Gillespie, Simon; Lipphaus, Patrick; Green, James; Parsons, Simon; Weir, Paul; Juskowiak, Kes; Jefferson, Bruce; Jarvis, Peter; Nocker, Andreas
2014-11-15
Flow cytometry (FCM) as a diagnostic tool for enumeration and characterization of microorganisms is rapidly gaining popularity and is increasingly applied in the water industry. In this study we applied the method to obtain a better understanding of total and intact cell concentrations in three different drinking water distribution systems (one using chlorine and two using chloramines as secondary disinfectants). Chloramine tended to result in lower proportions of intact cells than chlorine over a wider residual range, in agreement with existing knowledge that chloramine suppresses regrowth more efficiently. For chlorinated systems, free chlorine concentrations above 0.5 mg L(-1) were found to be associated with relatively low proportions of intact cells, whereas lower disinfectant levels could result in substantially higher percentages of intact cells. The threshold for chlorinated systems is in good agreement with guidelines from the World Health Organization. The fact that the vast majority of samples failing the regulatory coliform standard also showed elevated proportions of intact cells suggests that this parameter might be useful for evaluating risk of failure. Another interesting parameter for judging the microbiological status of water, the biological regrowth potential, greatly varied among different finished waters providing potential help for investment decisions. For its measurement, a simple method was introduced that can easily be performed by water utilities with FCM capability. Copyright © 2014 Elsevier Ltd. All rights reserved.
The mechanism of uncoupling by picrate in Escherichia coli K-12 membrane systems.
Michels, M; Bakker, E P
1981-06-01
The mechanism of action of the uncoupler picrate on intact cells and everted membrane vesicles of Escherichia coli K-12 was investigated. Like in mitochondria [Hanstein, W. G. and Hatefi, Y. (1974) Proc. Natl Acad. Sci. USA, 71, 288-292], it was observed that picrate uncoupled energy-linked functions only in everted, but not in intact membrane systems. In the vesicles picrate also decreased the magnitude of the transmembrane proton-motive force at concentrations similar to those at which it caused uncoupling. Experiments with 14C-labelled picrate showed that this compound bound both to deenergized intact cells and everted vesicles. However, upon energization of the membrane, picrate was extruded from the intact cell and taken up to a larger extent by the vesicles. These energy-dependent changes in picrate uptake correlated with the magnitude of the transmembrane electrical potential, delta psi. It is therefore proposed that picrate is a permeant uncoupler, that delta psi is the driving force for picrate movement across biological membranes, and that the uncoupling activity of picrate in everted membrane systems is due to its protonophoric action.
Xenopus egg cytoplasm with intact actin.
Field, Christine M; Nguyen, Phuong A; Ishihara, Keisuke; Groen, Aaron C; Mitchison, Timothy J
2014-01-01
We report optimized methods for preparing Xenopus egg extracts without cytochalasin D, that we term "actin-intact egg extract." These are undiluted egg cytoplasm that contains abundant organelles, and glycogen which supplies energy, and represents the least perturbed cell-free cytoplasm preparation we know of. We used this system to probe cell cycle regulation of actin and myosin-II dynamics (Field et al., 2011), and to reconstitute the large, interphase asters that organize early Xenopus embryos (Mitchison et al., 2012; Wühr, Tan, Parker, Detrich, & Mitchison, 2010). Actin-intact Xenopus egg extracts are useful for analysis of actin dynamics, and interaction of actin with other cytoplasmic systems, in a cell-free system that closely mimics egg physiology, and more generally for probing the biochemistry and biophysics of the egg, zygote, and early embryo. Detailed protocols are provided along with assays used to check cell cycle state and tips for handling and storing undiluted egg extracts. © 2014 Elsevier Inc. All rights reserved.
Ganeva, V; Galutzov, B; Teissié, J
1995-12-13
The mechanism of electric field mediated macromolecule transfer inside an intact yeast cell was investigated by observing, under a microscope, the fluorescence associated to cells after pulsation in a buffer containing two different hydrophilic fluorescent dyes. In the case of a small probe such as propidium iodide, a long lived permeabilized state was induced by the field as classically observed on wall free systems. Penetration of a 70 kDa FITC dextran was obtained only by using drastic conditions and only a very limited number of yeast cells which took up macromolecules remained viable. Most dextrans were trapped in the wall. A dramatic improvement in transfer of dextrans was observed when the cells were treated by dithiothreitol before pulsation. A cytoplasmic protein leakage was detected after the electric treatment suggesting that an irreversible damage took place in the walls of many pulsed cells. Electroloading of macromolecules in intact yeast cells appears to be controlled by a field induced short lived alteration of the envelope organization.
Lund, L; Henmar, H; Würtzen, P A; Lund, G; Hjortskov, N; Larsen, J N
2007-04-01
Specific immunotherapy with intact allergen vaccine is a well-documented treatment for allergic diseases. Different vaccine formulations are currently commercially available, the active ingredient either being intact allergens or chemically modified allergoids. The rationale behind allergoids is to decrease allergenicity while maintaining immunogenicity. However, data from the German health authorities based on reporting of adverse events over a 10-year period did not indicate increased safety of allergoids over intact allergens. The objective of this study was to investigate the effect of chemical modification on allergenicity and immunogenicity comparing four commercial allergoid products for birch pollen immunotherapy with an intact allergen vaccine. Solid-phase IgE inhibition and histamine release assays were selected as model systems for allergenicity, and a combination of human T cell proliferation and IgG titres following mouse immunizations were used to address the immunogenicity of the intact allergen vaccine and the four allergoids. In all assays, the products were normalized with respect to the manufacturer's recommended maintenance dose. IgE inhibition experiments showed a change in epitope composition comparing intact allergen vaccine with allergoid. One allergoid product induced enhanced histamine release compared to the intact allergens, while the other three allergoids showed reduced release. Standard T cell stimulation assays using lines from allergic patients showed a reduced response for all allergoids compared with the intact allergen vaccine regardless of the cell type used for antigen presentation. All allergoids showed reduced capacity to induce allergen-specific IgG responses in mice. While some allergoids were associated with reduced allergenicity, a clear reduction in immunogenicity was observed for all allergoid products compared with the intact allergen vaccine, and the commercial allergoids tested therefore do not fulfil the allergoid concept.
Elkins, K; Metcalf, E S
1986-05-01
We are interested in developing in vitro culture systems that will permit immune responses to intact Salmonella typhimurium, since these systems would have certain advantages over in vivo infection models for the characterization of the host's responding cell types. In this report, the in vitro proliferative response of nonimmune murine spleen cells to four different killed preparations of S. typhimurium, strain TML (TML), are examined. These studies show that UV-killed TML, heat-killed TML, glutaraldehyde-killed TML, and acetone-killed and dried TML, all elicit a nonspecific mitogenic spleen cell response in vitro, as does a live, avirulent, temperature-sensitive mutant of TML, TS27. This response reaches a maximum on day 2 after initiation of culture, which is similar to the time course of a conventional lipopolysaccharide (LPS) response. Unlike the LPS response, little 3H-thymidine incorporation is observed in low-density cultures (2 X 10(5) cells/well), which suggests a critical role for accessory cells. The responding cell types include, but are not necessarily limited to, the B-cell population. The response cannot be readily inhibited by polymyxin B, which binds specifically to the lipid A portion of LPS. Thus, the bacterial components required for mitogenicity are not yet definitively identified. A survey of the mitogenic responses of lymphocytes from various inbred mouse strains, including the C3H/HeJ LPS hyporesponsive strain, indicates that all B cells tested are capable of proliferating vigorously in response to intact TML, regardless of the in vivo susceptibility to virulent infection. These results also emphasize the importance of assessing the nonspecific components of the immune response when studying the specific immune response to intact S. typhimurium.
1993-01-01
We have developed a cell-free system that induces the morphological transformations characteristic of apoptosis in isolated nuclei. The system uses extracts prepared from mitotic chicken hepatoma cells following a sequential S phase/M phase synchronization. When nuclei are added to these extracts, the chromatin becomes highly condensed into spherical domains that ultimately extrude through the nuclear envelope, forming apoptotic bodies. The process is highly synchronous, and the structural changes are completed within 60 min. Coincident with these morphological changes, the nuclear DNA is cleaved into a nucleosomal ladder. Both processes are inhibited by Zn2+, an inhibitor of apoptosis in intact cells. Nuclear lamina disassembly accompanies these structural changes in added nuclei, and we show that lamina disassembly is a characteristic feature of apoptosis in intact cells of mouse, human and chicken. This system may provide a powerful means of dissecting the biochemical mechanisms underlying the final stages of apoptosis. PMID:8408207
Wang, Wendan; Belosay, Aashvini; Yang, Xujuan; Hartman, James A; Song, Huaxin; Iwaniec, Urszula T; Turner, Russell T; Churchwell, Mona I; Doerge, Daniel R; Helferich, William G
2016-06-01
Breast cancer (BC) is the leading cancer in women worldwide. Metastasis occurs in stage IV BC with bone and lung being common metastatic sites. Here we evaluate the effects of the aromatase inhibitor letrozole on BC micro-metastatic tumor growth in bone and lung metastasis in intact and ovariectomized (OVX) mice with murine estrogen receptor negative (ER-) BC cells inoculated in tibia. Forty-eight BALB/c mice were randomly assigned to one of four groups: OVX, OVX + Letrozole, Intact, and Intact + Letrozole, and injected with 4T1 cells intra-tibially. Letrozole was subcutaneously injected daily for 23 days at a dose of 1.75 µg/g body weight. Tumor progression was monitored by bioluminescence imaging (BLI). Following necropsy, inoculated tibiae were scanned via µCT and bone response to tumor was scored from 0 (no ectopic mineralization/osteolysis) to 5 (extensive ectopic mineralization/osteolysis). OVX mice had higher tibial pathology scores indicative of more extensive bone destruction than intact mice, irrespective of letrozole treatment. Letrozole decreased serum estradiol levels and reduced lung surface tumor numbers in intact animals. Furthermore, mice receiving letrozole had significantly fewer tumor colonies and fewer proliferative cells in the lung than OVX and intact controls based on H&E and Ki-67 staining, respectively. In conclusion, BC-inoculated OVX animals had higher tibia pathology scores than BC-inoculated intact animals and letrozole reduced BC metastases to lungs. These findings suggest that, by lowering systemic estrogen level and/or by interacting with the host organ, the aromatase inhibitor letrozole has the potential to reduce ER- BC metastasis to lung.
Microbiological tap water profile of a medium-sized building and effect of water stagnation.
Lipphaus, Patrick; Hammes, Frederik; Kötzsch, Stefan; Green, James; Gillespie, Simon; Nocker, Andreas
2014-01-01
Whereas microbiological quality of drinking water in water distribution systems is routinely monitored for reasons of legal compliance, microbial numbers in tap water are grossly understudied. Motivated by gross differences in water from private households, we applied in this study flow cytometry as a rapid analytical method to quantify microbial concentrations in water sampled at diverse taps in a medium size research building receiving chlorinated water. Taps differed considerably in frequency of usage and were located in laboratories, bathrooms, and a coffee kitchen. Substantial differences were observed between taps with concentrations (per mL) in the range from 6.29 x 10(3) to 7.74 x 10(5) for total cells and from 1.66 x 10(3) to 4.31 x 10(5) for intact cells. The percentage of intact cells varied between 7% and 96%. Water from taps with very infrequent use showed the highest bacterial numbers and the highest proportions of intact cells. Stagnation tended to increase microbial numbers in water from those taps which were otherwise frequently used. Microbial numbers in other taps that were rarely opened were not affected by stagnation as their water is probably mostly stagnant. For cold water taps, microbial numbers and the percentage of intact cells tended to decline with flushing with the greatest decline for taps used least frequently whereas microbial concentrations in water from hot water taps tended to be somewhat more stable. We conclude that microbiological water quality is mainly determined by building-specific parameters. Tap water profiling can provide valuable insight into plumbing system hygiene and maintenance.
Gerstle, Zoe; Desai, Rohan; Veatch, Sarah L
2018-01-01
Giant plasma membrane vesicles (GPMVs) are isolated directly from living cells and provide an alternative to vesicles constructed of synthetic or purified lipids as an experimental model system for use in a wide range of assays. GPMVs capture much of the compositional protein and lipid complexity of intact cell plasma membranes, are filled with cytoplasm, and are free from contamination with membranes from internal organelles. GPMVs often exhibit a miscibility transition below the growth temperature of their parent cells. GPMVs labeled with a fluorescent protein or lipid analog appear uniform on the micron-scale when imaged above the miscibility transition temperature, and separate into coexisting liquid domains with differing membrane compositions and physical properties below this temperature. The presence of this miscibility transition in isolated GPMVs suggests that a similar phase-like heterogeneity occurs in intact plasma membranes under growth conditions, albeit on smaller length scales. In this context, GPMVs provide a simple and controlled experimental system to explore how drugs and other environmental conditions alter the composition and stability of phase-like domains in intact cell membranes. This chapter describes methods to generate and isolate GPMVs from adherent mammalian cells and to interrogate their miscibility transition temperatures using fluorescence microscopy. © 2018 Elsevier Inc. All rights reserved.
Molluscan cells in culture: primary cell cultures and cell lines
Yoshino, T. P.; Bickham, U.; Bayne, C. J.
2013-01-01
In vitro cell culture systems from molluscs have significantly contributed to our basic understanding of complex physiological processes occurring within or between tissue-specific cells, yielding information unattainable using intact animal models. In vitro cultures of neuronal cells from gastropods show how simplified cell models can inform our understanding of complex networks in intact organisms. Primary cell cultures from marine and freshwater bivalve and gastropod species are used as biomonitors for environmental contaminants, as models for gene transfer technologies, and for studies of innate immunity and neoplastic disease. Despite efforts to isolate proliferative cell lines from molluscs, the snail Biomphalaria glabrata Say, 1818 embryonic (Bge) cell line is the only existing cell line originating from any molluscan species. Taking an organ systems approach, this review summarizes efforts to establish molluscan cell cultures and describes the varied applications of primary cell cultures in research. Because of the unique status of the Bge cell line, an account is presented of the establishment of this cell line, and of how these cells have contributed to our understanding of snail host-parasite interactions. Finally, we detail the difficulties commonly encountered in efforts to establish cell lines from molluscs and discuss how these difficulties might be overcome. PMID:24198436
Effects of deuterium oxide and galvanic vestibular stimulation on visual cortical cell function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reinis, S.; Landolt, J.P.; Weiss, D.S.
1984-03-01
The spontaneous and evoked unit activities of complex visual cortical cells were recorded from Brodmann's area 18 in immobilized, unanesthetized cats before, during, and after stimulation of the vestibular system. The vestibular system was stimulated by intravenous injection of deuterium oxide (D2O)--a noted nystagmogenic agent--or by direct galvanic stimulation of the labyrinth. Measures of the receptive-field areas, poststimulus time histograms, directional preferences, and the optimal speed of the light bar stimulating the cell were obtained before and after the application of D2O. Directional preferences were determined in a novel manner, using a method derived from a hierarchical clustering technique. Datamore » were collected and analyzed from a) visual cortical cells in cats with intact labyrinths, b) visual cortical cells in cats following bilateral labrinthectomies, and c) nonvisual cortical cells in cats with intact labyrinths. The other cellular characteristics were also altered by the D2O. Galvanic stimulation of the labyrinth resembles, in its effects, the injection of D2O. In labyrinth-intact cats, the time course of area 18 spontaneous activity dramatically increased 30 min or more after D2O was administered. It peaked 2-3 h later and still had not returned to preinjection levels even 7 h after the D2O administration. In bilaterally labyrinthectomized cats, the spontaneous activity of the visual cells did not change following D2O administration. In nonvisual cells from labyrinth-intact cats, the spontaneous activity demonstrated a slight but significant decrease over time after D2O injection. In pilot studies, the cats were injected with D2O. Within 8-10 min afterward, signs of positional nystagmus commenced; and within 30 min, problems in maintaining balance were noted. This continued for 7-8 h before disappearing. In the labyrinthectomized animals, such effects were not observed.« less
Ionophore-A23187-induced cellular cytotoxicity: a cell fragment mediated process.
Nash, G S; Niedt, G W; MacDermott, R P
1980-01-01
Calcium ionophore A23187 was found to induce human white blood cells to kill human red blood cells. Optimal conditions for ionophore-induced cellular cytotoxicity (IICC) included an 18 h time period, an incubation temperature of 25 degrees, a 25:1 or 50:1 killer:target cell ratio,and a final ionophore concentration of 2 . 5 microgram/ml. WBC or granulocytes which were either frozen and thawed three times or sonicated were capable of mediating IICC. As intact cells, granulocytes (67 . 2% cytotoxicity), monocytes (34 . 8%), B cells (22 . 0%) and Null cells (19 . 3%) were effector cells but T cells (7 . 4%) were not. After fragmenting these cells, all cell types including T cells were able to mediate IICC. When cell lines (K562, Chang, and NCTC) were used as effectors, none would mediate IICC when intact. After freezing and thawing, Chang and NCTC would not mediate IICC, whereas K562 cells did. These studies may be indicative of a calcium-dependent, membrane-localized mechanism in cellular cytotoxic processes, and may provide a useful indicator system for isolation of the enzyme systems involved in cellular cytotoxicity. PMID:6773881
NASA Astrophysics Data System (ADS)
Renaud, Olivier; Heintzmann, Rainer; Sáez-Cirión, Asier; Schnelle, Thomas; Mueller, Torsten; Shorte, Spencer
2007-02-01
Three dimensional imaging provides high-content information from living intact biology, and can serve as a visual screening cue. In the case of single cell imaging the current state of the art uses so-called "axial through-stacking". However, three-dimensional axial through-stacking requires that the object (i.e. a living cell) be adherently stabilized on an optically transparent surface, usually glass; evidently precluding use of cells in suspension. Aiming to overcome this limitation we present here the utility of dielectric field trapping of single cells in three-dimensional electrode cages. Our approach allows gentle and precise spatial orientation and vectored rotation of living, non-adherent cells in fluid suspension. Using various modes of widefield, and confocal microscope imaging we show how so-called "microrotation" can provide a unique and powerful method for multiple point-of-view (three-dimensional) interrogation of intact living biological micro-objects (e.g. single-cells, cell aggregates, and embryos). Further, we show how visual screening by micro-rotation imaging can be combined with micro-fluidic sorting, allowing selection of rare phenotype targets from small populations of cells in suspension, and subsequent one-step single cell cloning (with high-viability). Our methodology combining high-content 3D visual screening with one-step single cell cloning, will impact diverse paradigms, for example cytological and cytogenetic analysis on haematopoietic stem cells, blood cells including lymphocytes, and cancer cells.
Fukuzawa, Toshihiko
2010-10-01
Unusual light-reflecting pigment cells, "white pigment cells", specifically appear in the periodic albino mutant (a(p) /a(p)) of Xenopus laevis and localize in the same place where melanophores normally differentiate in the wild-type. The mechanism responsible for the development of unusual pigment cells is unclear. In this study, white pigment cells in the periodic albino were compared with melanophores in the wild-type, using a cell culture system and a tail-regenerating system. Observations of both intact and cultured cells demonstrate that white pigment cells are unique in (1) showing characteristics of melanophore precursors at various stages of development, (2) accumulating reflecting platelets characteristic of iridophores, and (3) exhibiting pigment dispersion in response to α-melanocyte stimulating hormone (α-MSH) in the same way that melanophores do. When a tadpole tail is amputated, a functionally competent new tail is regenerated. White pigment cells appear in the mutant regenerating tail, whereas melanophores differentiate in the wild-type regenerating tail. White pigment cells in the mutant regenerating tail are essentially similar to melanophores in the wild-type regenerating tail with respect to their localization, number, and response to α-MSH. In addition to white pigment cells, iridophores which are never present in the intact tadpole tail appear specifically in the somites near the amputation level in the mutant regenerating tail. Iridophores are distinct from white pigment cells in size, shape, blue light-induced fluorescence, and response to α-MSH. These findings strongly suggest that white pigment cells in the mutant arise from melanophore precursors and accumulate reflecting platelets characteristic of iridophores.
Membrane-bound 2,3-diphosphoglycerate phosphatase of human erythrocytes.
Schröter, W; Neuvians, M
1970-12-01
Gradual osmotic hemolysis of human erythrocytes reduces the cell content of whole protein, hemoglobin, 2,3-diphosphoglycerate and triosephosphate isomerase extensively, but not that of membrane protein and 2,3-diphosphoglycerate phosphatase. After the refilling of the ghosts with 2,3-diphosphoglycerate and reconstitution of the membrane, the 2,3-diphosphoglycerate phosphatase activity equals that of intact red cells. The membrane-bound 2,3-diphosphoglycerate phosphatase can be activated by sodium hyposulfite. The enzyme system of ghosts seems to differ from that of intact red cells with regard to the optima of pH and temperature. It remains to be elucidated if the membrane binding of the 2,3-diphosphoglycerate phosphatase is related to the transfer of inorganic phosphate across the red cell membrane.
Primary central nervous system B-cell lymphoma in a young dog
Kim, Na-Hyun; Ciesielski, Thomas; Kim, Jung H.; Yhee, Ji-Young; Im, Keum-Soon; Nam, Hae-Mi; Kim, Il-Hwan; Kim, Jong-Hyuk; Sur, Jung-Hyang
2012-01-01
This report describes a primary central nervous system B-cell lymphoma in a 3-year-old intact female Maltese dog. Canine primary central nervous system lymphomas constitute about 4% of all intracranial primary neoplasms, but comprehensive histopathologic classifications have rarely been carried out. This is the first report of this disease in a young adult dog. PMID:23115372
2010-01-01
Unusual light-reflecting pigment cells, “white pigment cells”, specifically appear in the periodic albino mutant (ap/ap) of Xenopus laevis and localize in the same place where melanophores normally differentiate in the wild-type. The mechanism responsible for the development of unusual pigment cells is unclear. In this study, white pigment cells in the periodic albino were compared with melanophores in the wild-type, using a cell culture system and a tail-regenerating system. Observations of both intact and cultured cells demonstrate that white pigment cells are unique in (1) showing characteristics of melanophore precursors at various stages of development, (2) accumulating reflecting platelets characteristic of iridophores, and (3) exhibiting pigment dispersion in response to α-melanocyte stimulating hormone (α-MSH) in the same way that melanophores do. When a tadpole tail is amputated, a functionally competent new tail is regenerated. White pigment cells appear in the mutant regenerating tail, whereas melanophores differentiate in the wild-type regenerating tail. White pigment cells in the mutant regenerating tail are essentially similar to melanophores in the wild-type regenerating tail with respect to their localization, number, and response to α-MSH. In addition to white pigment cells, iridophores which are never present in the intact tadpole tail appear specifically in the somites near the amputation level in the mutant regenerating tail. Iridophores are distinct from white pigment cells in size, shape, blue light-induced fluorescence, and response to α-MSH. These findings strongly suggest that white pigment cells in the mutant arise from melanophore precursors and accumulate reflecting platelets characteristic of iridophores. PMID:20859642
Energy Transfer Kinetics in Photosynthesis as an Inspiration for Improving Organic Solar Cells.
