo, Yonghak; Bak, Daniel W; Kingsley, Samuel F; Tissenbaum, Heidi A; Weerapana, Eranthie

    2016-08-18

    In the nematode Caenorhabditis elegans, inactivating mutations in the insulin/IGF-1 receptor, DAF-2, result in a 2-fold increase in lifespan mediated by DAF-16, a FOXO-family transcription factor. Downstream protein activities that directly regulate longevity during impaired insulin/IGF-1 signaling (IIS) are poorly characterized. Here, we use global cysteine-reactivity profiling to identify protein activity changes during impaired IIS. Upon confirming that cysteine reactivity is a good predictor of functionality in C. elegans, we profiled cysteine-reactivity changes between daf-2 and daf-16;daf-2 mutants, and identified 40 proteins that display a >2-fold change. Subsequent RNAi-mediated knockdown studies revealed that lbp-3 and K02D7.1 knockdown caused significant increases in lifespan and dauer formation. The proteins encoded by these two genes, LBP-3 and K02D7.1, are implicated in intracellular fatty acid transport and purine metabolism, respectively. These studies demonstrate that cysteine-reactivity profiling can be complementary to abundance-based transcriptomic and proteomic studies, serving to identify uncharacterized mediators of C. elegans longevity. PMID:27499530

  1. Ligand-Binding Affinity at the Insulin Receptor Isoform-A and Subsequent IR-A Tyrosine Phosphorylation Kinetics are Important Determinants of Mitogenic Biological Outcomes

    PubMed Central

    Rajapaksha, Harinda; Forbes, Briony E.

    2015-01-01

    The insulin receptor (IR) is a tyrosine kinase receptor that can mediate both metabolic and mitogenic biological actions. The IR isoform-A (IR-A) arises from alternative splicing of exon 11 and has different ligand binding and signaling properties compared to the IR isoform-B. The IR-A not only binds insulin but also insulin-like growth factor-II (IGF-II) with high affinity. IGF-II acting through the IR-A promotes cancer cell proliferation, survival, and migration by activating some unique signaling molecules compared to those activated by insulin. This observation led us to investigate whether the different IR-A signaling outcomes in response to IGF-II and insulin could be attributed to phosphorylation of a different subset of IR-A tyrosine residues or to the phosphorylation kinetics. We correlated IR-A phosphorylation to activation of molecules involved in mitogenic and metabolic signaling (MAPK and Akt) and receptor internalization rates (related to mitogenic signaling). We also extended this study to incorporate two ligands that are known to promote predominantly mitogenic [(His4, Tyr15, Thr49, Ile51) IGF-I, qIGF-I] or metabolic (S597 peptide) biological actions, to see if common mechanisms can be used to define mitogenic or metabolic signaling through the IR-A. The threefold lower mitogenic action of IGF-II compared to insulin was associated with a decreased potency in activation of Y960, Y1146, Y1150, Y1151, Y1316, and Y1322, in MAPK phosphorylation and in IR-A internalization. With the poorly mitogenic S597 peptide, it was a decreased rate of tyrosine phosphorylation rather than potency that was associated with a low mitogenic potential. We conclude that both decreased affinity of IR-A binding and kinetics of IR-A phosphorylation can independently lead to a lower mitogenic activity. None of the studied parameters could account for the lower metabolic activity of qIGF-I. PMID:26217307

  2. Purinergic Receptors: Key Mediators of HIV-1 Infection and Inflammation

    PubMed Central

    Swartz, Talia H.; Dubyak, George R.; Chen, Benjamin K.

    2015-01-01

    Human immunodeficiency virus type 1 (HIV-1) causes a chronic infection that afflicts more than 30 million individuals worldwide. While the infection can be suppressed with potent antiretroviral therapies, individuals infected with HIV-1 have elevated levels of inflammation as indicated by increased T cell activation, soluble biomarkers, and associated morbidity and mortality. A single mechanism linking HIV-1 pathogenesis to this inflammation has yet to be identified. Purinergic receptors are known to mediate inflammation and have been shown to be required for HIV-1 infection at the level of HIV-1 membrane fusion. Here, we review the literature on the role of purinergic receptors in HIV-1 infection and associated inflammation and describe a role for these receptors as potential therapeutic targets. PMID:26635799

  3. A Drosophila Model of HPV E6-Induced Malignancy Reveals Essential Roles for Magi and the Insulin Receptor.

    PubMed

    Padash Barmchi, Mojgan; Gilbert, Mary; Thomas, Miranda; Banks, Lawrence; Zhang, Bing; Auld, Vanessa J

