Science.gov

Sample records for insulin-dependent glucose uptake

  1. Differentiation with elaidate tends to impair insulin-dependent glucose uptake and GLUT4 translocation in 3T3-L1 adipocytes.

    PubMed

    Ishibashi, Kenichi; Nehashi, Kana; Oshima, Toshiyuki; Ohkura, Naoki; Atsumi, Gen-Ichi

    2016-01-01

    Development of type 2 diabetes mellitus and insulin resistance is associated with a quality of dietary fatty acids such as saturated and unsaturated fatty acids. Dietary fatty acids also include transform of unsaturated fatty acids and intake of transform of oleate (elaidate) is associated with cardiovascular disease. However, little is known about the roles of elaidate in insulin responsiveness. We show here that elaidate impairs insulin-dependent glucose uptake in adipocytes. Differentiation with 10 μM elaidate, which is close to physiological plasma concentration, reduces insulin-dependent glucose uptake. Furthermore, insulin-dependent GLUT4 translocation is disturbed in adipocytes differentiated with elaidate. In addition, analysis of lipolysis and gene expression shows that deteriorative effects of elaidate on insulin responsiveness are limited but not general. Thus, our findings reveal that differentiation with elaidate tends to affect insulin-dependent glucose uptake through alternation of GLUT4 translocation from cytosol to the plasma membrane.

  2. Circulating Docosahexaenoic Acid Associates with Insulin-Dependent Skeletal Muscle and Whole Body Glucose Uptake in Older Women Born from Normal Weight Mothers

    PubMed Central

    Badeau, Robert M.; Honka, Miikka-Juhani; Bucci, Marco; Iozzo, Patricia; Eriksson, Johan G.; Nuutila, Pirjo

    2017-01-01

    Background: Obesity among pregnant women is common, and their offspring are predisposed to obesity, insulin resistance, and diabetes. The circulating metabolites that are related to insulin resistance and are associated with this decreased tissue-specific uptake are unknown. Here, we assessed metabolite profiles in elderly women who were either female offspring from obese mothers (OOM) or offspring of lean mothers (OLM). Metabolic changes were tested for associations with metrics for insulin resistance. Methods: Thirty-seven elderly women were separated into elderly offspring from obese mothers (OOM; n = 17) and elderly offspring from lean/normal weight mothers (OLM; n = 20) groups. We measured plasma metabolites using proton nuclear magnetic resonance (1H-NMR) and insulin-dependent tissue-specific glucose uptake in skeletal muscle was assessed. Associations were made between metabolites and glucose uptake. Results: Compared to the OLM group, we found that the docosahexaenoic acid percentage of the total long-chain n-3 fatty acids (DHA/FA) was significantly lower in OOM (p = 0.015). DHA/FA associated significantly with skeletal muscle glucose uptake (GU) (p = 0.031) and the metabolizable glucose value derived from hyperinsulinemic-euglycemic clamp technique (M-value) in the OLM group only (p = 0.050). Conclusions: DHA/FA is associated with insulin-dependent skeletal muscle glucose uptake and this association is significantly weakened in the offspring of obese mothers. PMID:28165405

  3. Circulating Docosahexaenoic Acid Associates with Insulin-Dependent Skeletal Muscle and Whole Body Glucose Uptake in Older Women Born from Normal Weight Mothers.

    PubMed

    Badeau, Robert M; Honka, Miikka-Juhani; Bucci, Marco; Iozzo, Patricia; Eriksson, Johan G; Nuutila, Pirjo

    2017-02-04

    Obesity among pregnant women is common, and their offspring are predisposed to obesity, insulin resistance, and diabetes. The circulating metabolites that are related to insulin resistance and are associated with this decreased tissue-specific uptake are unknown. Here, we assessed metabolite profiles in elderly women who were either female offspring from obese mothers (OOM) or offspring of lean mothers (OLM). Metabolic changes were tested for associations with metrics for insulin resistance. Thirty-seven elderly women were separated into elderly offspring from obese mothers (OOM; n = 17) and elderly offspring from lean/normal weight mothers (OLM; n = 20) groups. We measured plasma metabolites using proton nuclear magnetic resonance (¹H-NMR) and insulin-dependent tissue-specific glucose uptake in skeletal muscle was assessed. Associations were made between metabolites and glucose uptake. Compared to the OLM group, we found that the docosahexaenoic acid percentage of the total long-chain n-3 fatty acids (DHA/FA) was significantly lower in OOM (p = 0.015). DHA/FA associated significantly with skeletal muscle glucose uptake (GU) (p = 0.031) and the metabolizable glucose value derived from hyperinsulinemic-euglycemic clamp technique (M-value) in the OLM group only (p = 0.050). DHA/FA is associated with insulin-dependent skeletal muscle glucose uptake and this association is significantly weakened in the offspring of obese mothers.

  4. Isomeric C12-alkamides from the roots of Echinacea purpurea improve basal and insulin-dependent glucose uptake in 3T3-L1 adipocytes.

    PubMed

    Kotowska, Dorota; El-Houri, Rime B; Borkowski, Kamil; Petersen, Rasmus K; Fretté, Xavier C; Wolber, Gerhard; Grevsen, Kai; Christensen, Kathrine B; Christensen, Lars P; Kristiansen, Karsten

    2014-12-01

    Echinacea purpurea has been used in traditional medicine as a remedy for the treatment and prevention of upper respiratory tract infections and the common cold. Recent investigations have indicated that E. purpurea also has an effect on insulin resistance. A dichloromethane extract of E. purpurea roots was found to enhance glucose uptake in adipocytes and to activate peroxisome proliferator-activated receptor γ. The purpose of the present study was to identify the bioactive compounds responsible for the potential antidiabetic effect of the dichloromethane extract using a bioassay-guided fractionation approach. Basal and insulin-dependent glucose uptake in 3T3-L1 adipocytes were used to assess the bioactivity of extract, fractions and isolated metabolites. A peroxisome proliferator-activated receptor γ transactivation assay was used to determine the peroxisome proliferator-activated receptor γ activating properties of the extract, active fractions and isolated metabolites. Two novel isomeric dodeca-2E,4E,8Z,10E/Z-tetraenoic acid 2-methylbutylamides together with two known C12-alkamides and α-linolenic acid were isolated from the active fractions. The isomeric C12-alkamides were found to activate peroxisome proliferator-activated receptor γ, to increase basal and insulin-dependent glucose uptake in adipocytes in a dose-dependent manner, and to exhibit characteristics of a peroxisome proliferator-activated receptor γ partial agonist. Georg Thieme Verlag KG Stuttgart · New York.

  5. Maximum Oxygen Uptake Determination in Insulin-Dependent Diabetes Mellitus.

    ERIC Educational Resources Information Center

    Fremion, Amy S.; And Others

    1987-01-01

    A study of 10 children with insulin-dependent diabetes mellitus performing a maximum-effort cycling test indicated blood glucose levels did not change appreciably during test, while maximal oxygen uptake was substandard for their age groups. Findings suggest patients in fair to poor metabolic control can tolerate stress testing without…

  6. Maximum Oxygen Uptake Determination in Insulin-Dependent Diabetes Mellitus.

    ERIC Educational Resources Information Center

    Fremion, Amy S.; And Others

    1987-01-01

    A study of 10 children with insulin-dependent diabetes mellitus performing a maximum-effort cycling test indicated blood glucose levels did not change appreciably during test, while maximal oxygen uptake was substandard for their age groups. Findings suggest patients in fair to poor metabolic control can tolerate stress testing without…

  7. Is non-insulin dependent glucose uptake a therapeutic alternative? Part 2: Do such mechanisms fulfil the required combination of power and tolerability?

    PubMed

    Wiernsperger, N F

    2005-12-01

    The worldwide burden of diabetes, the unavoidable worsening which is observed in long-term clinical trials despite treatment and the close link between glycaemia and microangiopathy appeal for much stronger treatment strategies. This, in turn, either requires polypharmacy (with new risks) or new, more powerful drugs to be invented. The first part of this review dealt with a thorough analysis of pros and cons for some selected pathways which could potentially increase glucose uptake without necessitating insulin. The choice of such targets for developing completely new drugs, however, requires a favourable background from existing tentatives with either drugs or cell biology approaches. Moreover, because vascular complications are what must ultimately be avoided when treating diabetic patients, we must be sure that increasing glucose uptake in a fashion which is no more controlled by normal physiology is compatible with the physiology of vascular cells (long-term tolerance). The aspect of drug side-effects must therefore be considered systematically. For reasons which are individually developed, it appears that each of the potential pathways analyzed either lacks sufficient power and/or is likely to induce side effects which are not acceptable for long-term application. The fact that GLUT-1 transporters are ubiquitously distributed even extends this cardinal question to the general principle of increasing glucose uptake. In conclusion a precise evaluation suggests that, although non-insulin dependent glucose uptake represents (3/4) of whole body glucose transport, it is difficult to consider such mechanisms able to generate a new treatment fulfilling the unavoidable request of combined efficacy and tolerability.

  8. Dodecanedioic acid infusion induces a sparing effect on whole-body glucose uptake, mainly in non-insulin-dependent diabetes mellitus.

    PubMed

    Mingrone, G; De Gaetano, A; Greco, A V; Capristo, E; Benedetti, G; Castagneto, M; Gasbarrini, G

    1997-11-01

    Even-numbered dicarboxylic acids (DA) have been proposed as an alternative fuel substrate in parenteral nutrition. In particular, dodecanedioic acid (C12) shows a rapid plasma clearance from tissues, a very low urinary excretion compared with other DA and a high oxidation rate. The aim of the present study was to investigate the effect of C12 infusion on insulin-stimulated glucose uptake in patients with non-insulin-dependent diabetes mellitus (NIDDM) compared with healthy volunteers. A primed-constant infusion of C12 (0.39 mmol/min) was administered over 240 min, and at 120 min a 2 h euglycaemic hyperinsulinaemic clamp was performed. Blood specimens were sampled every 30 min and fractioned urines were collected over 24 h. The levels of C12 were measured by HPLC. Indirect calorimetry was performed continuously during the entire session. Body composition was assessed in all subjects studied to obtain fat-free mass (FFM) values. Whole-body glucose uptake decreased significantly during C12 infusion in both groups, although this effect was much more evident (P < 0.01) in NIDDM patients (52.4 (SD 15.8) % decrease compared with saline) than in controls (25.9 (SD 12.1) % decrease). The M value (mumol/kgFFM per min) was reduced by C12 to lower levels in NIDDM patients than in normal controls (12.6 (SD 3.9) v. 25.9 (SD 4.5), P < 0.01). Urinary excretion of C12 over 24 h was significantly lower in NIDDM patients than in controls (4.26 (SD 0.30) mmol v. 5.43 (SD 0.48), P < 0.01), corresponding to less than 3% of the administered dose. The infusion of C12 decreased non-protein RQ significantly in both groups of patients. In conclusion, this study shows, for the first time, that C12 significantly reduces glucose uptake in both normal controls and NIDDM patients, although this sparing effect on glucose uptake is much more pronounced in diabetic patients. These data suggest that C12 decreases glucose uptake and oxidation, mainly through a mechanism of substrate competition. Thus

  9. Bavachin from Psoralea corylifolia Improves Insulin-Dependent Glucose Uptake through Insulin Signaling and AMPK Activation in 3T3-L1 Adipocytes

    PubMed Central

    Lee, Hyejin; Li, Hua; Noh, Minsoo; Ryu, Jae-Ha

    2016-01-01

    The fruit of Psoralea corylifolia L. (Fabaceae) (PC), known as “Bo-Gol-Zhee” in Korea has been used as traditional medicine. Ethanol and aqueous extracts of PC have an anti-hyperglycemic effect by increasing plasma insulin levels and decreasing blood glucose and total plasma cholesterol levels in type 2 diabetic rats. In this study, we purified six compounds from PC and investigated their anti-diabetic effect. Among the purified compounds, bavachin most potently accumulated lipids during adipocyte differentiation. Intracellular lipid accumulation was measured by Oil Red-O (ORO) cell staining to investigate the effect of compounds on adipogenesis. Consistently, bavachin activated gene expression of adipogenic transcriptional factors, proliferator-activated receptorγ (PPARγ) and CCAAT/enhancer binding protein-α (C/EBPα). Bavachin also increased adiponectin expression and secretion in adipocytes. Moreover, bavachin increased insulin-induced glucose uptake by differentiated adipocytes and myoblasts. In differentiated adipocytes, we found that bavachin enhanced glucose uptake via glucose transporter 4 (GLUT4) translocation by activating the Akt and 5′AMP-activated protein kinase (AMPK) pathway in the presence or absence of insulin. These results suggest that bavachin from Psoralea corylifolia might have therapeutic potential for type 2 diabetes by activating insulin signaling pathways. PMID:27070585

  10. Bavachin from Psoralea corylifolia Improves Insulin-Dependent Glucose Uptake through Insulin Signaling and AMPK Activation in 3T3-L1 Adipocytes.

    PubMed

    Lee, Hyejin; Li, Hua; Noh, Minsoo; Ryu, Jae-Ha

    2016-04-08

    The fruit of Psoralea corylifolia L. (Fabaceae) (PC), known as "Bo-Gol-Zhee" in Korea has been used as traditional medicine. Ethanol and aqueous extracts of PC have an anti-hyperglycemic effect by increasing plasma insulin levels and decreasing blood glucose and total plasma cholesterol levels in type 2 diabetic rats. In this study, we purified six compounds from PC and investigated their anti-diabetic effect. Among the purified compounds, bavachin most potently accumulated lipids during adipocyte differentiation. Intracellular lipid accumulation was measured by Oil Red-O (ORO) cell staining to investigate the effect of compounds on adipogenesis. Consistently, bavachin activated gene expression of adipogenic transcriptional factors, proliferator-activated receptorγ (PPARγ) and CCAAT/enhancer binding protein-α (C/EBPα). Bavachin also increased adiponectin expression and secretion in adipocytes. Moreover, bavachin increased insulin-induced glucose uptake by differentiated adipocytes and myoblasts. In differentiated adipocytes, we found that bavachin enhanced glucose uptake via glucose transporter 4 (GLUT4) translocation by activating the Akt and 5'AMP-activated protein kinase (AMPK) pathway in the presence or absence of insulin. These results suggest that bavachin from Psoralea corylifolia might have therapeutic potential for type 2 diabetes by activating insulin signaling pathways.

  11. Multifunctional cyclic D,L-α-peptide architectures stimulate non-insulin dependent glucose uptake in skeletal muscle cells and protect them against oxidative stress.

    PubMed

    Shapira, Renana; Rudnick, Safra; Daniel, Bareket; Viskind, Olga; Aisha, Vered; Richman, Michal; Ayasolla, Kamesh R; Perelman, Alex; Chill, Jordan H; Gruzman, Arie; Rahimipour, Shai

    2013-09-12

    Oxidative stress directly correlates with the early onset of vascular complications and the progression of peripheral insulin resistance in diabetes. Accordingly, exogenous antioxidants augment insulin sensitivity in type 2 diabetic patients and ameliorate its clinical signs. Herein, we explored the unique structural and functional properties of the abiotic cyclic D,L-α-peptide architecture as a new scaffold for developing multifunctional agents to catalytically decompose ROS and stimulate glucose uptake. We showed that His-rich cyclic D,L-α-peptide 1 is very stable under high H2O2 concentrations, effectively self-assembles to peptide nanotubes, and increases the uptake of glucose by increasing the translocation of GLUT1 and GLUT4. It also penetrates cells and protects them against oxidative stress induced under hyperglycemic conditions at a much lower concentration than α-lipoic acid (ALA). In vivo studies are now required to probe the mode of action and efficacy of these abiotic cyclic D,L-α-peptides as a novel class of antihyperglycemic compounds.

  12. PEDF attenuates insulin-dependent molecular pathways of glucose homeostasis in skeletal myocytes.

    PubMed

    Carnagarin, Revathy; Dharmarajan, Arun M; Dass, Crispin R

    2016-02-15

    Pigment epithelium-derived factor (PEDF) is an anti-angiogenic serpin associated with insulin resistance in metabolic disorders such as diabetes, metabolic syndrome, obesity and polycystic ovarian syndrome. While the mechanism of PEDF induced-insulin resistance of metabolic disorders has been attributed to its inflammatory and lipolytic effects, little evidence exists to support a direct role of PEDF in mediating insulin resistance. Here, we seminally provide evidence that PEDF can inhibit insulin signal transduction governing glucose homeostasis from the receptor to the effector phosphorylation through Akt/PKB-dependent and -independent pathways in mouse and human skeletal muscle cell lines. PEDF attenuates the insulin-dependent molecular axes of glucose metabolism. Exposure of skeletal myocytes to PEDF attenuates insulin-dependent insulin receptor autophosphorylation, tyrosine phosphorylation of insulin receptor substrate 1, and dual loop phosphorylation-activation of Akt. PEDF significantly inhibits the downstream effector - glycogen synthase kinase (and thereby the glycogenic axis of insulin signalling). PEDF turned off both the molecular switches of GLUT4 translocation: IRS-Akt/PKB-AS160 mediated and IR-pCbl-dependent GLUT4 translocation (the molecular axis of glucose uptake). These findings implicate a direct effect of PEDF on multiple insulin-dependent molecular mechanisms of glucose homeostasis in skeletal muscle cells, thereby enabling it to contribute to peripheral insulin resistance at the cellular level.

  13. Glucose phosphorylation is required for insulin-dependent mTOR signalling in the heart

    PubMed Central

    Sharma, Saumya; Guthrie, Patrick; Chan, Suzanne; Haq, Syed; Taegtmeyer, Heinrich

    2008-01-01

    Objective: Insulin regulates both glucose uptake and postnatal cardiac growth. The anabolic effects of insulin are mediated by the mammalian target of rapamycin (mTOR), an evolutionarily conserved kinase which is also a convergence point between nutrient sensing and cell growth. We postulated that mTOR signalling in the heart requires the metabolism of glucose. Methods: We interrogated the insulin-mediated mTOR signalling pathway in response to different metabolic interventions regulating substrate metabolism in the isolated working rat heart and in isolated cardiomyocytes. Results: Although insulin enhanced Akt activity, phosphorylation of mTOR and its downstream targets (p70S6K and 4EBP1) required the addition of glucose. Glucose-dependent p70S6K phosphorylation was independent of the hexosamine biosynthetic pathway, the AMP kinase pathway, and the pentose phosphate pathway. However, inhibition of glycolysis downstream of hexokinase markedly enhanced p70S6K phosphorylation. Furthermore, 2-deoxyglucose activated p70S6K suggesting that phosphorylation of glucose is required for carbohydrate-mediated mTOR signalling in the heart. Lastly, we also found enhanced p70S6K phosphorylation in the hearts of diabetic rats. Conclusion: Phosphorylation of glucose is necessary for insulin-dependent mTOR activity in the heart, suggesting a link between intermediary metabolism and cardiac growth. PMID:17553476

  14. Lipocalin-13 regulates glucose metabolism by both insulin-dependent and insulin-independent mechanisms.

    PubMed

    Cho, Kae Won; Zhou, Yingjiang; Sheng, Liang; Rui, Liangyou

    2011-02-01

    Insulin sensitivity is impaired in obesity, and insulin resistance is the primary risk factor for type 2 diabetes. Here we show that lipocalin-13 (LCN13), a lipocalin superfamily member, is a novel insulin sensitizer. LCN13 was secreted by multiple cell types. Circulating LCN13 was markedly reduced in mice with obesity and type 2 diabetes. Three distinct approaches were used to increase LCN13 levels: LCN13 transgenic mice, LCN13 adenoviral infection, and recombinant LCN13 administration. Restoration of LCN13 significantly ameliorated hyperglycemia, insulin resistance, and glucose intolerance in mice with obesity. LCN13 enhanced insulin signaling not only in animals but also in cultured adipocytes. Recombinant LCN13 increased the ability of insulin to stimulate glucose uptake in adipocytes and to suppress hepatic glucose production (HGP) in primary hepatocyte cultures. Additionally, LCN13 alone was able to suppress HGP, whereas neutralization of LCN13 increased HGP in primary hepatocyte cultures. These data suggest that LCN13 regulates glucose metabolism by both insulin-dependent and insulin-independent mechanisms. LCN13 and LCN13-related molecules may be used to treat insulin resistance and type 2 diabetes.

  15. Postnatal glucose kinetics in newborns of tightly controlled insulin-dependent diabetic mothers.

    PubMed

    Baarsma, R; Reijngoud, D J; van Asselt, W A; van Doormaal, J J; Berger, R; Okken, A

    1993-10-01

    Infants of diabetic mothers are at risk of developing hypoglycemia postnatally. Strict control of blood glucose during pregnancy might result in adequate glucose homeostasis in the neonate. We followed 15 mother-infant pairs from the beginning of pregnancy until birth. Glucose kinetics in the infants were measured on the first day of life, using a stable isotope dilution technique. Furthermore, levels of alternative substrates, FFA, and ketone bodies were measured. All infants received i.v. glucose from birth onward at a rate of 3.4 +/- 0.7 mg/kg/min (mean +/- SD). There was no relationship between the parameters of control of the insulin-dependent diabetes mellitus in the mothers and glucose kinetics in their infants. Glucose turnover was 5.2 +/- 1.1 mg/kg/min, glucose production rate (GPR) was 1.8 +/- 1.1 mg/kg/min. GPR was significantly lower in the infants studied at the end of the first day of life (p < 0.01), irrespective of the glucose infusion rate. Furthermore, the lower GPR was associated with an increased concentration of ketone bodies, suggesting an increased production of ketone bodies in these infants. The relatively high GPR measured in the infants who were studied in the first hours postnatally may be the result of postnatal hormonal stimulation of glycogenolysis and/or gluconeogenesis. From this study, we conclude that glucose kinetics in infants of tightly controlled diabetic mothers appear to be normal. Interestingly, despite the near-optimal insulin therapy in the mothers, there is a relationship between the SD scores of birth weight and the mean 3rd-trimester blood glucose values.

  16. Abnormal transient rise in hepatic glucose production after oral glucose in non-insulin-dependent diabetic subjects.

    PubMed

    Thorburn, A; Litchfield, A; Fabris, S; Proietto, J

    1995-05-01

    A transient rise in hepatic glucose production (HGP) after an oral glucosa load has been reported in some insulin-resistant states such as in obese fa/fa Zucker rats. The aim of this study was to determine whether this rise in HGP also occurs in subjects with established non-insulin-dependent diabetes mellitus (NIDDM). Glucose kinetics were measured basally and during a double-label oral glucose tolerance test (OGTT) in 12 NIDDM subjects and 12 non-diabetic 'control' subjects. Twenty minutes after the glucose load, HGP had increased 73% above basal in the NIDDM subjects (7.29 +/- 0.52 to 12.58 +/- 1.86 mumol/kg/min, P < 0.02). A transient rise in glucagon (12 pg/ml above basal, P < 0.004) occurred at a similar time. In contrast, the control subjects showed no rise in HGP or plasma glucagon. HGP began to suppress 40-50 min after the OGTT in both the NIDDM and control subjects. A 27% increase in the rate of gut-derived glucose absorption was also observed in the NIDDM group, which could be the result of increased gut glucose absorption or decreased first pass extraction of glucose by the liver. Therefore, in agreement with data in animal models of NIDDM, a transient rise in HGP partly contributes to the hyperglycemia observed after an oral glucose load in NIDDM subjects.

  17. Glucose turnover and gluconeogenesis during pregnancy in women with and without insulin-dependent diabetes mellitus.

    PubMed

    Chiasson, J L; el Achkar, G G; Ducros, F; Bourque, J; Maheux, P

    1997-06-01

    To characterize the effect of pregnancy on glucose turnover and gluconeogenesis in healthy women and in women with well-controlled insulin-dependent diabetes mellitus (IDDM). Prospective clinical study. Clinical research unit of the Hôtel-Dieu de Montréal hospital. Five healthy pregnant women and 6 pregnant women with IDDM. Glucose turnover and gluconeogenesis in the postabsorptive state at 16 and 32 weeks' gestation and at 24 weeks postpartum were studied with the use of a double stable isotope technique (D[2,3,4,6,6(2)H]-glucose and L[1,2,3(13)C]-alanine). In the women with IDDM, plasma glucose levels were controlled by continuous subcutaneous insulin infusion throughout pregnancy and with a Biostator on the morning of the study. In the women without IDDM, hepatic glucose production was 11.6 (standard error of the mean [SEM] 2.2) mumol/kg per minute at 16 weeks' gestation, 12.5 (SEM 1.8) mumol/kg per minute at 32 weeks' gestation, and 13.2 (SEM 1.9) mumol/kg per minute at 24 weeks postpartum. In the women with IDDM, it was 10.7 (SEM 2.4) mumol/kg per minute, 10.5 (SEM 1.2) mumol/kg per minute and 12.3 (SEM 0.5) mumol/kg per minute at the same respective periods. The difference in levels between the 2 groups was not significant. Levels of the gluconeogenic precursors alanine and lactate were increased during pregnancy in both the women without IDDM (from 0.18 [SEM 0.02] mmol/L and 0.64 [SEM 0.09] mmol/L, respectively, to 0.25 [SEM 0.02] mmol/L and 1.15 [SEM 0.17] mmol/L, respectively, p < 0.01) and in those with IDDM (from 0.15 [SEM 0.01] mmol/L and 0.47 [SEM 0.04] mmol/L, respectively, to 0.19 [SEM 0.02] mmol/L and 0.70 [SEM 0.01] mmol/L, respectively, p < 0.05). After an overnight fast, gluconeogenesis from alanine was not affected by pregnancy in both groups of women. In the women without IDDM, the plasma insulin level was low in early pregnancy (33.6 [SEM 3.6] pmol/L) and increased in late gestation (87.6 [SEM 9.6] pmol/L) compared with postpartum levels (60

  18. A modified minimal model analysis of insulin sensitivity and glucose-mediated glucose disposal in insulin-dependent diabetes.

    PubMed

    Ward, G M; Weber, K M; Walters, I M; Aitken, P M; Lee, B; Best, J D; Boston, R C; Alford, F P

    1991-01-01

    Although glucose utilization is impaired in insulin-dependent diabetes mellitus (IDDM), it is unclear whether this is due to reductions in insulin sensitivity (Si) and/or glucose-mediated glucose disposal (SG). The minimal model of Bergman et al can be applied to a frequently sampled intravenous glucose tolerance test (FSIGT) to simultaneously estimate Sl and SG, but cannot accommodate data from diabetics. Exogenous insulin approximating the normal pattern of insulin secretion was infused during FSIGTs in eight young non-obese C-peptide-negative IDDM subjects, but with the total dose modified to achieve sufficient glucose disappearance rates (KG) to allow analysis of data. The minimal model was modified to model the effects of the exogenous insulin on glucose kinetics to estimate SI and SG. Despite deliberately achieving supranormal plasma-free insulin levels during the FSIGT ("first-phase insulin" = 62 +/- 9 SE mU/L; "second phase insulin" = 34 +/- 9 mU/L), the diabetics showed low-normal KG values (1.3 +/- 0.29 min-1 X 10(2). Using the model, good parameter resolution (fractional SD [FSD] less than .5) was achieved (IDDM v controls: SI = 2.5 +/- 0.6 v 8.3 +/- 1.5 min-1.mU-1.L-1 X 10(4); SG = 1.6 +/- 0.5 v 2.6 +/- 0.2 min-1 X 10(2); P less than .05). This reduction in SG was confirmed in the same IDDM subjects by FSIGT during basal insulin infusion only (SG = 1.0 +/- 0.3 min-1 X 10(2)).(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Recombinant glucose uptake system

    DOEpatents

    Ingrahm, Lonnie O.; Snoep, Jacob L.; Arfman, Nico

    1997-01-01

    Recombinant organisms are disclosed that contain a pathway for glucose uptake other than the pathway normally utilized by the host cell. In particular, the host cell is one in which glucose transport into the cell normally is coupled to PEP production. This host cell is transformed so that it uses an alternative pathway for glucose transport that is not coupled to PEP production. In a preferred embodiment, the host cell is a bacterium other than Z. mobilis that has been transformed to contain the glf and glk genes of Z. mobilis. By uncoupling glucose transport into the cell from PEP utilization, more PEP is produced for synthesis of products of commercial importance from a given quantity of biomass supplied to the host cells.

  20. The acute effects of glucosidase inhibition on post-meal glucose increments in insulin-dependent diabetics.

    PubMed

    Wing, J; Kalk, W J; Berzin, M; Diamond, T H; Griffiths, R F; Smit, A M; Osler, C E

    1990-03-17

    The effects of glucosidase inhibition on postprandial glucose tolerance was studied in 11 insulin-dependent diabetics. In comparison with placebo, 50 mg miglitol was able to lower the incremental glucose response significantly at 30 minutes and 60 minutes when insulin was injected: (i) 30 minutes before the meal (2,3 +/- 0,5 mmol/l v. 0,37 +/- 0,2 mmol/l; P less than 0,001; and 5,0 +/- 0,7 mmol/l v. 1,1 +/- 0,8 mmol/l; P less than 0,001); and (ii) immediately before the meal (2,3 +/- 0,5 mmol/l v. 2,2 +/- 0,9 mmol/l; P less than 0,001) respectively. The incremental glucose area under the curve when insulin was injected 30 minutes before breakfast was also significantly reduced on miglitol in comparison with placebo (0,67 +/- 0,15 mmol/l v. 0,16 +/- 0,14 mmol/l; P less than 0,01). The effect of miglitol was more evident when insulin was injected 30 minutes before rather than immediately before the meal. No significant adverse effects were encountered. It is concluded that: (i) miglitol safely reduces the early post-meal glucose increments in insulin-dependent diabetics; and (ii) its effect enhances the hypoglycaemic response of an appropriately timed injection of insulin.

  1. Blood glucose lowering activity of aloe based composition, UP780, in alloxan induced insulin dependent mouse diabetes model.

    PubMed

    Yimam, Mesfin; Zhao, Jifu; Corneliusen, Brandon; Pantier, Mandee; Brownell, Lidia; Jia, Qi

    2014-01-01

    There are a few nutritional approaches to address the increased needs of managing diabetic conditions. Previously it has been reported that UP780, a standardized composition of aloe chromone formulated with an aloe polysaccharide, has a significant impact in reducing HbA1C, fasting blood glucose, fructosamine and plasma insulin level in humans and improved impaired glucose and insulin resistance in high-fat diet-induced and db/db non-insulin dependent diabetic mouse models. Here we describe activity of UP780 and its constituents to improve insulin sensitivity in alloxan induced insulin dependent diabetic mouse model. Insulin dependent diabetes was induced by administering a single intraperitoneal injection of alloxan monohydrate at a dose of 150 mg/kg to CD-1 mice. Aloesin (UP394) was formulated with an Aloe vera inner leaf gel powder polysaccharide (Qmatrix) to yield a composition designated UP780. Efficacy of oral administration of UP780 at 2000 mg/kg and its constituents (aloesin at 80 mg/kg and Qmatrix at 1920 mg/kg) were evaluated in this model. Glyburide, a sulfonylurea drug used in the treatment of type 2 diabetes, was used at 5 mg/kg as a positive control. Effect of UP780 on non-diabetic normal mice was also addressed. Mice administered intraperitoneal alloxan monohydrate developed progressive type-1 diabetes like symptom. After 4 weeks of daily oral administration, reductions of 35.9%, 17.2% and 11.6% in fasting blood glucose levels were observed for UP780, the UP780 Aloe vera inner leaf gel polysaccharide preparation without chromone (Qmatrix), and Aloesin (UP394), treated animals respectively, compared to vehicle treated animals. UP780 has no impact on blood glucose level of non-diabetic healthy mice. UP780 showed statistically significant improvement for blood glucose clearance in oral glucose tolerance tests. Similarly, enhanced improvement in plasma insulin level and statistically significant reduction in triglyceride level was also observed for

  2. Serum C peptide and IRI levels after administration of glucagon and glucose in non-insulin-dependent diabetics.

    PubMed

    Jayyab, A K; Heding, L G; Czyzyk, A; Malczewski, B; Królewski, A S

    1982-03-01

    A comparative study was carried out on B cell response to alternative intravenous glucagon (1.0 mg) and intravenous glucose (0.33 g per kg body weight) in healthy non-obese persons (c-NOb), healthy obese persons (C-Ob), non-obese non-insulin-dependent diabetics (NIDD-NOb) and obese non-insulin-dependent diabetics (NIDD-Ob). Each group comprised ten subjects. C-peptide (CP immunoassay using antiserum M 1230) and IRI in the serum were measured for each test. After glucose load in B-cell responses were significantly lower in both the diabetic groups than in the normal groups. After glucagon injection there were no significant differences in IRI and CP levels between NIDD-NOb and C-NOb, however, significantly lower levels of serum CP were noted among NIDD-Ob in comparison to C-Ob with a lack of these differences in IRI levels. This phenomenon is well reflected by the molar IRI/CP ratio expressed as a percentage. In the fasting state IRI accounted in C-Ob for 8.8 +/- 3.5 per cent of CP, while in NIDD-Ob for up to 25. +/- 10.4 percent of CP (P = 0.0004). In the latter group of patients, the IRI/CP ratio after glucagon reached the highest values (over 30 per cent) observed in this study. These data suggest the important role in insulin disposal played by the liver in non-insulin-dependent diabetes associated with obesity. Another explanation for these data is that more proinsulin is secreted in this group of patients as compared to other groups.

  3. Rho GTPases in insulin-stimulated glucose uptake

    PubMed Central

    Satoh, Takaya

    2014-01-01

    Insulin is secreted into blood vessels from β cells of pancreatic islets in response to high blood glucose levels. Insulin stimulates an array of physiological responses in target tissues, including liver, skeletal muscle, and adipose tissue, thereby reducing the blood glucose level. Insulin-dependent glucose uptake in skeletal muscle and adipose tissue is primarily mediated by the redistribution of the glucose transporter type 4 from intracellular storage sites to the plasma membrane. Evidence for the participation of the Rho family GTPase Rac1 in glucose uptake signaling in skeletal muscle has emerged from studies using cell cultures and genetically engineered mice. Herein, recent progress in understanding the function and regulation of Rac1, especially the cross-talk with the protein kinase Akt2, is highlighted. In addition, the role for another Rho family member TC10 and its regulatory mechanism in adipocyte insulin signaling are described. PMID:24613967

  4. Age dependence of glucose tolerance in adult KK-Ay mice, a model of non-insulin dependent diabetes mellitus.

    PubMed

    Chakraborty, Goutam; Thumpayil, Sherin; Lafontant, David-Erick; Woubneh, Wolde; Toney, Jeffrey H

    2009-11-01

    Yellow KK mice carrying the 'yellow obese' gene Ay are a well established polygenic model for human non-insulin dependent diabetes mellitus. These animals develop marked adiposity and decreased glucose tolerance relative to their control littermates, KK mice. The authors monitored glucose tolerance in KK-Ay mice over time and observed a significant (Pglucose tolerance when maintained on a normal diet for 25 weeks or longer, due in part to increases in plasma levels of insulin and amylin.

  5. Insulin-dependent glucose metabolism in dairy cows with variable fat mobilization around calving.

    PubMed

    Weber, C; Schäff, C T; Kautzsch, U; Börner, S; Erdmann, S; Görs, S; Röntgen, M; Sauerwein, H; Bruckmaier, R M; Metges, C C; Kuhla, B; Hammon, H M

    2016-08-01

    Dairy cows undergo significant metabolic and endocrine changes during the transition from pregnancy to lactation, and impaired insulin action influences nutrient partitioning toward the fetus and the mammary gland. Because impaired insulin action during transition is thought to be related to elevated body condition and body fat mobilization, we hypothesized that over-conditioned cows with excessive body fat mobilization around calving may have impaired insulin metabolism compared with cows with low fat mobilization. Nineteen dairy cows were grouped according to their average concentration of total liver fat (LFC) after calving in low [LLFC; LFC <24% total fat/dry matter (DM); n=9] and high (HLFC; LFC >24.4% total fat/DM; n=10) fat-mobilizing cows. Blood samples were taken from wk 7 antepartum (ap) to wk 5 postpartum (pp) to determine plasma concentrations of glucose, insulin, glucagon, and adiponectin. We applied euglycemic-hyperinsulinemic (EGHIC) and hyperglycemic clamps (HGC) in wk 5 ap and wk 3 pp to measure insulin responsiveness in peripheral tissue and pancreatic insulin secretion during the transition period. Before and during the pp EGHIC, [(13)C6] glucose was infused to determine the rate of glucose appearance (GlucRa) and glucose oxidation (GOx). Body condition, back fat thickness, and energy-corrected milk were greater, but energy balance was lower in HLFC than in LLFC. Plasma concentrations of glucose, insulin, glucagon, and adiponectin decreased at calving, and this was followed by an immediate increase of glucagon and adiponectin after calving. Insulin concentrations ap were higher in HLFC than in LLFC cows, but the EGHIC indicated no differences in peripheral insulin responsiveness among cows ap and pp. However, GlucRa and GOx:GlucRa during the pp EGHIC were greater in HLFC than in LLFC cows. During HGC, pancreatic insulin secretion was lower, but the glucose infusion rate was higher pp than ap in both groups. Plasma concentrations of nonesterified

  6. AMPK and Exercise: Glucose Uptake and Insulin Sensitivity.

    PubMed

    O'Neill, Hayley M

    2013-02-01

    AMPK is an evolutionary conserved sensor of cellular energy status that is activated during exercise. Pharmacological activation of AMPK promotes glucose uptake, fatty acid oxidation, mitochondrial biogenesis, and insulin sensitivity; processes that are reduced in obesity and contribute to the development of insulin resistance. AMPK deficient mouse models have been used to provide direct genetic evidence either supporting or refuting a role for AMPK in regulating these processes. Exercise promotes glucose uptake by an insulin dependent mechanism involving AMPK. Exercise is important for improving insulin sensitivity; however, it is not known if AMPK is required for these improvements. Understanding how these metabolic processes are regulated is important for the development of new strategies that target obesity-induced insulin resistance. This review will discuss the involvement of AMPK in regulating skeletal muscle metabolism (glucose uptake, glycogen synthesis, and insulin sensitivity).

  7. Relationship between plasma glucose and insulin concentration, glucose production, and glucose disposal in normal subjects and patients with non-insulin-dependent diabetes.

    PubMed Central

    Chen, Y D; Jeng, C Y; Hollenbeck, C B; Wu, M S; Reaven, G M

    1988-01-01

    The changes in hepatic glucose production (Ra), tissue glucose disposal (Rd), and plasma glucose and insulin concentration that took place over a 16-h period from 10 to 2 p.m. were documented in 14 individuals; 8 with non-insulin-dependent diabetes mellitus (NIDDM) and 6 with normal glucose tolerance. Values for Ra were higher than normal in patients with NIDDM at 10 p.m. (4.73 +/- 0.41 vs. 3.51 +/- 0.36 mg/kg per min, P less than 0.001), but fell at a much faster rate throughout the night than that seen in normal subjects. As a consequence, the difference between Ra in normal individuals and patients with NIDDM progressively narrowed, and by 2 p.m., had ceased to exist (1.75 +/- 0.61 vs. 1.67 +/- 0.47 mg/kg per min, P = NS). Plasma glucose concentration also declined in patients with NIDDM over the same period of time, but they remained quite hyperglycemic, and the value of 245 +/- 27 mg/dl at 2 p.m. was about three times greater than in normal individuals. Plasma insulin concentrations also fell progressively from 10 to 2 p.m., and were similar in both groups throughout most of the 16-h study period. Thus, the progressive decline in Ra in patients with NIDDM occurred despite concomitant falls in both plasma glucose and insulin concentration. Glucose disposal rates also fell progressively in both groups, but the magnitude of the fall was greater in patients with NIDDM. Consequently, Rd in patients with NIDDM was higher at 10 p.m. (3.97 +/- 0.48 vs. 3.25 +/- 0.13 mg/kg per min, P less than 0.001) and lower the following day at 2 p.m. (1.64 +/- 0.21 vs. 1.97 +/- 0.35 mg/kg per min, P less than 0.01). These results indicate that a greatly expanded pool size can exist in patients with NIDDM at a time when values for Ra are identical to those in normal subjects studied under comparable conditions, which suggests that fasting hyperglycemia in NIDDM is not simply a function of an increase in Ra. PMID:3292584

  8. Effects of exercise training on glucose control, lipid metabolism, and insulin sensitivity in hypertriglyceridemia and non-insulin dependent diabetes mellitus.

    PubMed

    Lampman, R M; Schteingart, D E

    1991-06-01

    Exercise training has potential benefits for patients with hyperlipidemia and/or non-insulin dependent diabetes mellitus. In nondiabetic, nonobese subjects with hypertriglyceridemia, exercise training alone increased insulin sensitivity, improved glucose tolerance, and lowered serum triglyceride and cholesterol levels. These improvements did not occur when exercise training alone was given to similar patients with impaired glucose tolerance. In severely obese (X = 125 kg) subjects without diabetes melitus, a 600 calorie diet alone decreased glucose and insulin concentrations and improved glucose tolerance but did not increase insulin sensitivity. The addition of exercise training improved insulin sensitivity. Obese, non-insulin dependent diabetes mellitus subjects on sulfonylurea therapy alone increased insulin levels but failed to improve insulin sensitivity or glucose levels. In contrast, the addition of exercise training to this medication resulted in improved insulin sensitivity and lowered glucose levels. We conclude that exercise training has major effects on lowering triglyceride levels in hyperlipidemic subjects and can potentiate the effect of diet or drug therapy on glucose metabolism in patients with non-insulin dependent diabetes mellitus.

  9. Improvement of the compliance with blood glucose monitoring in young insulin-dependent diabetes mellitus patients by the Sensorlink system.

    PubMed

    Dorchy, H; Roggemans, M P

    1997-05-01

    Recently, Medisense has introduced the Sensorlink system as a tool for retrieving the 125 last results of home blood glucose monitoring stored in patient's Pen 2 or Companion 2, unknown to them. Therefore we decided to check the compliance of type I diabetic adolescents and young adults with home blood glucose monitoring (HBGM) by comparing the blood glucose values noted in their log book and those retrieved by the Sensorlink and to evaluate an eventual subsequent effect both on compliance and glycated haemoglobin (HbA1c). The study was carried out in 60 insulin-dependent diabetes mellitus (IDDM) patients (33 women and 27 men) chosen according to two criteria: (1) the use of a Medisense Pen 2 or Companion 2; (2) autonomous self-monitoring of blood glucose, i.e. without parental supervision. They were aged 21.3 +/- 6.3 years with a diabetes duration of 11.6 +/- 7.0 years. HbA1c was measured by an HPLC method (N: 4.4-6.0%) before and after the first use of the Sensorlink and HBGM data of the log books were recorded. After the first use of the Sensorlink, the patients were warned of the retrieving data. The 60 patients were divided into two groups (same mean age and diabetes duration), according to the mean level of HbA1c before Sensorlink: < or = 7% (good control; n = 33); > 7% (insufficient control; n = 27). Cheating was unrelated to sex and occurred in 36 patients (60%; aged: 19.3 +/- 4.7 years), up to 100% in 13 of them (22%); five patients had no log book (8%; aged: 24.0 +/- 5.0 years); 19 patients (32%; aged 24.4 +/- 7.9 years) didn't cheat at all. After the use of the Sensorlink system, cheating dramatically decreased to zero. The effect of the Sensorlink system on improvement of HbA1c was statistically significant in the 27 patients with insufficient control before Sensorlink, since mean HbA1c level decreased from 8.0 +/- 0.9% to 7.5 +/- 1.1% (P < 0.05). In conclusion, non compliance with HBGM occurs in 2/3 of adolescents and young adults with IDDM. The

  10. 13C-nuclear magnetic resonance spectroscopy studies of hepatic glucose metabolism in normal subjects and subjects with insulin-dependent diabetes mellitus.

    PubMed Central

    Cline, G W; Rothman, D L; Magnusson, I; Katz, L D; Shulman, G I

    1994-01-01

    To determine the effect of insulin-dependent diabetes mellitus (IDDM) on rates and pathways of hepatic glycogen synthesis, as well as flux through hepatic pyruvate dehydrogenase, we used 13C-nuclear magnetic resonance spectroscopy to monitor the peak intensity of the C1 resonance of the glucosyl units of hepatic glycogen, in combination with acetaminophen to sample the hepatic UDP-glucose pool and phenylacetate to sample the hepatic glutamine pool, during a hyperglycemic-hyperinsulinemic clamp using [1-13C]-glucose. Five subjects with poorly controlled IDDM and six age-weight-matched control subjects were clamped at a mean plasma glucose concentration of approximately 9 mM and mean plasma insulin concentrations approximately 400 pM for 5 h. Rates of hepatic glycogen synthesis were similar in both groups (approximately 0.43 +/- 0.09 mumol/ml liver min). However, flux through the indirect pathway of glycogen synthesis (3 carbon units-->-->glycogen) was increased by approximately 50% (P < 0.05), whereas the relative contribution of pyruvate oxidation to TCA cycle flux was decreased by approximately 30% (P < 0.05) in the IDDM subjects compared to the control subjects. These studies demonstrate that patients with poorly controlled insulin-dependent diabetes mellitus have augmented hepatic gluconeogenesis and relative decreased rates of hepatic pyruvate oxidation. These abnormalities are not immediately reversed by normalizing intraportal concentrations of glucose, insulin, and glucagon and may contribute to postprandial hyperglycemia. PMID:7989593

  11. Influence of diazepam on blood glucose levels in nondiabetic and non-insulin-dependent diabetic subjects under dental treatment with local anesthesia.

    PubMed Central

    Schaira, Vanessa Rocha Lima; Ranali, José; Saad, Mário José Abdalla; de Oliveira, Patrícia Cristine; Ambrosano, Glaúcia Maria Bovi; Volpato, Maria Cristina

    2004-01-01

    The effect of diazepam on blood glucose concentration (BGC) was investigated in a double-blind cross-over study in 10 healthy and 10 non-insulin-dependent diabetic subjects taking oral hypoglycemic drugs. In the first session, fasting blood samples were taken for blood glucose and glycosylated hemoglobin estimation and at 60, 80, 95, 125, and 155 minutes thereafter for glucose estimation. In another 2 sessions, a venous sample was taken immediately before premedication (5 mg diazepam or placebo randomly given during breakfast). One hour later a blood sample was taken, and the volunteers were submitted to periodontal treatment after injection of 1.8 mL of 2% mepivacaine with 1:100,000 adrenaline. Venous blood samples were taken at 15, 30, 60, and 90 minutes after injection. The changes in BGC were analyzed using analysis of variance (ANOVA) for repeated measures; the means were compared using Tukey test (P = .05). Statistically significant differences in the BGC were observed between diabetic and nondiabetic groups (P = .00003). However, there were no significant differences among the sessions of the same group (P = .29). The results of this study show that a single dose of 5 mg diazepam before dental treatment does not influence BGC in nondiabetic and non-insulin-dependent diabetic subjects. PMID:15106685

  12. Effects of different plasma glucose concentrations on lipolytic and ketogenic responsiveness to epinephrine in type I (insulin-dependent) diabetic subjects.

    PubMed

    Avogaro, A; Gnudi, L; Valerio, A; Maran, A; Miola, M; Opportuno, A; Tiengo, A; Bier, D M

    1993-04-01

    The effects of two different plasma glucose concentrations (5 and 10 mmol/L) on lipolysis and ketogenesis during baseline and in response to epinephrine infusion were evaluated in insulin-dependent diabetic patients. Each insulin-dependent diabetic subject was studied during euglycemia, hyperglycemia with hypoinsulinemia, and hyperglycemia with hyperinsulinemia. Total ketone body (TKB) concentrations were significantly higher in hyperglycemic-hypoinsulinemic diabetics than in hyperglycemic-hyperinsulinemic and normoglycemic diabetics. Hyperglycemic-hyperinsulinemics had higher TKB concentrations than euglycemic diabetics. During epinephrine infusion, the ketone body rate of appearance and concentration significantly increased in all groups. Plasma FFA concentrations were significantly higher in hyperglycemic-hypoinsulinemic diabetics than in the other groups. During epinephrine infusion, the plasma FFA rate of appearance and concentration significantly increased in all groups. The apparent fraction of FFA converted to ketones was increased by epinephrine in all groups, except in hyperglycemic-hyperinsulinemic diabetics. In conclusion, this study demonstrates that although insulin alone decreases FFA and TKB concentrations, it does not affect the fraction of FFA converted to ketones. If hyperinsulinemia is superimposed on hyperglycemia, there is both a reduction of ketogenesis capacity, compared to hyperglycemia alone, and a decrease in the apparent fraction of FFA converted to ketone bodies.

  13. Neural network-based real-time prediction of glucose in patients with insulin-dependent diabetes.

    PubMed

    Pappada, Scott M; Cameron, Brent D; Rosman, Paul M; Bourey, Raymond E; Papadimos, Thomas J; Olorunto, William; Borst, Marilyn J

    2011-02-01

    Continuous glucose monitoring (CGM) technologies report measurements of interstitial glucose concentration every 5 min. CGM technologies have the potential to be utilized for prediction of prospective glucose concentrations with subsequent optimization of glycemic control. This article outlines a feed-forward neural network model (NNM) utilized for real-time prediction of glucose. A feed-forward NNM was designed for real-time prediction of glucose in patients with diabetes implementing a prediction horizon of 75 min. Inputs to the NNM included CGM values, insulin dosages, metered glucose values, nutritional intake, lifestyle, and emotional factors. Performance of the NNM was assessed in 10 patients not included in the model training set. The NNM had a root mean squared error of 43.9 mg/dL and a mean absolute difference percentage of 22.1. The NNM routinely overestimates hypoglycemic extremes, which can be attributed to the limited number of hypoglycemic reactions in the model training set. The model predicts 88.6% of normal glucose concentrations (> 70 and < 180 mg/dL), 72.6% of hyperglycemia (≥ 180 mg/dL), and 2.1% of hypoglycemia (≤ 70 mg/dL). Clarke Error Grid Analysis of model predictions indicated that 92.3% of predictions could be regarded as clinically acceptable and not leading to adverse therapeutic direction. Of these predicted values, 62.3% and 30.0% were located within Zones A and B, respectively, of the error grid. Real-time prediction of glucose via the proposed NNM may provide a means of intelligent therapeutic guidance and direction.

  14. General aspects of muscle glucose uptake.

    PubMed

    Alvim, Rafael O; Cheuhen, Marcel R; Machado, Silmara R; Sousa, André Gustavo P; Santos, Paulo C J L

    2015-03-01

    Glucose uptake in peripheral tissues is dependent on the translocation of GLUT4 glucose transporters to the plasma membrane. Studies have shown the existence of two major signaling pathways that lead to the translocation of GLUT4. The first, and widely investigated, is the insulin activated signaling pathway through insulin receptor substrate-1 and phosphatidylinositol 3-kinase. The second is the insulin-independent signaling pathway, which is activated by contractions. Individuals with type 2 diabetes mellitus have reduced insulin-stimulated glucose uptake in skeletal muscle due to the phenomenon of insulin resistance. However, those individuals have normal glucose uptake during exercise. In this context, physical exercise is one of the most important interventions that stimulates glucose uptake by insulin-independent pathways, and the main molecules involved are adenosine monophosphate-activated protein kinase, nitric oxide, bradykinin, AKT, reactive oxygen species and calcium. In this review, our main aims were to highlight the different glucose uptake pathways and to report the effects of physical exercise, diet and drugs on their functioning. Lastly, with the better understanding of these pathways, it would be possible to assess, exactly and molecularly, the importance of physical exercise and diet on glucose homeostasis. Furthermore, it would be possible to assess the action of drugs that might optimize glucose uptake and consequently be an important step in controlling the blood glucose levels in diabetic patients, in addition to being important to clarify some pathways that justify the development of drugs capable of mimicking the contraction pathway.

  15. Rac1 is a novel regulator of contraction-stimulated glucose uptake in skeletal muscle.

    PubMed

    Sylow, Lykke; Jensen, Thomas E; Kleinert, Maximilian; Mouatt, Joshua R; Maarbjerg, Stine J; Jeppesen, Jacob; Prats, Clara; Chiu, Tim T; Boguslavsky, Shlomit; Klip, Amira; Schjerling, Peter; Richter, Erik A

    2013-04-01

    In skeletal muscle, the actin cytoskeleton-regulating GTPase, Rac1, is necessary for insulin-dependent GLUT4 translocation. Muscle contraction increases glucose transport and represents an alternative signaling pathway to insulin. Whether Rac1 is activated by muscle contraction and regulates contraction-induced glucose uptake is unknown. Therefore, we studied the effects of in vivo exercise and ex vivo muscle contractions on Rac1 signaling and its regulatory role in glucose uptake in mice and humans. Muscle Rac1-GTP binding was increased after exercise in mice (~60-100%) and humans (~40%), and this activation was AMP-activated protein kinase independent. Rac1 inhibition reduced contraction-stimulated glucose uptake in mouse muscle by 55% in soleus and by 20-58% in extensor digitorum longus (EDL; P < 0.01). In agreement, the contraction-stimulated increment in glucose uptake was decreased by 27% (P = 0.1) and 40% (P < 0.05) in soleus and EDL muscles, respectively, of muscle-specific inducible Rac1 knockout mice. Furthermore, depolymerization of the actin cytoskeleton decreased contraction-stimulated glucose uptake by 100% and 62% (P < 0.01) in soleus and EDL muscles, respectively. These are the first data to show that Rac1 is activated during muscle contraction in murine and human skeletal muscle and suggest that Rac1 and possibly the actin cytoskeleton are novel regulators of contraction-stimulated glucose uptake.

  16. Mifepristone enhances insulin-stimulated Akt phosphorylation and glucose uptake in skeletal muscle cells.

    PubMed

    Bernal-Sore, Izela; Navarro-Marquez, Mario; Osorio-Fuentealba, César; Díaz-Castro, Francisco; Del Campo, Andrea; Donoso-Barraza, Camila; Porras, Omar; Lavandero, Sergio; Troncoso, Rodrigo

    2017-09-21

    Mifepristone is the only FDA-approved drug for glycaemia control in patients with Cushing's syndrome and type 2 diabetes. Mifepristone also has beneficial effects in animal models of diabetes and patients with antipsychotic treatment-induced obesity. However, the mechanisms through which Mifepristone produces its beneficial effects are not completely elucidated. To determine the effects of mifepristone on insulin-stimulated glucose uptake on a model of L6 rat-derived skeletal muscle cells. Mifepristone enhanced insulin-dependent glucose uptake, GLUT4 translocation to the plasma membrane and Akt Ser(473) phosphorylation in L6 myotubes. In addition, mifepristone reduced oxygen consumption and ATP levels and increased AMPK Thr(172) phosphorylation. The knockdown of AMPK prevented the effects of mifepristone on insulin response. Mifepristone enhanced insulin-stimulated glucose uptake through a mechanism that involves a decrease in mitochondrial function and AMPK activation in skeletal muscle cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Evidence that down-regulation of. beta. -cell glucose transporters in non-insulin-dependent diabetes may be the cause of diabetic hyperglycemia

    SciTech Connect

    Orci, L.; Ravazzola, M.; Baetens, D.; Amherdt, M. ); Inman, L.; Johnson, J.H.; Unger, R.H. Dept. of Veterans Affairs Medical Center, Dallas, TX ); Peterson, R.G. ); Newgard, C.B. )

    1990-12-01

    Non-insulin-dependent diabetes mellitus (NIDDM) is attributed to a failure of pancreatic {beta} cells to maintain insulin secretion at a level sufficient to compensate for underlying insulin resistance. In the ZDF rat, a model of NIDDM that closely resembles the human syndrome, the authors have previously reported profound underexpression of GLUT-2, the high-K{sub m} facilitative glucose transporter expressed by {beta} cells of normal animals. Here they report that islets of diabetic rats exhibit a marked decrease in the volume density of GLUT-2-positive {beta} cells and a reduction at the electron-microscopic level in the number of GLUT-2-immunoreactive sites per unit of {beta}-cell plasma membrane. The deficiency of GLUT-2 cannot be induced in normal {beta} cells by in vivo or in vitro exposure to high levels of glucose nor can it be prevented in {beta} cells of prediabetic ZDF rats by elimination of hyperglycemia. They conclude that this dearth of immunodetectable GLUT-2 in NIDDM is not secondary to hyperglycemia and therefore that it may well play a causal role in the development of hyperglycemia.

  18. Statins impair glucose uptake in tumor cells.

    PubMed

    Malenda, Agata; Skrobanska, Anna; Issat, Tadeusz; Winiarska, Magdalena; Bil, Jacek; Oleszczak, Bozenna; Sinski, Maciej; Firczuk, Małgorzata; Bujnicki, Janusz M; Chlebowska, Justyna; Staruch, Adam D; Glodkowska-Mrowka, Eliza; Kunikowska, Jolanta; Krolicki, Leszek; Szablewski, Leszek; Gaciong, Zbigniew; Koziak, Katarzyna; Jakobisiak, Marek; Golab, Jakub; Nowis, Dominika A

    2012-04-01

    Statins, HMG-CoA reductase inhibitors, are used in the prevention and treatment of cardiovascular diseases owing to their lipid-lowering effects. Previous studies revealed that, by modulating membrane cholesterol content, statins could induce conformational changes in cluster of differentiation 20 (CD20) tetraspanin. The aim of the presented study was to investigate the influence of statins on glucose transporter 1 (GLUT1)-mediated glucose uptake in tumor cells. We observed a significant concentration- and time-dependent decrease in glucose analogs' uptake in several tumor cell lines incubated with statins. This effect was reversible with restitution of cholesterol synthesis pathway with mevalonic acid as well as with supplementation of plasma membrane with exogenous cholesterol. Statins did not change overall GLUT1 expression at neither transcriptional nor protein levels. An exploratory clinical trial revealed that statin treatment decreased glucose uptake in peripheral blood leukocytes and lowered (18)F-fluorodeoxyglucose ((18)F-FDG) uptake by tumor masses in a mantle cell lymphoma patient. A bioinformatics analysis was used to predict the structure of human GLUT1 and to identify putative cholesterol-binding motifs in its juxtamembrane fragment. Altogether, the influence of statins on glucose uptake seems to be of clinical significance. By inhibiting (18)F-FDG uptake, statins can negatively affect the sensitivity of positron emission tomography, a diagnostic procedure frequently used in oncology.

  19. GLUT-4, tumour necrosis factor, essential fatty acids and daf-genes and their role in glucose homeostasis, insulin resistance, non-insulin dependent diabetes mellitus, and longevity.

    PubMed

    Das, U N

    1999-04-01

    GLUT-4 receptor, tumor necrosis factor-alpha (TNF-alpha), essential fatty acids (EFAs) and their metabolites and daf-genes seem to play an important and essential role in the maintenance of glucose homeostasis, and in the pathobiology of obesity and non-insulin dependent diabetes mellitus (NIDDM). Daf-genes encode for proteins which are 35% identical to the human insulin receptor, a transforming growth factor-beta (TGF-beta) type signal and can also enhance the expression of superoxide dismutase (SOD). On the other hand, EFAs and their metabolites can increase the cell membrane fluidity and thus, enhance the expression of GLUT-4 and insulin receptors. In addition, EFAs can suppress TNF-alpha production and secretion and thus, are capable of reversing insulin resistance. Melatonin has anti-oxidant actions similar to daf-16, TGF-beta and SOD. Hence, it is likely that there is a close interaction between GLUT-4, TNF-alpha, EFAs, daf-genes, melatonin and leptin that may have relevance to the development of insulin resistance, obesity, NIDDM, complications due to NIDDM, longevity and ageing.

  20. Molecular mechanisms for the regulation of insulin-stimulated glucose uptake by small guanosine triphosphatases in skeletal muscle and adipocytes.

    PubMed

    Satoh, Takaya

    2014-10-16

    Insulin is a hormone that regulates the blood glucose level by stimulating various physiological responses in its target tissues. In skeletal muscle and adipose tissue, insulin promotes membrane trafficking of the glucose transporter GLUT4 from GLUT4 storage vesicles to the plasma membrane, thereby facilitating the uptake of glucose from the circulation. Detailed mechanisms underlying insulin-dependent intracellular signal transduction for glucose uptake remain largely unknown. In this article, I give an overview on the recently identified signaling network involving Rab, Ras, and Rho family small guanosine triphosphatases (GTPases) that regulates glucose uptake in insulin-responsive tissues. In particular, the regulatory mechanisms for these small GTPases and the cross-talk between protein kinase and small GTPase cascades are highlighted.

  1. Down-regulation of lipoprotein lipase increases glucose uptake in L6 muscle cells

    SciTech Connect

    Lopez, Veronica; Saraff, Kumuda; Medh, Jheem D.

    2009-11-06

    Thiazolidinediones (TZDs) are synthetic hypoglycemic agents used to treat type 2 diabetes. TZDs target the peroxisome proliferator activated receptor-gamma (PPAR-{gamma}) and improve systemic insulin sensitivity. The contributions of specific tissues to TZD action, or the downstream effects of PPAR-{gamma} activation, are not very clear. We have used a rat skeletal muscle cell line (L6 cells) to demonstrate that TZDs directly target PPAR-{gamma} in muscle cells. TZD treatment resulted in a significant repression of lipoprotein lipase (LPL) expression in L6 cells. This repression correlated with an increase in glucose uptake. Down-regulation of LPL message and protein levels using siRNA resulted in a similar increase in insulin-dependent glucose uptake. Thus, LPL down-regulation improved insulin sensitivity independent of TZDs. This finding provides a novel method for the management of insulin resistance.

  2. Lack of CD2AP disrupts Glut4 trafficking and attenuates glucose uptake in podocytes.

    PubMed

    Tolvanen, Tuomas A; Dash, Surjya Narayan; Polianskyte-Prause, Zydrune; Dumont, Vincent; Lehtonen, Sanna

    2015-12-15

    The adapter protein CD2-associated protein (CD2AP) functions in various signaling and vesicle trafficking pathways, including endosomal sorting and/or trafficking and degradation pathways. Here, we investigated the role of CD2AP in insulin-dependent glucose transporter 4 (Glut4, also known as SLC2A4) trafficking and glucose uptake. Glucose uptake was attenuated in CD2AP(-/-) podocytes compared with wild-type podocytes in the basal state, and CD2AP(-/-) podocytes failed to increase glucose uptake in response to insulin. Live-cell imaging revealed dynamic trafficking of HA-Glut4-GFP in wild-type podocytes, whereas in CD2AP(-/-) podocytes, HA-Glut4-GFP clustered perinuclearly. In subcellular membrane fractionations, CD2AP co-fractionated with Glut4, IRAP (also known as LNPEP) and sortilin, constituents of Glut4 storage vesicles (GSVs). We further found that CD2AP forms a complex with GGA2, a clathrin adaptor, which sorts Glut4 to GSVs, suggesting a role for CD2AP in this process. We also found that CD2AP forms a complex with clathrin and connects clathrin to actin in the perinuclear region. Furthermore, clathrin recycling back to trans-Golgi membranes from the vesicular fraction containing GSVs was defective in the absence of CD2AP. This leads to reduced insulin-stimulated trafficking of GSVs and attenuated glucose uptake into CD2AP(-/-) podocytes.

  3. DHEA improves glucose uptake via activations of protein kinase C and phosphatidylinositol 3-kinase.

    PubMed

    Ishizuka, T; Kajita, K; Miura, A; Ishizawa, M; Kanoh, Y; Itaya, S; Kimura, M; Muto, N; Mune, T; Morita, H; Yasuda, K

    1999-01-01

    We have examined the effect of adrenal androgen, dehydroepiandrosterone (DHEA), on glucose uptake, phosphatidylinositol (PI) 3-kinase, and protein kinase C (PKC) activity in rat adipocytes. DHEA (1 microM) provoked a twofold increase in 2-[3H]deoxyglucose (DG) uptake for 30 min. Pretreatment with DHEA increased insulin-induced 2-[3H]DG uptake without alterations of insulin specific binding and autophosphorylation of insulin receptor. DHEA also stimulated PI 3-kinase activity. [3H]DHEA bound to purified PKC containing PKC-alpha, -beta, and -gamma. DHEA provoked the translocation of PKC-beta and -zeta from the cytosol to the membrane in rat adipocytes. These results suggest that DHEA stimulates both PI 3-kinase and PKCs and subsequently stimulates glucose uptake. Moreover, to clarify the in vivo effect of DHEA on Goto-Kakizaki (GK) and Otsuka Long-Evans fatty (OLETF) rats, animal models of non-insulin-dependent diabetes mellitus (NIDDM) were treated with 0.4% DHEA for 2 wk. Insulin- and 12-O-tetradecanoyl phorbol-13-acetate-induced 2-[3H]DG uptakes of adipocytes were significantly increased, but there was no significant increase in the soleus muscles in DHEA-treated GK/Wistar or OLETF/Long-Evans Tokushima (LETO) rats when compared with untreated GK/Wistar or OLETF/LETO rats. These results indicate that in vivo DHEA treatment can result in increased insulin-induced glucose uptake in two different NIDDM rat models.

  4. Paraquat-induced Oxidative Stress Represses Phosphatidylinositol 3-Kinase Activities Leading to Impaired Glucose Uptake in 3T3-L1 Adipocytes*

    PubMed Central

    Shibata, Michihiro; Hakuno, Fumihiko; Yamanaka, Daisuke; Okajima, Hiroshi; Fukushima, Toshiaki; Hasegawa, Takashi; Ogata, Tomomi; Toyoshima, Yuka; Chida, Kazuhiro; Kimura, Kumi; Sakoda, Hideyuki; Takenaka, Asako; Asano, Tomoichiro; Takahashi, Shin-Ichiro

    2010-01-01

    Accumulated evidence indicates that oxidative stress causes and/or promotes insulin resistance; however, the mechanism by which this occurs is not fully understood. This study was undertaken to elucidate the molecular mechanism by which oxidative stress induced by paraquat impairs insulin-dependent glucose uptake in 3T3-L1 adipocytes. We confirmed that paraquat-induced oxidative stress decreased glucose transporter 4 (GLUT4) translocation to the cell surface, resulting in repression of insulin-dependent 2-deoxyglucose uptake. Under these conditions, oxidative stress did not affect insulin-dependent tyrosine phosphorylation of insulin receptor, insulin receptor substrate (IRS)-1 and -2, or binding of the phosphatidylinositol 3′-OH kinase (PI 3-kinase) p85 regulatory subunit or p110α catalytic subunit to each IRS. In contrast, we found that oxidative stress induced by paraquat inhibited activities of PI 3-kinase bound to IRSs and also inhibited phosphorylation of Akt, the downstream serine/threonine kinase that has been shown to play an essential role in insulin-dependent translocation of GLUT4 to the plasma membrane. Overexpression of active form Akt (myr-Akt) restored inhibition of insulin-dependent glucose uptake by paraquat, indicating that paraquat-induced oxidative stress inhibits insulin signals upstream of Akt. Paraquat treatment with and without insulin treatment decreased the activity of class Ia PI 3-kinases p110α and p110β that are mainly expressed in 3T3-L1 adipocytes. However, paraquat treatment did not repress the activity of the PI 3-kinase p110α mutated at Cys90 in the p85 binding region. These results indicate that the PI 3-kinase p110 is a possible primary target of paraquat-induced oxidative stress to reduce the PI 3-kinase activity and impaired glucose uptake in 3T3-L1 adipocytes. PMID:20430890

  5. Impaired insulin signaling in endothelial cells reduces insulin-induced glucose uptake by skeletal muscle.

    PubMed

    Kubota, Tetsuya; Kubota, Naoto; Kumagai, Hiroki; Yamaguchi, Shinichi; Kozono, Hideki; Takahashi, Takehiro; Inoue, Mariko; Itoh, Shinsuke; Takamoto, Iseki; Sasako, Takayoshi; Kumagai, Katsuyoshi; Kawai, Tomoko; Hashimoto, Shinji; Kobayashi, Tsuneo; Sato, Maki; Tokuyama, Kumpei; Nishimura, Satoshi; Tsunoda, Masaki; Ide, Tomohiro; Murakami, Koji; Yamazaki, Tomomi; Ezaki, Osamu; Kawamura, Koichi; Masuda, Hirotake; Moroi, Masao; Sugi, Kaoru; Oike, Yuichi; Shimokawa, Hiroaki; Yanagihara, Nobuyuki; Tsutsui, Masato; Terauchi, Yasuo; Tobe, Kazuyuki; Nagai, Ryozo; Kamata, Katsuo; Inoue, Kenji; Kodama, Tatsuhiko; Ueki, Kohjiro; Kadowaki, Takashi

    2011-03-02

    In obese patients with type 2 diabetes, insulin delivery to and insulin-dependent glucose uptake by skeletal muscle are delayed and impaired. The mechanisms underlying the delay and impairment are unclear. We demonstrate that impaired insulin signaling in endothelial cells, due to reduced Irs2 expression and insulin-induced eNOS phosphorylation, causes attenuation of insulin-induced capillary recruitment and insulin delivery, which in turn reduces glucose uptake by skeletal muscle. Moreover, restoration of insulin-induced eNOS phosphorylation in endothelial cells completely reverses the reduction in capillary recruitment and insulin delivery in tissue-specific knockout mice lacking Irs2 in endothelial cells and fed a high-fat diet. As a result, glucose uptake by skeletal muscle is restored in these mice. Taken together, our results show that insulin signaling in endothelial cells plays a pivotal role in the regulation of glucose uptake by skeletal muscle. Furthermore, improving endothelial insulin signaling may serve as a therapeutic strategy for ameliorating skeletal muscle insulin resistance. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Insulin regulation of glucose uptake: a complex interplay of intracellular signalling pathways.

    PubMed

    Khan, A H; Pessin, J E

    2002-11-01

    Insulin-stimulated glucose uptake in adipose tissue and striated muscle is critical for reducing post-prandial blood glucose concentrations and the dysregulation of this process is one hallmark of Type II (non-insulin-dependent) diabetes mellitus. It has been well established that the insulin-stimulated redistribution of the insulin responsive glucose transporter, GLUT-4, from intracellular storage sites to the plasma membrane depends on the production of phosphoinositide 3,4,5 trisphosphate by the Class IA Phosphatidylinositol 3' kinase. Recent discoveries however, have shown the presence of a second insulin signalling pathway leading to GLUT-4 translocation, a pathway dependent on insulin receptor signalling emanating from caveolae or lipid rafts at the plasma membrane. This pathway begins with the phosphorylation of the adaptor protein Cbl by the insulin receptor, and results in the activation of a small GTP binding protein, TC10, a member of the Rho family. TC10 is able to modulate actin structure in 3T3L1 adipocytes, and its overexpression inhibits insulin-stimulated GLUT-4 translocation, an inhibition completely dependent on localization of TC10 to the caveolae or lipid rafts. The spatial compartmentalization of insulin signalling from caveolae or lipid rafts provides a novel signalling pathway that functions in concert with general signalling mechanisms in the control of actin dynamics regulating insulin-dependent GLUT-4 translocation.

  7. Glucose oxidation positively regulates glucose uptake and improves cardiac function recovery after myocardial reperfusion.

    PubMed

    Li, Tingting; Xu, Jie; Qin, Xinghua; Hou, Zuoxu; Guo, Yongzheng; Liu, Zhenhua; Wu, Jianjiang; Zheng, Hong; Zhang, Xing; Gao, Feng

    2017-03-21

    Myocardial reperfusion decreases glucose oxidation and uncouples glucose oxidation from glycolysis. Therapies that increase glucose oxidation lessen myocardial ischemia/reperfusion injury. However, the regulation of glucose uptake during reperfusion remains poorly understood. Here we found that glucose uptake was remarkably diminished in myocardium following reperfusion in Sprague-Dawley rats as detected by 18F-labeled and fluorescent-labeled glucose analogs, even though GLUT1 was upregulated by 3 folds and GLUT4 translocation remained unchanged compared with those of sham rats. The decreased glucose uptake was accompanied by suppressed glucose oxidation. Interestingly, stimulating glucose oxidation by inhibition of pyruvate dehydrogenase kinase 4 (PDK4), a rate-limiting enzyme for glucose oxidation, increased glucose uptake and alleviated ischemia/reperfusion injury. In vitro data in neonatal myocytes showed that PDK4 overexpression decreased glucose uptake, while its knockdown increased glucose uptake, suggesting a role of PDK4 in regulating glucose uptake. Moreover, inhibition of PDK4 increased myocardial glucose uptake with concomitant enhancement of cardiac insulin sensitivity following myocardial ischemia/reperfusion. These results showed that the suppressed glucose oxidation mediated by PDK4 contributes to the reduced glucose uptake in myocardium following reperfusion, and enhancement of glucose uptake exerts cardioprotection. The findings suggest that stimulating glucose oxidation via PDK4 could be an efficient approach to improve recovery from myocardial ischemia/reperfusion injury.

  8. Osmotic regulation of cellular glucose uptake.

    PubMed

    Gual, Philippe; Gonzalez, Teresa; Gremeaux, Thierry; Le Marchand-Brustel, Yannick; Tanti, Jean-François

    2007-01-01

    This chapter describes various approaches allowing the study of hyperosmolarity in the functions of 3T3-L1 adipocytes. Hyperosmolarity mimics insulin responses, such as glucose uptake and membrane ruffling, but also antagonizes these insulin effects, which can be evaluated in 3T3-L1 adipocytes. The molecular mechanisms of these effects can be also investigated by measuring the activation of different signaling pathways: (i) the phosphorylation of docking proteins on tyrosine and serine residues (serines 307 and 632), (ii) the phosphorylation of serine/threonine kinases, and (iii) the activation of phosphatidylinositol 3-kinase.

  9. Increased insulin binding to adipocytes and monocytes and increased insulin sensitivity of glucose transport and metabolism in adipocytes from non-insulin-dependent diabetics after a low-fat/high-starch/high-fiber diet.

    PubMed

    Hjøllund, E; Pedersen, O; Richelsen, B; Beck-Nielsen, H; Sørensen, N S

    1983-11-01

    Nine non-insulin-dependent diabetics were studied before and after 3 weeks on an isoenergetic high-fiber/high-starch/low-fat diet (alternative diet), and nine non-insulin-dependent diabetics were studied on their usual diet. In the group that ate the alternative diet, the intake of fiber and starch increased 120% and 53%, whereas fat intake decreased 31%. Diabetes control improved as demonstrated by decreased fasting plasma glucose (P less than 0.05) and 24-hour urinary glucose excretion (P less than 0.05). The in vivo insulin action increased (KIVITT increased, P less than 0.05) with no change in fasting serum insulin levels. In fat cells obtained from patients in the alternative-diet group, insulin receptor binding increased (P less than 0.05) after the change of diet. Insulin binding to purified monocytes (more than 95% monocytes) also increased (P less than 0.05), whereas no change was found in insulin binding to erythrocytes. When lipogenesis was studied at a tracer glucose concentration at which glucose transport seems to be rate limiting, insulin sensitivity increased (P less than 0.02). This is the predicted consequence of increased receptor binding. Moreover, when CO2 production and lipogenesis were studied at a higher glucose concentration, where steps beyond transport seem to be rate limiting for glucose metabolism, increased insulin sensitivity was also observed. In contrast, no change was found in maximal insulin responsiveness. Fat and blood cells from the patients who continued on their usual diet showed no changes of the mentioned quantities.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Saffron (Crocus sativus L.) increases glucose uptake and insulin sensitivity in muscle cells via multipathway mechanisms.

    PubMed

    Kang, Changkeun; Lee, Hyunkyoung; Jung, Eun-Sun; Seyedian, Ramin; Jo, MiNa; Kim, Jehein; Kim, Jong-Shu; Kim, Euikyung

    2012-12-15

    Saffron (Crocus sativus Linn.) has been an important subject of research in the past two decades because of its various biological properties, including anti-cancer, anti-inflammatory, and anti-atherosclerotic activities. On the other hand, the molecular bases of its actions have been scarcely understood. Here, we elucidated the mechanism of the hypoglycemic actions of saffron through investigating its signaling pathways associated with glucose metabolism in C(2)C(12) skeletal muscle cells. Saffron strongly enhanced glucose uptake and the phosphorylation of AMPK (AMP-activated protein kinase)/ACC (acetyl-CoA carboxylase) and MAPKs (mitogen-activated protein kinases), but not PI 3-kinase (Phosphatidylinositol 3-kinase)/Akt. Interestingly, the co-treatment of saffron and insulin further improved the insulin sensitivity via both insulin-independent (AMPK/ACC and MAPKs) and insulin-dependent (PI 3-kinase/Akt and mTOR) pathways. It also suggested that there is a crosstalk between the two signaling pathways of glucose metabolism in skeletal muscle cells. These results could be confirmed from the findings of GLUT4 translocation. Taken together, AMPK plays a major role in the effects of saffron on glucose uptake and insulin sensitivity in skeletal muscle cells. Our study provides important insights for the possible mechanism of action of saffron and its potential as a therapeutic agent in diabetic patients.

  11. Zinc transporter 7 deficiency affects lipid synthesis in adipocytes by inhibiting insulin-dependent Akt activity and glucose uptake

    USDA-ARS?s Scientific Manuscript database

    Mice deficient for zinc transporter 7 (Znt7) are mildly zinc deficient, accompanied with low body weight gain and body fat accumulation. To investigate the underlying mechanism of Znt7 deficiency in body adiposity, we investigated fatty acid composition and insulin sensitivity in visceral (epididyma...

  12. Simultaneous uptake of galactose and glucose by Azotobacter vinelandii.

    PubMed

    Wong, T Y; Murdock, C A; Concannon, S P; Lockey, T D

    1991-01-01

    Azotobacter vinelandii growing on galactosides induced two distinct permeases for glucose and galactose. The apparent Vmax and Km of the galactose permease were 16 nmol galactose/min per 10(10) cells and 0.5 mM, respectively. The apparent Vmax and Km of the glucose permease were 7.8 nmol glucose/min per 10(10) cells and 0.04 mM, respectively. Excess glucose had no effect on the galactose uptake. However, excess galactose inhibited glucose transport. The galactosides-induced glucose permease also exhibited different uptake kinetics from that induced by glucose.

  13. Contraction stimulates muscle glucose uptake independent of atypical PKC.

    PubMed

    Yu, Haiyan; Fujii, Nobuharu L; Toyoda, Taro; An, Ding; Farese, Robert V; Leitges, Michael; Hirshman, Michael F; Mul, Joram D; Goodyear, Laurie J

    2015-11-01

    Exercise increases skeletal muscle glucose uptake, but the underlying mechanisms are only partially understood. The atypical protein kinase C (PKC) isoforms λ and ζ (PKC-λ/ζ) have been shown to be necessary for insulin-, AICAR-, and metformin-stimulated glucose uptake in skeletal muscle, but not for treadmill exercise-stimulated muscle glucose uptake. To investigate if PKC-λ/ζ activity is required for contraction-stimulated muscle glucose uptake, we used mice with tibialis anterior muscle-specific overexpression of an empty vector (WT), wild-type PKC-ζ (PKC-ζ(WT)), or an enzymatically inactive T410A-PKC-ζ mutant (PKC-ζ(T410A)). We also studied skeletal muscle-specific PKC-λ knockout (MλKO) mice. Basal glucose uptake was similar between WT, PKC-ζ(WT), and PKC-ζ(T410A) tibialis anterior muscles. In contrast, in situ contraction-stimulated glucose uptake was increased in PKC-ζ(T410A) tibialis anterior muscles compared to WT or PKC-ζ(WT) tibialis anterior muscles. Furthermore, in vitro contraction-stimulated glucose uptake was greater in soleus muscles of MλKO mice than WT controls. Thus, loss of PKC-λ/ζ activity increases contraction-stimulated muscle glucose uptake. These data clearly demonstrate that PKC-λζ activity is not necessary for contraction-stimulated glucose uptake.

  14. Polyacetylenes from carrots (Daucus carota) improve glucose uptake in vitro in adipocytes and myotubes.

    PubMed

    El-Houri, Rime B; Kotowska, Dorota; Christensen, Kathrine B; Bhattacharya, Sumangala; Oksbjerg, Niels; Wolber, Gerhard; Kristiansen, Karsten; Christensen, Lars P

    2015-07-01

    A dichloromethane (DCM) extract of carrot roots was found to stimulate insulin-dependent glucose uptake (GU) in adipocytes in a dose dependent manner. Bioassay-guided fractionation of the DCM extract resulted in the isolation of the polyacetylenes falcarinol and falcarindiol. Both polyacetylenes were able to significantly stimulate basal and/or insulin-dependent GU in 3T3-L1 adipocytes and porcine myotube cell cultures in a dose-dependent manner. Falcarindiol increased peroxisome proliferator-activated receptor (PPAR)γ-mediated transactivation significantly at concentrations of 3, 10 and 30 μM, while PPARγ-mediated transactivation by falcarinol was only observed at 10 μM. Docking studies accordingly indicated that falcarindiol binds to the ligand binding domain of PPARγ with higher affinity than falcarinol and that both polyacetylenes exhibit characteristics of PPARγ partial agonists. Falcarinol was shown to inhibit adipocyte differentiation as evident by gene expression studies and Oil Red O staining, whereas falcarindiol did not inhibit adipocyte differentiation, which indicates that these polyacetylenes have distinct modes of action. The results of the present study suggest that falcarinol and falcarindiol may represent scaffolds for novel partial PPARγ agonists with possible antidiabetic properties.

  15. Fetal glucose uptake and utilization as functions of maternal glucose concentration.

    PubMed

    Hay, W W; Sparks, J W; Wilkening, R B; Battaglia, F C; Meschia, G

    1984-03-01

    Seventeen studies were performed in 12 pregnant sheep to examine the relationship among simultaneously measured glucose uptake via the umbilical circulation, fetal glucose utilization (mg X min-1 X kg-1), and maternal arterial glucose (Gm, mg/dl). Fetal glucose utilization was measured by means of tracer glucose infused into the fetus or both mother and fetus. By fasting the ewe, Gm was varied in the 62-22 range. A decrease in Gm was accompanied by a significant (P less than 0.001) decrease in umbilical uptake (uptake = 0.09 Gm - 0.96, r = 0.82) and in fetal utilization, measured either by [U-14C]glucose (utilization = 0.062 Gm + 0.91, r = 0.90) or [6-3H]glucose (utilization = 0.065 Gm + 0.51, r = 0.91). At uptake greater than 3 mg X min-1 X kg-1, utilization and uptake were not significantly different. At lower uptakes, utilization did not decline as much as uptake. The results demonstrate that maternal fasting decreases both the umbilical uptake and the fetal utilization of glucose and suggest that fetal glucogenesis increases when the availability of exogenous glucose is markedly reduced.