Nganou, Collins; Lackner, Gerhard; Teschome, Bezu; Deen, M Jamal; Adir, Noam; Pouhe, David; Lupascu, Doru C; Mkandawire, Martin
2017-06-07
Clues to designing highly efficient organic solar cells may lie in understanding the architecture of light-harvesting systems and exciton energy transfer (EET) processes in very efficient photosynthetic organisms. Here, we compare the kinetics of excitation energy tunnelling from the intact phycobilisome (PBS) light-harvesting antenna system to the reaction center in photosystem II in intact cells of the cyanobacterium Acaryochloris marina with the charge transfer after conversion of photons into photocurrent in vertically aligned carbon nanotube (va-CNT) organic solar cells with poly(3-hexyl)thiophene (P3HT) as the pigment. We find that the kinetics in electron hole creation following excitation at 600 nm in both PBS and va-CNT solar cells to be 450 and 500 fs, respectively. The EET process has a 3 and 14 ps pathway in the PBS, while in va-CNT solar cell devices, the charge trapping in the CNT takes 11 and 258 ps. We show that the main hindrance to efficiency of va-CNT organic solar cells is the slow migration of the charges after exciton formation.
Development of a stained cell nuclei counting system
NASA Astrophysics Data System (ADS)
Timilsina, Niranjan; Moffatt, Christopher; Okada, Kazunori
2011-03-01
This paper presents a novel cell counting system which exploits the Fast Radial Symmetry Transformation (FRST) algorithm [1]. The driving force behind our system is a research on neurogenesis in the intact nervous system of Manduca Sexta or the Tobacco Hornworm, which was being studied to assess the impact of age, food and environment on neurogenesis. The varying thickness of the intact nervous system in this species often yields images with inhomogeneous background and inconsistencies such as varying illumination, variable contrast, and irregular cell size. For automated counting, such inhomogeneity and inconsistencies must be addressed, which no existing work has done successfully. Thus, our goal is to devise a new cell counting algorithm for the images with non-uniform background. Our solution adapts FRST: a computer vision algorithm which is designed to detect points of interest on circular regions such as human eyes. This algorithm enhances the occurrences of the stained-cell nuclei in 2D digital images and negates the problems caused by their inhomogeneity. Besides FRST, our algorithm employs standard image processing methods, such as mathematical morphology and connected component analysis. We have evaluated the developed cell counting system with fourteen digital images of Tobacco Hornworm's nervous system collected for this study with ground-truth cell counts by biology experts. Experimental results show that our system has a minimum error of 1.41% and mean error of 16.68% which is at least forty-four percent better than the algorithm without FRST.
Sukhinich, K K; Kosykh, A V; Aleksandrova, M A
2015-11-01
We studied the behavior and cell-cell interactions of embryonic brain cell from GFP-reporter mice after their transplantation into the intact adult brain. Fragments or cell suspensions of fetal neocortical cells at different stages of development were transplanted into the neocortex and striatum of adult recipients. Even in intact brain, the processes of transplanted neurons formed extensive networks in the striatum and neocortical layers I and V-VI. Processes of transplanted cells at different stages of development attained the rostral areas of the frontal cortex and some of them reached the internal capsule. However, the cells transplanted in suspension had lower process growth potency than cells from tissue fragments. Tyrosine hydroxylase fibers penetrated from the recipient brain into grafts at both early and late stages of development. Our experiments demonstrated the formation of extensive reciprocal networks between the transplanted fetal neural cells and recipient brain neurons even in intact brain.
Villarreal, Jessica Varela; Jungfer, Christina; Obst, Ursula; Schwartz, Thomas
2013-09-01
Molecular techniques, such as polymerase chain reaction (PCR) and quantitative PCR (qPCR), are very sensitive, but may detect total DNA present in a sample, including extracellular DNA (eDNA) and DNA coming from live and dead cells. DNase I is an endonuclease that non-specifically cleaves single- and double-stranded DNA. This enzyme was tested in this study to analyze its capacity of digesting DNA coming from dead cells with damaged cell membranes, leaving DNA from living cells with intact cell membranes available for DNA-based methods. For this purpose, an optimized DNase I/Proteinase K (DNase/PK) protocol was developed. Intact Staphylococcus aureus cells, heat-killed Pseudomonas aeruginosa cells, free genomic DNA of Salmonella enterica, and a mixture of these targets were treated according to the developed DNase/PK protocol. In parallel, these samples were treated with propidium monoazide (PMA) as an already described assay for live-dead discrimination. Quantitative PCR and PCR-DGGE of the eubacterial 16S rDNA fragment were used to test the ability of the DNase/PK and PMA treatments to distinguish DNA coming from cells with intact cell membranes in the presence of DNA from dead cells and free genomic DNA. The methods were applied to three months old autochthonous drinking water biofilms from a pilot facility built at a German waterworks. Shifts in the DNA patterns observed after DGGE analysis demonstrated the applicability of DNase/PK as well as of the PMA treatment for natural biofilm investigation. However, the DNase/PK treatment demonstrated some practical advantages in comparison with the PMA treatment for live/dead discrimination of bacterial targets in drinking water systems. © 2013 Elsevier B.V. All rights reserved.
Detection of Irradiation Treatment of Foods Using DNA `Comet Assay'
NASA Astrophysics Data System (ADS)
Khan, Hasan M.; Delincée, Henry
1998-06-01
Microgel electrophoresis of single cells (DNA comet assay) has been investigated to detect irradiation treatment of some food samples. These samples of fresh and frozen rainbow trout, red lentil, gram and sliced almonds were irradiated to 1 or 2 kGy using 10 MeV electron beam from a linear accelerator. Rainbow trout samples yielded good results with samples irradiated to 1 or 2 kGy showing fragmentation of DNA and, therefore, longer comets with no intact cells. Unirradiated samples showed shorter comets with a significant number of intact cells. For rainbow trout stored in a freezer for 11 days the irradiated samples can still be discerned by electrophoresis from unirradiated samples, however, the unirradiated trouts also showed some longer comets besides some intact cells. Radiation treatment of red lentils can also be detected by this method, i.e. no intact cells in 1 or 2 kGy irradiated samples and shorter comets and some intact cells in unirradiated samples. However, the results for gram and sliced almond samples were not satisfactory since some intact DNA cells were observed in irradiated samples as well. Probably, incomplete lysis has led to these deviating results.
Clerc, Pascaline; Polster, Brian M.
2012-01-01
Mitochondrial dysfunction is a component of many neurodegenerative conditions. Measurement of oxygen consumption from intact neurons enables evaluation of mitochondrial bioenergetics under conditions that are more physiologically realistic compared to isolated mitochondria. However, mechanistic analysis of mitochondrial function in cells is complicated by changing energy demands and lack of substrate control. Here we describe a technique for sequentially measuring respiration from intact and saponin-permeabilized cortical neurons on single microplates. This technique allows control of substrates to individual electron transport chain complexes following permeabilization, as well as side-by-side comparisons to intact cells. To illustrate the utility of the technique, we demonstrate that inhibition of respiration by the drug KB-R7943 in intact neurons is relieved by delivery of the complex II substrate succinate, but not by complex I substrates, via acute saponin permeabilization. In contrast, methyl succinate, a putative cell permeable complex II substrate, failed to rescue respiration in intact neurons and was a poor complex II substrate in permeabilized cells. Sequential measurements of intact and permeabilized cell respiration should be particularly useful for evaluating indirect mitochondrial toxicity due to drugs or cellular signaling events which cannot be readily studied using isolated mitochondria. PMID:22496810
Limat, A; Hunziker, T; Boillat, C; Noser, F; Wiesmann, U
1990-07-01
In vitro, human dermal fibroblasts (HDF) differentiate through morphologically and biochemically identified compartments. In the course of this spontaneous differentiation through mitotic and postmitotic states, a tremendous increase in cellular and nuclear size occurs. Induction of postmitotic states can be accelerated by chemical (e.g., mitomycin C) or physical (e.g., x-ray) treatments. Such experimentally induced postmitotic HDF cells support very efficiently the growth of cutaneous epithelial cells, i.e. interfollicular keratinocytes and follicular outer root sheath cells, especially in primary cultures starting from very low cell seeding densities. The HDF feeder system provides more fundamental and also practical advantages, i.e. use of initially diploid human fibroblasts from known anatomic locations, easy handling and excellent reproducibility, and the possibility of long-term storage by incubation at 37 degrees C. Conditions for the cryogenic storage of postmitotic HDF cells in liquid nitrogen are presented and related to the feeder capacity for epithelial cell growth. Because postmitotic HDF cells preserve intact feeder properties after long-term storage, the immediate availability of feeder cells and the possibility to repeat experiments with identical materials further substantiate the usefulness of this feeder system.
Intact Cell MALDI-TOF MS on Sperm: A Molecular Test For Male Fertility Diagnosis.
Soler, Laura; Labas, Valérie; Thélie, Aurore; Grasseau, Isabelle; Teixeira-Gomes, Ana-Paula; Blesbois, Elisabeth
2016-06-01
Currently, evaluation of sperm quality is primarily based on in vitro measures of sperm function such as motility, viability and/or acrosome reaction. However, results are often poorly correlated with fertility, and alternative diagnostic tools are therefore needed both in veterinary and human medicine. In a recent pilot study, we demonstrated that MS profiles from intact chicken sperm using MALDI-TOF profiles could detect significant differences between fertile/subfertile spermatozoa showing that such profiles could be useful for in vitro male fertility testing. In the present study, we performed larger standardized experimental procedures designed for the development of fertility- predictive mathematical models based on sperm cell MALDI-TOF MS profiles acquired through a fast, automated method. This intact cell MALDI-TOF MS-based method showed high diagnostic accuracy in identifying fertile/subfertile males in a large male population of known fertility from two distinct genetic lineages (meat and egg laying lines). We additionally identified 40% of the m/z peaks observed in sperm MS profiles through a top-down high-resolution protein identification analysis. This revealed that the MALDI-TOF MS spectra obtained from intact sperm cells contained a large proportion of protein degradation products, many implicated in important functional pathways in sperm such as energy metabolism, structure and movement. Proteins identified by our predictive model included diverse and important functional classes providing new insights into sperm function as it relates to fertility differences in this experimental system. Thus, in addition to the chicken model system developed here, with the use of appropriate models these methods should effectively translate to other animal taxa where similar tests for fertility are warranted. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Jung, Song-yi; Willard, Scott T
2014-01-30
The porcine oocyte maturation in vivo occurs within the ovarian follicle and is regulated by the interactions between oocytes and surrounding follicular components, including theca, granulosa, and cumulus cells, and follicular fluid. Therefore, the antral follicle is an essential microenvironment for efficient oocyte maturation and its developmental competence. Quantitative bioluminescence imaging of firefly luciferase reporter genes in an intact antral follicle would allow investigation of changes in cellular and molecular events and in the context of the whole follicles. In this study, we investigate factors influencing bioluminescence measurements as a first step towards developing a new bioluminescence imaging system for intact antral follicles. We analyzed the time course of bioluminescence emitted from transfected living intact follicles using a cationic lipid mediated gene transfer method with increasing doses (1-3 μg) of firefly luciferase reporter gene (pGL4). In addition, a standard luciferase assay was used to confirm the luciferase expression in granulosa cells in the transfected intact antral follicles. Finally, the dose effects of substrate, D-luciferin, were determined for optimal quantitative bioluminescence imaging of intact porcine antral follicles in vitro. The level of luciferase activity of follicles with 3 μg pGL4 was significantly (P < 0.05) greater than the 1 μg and 2 μg groups at 1 min after D-luciferin injection. The bioluminescence intensity of transfected follicles reached a peak at 1 min, and then it was significantly (P < 0.05) reduced within 2 min after injection of D-luciferin; with the level of bioluminescence emission remained constant from 2.5 to 10 min. The bioluminescence emission was maximal with 300 μg of D-luciferin. The results of this study suggested that the investigation of factors influencing bioluminescence measurements is a critical step toward developing a new bioluminescence imaging model. This study is the first to demonstrate that reporter genes can be transferred to intact granulosa cells with a lipid-mediated gene transfer method within intact follicles in vitro, and the level of transgene expression can be assessed by bioluminescence imaging in living intact antral follicles.
Length of intact plasma membrane determines the diffusion properties of cellular water.
Eida, Sato; Van Cauteren, Marc; Hotokezaka, Yuka; Katayama, Ikuo; Sasaki, Miho; Obara, Makoto; Okuaki, Tomoyuki; Sumi, Misa; Nakamura, Takashi
2016-01-11
Molecular diffusion in a boundary-free medium depends only on the molecular size, the temperature, and medium viscosity. However, the critical determinant of the molecular diffusion property in inhomogeneous biological tissues has not been identified. Here, using an in vitro system and a high-resolution MR imaging technique, we show that the length of the intact plasma membrane is a major determinant of water diffusion in a controlled cellular environment and that the cell perimeter length (CPL) is sufficient to estimate the apparent diffusion coefficient (ADC) of water in any cellular environment in our experimental system (ADC = -0.21 × CPL + 1.10). We used this finding to further explain the different diffusion kinetics of cells that are dying via apoptotic or non-apoptotic cell death pathways exhibiting characteristic changes in size, nuclear and cytoplasmic architectures, and membrane integrity. These results suggest that the ADC value can be used as a potential biomarker for cell death.
Length of intact plasma membrane determines the diffusion properties of cellular water
Eida, Sato; Van Cauteren, Marc; Hotokezaka, Yuka; Katayama, Ikuo; Sasaki, Miho; Obara, Makoto; Okuaki, Tomoyuki; Sumi, Misa; Nakamura, Takashi
2016-01-01
Molecular diffusion in a boundary-free medium depends only on the molecular size, the temperature, and medium viscosity. However, the critical determinant of the molecular diffusion property in inhomogeneous biological tissues has not been identified. Here, using an in vitro system and a high-resolution MR imaging technique, we show that the length of the intact plasma membrane is a major determinant of water diffusion in a controlled cellular environment and that the cell perimeter length (CPL) is sufficient to estimate the apparent diffusion coefficient (ADC) of water in any cellular environment in our experimental system (ADC = −0.21 × CPL + 1.10). We used this finding to further explain the different diffusion kinetics of cells that are dying via apoptotic or non-apoptotic cell death pathways exhibiting characteristic changes in size, nuclear and cytoplasmic architectures, and membrane integrity. These results suggest that the ADC value can be used as a potential biomarker for cell death. PMID:26750342
Huyben, David; Boqvist, Sofia; Passoth, Volkmar; Renström, Lena; Allard Bengtsson, Ulrika; Andréoletti, Olivier; Kiessling, Anders; Lundh, Torbjörn; Vågsholm, Ivar
2018-02-08
Yeasts can be used to convert organic food wastes to protein-rich animal feed in order to recapture nutrients. However, the reuse of animal-derived waste poses a risk for the transmission of infectious prions that can cause neurodegeneration and fatality in humans and animals. The aim of this study was to investigate the ability of yeasts to reduce prion activity during the biotransformation of waste substrates-thereby becoming a biosafety hurdle in such a circular food system. During pre-screening, 30 yeast isolates were spiked with Classical Scrapie prions and incubated for 72 h in casein substrate, as a waste substitute. Based on reduced Scrapie seeding activity, waste biotransformation and protease activities, intact cells and cell extracts of 10 yeasts were further tested. Prion analysis showed that five yeast species reduced Scrapie seeding activity by approximately 1 log10 or 90%. Cryptococcus laurentii showed the most potential to reduce prion activity since both intact and extracted cells reduced Scrapie by 1 log10 and achieved the highest protease activity. These results show that select forms of yeast can act as a prion hurdle during the biotransformation of waste. However, the limited ability of yeasts to reduce prion activity warrants caution as a sole barrier to transmission as higher log reductions are needed before using waste-cultured yeast in circular food systems.
Endocrine Disruptors (Chapter 14) in Mammalian Toxicology Book
Endocrine disrupting chemicals (EDCs) are exogenous substances that alter endocrine system function(s) and consequently cause adverse health effects in intact organisms or its progeny. The endocrine system is important for a wide range of biological processes, from normal cell si...
Excitons in intact cells of photosynthetic bacteria.
Freiberg, Arvi; Pajusalu, Mihkel; Rätsep, Margus
2013-09-26
Live cells and regular crystals seem fundamentally incompatible. Still, effects characteristic to ideal crystals, such as coherent sharing of excitation, have been recently used in many studies to explain the behavior of several photosynthetic complexes, especially the inner workings of the light-harvesting apparatus of the oldest known photosynthetic organisms, the purple bacteria. To this date, there has been no concrete evidence that the same effects are instrumental in real living cells, leaving a possibility that this is an artifact of unnatural study conditions, not a real effect relevant to the biological operation of bacteria. Hereby, we demonstrate survival of collective coherent excitations (excitons) in intact cells of photosynthetic purple bacteria. This is done by using excitation anisotropy spectroscopy for tracking the temperature-dependent evolution of exciton bands in light-harvesting systems of increasing structural complexity. The temperature was gradually raised from 4.5 K to ambient temperature, and the complexity of the systems ranged from detergent-isolated complexes to complete bacterial cells. The results provide conclusive evidence that excitons are indeed one of the key elements contributing to the energetic and dynamic properties of photosynthetic organisms.
NASA Technical Reports Server (NTRS)
Goldmann, Wolfgang H.; Ingber, Donald E.
2002-01-01
Studies were carried out using vinculin-deficient F9 embryonic carcinoma (gamma229) cells to analyze the relationship between structure and function within the focal adhesion protein vinculin, in the context of control of cell shape, cell mechanics, and movement. Atomic force microscopy studies revealed that transfection of the head (aa 1-821) or tail (aa 811-1066) domain of vinculin, alone or together, was unable to fully reverse the decrease in cell stiffness, spreading, and lamellipodia formation caused by vinculin deficiency. In contrast, replacement with intact vinculin completely restored normal cell mechanics and spreading regardless of whether its tyrosine phosphorylation site was deleted. Constitutively active rac also only induced extension of lamellipodia when microinjected into cells that expressed intact vinculin protein. These data indicate that vinculin's ability to physically couple integrins to the cytoskeleton, to mechanically stabilize cell shape, and to support rac-dependent lamellipodia formation all appear to depend on its intact three-dimensional structure.
Connectivity of the intracytoplasmic membrane of Rhodobacter sphaeroides: a functional approach.
Verméglio, André; Lavergne, Jérôme; Rappaport, Fabrice
2016-01-01
The photosynthetic apparatus in the bacterium Rhodobacter sphaeroides is mostly present in intracytoplasmic membrane invaginations. It has long been debated whether these invaginations remain in topological continuity with the cytoplasmic membrane, or form isolated chromatophore vesicles. This issue is revisited here by functional approaches. The ionophore gramicidin was used as a probe of the relative size of the electro-osmotic units in isolated chromatophores, spheroplasts, or intact cells. The decay of the membrane potential was monitored from the electrochromic shift of carotenoids. The half-time of the decay induced by a single channel in intact cells was about 6 ms, thus three orders of magnitude slower than in isolated chromatophores. In spheroplasts obtained by lysis of the cell wall, the single channel decay was still slower (~23 ms) and the sensitivity toward the gramicidin concentration was enhanced 1,000-fold with respect to isolated chromatophores. These results indicate that the area of the functional membrane in cells or spheroplasts is about three orders of magnitude larger than that of isolated chromatophores. Intracytoplasmic vesicles, if present, could contribute to at most 10% of the photosynthetic apparatus in intact cells of Rba. sphaeroides. Similar conclusions were obtained from the effect of a ∆pH-induced diffusion potential in intact cells. This caused a large electrochromic response of carotenoids, of similar amplitude as the light-induced change, indicating that most of the system is sensitive to a pH change of the external medium. A single internal membrane and periplasmic space may offer significant advantages concerning renewal of the photosynthetic apparatus and reallocation of the components shared with other bioenergetic pathways.
Exploring Non-Thermal Radiofrequency Bioeffects for Novel Military Applications
2006-11-30
catecholamine release, using cultured adrenal chromaffin cells as an i,i vitro model system, and on skeletal muscle contraction , using intact skeletal...characterization and construction of a waveguide-based exposure system for monitoring skeletal muscle contraction during exposure to 0.75-1 GHz RF
Primary Culture System for Germ Cells from Caenorhabditis elegans Tumorous Germline Mutants
Vagasi, Alexandra S.; Rahman, Mohammad M.; Chaudhari, Snehal N.; Kipreos, Edward T.