    2016-08-01

    Cervical cancer is one of the leading causes of cancer death in women worldwide. The causative agents of cervical cancers, high-risk human papillomaviruses (HPVs), cause cancer through the action of two oncoproteins, E6 and E7. The E6 oncoprotein cooperates with an E3 ubiquitin ligase (UBE3A) to target the p53 tumour suppressor and important polarity and junctional PDZ proteins for proteasomal degradation, activities that are believed to contribute towards malignancy. However, the causative link between degradation of PDZ proteins and E6-mediated malignancy is largely unknown. We have developed an in vivo model of HPV E6-mediated cellular transformation using the genetic model organism, Drosophila melanogaster. Co-expression of E6 and human UBE3A in wing and eye epithelia results in severe morphological abnormalities. Furthermore, E6, via its PDZ-binding motif and in cooperation with UBE3A, targets a suite of PDZ proteins that are conserved in human and Drosophila, including Magi, Dlg and Scribble. Similar to human epithelia, Drosophila Magi is a major degradation target. Magi overexpression rescues the cellular abnormalities caused by E6+UBE3A coexpression and this activity of Magi is PDZ domain-dependent. Drosophila p53 was not targeted by E6+UBE3A, and E6+UBE3A activity alone is not sufficient to induce tumorigenesis, which only occurs when E6+UBE3A are expressed in conjunction with activated/oncogenic forms of Ras or Notch. Finally, through a genetic screen we have identified the insulin receptor signaling pathway as being required for E6+UBE3A induced hyperplasia. Our results suggest a highly conserved mechanism of HPV E6 mediated cellular transformation, and establish a powerful genetic model to identify and understand the cellular mechanisms that underlie HPV E6-induced malignancy. PMID:27537218

  4. A Drosophila Model of HPV E6-Induced Malignancy Reveals Essential Roles for Magi and the Insulin Receptor

    PubMed Central

    Padash Barmchi, Mojgan; Gilbert, Mary; Thomas, Miranda; Banks, Lawrence; Zhang, Bing; Auld, Vanessa J.

    2016-01-01

    Cervical cancer is one of the leading causes of cancer death in women worldwide. The causative agents of cervical cancers, high-risk human papillomaviruses (HPVs), cause cancer through the action of two oncoproteins, E6 and E7. The E6 oncoprotein cooperates with an E3 ubiquitin ligase (UBE3A) to target the p53 tumour suppressor and important polarity and junctional PDZ proteins for proteasomal degradation, activities that are believed to contribute towards malignancy. However, the causative link between degradation of PDZ proteins and E6-mediated malignancy is largely unknown. We have developed an in vivo model of HPV E6-mediated cellular transformation using the genetic model organism, Drosophila melanogaster. Co-expression of E6 and human UBE3A in wing and eye epithelia results in severe morphological abnormalities. Furthermore, E6, via its PDZ-binding motif and in cooperation with UBE3A, targets a suite of PDZ proteins that are conserved in human and Drosophila, including Magi, Dlg and Scribble. Similar to human epithelia, Drosophila Magi is a major degradation target. Magi overexpression rescues the cellular abnormalities caused by E6+UBE3A coexpression and this activity of Magi is PDZ domain-dependent. Drosophila p53 was not targeted by E6+UBE3A, and E6+UBE3A activity alone is not sufficient to induce tumorigenesis, which only occurs when E6+UBE3A are expressed in conjunction with activated/oncogenic forms of Ras or Notch. Finally, through a genetic screen we have identified the insulin receptor signaling pathway as being required for E6+UBE3A induced hyperplasia. Our results suggest a highly conserved mechanism of HPV E6 mediated cellular transformation, and establish a powerful genetic model to identify and understand the cellular mechanisms that underlie HPV E6-induced malignancy. PMID:27537218

  5. Comparative 2D NMR studies of human insulin and des-pentapeptide insulin: Sequential resonance assignment and implications for protein dynamics and receptor recognition

    SciTech Connect

    Hua, Qingxin ); Weiss, M.A. Massachusetts General Hospital, Boston, MA )