  16. Cryosystem assessment by glucose uptake of murine blastocysts.

    PubMed

    Walker, David L; Gardner, David K; Lane, Michelle; Tummon, Ian S; Session, Donna R; Thornhill, Alan R

    2005-11-01

    Glucose uptake was used as a measure of metabolic activity and implantation potential to compare vitrification and slow freezing in a prospective randomized trial using murine blastocysts. Frozen 2-cell embryos (n = 132) thawed and cultured for 48 h to the blastocyst stage were randomly divided into four groups: (i) control - not refrozen; (ii) slow freezing using a programmed rate (PR); (iii) vitrification by super-cooled (VSC) liquid nitrogen; and (iv) vitrification in liquid nitrogen (VLN). Upon re-thawing, embryos were cultured individually for 24 h to determine glucose uptake non-invasively. Morphological assessments included total cell counts and inner cell mass (ICM) detection following immunosurgery. Mean glucose uptake was lower for each treatment (PR and VSC, 4.3 pmol/embryo per h; VLN, 4.9 pmol/embryo per h) versus controls (6.8 pmol/embryo per h). PR and VSC embryos had fewer cells (57.4 +/- 24.2 and 64.1 +/- 31.5) versus controls (85.7 +/- 26.2), and fewer embryos containing a detectable ICM (42.9 and 61.8%) compared with controls (88.2%). The only difference between control and VLN embryos was absolute glucose uptake, although in both treatments glucose uptake was increased from embryos with an ICM compared with those without. Glucose uptake appears to be a sensitive, non-invasive method to validate cryopreservation protocols.

  17. Insulin-mediated glucose disposal in type 1 (insulin-dependent) diabetic subjects treated by continuous subcutaneous or intraperitoneal insulin fusion.

    PubMed

    Beylot, M; Khalfallah, Y; Laville, M; Sautot, G; Dechaud, H; Serusclat, P; Berthezene, F; Riou, J P; Mornex, R

    1987-01-01

    In order to determine if intraperitoneal insulin infusion could improve the insulin resistance of type 1 diabetic patients we have used the englycaemic insulin clamp technique in order to study the effects of insulin on glucose disposal in four C peptide negative type 1 diabetic patients treated by continuous subcutaneous or intraperitoneal insulin infusion and in five control subjects. Compared to control subjects, the diabetic patients treated by subcutaneous insulin infusion had a decreased maximal capacity of glucose utilization (diabetics: 12.6 +/- 0.3 mg.kg-1.min-1; controls: 15.7 +/- 0.7 mg/kg-1.min-1, p less than 0.01) and a trend towards higher half-maximally effective insulin concentrations (diabetics: 70 +/- 11 mU/l-1, controls: 48 +/- 4 mU/l-1). Treatment of the diabetic patients by intraperitoneal insulin infusion for 2 months decreased their mean peripheral free insulin levels (during subcutaneous infusion: 23.5 +/- 2.2 mU/l-1; during intraperitoneal infusion: 18.4 +/- 1.4 mU/l-1, p less than 0.05). However, mean daily insulin requirements were not decreased (during subcutaneous infusion: 0.59 +/- 0.05 U/kg-1.day-1; during intraperitoneal infusion: 0.57 +/- 0.03 U/kg-1.min-1). Moreover, the diabetic patients had a consistently lower maximal capacity of glucose utilization (12.6 +/- 0.7 mg kg-1.min-1) than control subjects (p less than 0.01) without modification of the half-maximally effective insulin concentration (62 +/- 10 mU.l-1). In conclusion, the only benefit of intraperitoneal insulin infusion was a reduction of peripheral free insulin levels; this decrease of peripheral insulinaemia was not associated with an improvement in the insulin resistance of diabetic patients.

  18. Glucose Uptake and Its Effect on Gene Expression in Prochlorococcus

    PubMed Central

    Gómez-Baena, Guadalupe; López-Lozano, Antonio; Gil-Martínez, Jorge; Lucena, José Manuel; Diez, Jesús; Candau, Pedro; García-Fernández, Jose Manuel

    2008-01-01

    The marine cyanobacteria Prochlorococcus have been considered photoautotrophic microorganisms, although the utilization of exogenous sugars has never been specifically addressed in them. We studied glucose uptake in different high irradiance- and low irradiance-adapted Prochlorococcus strains, as well as the effect of glucose addition on the expression of several glucose-related genes. Glucose uptake was measured by adding radiolabelled glucose to Prochlorococcus cultures, followed by flow cytometry coupled with cell sorting in order to separate Prochlorococcus cells from bacterial contaminants. Sorted cells were recovered by filtration and their radioactivity measured. The expression, after glucose addition, of several genes (involved in glucose metabolism, and in nitrogen assimilation and its regulation) was determined in the low irradiance-adapted Prochlorococcus SS120 strain by semi-quantitative real time RT-PCR, using the rnpB gene as internal control. Our results demonstrate for the first time that the Prochlorococcus strains studied in this work take up glucose at significant rates even at concentrations close to those found in the oceans, and also exclude the possibility of this uptake being carried out by eventual bacterial contaminants, since only Prochlorococcus cells were used for radioactivity measurements. Besides, we show that the expression of a number of genes involved in glucose utilization (namely zwf, gnd and dld, encoding glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase and lactate dehydrogenase, respectively) is strongly increased upon glucose addition to cultures of the SS120 strain. This fact, taken together with the magnitude of the glucose uptake, clearly indicates the physiological importance of the phenomenon. Given the significant contribution of Prochlorococcus to the global primary production, these findings have strong implications for the understanding of the phytoplankton role in the carbon cycle in nature

  19. Regulation of insulin-stimulated glucose uptake in rat white adipose tissue upon chronic central leptin infusion: effects on adiposity.

    PubMed

    Bonzón-Kulichenko, Elena; Fernández-Agulló, Teresa; Moltó, Eduardo; Serrano, Rosario; Fernández, Alejandro; Ros, Manuel; Carrascosa, José M; Arribas, Carmen; Martínez, Carmen; Andrés, Antonio; Gallardo, Nilda

    2011-04-01

    Leptin enhances the glucose utilization in most insulin target tissues and paradoxically decreases it in white adipose tissue (WAT), but knowledge of the mechanisms underlying the inhibitory effect of central leptin on the insulin-dependent glucose uptake in WAT is limited. After 7 d intracerebroventricular leptin treatment (0.2 μg/d) of rats, the overall insulin sensitivity and the responsiveness of WAT after acute in vivo insulin administration were analyzed. We also performed unilateral WAT denervation to clarify the role of the autonomic nervous system in leptin effects on the insulin-stimulated [(3)H]-2-deoxyglucose transport in WAT. Central leptin improved the overall insulin sensitivity but decreased the in vivo insulin action in WAT, including insulin receptor autophosphorylation, insulin receptor substrate-1 tyrosine-phosphorylation, and Akt activation. In this tissue, insulin receptor substrate-1 and glucose transporter 4 mRNA and protein levels were down-regulated after central leptin treatment. Additionally, a remarkable up-regulation of resistin, together with an augmented expression of suppressor of cytokine signaling 3 in WAT, was also observed in leptin-treated rats. As a result, the insulin-stimulated glucose transporter 4 insertion at the plasma membrane and the glucose uptake in WAT were impaired in leptin-treated rats. Finally, denervation of WAT abolished the inhibitory effect of central leptin on glucose transport and decreased suppressor of cytokine signaling 3 and resistin levels in this tissue, suggesting that resistin, in an autocrine/paracrine manner, might be a mediator of central leptin antagonism of insulin action in WAT. We conclude that central leptin, inhibiting the insulin-stimulated glucose uptake in WAT, may regulate glucose availability for triacylglyceride formation and accumulation in this tissue, thereby contributing to the control of adiposity.

  20. Exercise, GLUT4, and skeletal muscle glucose uptake.

    PubMed

    Richter, Erik A; Hargreaves, Mark

    2013-07-01

    Glucose is an important fuel for contracting muscle, and normal glucose metabolism is vital for health. Glucose enters the muscle cell via facilitated diffusion through the GLUT4 glucose transporter which translocates from intracellular storage depots to the plasma membrane and T-tubules upon muscle contraction. Here we discuss the current understanding of how exercise-induced muscle glucose uptake is regulated. We briefly discuss the role of glucose supply and metabolism and concentrate on GLUT4 translocation and the molecular signaling that sets this in motion during muscle contractions. Contraction-induced molecular signaling is complex and involves a variety of signaling molecules including AMPK, Ca(2+), and NOS in the proximal part of the signaling cascade as well as GTPases, Rab, and SNARE proteins and cytoskeletal components in the distal part. While acute regulation of muscle glucose uptake relies on GLUT4 translocation, glucose uptake also depends on muscle GLUT4 expression which is increased following exercise. AMPK and CaMKII are key signaling kinases that appear to regulate GLUT4 expression via the HDAC4/5-MEF2 axis and MEF2-GEF interactions resulting in nuclear export of HDAC4/5 in turn leading to histone hyperacetylation on the GLUT4 promoter and increased GLUT4 transcription. Exercise training is the most potent stimulus to increase skeletal muscle GLUT4 expression, an effect that may partly contribute to improved insulin action and glucose disposal and enhanced muscle glycogen storage following exercise training in health and disease.

  1. Polymethoxyflavonoids tangeretin and nobiletin increase glucose uptake in murine adipocytes.

    PubMed

    Onda, Kenji; Horike, Natsumi; Suzuki, Tai-ichi; Hirano, Toshihiko

    2013-02-01

    Tangeretin and nobiletin are polymethoxyflavonoids that are contained in citrus fruits. Polymethoxyflavonoids are reported to have several biological functions including anti-inflammatory, anti-atherogenic, or anti-diabetic effects. However, whether polymethoxyflavonoids directly affect glucose uptake in tissues is not well understood. In the current study, we investigated whether tangeretin and nobiletin affect glucose uptake in insulin target cells such as adipocytes. We observed that treatment with tangeretin or nobiletin significantly increased the uptake of [(3) H]-deoxyglucose in differentiated 3T3-F442A adipocytes in a concentration-dependent manner. Data showed that phosphatidyl inositol 3 kinase, Akt1/2, and the protein kinase A pathways were involved in the increase in glucose uptake induced by polymethoxyflavonoids. These data suggest that the anti-diabetic action of polymethoxyflavonoids is partly exerted via these signaling pathways in insulin target tissues.

  2. Decreased myocardial glucose uptake during ischemia in diabetic swine.

    PubMed

    Stanley, W C; Hall, J L; Hacker, T A; Hernandez, L A; Whitesell, L F

    1997-02-01

    The purpose of the study was to assess myocardial glucose uptake in nondiabetic (n = 5) and streptozotocin-diabetic (n = 6) Yucatan miniature swine under matched hyperglycemic and hypoinsulinemic conditions. Fasting conscious diabetic swine had significantly higher plasma glucose levels (20.9 +/- 2.6 v 5.2 +/- 0.3 mmol/L) and lower insulin levels (6 +/- 1 v 14 +/- 4 microU/mL) than nondiabetic animals. Myocardial glucose uptake was measured in open-chest anesthetized animals under aerobic and ischemic conditions 12 weeks after streptozotocin treatment. Coronary blood flow was controlled by an extracorporeal perfusion circuit. Ischemia was induced by reducing left anterior descending (LAD) coronary artery blood flow by 60% for 40 minutes. Animals were treated with somatostatin to suppress insulin secretion, and nondiabetic swine received intravenous (IV) glucose to match the hyperglycemia in the diabetic animals. The rate of glucose uptake by the myocardium was not statistically different under aerobic conditions, but was significantly lower in diabetic swine during ischemia (0.20 +/- 0.08 v 0.63 +/- 0.14 micromol x g(-1) x min(-1), P < .01). Myocardial glucose transporter (GLUT4) protein concentration was decreased by 31% in diabetic swine. In conclusion, 12 weeks of streptozotocin diabetes in swine caused a significant decrease in myocardial GLUT4 protein and a decrease in myocardial glucose uptake during ischemia.

  3. Defective suppression by insulin of leucine-carbon appearance and oxidation in type 1, insulin-dependent diabetes mellitus. Evidence for insulin resistance involving glucose and amino acid metabolism.

    PubMed Central

    Tessari, P; Nosadini, R; Trevisan, R; De Kreutzenberg, S V; Inchiostro, S; Duner, E; Biolo, G; Marescotti, M C; Tiengo, A; Crepaldi, G

    1986-01-01

    To determine whether a resistance to insulin in type 1, insulin-dependent diabetes mellitus (IDDM) is extended to both glucose and amino acid metabolism, six normal subjects and five patients with IDDM, maintained in euglycemia with intravenous insulin administration, were infused with L-[4,5-3H]leucine (Leu) and [1-14C]alpha ketoisocaproate (KIC). Steady-state rates of leucine-carbon appearance derived from protein breakdown (Leu + KIC Ra) and KIC (approximately leucine) oxidation were determined at basal and during sequential euglycemic, hyperinsulinemic (approximately 40, approximately 90 and approximately 1,300 microU/ml) clamps. In the euglycemic postabsorptive diabetic patients, despite basal hyperinsulinemia (24 +/- 6 microU/ml vs. 9 +/- 1 microU/ml in normals, P less than 0.05), Leu + KIC Ra (2.90 +/- 0.18 mumol/kg X min), and KIC oxidation (0.22 +/- 0.03 mumol/kg X min) were similar to normal values (Leu + KIC Ra = 2.74 +/- 0.25 mumol/kg X min) (oxidation = 0.20 +/- 0.02 mumol/kg X min). During stepwise hyperinsulinemia, Leu + KIC Ra in normals decreased to 2.08 +/- 0.19, to 2.00 +/- 0.17, and to 1.81 +/- 0.16 mumol/kg X min, but only to 2.77 +/- 0.16, to 2.63 +/- 0.16, and to 2.39 +/- 0.08 mumol/kg X min in the diabetic patients (P less than 0.05 or less vs. normals at each clamp step). KIC oxidation decreased in normal subjects to a larger extent than in the diabetic subjects. Glucose disposal was reduced at all insulin levels in the patients. In summary, in IDDM: (a) Peripheral hyperinsulinemia is required to normalize both fasting leucine metabolism and blood glucose concentrations. (b) At euglycemic hyperinsulinemic clamps, lower glucose disposal rates and a defective suppression of leucine-carbon appearance and oxidation were observed. We conclude that in type 1 diabetes a resistance to the metabolic effects of insulin on both glucose and amino acid metabolism is present. PMID:3519679

  4. Promotion of Glucose Uptake in C2C12 Myotubes by Cereal Flavone Tricin and Its Underlying Molecular Mechanism.

    PubMed

    Kim, Sohyun; Go, Gwang-Woong; Imm, Jee-Young

    2017-05-17

    The effect of tricin, a methylated flavone widely distributed in cereals, on glucose uptake and the underlying molecular mechanism was investigated using C2C12 myotubes. Tricin significantly increased glucose uptake in C2C12 myotubes, regardless of the absence (1.4-fold at 20 μM) or presence (1.6-fold at 20 μM) of insulin. The GLUT4 expression on the plasma membrane was increased 1.6-fold after tricin treatment (20 μM) in the absence of insulin. Tricin treatment significantly activated the insulin-dependent cell signaling pathway, including the activation of insulin receptor substrate-1 (IRS1), phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), and AKT substrate of 160 kDa (AS160). The oral administration of tricin (64 and 160 mg kg(-1) of body weight day(-1)) also significantly lowered blood glucose levels in glucose-loaded C57BL/6 mice (p < 0.05). These results suggest that tricin has great potential to be used as a functional agent for glycemic control.

  5. Ceramide 1-phosphate stimulates glucose uptake in macrophages

    PubMed Central

    Ouro, Alberto; Arana, Lide; Gangoiti, Patricia; Rivera, Io-Guané; Ordoñez, Marta; Trueba, Miguel; Lankalapalli, Ravi S.; Bittman, Robert; Gomez-Muñoz, Antonio

    2014-01-01

    It is well established that ceramide 1-phosphate (C1P) is mitogenic and antiapoptotic, and that it is implicated in the regulation of macrophage migration. These activities require high energy levels to be available in cells. Macrophages obtain most of their energy from glucose. In this work, we demonstrate that C1P enhances glucose uptake in RAW264.7 macrophages. The major glucose transporter involved in this action was found to be GLUT 3, as determined by measuring its translocation from the cytosol to the plasma membrane. C1P-stimulated glucose uptake was blocked by selective inhibitors of phosphatidylinositol 3-kinase (PI3K) or Akt, also known as protein kinase B (PKB), and by specific siRNAs to silence the genes encoding for these kinases. C1P-stimulated glucose uptake was also inhibited by pertussis toxin (PTX) and by the siRNA that inhibited GLUT 3 expression. C1P increased the affinity of the glucose transporter for its substrate, and enhanced glucose metabolism to produce ATP. The latter action was also inhibited by PI3K- and Akt-selective inhibitors, PTX, or by specific siRNAs to inhibit GLUT 3 expression. PMID:23333242

  6. Acute myocardial ischemia causes a transmural gradient in glucose extraction but not glucose uptake.

    PubMed

    Stanley, W C; Hall, J L; Stone, C K; Hacker, T A

    1992-01-01

    We assessed the relationship between myocardial glucose metabolism and blood flow during ischemia in eight open-chest swine. Coronary flow was controlled by an extracorporeal perfusion circuit. Left anterior descending coronary arterial (LAD) flow was reduced by 60%, while left circumflex flow was normally perfused. The rate of glucose uptake (Rg) was measured with a coronary infusion of 2-deoxy-D-[14C]glucose and myocardial blood flow with radiolabeled microspheres. Myocardial biopsies were taken after 50 min of ischemia. Regional arterial-venous glucose difference was calculated as Rg per myocardial blood flow. Subendocardial blood flow decreased from 1.27 +/- 0.19 to 0.25 +/- 0.11 ml.g-1.min-1 (P less than 0.0001). The subendocardial arterial-venous glucose difference was greater in the LAD bed (1.38 +/- 0.35 mumol/ml) than the left circumflex coronary arterial perfusion bed (0.10 +/- 03; P less than 0.01); however, there was no statistically significant difference in the rate of glucose uptake between the two beds. Subendocardial glycogen concentration in the LAD perfusion bed was reduced to 26% of circumflex bed values. In conclusion, acute ischemia stimulated a dramatic increase in glucose extraction; however, this did not compensate for the decrease in blood flow, and thus the rate of glucose uptake did not increase significantly. The high rate of glycolysis is primarily supported by accelerated net glycogen breakdown rather than increased glucose uptake.

  7. Effects of tetrahydrocannabinol on glucose uptake in the rat brain.

    PubMed

    Miederer, I; Uebbing, K; Röhrich, J; Maus, S; Bausbacher, N; Krauter, K; Weyer-Elberich, V; Lutz, B; Schreckenberger, M; Urban, R

    2017-02-20

    Δ(9)-Tetrahydrocannabinol (THC) is the psychoactive component of the plant Cannabis sativa and acts as a partial agonist at cannabinoid type 1 and type 2 receptors in the brain. The goal of this study was to assess the effect of THC on the cerebral glucose uptake in the rat brain. 21 male Sprague Dawley rats (12-13 w) were examined and received five different doses of THC ranging from 0.01 to 1 mg/kg. For data acquisition a Focus 120 small animal PET scanner was used and 24.1-28.0 MBq of [(18)F]-fluoro-2-deoxy-d-glucose were injected. The data were acquired for 70 min and arterial blood samples were collected throughout the scan. THC, THC-OH and THC-COOH were determined at 55 min p.i. Nine volumes of interest were defined, and the cerebral glucose uptake was calculated for each brain region. Low blood THC levels of < 1 ng/ml (injected dose: ≤ 0.01 mg/kg) corresponded to an increased glucose uptake (6-30 %), particularly in the hypothalamus (p = 0.007), while blood THC levels > 10 ng/ml (injected dose: ≥ 0.05 mg/kg) coincided with a decreased glucose uptake (-2 to -22 %), especially in the cerebellar cortex (p = 0.008). The effective concentration in this region was estimated 2.4 ng/ml. This glucose PET study showed that stimulation of CB1 receptors by THC affects the glucose uptake in the rat brain, whereby the effect of THC is regionally different and dependent on dose - an effect that may be of relevance in behavioural studies.

  8. Myo-inositol inhibits intestinal glucose absorption and promotes muscle glucose uptake: a dual approach study.

    PubMed

    Chukwuma, Chika Ifeanyi; Ibrahim, Mohammed Auwal; Islam, Md Shahidul

    2016-12-01

    The present study investigated the effects of myo-inositol on muscle glucose uptake and intestinal glucose absorption ex vivo as well as in normal and type 2 diabetes model of rats. In ex vivo study, both intestinal glucose absorption and muscle glucose uptake were studied in isolated rat jejunum and psoas muscle respectively in the presence of increasing concentrations (2.5 % to 20 %) of myo-inositol. In the in vivo study, the effect of a single bolus dose (1 g/kg bw) of oral myo-inositol on intestinal glucose absorption, blood glucose, gastric emptying and digesta transit was investigated in normal and type 2 diabetic rats after 1 h of co-administration with 2 g/kg bw glucose, when phenol red was used as a recovery marker. Myo-inositol inhibited intestinal glucose absorption (IC50 = 28.23 ± 6.01 %) and increased muscle glucose uptake, with (GU50 = 2.68 ± 0.75 %) or without (GU50 = 8.61 ± 0.55 %) insulin. Additionally, oral myo-inositol not only inhibited duodenal glucose absorption and reduced blood glucose increase, but also delayed gastric emptying and accelerated digesta transit in both normal and diabetic animals. Results of this study suggest that dietary myo-inositol inhibits intestinal glucose absorption both in ex vivo and in normal or diabetic rats and also promotes muscle glucose uptake in ex vivo condition. Hence, myo-inositol may be further investigated as a possible anti-hyperglycaemic dietary supplement for diabetic foods and food products.

  9. Fetal programming of perivenous glucose uptake reveals a regulatory mechanism governing hepatic glucose output during refeeding.

    PubMed

    Murphy, Helena C; Regan, Gemma; Bogdarina, Irina G; Clark, Adrian J L; Iles, Richard A; Cohen, Robert D; Hitman, Graham A; Berry, Colin L; Coade, Zoe; Petry, Clive J; Burns, Shamus P

    2003-06-01

    Increased hepatic gluconeogenesis maintains glycemia during fasting and has been considered responsible for elevated hepatic glucose output in type 2 diabetes. Glucose derived periportally via gluconeogenesis is partially taken up perivenously in perfused liver but not in adult rats whose mothers were protein-restricted during gestation (MLP rats)-an environmental model of fetal programming of adult glucose intolerance exhibiting diminished perivenous glucokinase (GK) activity. We now show that perivenous glucose uptake rises with increasing glucose concentration (0-8 mmol/l) in control but not MLP liver, indicating that GK is flux-generating. The data demonstrate that acute control of hepatic glucose output is principally achieved by increasing perivenous glucose uptake, with rising glucose concentration during refeeding, rather than by downregulation of gluconeogenesis, which occurs in different hepatocytes. Consistent with these observations, glycogen synthesis in vivo commenced in the perivenous cells during refeeding, MLP livers accumulating less glycogen than controls. GK gene transcription was unchanged in MLP liver, the data supporting a recently proposed posttranscriptional model of GK regulation involving nuclear-cytoplasmic transport. The results are pertinent to impaired regulation of hepatic glucose output in type 2 diabetes, which could arise from diminished GK-mediated glucose uptake rather than increased gluconeogenesis.

  10. Tctex1d2 Is a Negative Regulator of GLUT4 Translocation and Glucose Uptake.

    PubMed

    Shimoda, Yoko; Okada, Shuichi; Yamada, Eijiro; Pessin, Jeffrey E; Yamada, Masanobu

    2015-10-01

    Tctex1d2 (Tctex1 domain containing 2) is an open reading frame that encodes for a functionally unknown protein that contains a Tctex1 domain found in dynein light chain family members. Examination of gene expression during adipogenesis demonstrated a marked increase in Tctex1d2 protein expression that was essentially undetectable in preadipocytes and markedly induced during 3T3-L1 adipocyte differentiation. Tctex1d2 overexpression significantly inhibited insulin-stimulated glucose transporter 4 (GLUT4) translocation and 2-deoxyglucose uptake. In contrast, Tctex1d2 knockdown significantly increased insulin-stimulated GLUT4 translocation and 2-deoxyglucose uptake. However, acute insulin stimulation (up to 30 min) in 3T3-L1 adipocytes with overexpression or knockdown of Tctex1d2 had no effect on Akt phosphorylation, a critical signal transduction target required for GLUT4 translocation. Although overexpression of Tctex1d2 had no significant effect on GLUT4 internalization, Tctex1d2 was found to associate with syntaxin 4 in an insulin-dependent manner and inhibit Doc2b binding to syntaxin 4. In addition, glucose-dependent insulinotropic polypeptide rescued the Tctex1d2 inhibition of insulin-stimulated GLUT4 translocation by suppressing the Tctex1d2-syntaxin 4 interaction and increasing Doc2b-Synatxin4 interactions. Taking these results together, we hypothesized that Tctex1d2 is a novel syntaxin 4 binding protein that functions as a negative regulator of GLUT4 plasma membrane translocation through inhibition of the Doc2b-syntaxin 4 interaction.

  11. Astrocytic Insulin Signaling Couples Brain Glucose Uptake with Nutrient Availability.

    PubMed

    García-Cáceres, Cristina; Quarta, Carmelo; Varela, Luis; Gao, Yuanqing; Gruber, Tim; Legutko, Beata; Jastroch, Martin; Johansson, Pia; Ninkovic, Jovica; Yi, Chun-Xia; Le Thuc, Ophelia; Szigeti-Buck, Klara; Cai, Weikang; Meyer, Carola W; Pfluger, Paul T; Fernandez, Ana M; Luquet, Serge; Woods, Stephen C; Torres-Alemán, Ignacio; Kahn, C Ronald; Götz, Magdalena; Horvath, Tamas L; Tschöp, Matthias H

    2016-08-11

    We report that astrocytic insulin signaling co-regulates hypothalamic glucose sensing and systemic glucose metabolism. Postnatal ablation of insulin receptors (IRs) in glial fibrillary acidic protein (GFAP)-expressing cells affects hypothalamic astrocyte morphology, mitochondrial function, and circuit connectivity. Accordingly, astrocytic IR ablation reduces glucose-induced activation of hypothalamic pro-opio-melanocortin (POMC) neurons and impairs physiological responses to changes in glucose availability. Hypothalamus-specific knockout of astrocytic IRs, as well as postnatal ablation by targeting glutamate aspartate transporter (GLAST)-expressing cells, replicates such alterations. A normal response to altering directly CNS glucose levels in mice lacking astrocytic IRs indicates a role in glucose transport across the blood-brain barrier (BBB). This was confirmed in vivo in GFAP-IR KO mice by using positron emission tomography and glucose monitoring in cerebral spinal fluid. We conclude that insulin signaling in hypothalamic astrocytes co-controls CNS glucose sensing and systemic glucose metabolism via regulation of glucose uptake across the BBB.

  12. Characterization of glucose uptake by cultured rat podocytes.

    PubMed

    Lewko, Barbara; Bryl, Ewa; Witkowski, Jacek M; Latawiec, Elzbieta; Gołos, Magdalena; Endlich, Nicole; Hähnel, Brunhilde; Koksch, Claudia; Angielski, Stefan; Kriz, Wilhelm; Stepinski, Jan

    2005-01-01

    The nonmetabolizable glucose analogue [(3)H]-2-deoxy-D-glucose ((3)H-2DG) was used to study glucose transport in cultured rat podocytes. Intracellular accumulation of (3)H-2DG was linear up to 20 min and was inhibited by cytochalasin B (80% inhibition) and by phlorizin (20% inhibition). Pretreatment with insulin stimulated the (3)H-2DG uptake 1.5-fold. A Hill analysis of the rate of glucose transport yielded a V(max) value of approximately 10 mM and S(0.5)of 7.8 mM. The value h = 1.0 for a Hill coefficient confirmed that glucose uptake exhibited a Michaelis-Menten kinetics. Transporters GLUT2 and GLUT4 were expressed in over 90% podocytes. Of the GLUT2- and GLUT4-expressing cells, approximately one-fourth expressed the membrane-bound fraction. We conclude that cultured rat podocytes possess a differentiated glucose transport system consisting chiefly of facilitative GLUT2 and GLUT4 transporters. It seems likely that a sodium-dependent glucose cotransporter may also be present in these cells.

  13. Hydroxylamine acutely activates glucose uptake in L929 fibroblast cells.

    PubMed

    Louters, Larry L; Scripture, Jared P; Kuipers, David P; Gunnink, Stephen M; Kuiper, Benjamin D; Alabi, Ola D

    2013-04-01

    Nitroxyl (HNO) has a unique, but varied, set of biological properties including beneficial effects on cardiac contractility and stimulation of glucose uptake by GLUT1. These biological effects are largely initiated by HNO's reaction with cysteine residues of key proteins. The intracellular production of HNO has not yet been demonstrated, but the small molecule, hydroxylamine (HA), has been suggested as possible intracellular source. We examined the effects of this molecule on glucose uptake in L929 fibroblast cells. HA activates glucose uptake from 2 to 5-fold within two minutes. Prior treatment with thiol-active compounds, such as iodoacetamide (IA), cinnamaldehyde (CA), or phenylarsine oxide (PAO) blocks HA-activation of glucose uptake. Incubation of HA with the peroxidase inhibitor, sodium azide, also blocks the stimulatory effects of HA. This suggests that HA is oxidized to HNO by L929 fibroblast cells, which then reacts with cysteine residues to exert its stimulatory effects. The data suggest that GLUT1 is acutely activated in L929 cells by modification of cysteine residues, possibly the formation of a disulfide bond within GLUT1 itself. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  14. Subcellular characterization of glucose uptake in coronary endothelial cells.

    PubMed

    Gaudreault, N; Scriven, D R L; Laher, I; Moore, E D W

    2008-01-01

    Despite all the evidence linking glucose toxicity to an increased risk of cardiovascular diseases, very little is known about the regulation of glucose uptake in endothelial cells. We have previously reported an asymmetric distribution of the GLUTs (1-5) and SGLT-1 in en face preparations of rat coronary artery endothelia [Gaudreault N., Scriven D.R., Moore E.D., 2004. Characterisation of glucose transporters in the intact coronary artery endothelium in rats: GLUT-2 upregulated by long-term hyperglycaemia. Diabetologia 47(12),2081-2092]. We assessed this time, through immunocytochemistry and wide field fluorescence microscopy coupled to deconvolution, the presence and subcellular distribution of glucose transporters in cultures of human coronary artery endothelial cells (HCAECs). HCAECs express GLUT-1 to 5 and SGLT-1, but their subcellular distribution lacks the luminal/abluminal asymmetry and the proximity to cell-to-cell junctions observed in intact endothelium. To determine the impact of the transporters' distribution on intracellular glucose accumulation, a fluorescent glucose analog (2-NBDG) was used in conjunction with confocal microscopy to monitor uptake in individual cells; the arteries were mounted in an arteriograph chamber with physiological flow rates. The uptake in both preparations was inhibited by cytochalasin-B and d-glucose and stimulated by insulin, but the distribution of the incorporated 2-NBDG mirrored that of the transporters. In HCAEC it was distributed throughout the cell and in the intact arterial endothelium it was restricted to the narrow cytosolic volume adjacent to the cell-to-cell junctions. We suggest that the latter subcellular organization and compartmentalization may facilitate transendothelial transport of glucose in intact coronary artery.

  15. Implications of Resveratrol on Glucose Uptake and Metabolism.

    PubMed

    León, David; Uribe, Elena; Zambrano, Angara; Salas, Mónica

    2017-03-07

    Resveratrol-a polyphenol of natural origin-has been the object of massive research in the past decade because of its potential use in cancer therapy. However, resveratrol has shown an extensive range of cellular targets and effects, which hinders the use of the molecule for medical applications including cancer and type 2 diabetes. Here, we review the latest advances in understanding how resveratrol modulates glucose uptake, regulates cellular metabolism, and how this may be useful to improve current therapies. We discuss challenges and findings regarding the inhibition of glucose uptake by resveratrol and other polyphenols of similar chemical structure. We review alternatives that can be exploited to improve cancer therapies, including the use of other polyphenols, or the combination of resveratrol with other molecules and their impact on glucose homeostasis in cancer and diabetes.

  16. Study of glucose uptake activity of Helicteres isora Linn. fruits in L-6 cell lines

    PubMed Central

    Gupta, R. N.; Pareek, Anil; Suthar, Manish; Rathore, Garvendra S.; Basniwal, Pawan K.; Jain, Deepti

    2009-01-01

    The effect of hot water extract of fruits of Helicteres isora on glucose uptake was studied in rodent skeletal muscle cells (L-6 cells) involved in glucose utilization. H. isora is an antidiabetic medicinal plant being used in Indian traditional medicine. Hot water extracts were analysed for glucose uptake activity and found to be significantly active at 200 μg/ml dose comparable with insulin and metformin. Elevation of glucose uptake by H. isora in association with glucose transport supported the upregulation of glucose uptake. It was concluded that hot water extract of H. isora activate glucose uptake in L-6 cell line of mouse skeletal muscles. PMID:20336200

  17. Study of glucose uptake activity of Helicteres isora Linn. fruits in L-6 cell lines.

    PubMed

    Gupta, R N; Pareek, Anil; Suthar, Manish; Rathore, Garvendra S; Basniwal, Pawan K; Jain, Deepti

    2009-10-01

    The effect of hot water extract of fruits of Helicteres isora on glucose uptake was studied in rodent skeletal muscle cells (L-6 cells) involved in glucose utilization. H. isora is an antidiabetic medicinal plant being used in Indian traditional medicine. Hot water extracts were analysed for glucose uptake activity and found to be significantly active at 200 mug/ml dose comparable with insulin and metformin. Elevation of glucose uptake by H. isora in association with glucose transport supported the upregulation of glucose uptake. It was concluded that hot water extract of H. isora activate glucose uptake in L-6 cell line of mouse skeletal muscles.

  18. Brain Glucose Transporter (Glut3) Haploinsufficiency Does Not Impair Mouse Brain Glucose Uptake

    PubMed Central

    Stuart, Charles A.; Ross, Ian R.; Howell, Mary E. A.; McCurry, Melanie P.; Wood, Thomas G.; Ceci, Jeffrey D.; Kennel, Stephen J.; Wall, Jonathan

    2011-01-01

    Mouse brain expresses three principle glucose transporters. Glut1 is an endothelial marker and is the principal glucose transporter of the blood-brain barrier. Glut3 and Glut6 are expressed in glial cells and neural cells. A mouse line with a null allele for Glut3 has been developed. The Glut3−/− genotype is intrauterine lethal by seven days post-coitis, but the heterozygous (Glut3+/−) littermate survives, exhibiting rapid post-natal weight gain, but no seizures or other behavioral aberrations. At twelve weeks of age, brain uptake of tail vein-injected 3H-2-deoxy glucose in Glut3+/− mice was not different from Glut3+/+ littermates, despite 50% less Glut3 protein expression in the brain. The brain uptake of injected 18F-2-fluoro-2-deoxy glucose was similarly not different from Glut3+/− littermates in the total amount, time course, or brain imaging in the Glut3+/− mice. Glut1 and Glut6 protein expressions evaluated by immunoblots were not affected by the diminished Glut3 expression in the Glut3+/− mice. We conclude that a 50% decrease in Glut3 is not limiting for the uptake of glucose into the mouse brain, since Glut3 haploinsufficiency does not impair brain glucose uptake or utilization. PMID:21316350

  19. Feedback Regulation of Glucose Transporter Gene Transcription in Kluyveromyces lactis by Glucose Uptake

    PubMed Central

    Milkowski, C.; Krampe, S.; Weirich, J.; Hasse, V.; Boles, E.; Breunig, K. D.

    2001-01-01

    In the respirofermentative yeast Kluyveromyces lactis, only a single genetic locus encodes glucose transporters that can support fermentative growth. This locus is polymorphic in wild-type isolates carrying either KHT1 and KHT2, two tandemly arranged HXT-like genes, or RAG1, a low-affinity transporter gene that arose by recombination between KHT1 and KHT2. Here we show that KHT1 is a glucose-induced gene encoding a low-affinity transporter very similar to Rag1p. Kht2p has a lower Km (3.7 mM) and a more complex regulation. Transcription is high in the absence of glucose, further induced by low glucose concentrations, and repressed at higher glucose concentrations. The response of KHT1 and KHT2 gene regulation to high but not to low concentrations of glucose depends on glucose transport. The function of either Kht1p or Kht2p is sufficient to mediate the characteristic response to high glucose, which is impaired in a kht1 kht2 deletion mutant. Thus, the KHT genes are subject to mutual feedback regulation. Moreover, glucose repression of the endogenous β-galactosidase (LAC4) promoter and glucose induction of pyruvate decarboxylase were abolished in the kht1 kht2 mutant. These phenotypes could be partially restored by HXT gene family members from Saccharomyces cerevisiae. The results indicate that the specific responses to high but not to low glucose concentrations require a high rate of glucose uptake. PMID:11514503

  20. Pollen Typhae total flavone improves insulin-induced glucose uptake through the β-arrestin-2-mediated signaling in C2C12 myotubes.

    PubMed

    Feng, Xiao-Tao; Wang, Tian-Zhan; Chen, Yi; Liu, Ji-Bo; Liu, Yi; Wang, Wen-Jian

    2012-10-01

    Defects in insulin-stimulated glucose uptake in skeletal muscle result from the dysfunction of insulin signaling including the phosphatidylinositol-3 kinase (PI3K) pathway and a novel β-arrestin-2-mediated signaling, which leads to insulin resistance (IR). Pollen Typhae, a Chinese herb, has been used for thousands of years in traditional Chinese medicine, and has the potential to inhibit the development of IR. We have previously reported that Pollen Typhae total flavone (PTF), the extract from Pollen Typhae, ameliorates high-glucose- and high-insulin-induced impairment of glucose uptake in 3T3-L1 adipocytes, but the mechanisms remain unclear. The objective of this study was to investigate the effects of PTF on glucose uptake, and to explore the underlying mechanisms in C2C12 myotubes. PTF improved insulin-stimulated glucose uptake in a dose- and time-dependent manner in C2C12 myotubes, and prevented palmitate-induced IR. Furthermore, PTF enhanced the basal gene expression of Src and Akt2, elevated the protein expression of β-arrestin-2, Src and Akt, increased the phosphorylation of insulin receptor-β at Tyr1150/1151 and Akt at Thr308/Ser473 in an insulin-dependent manner, but had no effects on the protein expression of PI3K-p85 or the activity of PI3K. Inhibition of Src but not PI3K restrained PTF-induced phosphorylation of Akt and glucose uptake. Our findings indicate that PTF improves insulin-induced glucose uptake via the β-arrestin-2-mediated signaling in C2C12 myotubes.

  1. Glucose uptake and glycogen synthesis in muscles from immobilized limbs

    NASA Technical Reports Server (NTRS)

    Nicholson, W. F.; Watson, P. A.; Booth, F. W.

    1984-01-01

    Defects in glucose metabolism in muscles of immobilized limbs of mice were related to alterations in insulin binding, insulin responsiveness, glucose supply, and insulin activation of glycogen synthase. These were tested by in vitro methodology. A significant lessening in the insulin-induced maximal response of 2-deoxyglucose uptake into the mouse soleus muscle occurred between the 3rd and 8th h of limb immobilization, suggesting a decreased insulin responsiveness. Lack of change in the specific binding of insulin to muscles of 24-h immobilized limbs indicates that a change in insulin receptor number did not play a role in the failure of insulin to stimulate glucose metabolism. Its inability to stimulate glycogen synthesis in muscle from immobilized limbs is due, in part, to a lack of glucose supply to glycogen synthesis and also to the ineffectiveness of insulin to increase the percentage of glycogen synthase in its active form in muscles from 24-h immobilized limbs.

  2. Effects of iriflophenone 3-C-β-glucoside on fasting blood glucose level and glucose uptake

    PubMed Central

    Pranakhon, Ratree; Aromdee, Chantana; Pannangpetch, Patchareewan

    2015-01-01

    Background: One of the biological activities of agar wood (Aquilaria sinensis Lour., Thymelaeaceae), is anti-hyperglycemic activity. The methanolic extract (ME) was proven to possess the fasting blood glucose activity in rat and glucose uptake transportation by rat adipocytes. Objective: To determine the decreasing fasting blood glucose level of constituents affordable for in vivo test. If the test was positive, the mechanism which is positive to the ME, glucose transportation, will be performed. Materials and Methods: The ME was separated by column chromatography and identified by spectroscopic methods. Mice was used as an animal model (in vivo), and rat adipocytes were used for the glucose transportation activity (in vitro). Result: Iriflophenone 3-C-β-glucoside (IPG) was the main constituent, 3.17%, and tested for the activities. Insulin and the ME were used as positive controls. The ME, IPG and insulin lowered blood glucose levels by 40.3, 46.4 and 41.5%, respectively, and enhanced glucose uptake by 152, 153, and 183%, respectively. Conclusion: These findings suggest that IPG is active in lowering fasting blood glucose with potency comparable to that of insulin. PMID:25709215

  3. Scrutinizing microwave effects on glucose uptake in yeast cells.

    PubMed

    Stanisavljev, Dragomir; Gojgić-Cvijović, Gordana; Bubanja, Itana Nuša

    2017-01-01

    Taking into account different literature reports on microwave (MW) effects on living organisms, we thoroughly investigated the influence of constant 2.45 GHz MW irradiation on glucose uptake in yeast cells. A Saccharomyces cerevisiae suspension of 2.9 × 10(8) cells/ml was used in all experiments. A large specific absorption rate of 0.55 W/g of suspension is compensated by efficient external cooling of the reaction vessel, which established a strong non-equilibrium flow of energy through the solution and enabled a constant bulk temperature of 30 °C to within 1 °C during glucose uptake. Comparison of MW effects with control experiments revealed insignificant changes of glucose uptake during the initial stages of the experiment (up to the 10th min). Statistically "notable" differences during the next 20 min of the irradiation were detected corresponding to thermal overheating of 2 °C. Possible specific thermal MW effects may be related to local temperature increase and a large flow of energy throughout the system. The obtained effects show that environmental MW pollution (fortunately) is of too low intensity to provoke metabolic changes in living cells. At the same time, a longer exposure of cells to electromagnetic irradiation may have impacts on biochemical applications and production of valuable biotechnological products.

  4. Influence of Acute and Chronic Exercise on Glucose Uptake

    PubMed Central

    Röhling, Martin; Herder, Christian; Stemper, Theodor; Müssig, Karsten

    2016-01-01

    Insulin resistance plays a key role in the development of type 2 diabetes. It arises from a combination of genetic predisposition and environmental and lifestyle factors including lack of physical exercise and poor nutrition habits. The increased risk of type 2 diabetes is molecularly based on defects in insulin signaling, insulin secretion, and inflammation. The present review aims to give an overview on the molecular mechanisms underlying the uptake of glucose and related signaling pathways after acute and chronic exercise. Physical exercise, as crucial part in the prevention and treatment of diabetes, has marked acute and chronic effects on glucose disposal and related inflammatory signaling pathways. Exercise can stimulate molecular signaling pathways leading to glucose transport into the cell. Furthermore, physical exercise has the potential to modulate inflammatory processes by affecting specific inflammatory signaling pathways which can interfere with signaling pathways of the glucose uptake. The intensity of physical training appears to be the primary determinant of the degree of metabolic improvement modulating the molecular signaling pathways in a dose-response pattern, whereas training modality seems to have a secondary role. PMID:27069930

  5. Hydrogen improves glycemic control in type1 diabetic animal model by promoting glucose uptake into skeletal muscle.

    PubMed

    Amitani, Haruka; Asakawa, Akihiro; Cheng, Kaichun; Amitani, Marie; Kaimoto, Kaori; Nakano, Masako; Ushikai, Miharu; Li, Yingxiao; Tsai, Minglun; Li, Jiang-Bo; Terashi, Mutsumi; Chaolu, Huhe; Kamimura, Ryozo; Inui, Akio

    2013-01-01

    Hydrogen (H(2)) acts as a therapeutic antioxidant. However, there are few reports on H(2) function in other capacities in diabetes mellitus (DM). Therefore, in this study, we investigated the role of H(2) in glucose transport by studying cultured mouse C2C12 cells and human hepatoma Hep-G2 cells in vitro, in addition to three types of diabetic mice [Streptozotocin (STZ)-induced type 1 diabetic mice, high-fat diet-induced type 2 diabetic mice, and genetically diabetic db/db mice] in vivo. The results show that H(2) promoted 2-[(14)C]-deoxy-d-glucose (2-DG) uptake into C2C12 cells via the translocation of glucose transporter Glut4 through activation of phosphatidylinositol-3-OH kinase (PI3K), protein kinase C (PKC), and AMP-activated protein kinase (AMPK), although it did not stimulate the translocation of Glut2 in Hep G2 cells. H(2) significantly increased skeletal muscle membrane Glut4 expression and markedly improved glycemic control in STZ-induced type 1 diabetic mice after chronic intraperitoneal (i.p.) and oral (p.o.) administration. However, long-term p.o. administration of H(2) had least effect on the obese and non-insulin-dependent type 2 diabetes mouse models. Our study demonstrates that H(2) exerts metabolic effects similar to those of insulin and may be a novel therapeutic alternative to insulin in type 1 diabetes mellitus that can be administered orally.

  6. Study on kinetics of glucose uptake by some species of plankton

    NASA Astrophysics Data System (ADS)

    Li, Wenquan; Wang, Xian; Zhang, Yaohua

    1993-03-01

    The rates of glucose uptake by some species of plankton were determined by3H-glucose tracer method. Experimental results indicated that the observed glucose uptake at natural seawater concentrations by Platymonas subcordiformis and Brachionus plicatilis was principally a metabolic process fitted with the Michaelis-Menten equation in the range of adaptive temperatures. Heterotrophic uptake by Platymonas subcordiformis was mainly dependent on diffusion at high glucose levels. The uptake by Brachionus plicatilis showed active transport even at high glucose levels, indicating its high heterotrophic activity. The uptake rate by Artemia salina was lower, and its V m/K ratio was lower than those of the other two species of plankton.

  7. Identification of plant extracts with potential antidiabetic properties: effect on human peroxisome proliferator-activated receptor (PPAR), adipocyte differentiation and insulin-stimulated glucose uptake.

    PubMed

    Christensen, Kathrine B; Minet, Ariane; Svenstrup, Henrik; Grevsen, Kai; Zhang, Hongbin; Schrader, Eva; Rimbach, Gerald; Wein, Silvia; Wolffram, Siegfried; Kristiansen, Karsten; Christensen, Lars P

    2009-09-01

    Thiazolidinediones (TZDs) are insulin sensitizing drugs used to treat type 2 diabetes. The primary target of the TZDs is the peroxisome proliferator-activated receptor (PPAR) gamma, a key regulator of adipogenesis and glucose homeostasis. Currently prescribed TZDs are full PPARgamma agonists, and their use is associated with several side effects. Partial PPARgamma agonists appear to be associated with fewer side effects but may still confer the desired insulin sensitizing action. Extracts from common medicinal/food plants were tested in a screening platform comprising a series of bioassays, including tests for PPARgamma, alpha and delta transactivation, adipocyte differentiation and insulin-stimulated glucose uptake, allowing identification of plants containing potentially interesting PPAR agonists. Twenty-two plant extracts out of 133 were found to increase insulin-stimulated glucose uptake and 18 extracts were found to activate PPARgamma, 3 to activate PPARalpha and gamma, 6 to activate PPARdelta and gamma, and 9 to activate PPARgamma, alpha and delta. Among the 24 different plant species tested in the platform, 50% were shown to contain compounds capable of activating PPARgamma and stimulating insulin-dependent glucose uptake with no or little effect on adipocyte differentiation warranting further studies and characterization.

  8. Glucose transporter content and glucose uptake in skeletal muscle constructs engineered in vitro.

    PubMed

    Baker, Erin L; Dennis, Robert G; Larkin, Lisa M

    2003-01-01

    Engineered muscle may eventually be used as a treatment option for patients suffering from loss of muscle function. The metabolic and contractile function of engineered muscle has not been well described; therefore, the purpose of this experiment was to study glucose transporter content and glucose uptake in engineered skeletal muscle constructs called myooids. Glucose uptake by way of 2-deoxyglucose and GLUT-1 and GLUT-4 transporter protein content was measured in basal and insulin-stimulated myooids that were engineered from soleus muscles of female Sprague-Dawley rats. There was a significant increase in the basal 2-deoxyglucose uptake of myooids compared with adult control (fivefold), contraction-stimulated (3.4-fold), and insulin-stimulated (threefold) soleus muscles (P = 0.0001, 0.0001, and 0.0001, respectively). In addition, there was a significant increase in the insulin-stimulated 2-deoxyglucose uptake of myooids compared with adult control soleus muscles in basal conditions (6.5-fold) and adult contraction-stimulated (4.5-fold) and insulin- stimulated (3.9-fold) soleus muscles (P = 0.0001, 0.0001, and 0.0001, respectively). There was a significant 30% increase in insulin-stimulated compared with basal 2-deoxyglucose uptake in the myooids. The myooid GLUT-1 protein content was 820% of the adult control soleus muscle, whereas the GLUT-4 protein content was 130% of the control soleus muscle. Myooid GLUT-1 protein content was 6.3-fold greater than GLUT-4 protein content, suggesting that the glucose transport of the engineered myooids is similar in several respects to that observed in both fetal and denervated skeletal muscle tissue.

  9. Role of Adrenergic Receptors in Glucose, Fructose and Galactose-Induced Increases in Intestinal Glucose Uptake in Dogs.

    PubMed

    Salman, T M; Alada, A R A; Oyebola, D D O

    2014-12-29

    The study investigated the role of adrenergic receptors in glucose, fructose-, and galactose- induced increases in intestinal glucose uptake. Experiments were carried out on fasted male anaesthetized Nigerian local dogs divided into seven groups (with five dogs per group). Group I dogs were administered normal saline and served as control. Dogs in groups II, III and IV were intravenously infused with glucose (1.1 mg/kg/min), fructose (1.1 mg/kg/min) and galactose (1.1 mg/kg/min) respectively. Another three groups, V, VI and VII were pretreated with prazosin (0.2mg/kg), propranolol (0.5mg/kg) or a combination of prazosin (0.2mg/kg) and propranolol (0.5mg/kg) followed by glucose infusion, frutose infusion or galactose infusion respectively. Through a midline laparatomy, the upper jejunum was cannulated for blood flow measurement and blood samples were obtained for measurement of glucose content of the arterial blood and venous blood from the upper jejunal segment. Glucose uptake was calculated as the product of jejunal blood flow and the difference between arterial and venous glucose levels (A-V glucose). The results showed that pretreatment of the animal with prazosin had no effect on glucose and galactose induced increases in glucose uptake. However, pretreatment with propranolol completely abolished glucose, fructose and galactose-induced increases in intestinal glucose uptake. Prazosin also significantly reduced galactose-induced increase in intestinal glucose uptake. The results suggest that the increases in intestinal glucose uptake induced by glucose and fructose are mediated mostly by beta adrenergic receptors while that of galactose is mediated by both alpha and beta adrenergic receptors.

  10. Glucose starvation is required for insulin stimulation of glucose uptake and metabolism in cultured microvascular endothelial cells

    SciTech Connect

    Gerritsen, M.E.; Burke, T.M.; Allen, L.A.

    1988-03-01

    In the present study we determined the uptake and disposition of glucose in serum-deprived rabbit coronary microvessel endothelial (RCME) cells. RCME cells exhibited stereospecific hexose uptake inhibited by cytochalasin B. Pretreatment of the RCME cells with potassium cyanide or 2,4-dinitrophenol inhibited 2-deoxyglucose uptake but not 3-O-methylglucose transport. A major proportion (30-60%) of the 2-deoxyglucose present in the RCME cells was not phosphorylated. These two observations suggested that the rate-limiting step in the uptake of 2-deoxyglucose was not transport but rather the phosphorylation of 2-deoxyglucose to 2-deoxyglucose 6-phosphate. When glucose-deprived cells were incubated 2 hr with (U-14C)glucose the disposition of the label was as follows: glycogen 60%, acid-soluble fraction 30%, and lipid less than 5%. In contrast glucose-fed cells exhibited lower overall glucose incorporation, and a slightly different disposition: glycogen 45%, acid-soluble fraction 50%, and lipid 5%. Glucose-deprived RCME cells also exhibited greater basal levels of 2-deoxyglucose uptake compared to glucose-fed cells. RCME cells incubated in the absence of glucose and serum for 16 hr exhibited dose-dependent insulin stimulation of hexose uptake and subsequent metabolism to macromolecules (i.e., glycogen and the acid-soluble fraction). Significant effects of insulin were observed with concentrations as low as 2 x 10(-10) M, well within the physiological range. In contrast, cells preincubated in serum-free culture medium containing 5.5 mM glucose did not exhibit insulin-enhanced hexose uptake or glucose metabolism (even at doses as high as 10(-7) M). These studies indicate that the effects of insulin on rabbit coronary microvascular endothelial cell glucose uptake and metabolism require both serum and glucose deprivation.

  11. Arachidonic acid stimulates glucose uptake in cerebral cortical astrocytes.

    PubMed Central

    Yu, N; Martin, J L; Stella, N; Magistretti, P J

    1993-01-01

    Arachidonic acid (AA) has recently been shown to influence various cellular functions in the central nervous system. Here we report that AA increases, in a time- and concentration-dependent manner, 2-deoxy-D-[1-3H]glucose ([3H]2DG) uptake in primary cultures of astrocytes prepared from the cerebral cortex of neonatal mice. This effect is mimicked by an unsaturated fatty acid such as linolenic acid, while palmitic and arachidic acids, two saturated fatty acids, are inactive. Pharmacological agents that increase the endogenous levels of AA by stimulating AA release (melittin) or by inhibiting its reacylation (thimerosal) also promote [3H]2DG uptake by astrocytes. We also report that norepinephrine (NE) stimulates the release of [3H]AA from membrane phospholipids, with an EC50 of 3 microM; this effect is accompanied, with a temporal delay of approximately 4 min, by the stimulation of [3H]2DG uptake, for which the EC50 of NE is 1 microM. Since the cerebral cortex, the brain region from which astrocytes used in this study were prepared, receives a massive noradrenergic innervation, originating from the locus coeruleus, the effects of NE reported here further stress the notion that certain neurotransmitters may play a role in the regulation of energy metabolism in the cerebral cortex and point at astrocytes as the likely targets of such metabolic effects. PMID:8483920

  12. Chronic overeating impairs hepatic glucose uptake and disposition.

    PubMed

    Coate, Katie C; Kraft, Guillaume; Shiota, Masakazu; Smith, Marta S; Farmer, Ben; Neal, Doss W; Williams, Phil; Cherrington, Alan D; Moore, Mary Courtney

    2015-05-15

    Dogs consuming a hypercaloric high-fat and -fructose diet (52 and 17% of total energy, respectively) or a diet high in either fructose or fat for 4 wk exhibited blunted net hepatic glucose uptake (NHGU) and glycogen deposition in response to hyperinsulinemia, hyperglycemia, and portal glucose delivery. The effect of a hypercaloric diet containing neither fructose nor excessive fat has not been examined. Dogs with an initial weight of ≈25 kg consumed a chow and meat diet (31% protein, 44% carbohydrate, and 26% fat) in weight-maintaining (CTR; n = 6) or excessive (Hkcal; n = 7) amounts for 4 wk (cumulative weight gain 0.0 ± 0.3 and 1.5 ± 0.5 kg, respectively, P < 0.05). They then underwent clamp studies with infusions of somatostatin and intraportal insulin (4× basal) and glucagon (basal). The hepatic glucose load was doubled with peripheral (Pe) glucose infusion for 90 min (P1) and intraportal glucose at 4 mg·kg(-1)·min(-1) plus Pe glucose for the final 90 min (P2). NHGU was blunted (P < 0.05) in Hkcal during both periods (mg·kg(-1)·min(-1); P1: 1.7 ± 0.2 vs. 0.3 ± 0.4; P2: 3.6 ± 0.3 vs. 2.3 ± 0.4, CTR vs. Hkcal, respectively). Terminal hepatic glucokinase catalytic activity was reduced nearly 50% in Hkcal vs. CTR (P < 0.05), although glucokinase protein did not differ between groups. In Hkcal vs. CTR, liver glycogen was reduced 27% (P < 0.05), with a 91% increase in glycogen phosphorylase activity (P < 0.05) but no significant difference in glycogen synthase activity. Thus, Hkcal impaired NHGU and glycogen synthesis compared with CTR, indicating that excessive energy intake, even if the diet is balanced and nutritious, negatively impacts hepatic glucose metabolism. Copyright © 2015 the American Physiological Society.

  13. Glucose Metabolism in Sediments of a Eutrophic Lake: Tracer Analysis of Uptake and Product Formation †

    PubMed Central

    King, Gary M.; Klug, M. J.

    1982-01-01

    The uptake of glucose and the formation of end products from glucose catabolism have been measured for sediments of eutrophic Wintergreen Lake with a combination of tritiated and 14C-labeled tracers. Time course analyses of the loss of [3H]glucose from sediments were used to establish rate constants for glucose uptake at natural substrate concentrations. Turnover times from these analyses were about 1 min for littoral and profundal sediments. No seasonal or site differences were noted in turnover times. Time course analyses of [U-14C]glucose uptake and 14C-labeled end product formation indicated that glucose mass flow could not be calculated from end product formation since the specific activity of added [14C]glucose was significantly diluted by pools of intracellular glucose and glucose metabolites. Mass flow could only be accurately estimated by use of rates of uptake from tracer studies. Intermediate fermentation end products included acetate (71%), propionate (15%), lactate (9%), and only minor amounts of butyrates or valerates. Addition of H2 to sediments resulted in greater production of lactate (28%) and decreased formation of acetate (50%), but did not affect glucose turnover. Depth profiles of glucose uptake indicated that rates of uptake decreased with depth over the 0- to 18-cm interval and that glucose uptake accounted for 30 to 40% of methanogenesis in profundal sediments. PMID:16346148

  14. Fractional uptake value as a good indicator for glucose metabolism

    SciTech Connect

    Nishizawa, S.; Yonekura, Y.; Mukai, T. |

    1995-05-01

    In a previous paper, we demonstrated that hyperglycemia enhanced brain tumor detection in FDG-PET studies. However, the autoradiographic method underestimated cerebral glucose metabolism (CMRglc) in hyperglycemia, while dynamic PET scans are often not feasible due to patient`s condition. For such situations, we propose the use of the fractional uptake value (FUV) which is given by Ci(t)/{integral}Ca(t)dt where Ci(t) and Ca(t) are radio-activities in brain and plasma. In this study, we tested FUV as an indicator of the net clearance coefficient of FDG (K*) over a side range of plasma glucose levels. Seven patients with brain tumor underwent FDG-PET studies in normoglycemia (mean: 5.2 mM) and hyperglycemia (mean: 14.6 mM) on separate days. Dynamic PET scan was performed for 40 min with arterial sampling after an i.v. injection of 160-370 MBq of FDG. Data analysis was carried out on cortices contralateral of the tumor. The rate constants (K1*,k2*,k3*, and k4*) and cerebral blood volume of a 3 compartment model were estimated by non-linear least squared optimization. K* was defined as K*=K1*,k3*/(k2*+k3*). FUV was calculated using 4-min scan data from 36 to 40 min of the dynamic scan. The FUV demonstrated a good relationship with K value over a wide range of plasma glucose level (K*=2.0 10{sup -3} +1.02 FUV r=0.99), and proved to be a good indicator for cerebral glucose metabolism.

  15. The Effects of Capillary Transit Time Heterogeneity (CTH) on the Cerebral Uptake of Glucose and Glucose Analogs: Application to FDG and Comparison to Oxygen Uptake

    PubMed Central

    Angleys, Hugo; Jespersen, Sune N.; Østergaard, Leif

    2016-01-01

    Glucose is the brain's principal source of ATP, but the extent to which cerebral glucose consumption (CMRglc) is coupled with its oxygen consumption (CMRO2) remains unclear. Measurements of the brain's oxygen-glucose index OGI = CMRO2/CMRglc suggest that its oxygen uptake largely suffices for oxidative phosphorylation. Nevertheless, during functional activation and in some disease states, brain tissue seemingly produces lactate although cerebral blood flow (CBF) delivers sufficient oxygen, so-called aerobic glycolysis. OGI measurements, in turn, are method-dependent in that estimates based on glucose analog uptake depend on the so-called lumped constant (LC) to arrive at CMRglc. Capillary transit time heterogeneity (CTH), which is believed to change during functional activation and in some disease states, affects the extraction efficacy of oxygen from blood. We developed a three-compartment model of glucose extraction to examine whether CTH also affects glucose extraction into brain tissue. We then combined this model with our previous model of oxygen extraction to examine whether differential glucose and oxygen extraction might favor non-oxidative glucose metabolism under certain conditions. Our model predicts that glucose uptake is largely unaffected by changes in its plasma concentration, while changes in CBF and CTH affect glucose and oxygen uptake to different extents. Accordingly, functional hyperemia facilitates glucose uptake more than oxygen uptake, favoring aerobic glycolysis during enhanced energy demands. Applying our model to glucose analogs, we observe that LC depends on physiological state, with a risk of overestimating relative increases in CMRglc during functional activation by as much as 50%. PMID:27790110

  16. Caffeine and theophylline block insulin-stimulated glucose uptake and PKB phosphorylation in rat skeletal muscles.

    PubMed

    Kolnes, A J; Ingvaldsen, A; Bolling, A; Stuenaes, J T; Kreft, M; Zorec, R; Shepherd, P R; Jensen, J

    2010-09-01

    Caffeine and theophylline inhibit phosphatidylinositol 3-kinase (PI3-kinase) activity and insulin-stimulated protein kinase B (PKB) phosphorylation. Insulin-stimulated glucose uptake involves PI3-kinase/PKB, and the aim of the present study was to test the hypothesis that caffeine and theophylline inhibit insulin-stimulated glucose uptake in skeletal muscles. Rat epitrochlearis muscles and soleus strips were incubated with insulin and different concentrations of caffeine and theophylline for measurement of glucose uptake, force development and PKB phosphorylation. The effect of caffeine was also investigated in muscles stimulated electrically. Caffeine and theophylline completely blocked insulin-stimulated glucose uptake in both soleus and epitrochlearis muscles at 10 mm. Furthermore, insulin-stimulated PKB Ser(473) and Thr(308) and GSK-3beta Ser(9) phosphorylation were blocked by caffeine and theophylline. Caffeine reduced and theophylline blocked insulin-stimulated glycogen synthase activation. Caffeine stimulates Ca(2+) release and force development increased rapidly to 10-20% of maximal tetanic contraction. Dantrolene (25 microm), a well-known inhibitor of Ca(2+)-release, prevented caffeine-induced force development, but caffeine inhibited insulin-stimulated glucose uptake in the presence of dantrolene. Contraction, like insulin, stimulates glucose uptake via translocation of glucose transporter-4 (GLUT4). Caffeine and theophylline reduced contraction-stimulated glucose uptake by about 50%, whereas contraction-stimulated glycogen breakdown was normal. Caffeine and theophylline block insulin-stimulated glucose uptake independently of Ca(2+) release, and the likely mechanism is via blockade of insulin-stimulated PI3-kinase/PKB activation. Caffeine and theophylline also reduced contraction-stimulated glucose uptake, which occurs independently of PI3-kinase/PKB, and we hypothesize that caffeine and theophylline also inhibit glucose uptake in skeletal muscles via an

  17. Simultaneous measurements of umbilical uptake, fetal utilization rate, and fetal turnover rate of glucose.

    PubMed

    Hay, W W; Sparks, J W; Quissell, B J; Battaglia, F C; Meschia, G

    1981-06-01

    Fetal umbilical glucose uptake was compared with simultaneous measurements of glucose turnover and utilization rates in 12 pregnant sheep, at a mean of 137 days gestational age (range, 118-146 days). Umbilical glucose uptake was calculated by application of the Fick principle. Fetal glucose turnover rate was measured by a primed-constant infusion of [14C]- and [3H]glucose (glucose turnover rate = tracer infusion rate divided by fetal glucose sp act). The calculation of fetal glucose utilization rate required substraction of the loss of tracer to the placenta from the tracer infusion rate, thus defining the net tracer entry into the fetus for direct comparison with the net umbilical glucose uptake. In fed, normoglycemic sheep, these measurements demonstrated statistical equivalence of umbilical glucose uptake rate (4.77 mg.min-1.kg-1 +/- 0.34 SE) and glucose utilization rate ([14C]glucose, 5.58 mg.min-1.kg-1 +/- 0.54 SE; and [3H]glucose, 7.19 mg.min-1.kg-1 +/- 1.24 SE) when tested by two-way analysis of variance (P greater than 0.1). In three fasted, hypoglycemic sheep, the umbilical glucose uptake rate fell to 1.43 mg.min-1.kg-1 +/- 0.56 SE, which was considerably lower than the simultaneous glucose utilization rate ([14C]glucose, 4.78 mg.min-1.kg-1 +/- 0.48 SE; and [3H]glucose, 6.81 mg.min-1.kg-1 +/- 2.19 SE). Thus, in the normoglycemic, late-gestation fetal lamb, there appears to be little glucogenesis, whereas glucogenesis may become significant during fasting-induced fetal hypoglycemia.

  18. Vertebral osteomyelitis in insulin-dependent diabetics.

    PubMed

    Cooppan, R; Schoenbaum, S; Younger, M D; Freidberg, S; D'elia, J

    1976-11-20

    Vertebral osteomyelitis continues to be a diagnostically and therapeutically challenging disease with a relatively high incidence in diabetics. The clinical features, investigations and treatment of 7 insulin-dependent diabetics with vertebral osteomyelitis are presented and possible aetiological factors in this group are discussed.

  19. Methamphetamine inhibits the glucose uptake by human neurons and astrocytes: stabilization by acetyl-L-carnitine.

    PubMed

    Abdul Muneer, P M; Alikunju, Saleena; Szlachetka, Adam M; Haorah, James

    2011-04-27

    Methamphetamine (METH), an addictive psycho-stimulant drug exerts euphoric effects on users and abusers. It is also known to cause cognitive impairment and neurotoxicity. Here, we hypothesized that METH exposure impairs the glucose uptake and metabolism in human neurons and astrocytes. Deprivation of glucose is expected to cause neurotoxicity and neuronal degeneration due to depletion of energy. We found that METH exposure inhibited the glucose uptake by neurons and astrocytes, in which neurons were more sensitive to METH than astrocytes in primary culture. Adaptability of these cells to fatty acid oxidation as an alternative source of energy during glucose limitation appeared to regulate this differential sensitivity. Decrease in neuronal glucose uptake by METH was associated with reduction of glucose transporter protein-3 (GLUT3). Surprisingly, METH exposure showed biphasic effects on astrocytic glucose uptake, in which 20 µM increased the uptake while 200 µM inhibited glucose uptake. Dual effects of METH on glucose uptake were paralleled to changes in the expression of astrocytic glucose transporter protein-1 (GLUT1). The adaptive nature of astrocyte to mitochondrial β-oxidation of fatty acid appeared to contribute the survival of astrocytes during METH-induced glucose deprivation. This differential adaptive nature of neurons and astrocytes also governed the differential sensitivity to the toxicity of METH in these brain cells. The effect of acetyl-L-carnitine for enhanced production of ATP from fatty oxidation in glucose-free culture condition validated the adaptive nature of neurons and astrocytes. These findings suggest that deprivation of glucose-derived energy may contribute to neurotoxicity of METH abusers.

  20. Transmissible Gastroenteritis Virus Infection Enhances SGLT1 and GLUT2 Expression to Increase Glucose Uptake

    PubMed Central

    Dai, Lei; Hu, Wei Wei; Xia, Lu; Xia, Mi; Yang, Qian

    2016-01-01

    Transmissible gastroenteritis virus (TGEV) is a coronavirus that causes villus atrophy, followed by crypt hyperplasia, reduces the activities of intestinal digestive enzymes, and disrupts the absorption of intestinal nutrients. In vivo, TGEV primarily targets and infects intestinal epithelial cells, which play an important role in glucose absorption via the apical and basolateral transporters Na+-dependent glucose transporter 1 (SGLT1) and facilitative glucose transporter 2 (GLUT2), respectively. In this study, we therefore sought to evaluate the effects of TGEV infection on glucose uptake and SGLT1 and GLUT2 expression. Our data demonstrate that infection with TGEV resulted in increased glucose uptake and augmented expression of EGFR, SGLT1 and GLUT2. Moreover, inhibition studies showed that EGFR modulated glucose uptake in control and TGEV infected cells. Finally, high glucose absorption was subsequently found to promote TGEV replication. PMID:27851758

  1. Effects of xylitol on carbohydrate digesting enzymes activity, intestinal glucose absorption and muscle glucose uptake: a multi-mode study.

    PubMed

    Chukwuma, Chika Ifeanyi; Islam, Md Shahidul

    2015-03-01

    The present study investigated the possible mechanism(s) behind the effects of xylitol on carbohydrate digesting enzymes activity, muscle glucose uptake and intestinal glucose absorption using in vitro, ex vivo and in vivo experimental models. The effects of increasing concentrations of xylitol (2.5%-40% or 164.31 mM-2628.99 mM) on alpha amylase and alpha glucosidase activity in vitro and intestinal glucose absorption and muscle glucose uptake were investigated under ex vivo conditions. Additionally, the effects of an oral bolus dose of xylitol (1 g per kg BW) on gastric emptying and intestinal glucose absorption and digesta transit in the different segments of the intestinal tract were investigated in normal and type 2 diabetic rats at 1 hour after dose administration, when phenol red was used as a recovery marker. Xylitol exhibited concentration-dependent inhibition of alpha amylase (IC₅₀ = 1364.04 mM) and alpha glucosidase (IC₅₀ = 1127.52 mM) activity in vitro and small intestinal glucose absorption under ex vivo condition. Xylitol also increased dose dependent muscle glucose uptake with and without insulin, although the uptake was not significantly affected by the addition of insulin. Oral single bolus dose of xylitol significantly delayed gastric emptying, inhibited intestinal glucose absorption but increased the intestinal digesta transit rate in both normal and diabetic rats compared to their respective controls. The data of this study suggest that xylitol reduces intestinal glucose absorption via inhibiting major carbohydrate digesting enzymes, slowing gastric emptying and fastening the intestinal transit rate, but increases muscle glucose uptake in normal and type 2 diabetic rats.

  2. A Simple Flow Cytometric Method to Measure Glucose Uptake and Glucose Transporter Expression for Monocyte Subpopulations in Whole Blood.

    PubMed

    Palmer, Clovis S; Anzinger, Joshua J; Butterfield, Tiffany R; McCune, Joseph M; Crowe, Suzanne M

    2016-08-12

    Monocytes are innate immune cells that can be activated by pathogens and inflammation associated with certain chronic inflammatory diseases. Activation of monocytes induces effector functions and a concomitant shift from oxidative to glycolytic metabolism that is accompanied by increased glucose transporter expression. This increased glycolytic metabolism is also observed for trained immunity of monocytes, a form of innate immunological memory. Although in vitro protocols examining glucose transporter expression and glucose uptake by monocytes have been described, none have been examined by multi-parametric flow cytometry in whole blood. We describe a multi-parametric flow cytometric protocol for the measurement of fluorescent glucose analog 2-NBDG uptake in whole blood by total monocytes and the classical (CD14(++)CD16(-)), intermediate (CD14(++)CD16(+)) and non-classical (CD14(+)CD16(++)) monocyte subpopulations. This method can be used to examine glucose transporter expression and glucose uptake for total monocytes and monocyte subpopulations during homeostasis and inflammatory disease, and can be easily modified to examine glucose uptake for other leukocytes and leukocyte subpopulations within blood.

  3. Extracellular hyperosmotic stress stimulates glucose uptake in incubated fast-twitch rat skeletal muscle.

    PubMed

    Farlinger, Chris M; Lui, Adrian J; Harrison, Rose C; LeBlanc, Paul J; Peters, Sandra J; Roy, Brian D

    2013-06-01

    The influence of hyperosmotic stress on glucose uptake, handling, and signaling processes remains unclear in mammalian skeletal muscle. Thus, the purpose of this study was to investigate alterations in glucose uptake and handling during extracellular hyperosmotic stress in isolated fast-twitch mammalian skeletal muscle. Using an established in vitro isolated whole-muscle model, extensor digitorum longus (EDL) muscles were dissected from male rats (4-6 weeks of age) and incubated (30-60 min) in an organ bath, containing Sigma Medium-199 with 8 mmol·L(-1) D-glucose, and mannitol was added to the targeted osmolalities (ISO, iso-osmotic, 290 mmol·kg(-1); HYPER, hyperosmotic, 400 mmol·kg(-1)). Results demonstrate that relative water content decreased in HYPER. HYPER resulted in significant alterations in muscle metabolite concentrations (lower glycogen, elevated lactate, and glucose-6-phosphate), suggesting a decrease in energy charge. Glucose uptake was also found to be higher in HYPER, and AS160 (implicated in insulin- and contraction-mediated glucose uptake) was found to be significantly more phosphorylated in HYPER than in ISO after 30 min. In conclusion, glucose uptake and handling is altered with hyperosmotic extracellular stress in the fast-twitch EDL. The increases in glucose uptake might be facilitated through alterations in AS160 signaling after 30 to 60 min of osmotic stress.

  4. Metformin induces glucose uptake in human preadipocyte-derived adipocytes from various fat depots.

    PubMed

    Fischer, M; Timper, K; Radimerski, T; Dembinski, K; Frey, D M; Zulewski, H; Keller, U; Müller, B; Christ-Crain, M; Grisouard, J

    2010-04-01

    To evaluate the effect of metformin on basal and insulin-induced glucose uptake in subcutaneous and visceral preadipocyte-derived adipocytes from obese and non-obese patients, preadipocytes were obtained from subcutaneous and visceral fat depots during abdominal surgery. Differentiation efficiency was evaluated by measurement of intracellular triglyceride accumulation. Preadipocyte-derived adipocytes were treated with metformin (1 mM) for 24 h with or without the addition of insulin (100 nM) for 20 min and glucose uptake was measured. In cells from each donor, intracellular triglyceride accumulation was more abundant in subcutaneous preadipocyte-derived adipocytes than in visceral preadipocyte-derived adipocytes (p < 0.001). Insulin stimulated glucose uptake in subcutaneous preadipocyte-derived adipocytes from both non-obese and obese patients (p < 0.001 vs. basal). In visceral preadipocyte-derived adipocytes, insulin did not increase basal glucose uptake. In subcutaneous preadipocyte-derived adipocytes from non-obese and obese patients, metformin alone increased glucose uptake to 2.7 +/- 0.2 (p < 0.001) and 2.1 +/- 0.1 fold (p < 0.001) respectively. Metformin increased glucose uptake in visceral preadipocyte-derived adipocytes from non-obese (1.7 +/- 0.1 fold vs. basal, p < 0.001) and obese (2.0 +/- 0.2 fold vs. basal, p < 0.001) patients. Combined treatment with metformin and insulin increased glucose uptake in subcutaneous preadipocyte-derived adipocytes from both non-obese and obese patients (p < 0.001 vs. insulin alone). In preadipocyte-derived adipocytes glucose uptake is induced by metformin independent of the fat depot origin of the preadipocytes (subcutaneous or visceral) and the obesity state of the patients (non-obese or obese). In adipocytes, metformin seems to induce glucose uptake independent of insulin suggesting an alternative mechanism of action of this drug.

  5. Glucose uptake during contraction in isolated skeletal muscles from neuronal nitric oxide synthase μ knockout mice.

    PubMed

    Hong, Yet Hoi; Frugier, Tony; Zhang, Xinmei; Murphy, Robyn M; Lynch, Gordon S; Betik, Andrew C; Rattigan, Stephen; McConell, Glenn K

    2015-05-01

    Inhibition of nitric oxide synthase (NOS) significantly attenuates the increase in skeletal muscle glucose uptake during contraction/exercise, and a greater attenuation is observed in individuals with Type 2 diabetes compared with healthy individuals. Therefore, NO appears to play an important role in mediating muscle glucose uptake during contraction. In this study, we investigated the involvement of neuronal NOSμ (nNOSμ), the main NOS isoform activated during contraction, on skeletal muscle glucose uptake during ex vivo contraction. Extensor digitorum longus muscles were isolated from nNOSμ(-/-) and nNOSμ(+/+) mice. Muscles were contracted ex vivo in a temperature-controlled (30°C) organ bath with or without the presence of the NOS inhibitor N(G)-monomethyl-l-arginine (L-NMMA) and the NOS substrate L-arginine. Glucose uptake was determined by radioactive tracers. Skeletal muscle glucose uptake increased approximately fourfold during contraction in muscles from both nNOSμ(-/-) and nNOSμ(+/+) mice. L-NMMA significantly attenuated the increase in muscle glucose uptake during contraction in both genotypes. This attenuation was reversed by L-arginine, suggesting that L-NMMA attenuated the increase in muscle glucose uptake during contraction by inhibiting NOS and not via a nonspecific effect of the inhibitor. Low levels of NOS activity (~4%) were detected in muscles from nNOSμ(-/-) mice, and there was no evidence of compensation from other NOS isoform or AMP-activated protein kinase which is also involved in mediating muscle glucose uptake during contraction. These results indicate that NO regulates skeletal muscle glucose uptake during ex vivo contraction independently of nNOSμ.

  6. Ethanolic extract of Allium cepa stimulates glucose transporter typ 4-mediated glucose uptake by the activation of insulin signaling.

    PubMed

    Gautam, Sudeep; Pal, Savita; Maurya, Rakesh; Srivastava, Arvind K

    2015-02-01

    The present work was undertaken to investigate the effects and the molecular mechanism of the standardized ethanolic extract of Allium cepa (onion) on the glucose transport for controlling diabetes mellitus. A. cepa stimulates glucose uptake by the rat skeletal muscle cells (L6 myotubes) in both time- and dose-dependent manners. This effect was shown to be mediated by the increased translocation of glucose transporter typ 4 protein from the cytoplasm to the plasma membrane as well as the synthesis of glucose transporter typ 4 protein. The effect of A. cepa extract on glucose transport was stymied by wortmannin, genistein, and AI½. In vitro phosphorylation analysis revealed that, like insulin, A. cepa extract also enhances the tyrosine phosphorylation of the insulin receptor-β, insulin receptor substrate-1, and the serine phosphorylation of Akt under both basal and insulin-stimulated conditions without affecting the total amount of these proteins. Furthermore, it is also shown that the activation of Akt is indispensable for the A. cepa-induced glucose uptake in L6 myotubes. Taken together, these findings provide ample evidence that the ethanolic extract of A. cepa stimulates glucose transporter typ 4 translocation-mediated glucose uptake by the activation of the phosphatidylinositol-4,5-bisphosphate 3-kinase/Akt dependent pathway.

  7. Review of insulin-dependent and insulin-independent agents for treating patients with type 2 diabetes mellitus and potential role for sodium-glucose co-transporter 2 inhibitors.

    PubMed

    Freeman, Jeffrey S

    2013-05-01

    Diabetes, especially type 2 diabetes mellitus (T2DM), continues to be a global health care problem. Although the beneficial effects of glycemic control are well established, in the United States, > 40% of adults with diabetes fail to achieve target glycated hemoglobin levels. Antidiabetic drug classes vary with respect to their mechanisms of action, glucose-lowering potential, and safety and tolerability profiles. Antidiabetic drug classes include some agents that depend on the presence or action of insulin for their therapeutic effect. As the disease state of T2DM progresses, patient pancreatic β-cell function declines, and therapies that stimulate insulin secretion or improve insulin sensitivity become less effective for this population. Therefore, the development of additional antidiabetic agents with novel mechanisms of action that can be used alone or in combination with currently approved medications may help patients achieve glycemic control. Agents that have comparable glucose-lowering capabilities but different mechanisms of action may fill treatment gaps or meet the needs of patient subpopulations. For example, inhibitors of sodium-glucose co-transporter 2 (SGLT2) represent an emerging class of glucose-lowering agents. The SGLT2 inhibitors reduce glucose reabsorption by the kidney, leading to increased urinary glucose excretion and caloric loss. In clinical trials, these agents have been shown to improve glycemic control and to reduce body weight in patients with T2DM. Additionally, SGLT2 inhibitors pose a low risk for hypoglycemia and are generally well tolerated; however, their use has been associated with an increase in the frequency of genital infections and, in some studies, urinary tract infections. Sodium-glucose co-transporter 2 inhibitors may provide an alternative or an addition to existing therapies for the treatment of patients with T2DM.

  8. In vitro glucose and 2-aminoisobutyric acid uptake by rat interscapular brown adipose tissue.

    PubMed

    Zamora, F; Arola, L; Alemany, M

    1988-03-11

    The dependence upon substrate and insulin concentrations, as well as on sodium and potassium concentrations in the medium of the uptake of glucose and 2-aminoisobutyric acid, was determined for fragments of brown and white adipose tissues incubated in vitro. Brown adipose tissue showed a high capacity for glucose uptake at high glucose concentrations, this uptake being dependent on both glucose and insulin concentration. White adipose tissue showed much more limited uptake capabilities. The presence of Na+ and K+ had little effect on the uptake. The uptake of 2-aminoisobutyric acid was similar in both adipose tissues, being enhanced by physiological levels of insulin and depressed by ouabain. This amino acid transport was dependent on Na+ and K+ concentrations, and the overall transporting capability was two to three orders of magnitude lower than that for glucose. It was concluded that amino acids could not play a significant role as bulk thermogenic substrates for brown adipose tissue, as their transporters lack the plasticity of response to high substrate and insulin concentrations which characterize brown adipose tissue uptake of glucose.