2017-01-01
The Caenorhabditis elegans germ line is an important model system for the study of germ stem cells. Wild-type C. elegans germ cells are syncytial and therefore cannot be isolated in in vitro cultures. In contrast, the germ cells from tumorous mutants can be fully cellularized and isolated intact from the mutant animals. Here we describe a detailed protocol for the isolation of germ cells from tumorous mutants that allows the germ cells to be maintained for extended periods in an in vitro primary culture. This protocol has been adapted from Chaudhari et al., 2016. PMID:28868332
2014-01-01
Background The porcine oocyte maturation in vivo occurs within the ovarian follicle and is regulated by the interactions between oocytes and surrounding follicular components, including theca, granulosa, and cumulus cells, and follicular fluid. Therefore, the antral follicle is an essential microenvironment for efficient oocyte maturation and its developmental competence. Quantitative bioluminescence imaging of firefly luciferase reporter genes in an intact antral follicle would allow investigation of changes in cellular and molecular events and in the context of the whole follicles. In this study, we investigate factors influencing bioluminescence measurements as a first step towards developing a new bioluminescence imaging system for intact antral follicles. Methods We analyzed the time course of bioluminescence emitted from transfected living intact follicles using a cationic lipid mediated gene transfer method with increasing doses (1-3 μg) of firefly luciferase reporter gene (pGL4). In addition, a standard luciferase assay was used to confirm the luciferase expression in granulosa cells in the transfected intact antral follicles. Finally, the dose effects of substrate, D-luciferin, were determined for optimal quantitative bioluminescence imaging of intact porcine antral follicles in vitro. Results The level of luciferase activity of follicles with 3 μg pGL4 was significantly (P < 0.05) greater than the 1 μg and 2 μg groups at 1 min after D-luciferin injection. The bioluminescence intensity of transfected follicles reached a peak at 1 min, and then it was significantly (P < 0.05) reduced within 2 min after injection of D-luciferin; with the level of bioluminescence emission remained constant from 2.5 to 10 min. The bioluminescence emission was maximal with 300 μg of D-luciferin. Conclusions The results of this study suggested that the investigation of factors influencing bioluminescence measurements is a critical step toward developing a new bioluminescence imaging model. This study is the first to demonstrate that reporter genes can be transferred to intact granulosa cells with a lipid-mediated gene transfer method within intact follicles in vitro, and the level of transgene expression can be assessed by bioluminescence imaging in living intact antral follicles. PMID:24479789
Membrane Structure: Spin Labeling and Freeze Etching of Mycoplasma laidlawii*
Tourtellotte, Mark E.; Branton, Daniel; Keith, Alec
1970-01-01
A spin-labeled fatty acid was incorporated in vivo into the polar lipids of Mycoplasma laidlawii membranes. The electron paramagnetic resonance signal from either intact cells or their extracted lipids reflected the fatty acid composition of the Mycoplasma membranes. Comparison of signals from intact cells, gramicidin-treated cells, heat-treated cells, and extracted lipids indicates that a major portion of the membrane lipids is in a semiviscous hydrocarbon environment. The results also show that the spin label in the intact membrane is slightly but significantly less mobile than it is in protein-free lipid extracts made from these membranes. Correlated electron microscope examinations using the freeze-etch technique reveal particulate components in the hydrophobic region of the membrane. The mobility of the lipids in the intact cell membrane may be influenced by their association with these particles. Images PMID:4316683
Clonal expansion of genome-intact HIV-1 in functionally polarized Th1 CD4+ T cells
Orlova-Fink, Nina; Einkauf, Kevin; Chowdhury, Fatema Z.; Sun, Xiaoming; Harrington, Sean; Kuo, Hsiao-Hsuan; Hua, Stephane; Chen, Hsiao-Rong; Ouyang, Zhengyu; Reddy, Kavidha; Dong, Krista; Ndung’u, Thumbi; Walker, Bruce D.; Rosenberg, Eric S.; Yu, Xu G.
2017-01-01
HIV-1 causes a chronic, incurable disease due to its persistence in CD4+ T cells that contain replication-competent provirus, but exhibit little or no active viral gene expression and effectively resist combination antiretroviral therapy (cART). These latently infected T cells represent an extremely small proportion of all circulating CD4+ T cells but possess a remarkable long-term stability and typically persist throughout life, for reasons that are not fully understood. Here we performed massive single-genome, near-full-length next-generation sequencing of HIV-1 DNA derived from unfractionated peripheral blood mononuclear cells, ex vivo-isolated CD4+ T cells, and subsets of functionally polarized memory CD4+ T cells. This approach identified multiple sets of independent, near-full-length proviral sequences from cART-treated individuals that were completely identical, consistent with clonal expansion of CD4+ T cells harboring intact HIV-1. Intact, near-full-genome HIV-1 DNA sequences that were derived from such clonally expanded CD4+ T cells constituted 62% of all analyzed genome-intact sequences in memory CD4 T cells, were preferentially observed in Th1-polarized cells, were longitudinally detected over a duration of up to 5 years, and were fully replication- and infection-competent. Together, these data suggest that clonal proliferation of Th1-polarized CD4+ T cells encoding for intact HIV-1 represents a driving force for stabilizing the pool of latently infected CD4+ T cells. PMID:28628034
Clonal expansion of genome-intact HIV-1 in functionally polarized Th1 CD4+ T cells.
Lee, Guinevere Q; Orlova-Fink, Nina; Einkauf, Kevin; Chowdhury, Fatema Z; Sun, Xiaoming; Harrington, Sean; Kuo, Hsiao-Hsuan; Hua, Stephane; Chen, Hsiao-Rong; Ouyang, Zhengyu; Reddy, Kavidha; Dong, Krista; Ndung'u, Thumbi; Walker, Bruce D; Rosenberg, Eric S; Yu, Xu G; Lichterfeld, Mathias
2017-06-30
HIV-1 causes a chronic, incurable disease due to its persistence in CD4+ T cells that contain replication-competent provirus, but exhibit little or no active viral gene expression and effectively resist combination antiretroviral therapy (cART). These latently infected T cells represent an extremely small proportion of all circulating CD4+ T cells but possess a remarkable long-term stability and typically persist throughout life, for reasons that are not fully understood. Here we performed massive single-genome, near-full-length next-generation sequencing of HIV-1 DNA derived from unfractionated peripheral blood mononuclear cells, ex vivo-isolated CD4+ T cells, and subsets of functionally polarized memory CD4+ T cells. This approach identified multiple sets of independent, near-full-length proviral sequences from cART-treated individuals that were completely identical, consistent with clonal expansion of CD4+ T cells harboring intact HIV-1. Intact, near-full-genome HIV-1 DNA sequences that were derived from such clonally expanded CD4+ T cells constituted 62% of all analyzed genome-intact sequences in memory CD4 T cells, were preferentially observed in Th1-polarized cells, were longitudinally detected over a duration of up to 5 years, and were fully replication- and infection-competent. Together, these data suggest that clonal proliferation of Th1-polarized CD4+ T cells encoding for intact HIV-1 represents a driving force for stabilizing the pool of latently infected CD4+ T cells.
Marciniak, Anja; Selck, Claudia; Friedrich, Betty; Speier, Stephan
2013-01-01
Studies on pancreatic cell physiology rely on the investigation of exocrine and endocrine cells in vitro. Particularly, in the case of the exocrine tissue these studies have suffered from a reduced functional viability of acinar cells in culture. As a result not only investigations on dispersed acinar cells and isolated acini were limited in their potential, but also prolonged studies on pancreatic exocrine and endocrine cells in an intact pancreatic tissue environment were unfeasible. To overcome these limitations, we aimed to establish a pancreas tissue slice culture platform to allow long-term studies on exocrine and endocrine cells in the intact pancreatic environment. Mouse pancreas tissue slice morphology was assessed to determine optimal long-term culture settings for intact pancreatic tissue. Utilizing optimized culture conditions, cell specificity and function of exocrine acinar cells and endocrine beta cells were characterized over a culture period of 7 days. We found pancreas tissue slices cultured under optimized conditions to have intact tissue specific morphology for the entire culture period. Amylase positive intact acini were present at all time points of culture and acinar cells displayed a typical strong cell polarity. Amylase release from pancreas tissue slices decreased during culture, but maintained the characteristic bell-shaped dose-response curve to increasing caerulein concentrations and a ca. 4-fold maximal over basal release. Additionally, endocrine beta cell viability and function was well preserved until the end of the observation period. Our results show that the tissue slice culture platform provides unprecedented maintenance of pancreatic tissue specific morphology and function over a culture period for at least 4 days and in part even up to 1 week. This analytical advancement now allows mid -to long-term studies on the cell biology of pancreatic disorder pathogenesis and therapy in an intact surrounding in situ.
Marciniak, Anja; Selck, Claudia; Friedrich, Betty; Speier, Stephan
2013-01-01
Studies on pancreatic cell physiology rely on the investigation of exocrine and endocrine cells in vitro. Particularly, in the case of the exocrine tissue these studies have suffered from a reduced functional viability of acinar cells in culture. As a result not only investigations on dispersed acinar cells and isolated acini were limited in their potential, but also prolonged studies on pancreatic exocrine and endocrine cells in an intact pancreatic tissue environment were unfeasible. To overcome these limitations, we aimed to establish a pancreas tissue slice culture platform to allow long-term studies on exocrine and endocrine cells in the intact pancreatic environment. Mouse pancreas tissue slice morphology was assessed to determine optimal long-term culture settings for intact pancreatic tissue. Utilizing optimized culture conditions, cell specificity and function of exocrine acinar cells and endocrine beta cells were characterized over a culture period of 7 days. We found pancreas tissue slices cultured under optimized conditions to have intact tissue specific morphology for the entire culture period. Amylase positive intact acini were present at all time points of culture and acinar cells displayed a typical strong cell polarity. Amylase release from pancreas tissue slices decreased during culture, but maintained the characteristic bell-shaped dose-response curve to increasing caerulein concentrations and a ca. 4-fold maximal over basal release. Additionally, endocrine beta cell viability and function was well preserved until the end of the observation period. Our results show that the tissue slice culture platform provides unprecedented maintenance of pancreatic tissue specific morphology and function over a culture period for at least 4 days and in part even up to 1 week. This analytical advancement now allows mid -to long-term studies on the cell biology of pancreatic disorder pathogenesis and therapy in an intact surrounding in situ. PMID:24223842
Vitamins E and C - effects on matrix components in the vascular system
USDA-ARS?s Scientific Manuscript database
The connective tissue in the vascular system, consisting mainly of vascular smooth muscle cells (VSMC) and the interstitial extracellular matrix (ECM), plays important roles in the maintenance of an intact vascular wall as well as in the repair of atherosclerotic lesions during disease development. ...
Mitochondrial Targeted Coenzyme Q, Superoxide, and Fuel Selectivity in Endothelial Cells
Fink, Brian D.; O'Malley, Yunxia; Dake, Brian L.; Ross, Nicolette C.; Prisinzano, Thomas E.; Sivitz, William I.
2009-01-01
Background Previously, we reported that the “antioxidant” compound “mitoQ” (mitochondrial-targeted ubiquinol/ubiquinone) actually increased superoxide production by bovine aortic endothelial (BAE) cell mitochondria incubated with complex I but not complex II substrates. Methods and Results To further define the site of action of the targeted coenzyme Q compound, we extended these studies to include different substrate and inhibitor conditions. In addition, we assessed the effects of mitoquinone on mitochondrial respiration, measured respiration and mitochondrial membrane potential in intact cells, and tested the intriguing hypothesis that mitoquinone might impart fuel selectivity in intact BAE cells. In mitochondria respiring on differing concentrations of complex I substrates, mitoquinone and rotenone had interactive effects on ROS consistent with redox cycling at multiple sites within complex I. Mitoquinone increased respiration in isolated mitochondria respiring on complex I but not complex II substrates. Mitoquinone also increased oxygen consumption by intact BAE cells. Moreover, when added to intact cells at 50 to 1000 nM, mitoquinone increased glucose oxidation and reduced fat oxidation, at doses that did not alter membrane potential or induce cell toxicity. Although high dose mitoquinone reduced mitochondrial membrane potential, the positively charged mitochondrial-targeted cation, decyltriphenylphosphonium (mitoquinone without the coenzyme Q moiety), decreased membrane potential more than mitoquinone, but did not alter fuel selectivity. Therefore, non-specific effects of the positive charge were not responsible and the quinone moiety is required for altered nutrient selectivity. Conclusions In summary, the interactive effects of mitoquinone and rotenone are consistent with redox cycling at more than one site within complex I. In addition, mitoquinone has substrate dependent effects on mitochondrial respiration, increases repiration by intact cells, and alters fuel selectivity favoring glucose over fatty acid oxidation at the intact cell level. PMID:19158951
Mitochondrial targeted coenzyme Q, superoxide, and fuel selectivity in endothelial cells.
Fink, Brian D; O'Malley, Yunxia; Dake, Brian L; Ross, Nicolette C; Prisinzano, Thomas E; Sivitz, William I
2009-01-01
Previously, we reported that the "antioxidant" compound "mitoQ" (mitochondrial-targeted ubiquinol/ubiquinone) actually increased superoxide production by bovine aortic endothelial (BAE) cell mitochondria incubated with complex I but not complex II substrates. To further define the site of action of the targeted coenzyme Q compound, we extended these studies to include different substrate and inhibitor conditions. In addition, we assessed the effects of mitoquinone on mitochondrial respiration, measured respiration and mitochondrial membrane potential in intact cells, and tested the intriguing hypothesis that mitoquinone might impart fuel selectivity in intact BAE cells. In mitochondria respiring on differing concentrations of complex I substrates, mitoquinone and rotenone had interactive effects on ROS consistent with redox cycling at multiple sites within complex I. Mitoquinone increased respiration in isolated mitochondria respiring on complex I but not complex II substrates. Mitoquinone also increased oxygen consumption by intact BAE cells. Moreover, when added to intact cells at 50 to 1000 nM, mitoquinone increased glucose oxidation and reduced fat oxidation, at doses that did not alter membrane potential or induce cell toxicity. Although high dose mitoquinone reduced mitochondrial membrane potential, the positively charged mitochondrial-targeted cation, decyltriphenylphosphonium (mitoquinone without the coenzyme Q moiety), decreased membrane potential more than mitoquinone, but did not alter fuel selectivity. Therefore, non-specific effects of the positive charge were not responsible and the quinone moiety is required for altered nutrient selectivity. In summary, the interactive effects of mitoquinone and rotenone are consistent with redox cycling at more than one site within complex I. In addition, mitoquinone has substrate dependent effects on mitochondrial respiration, increases repiration by intact cells, and alters fuel selectivity favoring glucose over fatty acid oxidation at the intact cell level.
Lesion-induced increase in survival and migration of human neural progenitor cells releasing GDNF
Behrstock, Soshana; Ebert, Allison D.; Klein, Sandra; Schmitt, Melanie; Moore, Jeannette M.; Svendsen, Clive N.
2009-01-01
The use of human neural progenitor cells (hNPC) has been proposed to provide neuronal replacement or astrocytes delivering growth factors for brain disorders such as Parkinson’s and Huntington’s disease. Success in such studies likely requires migration from the site of transplantation and integration into host tissue in the face of ongoing damage. In the current study, hNPC modified to release glial cell line derived neurotrophic factor (hNPCGDNF) were transplanted into either intact or lesioned animals. GDNF release itself had no effect on the survival, migration or differentiation of the cells. The most robust migration and survival was found using a direct lesion of striatum (Huntington’s model) with indirect lesions of the dopamine system (Parkinson’s model) or intact animals showing successively less migration and survival. No lesion affected differentiation patterns. We conclude that the type of brain injury dictates migration and integration of hNPC which has important consequences when considering transplantation of these cells as a therapy for neurodegenerative diseases. PMID:19044202
NASA Astrophysics Data System (ADS)
Vladimirov, A. P.; Malygin, A. S.; Mikhailova, J. A.; Borodin, E. M.; Bakharev, A. A.; Poryvayeva, A. P.
2014-09-01
Earlier we reported developing a speckle interferometry technique and a device designed to assess the metabolic activity of a cell monolayer cultivated on a glass substrate. This paper aimed at upgrading the technique and studying its potential for real-time assessment of herpes virus development process. Speckle dynamics was recorded in the image plane of intact and virus-infected cell monolayer. HLE-3, L-41 and Vero cells were chosen as research targets. Herpes simplex virus-1-(HSV-1)- infected cell cultures were studied. For 24 h we recorded the digital value of optical signal I in one pixel and parameter η characterizing change in the distribution of the optical signal on 10 × 10-pixel areas. The coefficient of multiple determination calculated by η time dependences for three intact cell cultures equals 0.94. It was demonstrated that the activity parameters are significantly different for intact and virus-infected cells. The difference of η value for intact and HSV-1-infected cells is detectable 10 minutes from the experiment start.
Kunnath-Velayudhan, Shajo; Porcelli, Steven A
2018-05-01
Intracellular cytokine staining (ICS) is a powerful method for identifying functionally distinct lymphocyte subsets, and for isolating these by fluorescence activated cell sorting (FACS). Although transcriptomic analysis of cells sorted on the basis of ICS has many potential applications, this is rarely performed because of the difficulty in isolating intact RNA from cells processed using standard fixation and permeabilization buffers for ICS. To address this issue, we compared three buffers shown previously to preserve RNA in nonhematopoietic cells subjected to intracellular staining for their effects on RNA isolated from T lymphocytes processed for ICS. Our results showed that buffers containing the recombinant ribonuclease inhibitor RNasin or high molar concentrations of salt yielded intact RNA from fixed and permeabilized T cells. As proof of principle, we successfully used the buffer containing RNasin to isolate intact RNA from CD4 + T cells that were sorted by FACS on the basis of specific cytokine production, thus demonstrating the potential of this approach for coupling ICS with transcriptomic analysis. Copyright © 2018 Elsevier B.V. All rights reserved.
Orynbayeva, Zulfiya; Sensenig, Richard; Polyak, Boris
2015-05-01
To successfully translate magnetically mediated cell targeting from bench to bedside, there is a need to systematically assess the potential adverse effects of magnetic nanoparticles (MNPs) interacting with 'therapeutic' cells. Here, we examined in detail the effects of internalized polymeric MNPs on primary rat endothelial cells' structural intactness, metabolic integrity and proliferation potential. The intactness of cytoskeleton and organelles was studied by fluorescent confocal microscopy, flow cytometry and high-resolution respirometry. MNP-loaded primary endothelial cells preserve intact cytoskeleton and organelles, maintain normal rate of proliferation, calcium signaling and mitochondria energy metabolism. This study provides supportive evidence that MNPs at doses necessary for targeting did not induce significant adverse effects on structural integrity and functionality of primary endothelial cells - potential cell therapy vectors.
Active Coupled Oscillators in the Inner Ear
NASA Astrophysics Data System (ADS)
Strimbu, Clark Elliott
Auditory and vestibular systems are endowed with an active process that enables them to detect signals as small as a few Angstroms; they also exhibit frequency selectivity; show strong nonlinearities; and can exhibit as spontaneous activity. Much of this active process comes from the sensory hair cells at the periphery of the auditory and vestibular systems. Each hair cell is capped by an eponymous hair bundle, a specialized structure that transduces mechanical forces into electrical signals. Experiments on mechanically decoupled cells from the frog sacculus have shown that individual hair bundles behave in an active manner analogous to an intact organ suggesting a common cellular basis for the active processes seen in many species. In particular, mechanically decoupled hair bundles show rapid active movements in response to transient stimuli and exhibit spontaneous oscillations. However, a single mechanosensitive hair cell is unable to match the performance of an entire organ. In vivo, hair bundles are often coupled to overlying membranes, gelatinous extracellular matrices. We used an in vitro preparation of the frog sacculus in which the otolithic membrane has been left intact. Under natural coupling conditions, there is a strong degree of correlation across the saccular epithelium, suggesting that the collective response of many cells contributes to the extreme sensitivity of this organ. When the membrane is left intact, the hair bundles do not oscillate spontaneously, showing that the natural coupling and loading tunes them into a quiescent regime. However, when stimulated by a pulse, the bundles show a rapid biphasic response that is abolished when the transduction channels are blocked. The active forces generated by the bundles are sufficient to move the overlying membrane.
Biological instability in a chlorinated drinking water distribution network.
Nescerecka, Alina; Rubulis, Janis; Vital, Marius; Juhna, Talis; Hammes, Frederik
2014-01-01
The purpose of a drinking water distribution system is to deliver drinking water to the consumer, preferably with the same quality as when it left the treatment plant. In this context, the maintenance of good microbiological quality is often referred to as biological stability, and the addition of sufficient chlorine residuals is regarded as one way to achieve this. The full-scale drinking water distribution system of Riga (Latvia) was investigated with respect to biological stability in chlorinated drinking water. Flow cytometric (FCM) intact cell concentrations, intracellular adenosine tri-phosphate (ATP), heterotrophic plate counts and residual chlorine measurements were performed to evaluate the drinking water quality and stability at 49 sampling points throughout the distribution network. Cell viability methods were compared and the importance of extracellular ATP measurements was examined as well. FCM intact cell concentrations varied from 5×10(3) cells mL(-1) to 4.66×10(5) cells mL(-1) in the network. While this parameter did not exceed 2.1×10(4) cells mL(-1) in the effluent from any water treatment plant, 50% of all the network samples contained more than 1.06×10(5) cells mL(-1). This indisputably demonstrates biological instability in this particular drinking water distribution system, which was ascribed to a loss of disinfectant residuals and concomitant bacterial growth. The study highlights the potential of using cultivation-independent methods for the assessment of chlorinated water samples. In addition, it underlines the complexity of full-scale drinking water distribution systems, and the resulting challenges to establish the causes of biological instability.
Biological Instability in a Chlorinated Drinking Water Distribution Network
Nescerecka, Alina; Rubulis, Janis; Vital, Marius; Juhna, Talis; Hammes, Frederik
2014-01-01
The purpose of a drinking water distribution system is to deliver drinking water to the consumer, preferably with the same quality as when it left the treatment plant. In this context, the maintenance of good microbiological quality is often referred to as biological stability, and the addition of sufficient chlorine residuals is regarded as one way to achieve this. The full-scale drinking water distribution system of Riga (Latvia) was investigated with respect to biological stability in chlorinated drinking water. Flow cytometric (FCM) intact cell concentrations, intracellular adenosine tri-phosphate (ATP), heterotrophic plate counts and residual chlorine measurements were performed to evaluate the drinking water quality and stability at 49 sampling points throughout the distribution network. Cell viability methods were compared and the importance of extracellular ATP measurements was examined as well. FCM intact cell concentrations varied from 5×103 cells mL−1 to 4.66×105 cells mL−1 in the network. While this parameter did not exceed 2.1×104 cells mL−1 in the effluent from any water treatment plant, 50% of all the network samples contained more than 1.06×105 cells mL−1. This indisputably demonstrates biological instability in this particular drinking water distribution system, which was ascribed to a loss of disinfectant residuals and concomitant bacterial growth. The study highlights the potential of using cultivation-independent methods for the assessment of chlorinated water samples. In addition, it underlines the complexity of full-scale drinking water distribution systems, and the resulting challenges to establish the causes of biological instability. PMID:24796923
Uptake of antibiotics by human polymorphonuclear leukocyte cytoplasts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hand, W.L.; King-Thompson, N.L.