    1991-06-04

    The solution structure and dynamics of human insulin are ivestigated by 2D {sup 1}H NMR spectroscopy in reference to a previously analyzed analogue, des-pentapeptide (B26-B30) insulin. This spectroscopic comparison is of interest since (i) the structure of the C-terminal region of the B-chain has not been determined in the monomeric state and (ii) the role of this region in binding to the insulin receptor has been the subject of long-standing speculation. The present NMR studies are conducted in the presence of an organic cosolvent (20% acetic acid), under which conditions both proteins are monomeric and stably folded. Complete sequential assignment of human insulin is obtained and leads to the following conclusions. (1) The secondary structure of the insulin monomer (three {alpha}-helices and B-chain {beta}-turn) is similar to that observed in the 2-Zn crustal state. (2) The folding of DPI is essentially the same as the corresponding portion of intact insulin, in accord with the similarities between their respective crystal structues. (3) residues B24-B28 adopt an extended configuration in the monomer and pack against the hydrophobic core as in crystallographic dimers; residues B29 and B30 are largely disordered. (4) The insulin fold is shown to provide a model for collective motions in a protein with implications for the mechanism of protein-protein recognition. To their knowledge, this paper describes the first detailed analysis of a protein NMR spectrum under conditions of extensive conformational broadening.

  6. IGF-I, IGF-II, and Insulin Stimulate Different Gene Expression Responses through Binding to the IGF-I Receptor

    PubMed Central

    Versteyhe, Soetkin; Klaproth, Birgit; Borup, Rehannah; Palsgaard, Jane; Jensen, Maja; Gray, Steven G.; De Meyts, Pierre

    2013-01-01

    Insulin and the insulin-like growth factors (IGF)-I and -II are closely related peptides important for regulation of metabolism, growth, differentiation, and development. The IGFs exert their main effects through the IGF-I receptor. Although the insulin receptor is the main physiological receptor for insulin, this peptide hormone can also bind at higher concentrations to the IGF-I receptor and exert effects through it. We used microarray gene expression profiling to investigate the gene expression regulated by IGF-I, IGF-II, and insulin after stimulation of the IGF-I receptor. Fibroblasts from mice, knockout for IGF-II and the IGF-II/cation-independent mannose-6-phosphate receptor, and expressing functional IGF-I but no insulin receptors, were stimulated for 4 h with equipotent saturating concentrations of insulin, IGF-I, and IGF-II. Each ligand specifically regulated a group of transcripts that was not regulated by the other two ligands. Many of the functions and pathways these regulated genes were involved in, were consistent with the known biological effects of these ligands. The differences in gene expression might therefore account for some of the different biological effects of insulin, IGF-I, and IGF-II. This work adds to the evidence that not only the affinity of a ligand determines its biological response, but also its nature, even through the same receptor. PMID:23950756

  7. Free energy landscape of receptor-mediated cell adhesion

    NASA Astrophysics Data System (ADS)

    Yang, Tianyi; Zaman, Muhammad H.

    2007-01-01

    Receptor-mediated cell adhesion plays a critical role in cell migration, proliferation, signaling, and survival. A number of diseases, including cancer, show a strong correlation between integrin activation and metastasis. A better understanding of cell adhesion is highly desirable for not only therapeutic but also a number of tissue engineering applications. While a number of computational models and experimental studies have addressed the issue of cell adhesion to surfaces, no model or theory has adequately addressed cell adhesion at the molecular level. In this paper, the authors present a thermodynamic model that addresses receptor-mediated cell adhesion at the molecular level. By incorporating the entropic, conformational, solvation, and long- and short-range interactive components of receptors and the extracellular matrix molecules, they are able to predict adhesive free energy as a function of a number of key variables such as surface coverage, interaction distance, molecule size, and solvent conditions. Their method allows them to compute the free energy of adhesion in a multicomponent system where they can simultaneously study adhesion receptors and ligands of different sizes, chemical identities, and conformational properties. The authors' results not only provide a fundamental understanding of adhesion at the molecular level but also suggest possible strategies for designing novel biomaterials.

  8. Probing Receptor Specificity by Sampling the Conformational Space of the Insulin-like Growth Factor II C-domain*

    PubMed Central

    Hexnerová, Rozálie; Křížková, Květoslava; Fábry, Milan; Sieglová, Irena; Kedrová, Kateřina; Collinsová, Michaela; Ullrichová, Pavlína; Srb, Pavel; Williams, Christopher; Crump, Matthew P.; Tošner, Zdeněk; Jiráček, Jiří; Veverka, Václav; Žáková, Lenka