  9. Variability of insulin-stimulated myocardial glucose uptake in healthy elderly subjects.

    PubMed

    Kofoed, Klaus F; Hove, Jens D; Freiberg, Jacob; Høst, Ulla; Holm, Søren; Kelbaek, Henning

    2002-12-01

    The aim of this study was to assess regional and global variability of insulin-stimulated myocardial glucose uptake in healthy elderly subjects and to evaluate potentially responsible factors. Twenty men with a mean age of 64 years, no history of cardiovascular disease, and normal blood pressure, bicycle exercise test, electrocardiogram and echocardiography were studied [ P(coronary artery disease) <5%]. Whole-body insulin sensitivity and insulin-stimulated myocardial glucose uptake were measured during hyperinsulinaemic euglycaemic glucose clamp with fluorine-18 fluorodeoxyglucose, and myocardial rest and hyperaemic blood flow during dipyridamole infusion were measured with nitrogen-13 ammonia and positron emission tomography in 16 left ventricular myocardial segments. Intra-individual and inter-individual variability of insulin-stimulated myocardial glucose uptake [relative dispersion = (standard deviation/mean)] was 13% and 29% respectively. Although inter-individual variability of glucose uptake and blood flow at rest was of the same magnitude, no correlation was found between these measures. Regional and global insulin-stimulated myocardial glucose uptake correlated linearly with whole-body insulin sensitivity ( r=0.51, P<0.05 and r=0.56, P<0.01). The strongest independent association by multivariate linear regression analysis was found between myocardial glucose uptake and hyperaemic blood flow ( r=0.63, P<0.005). We conclude that in healthy elderly subjects, insulin-stimulated myocardial glucose uptake is homogeneous throughout the left ventricle, but has moderate inter-individual variability. Inter-individual variability of insulin-stimulated myocardial glucose uptake is primarily explained by variability in coronary vascular reactivity and tissue insulin sensitivity.

  10. Uncoupler-Resistant Glucose Uptake by the Thermophilic Glycolytic Anaerobe Thermoanaerobacter thermosulfuricus (Clostridium thermohydrosulfuricum)

    PubMed Central

    Cook, Gregory M.; Janssen, Peter H.; Morgan, Hugh W.

    1993-01-01

    The transport of glucose across the bacterial cell membrane of Thermoanaerobacter thermosulfuricus (Clostridium thermohydrosulfuricum) Rt8.B1 was governed by a permease which did not catalyze concomitant substrate transport and phosphorylation and thus was not a phosphoenolpyruvate-dependent phosphotransferase. Glucose uptake was carrier mediated, could not be driven by an artificial membrane potential (Δψ) in the presence or absence of sodium, and was not sensitive to inhibitors which dissipate the proton motive force (Δp; tetrachlorosalicylanilide, N,N-dicyclohexylcarboiimide, and 2,4-dinitrophenol), and no uptake of the nonmetabolizable analog 2-deoxyglucose could be demonstrated. The glucokinase apparent Km for glucose (0.21 mM) was similar to the Kt (affinity constant) for glucose uptake (0.15 mM), suggesting that glucokinase controls the rate of glucose uptake. Inhibitors of ATP synthesis (iodoacetate and sodium fluoride) also inhibited glucose uptake, and this effect was due to a reduction in the level of ATP available to glucokinase for glucose phosphorylation. These results indicated that T. thermosulfuricus Rt8.B1 lacks a concentrative uptake system for glucose and that uptake is via facilitated diffusion, followed by ATP-dependent phosphorylation by glucokinase. In T. thermosulfuricus Rt8.B1, glucose is metabolized by the Embden-Meyerhof-Parnas pathway, which yields 2 mol of ATP (G. M. Cook, unpublished data). Since only 1 mol of ATP is used to transport 1 mol of glucose, the energetics of this system are therefore similar to those found in bacteria which possess a phosphotransferase. PMID:16349043

  11. Glabridin induces glucose uptake via the AMP-activated protein kinase pathway in muscle cells.

    PubMed

    Sawada, Keisuke; Yamashita, Yoko; Zhang, Tianshun; Nakagawa, Kaku; Ashida, Hitoshi

    2014-08-05

    The present study demonstrates that glabridin, a prenylated isoflavone in licorice, stimulates glucose uptake through the adenosine monophosphate-activated protein kinase (AMPK) pathway in L6 myotubes. Treatment with glabridin for 4h induced glucose uptake in a dose-dependent manner accompanied by the translocation of glucose transporter type 4 (GLUT4) to the plasma membrane. Glabridin needed at least 4h to increase glucose uptake, while it significantly decreased glycogen and increased lactic acid within 15 min. Pharmacological inhibition of AMPK by Compound C suppressed the glabridin-induced glucose uptake, whereas phosphoinositide 3-kinase and Akt inhibition by LY294002 and Akt1/2 inhibitor, respectively, did not. Furthermore, glabridin induced AMPK phosphorylation, and siRNA for AMPK completely abolished glabridin-induced glucose uptake. We confirmed that glabridin-rich licorice extract prevent glucose intolerance accompanied by the AMPK-dependent GLUT4 translocation in the plasma membrane of mice skeletal muscle. These results indicate that glabridin may possess a therapeutic effect on metabolic disorders, such as diabetes and hyperglycemia, by modulating glucose metabolism through AMPK in skeletal muscle cells.

  12. Increased skeletal muscle glucose uptake by rosemary extract through AMPK activation.

    PubMed

    Naimi, Madina; Tsakiridis, Theodoros; Stamatatos, Theocharis C; Alexandropoulos, Dimitris I; Tsiani, Evangelia

    2015-04-01

    Stimulation of the energy sensor AMP-activated kinase (AMPK) has been viewed as a targeted approach to increase glucose uptake by skeletal muscle and control blood glucose homeostasis. Rosemary extract (RE) has been reported to activate AMPK in hepatocytes and reduce blood glucose levels in vivo but its effects on skeletal muscle are not known. In the present study, we examined the effects of RE and the mechanism of regulation of glucose uptake in muscle cells. RE stimulated glucose uptake in L6 myotubes in a dose- and time-dependent manner. Maximum stimulation was seen with 5 μg/mL of RE for 4 h (184% ± 5.07% of control, p < 0.001), a response comparable to maximum insulin (207% ± 5.26%, p < 0.001) and metformin (216% ± 8.77%, p < 0.001) stimulation. RE did not affect insulin receptor substrate 1 and Akt phosphorylation but significantly increased AMPK and acetyl-CoA carboxylase phosphorylation. Furthermore, the RE-stimulated glucose uptake was significantly reduced by the AMPK inhibitor compound C, but remained unchanged by the PI3K inhibitor, wortmannin. RE did not affect GLUT4 or GLUT1 glucose transporter translocation in contrast with a significant translocation of both transporters seen with insulin or metformin treatment. Our study is the first to show a direct effect of RE on muscle cell glucose uptake by a mechanism that involves AMPK activation.

  13. Uptake and Metabolism of d-Glucose by Neocosmospora vasinfecta E. F. Smith 1

    PubMed Central

    Budd, Kenneth

    1976-01-01

    Freshly harvested, nongrowing mycelium of Neocosmospora vasinfecta E. F. Smith rapidly absorbed exogenous glucose but converted a greater proportion to trehalose and glucan than to respiratory CO2. This effect was accentuated in mycelium preincubated for 3.5 hours in water before exposure to glucose. Glucose was absorbed via two uptake systems, both apparently constitutive, with apparent Km values for glucose of 0.02 mm (high affinity) and 2 mm (low affinity). The glucose derivative 3-O-methylglucose (3-O-MG) was also absorbed by two apparently constitutive systems with apparent Km values for 3-O-MG of 0.065 mm and 1.9 mm. Absorption of 3-O-MG by both freshly harvested and preincubated mycelium led to its accumulation. Freshly harvested mycelium lost accumulated 3-O-MG rapidly to water, whereas preincubated mycelium showed reduced or no leakage. The reduction in leakage due to preincubation was prevented by 5 μg/ml cycloheximide in the preincubation medium. Glucose competitively inhibited 3-O-MG uptake via the high affinity system and induced loss of previously accumulated 3-O-MG from preincubated mycelium. The uptake of both glucose and 3-O-MG was associated with a transient alkalinization of the uptake medium. It is concluded that uptake of both glucose and 3-O-MG by at least the high affinity system is energy-linked and probably mediated by proton cotransport. PMID:16659646

  14. Uptake and Metabolism of d-Glucose by Neocosmospora vasinfecta E. F. Smith.

    PubMed

    Budd, K

    1976-08-01

    Freshly harvested, nongrowing mycelium of Neocosmospora vasinfecta E. F. Smith rapidly absorbed exogenous glucose but converted a greater proportion to trehalose and glucan than to respiratory CO(2). This effect was accentuated in mycelium preincubated for 3.5 hours in water before exposure to glucose. Glucose was absorbed via two uptake systems, both apparently constitutive, with apparent Km values for glucose of 0.02 mm (high affinity) and 2 mm (low affinity). The glucose derivative 3-O-methylglucose (3-O-MG) was also absorbed by two apparently constitutive systems with apparent Km values for 3-O-MG of 0.065 mm and 1.9 mm. Absorption of 3-O-MG by both freshly harvested and preincubated mycelium led to its accumulation. Freshly harvested mycelium lost accumulated 3-O-MG rapidly to water, whereas preincubated mycelium showed reduced or no leakage. The reduction in leakage due to preincubation was prevented by 5 mug/ml cycloheximide in the preincubation medium. Glucose competitively inhibited 3-O-MG uptake via the high affinity system and induced loss of previously accumulated 3-O-MG from preincubated mycelium. The uptake of both glucose and 3-O-MG was associated with a transient alkalinization of the uptake medium. It is concluded that uptake of both glucose and 3-O-MG by at least the high affinity system is energy-linked and probably mediated by proton cotransport.

  15. Glucose uptake in rat soleus - Effect of acute unloading and subsequent reloading

    NASA Technical Reports Server (NTRS)

    Henriksen, Eric J.; Tischler, Marc E.

    1988-01-01

    The effect of acutely reduced weight bearing (unloading) on the in vitro uptake of 2-1,2-H-3-deoxy-D-glucose was studied in the soleus muscle by tail casting and suspending rats. After just 4 h, the uptake of 2-deoxy-D-glucose fell (-19 percent) and declined further after an additional 20 h of unloading. This diminution at 24 h was associated with slower oxidation of C-14-glucose and incorporation of C-14-glucose into glycogen. At 3 days of unloading, basal uptake of 2-deoxy-D-glucose did not differ from control. Reloading of the soleus after 1 or 3 days of unloading increased uptake of 2-deoxy-D-glucose above control and returned it to normal within 6 h and 4 days, respectively. These effects of unloading and recovery were caused by local changes in the soleus, because the extensor digitorum longus from the same hindlimbs did not display any alterations in uptake of 2-deoxy-D-glucose or metabolism of glucose.

  16. In vivo PET imaging with [(18)F]FDG to explain improved glucose uptake in an apolipoprotein A-I treated mouse model of diabetes.

    PubMed

    Cochran, Blake J; Ryder, William J; Parmar, Arvind; Tang, Shudi; Reilhac, Anthonin; Arthur, Andrew; Charil, Arnaud; Hamze, Hasar; Barter, Philip J; Kritharides, Leonard; Meikle, Steven R; Gregoire, Marie-Claude; Rye, Kerry-Anne

    2016-09-01

    Type 2 diabetes is characterised by decreased HDL levels, as well as the level of apolipoprotein A-I (apoA-I), the main apolipoprotein of HDLs. Pharmacological elevation of HDL and apoA-I levels is associated with improved glycaemic control in patients with type 2 diabetes. This is partly due to improved glucose uptake in skeletal muscle. This study used kinetic modelling to investigate the impact of increasing plasma apoA-I levels on the metabolism of glucose in the db/db mouse model. Treatment of db/db mice with apoA-I for 2 h significantly improved both glucose tolerance (AUC 2574 ± 70 mmol/l × min vs 2927 ± 137 mmol/l × min, for apoA-I and PBS, respectively; p < 0.05) and insulin sensitivity (AUC 388.8 ± 23.8 mmol/l × min vs 194.1 ± 19.6 mmol/l × min, for apoA-I and PBS, respectively; p < 0.001). ApoA-I treatment also increased glucose uptake by skeletal muscle in both an insulin-dependent and insulin-independent manner as evidenced by increased uptake of fludeoxyglucose ([(18)F]FDG) from plasma into gastrocnemius muscle in apoA-I treated mice, both in the absence and presence of insulin. Kinetic modelling revealed an enhanced rate of insulin-mediated glucose phosphorylation (k 3) in apoA-I treated mice (3.5 ± 1.1 × 10(-2) min(-1) vs 2.3 ± 0.7 × 10(-2) min(-1), for apoA-I and PBS, respectively; p < 0.05) and an increased influx constant (3.7 ± 0.6 × 10(-3) ml min(-1) g(-1) vs 2.0 ± 0.3 × 10(-3) ml min(-1) g(-1), for apoA-I and PBS, respectively; p < 0.05). Treatment of L6 rat skeletal muscle cells with apoA-I for 2 h indicated that increased hexokinase activity mediated the increased rate of glucose phosphorylation. These findings indicate that apoA-I improves glucose disposal in db/db mice by improving insulin sensitivity and enhancing glucose phosphorylation.

  17. Catecholamine-induced lipolysis causes mTOR complex dissociation and inhibits glucose uptake in adipocytes

    PubMed Central

    Mullins, Garrett R.; Wang, Lifu; Raje, Vidisha; Sherwood, Samantha G.; Grande, Rebecca C.; Boroda, Salome; Eaton, James M.; Blancquaert, Sara; Roger, Pierre P.; Leitinger, Norbert; Harris, Thurl E.

    2014-01-01

    Anabolic and catabolic signaling oppose one another in adipose tissue to maintain cellular and organismal homeostasis, but these pathways are often dysregulated in metabolic disorders. Although it has long been established that stimulation of the β-adrenergic receptor inhibits insulin-stimulated glucose uptake in adipocytes, the mechanism has remained unclear. Here we report that β-adrenergic–mediated inhibition of glucose uptake requires lipolysis. We also show that lipolysis suppresses glucose uptake by inhibiting the mammalian target of rapamycin (mTOR) complexes 1 and 2 through complex dissociation. In addition, we show that products of lipolysis inhibit mTOR through complex dissociation in vitro. These findings reveal a previously unrecognized intracellular signaling mechanism whereby lipolysis blocks the phosphoinositide 3-kinase–Akt–mTOR pathway, resulting in decreased glucose uptake. This previously unidentified mechanism of mTOR regulation likely contributes to the development of insulin resistance. PMID:25422441

  18. Catecholamine-induced lipolysis causes mTOR complex dissociation and inhibits glucose uptake in adipocytes.

    PubMed

    Mullins, Garrett R; Wang, Lifu; Raje, Vidisha; Sherwood, Samantha G; Grande, Rebecca C; Boroda, Salome; Eaton, James M; Blancquaert, Sara; Roger, Pierre P; Leitinger, Norbert; Harris, Thurl E

    2014-12-09

    Anabolic and catabolic signaling oppose one another in adipose tissue to maintain cellular and organismal homeostasis, but these pathways are often dysregulated in metabolic disorders. Although it has long been established that stimulation of the β-adrenergic receptor inhibits insulin-stimulated glucose uptake in adipocytes, the mechanism has remained unclear. Here we report that β-adrenergic-mediated inhibition of glucose uptake requires lipolysis. We also show that lipolysis suppresses glucose uptake by inhibiting the mammalian target of rapamycin (mTOR) complexes 1 and 2 through complex dissociation. In addition, we show that products of lipolysis inhibit mTOR through complex dissociation in vitro. These findings reveal a previously unrecognized intracellular signaling mechanism whereby lipolysis blocks the phosphoinositide 3-kinase-Akt-mTOR pathway, resulting in decreased glucose uptake. This previously unidentified mechanism of mTOR regulation likely contributes to the development of insulin resistance.

  19. Metabolism and acetylation contribute to leucine-mediated inhibition of cardiac glucose uptake.

    PubMed

    Renguet, Edith; Ginion, Audrey; Gélinas, Roselle; Bultot, Laurent; Auquier, Julien; Robillard Frayne, Isabelle; Daneault, Caroline; Vanoverschelde, Jean-Louis; Des Rosiers, Christine; Hue, Louis; Horman, Sandrine; Beauloye, Christophe; Bertrand, Luc

    2017-08-01

    High plasma leucine levels strongly correlate with type 2 diabetes. Studies of muscle cells have suggested that leucine alters the insulin response for glucose transport by activating an insulin-negative feedback loop driven by the mammalian target of rapamycin/p70 ribosomal S6 kinase (mTOR/p70S6K) pathway. Here, we examined the molecular mechanism involved in leucine's action on cardiac glucose uptake. Leucine was indeed able to curb glucose uptake after insulin stimulation in both cultured cardiomyocytes and perfused hearts. Although leucine activated mTOR/p70S6K, the mTOR inhibitor rapamycin did not prevent leucine's inhibitory action on glucose uptake, ruling out the contribution of the insulin-negative feedback loop. α-Ketoisocaproate, the first metabolite of leucine catabolism, mimicked leucine's effect on glucose uptake. Incubation of cardiomyocytes with [(13)C]leucine ascertained its metabolism to ketone bodies (KBs), which had a similar negative impact on insulin-stimulated glucose transport. Both leucine and KBs reduced glucose uptake by affecting translocation of glucose transporter 4 (GLUT4) to the plasma membrane. Finally, we found that leucine elevated the global protein acetylation level. Pharmacological inhibition of lysine acetyltransferases counteracted this increase in protein acetylation and prevented leucine's inhibitory action on both glucose uptake and GLUT4 translocation. Taken together, these results indicate that leucine metabolism into KBs contributes to inhibition of cardiac glucose uptake by hampering the translocation of GLUT4-containing vesicles via acetylation. They offer new insights into the establishment of insulin resistance in the heart.NEW & NOTEWORTHY Catabolism of the branched-chain amino acid leucine into ketone bodies efficiently inhibits cardiac glucose uptake through decreased translocation of glucose transporter 4 to the plasma membrane. Leucine increases protein acetylation. Pharmacological inhibition of acetylation

  20. Effects of decavanadate and insulin enhancing vanadium compounds on glucose uptake in isolated rat adipocytes.

    PubMed

    Pereira, Maria João; Carvalho, Eugénia; Eriksson, Jan W; Crans, Debbie C; Aureliano, Manuel

    2009-12-01

    The effects of different vanadium compounds namely pyridine-2,6-dicarboxylatedioxovanadium(V) (V5-dipic), bis(maltolato) oxovanadium(IV) (BMOV) and amavadine, and oligovanadates namely metavanadate and decavanadate were analysed on basal and insulin stimulated glucose uptake in rat adipocytes. Decavanadate (50 microM), manifest a higher increases (6-fold) on glucose uptake compared with basal, followed by BMOV (1 mM) and metavanadate (1 mM) solutions (3-fold) whereas V5 dipic and amavadine had no effect. Decavanadate (100 microM) also shows the highest insulin like activity when compared with the others compounds studied. In the presence of insulin (10 nM), only decavanadate increases (50%) the glucose uptake when compared with insulin stimulated glucose uptake whereas BMOV and metavanadate, had no effect and V5 dipic and amavadine prevent the stimulation to about half of the basal value. Decavanadate is also able to reduce or eradicate the suppressor effect caused by dexamethasone on glucose uptake at the level of the adipocytes. Altogether, vanadium compounds and oligovanadates with several structures and coordination spheres reveal different effects on glucose uptake in rat primary adipocytes.

  1. Exercise-stimulated glucose uptake - regulation and implications for glycaemic control.

    PubMed

    Sylow, Lykke; Kleinert, Maximilian; Richter, Erik A; Jensen, Thomas E

    2017-03-01

    Skeletal muscle extracts glucose from the blood to maintain demand for carbohydrates as an energy source during exercise. Such uptake involves complex molecular signalling processes that are distinct from those activated by insulin. Exercise-stimulated glucose uptake is preserved in insulin-resistant muscle, emphasizing exercise as a therapeutic cornerstone among patients with metabolic diseases such as diabetes mellitus. Exercise increases uptake of glucose by up to 50-fold through the simultaneous stimulation of three key steps: delivery, transport across the muscle membrane and intracellular flux through metabolic processes (glycolysis and glucose oxidation). The available data suggest that no single signal transduction pathway can fully account for the regulation of any of these key steps, owing to redundancy in the signalling pathways that mediate glucose uptake to ensure maintenance of muscle energy supply during physical activity. Here, we review the molecular mechanisms that regulate the movement of glucose from the capillary bed into the muscle cell and discuss what is known about their integrated regulation during exercise. Novel developments within the field of mass spectrometry-based proteomics indicate that the known regulators of glucose uptake are only the tip of the iceberg. Consequently, many exciting discoveries clearly lie ahead.

  2. [Physiopathology of non-insulin-dependent diabetes: current data and therapeutic consequences].

    PubMed

    Broussolle, C; Orgiazzi, J; Noël, G

    1990-01-01

    Non insulin-dependent diabetes mellitus results from the combination in varying proportions of low plasma insulin levels (insulinopenia), peripheral resistance to insulin and increased hepatic glucose production. Abnormalities of insulin secretion can be demonstrated without and after stimulation. Insulin resistance mainly occurs in skeletal muscle and is primarily due to a "postreceptor" defect. A pancreatic peptide, amylin, may participate in insulin resistance. Hepatic glucose production correlates with high fasting plasma glucose concentrations. Whatever its initial mechanism, hyperglycaemia maintains low insulin secretion and insulin resistance by its toxicity. In the light of these data, the effects of weight loss in obese non insulin-dependent diabetics have become clearer. The action of biguanides on insulin sensitivity is confirmed. Sulphonylureas have a pancreatic and an extrapancreatic action. The normoglycaemia obtained by intermittent insulin therapy can break the vicious circle of glucose toxicity. The use of prolonged insulin therapy is discussed. Finally, new compounds with an original mode of action offer hopes for the future.

  3. Glucose uptake and catabolite repression in dominant HTR1 mutants of Saccharomyces cerevisiae.

    PubMed Central

    Ozcan, S; Freidel, K; Leuker, A; Ciriacy, M

    1993-01-01

    Growth and carbon metabolism in triosephosphate isomerase (delta tpi1) mutants of Saccharomyces cerevisiae are severely inhibited by glucose. By using this feature, we selected for secondary site revertants on glucose. We defined five complementation groups, some of which have previously been identified as glucose repression mutants. The predominant mutant type, HTR1 (hexose transport regulation), is dominant and causes various glucose-specific metabolic and regulatory defects in TPI1 wild-type cells. HTR1 mutants are deficient in high-affinity glucose uptake and have reduced low-affinity transport. Transcription of various known glucose transporter genes (HXT1, HXT3, and HXT4) was defective in HTR1 mutants, leading us to suggest that HTR mutations affect a negative factor of HXT gene expression. By contrast, transcript levels for SNF3, which encodes a component of high-affinity glucose uptake, were unaffected. We presume that HTR1 mutations affect a negative factor of HXT gene expression. Multicopy expression of HXT genes or parts of their regulatory sequences suppresses the metabolic defects of HTR1 mutants but not their derepressed phenotype at high glucose concentrations. This suggests that the glucose repression defect is not a direct result of the metabolically relevant defect in glucose transport. Alternatively, some unidentified regulatory components of the glucose transport system may be involved in the generation or transmission of signals for glucose repression. Images PMID:8366037

  4. Glucose Uptake in Prochlorococcus: Diversity of Kinetics and Effects on the Metabolism.

    PubMed

    Muñoz-Marín, María Del Carmen; Gómez-Baena, Guadalupe; Díez, Jesús; Beynon, Robert J; González-Ballester, David; Zubkov, Mikhail V; García-Fernández, José M

    2017-01-01

    We have previously shown that Prochlorococcus sp. SS120 strain takes up glucose by using a multiphasic transporter encoded by the Pro1404 gene. Here, we studied the glucose uptake kinetics in multiple Prochlorococcus strains from different ecotypes, observing diverse values for the Ks constants (15-126.60 nM) and the uptake rates (0.48-6.36 pmol min(-1) mg prot(-1)). Multiphasic kinetics was observed in all studied strains, except for TAK9803-2. Pro1404 gene expression studies during the 21st Atlantic Meridional Transect cruise showed positive correlation with glucose concentrations in the ocean. This suggests that the Pro1404 transporter has been subjected to diversification along the Prochlorococcus evolution, in a process probably driven by the glucose availabilities at the different niches it inhabits. The glucose uptake mechanism seems to be a primary transporter. Glucose addition induced detectable transcriptomic and proteomic changes in Prochlorococcus SS120, but photosynthetic efficiency was unaffected. Our studies indicate that glucose is actively taken up by Prochlorococcus, but its uptake does not significantly alter the trophic ways of this cyanobacterium, which continues performing photosynthesis. Therefore Prochlorococcus seems to remain acting as a fundamentally phototrophic organism, capable of using glucose as an extra resource of carbon and energy when available in the environment.

  5. Glucose Uptake in Prochlorococcus: Diversity of Kinetics and Effects on the Metabolism

    PubMed Central

    Muñoz-Marín, María del Carmen; Gómez-Baena, Guadalupe; Díez, Jesús; Beynon, Robert J.; González-Ballester, David; Zubkov, Mikhail V.; García-Fernández, José M.

    2017-01-01

    We have previously shown that Prochlorococcus sp. SS120 strain takes up glucose by using a multiphasic transporter encoded by the Pro1404 gene. Here, we studied the glucose uptake kinetics in multiple Prochlorococcus strains from different ecotypes, observing diverse values for the Ks constants (15–126.60 nM) and the uptake rates (0.48–6.36 pmol min-1 mg prot-1). Multiphasic kinetics was observed in all studied strains, except for TAK9803-2. Pro1404 gene expression studies during the 21st Atlantic Meridional Transect cruise showed positive correlation with glucose concentrations in the ocean. This suggests that the Pro1404 transporter has been subjected to diversification along the Prochlorococcus evolution, in a process probably driven by the glucose availabilities at the different niches it inhabits. The glucose uptake mechanism seems to be a primary transporter. Glucose addition induced detectable transcriptomic and proteomic changes in Prochlorococcus SS120, but photosynthetic efficiency was unaffected. Our studies indicate that glucose is actively taken up by Prochlorococcus, but its uptake does not significantly alter the trophic ways of this cyanobacterium, which continues performing photosynthesis. Therefore Prochlorococcus seems to remain acting as a fundamentally phototrophic organism, capable of using glucose as an extra resource of carbon and energy when available in the environment. PMID:28337178

  6. Renal scintigraphy in insulin-dependent diabetes mellitus: Early glomerular and urologic dysfunction

    SciTech Connect

    Poirier, J.Y.; Moisan, A.; Le Cloirec, J.; Siemen, C.; Yaouanq, J.; Edan, G.; Herry, J.Y. )

    1990-07-01

    Glomerular filtration rate (GFR) and renal plasma flow (RPF) were measured by intravenous injection of 99mTc-diethylenetriaminepentaacetic acid (DTPA) and 131I-Hippuran in 115 insulin-dependent diabetic patients with albumin excretion rates (AER) less than 200 micrograms/min, and in 45 normal subjects. Separate kidney function and urinary elimination were estimated by renography. GFR was increased in the diabetic patients (152 +/- 24 ml/min/1.73 m2 vs. 128 +/- 15) and correlated significantly with RPF (r = 0.5; p less than 10(-9)). No relationship was found between GFR and the duration of diabetes, blood glucose, HbA1c, or AER. Fifty patients were hyperfiltering with RPF and filtration fraction higher than those in the normofiltering group. Slow intrarenal or pyeloureteral elimination, either unilateral or bilateral, was observed in 3 controls and 60 diabetic subjects (24 hyperfiltering; 36 normofiltering) and did not disappear with the patient in the standing position. In these 60 patients, mean age, duration of diabetes, blood glucose, HbA1c, 24 h albumin excretion rate, and frequency of peripheral or autonomic neuropathy did not differ from patients with normal scintigraphy; GFR was lower in the group with slow elimination, but not significantly so. 99mTc-DTPA renal uptake was symmetric in all the controls; asymmetric renal uptake with asymmetric GFR was observed in 13 patients (7 hyperfiltering; 6 normofiltering) and often associated with slower elimination. No evidence for renal stenotic atheroma or parenchymatous disease was found on the angiopyleoureterography. The results suggest that incipient uropathy is a very common phenomenon that occurs irrespective of glomerular dysfunction.

  7. Glucose uptake and transport in contracting, perfused rat muscle with different pre-contraction glycogen concentrations.

    PubMed Central

    Hespel, P; Richter, E A

    1990-01-01

    1. Glucose uptake and transport, muscle glycogen, free glucose and glucose-6-phosphate concentrations were studied in perfused resting and contracting rat skeletal muscle with different pre-contraction glycogen concentrations. Rats were pre-conditioned by a combination of swimming exercise and diet, resulting in either low (glycogen-depleted rats), normal (control rats) or high (supercompensated rats) muscle glycogen concentrations at the time their hindlimbs were perfused. 2. Compared with control rats, pre-contraction muscle glycogen concentration was approximately 40% lower in glycogen-depleted rats, whereas it was 40% higher in supercompensated rats. Muscle glycogen break-down correlated positively (r = 0.76; P less than 0.001) with pre-contraction muscle glycogen concentration. 3. Glucose uptake during contractions was approximately 50% higher in glycogen-depleted hindquarters than in control hindquarters; in supercompensated hindquarters it was 30% lower. When rats with similar muscle glycogen concentrations were compared, glucose uptake in hindquarters from rats that had exercised on the preceding day was approximately 20% higher than in hindquarters from rats that had not exercised on the preceding day. 4. Muscle membrane glucose transport, as measured by the rate of accumulation of 14C-3-O-methylglucose in the contracting muscles, was 25% lower in supercompensated than in glycogen-depleted muscles at the onset as well as at the end of the 15 min contraction period. 5. Intracellular concentrations of free glucose and glucose-6-phosphate were higher at rest and during the entire 15-min stimulation period in supercompensated muscles than in glycogen-depleted muscles, and glucose uptake during contractions correlated negatively with free glucose (r = -0.52; P less than 0.01) as well as with glucose-6-phosphate (r = -0.49; P less than 0.01) concentrations. 6. It is concluded that: (a) The rate of glucose uptake in contracting skeletal muscle is dependent on the

  8. Effect of the artificial sweetener, acesulfame potassium, a sweet taste receptor agonist, on glucose uptake in small intestinal cell lines.

    PubMed

    Zheng, Ye; Sarr, Michael G

    2013-01-01

    Sweet taste receptors may enhance glucose absorption. This study aimed to explore the cell biology of sweet taste receptors on glucose uptake. Artificial sweeteners increase glucose uptake via activating sweet taste receptors in the enterocyte to translocate GLUT2 to the apical membrane through the PLC βII pathway. Caco-2, RIE-1, and IEC-6 cells, starved from glucose for 1 h were pre-incubated with 10 mM acesulfame potassium (AceK). Glucose uptake was measured by incubating cells for 1 to 10 min with 0.5-50 mM glucose with or without U-73122, chelerythrine, and cytochalasin B. In Caco-2 and RIE-1 cells, 10 mM AceK increased glucose uptake by 20-30 % at glucose >25 mM, but not in lesser glucose concentrations (<10 mM), nor at 1 min or 10 min incubations. U-73122 (PLC βII inhibitor) inhibited uptake at glucose >25 mM and for 5 min incubation; chelerythrine and cytochalasin B had similar effects. No effect occurred in IEC-6 cells. Activation of sweet taste receptors had no effect on glucose uptake in low (<25 mM) glucose concentrations but increased uptake at greater concentrations (>25 mM). Role of artificial sweeteners on glucose uptake appears to act in part by effects on the enterocyte itself.

  9. Exercise and type 2 diabetes: molecular mechanisms regulating glucose uptake in skeletal muscle

    PubMed Central

    Goodyear, Laurie J.

    2014-01-01

    Exercise is a well-established tool to prevent and combat type 2 diabetes. Exercise improves whole body metabolic health in people with type 2 diabetes, and adaptations to skeletal muscle are essential for this improvement. An acute bout of exercise increases skeletal muscle glucose uptake, while chronic exercise training improves mitochondrial function, increases mitochondrial biogenesis, and increases the expression of glucose transporter proteins and numerous metabolic genes. This review focuses on the molecular mechanisms that mediate the effects of exercise to increase glucose uptake in skeletal muscle. PMID:25434013

  10. TUSC5 regulates insulin-mediated adipose tissue glucose uptake by modulation of GLUT4 recycling

    PubMed Central

    Beaton, Nigel; Rudigier, Carla; Moest, Hansjörg; Müller, Sebastian; Mrosek, Nadja; Röder, Eva; Rudofsky, Gottfried; Rülicke, Thomas; Ukropec, Jozef; Ukropcova, Barbara; Augustin, Robert; Neubauer, Heike; Wolfrum, Christian

    2015-01-01

    Objective Failure to properly dispose of glucose in response to insulin is a serious health problem, occurring during obesity and is associated with type 2 diabetes development. Insulin-stimulated glucose uptake is facilitated by the translocation and plasma membrane fusion of vesicles containing glucose transporter 4 (GLUT4), the rate-limiting step of post-prandial glucose disposal. Methods We analyzed the role of Tusc5 in the regulation of insulin-stimulated Glut4-mediated glucose uptake in vitro and in vivo. Furthermore, we measured Tusc5 expression in two patient cohorts. Results Herein, we report that TUSC5 controls insulin-stimulated glucose uptake in adipocytes, in vitro and in vivo. TUSC5 facilitates the proper recycling of GLUT4 and other key trafficking proteins during prolonged insulin stimulation, thereby enabling proper protein localization and complete vesicle formation, processes that ultimately enable insulin-stimulated glucose uptake. Tusc5 knockout mice exhibit impaired glucose disposal and TUSC5 expression is predictive of glucose tolerance in obese individuals, independent of body weight. Furthermore, we show that TUSC5 is a PPARγ target and in its absence the anti-diabetic effects of TZDs are significantly blunted. Conclusions Collectively, these findings establish TUSC5 as an adipose tissue-specific protein that enables proper protein recycling, linking the ubiquitous vesicle traffic machinery with tissue-specific insulin-mediated glucose uptake into adipose tissue and the maintenance of a healthy metabolic phenotype in mice and humans. PMID:26629404

  11. Impact of assimilable nitrogen availability in glucose uptake kinetics in Saccharomyces cerevisiae during alcoholic fermentation.

    PubMed

    Palma, Margarida; Madeira, Sara Cordeiro; Mendes-Ferreira, Ana; Sá-Correia, Isabel

    2012-07-30

    The expression and activity of the different Saccharomyces cerevisiae hexose uptake systems (Hxt) and the kinetics of glucose uptake are considered essential to industrial alcoholic fermentation performance. However, the dynamics of glucose uptake kinetics during the different stages of fermentation, depending on glucose and nitrogen availability, is very poorly characterized. The objective of the present work was to examine thoroughly the alterations occurring in glucose uptake kinetics during alcoholic fermentation, by the wine strain S. cerevisiae PYCC 4072, of a synthetic grape juice basal medium with either a limiting or non-limiting initial nitrogen concentration and following nitrogen supplementation of the nitrogen-depleted sluggish fermentation. Independently of the initial concentration of the nitrogen source, glucose transport capacity is maximal during the early stages of fermentation and presumably sustained by the low-affinity and high-capacity glucose transporter Hxt1p. During nitrogen-limited sluggish fermentation, glucose uptake capacity was reduced to approximately 20% of its initial values (Vmax = 4.9 ± 0.8 compared to 21.9 ± 1.2 μmol h⁻¹ 10⁻⁸ cells), being presumably sustained by the low-affinity glucose transporter Hxt3p (considering the calculated Km = 39.2 ± 8.6 mM). The supplementation of the sluggish fermentation broth with ammonium led to the increase of glucose transport capacity associated to the expression of different glucose uptake systems with low and high affinities for glucose (Km = 58.2 ± 9.1 and 2.7 ± 0.4 mM). A biclustering analysis carried out using microarray data, previously obtained for this yeast strain transcriptional response to equivalent fermentation conditions, indicates that the activation of the expression of genes encoding the glucose transporters Hxt2p (during the transition period to active fermentation) and Hxt3p, Hxt4p, Hxt6p and Hxt7p (during the period of

  12. Impact of assimilable nitrogen availability in glucose uptake kinetics in Saccharomyces cerevisiae during alcoholic fermentation

    PubMed Central

    2012-01-01

    Background The expression and activity of the different Saccharomyces cerevisiae hexose uptake systems (Hxt) and the kinetics of glucose uptake are considered essential to industrial alcoholic fermentation performance. However, the dynamics of glucose uptake kinetics during the different stages of fermentation, depending on glucose and nitrogen availability, is very poorly characterized. The objective of the present work was to examine thoroughly the alterations occurring in glucose uptake kinetics during alcoholic fermentation, by the wine strain S. cerevisiae PYCC 4072, of a synthetic grape juice basal medium with either a limiting or non-limiting initial nitrogen concentration and following nitrogen supplementation of the nitrogen-depleted sluggish fermentation. Results Independently of the initial concentration of the nitrogen source, glucose transport capacity is maximal during the early stages of fermentation and presumably sustained by the low-affinity and high-capacity glucose transporter Hxt1p. During nitrogen-limited sluggish fermentation, glucose uptake capacity was reduced to approximately 20% of its initial values (Vmax = 4.9 ± 0.8 compared to 21.9 ± 1.2 μmol h-1 10-8 cells), being presumably sustained by the low-affinity glucose transporter Hxt3p (considering the calculated Km = 39.2 ± 8.6 mM). The supplementation of the sluggish fermentation broth with ammonium led to the increase of glucose transport capacity associated to the expression of different glucose uptake systems with low and high affinities for glucose (Km = 58.2 ± 9.1 and 2.7 ± 0.4 mM). A biclustering analysis carried out using microarray data, previously obtained for this yeast strain transcriptional response to equivalent fermentation conditions, indicates that the activation of the expression of genes encoding the glucose transporters Hxt2p (during the transition period to active fermentation) and Hxt3p, Hxt4p, Hxt6p and Hxt7p (during the

  13. Early Detection of Cerebral Glucose Uptake Changes in the 5XFAD Mouse

    PubMed Central

    I.R, Macdonald; D.R, DeBay; G.A, Reid; T.P, O’Leary; C.T, Jollymore; G, Mawko; S, Burrell; E, Martin; C.V, Bowen; R.E, Brown; S, Darvesh

    2014-01-01

    Brain glucose hypometabolism has been observed in Alzheimer’s disease (AD) patients, and is detected with 18F radiolabelled glucose, using positron emission tomography. A pathological hallmark of AD is deposition of brain β-amyloid plaques that may influence cerebral glucose metabolism. The five times familial AD (5XFAD) mouse is a model of brain amyloidosis exhibiting AD-like phenotypes. This study examines brain β-amyloid plaque deposition and 18FDG uptake, to search for an early biomarker distinguishing 5XFAD from wild-type mice. Thus, brain 18FDG uptake and plaque deposition was studied in these mice at age 2, 5 and 13 months. The 5XFAD mice demonstrated significantly reduced brain 18FDG uptake at 13 months relative to wild-type controls but not in younger mice, despite substantial β-amyloid plaque deposition. However, by comparing the ratio of uptake values for glucose in different regions in the same brain, 5XFAD mice could be distinguished from controls at age 2 months. This method of measuring altered glucose metabolism may represent an early biomarker for the progression of amyloid deposition in the brain. We conclude that brain 18FDG uptake can be a sensitive biomarker for early detection of abnormal metabolism in the 5XFAD mouse when alternative relative uptake values are utilized. PMID:24801216

  14. Novel fluorescent conjugate containing glucose and NBD and its carrier-mediated uptake by tobacco cells.

    PubMed

    Hu, An-Long; Yang, Wen; Xu, Han-Hong

    2010-12-02

    Some compounds that contain glucose groups can be transported across the plasma membrane into the cells through hexose transporters. To test the hypothesis that glucose-conjugated insecticides also have similar uptake and translocation properties, a novel fluorescent conjugate (12) was prepared by conjugating glucose and 7-nitrobenz-2-oxa-1,3-diazole with 4-iodo-1-phenylpyrazoles. Its fluorescence spectra and uptake by suspension-cultured tobacco (Nicotiana tabacum L.cv.) cells were studied. The fluorescence spectra showed long wavelengths with maximum emission at 530nm. After incubating tobacco cell suspensions in 10μM conjugate for 0.5h, green fluorescence of 12 was clearly visible in the cells under fluorescence microscopy. After 2h of incubation, more than 70% of 12 was absorbed. Carbonyl cyanide m-chlorophenylhydrazone, phloridzin and glucose drastically inhibited uptake. In concentration-dependent uptakes, the uptake rate of 12 showed a saturable component and was in accordance with Michaelis-Menten kinetics. The results proved that the glucose moiety can guide 12 into tobacco cells and that hexose transporters mediated the uptake.

  15. Effect of Glucose and CO(2) on Nitrate Uptake and Coupled OH Flux in Ankistrodesmus braunii.

    PubMed

    Eisele, R; Ullrich, W R

    1977-01-01

    In Ankistrodesmus braunii, in the absence of CO(2), i.e. in CO(2)-free air or N(2), photosynthetic nitrate uptake and nitrate reduction were inhibited, especially at low pH. Under such conditions, glucose stimulated nitrate uptake and reduction to almost the same level in the pH range between 6 and 8.5. CO(2) at 0.03% effected an intermediate pH dependence of nitrate uptake; saturating CO(2) concentration (more than 1%) eliminated the pH dependence, as did glucose, but the rates were enhanced compared with glucose. Glucose and, even more, CO(2), drastically reduced the release of nitrite and ammonia to the medium, the stoichiometry between alkalinization of the medium and nitrate uptake (OH(-)/NO(3) (-)) approached 1.Due to the lack of storage vacuoles in Ankistrodesmus, nitrate uptake and nitrate reduction were closely coupled processes whose experimental separation is difficult. The relieving effect of glucose and CO(2) suggests a carrier-mediated nitrate uptake which is more limiting than nitrate reduction and is sensitive to low pH, but which is stabilized by some intermediate originating from an active carbon metabolism.

  16. A Case of Insulin-dependent Diabetes.

    PubMed

    Gonzalez, Nicholas

    2016-07-01

    Background • There is a paucity of information on alternative, nutrition-based treatments for insulin-dependent diabetes. Primary Study Objective • This case report provides detailed information on the nutrition-based treatment of a man with insulin-dependent diabetes. Methods/Design • This is a single case report taken from the author's private practice. Setting • The treatment was provided at a private office in New York, NY, USA. Participants • A single patient in the author's practice is reported. Intervention • The patient was treated with a combination of pancreatic enzymes, supplements and nutrients, and cleansing and detoxification procedures, plus amber lenses for severe insomnia. Primary Outcome Measures • The outcome measures were patient self-report of symptoms, overall well-being, and function at work and in leisure time; observation of the patient by the physician; and blood work. Results • The patient described dramatic, sustained improvement in terms of symptoms, function, well-being, and life satisfaction. Improvement in blood sugar control was documented by blood work. Conclusion • The complex, tailored nutritional protocol combined with detoxification procedures, resulted in marked improvement in a patient who had been treated by numerous different physicians without benefit prior to his consulting with the author.

  17. Depot-specific effects of the PPARγ agonist rosiglitazone on adipose tissue glucose uptake and metabolisms⃞

    PubMed Central

    Festuccia, William T.; Blanchard, Pierre-Gilles; Turcotte, Véronique; Laplante, Mathieu; Sariahmetoglu, Meltem; Brindley, David N.; Deshaies, Yves

    2009-01-01

    We investigated mechanisms whereby peroxisome proliferator-activated receptor γ (PPARγ) agonism redistributes lipid from visceral (VF) toward subcutaneous fat (SF) by studying the impact of PPARγ activation on VF and SF glucose uptake and metabolism, lipogenesis, and enzymes involved in triacylglycerol (TAG) synthesis. VF (retroperitoneal) and SF (inguinal) of rats treated or not for 7 days with rosiglitazone (15 mg/kg/day) were evaluated in vivo for glucose uptake and lipogenesis and in vitro for glucose metabolism, gene expression, and activities of glycerolphosphate acyltransferase (GPAT), phosphatidate phosphatase-1 (or lipin-1), and diacylglycerol acyltransferase. Rosiglitazone increased SF glucose uptake, GLUT4 mRNA, and insulin-stimulated glucose oxidation, conversion to lactate, glycogen, and the glycerol and fatty acid components of TAG. In VF, only glucose incorporation into TAG-glycerol was stimulated by rosiglitazone and less so than in SF (1.5- vs. 3-fold). mRNA levels of proteins involved in glycolysis, Krebs cycle, glycogen synthesis, and lipogenesis were markedly upregulated by rosiglitazone in SF and again less so in VF. Rosiglitazone activated TAG-glycerol synthesis in vivo (2.8- vs. 1.9-fold) and lipin activity (4.6- vs. 1.5-fold) more strongly in SF than VF, whereas GPAT activity was increased similarly in both depots. The preferential increase in glucose uptake and intracellular metabolism in SF contributes to the PPARγ-mediated redistribution of TAG from VF to SF, which in turn favors global insulin sensitization. PMID:19201733

  18. Downstream mechanisms of nitric oxide-mediated skeletal muscle glucose uptake during contraction.

    PubMed

    Merry, Troy L; Lynch, Gordon S; McConell, Glenn K

    2010-12-01

    There is evidence that nitric oxide (NO) is required for the normal increases in skeletal muscle glucose uptake during contraction, but the mechanisms involved have not been elucidated. We examined whether NO regulates glucose uptake during skeletal muscle contractions via cGMP-dependent or cGMP-independent pathways. Isolated extensor digitorum longus (EDL) muscles from mice were stimulated to contract ex vivo, and potential NO signaling pathways were blocked by the addition of inhibitors to the incubation medium. Contraction increased (P < 0.05) NO synthase (NOS) activity (∼40%) and dichlorofluorescein (DCF) fluorescence (a marker of oxidant levels; ∼95%), which was prevented with a NOS inhibitor N(G)-monomethyl-L-arginine (L-NMMA), and antioxidants [nonspecific antioxidant, N-acetylcysteine (NAC); thiol-reducing agent, DTT], respectively. L-NMMA and NAC both attenuated glucose uptake during contraction by ∼50% (P < 0.05), and their effects were not additive. Neither the guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one, which prevents the formation of cGMP, the cGMP-dependent protein (PKG) inhibitor Rp-8-bromo-β-phenyl-1,N2-ethenoguanosine 3',5'-cyclic monophosphorothioate sodium salt nor white light, which breaks S-nitrosylated bonds, affects glucose uptake during contraction; however, DTT attenuated (P < 0.05) contraction-stimulated glucose uptake (by 70%). NOS inhibition and antioxidant treatment reduced contraction-stimulated increases in protein S-glutathionylation and tyrosine nitration (P < 0.05), without affecting AMPK or p38 MAPK phosphorylation. In conclusion, we provide evidence to suggest that NOS-derived oxidants regulate skeletal muscle glucose uptake during ex vivo contractions via a cGMP/PKG-, AMPK-, and p38 MAPK-independent pathway. In addition, it appears that NO and ROS may regulate skeletal muscle glucose uptake during contraction through a similar pathway.

  19. Skeletal muscle glucose uptake during contraction is regulated by nitric oxide and ROS independently of AMPK.

    PubMed

    Merry, Troy L; Steinberg, Gregory R; Lynch, Gordon S; McConell, Glenn K

    2010-03-01

    Reactive oxygen species (ROS) and nitric oxide (NO) have been implicated in the regulation of skeletal muscle glucose uptake during contraction, and there is evidence that they do so via interaction with AMP-activated protein kinase (AMPK). In this study, we tested the hypothesis that ROS and NO regulate skeletal muscle glucose uptake during contraction via an AMPK-independent mechanism. Isolated extensor digitorum longus (EDL) and soleus muscles from mice that expressed a muscle-specific kinase dead AMPKalpha2 isoform (AMPK-KD) and wild-type litter mates (WT) were stimulated to contract, and glucose uptake was measured in the presence or absence of the antioxidant N-acetyl-l-cysteine (NAC) or the nitric oxide synthase (NOS) inhibitor N(G)-monomethyl-l-arginine (l-NMMA). Contraction increased AMPKalpha2 activity in WT but not AMPK-KD EDL muscles. However, contraction increased glucose uptake in the EDL and soleus muscles of AMPK-KD and WT mice to a similar extent. In EDL muscles, NAC and l-NMMA prevented contraction-stimulated increases in oxidant levels (dichloroflourescein fluorescence) and NOS activity, respectively, and attenuated contraction-stimulated glucose uptake in both genotypes to a similar extent. In soleus muscles of AMPK-KD and WT mice, NAC prevented contraction-stimulated glucose uptake and l-NMMA had no effect. This is likely attributed to the relative lack of neuronal NOS in the soleus muscles compared with EDL muscles. Contraction increased AMPKalpha Thr(172) phosphorylation in EDL and soleus muscles of WT but not AMPK-KD mice, and this was not affected by NAC or l-NMMA treatment. In conclusion, ROS and NO are involved in regulating skeletal muscle glucose uptake during contraction via an AMPK-independent mechanism.

  20. In vivo stimulation of oestrogen receptor α increases insulin-stimulated skeletal muscle glucose uptake.

    PubMed

    Gorres, Brittany K; Bomhoff, Gregory L; Morris, Jill K; Geiger, Paige C

    2011-04-15

    Previous studies suggest oestrogen receptor α (ERα) is involved in oestrogen-mediated regulation of glucose metabolism and is critical for maintenance of whole body insulin action. Despite this, the effect of direct ERα modulation in insulin-responsive tissues is unknown. The purpose of the current study was to determine the impact of ERα activation, using the ER subtype-selective ligand propylpyrazoletriyl (PPT), on skeletal muscle glucose uptake. Two-month-old female Sprague-Dawley rats, ovariectomized for 1 week, were given subcutaneous injections of PPT (10 mg kg⁻¹), oestradiol benzoate (EB; 20 μg kg⁻¹), the ERβ agonist diarylpropionitrile (DPN, 10 mg kg⁻¹) or vehicle every 24 h for 3 days. On the fourth day, insulin-stimulated skeletal muscle glucose uptake was measured in vitro and insulin signalling intermediates were assessed via Western blotting.Activation of ERα with PPT resulted in increased insulin-stimulated glucose uptake into the slow-twitch soleus and fast-twitch extensor digitorum longus (EDL)muscles, activation of insulin signalling intermediates (as measured by phospho-Akt (pAkt) and pAkt substrate (PAS)) and phosphorylation of AMP-activated protein kinase (AMPK). GLUT4 protein was increased only in the EDL muscle. Rats treated with EB or DPN for 3 days did not show an increase in insulin-stimulated skeletal muscle glucose uptake compared to vehicle-treated animals. These new findings reveal that direct activation of ERα positively mediates glucose uptake and insulin action in skeletal muscle. Evidence that oestrogens and ERα stimulate glucose uptake has important implications for understanding mechanisms of glucose homeostasis, particularly in postmenopausal women.

  1. Effects of crude drugs on glucose uptake in 3T3-L1 adipocytes.

    PubMed

    Hong, S J; Fong, J C; Hwang, J H

    2000-09-01

    In this study, various water-extracted crude drugs from Radix Asparagi, Radix Ginseng, Radix Scutellariae, Cortex Lycii Radicis, Cortex Phellodendri and Radix Ophiopogonis were investigated in their effects on [3H]-2-deoxyglucose uptake in 3T3-L1 adipocytes. Following treatment of cells with various crude drugs for 60 mim, the basal [3H]-2-deoxyglucose uptake in cultured 3T3-L1 cells was changed by Radix Asparagi from 140 pmole/min/mg protein of control to 513 (0.1 mg/ml), 201 (1 mg/ml) and 97 (10 mg/ml). Glucose uptake was changed to 324 (0.1 mg/ml), 146 (1 mg/ml) and 46 (10 mg/ml) with Radix Ginseng. In the presence of Radix Scutellariae, glucose uptake was changed to 215 (0.1 mg/ml), 213 (1 mg/ml) and 34 (10 mg/ml). In the presence of Cortex Lycii Radicis, glucose uptake was 230 (0.1 mg/ml), 188 (1 mg/ml) and 38 (10 mg/ml). In the case of Cortex Phellodendri and Radix Ophiopogonis, uptake was changed to 142 (0.1 mg/ml), 132 (1 mg/ml), 24 (10 mg/ml) and 489 (0.1 mg/ml), 374 (1 mg/ml), 344 (10 mg/ml), respectively. In insulin-stimulated cells, the [3H]-2-deoxyglucose uptake was changed by Radix Asparagi from 570 pmole/min/mg protein of the control to 816 (0.1 mg/ml), 674 (1 mg/ml) and 532 (10 mg/ml). After incubation with Radix Ginseng, the glucose uptake was changed to 254 (0.1 mg/mi), 123 (1 mg/mi) to 76 (10 mg/mi). In the presence of Radix Scutellariae, the glucose uptake was changed to 315 (0.1 mg/ml), 265 (1 mg/ml) and 33 (10 mg/ml). After incubation of Cortex Lycii Radicis, the uptake activity was changed to 281 (0.1 mg/ml), 248 (1 mg/ml) and 37 (10 mg/ml). In the case of Cortex Phellodendri and Radix Ophiopogonis, the activity of glucose uptake was measured as 747 (0.1 mg/ml), 523 (1 mg/ml), 33 (10 mg/ml) and 753 (0.1 mg/ml), 740 (1 mg/ml), and 421 (10 mg/ml), respectively. These results indicate that the water-extracted materials of Radix Asparagi and Radix Ophiopogonis increase the glucose uptake in basal and insulin-stimulated 3T3-L1 adipocytes.

  2. Resveratrol regulates neuronal glucose uptake and insulin sensitivity via P21-activated kinase 2 (PAK2).

    PubMed

    Varshney, Pallavi; Dey, Chinmoy Sankar

    2017-04-01

    We have recently reported P21-activated kinase 2 (PAK2), a serine/threonine kinase as a negative regulator of neuronal glucose uptake and insulin sensitivity. Resveratrol (RSV), a natural polyphenol with anti-oxidative, anti-inflammatory and anti-diabetic properties, regulates PAK2 activity in HepG2 and ESC-B5 cell apoptosis. However, regulation of PAK2 by RSV in neuronal insulin signaling pathway, if any, is still unknown. In the present study, RSV treatment significantly increased PAK2 activity under insulin-sensitive and insulin-resistant condition, along with a marked decrease in glucose uptake in differentiated N2A cells. Pretreatment with AMPK inhibitor, followed by RSV treatment resulted in reduction in PAK2 activity whereas glucose uptake showed an increase. However, pretreatment with Akt inhibitor and then RSV exposure significantly increased PAK2 activity, with a corresponding decrease in glucose uptake. RSV treatment increased AMPK activity and decreased Akt activity. In conclusion, RSV negatively regulates neuronal glucose uptake and insulin sensitivity via PAK2. Copyright © 2017. Published by Elsevier Inc.

  3. Carbohydrate feeding speeds reversal of enhanced glucose uptake in muscle after exercise.

    PubMed

    Young, J C; Garthwaite, S M; Bryan, J E; Cartier, L J; Holloszy, J O

    1983-11-01

    Muscle contractile activity results in an increase in glucose uptake rate that can persist for hours. This study was undertaken to determine the effect of carbohydrate repletion on reversal of an exercise-induced increase in glucose uptake. Rats were exercised by swimming. In rats studied 60 min after exercise, muscle glycogen content was 75% depleted and glucose uptake rate was increased. The effect of exercise on glucose uptake was reversed, and glycogen concentration had increased 44 mumol/g muscle, within 18 h in rats fed carbohydrate. In rats fed a carbohydrate-free diet, muscle glycogen increased only 11 mumol/g, and glucose uptake rate had returned only 50% of the way to base line 18 h after exercise. The rate of 3-methylglucose accumulation in muscles was increased sixfold 60 min after exercise. This increase in permeability to sugar was reversed within 18 h in rats fed carbohydrate. In rats fed a carbohydrate-free diet the rate of 3-methylglucose accumulation was still threefold above base line 18 h after exercise. Our results provide evidence that decreased availability of carbohydrate slows reversal of an exercise-induced increase in permeability of muscle to sugar.

  4. The interrelation between aPKC and glucose uptake in the skeletal muscle during contraction and insulin stimulation.

    PubMed

    Santos, J M; Benite-Ribeiro, S A; Queiroz, G; Duarte, J A

    2014-12-01

    Contraction and insulin increase glucose uptake in skeletal muscle. While the insulin pathway, better characterized, requires activation of phosphoinositide 3-kinase (PI3K) and atypical protein kinase (aPKC), muscle contraction seems to share insulin-activated components to increase glucose uptake. This study aimed to investigate the interrelation between the pathway involved in glucose uptake evoked by insulin and muscle contraction. Isolated muscle of rats was treated with solvent (control), insulin, wortmannin (PI3K inhibitor) and the combination of insulin plus wortmannin. After treatment, muscles were electrically stimulated (contracted) or remained at rest. Glucose transporter 4 (GLUT4) localization, glucose uptake and phospho-aPKC (aPKC activated form) were assessed. Muscle contraction and insulin increased glucose uptake in all conditions when compared with controls not stimulating an effect that was accompanied by an increase in GLUT4 and of phospho-aPKC at the muscle membrane. Contracted muscles treated with insulin did not show additive effects on glucose uptake or aPKC activity compared with the response when these stimuli were applied alone. Inhibition of PI3K blocked insulin effect on glucose uptake and aPKC but not in the contractile response. Thus, muscle contraction seems to stimulate aPKC and glucose uptake independently of PI3K. Therefore, aPKC may be a convergence point and a rate limit step in the pathway by which, insulin and contraction, increase glucose uptake in skeletal muscle.

  5. GLP-1 increases microvascular recruitment but not glucose uptake in human and rat skeletal muscle.

    PubMed

    Sjøberg, Kim A; Holst, Jens J; Rattigan, Stephen; Richter, Erik A; Kiens, Bente

    2014-02-15

    The insulinotropic gut hormone glucagon-like peptide-1 (GLP-1) has been proposed to have effects on vascular function and glucose disposal. However, whether GLP-1 is able to increase microvascular recruitment (MVR) in humans has not been investigated. GLP-1 was infused in the femoral artery in overnight-fasted, healthy young men. Microvascular recruitment was measured with real-time contrast-enhanced ultrasound and leg glucose uptake by the leg balance technique with and without inhibition of the insulinotropic response of GLP-1 by coinfusion of octreotide. As a positive control, MVR and leg glucose uptake were measured during a hyperinsulinemic-euglycemic clamp. Infusion of GLP-1 caused a rapid increase (P < 0.05) of 20 ± 12% (mean ± SE) in MVR in the vastus lateralis muscle of the infused leg after 5 min, and MVR further increased to 60 ± 8% above preinfusion levels by 60 min infusion. The effect was slightly slower but similar in magnitude in the noninfused contralateral leg, in which GLP-1 concentration was within the physiological range. Octreotide infusion did not prevent the GLP-1-induced increase in MVR. GLP-1 infusion did not increase leg glucose uptake with or without octreotide coinfusion. GLP-1 infusion in rats increased MVR by 28% (P < 0.05) but did not increase muscle glucose uptake. During the hyperinsulinemic clamp, MVR increased ∼40%, and leg glucose uptake increased 35-fold. It is concluded that GLP-1 in physiological concentrations causes a rapid insulin-independent increase in muscle MVR but does not affect muscle glucose uptake.

  6. Olanzapine and aripiprazole differentially affect glucose uptake and energy metabolism in human mononuclear blood cells.

    PubMed

    Stapel, Britta; Kotsiari, Alexandra; Scherr, Michaela; Hilfiker-Kleiner, Denise; Bleich, Stefan; Frieling, Helge; Kahl, Kai G

    2017-05-01

    The use of antipsychotics carries the risk of metabolic side effects, such as weight gain and new onset type-2 diabetes mellitus. The mechanisms of the observed metabolic alterations are not fully understood. We compared the effects of two atypical antipsychotics, one known to favor weight gain (olanzapine), the other not (aripiprazole), on glucose metabolism. Primary human peripheral blood mononuclear cells (PBMC) were isolated and stimulated with olanzapine or aripiprazole for 72 h. Cellular glucose uptake was analyzed in vitro by 18F-FDG uptake. Further measurements comprised mRNA expression of glucose transporter (GLUT) 1 and 3, GLUT1 protein expression, DNA methylation of GLUT1 promoter region, and proteins involved in downstream glucometabolic processes. We observed a 2-fold increase in glucose uptake after stimulation with aripiprazole. In contrast, olanzapine stimulation decreased glucose uptake by 40%, accompanied by downregulation of the cellular energy sensor AMP activated protein kinase (AMPK). GLUT1 protein expression increased, GLUT1 mRNA expression decreased, and GLUT1 promoter was hypermethylated with both antipsychotics. Pyruvat-dehydrogenase (PDH) complex activity decreased with olanzapine only. Our findings suggest that the atypical antipsychotics olanzapine and aripiprazole differentially affect energy metabolism in PBMC. The observed decrease in glucose uptake in olanzapine stimulated PBMC, accompanied by decreased PDH point to a worsening in cellular energy metabolism not compensated by AMKP upregulation. In contrast, aripiprazole stimulation lead to increased glucose uptake, while not affecting PDH complex expression. The observed differences may be involved in the different metabolic profiles observed in aripiprazole and olanzapine treated patients.

  7. The influence of premedication, anaesthesia, age and weight on glucose uptake into human isolated skeletal muscle.

    PubMed Central

    Kirby, M J; Leighton, M; Turner, P

    1976-01-01

    The effect of the anaesthetic procedures and of the sex, age and weight of each patient on glucose uptake and glycogen content of human skeletal muscle has been studied in vitro in the presence and absence of insulin. Statistical analysis indicated that the relationships between age and both glucose uptake and the response to insulin were significant, older patients in general having higher uptakes. The blucose uptake was highly correlated with the three obesity indices (ponderal index, body mass index and percentage of the ideal weight). The anaesthetic agents had no significant effect on glucose uptake. The choice of premedication appeared to have a small effect on the basal glucose uptake level, but as the choice of premedication was also age related and age itself was a significant factor, this effect may not be of importance. It is concluded that the age and the degree of obesity of the patients ought to be taken into account when studying samples of human muscle. PMID:973964

  8. Effects of dehydroepiandrosterone (DHEA) and lactate on glucose uptake in the central nervous system.

    PubMed

    de Souza, Danielle Kaiser; Ribeiro, Maria Flávia Marques; Kucharski, Luiz Carlos Rios

    2012-01-17

    Dehydroepiandrosterone (DHEA) prevents brain aging, enhances the cerebral metabolism and interacts with energy substrates. The interaction between lactate and DHEA on glucose uptake and lactate oxidation by various nervous structures was investigated and results demonstrate that the 2-(14)C-deoxiglucose (2-(14)C-Dglucose) uptake was stimulated by 10mM lactate in the hypothalamus and olfactory bulb, inhibited in the cerebral cortex and cerebellum, and unaffected in the hippocampus. We also show that, in both the cerebral cortex and hypothalamus, (14)C-lactate oxidation was higher than (14)C-glucose oxidation (p≤0.001), demonstrating a relevant role for lactate as energy substrate. The interaction of lactate and 10(-8)M DHEA was tested and, although DHEA had no significant effect on uptake in the cerebellum, hippocampus, or hypothalamus, 10(-8)M DHEA increased the 2-(14)C-Dglucose uptake in the cerebral cortex in the presence of lactate (p≤0.001), and in the olfactory bulb in the absence of lactate (p<0.05). However, DHEA had no significant effect on (14)C-lactate oxidation. We suggest that DHEA improves glucose uptake in specific conditions. Thus, DHEA may affect CNS metabolism and interact with lactate, which is the most important neuronal energy substrate, on glucose uptake. Crown Copyright © 2011. Published by Elsevier Ireland Ltd. All rights reserved.

  9. The Glucagon-Like Peptide-1 Receptor Regulates Endogenous Glucose Production and Muscle Glucose Uptake Independent of Its Incretin Action

    PubMed Central

    Ayala, Julio E.; Bracy, Deanna P.; James, Freyja D.; Julien, Brianna M.; Wasserman, David H.; Drucker, Daniel J.

    2009-01-01

    Glucagon-like peptide-1 (GLP-1) diminishes postmeal glucose excursions by enhancing insulin secretion via activation of the β-cell GLP-1 receptor (Glp1r). GLP-1 may also control glucose levels through mechanisms that are independent of this incretin effect. The hyperinsulinemic-euglycemic clamp (insulin clamp) and exercise were used to examine the incretin-independent glucoregulatory properties of the Glp1r because both perturbations stimulate glucose flux independent of insulin secretion. Chow-fed mice with a functional disruption of the Glp1r (Glp1r−/−) were compared with wild-type littermates (Glp1r+/+). Studies were performed on 5-h-fasted mice implanted with arterial and venous catheters for sampling and infusions, respectively. During insulin clamps, [3-3H]glucose and 2[14C]deoxyglucose were used to determine whole-body glucose turnover and glucose metabolic index (Rg), an indicator of glucose uptake. Rg in sedentary and treadmill exercised mice was determined using 2[3H]deoxyglucose. Glp1r−/− mice exhibited increased glucose disappearance, muscle Rg, and muscle glycogen levels during insulin clamps. This was not associated with enhanced muscle insulin signaling. Glp1r−/− mice exhibited impaired suppression of endogenous glucose production and hepatic glycogen accumulation during insulin clamps. This was associated with impaired liver insulin signaling. Glp1r−/− mice became significantly hyperglycemic during exercise. Muscle Rg was normal in exercised Glp1r−/− mice, suggesting that hyperglycemia resulted from an added drive to stimulate glucose production. Muscle AMP-activated protein kinase phosphorylation was higher in exercised Glp1r−/− mice. This was associated with increased relative exercise intensity and decreased exercise endurance. In conclusion, these results show that the endogenous Glp1r regulates hepatic and muscle glucose flux independent of its ability to enhance insulin secretion. PMID:19008308

  10. Oxidative stress stimulates skeletal muscle glucose uptake through a phosphatidylinositol 3-kinase-dependent pathway

    PubMed Central

    Higaki, Yasuki; Mikami, Toshio; Fujii, Nobuharu; Hirshman, Michael F.; Koyama, Katsuhiro; Seino, Tetsuya; Tanaka, Keitaro; Goodyear, Laurie J.

    2010-01-01

    We determined the acute effects of oxidative stress on glucose uptake and intracellular signaling in skeletal muscle by incubating muscles with reactive oxygen species (ROS). Xanthine oxidase (XO) is a superoxide-generating enzyme that increases ROS. Exposure of isolated rat extensor digitorum longus (EDL) muscles to Hx/XO (Hx/XO) for 20 min resulted in a dose-dependent increase in glucose uptake. To determine whether the mechanism leading to Hx/XO-stimulated glucose uptake is associated with the production of H2O2, EDL muscles from rats were preincubated with the H2O2 scavenger catalase or the superoxide scavenger superoxide dismutase (SOD) prior to incubation with Hx/XO. Catalase treatment, but not SOD, completely inhibited the increase in Hx/XO-stimulated 2-deoxyglucose (2-DG) uptake, suggesting that H2O2 is an intermediary leading to Hx/XO-stimulated glucose uptake with incubation. Direct H2O2 also resulted in a dose-dependent increase in 2-DG uptake in isolated EDL muscles, and the maximal increase was threefold over basal levels at a concentration of 600 μmol/l H2O2. H2O2-stimulated 2-DG uptake was completely inhibited by the phosphatidylinositol 3-kinase (PI3K) inhibitor wortmannin, but not the nitric oxide inhibitor NG-monomethyl-L-arginine. H2O2 stimulated the phosphorylation of Akt Ser473 (7-fold) and Thr308 (2-fold) in isolated EDL muscles. H2O2 at 600 μmol/l had no effect on ATP concentrations and did not increase the activities of either the α1 or α2 catalytic isoforms of AMP-activated protein kinase. These results demonstrate that acute exposure of muscle to ROS is a potent stimulator of skeletal muscle glucose uptake and that this occurs through a PI3K-dependent mechanism. PMID:18303121

  11. Berberine activates GLUT1-mediated glucose uptake in 3T3-L1 adipocytes.

    PubMed

    Kim, So Hui; Shin, Eun-Jung; Kim, Eun-Do; Bayaraa, Tsenguun; Frost, Susan Cooke; Hyun, Chang-Kee

    2007-11-01

    It has recently been known that berberine, an alkaloid of medicinal plants, has anti-hyperglycemic effects. To explore the mechanism underlying this effect, we used 3T3-L1 adipocytes for analyzing the signaling pathways that contribute to glucose transport. Treatment of berberine to 3T3-L1 adipocytes for 6 h enhanced basal glucose uptake both in normal and in insulin-resistant state, but the insulin-stimulated glucose uptake was not augmented significantly. Inhibition of phosphatidylinositol 3-kinase (PI 3-K) by wortmannin did not affect the berberine effect on basal glucose uptake. Berberine did not augment tyrosine phosphorylation of insulin receptor (IR) and insulin receptor substrate (IRS)-1. Further, berberine had no effect on the activity of the insulin-sensitive downstream kinase, atypical protein kinase C (PKCzeta/lambda). However, interestingly, extracellular signal-regulated kinases (ERKs), which have been known to be responsible for the expression of glucose transporter (GLUT)1, were significantly activated in berberine-treated 3T3-L1 cells. As expected, the level of GLUT1 protein was increased both in normal and insulin-resistant cells in response to berberine. But berberine affected the expression of GLUT4 neither in normal nor in insulin-resistant cells. In addition, berberine treatment increased AMP-activated protein kinase (AMPK) activity in 3T3-L1 cells, which has been reported to be associated with GLUT1-mediated glucose uptake. Together, we concluded that berberine increases glucose transport activity of 3T3-L1 adipocytes by enhancing GLUT1 expression and also stimulates the GLUT1-mediated glucose uptake by activating GLUT1, a result of AMPK stimulation.

  12. Glucose uptake stimulatory potential and antidiabetic activity of the Arnebin-1 from Arnabia nobelis.

    PubMed

    Pandeti, Sukanya; Arha, Deepti; Mishra, Akansha; Reddy, Sabbu Sathish; Srivastava, Arvind K; Narender, Tadigoppula; Tamrakar, Akhilesh K

    2016-10-15

    The enhanced disposal of glucose by the peripheral tissue is an important mechanism to regulate hyperglycemia. Here, we investigated the effect of Arnebin-1 from Arnebia nobilis, on glucose disposal in skeletal muscle cells and explored its in vivo antihyperglycemic potential. In L6 myotubes, Arnebin-1 stimulated glucose uptake, mediated through the enhanced translocation of the glucose transporter-4 (GLUT4) to plasma membrane, without changing the amount of GLUT4 or GLUT1. These effects of Arnebin-1 were synergistic with that of insulin. The effect of Arnebin-1 on glucose uptake was abolished in presence of wortmannin, and Arnebin-1 significantly stimulated the phosphorylation of Akt and downstream marker GSK-3β. Moreover, treatment with Arnebin-1 lowered postprandial blood glucose levels in streptozotocin-induced diabetic rats, and improved glucose tolerance and suppressed the rises in the fasting blood glucose, serum insulin, triglycerides, and total cholesterol in db/db mice, associated with enhanced expression of the major marker of the PI-3-Kinase-mediated signaling cascade in skeletal muscle. These findings suggest that Arnebin-1 exert antihyperglycemic activity through stimulating glucose disposal in peripheral tissues via PI-3-Kinase-dependent pathway.

  13. Regulation of Glucose Uptake and Enteroendocrine Function by the Intestinal Epithelial Insulin Receptor.

    PubMed

    Ussar, Siegfried; Haering, Max-Felix; Fujisaka, Shiho; Lutter, Dominik; Lee, Kevin Y; Li, Ning; Gerber, Georg K; Bry, Lynn; Kahn, C Ronald

    2017-04-01

    Insulin receptors (IRs) and IGF-I receptors (IGF-IR) are major regulators of metabolism and cell growth throughout the body; however, their roles in the intestine remain controversial. Here we show that genetic ablation of the IR or IGF-IR in intestinal epithelial cells of mice does not impair intestinal growth or development or the composition of the gut microbiome. However, the loss of IRs alters intestinal epithelial gene expression, especially in pathways related to glucose uptake and metabolism. More importantly, the loss of IRs reduces intestinal glucose uptake. As a result, mice lacking the IR in intestinal epithelium retain normal glucose tolerance during aging compared with controls, which show an age-dependent decline in glucose tolerance. Loss of the IR also results in a reduction of glucose-dependent insulinotropic polypeptide (GIP) expression from enteroendocrine K-cells and decreased GIP release in vivo after glucose ingestion but has no effect on glucagon-like peptide 1 expression or secretion. Thus, the IR in the intestinal epithelium plays important roles in intestinal gene expression, glucose uptake, and GIP production, which may contribute to pathophysiological changes in individuals with diabetes, metabolic syndrome, and other insulin-resistant states. © 2017 by the American Diabetes Association.

  14. GLUT2-mediated glucose uptake and availability are required for embryonic brain development in zebrafish

    PubMed Central

    Marín-Juez, Rubén; Rovira, Mireia; Crespo, Diego; van der Vaart, Michiel; Spaink, Herman P; Planas, Josep V

    2015-01-01

    Glucose transporter 2 (GLUT2; gene name SLC2A2) has a key role in the regulation of glucose dynamics in organs central to metabolism. Although GLUT2 has been studied in the context of its participation in peripheral and central glucose sensing, its role in the brain is not well understood. To decipher the role of GLUT2 in brain development, we knocked down slc2a2 (glut2), the functional ortholog of human GLUT2, in zebrafish. Abrogation of glut2 led to defective brain organogenesis, reduced glucose uptake and increased programmed cell death in the brain. Coinciding with the observed localization of glut2 expression in the zebrafish hindbrain, glut2 deficiency affected the development of neural progenitor cells expressing the proneural genes atoh1b and ptf1a but not those expressing neurod. Specificity of the morphant phenotype was demonstrated by the restoration of brain organogenesis, whole-embryo glucose uptake, brain apoptosis, and expression of proneural markers in rescue experiments. These results indicate that glut2 has an essential role during brain development by facilitating the uptake and availability of glucose and support the involvement of glut2 in brain glucose sensing. PMID:25294126

  15. Glucose uptake saturation explains glucose kinetics profiles measured by different tests.

    PubMed

    Bizzotto, Roberto; Natali, Andrea; Gastaldelli, Amalia; Muscelli, Elza; Krssak, Martin; Brehm, Attila; Roden, Michael; Ferrannini, Ele; Mari, Andrea

    2016-08-01

    It is known that for a given insulin level glucose clearance depends on glucose concentration. However, a quantitative representation of the concomitant effects of hyperinsulinemia and hyperglycemia on glucose clearance, necessary to describe heterogeneous tests such as euglycemic and hyperglycemic clamps and oral tests, is lacking. Data from five studies (123 subjects) using a glucose tracer and including all the above tests in normal and diabetic subjects were collected. A mathematical model was developed in which glucose utilization was represented as a Michaelis-Menten function of glucose with constant Km and insulin-controlled Vmax, consistently with the basic notions of glucose transport. Individual values for the model parameters were estimated using a population approach. Tracer data were accurately fitted in all tests. The estimated Km was 3.88 (2.83-5.32) mmol/l [median (interquartile range)]. Median model-derived glucose clearance at 600 pmol/l insulin was reduced from 246 to 158 ml·min(-1)·m(-2) when glucose was raised from 5 to 10 mmol/l. The model reproduced the characteristic lack of increase in glucose clearance when moderate hyperinsulinemia was accompanied by hyperglycemia. In all tests, insulin sensitivity was inversely correlated with BMI, as expected (R(2) = 0.234, P = 0.0001). In conclusion, glucose clearance in euglycemic and hyperglycemic clamps and oral tests can be described with a unifying model, consistent with the notions of glucose transport and able to reproduce the suppression of glucose clearance due to hyperglycemia observed in previous studies. The model may be important for the design of reliable glucose homeostasis simulators.

  16. Multiple defects in muscle glycogen synthase activity contribute to reduced glycogen synthesis in non-insulin dependent diabetes mellitus.

    PubMed Central

    Thorburn, A W; Gumbiner, B; Bulacan, F; Brechtel, G; Henry, R R

    1991-01-01

    To define the mechanisms of impaired muscle glycogen synthase and reduced glycogen formation in non-insulin dependent diabetes mellitus (NIDDM), glycogen synthase activity was kinetically analyzed during the basal state and three glucose clamp studies (insulin approximately equal to 300, 700, and 33,400 pmol/liter) in eight matched nonobese NIDDM and eight control subjects. Muscle glycogen content was measured in the basal state and following clamps at insulin levels of 33,400 pmol/liter. NIDDM subjects had glucose uptake matched to controls in each clamp by raising serum glucose to 15-20 mmol/liter. The insulin concentration required to half-maximally activate glycogen synthase (ED50) was approximately fourfold greater for NIDDM than control subjects (1,004 +/- 264 vs. 257 +/- 110 pmol/liter, P less than 0.02) but the maximal insulin effect was similar. Total glycogen synthase activity was reduced approximately 38% and glycogen content was approximately 30% lower in NIDDM. A positive correlation was present between glycogen content and glycogen synthase activity (r = 0.51, P less than 0.01). In summary, defects in muscle glycogen synthase activity and reduced glycogen content are present in NIDDM. NIDDM subjects also have less total glycogen synthase activity consistent with reduced functional mass of the enzyme. These findings and the correlation between glycogen synthase activity and glycogen content support the theory that multiple defects in glycogen synthase activity combine to cause reduced glycogen formation in NIDDM. PMID:1899428

  17. Cacao liquor procyanidin extract improves glucose tolerance by enhancing GLUT4 translocation and glucose uptake in skeletal muscle.

    PubMed

    Yamashita, Yoko; Okabe, Masaaki; Natsume, Midori; Ashida, Hitoshi

    2012-01-01

    Hyperglycaemia and insulin resistance are associated with the increased risk of the metabolic syndrome and other severe health problems. The insulin-sensitive GLUT4 regulates glucose homoeostasis in skeletal muscle and adipose tissue. In this study, we investigated whether cacao liquor procyanidin (CLPr) extract, which contains epicatechin, catechin and other procyanidins, improves glucose tolerance by promoting GLUT4 translocation and enhances glucose uptake in muscle cells. Our results demonstrated that CLPr increased glucose uptake in a dose-dependent manner and promoted GLUT4 translocation to the plasma membrane of L6 myotubes. Oral administration of a single dose of CLPr suppressed the hyperglycaemic response after carbohydrate ingestion, which was accompanied by enhanced GLUT4 translocation in ICR mice. These effects of CLPr were independent of α-glucosidase inhibition in the small intestine. CLPr also promoted GLUT4 translocation in skeletal muscle of C57BL/6 mice fed a CLPr-supplemented diet for 7 d. These results indicate that CLPr is a beneficial food material for improvement of glucose tolerance by promoting GLUT4 translocation to the plasma membrane of skeletal muscle.

  18. The laforin-malin complex negatively regulates glycogen synthesis by modulating cellular glucose uptake via glucose transporters.

    PubMed

    Singh, Pankaj Kumar; Singh, Sweta; Ganesh, Subramaniam

    2012-02-01

    Lafora disease (LD), an inherited and fatal neurodegenerative disorder, is characterized by increased cellular glycogen content and the formation of abnormally branched glycogen inclusions, called Lafora bodies, in the affected tissues, including neurons. Therefore, laforin phosphatase and malin ubiquitin E3 ligase, the two proteins that are defective in LD, are thought to regulate glycogen synthesis through an unknown mechanism, the defects in which are likely to underlie some of the symptoms of LD. We show here that laforin's subcellular localization is dependent on the cellular glycogen content and that the stability of laforin is determined by the cellular ATP level, the activity of 5'-AMP-activated protein kinase, and the affinity of malin toward laforin. By using cell and animal models, we further show that the laforin-malin complex regulates cellular glucose uptake by modulating the subcellular localization of glucose transporters; loss of malin or laforin resulted in an increased abundance of glucose transporters in the plasma membrane and therefore excessive glucose uptake. Loss of laforin or malin, however, did not affect glycogen catabolism. Thus, the excessive cellular glucose level appears to be the primary trigger for the abnormally higher levels of cellular glycogen seen in LD.

  19. The Laforin-Malin Complex Negatively Regulates Glycogen Synthesis by Modulating Cellular Glucose Uptake via Glucose Transporters

    PubMed Central

    Singh, Pankaj Kumar; Singh, Sweta

    2012-01-01

    Lafora disease (LD), an inherited and fatal neurodegenerative disorder, is characterized by increased cellular glycogen content and the formation of abnormally branched glycogen inclusions, called Lafora bodies, in the affected tissues, including neurons. Therefore, laforin phosphatase and malin ubiquitin E3 ligase, the two proteins that are defective in LD, are thought to regulate glycogen synthesis through an unknown mechanism, the defects in which are likely to underlie some of the symptoms of LD. We show here that laforin's subcellular localization is dependent on the cellular glycogen content and that the stability of laforin is determined by the cellular ATP level, the activity of 5′-AMP-activated protein kinase, and the affinity of malin toward laforin. By using cell and animal models, we further show that the laforin-malin complex regulates cellular glucose uptake by modulating the subcellular localization of glucose transporters; loss of malin or laforin resulted in an increased abundance of glucose transporters in the plasma membrane and therefore excessive glucose uptake. Loss of laforin or malin, however, did not affect glycogen catabolism. Thus, the excessive cellular glucose level appears to be the primary trigger for the abnormally higher levels of cellular glycogen seen in LD. PMID:22124153

  20. Glucose Transporter 4 (GLUT4) is Not Necessary for Overload-Induced Glucose Uptake or Hypertrophic Growth in Mouse Skeletal Muscle.