Enucleated human polymorphonuclear leukocytes (PMN cytoplasts), which have no nuclei and only a few granules, retain many of the functions of intact neutrophils. To better define the mechanisms and intracellular sites of antimicrobial agent accumulation in human neutrophils, we studied the antibiotic uptake process in PMN cytoplasts. Entry of eight radiolabeled antibiotics into PMN cytoplasts was determined by means of a velocity gradient centrifugation technique. Uptakes of these antibiotics by cytoplasts were compared with our findings in intact PMN. Penicillin entered both intact PMN and cytoplasts poorly. Metronidazole achieved a concentration in cytoplasts (and PMN) equal to or somewhat lessmore » than the extracellular concentration. Chloramphenicol, a lipid-soluble drug, and trimethoprim were concentrated three- to fourfold by cytoplasts. An unusual finding was that trimethroprim, unlike other tested antibiotics, was accumulated by cytoplasts more readily at 25 degrees C than at 37 degrees C. After an initial rapid association with cytoplasts, cell-associated imipenem declined progressively with time. Clindamycin and two macrolide antibiotics (roxithromycin, erythromycin) were concentrated 7- to 14-fold by cytoplasts. This indicates that cytoplasmic granules are not essential for accumulation of these drugs. Adenosine inhibited cytoplast uptake of clindamycin, which enters intact phagocytic cells by the membrane nucleoside transport system. Roxithromycin uptake by cytoplasts was inhibited by phagocytosis, which may reduce the number of cell membrane sites available for the transport of macrolides. These studies have added to our understanding of uptake mechanisms for antibiotics which are highly concentrated in phagocytes.« less
DEVELOPMENT OF AN INTACT HEPATOCYTE ACTIVATION SYSTEM FOR ROUTINE USE WITH THE MOUSE LYMPHOMA ASSAY
The authors have developed a method for cocultivating primary rat hepatocytes with L5178Y/TK+/- 3.7.2C mouse lymphoma cells. The system should provide a means to simulate more closely in vivo metabolism compared to metabolism by liver homogenates, while still being useful for rou...
Xenopus extract approaches to studying microtubule organization and signaling in cytokinesis
Field, Christine M.; Pelletier, James F.; Mitchison, Timothy J.
2017-01-01
We report optimized methods for preparing actin-intact Xenopus egg extract. This extract is minimally perturbed, undiluted egg cytoplasm where the cell cycle can be experimentally controlled. It contains abundant organelles and glycogen, and supports active metabolism and cytoskeletal dynamics that closely mimic egg physiology. The concentration of the most abundant ~11,000 proteins is known from mass spectrometry. Actin-intact egg extract can be used for analysis of actin dynamics and interaction of actin with other cytoplasmic systems, as well as microtubule organization. It can be spread as thin layers, and naturally depletes oxygen though mitochondrial metabolism, which makes it ideal for fluorescence imaging. When combined with artificial lipid bilayers, it allows reconstitution and analysis of the spatially controlled signaling that positions the cleavage furrow during early cytokinesis. Actin-intact extract is generally useful for probing the biochemistry and biophysics of the large Xenopus egg. Protocols are provided for preparation of actin-intact egg extract, control of the cell cycle, fluorescent probes for cytoskeleton and cytoskeleton-dependent signaling, preparation of glass surfaces for imaging experiments, and immunodepletion to probe the role of specific proteins and protein complexes. We also describe methods for adding supported lipid bilayers to mimic the plasma membrane and for confining in microfluidic droplets to explore size scaling issues. PMID:28065319
Halbert, Christine L; Allen, James M; Miller, A Dusty
2002-07-01
The small packaging capacity of adeno-associated virus (AAV) vectors limits the utility of this promising vector system for transfer of large genes. We explored the possibility that larger genes could be reconstituted following homologous recombination between AAV vectors carrying overlapping gene fragments. An alkaline phosphatase (AP) gene was split between two such AAV vectors (rec vectors) and packaged using AAV2 or AAV6 capsid proteins. Rec vectors having either capsid protein recombined to express AP in cultured cells at about 1-2% of the rate observed for an intact vector. Surprisingly, the AAV6 rec vectors transduced lung cells in mice almost as efficiently as did an intact vector, with 10% of airway epithelial cells, the target for treatment of cystic fibrosis (CF), being positive. Thus AAV rec vectors may be useful for diseases such as CF that require transfer of large genes.
Engineering intracellular active transport systems as in vivo biomolecular tools.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bachand, George David; Carroll-Portillo, Amanda
2006-11-01
Active transport systems provide essential functions in terms of cell physiology and metastasis. These systems, however, are also co-opted by invading viruses, enabling directed transport of the virus to and from the cell's nucleus (i.e., the site of virus replication). Based on this concept, fundamentally new approaches for interrogating and manipulating the inner workings of living cells may be achievable by co-opting Nature's active transport systems as an in vivo biomolecular tool. The overall goal of this project was to investigate the ability to engineer kinesin-based transport systems for in vivo applications, specifically the collection of effector proteins (e.g., transcriptionalmore » regulators) within single cells. In the first part of this project, a chimeric fusion protein consisting of kinesin and a single chain variable fragment (scFv) of an antibody was successfully produced through a recombinant expression system. The kinesin-scFv retained both catalytic and antigenic functionality, enabling selective capture and transport of target antigens. The incorporation of a rabbit IgG-specific scFv into the kinesin established a generalized system for functionalizing kinesin with a wide range of target-selective antibodies raised in rabbits. The second objective was to develop methods of isolating the intact microtubule network from live cells as a platform for evaluating kinesin-based transport within the cytoskeletal architecture of a cell. Successful isolation of intact microtubule networks from two distinct cell types was demonstrated using glutaraldehyde and methanol fixation methods. This work provides a platform for inferring the ability of kinesin-scFv to function in vivo, and may also serve as a three-dimensional scaffold for evaluating and exploiting kinesin-based transport for nanotechnological applications. Overall, the technology developed in this project represents a first-step in engineering active transport system for in vivo applications. Further development could potentially enable selective capture of intracellular antigens, targeted delivery of therapeutic agents, or disruption of the transport systems and consequently the infection and pathogenesis cycle of biothreat agents.« less
Izawa, Kazuki; Kuwahara, Hirokazu; Kihara, Kumiko; Yuki, Masahiro; Lo, Nathan; Itoh, Takehiko; Ohkuma, Moriya; Hongoh, Yuichi
2016-10-13
"Candidatus Endomicrobium trichonymphae" (Bacteria; Elusimicrobia) is an obligate intracellular symbiont of the cellulolytic protist genus Trichonympha in the termite gut. A previous genome analysis of "Ca Endomicrobium trichonymphae" phylotype Rs-D17 (genomovar Ri2008), obtained from a Trichonympha agilis cell in the gut of the termite Reticulitermes speratus, revealed that its genome is small (1.1 Mb) and contains many pseudogenes; it is in the course of reductive genome evolution. Here we report the complete genome sequence of another Rs-D17 genomovar, Ti2015, obtained from a different T. agilis cell present in an R. speratus gut. These two genomovars share most intact protein-coding genes and pseudogenes, showing 98.6% chromosome sequence similarity. However, characteristic differences were found in their defense systems, which comprised restriction-modification and CRISPR/Cas systems. The repertoire of intact restriction-modification systems differed between the genomovars, and two of the three CRISPR/Cas loci in genomovar Ri2008 are pseudogenized or missing in genomovar Ti2015. These results suggest relaxed selection pressure for maintaining these defense systems. Nevertheless, the remaining CRISPR/Cas system in each genomovar appears to be active; none of the "spacer" sequences (112 in Ri2008 and 128 in Ti2015) were shared whereas the "repeat" sequences were identical. Furthermore, we obtained draft genomes of three additional endosymbiotic Endomicrobium phylotypes from different host protist species, and discovered multiple, intact CRISPR/Cas systems in each genome. Collectively, unlike bacteriome endosymbionts in insects, the Endomicrobium endosymbionts of termite-gut protists appear to require defense against foreign DNA, although the required level of defense has likely been reduced during their intracellular lives. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Bonior, Joanna; Ceranowicz, Piotr; Gajdosz, Ryszard; Kuśnierz-Cabala, Beata; Pierzchalski, Piotr; Warzecha, Zygmunt; Dembiński, Artur; Pędziwiatr, Michał; Kot, Michalina; Leja-Szpak, Anna; Nawrot-Porąbka, Katarzyna; Link-Lenczowski, Paweł; Olszanecki, Rafał; Bartuś, Krzysztof; Jaworek, Jolanta
2017-05-02
Ghrelin (GHRL) is an endogenous ligand for the growth hormone secretagogue receptor (GHS-R). Experimental studies showed that GHRL protects the stomach and pancreas against acute damage, but the effect of GHRL on pancreatic acinar cells was still undetermined. To investigate the effect of GHRL and caerulein on the functional ghrelin system in pancreatic acinar cells taking into account the role of sensory nerves (SN). Experiments were carried out on isolated pancreatic acinar cells and AR42J cells. Before acinar cells isolation, GHRL was administered intraperitoneally at a dose of 50 µg/kg to rats with intact SN or with capsaicin deactivation of SN (CDSN). After isolation, pancreatic acinar cells were incubated in caerulein-free or caerulein containing solution. AR42J cells were incubated under basal conditions and stimulated with caerulein, GHRL or a combination of the above. Incubation of isolated acinar cells with caerulein inhibited GHS-R and GHRL expression at the level of mRNA and protein in those cells. Either in rats with intact SN or with CDSN, administration of GHRL before isolation of acinar cells increased expression of GHRL and GHS-R in those cells and reversed the caerulein-induced reduction in expression of those parameters. Similar upregulation of GHS-R and GHRL was observed after administration of GHRL in AR42J cells. GHRL stimulates its own expression and expression of its receptor in isolated pancreatic acinar cells and AR42J cells on the positive feedback pathway. This mechanism seems to participate in the pancreatoprotective effect of GHRL in the course of acute pancreatitis.
Divakaruni, Ajit S; Rogers, George W; Murphy, Anne N
2014-05-27
Measurements of mitochondrial respiration in intact cells can help define metabolism and its dysregulation in fields such as cancer, metabolic disease, immunology, and neurodegeneration. Although cells can be offered various substrates in the assay medium, many cell types can oxidize stored pools of energy substrates. A general bioenergetic profile can therefore be obtained using intact cells, but the inability to control substrate provision to the mitochondria can restrict an in-depth, mechanistic understanding. Mitochondria can be isolated from intact cells, but the yield and quality of the end product is often poor and prone to subselection during isolation. Plasma membrane permeabilization of cells provides a solution to this challenge, allowing experimental control of the medium surrounding the mitochondria. This unit describes techniques to measure respiration in permeabilized adherent cells using a Seahorse XF Analyzer or permeabilized suspended cells in a Hansatech Oxygraph. Copyright © 2014 John Wiley & Sons, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Seema; Simpson, David C.; Tolic, Nikola
We investigated the combination of weak anion exchange (WAX) fractionation and on-line reversed phase liquid chromatography (RPLC) separation using a 12 T FTICR mass spectrometer for the detection of intact proteins from a Shewanella oneidensis MR-1 cell lysate. 715 intact proteins were detected and the combined results from the WAX fractions and the unfractionated cell lysate were aligned using LC-MS features to facilitate protein abundance measurements. Protein identifications and post translational modifications were assigned for ~10% of the detected proteins by comparing intact protein mass measurements to proteins identified in peptide MS/MS analysis of an aliquot of the same fraction.more » Intact proteins were also detected for S. oneidensis lysates obtained from cells grown on 13C, 15N depleted media under aerobic and sub-oxic conditions. This work aimed at optimizing intact protein detection for profiling proteins at a level that incorporates their modification complement. The strategy can be readily applied for measuring differential protein abundances, and provides a platform for high-throughput selection of biologically relevant targets for further characterization.« less
Isochoric and isobaric freezing of fish muscle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Năstase, Gabriel; Department of Building Services, University of Transilvania, Braşov, Braşov, 500152; Lyu, Chenang
We have recently shown that, a living organism, which succumbs to freezing to −4 °C in an isobaric thermodynamic system (constant atmospheric pressure), can survive freezing to −4 °C in an isochoric thermodynamic system (constant volume). It is known that the mechanism of cell damage in an isobaric system is the freezing caused increase in extracellular osmolality, and, the consequent cell dehydration. An explanation for the observed survival during isochoric freezing is the thermodynamic modeling supported hypothesis that, in the isochoric frozen solution the extracellular osmolality is comparable to the cell intracellular osmolality. Therefore, cells in the isochoric frozen organism do not dehydrate, andmore » the tissue maintains its morphological integrity. Comparing the histology of: a) fresh fish white muscle, b) fresh muscle frozen to −5 °C in an isobaric system and c) fresh muscle frozen to −5 °C I in an isochoric system, we find convincing evidence of the mechanism of cell dehydration during isobaric freezing. In contrast, the muscle tissue frozen to −5 °C in an isochoric system appears morphologically identical to fresh tissue, with no evidence of dehydration. This is the first experimental evidence in support of the hypothesis that in isochoric freezing there is no cellular dehydration and therefore the morphology of the frozen tissue remains intact. - Highlights: • Preservation of fish muscle at, subfreezing temperatures, in an isochoric system, is demonstrated. • Experiments were performed to an average pressure of 41.3 MPa and temperatures of −5 °C. • Isochoric subfreezing temperature is a new preservation method that does not require the.use of cryoprotectants. • No cellular dehydration and therefore the morphology of the frozen tissue remains intact.« less
Maria, Roberta M; Altei, Wanessa F; Andricopulo, Adriano D; Becceneri, Amanda B; Cominetti, Márcia R; Venâncio, Tiago; Colnago, Luiz A
2015-11-01
(1)H high-resolution magic angle spinning nuclear magnetic resonance ((1)H HR-MAS NMR) spectroscopy was used to analyze the metabolic profile of an intact non-tumor breast cell line (MCF-10A) and intact breast tumor cell lines (MCF-7 and MDA-MB-231). In the spectra of MCF-10A cells, six metabolites were assigned, with glucose and ethanol in higher concentrations. Fifteen metabolites were assigned in MCF-7 and MDA-MB-231 (1)H HR-MAS NMR spectra. They did not show glucose and ethanol, and the major component in both tumor cells was phosphocholine (higher in MDA-MB-231 than in MCF-7), which can be considered as a tumor biomarker of breast cancer malignant transformation. These tumor cells also show acetone signal that was higher in MDA-MB-231 cells than in MCF-7 cells. The high acetone level may be an indication of high demand for energy in MDA-MB-231 to maintain cell proliferation. The higher acetone and phosphocholine levels in MDA-MB-231 cells indicate the higher malignance of the cell line. Therefore, HR-MAS is a rapid reproducible method to study the metabolic profile of intact breast cells, with minimal sample preparation and contamination, which are critical in the analyses of slow-growth cells. Copyright © 2015 Elsevier Inc. All rights reserved.
Mitochondrial motility and vascular smooth muscle proliferation.
Chalmers, Susan; Saunter, Christopher; Wilson, Calum; Coats, Paul; Girkin, John M; McCarron, John G
2012-12-01
Mitochondria are widely described as being highly dynamic and adaptable organelles, and their movement is thought to be vital for cell function. Yet, in various native cells, including those of heart and smooth muscle, mitochondria are stationary and rigidly structured. The significance of the differences in mitochondrial behavior to the physiological function of cells is unclear and was studied in single myocytes and intact resistance-sized cerebral arteries. We hypothesized that mitochondrial dynamics is controlled by the proliferative status of the cells. High-speed fluorescence imaging of mitochondria in live vascular smooth muscle cells shows that the organelle undergoes significant reorganization as cells become proliferative. In nonproliferative cells, mitochondria are individual (≈ 2 μm by 0.5 μm), stationary, randomly dispersed, fixed structures. However, on entering the proliferative state, mitochondria take on a more diverse architecture and become small spheres, short rod-shaped structures, long filamentous entities, and networks. When cells proliferate, mitochondria also continuously move and change shape. In the intact pressurized resistance artery, mitochondria are largely immobile structures, except in a small number of cells in which motility occurred. When proliferation of smooth muscle was encouraged in the intact resistance artery, in organ culture, the majority of mitochondria became motile and the majority of smooth muscle cells contained moving mitochondria. Significantly, restriction of mitochondrial motility using the fission blocker mitochondrial division inhibitor prevented vascular smooth muscle proliferation in both single cells and the intact resistance artery. These results show that mitochondria are adaptable and exist in intact tissue as both stationary and highly dynamic entities. This mitochondrial plasticity is an essential mechanism for the development of smooth muscle proliferation and therefore presents a novel therapeutic target against vascular disease.
Expression of eukaryotic polypeptides in chloroplasts
Mayfield, Stephen P.
2013-06-04
The present invention relates to a gene expression system in eukaryotic and prokaryotic cells, preferably plant cells and intact plants. In particular, the invention relates to an expression system having a RB47 binding site upstream of a translation initiation site for regulation of translation mediated by binding of RB47 protein, a member of the poly(A) binding protein family. Regulation is further effected by RB60, a protein disulfide isomerase. The expression system is capable of functioning in the nuclear/cytoplasm of cells and in the chloroplast of plants. Translation regulation of a desired molecule is enhanced approximately 100 fold over that obtained without RB47 binding site activation.
Effect of lipoteichoic acid and lipids on lysis of intact cells of Streptococcus faecalis.
Cleveland, R F; Daneo-Moore, L; Wicken, A J; Shockman, G D
1976-01-01
Autolysis of intact cells of Streptococcus faecalis was inhibited to a greater extent by phospholipids than by lipoteichoic acid, suggesting a possible difference in the accessibility of native autolysin to these substances. PMID:821938
Modification of Schwann Cell Gene Expression by Electroporation in vivo
Aspalter, Manuela; Vyas, Alka; Feiner, Jeffrey; Griffin, John; Brushart, Thomas; Redett, Richard
2009-01-01
Clinical outcomes of nerve grafting are often inferior to those of end-to-end nerve repair. This may be due, in part, to the routine use of cutaneous nerve to support motor axon regeneration. In previous work, we have demonstrated that Schwann cells express distinct sensory and motor phenotypes, and that these promote regeneration in a modality-specific fashion. Intra-operative modification of graft Schwann cell phenotype might therefore improve clinical outcomes. This paper demonstrates the feasibility of electroporating genes into intact nerve to modify Schwann cell gene expression. Initial trials established 70 V, 5 ms as optimum electroporation parameters. Intact, denervated, and reinnervated rat tibial nerves were electroporated with the YFP gene and evaluated serially by counting S-100 positive cells that expressed YFP. In intact nerve, a mean of 28% of Schwann cells expressed the gene at 3 days, falling to 20% at 7 days with little expression at later times. There were no significant differences among the three groups at each time period. Electronmicroscopic evaluation of treated, intact nerve revealed only occasional demyelination and axon degeneration. Intraoperative electroporation of nerve graft is thus a practical means of altering Schwann cell gene expression without the risks inherent in viral transfection. PMID:18834904
Madathil, Bernadette K.; Anil Kumar, Pallickaveedu RajanAsari; Kumary, Thrikkovil Variyath
2014-01-01
Endothelial keratoplasty is a recent shift in the surgical treatment of corneal endothelial dystrophies, where the dysfunctional endothelium is replaced whilst retaining the unaffected corneal layers. To overcome the limitation of donor corneal shortage, alternative use of tissue engineered constructs is being researched. Tissue constructs with intact extracellular matrix are generated using stimuli responsive polymers. In this study we evaluated the feasibility of using the thermoresponsive poly(N-isopropylacrylamide-co-glycidylmethacrylate) polymer as a culture surface to harvest viable corneal endothelial cell sheets. Incubation below the lower critical solution temperature of the polymer allowed the detachment of the intact endothelial cell sheet. Phase contrast and scanning electron microscopy revealed the intact architecture, cobble stone morphology, and cell-to-cell contact in the retrieved cell sheet. Strong extracellular matrix deposition was also observed. The RT-PCR analysis confirmed functionally active endothelial cells in the cell sheet as evidenced by the positive expression of aquaporin 1, collagen IV, Na+-K+ ATPase, and FLK-1. Na+-K+ ATPase protein expression was also visualized by immunofluorescence staining. These results suggest that the in-house developed thermoresponsive culture dish is a suitable substrate for the generation of intact corneal endothelial cell sheet towards transplantation for endothelial keratoplasty. PMID:25003113
1991-01-01
The effect of receptor occupancy on insulin receptor endocytosis was examined in CHO cells expressing normal human insulin receptors (CHO/IR), autophosphorylation- and internalization-deficient receptors (CHO/IRA1018), and receptors which undergo autophosphorylation but lack a sequence required for internalization (CHO/IR delta 960). The rate of [125I]insulin internalization in CHO/IR cells at 37 degrees C was rapid at physiological concentrations, but decreased markedly in the presence of increasing unlabeled insulin (ED50 = 1-3 nM insulin, or 75,000 occupied receptors/cell). In contrast, [125I]insulin internalization by CHO/IRA1018 and CHO/IR delta 960 cells was slow and was not inhibited by unlabeled insulin. At saturating insulin concentrations, the rate of internalization by wild-type and mutant receptors was similar. Moreover, depletion of intracellular potassium, which has been shown to disrupt coated pit formation, inhibited the rapid internalization of [125I]insulin at physiological insulin concentrations by CHO/IR cells, but had little or no effect on [125I]insulin uptake by CHO/IR delta 960 and CHO/IRA1018 cells or wild-type cells at high insulin concentrations. These data suggest that the insulin-stimulated entry of the insulin receptor into a rapid, coated pit-mediated internalization pathway is saturable and requires receptor autophosphorylation and an intact juxtamembrane region. Furthermore, CHO cells also contain a constitutive nonsaturable pathway which does not require receptor autophosphorylation or an intact juxtamembrane region; this second pathway is unaffected by depletion of intracellular potassium, and therefore may be independent of coated pits. Our data suggest that the ligand-stimulated internalization of the insulin receptor may require specific saturable interactions between the receptor and components of the endocytic system. PMID:1757462
Li, Weiying; Zhang, Junpeng; Wang, Feng; Qian, Lin; Zhou, Yanyan; Qi, Wanqi; Chen, Jiping
2018-07-01
Public health is threatened by deteriorated water quality due to bacterial regrowth and uncontrolled growth-related problems in drinking water distribution systems (DWDSs). To investigate the scope of this problem, a two-year field study was conducted in south China. The amount of assimilable organic carbon (AOC), total cell concentrations (TCC), and intact cell concentrations (ICC) of water samples were determined by flow cytometry. The results indicated that ICC was significantly correlated to AOC concentration when the chlorine concentration was less than 0.15 mg/L, and ICC was lower at chlorine concentrations greater than 0.15 mg/L, suggesting that free chlorine level had effect on AOC and ICC. To further analyze the effect of disinfectant on AOC and bacterial growth, we designed an orthogonal experiment with different dosages of two commonly used disinfectants, chlorine and chloramine. The results demonstrated that high concentrations of free chlorine (>0.15 mg/L) and chloramine (>0.4 mg/L) were associated with relatively low proportions of intact cells and cultivable bacteria. Compared with chlorine, chloramine tended to cause lower AOC level and intact cells, likely because the chlorinated disinfection byproducts (DBPs) were more easily absorbed by bacteria than the chloraminated DBPs. Based on the statistical analysis of 240 water samples, ICC was limited when AOC concentration was less than 135 μg/L, while temperature and the number of small-size particles showed positive effects on ICC (P<0.05). We conclude that the use of chloramine and controlling particle numbers should be suitable strategies to limit bacterial regrowth. Copyright © 2018 Elsevier Ltd. All rights reserved.