    2016-01-01

    Insulin and insulin-like growth factors I and II are closely related protein hormones. Their distinct evolution has resulted in different yet overlapping biological functions with insulin becoming a key regulator of metabolism, whereas insulin-like growth factors (IGF)-I/II are major growth factors. Insulin and IGFs cross-bind with different affinities to closely related insulin receptor isoforms A and B (IR-A and IR-B) and insulin-like growth factor type I receptor (IGF-1R). Identification of structural determinants in IGFs and insulin that trigger their specific signaling pathways is of increasing importance in designing receptor-specific analogs with potential therapeutic applications. Here, we developed a straightforward protocol for production of recombinant IGF-II and prepared six IGF-II analogs with IGF-I-like mutations. All modified molecules exhibit significantly reduced affinity toward IR-A, particularly the analogs with a Pro-Gln insertion in the C-domain. Moreover, one of the analogs has enhanced binding affinity for IGF-1R due to a synergistic effect of the Pro-Gln insertion and S29N point mutation. Consequently, this analog has almost a 10-fold higher IGF-1R/IR-A binding specificity in comparison with native IGF-II. The established IGF-II purification protocol allowed for cost-effective isotope labeling required for a detailed NMR structural characterization of IGF-II analogs that revealed a link between the altered binding behavior of selected analogs and conformational rearrangement of their C-domains. PMID:27510031

  9. Of pheromones and kairomones: what receptors mediate innate emotional responses?

    PubMed

    Fortes-Marco, Lluis; Lanuza, Enrique; Martinez-Garcia, Fernando

    2013-09-01

    Some chemicals elicit innate emotionally laden behavioral responses. Pheromones mediate sexual attraction, parental care or agonistic confrontation, whereas predators' kairomones elicit defensive behaviors in their preys. This essay explores the hypothesis that the detection of these semiochemicals relies on highly specific olfactory and/or vomeronasal receptors. The V1R, V2R, and formyl-peptide vomeronasal receptors bind their ligands in highly specific and sensitive way, thus being good candidates for pheromone- or kairomone-detectors (e.g., secreted and excreted proteins, peptides and lipophilic volatiles). The olfactory epithelium also expresses specific receptors, for example trace amine-associated receptors (TAAR) and guanylyl cyclase receptors (GC-D and other types), some of which bind kairomones and putative pheromones. However, most of the olfactory neurons express canonical olfactory receptors (ORs) that bind many ligands with different affinity, being not suitable for mediating responses to pheromones and kairomones. In this respect, trimethylthiazoline (TMT) is considered a fox-derived kairomone for mice and rats, but it seems to be detected by canonical ORs. Therefore, we have reassessed the kairomonal nature of TMT by analyzing the behavioral responses of outbred (CD1) and inbred mice (C57BL/J6) to TMT. Our results confirm that both mouse strains avoid TMT, which increases immobility in C57BL/J6, but not CD1 mice. However, mice of both strains sniff at TMT throughout the test and show no trace of TMT-induced contextual conditioning (immobility or avoidance). This suggests that TMT is not a kairomone but, similar to a loud noise, in high concentrations it induces aversion and stress as unspecific responses to a strong olfactory stimulation.

  10. Activation of α7 Nicotinic Acetylcholine Receptor Decreases On-site Mortality in Crush Syndrome through Insulin Signaling-Na/K-ATPase Pathway

    PubMed Central

    Fan, Bo-Shi; Zhang, En-Hui; Wu, Miao; Guo, Jin-Min; Su, Ding-Feng; Liu, Xia; Yu, Jian-Guang

    2016-01-01

    On-site mortality in crush syndrome remains high due to lack of effective drugs based on definite diagnosis. Anisodamine (Ani) is widely used in China for treatment of shock, and activation of α7 nicotinic acetylcholine receptor (α7nAChR) mediates such antishock effect. The present work was designed to test whether activation of α7nAChR with Ani decreased mortality in crush syndrome shortly after decompression. Sprague-Dawley rats and C57BL/6 mice with crush syndrome were injected with Ani (20 mg/kg and 28 mg/kg respectively, i.p.) 30 min before decompression. Survival time, serum potassium, insulin, and glucose levels were observed shortly after decompression. Involvement of α7nAChR was verified with methyllycaconitine (selective α7nAChR antagonist) and PNU282987 (selective α7nAChR agonist), or in α7nAChR knockout mice. Effect of Ani was also appraised in C2C12 myotubes. Ani reduced mortality and serum potassium and enhanced insulin sensitivity shortly after decompression in animals with crush syndrome, and PNU282987 exerted similar effects. Such effects were counteracted by methyllycaconitine or in α7nAChR knockout mice. Mortality and serum potassium in rats with hyperkalemia were also reduced by Ani. Phosphorylation of Na/K-ATPase was enhanced by Ani in C2C12 myotubes. Inhibition of tyrosine kinase on insulin receptor, phosphoinositide 3-kinase, mammalian target of rapamycin, signal transducer and activator of transcription 3, and Na/K-ATPase counteracted the effect of Ani on extracellular potassium. These findings demonstrated that activation of α7nAChR could decrease on-site mortality in crush syndrome, at least in part based on the decline of serum potassium through insulin signaling-Na/K-ATPase pathway. PMID:27065867