    PubMed

    McMillin, Shawna L; Schmidt, Denise L; Kahn, Barbara B; Witczak, Carol A

    2017-03-09

    Glucose transporter 4 (GLUT4) is necessary for acute insulin- and contraction-induced skeletal muscle glucose uptake, but its role in chronic muscle loading (overload)-induced glucose uptake is unknown. Our goal was to determine if GLUT4 is required for overload-induced glucose uptake. Overload was induced in mouse plantaris muscle by unilateral synergist ablation. After 5 days, muscle weights and ex vivo [(3)H]-2-deoxy-D-glucose uptake were assessed. Overload-induced muscle glucose uptake and hypertrophic growth were not impaired in muscle-specific GLUT4 knockout mice, demonstrating that GLUT4 is not necessary for these processes. To assess which transporter(s) mediate overload-induced glucose uptake, chemical inhibitors were utilized. The facilitative GLUT inhibitor, cytochalasin B, but not the sodium-dependent glucose-co-transport inhibitor, phloridzin, prevented overload-induced uptake demonstrating that GLUT(s) mediate this effect. To assess which GLUT, hexose competition experiments were performed. Overload-induced [(3)H]-2-deoxy-D-glucose uptake was not inhibited by D-fructose, demonstrating that the fructose-transporting GLUT2, GLUT5, GLUT8, and GLUT12, do not mediate this effect. To assess additional GLUTs, immunoblots were performed. Overload increased GLUT1, GLUT3, GLUT6 and GLUT10 protein levels 2- to 5-fold. Collectively, these results demonstrate that GLUT4 is not necessary for overload-induced muscle glucose uptake or hypertrophic growth, and suggest that GLUT1, GLUT3, GLUT6 and/or GLUT10 mediate overload-induced glucose uptake.

  1. 27-Hydroxycholesterol impairs neuronal glucose uptake through an IRAP/GLUT4 system dysregulation.

    PubMed

    Ismail, Muhammad-Al-Mustafa; Mateos, Laura; Maioli, Silvia; Merino-Serrais, Paula; Ali, Zeina; Lodeiro, Maria; Westman, Eric; Leitersdorf, Eran; Gulyás, Balázs; Olof-Wahlund, Lars; Winblad, Bengt; Savitcheva, Irina; Björkhem, Ingemar; Cedazo-Mínguez, Angel

    2017-02-17

    Hypercholesterolemia is associated with cognitively deteriorated states. Here, we show that excess 27-hydroxycholesterol (27-OH), a cholesterol metabolite passing from the circulation into the brain, reduced in vivo brain glucose uptake, GLUT4 expression, and spatial memory. Furthermore, patients exhibiting higher 27-OH levels had reduced (18)F-fluorodeoxyglucose uptake. This interplay between 27-OH and glucose uptake revealed the engagement of the insulin-regulated aminopeptidase (IRAP). 27-OH increased the levels and activity of IRAP, countered the IRAP antagonist angiotensin IV (AngIV)-mediated glucose uptake, and enhanced the levels of the AngIV-degrading enzyme aminopeptidase N (AP-N). These effects were mediated by liver X receptors. Our results reveal a molecular link between cholesterol, brain glucose, and the brain renin-angiotensin system, all of which are affected in some neurodegenerative diseases. Thus, reducing 27-OH levels or inhibiting AP-N maybe a useful strategy in the prevention of the altered glucose metabolism and memory decline in these disorders.

  2. Walnut leaf extract inhibits PTP1B and enhances glucose-uptake in vitro.

    PubMed

    Pitschmann, Anna; Zehl, Martin; Atanasov, Atanas G; Dirsch, Verena M; Heiss, Elke; Glasl, Sabine

    2014-03-28

    Walnut, Juglans regia L. (Juglandaceae), is one of the medicinal plants used to treat diabetic symptoms in Austrian folk medicine. The air-dried green leaves are either used as aqueous decoctions or liquor preparations and are consumed on a daily basis. We investigated the hypoglycemic effect of a methanolic Juglans regia leaf extract on glucose uptake, protein tyrosine phosphatase 1B (PTP1B) inhibition and peroxisome proliferator-activated receptor gamma (PPARγ) activation. Hypoglycemic activity was assessed by glucose-uptake in C2C12 myocytes, inhibition of PTP1B and activation of PPARγ. Phytochemical characterization of the extract was carried out by LC-MS and GC-MS. Methanolic Juglans regia leaf extract enhanced the glucose uptake rate in C2C12 myocytes at concentrations of 25µg/mL compared to untreated cells. This activity may partly be explained by the inhibition of PTP1B but not PPARγ agonism. LC-MS analyses revealed chlorogenic acid (1), 3-p-coumaroylquinic acid (2), a trihydroxynaphthalene-hexoside (3), as well as eight flavonoids (4-11) as main phenolic constituents in the active extract. The finding that Juglans regia leaf extract enhances glucose uptake and inhibits PTP1B provides an in vitro-based rationale for the traditional use of walnut leaf preparations against elevated blood-glucose levels. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. AMPK, a metabolic sensor, is involved in isoeugenol-induced glucose uptake in muscle cells

    PubMed Central

    Kim, Nami; Lee, Jung Ok; Lee, Hye Jeong; Lee, Yong Woo; Kim, Hyung Ip; Kim, Su Jin; Park, Sun Hwa; Lee, Chul Su; Ryoo, Sun Woo; Hwang, Geum-Sook; Kim, Hyeon Soo

    2016-01-01

    Isoeugenol exerts various beneficial effects on human health. However, the mechanisms underlying these effects are poorly understood. In this study, we observed that isoeugenol activated AMP-activated protein kinase (AMPK) and increased glucose uptake in rat L6 myotubes. Isoeugenol-induced increase in intracellular calcium concentration and glucose uptake was inhibited by STO-609, an inhibitor of calcium/calmodulin-dependent protein kinase kinase (CaMKK). Isoeugenol also increased the phosphorylation of protein kinase C-α (PKCα). Chelation of calcium with BAPTA-AM blocked isoeugenol-induced AMPK phosphorylation and glucose uptake. Isoeugenol stimulated p38MAPK phosphorylation that was inhibited after pretreatment with compound C, an AMPK inhibitor. Isoeugenol also increased glucose transporter type 4 (GLUT4) expression and its translocation to the plasma membrane. GLUT4 translocation was not observed after the inhibition of AMPK and CaMKK. In addition, isoeugenol activated the Akt substrate 160 (AS160) pathway, which is downstream of the p38MAPK pathway. Knockdown of the gene encoding AS160 inhibited isoeugenol-induced glucose uptake. Together, these results indicate that isoeugenol exerts beneficial health effects by activating the AMPK/p38MAPK/AS160 pathways in skeletal muscle. PMID:26585419

  4. Oral vanadyl sulfate improves hepatic and peripheral insulin sensitivity in patients with non-insulin-dependent diabetes mellitus.

    PubMed Central

    Cohen, N; Halberstam, M; Shlimovich, P; Chang, C J; Shamoon, H; Rossetti, L

    1995-01-01

    We examined the in vivo metabolic effects of vanadyl sulfate (VS) in non-insulin-dependent diabetes mellitus (NIDDM). Six NIDDM subjects treated with diet and/or sulfonylureas were examined at the end of three consecutive periods: placebo for 2 wk, VS (100 mg/d) for 3 wk, and placebo for 2 wk. Euglycemic hyperinsulinemic (30 mU/m2.min) clamps and oral glucose tolerance tests were performed at the end of each study period. Glycemic control at baseline was poor (fasting plasma glucose 210 +/- 19 mg/dl; HbA1c 9.6 +/- 0.6%) and improved after treatment (181 +/- 14 mg/dl [P < 0.05], 8.8 +/- 0.6%, [P < 0.002]); fasting and post-glucose tolerance test plasma insulin concentrations were unchanged. After VS, the glucose infusion rate during the clamp was increased (by approximately 88%, from 1.80 to 3.38 mg/kg.min, P < 0.0001). This improvement was due to both enhanced insulin-mediated stimulation of glucose uptake (rate of glucose disposal [Rd], +0.89 mg/kg.min) and increased inhibition of HGP (-0.74 mg/kg.min) (P < 0.0001 for both). Increased insulin-stimulated glycogen synthesis (+0.74 mg/kg.min, P < 0.0003) accounted for > 80% of the increased Rd after VS, and the improvement in insulin sensitivity was maintained after the second placebo period. The Km of skeletal muscle glycogen synthase was lowered by approximately 30% after VS treatment (P < 0.05). These results indicate that 3 wk of treatment with VS improves hepatic and peripheral insulin sensitivity in insulin-resistant NIDDM humans. These effects were sustained for up to 2 wk after discontinuation of VS. Images PMID:7769096

  5. Insulin intervention in slowly progressive insulin-dependent (type 1) diabetes mellitus.

    PubMed

    Maruyama, Taro; Tanaka, Shoichiro; Shimada, Akira; Funae, Osamu; Kasuga, Akira; Kanatsuka, Azuma; Takei, Izumi; Yamada, Satoru; Harii, Norikazu; Shimura, Hiroki; Kobayashi, Tetsuro

    2008-06-01

    We tested the hypothesis that insulin therapy rather than sulfonylurea (SU) treatment is preferable to reverse or preserve beta-cell function among patients with slowly progressive insulin-dependent (type 1) diabetes (SPIDDM) or latent autoimmune diabetes in adults. This multicenter, randomized, nonblinded clinical study screened 4089 non-insulin-dependent diabetic patients for glutamic acid decarboxylase autoantibodies (GADAb). Sixty GADAb-positive non-insulin-requiring diabetic patients with a 5-yr duration or shorter of diabetes were assigned to either the SU group (n = 30) or the insulin group (n = 30). Serum C-peptide responses to annual oral glucose tolerance tests were followed up for a mean of 57 months. The primary endpoint was an insulin-dependent state defined by the sum of serum C-peptide values during the oral glucose tolerance test (SigmaC-peptide) less than 4 ng/ml (1.32 nmol/liter). The progression rate to an insulin-dependent state in the insulin group (three of 30, 10%) was lower than that in the SU group (13 of 30, 43%; P = 0.003, log-rank). Longitudinal analysis demonstrated that SigmaC-peptide values were better preserved in the insulin group than in the SU group. Multiple regression analysis demonstrated that insulin treatment, a preserved C-peptide response, and a low GADAb titer at entry were independent factors in preventing progression to an insulin-dependent state. Subgroup analysis suggested that insulin intervention was highly effective for SPIDDM patients with high GADAb titers [> or =10 U/ml (180 World Health Organization U/ml)] and preserved beta-cell function [SigmaC-peptide > or = 10 ng/ml (3.31 nmol/liter)] at entry. No severe hypoglycemic episodes occurred during the study. Insulin intervention to preserve beta-cell function is effective and safe for patients with SPIDDM or latent autoimmune diabetes in adults.

  6. SGLT-1-mediated glucose uptake protects human intestinal epithelial cells against Giardia duodenalis-induced apoptosis.

    PubMed

    Yu, Linda C H; Huang, Ching-Ying; Kuo, Wei-Ting; Sayer, Heather; Turner, Jerrold R; Buret, Andre G

    2008-07-01

    Infection with Giardia duodenalis is one of the most common causes of waterborne diarrheal disease worldwide. Mechanisms of pathogenesis and host response in giardiasis remain incompletely understood. Previous studies have shown that exposure to G. duodenalis products induce apoptosis in enterocytes. We recently discovered that sodium-dependent glucose cotransporter (SGLT)-1-mediated glucose uptake modulates enterocytic cell death induced by bacterial lipopolysaccharide. The aim of this study was to examine whether enhanced epithelial SGLT-1 activity may constitute a novel mechanism of host defense against G. duodenalis-induced apoptosis. SGLT-1-transfected Caco-2 cells were exposed to G. duodenalis products in low (5mM) or high (25mM) glucose media. In low glucose environments, G. duodenalis-induced caspase-3 activation and DNA fragmentation in these cells. These apoptotic phenomena were abolished in the presence of high glucose. A soluble proteolytic fraction of G. duodenalis was found to upregulate SGLT-1-mediated glucose uptake in a dose- and time-dependent manner, in association with increased apical SGLT-1 expression on epithelial cells. Kinetic analysis showed that this phenomenon resulted from an increase in the maximal rate of sugar transport (V(max)) by SGLT-1, with no change in the affinity constant (K(m)). The addition of phloridzin (a competitive inhibitor for glucose binding to SGLT-1) abolished the anti-apoptotic effects exerted by high glucose. Together, the findings indicate that SGLT-1-dependent glucose uptake may represent a novel epithelial cell rescue mechanism against G. duodenalis-induced apoptosis.

  7. Purinergic modulation of glucose uptake into cultured rat podocytes: effect of diabetic milieu.

    PubMed

    Karczewska, Joanna; Piwkowska, Agnieszka; Rogacka, Dorota; Stępiński, Jan; Angielski, Stefan; Jankowski, Maciej

    2011-01-14

    Extracellular purines act via P1 and P2 receptors on podocytes and may influence on their function. This action may be modified under various (patho)physiological conditions leading to development of podocytopathy. Aim of study was to investigate effects of diabetic milieu, represented by high glucose concentration (HG, 30 mM glucose) on purinergic-induced changes of 2-deoxy-D-glucose (2-DG) uptake and on extracellular purines metabolism in cultured rat podocytes. Basal 2-DG uptake was 2.7-fold enhanced in HG compared to normal glucose concentration, NG (1271 ± 86 vs. 477 ± 37 nmol/h/mg protein, P<0.001). ATP stimulated 2-DG uptake by 44 ± 4% and 29 ± 5% in NG and HG, respectively. ATP analogues, β, γ-methylene ATP and 2-methylthio ATP stimulated 2-DG uptake in range of 18-34% in NG and 16-17% in HG. Benzoylbenzoyl ATP increased 2-DG uptake about 24 ± 2% in NG however, its effect in HG reached 50 ± 1%. The antagonists of P2 receptors (suramin, reactive blue 2, PPADS) decreased basal 2-DG uptake in NG and HG; suramin and reactive blue 2 at average of 15 ± 4% in NG but in HG the effect was in following order: suramin 28 ± 3%; PPADS 20 ± 3% and RB-2 9 ± 0.9%. Extracellular adenosine concentration was higher in HG than in NG (0.48 ± 0.01 vs. 5.05 ± 0.39 μM, P < 0.05), however intracellular ATP content and extracellular ATP concentration were not affected. Neither ecto-ATPase nor ecto-5'-nucleotidase activities were affected in HG. In conclusion, diabetic milieu affects purinergic modulation of glucose transport into podocytes which may play a role in development of diabetic podocytopathy. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. Distinct Akt phosphorylation states are required for insulin regulated Glut4 and Glut1-mediated glucose uptake.

    PubMed

    Beg, Muheeb; Abdullah, Nazish; Thowfeik, Fathima Shazna; Altorki, Nasser K; McGraw, Timothy E

    2017-06-07

    Insulin, downstream of Akt activation, promotes glucose uptake into fat and muscle cells to lower postprandial blood glucose, an enforced change in cellular metabolism to maintain glucose homeostasis. This effect is mediated by the Glut4 glucose transporter. Growth factors also enhance glucose uptake to fuel an anabolic metabolism required for tissue growth and repair. This activity is predominantly mediated by the Glut1. Akt is activated by phosphorylation of its kinase and hydrophobic motif (HM) domains. We show that insulin-stimulated Glut4-mediated glucose uptake requires PDPK1 phosphorylation of the kinase domain but not mTORC2 phosphorylation of the HM domain. Nonetheless, an intact HM domain is required for Glut4-mediated glucose uptake. Whereas, Glut1-mediated glucose uptake also requires mTORC2 phosphorylation of the HM domain, demonstrating both phosphorylation-dependent and independent roles of the HM domain in regulating glucose uptake. Thus, mTORC2 links Akt to the distinct physiologic programs related to Glut4 and Glut1-mediated glucose uptake.

  9. Foot pathology in insulin dependent diabetes.

    PubMed Central

    Barnett, S J; Shield, J P; Potter, M J; Baum, J D

    1995-01-01

    OBJECTIVES--Foot pathology is a major source of morbidity in adults with diabetes. The aim of this study was to determine if children with insulin dependent diabetes have an increased incidence of foot pathology compared with non-diabetic children. DESIGN--Questionnaire, clinical examination, and biomechanical assessment. SUBJECTS--67 diabetic children and a comparison group matched for age, sex, and social class. RESULTS--We found significantly more foot pathology in the children with diabetes (52 children) than the comparison group (28 children); with more biomechanical anomalies (58 children with diabetes, 34 comparison group); and a higher incidence of abnormal skin conditions (53 children with diabetes, 27 comparison group). Forty two children with diabetes had received foot health education compared with 27 in the comparison group, but the study revealed ignorance and misconceptions among the diabetic group, and previous contact with a podiatrist was minimal. CONCLUSIONS--The survey suggests that children with diabetes have an increased incidence of foot pathology justifying greater input of podiatric care in the hope of preventing later problems. PMID:7574860

  10. Organic nitrogen of tomato waste hydrolysate enhances glucose uptake and lipid accumulation in Cunninghamella echinulata.

    PubMed

    Fakas, S; Papanikolaou, S; Galiotou-Panayotou, M; Komaitis, M; Aggelis, G

    2008-10-01

    To investigate the effect of organic nitrogen on lipogenesis during growth of Cunninghamella echinulata on tomato waste hydrolysate (TWH) media. Cunninghamella echinulata grown on a TWH medium rapidly took up glucose and produced large amounts of lipids. However, when some quantities of the organic nitrogen were removed from TWH (by acid followed by alkaline precipitation of proteins) the uptake of glucose was dramatically reduced and large quantities of fungal biomass having low lipid content were produced. Nevertheless, when glycerol was used as carbon source instead of glucose, the uptake rate as well as the biomass production and the lipid accumulation processes were unaffected by the TWH organic nitrogen removal. Finally, when the fungus was grown on a glucose supplemented TWH medium that contained no assimilable organic nitrogen (after further precipitation of proteins with methanol), the produced biomass contained non-negligible quantities of lipids, although glucose uptake remained low. Lipid analysis showed that the produced lipids comprised mainly of neutral lipids, which were preferentially consumed during lipid turnover. Lipid production on the original TWH medium having glucose as carbon source was 0.48 g of lipid per gram of dry biomass, corresponding to 8.7 g of lipid per litre of growth medium. The produced lipids contained 11.7%gamma-linolenic acid (GLA), hence the GLA yield was more than 1 g l(-1). Organic nitrogen compounds found in TWH favour glucose (but not glycerol) uptake and lipid accumulation in C. echinulata. Agro-industrial wastes containing organic nitrogen, such as tomato waste, are produced in vast amounts causing severe environmental problems. These wastes could be used as fermentation feedstock to produce microbial lipids.

  11. Tadalafil increases muscle capillary recruitment and forearm glucose uptake in women with type 2 diabetes

    PubMed Central

    Murdolo, G.; Sjögren, L.; Nyström, B.; Sjöstrand, M.; Strindberg, L.; Lönnroth, P.

    2010-01-01

    Aims/hypothesis Recent evidence suggests that reduced synthesis of nitric oxide in endothelial cells, i.e. endothelial dysfunction, contributes to the impaired action of insulin in the vasculature of patients with type 2 diabetes. We investigated whether selective inhibition of phosphodiesterase-5 by tadalafil has beneficial effects on peripheral microcirculation and glucose uptake in these patients. Methods We enrolled seven postmenopausal women with type 2 diabetes and ten age-matched healthy women as controls in a placebo-controlled study to evaluate the acute metabolic effects of tadalafil. We performed microdialysis and blood flow measurements in muscle, and sampled arterial and deep venous blood before and after a single dose of tadalafil 20 mg or placebo. Circulating glucose and insulin levels, muscle capillary recruitment as reflected by permeability surface area for glucose (PSglu) and forearm glucose uptake were measured. Results In women with type 2 diabetes, but not in the control group, tadalafil induced increases in the incremental AUC for PSglu (tadalafil vs placebo 41 ± 11 vs 4 ± 2 ml [100 g]−1 min−1, p < 0.05) and forearm glucose uptake (46 ± 9 vs 8 ± 4 µmol [100 g]−1 min−1, p < 0.05). The variable that best predicted forearm glucose uptake was PSglu, which explained 70% of its variance. However, fasting glucose and insulin concentrations were similar following treatment with placebo or tadalafil in the two groups. Conclusions/interpretation This study suggests that tadalafil evokes positive metabolic effects in insulin-resistant women with type 2 diabetes. Electronic supplementary material The online version of this article (doi:10.1007/s00125-010-1819-4) contains supplementary material, which is available to authorised users. PMID:20535445

  12. Limited effects of exogenous glucose during severe hypoxia and a lack of hypoxia-stimulated glucose uptake in isolated rainbow trout cardiac muscle

    PubMed Central

    Becker, Tracy A.; DellaValle, Brian; Gesser, Hans; Rodnick, Kenneth J.

    2013-01-01

    SUMMARY We examined whether exogenous glucose affects contractile performance of electrically paced ventricle strips from rainbow trout under conditions known to alter cardiomyocyte performance, ion regulation and energy demands. Physiological levels of d-glucose did not influence twitch force development for aerobic preparations (1) paced at 0.5 or 1.1 Hz, (2) at 15 or 23°C, (3) receiving adrenergic stimulation or (4) during reoxygenation with or without adrenaline after severe hypoxia. Contractile responses to ryanodine, an inhibitor of Ca2+ release from the sarcoplasmic reticulum, were also not affected by exogenous glucose. However, glucose did attenuate the fall in twitch force during severe hypoxia. Glucose uptake was assayed in non-contracting ventricle strips using 2-[3H] deoxy-d-glucose (2-DG) under aerobic and hypoxic conditions, at different incubation temperatures and with different inhibitors. Based upon a lack of saturation of 2-DG uptake and incomplete inhibition of uptake by cytochalasin B and d-glucose, 2-DG uptake was mediated by a combination of facilitated transport and simple diffusion. Hypoxia stimulated lactate efflux sixfold to sevenfold with glucose present, but did not increase 2-DG uptake or reduce lactate efflux in the presence of cytochalasin B. Increasing temperature (14 to 24°C) also did not increase 2-DG uptake, but decreasing temperature (14 to 4°C) reduced 2-DG uptake by 45%. In conclusion, exogenous glucose improves mechanical performance under hypoxia but not under any of the aerobic conditions applied. The extracellular concentration of glucose and cold temperature appear to determine and limit cardiomyocyte glucose uptake, respectively, and together may help define a metabolic strategy that relies predominantly on intracellular energy stores. PMID:23685969

  13. Exercise and Type 2 Diabetes: Molecular Mechanisms Regulating Glucose Uptake in Skeletal Muscle

    ERIC Educational Resources Information Center

    Stanford, Kristin I.; Goodyear, Laurie J.

    2014-01-01

    Exercise is a well-established tool to prevent and combat type 2 diabetes. Exercise improves whole body metabolic health in people with type 2 diabetes, and adaptations to skeletal muscle are essential for this improvement. An acute bout of exercise increases skeletal muscle glucose uptake, while chronic exercise training improves mitochondrial…

  14. Exercise and Type 2 Diabetes: Molecular Mechanisms Regulating Glucose Uptake in Skeletal Muscle

    ERIC Educational Resources Information Center

    Stanford, Kristin I.; Goodyear, Laurie J.

    2014-01-01

    Exercise is a well-established tool to prevent and combat type 2 diabetes. Exercise improves whole body metabolic health in people with type 2 diabetes, and adaptations to skeletal muscle are essential for this improvement. An acute bout of exercise increases skeletal muscle glucose uptake, while chronic exercise training improves mitochondrial…

  15. Cold exposure potentiates the effect of insulin on in vivo glucose uptake

    SciTech Connect

    Vallerand, A.L.; Perusse, F.; Bukowiecki, L.J. )

    1987-08-01

    The effects of cold exposure and insulin injection on the rates of net 2-({sup 3}H)deoxyglucose uptake (K{sub i}) in peripheral tissues were investigated in warm-acclimated rats. Cold exposure and insulin treatment independently increased K{sub i} values in skeletal muscles, heart, white adipose tissue, and brown adipose tissue. The effects of cold exposure were particularly evident in brown adipose tissue where the K{sub i} increased >100 times. When the two treatments were combined, it was found that cold exposure synergistically enhanced the maximal insulin responses for glucose uptake in brown adipose tissue, all white adipose tissue depots, and skeletal muscles investigated. The results indicate that cold exposure induces an insulin-like effect on K{sub i} that does not appear to be specifically associated with shivering thermogenesis in skeletal muscles, because that effect was observed in all insulin-sensitive tissues. The data also demonstrate that cold exposure significantly potentiates the maximal insulin responses for glucose uptake in the same tissues. This potentialization may result from (1) an enhanced responsiveness of peripheral tissues to insulin, possibly occurring at metabolic steps lying beyond the insulin receptor and (2) an increased tissue blood flow augmenting glucose and insulin availability and thereby amplifying glucose uptake.

  16. Triphenyl phosphate enhances adipogenic differentiation, glucose uptake and lipolysis via endocrine and noradrenergic mechanisms.

    PubMed

    Cano-Sancho, German; Smith, Anna; La Merrill, Michele A

    2017-04-01

    The use of triphenyl phosphate (TPhP) as a flame retardant or plasticizer has increased during the last decade, resulting in widespread human exposure without commensurate toxicity assessment. The main objectives of this study were to assess the in vitro effect of TPhP and its metabolite diphenyl phosphate (DPhP) on the adipogenic differentiation of 3T3-L1 cells, as well as glucose uptake and lipolysis in differentiated 3T3-L1 adipocytes. TPhP increased pre-adipocyte proliferation and subsequent adipogenic differentiation of 3T3-L1 cells, coinciding with increased transcription in the CEBP and PPARG pathway. Treatment of mature adipocytes with TPhP increased the basal- and insulin stimulated- uptake of the glucose analog 2-[N (-7-nitrobenz-2-oxa1, 3-diazol-4-yl) amino]-2-deoxy-d-glucose (2-NBDG). This effect was ablated by inhibition of PI3K, a member of the insulin signaling pathway. DPhP had no significant effect on cell proliferation and, compared to TPhP, a weaker effect on adipogenic differentiation and on 2-NBDG uptake. Both TPhP and DPhT significantly enhanced the isoproterenol-induced lipolysis, most likely by increasing the expression of lipolytic genes during and after differentiation. This study suggests that TPhP increases adipogenic differentiation, glucose uptake, and lipolysis in 3T3-L1 cells through endocrine and noradrenergic mechanisms.

  17. Effect of guava (Psidium guajava L.) leaf extract on glucose uptake in rat hepatocytes.

    PubMed

    Cheng, Fang-Chi; Shen, Szu-Chuan; Wu, James Swi-Bea

    2009-06-01

    People in oriental countries, including Japan and Taiwan, boil guava leaves (Psidium guajava L.) in water and drink the extract as a folk medicine for diabetes. The present study investigated the enhancement of aqueous guava leaf extract on glucose uptake in rat clone 9 hepatocytes and searched for the active compound. The extract was eluted with MeOH-H(2)O solutions through Diaion, Sephadex, and MCI-gel columns to separate into fractions with different polarities. The uptake test of 2-[1-(14)C] deoxy-D-glucose in rat clone 9 hepatocytes was performed to evaluate the hypoglycemic effect of these fractions. The active compound was identified by nuclear magnetic resonance analysis and high-performance liquid chromatography (HPLC). The results revealed that phenolics are the principal component of the extract, that high polarity fractions of the guava leaf extract are enhancers to glucose uptake in rat clone 9 hepatocytes, and that quercetin is the major active compound. We suggest that quercetin in the aqueous extract of guava leaves promotes glucose uptake in liver cells, and contributes to the alleviation of hypoglycemia in diabetes as a consequence.

  18. Muscle glucose uptake in the rat after suspension with single hindlimb weight bearing

    NASA Technical Reports Server (NTRS)

    Stump, Craig S.; Woodman, Christopher R.; Fregosi, Ralph F.; Tipton, Charles M.

    1993-01-01

    An examination is conducted of the effect of nonweight-bearing conditions, and the systemic influences of simulated microgravity on rat hindlimb muscles. The results obtained suggest that the increases in hindlimb muscle glucose uptake and extracellular space associated with simulated microgravity persist with hindlimb weightbearing, despite the prevention of muscle atrophy. The mechanism (or mechanisms) responsible for these effects are currently unknown.

  19. Non-insulin-dependent (type II) diabetes mellitus.

    PubMed Central

    Rodger, W

    1991-01-01

    Non-insulin-dependent (type II) diabetes mellitus is an inherited metabolic disorder characterized by hyperglycemia with resistance to ketosis. The onset is usually after age 40 years. Patients are variably symptomatic and frequently obese, hyperlipidemic and hypertensive. Clinical, pathological and biochemical evidence suggests that the disease is caused by a combined defect of insulin secretion and insulin resistance. Goals in the treatment of hyperglycemia, dyslipidemia and hypertension should be appropriate to the patient's age, the status of diabetic complications and the safety of the regimen. Nonpharmacologic management includes meal planning to achieve a suitable weight, such that carbohydrates supply 50% to 60% of the daily energy intake, with limitation of saturated fats, cholesterol and salt when indicated, and physical activity appropriate to the patient's age and cardiovascular status. Follow-up should include regular visits with the physician, access to diabetes education, self-monitoring of the blood or urine glucose level and laboratory-based measurement of the plasma levels of glucose and glycated hemoglobin. If unacceptably high plasma glucose levels (e.g., 8 mmol/L or more before meals) persist the use of orally given hypoglycemic agents (a sulfonylurea agent or metformin or both) is indicated. Temporary insulin therapy may be needed during intercurrent illness, surgery or pregnancy. Long-term insulin therapy is recommended in patients with continuing symptoms or hyperglycemia despite treatment with diet modification and orally given hypoglycemic agents. The risk of pancreatitis may be reduced by treating severe hypertriglyceridemia (fasting serum level greater than 10 mmol/L) and atherosclerotic disease through dietary and, if necessary, pharmacologic management of dyslipidemia. Antihypertensive agents are available that have fewer adverse metabolic effects than thiazides and beta-adrenergic receptor blockers. New drugs are being developed that

  20. Increased T cell glucose uptake reflects acute rejection in lung grafts

    PubMed Central

    Chen, Delphine L.; Wang, Xingan; Yamamoto, Sumiharu; Carpenter, Danielle; Engle, Jacquelyn T.; Li, Wenjun; Lin, Xue; Kreisel, Daniel; Krupnick, Alexander S.; Huang, Howard J.; Gelman, Andrew E.

    2013-01-01

    Although T cells are required for acute lung rejection, other graft-infiltrating cells such as neutrophils accumulate in allografts and are also high glucose utilizers. Positron emission tomography (PET) with the glucose probe [18F]fluorodeoxyglucose ([18F]FDG) has been employed to image solid organ acute rejection, but the sources of glucose utilization remain undefined. Using a mouse model of orthotopic lung transplantation, we analyzed glucose probe uptake in the grafts of syngeneic and allogeneic recipients with or without immunosuppression treatment. Pulmonary microPET scans demonstrated significantly higher [18F]FDG uptake in rejecting allografts when compared to transplanted lungs of either immunosuppressed or syngeneic recipients. [18F]FDG uptake was also markedly attenuated following T cell depletion therapy in lung recipients with ongoing acute rejection. Flow-cytometric analysis using the fluorescent deoxyglucose analog 2-NBDG revealed that T cells, and in particular CD8+ T cells, were the largest glucose utilizers in acutely rejecting lung grafts followed by neutrophils and antigen presenting cells. These data indicate that imaging modalities tailored toward assessing T cell metabolism may be useful in identifying acute rejection in lung recipients PMID:23927673

  1. Chikusetsu saponin IVa regulates glucose uptake and fatty acid oxidation: implications in antihyperglycemic and hypolipidemic effects.

    PubMed

    Li, Yuwen; Zhang, Tiejun; Cui, Jia; Jia, Na; Wu, Yin; Xi, Miaomiao; Wen, Aidong

    2015-07-01

    The aim of this study is to investigate antidiabetic effects and molecular mechanisms of the chemical Chikusetsu saponin IVa (CHS) that isolated from root bark of Aralia taibaiensis, which has multiple pharmacological activity, such as relieving rheumatism, promoting blood circulation to arrest pain and antidiabetic action. Rats with streptozotocin/nicotinamide-induced type 2 diabetes mellitus (T2DM) and insulin-resistant myocytes were used. Adenosine monophosphate (AMP)-activated protein kinase (AMPK) and acetyl-CoA carboxylase were quantified by immunoblotting. Assays of glucose uptake, fatty acid oxidation, glucose transporter 4 (GLUT4) translocation and carnitine palmitoyl transferase-1 (CPT-1) activity were performed. Chronic oral administration of CHS effectively decreases blood glucose, triglyceride, free fatty acid (FFA) and low density lipoprotein-cholesterol levels in T2DM rats. In both normal and insulin-resistant C2C12 myocytes, CHS activates AMPK, and increases glucose uptake or fatty acid oxidation through enhancing membrane translocation of GLUT4 or CPT-1 activity respectively. Knockdown of AMPK significantly diminishes the effects of CHS on glucose uptake and fatty acid oxidation. CHS is a novel AMPK activator that is capable of bypassing defective insulin signalling and could be useful for the treatment of T2DM or other metabolic disorders. © 2015 Royal Pharmaceutical Society.

  2. Cirsium japonicum flavones enhance adipocyte differentiation and glucose uptake in 3T3-L1 cells.

    PubMed

    Liao, Zhiyong; Wu, Zhihua; Wu, Mingjiang

    2012-01-01

    Cirsium japonicum flavones have been demonstrated to possess anti-diabetic effects in diabetic rats, but the functional mechanism remains unknown. The nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ) plays an important role in glucose and lipid homeostasis. In this study, we report the effects of Cirsium japonicum flavones (pectolinarin and 5,7-dihydroxy-6,4-dimethoxy flavone) on PPARγ activation, adipocyte differentiation, and glucose uptake in 3T3-L1 cells. Reporter gene assays and Oil Red O staining showed that Cirsium japonicum flavones induced PPARγ activation and enhanced adipocyte differentiation of 3T3-L1 cells in a dose-dependent manner. In addition, Cirsium japonicum flavones increased the expression of PPARγ target genes, such as adiponectin and glucose transporter 4 (GLUT4), and enhanced the translocation of intracellular GLUT4 to the plasma membrane. In mature 3T3-L1 adipocytes, Cirsium japonicum flavones significantly enhanced the basal and insulin-stimulated glucose uptake. The flavones-induced effects in 3T3-L1 cells were abolished by the PPARγ antagonist, GW9662, and by the phosphatidylinositol 3-kinase (PI3K) inhibitor, wortmannin. This study suggests that Cirsium japonicum flavones promote adipocyte differentiation and glucose uptake by inducing PPARγ activation and then modulating the insulin signaling pathway in some way, which could benefit diabetes patients.

  3. Leucaena leucocephala fruit aqueous extract stimulates adipogenesis, lipolysis, and glucose uptake in primary rat adipocytes.

    PubMed

    Kuppusamy, Umah Rani; Arumugam, Bavani; Azaman, Nooriza; Jen Wai, Chai

    2014-01-01

    Leucaena leucocephala had been traditionally used to treat diabetes. The present study was designed to evaluate in vitro "insulin-like" activities of Leucaena leucocephala (Lam.) deWit. aqueous fruit extract on lipid and glucose metabolisms. The ability of the extract to stimulate adipogenesis, inhibit lipolysis, and activate radio-labeled glucose uptake was assessed using primary rat adipocytes. Quantitative Real-Time RT-PCR was performed to investigate effects of the extract on expression levels of genes (protein kinases B, AKT; glucose transporter 4, GLUT4; hormone sensitive lipase, HSL; phosphatidylinositol-3-kinases, PI3KA; sterol regulatory element binding factor 1, Srebp1) involved in insulin-induced signaling pathways. L. leucocephala aqueous fruit extract stimulated moderate adipogenesis and glucose uptake into adipocytes when compared to insulin. Generally, the extract exerted a considerable level of lipolytic effect at lower concentration but decreased gradually at higher concentration. The findings concurred with RT-PCR analysis. The expressions of GLUT4 and HSL genes were upregulated by twofold and onefold, respectively, whereas AKT, PI3KA, and Srebp1 genes were downregulated. The L. leucocephala aqueous fruit extract may be potentially used as an adjuvant in the treatment of Type 2 diabetes mellitus and weight management due to its enhanced glucose uptake and balanced adipogenesis and lipolysis properties.

  4. Irisin, a Novel Myokine, Regulates Glucose Uptake in Skeletal Muscle Cells via AMPK

    PubMed Central

    Lee, Hye Jeong; Lee, Jung Ok; Kim, Nami; Kim, Joong Kwan; Kim, Hyung Ip; Lee, Yong Woo; Kim, Su Jin; Choi, Jong-Il; Oh, Yoonji; Kim, Jeong Hyun; Hwang, Suyeon-; Park, Sun Hwa

    2015-01-01

    Irisin is a novel myokine produced by skeletal muscle. However, its metabolic role is poorly understood. In the present study, irisin induced glucose uptake in differentiated skeletal muscle cells. It increased AMP-activated protein kinase (AMPK) phosphorylation and the inhibition of AMPK blocked glucose uptake. It also increased reactive oxygen species (ROS) generation. N-acetyl cysteine, a ROS scavenger, blocked irisin-induced AMPK phosphorylation. Moreover, irisin activated p38 MAPK in an AMPK-dependent manner. The inhibition and knockdown of p38 MAPK blocked irisin-induced glucose uptake. A colorimetric absorbance assay showed that irisin stimulated the translocation of glucose transporter type 4 to the plasma membrane and that this effect was suppressed in cells pretreated with a p38 MAPK inhibitor or p38 MAPK small interfering RNA. In primary cultured myoblast cells, irisin increased the concentration of intracellular calcium. STO-609, a calcium/calmodulin-dependent protein kinase kinase inhibitor, blocked irisin-induced AMPK phosphorylation, implying that calcium is involved in irisin-mediated signaling. Our results suggest that irisin plays an important role in glucose metabolism via the ROS-mediated AMPK pathway in skeletal muscle cells. PMID:25826445

  5. Leucaena leucocephala Fruit Aqueous Extract Stimulates Adipogenesis, Lipolysis, and Glucose Uptake in Primary Rat Adipocytes

    PubMed Central

    Kuppusamy, Umah Rani; Azaman, Nooriza; Jen Wai, Chai

    2014-01-01

    Leucaena leucocephala had been traditionally used to treat diabetes. The present study was designed to evaluate in vitro “insulin-like” activities of Leucaena leucocephala (Lam.) deWit. aqueous fruit extract on lipid and glucose metabolisms. The ability of the extract to stimulate adipogenesis, inhibit lipolysis, and activate radio-labeled glucose uptake was assessed using primary rat adipocytes. Quantitative Real-Time RT-PCR was performed to investigate effects of the extract on expression levels of genes (protein kinases B, AKT; glucose transporter 4, GLUT4; hormone sensitive lipase, HSL; phosphatidylinositol-3-kinases, PI3KA; sterol regulatory element binding factor 1, Srebp1) involved in insulin-induced signaling pathways. L. leucocephala aqueous fruit extract stimulated moderate adipogenesis and glucose uptake into adipocytes when compared to insulin. Generally, the extract exerted a considerable level of lipolytic effect at lower concentration but decreased gradually at higher concentration. The findings concurred with RT-PCR analysis. The expressions of GLUT4 and HSL genes were upregulated by twofold and onefold, respectively, whereas AKT, PI3KA, and Srebp1 genes were downregulated. The L. leucocephala aqueous fruit extract may be potentially used as an adjuvant in the treatment of Type 2 diabetes mellitus and weight management due to its enhanced glucose uptake and balanced adipogenesis and lipolysis properties. PMID:25180205

  6. Fluoride Alteration of [(3)H]Glucose Uptake in Wistar Rat Brain and Peripheral Tissues.

    PubMed

    Rogalska, Anna; Kuter, Katarzyna; Żelazko, Aleksandra; Głogowska-Gruszka, Anna; Świętochowska, Elżbieta; Nowak, Przemysław

    2017-04-01

    The present study was designed to investigate the role of postnatal fluoride intake on [3H]glucose uptake and transport in rat brain and peripheral tissues. Sodium fluoride (NaF) in a concentration of 10 or 50 ppm was added to the drinking water of adult Wistar rats. The control group received distilled water. After 4 weeks, respective plasma fluoride levels were 0.0541 ± 0.0135 μg/ml (control), 0.0596 ± 0.0202 μg/ml (10 ppm), and 0.0823 ± 0.0199 μg/ml (50 ppm). Although plasma glucose levels were not altered in any group, the plasma insulin level in the fluoride (50 ppm) group was elevated (0.72 ± 0.13 μg/ml) versus the control group (0.48 ± 0.24 μg/ml) and fluoride (10 ppm) group. In rats receiving fluoride for 4 weeks at 10 ppm in drinking water, [3H]glucose uptake was unaltered in all tested parts of the brain. However, in rats receiving fluoride at 50 ppm, [3H]glucose uptake in cerebral cortex, hippocampus, and thalamus with hypothalamus was elevated, versus the saline group. Fluoride intake had a negligible effect on [3H]glucose uptake by peripheral tissues (liver, pancreas, stomach, small intestine, atrium, aorta, kidney, visceral tissue, lung, skin, oral mucosa, tongue, salivary gland, incisor, molars, and jawbone). In neither fluoride group was glucose transporter proteins 1 (GLUT 1) or 3 (GLUT 3) altered in frontal cortex and striatum versus control. On the assumption that increased glucose uptake (by neural tissue) reasonably reflects neuronal activity, it appears that fluoride damage to the brain results in a compensatory increase in glucose uptake and utilization without changes in GLUT 1 and GLUT 3 expression.

  7. Water extracts from Momordica charantia increase glucose uptake and adiponectin secretion in 3T3-L1 adipose cells.

    PubMed

    Roffey, Ben W C; Atwal, Avtar S; Johns, Timothy; Kubow, Stan

    2007-05-30

    To examine the effects of Momordica charantia on glucose uptake and adiponectin secretion in adipose cells, 3T3-L1 adipocytes were treated with three concentrations (0.2, 0.3 and 0.4mg/ml) of water and ethanol extracts of Momordica charantia fruit and seeds alone and in combination with either 0.5nM or 50nM insulin. The treatment combination of 0.2mg/ml water extract and 0.5nM insulin was associated with significant (p<0.05) increases in glucose uptake (61%) and adiponectin secretion (75%) over control levels. The ethanol extract was not associated with an increase in glucose uptake; however, a dose-dependent decrease in basal glucose uptake and insulin-mediated glucose uptake was observed with the ethanol extract in combination with 50nM insulin. In the absence of insulin, no effects on glucose uptake were observed in adipocytes exposed to the water extracts whereas the highest concentration (0.4mg/ml) of the ethanol extract was associated with a significant (p<0.05) decrease in glucose uptake relative to controls. The present results indicate that water-soluble component(s) in Momordica charantia enhance the glucose uptake at sub-optimal concentrations of insulin in 3T3-L1 adipocytes, which is accompanied by and may be a result of increased adiponectin secretion from the 3T3-L1 adipocytes.

  8. Sorbitol increases muscle glucose uptake ex vivo and inhibits intestinal glucose absorption ex vivo and in normal and type 2 diabetic rats.

    PubMed

    Chukwuma, Chika Ifeanyi; Islam, Md Shahidul

    2017-04-01

    Previous studies have suggested that sorbitol, a known polyol sweetener, possesses glycemic control potentials. However, the effect of sorbitol on intestinal glucose absorption and muscle glucose uptake still remains elusive. The present study investigated the effects of sorbitol on intestinal glucose absorption and muscle glucose uptake as possible anti-hyperglycemic or glycemic control potentials using ex vivo and in vivo experimental models. Sorbitol (2.5% to 20%) inhibited glucose absorption in isolated rat jejuna (IC50 = 14.6% ± 4.6%) and increased glucose uptake in isolated rat psoas muscle with (GU50 = 3.5% ± 1.6%) or without insulin (GU50 = 7.0% ± 0.5%) in a concentration-dependent manner. Furthermore, sorbitol significantly delayed gastric emptying, accelerated digesta transit, inhibited intestinal glucose absorption, and reduced blood glucose increase in both normoglycemic and type 2 diabetic rats after 1 h of coingestion with glucose. Data of this study suggest that sorbitol exhibited anti-hyperglycemic potentials, possibly via increasing muscle glucose uptake ex vivo and reducing intestinal glucose absorption in normal and type 2 diabetic rats. Hence, sorbitol may be further investigated as a possible anti-hyperglycemic sweetener.

  9. Chicoric acid, a new compound able to enhance insulin release and glucose uptake.

    PubMed

    Tousch, Didier; Lajoix, Anne-Dominique; Hosy, Eric; Azay-Milhau, Jacqueline; Ferrare, Karine; Jahannault, Céline; Cros, Gérard; Petit, Pierre

    2008-12-05

    Caffeic acid and chlorogenic acid (CGA), a mono-caffeoyl ester, have been described as potential antidiabetic agents. Using in vitro studies, we report the effects of a dicaffeoyl ester, chicoric acid (CRA) purified from Cichorium intybus, on glucose uptake and insulin secretion. Our results show that CRA and CGA increased glucose uptake in L6 muscular cells, an effect only observed in the presence of stimulating concentrations of insulin. Moreover, we found that both CRA and CGA were able to stimulate insulin secretion from the INS-1E insulin-secreting cell line and rat islets of Langerhans. In the later case, the effect of CRA is only observed in the presence of subnormal glucose levels. Patch clamps studies show that the mechanism of CRA and CGA was different from that of sulfonylureas, as they did not close K(ATP) channels. Chicoric acid is a new potential antidiabetic agent carrying both insulin sensitizing and insulin-secreting properties.

  10. ReishiMax, mushroom based dietary supplement, inhibits adipocyte differentiation, stimulates glucose uptake and activates AMPK

    PubMed Central

    2011-01-01

    Background Obesity is a health hazard which is closely associated with various complications including insulin resistance, hypertension, dyslipidemia, atherosclerosis, type 2 diabetes and cancer. In spite of numerous preclinical and clinical interventions, the prevalence of obesity and its related disorders are on the rise demanding an urgent need for exploring novel therapeutic agents that can regulate adipogenesis. In the present study, we evaluated whether a dietary supplement ReishiMax (RM), containing triterpenes and polysaccharides extracted from medicinal mushroom Ganoderma lucidum, affects adipocyte differentiation and glucose uptake in 3T3-L1 cells. Methods 3T3-L1 pre-adipocytes were differentiated into adipocytes and treated with RM (0-300 μg/ml). Adipocyte differentiation/lipid uptake was evaluated by oil red O staining and triglyceride and glycerol concentrations were determined. Gene expression was evaluated by semi-quantitative RT-PCR and Western blot analysis. Glucose uptake was determined with [3H]-glucose. Results RM inhibited adipocyte differentiation through the suppresion of expression of adipogenic transcription factors peroxisome proliferator-activated receptor-γ (PPAR-γ), sterol regulatory element binding element protein-1c (SREBP-1c) and CCAAT/enhancer binding protein-α (C/EBP-α). RM also suppressed expression of enzymes and proteins responsible for lipid synthesis, transport and storage: fatty acid synthase (FAS), acyl-CoA synthetase-1 (ACS1), fatty acid binding protein-4 (FABP4), fatty acid transport protein-1 (FATP1) and perilipin. RM induced AMP-activated protein kinase (AMPK) and increased glucose uptake by adipocytes. Conclusion Our study suggests that RM can control adipocyte differentiation and glucose uptake. The health benefits of ReishiMax warrant further clinical studies. PMID:21929808

  11. Role of β-adrenoceptors in glucose uptake in astrocytes using β-adrenoceptor knockout mice

    PubMed Central

    Catus, Stephanie L; Gibbs, Marie E; Sato, Masaaki; Summers, Roger J; Hutchinson, Dana S

    2011-01-01

    BACKGROUND AND PURPOSE β1-, β2- and β3-adrenoceptors determined by functional, binding and reverse transcription polymerase chain reaction (RT-PCR) studies are present in chick astrocytes and activation of β2- or β3-adrenoceptors increase glucose uptake. The aims of the present study are to identify which β-adrenoceptor subtypes are present in mouse astrocytes, the signal transduction mechanisms involved and whether β-adrenoceptor stimulation regulates glucose uptake. EXPERIMENTAL APPROACH Astrocytes were prepared from four mouse strains: FVB/N, DBA/1 crossed with C57BL/6J, β3-adrenoceptor knockout and β1β2-adrenoceptor knockout mice. RT-PCR and radioligand binding studies were used to determine β-adrenoceptor expression. Glucose uptake and cAMP were assayed to elucidate the signalling pathways involved. KEY RESULTS mRNAs for all three β-adrenoceptors were identified in astrocytes from wild-type mice. Radioligand binding studies identified that β1- and β3-adrenoceptors were predominant. cAMP studies showed that β1- and β2-adrenoceptors coupled to Gs whereas β3-adrenoceptors coupled to both Gs and Gi. However, activation of any of the three β-adrenoceptors increased glucose uptake in mouse astrocytes. Interestingly, there was no functional compensation for receptor subtype loss in knockout animals. CONCLUSIONS AND IMPLICATIONS This study demonstrates that although β1-adrenoceptors are the predominant β-adrenoceptor in mouse astrocytes and are primarily responsible for cAMP production in response to β-adrenoceptor stimulation, β3-adrenoceptors are also present in mouse astrocytes and activation of β2- and β3-adrenoceptors increases glucose uptake in mouse astrocytes. PMID:21138422

  12. A Novel EPO Receptor Agonist Improves Glucose Tolerance via Glucose Uptake in Skeletal Muscle in a Mouse Model of Diabetes

    PubMed Central

    Scully, Michael S.; Ort, Tatiana A.; James, Ian E.; Bugelski, Peter J.; Makropoulos, Dorie A.; Deutsch, Heather A.; Pieterman, Elsbet J.; van den Hoek, Anita M.; Havekes, Louis M.; duBell, William H.; Wertheimer, Joshua D.; Picha, Kristen M.

    2011-01-01

    Patients treated with recombinant human Epo demonstrate an improvement in insulin sensitivity. We aimed to investigate whether CNTO 530, a novel Epo receptor agonist, could affect glucose tolerance and insulin sensitivity. A single administration of CNTO 530 significantly and dose-dependently reduced the area under the curve in a glucose tolerance test in diet-induced obese and diabetic mice after 14, 21, and 28 days. HOMA analysis suggested an improvement in insulin sensitivity, and this effect was confirmed by a hyperinsulinemic-euglycemic clamp. Uptake of 14C-2-deoxy-D-glucose indicated that animals dosed with CNTO 530 transported more glucose into skeletal muscle and heart relative to control animals. In conclusion, CNTO530 has a profound effect on glucose tolerance in insulin-resistant rodents likely because of improving peripheral insulin sensitivity. This effect was observed with epoetin-α and darbepoetin-α, suggesting this is a class effect, but the effect with these compounds relative to CNTO530 was decreased in duration and magnitude. PMID:21754921

  13. Acute Alcohol Intoxication Decreases Glucose Metabolism but Increases Acetate Uptake in the Human Brain

    PubMed Central

    Volkow, Nora D.; Kim, Sung Won; Wang, Gene-Jack; Alexoff, David; Logan, Jean; Muench, Lisa; Shea, Colleen; Telang, Frank; Fowler, Joanna S.; Wong, Christopher; Benveniste, Helene; Tomasi, Dardo

    2012-01-01

    Alcohol intoxication results in marked reductions in brain glucose metabolism, which we hypothesized reflect not just its GABAergic enhancing effects but also metabolism of acetate as an alternative brain energy source. To test this hypothesis we separately assessed the effects of alcohol intoxication on brain glucose and acetate metabolism using Positron Emission Tomography (PET). We found that alcohol intoxication significantly decreased whole brain glucose metabolism (measured with FDG) with the largest decrements in cerebellum and occipital cortex and the smallest in thalamus. In contrast, alcohol intoxication caused a significant increase in [1-11C]acetate brain uptake (measured as standard uptake value, SUV), with the largest increases occurring in cerebellum and the smallest in thalamus. In heavy alcohol drinkers [1-11C]acetate brain uptake during alcohol challenge trended to be higher than in occasional drinkers (p <0.06) and the increases in [1-11C]acetate uptake in cerebellum with alcohol were positively associated with the reported amount of alcohol consumed (r=0.66, p<0.01). Our findings corroborate a reduction of brain glucose metabolism during intoxication and document an increase in brain acetate uptake. The opposite changes observed between regional brain metabolic decrements and regional increases in [1-11C]acetate uptake support the hypothesis that during alcohol intoxication the brain may rely on acetate as an alternative brain energy source and provides preliminary evidence that heavy alcohol exposures may facilitate the use of acetate as an energy substrate. These findings raise the question of the potential therapeutic benefits that increasing plasma acetate concentration (ie ketogenic diets) may have in alcoholics undergoing alcohol detoxification. PMID:22947541

  14. Impacts of parturition and body condition score on glucose uptake capacity of bovine monocyte subsets.

    PubMed

    Eger, Melanie; Hussen, Jamal; Drong, Caroline; Meyer, Ulrich; von Soosten, Dirk; Frahm, Jana; Daenicke, Sven; Breves, Gerhard; Schuberth, Hans-Joachim

    2015-07-15

    The peripartal period of dairy cows is associated with a higher incidence of infectious diseases like mastitis or metritis, particularly in high-yielding animals. The onset of lactation induces a negative energy balance and a shift of glucose distribution toward the udder. Glucose is used as primary fuel by monocytes which give rise to macrophages, key cells in the defense against pathogens. The aim of this study was to analyze whether animals with high or low body condition score (BCS) differ in composition and glucose uptake capacities of bovine monocyte subsets. Blood samples were taken from 27 dairy cows starting 42 days before parturition until day 56 after parturition. The cows were allocated to two groups according to their BCS. A feeding regime was applied, in which the BCS high group received higher amounts of concentrate before parturition and concentrate feeding was more restricted in the BCS high group after parturition compared with the BCS low group, to promote postpartal lipolysis and enhance negative energy balance in the BCS high group. Blood cell counts of classical (cM), intermediate (intM) and nonclassical monocytes (ncM) were increased at day 7 after calving. In the BCS low group intM numbers were significantly higher compared to the BCS high group at day 7 after parturition. Within the BCS low group cows suffering from mastitis or metritis showed significantly higher numbers of cM, intM and ncM at day 7 after parturition. Classical monocytes and intM showed similar glucose uptake capacities while values for ncM were significantly lower. Compared with antepartal capacities and irrespective of BCS and postpartal mastitis or metritis, glucose uptake of all monocyte subsets decreased after parturition. In conclusion, whereas glucose uptake capacity of bovine monocyte subsets is altered by parturition, it is not linked to the energy supply of the animals or to postpartal infectious diseases. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Non-Invasive, Simultaneous Quantification of Vascular Oxygenation and Glucose Uptake in Tissue

    PubMed Central

    Rajaram, Narasimhan; Reesor, Andrew F.; Mulvey, Christine S.; Frees, Amy E.; Ramanujam, Nirmala

    2015-01-01

    We report the development of non-invasive, fiber-based diffuse optical spectroscopy for simultaneously quantifying vascular oxygenation (SO2) and glucose uptake in solid tumors in vivo. Glucose uptake was measured using a fluorescent glucose analog, 2-[N-(7-nitrobenz-2-oxa-1,3-diaxol-4-yl)amino]-2-deoxyglucose (2-NBDG). Quantification of label-free SO2 and 2-NBDG-fluorescence-based glucose uptake 60 minutes after administration of the tracer (2-NBDG60) was performed using computational models of light-tissue interaction. This study was carried out on normal tissue and 4T1 and 4T07 murine mammary tumor xenografts in vivo. Injection of 2-NBDG did not cause a significant change in optical measurements of SO2, demonstrating its suitability as a functional reporter of tumor glucose uptake. Correction of measured 2-NBDG-fluorescence for the effects of absorption and scattering significantly improved contrast between tumor and normal tissue. The 4T1 and 4T07 tumors showed significantly decreased SO2, and 4T1 tumors demonstrated increased 2-NBDG60 compared with normal tissue (60 minutes after the administration of 2-NBDG when perfusion-mediated effects have cleared). 2-NBDG-fluorescence was found to be highly sensitive to food deprivation-induced reduction in blood glucose levels, demonstrating that this endpoint is indeed sensitive to glycolytic demand. 2-NBDG60 was also found to be linearly related to dose, underscoring the importance of calibrating for dose when comparing across animals or experiments. 4T1 tumors demonstrated an inverse relationship between 2-NBDG60 and SO2 that was consistent with the Pasteur effect, particularly when exposed to hypoxic gas breathing. Our results illustrate the potential of optical spectroscopy to provide valuable information about the metabolic status of tumors, with important implications for cancer prognosis. PMID:25635865

  16. Circulating lipids and glycaemic control in insulin dependent diabetic children.

    PubMed Central

    Azad, K; Parkin, J M; Court, S; Laker, M F; Alberti, K G

    1994-01-01

    The prevalence of dyslipidaemia in children with insulin dependent diabetes mellitus (IDDM) and its relation to glycaemic control was studied in a group of 51 diabetic children and a control population of 132 schoolchildren. The prevalence of dyslipidaemia in the fasting state was increased in the diabetic group (39%) compared with control subjects (17%). Serum cholesterol concentration alone was raised in 25% of diabetic subjects while serum cholesterol and triglycerides were raised in 14%, compared with 16% and 0.7% respectively in control subjects. Serum total cholesterol (5.1 v 4.5 mmol/l), low density lipoprotein cholesterol (3.2 v 2.6 mmol/l), non-esterified fatty acids (0.91 v 0.50 mmol/l), and triglycerides (0.94 v 0.76 mmol/l) were higher in diabetic children. Serum total cholesterol, triglycerides, and apolipoprotein (apo)B concentrations increased with worsening control, while serum high density lipoprotein cholesterol and apoA-I concentrations were unaltered. There were also positive correlations between glycated haemoglobin and total cholesterol, triglycerides, and apoB in diabetic children. Thus, abnormalities in circulating lipids are common in young subjects with IDDM but largely disappear if blood glucose concentrations are reasonably controlled. PMID:7944528

  17. Characteristics of the somatotropic axis in insulin dependent diabetes mellitus.

    PubMed

    Mercado, M; Baumann, G

    1995-01-01

    Growth hormone (GH) plays an important role in glucose homeostasis in both healthy subjects and patients with diabetes. Patients with poorly controlled insulin-dependent diabetes mellitus (IDDM) have high basal and integrated serum GH concentrations, as well as an enhanced GH response to several secretagogues. Yet, these patients have impaired generation of insulin-like growth factor-I (IGF-I). These abnormalities tend to return to normal as an adequate metabolic control is achieved. In view of this hormonal profile, IDDM has been considered a state of relative GH resistance. Studies in experimental animals with streptozotocin-induced diabetes have shown a decreased binding of radiolabeled GH to liver membranes. More recently, adults and children with IDDM have been found to have low levels of the high affinity growth hormone binding protein (GHBP), which represents the extracellular portion of the GH receptor, and is thought to reflect GH receptor tissue concentrations. The abnormalities in the GH/IGF-I axis have been implicated in the worsening of metabolic control that occurs in some patients, as well as in the development of microvascular complications, particularly retinopathy.

  18. Effects of atropine and gastric inhibitory polypeptide on hepatic glucose uptake and insulin extraction in conscious dogs.

    PubMed Central

    Chap, Z; Ishida, T; Chou, J; Lewis, R; Hartley, C; Entman, M; Field, J B

    1985-01-01

    Previous studies comparing the effects of oral, intraportal, and peripheral venous administration of glucose in conscious dogs demonstrated a significant increase in hepatic extraction of insulin only after oral glucose, but similar hepatic uptake of glucose after oral and intraportal glucose, which was greater than that after peripheral intravenous glucose infusion. This study evaluated the effect of atropine blockade of the parasympathetic nervous system on the increased fractional hepatic extraction of insulin and the role of gastric inhibitory polypeptide (GIP) on augmented hepatic uptake of oral glucose in conscious dogs with chronically implanted Doppler flow probes on the portal vein and hepatic artery, and catheters in the portal and hepatic veins and carotid artery. Since atropine infusion decreased absorption of glucose, and in order to achieve comparable portal vein levels of glucose and insulin, the dogs receiving atropine were given 1.9 +/- 0.1 g/kg glucose, compared with the control dogs who received 1.1 +/- 0.1 g/kg. The percentage of the glucose load that was absorbed was greater in the dogs not given atropine (80 +/- 4 vs. 44 +/- 7%), but because of the different loads, the absolute amount of glucose absorbed was similar in both groups (20.2 +/- 1.6 vs. 21.7 +/- 4.1 g). Although delayed by atropine, the peak portal vein glucose and insulin concentrations and the amounts presented to the liver were similar in both groups. However, the increased portal vein plasma flow and fractional hepatic extraction of insulin observed after oral glucose was not observed in the dogs infused with atropine. The net hepatic glucose uptake after oral glucose was significantly less at 10, 20, and 45 min in the atropine-treated dogs, and the area under the curve over the 180-min period was 44% less. However, the latter was not statistically significant. Infusion of GIP with peripheral intravenous glucose did not increase hepatic uptake of glucose or the fractional

  19. Adenosine receptors mediate synergistic stimulation of glucose uptake and transport by insulin and by contractions in rat skeletal muscle.

    PubMed Central

    Vergauwen, L; Hespel, P; Richter, E A

    1994-01-01

    The role of adenosine receptors in the regulation of muscle glucose uptake by insulin and contractions was studied in isolated rat hindquarters that were perfused with a standard medium containing no insulin or a submaximal concentration of 100 microU/ml. Adenosine receptor antagonism was induced by caffeine or 8-cyclopentyl-1,3-dipropylxantine (CPDPX). Glucose uptake and transport were measured before and during 30 min of electrically induced muscle contractions. Caffeine nor CPDPX affected glucose uptake in resting hindquarters. In contrast, the contraction-induced increase in muscle glucose uptake was inhibited by 30-50% by caffeine, as well as by CPDPX, resulting in a 20-25% decrease in the absolute rate of glucose uptake during contractions, compared with control values. This inhibition was independent of the rate of perfusate flow and only occurred in hindquarters perfused with insulin added to the medium. Thus, adenosine receptor antagonism inhibited glucose uptake during simultaneous exposure to insulin and contractions only. Accordingly, caffeine inhibited 3-O-methylglucose uptake during contractions only in oxidative muscle fibers that are characterized by a high sensitivity to insulin. In conclusion, the present data demonstrate A1 receptors to regulate insulin-mediated glucose transport in contracting skeletal muscle. The findings provide evidence that stimulation of sarcolemmic adenosine receptors during contractions is involved in the synergistic stimulation of muscle glucose transport by insulin and by contractions. PMID:8132783

  20. Ursolic Acid Increases Glucose Uptake through the PI3K Signaling Pathway in Adipocytes

    PubMed Central

    He, Yonghan; Li, Wen; Li, Ying; Zhang, Shuocheng; Wang, Yanwen; Sun, Changhao

    2014-01-01

    Background Ursolic acid (UA), a triterpenoid compound, is reported to have a glucose-lowering effect. However, the mechanisms are not fully understood. Adipose tissue is one of peripheral tissues that collectively control the circulating glucose levels. Objective The objective of the present study was to determine the effect and further the mechanism of action of UA in adipocytes. Methods and Results The 3T3-L1 preadipocytes were induced to differentiate and treated with different concentrations of UA. NBD-fluorescent glucose was used as the tracer to measure glucose uptake and Western blotting used to determine the expression and activity of proteins involved in glucose transport. It was found that 2.5, 5 and 10 µM of UA promoted glucose uptake in a dose-dependent manner (17%, 29% and 35%, respectively). 10 µM UA-induced glucose uptake with insulin stimulation was completely blocked by the phosphatidylinositol (PI) 3-kinase (PI3K) inhibitor wortmannin (1 µM), but not by SB203580 (10 µM), the inhibitor of mitogen-activated protein kinase (MAPK), or compound C (2.5 µM), the inhibitor of AMP-activated kinase (AMPK) inhibitor. Furthmore, the downstream protein activities of the PI3K pathway, phosphoinositide-dependent kinase (PDK) and phosphoinositide-dependent serine/threoninekinase (AKT) were increased by 10 µM of UA in the presence of insulin. Interestingly, the activity of AS160 and protein kinase C (PKC) and the expression of glucose transporter 4 (GLUT4) were stimulated by 10 µM of UA under either the basal or insulin-stimulated status. Moreover, the translocation of GLUT4 from cytoplasm to cell membrane was increased by UA but decreased when the PI3K inhibitor was applied. Conclusions Our results suggest that UA stimulates glucose uptake in 3T3-L1 adipocytes through the PI3K pathway, providing important information regarding the mechanism of action of UA for its anti-diabetic effect. PMID:25329874

  1. Effect of Three Statins on Glucose Uptake of Cardiomyocytes and its Mechanism.

    PubMed

    Jiang, Zhenhuan; Yu, Bo; Li, Yang

    2016-08-11

    BACKGROUND The aim of this study was to investigate the effects of different statins on glucose uptake and to confirm its mechanism in primary cultured rat cardiomyocytes after administration of atorvastatin, pravastatin, and rosuvastatin. MATERIAL AND METHODS Primary cultured rat cardiomyocytes were randomly assigned to 5 groups: normal control group (OB), insulin group (S1), statin 1-μM (S2), 5-μM (S3), and 10-μM (S4) groups for 3 different statins. The 2-[3H]-DG uptake of each group was determined and the mRNA and protein expression levels of glucose transporter type 4 (GLUT4), insulin receptor substrate (IRs), and RhoA were assessed. RESULTS After treatment with different concentrations of statins and insulin, the 2-[3H]-DG uptake showed a significant negative correlation with the concentration of atorvastatin (P<0.05), and no significant correlation with pravastatin and rosuvastatin. The mRNA and protein expression levels of GLUT4 and IRs-1 in primary cultured cardiomyocytes were both significantly reduced by atorvastatin treatment (P<0.05). Pravastatin and rosuvastatin showed no significant effects on GLUT4 and IRs-1 expression. The mRNA and protein expression levels of RhoA both showed no significant difference when treated with the 3 statins. CONCLUSIONS These results confirm that atorvastatin can inhibit insulin-induced glucose uptake in primary cultured rat cardiomyocytes by regulating the PI3K/Akt insulin signal transduction pathway.

  2. Synergistic effect of phytochemicals in combination with hypoglycemic drugs on glucose uptake in myotubes.

    PubMed

    Prabhakar, Pranav Kumar; Doble, Mukesh

    2009-12-01

    The present study analyses the effect of two plant phenolic compounds, namely chlorogenic acid and ferulic acid, and a plant alkaloid, berberine, alone and also in combination with two commercial oral hypoglycemic drugs (OHD), namely metformin and 2,4-thiazolodinedione (THZ), on the uptake of 2-deoxyglucose (2DG) by L6 myotubes. 2-DG uptake is determined using an enzymatic assay. All the three natural products enhance the uptake of 2DG in time- and dose-dependent manner. A combination of different concentrations of chlorogenic acid and metformin or THZ, has a synergistic effect in the uptake of 2DG with a maximum of 5.0- and 5.3-times respectively, with reference to the base value (without the drugs or the natural products). Ferulic acid in combination with metformin or THZ has also shown a synergistic effect and the 2DG uptake increases by 4.98- and 5.11-fold when compared to the control respectively. Whereas, berberine, in combination with either metformin or THZ, has shown an additive effect with maximum 2DG uptake of 4.1- and 4.7-times from the base value, respectively. The synergistic interaction has been explained with the use of combination index and isobologram. Expression of GLUT4 and PPAR-gamma gene were elevated in chlorogenic acid and berberine treated cells, whereas expression of GLUT4 and PI3K transcripts were significantly enhanced in ferulic acid treated cells. The studies indicate that chlorogenic acid enhances glucose uptake by increasing GLUT4 expression via PI3K independent pathway whereas ferulic acid increases glucose uptake by PI3K dependent pathway. The current findings suggest that the phytochemicals can replace the commercial drugs in part, which could lead to a reduction in toxicity and side effects of the later.

  3. The effect of exercise on skeletal muscle glucose uptake in type 2 diabetes: An epigenetic perspective.

    PubMed

    Dos Santos, Júlia Matzenbacher; Moreli, Marcos Lazaro; Tewari, Shikha; Benite-Ribeiro, Sandra Aparecida

    2015-12-01

    Changes in eating habits and sedentary lifestyle are main contributors to type 2 diabetes (T2D) development, and studies suggest that epigenetic modifications are involved with the growing incidence of this disease. Regular exercise modulates many intracellular pathways improving insulin resistance and glucose uptake in skeletal muscle, both early abnormalities of T2D. Mitochondria dysfunction and decreased expression of glucose transporter (GLUT4) were identified as main factors of insulin resistance. Moreover, it has been suggested that skeletal muscle of T2D subjects have a different pattern of epigenetic marks on the promoter of GLUT4 and PGC1, main regulator of mitochondrial function, compared with nondiabetic individuals. Recent studies have proposed that regular exercise could improve glucose uptake by the attenuation of such epigenetic modification induced at GLUT4, PGC1 and its downstream regulators; however, the exact mechanism is still to be understood. Herein we review the known epigenetic modifications on GLUT4 and mitochondrial proteins that lead to impairment of skeletal muscle glucose uptake and T2D development, and the effect of physical exercise at these modifications.

  4. GLUT1‐mediated glucose uptake plays a crucial role during Plasmodium hepatic infection

    PubMed Central

    Meireles, Patrícia; Sales‐Dias, Joana; Andrade, Carolina M.; Mello‐Vieira, João; Mancio‐Silva, Liliana; Simas, J. Pedro; Staines, Henry M.

    2016-01-01

    Summary Intracellular pathogens have evolved mechanisms to ensure their survival and development inside their host cells. Here, we show that glucose is a pivotal modulator of hepatic infection by the rodent malaria parasite Plasmodium berghei and that glucose uptake via the GLUT1 transporter is specifically enhanced in P. berghei‐infected cells. We further show that ATP levels of cells containing developing parasites are decreased, which is known to enhance membrane GLUT1 activity. In addition, GLUT1 molecules are translocated to the membrane of the hepatic cell, increasing glucose uptake at later stages of infection. Chemical inhibition of GLUT1 activity leads to a decrease in glucose uptake and the consequent impairment of hepatic infection, both in vitro and in vivo. Our results reveal that changes in GLUT1 conformation and cellular localization seem to be part of an adaptive host response to maintain adequate cellular nutrition and energy levels, ensuring host cell survival and supporting P. berghei hepatic development. PMID:27404888

  5. Intracerebroventricular administration of okadaic acid induces hippocampal glucose uptake dysfunction and tau phosphorylation.

    PubMed

    Broetto, Núbia; Hansen, Fernanda; Brolese, Giovana; Batassini, Cristiane; Lirio, Franciane; Galland, Fabiana; Dos Santos, João Paulo Almeida; Dutra, Márcio Ferreira; Gonçalves, Carlos-Alberto

    2016-06-01

    Intraneuronal aggregates of neurofibrillary tangles (NFTs), together with beta-amyloid plaques and astrogliosis, are histological markers of Alzheimer's disease (AD). The underlying mechanism of sporadic AD remains poorly understood, but abnormal hyperphosphorylation of tau protein is suggested to have a role in NFTs genesis, which leads to neuronal dysfunction and death. Okadaic acid (OKA), a strong inhibitor of protein phosphatase 2A, has been used to induce dementia similar to AD in rats. We herein investigated the effect of intracerebroventricular (ICV) infusion of OKA (100 and 200ng) on hippocampal tau phosphorylation at Ser396, which is considered an important fibrillogenic tau protein site, and on glucose uptake, which is reduced early in AD. ICV infusion of OKA (at 200ng) induced a spatial cognitive deficit, hippocampal astrogliosis (based on GFAP increment) and increase in tau phosphorylation at site 396 in this model. Moreover, we observed a decreased glucose uptake in the hippocampal slices of OKA-treated rats. In vitro exposure of hippocampal slices to OKA altered tau phosphorylation at site 396, without any associated change in glucose uptake activity. Taken together, these findings further our understanding of OKA neurotoxicity, in vivo and vitro, particularly with regard to the role of tau phosphorylation, and reinforce the importance of the OKA dementia model for studying the neurochemical alterations that may occur in AD, such as NFTs and glucose hypometabolism.

  6. GLUT1-mediated glucose uptake plays a crucial role during Plasmodium hepatic infection.

    PubMed

    Meireles, Patrícia; Sales-Dias, Joana; Andrade, Carolina M; Mello-Vieira, João; Mancio-Silva, Liliana; Simas, J Pedro; Staines, Henry M; Prudêncio, Miguel

    2017-02-01

    Intracellular pathogens have evolved mechanisms to ensure their survival and development inside their host cells. Here, we show that glucose is a pivotal modulator of hepatic infection by the rodent malaria parasite Plasmodium berghei and that glucose uptake via the GLUT1 transporter is specifically enhanced in P. berghei-infected cells. We further show that ATP levels of cells containing developing parasites are decreased, which is known to enhance membrane GLUT1 activity. In addition, GLUT1 molecules are translocated to the membrane of the hepatic cell, increasing glucose uptake at later stages of infection. Chemical inhibition of GLUT1 activity leads to a decrease in glucose uptake and the consequent impairment of hepatic infection, both in vitro and in vivo. Our results reveal that changes in GLUT1 conformation and cellular localization seem to be part of an adaptive host response to maintain adequate cellular nutrition and energy levels, ensuring host cell survival and supporting P. berghei hepatic development. © 2016 The Authors Cellular Microbiology Published by John Wiley & Sons Ltd.

  7. A proteolytic pathway that controls glucose uptake in fat and muscle

    PubMed Central

    Belman, Jonathan P.; Habtemichael, Estifanos N.; Bogan, Jonathan S.

    2013-01-01

    Insulin regulates glucose uptake by controlling the subcellular location of GLUT4 glucose transporters. GLUT4 is sequestered within fat and muscle cells during low-insulin states, and is translocated to the cell surface upon insulin stimulation. The TUG protein is a functional tether that sequesters GLUT4 at the Golgi matrix. To stimulate glucose uptake, insulin triggers TUG endoproteolytic cleavage. Cleavage accounts for a large proportion of the acute effect of insulin to mobilize GLUT4 to the cell surface. During ongoing insulin exposure, endocytosed GLUT4 recycles to the plasma membrane directly from endosomes, and bypasses a TUG-regulated trafficking step. Insulin acts through the TC10α GTPase and its effector protein, PIST, to stimulate TUG cleavage. This action is coordinated with insulin signals through AS160/Tbc1D4 and Tbc1D1 to modulate Rab GTPases, and with other signals to direct overall GLUT4 targeting. Data support the idea that the N-terminal TUG cleavage product, TUGUL, functions as a novel ubiquitin-like protein modifier to facilitate GLUT4 movement to the cell surface. The C-terminal TUG cleavage product is extracted from the Golgi matrix, which vacates an “anchoring” site to permit subsequent cycles of GLUT4 retention and release. Together, GLUT4 vesicle translocation and TUG cleavage may coordinate glucose uptake with physiologic effects of other proteins present in the GLUT4-containing vesicles, and with potential additional effects of the TUG C-terminal product. Understanding this TUG pathway for GLUT4 retention and release will shed light on the regulation of glucose uptake and the pathogenesis of type 2 diabetes. PMID:24114239

  8. Pachymic acid stimulates glucose uptake through enhanced GLUT4 expression and translocation.

    PubMed

    Huang, Yu-Chuan; Chang, Wen-Liang; Huang, Su-Fen; Lin, Cheng-Yu; Lin, Hang-Ching; Chang, Tsu-Chung

    2010-12-01

    In an effort to investigate the effect and mechanism of Poria cocos on glucose uptake, six lanostane-type triterpenoids were isolated and analyzed. Among them, pachymic acid displayed the most significant stimulating activity on glucose uptake in 3T3-L1 adipocytes. The effect of pachymic acid on the expression profile of glucose transporters in differentiated 3T3-L1 adipocytes was also analyzed. Our results demonstrated that pachymic acid induced an increase in GLUT4, but not GLUT1, expression at both the mRNA and protein levels. The role of GLUT4 was further confirmed using the lentiviral vector-derived GLUT4 short hairpin RNA (shRNA). The stimulating activity of pachymic acid on glucose uptake was abolished when the endogenous GLUT4 expression was suppressed in 3T3-L1 adipocytes. In addition to increased GLUT4 expression, pachymic acid stimulated GLUT4 redistribution from intracellular vesicles to the plasma membrane in adipocytes. Exposure of the differentiated adipocytes to pachymic acid increased the phosphorylation of insulin receptor substrate (IRS)-1, AKT and AMP-activated kinase (AMPK). The involvement of PI3K and AMPK in the action of pachymic acid was further confirmed as PI3K and AMPK inhibitors completely blocked the pachymic acid-mediated activities in adipocytes. In addition, pachymic acid was shown to induce triglyceride accumulation and inhibit lipolysis in differentiated adipocytes. Taken together, we demonstrated the insulin-like activities of this compound in stimulating glucose uptake, GLUT4 gene expression and translocation, and promoting triglyceride accumulation in adipocytes. Our study provides important insights into the underlying mechanism of hypoglycemic activity of P. cocos.

  9. ARAP2 promotes GLUT1-mediated basal glucose uptake through regulation of sphingolipid metabolism.

    PubMed

    Chaudhari, Aditi; Håversen, Liliana; Mobini, Reza; Andersson, Linda; Ståhlman, Marcus; Lu, Emma; Rutberg, Mikael; Fogelstrand, Per; Ekroos, Kim; Mardinoglu, Adil; Levin, Malin; Perkins, Rosie; Borén, Jan

    2016-11-01

    Lipid droplet formation, which is driven by triglyceride synthesis, requires several droplet-associated proteins. We identified ARAP2 (an ADP-ribosylation factor 6 GTPase-activating protein) in the lipid droplet proteome of NIH-3T3 cells and showed that knockdown of ARAP2 resulted in decreased lipid droplet formation and triglyceride synthesis. We also showed that ARAP2 knockdown did not affect fatty acid uptake but reduced basal glucose uptake, total levels of the glucose transporter GLUT1, and GLUT1 levels in the plasma membrane and the lipid micro-domain fraction (a specialized plasma membrane domain enriched in sphingolipids). Microarray analysis showed that ARAP2 knockdown altered expression of genes involved in sphingolipid metabolism. Because sphingolipids are known to play a key role in cell signaling, we performed lipidomics to further investigate the relationship between ARAP2 and sphingolipids and potentially identify a link with glucose uptake. We found that ARAP2 knockdown increased glucosylceramide and lactosylceramide levels without affecting ceramide levels, and thus speculated that the rate-limiting enzyme in glycosphingolipid synthesis, namely glucosylceramide synthase (GCS), could be modified by ARAP2. In agreement with our hypothesis, we showed that the activity of GCS was increased by ARAP2 knockdown and reduced by ARAP2 overexpression. Furthermore, pharmacological inhibition of GCS resulted in increases in basal glucose uptake, total GLUT1 levels, triglyceride biosynthesis from glucose, and lipid droplet formation, indicating that the effects of GCS inhibition are the opposite to those resulting from ARAP2 knockdown. Taken together, our data suggest that ARAP2 promotes lipid droplet formation by modifying sphingolipid metabolism through GCS. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Maltitol inhibits small intestinal glucose absorption and increases insulin mediated muscle glucose uptake ex vivo but not in normal and type 2 diabetic rats.

    PubMed

    Chukwuma, Chika Ifeanyi; Ibrahim, Mohammed Auwal; Islam, Md Shahidul

    2017-02-01

    This study investigated the effects of maltitol on intestinal glucose absorption and muscle glucose uptake using ex vivo and in vivo experimental models. The ex vivo experiment was conducted in isolated jejunum and psoas muscle from normal rats. The in vivo study investigated the effects of a single bolus dose of maltitol on gastric emptying, intestinal glucose absorption and digesta transit in normal and type 2 diabetic rats. Maltitol inhibited glucose absorption in isolated rat jejunum and increased glucose uptake in isolated rat psoas muscle in the presence of insulin but not in the absence of insulin. In contrast, maltitol did not significantly (p > 0.05) alter small intestinal glucose absorption or blood glucose levels as well as gastric emptying and digesta transit in normal or type 2 diabetic rats. The results suggest that maltitol may not be a suitable dietary supplement for anti-diabetic food and food products to improve glycemic control.

  11. Metabolic effects of successful intraportal islet transplantation in insulin-dependent diabetes mellitus.

    PubMed

    Luzi, L; Hering, B J; Socci, C; Raptis, G; Battezzati, A; Terruzzi, I; Falqui, L; Brandhorst, H; Brandhorst, D; Regalia, E; Brambilla, E; Secchi, A; Perseghin, G; Maffi, P; Bianchi, E; Mazzaferro, V; Gennari, L; Di Carlo, V; Federlin, K; Pozza, G; Bretzel, R G

    1996-06-01

    The intraportal injection of human pancreatic islets has been indicated as a possible alternative to the pancreas transplant in insulin-dependent diabetic patients. Aim of the present work was to study the effect of intraportal injection of purified human islets on: (a) the basal hepatic glucose production; (b) the whole body glucose homeostasis and insulin action; and (c) the regulation of insulin secretion in insulin-dependent diabetes mellitus patients bearing a kidney transplant. 15 recipients of purified islets from cadaver donors (intraportal injection) were studied by means of the infusion of labeled glucose to quantify the hepatic glucose production. Islet transplanted patients were subdivided in two groups based on graft function and underwent: (a) a 120-min euglycemic insulin infusion (1 mU/kg/min) to assess insulin action; (b) a 120-min glucose infusion (+75 mg/di) to study the pattern of insulin secretion. Seven patients with chronic uveitis on the same immunosuppressive therapy as grafted patients, twelve healthy volunteers, and seven insulin-dependent diabetic patients with combined pancreas and kidney transplantation were also studied as control groups. Islet transplanted patients have: (a) a higher basal hepatic glucose production (HGP: 5.1 +/- 1.4 mg/kg/ min; P < 0.05 with respect to all other groups) if without graft function, and a normal HGP (2.4 +/- 0.2 mg/kg/min) with a functioning graft; (b) a defective tissue glucose disposal (3.9 +/- 0.5 mg/kg/min in patients without islet function and 5.3 +/- 0.4 mg/kg/min in patients with islet function) with respect to normals (P < 0.01 for both comparisons); (c) a blunted first phase insulin peak and a similar second phase secretion with respect to controls. In conclusion, in spite of the persistence of an abnormal pattern of insulin secretion, successful intraportal islet graft normalizes the basal HGP and improves total tissue glucose disposal in insulin-dependent diabetes mellitus.