Joukar, Siyavash; Vahidi, Reza; Farsinejad, Alireza; Asadi-Shekaari, Majid; Shahouzehi, Beydolah
2017-07-01
Despite the importance of this issue, less has been paid to the influence of exercise on the neural side effects of anabolic androgenic steroids and mechanisms. We investigated the effects of two levels of endurance exercise on neurodegeneration side effects of nandrolone. The study period was 8 weeks. Wistar rats were divided into nine groups including the control (CTL) group, mild exercise (mEx) group, and vehicle (Arach) group which received arachis oil intramuscularly, nandrolone (Nan) group which received nandrolone decanoate 5 mg/kg two times weekly, mEx+Arach group which treated with arachis oil along with mild exercise, mEx+Nan group which treated with nandrolone along with mild exercise, severe exercise (sEx) group, sEx+Arach, and sEx+Nan groups. Finally, brain samples were taken for histopathological, biochemical, and western blot analysis. Nandrolone significantly decreased the intact cells of the hippocampus, total antioxidant capacity (TAC) (P < 0.05 versus CTL and Arach groups), TAC to malondialdehyde ratio (TAC/MDA), and Bcl-2. Nandrolone increased the Bax/Bcl-2 ratio of the brain tissue (P < 0.01 versus CTL and Arach groups). Combination of mild exercise and nandrolone rescued the intact cells to some extent, and this effect was associated with the improvement of Bcl-2 level and Bax/Bcl-2 ratio of brain tissue. Combination of severe exercise and nandrolone rescued the intact cells and improved the TAC, TAC/MDA, and Bax/Bcl-2 ratios. The findings suggest that low- and high-intensity endurance exercise decreased the risk of neurodegeneration effect of nandrolone in the hippocampus of rats. This effect can be explained by the regulation of the redox system and cell homeostasis.
Asaturova, A V; Ezhova, L S; Faizullina, N M; Adamyan, L V; Khabas, G N; Sannikova, M V
to investigate the frequency of the types of fallopian tubal secretory cell expansion (SCE) in diseases of the reproductive organs and to determine the immunophenotype and biological role of the cells in the early stages of the pathogenesis of high-grade ovarian serous carcinomas (HGOSC). The investigation enrolled 287 patients with extraovarian diseases and ovarian serous tumors varying in grade, whose fallopian tubes were morphologically and immunohistochemically examined using p53, Ki-67, PAX2, Bcl-2, beta-catenin, and ALDH1 markers. The material was statistically processed applying the Mann-Whitney test and χ2 test. The rate of secretory cell proliferation (SCP) (more than 10 consecutive secretory cells) and that of secretory cell overgrowth (SCO) (more than 30 consecutive secretory cells) increase with age in all investigated reproductive system diseases. The rate of SCP in the corpus fimbriatum of the patients with HGOSC was 5.9 times higher than that in those with extraovarian disease (p<0.01); when comparing the same patient groups, that of SCO was 3.4 times higher (p<0.05). The immunohistochemical characteristics of the investigated lesions (in scores) were as follows: PAX2 was expressed in the intact epithelium (2.8), in SCP (1.3), in SCO (1.2), in serous tubal intraepithelial carcinoma (STIC) (1.0), and in HGOSC (0.9); Bcl-2 was in the intact epithelium (2.2), in SCP (2.1), STIC (0.9), and in HGOSC (0.6), β-catenin was in the intact epithelium (0.5), in SCP (2.85), in SCO (2.95), in STIC (0.6), and in HGOSC (0.5); ALDH1 was in the intact epithelium (0.5), in SCP (2.91), in SCO (2.92), in STIC (1.2), and in HGOSC (0.6). There were statistically significant differences with a 95% confidence interval (p<0.05) for: 1) PAX2 between the intact epithelium and pathology (fallopian tube lesions and HGOSC); 2) Bcl-2 between the intact epithelium and SCE (SCP and SCO) and between SCE and HGOSC; 3) beta-catenin between the intact epithelium and SCE (SCP and SCO) and between SCE and HGOSC; 4) ALDH1 between the intact epithelium and SCE, between and SCE and STIC, and between STIC and HGOSC. SCE was shown to be an independent intraepithelial lesion. The incidence of this abnormality increased with age and significantly differed in the patients with fallopian tubal lesions in extraovarian diseases from that in those with malignant ovarian serous tumors (by 5.3 times), while these groups showed a three-fold difference in SCO. Thus, SCP may serve as a more sensitive marker for the early stages of the pathogenesis of ovarian serous carcinoma. The studied types of SCE demonstrated multiple molecular events (loss of PAX2 expression and increased Bcl-2, beta-catenin, and ALDH1 expressions), some of which underwent considerable changes, by increasing the severity of a pathological process (loss of ALDH1, and beta-catenin, and bcl-2 expressions). Thus, therapeutic exposure in the early stages of pathogenesis may have a few points of application and just several molecules can serve as independent markers for early pathological changes in the fallopian tubal epithelium.
Deslauriers, R; Moffatt, D J; Smith, I C
1986-05-29
A spectrophotometric assay has been devised to measure oxygen consumption non-invasively in intact murine red cells parasitized by Plasmodium berghei. The method uses oxyhemoglobin in the erythrocytes both as a source of oxygen and as an indicator of oxygen consumption. Spectra of intact cells show broad peaks and sloping baselines due to light-scattering. In order to ascertain the number of varying components in the 370-450 nm range, the resolution of the spectra was enhanced using Fourier transforms of the frequency domain spectra. Calculation of oxygen consumption was carried out for two-component systems (oxyhemoglobin, deoxyhemoglobin) using absorbances at 415 and 431 nm. Samples prepared from highly parasitized mice (greater than 80% parasitemia, 5% hematocrit) showed oxygen consumption rates of (4-8) X 10(-8) microliter/cell per h. This rate was not attributable to the presence of white cells or reticulocytes. The rate of oxygen consumption in the erythrocytes is shown to be modulated by various agents: the respiratory inhibitors NaN3 and KCN (1 mM) reduced oxygen consumption 2-3-fold; salicylhydroxamic acid (2.5 mM) caused a 20% reduction in rate and 10 mM NaN3, completely blocked deoxygenation. Antimalarial drugs and metal-chelating agents were also tested. Chloroquine, EDTA and desferal (desferoxamine mesylate) did not decrease the deoxygenation rate of hemoglobin in parasitized cells. Quinacrine, quinine and primaquine reduced the rate of formation of deoxyhemoglobin but also produced substantial quantities of methemoglobin. The lipophilic chelator, 5-hydroxyquinoline, decreased the rate of deoxygenation one-third. The spectrophotometric assay provides a convenient means to monitor oxygen consumption in parasitized red cells, to test the effects of various agents thereon, and potentially to explore possible mechanisms for oxygen utilization.
SOLITARY CHEMORECEPTOR CELL SURVIVAL IS INDEPENDENT OF INTACT TRIGEMINAL INNERVATION
Gulbransen, Brian; Silver, Wayne; Finger, Tom
2008-01-01
Nasal solitary chemoreceptor cells (SCCs) are a population of specialized chemosensory epithelial cells presumed to broaden trigeminal chemoreceptivity in mammals (Finger et al., 2003). SCCs are innervated by peptidergic trigeminal nerve fibers (Finger et al., 2003) but it is currently unknown if intact innervation is necessary for SCC development or survival. We tested the dependence of SCCs on innervation by eliminating trigeminal nerve fibers during development with neurogenin-1 knockout mice, during early postnatal development with capsaicin desensitization, and during adulthood with trigeminal lesioning. Our results demonstrate that elimination of innervation at any of these times does not result in decreased SCC numbers. In conclusion, neither SCC development nor mature cell maintenance is dependent on intact trigeminal innervation. PMID:18300260
Karmaus, Peer W.F.; Chi, Hongbo
2014-01-01
Dendritic cells (DCs) are a heterogeneous cell population of great importance in the immune system. The emergence of new genetic technology utilizing the CD11c promoter and Cre recombinase has facilitated the dissection of functional significance and molecular regulation of DCs in immune responses and homeostasis in vivo. For the first time, this strategy allows observation of the effects of DC-specific gene deletion on immune system function in an intact organism. In this review, we present the latest findings from studies using the Cre recombinase system for cell type–specific deletion of key molecules that mediate DC homeostasis and function. Our focus is on the molecular pathways that orchestrate DC life span, migration, antigen presentation, pattern recognition, and cytokine production and signaling. PMID:24366237
Saathoff, Hinnerk; Brofelth, Mattias; Trinh, Anne; Parker, Benjamin L; Ryan, Daniel P; Low, Jason K K; Webb, Sarah R; Silva, Ana P G; Mackay, Joel P; Shepherd, Nicholas E
2015-03-01
We have developed an approach for directly isolating an intact multi-protein chromatin remodeling complex from mammalian cell extracts using synthetic peptide affinity reagent 4. FOG1(1-15), a short peptide sequence known to target subunits of the nucleosome remodeling and deacetylase (NuRD) complex, was joined via a 35-atom hydrophilic linker to the StreptagII peptide. Loading this peptide onto Streptactin beads enabled capture of the intact NuRD complex from MEL cell nuclear extract. Gentle biotin elution yielded the desired intact complex free of significant contaminants and in a form that was catalytically competent in a nucleosome remodeling assay. The efficiency of 4 in isolating the NuRD complex was comparable to other reported methods utilising recombinantly produced GST-FOG1(1-45). Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Dwidjosiswojo, Zenyta; Richard, Jessica; Moritz, Miriam M; Dopp, Elke; Flemming, Hans-Curt; Wingender, Jost
2011-11-01
Copper plumbing materials can be the source of copper ions in drinking water supplies. The aim of the current study was to investigate the influence of copper ions on the viability and cytotoxicity of the potential pathogen Pseudomonas aeruginosa that presents a health hazard when occurring in building plumbing systems. In batch experiments, exposure of P. aeruginosa (10(6)cells/mL) for 24h at 20°C to copper-containing drinking water from domestic plumbing systems resulted in a loss of culturability, while total cell numbers determined microscopically did not decrease. Addition of the chelator diethyldithiocarbamate (DDTC) to copper-containing water prevented the loss of culturability. When suspended in deionized water with added copper sulfate (10 μM), the culturability of P. aeruginosa decreased by more than 6 log units, while total cell counts, the concentration of cells with intact cytoplasmic membranes, determined with the LIVE/DEAD BacLight kit, and the number of cells with intact 16S ribosomal RNA, determined by fluorescent in situ hybridization, remained unchanged. When the chelator DDTC was added to copper-stressed bacteria, complete restoration of culturability was observed to occur within 14 d. Copper-stressed bacteria were not cytotoxic towards Chinese hamster ovary (CHO-9) cells, while untreated and resuscitated bacteria caused an almost complete decrease of the concentration of viable CHO-9 cells within 24 h. Thus, copper ions in concentrations relevant to drinking water in plumbing systems seem to induce a viable but non-culturable (VBNC) state in P. aeruginosa accompanied by a loss of culturability and cytotoxicity, and VBNC cells can regain both culturability and cytotoxicity, when copper stress is abolished. Copyright © 2011 Elsevier GmbH. All rights reserved.
Cryopreservation of GABAergic Neuronal Precursors for Cell-Based Therapy
2017-01-01
Cryopreservation protocols are essential for stem cells storage in order to apply them in the clinic. Here we describe a new standardized cryopreservation protocol for GABAergic neural precursors derived from the medial glanglionic eminence (MGE), a promising source of GABAergic neuronal progenitors for cell therapy against interneuron-related pathologies. We used 10% Me2SO as cryoprotectant and assessed the effects of cell culture amplification and cellular organization, as in toto explants, neurospheres, or individualized cells, on post-thaw cell viability and retrieval. We confirmed that in toto cryopreservation of MGE explants is an optimal preservation system to keep intact the interneuron precursor properties for cell transplantation, together with a high cell viability (>80%) and yield (>70%). Post-thaw proliferation and self-renewal of the cryopreserved precursors were tested in vitro. In addition, their migration capacity, acquisition of mature neuronal morphology, and potency to differentiate into multiple interneuron subtypes were also confirmed in vivo after transplantation. The results show that the cryopreserved precursor features remained intact and were similar to those immediately transplanted after their dissection from the MGE. We hope this protocol will facilitate the generation of biobanks to obtain a permanent and reliable source of GABAergic precursors for clinical application in cell-based therapies against interneuronopathies. PMID:28122047
RNA binding protein and binding site useful for expression of recombinant molecules
Mayfield, Stephen P.
2006-10-17
The present invention relates to a gene expression system in eukaryotic and prokaryotic cells, preferably plant cells and intact plants. In particular, the invention relates to an expression system having a RB47 binding site upstream of a translation initiation site for regulation of translation mediated by binding of RB47 protein, a member of the poly(A) binding protein family. Regulation is further effected by RB60, a protein disulfide isomerase. The expression system is capable of functioning in the nuclear/cytoplasm of cells and in the chloroplast of plants. Translation regulation of a desired molecule is enhanced approximately 100 fold over that obtained without RB47 binding site activation.
RNA binding protein and binding site useful for expression of recombinant molecules
Mayfield, Stephen
2000-01-01
The present invention relates to a gene expression system in eukaryotic and prokaryotic cells, preferably plant cells and intact plants. In particular, the invention relates to an expression system having a RB47 binding site upstream of a translation initiation site for regulation of translation mediated by binding of RB47 protein, a member of the poly(A) binding protein family. Regulation is further effected by RB60, a protein disulfide isomerase. The expression system is capable of functioning in the nuclear/cytoplasm of cells and in the chloroplast of plants. Translation regulation of a desired molecule is enhanced approximately 100 fold over that obtained without RB47 binding site activation.
In vitro comparison of human fibroblasts from intact and ruptured ACL for use in tissue engineering.
Brune, T; Borel, A; Gilbert, T W; Franceschi, J P; Badylak, S F; Sommer, P
2007-12-17
The present study compares fibroblasts extracted from intact and ruptured human anterior cruciate ligaments (ACL) for creation of a tissue engineered ACL-construct, made of porcine small intestinal submucosal extracellular matrix (SIS-ECM) seeded with these ACL cells. The comparison is based on histological, immunohistochemical and RT-PCR analyses. Differences were observed between cells in a ruptured ACL (rACL) and cells in an intact ACL (iACL), particularly with regard to the expression of integrin subunits and smooth muscle actin (SMA). Despite these differences in the cell source, both cell populations behaved similarly when seeded on an SIS-ECM scaffold, with similar cell morphology, connective tissue organization and composition, SMA and integrin expression. This study shows the usefulness of naturally occurring scaffolds such as SIS-ECM for the study of cell behaviour in vitro, and illustrates the possibility to use autologous cells extracted from ruptured ACL biopsies as a source for tissue engineered ACL constructs.
Comparison of Ripening Processes in Intact Tomato Fruit and Excised Pericarp Discs 1
Campbell, Alan D.; Huysamer, Marius; Stotz, Henrik U.; Greve, L. Carl; Labavitch, John M.
1990-01-01
Physiological processes characteristic of ripening in tissues of intact tomato fruit (Lycopersicon esculentum Mill.) were examined in excised pericarp discs. Pericarp discs were prepared from mature-green tomato fruit and stored in 24-well culture plates, in which individual discs could be monitored for color change, ethylene biosynthesis, and respiration, and selected for cell wall analysis. Within the context of these preparation and handling procedures, most whole fruit ripening processes were maintained in pericarp discs. Pericarp discs and matched intact fruit passed through the same skin color stages at similar rates, as expressed in the L*a*b* color space, changing from green (a* < −5) to red (a* > 15) in about 6 days. Individual tissues of the pericarp discs changed color in the same sequence seen in intact fruit (exocarp, endocarp, then vascular parenchyma). Discs from different areas changed in the same spatial sequence seen in intact fruit (bottom, middle, top). Pericarp discs exhibited climacteric increases in ethylene biosynthesis and CO2 production comparable with those seen in intact fruit, but these were more tightly linked to rate of color change, reaching a peak around a* = 5. Tomato pericarp discs decreased in firmness as color changed. Cell wall carbohydrate composition changed with color as in intact fruit: the quantity of water-soluble pectin eluted from the starch-free alcohol insoluble substances steadily increased and more tightly bound, water-insoluble, pectin decreased in inverse relationship. The cell wall content of the neutral sugars arabinose, rhamnose, and galactose steadily decreased as color changed. The extractable activity of specific cell wall hydrolases changed as in intact fruit: polygalacturonase activity, not detectable in green discs (a* = −5), appeared as discs turned yellow-red (a* = 5), and increased another eight-fold as discs became full red (a* value +20). Carboxymethyl-cellulase activity, low in extracts from green discs, increased about six-fold as discs changed from yellow (a* = 0) to red. PMID:16667893
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srivastava, S.; Meinken, G.; Springer, K. Awasthi, V.
2004-10-06
The objective of this project was to develop and optimize new ligand systems, based on adenoviral vectors (intact adenovirus, adeno-viral fiber protein, and the knob protein), for delivering suitable radionuclides into tumor cells for molecular imaging and combined gene/radionuclide therapy of cancer.
Modelling toxin effects on protein biosynthesis in eukaryotic cells.
Skakauskas, Vladas; Katauskis, Pranas
2017-08-01
We present a rather generic model for toxin (ricin) inhibition of protein biosynthesis in eukaryotic cells. We also study reduction of the ricin toxic effects with application of antibodies against the RTB subunit of ricin molecules. Both species initially are delivered extracellularly. The model accounts for the pinocytotic and receptor-mediated toxin endocytosis and the intact toxin exocytotic removal out of the cell. The model also includes the lysosomal toxin destruction, the intact toxin motion to the endoplasmic reticulum (ER) for separation of its molecules into the RTA and RTB subunits, and the RTA chain translocation into the cytosol. In the cytosol, one portion of the RTA undergoes degradation via the ERAD. The other its portion can inactivate ribosomes at a large rate. The model is based on a system of deterministic ODEs. The influence of the kinetic parameters on the protein concentration and antibody protection factor is studied in detail. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ernfors, Patrik; Ebendal, Ted; Olson, Lars; Mouton, Peter; Stromberg, Ingrid; Persson, Hakan
1989-06-01
The rat β nerve growth factor (NGF) gene was inserted into a mammalian expression vector and cotransfected with a plasmid conferring resistance to neomycin into mouse 3T3 fibroblasts. From this transfection a stable cell line was selected that contains several hundred copies of the rat NGF gene and produces excess levels of recombinant NGF. Such genetically modified cells were implanted into the rat brain as a probe for in vivo effects of NGF on central nervous system neurons. In a model of the cortical cholinergic deficits in Alzheimer disease, we demonstrate a marked increase in the survival of, and fiber outgrowth from, grafts of fetal basal forebrain cholinergic neurons, as well as stimulation of fiber formation by intact adult intrinsic cholinergic circuits in the cerebral cortex. Adult cholinergic interneurons in intact striatum also sprout vigorously toward implanted fibroblasts. Our results suggest that this model has implications for future treatment of neurodegenerative diseases.
Solitary chemoreceptor cell survival is independent of intact trigeminal innervation.
Gulbransen, Brian; Silver, Wayne; Finger, Thomas E
2008-05-01
Nasal solitary chemoreceptor cells (SCCs) are a population of specialized chemosensory epithelial cells presumed to broaden trigeminal chemoreceptivity in mammals (Finger et al. [2003] Proc Natl Acad Sci USA 100:8981-8986). SCCs are innervated by peptidergic trigeminal nerve fibers (Finger et al. [2003]) but it is currently unknown if intact innervation is necessary for SCC development or survival. We tested the dependence of SCCs on innervation by eliminating trigeminal nerve fibers during development with neurogenin-1 knockout mice, during early postnatal development with capsaicin desensitization, and during adulthood with trigeminal lesioning. Our results demonstrate that elimination of innervation at any of these times does not result in decreased SCC numbers. In conclusion, neither SCC development nor mature cell maintenance is dependent on intact trigeminal innervation. (c) 2008 Wiley-Liss, Inc.
Toxicant inhibition in activated sludge: fractionation of the physiological status of bacteria.
Foladori, P; Bruni, L; Tamburini, S
2014-09-15
In wastewater treatment plants the sensitivity of activated sludge to a toxicant depends on the toxicity test chosen, and thus the use of more than one test is suggested. The physiological status of bacteria in response to toxicants was analysed by flow cytometry to distinguish intact, permeabilised, active cells and cells disrupted. Results were compared with respirometry and bioluminescence bioassay (Vibrio fischeri). 3,5-Dichlorophenol (DCP) was used as reference xenobiotic. DCP has a strong effect on cellular integrity, causing an increase in permeabilised and disrupted cells. A reduction of 44-80% of intact cells with 6-30 mgDCP/L for 5h was found. Inhibition of active cells was 25-49%, at 6-30 mgDCP/L for 5h. The bioluminescence bioassay resulted oversensitive to DCP compared to tests based on activated sludge, while oxygen uptake rate was affected similarly to intact cells measured by flow cytometry. Landfill leachate was tested: a detrimental impact on both cellular integrity and enzymatic activity was observed. Reduction of intact cells and active cells was by 32% and 61% respectively after addition of 50% (v/v) of leachate for 5h. The flow cytometry analysis proposed here might be widely applicable in the monitoring of various toxicants and in other aquatic biosystems. Copyright © 2014 Elsevier B.V. All rights reserved.