  11. Virus-receptor interactions and receptor-mediated virus entry into host cells.

    PubMed

    Casasnovas, José M

    2013-01-01

    The virus particles described in previous chapters are vehicles that transmit the viral genome and the infection from cell to cell. To initiate the infective cycle, the viral genome must therefore translocate from the viral particle to the cytoplasm. Via distinct proteins or motifs in their outermost shell, the particles attach initially to specific molecules on the host cell surface. These virus receptors thus mediate penetration of the viral genome inside the cell, where the intracellular infective cycle starts. The presence of these receptors on the cell surface is a principal determinant of virus host tropism. Viruses can use diverse types of molecules to attach to and enter into cells. In addition, virus-receptor recognition can evolve over the course of an infection, and virus variants with distinct receptor-binding specificities and tropism can appear. The identification of virus receptors and the characterization of virus-receptor interactions have been major research goals in virology for the last two decades. In this chapter, we will describe, from a structural perspective, several virus-receptor interactions and the active role of receptor molecules in virus entry. PMID:23737061

  12. TRPA1 receptors mediate environmental irritant-induced meningeal vasodilatation

    PubMed Central

    Kunkler, Phillip Edward; Ballard, Carrie Jo; Oxford, Gerry Stephen; Hurley, Joyce Harts

    2010-01-01

    The TRPA1 receptor is a member of the transient receptor potential (TRP) family of ion channels expressed in nociceptive neurons. TRPA1 receptors are targeted by pungent compounds from mustard and garlic and environmental irritants such as formaldehyde and acrolein. Ingestion or inhalation of these chemical agents causes irritation and burning in the nasal and oral mucosa and respiratory lining. Headaches have been widely reported to be induced by inhalation of environmental irritants, but it is unclear how these agents produce headache. Stimulation of trigeminal neurons releases CGRP and substance P and induces neurogenic inflammation associated with the pain of migraine. Here we test the hypothesis that activation of TRPA1 receptors are the mechanistic link between environmental irritants and peptide mediated neurogenic inflammation. Known TRPA1 agonists and environmental irritants stimulate CGRP release from dissociated rat trigeminal ganglia neurons and this release is blocked by a selective TRPA1 antagonist, HC-030031. Further, TRPA1 agonists and environmental irritants increase meningeal blood flow following intranasal administration. Prior dural application of the CGRP antagonist, CGRP8–37, or intranasal or dural administration of HC-030031, blocks the increases in blood flow elicited by environmental irritants. Together these results demonstrate that TRPA1 receptor activation by environmental irritants stimulates CGRP release and increases cerebral blood flow. We suggest that these events contribute to headache associated with environmental irritants. PMID:21075522

  13. H-Ras regulation of TRAIL death receptor mediated apoptosis

    PubMed Central

    Chen, Jun-Jie; Bozza, William P.; Di, Xu; Zhang, Yaqin; Hallett, William; Zhang, Baolin

    2014-01-01

    TNF-related apoptosis-inducing ligand (TRAIL) induces apoptosis through the death receptors (DRs) 4 and/or 5 expressed on the cell surface. Multiple clinical trials are underway to evaluate the antitumor activity of recombinant human TRAIL and agonistic antibodies to DR4 or DR5. However, their therapeutic potential is limited by the high frequency of cancer resistance. Here we provide evidence demonstrating the role of H-Ras in TRAIL receptor mediated apoptosis. By analyzing the genome wide mRNA expression data of the NCI60 cancer cell lines, we found that H-Ras expression was consistently upregulated in TRAIL-resistant cell lines. By contrast, no correlation was found between TRAIL sensitivity and K-Ras expression levels or their mutational profiles. Notably, H-Ras upregulation associated with a surface deficiency of TRAIL death receptors. Selective inhibition of H-Ras activity in TRAIL-resistant cells restored the surface expression of both DR4 and DR5 without changing their total protein levels. The resulting cells became highly susceptible to both TRAIL and agonistic DR5 antibody, whereas K-Ras inhibition had little or no effect on TRAIL-induced apoptosis, indicating H-Ras plays a distinct role in the regulation of TRAIL death receptors. Further studies are warranted to determine the therapeutic potential of H-Ras-specific inhibitors in combination with TRAIL receptor agonists. PMID:25026275