  12. Sodium-glucose transporter-2 (SGLT2; SLC5A2) enhances cellular uptake of aminoglycosides.

    PubMed

    Jiang, Meiyan; Wang, Qi; Karasawa, Takatoshi; Koo, Ja-Won; Li, Hongzhe; Steyger, Peter S

    2014-01-01

    Aminoglycoside antibiotics, like gentamicin, continue to be clinically essential worldwide to treat life-threatening bacterial infections. Yet, the ototoxic and nephrotoxic side-effects of these drugs remain serious complications. A major site of gentamicin uptake and toxicity resides within kidney proximal tubules that also heavily express electrogenic sodium-glucose transporter-2 (SGLT2; SLC5A2) in vivo. We hypothesized that SGLT2 traffics gentamicin, and promotes cellular toxicity. We confirmed in vitro expression of SGLT2 in proximal tubule-derived KPT2 cells, and absence in distal tubule-derived KDT3 cells. D-glucose competitively decreased the uptake of 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NBDG), a fluorescent analog of glucose, and fluorescently-tagged gentamicin (GTTR) by KPT2 cells. Phlorizin, an SGLT2 antagonist, strongly inhibited uptake of 2-NBDG and GTTR by KPT2 cells in a dose- and time-dependent manner. GTTR uptake was elevated in KDT3 cells transfected with SGLT2 (compared to controls); and this enhanced uptake was attenuated by phlorizin. Knock-down of SGLT2 expression by siRNA reduced gentamicin-induced cytotoxicity. In vivo, SGLT2 was robustly expressed in kidney proximal tubule cells of heterozygous, but not null, mice. Phlorizin decreased GTTR uptake by kidney proximal tubule cells in Sglt2+/- mice, but not in Sglt2-/- mice. However, serum GTTR levels were elevated in Sglt2-/- mice compared to Sglt2+/- mice, and in phlorizin-treated Sglt2+/- mice compared to vehicle-treated Sglt2+/- mice. Loss of SGLT2 function by antagonism or by gene deletion did not affect gentamicin cochlear loading or auditory function. Phlorizin did not protect wild-type mice from kanamycin-induced ototoxicity. We conclude that SGLT2 can traffic gentamicin and contribute to gentamicin-induced cytotoxicity.

  13. Sodium-Glucose Transporter-2 (SGLT2; SLC5A2) Enhances Cellular Uptake of Aminoglycosides

    PubMed Central

    Jiang, Meiyan; Wang, Qi; Karasawa, Takatoshi; Koo, Ja-Won; Li, Hongzhe; Steyger, Peter S.

    2014-01-01

    Aminoglycoside antibiotics, like gentamicin, continue to be clinically essential worldwide to treat life-threatening bacterial infections. Yet, the ototoxic and nephrotoxic side-effects of these drugs remain serious complications. A major site of gentamicin uptake and toxicity resides within kidney proximal tubules that also heavily express electrogenic sodium-glucose transporter-2 (SGLT2; SLC5A2) in vivo. We hypothesized that SGLT2 traffics gentamicin, and promotes cellular toxicity. We confirmed in vitro expression of SGLT2 in proximal tubule-derived KPT2 cells, and absence in distal tubule-derived KDT3 cells. D-glucose competitively decreased the uptake of 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NBDG), a fluorescent analog of glucose, and fluorescently-tagged gentamicin (GTTR) by KPT2 cells. Phlorizin, an SGLT2 antagonist, strongly inhibited uptake of 2-NBDG and GTTR by KPT2 cells in a dose- and time-dependent manner. GTTR uptake was elevated in KDT3 cells transfected with SGLT2 (compared to controls); and this enhanced uptake was attenuated by phlorizin. Knock-down of SGLT2 expression by siRNA reduced gentamicin-induced cytotoxicity. In vivo, SGLT2 was robustly expressed in kidney proximal tubule cells of heterozygous, but not null, mice. Phlorizin decreased GTTR uptake by kidney proximal tubule cells in Sglt2+/− mice, but not in Sglt2−/− mice. However, serum GTTR levels were elevated in Sglt2−/− mice compared to Sglt2+/− mice, and in phlorizin-treated Sglt2+/− mice compared to vehicle-treated Sglt2+/− mice. Loss of SGLT2 function by antagonism or by gene deletion did not affect gentamicin cochlear loading or auditory function. Phlorizin did not protect wild-type mice from kanamycin-induced ototoxicity. We conclude that SGLT2 can traffic gentamicin and contribute to gentamicin-induced cytotoxicity. PMID:25268124

  14. Comparative studies of Escherichia coli strains using different glucose uptake systems: Metabolism and energetics

    SciTech Connect

    Chen, R.; Yap, W.M.G.J.; Postma, P.W.; Bailey, J.E.

    1997-12-05

    Modifying substrate uptake systems is a potentially powerful tool in metabolic engineering. This research investigates energetic and metabolic changes brought about by the genetic modification of the glucose uptake and phosphorylation system of Escherichia coli. The engineered strain PPA316, which lacks the E. coli phosphotransferase system (PTS) and uses instead the galactose-proton symport system for glucose uptake, exhibited significantly altered metabolic patterns relative to the parent strain PPA305 which retains PTS activity. Replacement of a PTS uptake system by the galactose-proton symport system is expected to lower the carbon flux to pyruvate in both aerobic and anaerobic cultivations. The extra energy cost in substrate uptake for the non-PTS strain PPA316 had a greater effect on anaerobic specific growth rate, which was reduced by a factor of five relative to PPA 305, while PPA316 reached a specific growth rate of 60% of that of the PTS strain under aerobic conditions. The maximal cell densities obtained with PPA316 were approximately 8% higher than those of the PTS strain under aerobic conditions and 14% lower under anaerobic conditions. In vivo NMR results showed that the non-PTS strain possesses a dramatically different intracellular environment, as evidenced by lower levels of total sugar phosphate, NAD(H), nucleoside triphosphates and phosphoenolpyruvate, and higher levels of nucleoside diphosphates. The sugar phosphate compositions, as measured by extract NMR, were considerably different between these two strains.

  15. Angiotensin 1-7 improves insulin sensitivity by increasing skeletal muscle glucose uptake in vivo.

    PubMed

    Echeverría-Rodríguez, Omar; Del Valle-Mondragón, Leonardo; Hong, Enrique

    2014-01-01

    The renin-angiotensin system (RAS) regulates skeletal muscle insulin sensitivity through different mechanisms. The overactivation of the ACE (angiotensin-converting enzyme)/Ang (angiotensin) II/AT1R (Ang II type 1 receptor) axis has been associated with the development of insulin resistance, whereas the stimulation of the ACE2/Ang 1-7/MasR (Mas receptor) axis improves insulin sensitivity. The in vivo mechanisms by which this axis enhances skeletal muscle insulin sensitivity are scarcely known. In this work, we investigated whether rat soleus muscle expresses the ACE2/Ang 1-7/MasR axis and determined the effect of Ang 1-7 on rat skeletal muscle glucose uptake in vivo. Western blot analysis revealed the expression of ACE2 and MasR, while Ang 1-7 levels were detected in rat soleus muscle by capillary zone electrophoresis. The euglycemic clamp exhibited that Ang 1-7 by itself did not promote glucose transport, but it increased insulin-stimulated glucose disposal in the rat. In a similar manner, captopril (an ACE inhibitor) enhanced insulin-induced glucose uptake and this effect was blocked by the MasR antagonist A-779. Our results show for the first time that rat soleus muscle expresses the ACE2/Ang 1-7/MasR axis of the RAS, and Ang 1-7 improves insulin sensitivity by enhancing insulin-stimulated glucose uptake in rat skeletal muscle in vivo. Thus, endogenous (systemic and/or local) Ang 1-7 could regulate insulin-mediated glucose transport in vivo.

  16. Colectomy induces an aldosterone-mediated increase in jejunal glucose uptake in rats.

    PubMed

    Khachab, Maha; Kanaan, Amjad; Awad, Dania; Deeba, Elie; Osman, Samira; Nassar, Camille F

    2017-04-01

    The main function of the colon is water and electrolyte absorption. Total colectomy eliminates this colonic function and may alter the absorptive capacity of the small intestine for nutrients. This study examines the effect of total colectomy on jejunal glucose absorption and investigates the potential role of aldosterone in mediating the alterations in glucose uptake post-colectomy using the aldosterone antagonist spironolactone. Total colectomy with ileo-rectal anastomosis was performed on anesthetized rats. Sham rats were identically handled without colon resection. Two days post-surgery, groups of colectomized rats were injected with either a daily subcutaneous dose of spironolactone or sesame oil for 12days. Body weight changes and food and water intake were measured in all experimental groups. Glucose absorption was measured by in-vivo single pass perfusion in the rat jejunum of control, sham, colectomized, colectomized with spironolactone, and colectomized with sesame oil treatment. Na/K ATPase, SGK1, SGLT1 and GLUT2 expressions were determined in jejunal mucosa in control, colectomized and colectomized/spironolactone injected rats by Western blot analysis. Histological assessment was performed on jejunal sections in control and colectomized groups. Glucose absorption significantly increased in colectomized rats with an observed increase in Na/K ATPase and SGK1 expression. No significant expression change in SGLT1 and GLUT2 was detected in the jejunum in colectomized rats. Spironolactone, however, significantly decreased the glucose uptake post-colectomy and normalized Na/K ATPase and SGK1 expression. Our results suggest that jejunal glucose uptake increases post-colectomy as a possible consequence of an aldosterone-mediated function. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Leptin does not seem to influence glucose uptake by bovine mammary explants.

    PubMed

    Accorsi, P A; Gamberoni, M; Isani, G; Govoni, N; Viggiani, R; Monari, M; De Ambrogi, M; Munno, A; Tamanini, C; Seren, E

    2005-12-01

    Leptin, a protein produced and secreted by adipocytes, is know to regulate food intake and whole-body energy metabolism, but knowledge about its possible effect in bovine mammary gland is scarce. Leptin may be involved in the regulation of glucose transport even though this effect at the tissue level remains controversial. Once uptaken by the mammary gland, glucose is utilised in several ways but the majority, about 60-70%, is drained for lactose synthesis. This study was aimed at investigating the effect of leptin on glucose regulation in bovine mammary gland. We have examined the effects of leptin on the expression of GLUT1 mRNA, pyruvate kinase (PK) as well as glucose-6-phosphate dehydrogenase (G6PDH) activity. Treatment of mammary gland explants with recombinant leptin did not influence glucose assimilation, pathway transport (GLUT1 mRNA) and glucose metabolism (PK and G6PDH) in this tissue. The results from this study seem to exclude an involvement of leptin in glucose uptake and metabolism in bovine mammary gland.

  18. Glucose Uptake and Triacylglycerol Synthesis Are Increased in Barth Syndrome Lymphoblasts.

    PubMed

    Mejia, Edgard M; Zinko, James C; Hauff, Kristin D; Xu, Fred Y; Ravandi, Amir; Hatch, Grant M

    2017-02-01

    Barth syndrome (BTHS) is an X-linked genetic disease resulting in loss of cardiolipin (Ptd2Gro). Patients may be predisposed to hypoglycemia and exhibit increases in whole-body glucose disposal rates and a higher fat mass percentage. We examined the reasons for this in BTHS lymphoblasts. BTHS lymphoblasts exhibited a 60% increase (p < 0.004) in 2-[1,2-(3)H(N)]deoxy-D-glucose uptake, a 40% increase (p < 0.01) in glucose transporter-3 protein expression, an increase in phosphorylated-adenosine monophosphate kinase (AMPK) and a 58% increase (p < 0.001) in the phosphorylated-AMPK/AMPK ratio compared to controls. In addition, BTHS lymphoblasts exhibited a 90% (p < 0.001) increase in D-[U-(14)C]glucose incorporated into 1,2,3-triacyl-sn-glycerol (TAG) and a 29% increase (p < 0.025) in 1,2-diacyl-sn-glycerol acyltransferase-2 activity compared to controls. Thus, BTHS lymphoblasts exhibit increased glucose transport and increased glucose utilization for TAG synthesis. These results may, in part, explain why BTHS patients exhibit an increase in whole-body glucose disposal rates, may be predisposed to hypoglycemia and exhibit a higher fat mass percentage.

  19. Deletion of Rab GAP AS160 modifies glucose uptake and GLUT4 translocation in primary skeletal muscles and adipocytes and impairs glucose homeostasis

    PubMed Central

    Lansey, Melissa N.; Walker, Natalie N.; Hargett, Stefan R.; Stevens, Joseph R.

    2012-01-01

    Tight control of glucose uptake in skeletal muscles and adipocytes is crucial to glucose homeostasis and is mediated by regulating glucose transporter GLUT4 subcellular distribution. In cultured cells, Rab GAP AS160 controls GLUT4 intracellular retention and release to the cell surface and consequently regulates glucose uptake into cells. To determine AS160 function in GLUT4 trafficking in primary skeletal muscles and adipocytes and investigate its role in glucose homeostasis, we characterized AS160 knockout (AS160−/−) mice. We observed increased and normal basal glucose uptake in isolated AS160−/− adipocytes and soleus, respectively, while insulin-stimulated glucose uptake was impaired and GLUT4 expression decreased in both. No such abnormalities were found in isolated AS160−/− extensor digitorum longus muscles. In plasma membranes isolated from AS160−/− adipose tissue and gastrocnemius/quadriceps, relative GLUT4 levels were increased under basal conditions and remained the same after insulin treatment. Concomitantly, relative levels of cell surface-exposed GLUT4, determined with a glucose transporter photoaffinity label, were increased in AS160−/− adipocytes and normal in AS160−/− soleus under basal conditions. Insulin augmented cell surface-exposed GLUT4 in both. These observations suggest that AS160 is essential for GLUT4 intracellular retention and regulation of glucose uptake in adipocytes and skeletal muscles in which it is normally expressed. In vivo studies revealed impaired insulin tolerance in the presence of normal (male) and impaired (female) glucose tolerance. Concurrently, insulin-elicited increases in glucose disposal were abolished in all AS160−/− skeletal muscles and liver but not in AS160−/− adipose tissues. This suggests AS160 as a target for differential manipulation of glucose homeostasis. PMID:23011063

  20. Deletion of Rab GAP AS160 modifies glucose uptake and GLUT4 translocation in primary skeletal muscles and adipocytes and impairs glucose homeostasis.

    PubMed

    Lansey, Melissa N; Walker, Natalie N; Hargett, Stefan R; Stevens, Joseph R; Keller, Susanna R

    2012-11-15

    Tight control of glucose uptake in skeletal muscles and adipocytes is crucial to glucose homeostasis and is mediated by regulating glucose transporter GLUT4 subcellular distribution. In cultured cells, Rab GAP AS160 controls GLUT4 intracellular retention and release to the cell surface and consequently regulates glucose uptake into cells. To determine AS160 function in GLUT4 trafficking in primary skeletal muscles and adipocytes and investigate its role in glucose homeostasis, we characterized AS160 knockout (AS160(-/-)) mice. We observed increased and normal basal glucose uptake in isolated AS160(-/-) adipocytes and soleus, respectively, while insulin-stimulated glucose uptake was impaired and GLUT4 expression decreased in both. No such abnormalities were found in isolated AS160(-/-) extensor digitorum longus muscles. In plasma membranes isolated from AS160(-/-) adipose tissue and gastrocnemius/quadriceps, relative GLUT4 levels were increased under basal conditions and remained the same after insulin treatment. Concomitantly, relative levels of cell surface-exposed GLUT4, determined with a glucose transporter photoaffinity label, were increased in AS160(-/-) adipocytes and normal in AS160(-/-) soleus under basal conditions. Insulin augmented cell surface-exposed GLUT4 in both. These observations suggest that AS160 is essential for GLUT4 intracellular retention and regulation of glucose uptake in adipocytes and skeletal muscles in which it is normally expressed. In vivo studies revealed impaired insulin tolerance in the presence of normal (male) and impaired (female) glucose tolerance. Concurrently, insulin-elicited increases in glucose disposal were abolished in all AS160(-/-) skeletal muscles and liver but not in AS160(-/-) adipose tissues. This suggests AS160 as a target for differential manipulation of glucose homeostasis.

  1. Testosterone stimulates glucose uptake and GLUT4 translocation through LKB1/AMPK signaling in 3T3-L1 adipocytes.

    PubMed

    Mitsuhashi, Kazuteru; Senmaru, Takafumi; Fukuda, Takuya; Yamazaki, Masahiro; Shinomiya, Katsuhiko; Ueno, Morio; Kinoshita, Shigeru; Kitawaki, Jo; Katsuyama, Masato; Tsujikawa, Muneo; Obayashi, Hiroshi; Nakamura, Naoto; Fukui, Michiaki

    2016-01-01

    Decreases in serum testosterone concentrations in aging men are associated with metabolic disorders. Testosterone has been reported to increase GLUT4-dependent glucose uptake in skeletal muscle cells and cardiomyocytes. However, studies on glucose uptake occurring in response to testosterone stimulation in adipocytes are currently not available. This study was designed to determine the effects of testosterone on glucose uptake in adipocytes. Glucose uptake was assessed with 2-[(3)H] deoxyglucose in 3T3-L1 adipocytes. GLUT4 translocation was evaluated in plasma membrane (PM) sheets and PM fractions by immunofluorescence and immunoblotting, respectively. Activation of GLUT4 translocation-related protein kinases, including Akt, AMPK, LKB1, CaMKI, CaMKII, and Cbl was followed by immunoblotting. Expression levels of androgen receptor (AR) mRNA and AR translocation to the PM were assessed by real-time RT-PCR and immunoblotting, respectively. The results showed that both high-dose (100 nM) testosterone and testosterone-BSA increased glucose uptake and GLUT4 translocation to the PM, independently of the intracellular AR. Testosterone and testosterone-BSA stimulated the phosphorylation of AMPK, LKB1, and CaMKII. The knockdown of LKB1 by siRNA attenuated testosterone- and testosterone-BSA-stimulated AMPK phosphorylation and glucose uptake. These results indicate that high-dose testosterone and testosterone-BSA increase GLUT4-dependent glucose uptake in 3T3-L1 adipocytes by inducing the LKB1/AMPK signaling pathway.

  2. A novel role for myosin II in insulin-stimulated glucose uptake in 3T3-L1 adipocytes

    SciTech Connect

    Steimle, Paul A.; Kent Fulcher, F.; Patel, Yashomati M. . E-mail: ympatel@uncg.edu

    2005-06-17

    Insulin-stimulated glucose uptake requires the activation of several signaling pathways to mediate the translocation and fusion of GLUT4 vesicles from an intracellular pool to the plasma membrane. The studies presented here show that inhibition of myosin II activity impairs GLUT4-mediated glucose uptake but not GLUT4 translocation to the plasma membrane. We also show that adipocytes express both myosin IIA and IIB isoforms, and that myosin IIA is recruited to the plasma membrane upon insulin stimulation. Taken together, the data presented here represent the first demonstration that GLUT4-mediated glucose uptake is a myosin II-dependent process in adipocytes. Based on our findings, we hypothesize that myosin II is activated upon insulin stimulation and recruited to the cell cortex to facilitate GLUT4 fusion with the plasma membrane. The identification of myosin II as a key component of GLUT4-mediated glucose uptake represents an important advance in our understanding of the mechanisms regulating glucose homeostasis.

  3. mTORC2 sustains thermogenesis via Akt-induced glucose uptake and glycolysis in brown adipose tissue.

    PubMed

    Albert, Verena; Svensson, Kristoffer; Shimobayashi, Mitsugu; Colombi, Marco; Muñoz, Sergio; Jimenez, Veronica; Handschin, Christoph; Bosch, Fatima; Hall, Michael N

    2016-03-01

    Activation of non-shivering thermogenesis (NST) in brown adipose tissue (BAT) has been proposed as an anti-obesity treatment. Moreover, cold-induced glucose uptake could normalize blood glucose levels in insulin-resistant patients. It is therefore important to identify novel regulators of NST and cold-induced glucose uptake. Mammalian target of rapamycin complex 2 (mTORC2) mediates insulin-stimulated glucose uptake in metabolic tissues, but its role in NST is unknown. We show that mTORC2 is activated in brown adipocytes upon β-adrenergic stimulation. Furthermore, mice lacking mTORC2 specifically in adipose tissue (AdRiKO mice) are hypothermic, display increased sensitivity to cold, and show impaired cold-induced glucose uptake and glycolysis. Restoration of glucose uptake in BAT by overexpression of hexokinase II or activated Akt2 was sufficient to increase body temperature and improve cold tolerance in AdRiKO mice. Thus, mTORC2 in BAT mediates temperature homeostasis via regulation of cold-induced glucose uptake. Our findings demonstrate the importance of glucose metabolism in temperature regulation.

  4. Effects of glucose on the uptake and metabolism of glycine in pakchoi (Brassica chinensis L.) exposed to various nitrogen sources.

    PubMed

    Ma, Qingxu; Cao, Xiaochuang; Xie, Yinan; Xiao, Han; Tan, Xiaoli; Wu, Lianghuan

    2017-03-02

    Plants can absorb amino acids as a nitrogen (N) source, and glucose is an important part of root rhizodeposition and the soil sugar pool, which participates in the regulation of plant growth and uptake. In pakchoi, the effect of glucose concentration on the glycine N uptake from a nutrient mixture composed of glycine, ammonium, and nitrate, or from a single N solution of glycine alone was studied using specific substrate (15)N-labeling and (15)N-gas chromatography mass spectrometry. The optimal glucose concentration for plant growth was 4.5 μM or 25 μM when supplied with glycine alone or the N mixture, respectively, and resulted in a >25% increase in seedling biomass. The addition of glucose affected the relative contribution from organic or inorganic sources to overall N uptake. When glucose was added at optimal concentrations, glycine was preferentially used as an N source, while the relative contribution from nitrate was reduced. The limiting step for glycine N contribution was active uptake in the roots in high glucose and single-N-source conditions; however, root metabolism of glycine to serine was limiting in high-glucose and mixed-N-source conditions. The addition of low concentrations of glucose increased the relative uptake of organic nitrogen and reduced the uptake of nitrate, suggesting a feasible way to decrease nitrate content and increase the edible quality of vegetables.

  5. The metabolic response to hyperglycaemic clamping in insulin-dependent diabetes.

    PubMed

    Nosadini, R; Noy, G A; Alberti, K G; Hodson, A; Orskoy, H

    1981-02-01

    The metabolic and hormonal effects of stable hyperglycaemia (10-12 mmol/l) have been examined in five insulin-dependent diabetics and compared with the results of 8 h (1200 to 2000 h) normoglycaemic (5-6 mmol/l) clamping. Glucose levels were maintained using a glucose controlled insulin infusion system. Mean blood lactate, pyruvate, total ketone bodies, glycerol and plasma non-esterified fatty acids were similar during the period of stable glycaemia at the two glucose levels. In contrast mean blood alanine was markedly elevated during hyperglycaemic clamping (0.384 +/- 0.008 vs 0.298 +/- 0.021 mmol/l) and 3-hydroxybutyrate was slightly decreased (0.068 +/- 0.007 vs 0.084 +/- 0.008 mmol/l). Plasma glucagon levels were raised during hyperglycaemic clamping and growth hormone slightly decreased. There was a close positive correlation between mean blood alanine and mean blood glucose (r = 0.79, p less than 0.01), and a negative correlation of alanine with the amount of insulin infused (r = -0.72, p less than 0.01). It is suggested that the raised alanine results from increased peripheral glucose utilisation. In general a short period of stable hyperglycaemia is not associated with a worsening of metabolic abnormalities in insulin-dependent diabetic subjects.

  6. Early detection of cryptic memory and glucose uptake deficits in pre-pathological APP mice.

    PubMed

    Beglopoulos, V; Tulloch, J; Roe, A D; Daumas, S; Ferrington, L; Watson, R; Fan, Z; Hyman, B T; Kelly, P A T; Bard, F; Morris, R G M

    2016-06-01

    Earlier diagnosis and treatment of Alzheimer's disease would greatly benefit from the identification of biomarkers at the prodromal stage. Using a prominent animal model of aspects of the disease, we here show using clinically relevant methodologies that very young, pre-pathological PDAPP mice, which overexpress mutant human amyloid precursor protein in the brain, exhibit two cryptic deficits that are normally undetected using standard methods of assessment. Despite learning a spatial memory task normally and displaying normal brain glucose uptake, they display faster forgetting after a long delay following performance to a criterion, together with a strong impairment of brain glucose uptake at the time of attempted memory retrieval. Preliminary observations suggest that these deficits, likely caused by an impairment in systems consolidation, could be rescued by immunotherapy with an anti-β-amyloid antibody. Our data suggest a biomarker strategy for the early detection of β-amyloid-related abnormalities.

  7. Early detection of cryptic memory and glucose uptake deficits in pre-pathological APP mice

    PubMed Central

    Beglopoulos, V.; Tulloch, J.; Roe, A. D.; Daumas, S.; Ferrington, L.; Watson, R.; Fan, Z.; Hyman, B. T.; Kelly, P. A. T.; Bard, F.; Morris, R. G. M.

    2016-01-01

    Earlier diagnosis and treatment of Alzheimer's disease would greatly benefit from the identification of biomarkers at the prodromal stage. Using a prominent animal model of aspects of the disease, we here show using clinically relevant methodologies that very young, pre-pathological PDAPP mice, which overexpress mutant human amyloid precursor protein in the brain, exhibit two cryptic deficits that are normally undetected using standard methods of assessment. Despite learning a spatial memory task normally and displaying normal brain glucose uptake, they display faster forgetting after a long delay following performance to a criterion, together with a strong impairment of brain glucose uptake at the time of attempted memory retrieval. Preliminary observations suggest that these deficits, likely caused by an impairment in systems consolidation, could be rescued by immunotherapy with an anti-β-amyloid antibody. Our data suggest a biomarker strategy for the early detection of β-amyloid-related abnormalities. PMID:27249364

  8. Stimulatory Effect of Insulin on Glucose Uptake by Muscle Involves the Central Nervous System in Insulin-Sensitive Mice

    PubMed Central

    Coomans, Claudia P.; Biermasz, Nienke R.; Geerling, Janine J.; Guigas, Bruno; Rensen, Patrick C.N.; Havekes, Louis M.; Romijn, Johannes A.

    2011-01-01

    OBJECTIVE Insulin inhibits endogenous glucose production (EGP) and stimulates glucose uptake in peripheral tissues. Hypothalamic insulin signaling is required for the inhibitory effects of insulin on EGP. We examined the contribution of central insulin signaling on circulating insulin–stimulated tissue-specific glucose uptake. RESEARCH DESIGN AND METHODS Tolbutamide, an inhibitor of ATP-sensitive K+ channels (KATP channels), or vehicle was infused into the lateral ventricle in the basal state and during hyperinsulinemic-euglycemic conditions in postabsorptive, chow-fed C57Bl/6J mice and in postabsorptive C57Bl/6J mice with diet-induced obesity. Whole-body glucose uptake was measured by d-[14C]glucose kinetics and tissue-specific glucose uptake by 2-deoxy-d-[3H]glucose uptake. RESULTS During clamp conditions, intracerebroventricular administration of tolbutamide impaired the ability of insulin to inhibit EGP by ∼20%. In addition, intracerebroventricular tolbutamide diminished insulin-stimulated glucose uptake in muscle (by ∼59%) but not in heart or adipose tissue. In contrast, in insulin-resistant mice with diet-induced obesity, intracerebroventricular tolbutamide did not alter the effects of insulin during clamp conditions on EGP or glucose uptake by muscle. CONCLUSIONS Insulin stimulates glucose uptake in muscle in part through effects via KATP channels in the central nervous system, in analogy with the inhibitory effects of insulin on EGP. High-fat diet–induced obesity abolished the central effects of insulin on liver and muscle. These observations stress the role of central insulin resistance in the pathophysiology of diet-induced insulin resistance. PMID:22028182

  9. Cocoa flavonoids attenuate high glucose-induced insulin signalling blockade and modulate glucose uptake and production in human HepG2 cells.

    PubMed

    Cordero-Herrera, Isabel; Martín, María Ángeles; Goya, Luis; Ramos, Sonia

    2014-02-01

    Insulin resistance is the primary characteristic of type 2 diabetes. Cocoa and its main flavanol, (-)-epicatechin (EC), display some antidiabetic effects, but the mechanisms for their preventive activities related to glucose metabolism and insulin signalling in the liver remain largely unknown. In the present work, the preventive effect of EC and a cocoa polyphenolic extract (CPE) on insulin signalling and on both glucose production and uptake are studied in insulin-responsive human HepG2 cells treated with high glucose. Pre-treatment of cells with EC or CPE reverted decreased tyrosine-phosphorylated and total levels of IR, IRS-1 and -2 triggered by high glucose. EC and CPE pre-treatment also prevented the inactivation of the PI3K/AKT pathway and AMPK, as well as the diminution of GLUT-2 levels induced by high glucose. Furthermore, pre-treatment of cells with EC and CPE avoided the increase in PEPCK levels and the diminished glucose uptake provoked by high glucose, returning enhanced levels of glucose production and decreased glycogen content to control values. These findings suggest that EC and CPE improved insulin sensitivity of HepG2 treated with high glucose, preventing or delaying a potential hepatic dysfunction through the attenuation of the insulin signalling blockade and the modulation of glucose uptake and production.

  10. Browning of white adipose tissue uncouples glucose uptake from insulin signaling.

    PubMed

    Mössenböck, Karin; Vegiopoulos, Alexandros; Rose, Adam J; Sijmonsma, Tjeerd P; Herzig, Stephan; Schafmeier, Tobias

    2014-01-01

    Presence of thermogenically active adipose tissue in adult humans has been inversely associated with obesity and type 2 diabetes. While it had been shown that insulin is crucial for the development of classical brown fat, its role in development and function of inducible brown-in-white (brite) adipose tissue is less clear. Here we show that insulin deficiency impaired differentiation of brite adipocytes. However, adrenergic stimulation almost fully induced the thermogenic program under these settings. Although brite differentiation of adipocytes as well as browning of white adipose tissue entailed substantially elevated glucose uptake by adipose tissue, the capacity of insulin to stimulate glucose uptake surprisingly was not higher in the brite state. Notably, in line with the insulin-independent stimulation of glucose uptake, our data revealed that brite recruitment results in induction of solute carrier family 2 (GLUT-1) expression in adipocytes and inguinal WAT. These results for the first time demonstrate that insulin signaling is neither essential for brite recruitment, nor is it improved in cells or tissues upon browning.

  11. Browning of White Adipose Tissue Uncouples Glucose Uptake from Insulin Signaling

    PubMed Central

    Mössenböck, Karin; Vegiopoulos, Alexandros; Rose, Adam J.; Sijmonsma, Tjeerd P.; Herzig, Stephan; Schafmeier, Tobias

    2014-01-01

    Presence of thermogenically active adipose tissue in adult humans has been inversely associated with obesity and type 2 diabetes. While it had been shown that insulin is crucial for the development of classical brown fat, its role in development and function of inducible brown-in-white (brite) adipose tissue is less clear. Here we show that insulin deficiency impaired differentiation of brite adipocytes. However, adrenergic stimulation almost fully induced the thermogenic program under these settings. Although brite differentiation of adipocytes as well as browning of white adipose tissue entailed substantially elevated glucose uptake by adipose tissue, the capacity of insulin to stimulate glucose uptake surprisingly was not higher in the brite state. Notably, in line with the insulin-independent stimulation of glucose uptake, our data revealed that brite recruitment results in induction of solute carrier family 2 (GLUT-1) expression in adipocytes and inguinal WAT. These results for the first time demonstrate that insulin signaling is neither essential for brite recruitment, nor is it improved in cells or tissues upon browning. PMID:25313899

  12. Chloroquine stimulates glucose uptake and glycogen synthase in muscle cells through activation of Akt.

    PubMed

    Halaby, Marie-Jo; Kastein, Brandon K; Yang, Da-Qing

    2013-06-14

    Chloroquine is a pharmaceutical agent that has been widely used to treat patients with malaria. Chloroquine has also been reported to have hypoglycemic effects on humans and animal models of diabetes. Despite many previous studies, the mechanism responsible for its hypoglycemic effect is still unclear. Chloroquine was recently reported to be an activator of ATM, the protein deficient in the Ataxia-telagiectasia (A-T) disease. Since ATM is also known as an insulin responsive protein that mediates Akt activation, we tested the effect of chloroquine on the activity of Akt and its downstream targets. In L6 muscle cells treated with insulin and chloroquine, the phosphorylation of Akt and glucose uptake were dramatically increased compared to cells treated with insulin alone, suggesting that chloroquine is a potent activator of Akt and glucose uptake in these cells. We also found that the reduction of insulin-mediated Akt activity in muscle tissues of insulin resistant rats was partially reversed by chloroquine treatment. Moreover, insulin-mediated phosphorylation of glycogen synthase kinase-3β in L6 cells was greatly enhanced by chloroquine. A substantial decrease in phosphorylation of glycogen synthase was also observed in chloroquine-treated L6 cells, indicating enhanced activity of glycogen synthase. Taken together, our results not only show that chloroquine is a novel activator of Akt that stimulates glucose uptake and glycogen synthase, but also validate chloroquine as a potential therapeutic agent for patients with type 2 diabetes mellitus. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Effects of ketamine on glucose uptake by glucose transporter type 3 expressed in Xenopus oocytes: The role of protein kinase C

    SciTech Connect

    Tomioka, Shigemasa; Kaneko, Miyuki; Satomura, Kazuhito; Mikyu, Tomiko; Nakajo, Nobuyoshi

    2009-10-09

    We investigated the effects of ketamine on the type 3 facilitative glucose transporter (GLUT3), which plays a major role in glucose transport across the plasma membrane of neurons. Human-cloned GLUT3 was expressed in Xenopus oocytes by injection of GLUT3 mRNA. GLUT3-mediated glucose uptake was examined by measuring oocyte radioactivity following incubation with 2-deoxy-D-[1,2-{sup 3}H]glucose. While ketamine and S(+)-ketamine significantly increased GLUT3-mediated glucose uptake, this effect was biphasic such that higher concentrations of ketamine inhibited glucose uptake. Ketamine (10 {mu}M) significantly increased V{sub max} but not K{sub m} of GLUT3 for 2-deoxy-D-glucose. Although staurosporine (a protein kinase C inhibitor) increased glucose uptake, no additive or synergistic interactions were observed between staurosporine and racemic ketamine or S(+)-ketamine. Treatment with ketamine or S(+)-ketamine partially prevented GLUT3 inhibition by the protein kinase C activator phorbol-12-myrisate-13-acetate. Our results indicate that ketamine increases GLUT3 activity at clinically relevant doses through a mechanism involving PKC inhibition.

  14. Nuclear factor E2-related factor 2 knockdown enhances glucose uptake and alters glucose metabolism in AML12 hepatocytes.

    PubMed

    Yuan, Xiaoyang; Huang, Huijing; Huang, Yi; Wang, Jinli; Yan, Jinhua; Ding, Ling; Zhang, Cuntai; Zhang, Le

    2017-05-01

    Nuclear factor E2-related factor 2 (Nrf2) is a transcription factor known to induce the expression of a variety of antioxidant and detoxification genes. Recently, increasing evidence has revealed roles for Nrf2 in glucose, lipid, and energy metabolism; however, the exact functions of Nrf2 in hepatocyte biology are largely unclear. In the current study, the transient knockdown of Nrf2 via siRNA transfection enhanced the glucose uptake of fasting AML12 hepatocytes to 325.3 ± 11.1% ( P < 0.05) of that of untransfected control cells. The impacts of Nrf2 knockdown (NK) on the antioxidant system, inflammatory response, and glucose metabolism were then examined in AML12 cells under both high-glucose (33 mmol/L) and low-glucose (4.5 mmol/L) conditions. NK lowered the gene and protein expression of the anti-oxidases heme oxygenase-1 and NAD(P)H: quinone oxidoreductase 1 and increased p-eukaryotic initiation factor-2α(S51), p-nuclear factor-κB p65(S276), and its downstream proinflammatory factors, including interleukin-1 beta, tumor necrosis factor-α, matrix metalloproteinase 2, and matrix metalloproteinase 9, at the protein level. NK also altered the protein expression of fibroblast growth factor 21, glucose transporter type 4, insulin-like growth factor 1, forkhead box protein O1, p-AKT(S473), and p-GSK3α/β(Y279/Y216), which are involved in glucose uptake, glycogenesis, and gluconeogenesis in AML12 cells. Our results provide a comprehensive understanding of the central role of Nrf2 in the regulation of glucose metabolism in AML12 hepatocytes, in addition to its classical roles in the regulation of redox signaling, endoplasmic reticulum stress and proinflammatory responses, and support the potential of Nrf2 as a therapeutic target for the prevention and treatment of obesity and other associated metabolic syndromes. Impact statement Increasing evidence supports the complexity of Nrf2 functions beyond the antioxidant and detoxification response. Previous in

  15. Brain tumor initiating cells adapt to restricted nutrition through preferential glucose uptake.

    PubMed

    Flavahan, William A; Wu, Qiulian; Hitomi, Masahiro; Rahim, Nasiha; Kim, Youngmi; Sloan, Andrew E; Weil, Robert J; Nakano, Ichiro; Sarkaria, Jann N; Stringer, Brett W; Day, Bryan W; Li, Meizhang; Lathia, Justin D; Rich, Jeremy N; Hjelmeland, Anita B

    2013-10-01

    Like all cancers, brain tumors require a continuous source of energy and molecular resources for new cell production. In normal brain, glucose is an essential neuronal fuel, but the blood-brain barrier limits its delivery. We now report that nutrient restriction contributes to tumor progression by enriching for brain tumor initiating cells (BTICs) owing to preferential BTIC survival and to adaptation of non-BTICs through acquisition of BTIC features. BTICs outcompete for glucose uptake by co-opting the high affinity neuronal glucose transporter, type 3 (Glut3, SLC2A3). BTICs preferentially express Glut3, and targeting Glut3 inhibits BTIC growth and tumorigenic potential. Glut3, but not Glut1, correlates with poor survival in brain tumors and other cancers; thus, tumor initiating cells may extract nutrients with high affinity. As altered metabolism represents a cancer hallmark, metabolic reprogramming may maintain the tumor hierarchy and portend poor prognosis.

  16. Brain Tumor Initiating Cells Adapt to Restricted Nutrition through Preferential Glucose Uptake

    PubMed Central

    Flavahan, William A.; Wu, Qiulian; Hitomi, Masahiro; Rahim, Nasiha; Kim, Youngmi; Sloan, Andrew E.; Weil, Robert J.; Nakano, Ichiro; Sarkaria, Jann N.; Stringer, Brett W.; Day, Bryan W.; Li, Meizhang; Lathia, Justin D.; Rich, Jeremy N.; Hjelmeland, Anita B.

    2013-01-01

    Like all cancers, brain tumors require a continuous source of energy and molecular resources for new cell production. In normal brain, glucose is an essential neuronal fuel, but the blood-brain barrier limits its delivery. We now report that nutrient restriction contributes to tumor progression by enriching for brain tumor initiating cells (BTICs) due to preferential BTIC survival and adaptation of non-BTICs through acquisition of BTIC features. BTICs outcompete for glucose uptake by co-opting the high affinity neuronal glucose transporter, type 3 (Glut3, SLC2A3). BTICs preferentially express Glut3 and targeting Glut3 inhibits BTIC growth and tumorigenic potential. Glut3, but not Glut1, correlates with poor survival in brain tumors and other cancers; thus, TICs may extract nutrients with high affinity. As altered metabolism represents a cancer hallmark, metabolic reprogramming may instruct the tumor hierarchy and portend poor prognosis. PMID:23995067

  17. Endothelial HIF-1α Enables Hypothalamic Glucose Uptake to Drive POMC Neurons.

    PubMed

    Varela, Luis; Suyama, Shigetomo; Huang, Yan; Shanabrough, Marya; Tschöp, Matthias H; Gao, Xiao-Bing; Giordano, Frank J; Horvath, Tamas L

    2017-06-01

    Glucose is the primary driver of hypothalamic proopiomelanocortin (POMC) neurons. We show that endothelial hypoxia-inducible factor 1α (HIF-1α) controls glucose uptake in the hypothalamus and that it is upregulated in conditions of undernourishment, during which POMC neuronal activity is decreased. Endothelium-specific knockdown of HIF-1α impairs the ability of POMC neurons to adapt to the changing metabolic environment in vivo, resulting in overeating after food deprivation in mice. The impaired functioning of POMC neurons was reversed ex vivo or by parenchymal glucose administration. These observations indicate an active role for endothelial cells in the central control of metabolism and suggest that central vascular impairments may cause metabolic disorders. © 2017 by the American Diabetes Association.

  18. Age differences in hopelessness and toe pain in persons with insulin-dependent and non-insulin-dependent diabetes mellitus.

    PubMed

    Morewitz, Stephen; Javed, Najwa; Tata, Sharada; Clark, Joel

    2010-01-01

    Several studies have established an association between diabetic neuropathy and depressive symptoms. There is a link between depression and peripheral neuropathy in diabetic patients, suggesting an increased likelihood that diabetic patients will experience depressive symptoms related to lower-extremity peripheral neuropathy and arthritis during middle age and later life. The goal of this investigation was to determine whether there are age differences between insulin-dependent and non-insulin-dependent diabetic patients regarding their feelings of hopelessness and toe pain. A large population-based sample of 32,006 adults from the 1998 National Health Interview Survey was analyzed with multivariate statistical procedures. We performed χ² and correlation procedures to test the null hypothesis that there are no age or sex differences between insulin-dependent and non-insulin-dependent diabetic patients in their reporting of feelings of hopelessness and toe pain symptoms in the previous 12 months. There were significant differences between age and sex groups of insulin-dependent and non-insulin-dependent diabetic patients in reporting feelings of hopelessness and toe pain symptoms, rejecting the null hypothesis. Correlational analysis conducted between the variables of hopelessness and toe pain yielded significant correlations in insulin-dependent (r = .28; P = .0009; α = .05), and non-insulin-dependent (r = 0.19; P = .001; α = .05) women older than 61 years, concluding that diabetic women are more likely to experience hopelessness and toe pain in that age group regardless of insulin status. Clinicians should incorporate depression and toe pain symptoms into their assessment and treatment, especially in diabetic women older than 61 years.

  19. (18)F-FDG-PET imaging of rat spinal cord demonstrates altered glucose uptake acutely after contusion injury.

    PubMed

    von Leden, Ramona E; Selwyn, Reed G; Jaiswal, Shalini; Wilson, Colin M; Khayrullina, Guzal; Byrnes, Kimberly R

    2016-05-16

    Spinal cord injury (SCI) results in an acute reduction in neuronal and glial cell viability, disruption in axonal tract integrity, and prolonged increases in glial activity and inflammation, all of which can influence regional metabolism and glucose utilization. To date, the understanding of glucose uptake and utilization in the injured spinal cord is limited. Positron emission tomography (PET)-based measurements of glucose uptake may therefore serve as a novel biomarker for SCI. This study aimed to determine the acute and sub-acute glucose uptake pattern after SCI to determine its potential as a novel non-invasive tool for injury assessment and to begin to understand the glucose uptake pattern following acute SCI. Briefly, adult male Sprague-Dawley rats were subjected to moderate contusion SCI, confirmed by locomotor function and histology. PET imaging with [(18)F] Fluorodeoxyglucose (FDG) was performed prior to injury and at 6 and 24h and 15days post-injury (dpi). FDG-PET imaging revealed significantly depressed glucose uptake at 6h post-injury at the lesion epicenter that returned to sham/naïve levels at 24h and 15 dpi after moderate injury. FDG uptake at 15 dpi was likely influenced by a combination of elevated glial presence and reduced neuronal viability. These results show that moderate SCI results in acute depression in glucose uptake followed by an increase in glucose uptake that may be related to neuroinflammation. This acute and sub-acute uptake, which is dependent on cellular responses, may represent a therapeutic target.

  20. Akt2-Dependent Beneficial Effect of Galanin on Insulin-Induced Glucose Uptake in Adipocytes of Diabetic Rats.

    PubMed

    Zhang, Zhenwen; Fang, Penghua; Guo, Lili; He, Biao; Shi, Mingyi; Zhu, Yan; Bo, Ping

    2017-01-01

    Glucose uptake occurs via the activation of an insulin-signaling cascade, resulting in the translocation of glucose transporter 4 (GLUT4) to the plasma membrane of adipocytes and myocytes. Recent research found that galanin could boost insulin-induced glucose uptake. This study aimed to explore whether activation of Akt2 mediates the beneficial effects of galanin on insulin-induced glucose uptake in the adipocytes of diabetic rats. In this experiment, insulin, galanin and MK-2206, an Akt inhibitor, were injected individually or in combination into diabetic rats once a day for ten days. Then, glucose uptake and pAkt2 and its downstream proteins were examined in adipocytes. Administration of galanin significantly enhanced insulin-induced 2-Deoxy-D-[3H]glucose uptake; GLUT4 and vesicle-associated membrane protein 2 contents in plasma membranes; and pAkt2Thr308/Ser473 and Akt2 mRNA expression levels in adipocytes. In addition, Akt2 downstream proteins including phosphorylated AS160 were increased, but the levels of phosphorylated forkhead box O1 and glycogen synthase kinase-3β were reduced. Treatment with MK-2206 may block the beneficial effects of galanin on these insulin-induced events. The results of this study suggest that phosphorylation of Akt2 mediates the beneficial effects of galanin on insulin-induced glucose uptake in the adipocytes of diabetic rats. © 2017 The Author(s)Published by S. Karger AG, Basel.

  1. Glucose transporters and in vivo glucose uptake in skeletal and cardiac muscle: fasting, insulin stimulation and immunoisolation studies of GLUT1 and GLUT4.

    PubMed Central

    Kraegen, E W; Sowden, J A; Halstead, M B; Clark, P W; Rodnick, K J; Chisholm, D J; James, D E

    1993-01-01

    Our aim was to study glucose transporters GLUT1 and GLUT4 in relation to in vivo glucose uptake in rat cardiac and skeletal muscle. The levels of both transporters were of a similar order of magnitude in whole muscle tissue (GLUT1/GLUT4 ratio varied from 0.1 to 0.6), suggesting that both may have an important physiological role in regulating muscle glucose metabolism. GLUT4 correlated very strongly (r2 = 0.97) with maximal insulin-stimulated glucose uptake (Rg' max., estimated using the glucose clamp plus 2-deoxy[3H]glucose bolus technique) in six skeletal muscles and heart. A distinct difference in regulation of the two transporters was evident in heart: in 5 h-fasted rats, basal glucose uptake and GLUT1 levels in heart were very high and both were reduced, by 90 and 60% respectively, by 48 h fasting. However, in heart (and in red skeletal muscle), neither GLUT4 levels nor Rg' max. were reduced by 48 h fasting. GLUT1 was shown to be specifically expressed in cardiac myocytes, because intracellular vesicles enriched in GLUT4 contained significant levels of GLUT1. In conclusion, the high association of muscle GLUT4 content with insulin responsiveness in different muscles, and the preservation of both with fasting, supports a predominant role of GLUT4 in insulin-mediated glucose uptake. GLUT1 may play an important role in mediating cardiac muscle glucose uptake in the basal metabolic state. Marked changes in GLUT1 expression with alterations in the metabolic state, such as prolonged fasting, may play an important role in cardiac glucose metabolism. Images Figure 1 Figure 2 PMID:8216230

  2. Nitrite augments glucose uptake in adipocytes through the protein kinase A-dependent stimulation of mitochondrial fusion.

    PubMed

    Khoo, Nicholas K H; Mo, Li; Zharikov, Sergey; Kamga-Pride, Christelle; Quesnelle, Kelly; Golin-Bisello, Franca; Li, Lihua; Wang, Yinna; Shiva, Sruti

    2014-05-01

    Though it is well accepted that adipose tissue is central in the regulation of glycemic homeostasis, the molecular mechanisms governing adipocyte glucose uptake remain unclear. Recent studies demonstrate that mitochondrial dynamics (fission and fusion) regulate lipid accumulation and differentiation in adipocytes. However, the role of mitochondrial dynamics in glucose homeostasis has not been explored. The nitric oxide oxidation products nitrite and nitrate are endogenous signaling molecules and dietary constituents that have recently been shown to modulate glucose metabolism, prevent weight gain, and reverse the development of metabolic syndrome in mice. Although the mechanism of this protection is unclear, the mitochondrion is a known subcellular target for nitrite signaling. Thus, we hypothesize that nitrite modulates mitochondrial dynamics and function to regulate glucose uptake in adipocytes. Herein, we demonstrate that nitrite significantly increases glucose uptake in differentiated murine adipocytes through a mechanism dependent on mitochondrial fusion. Specifically, nitrite promotes mitochondrial fusion by increasing the profusion protein mitofusin 1 while concomitantly activating protein kinase A (PKA), which phosphorylates and inhibits the profission protein dynamin-related protein 1 (Drp1). Functionally, this signaling augments cellular respiration, fatty acid oxidation, mitochondrial oxidant production, and glucose uptake. Importantly, inhibition of PKA or Drp1 significantly attenuates nitrite-induced mitochondrial respiration and glucose uptake. These findings demonstrate that mitochondria play an essential metabolic role in adipocytes, show a novel role for both nitrite and mitochondrial fusion in regulating adipocyte glucose homeostasis, and have implications for the potential therapeutic use of nitrite and mitochondrial modulators in glycemic regulation.

  3. Nitrite augments glucose uptake in adipocytes through the Protein Kinase A-dependent stimulation of mitochondrial fusion

    PubMed Central

    Khoo, Nicholas K.H.; Mo, Li; Zharikov, Sergey; Kamga, Christelle; Quesnelle, Kelly; Golin-Bisello, Franca; Li, Lihua; Wang, Yinna; Shiva, Sruti

    2014-01-01

    Though it is well accepted that adipose tissue is central in the regulation of glycemic homeostasis, the molecular mechanisms governing adipocyte glucose uptake remain unclear. Recent studies demonstrate that mitochondrial dynamics (fission and fusion) regulate lipid accumulation and differentiation in adipocytes. However, the role of mitochondrial dynamics in glucose homeostasis has not been explored. The nitric oxide oxidation products nitrite and nitrate are endogenous signaling molecules and dietary constituents that have recently been shown to modulate glucose metabolism, prevent weight gain and reverse the development of metabolic syndrome in mice. While the mechanism of this protection is unclear, the mitochondrion is a known subcellular target for nitrite signaling. Thus, we hypothesize that nitrite modulates mitochondrial dynamics and function to regulate glucose uptake in adipocytes. Herein, we demonstrate that nitrite significantly increases glucose uptake in differentiated murine adipocytes through a mechanism dependent on mitochondrial fusion. Specifically, nitrite promotes mitochondrial fusion by increasing pro-fusion protein mitofusin 1 while concomitantly activating protein kinase A (PKA), which phosphorylates and inhibits the pro-fission protein, dynamin-related protein 1 (Drp1). Functionally, this signaling augments cellular respiration, fatty acid oxidation, mitochondrial oxidant production and glucose uptake. Importantly, inhibition of PKA or Drp1 significantly attenuates nitrite-induced mitochondrial respiration and glucose uptake. These findings demonstrate that mitochondria play an essential metabolic role in adipocytes, a novel role for both nitrite and mitochondrial fusion in regulating adipocyte glucose homeostasis and have implications for the potential therapeutic use of nitrite and mitochondrial modulators in glycemic regulation. PMID:24556414

  4. Route-dependent effect of nutritional support on liver glucose uptake.

    PubMed

    Chen, Sheng-Song; Torres-Sanchez, Carlos J; Hosein, Nadeen; Zhang, Yiqun; Lacy, D Brooks; Chang, Chris; McGuinness, Owen P

    2005-11-01

    The liver is a major site of glucose disposal during chronic (5 day) total parenteral (TPN) and enteral (TEN) nutrition. Net hepatic glucose uptake (NHGU) is dependent on the route of delivery when only glucose is delivered acutely; however, the hepatic response to chronic TPN and TEN is very similar. We aimed to determine whether the route of nutrient delivery altered the acute (first 8 h) response of the liver and whether chronic enteral delivery of glucose alone could augment the adaptive response to TPN. Chronically catheterized conscious dogs received either TPN or TEN containing glucose, Intralipid, and Travasol for either 8 h or 5 days. Another group received TPN for 5 days, but approximately 50% of the glucose in the nutrition was given via the enteral route (TPN+EG). Hepatic metabolism was assessed with tracer and arteriovenous difference techniques. In the presence of similar arterial plasma glucose levels (approximately 6 mM), NHGU and net hepatic lactate release increased approximately twofold between 8 h and 5 days in TPN and TEN. NHGU (26 +/- 1 vs. 23 +/- 3 micromol.kg(-1).min(-1)) and net hepatic lactate release (44 +/- 1 vs. 34 +/- 6 micromol.kg(-1).min(-1)) in TPN+EG were similar to results for TPN, despite lower insulin levels (96 +/- 6 vs. 58 +/- 16 pM, TPN vs. TPN+EG). TEN does not acutely enhance NHGU or disposition above that seen with TPN. However, partial delivery of enteral glucose is effective in decreasing the insulin requirement during chronic TPN.

  5. Metabolites produced by probiotic Lactobacilli rapidly increase glucose uptake by Caco-2 cells

    PubMed Central

    2010-01-01

    Background Although probiotic bacteria and their metabolites alter enterocyte gene expression, rapid, non-genomic responses have not been examined. The present study measured accumulation of tracer (2 μM) glucose by Caco-2 cells after exposure for 10 min or less to a chemically defined medium (CDM) with different monosaccharides before and after anaerobic culture of probiotic Lactobacilli. Results Growth of L. acidophilus was supported by CDM with 110 mM glucose, fructose, and mannose, but not with arabinose, ribose, and xylose or the sugar-free CDM. Glucose accumulation was reduced when Caco-2 cells were exposed for 10 min to sterile CDM with glucose (by 92%), mannose (by 90%), fructose (by 55%), and ribose (by 16%), but not with arabinose and xylose. Exposure of Caco-2 cells for 10 min to bacteria-free supernatants prepared after exponential (48 h) and stationary (72 h) growth phases of L. acidophilus cultured in CDM with 110 mM fructose increased glucose accumulation by 83% and 45%, respectively; exposure to a suspension of the bacteria had no effect. The increase in glucose accumulation was diminished by heat-denaturing the supernatant, indicating the response of Caco-2 cells is triggered by as yet unknown heat labile bacterial metabolites, not by a reduction in CDM components that decrease glucose uptake. Supernatants prepared after anaerobic culture of L. gasseri, L. amylovorus, L. gallinarum, and L. johnsonii in the CDM with fructose increased glucose accumulation by 83%, 32%, 27%, and 14%, respectively. Conclusion The rapid, non-genomic upregulation of SGLT1 by bacterial metabolites is a heretofore unrecognized interaction between probiotics and the intestinal epithelium. PMID:20089192

  6. Metabolites produced by probiotic Lactobacilli rapidly increase glucose uptake by Caco-2 cells.

    PubMed

    Rooj, Arun K; Kimura, Yasuhiro; Buddington, Randal K

    2010-01-20

    Although probiotic bacteria and their metabolites alter enterocyte gene expression, rapid, non-genomic responses have not been examined. The present study measured accumulation of tracer (2 microM) glucose by Caco-2 cells after exposure for 10 min or less to a chemically defined medium (CDM) with different monosaccharides before and after anaerobic culture of probiotic Lactobacilli. Growth of L. acidophilus was supported by CDM with 110 mM glucose, fructose, and mannose, but not with arabinose, ribose, and xylose or the sugar-free CDM. Glucose accumulation was reduced when Caco-2 cells were exposed for 10 min to sterile CDM with glucose (by 92%), mannose (by 90%), fructose (by 55%), and ribose (by 16%), but not with arabinose and xylose. Exposure of Caco-2 cells for 10 min to bacteria-free supernatants prepared after exponential (48 h) and stationary (72 h) growth phases of L. acidophilus cultured in CDM with 110 mM fructose increased glucose accumulation by 83% and 45%, respectively; exposure to a suspension of the bacteria had no effect. The increase in glucose accumulation was diminished by heat-denaturing the supernatant, indicating the response of Caco-2 cells is triggered by as yet unknown heat labile bacterial metabolites, not by a reduction in CDM components that decrease glucose uptake. Supernatants prepared after anaerobic culture of L. gasseri, L. amylovorus, L. gallinarum, and L. johnsonii in the CDM with fructose increased glucose accumulation by 83%, 32%, 27%, and 14%, respectively. The rapid, non-genomic upregulation of SGLT1 by bacterial metabolites is a heretofore unrecognized interaction between probiotics and the intestinal epithelium.

  7. Glucose uptake mediated by glucose transporter 1 is essential for early tooth morphogenesis and size determination of murine molars.

    PubMed

    Ida-Yonemochi, Hiroko; Nakatomi, Mitsushiro; Harada, Hidemitsu; Takata, Hiroki; Baba, Otto; Ohshima, Hayato

    2012-03-01

    Glucose is an essential source of energy for body metabolism and is transported into cells by glucose transporters (GLUTs). Well-characterized class I GLUT is subdivided into GLUTs1-4, which are selectively expressed depending on tissue glucose requirements. However, there is no available data on the role of GLUTs during tooth development. This study aims to clarify the functional significance of class I GLUT during murine tooth development using immunohistochemistry and an in vitro organ culture experiment with an inhibitor of GLUTs1/2, phloretin, and Glut1 and Glut2 short interfering RNA (siRNA). An intense GLUT1-immunoreaction was localized in the enamel organ of bud-stage molar tooth germs, where the active cell proliferation occurred. By the bell stage, the expression of GLUT1 in the dental epithelium was dramatically decreased in intensity, and subsequently began to appear in the stratum intermedium at the late bell stage. On the other hand, GLUT2-immunoreactivity was weakly observed in the whole tooth germs throughout all stages. The inhibition of GLUTs1/2 by phloretin in the bud-stage tooth germs induced the disturbance of primary enamel knot formation, resulting in the developmental arrest of the explants and the squamous metaplasia of dental epithelial cells. Furthermore, the inhibition of GLUTs1/2 in cap-to-bell-stage tooth germs reduced tooth size in a dose dependent manner. These findings suggest that the expression of GLUT1 and GLUT2 in the dental epithelial and mesenchymal cells seems to be precisely and spatiotemporally controlled, and the glucose uptake mediated by GLUT1 plays a crucial role in the early tooth morphogenesis and tooth size determination. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Phenolic compounds isolated from fermented blueberry juice decrease hepatocellular glucose output and enhance muscle glucose uptake in cultured murine and human cells.

    PubMed

    Nachar, Abir; Eid, Hoda M; Vinqvist-Tymchuk, Melinda; Vuong, Tri; Kalt, Wilhelmina; Matar, Chantal; Haddad, Pierre S

    2017-03-04

    We recently reported that blueberry juice fermented (FJ) with Serratia vaccinii bacterium has antidiabetic activities both in vivo and in vitro. The purpose of this project was to elucidate the effect of FJ on glucose homeostasis in liver and skeletal muscle cells and to identify active fractions/compounds responsible for this effect. FJ was fractionated using standard chromatography procedures. Hepatic (H4IIE, HepG2) and skeletal muscle cells (C2C12) were treated with maximum non-toxic concentrations of FJ, fractions and isolated compounds thereof. Glucose-6-phosphatase (G6Pase) activity was measured using glucose oxidase method. To measure glucose uptake and glycogen synthase (GS) activity, radioactive assays were used. Fractionation of FJ yielded seven fractions. FJ and its phenolic fractions F2, F3-1 and F3-2 respectively inhibited G-6Pase by 31, 45, 51 and 26%; activated GS by 2.3-, 2.3-, 2.2- and 2-fold; and stimulated glucose uptake by 19, 25, 18 and 15%, as compared to DMSO vehicle control. Subfractionation of the active fractions yielded 4 compounds (catechol, chlorogenic, gallic and protocatechuic acid). Catechol, yielding the greatest bioactivity in G6Pase and glucose uptake assays, decreased G6Pase activity by 54%, increased GS by 2-fold and stimulated glucose uptake by 44% at 45.5 μM. This study identifies novel potential antidiabetic compounds that can help standardize FJ.

  9. Role of adrenergic receptors in the caffeine-induced increase in glucose uptake by the canine hindlimb.

    PubMed

    Salahdeen, H M; Alada, A R A

    2009-12-01

    The present study was designed to investigate the effects of alpha and beta adrenergic receptor blockers on caffeine-induced increase in canine hindlimb glucose uptake. The study was carried out on fasted male anaesthetized dogs divided into five groups [5 dogs per group]. Each dog was given a bolus injection of normal saline, caffeine [6 mg/kg] caffeine after pretreatment with prazosin [0.2 mg/kg], caffeine after pretreatment with propranolol [0.5 mg/kg] or caffeine after pretreatment with a combination of prazosin [0.2 mg/kg] and propranolol [0.5 mg/kg]. The experiments were carried out under resting and exercising conditions of the hindlimb. Hindlimb glucose uptake [HGU] was calculated as the product of blood flow and arterio-venous glucose difference. Blood glucose was determined by the glucose oxidase method and blood flow to the hindlimb was determined by time-collection method. The results showed that pretreatment of the animal with either prazosin or propranolol significantly reduced caffeine-induced hyperglycemia, glucose extraction and hindlimb glucose uptake at rest. The two blockers also separately reduced caffeine-induced hyperglycemia during contraction of the hindlimb. Prazosin or propranolol did not however influence the effect of caffeine on glucose extraction and hindlimb glucose uptake during contraction of the hindlimb. It was therefore concluded that alpha and beta adrenergic receptors are involved in caffeine induced responses at rest and not during hindlimb contraction.

  10. Amyloid Dysmetabolism Relates to Reduced Glucose Uptake in White Matter Hyperintensities

    PubMed Central

    Kalheim, Lisa Flem; Selnes, Per; Bjørnerud, Atle; Coello, Christopher; Vegge, Kjetil; Fladby, Tormod

    2016-01-01

    Alzheimer’s disease (AD) is the most prevalent neurodegenerative disorder and cause of dementia and is characterized by amyloid plaques and neurofibrillary tangles. AD has traditionally been considered to primarily affect gray matter, but multiple lines of evidence also indicate white matter (WM) pathology and associated small-vessel cerebrovascular disease. WM glucose delivery and metabolism may have implications for local tissue integrity, and [18F]-fluorodeoxyglucose positron emission tomography (FDG-PET) may be helpful to assess neuroglial and axonal function in WM. Hypothesizing that affection of oligodendroglia will be associated with loss of glucose uptake, we aimed to investigate glucose metabolism in magnetic resonance imaging (MRI) white matter hyperintensities (WMHs) and normal-appearing WM in patients with and without evidence of amyloid plaques. Subjects with mild cognitive impairment or subjective cognitive decline were included and dichotomized according to pathological (Aβ+) or normal (Aβ−) concentrations of cerebrospinal fluid amyloid-β 1–42. A total of 50 subjects were included, of whom 30 subjects were classified as Aβ(+) and 20 subjects as Aβ(−). All subjects were assessed with MRI and FDG-PET. FDG-PET images were corrected for effects of partial voluming and normalized to cerebellar WM, before determining WMH FDG-uptake. Although there were no significant differences between the groups in terms of age, WMH volume, number of individual WMHs, or WMH distribution, we found significantly lower (p = 0.021) FDG-uptake in WMHs in Aβ(+) subjects (mean = 0.662, SD = 0.113) compared to Aβ(−) subjects (mean = 0.596, SD = 0.073). There were no significant group differences in the FDG-uptake in normal-appearing WM. Similar results were obtained without correction for effects of partial voluming. Our findings add to the evidence for a link between Aβ dysmetabolism and WM pathology in AD. PMID:27917152

  11. Myricetin, quercetin and catechin-gallate inhibit glucose uptake in isolated rat adipocytes

    PubMed Central

    2004-01-01

    The facilitative glucose transporter, GLUT4, mediates insulin-stimulated glucose uptake in adipocytes and muscles, and the participation of GLUT4 in the pathogenesis of various clinical conditions associated with obesity, visceral fat accumulation and insulin resistance has been proposed. Glucose uptake by some members of the GLUT family, mainly GLUT1, is inhibited by flavonoids, the natural polyphenols present in fruits, vegetables and wine. Therefore it is of interest to establish if these polyphenolic compounds present in the diet, known to be effective antioxidants but also endowed with several other biological activities such as protein-tyrosine kinase inhibition, interfere with GLUT4 function. In the present study, we show that three flavonoids, quercetin, myricetin and catechin-gallate, inhibit the uptake of methylglucose by adipocytes over the concentration range of 10–100 μM. These three flavonoids show a competitive pattern of inhibition, with Ki=16, 33.5 and 90 μM respectively. In contrast, neither catechin nor gallic acid inhibit methylglucose uptake. To obtain a better understanding of the interaction among GLUT4 and flavonoids, we have derived a GLUT4 three-dimensional molecular comparative model, using structural co-ordinates from a GLUT3 comparative model and a mechanosensitive ion channel [PDB (Protein Data Bank) code 1MSL] solved by X-ray diffraction. On the whole, the experimental evidence and computer simulation data favour a transport inhibition mechanism in which flavonoids and GLUT4 interact directly, rather than by a mechanism related to protein-tyrosine kinase and insulin signalling inhibition. Furthermore, the results suggest that GLUT transporters are involved in flavonoid incorporation into cells. PMID:15469417

  12. Myricetin, quercetin and catechin-gallate inhibit glucose uptake in isolated rat adipocytes.

    PubMed

    Strobel, Pablo; Allard, Claudio; Perez-Acle, Tomás; Calderon, Rosario; Aldunate, Rebeca; Leighton, Federico

    2005-03-15

    The facilitative glucose transporter, GLUT4, mediates insulin-stimulated glucose uptake in adipocytes and muscles, and the participation of GLUT4 in the pathogenesis of various clinical conditions associated with obesity, visceral fat accumulation and insulin resistance has been proposed. Glucose uptake by some members of the GLUT family, mainly GLUT1, is inhibited by flavonoids, the natural polyphenols present in fruits, vegetables and wine. Therefore it is of interest to establish if these polyphenolic compounds present in the diet, known to be effective antioxidants but also endowed with several other biological activities such as protein-tyrosine kinase inhibition, interfere with GLUT4 function. In the present study, we show that three flavonoids, quercetin, myricetin and catechin-gallate, inhibit the uptake of methylglucose by adipocytes over the concentration range of 10-100 microM. These three flavonoids show a competitive pattern of inhibition, with K(i)=16, 33.5 and 90 microM respectively. In contrast, neither catechin nor gallic acid inhibit methylglucose uptake. To obtain a better understanding of the interaction among GLUT4 and flavonoids, we have derived a GLUT4 three-dimensional molecular comparative model, using structural co-ordinates from a GLUT3 comparative model and a mechanosensitive ion channel [PDB (Protein Data Bank) code 1MSL] solved by X-ray diffraction. On the whole, the experimental evidence and computer simulation data favour a transport inhibition mechanism in which flavonoids and GLUT4 interact directly, rather than by a mechanism related to protein-tyrosine kinase and insulin signalling inhibition. Furthermore, the results suggest that GLUT transporters are involved in flavonoid incorporation into cells.

  13. Effect of Three Statins on Glucose Uptake of Cardiomyocytes and its Mechanism

    PubMed Central

    Jiang, Zhenhuan; Yu, Bo; Li, Yang

    2016-01-01

    Background The aim of this study was to investigate the effects of different statins on glucose uptake and to confirm its mechanism in primary cultured rat cardiomyocytes after administration of atorvastatin, pravastatin, and rosuvastatin. Material/Methods Primary cultured rat cardiomyocytes were randomly assigned to 5 groups: normal control group (OB), insulin group (S1), statin 1-μM (S2), 5-μM (S3), and 10-μM (S4) groups for 3 different statins. The 2-[3H]-DG uptake of each group was determined and the mRNA and protein expression levels of glucose transporter type 4 (GLUT4), insulin receptor substrate (IRs), and RhoA were assessed. Results After treatment with different concentrations of statins and insulin, the 2-[3H]-DG uptake showed a significant negative correlation with the concentration of atorvastatin (P<0.05), and no significant correlation with pravastatin and rosuvastatin. The mRNA and protein expression levels of GLUT4 and IRs-1 in primary cultured cardiomyocytes were both significantly reduced by atorvastatin treatment (P<0.05). Pravastatin and rosuvastatin showed no significant effects on GLUT4 and IRs-1 expression. The mRNA and protein expression levels of RhoA both showed no significant difference when treated with the 3 statins. Conclusions These results confirm that atorvastatin can inhibit insulin-induced glucose uptake in primary cultured rat cardiomyocytes by regulating the PI3K/Akt insulin signal transduction pathway. PMID:27510725

  14. Ketone bodies alter dinitrophenol-induced glucose uptake through AMPK inhibition and oxidative stress generation in adult cardiomyocytes.

    PubMed

    Pelletier, Amélie; Coderre, Lise

    2007-05-01

    In aerobic conditions, the heart preferentially oxidizes fatty acids. However, during metabolic stress, glucose becomes the major energy source, and enhanced glucose uptake has a protective effect on heart function and cardiomyocyte survival. Thus abnormal regulation of glucose uptake may contribute to the development of cardiac disease in diabetics. Ketone bodies are often elevated in poorly controlled diabetics and are associated with increased cellular oxidative stress. Thus we sought to determine the effect of the ketone body beta-hydroxybutyrate (OHB) on cardiac glucose uptake during metabolic stress. We used 2,4-dinitrophenol (DNP), an uncoupler of the mitochondrial oxidative chain, to mimic hypoxia in cardiomyocytes. Our data demonstrated that chronic exposure to OHB provoked a concentration-dependent decrease of DNP action, resulting in 56% inhibition of DNP-mediated glucose uptake at 5 mM OHB. This was paralleled by a diminution of DNP-mediated AMP-activated protein kinase (AMPK) and p38 MAPK phosphorylation. Chronic exposure to OHB also increased reactive oxygen species (ROS) production by 1.9-fold compared with control cells. To further understand the role of ROS in OHB action, cardiomyocytes were incubated with H(2)O(2). Our results demonstrated that this treatment diminished DNP-induced glucose uptake without altering activation of the AMPK/p38 MAPK signaling pathway. Incubation with the antioxidant N-acetylcysteine partially restored DNP-mediated glucose but not AMPK/p38 MAPK activation. In conclusion, these results suggest that ketone bodies, through inhibition of the AMPK/p38 MAPK signaling pathway and ROS overproduction, regulate DNP action and thus cardiac glucose uptake. Altered glucose uptake in hyperketonemic states during metabolic stress may contribute to diabetic cardiomyopathy.

  15. Alternate Energy-Dependent Pathways for the Vacuolar Uptake of Glucose and Glutathione Conjugates1

    PubMed Central

    Bartholomew, Dolores M.; Van Dyk, Drew E.; Lau, Sze-Mei Cindy; O'Keefe, Daniel P.; Rea, Philip A.; Viitanen, Paul V.

    2002-01-01

    Through the development and application of a liquid chromatography-mass spectrometry-based procedure for measuring the transport of complex organic molecules by vacuolar membrane vesicles in vitro, it is shown that the mechanism of uptake of sulfonylurea herbicides is determined by the ligand, glucose, or glutathione, to which the herbicide is conjugated. ATP-dependent accumulation of glucosylated chlorsulfuron by vacuolar membrane vesicles purified from red beet (Beta vulgaris) storage root approximates Michaelis-Menten kinetics and is strongly inhibited by agents that collapse or prevent the formation of a transmembrane H+ gradient, but is completely insensitive to the phosphoryl transition state analog, vanadate. In contrast, ATP-dependent accumulation of the glutathione conjugate of a chlorsulfuron analog, chlorimuron-ethyl, is incompletely inhibited by agents that dissipate the transmembrane H+ gradient but completely abolished by vanadate. In both cases, however, conjugation is essential for net uptake because neither of the unconjugated parent compounds are accumulated under energized or nonenergized conditions. That the attachment of glucose to two naturally occurring phenylpropanoids, p-hydroxycinnamic acid and p-hydroxybenzoic acid via aromatic hydroxyl groups, targets these compounds to the functional equivalent of the transporter responsible for chlorsulfuron-glucoside transport, confirms the general applicability of the H+ gradient dependence of glucoside uptake. It is concluded that H+ gradient-dependent, vanadate-insensitive glucoside uptake is mediated by an H+ antiporter, whereas vanadate-sensitive glutathione conjugate uptake is mediated by an ATP-binding cassette transporter. In so doing, it is established that liquid chromatography-mass spectrometry affords a versatile high-sensitivity, high-fidelity technique for studies of the transport of complex organic molecules whose synthesis as radiolabeled derivatives is laborious and/or prohibitively

  16. Alternate energy-dependent pathways for the vacuolar uptake of glucose and glutathione conjugates.

    PubMed

    Bartholomew, Dolores M; Van Dyk, Drew E; Lau, Sze-Mei Cindy; O'Keefe, Daniel P; Rea, Philip A; Viitanen, Paul V

    2002-11-01

    Through the development and application of a liquid chromatography-mass spectrometry-based procedure for measuring the transport of complex organic molecules by vacuolar membrane vesicles in vitro, it is shown that the mechanism of uptake of sulfonylurea herbicides is determined by the ligand, glucose, or glutathione, to which the herbicide is conjugated. ATP-dependent accumulation of glucosylated chlorsulfuron by vacuolar membrane vesicles purified from red beet (Beta vulgaris) storage root approximates Michaelis-Menten kinetics and is strongly inhibited by agents that collapse or prevent the formation of a transmembrane H(+) gradient, but is completely insensitive to the phosphoryl transition state analog, vanadate. In contrast, ATP-dependent accumulation of the glutathione conjugate of a chlorsulfuron analog, chlorimuron-ethyl, is incompletely inhibited by agents that dissipate the transmembrane H(+) gradient but completely abolished by vanadate. In both cases, however, conjugation is essential for net uptake because neither of the unconjugated parent compounds are accumulated under energized or nonenergized conditions. That the attachment of glucose to two naturally occurring phenylpropanoids, p-hydroxycinnamic acid and p-hydroxybenzoic acid via aromatic hydroxyl groups, targets these compounds to the functional equivalent of the transporter responsible for chlorsulfuron-glucoside transport, confirms the general applicability of the H(+) gradient dependence of glucoside uptake. It is concluded that H(+) gradient-dependent, vanadate-insensitive glucoside uptake is mediated by an H(+) antiporter, whereas vanadate-sensitive glutathione conjugate uptake is mediated by an ATP-binding cassette transporter. In so doing, it is established that liquid chromatography-mass spectrometry affords a versatile high-sensitivity, high-fidelity technique for studies of the transport of complex organic molecules whose synthesis as radiolabeled derivatives is laborious and

  17. Hypothalamic and Striatal Insulin Action Suppresses Endogenous Glucose Production and May Stimulate Glucose Uptake During Hyperinsulinemia in Lean but Not in Overweight Men.

    PubMed

    Heni, Martin; Wagner, Robert; Kullmann, Stephanie; Gancheva, Sofiya; Roden, Michael; Peter, Andreas; Stefan, Norbert; Preissl, Hubert; Häring, Hans-Ulrich; Fritsche, Andreas

    2017-07-01

    Intranasal spray application facilitates insulin delivery to the human brain. Although brain insulin modulates peripheral metabolism, the mechanisms involved remain elusive. Twenty-one men underwent two hyperinsulinemic-euglycemic clamps with d-[6,6-(2)H2]glucose infusion to measure endogenous glucose production and glucose disappearance. On two separate days, participants received intranasal insulin or placebo. Insulin spillover into circulation after intranasal insulin application was mimicked by an intravenous insulin bolus on placebo day. On a different day, brain insulin sensitivity was assessed by functional MRI. Glucose infusion rates (GIRs) had to be increased more after nasal insulin than after placebo to maintain euglycemia in lean but not in overweight people. The increase in GIRs was associated with regional brain insulin action in hypothalamus and striatum. Suppression of endogenous glucose production by circulating insulin was more pronounced after administration of nasal insulin than after placebo. Furthermore, glucose uptake into tissue tended to be higher after nasal insulin application. No such effects were detected in overweight participants. By increasing insulin-mediated suppression of endogenous glucose production and stimulating peripheral glucose uptake, brain insulin may improve glucose metabolism during systemic hyperinsulinemia. Obese people appear to lack these mechanisms. Therefore, brain insulin resistance in obesity may have unfavorable consequences for whole-body glucose homeostasis. © 2017 by the American Diabetes Association.

  18. Stimulation of glucose uptake by theasinensins through the AMP-activated protein kinase pathway in rat skeletal muscle cells.

    PubMed

    Qiu, Ju; Maekawa, Kanako; Kitamura, Yuko; Miyata, Yuji; Tanaka, Kazunari; Tanaka, Takashi; Soga, Minoru; Tsuda, Takanori; Matsui, Toshiro

    2014-01-15

    Theasinensins, dimeric catechins, have been reported to possess anti-hyperglycemic activity, but the underlying mechanism for this activity remains unknown. In this study, the effect of theasinensins A and B on glucose uptake into rat skeletal muscle cells (L6 myotubes) was investigated. A glucose uptake study using 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxyglucose (2-NBDG) indicated that both theasinensins A and B stimulated glucose uptake in a concentration-dependent manner and translocation of glucose transporter 4 (GLUT4) to the plasma membrane. In addition, inhibition studies measuring 2-NBDG uptake in L6 cells revealed that compound C (AMP-activated protein kinase inhibitor) suppressed theasinensin-stimulated glucose uptake, whereas genistein (insulin receptor tyrosine kinase inhibitor) and wortmannin (phosphatidylinositol 3-kinase inhibitor) were inactive. Subsequent experiments on GLUT4-related signaling pathways in L6 cells demonstrated that theasinensins promoted the phosphorylation of AMPK, but not that of Akt, and that the theasinensin-promoted glucose uptake was blocked in the presence of a CaMKK inhibitor. The promotion of AMPK phosphorylation by theasinensins was not blocked in LKB1-knockdown cells. Consequently, it was concluded that theasinensins A and B did in fact promote GLUT4 translocation to the plasma membrane in L6 myotubes through the CaMKK/AMPK signaling pathway, but not through the PI3K/Akt pathway. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Vinegar Consumption Increases Insulin-Stimulated Glucose Uptake by the Forearm Muscle in Humans with Type 2 Diabetes

    PubMed Central

    Mitrou, Panayota; Maratou, Eirini; Lambadiari, Vaia; Dimitriadis, Panayiotis; Spanoudi, Filio; Raptis, Sotirios A.; Dimitriadis, George

    2015-01-01

    Background and Aims. Vinegar has been shown to have a glucose-lowering effect in patients with glucose abnormalities. However, the mechanisms of this effect are still obscure. The aim of this randomised, crossover study was to investigate the effect of vinegar on glucose metabolism in muscle which is the most important tissue for insulin-stimulated glucose disposal. Materials and Methods. Eleven subjects with DM2 consumed vinegar or placebo (at random order on two separate days, a week apart), before a mixed meal. Plasma glucose, insulin, triglycerides, nonesterified fatty acids (NEFA), and glycerol were measured preprandially and at 30–60 min for 300 min postprandially from the radial artery and from a forearm vein. Muscle blood flow was measured with strain-gauge plethysmography. Glucose uptake was calculated as the arteriovenous difference of glucose multiplied by blood flow. Results. Vinegar compared to placebo (1) increased forearm glucose uptake (p = 0.0357), (2) decreased plasma glucose (p = 0.0279), insulin (p = 0.0457), and triglycerides (p = 0.0439), and (3) did not change NEFA and glycerol. Conclusions. In DM2 vinegar reduces postprandial hyperglycaemia, hyperinsulinaemia, and hypertriglyceridaemia without affecting lipolysis. Vinegar's effect on carbohydrate metabolism may be partly accounted for by an increase in glucose uptake, demonstrating an improvement in insulin action in skeletal muscle. This trial is registered with Clinicaltrials.gov NCT02309424. PMID:26064976

  20. Preconditioning L6 Muscle Cells with Naringin Ameliorates Oxidative Stress and Increases Glucose Uptake

    PubMed Central

    Dhanya, R.; Arun, K. B.; Nisha, V. M.; Syama, H. P.; Nisha, P.; Santhosh Kumar, T. R.; Jayamurthy, P.

    2015-01-01

    Enhanced oxidative stress contributes to pathological changes in diabetes and its complications. Thus, strategies to reduce oxidative stress may alleviate these pathogenic processes. Herein, we have investigated Naringin mediated regulation of glutathione (GSH) & intracellular free radical levels and modulation of glucose uptake under oxidative stress in L6 cell lines. The results from the study demonstrated a marked decrease in glutathione with a subsequent increase in free radical levels, which was reversed by the pretreatment of Naringin. We also observed that the increased malondialdehyde level, the marker of lipid peroxidation on induction of oxidative stress was retrieved on Naringin pretreatment. Addition of Naringin (100 μM) showed approximately 40% reduction in protein glycation in vitro. Furthermore, we observed a twofold increase in uptake of fluorescent labeled glucose namely 2-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)Amino)-2-Deoxyglucose (2 - NBDG) on Naringin treatment in differentiated L6 myoblast. The increased uptake of 2-NBDG by L6 myotubes may be attributed due to the enhanced translocation of GLUT4. Our results demonstrate that Naringin activate GSH synthesis through a novel antioxidant defense mechanism against excessive Reactive Oxygen Species (ROS) production, contributing to the prevention of oxidative damage in addition to its effect on glycemic control. PMID:26147673

  1. BRAF inhibition decreases cellular glucose uptake in melanoma in association with reduction in cell volume

    PubMed Central

    Theodosakis, Nicholas; Held, Matthew A.; Marzuka-Alcala, Alexander; Meeth, Katrina M.; Micevic, Goran; Long, Georgina V.; Scolyer, Richard A.; Stern, David F.; Bosenberg, Marcus W.