In vivo robotics: the automation of neuroscience and other intact-system biological fields
Kodandaramaiah, Suhasa B.; Boyden, Edward S.; Forest, Craig R.
2013-01-01
Robotic and automation technologies have played a huge role in in vitro biological science, having proved critical for scientific endeavors such as genome sequencing and high-throughput screening. Robotic and automation strategies are beginning to play a greater role in in vivo and in situ sciences, especially when it comes to the difficult in vivo experiments required for understanding the neural mechanisms of behavior and disease. In this perspective, we discuss the prospects for robotics and automation to impact neuroscientific and intact-system biology fields. We discuss how robotic innovations might be created to open up new frontiers in basic and applied neuroscience, and present a concrete example with our recent automation of in vivo whole cell patch clamp electrophysiology of neurons in the living mouse brain. PMID:23841584
Scalise, Mariafrancesca; Galluccio, Michele; Pochini, Lorena; Console, Lara; Barile, Maria; Giangregorio, Nicola; Tonazzi, Annamaria; Indiveri, Cesare
2017-01-01
Transport systems are hydrophobic proteins localized in cell membranes where they mediate transmembrane flow of nutrients, ions and any other compounds essential for cell metabolism. More than 400 transporters of the SoLuteCarrier (SLC) group are present in human cells. Transporters take contacts also with xenobiotics, thus mediating absorption and/or interaction with these exogenous compounds. Since drugs belong to xenobiotics, transporters gained interest also in drug discovery. Transporters differentially expressed in pathological conditions are exploited as drug targets. Among the methodologies for defining drug interactions, in silico ligand screening and intact cell transport assay were the most diffused, so far. The first is a predictive methodology based on docking chemicals to transporters. It presents limitations due to the small number of human transporter 3D structures that have to be constructed by homology modeling. Intact cells are used for testing effects of drugs and for validating predictions. The challenges of handling this very complex experimental system, are the interferences caused by other transporters and/or intracellular enzymes. Thus, methodologies with lower complexity are welcome. One of the most updated is the proteoliposome nanotechnology consisting in a cell mimicking phospholipid membrane in which a purified transporter is inserted. In this system, drug-transporter interaction can be studied defining kinetics and mechanisms. Several data have been obtained by proteoliposome nanotechnology. An overview of data obtained on the organic cation transporters OCTN1, OCTN2 and on the amino acid transporters ASCT2 and B0AT1 will be presented. Standardized procedures, expected to be pointed out, will enlarge the assay to High Throughput Screenings. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Ferreira, L; Sánchez-Juanes, F; Muñoz-Bellido, J L; González-Buitrago, J M
2011-07-01
Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) is a fast and reliable technology for the identification of microorganisms with proteomics approaches. Here, we compare an intact cell method and a protein extraction method before application on the MALDI plate for the direct identification of microorganisms in both urine and blood culture samples from clinical microbiology laboratories. The results show that the intact cell method provides excellent results for urine and is a good initial method for blood cultures. The extraction method complements the intact cell method, improving microorganism identification from blood culture. Thus, we consider that MALDI-TOF MS performed directly on urine and blood culture samples, with the protocols that we propose, is a suitable technique for microorganism identification, as compared with the routine methods used in the clinical microbiology laboratory. © 2010 The Authors. Clinical Microbiology and Infection © 2010 European Society of Clinical Microbiology and Infectious Diseases.
NASA Astrophysics Data System (ADS)
Kamnev, A. A.; Ristić, M.; Antonyuk, L. P.; Chernyshev, A. V.; Ignatov, V. V.
1997-06-01
The data of Fourier transform infrared (FTIR) spectroscopic measurements performed on intact cells of the soil nitrogen-fixing bacterium Azospirillum brasilense grown in a standard medium and under the conditions of an increased metal uptake are compared and discussed. The structural FTIR information obtained is considered together with atomic absorption spectrometry (AAS) data on the content of metal cations in the bacterial cells. Some methodological aspects concerning preparation of bacterial cell samples for FTIR measurements are also discussed.
Prasmickaite, L; Hogset, A; Maelandsmo, G; Berg, K; Goodchild, J; Perkins, T; Fodstad, O; Hovig, E
1998-01-01
The uptake and cellular metabolism of a fluorescein-labelled synthetic ribozyme stabilized by 2'- O -methyl modification and a 3' inverted thymidine have been studied, employing capillary gel electrophoresis as a novel and efficient analytical method. After internalization by DOTAP transfection, electrophoretic peaks of intact ribozyme and different degradation products were easily resolved and the amount of intracellular intact ribozyme was quantified to >10(7) molecules/cell at the peak value after 4 h transfection. On further incubation the amount of intracellular intact ribozyme decreased due to both degradation and efflux from the cell. However, even after 48 h incubation there were still >10(6) intact ribozyme molecules/cell. Clear differences both in uptake and in metabolism were seen when comparing DOTAP transfection with the uptake of free ribozyme. Fluorescence microscopy studies indicated that the ribozyme was mainly localized in intracellular granules, probably not accessible to target mRNA. This implies that agents able to release the intact ribozyme from intracellular vesicles into the cytosol should have a considerable potential for increasing the biological effects of synthetic ribozymes. PMID:9722645
Mitochondrial and ER Calcium Uptake and Release Fluxes and their Interplay in Intact Nerve Cells
NASA Astrophysics Data System (ADS)
Friel, David D.
Ionized free Ca ( Ca 2+) is a ubiquitous signaling ion that serves as the critical link between a variety of physiological stimuli and their intracellular effectors. Previous studies of reduced in vitro preparations have provided functional characterizations of various Ca 2+ channels, pumps and exchangers that regulate cellular Ca 2+ movements. However, little is known about the functional interplay between transporters that are expressed together in intact cells and orchestrate stimulus-evoked changes in [ Ca 2+]. This review summarizes recent progress in characterizing Ca 2+ transporters in sympathetic neurons, which provide an ideal model for studying Ca 2+ dynamics in neurons. Our results show how the functional interplay between Ca 2+ transport systems that are regulated by Ca 2+ in quantitatively differ-ent ways leads to emergent properties of Ca 2+ signaling that are expected to play a critical role in defining how Ca 2+ serves its role as a signaling ion.
Stoichiometry of mercury-thiol complexes on bacterial cell envelopes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishra, Bhoopesh; Shoenfelt, Elizabeth; Yu, Qiang
We have examined the speciation of Hg(II) complexed with intact cell suspensions (1013 cells L- 1) of Bacillus subtilis, a common gram-positive soil bacterium, Shewanella oneidensis MR-1, a facultative gram-negative aquatic organism, and Geobacter sulfurreducens, a gram-negative anaerobic bacterium capable of Hg-methylation at Hg(II) loadings spanning four orders of magnitude (120 nM to 350 μM) at pH 5.5 (± 0.2). The coordination environments of Hg on bacterial cells were analyzed using synchrotron based X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy at the Hg LIII edge. The abundance of thiols on intact cells wasmore » determined by a fluorescence-spectroscopy based method using a soluble bromobimane, monobromo(trimethylammonio)bimane (qBBr) to block thiol sites, and potentiometric titrations of biomass with and without qBBr treatment. The chemical forms of S on intact bacterial cells were determined using S k-edge XANES spectroscopy.« less
Response of spermatozoa to hyposmotic stress reflects cryopreservation success
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watson, P.F.; Curry, M.R.; Noiles, E.E.
1992-01-01
Spermatozoa of several species were washed and then subjected to dilution in hyposmotic Tyrode's based solutions. The cells were stained with fluorescent viability stains, carboxyfluorescein diacetate and propidium iodide, and proportions with intact plasma membranes determined by flow cytometry or fluorescence microscopy. Fowl spermatozoa remained almost 100% intact until very low osmolality, and then ruptured. Human spermatozoa showed a similar response with only a small decrease in intact cells before the precipitous decline at low osmolality. Bull spermatozoa were more readily disrupted at higher osmolality, some 40% being damaged before the sudden decline at low osmolality. Ram and boar spermatozoamore » were progressively disrupted even at mild hyposmotic stress, showing approximately 50% of cells ruptured at 150 mOsm.« less
Response of spermatozoa to hyposmotic stress reflects cryopreservation success
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watson, P.F.; Curry, M.R.; Noiles, E.E.
1992-06-01
Spermatozoa of several species were washed and then subjected to dilution in hyposmotic Tyrode`s based solutions. The cells were stained with fluorescent viability stains, carboxyfluorescein diacetate and propidium iodide, and proportions with intact plasma membranes determined by flow cytometry or fluorescence microscopy. Fowl spermatozoa remained almost 100% intact until very low osmolality, and then ruptured. Human spermatozoa showed a similar response with only a small decrease in intact cells before the precipitous decline at low osmolality. Bull spermatozoa were more readily disrupted at higher osmolality, some 40% being damaged before the sudden decline at low osmolality. Ram and boar spermatozoamore » were progressively disrupted even at mild hyposmotic stress, showing approximately 50% of cells ruptured at 150 mOsm.« less
Kim, H J; Alam, Z; Hwang, J W; Hwang, Y H; Kim, M J; Yoon, S; Byun, Y; Lee, D Y
2013-03-01
Rejection and hypoxia are important factors causing islet loss at an early stage after pancreatic islet transplantation. Recently, islets have been dissociated into single cells for reaggregation into so-called islet spheroids. Herein, we used a hanging-drop strategy to form islet spheroids to achieve functional equivalence to intact islets. To obtain single islet cells, we dissociated islets with trypsin-EDTA digestion for 10 minutes. To obtain spheroids, we dropped various numbers of single cells (125, 250, or 500 cells/30 μL drop) onto a Petri dish, that was inverted for incubation in humidified air containing 5% CO(2) at 37 °C for 7 days. The aggregated spheroids in the droplets were harvested for further culture. The size of the aggregated islet spheroids depended on the number of single cells (125-500 cells/30 μL droplet). Their morphology was similar to that of intact islets without any cellular damage. When treated with various concentrations of glucose to evaluate responsiveness, their glucose-mediated stimulation index value was similar to that of intact islets, an observation that was attributed to strong cell-to-cell interactions in islet spheroids. However, islet spheroids aggregated in general culture dishes showed abnormal glucose responsiveness owing to weak cell-to-cell interactions. Cell-to-cell interactions in islet spheroids were confirmed with an anti-connexin-36 monoclonal antibody. Finally, nonviral poly(ethylene imine)-mediated interleukin-10 cytokine gene delivered beforehand into dissociated single cells before formation of islet spheroids increased the gene transfection efficacy and interleukin-10 secretion from islet spheroids >4-fold compared with intact islets. These results demonstrated the potential application of genetically modified, functional islet spheroids with of controlled size and morphology using an hanging-drop technique. Copyright © 2013 Elsevier Inc. All rights reserved.
Walter, BA; Illien-Junger, S; Nasser, P; Hecht, AC; Iatridis, JC
2014-01-01
Intervertebral disc (IVD) degeneration is a common cause of back pain, and attempts to develop therapies are frustrated by lack of model systems that mimic the human condition. Human IVD organ culture models can address this gap, yet current models are limited since vertebral endplates are removed to maintain cell viability, physiological loading is not applied, and mechanical behaviors are not measured. This study aimed to (i) establish a method for isolating human IVDs from autopsy with intact vertebral endplates, and (ii) develop and validate an organ culture loading system for human or bovine IVDs. Human IVDs with intact endplates were isolated from cadavers within 48 hours of death and cultured for up to 21 days. IVDs remained viable with ~80% cell viability in nucleus and annulus regions. A dynamic loading system was designed and built with the capacity to culture 9 bovine or 6 human IVDs simultaneously while applying simulated physiologic loads (maximum force: 4kN) and measuring IVD mechanical behaviors. The loading system accurately applied dynamic loading regimes (RMS error <2.5N and total harmonic distortion <2.45%), and precisely evaluated mechanical behavior of rubber and bovine IVDs. Bovine IVDs maintained their mechanical behavior and retained >85% viable cells throughout the 3 week culture period. This organ culture loading system can closely mimic physiological conditions and be used to investigate response of living human and bovine IVDs to mechanical and chemical challenges and to screen therapeutic repair techniques. PMID:24725441
Use of electroporation to study the cytotoxic effects of fluorodeoxyuridylate in intact cells.
Jastreboff, M M; Sokoloski, J A; Bertino, J R; Narayanan, R
1987-04-15
The introduction of 2'-deoxyuridine 5'-monophosphate and its analog, 5-fluoro-2'-deoxyuridine 5'-monophosphate, into intact CCRF-CEM and NIH3T3 cells was achieved by electroporation. Following electroporation, cells were shown to be fully functional as monitored by the incorporation of deoxyuridylate, after conversion to thymidylate, into DNA. Pretreatment of cells with fluorodeoxyuridine completely abolished this effect. In contrast, introduction of the fluoro analog into cells by electroporation markedly inhibited both DNA synthesis and cell growth in a time-dependent manner. Thus, electroporation offers a powerful tool to permeabilize cells to a variety of cellular metabolites and antimetabolites.
Fernandes, Cláudia P H; Seixas, Fabiana K; Coutinho, Mariana L; Vasconcellos, Flávia A; Seyffert, Núbia; Croda, Julio; McBride, Alan J; Ko, Albert I; Dellagostin, Odir A; Aleixo, José A G
2007-02-01
Pathogenic serovars of Leptospira have a wide antigenic diversity attributed mainly to the lipopolysaccharide present in the outer membrane. In contrast, antigens conserved among pathogenic serovars are mainly represented by outer membrane proteins. Surface exposure of a major and highly conserved outer membrane lipoprotein (LipL32) was recently demonstrated on pathogenic Leptospira. LipL32 in its recombinant form (rLipL32) was used to immunize BALB/c mice to develop murine monoclonal antibodies (MAbs). Three MAbs against rLipL32 were produced, isotyped, and evaluated for further use in diagnostic tests of leptospirosis using different approaches. MAbs were conjugated to peroxidase and evaluated in a native protein enzyme-linked immunosorbent assay (ELISA) with intact and heat-treated leptospiral cells, conjugated to fluorescein isothiocyanate (FITC) for indirect immunofluorescence with intact and methanol fixed cells and were used for LipL32 immunoprecipitation from leptospiral cells. rLipL32 MAbs conjugated to peroxidase or used as primary antibody bound to intact and heat-treated cells in ELISA, proving that they could be used in enzyme immunoassays for detection of the native protein. In immunofluorescence assay, MAbs labeled bacterial cells either intact or methanol fixed. Two MAbs were able to immunoprecipitate the native protein from live and motile leptospiral cells and, adsorbed onto magnetic beads, captured intact bacteria from artificially contaminated human sera for detection by polymerase chain reaction (PCR) amplification. Results of this study suggest that the MAbs produced can be useful for the development of diagnostic tests based on detection of LipL32 leptospiral antigen in biological fluids.
Yáñez, M Adela; Nocker, Andreas; Soria-Soria, Elena; Múrtula, Raquel; Martínez, Lorena; Catalán, Vicente
2011-05-01
One of the greatest challenges of implementing fast molecular detection methods as part of Legionella surveillance systems is to limit detection to live cells. In this work, a protocol for sample treatment with propidium monoazide (PMA) in combination with quantitative PCR (qPCR) has been optimized and validated for L. pneumophila as an alternative of the currently used time-consuming culture method. Results from PMA-qPCR were compared with culture isolation and traditional qPCR. Under the conditions used, sample treatment with 50 μM PMA followed by 5 min of light exposure were assumed optimal resulting in an average reduction of 4.45 log units of the qPCR signal from heat-killed cells. When applied to environmental samples (including water from cooling water towers, hospitals, spas, hot water systems in hotels, and tap water), different degrees of correlations between the three methods were obtained which might be explained by different matrix properties, but also varying degrees of non-culturable cells. It was furthermore shown that PMA displayed substantially lower cytotoxicity with Legionella than the alternative dye ethidium monoazide (EMA) when exposing live cells to the dye followed by plate counting. This result confirmed the findings with other species that PMA is less membrane-permeant and more selective for the intact cells. In conclusion, PMA-qPCR is a promising technique for limiting detection to intact cells and makes Legionella surveillance data substantially more relevant in comparison with qPCR alone. For future research it would be desirable to increase the method's capacity to exclude signals from dead cells in difficult matrices or samples containing high numbers of dead cells. Copyright © 2011 Elsevier B.V. All rights reserved.
In vivo robotics: the automation of neuroscience and other intact-system biological fields.
Kodandaramaiah, Suhasa B; Boyden, Edward S; Forest, Craig R
2013-12-01
Robotic and automation technologies have played a huge role in in vitro biological science, having proved critical for scientific endeavors such as genome sequencing and high-throughput screening. Robotic and automation strategies are beginning to play a greater role in in vivo and in situ sciences, especially when it comes to the difficult in vivo experiments required for understanding the neural mechanisms of behavior and disease. In this perspective, we discuss the prospects for robotics and automation to influence neuroscientific and intact-system biology fields. We discuss how robotic innovations might be created to open up new frontiers in basic and applied neuroscience and present a concrete example with our recent automation of in vivo whole-cell patch clamp electrophysiology of neurons in the living mouse brain. © 2013 New York Academy of Sciences.
Benayahu, Dafna; Socher, Rina; Shur, Irena
2008-01-01
Laser capture microdissection (LCM) method allows selection of individual or clustered cells from intact tissues. This technology enables one to pick cells from tissues that are difficult to study individually, sort the anatomical complexity of these tissues, and make the cells available for molecular analyses. Following the cells' extraction, the nucleic acids and proteins can be isolated and used for multiple applications that provide an opportunity to uncover the molecular control of cellular fate in the natural microenvironment. Utilization of LCM for the molecular analysis of cells from skeletal tissues will enable one to study differential patterns of gene expression in the native intact skeletal tissue with reliable interpretation of function for known genes as well as to discover novel genes. Variability between samples may be caused either by differences in the tissue samples (different areas isolated from the same section) or some variances in sample handling. LCM is a multi-task technology that combines histology, microscopy work, and dedicated molecular biology. The LCM application will provide results that will pave the way toward high throughput profiling of tissue-specific gene expression using Gene Chip arrays. Detailed description of in vivo molecular pathways will make it possible to elaborate on control systems to apply for the repair of genetic or metabolic diseases of skeletal tissues.
Possible involvement of MSX-2 homeoprotein in v-ras-induced transformation.
Takahashi, C; Akiyama, N; Kitayama, H; Takai, S; Noda, M
1997-04-01
A truncated MSX-2 homeoprotein was found to induce flat reversion when expressed in v-Ki-ras-transformed NIH3T3 cells. Although the expression of endogenous MSX-2 gene is low in most of the normal adult tissues examined, it is frequently activated in carcinoma-derived cell lines. Likewise, the gene is inactive in untransformed cells but is transcriptionally activated after transformation by v-Ki-ras oncogene, suggesting that the intact MSX-2 may play a positive, rather than suppressive, role in cell transformation. To test this possibility, we isolated a full-length human MSX-2 cDNA and tested its activities in two cell systems: fibroblast and myoblast. In NIH3T3 fibroblasts, although the gene by itself failed to confer a transformed phenotype, antisense MSX-2 cDNA as well as truncated MSX-2 cDNA interfered with the transforming activities of both v-Ki-ras and v-raf oncogene. In C2C12 myoblasts, MSX-2 was found to suppress MyoD gene expression, as do activated ras oncogenes, under certain culture conditions, and truncated MSX-2 cDNA was found to inhibit the activities of both MSX-2 and ras in this system as well. Our findings not only suggest that the truncated version MSX-2 may act as a dominant suppressor of intact MSX-2 but also raise the possibility that MSX-2 gene may be an important downstream target for the Ras signaling pathways.
Islet Assessment for Transplantation
Papas, Klearchos K.; Suszynski, Thomas M.; Colton, Clark. K.
2010-01-01
Purpose of review There is a critical need for meaningful viability and potency assays that characterize islet preparations for release prior to clinical islet cell transplantation (ICT). Development, testing, and validation of such assays have been the subject of intense investigation for the past decade. These efforts are reviewed, highlighting the most recent results while focusing on the most promising assays. Recent Findings Assays based on membrane integrity do not reflect true viability when applied to either intact islets or dispersed islet cells. Assays requiring disaggregation of intact islets into individual cells for assessment introduce additional problems of cell damage and loss. Assays evaluating mitochondrial function, specifically mitochondrial membrane potential, bioenergetic status, and cellular oxygen consumption rate (OCR), especially when conducted with intact islets, appear most promising in evaluating their quality prior to ICT. Prospective, quantitative assays based on measurements of OCR with intact islets have been developed, validated and their results correlated with transplant outcomes in the diabetic nude mouse bioassay. Conclusion More sensitive and reliable islet viability and potency tests have been recently developed and tested. Those evaluating mitochondrial function are most promising, correlate with transplant outcomes in mice, and are currently being evaluated in the clinical setting. PMID:19812494
Temporally precise single-cell resolution optogenetics
Shemesh, Or A.; Tanese, Dimitrii; Zampini, Valeria; Linghu, Changyang; Piatkevich, Kiryl; Ronzitti, Emiliano; Papagiakoumou, Eirini; Boyden, Edward S.; Emiliani, Valentina
2017-01-01
Optogenetic control of individual neurons with high temporal precision, within intact mammalian brain circuitry, would enable powerful explorations of how neural circuits operate. Two-photon computer generated holography enables precise sculpting of light, and could in principle enable simultaneous illumination of many neurons in a network, with the requisite temporal precision to simulate accurate neural codes. We designed a high efficacy soma-targeted opsin, finding that fusing the N-terminal 150 residues of kainate receptor subunit 2 (KA2) to the recently discovered high-photocurrent channelrhodopsin CoChR restricted expression of this opsin primarily to the cell body of mammalian cortical neurons. In combination with two-photon holographic stimulation, we found that this somatic CoChR (soCoChR) enabled photostimulation of individual cells in intact cortical circuits with single cell resolution and <1 millisecond temporal precision, and use soCoChR to perform connectivity mapping on intact cortical circuits. PMID:29184208
Jonas, E A; Knox, R J; Kaczmarek, L K
1997-07-01
A method is outlined for obtaining giga-ohm seals on intracellular membranes in intact cells. The technique employs a variant of the patch-clamp technique: a concentric electrode arrangement protects an inner patch pipette during penetration of the plasma membrane, after which a seal can be formed on an internal organelle membrane. Using this technique, successful recordings can be obtained with the same frequency as with conventional patch clamping. To localize the position of the pipette within cells, lipophilic fluorescent dyes are included in the pipette solution. These dyes stain the membrane of internal organelles during seal formation and can then be visualized by video-enhanced or confocal imaging. The method can detect channels activated by inositol trisphosphate, as well as other types of intracellular membrane ion channel activity, and should facilitate studies of internal membranes in intact neurons and other cell types.