  14. The G Protein-coupled Receptor P2Y14 Influences Insulin Release and Smooth Muscle Function in Mice*

    PubMed Central

    Meister, Jaroslawna; Le Duc, Diana; Ricken, Albert; Burkhardt, Ralph; Thiery, Joachim; Pfannkuche, Helga; Polte, Tobias; Grosse, Johannes; Schöneberg, Torsten; Schulz, Angela

    2014-01-01

    UDP sugars were identified as extracellular signaling molecules, assigning a new function to these compounds in addition to their well defined role in intracellular substrate metabolism and storage. Previously regarded as an orphan receptor, the G protein-coupled receptor P2Y14 (GPR105) was found to bind extracellular UDP and UDP sugars. Little is known about the physiological functions of this G protein-coupled receptor. To study its physiological role, we used a gene-deficient mouse strain expressing the bacterial LacZ reporter gene to monitor the physiological expression pattern of P2Y14. We found that P2Y14 is mainly expressed in pancreas and salivary glands and in subpopulations of smooth muscle cells of the gastrointestinal tract, blood vessels, lung, and uterus. Among other phenotypical differences, knock-out mice showed a significantly impaired glucose tolerance following oral and intraperitoneal glucose application. An unchanged insulin tolerance suggested altered pancreatic islet function. Transcriptome analysis of pancreatic islets showed that P2Y14 deficiency significantly changed expression of components involved in insulin secretion. Insulin secretion tests revealed a reduced insulin release from P2Y14-deficient islets, highlighting P2Y14 as a new modulator of proper insulin secretion. PMID:24993824

  15. FGT-1-mediated glucose uptake is defective in insulin/IGF-like signaling mutants in Caenorhabditis elegans.

    PubMed

    Kitaoka, Shun; Morielli, Anthony D; Zhao, Feng-Qi

    2016-06-01

    Insulin signaling plays a central role in the regulation of facilitative glucose transporters (GLUTs) in humans. To establish Caenorhabditis elegans (C. elegans) as a model to study the mechanism underlying insulin regulation of GLUT, we identified that FGT-1 is most likely the only functional GLUT homolog in C. elegans and is ubiquitously expressed. The FGT-1-mediated glucose uptake was almost completely defective in insulin/IGF-like signaling (IIS) mutants daf-2 and age-1, and this defect mainly resulted from the down-regulated FGT-1 protein expression. However, glycosylation may also be involved because OGA-1, an O-GlcNAcase, was essential for the function of FGT-1. Thus, our study showed that C. elegans can be a new powerful model system to study insulin regulation of GLUT. PMID:27419060

  16. MicroRNA-223 promotes mast cell apoptosis by targeting the insulin-like growth factor 1 receptor

    PubMed Central

    GAO, HAIYAN; DENG, HUAN; XU, HONG; YANG, QIANYUAN; ZHOU, YAO; ZHANG, JIAMIN; ZHAO, DEYU; LIU, FENG

    2016-01-01

    The present study aimed to examine the functional role of miR-223 in the regulation of mast cell apoptosis. Overexpressed miR-223 in mast cells transfected by Lipofectamine 2000 was used as a model, and miR-223 was found to promote mast cell apoptosis. To investigate the underlying mechanisms involved, the potential and putative target molecules of miR-223 were detected by bioinformatical analysis using predictive software, and western blotting. Insulin-like growth factor-1 receptor (IGF-1R) was found to be the functional target of miR-223 in the promotion of cell apoptosis. The downstream PI3K/protein kinase B (Akt) signaling pathway was also inhibited, and signaling was mediated by IGF-1R. Furthermore, the relative luciferase activity of the reporter containing the 3′-untranslated region (3′-UTR) of IGF-1R was significantly suppressed, while suppression of miR-223-inhibited IGF-1R protein expression was also observed. In conclusion, the results suggest that IGF-1R is the functional target for miR-223 promotion of cell apoptosis, and its downstream PI3K/Akt signaling pathway was suppressed by miR-223 through targeting of IGF-1R. PMID:27284298

  17. Activation of transmembrane bile acid receptor TGR5 stimulates insulin secretion in pancreatic {beta} cells

    SciTech Connect

    Kumar, Divya P.; Rajagopal, Senthilkumar; Mahavadi, Sunila; Mirshahi, Faridoddin; Grider, John R.; Murthy, Karnam S.; Sanyal, Arun J.