    2015-01-01

    BRAF kinase inhibitors have dramatically impacted treatment of BRAFV600E/K-driven metastatic melanoma. Early responses assessed using [18F]fluorodeoxyglucose uptake-positron emission tomography (FDG-PET) have shown dramatic reduction of radiotracer signal within two weeks of treatment. Despite high response rates, relapse occurs in nearly all cases, frequently at sites of treated metastatic disease. It remains unclear whether initial loss of 18FDG uptake is due to tumor cell death or other reasons. Here we provide evidence of melanoma cell volume reduction in a patient cohort treated with BRAF inhibitors. We present data demonstrating that BRAF inhibition reduces melanoma glucose uptake per cell, but that this change is no longer significant following normalization for cell volume changes. We also demonstrate that volume normalization greatly reduces differences in transmembrane glucose transport and hexokinase-mediated phosphorylation. Mechanistic studies suggest that this loss of cell volume is due in large part to decreases in new protein translation as a consequence of vemurafenib treatment. Ultimately, our findings suggest that cell volume regulation constitutes an important physiologic parameter that may significantly contribute to radiographic changes observed in clinic. PMID:25948295

  2. Preconditioning L6 Muscle Cells with Naringin Ameliorates Oxidative Stress and Increases Glucose Uptake.

    PubMed

    Dhanya, R; Arun, K B; Nisha, V M; Syama, H P; Nisha, P; Santhosh Kumar, T R; Jayamurthy, P

    2015-01-01

    Enhanced oxidative stress contributes to pathological changes in diabetes and its complications. Thus, strategies to reduce oxidative stress may alleviate these pathogenic processes. Herein, we have investigated Naringin mediated regulation of glutathione (GSH) & intracellular free radical levels and modulation of glucose uptake under oxidative stress in L6 cell lines. The results from the study demonstrated a marked decrease in glutathione with a subsequent increase in free radical levels, which was reversed by the pretreatment of Naringin. We also observed that the increased malondialdehyde level, the marker of lipid peroxidation on induction of oxidative stress was retrieved on Naringin pretreatment. Addition of Naringin (100 μM) showed approximately 40% reduction in protein glycation in vitro. Furthermore, we observed a twofold increase in uptake of fluorescent labeled glucose namely 2-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)Amino)-2-Deoxyglucose (2-NBDG) on Naringin treatment in differentiated L6 myoblast. The increased uptake of 2-NBDG by L6 myotubes may be attributed due to the enhanced translocation of GLUT4. Our results demonstrate that Naringin activate GSH synthesis through a novel antioxidant defense mechanism against excessive Reactive Oxygen Species (ROS) production, contributing to the prevention of oxidative damage in addition to its effect on glycemic control.

  3. Magnetic Resonance Imaging of Glucose Uptake and Metabolism in Patients with Head and Neck Cancer

    PubMed Central

    Wang, Jihong; Weygand, Joseph; Hwang, Ken-Pin; Mohamed, Abdallah S. R.; Ding, Yao; Fuller, Clifton D.; Lai, Stephen Y.; Frank, Steven J.; Zhou, Jinyuan

    2016-01-01

    Imaging metabolic dysfunction, a hallmark of solid tumors, usually requires radioactive tracers. Chemical exchange saturation transfer (CEST) imaging can potentially detect and visualize glucose uptake and metabolism, without the need for radioisotopes. Here, we tested the feasibility of using glucose CEST (glucoCEST) to image unlabeled glucose uptake in head and neck cancer by using a clinical 3T magnetic resonance imaging (MRI) scanner. The average CEST contrast between tumors and normal tissue in 17 patients was 7.58% (P = 0.006) in the 3–4 ppm offset frequency range and 5.06% (P = 0.02) in 1–5 ppm range. In a subgroup of eight patients, glucoCEST signal enhancement was higher in tumors than in normal muscle (4.98% vs. 1.28%, P < 0.021). We conclude that glucoCEST images of head and neck cancer can be obtained with a clinical 3T MRI scanner. PMID:27461165

  4. 2-Deoxy-D-glucose uptake by lung slices from fed and fasted rats.

    PubMed

    Chaisson, C F; Massaro, D

    1978-03-01

    We studied the uptake and phosphorylation of 2-deoxy-D-[1-14C]glucose (2-[14C]DG) by lung slices from fed and fasted rats to obtain information on the effect of starvation on surgar transport by the lung. We found that 2-[14C]DG is taken up and phosphorylated by the lung, but that, as in other tissues it is not metabolized beyond the phosphorylation step. The accumulation of 2-[14C]DG as free 2-DG does not require energy, fails to show saturation in the range studied (5-100 mM), and is not inhibited by exogenous glucose. The phosphorylation of 2-DG by the lung is energy dependent, saturable, and competitively inhibited by exogenous glucose. Fasting does not interfere with the intracellular accumulation of unphosphorylated 2-DG but causes about a 40% decrease in the accumulation of phosphorylated 2-DG. We conclude that membrane transport does not limit uptake of 2-DG; fasting decreases the phosphorylation of 2-DG.

  5. Acoustic imprinting leads to differential 2-deoxy-D-glucose uptake in the chick forebrain.

    PubMed Central

    Maier, V; Scheich, H

    1983-01-01

    This report describes experiments in which successful acoustic imprinting correlates with differential uptake of D-2-deoxy[14C]glucose in particular forebrain areas that are not considered primarily auditory. Newly hatched guinea chicks (Numida meleagris meleagris) were imprinted by playing 1.8-kHz or 2.5-kHz tone bursts for prolonged periods. Those chicks were considered to be imprinted who approached the imprinting stimulus (emitted from a loudspeaker) and preferred it over a new stimulus in a simultaneous discrimination test. In the 2-deoxy-D-glucose experiment all chicks, imprinted and naive, were exposed to 1.8-kHz tone bursts for 1 hr. As shown by the autoradiographic analysis of the brains, neurons in the 1.8-kHz isofrequency plane of the auditory "cortex" (field L) were activated in all chicks, whether imprinted or not. However, in the most rostral forebrain striking differences were found. Imprinted chicks showed an increased 2-deoxy-D-glucose uptake in three areas, as compared to naive chicks: (i) the lateral neostriatum and hyperstriatum ventrale, (ii) a medial magnocellular field (medial neostriatum/hyperstriatum ventrale), and (iii) the most dorsal layers of the hyperstriatum. Based on these findings we conclude that these areas are involved in the processing of auditory stimuli once they have become meaningful by experience. Images PMID:6574519

  6. Fructose augments infection-impaired net hepatic glucose uptake during TPN administration.

    PubMed

    Donmoyer, C M; Ejiofor, J; Lacy, D B; Chen, S S; McGuinness, O P

    2001-05-01

    During chronic total parenteral nutrition (TPN), net hepatic glucose uptake (NHGU) and net hepatic lactate release (NHLR) are markedly reduced (downward arrow approximately 45 and approximately 65%, respectively) with infection. Because small quantities of fructose are known to augment hepatic glucose uptake and lactate release in normal fasted animals, the aim of this work was to determine whether acute fructose infusion with TPN could correct the impairments in NHGU and NHLR during infection. Chronically catheterized conscious dogs received TPN for 5 days via the inferior vena cava at a rate designed to match daily basal energy requirements. On the third day of TPN administration, a sterile (SHAM, n = 12) or Escherichia coli-containing (INF, n = 11) fibrin clot was implanted in the peritoneal cavity. Forty-two hours later, somatostatin was infused with intraportal replacement of insulin (12 +/- 2 vs. 24 +/- 2 microU/ml, SHAM vs. INF, respectively) and glucagon (24 +/- 4 vs. 92 +/- 5 pg/ml) to match concentrations previously observed in sham and infected animals. After a 120-min basal period, animals received either saline (Sham+S, n = 6; Inf+S, n = 6) or intraportal fructose (0.7 mg x kg(-1) x min(-1); Sham+F, n = 6; Inf+F, n = 5) infusion for 180 min. Isoglycemia of 120 mg/dl was maintained with a variable glucose infusion. Combined tracer and arteriovenous difference techniques were used to assess hepatic glucose metabolism. Acute fructose infusion with TPN augmented NHGU by 2.9 +/- 0.4 and 2.5 +/- 0.3 mg x kg(-1) x min(-1) in Sham+F and Inf+F, respectively. The majority of liver glucose uptake was stored as glycogen, and NHLR did not increase substantially. Therefore, despite an infection-induced impairment in NHGU and different hormonal environments, small amounts of fructose enhanced NHGU similarly in sham and infected animals. Glycogen storage, not lactate release, was the preferential fate of the fructose-induced increase in hepatic glucose disposal in

  7. A complex of Rab13 with MICAL-L2 and α-actinin-4 is essential for insulin-dependent GLUT4 exocytosis.

    PubMed

    Sun, Yi; Jaldin-Fincati, Javier; Liu, Zhi; Bilan, Philip J; Klip, Amira

    2016-01-01

    Insulin promotes glucose uptake into skeletal muscle through recruitment of glucose transporter 4 (GLUT4) to the plasma membrane. Rab GTPases are molecular switches mobilizing intracellular vesicles, and Rab13 is necessary for insulin-regulated GLUT4-vesicle exocytic translocation in muscle cells. We show that Rab13 engages the scaffold protein MICAL-L2 in this process. RNA interference-mediated knockdown of MICAL-L2 or truncated MICAL-L2 (MICAL-L2-CT) impaired insulin-stimulated GLUT4 translocation. Insulin increased Rab13 binding to MICAL-L2, assessed by pull down and colocalization under confocal fluorescence and structured illumination microscopies. Association was also visualized at the cell periphery using TIRF microscopy. Insulin further increased binding of MICAL-L2 to α-actinin-4 (ACTN4), a protein involved in GLUT4 translocation. Rab13, MICAL-L2, and ACTN4 formed an insulin-dependent complex assessed by pull down and confocal fluorescence imaging. Of note, GLUT4 associated with the complex in response to insulin, requiring the ACTN4-binding domain in MICAL-L2. This was demonstrated by pull down with distinct fragments of MICAL-L2 and confocal and structured illumination microscopies. Finally, expression of MICAL-L2-CT abrogated the insulin-dependent colocalization of Rab13 with ACTN4 or Rab13 with GLUT4. Our findings suggest that MICAL-L2 is an effector of insulin-activated Rab13, which links to GLUT4 through ACTN4, localizing GLUT4 vesicles at the muscle cell periphery to enable their fusion with the membrane.

  8. [Less need for insulin, a surprising effect of phototherapy in insulin-dependent diabetes mellitus].

    PubMed

    Nieuwenhuis, R F; Spooren, P F M J; Tilanus, J J D

    2009-01-01

    A 40-year-old woman with insulin-dependent diabetes mellitus was treated successfully with phototherapy for a seasonal affective disorder. Following sessions of phototherapy she developed hypoglycaemias and required less insulin. A review of the literature showed that melatonin has an inhibiting effect on insulin sensitivity. The melatonin secretion, which is suppressed by phototherapy, may cause an immediate decrease in the plasma glucose levels. This decrease may well be important for patients with insulin-resistant diabetes mellitus and seasonal affective disorder.

  9. Fruit extracts of Momordica charantia potentiate glucose uptake and up-regulate Glut-4, PPAR gamma and PI3K.

    PubMed

    Kumar, Ramadhar; Balaji, S; Uma, T S; Sehgal, P K

    2009-12-10

    Momordica charantia fruit is a widely used traditional medicinal herb as, anti-diabetic, anti-HIV, anti-ulcer, anti-inflammatory, anti-leukemic, anti-microbial, and anti-tumor. The present study is undertaken to investigate the possible mode of action of fruit extracts derived from Momordica charantia (MC) and study its pharmacological effects for controlling diabetic mellitus. Effects of aqueous and chloroform extracts of Momordica charantia fruit on glucose uptake and up-regulation of glucose transporter (Glut-4), peroxisome proliferator activator receptor gamma (PPAR gamma) and phosphatidylinositol-3 kinase (PI3K), were investigated to show its efficacy as a hypoglycaemic agent. Dose dependent glucose uptake assay was performed on L6 myotubes using 2-deoxy-D-[1-(3)H] glucose. Up-regulatory effects of the extracts on the mRNA expression level of Glut-4, PPAR gamma and PI3K have been studied. The association of Momordica charantia with the aqueous and chloroform extracts of Momordica charantia fruit at 6 microg/ml has shown significant up-regulatory effect, respectively, by 3.6-, 2.8- and 3.8-fold on the battery of targets Glut-4, PPAR gamma and PI3K involved in glucose transport. The up-regulation of glucose uptake was comparable with insulin and rosiglitazone which was approximately 2-fold over the control. Moreover, the inhibitory effect of the cyclohexamide on Momordica charantia fruit extract mediated glucose uptake suggested the requirement of new protein synthesis for the enhanced glucose uptake. This study demonstrated the significance of Glut-4, PPAR gamma and PI3K up-regulation by Momordica charantia in augmenting the glucose uptake and homeostasis.

  10. Aldose reductase inhibitor improves insulin-mediated glucose uptake and prevents migration of human coronary artery smooth muscle cells induced by high glucose.

    PubMed

    Yasunari, K; Kohno, M; Kano, H; Minami, M; Yoshikawa, J

    2000-05-01

    We examined involvement of the polyol pathway in high glucose-induced human coronary artery smooth muscle cell (SMC) migration using Boyden's chamber method. Chronic glucose treatment for 72 hours potentiated, in a concentration-dependent manner (5.6 to 22.2 mol/L), platelet-derived growth factor (PDGF) BB-mediated SMC migration. This potentiation was accompanied by an increase in PDGF BB binding, because of an increased number of PDGF-beta receptors, and this potentiation was blocked by the aldose reductase inhibitor epalrestat. Epalrestat at concentrations of 10 and 100 nmol/L inhibited high glucose-potentiated (22.2 mmol/L), PDGF BB-mediated migration. Epalrestat at 100 nmol/L inhibited a high glucose-induced increase in the reduced/oxidized nicotinamide adenine dinucleotide ratio and membrane-bound protein kinase C (PKC) activity in SMCs. PKC inhibitors calphostin C (100 nmol/L) and chelerythrine (1 micromol/L) each inhibited high glucose-induced, PDGF BB-mediated SMC migration. High glucose-induced suppression of insulin-mediated [(3)H]-deoxyglucose uptake, which was blocked by both calphostin C (100 nmol/L) and chelerythrine (1 micromol/L), was decreased by epalrestat (100 nmol/L). Chronic high glucose treatment for 72 hours increased intracellular oxidative stress, which was directly measured by flow cytometry using carboxydichlorofluorescein diacetate bis-acetoxymethyl ester, and this increase was significantly suppressed by epalrestat (100 nmol/L). Antisense oligonucleotide to PKC-beta isoform inhibited high glucose-mediated changes in SMC migration, insulin-mediated [(3)H]-deoxyglucose uptake, and oxidative stress. These findings suggest that high glucose concentrations potentiate SMC migration in coronary artery and that the aldose reductase inhibitor epalrestat inhibits high glucose-potentiated, PDGF BB-induced SMC migration, possibly through suppression of PKC (PKC-beta), impaired insulin-mediated glucose uptake, and oxidative stress.

  11. Association of low birth weight with beta cell function in the adult first degree relatives of non-insulin dependent diabetic subjects.

    PubMed Central

    Cook, J T; Levy, J C; Page, R C; Shaw, J A; Hattersley, A T; Turner, R C

    1993-01-01

    OBJECTIVE--To examine the relation between birth weight and beta cell function in the first degree relatives of non-insulin dependent diabetic subjects. DESIGN--Cross sectional study of 101 adults of known birth weight from 47 families which had at least one member with non-insulin dependent diabetes. SUBJECTS--101 white adults aged mean 43 (SD 7) years. SETTING--Oxfordshire, England. MAIN OUTCOME MEASURES--Glucose tolerance was measured by continuous infusion glucose tolerance test. beta cell function and insulin sensitivity were calculated from the fasting plasma glucose and insulin concentrations with homeostasis model assessment. beta cell function was standardised to allow for the confounding effects of age and obesity. RESULTS--Twenty seven subjects had non-insulin dependent diabetes, 32 had impaired glucose tolerance, and 42 were normoglycaemic. Birth weight correlated with the beta cell function of the complete cohort (rs = 0.29, p = 0.005), the non-insulin dependent diabetic subjects (rs = 0.50, p = 0.023), and the non-diabetic subjects (rs = 0.29, p = 0.013). The non-insulin dependent diabetic (n = 27) and the non-diabetic (n = 74) subjects had similar mean (inter-quartile range) centile birth weight 50% (19%-91%), and 53% (30%-75%) respectively. Non-insulin dependent diabetic subjects had significantly lower beta function than the non-diabetic subjects: 69% (48%-83%) v 97% (86%-120%), p < 0.001. CONCLUSIONS--The cause of the association between low birth weight and reduced beta cell function in adult life is uncertain. Impaired beta cell function in non-insulin dependent diabetic subjects was not accounted for by low birth weight, and genetic or environmental factors are likely to be necessary for development of diabetes. PMID:8461648

  12. Reduced glucose uptake and Aβ in brain regions with hyperintensities in connected white matter.

    PubMed

    Glodzik, L; Kuceyeski, A; Rusinek, H; Tsui, W; Mosconi, L; Li, Y; Osorio, R S; Williams, S; Randall, C; Spector, N; McHugh, P; Murray, J; Pirraglia, E; Vallabhajosula, S; Raj, A; de Leon, M J

    2014-10-15

    Interstitial concentration of amyloid beta (Aß) is positively related to synaptic activity in animal experiments. In humans, Aß deposition in Alzheimer's disease overlaps with cortical regions highly active earlier in life. White matter lesions (WML) disrupt connections between gray matter (GM) regions which in turn changes their activation patterns. Here, we tested if WML are related to Aß accumulation (measured with PiB-PET) and glucose uptake (measured with FDG-PET) in connected GM. WML masks from 72 cognitively normal (age 61.7 ± 9.6 years, 71% women) individuals were obtained from T2-FLAIR. MRI and PET images were normalized into common space, segmented and parcellated into gray matter (GM) regions. The effects of WML on connected GM regions were assessed using the Change in Connectivity (ChaCo) score. Defined for each GM region, ChaCo is the percentage of WM tracts connecting to that region that pass through the WML mask. The regional relationship between ChaCo, glucose uptake and Aß was explored via linear regression. Subcortical regions of the bilateral caudate, putamen, calcarine, insula, thalamus and anterior cingulum had WM connections with the most lesions, followed by frontal, occipital, temporal, parietal and cerebellar regions. Regional analysis revealed that GM with more lesions in connecting WM and thus impaired connectivity had lower FDG-PET (r = 0.20, p<0.05 corrected) and lower PiB uptake (r = 0.28, p<0.05 corrected). Regional regression also revealed that both ChaCo (β = 0.045) and FDG-PET (β = 0.089) were significant predictors of PiB. In conclusion, brain regions with more lesions in connecting WM had lower glucose metabolism and lower Aß deposition. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Reduced glucose uptake and Aβ in brain regions with hyperintensities in connected white matter

    PubMed Central

    Rusinek, H.; Tsui, W.; Mosconi, L.; Li, Y.; Osorio, R.S.; Williams, S.; Randall, C.; Spector, N.; McHugh, P.; Murray, J.; Pirraglia, E.; Vallabhajosula, S.; Raj, A.; de Leon, M.J.

    2014-01-01

    Interstitial concentration of amyloid beta (Aß) is positively related to synaptic activity in animal experiments. In humans, Aß deposition in Alzheimer's disease overlaps with cortical regions highly active earlier in life. White matter lesions (WML) disrupt connections between gray matter (GM) regions which in turn changes their activation patterns. Here, we tested if WML are related to Aß accumulation (measured with PiB-PET) and glucose uptake (measured with FDGPET) in connected GM. WML masks from 72 cognitively normal (age 61.7±9.6 years, 71% women) individuals were obtained from T2-FLAIR. MRI and PET images were normalized into common space, segmented and parcellated into gray matter (GM) regions. The effects of WML on connected GM regions were assessed using the Change in Connectivity (ChaCo) score. Defined for each GM region, ChaCo is the percentage of WM tracts connecting to that region that pass through the WML mask. The regional relationship between ChaCo, glucose uptake and Aß was explored via linear regression. Subcortical regions of the bilateral caudate, putamen, calcarine, insula, thalamus and anterior cingulum had WM connections with the most lesions, followed by frontal, occipital, temporal, parietal and cerebellar regions. Regional analysis revealed that GM with more lesions in connecting WM and thus impaired connectivity had lower FDG-PET (r=0.20, p<0.05 corrected) and lower PiB uptake (r=0.28, p<0.05 corrected). Regional regression also revealed that both ChaCo (β=0.045) and FDG-PET (β=0.089) were significant predictors of PiB. In conclusion, brain regions with more lesions in connecting WM had lower glucose metabolism and lower Aß deposition. PMID:24999038

  14. Dehydroepiandrosterone exerts antiglucocorticoid action on human preadipocyte proliferation, differentiation, and glucose uptake

    PubMed Central

    McNelis, Joanne C.; Manolopoulos, Konstantinos N.; Gathercole, Laura L.; Bujalska, Iwona J.; Stewart, Paul M.; Tomlinson, Jeremy W.

    2013-01-01

    Glucocorticoids increase adipocyte proliferation and differentiation, a process underpinned by the local reactivation of inactive cortisone to active cortisol within adipocytes catalyzed by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). The adrenal sex steroid precursor dehydroepiandrosterone (DHEA) has been shown to inhibit 11β-HSD1 in murine adipocytes; however, rodent adrenals do not produce DHEA physiologically. Here, we aimed to determine the effects and underlying mechanisms of the potential antiglucocorticoid action of DHEA and its sulfate ester DHEAS in human preadipocytes. Utilizing a human subcutaneous preadipocyte cell line, Chub-S7, we examined the metabolism and effects of DHEA in human adipocytes, including adipocyte proliferation, differentiation, 11β-HSD1 expression, and activity and glucose uptake. DHEA, but not DHEAS, significantly inhibited preadipocyte proliferation via cell cycle arrest in the G1 phase independent of sex steroid and glucocorticoid receptor activation. 11β-HSD1 oxoreductase activity in differentiated adipocytes was inhibited by DHEA. DHEA coincubated with cortisone significantly inhibited preadipocyte differentiation, which was assessed by the expression of markers of early (LPL) and terminal (G3PDH) adipocyte differentiation. Coincubation with cortisol, negating the requirement for 11β-HSD1 oxoreductase activity, diminished the inhibitory effect of DHEA. Further consistent with glucocorticoid-opposing effects of DHEA, insulin-independent glucose uptake was significantly enhanced by DHEA treatment. DHEA increases basal glucose uptake and inhibits human preadipocyte proliferation and differentiation, thereby exerting an antiglucocorticoid action. DHEA inhibition of the amplification of glucocorticoid action mediated by 11β-HSD1 contributes to the inhibitory effect of DHEA on human preadipocyte differentiation. PMID:24022868

  15. Brain energy consumption induced by electrical stimulation promotes systemic glucose uptake.

    PubMed

    Binkofski, Ferdinand; Loebig, Michaela; Jauch-Chara, Kamila; Bergmann, Sigrid; Melchert, Uwe H; Scholand-Engler, Harald G; Schweiger, Ulrich; Pellerin, Luc; Oltmanns, Kerstin M

    2011-10-01

    Controlled transcranial stimulation of the brain is part of clinical treatment strategies in neuropsychiatric diseases such as depression, stroke, or Parkinson's disease. Manipulating brain activity by transcranial stimulation, however, inevitably influences other control centers of various neuronal and neurohormonal feedback loops and therefore may concomitantly affect systemic metabolic regulation. Because hypothalamic adenosine triphosphate-sensitive potassium channels, which function as local energy sensors, are centrally involved in the regulation of glucose homeostasis, we tested whether transcranial direct current stimulation (tDCS) causes an excitation-induced transient neuronal energy depletion and thus influences systemic glucose homeostasis and related neuroendocrine mediators. In a crossover design testing 15 healthy male volunteers, we increased neuronal excitation by anodal tDCS versus sham and examined cerebral energy consumption with ³¹phosphorus magnetic resonance spectroscopy. Systemic glucose uptake was determined by euglycemic-hyperinsulinemic glucose clamp, and neurohormonal measurements comprised the parameters of the stress systems. We found that anodic tDCS-induced neuronal excitation causes an energetic depletion, as quantified by ³¹phosphorus magnetic resonance spectroscopy. Moreover, tDCS-induced cerebral energy consumption promotes systemic glucose tolerance in a standardized euglycemic-hyperinsulinemic glucose clamp procedure and reduces neurohormonal stress axes activity. Our data demonstrate that transcranial brain stimulation not only evokes alterations in local neuronal processes but also clearly influences downstream metabolic systems regulated by the brain. The beneficial effects of tDCS on metabolic features may thus qualify brain stimulation as a promising nonpharmacologic therapy option for drug-induced or comorbid metabolic disturbances in various neuropsychiatric diseases. Copyright © 2011 Society of Biological

  16. Effect of Glucose and CO2 on Nitrate Uptake and Coupled OH− Flux in Ankistrodesmus braunii1

    PubMed Central

    Eisele, Rolf; Ullrich, Wolfram R.

    1977-01-01

    In Ankistrodesmus braunii, in the absence of CO2, i.e. in CO2-free air or N2, photosynthetic nitrate uptake and nitrate reduction were inhibited, especially at low pH. Under such conditions, glucose stimulated nitrate uptake and reduction to almost the same level in the pH range between 6 and 8.5. CO2 at 0.03% effected an intermediate pH dependence of nitrate uptake; saturating CO2 concentration (more than 1%) eliminated the pH dependence, as did glucose, but the rates were enhanced compared with glucose. Glucose and, even more, CO2, drastically reduced the release of nitrite and ammonia to the medium, the stoichiometry between alkalinization of the medium and nitrate uptake (OH−/NO3−) approached 1. Due to the lack of storage vacuoles in Ankistrodesmus, nitrate uptake and nitrate reduction were closely coupled processes whose experimental separation is difficult. The relieving effect of glucose and CO2 suggests a carrier-mediated nitrate uptake which is more limiting than nitrate reduction and is sensitive to low pH, but which is stabilized by some intermediate originating from an active carbon metabolism. PMID:16659780

  17. Compensatory responses of the insulin signaling pathway restore muscle glucose uptake following long-term denervation

    PubMed Central

    Callahan, Zachary J; Oxendine, Michael; Wheatley, Joshua L; Menke, Chelsea; Cassell, Emily A; Bartos, Amanda; Geiger, Paige C; Schaeffer, Paul J

    2015-01-01

    We investigated the role of muscle activity in maintaining normal glucose homeostasis via transection of the sciatic nerve, an extreme model of disuse atrophy. Mice were killed 3, 10, 28, or 56 days after transection or sham surgery. There was no difference in muscle weight between sham and transected limbs at 3 days post surgery, but it was significantly lower following transection at the other three time points. Transected muscle weight stabilized by 28 days post surgery with no further loss. Myocellular cross-sectional area was significantly smaller at 10, 28, and 56 days post transection surgery. Additionally, muscle fibrosis area was significantly greater at 56 days post transection. In transected muscle there was reduced expression of genes encoding transcriptional regulators of metabolism (PPARα, PGC-1α, PGC-1β, PPARδ), a glycolytic enzyme (PFK), a fatty acid transporter (M-CPT 1), and an enzyme of mitochondrial oxidation (CS) with transection. In denervated muscle, glucose uptake was significantly lower at 3 days but was greater at 56 days under basal and insulin-stimulated conditions. Although GLUT 4 mRNA was significantly lower at all time points in transected muscle, Western blot analysis showed greater expression of GLUT4 at 28 and 56 days post surgery. GLUT1 mRNA was unchanged; however, GLUT1 protein expression was also greater in transected muscles. Surgery led to significantly higher protein expression for Akt2 as well as higher phosphorylation of Akt. While denervation may initially lead to reduced glucose sensitivity, compensatory responses of insulin signaling appeared to restore and improve glucose uptake in long-term-transected muscle. PMID:25896980

  18. Methylglyoxal impairs GLUT4 trafficking and leads to increased glucose uptake in L6 myoblasts.

    PubMed

    Engelbrecht, B; Mattern, Y; Scheibler, S; Tschoepe, D; Gawlowski, T; Stratmann, B

    2014-02-01

    Methylglyoxal (MG) is a highly reactive dicarbonyl compound derived mainly from glucose degradation pathways, but also from protein and fatty acid metabolism. MG modifies structure and function of different biomolecules and thus plays an important role in the pathogenesis of diabetic complications. Hyperglycemia-associated accumulation of MG might be associated with generation of oxidative stress and subsequently insulin resistance. Therefore, the effects of MG on insulin signaling and on translocation of glucose transporter 4 (GLUT4) were investigated in the rat skeletal muscle cell line L6-GLUT4myc stably expressing myc-tagged GLUT4. Twenty four-hour MG treatment resulted in elevated GLUT4 presentation on the surface of L6 myoblasts and in an increased uptake of glucose even without insulin stimulation. Exogenously added MG neither effected IRS-1 expression nor IRS-1 phosphorylation. A decreased expression of Akt1 but not Akt2 and concomitantly increased apoptosis were detected following MG treatment. To exclude that oxidative stress caused by MG treatment leads to increased GLUT4 translocation, effects of pretreatment with 2 antioxidants were investigated. The antioxidant and MG scavenger NAC prevented the MG-induced GLUT4 translocation. In contrast, tiron, a well-known antioxidant that does not exert MG-scavenger function, had no impact on MG-induced GLUT4 translocation supporting the hypothesis of a direct effect of MG on GLUT4 trafficking. In conclusion, prolonged treatment with MG augments GLUT4 level on the surface of L6 myoblasts, at least in part through a higher translocation of GLUT4 from the intracellular compartment as well as a reduction of GLUT4 internalization, resulting in increased glucose uptake.

  19. Chromium and vanadate combination increases insulin-induced glucose uptake by 3T3-L1 adipocytes.

    PubMed

    Brautigan, David L; Kruszewski, Allison; Wang, Hong

    2006-09-01

    Insulin activates signaling pathways in target tissues through the insulin receptor and Tyr phosphorylation of intracellular proteins. Vanadate mimics insulin and enhances its actions through inhibition of protein Tyr phosphatases. Chromium is a micronutrient that enhances insulin action to normalize blood glucose, but the mechanism is not understood. Here we show that either vanadate or chromium stimulates Tyr phosphorylation of insulin receptor in mouse 3T3-L1 adipocytes compared to insulin alone, but a combination of vanadate and chromium is not additive. Phosphorylation of MAPK or 4E-BP1 as markers for insulin signaling is stimulated by vanadate plus insulin, and chromium does not enhance the effects. Vanadate robustly activates glucose uptake by 3T3-L1 adipocytes even without added insulin and increases insulin-stimulated glucose uptake. Chromium pretreatment of adipocytes slightly enhances glucose uptake in response to insulin, but significantly increases glucose uptake above that induced by insulin plus vanadate. These data show that chromium enhances glucose uptake even when Tyr phosphorylation levels are elevated by vanadate plus insulin, suggesting separate mechanisms of action for vanadate and chromium.

  20. Gingerols of Zingiber officinale enhance glucose uptake by increasing cell surface GLUT4 in cultured L6 myotubes.

    PubMed

    Li, Yiming; Tran, Van H; Duke, Colin C; Roufogalis, Basil D

    2012-09-01

    In this study we investigate the active constituents of the rhizome of Zingiber officinale, Roscoe (ginger) and determine their activity on glucose uptake in cultured L6 myotubes and the molecular mechanism underlying this action. Freeze-dried ginger powder was extracted with ethyl acetate (1 kg/3 L) to give the total ginger extract, which was then separated into seven fractions, consisting of nonpolar to moderately polar compounds, using a short-column vacuum chromatographic method. The most active fraction (F7) was further purified for identification of its active components. The effect of the extract, fractions, and purified compounds on glucose uptake was evaluated using radioactive labelled 2-[1,2-³H]-deoxy-D-glucose in L6 myotubes. The pungent phenolic gingerol constituents were identified as the major active compounds in the ginger extract enhancing glucose uptake. (S)-[6]-Gingerol was the most abundant component among the gingerols, however, (S)-[8]-gingerol was the most potent on glucose uptake. The activity of (S)-[8]-gingerol was found to be associated primarily with an increase in surface distribution of GLUT4 protein on the L6 myotube plasma membrane, as detected by expression of hemagglutinin epitope-tagged GLUT4 in L6 muscle cells. The enhancement of glucose uptake in L6 rat skeletal muscle cells by the gingerol pungent principles of the ginger extract supports the potential of ginger and its pungent components for the prevention and management of hyperglycemia and type 2 diabetes.

  1. The estrogen receptor-α is required and sufficient to maintain physiological glucose uptake in the mouse heart.

    PubMed

    Arias-Loza, Paula-Anahi; Kreissl, Michael C; Kneitz, Susanne; Kaiser, Franz R; Israel, Ina; Hu, Kai; Frantz, Stefan; Bayer, Barbara; Fritzemeier, Karl-Heinz; Korach, Kenneth S; Pelzer, Theo

    2012-10-01

    Estrogens attenuate cardiac hypertrophy and increase cardiac contractility via their cognate estrogen receptors (ERs) ERα and ERβ. Because female sex hormones enhance global glucose use and because myocardial function and mass are tightly linked to cardiac glucose metabolism, we tested the hypothesis that expression and activation of the ERα might be required and sufficient to maintain physiological cardiac glucose uptake in the murine heart. Cardiac glucose uptake quantified in vivo by 18F-fluorodeoxyglucose positron emission tomography was strongly impaired in ovariectomized compared with gonadal intact female C57BL/6JO mice. The selective ERα agonist 16α-LE2 and the nonselective ERα and ERβ agonist 17β-estradiol completely restored cardiac glucose uptake in ovariectomized mice. Cardiac 18F-fluorodeoxyglucose uptake was strongly decreased in female ERα knockout mice compared with wild-type littermates. Analysis of cardiac mRNA accumulation by quantitative RT-PCR revealed an upregulation of genes involved in glycolisis and tricarboxylic acid cycle by ERα treatment. In conclusion, systemic activation of ERα is sufficient, and its expression is required to maintain physiological glucose uptake in the murine heart, which is likely to contribute to known cardioprotective estrogen effects.

  2. The Estrogen Receptor-α Is Required and Sufficient to Maintain Physiological Glucose Uptake in the Mouse Heart

    PubMed Central

    Arias-Loza, Paula-Anahi; Kreissl, Michael C.; Kneitz, Susanne; Kaiser, Franz R.; Israel, Ina; Hu, Kai; Frantz, Stefan; Bayer, Barbara; Fritzemeier, Karl-Heinz; Korach, Kenneth S.; Pelzer, Theo

    2016-01-01

    Estrogens attenuate cardiac hypertrophy and increase cardiac contractility via their cognate estrogen receptors (ERs) ERα and ERβ. Because female sex hormones enhance global glucose use and because myocardial function and mass are tightly linked to cardiac glucose metabolism, we tested the hypothesis that expression and activation of the ERα might be required and sufficient to maintain physiological cardiac glucose uptake in the murine heart. Cardiac glucose uptake quantified in vivo by 18F-fluorodeoxyglucose positron emission tomography was strongly impaired in ovariectomized compared with gonadal intact female C57BL/6JO mice. The selective ERα agonist 16α-LE2 and the nonselective ERα and ERβ agonist 17β-estradiol completely restored cardiac glucose uptake in ovariectomized mice. Cardiac 18F-fluorodeoxyglucose uptake was strongly decreased in female ERα knockout mice compared with wild-type littermates. Analysis of cardiac mRNA accumulation by quantitative RT-PCR revealed an upregulation of genes involved in glycolisis and tricarboxylic acid cycle by ERα treatment. In conclusion, systemic activation of ERα is sufficient, and its expression is required to maintain physiological glucose uptake in the murine heart, which is likely to contribute to known cardioprotective estrogen effects. PMID:22892812

  3. Vibrational imaging of glucose uptake activity in live cells and tissues by stimulated Raman scattering microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hu, Fanghao; Chen, Zhixing; Zhang, Luyuan; Shen, Yihui; Wei, Lu; Min, Wei

    2016-03-01

    Glucose is consumed as an energy source by virtually all living organisms, from bacteria to humans. Its uptake activity closely reflects the cellular metabolic status in various pathophysiological transformations, such as diabetes and cancer. Extensive efforts such as positron emission tomography, magnetic resonance imaging and fluorescence microscopy have been made to specifically image glucose uptake activity but all with technical limitations. Here, we report a new platform to visualize glucose uptake activity in live cells and tissues with subcellular resolution and minimal perturbation. A novel glucose analogue with a small alkyne tag (carbon-carbon triple bond) is developed to mimic natural glucose for cellular uptake, which can be imaged with high sensitivity and specificity by targeting the strong and characteristic alkyne vibration on stimulated Raman scattering (SRS) microscope to generate a quantitative three dimensional concentration map. Cancer cells with differing metabolic characteristics can be distinguished. Heterogeneous uptake patterns are observed in tumor xenograft tissues, neuronal culture and mouse brain tissues with clear cell-cell variations. Therefore, by offering the distinct advantage of optical resolution but without the undesirable influence of bulky fluorophores, our method of coupling SRS with alkyne labeled glucose will be an attractive tool to study energy demands of living systems at the single cell level.

  4. Two weeks of metformin treatment induces AMPK-dependent enhancement of insulin-stimulated glucose uptake in mouse soleus muscle

    PubMed Central

    Kristensen, Jonas Møller; Treebak, Jonas T.; Schjerling, Peter; Goodyear, Laurie

    2014-01-01

    Metformin-induced activation of the 5′-AMP-activated protein kinase (AMPK) has been associated with enhanced glucose uptake in skeletal muscle, but so far no direct causality has been examined. We hypothesized that an effect of in vivo metformin treatment on glucose uptake in mouse skeletal muscles is dependent on AMPK signaling. Oral doses of metformin or saline treatment were given to muscle-specific kinase dead (KD) AMPKα2 mice and wild-type (WT) littermates either once or chronically for 2 wk. Soleus and extensor digitorum longus muscles were used for measurements of glucose transport and Western blot analyses. Chronic treatment with metformin enhanced insulin-stimulated glucose uptake in soleus muscles of WT (∼45%, P < 0.01) but not of AMPK KD mice. Insulin signaling at the level of Akt protein expression or Thr308 and Ser473 phosphorylation was not changed by metformin treatment. Insulin signaling at the level of Akt and TBC1D4 protein expression as well as Akt Thr308/Ser473 and TBC1D4 Thr642/Ser711 phosphorylation were not changed by metformin treatment. Also, protein expressions of Rab4, GLUT4, and hexokinase II were unaltered after treatment. The acute metformin treatment did not affect glucose uptake in muscle of either of the genotypes. In conclusion, we provide novel evidence for a role of AMPK in potentiating the effect of insulin on glucose uptake in soleus muscle in response to chronic metformin treatment. PMID:24644243

  5. ApoA-IV improves insulin sensitivity and glucose uptake in mouse adipocytes via PI3K-Akt Signaling

    PubMed Central

    Li, Xiaoming; Wang, Fei; Xu, Min; Howles, Philip; Tso, Patrick

    2017-01-01

    Insulin resistance is a risk factor for type 2 diabetes mellitus. We investigated the effect of ApoA-IV on glucose uptake in the adipose and muscle tissues of mice and cultured 3T3-L1 adipocytes. We found that treatment with ApoA-IV lowered fasting blood glucose in both WT and diabetic KKAy mice by increasing glucose uptake in cardiac muscle, white adipose tissue, and brown adipose tissue through a mechanism that was partially insulin independent. Cell culture experiments showed that ApoA-IV improved glucose uptake in adipocytes in the absence of insulin by upregulating GLUT4 translocation by PI3K mediated activation of Akt signaling pathways. Considering our previous finding that ApoA-IV treatment enhanced pancreatic insulin secretion, these results suggests that ApoA-IV acts directly upon adipose tissue to improve glucose uptake and indirectly via insulin signaling. Our findings warrant future studies to identify the receptor for ApoA-IV and the downstream targets of PI3K-Akt signaling that regulate glucose uptake in adipocytes as potential therapeutic targets for treating insulin resistance. PMID:28117404

  6. Dual Actions of Apolipoprotein A-I on Glucose-Stimulated Insulin Secretion and Insulin-Independent Peripheral Tissue Glucose Uptake Lead to Increased Heart and Skeletal Muscle Glucose Disposal.

    PubMed

    Domingo-Espín, Joan; Lindahl, Maria; Nilsson-Wolanin, Oktawia; Cushman, Samuel W; Stenkula, Karin G; Lagerstedt, Jens O

    2016-07-01

    Apolipoprotein A-I (apoA-I) of HDL is central to the transport of cholesterol in circulation. ApoA-I also provides glucose control with described in vitro effects of apoA-I on β-cell insulin secretion and muscle glucose uptake. In addition, apoA-I injections in insulin-resistant diet-induced obese (DIO) mice lead to increased glucose-stimulated insulin secretion (GSIS) and peripheral tissue glucose uptake. However, the relative contribution of apoA-I as an enhancer of GSIS in vivo and as a direct stimulator of insulin-independent glucose uptake is not known. Here, DIO mice with instant and transient blockade of insulin secretion were used in glucose tolerance tests and in positron emission tomography analyses. Data demonstrate that apoA-I to an equal extent enhances GSIS and acts as peripheral tissue activator of insulin-independent glucose uptake and verify skeletal muscle as an apoA-I target tissue. Intriguingly, our analyses also identify the heart as an important target tissue for the apoA-I-stimulated glucose uptake, with potential implications in diabetic cardiomyopathy. Explorations of apoA-I as a novel antidiabetic drug should extend to treatments of diabetic cardiomyopathy and other cardiovascular diseases in patients with diabetes. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  7. Insulin-stimulated phosphatidylinositol 3-kinase activity and 2-deoxy-D-glucose uptake in rat skeletal muscles.

    PubMed

    Elmendorf, J S; Damrau-Abney, A; Smith, T R; David, T S; Turinsky, J

    1995-03-28

    To date there is suggestive evidence that phosphatidylinositol 3-kinase participates in insulin-stimulated glucose transport. However, its involvement in skeletal muscle, a major site of insulin-stimulated glucose disposal, has not been addressed. Therefore, we tested the effects of wortmannin, a known inhibitor of phosphatidylinositol 3-kinase, on insulin-stimulated 2-deoxyglucose uptake by rat soleus muscle in vitro: Wortmannin (1 microM) reversibly inhibited insulin-induced 2-deoxyglucose uptake in soleus muscle by 44%. Inclusion of 5 microM wortmannin in the incubation medium completely abolished the insulin-induced increment in 2-deoxyglucose uptake. In conclusion, the insulin-signaling cascade linking insulin-receptor tyrosine kinase activation to glucose uptake in skeletal muscle.

  8. Peroxynitrite activates glucose uptake in 3T3-L1 adipocytes through a PI3-K-dependent mechanism.

    PubMed

    Guzman-Grenfell, Alberto M; Garcia-Macedo, Rebeca; Gonzalez-Martinez, Marco T; Hicks, Juan Jose; Medina-Navarro, Rafael

    2005-01-01

    Peroxynitrite, the product of the reaction between *NO and O2*-, is a strong oxidant and nitrating molecule, and it has been recently consideredas a component of some important signaling pathways. Herein, we report the effect of peroxynitrite on glucose uptake in 3T3-L1 adipocytes. Peroxynitrite stimulated glucose uptake and this effect was inhibited by citochalasin B, indicating the participation of facilitated GLUT transporters. Peroxynitrite-induced glucose uptake was not related to intracellular ATP, nor to external or internal calcium, but it was inhibited by the phosphatidylinositol 3-kinase (PI3-K) inhibitor, wortmannin. Additionally, we also found that peroxynitrite did not activate the insulin receptor nor the PI3-K downstream signaling protein kinase B (PKB/Akt). The dose-dependent inhibitory action of wortmannin suggests that peroxynitrite activates glucose transport without affecting GLUT transporters translocation.

  9. Inhibitory action of sphingosine, sphinganine and dexamethasone on glucose uptake: Studies with hydrogen peroxide and phorbol ester

    SciTech Connect

    Murray, D.K.; Hill, M.E.; Nelson, D.H. )

    1990-01-01

    The mechanism of the inhibitory action of glucocorticoids on glucose uptake is incompletely understood. Treatment with corticosteriods of cells in which glucose uptake is stimulated at insulin postbinding and postreceptor sites may clarify the site of the steroid inhibitory action. Hydrogen peroxide, which has been shown to stimulate the insulin receptor tyrosine kinase, and phorbol myristate acetate (PMA) which stimulates protein kinase C were, therefore, used as stimulators of glucose transport in this study. These studies demonstrate that dexamethasone and the sphingoid bases, sphinganine and sphingosine, inhibit glucose uptake that has been stimulated at either the receptor kinase or protein kinase C level in both 3T3-L1 and 3T3-C2 cells. These data confirm glucocorticoid inhibitory action at a post binding level and support the suggestion that some corticosteriod inhibitory effects may be mediated by an action on sphingolipid metabolism.

  10. Persistence of counter-regulatory abnormalities in insulin-dependent diabetes mellitus after pancreas transplantation.

    PubMed

    Battezzati, A; Luzi, L; Perseghin, G; Bianchi, E; Spotti, D; Secchi, A; Vergani, S; Di Carlo, V; Pozza, G

    1994-11-01

    Conventional insulin therapy does not correct the counter-regulatory abnormalities of insulin-dependent diabetes mellitus. Pancreas transplantation is an alternative therapy that restores the endogenous insulin secretion in diabetes. In this study, the effects of segmental pancreas transplantation on counter-regulation to mild hypoglycaemia were evaluated. Glucose kinetics and the counter-regulatory hormonal responses were assessed in eight insulin-dependent diabetics with end-stage renal failure who had received pancreas and kidney transplantation 1 year previously, seven diabetic uraemic subjects (candidates for combined transplantation), five patients with chronic uveitis on immunosuppressive therapy comparable to pancreas recipients and 10 normal subjects. Insulin (0.3 mU kg-1 min-1) was infused for 2 h to induce mild hypoglycaemia (plasma glucose 3.2-3.5 mmol l-1) and exogenous glucose was infused as required to prevent any glucose decrease below 3.1 mmol l-1. After transplantation, two of eight recipients had hypoglycaemic episodes reported in their medical records. During the study, hepatic glucose production was rapidly suppressed in the controls and in the patients on immunosuppression (-80 +/- 7 and -54 +/- 7%, P < 0.001 vs. basal), and rebounded to the baseline values within 1 h (-3 +/- 1 and -6 +/- 2%, P = NS vs. basal). The transplant recipients had similar suppression in the first hour (-88 +/- 8%, P < 0.001 vs. basal), but the suppression persisted in the second hour (-69 +/- 11%, P < 0.001 vs. basal) indicating a lack of glucose counter-regulatory response.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Intracellular lactate- and pyruvate-interconversion rates are increased in muscle tissue of non-insulin-dependent diabetic individuals.

    PubMed Central

    Avogaro, A; Toffolo, G; Miola, M; Valerio, A; Tiengo, A; Cobelli, C; Del Prato, S

    1996-01-01

    The contribution of muscle tissues of non-insulin-dependent diabetes mellitus (NIDDM) patients to blood lactate appearance remains undefined. To gain insight on intracellular pyruvate/lactate metabolism, the postabsorptive forearm metabolism of glucose, lactate, FFA, and ketone bodies (KB) was assessed in seven obese non-insulin-dependent diabetic patients (BMI = 28.0 +/- 0.5 kg/m2) and seven control individuals (BMI = 24.8 +/- 0.5 kg/m2) by using arteriovenous balance across forearm tissues along with continuous infusion of [3-13C1]-lactate and indirect calorimetry. Fasting plasma concentrations of glucose (10.0 +/- 0.3 vs. 4.7 +/- 0.2 mmol/liter), insulin (68 +/- 5 vs. 43 +/- 6 pmol/liter), FFA (0.57 +/- 0.02 vs. 0.51 +/- 0.02 mmol/liter), and blood levels of lactate (1.05 +/- 0.04 vs. 0.60 +/- 0.06 mmol/liter), and KB (0.48 +/- 0.04 vs. 0.29 +/- 0.02 mmol/liter) were higher in NIDDM patients (P < 0.01). Forearm glucose uptake was similar in the two groups (10.3 +/- 1.4 vs. 9.6 +/ 1.1 micromol/min/liter of forearm tissue), while KB uptake was twice as much in NIDDM patients as compared to control subjects. Lactate balance was only slightly increased in NIDDM patients (5.6 +/- 1.4 vs. 3.3 +/- 1.0 micromol/min/liter; P = NS). A two-compartment model of lactate and pyruvate kinetics in the forearm tissue was used to dissect out the rates of lactate to pyruvate and pyruvate to lactate interconversions. In spite of minor differences in the lactate balance, a fourfold increase in both lactate- (44.8 +/- 9.0 vs. 12.6 +/- 4.6 micromol/min/liter) and pyruvate-(50.4 +/- 9.8 vs. 16.0 +/- 5.0 micromol/min/liter) interconversion rates (both P < 0.01) were found. Whole body lactate turnover, assessed by using the classic isotope dilution principle, was higher in NIDDM individuals (46 +/- 9 vs. 21 +/- 3 micromol/min/kg; P < 0.01). Insights into the physiological meaning of this parameter were obtained by using a whole body noncompartmental model of lactate/pyruvate kinetics

  12. Design and synthesis of lupeol analogues and their glucose uptake stimulatory effect in L6 skeletal muscle cells.

    PubMed

    Khan, Mohammad Faheem; Maurya, Chandan Kumar; Dev, Kapil; Arha, Deepti; Rai, Amit Kumar; Tamrakar, Akhilesh Kumar; Maurya, Rakesh

    2014-06-15

    Structure modifications of lupeol at the isopropylene moiety have been described via allylic oxidation using selenium dioxide. The antidiabetic efficacy of lupeol analogues were evaluated in vitro as glucose uptake stimulatory effect in L6 skeletal muscle cells. From all tested compounds, 2, 3, 4b and 6b showed significant stimulation of glucose uptake with respective percent stimulation of 173.1 (p <0.001), 114.1 (p <0.001), 98.3 (p <0.001) and 107.3 (p <0.001) at 10μM concentration. Stimulation of glucose uptake by these compounds is associated with enhanced translocation of glucose transporter 4 (GLUT4) and activation of IRS-1/PI3-K/AKT-dependent signaling pathway in L6 cells. Structure-activity relationship analysis of these analogues demonstrated that the integrity of α,β-unsaturated carbonyl and acetyl moieties were important in the retention of glucose uptake stimulatory effect. It is therefore proposed that naturally occurring lupeol and their analogues might reduce blood glucose, at least in part, through stimulating glucose utilization by skeletal muscles.

  13. Cytokine Stimulation Promotes Glucose Uptake via Phosphatidylinositol-3 Kinase/Akt Regulation of Glut1 Activity and Trafficking

    PubMed Central

    Wieman, Heather L.; Wofford, Jessica A.

    2007-01-01

    Cells require growth factors to support glucose metabolism for survival and growth. It is unclear, however, how noninsulin growth factors may regulate glucose uptake and glucose transporters. We show that the hematopoietic growth factor interleukin (IL)3, maintained the glucose transporter Glut1 on the cell surface and promoted Rab11a-dependent recycling of intracellular Glut1. IL3 required phosphatidylinositol-3 kinase activity to regulate Glut1 trafficking, and activated Akt was sufficient to maintain glucose uptake and surface Glut1 in the absence of IL3. To determine how Akt may regulate Glut1, we analyzed the role of Akt activation of mammalian target of rapamycin (mTOR)/regulatory associated protein of mTOR (RAPTOR) and inhibition of glycogen synthase kinase (GSK)3. Although Akt did not require mTOR/RAPTOR to maintain surface Glut1 levels, inhibition of mTOR/RAPTOR by rapamycin greatly diminished glucose uptake, suggesting Akt-stimulated mTOR/RAPTOR may promote Glut1 transporter activity. In contrast, inhibition of GSK3 did not affect Glut1 internalization but nevertheless maintained surface Glut1 levels in IL3-deprived cells, possibly via enhanced recycling of internalized Glut1. In addition, Akt attenuated Glut1 internalization through a GSK3-independent mechanism. These data demonstrate that intracellular trafficking of Glut1 is a regulated component of growth factor-stimulated glucose uptake and that Akt can promote Glut1 activity and recycling as well as prevent Glut1 internalization. PMID:17301289

  14. Quercetin and epigallocatechin gallate inhibit glucose uptake and metabolism by breast cancer cells by an estrogen receptor-independent mechanism

    SciTech Connect

    Moreira, Liliana; Araújo, Isabel; Costa, Tito; Correia-Branco, Ana; Faria, Ana; Martel, Fátima; Keating, Elisa

    2013-07-15

    In this study we characterized {sup 3}H-2-deoxy-D-glucose ({sup 3}H -DG) uptake by the estrogen receptor (ER)-positive MCF7 and the ER-negative MDA-MB-231 human breast cancer cell lines and investigated the effect of quercetin (QUE) and epigallocatechin gallate (EGCG) upon {sup 3}H-DG uptake, glucose metabolism and cell viability and proliferation. In both MCF7 and MDA-MB-231 cells {sup 3}H-DG uptake was (a) time-dependent, (b) saturable with similar capacity (V{sub max}) and affinity (K{sub m}), (c) potently inhibited by cytochalasin B, an inhibitor of the facilitative glucose transporters (GLUT), (d) sodium-independent and (e) slightly insulin-stimulated. This suggests that {sup 3}H-DG uptake by both cell types is mediated by members of the GLUT family, including the insulin-responsive GLUT4 or GLUT12, while being independent of the sodium-dependent glucose transporter (SGLT1). QUE and EGCG markedly and concentration-dependently inhibited {sup 3}H-DG uptake by MCF7 and by MDA-MB-231 cells, and both compounds blocked lactate production by MCF7 cells. Additionally, a 4 h-treatment with QUE or EGCG decreased MCF7 cell viability and proliferation, an effect that was more potent when glucose was available in the extracellular medium. Our results implicate QUE and EGCG as metabolic antagonists in breast cancer cells, independently of estrogen signalling, and suggest that these flavonoids could serve as therapeutic agents/adjuvants even for ER-negative breast tumors. -- Highlights: • Glucose uptake by MCF7 and MDA-MB-231 cells is mainly mediated by GLUT1. • QUE and EGCG inhibit cellular glucose uptake thus abolishing the Warburg effect. • This process induces cytotoxicity and proliferation arrest in MCF7 cells. • The flavonoids’ effects are independent of estrogen receptor signalling.

  15. Diagnostic perspective of saliva in insulin dependent diabetes mellitus children: An in vivo study

    PubMed Central

    Lakshmi, P. V. S. Deepa; Sridevi, E.; Sai Sankar, A. J.; Manoj Kumar, M. G.; Sridhar, M.; Sujatha, B.

    2015-01-01

    Background and Objectives: The absence, destruction, or loss of β-cells of pancreas results in type 1 diabetes (insulin-dependent diabetes mellitus [IDDM]). Presently, diagnosis and periodic monitoring of diabetes is achieved by evaluating blood glucose levels as it is relatively invasive and dreaded by children. In the light of this, present study was planned to compare salivary glucose values with blood glucose values and the biochemical characteristics of saliva in IDDM children were evaluated and obtained results were compared with the salivary parameters of normal children. Materials and Methods: Thirty IDDM children and 30 healthy children were selected for the study. Fasting blood sample and unstimulated salivary sample were collected from all the subjects and were subjected for analysis. Results: A weak positive correlation was noticed between fasting blood glucose and salivary glucose values in IDDM children. But a mean average of salivary glucose was high in IDDM children when compared with healthy children. The biochemical parameters like acid phosphatase, total protein count, and α-amylase were increased, whereas salivary urea did not show significant variation between the groups. Conclusion: With presently used diagnostic armamentarium, estimation of salivary glucose cannot replace the standard method of estimation of glucose in diabetic mellitus children. The established relationship was very weak with many variations. PMID:26681845

  16. Obesity-Associated Inflammatory Cytokines and Prostaglandin E2 Stimulate Glucose Transporter mRNA Expression and Glucose Uptake in Primary Human Adipose Stromal Cells.

    PubMed

    Docanto, Maria M; Ham, Seungmin; Corbould, Anne; Brown, Kristy A

    2015-08-01

    Obesity is associated with chronic low-grade inflammation. This occurs largely as a result of the infiltration of immune cells within the obese adipose, which produce a number of inflammatory factors, including interleukin-6 (IL-6), IL-1β, tumor necrosis factor-α (TNFα), and prostaglandin E(2) (PGE(2)). These factors have previously been shown to affect insulin-mediated glucose uptake in differentiated adipocytes. However, the insulin-independent effect of inflammation on adipocyte precursors, the adipose stromal cells, has not been explored. This study therefore aimed to examine the effect of obesity-associated inflammatory factors on the expression of insulin-independent glucose transporters (GLUT1 and GLUT3) and on the uptake of glucose within adipose stromal cells. Primary human subcutaneous adipose stromal cells were isolated from abdominoplasty, and the effect of inflammatory cytokines (IL-6, IL-1β, and TNFα) and PGE(2) on GLUT mRNA expression and glucose transport was assessed using real-time polymerase chain reaction and radiolabeled deoxyglucose uptake assays, respectively. Results demonstrate that all four inflammatory mediators caused a dose-dependent increase in GLUT1 mRNA expression and glucose uptake. GLUT3 mRNA expression was also upregulated by IL-6 (0.5 ng/mL), TNFα (0.1 and 10 ng/mL), and PGE(2) (0.1 μM). Overall, these results demonstrate that obesity-associated inflammation increases insulin-independent glucose transporter expression and glucose uptake in undifferentiated adipose stromal cells.

  17. IL-15 Activates the Jak3/STAT3 Signaling Pathway to Mediate Glucose Uptake in Skeletal Muscle Cells

    PubMed Central

    Krolopp, James E.; Thornton, Shantaé M.; Abbott, Marcia J.

    2016-01-01

    Myokines are specialized cytokines that are secreted from skeletal muscle (SKM) in response to metabolic stimuli, such as exercise. Interleukin-15 (IL-15) is a myokine with potential to reduce obesity and increase lean mass through induction of metabolic processes. It has been previously shown that IL-15 acts to increase glucose uptake in SKM cells. However, the downstream signals orchestrating the link between IL-15 signaling and glucose uptake have not been fully explored. Here we employed the mouse SKM C2C12 cell line to examine potential downstream targets of IL-15-induced alterations in glucose uptake. Following differentiation, C2C12 cells were treated overnight with 100 ng/ml of IL-15. Activation of factors associated with glucose metabolism (Akt and AMPK) and known downstream targets of IL-15 (Jak1, Jak3, STAT3, and STAT5) were assessed with IL-15 stimulation. IL-15 stimulated glucose uptake and GLUT4 translocation to the plasma membrane. IL-15 treatment had no effect on phospho-Akt, phospho-Akt substrates, phospho-AMPK, phospho-Jak1, or phospho-STAT5. However, with IL-15, phospho-Jak3 and phospho-STAT3 levels were increased along with increased interaction of Jak3 and STAT3. Additionally, IL-15 induced a translocation of phospho-STAT3 from the cytoplasm to the nucleus. We have evidence that a mediator of glucose uptake, HIF1α, expression was dependent on IL-15 induced STAT3 activation. Finally, upon inhibition of STAT3 the positive effects of IL-15 on glucose uptake and GLUT4 translocation were abolished. Taken together, we provide evidence for a novel signaling pathway for IL-15 acting through Jak3/STAT3 to regulate glucose metabolism. PMID:28066259

  18. IL-15 Activates the Jak3/STAT3 Signaling Pathway to Mediate Glucose Uptake in Skeletal Muscle Cells.

    PubMed

    Krolopp, James E; Thornton, Shantaé M; Abbott, Marcia J

    2016-01-01

    Myokines are specialized cytokines that are secreted from skeletal muscle (SKM) in response to metabolic stimuli, such as exercise. Interleukin-15 (IL-15) is a myokine with potential to reduce obesity and increase lean mass through induction of metabolic processes. It has been previously shown that IL-15 acts to increase glucose uptake in SKM cells. However, the downstream signals orchestrating the link between IL-15 signaling and glucose uptake have not been fully explored. Here we employed the mouse SKM C2C12 cell line to examine potential downstream targets of IL-15-induced alterations in glucose uptake. Following differentiation, C2C12 cells were treated overnight with 100 ng/ml of IL-15. Activation of factors associated with glucose metabolism (Akt and AMPK) and known downstream targets of IL-15 (Jak1, Jak3, STAT3, and STAT5) were assessed with IL-15 stimulation. IL-15 stimulated glucose uptake and GLUT4 translocation to the plasma membrane. IL-15 treatment had no effect on phospho-Akt, phospho-Akt substrates, phospho-AMPK, phospho-Jak1, or phospho-STAT5. However, with IL-15, phospho-Jak3 and phospho-STAT3 levels were increased along with increased interaction of Jak3 and STAT3. Additionally, IL-15 induced a translocation of phospho-STAT3 from the cytoplasm to the nucleus. We have evidence that a mediator of glucose uptake, HIF1α, expression was dependent on IL-15 induced STAT3 activation. Finally, upon inhibition of STAT3 the positive effects of IL-15 on glucose uptake and GLUT4 translocation were abolished. Taken together, we provide evidence for a novel signaling pathway for IL-15 acting through Jak3/STAT3 to regulate glucose metabolism.

  19. Momordica charantia fruit juice stimulates glucose and amino acid uptakes in L6 myotubes.

    PubMed

    Cummings, E; Hundal, H S; Wackerhage, H; Hope, M; Belle, M; Adeghate, E; Singh, J

    2004-06-01

    The fruit of Momordica charantia (family: Cucurbitacea) is used widely as a hypoglycaemic agent to treat diabetes mellitus (DM). The mechanism of the hypoglycaemic action of M. charantia in vitro is not fully understood. This study investigated the effect of M. charantia juice on either 3H-2-deoxyglucose or N-methyl-amino-a-isobutyric acid (14C-Me-AIB) uptake in L6 rat muscle cells cultured to the myotube stage. The fresh juice was centrifuged at 5000 rpm and the supernatant lyophilised. L6 myotubes were incubated with either insulin (100 nM), different concentrations (1-10 microg ml(-1)) of the juice or its chloroform extract or wortmannin (100 nM) over a period of 1- 6 h. The results were expressed as pmol min(-1) (mg cell protein)(-1), n = 6-8 for each value. Basal 3H-deoxyglucose and 14C-Me-AIB uptakes by L6 myotubes after 1 h of incubation were (means +/- S.E.M.) 32.14 +/- 1.34 and 13.48 +/- 1.86 pmol min(-1) (mg cell protein)(-1), respectively. Incubation of L6 myotubes with 100 nM insulin for 1 h resulted in significant (ANOVA, p < 0.05) increases in 3H-deoxyglucose and 14C-Me-AIB uptakes. Typically, 3H-deoxyglucose and 14C-Me-AIB uptakes in the presence of insulin were 58.57 +/- 4.49 and 29.52 +/- 3.41 pmol min(-1) (mg cell protein(-1)), respectively. Incubation of L6 myotubes with three different concentrations (1, 5 and 10 microg ml(-1)) of either the lyophilised juice or its chloroform extract resulted in time-dependent increases in 3H-deoxy-D-glucose and 14C-Me-AIB uptakes, with maximal uptakes occurring at a concentration of 5 microg ml(-1). Incubation of either insulin or the juice in the presence of wortmannin (a phosphatidylinositol 3-kinase inhibitor) resulted in a marked inhibition of 3H-deoxyglucose by L6 myotubes compared to the uptake obtained with either insulin or the juice alone. The results indicate that M. charantia fruit juice acts like insulin to exert its hypoglycaemic effect and moreover, it can stimulate amino acid uptake into

  20. Medium-term outcomes of patients with insulin-dependent diabetes after laparoscopic adjustable gastric banding.

    PubMed

    Singhal, Rishi; Ahmed, Missba; Krempic, Avril; Kitchen, Mark; Super, Paul

    2013-01-01

    Bariatric surgery is effective in the control of type 2 diabetes mellitus. Laparoscopic adjustable gastric banding is a popular form of bariatric surgery, but very limited data are available on its long-term effect on type 2 diabetes mellitus. The present study examined the effect of gastric banding on a consecutive cohort of unselected patients with insulin-dependent diabetes mellitus at a teaching hospital in Birmingham, United Kingdom. From April 2003 to December 2008, 200 patients with diabetes underwent laparoscopic adjustable gastric banding at our unit. All those with insulin-dependent diabetes and ≥1 year of follow-up were included in the present analysis. Data collection included the body mass index, weight, blood pressure, glycosylated hemoglobin, fasting glucose, total cholesterol, triglycerides, and medication dose preoperatively and 1, 2, and 3 years postoperatively. Preoperatively, 69 patients were taking insulin, with a mean daily preoperative dose of 132.3 U (range 15-500). At 1 year, 27 of these patients had discontinued using insulin (34.8%). At 2 years, 34 patients had discontinued using insulin (54.8% of the patients taking insulin preoperatively and who had also completed 2 yr of follow-up). At 3 years, 40 patients had discontinued using insulin (80% of patients who were taking insulin preoperatively and who had also completed 3 yr of follow-up). These changes were accompanied by an improvement in glycosylated hemoglobin, fasting glucose, total serum cholesterol, triglycerides, and mean arterial pressures. Laparoscopic gastric banding can be considered a powerful treatment option in the management of obese patients with insulin-dependent diabetes and becomes increasingly effective with time ≤3 years after surgery. Copyright © 2013 American Society for Metabolic and Bariatric Surgery. Published by Elsevier Inc. All rights reserved.

  1. Correlation between TCA cycle flux and glucose uptake rate during respiro-fermentative growth of Saccharomyces cerevisiae.

    PubMed

    Heyland, Jan; Fu, Jianan; Blank, Lars M

    2009-12-01

    Glucose repression of the tricarboxylic acid (TCA) cycle in Saccharomyces cerevisiae was investigated under different environmental conditions using (13)C-tracer experiments. Real-time quantification of the volatile metabolites ethanol and CO(2) allowed accurate carbon balancing. In all experiments with the wild-type, a strong correlation between the rates of growth and glucose uptake was observed, indicating a constant yield of biomass. In contrast, glycerol and acetate production rates were less dependent on the rate of glucose uptake, but were affected by environmental conditions. The glycerol production rate was highest during growth in high-osmolarity medium (2.9 mmol g(-1) h(-1)), while the highest acetate production rate of 2.1 mmol g(-1) h(-1) was observed in alkaline medium of pH 6.9. Under standard growth conditions (25 g glucose l(-1) , pH 5.0, 30 degrees C) S. cerevisiae had low fluxes through the pentose phosphate pathway and the TCA cycle. A significant increase in TCA cycle activity from 0.03 mmol g(-1) h(-1) to about 1.7 mmol g(-1) h(-1) was observed when S. cerevisiae grew more slowly as a result of environmental perturbations, including unfavourable pH values and sodium chloride stress. Compared to experiments with high glucose uptake rates, the ratio of CO(2) to ethanol increased more than 50 %, indicating an increase in flux through the TCA cycle. Although glycolysis and the ethanol production pathway still exhibited the highest fluxes, the net flux through the TCA cycle increased significantly with decreasing glucose uptake rates. Results from experiments with single gene deletion mutants partially impaired in glucose repression (hxk2, grr1) indicated that the rate of glucose uptake correlates with this increase in TCA cycle flux. These findings are discussed in the context of regulation of glucose repression.

  2. Effects of dietary starch source on electrophysiological intestinal epithelial properties and intestinal glucose uptake in growing goats.

    PubMed

    Klinger, Stefanie; Zurich, Meike; Schröder, Bernd; Breves, Gerhard

    2013-08-01

    In ruminants, the potential benefit of by-pass starch to improve energy supply is under discussion. As efficient intestinal starch digestion and monosaccharide absorption are important prerequisites for an energetic benefit compared to ruminal fermentation, this study was conducted to characterise potential adaptations of intestinal tissues to different dietary starch sources qualitatively. The Ussing chamber technique was used to determine electrophysiological parameters of jejunal tissues and glucose flux rates. Kinetics of sodium-dependent glucose uptake into isolated brush-border membrane vesicles (BBMV) were calculated, and the expression level of sodium-dependent glucose transporter 1 (SGLT1) was determined. Samples were collected from goats that were assigned to three dietary treatments differing in starch content (hay/concentrate) and starch source (wheat/corn). Additionally, ingesta samples were analysed for starch and glucose contents. Jejunal tissues from hay-fed animals showed higher tissue conductances (G t) and numerically higher short-circuit currents (I sc). Unidirectional glucose flux rates were higher for hay-fed animals, whereas net flux rates were unaffected. The maximal glucose transport capacity into BBMV was increased for concentrate-fed animals, but the affinity and SGLT1 expression were not affected. Our results may indicate an adaptation of glucose uptake via SGLT1 to variations in dietary starch but it could not be excluded that intestinal uptake capacity was saturated under the given conditions or that the measured capacity was sufficient for absorption of available glucose.

  3. Development of a cell-based nonradioactive glucose uptake assay system for SGLT1 and SGLT2.

    PubMed

    Kanwal, Abhinav; Singh, Shailendra Pratap; Grover, Paramjit; Banerjee, Sanjay Kumar

    2012-10-01

    Sodium-dependent glucose cotransporters (SGLT1 and SGLT2), which have a key role in the absorption of glucose in the kidney and/or gastrointestinal tract, have been proposed as a novel therapeutic strategy for diabetes and cardiomyopathy. Here we developed a simple cell-based, nonradioactive method for functional screening of SGLT1 and SGLT2 inhibitors. Stable cell lines expressing human SGLT1 and SGLT2 were established by transfecting HEK293 cells with vectors (pCMV6-Neo) having full-length human SGLT1 and SGLT2 and selecting the positive clones following neomycin treatment. We confirmed the gene expression of SGLT1 and SGLT2 by reverse transcription polymerase chain reaction (RT-PCR) and immunoblotting. Furthermore, to analyze the function of SGLTs, we incubated stable cell lines with 2-deoxyglucose or fluorescent d-glucose analog (2-NBDG) and performed glucose uptake assay. A significant (P<0.001) increase in glucose uptake was observed in both cell lines. The increased glucose uptake in both cell lines was completely inhibited when treated with nonspecific SGLT1/SGLT2 inhibitors and phlorizin (100μM), but not when treated with nonspecific sodium-independent facilitative glucose transporter (GLUT) inhibitors (100μM). Taken together, our data suggest that cell-based methods developed for screening SGLT1/SGLT2 inhibitors are phlorizin sensitive and specific for respective glucose transporters. This assay provides a simple and rapid method for identifying novel and selective SGLT inhibitors.

  4. Coping Styles in Youths with Insulin-Dependent Diabetes Mellitus.

    ERIC Educational Resources Information Center

    Hanson, Cindy L.; And Others

    1989-01-01

    Evaluated relationships between two coping styles and two health outcomes in 135 youth with insulin-dependent diabetes mellitus (IDDM). Found that poor adherence to treatment, older adolescent age, and long duration of IDDM correlated with ventilation and avoidance coping. High ventilation and avoidance coping was predicted by high stress, low…

  5. Coping Styles in Youths with Insulin-Dependent Diabetes Mellitus.

    ERIC Educational Resources Information Center

    Hanson, Cindy L.; And Others

    1989-01-01

    Evaluated relationships between two coping styles and two health outcomes in 135 youth with insulin-dependent diabetes mellitus (IDDM). Found that poor adherence to treatment, older adolescent age, and long duration of IDDM correlated with ventilation and avoidance coping. High ventilation and avoidance coping was predicted by high stress, low…

  6. Glucose replaces glutamate as energy substrate to fuel glutamate uptake in glutamate dehydrogenase-deficient astrocytes.

    PubMed

    Pajęcka, Kamilla; Nissen, Jakob D; Stridh, Malin H; Skytt, Dorte M; Schousboe, Arne; Waagepetersen, Helle S

    2015-07-01

    Cultured astrocytes treated with siRNA to knock down glutamate dehydrogenase (GDH) were used to investigate whether this enzyme is important for the utilization of glutamate as an energy substrate. By incubation of these cells in media containing different concentrations of glutamate (range 100-500 µM) in the presence or in the absence of glucose, the metabolism of these substrates was studied by using tritiated glutamate or 2-deoxyglucose as tracers. In addition, the cellular contents of glutamate and ATP were determined. The astrocytes were able to maintain physiological levels of ATP regardless of the expression level of GDH and the incubation condition, indicating a high degree of flexibility with regard to regulatory mechanisms involved in maintaining an adequate energy level in the cells. Glutamate uptake was found to be increased in these cells when exposed to increasing levels of extracellular glutamate independently of the GDH expression level. Moreover, increased intracellular glutamate content was observed in the GDH-deficient cells after a 2-hr incubation in the presence of 100 µM glutamate. It is significant that GDH-deficient cells exhibited an increased utilization of glucose in the presence of 250 and 500 µM glutamate, monitored as an increase in the accumulation of tritiated 2-deoxyglucose-6-phosphate. These findings underscore the importance of the expression level of GDH for the ability to utilize glutamate as an energy source fueling its own energy-requiring uptake.

  7. Dual role for myosin II in GLUT4-mediated glucose uptake in 3T3-L1 adipocytes

    SciTech Connect

    Fulcher, F. Kent; Smith, Bethany T.; Russ, Misty; Patel, Yashomati M.

    2008-10-15

    Insulin-stimulated glucose uptake requires the activation of several signaling pathways to mediate the translocation and fusion of GLUT4 vesicles to the plasma membrane. Our previous studies demonstrated that GLUT4-mediated glucose uptake is a myosin II-dependent process in adipocytes. The experiments described in this report are the first to show a dual role for the myosin IIA isoform specifically in regulating insulin-stimulated glucose uptake in adipocytes. We demonstrate that inhibition of MLCK but not RhoK results in impaired insulin-stimulated glucose uptake. Furthermore, our studies show that insulin specifically stimulates the phosphorylation of the RLC associated with the myosin IIA isoform via MLCK. In time course experiments, we determined that GLUT4 translocates to the plasma membrane prior to myosin IIA recruitment. We further show that recruitment of myosin IIA to the plasma membrane requires that myosin IIA be activated via phosphorylation of the RLC by MLCK. Our findings also reveal that myosin II is required for proper GLUT4-vesicle fusion at the plasma membrane. We show that once at the plasma membrane, myosin II is involved in regulating the intrinsic activity of GLUT4 after insulin stimulation. Collectively, our results are the first to reveal that myosin IIA plays a critical role in mediating insulin-stimulated glucose uptake in 3T3-LI adipocytes, via both GLUT4 vesicle fusion at the plasma membrane and GLUT4 activity.

  8. Recombinant canine single chain insulin analogues: insulin receptor binding capacity and ability to stimulate glucose uptake.

    PubMed

    Adams, Jamie P; Holder, Angela L; Catchpole, Brian

    2014-12-01

    Virtually all diabetic dogs require exogenous insulin therapy to control their hyperglycaemia. In the UK, the only licensed insulin product currently available is a purified porcine insulin preparation. Recombinant insulin is somewhat problematic in terms of its manufacture, since the gene product (preproinsulin) undergoes substantial post-translational modification in pancreatic β cells before it becomes biologically active. The aim of the present study was to develop recombinant canine single chain insulin (SCI) analogues that could be produced in a prokaryotic expression system and which would require minimal processing. Three recombinant SCI constructs were developed in a prokaryotic expression vector, by replacing the insulin C-peptide sequence with one encoding a synthetic peptide (GGGPGKR), or with one of two insulin-like growth factor (IGF)-2 C-peptide coding sequences (human: SRVSRRSR; canine: SRVTRRSSR). Recombinant proteins were expressed in the periplasmic fraction of Escherichia coli and assessed for their ability to bind to the insulin and IGF-1 receptors, and to stimulate glucose uptake in 3T3-L1 adipocytes. All three recombinant SCI analogues demonstrated preferential binding to the insulin receptor compared to the IGF-1 receptor, with increased binding compared to recombinant canine proinsulin. The recombinant SCI analogues stimulated glucose uptake in 3T3-L1 adipocytes compared to negligible uptake using recombinant canine proinsulin, with the canine insulin/cIGF-2 chimaeric SCI analogue demonstrating the greatest effect. Thus, biologically-active recombinant canine SCI analogues can be produced relatively easily in bacteria, which could potentially be used for treatment of diabetic dogs.

  9. IL-7 promotes Glut1 trafficking and glucose uptake via STAT5-mediated activation of Akt to support T-cell survival.

    PubMed

    Wofford, Jessica A; Wieman, Heather L; Jacobs, Sarah R; Zhao, Yuxing; Rathmell, Jeffrey C

    2008-02-15

    Lymphocyte homeostasis requires coordination of metabolic processes with cellular energetic and biosynthetic demands but mechanisms that regulate T-cell metabolism are uncertain. We show that interleukin-7 (IL-7) is a key regulator of glucose uptake in T lymphocytes. To determine how IL-7 affects glucose uptake, we analyzed IL-7 signaling mechanisms and regulation of the glucose transporter, Glut1. The IL-7 receptor (IL-7R) stimulated glucose uptake and cell-surface localization of Glut1 in a manner that required IL-7R Y449, which promoted rapid signal transducer and activator of transcription 5 (STAT5) activation and a delayed yet sustained activation of Akt. Each pathway was necessary for IL-7 to promote glucose uptake, as Akt1(-/-) T cells or PI3-kinase inhibition and RNAi of STAT5 led to defective glucose uptake in response to IL-7. STAT5 and Akt acted in a linear pathway, with STAT5-mediated transcription leading to Akt activation, which was necessary for STAT5 and IL-7 to promote glucose uptake and prevent cell death. Importantly, IL-7 required glucose uptake to promote cell survival. These data demonstrate that IL-7 promotes glucose uptake via a novel signaling mechanism in which STAT5 transcriptional activity promotes Akt activation to regulate Glut1 trafficking and glucose uptake that is critical for IL-7 to prevent T-cell death and maintain homeostasis.

  10. The amine oxidase inhibitor phenelzine limits lipogenesis in adipocytes without inhibiting insulin action on glucose uptake.

    PubMed

    Carpéné, Christian; Grès, Sandra; Rascalou, Simon

    2013-06-01

    The antidepressant phenelzine is a monoamine oxidase inhibitor known to inhibit various other enzymes, among them semicarbazide-sensitive amine oxidase (currently named primary amine oxidase: SSAO/PrAO), absent from neurones but abundant in adipocytes. It has been reported that phenelzine inhibits adipocyte differentiation of cultured preadipocytes. To further explore the involved mechanisms, our aim was to study in vitro the acute effects of phenelzine on de novo lipogenesis in mature fat cells. Therefore, glucose uptake and incorporation into lipid were measured in mouse adipocytes in response to phenelzine, other hydrazine-based SSAO/PrAO-inhibitors, and reference agents. None of the inhibitors was able to impair the sevenfold activation of 2-deoxyglucose uptake induced by insulin. Phenelzine did not hamper the effect of lower doses of insulin. However, insulin-stimulated glucose incorporation into lipids was dose-dependently inhibited by phenelzine and pentamidine, but not by semicarbazide or BTT2052. In contrast, all these SSAO/PrAO inhibitors abolished the transport and lipogenesis stimulation induced by benzylamine. These data indicate that phenelzine does not inhibit glucose transport, the first step of lipogenesis, but inhibits at 100 μM the intracellular triacylglycerol assembly, consistently with its long-term anti-adipogenic effect and such rapid action was not found with all the hydrazine derivatives tested. Therefore, the alterations of body weight control consecutive to the use of this antidepressant drug might be not only related to central effects on food intake/energy expenditure, but could also depend on its direct action in adipocytes. Nonetheless, phenelzine antilipogenic action is not merely dependent on SSAO/PrAO inhibition.

  11. PFOS induces adipogenesis and glucose uptake in association with activation of Nrf2 signaling pathway

    PubMed Central

    Xu, Jialin; Shimpi, Prajakta; Armstrong, Laura; Salter, Deanna; Slitt, Angela L.

    2016-01-01

    PFOS is a chemical of nearly ubiquitous exposure in humans. Recent studies have associated PFOS exposure to adipose tissue-related effects. The present study was to determine whether PFOS alters the process of adipogenesis and regulates insulin-stimulated glucose uptake in mouse and human preadipocytes. In murine-derived 3T3-L1 preadipocytes, PFOS enhanced hormone-induced differentiation to adipocytes and adipogenic gene expression, increased insulin-stimulated glucose uptake at concentrations ranging from 10 to 100 µM, and enhanced Glucose transporter type 4 and Insulin receptor substrate-1 expression. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2), NAD(P)H dehydrogenase, quinone 1 and Glutamate-cysteine ligase, catalytic subunit were significantly induced in 3T3-L1 cells treated with PFOS, along with a robust induction of Antioxidant Response Element (ARE) reporter in mouse embryonic fibroblasts isolated from ARE-hPAP transgenic mice by PFOS treatment. Chromatin immunoprecipitation assays further illustrated that PFOS increased Nrf2 binding to ARE sites in mouse Nqo1 promoter, suggesting that PFOS activated Nrf2 signaling in murine-derived preadipocytes. Additionally, PFOS administration in mice (100 µg/kg/day) induced adipogenic gene expression and activated Nrf2 signaling in epididymal white adipose tissue. Moreover, the treatment on human visceral preadipocytes illustrated that PFOS (5 and 50 µM) promoted adipogenesis and increased cellular lipid accumulation. It was observed that PFOS increased Nrf2 binding to ARE sites in association with Nrf2 signaling activation, induction of Peroxisome proliferator-activated receptor γ and CCAAT/enhancer-binding protein α expression, and increased adipogenesis. This study points to a potential role PFOS in dysregulation of adipose tissue expandability, and warrants further investigations on the adverse effects of persistent pollutants on human health. PMID:26548598

  12. Phosphatidylinositol 3-phosphate 5-kinase (PIKfyve) is an AMPK target participating in contraction-stimulated glucose uptake in skeletal muscle.