Hypertrophic gene expression induced by chronic stretch of excised mouse heart muscle.
Raskin, Anna M; Hoshijima, Masahiko; Swanson, Eric; McCulloch, Andrew D; Omens, Jeffrey H
2009-09-01
Altered mechanical stress and strain in cardiac myocytes induce modifications in gene expression that affects cardiac remodeling and myocyte contractile function. To study the mechanisms of mechanotransduction in cardiomyocytes, probing alterations in mechanics and gene expression has been an effective strategy. However, previous studies are self-limited due to the general use of isolated neonatal rodent myocytes or intact animals. The main goal of this study was to develop a novel tissue culture chamber system for mouse myocardium that facilitates loading of cardiac tissue, while measuring tissue stress and deformation within a physiological environment. Intact mouse right ventricular papillary muscles were cultured in controlled conditions with superfusate at 95% O2/ 5% CO2, and 34 degrees C, such that cell to extracellular matrix adhesions as well as cell to cell adhesions were undisturbed and both passive and active mechanical properties were maintained without significant changes. The system was able to measure the induction of hypertrophic markers (BNP, ANP) in tissue after 2 hrs and 5 hrs of stretch. ANP induction was highly correlated with the diastolic load of the muscle but not with developed systolic load. Load induced ANP expression was blunted in muscles from muscle-LIM protein knockout mice, in which defective mechanotransduction pathways have been predicted.
In vitro ability of beer fermentation residue and yeast-based products to bind aflatoxin B1.
Bovo, Fernanda; Franco, Larissa Tuanny; Rosim, Roice Eliana; Barbalho, Ricardo; de Oliveira, Carlos Augusto Fernandes
2015-06-01
This study aimed to verify the in vitro ability of beer fermentation residue (BFR) containing Saccharomyces cerevisiae cells and five commercial products that differed in the viability and integrity of S. cerevisiae cells to remove aflatoxin B1 (AFB1) from a citrate-phosphate buffer solution (CPBS). BFR was collected at a microbrewery and prepared by drying and milling. The commercial yeast-based products were as follows: inactive intact yeast cells from beer alcoholic fermentation, inactive intact yeast cells from sugarcane alcoholic fermentation, hydrolyzed yeast cells, yeast cell walls and active yeast cells. Adsorption assays were performed in CPBS spiked with 1.0 μg AFB1/mL at pH 3.0 and 6.0 for a contact time of 60 min at room temperature. Analysis of AFB1 in the samples was performed by high performance liquid chromatography. AFB1 adsorption by the products ranged from 45.5% to 69.4% at pH 3.0 and from 24.0% to 63.8% at pH 6.0. The higher percentages (p < 0.05) of AFB1 binding at both pH values were achieved with products containing hydrolyzed yeast cells or yeast cell walls rather than intact cells. The AFB1 binding percentages of BFR were 55.0 ± 5.0% at pH 3.0 and 49.2 ± 4.5% at pH 6.0, which was not significantly different (p > 0.05) from commercial products containing inactive intact yeast cells. The results of this trial indicate that the yeast-based products tested, especially the BFR, have potential applications in animal feeds as a suitable biological method for reducing the adverse effects of aflatoxins.
In vitro ability of beer fermentation residue and yeast-based products to bind aflatoxin B1
Bovo, Fernanda; Franco, Larissa Tuanny; Rosim, Roice Eliana; Barbalho, Ricardo; de Oliveira, Carlos Augusto Fernandes
2015-01-01
This study aimed to verify the in vitro ability of beer fermentation residue (BFR) containing Saccharomyces cerevisiae cells and five commercial products that differed in the viability and integrity of S. cerevisiae cells to remove aflatoxin B1 (AFB1) from a citrate-phosphate buffer solution (CPBS). BFR was collected at a microbrewery and prepared by drying and milling. The commercial yeast-based products were as follows: inactive intact yeast cells from beer alcoholic fermentation, inactive intact yeast cells from sugarcane alcoholic fermentation, hydrolyzed yeast cells, yeast cell walls and active yeast cells. Adsorption assays were performed in CPBS spiked with 1.0 μg AFB1/mL at pH 3.0 and 6.0 for a contact time of 60 min at room temperature. Analysis of AFB1 in the samples was performed by high performance liquid chromatography. AFB1 adsorption by the products ranged from 45.5% to 69.4% at pH 3.0 and from 24.0% to 63.8% at pH 6.0. The higher percentages (p < 0.05) of AFB1 binding at both pH values were achieved with products containing hydrolyzed yeast cells or yeast cell walls rather than intact cells. The AFB1 binding percentages of BFR were 55.0 ± 5.0% at pH 3.0 and 49.2 ± 4.5% at pH 6.0, which was not significantly different (p > 0.05) from commercial products containing inactive intact yeast cells. The results of this trial indicate that the yeast-based products tested, especially the BFR, have potential applications in animal feeds as a suitable biological method for reducing the adverse effects of aflatoxins. PMID:26273277
Reyneke, B; Dobrowsky, P H; Ndlovu, T; Khan, S; Khan, W
2016-05-15
Solar pasteurization is effective in reducing the level of indicator organisms in stored rainwater to within drinking water standards. However, Legionella spp. were detected at temperatures exceeding the recommended pasteurization temperatures using polymerase chain reaction assays. The aim of the current study was thus to apply EMA quantitative polymerase chain reaction (EMA-qPCR) to determine whether the Legionella spp. detected were intact cells and therefore possibly viable at pasteurization temperatures >70°C. The BacTiter-Glo™ Microbial Cell Viability Assay was also used to detect the presence of ATP in the tested samples, as ATP indicates the presence of metabolically active cells. Chemical analysis also indicated that all anions and cations were within the respective drinking water guidelines, with the exception of iron (mean: 186.76 μg/L) and aluminium (mean: 188.13 μg/L), which were detected in the pasteurized tank water samples at levels exceeding recommended guidelines. The BacTiter-Glo™ Microbial Cell Viability Assay indicated the presence of viable cells for all pasteurized temperatures tested, with the percentage of ATP (in the form of relative light units) decreasing with increasing temperature [70-79°C (96.7%); 80- 89°C (99.2%); 90-95°C (99.7%)]. EMA-qPCR then indicated that while solar pasteurization significantly reduced (p<0.05) the genomic copy numbers of intact Legionella cells in the pasteurized tank water (~99%), no significant difference (p>0.05) in the mean copy numbers was detected with an increase in the pasteurization temperature, with 6 × 10(3) genomic copies/mL DNA sample obtained at 95°C. As intact Legionella cells were detected in the pasteurized tank water samples, quantitative microbial risk assessment studies need to be conducted to determine the potential health risk associated with using the water for domestic purposes. Copyright © 2016 Elsevier B.V. All rights reserved.
A solution-state NMR approach to elucidating pMDI-wood bonding mechanisms in loblolly pine
Daniel Joseph Yelle
2009-01-01
Solution-state NMR spectroscopy is a powerful tool for unambiguously determining the existence or absence of covalent chemical bonds between wood components and adhesives. Finely ground wood cell wall material dissolves in a solvent system containing DMSO-d6 and NMI-d6, keeping wood component polymers intact and in a near-...
Ahrens, Eric T.; Young, Won-Bin; Xu, Hongyan; Pusateri, Lisa K.
2016-01-01
Quantification of inflammation in tissue samples can be a time-intensive bottleneck in therapeutic discovery and preclinical endeavors. We describe a versatile and rapid approach to quantitatively assay macrophage burden in intact tissue samples. Perfluorocarbon (PFC) emulsion is injected intravenously, and the emulsion droplets are effectively taken up by monocytes and macrophages. These ‘in situ’ labeled cells participate in inflammatory events in vivo resulting in PFC accumulation at inflammatory loci. Necropsied tissues or intact organs are subjected to conventional fluorine-19 (19F) NMR spectroscopy to quantify the total fluorine content per sample, proportional to the macrophage burden. We applied these methods to a rat model of experimental allergic encephalomyelitis (EAE) exhibiting extensive inflammation and demyelination in the central nervous system (CNS), particularly in the spinal cord. In a cohort of EAE rats, we used 19F NMR to derive an inflammation index (IFI) in intact CNS tissues. Immunohistochemistry was used to confirm intracellular colocalization of the PFC droplets within CNS CD68+ cells having macrophage morphology. The IFI linearly correlated to mRNA levels of CD68 via real-time PCR analysis. This 19F NMR approach can accelerate tissue analysis by at least an order of magnitude compared with histological approaches. PMID:21548906
The permeability of fractured rocks in pressurised volcanic and geothermal systems.
Lamur, A; Kendrick, J E; Eggertsson, G H; Wall, R J; Ashworth, J D; Lavallée, Y
2017-07-21
The connectivity of rocks' porous structure and the presence of fractures influence the transfer of fluids in the Earth's crust. Here, we employed laboratory experiments to measure the influence of macro-fractures and effective pressure on the permeability of volcanic rocks with a wide range of initial porosities (1-41 vol. %) comprised of both vesicles and micro-cracks. We used a hand-held permeameter and hydrostatic cell to measure the permeability of intact rock cores at effective pressures up to 30 MPa; we then induced a macro-fracture to each sample using Brazilian tensile tests and measured the permeability of these macro-fractured rocks again. We show that intact rock permeability increases non-linearly with increasing porosity and decreases with increasing effective pressure due to compactional closure of micro-fractures. Imparting a macro-fracture both increases the permeability of rocks and their sensitivity to effective pressure. The magnitude of permeability increase induced by the macro-fracture is more significant for dense rocks. We finally provide a general equation to estimate the permeability of intact and fractured rocks, forming a basis to constrain fluid flow in volcanic and geothermal systems.
Talme, Toomas; Bergdahl, Eva; Sundqvist, Karl-Gösta
2014-06-01
T lymphocytes are highly motile and constantly reposition themselves between a free-floating vascular state, transient adhesion and migration in tissues. The regulation behind this unique dynamic behaviour remains unclear. Here we show that T cells have a cell surface mechanism for integrated regulation of motility and adhesion and that integrin ligands and CXCL12/SDF-1 influence motility and adhesion through this mechanism. Targeting cell surface-expressed low-density lipoprotein receptor-related protein 1 (LRP1) with an antibody, or blocking transport of LRP1 to the cell surface, perturbed the cell surface distribution of endogenous thrombospondin-1 (TSP-1) while inhibiting motility and potentiating cytoplasmic spreading on intercellular adhesion molecule 1 (ICAM-1) and fibronectin. Integrin ligands and CXCL12 stimulated motility and enhanced cell surface expression of LRP1, intact TSP-1 and a 130,000 MW TSP-1 fragment while preventing formation of a de-adhesion-coupled 110 000 MW TSP-1 fragment. The appearance of the 130 000 MW TSP-1 fragment was inhibited by the antibody that targeted LRP1 expression, inhibited motility and enhanced spreading. The TSP-1 binding site in the LRP1-associated protein, calreticulin, stimulated adhesion to ICAM-1 through intact TSP-1 and CD47. Shear flow enhanced cell surface expression of intact TSP-1. Hence, chemokines and integrin ligands up-regulate a dominant motogenic pathway through LRP1 and TSP-1 cleavage and activate an associated adhesion pathway through the LRP1-calreticulin complex, intact TSP-1 and CD47. This regulation of T-cell motility and adhesion makes pro-adhesive stimuli favour motile responses, which may explain why T cells prioritize movement before permanent adhesion.
Ingested soluble CD14 from milk is transferred intact into the blood of newborn rats.
Ward, Tonya L; Spencer, William J; Davis, Laura D R; Harrold, Joann; Mack, David R; Altosaar, Illimar
2014-02-01
Milk acts as an edible immune system that is transferred from mother to newborn. Soluble Cluster of Differentiation 14 (sCD14) is a protein found in significant quantities in human milk (~8-29 µg/ml). At a 10-fold lower concentration in the blood (~3 µg/ml), the most notable role of sCD14 is to sequester lipopolysaccharides of Gram-negative bacteria from immune cells. To explore the pharmacodynamics of this milk protein and its biological fate, the biodistribution of radiolabeled sCD14 ((14)C, (125)I) was monitored in 10-d-old rat pups. Up to 3.4 ± 2.2% of the radiolabeled sCD14 administered was observed, intact, in the pup blood for up to 8 h post-ingestion. Additionally, 30.3 ± 13.0% of the radiolabeled sCD14 administered was observed degraded in the stomach at 8 h post-ingestion. A reservoir of intact, administered sCD14 (3.2 ± 0.3%), however, remained in the stomach at 8 h post-ingestion. Intact sCD14 was observed in the small intestine at 5.5 ± 1.6% of the dose fed at 8 h post-ingestion. The presence of intact sCD14 in the blood and the gastrointestinal tract of newborns post-ingestion has implications in the development of allergies, obesity, and other inflammation-related pathogeneses later in life.
In Vitro Model of Tumor Cell Extravasation
Jeon, Jessie S.; Zervantonakis, Ioannis K.; Chung, Seok; Kamm, Roger D.; Charest, Joseph L.
2013-01-01
Tumor cells that disseminate from the primary tumor and survive the vascular system can eventually extravasate across the endothelium to metastasize at a secondary site. In this study, we developed a microfluidic system to mimic tumor cell extravasation where cancer cells can transmigrate across an endothelial monolayer into a hydrogel that models the extracellular space. The experimental protocol is optimized to ensure the formation of an intact endothelium prior to the introduction of tumor cells and also to observe tumor cell extravasation by having a suitable tumor seeding density. Extravasation is observed for 38.8% of the tumor cells in contact with the endothelium within 1 day after their introduction. Permeability of the EC monolayer as measured by the diffusion of fluorescently-labeled dextran across the monolayer increased 3.8 fold 24 hours after introducing tumor cells, suggesting that the presence of tumor cells increases endothelial permeability. The percent of tumor cells extravasated remained nearly constant from1 to 3 days after tumor seeding, indicating extravasation in our system generally occurs within the first 24 hours of tumor cell contact with the endothelium. PMID:23437268
Gillespie, Anna L; Green, Brian D
2016-11-15
Previous studies suggest that casein exerts various anti-diabetic effects. However, it is not known which casein proteins are bioactive, nor their effects on enteroendocrine cells. This study evaluated the effects of intact whole casein, intact individual proteins (alpha, beta and kappa casein) and hydrolysates on an enteroendocrine cell line. High content analysis accurately monitored changes in cell health and intracellular glucagon-like peptide-1 (GLP-1) content. Cheese ripening duration and GLP-1 secretory responses were also considered. Beta casein significantly stimulated enteroendocrine cell proliferation and all caseins were potent GLP-1 secretagogues (except kappa casein). Interestingly the GLP-1 secretory activity was almost always lost or significantly reduced upon hydrolysis with proteolytic enzymes. Only pepsin-derived beta casein hydrolysates had significantly increased potency compared with the intact protein, but this was diminished with prolonged hydrolysis. In conclusion casein proteins are not detrimental to enteroendocrine cells, and alpha and beta casein are particularly beneficial stimulating proliferation and GLP-1 secretion. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Aravanis, Alexander M.; Wang, Li-Ping; Zhang, Feng; Meltzer, Leslie A.; Mogri, Murtaza Z.; Schneider, M. Bret; Deisseroth, Karl
2007-09-01
Neural interface technology has made enormous strides in recent years but stimulating electrodes remain incapable of reliably targeting specific cell types (e.g. excitatory or inhibitory neurons) within neural tissue. This obstacle has major scientific and clinical implications. For example, there is intense debate among physicians, neuroengineers and neuroscientists regarding the relevant cell types recruited during deep brain stimulation (DBS); moreover, many debilitating side effects of DBS likely result from lack of cell-type specificity. We describe here a novel optical neural interface technology that will allow neuroengineers to optically address specific cell types in vivo with millisecond temporal precision. Channelrhodopsin-2 (ChR2), an algal light-activated ion channel we developed for use in mammals, can give rise to safe, light-driven stimulation of CNS neurons on a timescale of milliseconds. Because ChR2 is genetically targetable, specific populations of neurons even sparsely embedded within intact circuitry can be stimulated with high temporal precision. Here we report the first in vivo behavioral demonstration of a functional optical neural interface (ONI) in intact animals, involving integrated fiberoptic and optogenetic technology. We developed a solid-state laser diode system that can be pulsed with millisecond precision, outputs 20 mW of power at 473 nm, and is coupled to a lightweight, flexible multimode optical fiber, ~200 µm in diameter. To capitalize on the unique advantages of this system, we specifically targeted ChR2 to excitatory cells in vivo with the CaMKIIα promoter. Under these conditions, the intensity of light exiting the fiber (~380 mW mm-2) was sufficient to drive excitatory neurons in vivo and control motor cortex function with behavioral output in intact rodents. No exogenous chemical cofactor was needed at any point, a crucial finding for in vivo work in large mammals. Achieving modulation of behavior with optical control of neuronal subtypes may give rise to fundamental network-level insights complementary to what electrode methodologies have taught us, and the emerging optogenetic toolkit may find application across a broad range of neuroscience, neuroengineering and clinical questions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teng, Christina T., E-mail: teng1@niehs.nih.gov; Beames, Burton; Alex Merrick, B.
Highlights: • We developed a stable cell line with intact PGC-1α/ERRα axis. • The ERRα repressor, XCT790, down regulates this pathway. • Phytoestrogen, genisten stimulates this pathway. - Abstract: The estrogen-related receptor α (ERRα) and the peroxisome proliferator-activated receptor γ (PPARγ) coactivator 1α (PGC-1α) play critical roles in the control of several physiological functions, including the regulation of genes involved in energy homeostasis. However, little is known about the ability of environmental chemicals to disrupt or modulate this important bioenergetics pathway in humans. The goal of this study was to develop a cell-based assay system with an intact PGC-1α/ERRα axismore » that could be used as a screening assay for detecting such chemicals. To this end, we successfully generated several stable cell lines expressing PGC-1α and showed that the reporter driven by the native ERRα hormone response unit (AAB-Luc) is active in these cell lines and that the activation is PGC-1α-dependent. Furthermore, we show that this activation can be blocked by the ERRα selective inverse agonist, XCT790. In addition, we find that genistein and bisphenol A further stimulate the reporter activity, while kaempferol has minimal effect. These cell lines will be useful for identifying environmental chemicals that modulate this important pathway.« less
Regulation of neuroendocrine cells and neuron factors in the ovary by zinc oxide nanoparticles.
Liu, Xin-Qi; Zhang, Hong-Fu; Zhang, Wei-Dong; Zhang, Peng-Fei; Hao, Ya-Nan; Song, Ran; Li, Lan; Feng, Yan-Ni; Hao, Zhi-Hui; Shen, Wei; Min, Ling-Jiang; Yang, Hong-Di; Zhao, Yong
2016-08-10
The pubertal period is an important window during the development of the female reproductive system. Development of the pubertal ovary, which supplies the oocytes intended for fertilization, requires growth factors, hormones, and neuronal factors. It has been reported that zinc oxide nanoparticles (ZnO NPs) cause cytotoxicity of neuron cells. However, there have been no reports of the effects of ZnO NPs on neuronal factors and neuroendocrine cells in the ovary (in vivo). For the first time, this in vivo study investigated the effects of ZnO NPs on gene and protein expression of neuronal factors and the population of neuroendocrine cells in ovaries. Intact NPs were detected in ovarian tissue and although ZnO NPs did not alter body weight, they reduced the ovary organ index. Compared to the control or ZnSO4 treatments, ZnO NPs treatments differentially regulated neuronal factor protein and gene expression, and the population of neuroendocrine cells. ZnO NPs changed the contents of essential elements in the ovary; however, they did not alter levels of the steroid hormones estrogen and progesterone. These data together suggest that intact ZnO NPs might pose a toxic effect on neuron development in the ovary and eventually negatively affect ovarian developmental at puberty. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Control of Cell Survival in Adult Mammalian Neurogenesis.
Kuhn, H Georg
2015-10-28
The fact that continuous proliferation of stem cells and progenitors, as well as the production of new neurons, occurs in the adult mammalian central nervous system (CNS) raises several basic questions concerning the number of neurons required in a particular system. Can we observe continued growth of brain regions that sustain neurogenesis? Or does an elimination mechanism exist to maintain a constant number of cells? If so, are old neurons replaced, or are the new neurons competing for limited network access among each other? What signals support their survival and integration and what factors are responsible for their elimination? This review will address these and other questions regarding regulatory mechanisms that control cell-death and cell-survival mechanisms during neurogenesis in the intact adult mammalian brain. Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.
Haklai, R; Kloog, Y
1990-01-01
Evidence is presented for specific enzymatic methylation of 21-23 kDa membrane proteins in intact neuroblastoma N1E 115 cells, which is increased in dimethylsulfoxide-induced differentiated cells. Methylation of these proteins has characteristics typical of enzymatic reactions in which base labile volatile methyl groups are incorporated into proteins, consistent with the formation of protein carboxyl methylesters. However, these methylesters of the 21-23 kDa proteins are relatively stable compared to other protein carboxyl methylesters. The 3-fold increase in methylated 21-23 kDa proteins in the differentiated cells suggest biological significance in differentiation of the cell membranes.
Radiation-induced double-strand breaks in mammalian DNA: influence of temperature and DMSO.