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer G protein coupled receptor TGR5 is expressed in mouse and human islets. Black-Right-Pointing-Pointer TGR5 is coupled to activation of Gs and Ca{sup 2+} release via cAMP/Epac/PLC-{epsilon} pathway. Black-Right-Pointing-Pointer Activation of TGR5 by bile salts and selective ligands causes insulin secretion. Black-Right-Pointing-Pointer TGR5 could be a potential therapeutic target to treat diabetes. -- Abstract: Bile acids act as signaling molecules and stimulate the G protein coupled receptor, TGR5, in addition to nuclear farnesoid X receptor to regulate lipid, glucose and energy metabolism. Bile acid induced activation of TGR5 in the enteroendocrine cells promotes glucagon like peptide-1 (GLP-1) release, which has insulinotropic effect in the pancreatic {beta} cells. In the present study, we have identified the expression of TGR5 in pancreatic {beta} cell line MIN6 and also in mouse and human pancreatic islets. TGR5 selective ligands, oleanolic acid (OA) and INT-777 selectively activated G{alpha}{sub s} and caused an increase in intracellular cAMP and Ca{sup 2+}. OA and INT-777 also increased phosphoinositide (PI) hydrolysis and the increase was blocked by NF449 (a selective G{alpha}{sub s} inhibitor) or (U73122) (PI hydrolysis inhibitor). OA, INT-777 and lithocholic acid increased insulin release in MIN6 and human islets and the increase was inhibited by treatment with NF449, (U73122) or BAPTA-AM (chelator of calcium), but not with myristoylated PKI (PKA inhibitor), suggesting that the release is dependent on G{sub s}/cAMP/Ca{sup 2+} pathway. 8-pCPT-2 Prime -O-Me-cAMP, a cAMP analog, which activates Epac, but not PKA also stimulated PI hydrolysis. In conclusion, our study demonstrates that the TGR5 expressed in the pancreatic {beta} cells regulates insulin secretion and highlights the importance of ongoing therapeutic strategies targeting TGR5 in the control of glucose homeostasis.

  18. Interaction of growth hormone receptor/binding protein gene disruption and caloric restriction for insulin sensitivity and attenuated aging.

    PubMed

    Arum, Oge; Saleh, Jamal; Boparai, Ravneet; Turner, Jeremy; Kopchick, John; Khardori, Romesh; Bartke, Andrzej

    2014-01-01

    The correlation of physiological sensitivity to insulin ( vis-à-vis glycemic regulation) and longevity is extensively established, creating a justifiable gerontological interest on whether insulin sensitivity is causative, or even predictive, of some or all phenotypes of slowed senescence (including longevity). The growth hormone receptor/ binding protein gene-disrupted (GHR-KO) mouse is the most extensively investigated insulin-sensitive, attenuated aging model. It was reported that, in a manner divergent from similar mutants, GHR-KO mice fail to respond to caloric restriction (CR) by altering their insulin sensitivity. We hypothesized that maximized insulin responsiveness is what causes GHR-KO mice to exhibit a suppressed survivorship response to dietary (including caloric) restriction; and attempted to refute this hypothesis by assessing the effects of CR on GHR-KO mice for varied slow-aging-associated phenotypes. In contrast to previous reports, we found GHR-KO mice on CR to be less responsive than their ad libitum (A.L.) counterparts to the hypoglycemia-inducing effects of insulin. Further, CR had negligible effects on the metabolism or cognition of GHR-KO mice. Therefore, our data suggest that the effects of CR on the insulin sensitivity of GHR-KO mice do not concur with the effects of CR on the aging of GHR-KO mice. PMID:25789159

  19. Glucagon receptor antibody completely suppresses type 1 diabetes phenotype without insulin by disrupting a novel diabetogenic pathway

    PubMed Central

    Wang, May-Yun; Yan, Hai; Shi, Zhiqing; Evans, Matthew R.; Yu, Xinxin; Lee, Young; Chen, Shiuhwei; Williams, Annie; Philippe, Jacques; Roth, Michael G.; Unger, Roger H.