    PubMed

    Liu, Yang; Lai, Yu-Chiang; Hill, Elaine V; Tyteca, Donatienne; Carpentier, Sarah; Ingvaldsen, Ada; Vertommen, Didier; Lantier, Louise; Foretz, Marc; Dequiedt, Franck; Courtoy, Pierre J; Erneux, Christophe; Viollet, Benoît; Shepherd, Peter R; Tavaré, Jeremy M; Jensen, Jørgen; Rider, Mark H

    2013-10-15

    PIKfyve (FYVE domain-containing phosphatidylinositol 3-phosphate 5-kinase), the lipid kinase that phosphorylates PtdIns3P to PtdIns(3,5)P2, has been implicated in insulin-stimulated glucose uptake. We investigated whether PIKfyve could also be involved in contraction/AMPK (AMP-activated protein kinase)-stimulated glucose uptake in skeletal muscle. Incubation of rat epitrochlearis muscles with YM201636, a selective PIKfyve inhibitor, reduced contraction- and AICAriboside (5-amino-4-imidazolecarboxamide riboside)-stimulated glucose uptake. Consistently, PIKfyve knockdown in C2C12 myotubes reduced AICAriboside-stimulated glucose transport. Furthermore, muscle contraction increased PtdIns(3,5)P2 levels and PIKfyve phosphorylation. AMPK phosphorylated PIKfyve at Ser307 both in vitro and in intact cells. Following subcellular fractionation, PIKfyve recovery in a crude intracellular membrane fraction was increased in contracting versus resting muscles. Also in opossum kidney cells, wild-type, but not S307A mutant, PIKfyve was recruited to endosomal vesicles in response to AMPK activation. We propose that PIKfyve activity is required for the stimulation of skeletal muscle glucose uptake by contraction/AMPK activation. PIKfyve is a new AMPK substrate whose phosphorylation at Ser307 could promote PIKfyve translocation to endosomes for PtdIns(3,5)P2 synthesis to facilitate GLUT4 (glucose transporter 4) translocation.

  13. Lrp5 Has a Wnt-Independent Role in Glucose Uptake and Growth for Mammary Epithelial Cells

    PubMed Central

    Chin, Emily N.; Martin, Joshua A.; Kim, Soyoung; Fakhraldeen, Saja A.

    2015-01-01

    Lrp5 is typically described as a Wnt signaling receptor, albeit a less effective Wnt signaling receptor than the better-studied sister isoform, Lrp6. Here we show that Lrp5 is only a minor player in the response to Wnt3a-type ligands in mammary epithelial cells; instead, Lrp5 is required for glucose uptake, and glucose uptake regulates the growth rate of mammary epithelial cells in culture. Thus, a loss of Lrp5 leads to profound growth suppression, whether growth is induced by serum or by specific growth factors, and this inhibition is not due to a loss of Wnt signaling. Depletion of Lrp5 decreases glucose uptake, lactate secretion, and oxygen consumption rates; inhibition of glucose consumption phenocopies the loss of Lrp5 function. Both Lrp5 knockdown and low external glucose induce mitochondrial stress, as revealed by the accumulation of reactive oxygen species (ROS) and the activation of the ROS-sensitive checkpoint, p38α. In contrast, loss of function of Lrp6 reduces Wnt responsiveness but has little impact on growth. This highlights the distinct functions of these two Lrp receptors and an important Wnt ligand-independent role of Lrp5 in glucose uptake in mammary epithelial cells. PMID:26711269

  14. Exogenous normal mammary epithelial mitochondria suppress glycolytic metabolism and glucose uptake of human breast cancer cells.

    PubMed

    Jiang, Xian-Peng; Elliott, Robert L; Head, Jonathan F

    2015-10-01

    We hypothesized that normal mitochondria inhibited cancer cell proliferation and increased drug sensitivity by the mechanism of suppression of cancer aerobic glycolysis. To demonstrate the mechanism, we used real-time PCR and glycolysis cell-based assay to measure gene expression of glycolytic enzymes and glucose transporters, and extracellular lactate production of human breast cancer cells. We found that isolated fluorescent probe-stained mitochondria of MCF-12A (human mammary epithelia) could enter into human breast cancer cell lines MCF-7, T47D, and MDA-MB-231, confirmed by fluorescent and confocal microscopy. Mitochondria from the untransformed human mammary epithelia increased drug sensitivity of MCF-7 cells to paclitaxel. Real-time PCR showed that exogenous normal mitochondria of MCF-12A suppressed gene expression of glycolytic enzymes, lactate dehydrogenase A, and glucose transporter 1 and 3 of MCF-7 and MDA-MB-231 cells. Glycolysis cell-based assay revealed that normal mitochondria significantly suppressed lactate production in culture media of MCF-7, T47D, and MDA-MB-231 cells. In conclusion, normal mitochondria suppress cancer proliferation and increase drug sensitivity by the mechanism of inhibition of cancer cell glycolysis and glucose uptake.

  15. AMPK-Regulated and Akt-Dependent Enhancement of Glucose Uptake Is Essential in Ischemic Preconditioning-Alleviated Reperfusion Injury

    PubMed Central

    Liu, Wenchong; Huang, Qichao; Yang, Weidong; Fu, Feng; Ma, Heng; Su, Hui; Wang, Haichang; Wang, Jing; Zhang, Haifeng; Gao, Feng

    2013-01-01

    Aims Ischemic preconditioning (IPC) is a potent form of endogenous protection. However, IPC-induced cardioprotective effect is significantly blunted in insulin resistance-related diseases and the underlying mechanism is unclear. This study aimed to determine the role of glucose metabolism in IPC-reduced reperfusion injury. Methods Normal or streptozotocin (STZ)-treated diabetic rats subjected to 2 cycles of 5 min ischemia/5 min reperfusion prior to myocardial ischemia (30 min)/reperfusion (3 h). Myocardial glucose uptake was determined by 18F-fluorodeoxyglucose-positron emission tomography (PET) scan and gamma-counter biodistribution assay. Results IPC exerted significant cardioprotection and markedly improved myocardial glucose uptake 1 h after reperfusion (P<0.01) as evidenced by PET images and gamma-counter biodistribution assay in ischemia/reperfused rats. Meanwhile, myocardial translocation of glucose transporter 4 (GLUT4) to plasma membrane together with myocardial Akt and AMPK phosphorylation were significantly enhanced in preconditioned hearts. Intramyocardial injection of GLUT4 siRNA markedly decreased GLUT4 expression and blocked the cardioprotection of IPC as evidence by increased myocardial infarct size. Moreover, the PI3K inhibitor wortmannin significantly inhibited activation of Akt and AMPK, reduced GLUT4 translocation, glucose uptake and ultimately, depressed IPC-induced cardioprotection. Furthermore, IPC-afforded antiapoptotic effect was markedly blunted in STZ-treated diabetic rats. Exogenous insulin supplementation significantly improved glucose uptake via co-activation of myocardial AMPK and Akt and alleviated ischemia/reperfusion injury as evidenced by reduced myocardial apoptosis and infarction size in STZ-treated rats (P<0.05). Conclusions The present study firstly examined the role of myocardial glucose metabolism during reperfusion in IPC using direct genetic modulation in vivo. Augmented glucose uptake via co-activation of myocardial AMPK

  16. AMPKα2 deficiency uncovers time dependency in the regulation of contraction-induced palmitate and glucose uptake in mouse muscle.

    PubMed

    Abbott, Marcia J; Bogachus, Lindsey D; Turcotte, Lorraine P

    2011-07-01

    AMP-activated protein kinase (AMPK) is a fuel sensor in skeletal muscle with multiple downstream signaling targets that may be triggered by increases in intracellular Ca(2+) concentration ([Ca(2+)]). The purpose of this study was to determine whether increases in intracellular [Ca(2+)] induced by caffeine act solely via AMPKα(2) and whether AMPKα(2) is essential to increase glucose uptake, fatty acid (FA) uptake, and FA oxidation in contracting skeletal muscle. Hindlimbs from wild-type (WT) or AMPKα(2) dominant-negative (DN) transgene mice were perfused during rest (n = 11), treatment with 3 mM caffeine (n = 10), or muscle contraction (n = 11). Time-dependent effects on glucose and FA uptake were uncovered throughout the 20-min muscle contraction perfusion period (P < 0.05). Glucose uptake rates did not increase in DN mice during muscle contraction until the last 5 min of the protocol (P < 0.05). FA uptake rates were elevated at the onset of muscle contraction and diminished by the end of the protocol in DN mice (P < 0.05). FA oxidation rates were abolished in the DN mice during muscle contraction (P < 0.05). The DN transgene had no effect on caffeine-induced FA uptake and oxidation (P > 0.05). Glucose uptake rates were blunted in caffeine-treated DN mice (P < 0.05). The DN transgene resulted in a greater use of intramuscular triglycerides as a fuel source during muscle contraction. The DN transgene did not alter caffeine- or contraction-mediated changes in the phosphorylation of Ca(2+)/calmodulin-dependent protein kinase I or ERK1/2 (P > 0.05). These data suggest that AMPKα(2) is involved in the regulation of substrate uptake in a time-dependent manner in contracting muscle but is not necessary for regulation of FA uptake and oxidation during caffeine treatment.

  17. Production of extracellular protease and glucose uptake in Bacillus clausii in steady-state and transient continuous cultures.

    PubMed

    Christiansen, Torben; Nielsen, Jens

    2002-08-28

    The production of the extracellular alkaline protease Savinase (EC 3.4.21.62) and glucose uptake in a non-sporulating strain of Bacillus clausii were investigated by analysing steady-state and transients during continuous cultivations. The specific production rate was found to have an optimum at a dilution rate between 0.14 and 0.17 h(-1), whereas the yield of Savinase on glucose was found to increase with decreasing specific growth rate. A linear relationship between the ribosomal RNA content and the specific production rate was found, indicating that the translational capacity may be limiting for product formation. The dynamics of the production of Savinase were studied during step changes in the dilution rate. During a step down in the dilution rate the specific production rate decreased immediately until it reached a new steady value. During a step-up an initial cease in the production rate was observed, but when glucose stopped to accumulate the production rate was regained. The glucose uptake was further investigated when chemostat cultures growing at different dilution rates were exposed to glucose pulses. The maximal glucose uptake capacity was found to be dependent on the initial specific growth rate. Furthermore, the adaptation to high glucose concentrations was faster at high dilution rates than at low dilution rates.

  18. PTP1B deficiency increases glucose uptake in neonatal hepatocytes: involvement of IRA/GLUT2 complexes.

    PubMed

    González-Rodriguez, Agueda; Nevado, Carmen; Escrivá, Fernando; Sesti, Giorgio; Rondinone, Cristina M; Benito, Manuel; Valverde, Angela M

    2008-08-01

    The contribution of the liver to glucose utilization is essential to maintain glucose homeostasis. Previous data from protein tyrosine phosphatase (PTP) 1B-deficient mice demonstrated that the liver is a major site for PTP1B action in the periphery. In this study, we have investigated the consequences of PTP1B deficiency in glucose uptake in hepatocytes from neonatal and adult mice. The lack of PTP1B increased basal glucose uptake in hepatocytes from neonatal (3-5 days old) but not adult (10-12 wk old) mice. This occurs without changes in hexokinase, glucokinase, and glucose 6-phosphatase enzymatic activities. By contrast, the glucose transporter GLUT2 was upregulated at the protein level in neonatal hepatocytes and livers from PTP1B-deficient neonates. These results were accompanied by a significant increase in the net free intrahepatic glucose levels in the livers of PTP1B(-/-) neonates. The association between GLUT2 and insulin receptor (IR) A isoform was increased in PTP1B(-/-) neonatal hepatocytes compared with the wild-type. Indeed, PTP1B deficiency in neonatal hepatocytes shifted the ratio of isoforms A and B of the IR by increasing the amount of IRA and decreasing IRB. Moreover, overexpression of IRA in PTP1B(-/-) neonatal hepatocytes increased the amount of IRA/GLUT2 complexes. Conversely, hepatocytes from adult mice only expressed IRB. Since IRA plays a direct role in the regulation of glucose uptake in neonatal hepatocytes through its specific association with GLUT2, we propose the increase in IRA/GLUT2 complexes due to PTP1B deficiency as the molecular mechanism of the increased glucose uptake in the neonatal stage.

  19. Carnosic acid as a component of rosemary extract stimulates skeletal muscle cell glucose uptake via AMPK activation.

    PubMed

    Naimi, Madina; Vlavcheski, Filip; Murphy, Brennan; Hudlicky, Tomas; Tsiani, Evangelia

    2017-01-01

    Compounds that increase the activity of the energy sensor AMP-activated kinase (AMPK) have the potential to regulate blood glucose levels. Although rosemary extract (RE) has been reported to activate AMPK and reduce blood glucose levels in vivo, the chemical components responsible for these effects are not known. In the present study, we measured the levels of the polyphenol carnosic acid (CA) in RE and examined the effects and the mechanism of action of CA on glucose transport system in muscle cells. High performance liquid chromatography (HPLC) was used to measure the levels of CA in RE. Parental and GLUT4myc or GLUT1myc overexpressing L6 rat myotubes were used. Glucose uptake was assessed using [(3) H]-2-deoxy-d-glucose. Total and phosphorylated levels of Akt and AMPK were measured by immunoblotting. Plasma membrane GLUT4myc and GLUT1myc levels were examined using a GLUT translocation assay. Statistics included analysis of variance (ANOVA) followed by Tukey's post-hoc test. At concentrations found in rosemary extract, CA stimulated glucose uptake in L6 myotubes. At 2.0 μmol/L CA a response (226 ± 9.62% of control, P=.001), similar to maximum insulin (201 ± 7.86% of control, P=.001) and metformin (213 ± 10.74% of control, P=.001) was seen. Akt phosphorylation was not affected by CA while AMPK and ACC phosphorylation was increased and the CA-stimulated glucose uptake was significantly reduced by the AMPK inhibitor compound C. Plasma membrane GLUT4 or GLUT1 glucose transporter levels were not affected by CA. Our study shows increased muscle cell glucose uptake and AMPK activation by low CA concentrations, found in rosemary extract, indicating that CA may be responsible for the antihyperglycemic properties of rosemary extract seen in vivo.

  20. Antioxidants improve impaired insulin-mediated glucose uptake and prevent migration and proliferation of cultured rabbit coronary smooth muscle cells induced by high glucose.

    PubMed

    Yasunari, K; Kohno, M; Kano, H; Yokokawa, K; Minami, M; Yoshikawa, J

    1999-03-16

    To explore the role of intracellular oxidative stress in high glucose-induced atherogenesis, we examined the effect of probucol and/or alpha-tocopherol on the migration and growth characteristics of cultured rabbit coronary vascular smooth muscle cells (VSMCs). Chronic high-glucose-medium (22. 2 mmol/L) treatment increased platelet-derived growth factor (PDGF)-BB-mediated VSMC migration, [3H]thymidine incorporation, and cell number compared with VSMCs treated with normal-glucose medium (5.6 mmol/L+16.6 mmol/L mannose). Probucol and alpha-tocopherol significantly suppressed high glucose-induced increase in VSMC migration, cell number, and [3H]thymidine incorporation. Probucol and alpha-tocopherol suppressed high glucose-induced elevation of the cytosolic ratio of NADH/NAD+, phospholipase D, and membrane-bound protein kinase C activation. Probucol, alpha-tocopherol, and calphostin C improved the high glucose-induced suppression of insulin-mediated [3H]deoxyglucose uptake. Chronic high-glucose treatment increased the oxidative stress, which was significantly suppressed by probucol, alpha-tocopherol, suramin, and calphostin C. These findings suggest that probucol and alpha-tocopherol may suppress high glucose-induced VSMC migration and proliferation via suppression of increases in the cytosolic ratio of free NADH/NAD+, phospholipase D, and protein kinase C activation induced by high glucose, which result in reduction in intracellular oxidative stress.

  1. [Influence of saliva components on periodontal disease in insulin-dependent diabetics].

    PubMed

    Willershausen-Zönnchen, B; Lemmen, C; Hamm, G

    1991-04-01

    In diabetic patients an increased incidence of periodontal disease has been demonstrated. This study was to elucidate the influence of saliva constituents on periodontal alterations. 31 insulin-dependent type-I diabetics and a control group were submitted to oral examination. During daytime salivary samples were collected at regular intervals for analysis of glucose, sodium, potassium, calcium and the pH values. Additional information on relevant blood values and organic complications were obtained from the diabetic group. The results revealed a significant correlation between the degree of diabetes control and periodontal disease. The saliva concentrations of glucose and potassium were significantly elevated as against the controls. However, no correlation was found between the saliva components and periodontal disease.

  2. Additive effect of contraction and insulin on glucose uptake and glycogen synthase in muscle with different glycogen contents.

    PubMed

    Lai, Yu-Chiang; Zarrinpashneh, Elham; Jensen, Jørgen

    2010-05-01

    Insulin and contraction regulate glucose uptake and glycogen synthase (GS) via distinct mechanisms in skeletal muscles, and an additive effect has been reported. Glycogen content is known to influence both contraction- and insulin-stimulated glucose uptake and GS activity. Our study reports that contraction and insulin additively stimulate glucose uptake in rat epitrochlearis muscles with normal (NG) and high (HG) glycogen contents, but the additive effect was only partial. In muscles with low glycogen (LG) content no additive effect was seen, but glucose uptake was higher in LG than in NG and HG during contraction, insulin stimulation, and when the two stimuli were combined. In LG, contraction-stimulated AMP-activated protein kinase (AMPK) activity and insulin-stimulated PKB phosphorylation were higher than in NG and HG, but phosphorylation of Akt substrate of 160 kDa was not elevated correspondingly. GLUT4 content was 50% increased in LG (rats fasted 24 h), which may explain the increased glucose uptake. Contraction and insulin also additively increased GS fractional activity in NG and HG but not in LG. GS fractional activity correlated most strongly with GS Ser641 phosphorylation (R -0.94, P<0.001). GS fractional activity also correlated with GS Ser7,10 phosphorylation, but insulin did not reduce GS Ser7,10 phosphorylation. In conclusion, an additive effect of contraction and insulin on glucose uptake and GS activity occurs in muscles with normal and high glycogen content but not in muscles with low glycogen content. Furthermore, contraction, insulin, and glycogen content all regulate GS Ser641 phosphorylation and GS fractional activity in concert.

  3. Two weeks of moderate intensity continuous training, but not high intensity interval training increases insulin-stimulated intestinal glucose uptake.

    PubMed

    Motiani, Kumail Kumar; Savolainen, Anna M; Eskelinen, Jari-Joonas; Toivanen, Jussi; Ishizu, Tamiko; Yli-Karjanmaa, Minna; Virtanen, Kirsi A; Parkkola, Riitta; Kapanen, Jukka; Gronroos, Tove J; Haaparanta-Solin, Merja; Solin, Olof; Savisto, Nina; Ahotupa, Markku; Löyttyniemi, Eliisa; Knuuti, Juhani; Nuutila, Pirjo; Kalliokoski, Kari K; Hannukainen, Jarna C

    2017-02-09

    Similar to muscles, the intestine is also insulin resistant in obese subjects and subjects with impaired glucose tolerance. Exercise training improves muscle insulin sensitivity, but its effects on intestinal metabolism are not known. We studied the effects of high intensity interval training (HIIT) and moderate intensity continuous training (MICT) on intestinal glucose and free fatty acid uptake from circulation in humans. Twenty-eight healthy middle-aged sedentary men were randomized for two weeks of HIIT or MICT. Intestinal insulin-stimulated glucose uptake and fasting free fatty acid uptake from circulation were measured using positron emission tomography and [(18)F]FDG and [(18)F]FTHA. In addition, effects of HIIT and MICT on intestinal Glut2 and CD36 protein expression were studied in rats. Training improved aerobic capacity (p=0.001) and whole-body insulin sensitivity (p=0.04), but not differently between HIIT and MICT. Insulin-stimulated glucose uptake increased only after the MICT in the colon [HIIT=0%; MICT=37%] (p=0.02 for time*training) and tended to increase in the jejunum [HIIT=-4%; MICT=13%] (p=0.08 for time*training). Fasting free fatty acid uptake decreased in the duodenum in both groups [HIIT=-6%; MICT=-48%] (p=0.001 time) and tended to decrease in the colon in the MICT group [HIIT=0%; MICT=-38%] (p=0.08 for time*training). In rats, both training groups had higher Glut2 and CD36 expression compared to control animals. This study shows that already two weeks of MICT enhances insulin-stimulated glucose uptake while both training modes reduce fasting free fatty acid uptake in the intestine in healthy middle-aged men, providing an additional mechanism by which exercise training can improve whole body metabolism.

  4. The effect of auranofin on glucose uptake by the isolated vascularly perfused, small intestine of the rat.

    PubMed

    McMaster, D; Love, A H

    1987-11-01

    Auranofin at a concentration of 2.5 micrograms/ml had no effect on glucose uptake by the viable, isolated, vascularly perfused, small intestine of the rat and no net movement of water was detected. No effect on glucose uptake or water movement was found when intestines from rats fed 0.1 mg/Kg body weight per day for 4 weeks were perfused with drug free medium. Mucosal damage was seen in 1 of 2 rats fed Auranofin and examined histologically.

  5. Highly variable gastric emptying in patients with insulin dependent diabetes mellitus.

    PubMed Central

    Nowak, T V; Johnson, C P; Kalbfleisch, J H; Roza, A M; Wood, C M; Weisbruch, J P; Soergel, K H

    1995-01-01

    Some diabetic patients--particularly those with nausea and vomiting--frequently have evidence of delayed gastric emptying while other diabetic patients may in fact exhibit accelerated gastric emptying. Whether the presence or absence of symptoms of upper gastrointestinal dysfunction correlated with objective measures of gastric emptying in insulin dependent diabetic subjects was investigated. Twenty one insulin dependent diabetic patients underwent a solid phase gastric emptying scintiscan using in vivo labelled chicken liver. Thirteen patients had symptoms suggestive of gastrointestinal dysfunction (nausea, vomiting, early satiety, or constipation), while eight patients had no gastrointestinal symptoms. Eleven patients had orthostatic hypotension. All patients had been diabetic since childhood or adolescence. As a group, the diabetic patients showed a half time (T50) of gastric emptying (mean (SD) 150.0 min (163.7) that was not significantly different from that of 12 healthy control subjects (148.1 min (62.4)). Those diabetic patients without gastrointestinal symptoms and without orthostatic hypotension, however, showed a gastric emptying half time (70.1 min (41.6)) that was significantly faster than that of the control subjects. Conversely, those diabetic patients with nausea, vomiting, and early satiety (or early satiety alone) showed T50 values that were significantly greater than those of the diabetic patients without these symptoms. No correlation was found between the T50 value and the duration of diabetes, the fasting blood glucose at the time of study, or the respiratory variation in heart rate (E:I ratio). These observations indicate that highly variable rates of gastric emptying occur in insulin dependent diabetic patients, and that accelerated gastric emptying may occur in diabetic patients who have no symptoms of gastrointestinal dysfunction. PMID:7672674

  6. In uncontrolled diabetes, thyroid hormone and sympathetic activators induce thermogenesis without increasing glucose uptake in brown adipose tissue.

    PubMed

    Matsen, Miles E; Thaler, Joshua P; Wisse, Brent E; Guyenet, Stephan J; Meek, Thomas H; Ogimoto, Kayoko; Cubelo, Alex; Fischer, Jonathan D; Kaiyala, Karl J; Schwartz, Michael W; Morton, Gregory J

    2013-04-01

    Recent advances in human brown adipose tissue (BAT) imaging technology have renewed interest in the identification of BAT activators for the treatment of obesity and diabetes. In uncontrolled diabetes (uDM), activation of BAT is implicated in glucose lowering mediated by intracerebroventricular (icv) administration of leptin, which normalizes blood glucose levels in streptozotocin (STZ)-induced diabetic rats. The potent effect of icv leptin to increase BAT glucose uptake in STZ-diabetes is accompanied by the return of reduced plasma thyroxine (T4) levels and BAT uncoupling protein-1 (Ucp1) mRNA levels to nondiabetic controls. We therefore sought to determine whether activation of thyroid hormone receptors is sufficient in and of itself to lower blood glucose levels in STZ-diabetes and whether this effect involves activation of BAT. We found that, although systemic administration of the thyroid hormone (TR)β-selective agonist GC-1 increases energy expenditure and induces further weight loss in STZ-diabetic rats, it neither increased BAT glucose uptake nor attenuated diabetic hyperglycemia. Even when GC-1 was administered in combination with a β(3)-adrenergic receptor agonist to mimic sympathetic nervous system activation, glucose uptake was not increased in STZ-diabetic rats, nor was blood glucose lowered, yet this intervention potently activated BAT. Similar results were observed in animals treated with active thyroid hormone (T3) instead of GC-1. Taken together, our data suggest that neither returning normal plasma thyroid hormone levels nor BAT activation has any impact on diabetic hyperglycemia, and that in BAT, increases of Ucp1 gene expression and glucose uptake are readily dissociated from one another in this setting.

  7. Identification and preliminary SAR studies of (+)-Geodin as a glucose uptake stimulator for rat adipocytes.

    PubMed

    Sato, Seiichi; Okusa, Noriyuki; Ogawa, Akiyo; Ikenoue, Takao; Seki, Tetsuya; Tsuji, Takashi

    2005-09-01

    (+)-Geodin (1) was isolated from Penicillium glabrum AJ117540 with activity that stimulates glucose uptake by rat adipocytes. Unlike insulin it is active in the presence of wortmannin. Dihydrogeodin (2) and sulochrin (3) which are the precursors of (+)-geodin biosynthesis were also isolated from the same fungus. Preliminary SAR studies of 1 showed some analogues had enhanced activity. Especially, the activities of racemic geodin and dibromo analogue (7a) were comparable to that of the natural product. Geodin (1), a known fungal metabolite, was isolated from Penicillium glabrum AJ117540 as an active substance (Fig. 1). Dihydrogeodin (2) and sulochrin (3), the precursors of 1, were also isolated from the same fungal extract. In this study, preliminary mechanistic insight and SAR are reported.

  8. The role of acetic acid on glucose uptake and blood flow rates in the skeletal muscle in humans with impaired glucose tolerance.

    PubMed

    Mitrou, P; Petsiou, E; Papakonstantinou, E; Maratou, E; Lambadiari, V; Dimitriadis, P; Spanoudi, F; Raptis, S A; Dimitriadis, G

    2015-06-01

    Previous studies support the glucose-lowering effect of vinegar. However, the effect of vinegar on muscle glucose metabolism and endothelial function has not been studied in humans. This open, randomized, crossover, placebo-controlled study aims to investigate the effects of vinegar on muscle glucose metabolism, endothelial function and circulating lipid levels in subjects with impaired glucose tolerance (IGT) using the arteriovenous difference technique. Eight subjects with IGT (4 males, age 46±10 years, body mass index 30±5) were randomised to consume 0.50 mmol vinegar (6% acetic acid) or placebo before a mixed meal. Plasma samples were taken for 300 min from the radial artery and the forearm vein for measurements of glucose, insulin, triglycerides, non-esterified fatty acids (NEFAs) and glycerol. Muscle blood flow was measured with strain gauge plethysmography. Glucose flux was calculated as the arteriovenous difference of glucose multiplied by the blood flow rates. Vinegar compared with placebo: (1) decreased arterial plasma insulin (Poverall<0.001; P75 min=0.014, β=-42), (2) increased forearm blood flow (Poverall<0.001; P240 min=0.011, β=1.53; P300 min=0.023, β=1.37), (3) increased muscle glucose uptake (Poverall<0.001; P60 min=0.029, β=2.78) and (4) decreased arterial plasma triglycerides (Poverall=0.005; P240 min<0.001, β=-344; P300 min<0.001, β=-373), without changing NEFA and glycerol. In individuals with IGT, vinegar ingestion before a mixed meal results in an enhancement of muscle blood flow, an improvement of glucose uptake by the forearm muscle and a reduction of postprandial hyperinsulinaemia and hypertriglyceridaemia. From this point of view, vinegar may be considered beneficial for improving insulin resistance and metabolic abnormalities in the atherogenic prediabetic state.

  9. SIK2 regulates CRTCs, HDAC4 and glucose uptake in adipocytes

    PubMed Central

    Henriksson, Emma; Säll, Johanna; Gormand, Amélie; Wasserstrom, Sebastian; Morrice, Nicholas A.; Fritzen, Andreas M.; Foretz, Marc; Campbell, David G.; Sakamoto, Kei; Ekelund, Mikael; Degerman, Eva; Stenkula, Karin G.; Göransson, Olga

    2015-01-01

    ABSTRACT Salt-inducible kinase 2 (SIK2) is an AMP-activated protein kinase (AMPK) related kinase abundantly expressed in adipose tissue. Our aim was to identify molecular targets and functions of SIK2 in adipocytes, and to address the role of PKA-mediated phosphorylation of SIK2 on Ser358. Modulation of SIK2 in adipocytes resulted in altered phosphorylation of CREB-regulated transcription co-activator 2 (CRTC2), CRTC3 and class IIa histone deacetylase 4 (HDAC4). Furthermore, CRTC2, CRTC3, HDAC4 and protein phosphatase 2A (PP2A) interacted with SIK2, and the binding of CRTCs and PP2A to wild-type but not Ser358Ala SIK2, was reduced by cAMP elevation. Silencing of SIK2 resulted in reduced GLUT4 (also known as SLC2A4) protein levels, whereas cells treated with CRTC2 or HDAC4 siRNA displayed increased levels of GLUT4. Overexpression or pharmacological inhibition of SIK2 resulted in increased and decreased glucose uptake, respectively. We also describe a SIK2–CRTC2–HDAC4 pathway and its regulation in human adipocytes, strengthening the physiological relevance of our findings. Collectively, we demonstrate that SIK2 acts directly on CRTC2, CRTC3 and HDAC4, and that the cAMP–PKA pathway reduces the interaction of SIK2 with CRTCs and PP2A. Downstream, SIK2 increases GLUT4 levels and glucose uptake in adipocytes. PMID:25472719

  10. Tear secretion and tear film function in insulin dependent diabetics

    PubMed Central

    Goebbels, M.

    2000-01-01

    BACKGROUND—Diabetic patients often complain of dry eye symptoms, such as burning and/or foreign body sensation. The aim of the present study was to investigate whether diabetes mellitus is correlated with tear film dysfunction and/or tear hyposecretion.
METHODS—In 86 consecutive insulin dependent diabetics with retinopathy and 84 non-diabetic controls (age and sex matched) we performed fluorophotometry of tear secretion, the Schirmer test, and impression cytology of the conjunctival epithelium and determined the tear film break up time.
RESULTS—When compared with the healthy control group diabetics showed decreased Schirmer test readings (−37%, p <0.001) and significantly more frequent and pronounced signs of conjunctival metaplasia. None of the other values differed between groups.
CONCLUSION—In insulin dependent diabetics, reflex tearing was demonstrated to be significantly decreased. In contrast, unstimulated basal tear flow and tear film break up time were found to be normal. However, a majority of insulin dependent diabetics shows distinct signs of conjunctival surface disease.

 PMID:10611093

  11. Low-protein, high-carbohydrate diet increases glucose uptake and fatty acid synthesis in brown adipose tissue of rats.

    PubMed

    Aparecida de França, Suélem; Pavani Dos Santos, Maísa; Nunes Queiroz da Costa, Roger Vinícius; Froelich, Mendalli; Buzelle, Samyra Lopes; Chaves, Valéria Ernestânia; Giordani, Morenna Alana; Pereira, Mayara Peron; Colodel, Edson Moleta; Marlise Balbinotti Andrade, Cláudia; Kawashita, Nair Honda

    2014-04-01

    The aim of this study was to evaluate glucose uptake and the contribution of glucose to fatty acid (FA) synthesis and the glycerol-3-phosphate (G3P) of triacylglycerol synthesis by interscapular brown adipose tissue (IBAT) of low-protein, high-carbohydrate (LPHC) diet-fed rats. LPHC (6% protein; 74% carbohydrate) or control (17% protein; 63% carbohydrate) diets were administered to rats (∼ 100 g) for 15 d. Total FA and G3P synthesis and the synthesis of FA and G3P from glucose were evaluated in vivo by (3)H2O and (14)C-glucose. Sympathetic neural contribution for FA synthesis was evaluated by comparing the synthesis in denervated (7 d before) IBAT with that of the contralateral innervated side. The insulin signaling and β3 adrenergic receptor (β3-AR) contents, as well as others, were determined by Western blot (Student's t test or analysis of variance; P ≤ 0.05). Total FA synthesis in IBAT was 133% higher in the LPHC group and was reduced 85% and 70% by denervation for the LPHC and control groups, respectively. Glucose uptake was 3.5-fold higher in the IBAT of LPHC rats than in that of the control rats, and the contribution of glucose to the total FA synthesis increased by 12% in control rats compared with 18% in LPHC rats. The LPHC diet increased the G3P generation from glucose by 270% and the insulin receptor content and the p-AKT insulin stimulation in IBAT by 120% and reduced the β3-AR content by 50%. The LPHC diet stimulated glucose uptake, both the total rates and the rates derived from glucose-dependent FA and G3P synthesis, by increasing the insulin sensitivity and the sympathetic flux, despite a reduction in the β3-AR content. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Decreased in vivo glucose uptake but normal expression of GLUT1 and GLUT4 in skeletal muscle of diabetic rats.

    PubMed Central

    Kahn, B B; Rossetti, L; Lodish, H F; Charron, M J

    1991-01-01

    This study was designed to determine whether altered glucose transporter expression is essential for the in vivo insulin-resistant glucose uptake characteristic of streptozocin-induced diabetes. Immunofluorescence in rat skeletal muscle colocalizes GLUT4 with dystrophin, both intrinsic to muscle fibers. In contrast, GLUT1 is extrinsic to muscle fibers, probably in perineurial sheath. Immunoblotting shows that levels of GLUT1 and GLUT4 protein per DNA in hindlimb muscle are unaltered from control levels at 7 d of diabetes but decrease to approximately 20% of control at 14 d of diabetes. This decrease is prevented by insulin treatment. In adipose cells of 7 d diabetic rats, GLUT4 levels are depressed. Thus, GLUT4 undergoes tissue-specific regulation in response to diabetes. GLUT4 and GLUT1 mRNA levels in muscle are decreased 62-70% at both 7 and 14 d of diabetes and are restored by insulin treatment. At 7 d of diabetes, when GLUT4 protein levels in muscle are unaltered, in vivo insulin-stimulated glucose uptake measured by euglycemic clamp is 54% of control. This reflects impairment in both glycogen synthesis and glycolysis and the substrate common to these two pathways, glucose-6-phosphate, is decreased approximately 30% in muscle of diabetic rats. These findings suggest a defect early in the pathway of glucose utilization, probably at the step of glucose transport. Because GLUT1 and GLUT4 levels are unaltered at 7 d of diabetes, reduced glucose uptake in muscle probably reflects impaired glucose transporter translocation or intrinsic activity. Later, at 14 d of diabetes, GLUT1 and GLUT4 protein levels are reduced, suggesting that sequential defects may contribute to the insulin-resistant glucose transport characteristic of diabetes. Images PMID:2040701

  13. Hypoxia-induced increases in glucose uptake do not cause oxidative injury or advanced glycation end-product (AGE) formation in vascular endothelial cells

    PubMed Central

    Viator, Ryan J; Khader, Heba; Hingorani, Neha; Long, Sara; Solodushko, Victor; Fouty, Brian

    2015-01-01

    An increase in glucose uptake by endothelial cells exposed to hyperglycemia is the presumed initiating event that causes systemic vascular disease in individuals with diabetes. Diabetics do not develop clinically significant pulmonary vascular disease, however, despite the pulmonary circulation’s exposure to the same level of glucose. We hypothesized that pulmonary artery endothelial cells are protected from the detrimental effects of hyperglycemia because they take up less glucose than endothelial cells in the systemic circulation, either because of intrinsic differences between the two cell types or because the lower oxygen tension in the pulmonary arterial blood depresses glucose uptake. To test this hypothesis, we exposed normoglycemic and hyperglycemic bovine pulmonary artery (PAECs) and aortic endothelial cells (AECs) from the same animal to progressively lower oxygen tensions and determined glucose uptake. In contrast with our initial hypothesis, we detected no significant difference in glucose uptake between the two cell types. Furthermore, glucose uptake in both PAECs and AECs increased, not decreased, as the oxygen tension dropped; this oxygen-dependent increase in glucose uptake in endothelial cells predominated over the hyperglycemia-mediated decrease in glucose uptake that has been reported by others. Despite the increase in glucose uptake at lower oxygen tensions, we detected no corresponding increase in protein carbonylation or advanced glycation endproducts. These results demonstrate that small physiologically relevant changes in oxygen tension can have an important impact on glucose uptake in endothelial cells. These results also demonstrate that an increase in glucose uptake, by itself, is not sufficient to generate ROS-mediated protein carbonylation or increase intracellular advanced glycation endproducts in vascular endothelial cells. PMID:26177960

  14. Obestatin inhibits lipogenesis and glucose uptake in isolated primary rat adipocytes.

    PubMed

    Pruszynska-Oszmalek, E; Szczepankiewicz, D; Hertig, I; Skrzypski, M; Sassek, M; Kaczmarek, P; Kolodziejski, P A; Mackowiak, P; Nowak, K W; Strowski, M Z; Wojciechowicz, T

    2013-01-01

    Ghrelin and obestatin are encoded by the preproghrelin gene and originate from post-translational processing of the preproghrelin peptide. Obestatin is mainly present in the stomach, but its action is focused on appetite inhibition in opposition to ghrelin function. Recently, it has been presented that obestatin may regulate adipocyte metabolism and influence fat content. However, obestatin action is still poorly understood. Therefore, we aimed to investigate obestatin function on adipocyte metabolism in the rat. We studied changes in the mRNA expression of active and inactive isoforms of obestatin receptors. In addition, we analyzed influence of obestatin on lipogenesis, lipolysis and glucose transport in isolated adipocytes. Moreover, we also performed analysis of obestatin action on lipolysis in differentiated rat preadipocytes with silenced obestatin receptor. We found significantly higher expression of the obestatin receptor Gpr39-1a active form at an mRNA level following adipocytes incubation with obestatin. We did not observe expression changes in the inactive form of obestatin receptor Gpr39-1b. Additionally, we found significant changes in Gpr39-1a expression following obestatin receptor silencing in cells incubated with obestatin in comparison to control. Obestatin inhibited both, basal and insulin-stimulated lipogenesis and glucose transport in adipocytes. Furthermore, obestatin potentiated adrenalin-stimulated lipolysis. We also found reduced glycerol release following obestatin incubation in adipocytes with silenced Gpr39 gene. Our results indicate that obestatin acts via the GPR39 receptor in isolated adipocytes, and that through this mechanism obestatin influences lipid accumulation, glucose uptake and lipolysis.

  15. Zinc finger protein 407 (ZFP407) regulates insulin-stimulated glucose uptake and glucose transporter 4 (Glut4) mRNA.

    PubMed

    Buchner, David A; Charrier, Alyssa; Srinivasan, Ethan; Wang, Li; Paulsen, Michelle T; Ljungman, Mats; Bridges, Dave; Saltiel, Alan R

    2015-03-06

    The glucose transporter GLUT4 facilitates insulin-stimulated glucose uptake in peripheral tissues including adipose, muscle, and heart. GLUT4 function is impaired in obesity and type 2 diabetes leading to hyperglycemia and an increased risk of cardiovascular disease and neuropathy. To better understand the regulation of GLUT4 function, a targeted siRNA screen was performed and led to the discovery that ZFP407 regulates insulin-stimulated glucose uptake in adipocytes. The decrease in insulin-stimulated glucose uptake due to ZFP407 deficiency was attributed to a reduction in GLUT4 mRNA and protein levels. The decrease in GLUT4 was due to both decreased transcription of Glut4 mRNA and decreased efficiency of Glut4 pre-mRNA splicing. Interestingly, ZFP407 coordinately regulated this decrease in transcription with an increase in the stability of Glut4 mRNA, resulting in opposing effects on steady-state Glut4 mRNA levels. More broadly, transcriptome analysis revealed that ZFP407 regulates many peroxisome proliferator-activated receptor (PPAR) γ target genes beyond Glut4. ZFP407 was required for the PPARγ agonist rosiglitazone to increase Glut4 expression, but was not sufficient to increase expression of a PPARγ target gene reporter construct. However, ZFP407 and PPARγ co-overexpression synergistically activated a PPARγ reporter construct beyond the level of PPARγ alone. Thus, ZFP407 may represent a new modulator of the PPARγ signaling pathway.

  16. Glucose transporter 1-mediated glucose uptake is limiting for B-cell acute lymphoblastic leukemia anabolic metabolism and resistance to apoptosis.

    PubMed

    Liu, T; Kishton, R J; Macintyre, A N; Gerriets, V A; Xiang, H; Liu, X; Abel, E D; Rizzieri, D; Locasale, J W; Rathmell, J C

    2014-10-16

    The metabolic profiles of cancer cells have long been acknowledged to be altered and to provide new therapeutic opportunities. In particular, a wide range of both solid and liquid tumors use aerobic glycolysis to supply energy and support cell growth. This metabolic program leads to high rates of glucose consumption through glycolysis with secretion of lactate even in the presence of oxygen. Identifying the limiting events in aerobic glycolysis and the response of cancer cells to metabolic inhibition is now essential to exploit this potential metabolic dependency. Here, we examine the role of glucose uptake and the glucose transporter Glut1 in the metabolism and metabolic stress response of BCR-Abl+ B-cell acute lymphoblastic leukemia cells (B-ALL). B-ALL cells were highly glycolytic and primary human B-ALL samples were dependent on glycolysis. We show B-ALL cells express multiple glucose transporters and conditional genetic deletion of Glut1 led to a partial loss of glucose uptake. This reduced glucose transport capacity, however, was sufficient to metabolically reprogram B-ALL cells to decrease anabolic and increase catabolic flux. Cell proliferation decreased and a limited degree of apoptosis was also observed. Importantly, Glut1-deficient B-ALL cells failed to accumulate in vivo and leukemic progression was suppressed by Glut1 deletion. Similarly, pharmacologic inhibition of aerobic glycolysis with moderate doses of 2-deoxyglucose (2-DG) slowed B-ALL cell proliferation, but extensive apoptosis only occurred at high doses. Nevertheless, 2-DG induced the pro-apoptotic protein Bim and sensitized B-ALL cells to the tyrosine kinase inhibitor Dasatinib in vivo. Together, these data show that despite expression of multiple glucose transporters, B-ALL cells are reliant on Glut1 to maintain aerobic glycolysis and anabolic metabolism. Further, partial inhibition of glucose metabolism is sufficient to sensitize cancer cells to specifically targeted therapies, suggesting

  17. Glucose transporter 1-mediated glucose uptake is limiting for B-cell acute lymphoblastic leukemia anabolic metabolism and resistance to apoptosis

    PubMed Central

    Liu, T; Kishton, R J; Macintyre, A N; Gerriets, V A; Xiang, H; Liu, X; Abel, E D; Rizzieri, D; Locasale, J W; Rathmell, J C

    2014-01-01

    The metabolic profiles of cancer cells have long been acknowledged to be altered and to provide new therapeutic opportunities. In particular, a wide range of both solid and liquid tumors use aerobic glycolysis to supply energy and support cell growth. This metabolic program leads to high rates of glucose consumption through glycolysis with secretion of lactate even in the presence of oxygen. Identifying the limiting events in aerobic glycolysis and the response of cancer cells to metabolic inhibition is now essential to exploit this potential metabolic dependency. Here, we examine the role of glucose uptake and the glucose transporter Glut1 in the metabolism and metabolic stress response of BCR-Abl+ B-cell acute lymphoblastic leukemia cells (B-ALL). B-ALL cells were highly glycolytic and primary human B-ALL samples were dependent on glycolysis. We show B-ALL cells express multiple glucose transporters and conditional genetic deletion of Glut1 led to a partial loss of glucose uptake. This reduced glucose transport capacity, however, was sufficient to metabolically reprogram B-ALL cells to decrease anabolic and increase catabolic flux. Cell proliferation decreased and a limited degree of apoptosis was also observed. Importantly, Glut1-deficient B-ALL cells failed to accumulate in vivo and leukemic progression was suppressed by Glut1 deletion. Similarly, pharmacologic inhibition of aerobic glycolysis with moderate doses of 2-deoxyglucose (2-DG) slowed B-ALL cell proliferation, but extensive apoptosis only occurred at high doses. Nevertheless, 2-DG induced the pro-apoptotic protein Bim and sensitized B-ALL cells to the tyrosine kinase inhibitor Dasatinib in vivo. Together, these data show that despite expression of multiple glucose transporters, B-ALL cells are reliant on Glut1 to maintain aerobic glycolysis and anabolic metabolism. Further, partial inhibition of glucose metabolism is sufficient to sensitize cancer cells to specifically targeted therapies, suggesting

  18. A Survey of Insulin-Dependent Diabetes—Part I: Therapies and Devices

    PubMed Central

    Takahashi, Daisuke; Xiao, Yang; Hu, Fei; Lewis, Michael

    2008-01-01

    This paper surveys diabetes therapies from telemedicine viewpoint. In type 1 diabetes therapies, the exogenous insulin replacement is generally considered as a primary treatment. However, the complete replacement of exogenous insulin is still a challenging issue because of its complexity of modeling the dynamics, which is typically modeled nonlinearly. On the other hand, thanks to the progress of medical devices, currently the diabetes therapies are being automated. These medical devices include automated insulin pumps and blood glucose sensors. Insulin pumps are designed to create artificial insulin perfusion while they largely rely on the blood glucose profile measurements and these measurements are achieved by one or more blood glucose sensors. The blood glucose measurements are also important for the insulin-dependent diabetes therapies. An insulin pump along with sensors establishes a good feedback system providing the appropriate amount of the exogenous insulin on demand. Controlling the amount of exogenous insulin to suppress the blood glucose levels requires complicated computations. This paper mostly explains both type 1 and 2 diabetes and their mechanisms accompanied by descriptions of diabetes therapy and medical devices currently utilized in the therapy. PMID:18437199

  19. Oleylethanolamide impairs glucose tolerance and inhibits insulin-stimulated glucose uptake in rat adipocytes through p38 and JNK MAPK pathways.

    PubMed

    González-Yanes, Carmen; Serrano, Antonia; Bermúdez-Silva, Francisco Javier; Hernández-Dominguez, María; Páez-Ochoa, María Angeles; Rodríguez de Fonseca, Fernando; Sánchez-Margalet, Víctor

    2005-11-01

    Oleylethanolamide (OEA) is a lipid mediator that inhibits food intake and body weight gain and also exhibits hypolipemiant actions. OEA exerts its anorectic effects peripherally through the stimulation of C-fibers. OEA is synthesized in the intestine in response to feeding, increasing its levels in portal blood after the meal. Moreover, OEA is produced by adipose tissue, and a lipolytic effect has been found. In this work, we have examined the effect of OEA on glucose metabolism in rats in vivo and in isolated adipocytes. In vivo studies showed that acute administration (30 min and 6 h) of OEA produced glucose intolerance without decreasing insulin levels. Ex vivo, we found that 10 min of preincubation with OEA inhibited 30% insulin-stimulated glucose uptake in isolated adipocytes. Maximal effect was achieved at 1 microM OEA. The related compounds palmitylethanolamide and oleic acid had no effect, suggesting a specific mechanism. Insulin-stimulated GLUT4 translocation was not affected, but OEA promoted Ser/Thr phosphorylation of GLUT4, which may impair transport activity. This phosphorylation may be partly mediated by p38 and JNK kinases, since specific inhibitors (SB-203580 and SP-600125) partly reverted the inhibitory effect of OEA on insulin-stimulated glucose uptake. These results suggest that the lipid mediator OEA inhibits insulin action in the adipocyte, impairing glucose uptake via p38 and JNK kinases, and these effects may at least in part explain the glucose intolerance produced in rats in vivo. These effects of OEA may contribute to the anorectic effects induced by this mediator, and they might be also relevant for insulin resistance in adipose tissue.

  20. Erythritol reduces small intestinal glucose absorption, increases muscle glucose uptake, improves glucose metabolic enzymes activities and increases expression of Glut-4 and IRS-1 in type 2 diabetic rats.

    PubMed

    Chukwuma, Chika Ifeanyi; Mopuri, Ramgopal; Nagiah, Savania; Chuturgoon, Anil Amichund; Islam, Md Shahidul

    2017-08-02

    Studies have reported that erythritol, a low or non-glycemic sugar alcohol possesses anti-hyperglycemic and anti-diabetic potentials but the underlying mode of actions is not clear. This study investigated the underlying mode of actions behind the anti-hyperglycemic and anti-diabetic potentials of erythritol using different experimental models (experiment 1, 2 and 3). Experiment 1 examined the effects of increasing concentrations (2.5-20%) of erythritol on glucose absorption and uptake in isolated rat jejunum and psoas muscle, respectively. Experiments 2 and 3 examined the effects of a single oral dose of erythritol (1 g/kg bw) on intestinal glucose absorption, gastric emptying and postprandial blood glucose increase, glucose tolerance, serum insulin level, muscle/liver hexokinase and liver glucose-6 phosphatase activities, liver and muscle glycogen contents and mRNA and protein expression of muscle Glut-4 and IRS-1 in normal and type 2 diabetic animals. Experiment 1 revealed that erythritol dose dependently enhanced muscle glucose ex vivo. Experiment 2 demonstrated that erythritol feeding delayed gastric emptying and reduced small intestinal glucose absorption as well as postprandial blood glucose rise, especially in diabetic animals. Experiment 3 showed that erythritol feeding improved glucose tolerance, muscle/liver hexokinase and liver glucose-6 phosphatase activities, glycogen storage and also modulated expression of muscle Glut-4 and IRS-1 in diabetic animals. Data suggest that erythritol may exert anti-hyperglycemic effects not only via reducing small intestinal glucose absorption, but also by increasing muscle glucose uptake, improving glucose metabolic enzymes activity and modulating muscle Glut-4 and IRS-1 mRNA and protein expression. Hence, erythritol may be a useful dietary supplement for managing hyperglycemia, particularly for T2D.

  1. The flavanone homoeriodictyol increases SGLT-1-mediated glucose uptake but decreases serotonin release in differentiated Caco-2 cells

    PubMed Central

    Hoi, Julia Katharina; Holik, Ann-Katrin; Geissler, Katrin; Hans, Joachim; Friedl, Barbara; Liszt, Kathrin; Krammer, Gerhard E.; Ley, Jakob P.; Somoza, Veronika

    2017-01-01

    Flavanoids and related polyphenols, among them hesperitin, have been shown to modulate cellular glucose transport by targeting SGLT-1 and GLUT-2 transport proteins. We aimed to investigate whether homoeriodictyol, which is structurally related to hesperitin, affects glucose uptake in differentiated Caco-2 cells as a model for the intestinal barrier. The results revealed that, in contrast to other polyphenols, the flavanon homoeriodictyol promotes glucose uptake by 29.0 ± 3.83% at a concentration of 100 μM. The glucose uptake stimulating effect was sensitive to phloridzin, but not to phloretin, indicating an involvement of the sodium-coupled glucose transporter SGLT-1, but not of sodium-independent glucose transporters (GLUT). In addition, in contrast to the increased extracellular serotonin levels by stimulation with 500 mM D-(+)-glucose, treatment with 100 μM homoeriodictyol decreased serotonin release by –48.8 ± 7.57% in Caco-2 cells via a phloridzin-sensitive signaling pathway. Extracellular serotonin levels were also reduced by –57.1 ± 5.43% after application of 0.01 μM homoeriodictyol to human neural SH-SY5Y cells. In conclusion, we demonstrate that homoeriodictyol affects both the glucose metabolism and the serotonin system in Caco-2 cells via a SGLT-1-meditated pathway. Furthermore, the results presented here support the usage of Caco-2 cells as a model for peripheral serotonin release. Further investigations may address the value of homoeriodictyol in the treatment of anorexia and malnutrition through the targeting of SGLT-1. PMID:28192456

  2. The flavanone homoeriodictyol increases SGLT-1-mediated glucose uptake but decreases serotonin release in differentiated Caco-2 cells.

    PubMed

    Lieder, Barbara; Hoi, Julia Katharina; Holik, Ann-Katrin; Geissler, Katrin; Hans, Joachim; Friedl, Barbara; Liszt, Kathrin; Krammer, Gerhard E; Ley, Jakob P; Somoza, Veronika

    2017-01-01

    Flavanoids and related polyphenols, among them hesperitin, have been shown to modulate cellular glucose transport by targeting SGLT-1 and GLUT-2 transport proteins. We aimed to investigate whether homoeriodictyol, which is structurally related to hesperitin, affects glucose uptake in differentiated Caco-2 cells as a model for the intestinal barrier. The results revealed that, in contrast to other polyphenols, the flavanon homoeriodictyol promotes glucose uptake by 29.0 ± 3.83% at a concentration of 100 μM. The glucose uptake stimulating effect was sensitive to phloridzin, but not to phloretin, indicating an involvement of the sodium-coupled glucose transporter SGLT-1, but not of sodium-independent glucose transporters (GLUT). In addition, in contrast to the increased extracellular serotonin levels by stimulation with 500 mM D-(+)-glucose, treatment with 100 μM homoeriodictyol decreased serotonin release by -48.8 ± 7.57% in Caco-2 cells via a phloridzin-sensitive signaling pathway. Extracellular serotonin levels were also reduced by -57.1 ± 5.43% after application of 0.01 μM homoeriodictyol to human neural SH-SY5Y cells. In conclusion, we demonstrate that homoeriodictyol affects both the glucose metabolism and the serotonin system in Caco-2 cells via a SGLT-1-meditated pathway. Furthermore, the results presented here support the usage of Caco-2 cells as a model for peripheral serotonin release. Further investigations may address the value of homoeriodictyol in the treatment of anorexia and malnutrition through the targeting of SGLT-1.

  3. Uptake and phloem transport of glucose-fipronil conjugate in Ricinus communis involve a carrier-mediated mechanism.

    PubMed

    Wu, Han-Xiang; Yang, Wen; Zhang, Zhi-Xiang; Huang, Ting; Yao, Guang-Kai; Xu, Han-Hong

    2012-06-20

    Some compounds containing glucose are absorbed via the monosaccharide transporters of the plasma membrane. A glucose-fipronil conjugate, N-[3-cyano-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-[(trifluoromethyl)sulfinyl]-1H-pyrazol-5-yl]-1-(β-d-glucopyranosyl)-1H-1,2,3-triazole-4-methanamine (GTF), has been synthesized in our previous work. GTF exhibits moderate phloem mobility in Ricinus communis. In the current paper, we demonstrate that the uptake of GTF by Ricinus seedling cotyledon discs is partly mediated by an active carrier system (K(m)1 = 0.17 mM; V(max)1 = 2.2 nmol cm(-2) h(-1)). Four compounds [d-glucose, sucrose, phloridzin, and carbonyl cyanide m-chlorophenylhydrazone (CCCP)] were examined for their effect on GTF uptake. Phloridzin as well as CCCP markedly inhibit GTF uptake, and d-glucose weakly competes with it. The phloem transport of GTF in Ricinus seedlings is found to involve an active carrier-mediated mechanism that effectively contributes to the GTF phloem loading. The results prove that adding a glucose core is a reasonable and feasible approach to confer phloem mobility to fipronil by utilizing plant monosaccharide transporters.

  4. Glucose uptake stimulatory effect of 4-hydroxypipecolic acid by increased GLUT 4 translocation in skeletal muscle cells.

    PubMed

    Naresh, G; Jaiswal, N; Sukanya, P; Srivastava, A K; Tamrakar, A K; Narender, T

    2012-09-01

    Peganum harmala Linn, commonly known as 'harmal' belonging to the family Zygophyllaceae, is one of the most important medicinal plants of India. In continuation of our drug development program on Indian medicinal plants we discovered antihyperglycemic activity in 4-hydroxypipecolic acid (4-HPA), isolated from the seed of P. harmala. Effect of 4-HPA on glucose uptake and glucose transporter-4 (GLUT-4) translocation was investigated in L6 skeletal muscle cell lines. Treatment with 4-HPA stimulated both glucose uptake and GLUT4 translocation from intracellular to cell surface in skeletal muscle cells in a concentration-dependent manner, which might be leading to antihyperglycemic effect. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Comparison of the glycaemic effect of fructose, sucrose and starch-containing mid-morning snacks in insulin-dependent diabetics.

    PubMed

    Steel, J M; Mitchell, D; Prescott, R L

    1983-02-01

    Capillary blood glucose levels were measured every 30 min for 2 h after four different 20 g carbohydrate mid-morning snacks of foods containing predominantly fructose, sucrose or starch in eight insulin-dependent diabetics and eight normal control subjects. In the diabetic subjects, there was no significant difference in the glycaemic effect of the four different snacks. This study does not support the view that fructose is a useful alternative sweetener for diabetics or the view that sucrose should be excluded from the diet of insulin-dependent diabetics.

  6. [The normalisation of blood sugar using a non-miniaturised artifical pancreas. Application for 24 hours in 7 insulin-dependent diabetics (author's transl)].

    PubMed

    Slama, G; Klein, J C; Tardieu, M C; Tchobroutsky, G

    1977-06-25

    Seven insulin-dependent diabetic were treated for 24 to 36 hours by intravenous injections of insulin adapted to variations in blood glucose using a fairly voluminous automatic regulation device. This artificial pancreas consists of a modified Technicon blood sugar apparatus which provides continuous estimation of blood glucose using non-haemolysed whole blood by a glucose oxidase method with an inertia time of 6 minutes, a table calculator and a newly developed interpretation and command electronic unit (GlucostatR). Normalisation of blood glucose was obtained for at least 24 hours, during and between meals, during a period following an oral glucose load and throughout the night.

  7. Expression of GFAT1 and OGT in podocytes: transport of glucosamine and the implications for glucose uptake into these cells.

    PubMed

    Rogacka, Dorota; Piwkowska, Agnieszka; Jankowski, Maciej; Kocbuch, Katarzyna; Dominiczak, Marek H; Stepiński, Jan K; Angielski, Stefan

    2010-11-01

    Glutamine:fructose-6-phosphate amidotransferase (GFAT) and N-acetylglucosaminyltransferase (OGT) participate in glucosamine (GlcN) production and its utilization in O-glycosylation, one of key post-translational modifications of nuclear and cytoplasmic proteins. For this purpose, cells require a high rate of intracellular production of GlcN and/or significant GlcN delivery. We studied the expression of GFAT1 and OGT and measured uptake of glucose and GlcN in cultured rat podocytes, the main cellular component of glomerular filtration barrier. RT-PCR revealed the presence of both GFAT1 and OGT mRNA. Immunofluorescence of GFAT1 has shown staining signal diffused within the cytoplasm of the cell body and processes. However, OGT was distinctly visible around the nucleus and, in diffuse form, within the cytoplasm of cell bodies and processes. Glucose was transported (1.3 +/- 0.2 nmol/min/mg protein) mainly by facilitative transporter systems whilst GlcN uptake (1.1 +/- 0.2 nmol/min/mg protein) in a significant part, involved a sodium-dependent transporter. There was interplay between glucose and GlcN uptake. In the presence of GlcN (50 microM), the rate of glucose uptake decreased by about 50%. The rate of GlcN uptake decreased by 28% in the presence of 5.6 mM glucose. Our results suggest that cultured podocytes possess limited ability to synthesize GlcN internally and therefore may need to receive GlcN from the extracellular environment. (c) 2010 Wiley-Liss, Inc.

  8. The chemokine CCL5 regulates glucose uptake and AMP kinase signaling in activated T cells to facilitate chemotaxis.

    PubMed

    Chan, Olivia; Burke, J Daniel; Gao, Darrin F; Fish, Eleanor N

    2012-08-24

    Recruitment of effector T cells to sites of infection or inflammation is essential for an effective adaptive immune response. The chemokine CCL5 (RANTES) activates its cognate receptor, CCR5, to initiate cellular functions, including chemotaxis. In earlier studies, we reported that CCL5-induced CCR5 signaling activates the mTOR/4E-BP1 pathway to directly modulate mRNA translation. Specifically, CCL5-mediated mTOR activation contributes to T cell chemotaxis by initiating the synthesis of chemotaxis-related proteins. Up-regulation of chemotaxis-related proteins may prime T cells for efficient migration. It is now clear that mTOR is also a central regulator of nutrient sensing and glycolysis. Herein we describe a role for CCL5-mediated glucose uptake and ATP accumulation to meet the energy demands of chemotaxis in activated T cells. We provide evidence that CCL5 is able to induce glucose uptake in an mTOR-dependent manner. CCL5 treatment of ex vivo activated human CD3(+) T cells also induced the activation of the nutrient-sensing kinase AMPK and downstream substrates ACC-1, PFKFB-2, and GSK-3β. Using 2-deoxy-d-glucose, an inhibitor of glucose uptake, and compound C, an inhibitor of AMPK, experimental data are presented that demonstrate that CCL5-mediated T cell chemotaxis is dependent on glucose, as these inhibitors inhibit CCL5-mediated chemotaxis in a dose-dependent manner. Altogether, these findings suggest that both glycolysis and AMPK signaling are required for efficient T cell migration in response to CCL5. These studies extend the role of CCL5 mediated CCR5 signaling beyond lymphocyte chemotaxis and demonstrate a role for chemokines in promoting glucose uptake and ATP production to match energy demands of migration.

  9. Na+-coupled D-glucose uptake and membrane order of enterocyte brush border membrane vesicles, under the effect of a series of N-phenylcarbamates.

    PubMed

    Fernandez, Y; Boigegrain, R A; Cambon-Gros, C; Deltour, P; Mitjavila, S

    1986-05-26

    The importance of the hydrophobic effect of exogenous substances and of modifications of membrane order on D-glucose uptake are still poorly defined. Our results show that the concentrative Na+ -coupled D-glucose uptake of rat enterocyte brush border membrane vesicles is inhibited by N-phenylcarbamates increase the membrane order. However, since the concentrations required for membrane order increase are much greater than those active on D-glucose uptake, the effects on lipid order cannot be responsible for the inhibition of D-glucose uptake. Measurements of D-glucose uptake under conditions of Na+ equilibrium show that these carbamates do not act directly on the carrier but indirectly by favouring the dissipation of the Na+ gradient.

  10. Chemical approach to positional isomers of glucose-platinum conjugates reveals specific cancer targeting through glucose-transporter mediated uptake in vitro and in vivo

    PubMed Central

    Patra, Malay; Awuah, Samuel G.; Lippard, Stephen J.

    2016-01-01

    Glycoconjugation is a promising strategy for specific targeting of cancer. In this study, we investigated the effect of D-glucose substitution position on the biological activity of glucose-platinum conjugates (Glc-Pts). We synthesized and characterized all possible positional isomers (C1α, C1β, C2, C3, C4 and C6) of a Glc-Pt. The synthetic routes presented here could in principle be extended to prepare glucose-conjugates with different active ingredients than platinum. The biological activities of the compounds were evaluated both in vitro and in vivo. We discovered that variation in position of substitution of D-glucose not only alters the cellular uptake and cytotoxicity profile but also the GLUT1 specificity of resulting glycoconjugates, where GLUT1 is glucose transporter 1. The C1α- and C2-substituted Glc-Pts (1α and 2) accumulate in cancer cells most efficiently compared to the others, whereas the C3-Glc-Pt (3) is taken up least efficiently. Compounds 1α and 2 are more potent compared to 3 in DU145 cells. The α- and β-anomer of the C1-Glc-Pt also differ significantly in their cellular uptake and activity profiles. No significant differences in uptake of the Glc-Pts were observed in noncancerous RWPE2 cells. The GLUT1 specificity of the Glc-Pts was evaluated by determining the cellular uptake in the absence and presence of the GLUT1 inhibitor cytochalasin B, and by comparing their anticancer activity in DU145 cells and a GLUT1 knockdown cell line. The results reveal that C2-substituted Glc-Pt 2 has the highest GLUT1 specific internalization, which also reflects the best cancer targeting ability. In a syngeneic breast cancer mouse model overexpressing GLUT1, compound 2 showed antitumor efficacy and selective uptake in tumors with no observable toxicity. This study thus reveals the synthesis of all positional isomers of D-glucose substitution for platinum warhead with detailed glycotargeting characterization in cancer. PMID:27570149

  11. Energy metabolism of spermatozoa during pronucleus formation induced in vitro by heparin-reduced glutathione. I. Glucose uptake.

    PubMed

    Reyes, R; Sánchez-Vázquez, M L; Delgado, N M

    1993-01-01

    Glycolitic metabolism under basal conditions and its modifications by the combined action of heparin and GSH were studied in human sperm. Respirometric data indicated that the amount of U. L. [14C]-glucose converted to 14CO2 increased with the incubation time, being almost linear for up to 60 min and then leveling off at 120 and 150 min (594 and 620 nmol of [14C]-glucose/10(8) spermatozoa, respectively). When spermatozoa were incubated in the presence of heparin-GSH such behavior completely changed, showing a decrease (approximately 50%) in glucose metabolism with values of 254 and 366 nmol of [14C]-glucose/10(8) spermatozoa at the same incubation times as the basal consumption. When these results were compared with the kinetic of the swollen nuclei it was seen that at 30 min 44% of the spermatozoa have its nuclei swollen with a glucose uptake value of 91 nmol/10(8) spermatozoa, and at 150 min when nearly all the spermatozoa nuclei are swollen (95%) the glucose uptake increases fourfold more than the initial rate at 30 min. Therefore, it is possible to suggest the existence of an energy contribution by the sperm to the male pronuclei formation mechanism.

  12. [Uptake and phosphorylation of exogenous substrates in Ankistrodesmus braunii : I. Participation of polyphosphates in the uptake of glucose and 2-desoxy-glucose in dark and in light].

    PubMed

    Lysek, G; Simonis, W

    1968-06-01

    1. Like other photosynthesizing organisms which have been investigated, Ankistrodesmus braunii absorbs more glucose from the surrounding medium in the light than in the dark. 2. When the algae are incubated with glucose and (32)P-labelled orthophosphate in short-time-experiments, the TCA-soluble organic phosphate fraction is markedly increased. No such effect is seen when 2-desoxy-glucose is administered to the algae instead of glucose. 3. In pre-labelled algae glucose causes an increase in the TCA-soluble acid-stable organic P-fraction which shows light-dependent saturation kinetics. In such experiments 2-desoxyglucose causes a linear increase in the acid-stable organic P-fraction which shows no light dependence. 4. DCMU and Antimycin A when given together block oxidative as well as light phosphorylation. These compounds do not, however inhibit the increase in the sugar-P-fraction caused by 2-desoxy-glucose in (32)P-labelled algae. 5. The increase in the sugar-(32)P after administration of substrates to the algae is accompanied by a decrease in the fraction of the polyphosphates "C" and/or "D". 6. These results are explained by assuming that an inorganic polyphosphate-glucose-phosphotransferase is active in Ankistrodesmus braunii.

  13. The Aspergillus nidulans ATM Kinase Regulates Mitochondrial Function, Glucose Uptake and the Carbon Starvation Response

    PubMed Central

    Krohn, Nadia Graciele; Brown, Neil Andrew; Colabardini, Ana Cristina; Reis, Thaila; Savoldi, Marcela; Dinamarco, Taísa Magnani; Goldman, Maria Helena S.; Goldman, Gustavo Henrique

    2013-01-01

    Mitochondria supply cellular energy and also perform a role in the adaptation to metabolic stress. In mammals, the ataxia-telangiectasia mutated (ATM) kinase acts as a redox sensor controlling mitochondrial function. Subsequently, transcriptomic and genetic studies were utilized to elucidate the role played by a fungal ATM homolog during carbon starvation. In Aspergillus nidulans, AtmA was shown to control mitochondrial function and glucose uptake. Carbon starvation responses that are regulated by target of rapamycin (TOR) were shown to be AtmA-dependent, including autophagy and hydrolytic enzyme secretion. AtmA also regulated a p53-like transcription factor, XprG, inhibiting starvation-induced XprG-dependent protease secretion and cell death. Thus, AtmA possibly represents a direct or indirect link between mitochondrial stress, metabolism, and growth through the influence of TOR and XprG function. The coordination of cell growth and division with nutrient availability is crucial for all microorganisms to successfully proliferate in a heterogeneous environment. Mitochondria supply cellular energy but also perform a role in the adaptation to metabolic stress and the cross-talk between prosurvival and prodeath pathways. The present study of Aspergillus nidulans demonstrated that AtmA also controlled mitochondrial mass, function, and oxidative phosphorylation, which directly or indirectly influenced glucose uptake. Carbon starvation responses, including autophagy, shifting metabolism to the glyoxylate cycle, and the secretion of carbon scavenging enzymes were AtmA-dependent. Transcriptomic profiling of the carbon starvation response demonstrated how TOR signaling and the retrograde response, which signals mitochondrial dysfunction, were directly or indirectly influenced by AtmA. The AtmA kinase was also shown to influence a p53-like transcription factor, inhibiting starvation-induced XprG-dependent protease secretion and cell death. Therefore, in response to metabolic

  14. The Aspergillus nidulans ATM kinase regulates mitochondrial function, glucose uptake and the carbon starvation response.

    PubMed

    Krohn, Nadia Graciele; Brown, Neil Andrew; Colabardini, Ana Cristina; Reis, Thaila; Savoldi, Marcela; Dinamarco, Taísa Magnani; Goldman, Maria Helena S; Goldman, Gustavo Henrique

    2014-01-10

    Mitochondria supply cellular energy and also perform a role in the adaptation to metabolic stress. In mammals, the ataxia-telangiectasia mutated (ATM) kinase acts as a redox sensor controlling mitochondrial function. Subsequently, transcriptomic and genetic studies were utilized to elucidate the role played by a fungal ATM homolog during carbon starvation. In Aspergillus nidulans, AtmA was shown to control mitochondrial function and glucose uptake. Carbon starvation responses that are regulated by target of rapamycin (TOR) were shown to be AtmA-dependent, including autophagy and hydrolytic enzyme secretion. AtmA also regulated a p53-like transcription factor, XprG, inhibiting starvation-induced XprG-dependent protease secretion and cell death. Thus, AtmA possibly represents a direct or indirect link between mitochondrial stress, metabolism, and growth through the influence of TOR and XprG function. The coordination of cell growth and division with nutrient availability is crucial for all microorganisms to successfully proliferate in a heterogeneous environment. Mitochondria supply cellular energy but also perform a role in the adaptation to metabolic stress and the cross-talk between prosurvival and prodeath pathways. The present study of Aspergillus nidulans demonstrated that AtmA also controlled mitochondrial mass, function, and oxidative phosphorylation, which directly or indirectly influenced glucose uptake. Carbon starvation responses, including autophagy, shifting metabolism to the glyoxylate cycle, and the secretion of carbon scavenging enzymes were AtmA-dependent. Transcriptomic profiling of the carbon starvation response demonstrated how TOR signaling and the retrograde response, which signals mitochondrial dysfunction, were directly or indirectly influenced by AtmA. The AtmA kinase was also shown to influence a p53-like transcription factor, inhibiting starvation-induced XprG-dependent protease secretion and cell death. Therefore, in response to metabolic

  15. Uncovering potential of Indonesian medicinal plants on glucose uptake enhancement and lipid suppression in 3T3-L1 adipocytes.

    PubMed

    Lahrita, Lucy; Kato, Eisuke; Kawabata, Jun

    2015-06-20

    As obesity is a key factor in the development of type 2 diabetes, lowering lipid accumulation in adipose tissues is as important as increasing insulin sensitivity in diabetic patients. The selected plant extracts used in this screen have been traditionally used in Indonesian medicine for the treatment of diabetes and its complications. To investigate the ability of the selected plants to both increase insulin sensitivity through the enhancement of glucose uptake after insulin induction in adipocytes and suppress lipid production in the same target cells. Dried Indonesian medicinal plants were extracted with 50% (v/v) aq. methanol. The extracts were dissolved in 50% DMSO when tested in 3T3-L1 adipocytes. The screening platform consists of insulin-induced glucose uptake, lipid accumulation, and cell viability. Initially, an enzymatic fluorescence assay was designed to demonstrate the enhancement of 2-deoxyglucose (2-DG) uptake after insulin induction. Different concentrations of the extracts that enhanced glucose uptake were subjected to lipid accumulation assay using Oil Red O staining. Potential extracts based on lipid suppression were subsequently assessed by CCK-8 cell viability assay to distinguish lipid reduction activity from cytotoxicity. Out of 59 plants, 13 plants demonstrated their ability to increase glucose uptake in 3T3-L1 adipocytes after insulin induction, and 4 of these plants' extracts suppressed lipid production of the cells. The CCK-8 assay results of those 4 plant extracts suggest that the lipid inhibition activity of Eurycoma longifolia Jack (root) and Piper nigrum L. (fruits) extracts is not attributed to their cytotoxicity in the adipose cells. Both of the plant extracts increased glucose uptake by more than 200% at 50 μg/mL and suppressed lipid accumulation in a concentration-dependent manner. Screening of selected Indonesian medicinal plants has uncovered the potentials of E. longifolia Jack (root) and P. nigrum L. (fruits) with dual active

  16. Novel Benzoxazine-Based Aglycones Block Glucose Uptake In Vivo by Inhibiting Glycosidases

    PubMed Central

    Jagadish, Swamy; Paricharak, Shardul; Hemshekhar, Mahadevappa; Mason, Daniel; Kemparaju, Kempaiah; Girish, Kesturu S.; Basappa; Bender, Andreas; Rangappa, Kanchugarakoppal S.

    2014-01-01

    Glycoside hydrolases catalyze the selective hydrolysis of glycosidic bonds in oligosaccharides, polysaccharides, and their conjugates. β-glucosidases occur in all domains of living organisms and constitute a major group among glycoside hydrolases. On the other hand, the benzoxazinoids occur in living systems and act as stable β-glucosides, such as 2-(2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one)-β-D-gluco-pyranose, which hydrolyse to an aglycone DIMBOA. Here, we synthesized the library of novel 1,3-benzoxazine scaffold based aglycones by using 2-aminobenzyl alcohols and aldehydes from one-pot reaction in a chloroacetic acid catalytic system via aerobic oxidative synthesis. Among the synthesized benzoxazines, 4-(7-chloro-2,4-dihydro-1H-benzo[d][1,3]oxazin-2-yl)phenol (compound 7) exhibit significant inhibition towards glucosidase compared to acarbose, with a IC50 value of 11.5 µM. Based upon results generated by in silico target prediction algorithms (Naïve Bayesian classifier), these aglycones potentially target the additional sodium/glucose cotransporter 1 (where a log likelihood score of 2.70 was observed). Furthermore, the in vitro glucosidase activity was correlated with the in silico docking results, with a high docking score for the aglycones towards the substrate binding site of glycosidase. Evidently, the in vitro and in vivo experiments clearly suggest an anti-hyperglycemic effect via glucose uptake inhibition by 4-(7-chloro-2,4-dihydro-1H-benzo[d][1,3]oxazin-2-yl)phenol in the starved rat model. These synthetic aglycones could constitute a novel pharmacological approach for the treatment, or re-enforcement of existing treatments, of type 2 diabetes and associated secondary complications. PMID:25047583

  17. Rapamycin negatively impacts insulin signaling, glucose uptake and uncoupling protein-1 in brown adipocytes.

    PubMed

    García-Casarrubios, Ester; de Moura, Carlos; Arroba, Ana I; Pescador, Nuria; Calderon-Dominguez, María; Garcia, Laura; Herrero, Laura; Serra, Dolors; Cadenas, Susana; Reis, Flavio; Carvalho, Eugenia; Obregon, Maria Jesus; Valverde, Ángela M

    2016-12-01

    New onset diabetes after transplantation (NODAT) is a metabolic disorder that affects 40% of patients on immunosuppressive agent (IA) treatment, such as rapamycin (also known as sirolimus). IAs negatively modulate insulin action in peripheral tissues including skeletal muscle, liver and white fat. However, the effects of IAs on insulin sensitivity and thermogenesis in brown adipose tissue (BAT) have not been investigated. We have analyzed the impact of rapamycin on insulin signaling, thermogenic gene-expression and mitochondrial respiration in BAT. Treatment of brown adipocytes with rapamycin for 16h significantly decreased insulin receptor substrate 1 (IRS1) protein expression and insulin-mediated protein kinase B (Akt) phosphorylation. Consequently, both insulin-induced glucose transporter 4 (GLUT4) translocation to the plasma membrane and glucose uptake were decreased. Early activation of the N-terminal Janus activated kinase (JNK) was also observed, thereby increasing IRS1 Ser 307 phosphorylation. These effects of rapamycin on insulin signaling in brown adipocytes were partly prevented by a JNK inhibitor. In vivo treatment of rats with rapamycin for three weeks abolished insulin-mediated Akt phosphorylation in BAT. Rapamycin also inhibited norepinephrine (NE)-induced lipolysis, the expression of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) and uncoupling protein (UCP)-1 in brown adipocytes. Importantly, basal mitochondrial respiration, proton leak and maximal respiratory capacity were significantly decreased in brown adipocytes treated with rapamycin. In conclusion, we demonstrate, for the first time the important role of brown adipocytes as target cells of rapamycin, suggesting that insulin resistance in BAT might play a major role in NODAT development.

  18. Effect of Withania somnifera on insulin sensitivity in non-insulin-dependent diabetes mellitus rats.

    PubMed

    Anwer, Tarique; Sharma, Manju; Pillai, Krishna Kolappa; Iqbal, Muzaffar

    2008-06-01

    We investigated the effect of an aqueous extract of Withania somnifera (WS) on insulin sensitivity in non-insulin-dependent diabetes mellitus (NIDDM) rats. NIDDM was induced by single intraperitoneal injection of streptozotocin (100 mg/kg) to 2 days old rat pups. WS (200 and 400 mg/kg) was administered orally once a day for 5 weeks after the animals were confirmed diabetic (i.e. 75 days after streptozotocin injection). A group of citrate control rats (group I) were also maintained that has received citrate buffer on the second day of their birth. A significant increase in blood glucose, glycosylated haemoglobin (HbA(1)c) and serum insulin levels were observed in NIDDM control rats. Treatment with WS reduced the elevated levels of blood glucose, HbA(1)c and insulin in the NIDDM rats. An oral glucose tolerance test was also performed in the same groups, in which we found a significant improvement in glucose tolerance in the rats treated with WS. The insulin sensitivity was assessed for both peripheral insulin resistance and hepatic insulin resistance. WS treatment significantly improved insulin sensitivity index (K(ITT)) that was significantly decreased in NIDDM control rats. There was significant rise in homeostasis model assessment of insulin resistance (HOMA-R) in NIDDM control rats whereas WS treatment significantly prevented the rise in HOMA-R in NIDDM-treated rats. Our data suggest that aqueous extract of WS normalizes hyperglycemia in NIDDM rats by improving insulin sensitivity.

  19. [Limitations of insulin-dependent drugs in the treatment of type 2 diabetes mellitus].

    PubMed

    Valerón, Pino Fuente; de Pablos-Velasco, Pedro L

    2013-09-01

    In this study, we review the efficacy and safety limitations of insulin-dependent oral antidiabetic agents. In terms of efficiency, the main drawback of metformin, sulfonylureas, gliptins and -to a lesser extent-glitazones is durability. No drug per se is able to maintain stable blood glucose control for years. Metformin, sulfonylureas and gliptins have demonstrated safety. Experience with the first two drug groups is more extensive. The main adverse effect of metformin is gastrointestinal discomfort. Major concerns related to the use of sulfonylureas are hypoglycemia and weight gain. The use of pioglitazone has been associated with an increased risk of bladder cancer, edema, heart failure, weight gain, and distal bone fractures in postmenopausal women. The most common adverse reactions associated with glucagon-like peptide-1 agonists are gastrointestinal discomfort that sometimes leads to treatment discontinuation. Copyright © 2013 Elsevier España, S.L. All rights reserved.

  20. Protein C deficiency in insulin-dependent diabetes: a hyperglycemia-related phenomenon.

    PubMed

    Ceriello, A; Quatraro, A; Dello Russo, P; Marchi, E; Barbanti, M; Milani, M R; Giugliano, D

    1990-08-13

    In 30 insulin-dependent diabetic patients protein C (PC) antigen and PC activity were significantly lower than those of matched control healthy subjects. An inverse correlation between fasting plasma glucose and both PC concentration and activity was present in diabetics, while a direct correlation between PC concentration and PC activity was observed. Induced hyperglycemia in diabetic and normal subjects was able to decrease both PC antigen levels and PC activity, and heparin reversed in part this effect. In diabetic patients euglycemia obtained by insulin infusion restored to normal the depressed PC levels. Heparin did not alter both the basal PC concentration and activity in healthy controls. These data stress the major role of hyperglycemia in determining PC decrease in diabetics, and suggest that PC reduction is probably associated to hyperglycemia-enhanced thrombin formation.

  1. Comparison of impedance to insulin-mediated glucose uptake in normal subjects and in subjects with latent diabetes

    PubMed Central

    Shen, Shiao-Wei; Reaven, Gerald M.; Farquhar, John W.

    1970-01-01

    A technique was devised for a more accurate measurement than has been heretofore possible of one of the factors responsible for hyperglycemia in the complex syndrome of diabetes. This factor is termed impedance and represents the tissues' insensitivity or resistance to insulin-mediated glucose uptake. It was measured by use of steady-state exogenous insulin and glucose infusions during a period of pharmacological suppression of endogenous insulin secretion. Endogenous new glucose production was also inhibited. Impedance as calculated is a direct function of steady-state glucose concentrations, since exogenous insulin concentrations were similar in all studies. Two groups of normal weight subjects were studied. One had maturity onset latent diabetes, and the other (matched for age, weight, and per cent adiposity) was normal. Impedance was closely reproducible in the same individual and remained relatively constant during prolonged infusions. The diabetics had average infusion glucose concentrations (and thus impedance) 68% higher than the normal group, and it is of note that their previously measured glucose intolerance differed by a similar degree; that is, the diabetic's intolerance (as defined by mean weighted plasma glucose response after oral glucose) was 52% greater than that of the normal individuals. PMID:5480843

  2. Leucine facilitates the insulin-stimulated glucose uptake and insulin signaling in skeletal muscle cells: involving mTORC1 and mTORC2.

    PubMed

    Liu, Hui; Liu, Rui; Xiong, Yufang; Li, Xiang; Wang, Xiaolei; Ma, Yan; Guo, Huailan; Hao, Liping; Yao, Ping; Liu, Liegang; Wang, Di; Yang, Xuefeng

    2014-08-01

    Leucine, a branched-chain amino acid, has been shown to promote glucose uptake and increase insulin sensitivity in skeletal muscle, but the exact mechanism remains unestablished. We addressed this issue in cultured skeletal muscle cells in this study. Our results showed that leucine alone did not have an effect on glucose uptake or phosphorylation of protein kinase B (AKT), but facilitated the insulin-induced glucose uptake and AKT phosphorylation. The insulin-stimulated glucose uptake and AKT phosphorylation were inhibited by the phosphatidylinositol 3-kinase inhibitor, wortmannin, but the inhibition was partially reversed by leucine. The inhibitor of mammalian target of rapamycin complex 1 (mTORC1), rapamycin, had no effect on the insulin-stimulated glucose uptake, but eliminated the facilitating effect of leucine in the insulin-stimulated glucose uptake and AKT phosphorylation. In addition, leucine facilitation of the insulin-induced AKT phosphorylation was neutralized by knocking down the core component of the mammalian target of rapamycin complex 2 (mTORC2) with specific siRNA. Together, these findings show that leucine can facilitate the insulin-induced insulin signaling and glucose uptake in skeletal muscle cells through both mTORC1 and mTORC2, implicating the potential importance of this amino acid in glucose homeostasis and providing new mechanistic insights.

  3. Influence of age of aggregates and prokaryotic abundance on glucose and leucine uptake by heterotrophic marine prokaryotes.

    PubMed

    Azúa, Iñigo; Unanue, Marian; Ayo, Begoña; Artolozaga, Itxaso; Iriberri, Juan

    2007-03-01

    The kinetics of glucose and leucine uptake in attached and free-living prokaryotes in two types of microcosms with different nutrient qualities were compared. Microcosm type M1, derived from unaltered seawater, and microcosm type M2, from phytoplankton cultures, clearly expressed different kinetic parameters (Vmax/cell and K' m). In aggregates with low cell densities (M1 microcosm), the attached prokaryotes benefited from attachment as reflected in the higher potential uptake rates, while in aggregates with high cell densities (M2 microcosm) differences in the potential uptake rates of attached and free-living prokaryotes were not evident. The aging process and the chemical changes in aggregates of M2 microcosms were followed for 15-20 days. The results showed that as the aggregates aged and prokaryotic abundance increased, attached prokaryotes decreased their potential uptake rate and their K' m for substrate. This suggests an adaptive response by attached prokaryotes when aggregates undergo quantitative and qualitative impoverishment.

  4. Phenolic Elderberry Extracts, Anthocyanins, Procyanidins, and Metabolites Influence Glucose and Fatty Acid Uptake in Human Skeletal Muscle Cells.

    PubMed

    Ho, Giang Thanh Thi; Kase, Eili Tranheim; Wangensteen, Helle; Barsett, Hilde

    2017-04-05

    Uptake of glucose and fatty acids in skeletal muscle is of interest for type 2 diabetes treatment. The aim was to study glucose and fatty acid uptake in skeletal muscle cells, antioxidant effects, and inhibition of carbohydrate-hydrolyzing enzymes by elderberries. Enhanced glucose and oleic acid uptake in human skeletal muscle cells were observed after treatment with phenolic elderberry extracts, anthocyanins, procyanidins, and their metabolites. The 96% EtOH and the acidified MeOH extracts were highly active. Of the isolated substances, cyanidin-3-glucoside and cyanidin-3-sambubioside showed highest stimulation of uptake. Phloroglucinol aldehyde was most active among the metabolites. Isolated anthocyanins and procyanidins are strong radical scavengers and are good inhibitors of 15-lipoxygenase and moderate inhibitors of xanthine oxidase. As α-amylase and α-glucosidase inhibitors, they are considerably better than the positive control acarbose. The antidiabetic property of elderberry phenolics increases the nutritional value of this plant and indicates potential as functional food against diabetes.

  5. Outcome after Repetitive Mild Traumatic Brain Injury Is Temporally Related to Glucose Uptake Profile at Time of Second Injury.

    PubMed

    Selwyn, Reed G; Cooney, Sean J; Khayrullina, Guzal; Hockenbury, Nicole; Wilson, Colin M; Jaiswal, Shalini; Bermudez, Sara; Armstrong, Regina C; Byrnes, Kimberly R

    2016-08-15

    Repeated mild traumatic brain injury (rmTBI) results in worsened outcomes, compared with a single injury, but the mechanism of this phenomenon is unclear. We have previously shown that mild TBI in a rat lateral fluid percussion model results in globally depressed glucose uptake, with a peak depression at 24 h that resolves by 16 days post-injury. The current study investigated the outcomes of a repeat injury conducted at various times during this period of depressed glucose uptake. Adult male rats were therefore subjected to rmTBI with a latency of 24 h, 5 days, or 15 days between injuries, followed by assessment of motor function, histopathology, and glucose uptake using positron emission tomography (PET). Rats that received a 24 h rmTBI showed significant deficits in motor function tasks, as well as significant increases in lesion volume and neuronal damage. The level of microglial and astrocytic activation also was associated with the timing of the second impact. Finally, rmTBI with latencies of 24 h and 5 days showed significant alterations in [(18)F]fluorodeoxyglucose uptake, compared with baseline scans. Therefore, we conclude that the state of the metabolic environment, as indicated by FDG-PET at the time of the repeat injury, significantly influences neurological outcomes.

  6. Overexpression of PrfA Leads to Growth Inhibition of Listeria monocytogenes in Glucose-Containing Culture Media by Interfering with Glucose Uptake

    PubMed Central

    Marr, A. K.; Joseph, B.; Mertins, S.; Ecke, R.; Müller-Altrock, S.; Goebel, W.

    2006-01-01

    Listeria monocytogenes strains expressing high levels of the virulence regulator PrfA (mutant PrfA* or wild-type PrfA) show strong growth inhibition in minimal media when they are supplemented with glucose but not when they are supplemented with glucose-6-phosphate compared to the growth of isogenic strains expressing low levels of PrfA. A significantly reduced rate of glucose uptake was observed in a PrfA*-overexpressing strain growing in LB supplemented with glucose. Comparative transcriptome analyses were performed with RNA isolated from a prfA mutant and an isogenic strain carrying multiple copies of prfA or prfA* on a plasmid. These analyses revealed that in addition to high transcriptional up-regulation of the known PrfA-regulated virulence genes (group I), there was less pronounced up-regulation of the expression of several phage and metabolic genes (group II) and there was strong down-regulation of several genes involved mainly in carbon and nitrogen metabolism in the PrfA*-overexpressing strain (group III). Among the latter genes are the nrgAB, gltAB, and glnRA operons (involved in nitrogen metabolism), the ilvB operon (involved in biosynthesis of the branched-chain amino acids), and genes for some ABC transporters. Most of the down-regulated genes have been shown previously to belong to a class of genes in Bacillus subtilis whose expression is negatively affected by impaired glucose uptake. Our results lead to the conclusion that excess PrfA (or PrfA*) interferes with a component(s) essential for phosphotransferase system-mediated glucose transport. PMID:16707681

  7. Fiber type effects on contraction-stimulated glucose uptake and GLUT4 abundance in single fibers from rat skeletal muscle

    PubMed Central

    Castorena, Carlos M.; Arias, Edward B.; Sharma, Naveen; Bogan, Jonathan S.

    2014-01-01

    To fully understand skeletal muscle at the cellular level, it is essential to evaluate single muscle fibers. Accordingly, the major goals of this study were to determine if there are fiber type-related differences in single fibers from rat skeletal muscle for: 1) contraction-stimulated glucose uptake and/or 2) the abundance of GLUT4 and other metabolically relevant proteins. Paired epitrochlearis muscles isolated from Wistar rats were either electrically stimulated to contract (E-Stim) or remained resting (No E-Stim). Single fibers isolated from muscles incubated with 2-deoxy-d-[3H]glucose (2-DG) were used to determine fiber type [myosin heavy chain (MHC) isoform protein expression], 2-DG uptake, and abundance of metabolically relevant proteins, including the GLUT4 glucose transporter. E-Stim, relative to No E-Stim, fibers had greater (P < 0.05) 2-DG uptake for each of the isolated fiber types (MHC-IIa, MHC-IIax, MHC-IIx, MHC-IIxb, and MHC-IIb). However, 2-DG uptake for E-Stim fibers was not significantly different among these five fiber types. GLUT4, tethering protein containing a UBX domain for GLUT4 (TUG), cytochrome c oxidase IV (COX IV), and filamin C protein levels were significantly greater (P < 0.05) in MHC-IIa vs. MHC-IIx, MHC-IIxb, or MHC-IIb fibers. TUG and COX IV in either MHC-IIax or MHC-IIx fibers exceeded values for MHC-IIxb or MHC-IIb fibers. GLUT4 levels for MHC-IIax fibers exceeded MHC-IIxb fibers. GLUT4, COX IV, filamin C, and TUG abundance in single fibers was significantly (P < 0.05) correlated with each other. Differences in GLUT4 abundance among the fiber types were not accompanied by significant differences in contraction-stimulated glucose uptake. PMID:25491725

  8. Fiber type effects on contraction-stimulated glucose uptake and GLUT4 abundance in single fibers from rat skeletal muscle.

    PubMed

    Castorena, Carlos M; Arias, Edward B; Sharma, Naveen; Bogan, Jonathan S; Cartee, Gregory D

    2015-02-01

    To fully understand skeletal muscle at the cellular level, it is essential to evaluate single muscle fibers. Accordingly, the major goals of this study were to determine if there are fiber type-related differences in single fibers from rat skeletal muscle for: 1) contraction-stimulated glucose uptake and/or 2) the abundance of GLUT4 and other metabolically relevant proteins. Paired epitrochlearis muscles isolated from Wistar rats were either electrically stimulated to contract (E-Stim) or remained resting (No E-Stim). Single fibers isolated from muscles incubated with 2-deoxy-d-[(3)H]glucose (2-DG) were used to determine fiber type [myosin heavy chain (MHC) isoform protein expression], 2-DG uptake, and abundance of metabolically relevant proteins, including the GLUT4 glucose transporter. E-Stim, relative to No E-Stim, fibers had greater (P < 0.05) 2-DG uptake for each of the isolated fiber types (MHC-IIa, MHC-IIax, MHC-IIx, MHC-IIxb, and MHC-IIb). However, 2-DG uptake for E-Stim fibers was not significantly different among these five fiber types. GLUT4, tethering protein containing a UBX domain for GLUT4 (TUG), cytochrome c oxidase IV (COX IV), and filamin C protein levels were significantly greater (P < 0.05) in MHC-IIa vs. MHC-IIx, MHC-IIxb, or MHC-IIb fibers. TUG and COX IV in either MHC-IIax or MHC-IIx fibers exceeded values for MHC-IIxb or MHC-IIb fibers. GLUT4 levels for MHC-IIax fibers exceeded MHC-IIxb fibers. GLUT4, COX IV, filamin C, and TUG abundance in single fibers was significantly (P < 0.05) correlated with each other. Differences in GLUT4 abundance among the fiber types were not accompanied by significant differences in contraction-stimulated glucose uptake.

  9. Effects of FoxO4 overexpression on cholesterol biosynthesis, triacylglycerol accumulation, and glucose uptake

    PubMed Central

    Zhu, Jun; Mounzih, Khalid; Chehab, Eric F.; Mitro, Nico; Saez, Enrique; Chehab, Farid F.

    2010-01-01

    The Forkhead transcription factors FoxO1, FoxO3a, and FoxO4 play a prominent role in regulating cell survival and cell cycle. Whereas FOXO1 was shown to mediate insulin sensitivity and adipocyte differentiation, the role of the transcription factor FoxO4 in metabolism remains ill defined. To uncover the effects of FoxO4, we generated a cellular model of stable FoxO4 overexpression and subjected it to microarray-based gene expression profiling. While pathway analysis revealed a disruption of cholesterol biosynthesis gene expression, biochemical studies revealed an inhibition of cholesterol biosynthesis, which was coupled with decreased mRNA levels of lanosterol 14α demethylase (CYP51). FoxO4-mediated repression of CYP51 led to the accumulation of 24,25 dihydrolano­sterol (DHL), which independently and unlike lanosterol inhibited cholesterol biosynthesis. Furthermore, FoxO4-overexpressing cells accumulated lipid droplets and triacylglycerols and had an increase in basal glucose uptake. Recapitulation of these effects was obtained following treatment with CYP51 inhibitors, which also induce DHL buildup. Moreover, DHL but not lanosterol strongly stimulated liver X receptor α (LXRα) activity, suggesting that DHL and LXRα mediate the downstream effects initiated by FoxO4. Together, these studies suggest that FoxO4 acts on CYP51 to regulate the late steps of cholesterol biosynthesis. PMID:20037138

  10. Effects of FoxO4 overexpression on cholesterol biosynthesis, triacylglycerol accumulation, and glucose uptake.

    PubMed

    Zhu, Jun; Mounzih, Khalid; Chehab, Eric F; Mitro, Nico; Saez, Enrique; Chehab, Farid F

    2010-06-01

    The Forkhead transcription factors FoxO1, FoxO3a, and FoxO4 play a prominent role in regulating cell survival and cell cycle. Whereas FOXO1 was shown to mediate insulin sensitivity and adipocyte differentiation, the role of the transcription factor FoxO4 in metabolism remains ill defined. To uncover the effects of FoxO4, we generated a cellular model of stable FoxO4 overexpression and subjected it to microarray-based gene expression profiling. While pathway analysis revealed a disruption of cholesterol biosynthesis gene expression, biochemical studies revealed an inhibition of cholesterol biosynthesis, which was coupled with decreased mRNA levels of lanosterol 14alpha demethylase (CYP51). FoxO4-mediated repression of CYP51 led to the accumulation of 24,25 dihydrolano-sterol (DHL), which independently and unlike lanosterol inhibited cholesterol biosynthesis. Furthermore, FoxO4-overexpressing cells accumulated lipid droplets and triacylglycerols and had an increase in basal glucose uptake. Recapitulation of these effects was obtained following treatment with CYP51 inhibitors, which also induce DHL buildup. Moreover, DHL but not lanosterol strongly stimulated liver X receptor alpha (LXRalpha) activity, suggesting that DHL and LXRalpha mediate the downstream effects initiated by FoxO4. Together, these studies suggest that FoxO4 acts on CYP51 to regulate the late steps of cholesterol biosynthesis.

  11. Evolved hexose transporter enhances xylose uptake and glucose/xylose co-utilization in Saccharomyces cerevisiae

    DOE PAGES

    Reider Apel, Amanda; Ouellet, Mario; Szmidt-Middleton, Heather; ...

    2016-01-19

    Enhancing xylose utilization has been a major focus in Saccharomyces cerevisiae strain-engineering efforts. The incentive for these studies arises from the need to use all sugars in the typical carbon mixtures that comprise standard renewable plant-biomass-based carbon sources. While major advances have been made in developing utilization pathways, the efficient import of five carbon sugars into the cell remains an important bottleneck in this endeavor. Here we use an engineered S. cerevisiae BY4742 strain, containing an established heterologous xylose utilization pathway, and imposed a laboratory evolution regime with xylose as the sole carbon source. We obtained several evolved strains withmore » improved growth phenotypes and evaluated the best candidate using genome resequencing. We observed remarkably few single nucleotide polymorphisms in the evolved strain, among which we confirmed a single amino acid change in the hexose transporter HXT7 coding sequence to be responsible for the evolved phenotype. Lastly, the mutant HXT7(F79S) shows improved xylose uptake rates (Vmax = 186.4 ± 20.1 nmol•min-1•mg-1) that allows the S. cerevisiae strain to show significant growth with xylose as the sole carbon source, as well as partial co-utilization of glucose and xylose in a mixed sugar cultivation.« less

  12. Evolved hexose transporter enhances xylose uptake and glucose/xylose co-utilization in Saccharomyces cerevisiae

    SciTech Connect

    Reider Apel, Amanda; Ouellet, Mario; Szmidt-Middleton, Heather; Keasling, Jay D.; Mukhopadhyay, Aindrila

    2016-01-19

    Enhancing xylose utilization has been a major focus in Saccharomyces cerevisiae strain-engineering efforts. The incentive for these studies arises from the need to use all sugars in the typical carbon mixtures that comprise standard renewable plant-biomass-based carbon sources. While major advances have been made in developing utilization pathways, the efficient import of five carbon sugars into the cell remains an important bottleneck in this endeavor. Here we use an engineered S. cerevisiae BY4742 strain, containing an established heterologous xylose utilization pathway, and imposed a laboratory evolution regime with xylose as the sole carbon source. We obtained several evolved strains with improved growth phenotypes and evaluated the best candidate using genome resequencing. We observed remarkably few single nucleotide polymorphisms in the evolved strain, among which we confirmed a single amino acid change in the hexose transporter HXT7 coding sequence to be responsible for the evolved phenotype. Lastly, the mutant HXT7(F79S) shows improved xylose uptake rates (Vmax = 186.4 ± 20.1 nmol•min-1•mg-1) that allows the S. cerevisiae strain to show significant growth with xylose as the sole carbon source, as well as partial co-utilization of glucose and xylose in a mixed sugar cultivation.

  13. Differential impact of non-insulin-dependent diabetes mellitus and insulin-dependent diabetes mellitus on breast reconstruction outcomes.

    PubMed

    Qin, Charles; Vaca, Elbert; Lovecchio, Francis; Ver Halen, Jon P; Hansen, Nora M; Kim, John Y S

    2014-07-01

    While the comparative safety of breast reconstruction in diabetic patients has been previously studied, we examine the differential effects of insulin and non-insulin-dependence on surgical/medical outcomes. Patients undergoing implant/expander or autologous breast reconstruction were extracted from the National Surgical Quality Improvement Program 2005-2012 database. Preoperative and postoperative variables were analyzed using chi-square and Student's t test as appropriate. Multivariate regression modeling was used to evaluate whether non-insulin-dependent diabetes mellitus (NIDDM) or insulin-dependent diabetes mellitus (IDDM) is independently associated with adverse 30-day events following breast reconstruction. Of 29,736 patients meeting inclusion criteria, 23,042 (77.5 %) underwent implant/expander reconstructions, of which 815 had NIDDM and 283 had IDDM. Of the 6,694 (22.5 %) patients who underwent autologous reconstructions, 286 had NIDDM and 94 had IDDM. Rates of overall and surgical complications significantly differed among non-diabetic, NIDDM and IDDM patients in both the implant/expander and autologous cohorts on univariate analysis. After multivariate analysis, NIDDM was significantly associated with surgical complications (OR 1.511); IDDM was significantly associated with medical (OR 1.815) and overall complications (OR 1.852); and any type of diabetes was significantly associated with surgical (OR 1.58) and overall (OR 1.361) complications after autologous reconstruction. Diabetes of any type was not associated with any type of complication after implant/expander reconstruction. In this large, multi-institutional study, diabetes mellitus was significantly associated with adverse outcomes after autologous, but not implant-based breast reconstruction. The multivariate analysis in this study adds granularity to the differential effects of NIDDM and IDDM on complication risk.

  14. Endothelin-1 suppresses insulin-stimulated Akt phosphorylation and glucose uptake via GPCR kinase 2 in skeletal muscle cells.

    PubMed

    Horinouchi, Takahiro; Hoshi, Akimasa; Harada, Takuya; Higa, Tsunaki; Karki, Sarita; Terada, Koji; Higashi, Tsunehito; Mai, Yosuke; Nepal, Prabha; Mazaki, Yuichi; Miwa, Soichi

    2016-03-01

    Endothelin-1 (ET-1) reduces insulin-stimulated glucose uptake in skeletal muscle, inducing insulin resistance. Here, we have determined the molecular mechanisms underlying negative regulation by ET-1 of insulin signalling. We used the rat L6 skeletal muscle cells fully differentiated into myotubes. Changes in the phosphorylation of Akt was assessed by Western blotting. Effects of ET-1 on insulin-stimulated glucose uptake was assessed with [(3) H]-2-deoxy-d-glucose ([(3) H]2-DG). The C-terminus region of GPCR kinase 2 (GRK2-ct), a dominant negative GRK2, was overexpressed in L6 cells using adenovirus-mediated gene transfer. GRK2 expression was suppressed by transfection of the corresponding short-interfering RNA (siRNA). In L6 myotubes, insulin elicited sustained Akt phosphorylation at Thr(308) and Ser(473) , which was suppressed by ET-1. The inhibitory effects of ET-1 were prevented by treatment with a selective ETA receptor antagonist and a Gq protein inhibitor, overexpression of GRK2-ct and knockdown of GRK2. Insulin increased [(3) H]2-DG uptake rate in a concentration-dependent manner. ET-1 noncompetitively antagonized insulin-stimulated [(3) H]2-DG uptake. Blockade of ETA receptors, overexpression of GRK2-ct and knockdown of GRK2 prevented the ET-1-induced suppression of insulin-stimulated [(3) H]2-DG uptake. In L6 myotubes overexpressing FLAG-tagged GRK2, ET-1 facilitated the interaction of endogenous Akt with FLAG-GRK2. Activation of ETA receptors with ET-1 suppressed insulin-induced Akt phosphorylation at Thr(308) and Ser(473) and [(3) H]2-DG uptake in a GRK2-dependent manner in skeletal muscle cells. These findings suggest that ETA receptors and GRK2 are potential targets for overcoming insulin resistance. © 2015 The British Pharmacological Society.

  15. Transcriptomic profiling of the Saccharomyces cerevisiae response to quinine reveals a glucose limitation response attributable to drug-induced inhibition of glucose uptake.

    PubMed

    dos Santos, Sandra C; Tenreiro, Sandra; Palma, Margarida; Becker, Jorg; Sá-Correia, Isabel

    2009-12-01

    Quinine has been employed in the treatment of malaria for centuries and is still used against severe Plasmodium falciparum malaria. However, its interactions with the parasite remain poorly understood and subject to debate. In this study, we used the Saccharomyces cerevisiae eukaryotic model to better understand quinine's mode of action and the mechanisms underlying the cell response to the drug. We obtained a transcriptomic profile of the yeast's early response to quinine, evidencing a marked activation of genes involved in the low-glucose response (e.g., CAT8, ADR1, MAL33, MTH1, and SNF3). We used a low inhibitory quinine concentration with no detectable effect on plasma membrane function, consistent with the absence of a general nutrient starvation response and suggesting that quinine-induced glucose limitation is a specific response. We have further shown that transport of [(14)C]glucose is inhibited by quinine, with kinetic data indicating competitive inhibition. Also, tested mutant strains deleted for genes encoding high- and low-affinity hexose transporters (HXT1 to HXT5, HXT8, and HXT10) exhibit resistance phenotypes, correlating with reduced levels of quinine accumulation in the mutants examined. These results suggest that the hexose transporters are facilitators of quinine uptake in S. cerevisiae, possibly through a competitive inhibition mechanism. Interestingly, P. falciparum is highly dependent on glucose uptake, which is mediated by the single-copy transporter PfHT1, a protein with high homology to yeast's hexose transporters. We propose that PfHT1 is an interesting candidate quinine target possibly involved in quinine import in P. falciparum, an uptake mechanism postulated in recent studies to occur through a still-unidentified importer(s).

  16. Dodeca-2(E),4(E)-dienoic acid isobutylamide enhances glucose uptake in 3T3-L1 cells via activation of Akt signaling.

    PubMed

    Choi, Kyeong-Mi; Kim, Wonkyun; Hong, Jin Tae; Yoo, Hwan-Soo

    2017-02-01

    Dodeca-2(E),4(E)-dienoic acid isobutylamide (DDI), an alkamide derived from the plant Echinacea purpurea, promotes adipocyte differentiation and activates peroxisome proliferator-activated receptor γ, which is associated with enhanced insulin sensitivity. In the present study, we investigated whether DDI may increase glucose uptake through activation of the insulin signaling pathway in 3T3-L1 adipocytes. DDI increased insulin-stimulated glucose uptake, and expression and translocation of glucose transporter 4 in adipocytes treated with sub-optimal levels of insulin. Additionally, DDI enhanced Akt phosphorylation, whereas phosphoinositide 3-kinase/Akt inhibitors suppressed DDI-induced glucose uptake. These results suggest that DDI may improve insulin sensitivity through the activation of Akt signaling, which leads to enhanced glucose uptake.

  17. Rhus coriaria ameliorates insulin resistance in non-insulin-dependent diabetes mellitus (NIDDM) rats.

    PubMed

    Anwer, Tarique; Sharma, Manju; Khan, Gyas; Iqbal, Muzaffar; Ali, Mohammad Sajid; Alam, Mohammad Sarfaraz; Safhi, Mohammed Mohsen; Gupta, Nakul

    2013-01-01

    We have investigated the effect of methanolic extract of Rhus coriaria (RC) on hyperinsulinemia, glucose intolerance and insulin sensitivity in non-insulin-dependent diabetes mellitus (NIDDM) rats. NIDDM was induced by single intraperitoneal injection of streptozotocin (STZ, 100 mg/kg) to 2 days old rat pups. RC (200 mg/kg and 400 mg/kg) was administered orally once a day for 5 weeks after the animals were confirmed diabetic (i.e, 90 days after STZ injection). A group of citrate control rats were also maintained which has received citrate buffer on the 2nd day of their birth. There was a significant increase in blood glucose, glycosylated hemoglobin (HbA1c) and serum insulin levels were observed in NIDDM control rats. Treatment with RC reduced the elevated levels of blood glucose, HbA1c and insulin in the NIDDM rats. An oral glucose tolerance test (OGTT) was also performed in the same groups, in which we found a significant improvement in glucose tolerance in the rats treated with RC. The insulin sensitivity was assessed for both peripheral insulin resistance and hepatic insulin resistance. RC treatment significantly improved insulin sensitivity index (K(ITT)) which was significantly decreased in NIDDM control rats. There was significant rise in homeostasis model assessment of insulin resistance (HOMA-R) in NIDDM control rats whereas RC treatment significantly prevented the rise in HOMA-R in NIDDM treated rats. Our data suggest that methanolic extract of RC significantly delayed the onset of hyperinsulinemia and glucose intolerance and improved insulin sensitivity in NIDDM rats.

  18. 2-deoxy-d-glucose uptake in the inner retina: an in vivo study in the normal rat and following photoreceptor degeneration.

    PubMed Central

    Wilson, David J

    2002-01-01

    PURPOSE: To evaluate, in vivo, at the cellular level, glucose metabolism in the rat inner retina, and to determine how inner retinal glucose metabolism is affected by photoreceptor degeneration. METHODS: Glucose metabolism was evaluated using the 2-deoxyglucose technique. This is an autoradiographic technique that permits evaluation of glucose uptake at the cellular level. The three experimental groups consisted of normal rats (n = 13), dystrophic Royal College of Surgeons rats (n = 3), and rats previously treated with argon green photocoagulation (n = 5). RESULTS: Deoxyglucose uptake in the normal rat was not uniform across the inner retina. Uptake was greatest at the junction of the outer plexiform and inner nuclear layers, and in the inner plexiform layer. Following focal or diffuse photoreceptor loss, there was a marked decrease in the amount of deoxyglucose uptake at the junction of the outer plexiform and inner nuclear layers. CONCLUSION: The pattern of uptake of deoxyglucose in the inner retina is consistent with abundant uptake of deoxyglucose by Müller cells and at sites of synaptic transmission. The decline in deoxyglucose uptake following diffuse or focal photoreceptor loss indicates that there is diminished inner retinal glucose uptake following photoreceptor loss. This change in inner retinal glucose metabolism following photoreceptor loss may help to explain the inner retinal vascular changes observed following photocoagulation and in retinal dystrophies. PMID:12545701

  19. Acute exposure of primary rat soleus muscle to zilpaterol HCl (β2 adrenergic agonist), TNFα, or IL-6 in culture increases glucose oxidation rates independent of the impact on insulin signaling or glucose uptake.

    PubMed

    Cadaret, Caitlin N; Beede, Kristin A; Riley, Hannah E; Yates, Dustin T

    2017-08-01

    Recent studies show that adrenergic agonists and inflammatory cytokines can stimulate skeletal muscle glucose uptake, but it is unclear if glucose oxidation is similarly increased. Thus, the objective of this study was to determine the effects of ractopamine HCl (β1 agonist), zilpaterol HCl (β2 agonist), TNFα, and IL-6 on glucose uptake and oxidation rates in unstimulated and insulin-stimulated soleus muscle strips from adult Sprague-Dawley rats. Effects on phosphorylation of Akt (phospho-Akt), p38 MAPK (phospho-p38), and p44/42 MAPK (phospho-p44/42) was also determined. Incubation with insulin increased (P<0.05) glucose uptake by ∼47%, glucose oxidation by ∼32%, and phospho-Akt by ∼238%. Insulin also increased (P<0.05) phospho-p38, but only after 2h in incubation. Muscle incubated with β2 agonist alone exhibited ∼20% less (P<0.05) glucose uptake but ∼32% greater (P<0.05) glucose oxidation than unstimulated muscle. Moreover, co-incubation with insulin+β2 agonist increased (P<0.05) glucose oxidation and phospho-Akt compared to insulin alone. Conversely, β1 agonist did not appear to affect basal or insulin-stimulated glucose metabolism, and neither β agonist affected phospho-p44/42. TNFα and IL-6 increased (P<0.05) glucose oxidation by ∼23% and ∼33%, respectively, in the absence of insulin. This coincided with increased (P<0.05) phospho-p38 and phospho-p44/42 but not phospho-Akt. Furthermore, co-incubation of muscle with insulin+either cytokine yielded glucose oxidation rates that were similar to insulin alone, despite lower (P<0.05) phospho-Akt. Importantly, cytokine-mediated increases in glucose oxidation rates were not concomitant with greater glucose uptake. These results show that acute β2 adrenergic stimulation, but not β1 stimulation, directly increases fractional glucose oxidation in the absence of insulin and synergistically increases glucose oxidation when combined with insulin. The cytokines, TNFα and IL-6, likewise directly

  20. Postreceptor defects causing insulin resistance in normoinsulinemic non-insulin-dependent diabetes mellitus

    SciTech Connect

    Bolinder, J.; Ostman, J.; Arner, P.

    1982-10-01

    The mechanisms of the diminished hypoglycemic response to insulin in non-insulin-dependent diabetes mellitus (NIDDM) with normal levels of circulating plasma insulin were investigated. Specific binding of mono-/sup 125/I (Tyr A14)-insulin to isolated adipocytes and effects of insulin (5--10,000 microunits/ml) on glucose oxidation and lipolysis were determined simultaneously in subcutaneous adipose tissue of seven healthy subjects of normal weight and seven untreated NIDDM patients with normal plasma insulin levels. The two groups were matched for age, sex, and body weight. Insulin binding, measured in terms of receptor number and affinity, was normal in NIDDM, the total number of receptors averaging 350,000 per cell. Neither sensitivity nor the maximum antilipolytic effect of insulin was altered in NIDDM patients as compared with control subjects; the insulin concentration producing half the maximum effect (ED50) was 10 microunits/ml. As regards the effect of insulin on glucose oxidation, for the control subjects ED50 was 30 microunits/ml, whereas in NIDDM patients, insulin exerted no stimulatory effect. The results obtained suggest that the effect of insulin on glucose utilization in normoinsulinemic NIDDM may be diminished in spite of normal insulin binding to receptors. The resistance may be due solely to postreceptor defects, and does not involve antilipolysis.

  1. Interrelationship of antioxidative status, lipid peroxidation, and lipid profile in insulin-dependent and non-insulin-dependent diabetic patients.

    PubMed

    Cimbaljević, Branko; Vasilijević, Ana; Cimbaljević, Slavica; Buzadzić, Biljana; Korać, Aleksandra; Petrović, Vesna; Janković, Aleksandra; Korać, Bato

    2007-10-01

    This study aimed to investigate the interrelationship of plasma lipid profile, lipid peroxidation, and erythrocyte antioxidative defense in patients with insulin-dependent (IDDM) and non-insulin-dependent (NIDDM) diabetes mellitus. Plasma levels of total cholesterol, triglycerides, and lipid peroxides and the activities of copper, zinc superoxide dismutase (CuZnSOD), catalase, glutathione peroxidase (GSH-Px), as well as the amount of glutathione in erythrocytes, were determined in IDDM, NIDDM, and nondiabetic control subjects. Additionally, morphology of erythrocytes in all subjects was examined. Plasma levels of total cholesterol and triglycerides were significantly increased in NIDDM compared with controls. Also, the lipid peroxide level was higher in NIDDM than in either control or IDDM subjects. CuZnSOD activity in erythrocytes was elevated in NIDDM patients compared with the control. In NIDDM patients, more extensive erythrocyte spherocytosis and echinocytosis compared with both control and IDDM subjects were observed. In contrast with the IDDM group, the observed abnormality in lipid metabolism in NIDDM patients is closely associated with increased lipid peroxidation, changes in antioxidative defense, and erythrocyte morphology.

  2. Carnosic acid stimulates glucose uptake in skeletal muscle cells via a PME-1/PP2A/PKB signalling axis.

    PubMed

    Lipina, Christopher; Hundal, Harinder S

    2014-11-01

    Carnosic acid (CA) is a major constituent of the labiate herbal plant Rosemary (Rosmarinus officinalis), which has been shown to exhibit a number of beneficial health properties. In particular, recently there has been growing interest into the anti-obesity effects conveyed by CA, including its ability to counteract obesity-associated hyperglycaemia and insulin resistance. However, the mechanisms underlying its anti-diabetic responses are not fully understood. In this study, we hypothesized that CA may act to improve glycaemic status through enhancing peripheral glucose clearance. Herein, we demonstrate that CA acts to mimic the metabolic actions of insulin by directly stimulating glucose uptake in rat skeletal L6 myotubes, concomitant with increased translocation of the GLUT4 glucose transporter to the plasma membrane. Mechanistically, CA-induced glucose transport was found to be dependent on protein kinase B (PKB/Akt) but not AMPK, despite both kinases being activated by CA. Crucially, in accordance with its ability to activate PKB and stimulate glucose uptake, we show that CA conveys these effects through a pathway involving PME-1 (protein phosphatase methylesterase-1), a key negative regulator of the serine/threonine phosphatase PP2A (protein phosphatase 2A). Herein, we demonstrate that CA promotes PME-1 mediated demethylation of the PP2A catalytic subunit leading to its suppressed activity, and in doing so, alleviates the repressive action of PP2A towards PKB. Collectively, our findings provide new insight into how CA may improve glucose homeostasis through enhancing peripheral glucose clearance in tissues such as skeletal muscle through a PME-1/PP2A/PKB signalling axis, thereby mitigating pathological effects associated with the hyperglycaemic state.

  3. A novel insulin receptor-binding protein from Momordica charantia enhances glucose uptake and glucose clearance in vitro and in vivo through triggering insulin receptor signaling pathway.

    PubMed

    Lo, Hsin-Yi; Ho, Tin-Yun; Li, Chia-Cheng; Chen, Jaw-Chyun; Liu, Jau-Jin; Hsiang, Chien-Yun

    2014-09-10

    Diabetes, a common metabolic disorder, is characterized by hyperglycemia. Insulin is the principal mediator of glucose homeostasis. In a previous study, we identified a trypsin inhibitor, named Momordica charantia insulin receptor (IR)-binding protein (mcIRBP) in this study, that might interact with IR. The physical and functional interactions between mcIRBP and IR were clearly analyzed in the present study. Photo-cross-linking coupled with mass spectrometry showed that three regions (17-21, 34-40, and 59-66 residues) located on mcIRBP physically interacted with leucine-rich repeat domain and cysteine-rich region of IR. IR-binding assay showed that the binding behavior of mcIRBP and insulin displayed a cooperative manner. After binding to IR, mcIRBP activated the kinase activity of IR by (5.87 ± 0.45)-fold, increased the amount of phospho-IR protein by (1.31 ± 0.03)-fold, affected phosphoinositide-3-kinase/Akt pathways, and consequently stimulated the uptake of glucose in 3T3-L1 cells by (1.36 ± 0.12)-fold. Intraperitoneal injection of 2.5 nmol/kg mcIRBP significantly decreased the blood glucose levels by 20.9 ± 3.2% and 10.8 ± 3.6% in normal and diabetic mice, respectively. Microarray analysis showed that mcIRBP affected genes involved in insulin signaling transduction pathway in mice. In conclusion, our findings suggest that mcIRBP is a novel IRBP that binds to sites different from the insulin-binding sites on IR and stimulates both the glucose uptake in cells and the glucose clearance in mice.

  4. Association of Insulin Resistance With Cerebral Glucose Uptake in Late Middle-Aged Adults at Risk for Alzheimer Disease.

    PubMed

    Willette, Auriel A; Bendlin, Barbara B; Starks, Erika J; Birdsill, Alex C; Johnson, Sterling C; Christian, Bradley T; Okonkwo, Ozioma C; La Rue, Asenath; Hermann, Bruce P; Koscik, Rebecca L; Jonaitis, Erin M; Sager, Mark A; Asthana, Sanjay

    2015-09-01

    Converging evidence suggests that Alzheimer disease (AD) involves insulin signaling impairment. Patients with AD and individuals at risk for AD show reduced glucose metabolism, as indexed by fludeoxyglucose F 18-labeled positron emission tomography (FDG-PET). To determine whether insulin resistance predicts AD-like global and regional glucose metabolism deficits in late middle-aged participants at risk for AD and to examine whether insulin resistance-predicted variation in regional glucose metabolism is associated with worse cognitive performance. This population-based, cross-sectional study included 150 cognitively normal, late middle-aged (mean [SD] age, 60.7 [5.8] years) adults from the Wisconsin Registry for Alzheimer's Prevention (WRAP) study, a general community sample enriched for AD parental history. Participants underwent cognitive testing, fasting blood draw, and FDG-PET at baseline. We used the homeostatic model assessment of peripheral insulin resistance (HOMA-IR). Regression analysis tested the statistical effect of HOMA-IR on global glucose metabolism. We used a voxelwise analysis to determine whether HOMA-IR predicted regional glucose metabolism. Finally, predicted variation in regional glucose metabolism was regressed against cognitive factors. Covariates included age, sex, body mass index, apolipoprotein E ε4 genotype, AD parental history status, and a reference region used to normalize regional uptake. Regional glucose uptake determined using FDG-PET and neuropsychological factors. Higher HOMA-IR was associated with lower global glucose metabolism (β = -0.29; P < .01) and lower regional glucose metabolism across large portions of the frontal, lateral parietal, lateral temporal, and medial temporal lobes (P < .05, familywise error corrected). The association was especially robust in the left medial temporal lobe (R2 = 0.178). Lower glucose metabolism in the left medial temporal lobe predicted by HOMA-IR was significantly related

  5. Original Research: Polyphenols extracted from grape powder induce lipogenesis and glucose uptake during differentiation of murine preadipocytes.

    PubMed

    Torabi, Sheida; DiMarco, Nancy M

    2016-10-01

    Assessing the effects of grapes and grape powder extracted polyphenols on lipogenesis and glucose uptake in adipocytes may clarify the risk/benefit of recommending them to individuals with obesity and insulin resistance. We investigated the effect of grape powder extracted polyphenols (GPEP) on intracellular fat accumulation and glucose uptake during differentiation of 3T3-F442A preadipocytes. Total polyphenols were extracted and measured based on gallic acid equivalents (GAE). There were 2167 mg of GAE polyphenols in 100 g of grape powder. 3T3-F442A cells were incubated with GPEP, extracted from 125-500 µg GP/mL of media, until day 8 of differentiation when the cells were collected for different assays. AdipoRed™ assay and Oil Red O staining showed that GPEP induced, in a dose-dependent manner, an increase in intracellular triacylglycerol (TAG) content of adipocytes. Concomitantly, grape powder extracted polyphenols increased, in a dose-dependent manner, glucose uptake by 3T3-F442A cells, and there was a strong positive correlation between glucose uptake and the amount of TAG accumulation (r = 0.826, n = 24, P ≤ 0.001). No changes in cell viability was measured by Trypan Blue staining, suggesting that these effects were independent of cytotoxicity. Western-blot showed that GPEP upregulated protein level of glucose transport protein 4 (GLUT4), p-PKB/Akt, and p-AMPK in 3T3-F442A adipocytes. LY294002 (10 µmol/L), a phosphatidyl-inositol 3 kinase inhibitor (PI3K), reversed the effects of grape powder extracted polyphenols on cellular lipid content and glucose uptake. Furthermore, quantitative real-time polymerase chain reaction showed that GPEP increased mRNA expression of GLUT4, fatty acid synthase, lipoprotein lipase, adiponectin, and peroxisome proliferator-activated receptor γ, while it decreased mRNA expression of leptin and Insig-1. Our results indicate that GPEP may induce adipocyte differentiation via upregulation of GLUT4, PI3K and

  6. A Tbc1d1 (Ser231Ala)-knockin mutation partially impairs AICAR- but not exercise-induced muscle glucose uptake in mice.

    PubMed

    Chen, Qiaoli; Xie, Bingxian; Zhu, Sangsang; Rong, Ping; Sheng, Yang; Ducommun, Serge; Chen, Liang; Quan, Chao; Li, Min; Sakamoto, Kei; MacKintosh, Carol; Chen, Shuai; Wang, Hong Yu

    2017-02-01

    TBC1D1 (tre-2/USP6, BUB2, cdc16 domain family member 1) is a Rab GTPase-activating protein (RabGAP) that has been implicated in regulating GLUT4 trafficking. TBC1D1 can be phosphorylated by the AMP-activated protein kinase (AMPK) on Ser(231), which consequently interacts with 14-3-3 proteins. Given the key role for AMPK in regulating insulin-independent muscle glucose uptake, we hypothesised that TBC1D1-Ser(231) phosphorylation and/or 14-3-3 binding may mediate AMPK-governed glucose homeostasis. Whole-body glucose homeostasis and muscle glucose uptake were assayed in mice bearing a Tbc1d1 (Ser231Ala)-knockin mutation or harbouring skeletal muscle-specific Ampkα1/α2 (also known as Prkaa1/2) double-knockout mutations in response to an AMPK-activating agent, 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR). Exercise-induced muscle glucose uptake and exercise capacity were also determined in the Tbc1d1 (Ser231Ala)-knockin mice. Skeletal muscle-specific deletion of Ampkα1/a2 in mice prevented AICAR-induced hypoglycaemia and muscle glucose uptake. The Tbc1d1 (Ser231Ala)-knockin mutation also attenuated the glucose-lowering effect of AICAR in mice. Glucose uptake and cell surface GLUT4 content were significantly lower in muscle isolated from the Tbc1d1 (Ser231Ala)-knockin mice upon stimulation with a submaximal dose of AICAR. However, this Tbc1d1 (Ser231Ala)-knockin mutation neither impaired exercise-induced muscle glucose uptake nor affected exercise capacity in mice. TBC1D1-Ser(231) phosphorylation and/or 14-3-3 binding partially mediates AMPK-governed glucose homeostasis and muscle glucose uptake in a context-dependent manner.

  7. Enhancement of muscle glucose uptake by the vasopeptidase inhibitor, omapatrilat, is independent of insulin signaling and the AMP kinase pathway.

    PubMed

    Wong, Victor; Szeto, Linda; Uffelman, Kristine; Fantus, I George; Lewis, Gary F

    2006-08-01

    Omapatrilat (OMA), a vasopeptidase inhibitor (VPI), presently being tested in clinical trials for its antihypertensive properties, inhibits both angiotensin-converting enzyme and neutral endopeptidase, and raises tissue bradykinin levels. Recent studies from our laboratory and those of others have demonstrated that VPIs enhance muscle glucose uptake in animal models, and this effect is mediated by the bradykinin-nitric oxide pathway. The mechanism of the effect of OMA on muscle glucose uptake, however, is presently unknown. To investigate the effect of OMA on insulin signaling, soleus muscle was isolated 2 or 5 min after an i.v. bolus of insulin or saline from male Zucker fatty rats (8-10 weeks of age), following a 5-day treatment period of oral OMA (15 mg/kg per day) or drug vehicle (placebo). OMA resulted in significantly lower systolic blood pressure compared with the placebo-treated group (84.4+/- 7.52 mmHg in OMA vs 112+/-2.18 mmHg in controls, P<0.01). Immunoprecipitation and Western blot analysis of insulin receptor substrate 1 (IRS-1) revealed no changes in protein mass with OMA treatment. OMA did not enhance basal or insulin-stimulated IRS-1 tyrosine phosphorylation or its subsequent association with the p85 regulatory subunit of phosphatidylinositol 3-kinase. Under basal and insulin-stimulated conditions, OMA treatment did not alter the protein mass or the phosphorylation of Akt/protein kinase B, p42/44 extracellular signal-regulated kinase or adenosine monophosphate-activated protein kinase, or GLUT4 protein expression. We conclude that the ability of OMA to enhance whole body and specifically muscle glucose uptake in Zucker fatty rats is not mediated by enhancing insulin or AMPK signaling. Future studies should examine whether hemodynamic effects of the drug, independent of insulin signaling, enhance glucose uptake in insulin-resistant skeletal muscle.

  8. Anagliptin increases insulin-induced skeletal muscle glucose uptake via an NO-dependent mechanism in mice.

    PubMed

    Sato, Hiroyuki; Kubota, Naoto; Kubota, Tetsuya; Takamoto, Iseki; Iwayama, Kaito; Tokuyama, Kumpei; Moroi, Masao; Sugi, Kaoru; Nakaya, Keizo; Goto, Moritaka; Jomori, Takahito; Kadowaki, Takashi

    2016-11-01

    Recently, incretin-related agents have been reported to attenuate insulin resistance in animal models, although the underlying mechanisms remain unclear. In this study, we investigated whether anagliptin, the dipeptidyl peptidase 4 (DPP-4) inhibitor, attenuates skeletal muscle insulin resistance through endothelial nitric oxide synthase (eNOS) activation in the endothelial cells. We used endothelium-specific Irs2-knockout (ETIrs2KO) mice, which show skeletal muscle insulin resistance resulting from a reduction of insulin-induced skeletal muscle capillary recruitment as a consequence of impaired eNOS activation. In vivo, 8-week-old male ETIrs2KO mice were fed regular chow with or without 0.3% (wt/wt) DPP-4 inhibitor for 8 weeks to assess capillary recruitment and glucose uptake by the skeletal muscle. In vitro, human coronary arterial endothelial cells (HCAECs) were used to explore the effect of glucagon-like peptide 1 (GLP-1) on eNOS activity. Treatment with anagliptin ameliorated the impaired insulin-induced increase in capillary blood volume, interstitial insulin concentration and skeletal muscle glucose uptake in ETIrs2KO mice. This improvement in insulin-induced glucose uptake was almost completely abrogated by the GLP-1 receptor (GLP-1R) antagonist exendin-(9-39). Moreover, the increase in capillary blood volume with anagliptin treatment was also completely inhibited by the NOS inhibitor. GLP-1 augmented eNOS phosphorylation in HCAECs, with the effect completely disappearing after exposure to the protein kinase A (PKA) inhibitor H89. These data suggest that anagliptin treatment enhances insulin-induced capillary recruitment and interstitial insulin concentrations, resulting in improved skeletal muscle glucose uptake by directly acting on the endothelial cells via NO- and GLP-1-dependent mechanisms in vivo. Anagliptin may be a promising agent to ameliorate skeletal muscle insulin resistance in obese patients with type 2 diabetes.

  9. Methyl-beta-cyclodextrin directly binds methylene blue and blocks both its cell staining and glucose uptake stimulatory effects.

    PubMed

    Scott, Jordan; Tidball, Andrew; Uitvlugt, Jeff M; Lucia, Mario; Vander Griend, Douglas A; Louters, Larry L

    2009-02-01

    GLUT1, the most ubiquitously expressed member of the GLUT family of glucose transporters, can be acutely activated by a variety of cell stresses. Methylene blue activates glucose transport activity of GLUT1 in L929 fibroblast cells presumably by a redox cycling of MB, which generates an oxidative stress. Data shown here reveal that methyl-beta-cyclodextrin (MCD) blocks both the staining of cells and activation of glucose uptake by directly binding to MB. MCD binding to MB was qualitatively demonstrated by a significantly slower dialysis rate of MB in the presence of MCD. Analysis of the complete spectra of aqueous MB solutions and MB plus MCD solutions by a factor analysis program called SIVVU indicated that these equilibria can be modeled by three species: MB monomer, MB dimer, and MCD-MB inclusion complex. The molar extinction coefficients for each species from 500 to 700nm were determined. The equilibrium association constant (K(a)) for MB dimer formation was measured at 5846+/-30M(-1) and the K(a) for formation of the MCD-MB complex was 310+/-10M(-1). MCD also dramatically enhances the destaining rate of MB-stained cells. The loss of MB from the cell is tightly correlated with the loss of activated glucose uptake. This suggests that the MB activation of glucose uptake is likely not caused by its redox cycling, but more likely the result of a specific interaction between MB and a protein directly involved in the activation of GLUT1.

  10. Hydrogen Sulfide Treatment Promotes Glucose Uptake by Increasing Insulin Receptor Sensitivity and Ameliorates Kidney Lesions in Type 2 Diabetes

    PubMed Central

    Xue, Rong; Hao, Dan-Dan; Sun, Ji-Ping; Li, Wen-Wen; Zhao, Man-Man; Li, Xing-Hui; Chen, Ying; Zhu, Jian-Hua; Ding, Ying-Jiong; Liu, Jun

    2013-01-01

    Abstract Aims: To examine if hydrogen sulfide (H2S) can promote glucose uptake and provide amelioration in type 2 diabetes. Results: Treatment with sodium hydrosulfide (NaHS, an H2S donor) increased glucose uptake in both myotubes and adipocytes. The H2S gas solution showed similar effects. The NaHS effects were blocked by an siRNA-mediated knockdown of the insulin receptor (IR). NaHS also increased phosphorylation of the IR, PI3K, and Akt. In Goto-Kakizaki (GK) diabetic rats, chronic NaHS treatment (30 μmol·kg−1·day−1) decreased fasting blood glucose, increased insulin sensitivity, and increased glucose tolerance with increased phosphorylation of PI3K and Akt in muscles. Similar insulin-sensitizing effects of NaHS treatment were also observed in Wistar rats. Moreover, glucose uptake was reduced in the cells with siRNA-mediated knockdown of the H2S-generating enzyme cystathionine γ-lyase in the presence or absence of exogenous H2S. Moreover, chronic NaHS treatment reduced oxygen species and the number of crescentic glomeruli in the kidney of GK rats. Innovation and Conclusion: This study provides the first piece of evidence for the insulin-sensitizing effect of NaHS/H2S in the both in vitro and in vivo models of insulin resistance. Rebound Track: This work was rejected during a standard peer review and rescued by the Rebound Peer Review (Antoxid Redox Signal 16: 293–296, 2012) with the following serving as open reviewers: Jin-Song Bian, Samuel Dudley, Hideo Kimura, and Xian Wang. Antioxid. Redox Signal. 19, 5–23. PMID:23293908

  11. Calorie restriction leads to greater Akt2 activity and glucose uptake by insulin-stimulated skeletal muscle from old rats

    PubMed Central

    Wang, Haiyan; Arias, Edward B.

    2016-01-01

    Skeletal muscle insulin resistance is associated with many common age-related diseases, but moderate calorie restriction (CR) can substantially elevate glucose uptake by insulin-stimulated skeletal muscle from both young and old rats. The current study evaluated the isolated epitrochlearis muscle from ∼24.5-mo-old rats that were either fed ad libitum (AL) or subjected to CR (consuming ∼65% of ad libitum, AL, intake beginning at ∼22.5 mo old). Some muscles were also incubated with MK-2206, a potent and selective Akt inhibitor. The most important results were that in isolated muscles, CR vs. AL resulted in 1) greater insulin-stimulated glucose uptake 2) that was accompanied by significantly increased insulin-mediated activation of Akt2, as indicated by greater phosphorylation on both Thr309 and Ser474 along with greater Akt2 activity, 3) concomitant with enhanced phosphorylation of several Akt substrates, including an Akt substrate of 160 kDa on Thr642 and Ser588, filamin C on Ser2213 and proline-rich Akt substrate of 40 kDa on Thr246, but not TBC1D1 on Thr596; and 4) each of the CR effects was eliminated by MK-2206. These data provide compelling new evidence linking greater Akt2 activation to the CR-induced elevation of insulin-stimulated glucose uptake by muscle from old animals. PMID:26739650

  12. Polyphenols and phenolic acids from strawberry and apple decrease glucose uptake and transport by human intestinal Caco-2 cells.

    PubMed

    Manzano, Susana; Williamson, Gary

    2010-12-01

    The effect of polyphenols, phenolic acids and tannins (PPTs) from strawberry and apple on uptake and apical to basolateral transport of glucose was investigated using Caco-2 intestinal cell monolayers. Substantial inhibition on both uptake and transport was observed by extracts from both strawberry and apple. Using sodium-containing (glucose transporters SGLT1 and GLUT2 both active) and sodium-free (only GLUT2 active) conditions, we show that the inhibition of GLUT2 was greater than that of SGLT1. The extracts were analyzed and some of the constituent PPTs were also tested. Quercetin-3-O-rhamnoside (IC₅₀ =31 μM), phloridzin (IC₅₀=146 μM), and 5-caffeoylquinic acid (IC₅₀=2570 μM) contributed 26, 52 and 12%, respectively, to the inhibitory activity of the apple extract, whereas pelargonidin-3-O-glucoside (IC₅₀=802 μM) contributed 26% to the total inhibition by the strawberry extract. For the strawberry extract, the inhibition of transport was non-competitive based on kinetic analysis, whereas the inhibition of cellular uptake was a mixed-type inhibition, with changes in both V(max) and apparent K(m) . The results in this assay show that some PPTs inhibit glucose transport from the intestinal lumen into cells and also the GLUT2-facilitated exit on the basolateral side.

  13. DNAJB3/HSP-40 cochaperone improves insulin signaling and enhances glucose uptake in vitro through JNK repression

    PubMed Central

    Abu-Farha, Mohamed; Cherian, Preethi; Al-Khairi, Irina; Tiss, Ali; Khadir, Abdelkrim; Kavalakatt, Sina; Warsame, Samia; Dehbi, Mohammed; Behbehani, Kazem; Abubaker, Jehad

    2015-01-01

    Heat shock response (HSR) is an essential host-defense mechanism that is dysregulated in obesity-induced insulin resistance and type 2 diabetes (T2D). Our recent data demonstrated that DNAJB3 was downregulated in obese human subjects and showed negative correlation with inflammatory markers. Nevertheless, DNAJB3 expression pattern in diabetic subjects and its mode of action are not yet known. In this study, we showed reduction in DNAJB3 transcript and protein levels in PBMC and subcutaneous adipose tissue of obese T2D compared to obese non-diabetic subjects. Overexpression of DNAJB3 in HEK293 and 3T3-L1 cells reduced JNK, IRS-1 Ser-307 phosphorylation and enhanced Tyr-612 phosphorylation suggesting an improvement in IRS-1 signaling. Furthermore, DNAJB3 mediated the PI3K/AKT pathway activation through increasing AKT and AS160 phosphorylation. AS160 mediates the mobilization of GLUT4 transporter to the cell membrane and thereby improves glucose uptake. Using pre-adipocytes cells we showed that DNAJB3 overexpression caused a significant increase in the glucose uptake, possibly through its phosphorylation of AS160. In summary, our results shed the light on the possible role of DNAJB3 in improving insulin sensitivity and glucose uptake through JNK repression and suggest that DNAJB3 could be a potential target for therapeutic treatment of obesity-induced insulin resistance. PMID:26400768

  14. Mitochondrial antioxidative capacity regulates muscle glucose uptake in the conscious mouse: effect of exercise and diet

    PubMed Central

    Lustig, Mary E.; Bonner, Jeffrey S.; Lee-Young, Robert S.; Mayes, Wesley H.; James, Freyja D.; Lin, Chien-Te; Perry, Christopher G. R.; Anderson, Ethan J.; Neufer, P. Darrell; Wasserman, David H.

    2012-01-01

    The objective of this study was to test the hypothesis that exercise-stimulated muscle glucose uptake (MGU) is augmented by increasing mitochondrial reactive oxygen species (mtROS) scavenging capacity. This hypothesis was tested in genetically altered mice fed chow or a high-fat (HF) diet that accelerates mtROS formation. Mice overexpressing SOD2 (sod2Tg), mitochondria-targeted catalase (mcatTg), and combined SOD2 and mCAT (mtAO) were used to increase mtROS scavenging. mtROS was assessed by the H2O2 emitting potential (JH2O2) in muscle fibers. sod2Tg did not decrease JH2O2 in chow-fed mice, but decreased JH2O2 in HF-fed mice. mcatTg and mtAO decreased JH2O2 in both chow- and HF-fed mice. In parallel, the ratio of reduced to oxidized glutathione (GSH/GSSG) was unaltered in sod2Tg in chow-fed mice, but was increased in HF-fed sod2Tg and both chow- and HF-fed mcatTg and mtAO. Nitrotyrosine, a marker of NO-dependent, reactive nitrogen species (RNS)-induced nitrative stress, was decreased in both chow- and HF-fed sod2Tg, mcatTg, and mtAO mice. This effect was not changed with exercise. Kg, an index of MGU was assessed using 2-[14C]-deoxyglucose during exercise. In chow-fed mice, sod2Tg, mcatTg, and mtAO increased exercise Kg compared with wild types. Exercise Kg was also augmented in HF-fed sod2Tg and mcatTg mice but unchanged in HF-fed mtAO mice. In conclusion, mtROS scavenging is a key regulator of exercise-mediated MGU and this regulation depends on nutritional state. PMID:22653994

  15. Mitochondrial antioxidative capacity regulates muscle glucose uptake in the conscious mouse: effect of exercise and diet.

    PubMed

    Kang, Li; Lustig, Mary E; Bonner, Jeffrey S; Lee-Young, Robert S; Mayes, Wesley H; James, Freyja D; Lin, Chien-Te; Perry, Christopher G R; Anderson, Ethan J; Neufer, P Darrell; Wasserman, David H

    2012-10-15

    The objective of this study was to test the hypothesis that exercise-stimulated muscle glucose uptake (MGU) is augmented by increasing mitochondrial reactive oxygen species (mtROS) scavenging capacity. This hypothesis was tested in genetically altered mice fed chow or a high-fat (HF) diet that accelerates mtROS formation. Mice overexpressing SOD2 (sod2(Tg)), mitochondria-targeted catalase (mcat(Tg)), and combined SOD2 and mCAT (mtAO) were used to increase mtROS scavenging. mtROS was assessed by the H(2)O(2) emitting potential (JH(2)O(2)) in muscle fibers. sod2(Tg) did not decrease JH(2)O(2) in chow-fed mice, but decreased JH(2)O(2) in HF-fed mice. mcat(Tg) and mtAO decreased JH(2)O(2) in both chow- and HF-fed mice. In parallel, the ratio of reduced to oxidized glutathione (GSH/GSSG) was unaltered in sod2(Tg) in chow-fed mice, but was increased in HF-fed sod2(Tg) and both chow- and HF-fed mcat(Tg) and mtAO. Nitrotyrosine, a marker of NO-dependent, reactive nitrogen species (RNS)-induced nitrative stress, was decreased in both chow- and HF-fed sod2(Tg), mcat(Tg), and mtAO mice. This effect was not changed with exercise. Kg, an index of MGU was assessed using 2-[(14)C]-deoxyglucose during exercise. In chow-fed mice, sod2(Tg), mcat(Tg), and mtAO increased exercise Kg compared with wild types. Exercise Kg was also augmented in HF-fed sod2(Tg) and mcat(Tg) mice but unchanged in HF-fed mtAO mice. In conclusion, mtROS scavenging is a key regulator of exercise-mediated MGU and this regulation depends on nutritional state.

  16. Somatostatin-secreting Pheochromocytoma Mimicking Insulin-dependent Diabetes Mellitus

    PubMed Central

    Hirai, Hiroyuki; Midorikawa, Sanae; Suzuki, Shinichi; Sasano, Hironobu; Watanabe, Tsuyoshi; Satoh, Hiroaki

    2016-01-01

    We herein present the findings of a 42-year-old woman with either adrenal pheochromocytoma or intraadrenal paraganglioma that simultaneously secreted somatostatin, thus mimicking insulin-dependent diabetes mellitus. Pheochromocytoma was clinically diagnosed based on scintigraphy, elevated catecholamine levels, and finally a histopathological analysis of resected specimens. The patient had diabetic ketosis, requiring 40 U insulin for treatment. Following laparoscopic adrenalectomy, insulin therapy was discontinued and the urinary c-peptide levels changed from 5.5-9.0 to 81.3-87.0 μg/day. Histologically, somatostatin immunoreactivity was detected and the somatostatin levels were elevated in the serum-like fluid obtained from the tumor. Clinicians should be aware of the possible occurrence of simultaneous ectopic hormone secretion in patients with pheochromocytoma. PMID:27746437

  17. Somatostatin-secreting Pheochromocytoma Mimicking Insulin-dependent Diabetes Mellitus.

    PubMed

    Hirai, Hiroyuki; Midorikawa, Sanae; Suzuki, Shinichi; Sasano, Hironobu; Watanabe, Tsuyoshi; Satoh, Hiroaki

    We herein present the findings of a 42-year-old woman with either adrenal pheochromocytoma or intraadrenal paraganglioma that simultaneously secreted somatostatin, thus mimicking insulin-dependent diabetes mellitus. Pheochromocytoma was clinically diagnosed based on scintigraphy, elevated catecholamine levels, and finally a histopathological analysis of resected specimens. The patient had diabetic ketosis, requiring 40 U insulin for treatment. Following laparoscopic adrenalectomy, insulin therapy was discontinued and the urinary c-peptide levels changed from 5.5-9.0 to 81.3-87.0 μg/day. Histologically, somatostatin immunoreactivity was detected and the somatostatin levels were elevated in the serum-like fluid obtained from the tumor. Clinicians should be aware of the possible occurrence of simultaneous ectopic hormone secretion in patients with pheochromocytoma.

  18. Juvenile, insulin-dependent diabetes mellitus, type 1-related dermatoses.

    PubMed

    Sehgal, V N; Bhattacharya, S N; Verma, P

    2011-06-01

    Juvenile insulin-dependent diabetes mellitus type 1 (IDDM) is a well-recognized worldwide entity, the significance of which has increased because of its recent upsurging trends, warranting attention on variety of its clinical expressions, in particular, pertaining to skin, an aspect seldom taken cognizance of. Hence an endeavour to recap the related dermatoses, such as limited joint mobility syndrome including sclerodermoid (scleroderma-like) changes, xerosis, necrobiosis lipoidica diabeticorum, granuloma annulare, diabetic foot syndrome, has been made. Complexities relating to the recently explored issues of atopic dermatitis and drug hypersensitivity syndrome have also been covered adequately. In addition, the current concepts of the physiopathology of type 1 diabetes-related dermatoses are briefly recapitulated for clarity. © 2010 The Authors. Journal of the European Academy of Dermatology and Venereology © 2010 European Academy of Dermatology and Venereology.

  19. Wheat germ extract decreases glucose uptake and RNA ribose formation but increases fatty acid synthesis in MIA pancreatic adenocarcinoma cells.

    PubMed

    Boros, L G; Lapis, K; Szende, B; Tömösközi-Farkas, R; Balogh, A; Boren, J; Marin, S; Cascante, M; Hidvégi, M

    2001-08-01

    The fermented wheat germ extract with standardized benzoquinone composition has potent tumor propagation inhibitory properties. The authors show that this extract induces profound metabolic changes in cultured MIA pancreatic adenocarcinoma cells when the [1,2-13C2]glucose isotope is used as the single tracer with biologic gas chromatography-mass spectrometry. MIA cells treated with 0.1, 1, and 10 mg/mL wheat germ extract showed a dose-dependent decrease in cell glucose consumption. uptake of isotope into ribosomal RNA (2.4%, 9.4%, and 28.0%), and release of 13CO2. Conversely, direct glucose oxidation and ribose recycling in the pentose cycle showed a dose-dependent increase of 1.2%, 20.7%, and 93.4%. The newly synthesized fraction of cell palmitate and the 13C enrichment of acetyl units were also significantly increased with all doses of wheat germ extract. The fermented wheat germ extract controls tumor propagation primarily by regulating glucose carbon redistribution between cell proliferation-related and cell differentiation-related macromolecules. Wheat germ extract treatment is likely associated with the phosphorylation and transcriptional regulation of metabolic enzymes that are involved in glucose carbon redistribution between cell proliferation-related structural and functional macromolecules (RNA, DNA) and the direct oxidative degradation of glucose, which have devastating consequences for the proliferation and survival of pancreatic adenocarcinoma cells in culture.

  20. Effect of Alpinia calcarata on glucose uptake in diabetic rats-an in vitro and in vivo model

    PubMed Central

    2014-01-01

    Background Diabetes mellitus is a heterogeneous metabolic disorders characterized by abnormally high levels of blood glucose The main objective of the present work is to study the effect of Alpinia calcarata on glucose uptake in streptozotocin (STZ) induced diabetic rats. Methods The diabetes was induced by single dose of STZ (45 mg/kg) in citrate buffer, while the normal control group was given the vehicle (citrate buffer) only. After induction of diabetes, the diabetic animals were treated with ethanolic extract of Alpinia calcarata (200 mg/kg) and glibenclamide (2 mg/kg) for 30 days. Blood glucose estimation was performed every week of the study. At the end of study period, animals were sacrificed for biochemical studies. Results Streptozotocin induced diabetic rats shows the altered levels of various biochemical profiles. Those levels were brought back to near normal upon treatment with ethanolic extract of Alpinia calcarata and standard drug glibanclamide. No significant changes were observed on treatment with plant extract alone group indicated that there are no toxic substances present in Alpinia calcarata. The antidiabetic activity of plant extract was also further confirmed by histopathological studies. The ethanolic extract of Alpinia calcarata shows significant inhibition of alpha glucosidase activity and also enhancing the glucose uptake in rat hemidiaphragm. Conclusions In conclusion, the ethanolic extract of Alpinia calcarata ameliorates the condition associated with diabetes. PMID:24502532

  1. Reduction of glucose uptake through inhibition of hexose transporters and enhancement of their endocytosis by methylglyoxal in Saccharomyces cerevisiae.

    PubMed

    Yoshida, Aya; Wei, Dandan; Nomura, Wataru; Izawa, Shingo; Inoue, Yoshiharu

    2012-01-02

    Diabetes mellitus is characterized by an impairment of glucose uptake even though blood glucose levels are increased. Methylglyoxal is derived from glycolysis and has been implicated in the development of diabetes mellitus, because methylglyoxal levels in blood and tissues are higher in diabetic patients than in healthy individuals. However, it remains to be elucidated whether such factors are a cause, or consequence, of diabetes. Here, we show that methylglyoxal inhibits the activity of mammalian glucose transporters using recombinant Saccharomyces cerevisiae cells genetically lacking all hexose transporters but carrying cDNA for human GLUT1 or rat GLUT4. We found that methylglyoxal inhibits yeast hexose transporters also. Glucose uptake was reduced in a stepwise manner following treatment with methylglyoxal, i.e. a rapid reduction within 5 min, followed by a slow and gradual reduction. The rapid reduction was due to the inhibitory effect of methylglyoxal on hexose transporters, whereas the slow and gradual reduction seemed due to endocytosis, which leads to a decrease in the amount of hexose transporters on the plasma membrane. We found that Rsp5, a HECT-type ubiquitin ligase, is responsible for the ubiquitination of hexose transporters. Intriguingly, Plc1 (phospholipase C) negatively regulated the endocytosis of hexose transporters in an Rsp5-dependent manner, although the methylglyoxal-induced endocytosis of hexose transporters occurred irrespective of Plc1. Meanwhile, the internalization of hexose transporters following treatment with methylglyoxal was delayed in a mutant defective in protein kinase C.

  2. Comparative effect of lidocaine and bupivacaine on glucose uptake and lactate production in the perfused working rat heart

    SciTech Connect

    Cronau, L.H. Jr.; Merin, R.G.; Aboulish, E.; Steenberg, M.L.; Maljorda, A.

    1986-03-01

    It has been suggested that at equivalent therapeutic concentrations, lidocaine and bupivacaine may have different cardiotoxic potency. In the isolated working rat heart preparation, the effect of a range of lidocaine and bupivacaine concentrations on glucose uptake and lactate production (LP) were observed. Insulin was added, 10 ..mu../L, to Ringer's solution containing /sup 3/H-labeled glucose to measure the glycolytic flux (GF). The effect of the local anesthetics on LP at the indicated concentrations were similar. Lidocaine appears to depress the glycolytic flux from exogenous glucose to a lesser degree. Bupivacaine, 10 mg/L, depresses VO/sub 2/ to a greater degree than does lidocaine, 40 mg/L.

  3. The effect of Ramadan fasting on glycaemic control in insulin dependent diabetic patients: A literature review.

    PubMed

    Alabbood, Majid H; Ho, Kenneth W; Simons, Mary R

    Ramadan fasting is one of the five pillars of Islam. People with diabetes are exempted from fasting according to Islamic rules. However, many people with diabetes wish to fast. Physicians are asked frequently by their patients about their ability to fast and the possible impact of fasting on their glycaemic control. Studies about the effect of Ramadan on people with insulin-treated diabetes are scarce. This review aims to provide clinicians with the best recommendations for their patients with insulin-treated diabetes who wish to fast. Four databases (Medline, EMBASE, Scopus and PubMed) were searched using the following MeSH terms and keywords: "insulin dependent diabetes mellitus", "type 1 diabetes mellitus", 'Ramadan' "and" "fasting". In addition, a hand search of key journals and reference lists was performed. Sixteen full text articles were selected for review and critical analysis. All of the included studies except one found improvement or no change in glycaemic control parameters during Ramadan fasting. The incidence of major complications were negligible. Minor hypoglycaemic events were reported in some studies but did not adversely affect fasting. Postprandial hyperglycaemia was a major concern in other studies. However, the incidence of severe hyperglycaemia and diabetic ketoacidosis were trivial. Ramadan fasting is feasible for insulin dependent diabetic patient who wish to fast. Clinicians should advise their patients about the importance of adequate glycaemic control before Ramadan and frequent glucose monitoring during fasting. Certain types of Insulin seem to be more beneficial than other. Copyright © 2016 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  4. [Non-insulin-dependent diabetics with secondary failure: insulin therapy at bedtime combined with glibenclamide].

    PubMed

    Maiz, A; Arteaga, A; Klaassen, J; Velasco, N; Borkosky, M; Jiménez, M; Acosta, A M

    1993-10-01

    Secondary failure and the requirement is common in patients with non-insulin dependent diabetes mellitus. The combination of sulfonylureas with NPH insulin at bedtime has been proposed to avoid high doses of insulin. We treated 18 patients (2 men, age range 47-76 yr) non respondent to diet and glibenclamide, combining NPH insulin in an average dose of 0.3 +/- 0.03 U/kg BW at bedtime for 6 months. Fasting serum glucose improved from 256 +/- 11 to 132 +/- 6 mg/dl and HbA1C from 13.6 +/- 0.4 to 9.9 +/- 0.2%. Four patients achieved a good control (defined as a HbA1C < 9), 9 a fair control (HbA1C 9.1-10) and 5 persisted with a bad control (HbA1C > 10). Well controlled patients were younger, had a shorter duration of diabetes and had a non significantly higher body mass index. Fasting serum insulin and C peptide levels achieved after glucagon injection were not predictors of the metabolic response to combined therapy. Tolerance to treatment was good, without changes in blood pressure or serum lipids and with a low incidence of hypoglycemia. There was a mean increase of 3.6 kg in body weight. After 6 months of therapy, maximum achieved C peptide values after glucagon increased from 3.3 +/- 0.3 to 4.5 +/- 0.4 ng/ml. It is concluded that combined glibenclamide and NPH insulin at bedtime is useful to treat secondary failure in non-insulin dependent diabetic patients, but their response in variable and non dependent on their beta insular secretion.

  5. Ibervillea sonorae (Cucurbitaceae) induces the glucose uptake in human adipocytes by activating a PI3K-independent pathway.

    PubMed

    Zapata-Bustos, Rocio; Alonso-Castro, Angel Josabad; Gómez-Sánchez, Maricela; Salazar-Olivo, Luis A

    2014-03-28

    Ibervillea sonorae (S. Watson) Greene (Cucurbitaceae), a plant used for the empirical treatment of type 2 diabetes in México, exerts antidiabetic effects on animal models but its mechanism of action remains unknown. The aim of this study is to investigate the antidiabetic mechanism of an Ibervillea sonorae aqueous extract (ISE). Non-toxic ISE concentrations were assayed on the glucose uptake by insulin-sensitive and insulin-resistant murine and human cultured adipocytes, both in the absence or the presence of insulin signaling pathway inhibitors, and on murine and human adipogenesis. Chemical composition of ISE was examined by spectrophotometric and HPLC techniques. ISE stimulated the 2-NBDGlucose uptake by mature adipocytes in a concentration-dependent manner. ISE 50 µg/ml induced the 2-NBDG uptake in insulin-sensitive 3T3-F442A, 3T3-L1 and human adipocytes by 100%, 63% and 33%, compared to insulin control. Inhibitors for the insulin receptor, PI3K, AKT and GLUT4 blocked the 2-NBDG uptake in murine cells, but human adipocytes were insensitive to the PI3K inhibitor Wortmannin. ISE 50 µg/ml also stimulated the 2-NBDG uptake in insulin-resistant adipocytes by 117% (3T3-F442A), 83% (3T3-L1) and 48% (human). ISE induced 3T3-F442A adipogenesis but lacked proadipogenic effects on 3T3-L1 and human preadipocytes. Chemical analyses showed the presence of phenolics in ISE, mainly an appreciable concentration of gallic acid. Ibervillea sonorae exerts its antidiabetic properties by means of hydrosoluble compounds stimulating the glucose uptake in human preadipocytes by a PI3K-independent pathway and without proadipogenic effects. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. Chronically increased glucose uptake by adipose tissue leads to lactate production and improved insulin sensitivity rather than obesity in the mouse.

    PubMed

    Muñoz, S; Franckhauser, S; Elias, I; Ferré, T; Hidalgo, A; Monteys, A M; Molas, M; Cerdán, S; Pujol, A; Ruberte, J; Bosch, F

    2010-11-01

    In adipocytes, triacylglycerol synthesis depends on the formation of glycerol 3-phosphate, which originates either from glucose, through glycolysis, or from lactate, through glyceroneogenesis. However, glucose is traditionally viewed as the main precursor of the glycerol backbone and thus, enhanced glucose uptake would be expected to result in increased triacylglycerol synthesis and contribute to obesity. To further explore this issue, we generated a mouse model with chronically increased glucose uptake in adipose tissue by expressing Gck, which encodes the glucokinase enzyme. Here we show that the production of high levels of glucokinase led to increased adipose tissue glucose uptake and lactate production, improved glucose tolerance and higher whole-body and skeletal muscle insulin sensitivity. There was no parallel increase in glycerol 3-phosphate synthesis in vivo, fat accumulation or obesity. Moreover, at high glucose concentrations, in cultured fat cells overproducing glucokinase, glycerol 3-phosphate synthesis from pyruvate decreased, while glyceroneogenesis increased in fat cells overproducing hexokinase II. These findings indicate that the absence of glucokinase inhibition by glucose 6-phosphate probably led to increased glycolysis and blocked glyceroneogenesis in the mouse model. Furthermore, this study suggests that under physiological conditions, when blood glucose increases, glyceroneogenesis may prevail over glycolysis for triacylglycerol formation because of the inhibition of hexokinase II by glucose 6-phosphate. Together these results point to the indirect pathway (glucose to lactate to glycerol 3-phosphate) being key for fat deposition in adipose tissue.

  7. Corneal backscatter in insulin-dependent and non-insulin-dependent diabetes mellitus patients: a pilot study.

    PubMed

    Calvo-Maroto, Ana M; Pérez-Cambrodí, Rafael J; Esteve-Taboada, José J; García-Lázaro, Santiago; Cerviño, Aleja Ndro

    2017-06-01

    To compare central corneal backscatter obtained from Scheimpflug images between patients with insulin-dependent and non-insulin-dependent diabetes mellitus (IDDM and NIDDM, respectively) and healthy controls. Seven patients with IDDM (7 eyes), eleven patients with NIDDM (11 eyes), and sixteen healthy subjects (16 eyes) were included in this pilot study. Scheimpflug imaging system (Pentacam, Oculus Inc., Germany) was used to obtain optical sections of the cornea. Seven meridians were analyzed for each eye, oriented from 70° to 110°. Optical density values for the central 3-mm and 5-mm zones of the cornea were obtained by image analysis using external software. Corneal backscatter was significantly higher in the diabetic patients than in the controls for the central 3-mm (p=0.016) and 5-mm (p=0.014) zones. No significant differences in corneal backscatter were found between the IDDM and NIDDM groups for either zone (both p>0.05). In the NIDDM group, significant correlations were observed for both central zones between corneal backscatter and age (3 mm: r=0.604, p=0.025; 5 mm: r=0.614, p=0.022) and central corneal thickness (3 mm: r=0.641, p=0.017; 5 mm: r=0.671, p=0.012); this was not found in the IDDM group (p>0.05). The presence of diabetes showed a significant effect on central corneal backscatter (Kruskal-Wallis test, p<0.001). Diabetic patients showed higher values of corneal light backscatter than healthy subjects. Corneal optical density analysis may be a useful tool for monitoring and assessing the ocular changes caused by diabetes.

  8. Autonomic nervous system activation mediates the increase in whole-body glucose uptake in response to electroacupuncture.

    PubMed

    Benrick, Anna; Kokosar, Milana; Hu, Min; Larsson, Martin; Maliqueo, Manuel; Marcondes, Rodrigo Rodrigues; Soligo, Marzia; Protto, Virginia; Jerlhag, Elisabet; Sazonova, Antonina; Behre, Carl Johan; Højlund, Kurt; Thorén, Peter; Stener-Victorin, Elisabet

    2017-08-01

    A single bout of low-frequency electroacupuncture (EA) causing muscle contractions increases whole-body glucose uptake in insulin-resistant rats. We explored the underlying mechanism of this finding and whether it can be translated into clinical settings. Changes in glucose infusion rate (GIR) were measured by euglycemic-hyperinsulinemic clamp during and after 45 min of low-frequency EA in 21 overweight/obese women with polycystic ovary syndrome (PCOS) and 21 controls matched for age, weight, and body mass index (experiment 1) and in rats receiving autonomic receptor blockers (experiment 2). GIR was higher after EA in controls and women with PCOS. Plasma serotonin levels and homovanillic acid, markers of vagal activity, decreased in both controls and patients with PCOS. Adipose tissue expression of pro-nerve growth factor (proNGF) decreased, and the mature NGF/proNGF ratio increased after EA in PCOS, but not in controls, suggesting increased sympathetic-driven adipose tissue metabolism. Administration of α-/β-adrenergic receptor blockers in rats blocked the increase in GIR in response to EA. Muscarinic and dopamine receptor antagonist also blocked the response but with slower onset. In conclusion, a single bout of EA increases whole-body glucose uptake by activation of the sympathetic and partly the parasympathetic nervous systems, which could have important clinical implications for the treatment of insulin resistance.-Benrick, A., Kokosar, M., Hu, M., Larsson, M., Maliqueo, M., Marcondes, R. R., Soligo, M., Protto, V., Jerlhag, E., Sazonova, A., Behre, C. J., Højlund, K., Thorén, P., Stener-Victorin, E. Autonomic nervous system activation mediates the increase in whole-body glucose uptake in response to electroacupuncture. © FASEB.

  9. Green tea epigallocatechin gallate inhibits insulin stimulation of adipocyte glucose uptake via the 67-kilodalton laminin receptor and AMP-activated protein kinase pathways.

    PubMed

    Hsieh, Chi-Fen; Tsuei, Yi-Wei; Liu, Chi-Wei; Kao, Chung-Cheng; Shih, Li-Jane; Ho, Low-Tone; Wu, Liang-Yi; Wu, Chi-Peng; Tsai, Pei-Hua; Chang, Hsin-Huei; Ku, Hui-Chen; Kao, Yung-Hsi

    2010-10-01

    Insulin and (-)-epigallocatechin gallate (EGCG) are reported to regulate obesity and fat accumulation, respectively. This study investigated the pathways involved in EGCG modulation of insulin-stimulated glucose uptake in 3T3-L1 and C3H10T1/2 adipocytes. EGCG inhibited insulin stimulation of adipocyte glucose uptake in a dose- and time-dependent manner. The concentration of EGCG that decreased insulin-stimulated glucose uptake by 50-60% was approximately 5-10 µM for a period of 2 h. At 10 µM, EGCG and gallic acid were more effective than (-)-epicatechin, (-)-epigallocatechin, and (-)-epicatechin 3-gallate. We identified the EGCG receptor [also known as the 67-kDa laminin receptor (67LR)] in fat cells and extended the findings for this study to clarify whether EGCG-induced changes in insulin-stimulated glucose uptake in adipocytes could be mediated through the 67LR. Pretreatment of adipocytes with a 67LR antibody, but not normal rabbit immunoglobulin, prevented the effects of EGCG on insulin-increased glucose uptake. This suggests that the 67LR m