    2015-01-01

    Insulin monotherapy can neither maintain normoglycemia in type 1 diabetes (T1D) nor prevent the long-term damage indicated by elevated glycation products in blood, such as glycated hemoglobin (HbA1c). Here we find that hyperglycemia, when unaccompanied by an acute increase in insulin, enhances itself by paradoxically stimulating hyperglucagonemia. Raising glucose from 5 to 25 mM without insulin enhanced glucagon secretion ∼two- to fivefold in InR1-G9 α cells and ∼18-fold in perfused pancreata from insulin-deficient rats with T1D. Mice with T1D receiving insulin treatment paradoxically exhibited threefold higher plasma glucagon during hyperglycemic surges than during normoglycemic intervals. Blockade of glucagon action with mAb Ac, a glucagon receptor (GCGR) antagonizing antibody, maintained glucose below 100 mg/dL and HbA1c levels below 4% in insulin-deficient mice with T1D. In rodents with T1D, hyperglycemia stimulates glucagon secretion, up-regulating phosphoenolpyruvate carboxykinase and enhancing hyperglycemia. GCGR antagonism in mice with T1D normalizes glucose and HbA1c, even without insulin. PMID:25675519

  20. Insulin and mTOR Pathway Regulate HDAC3-Mediated Deacetylation and Activation of PGK1

    PubMed Central

    Wang, Shiwen; Jiang, Bowen; Zhang, Tengfei; Liu, Lixia; Wang, Yi; Wang, Yiping; Chen, Xiufei; Lin, Huaipeng; Zhou, Lisha; Xia, Yukun; Chen, Leilei; Yang, Chen; Xiong, Yue; Ye, Dan; Guan, Kun-Liang

    2015-01-01

    Phosphoglycerate kinase 1 (PGK1) catalyzes the reversible transfer of a phosphoryl group from 1, 3-bisphosphoglycerate (1, 3-BPG) to ADP, producing 3-phosphoglycerate (3-PG) and ATP. PGK1 plays a key role in coordinating glycolytic energy production with one-carbon metabolism, serine biosynthesis, and cellular redox regulation. Here, we report that PGK1 is acetylated at lysine 220 (K220), which inhibits PGK1 activity by disrupting the binding with its substrate, ADP. We have identified KAT9 and HDAC3 as the potential acetyltransferase and deacetylase, respectively, for PGK1. Insulin promotes K220 deacetylation to stimulate PGK1 activity. We show that the PI3K/AKT/mTOR pathway regulates HDAC3 S424 phosphorylation, which promotes HDAC3-PGK1 interaction and PGK1 K220 deacetylation. Our study uncovers a previously unknown mechanism for the insulin and mTOR pathway in regulation of glycolytic ATP production and cellular redox potential via HDAC3-mediated PGK1 deacetylation. PMID:26356530

  1. Insulin signalling mediates the response to male-induced harm in female Drosophila melanogaster.

    PubMed

    Sepil, Irem; Carazo, Pau; Perry, Jennifer C; Wigby, Stuart

    2016-01-01

    Genetic manipulations in nutrient-sensing pathways are known to both extend lifespan and modify responses to environmental stressors (e.g., starvation, oxidative and thermal stresses), suggesting that similar mechanisms regulate lifespan and stress resistance. However, despite being a key factor reducing female lifespan and affecting female fitness, male-induced harm has rarely been considered as a stressor mediated by nutrient sensing pathways. We explored whether a lifespan-extending manipulation also modifies female resistance to male-induced harm. To do so, we used long-lived female Drosophila melanogaster that had their insulin signalling pathway downregulated by genetically ablating the median neurosecretory cells (mNSC). We varied the level of exposure to males for control and ablated females and tested for interacting effects on female lifespan and fitness. As expected, we found that lifespan significantly declined with exposure to males. However, mNSC-ablated females maintained significantly increased lifespan across all male exposure treatments. Furthermore, lifespan extension and relative fitness of mNSC-ablated females were maximized under intermediate exposure to males, and minimized under low and high exposure to males. Overall, our results suggest that wild-type levels of insulin signalling reduce female susceptibility to male-induced harm under intense sexual conflict, and may also protect females when mating opportunities are sub-optimally low. PMID:27457757

  2. Insulin signalling mediates the response to male-induced harm in female Drosophila melanogaster

    PubMed Central

    Sepil, Irem; Carazo, Pau; Perry, Jennifer C.; Wigby, Stuart

    2016-01-01

    Genetic manipulations in nutrient-sensing pathways are known to both extend lifespan and modify responses to environmental stressors (e.g., starvation, oxidative and thermal stresses), suggesting that similar mechanisms regulate lifespan and stress resistance. However, despite being a key factor reducing female lifespan and affecting female fitness, male-induced harm has rarely been considered as a stressor mediated by nutrient sensing pathways. We explored whether a lifespan-extending manipulation also modifies female resistance to male-induced harm. To do so, we used long-lived female Drosophila melanogaster that had their insulin signalling pathway downregulated by genetically ablating the median neurosecretory cells (mNSC). We varied the level of exposure to males for con