Elmroth, K; Nygren, J; Erkell, L J; Hultborn, R
2000-11-01
To investigate the effects of subphysiological irradiation temperature (2 28 degrees C) and the influence of the radical scavenger DMSO on the induction of double-strand breaks (DSB) in chromosomal DNA from a human breast cancer cell line (MCF-7) as well as in intact cells. The rejoining of DSB in cells irradiated at 2 degrees C or 37 degrees C was also investigated. Agarose plugs with [14C]thymidine labelled MCF-7 cells were lysed in EDTA-NLS-proteinase-K buffer. The plugs containing chromosomal DNA were irradiated with X-rays under different temperatures and scavenging conditions. Intact MCF-7 cells were irradiated in Petri dishes and plugs were made. The cells were then lysed in EDTA-NLS-proteinase-K buffer. The induction of DSB was studied by constant field gel electrophoresis and expressed as DSB/100/Mbp, calculated from the fraction of activity released into the gel. The induction of DSB in chromosomal DNA was reduced by a decrease in temperature. This protective effect of low temperature was inhibited when the DNA was irradiated in the presence of DMSO. No difference was found when intact cells were irradiated at different temperatures. However, the rapid phase of rejoining was slower in cells irradiated at 37 degrees C than at 2 degrees C. The induction of DSB in naked DNA was reduced by hypothermic irradiation. The temperature had no influence on the induction of DSB in the presence of a high concentration of DMSO, indicating that the temperature effect is mediated via the indirect effects of ionizing radiation. Results are difficult to interpret in intact cells. Rejoining during irradiation at the higher temperature may counteract an increased induction. The difference in rejoining may be interpreted in terms of qualitative differences between breaks induced at the two temperatures.
Merker, Marilyn P; Audi, Said H; Lindemer, Brian J; Krenz, Gary S; Bongard, Robert D
2007-09-01
The objective was to determine the impact of intact normoxic and hyperoxia-exposed (95% O(2) for 48 h) bovine pulmonary arterial endothelial cells in culture on the redox status of the coenzyme Q(10) homolog coenzyme Q(1) (CoQ(1)). When CoQ(1) (50 microM) was incubated with the cells for 30 min, its concentration in the medium decreased over time, reaching a lower level for normoxic than hyperoxia-exposed cells. The decreases in CoQ(1) concentration were associated with generation of CoQ(1) hydroquinone (CoQ(1)H(2)), wherein 3.4 times more CoQ(1)H(2) was produced in the normoxic than hyperoxia-exposed cell medium (8.2 +/- 0.3 and 2.4 +/- 0.4 microM, means +/- SE, respectively) after 30 min. The maximum CoQ(1) reduction rate for the hyperoxia-exposed cells, measured using the cell membrane-impermeant redox indicator potassium ferricyanide, was about one-half that of normoxic cells (11.4 and 24.1 nmol x min(-1) x mg(-1) cell protein, respectively). The mitochondrial electron transport complex I inhibitor rotenone decreased the CoQ(1) reduction rate by 85% in the normoxic cells and 44% in the hyperoxia-exposed cells. There was little or no inhibitory effect of NAD(P)H:quinone oxidoreductase 1 (NQO1) inhibitors on CoQ(1) reduction. Intact cell oxygen consumption rates and complex I activities in mitochondria-enriched fractions were also lower for hyperoxia-exposed than normoxic cells. The implication is that intact pulmonary endothelial cells influence the redox status of CoQ(1) via complex I-mediated reduction to CoQ(1)H(2), which appears in the extracellular medium, and that the hyperoxic exposure decreases the overall CoQ(1) reduction capacity via a depression in complex I activity.
Biodegradation of coal-related model compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, J.A.; Stewart, D.L.; McCulloch, M.
1988-06-01
We have studied the reactions of model compounds having coal-related functionalities (ester linkages, ether linkages, PAH) with the intact organism, cell-free filtrate, and cell-free enzyme of C. versicolor to better understand the process of biosolubilization. Many of the degradation products have been identified by gas chromatography/mass spectroscopy (GC/MS). Results indicate that the two compounds tested with the intact fungal organism were completely degraded. Complete degradation refers to no recovery of model compound. We can probably assume that the other two would also be totally degraded, since we have not yet found a simple compound that will survive long-term exposure tomore » the intact fungus. The ease of degradation with the cell-free filtrate appears to be in the order: phenylbenzoate > benzylbenzoate > benzyl ether > methoxybenzophenone. Esters and ethers that are activated by aromatic rings appear to be susceptible to the fungal extract; however, aromatic ketones are not affected by the extract. From the limited results we have obtained from the isolated enzyme, it appears that the activity may parallel the cell-free filtrate. When the cell-free extract was tested with the model compounds indole, dibenzothiophene, and bibenzyl, no degradation with the enzyme was noted: however, exposure of these compounds to the intact organism resulted in complete degradation. Analysis of the controls indicated no degradation. 8 refs., 1 fig., 1 tab.« less
NASA Astrophysics Data System (ADS)
Okada, Tomoko; Ogura, Toshihiko
2017-02-01
Nanometre-scale-resolution imaging technologies for liquid-phase specimens are indispensable tools in various scientific fields. In biology, observing untreated living cells in a medium is essential for analysing cellular functions. However, nanoparticles that bind living cells in a medium are hard to detect directly using traditional optical or electron microscopy. Therefore, we previously developed a novel scanning electron-assisted dielectric microscope (SE-ADM) capable of nanoscale observations. This method enables observation of intact cells in aqueous conditions. Here, we use this SE-ADM system to clearly observe antibody-binding nanobeads in liquid-phase. We also report the successful direct detection of streptavidin-conjugated nanobeads binding to untreated cells in a medium via a biotin-conjugated anti-CD44 antibody. Our system is capable of obtaining clear images of cellular organelles and beads on the cells at the same time. The direct observation of living cells with nanoparticles in a medium allowed by our system may contribute the development of carriers for drug delivery systems (DDS).
Microencapsulated cells as hormone delivery systems.
Sun, A M; Goosen, M F; O'Shea, G
1987-01-01
Transplantation of pancreatic islets of Langerhans has been shown to prevent the development of many of the complications associated with diabetes. Transplanted islets, however, are readily rejected by the immune system. The use of artificial membranes to isolate the transplanted islets from the immune system of the host prolongs islet allografts in experimental animals. We have developed a method for encapsulating islets in semipermeable membranes composed of alginate and polylysine. The same technique can be applied to other endocrine cell types. The capsules are 700 to 800 micron in diameter with a hydrogel membrane approximately 4 micron thick. Intraperitoneal allografts of 5 x 10(3) encapsulated islets reversed diabetes in rats for up to 21 months and intact capsules with viable beta cells could be recovered from the recipients. Microencapsulation of endocrine cells for transplantation could potentially be used in the clinical treatment of hormone deficiency diseases.
Viability evaluation of culture cells patterned by femtosecond laser-induced impulsive force
NASA Astrophysics Data System (ADS)
Takizawa, Noriko; Okano, Kazunori; Uwada, Takayuki; Hosokawa, Yoichiroh; Masuhara, Hiroshi
2008-02-01
PC12 cells, which are derived from a rat pheochromocytoma, were independently patterned utilizing an impulsive force resulting in impulsive shockwave and cavitation bubble generation by focused femtosecond laser irradiation. Since the PC12 cells respond reversibly to nerve growth factor by induction of the neuronal phenotype, we can assess an influence that the impulsive force gives to the bioactivity in term of the cell differentiation. The patterned cells were accumulated on an intact dish and cultured for 3 days. The behavior of appearance and cell differentiation was observed by multipoint time-lapse system. On bases of these results, it was proved that the biological activity of the cell is unaffected by the femtosecond laser patterning.
Tutton, P J; Barkla, D H
1989-01-01
The intestinal mucosa receives an adrenergic innervation for which there is no commonly accepted function. However, in recent years, cell kinetic studies have raised the possibility that this innervation may be an important regulator of crypt cell proliferation. The effects of noradrenaline released from adrenergic nerves is terminated principally by re-uptake of the amine into the nerve and this process can be inhibited by the antidepressant drug, desipramine. In this report desipramine is shown to accelerate crypt cell proliferation in intact, but not in chemically sympathectomized rats, thus adding support to the notion that regulation of crypt cell division is an important function of the sympathetic nervous system.
NASA Technical Reports Server (NTRS)
Ghista, D. N.; Rasmussen, D. N.; Linebarger, R. N.; Sandler, H.
1971-01-01
Interdisciplinary engineering research effort in studying the intact human left ventricle has been employed to physiologically monitor the heart and to obtain its 'state-of-health' characteristics. The left ventricle was selected for this purpose because it plays a key role in supplying energy to the body cells. The techniques for measurement of the left ventricular geometry are described; the geometry is effectively displayed to bring out the abnormalities in cardiac function. Methods of mathematical modeling, which make it possible to determine the performance of the intact left ventricular muscle, are also described. Finally, features of a control system for the left ventricle for predicting the effect of certain physiological stress situations on the ventricle performance are discussed.
Aluminization and mirror removal of the Magellan 6.5-meter telescope
NASA Astrophysics Data System (ADS)
Perez, Frank S.
1994-06-01
The Magellan Project 6.5-meter telescope is a collaboration of the Carnegie Institution of Washington and the University of Arizona. The telescope will be located on Cerro Manqui, at the Las Campanas Observatory, Chile. At the beginning of the Magellan Project several schemes were investigated for realuminizing the primary mirror. We have chosen to leave the primary mirror in its cell with the mirror support system intact. Two major advantages of leaving the mirror in its cell are that it does not have to be lifted or handled and the support system does not have to be removed or reinstalled for aluminization.
van Unen, Jakobus; Woolard, Jeanette; Rinken, Ago; Hoffmann, Carsten; Hill, Stephen J.; Goedhart, Joachim; Bruchas, Michael R.; Bouvier, Michel
2015-01-01
The last frontier for a complete understanding of G-protein–coupled receptor (GPCR) biology is to be able to assess GPCR activity, interactions, and signaling in vivo, in real time within biologically intact systems. This includes the ability to detect GPCR activity, trafficking, dimerization, protein-protein interactions, second messenger production, and downstream signaling events with high spatial resolution and fast kinetic readouts. Resonance energy transfer (RET)–based biosensors allow for all of these possibilities in vitro and in cell-based assays, but moving RET into intact animals has proven difficult. Here, we provide perspectives on the optimization of biosensor design, of signal detection in living organisms, and the multidisciplinary development of in vitro and cell-based assays that more appropriately reflect the physiologic situation. In short, further development of RET-based probes, optical microscopy techniques, and mouse genome editing hold great potential over the next decade to bring real-time in vivo GPCR imaging to the forefront of pharmacology. PMID:25972446
NASA Astrophysics Data System (ADS)
Sasaki, Takahiro; Seki, Junji; Itano, Tomoaki; Sugihara-Seki, Masako
2017-11-01
In the microcirculation, red blood cells (RBCs) are known to accumulate in the region near the central axis of microvessels, which is called the ``axial accumulation''. Although this behavior of RBCs is considered to originate from high deformability of RBCs, there have been few experimental studies on the mechanism. In order to elucidate the effect of RBC deformability on the axial accumulation, we measured the cross-sectional distributions of RBCs flowing through capillary tubes with a high spatial resolution by a newly devised observation system for intact and softened RBCs as well as hardened RBCs to various degrees. It was found that the intact and softened RBCs are concentrated in the small area centered on the tube axis, whereas the hardened RBCs are dispersed widely over the tube cross section dependent on the degree of hardness. These results demonstrate clearly the essential role of the deformability of RBCs in the ``axial accumulation'' of RBCs. JSPS KAKENHI Grant Number 17H03176, Kansai University ORDIST group funds.
STUDIES ON PROTEIN UPTAKE BY ISOLATED TUMOR CELLS
Ryser, H.; Caulfield, J. B.; Aub, J. C.
1962-01-01
Ferritin, added to the incubation medium of ascites tumor cells, was used as an electron microscopic marker to study the uptake of large protein molecules by morphologically intact cells. A definite uptake could be detected after 1 hour of incubation in Tyrode bicarbonate solution containing 0.04 to 13.3 mg ferritin/ml. Ferritin was found in a variety of membrane-surrounded structures, suggesting that pinocytesis and related membrane movements are occurring under physiological conditions and can account for the penetration of intact macromolecules into isolated tumor cells. Supplementation of the medium with serum albumin (33 mg/ml) increased the average amount of ferritin per cell and per pinocytotic structure. Ferritin was strongly adsorbed by fragments of lysed cells, which were readily taken up by intact cells. Besides its role as carrier, this debris appeared to stimulate membrane movements. Only rare examples were found to suggest the release of ferritin from the pinocytotic structures into the cytoplasm. Thus, the disintegration of such structures cannot be considered an obvious step towards a rapid metabolic utilization of protein by the cell. Particles of colloidal gold presented to the cell under the same conditions were not taken up to any significant extent, thus providing good evidence for a selective ingestion of particles of comparable sizes. PMID:14495656
Musashi and Plasticity of Xenopus and Axolotl Spinal Cord Ependymal Cells
Chernoff, Ellen A. G.; Sato, Kazuna; Salfity, Hai V. N.; Sarria, Deborah A.; Belecky-Adams, Teri
2018-01-01
The differentiated state of spinal cord ependymal cells in regeneration-competent amphibians varies between a constitutively active state in what is essentially a developing organism, the tadpole of the frog Xenopus laevis, and a quiescent, activatable state in a slowly growing adult salamander Ambystoma mexicanum, the Axolotl. Ependymal cells are epithelial in intact spinal cord of all vertebrates. After transection, body region ependymal epithelium in both Xenopus and the Axolotl disorganizes for regenerative outgrowth (gap replacement). Injury-reactive ependymal cells serve as a stem/progenitor cell population in regeneration and reconstruct the central canal. Expression patterns of mRNA and protein for the stem/progenitor cell-maintenance Notch signaling pathway mRNA-binding protein Musashi (msi) change with life stage and regeneration competence. Msi-1 is missing (immunohistochemistry), or at very low levels (polymerase chain reaction, PCR), in both intact regeneration-competent adult Axolotl cord and intact non-regeneration-competent Xenopus tadpole (Nieuwkoop and Faber stage 62+, NF 62+). The critical correlation for successful regeneration is msi-1 expression/upregulation after injury in the ependymal outgrowth and stump-region ependymal cells. msi-1 and msi-2 isoforms were cloned for the Axolotl as well as previously unknown isoforms of Xenopus msi-2. Intact Xenopus spinal cord ependymal cells show a loss of msi-1 expression between regeneration-competent (NF 50–53) and non-regenerating stages (NF 62+) and in post-metamorphosis froglets, while msi-2 displays a lower molecular weight isoform in non-regenerating cord. In the Axolotl, embryos and juveniles maintain Msi-1 expression in the intact cord. In the adult Axolotl, Msi-1 is absent, but upregulates after injury. Msi-2 levels are more variable among Axolotl life stages: rising between late tailbud embryos and juveniles and decreasing in adult cord. Cultures of regeneration-competent Xenopus tadpole cord and injury-responsive adult Axolotl cord ependymal cells showed an identical growth factor response. Epidermal growth factor (EGF) maintains mesenchymal outgrowth in vitro, the cells are proliferative and maintain msi-1 expression. Non-regeneration competent Xenopus ependymal cells, NF 62+, failed to attach or grow well in EGF+ medium. Ependymal Msi-1 expression in vivo and in vitro is a strong indicator of regeneration competence in the amphibian spinal cord. PMID:29535610
Hoefel, Daniel; Monis, Paul T.; Grooby, Warwick L.; Andrews, Stuart; Saint, Christopher P.
2005-01-01
Chloramination is often the disinfection regimen of choice for extended drinking water systems. However, this process is prone to instability due to the growth of nitrifying bacteria. This is the first study to use alternative approaches for rapid investigation of chloraminated drinking water system instability in which flow cytometric cell sorting of bacteria with intact membranes (membrane-intact fraction) (BacLight kit) or with active esterases (esterase-active fraction) (carboxyfluorescein diacetate) was combined with 16S rRNA gene-directed PCR and denaturing gradient gel electrophoresis (DGGE). No active bacteria were detected when water left the water treatment plant (WTP), but 12 km downstream the chloramine residual had diminished and the level of active bacteria in the bulk water had increased to more than 1 × 105 bacteria ml−1. The bacterial diversity in the system was represented by six major DGGE bands for the membrane-intact fraction and 10 major DGGE bands for the esterase-active fraction. PCR targeting of the 16S rRNA gene of chemolithotrophic ammonia-oxidizing bacteria (AOB) and subsequent DGGE and DNA sequence analysis revealed the presence of an active Nitrosospira-related species and Nitrosomonas cryotolerans in the system, but no AOB were detected in the associated WTP. The abundance of active AOB was then determined by quantitative real-time PCR (qPCR) targeting the amoA gene; 3.43 × 103 active AOB ml−1 were detected in the membrane-intact fraction, and 1.40 × 104 active AOB ml−1 were detected in the esterase-active fraction. These values were several orders of magnitude greater than the 2.5 AOB ml−1 detected using a routine liquid most-probable-number assay. Culture-independent techniques described here, in combination with existing chemical indicators, should allow the water industry to obtain more comprehensive data with which to make informed decisions regarding remedial action that may be required either prior to or during an instability event. PMID:16269672
Debrided Skin as a Source of Autologous Stem Cells for Wound Repair
2011-08-01
dermal tissue shows the presence of hyalinized collagen (bold arrows) with loss of individual collagen bundles and cellular necrosis . The hypodermal...region consisted of intact adipo- cytes separated by intact interlobular septae and thermally collapsed areas with complete necrosis of both fat cells...and no dsASCs showed predom- inantly acellular multifocal amorphous matrix (Supporting In- formation Fig. S3A, S3B) and was avascular (Supporting Infor
Oligodeoxynucleotide Probes for Detecting Intact Cells
NASA Technical Reports Server (NTRS)
Rosson, Reinhardt A.; Maurina-Brunker, Julie; Langley, Kim; Pynnonen, Christine M.
2004-01-01
A rapid, sensitive test using chemiluminescent oligodeoxynucleotide probes has been developed for detecting, identifying, and enumerating intact cells. The test is intended especially for use in detecting and enumerating bacteria and yeasts in potable water. As in related tests that have been developed recently for similar purposes, the oligodeoxynucleotide probes used in this test are typically targeted at either singlecopy deoxyribonucleic acid (DNA) genes (such as virulence genes) or the multiple copies (10,000 to 50,000 copies per cell) of 16S ribosomal ribonucleic acids (rRNAs). Some of those tests involve radioisotope or fluorescent labeling of the probes for reporting hybridization of probes to target nucleic acids. Others of those tests involve labeling with enzymes plus the use of chemiluminescent or chromogenic substrates to report hybridization via color or the emission of light, respectively. The present test is of the last-mentioned type. The chemiluminescence in the present test can be detected easily with relatively simple instrumentation. In developing the present test, the hybridization approach was chosen because hybridization techniques are very specific. Hybridization detects stable, inheritable genetic targets within microorganisms. These targets are not dependent on products of gene expression that can vary with growth conditions or physiological states of organisms in test samples. Therefore, unique probes can be designed to detect and identify specific genera or species of bacteria or yeast (in terms of rRNA target sequences) or can be designed to detect and identify virulence genes (genomic target sequences). Because of the inherent specificity of this system, there are few problems of cross-reactivity. Hybridization tests are rapid, but hybridization tests now available commercially lack sensitivity; typically, between 10(exp 6) and 10(exp 7) cells of the target organism are needed to ensure a reliable test. Consequently, the numbers of target bacteria in samples are usually amplified by overnight pre-enrichment growth. These tests are usually performed in laboratories by skilled technicians. The present test was designed to overcome the shortcomings of the commercial hybridization tests. The figure summarizes the major steps of the test. It is important to emphasize that the hybridization process used in this test differs from that of other hybridization tests in that it does not extract target nucleic acids. This process is based on intact-cell hybridization (so-called in situ hybridization ), wherein the intact cells act as immobilizing agents. The cells are identified and enumerated by measuring the chemiluminescence emitted from alkaline phosphatase-probe (AP-probe) hybridization; the chemiluminescence is detected or measured by use of photographic film or a luminometer, respectively.
Mycobacteria employ two different mechanisms to cross the blood-brain barrier.
van Leeuwen, Lisanne M; Boot, Maikel; Kuijl, Coen; Picavet, Daisy I; van Stempvoort, Gunny; van der Pol, Susanne M A; de Vries, Helga E; van der Wel, Nicole N; van der Kuip, Martijn; van Furth, A Marceline; van der Sar, Astrid M; Bitter, Wilbert
2018-05-10
Central nervous system (CNS) infection by Mycobacterium tuberculosis is one of the most devastating complications of tuberculosis, in particular in early childhood. In order to induce CNS infection, M. tuberculosis needs to cross specialised barriers protecting the brain. How M. tuberculosis crosses the blood-brain barrier (BBB) and enters the CNS is not well understood. Here, we use transparent zebrafish larvae and the closely related pathogen Mycobacterium marinum to answer this question. We show that in the early stages of development, mycobacteria rapidly infect brain tissue, either as free mycobacteria or within circulating macrophages. After the formation of a functionally intact BBB, the infiltration of brain tissue by infected macrophages is delayed, but not blocked, suggesting that crossing the BBB via phagocytic cells is one of the mechanisms used by mycobacteria to invade the CNS. Interestingly, depletion of phagocytic cells did not prevent M. marinum from infecting the brain tissue, indicating that free mycobacteria can independently cause brain infection. Detailed analysis showed that mycobacteria are able to cause vasculitis by extracellular outgrowth in the smaller blood vessels and by infecting endothelial cells. Importantly, we could show that this second mechanism is an active process that depends on an intact ESX-1 secretion system, which extends the role of ESX-1 secretion beyond the macrophage infection cycle. © 2018 The Authors Cellular Microbiology Published by John Wiley & Sons Ltd.
[Genetic system for maintaining the mitochondrial human genome in yeast Yarrowia lipolytica].
Isakova, E P; Deryabina, Yu I; Velyakova, A V; Biryukova, J K; Teplova, V V; Shevelev, A B
2016-01-01
For the first time, the possibility of maintaining an intact human mitochondrial genome in a heterologous system in the mitochondria of yeast Yarrowia lipolytica is shown. A method for introducing directional changes into the structure of the mitochondrial human genome replicating in Y. lipolytica by an artificially induced ability of yeast mitochondria for homologous recombination is proposed. A method of introducing and using phenotypic selection markers for the presence or absence of defects in genes tRNA-Lys and tRNA-Leu of the mitochondrial genome is developed. The proposed system can be used to correct harmful mutations of the human mitochondrial genome associated with mitochondrial diseases and for preparative amplification of intact mitochondrial DNA with an adjusted sequence in yeast cells. The applicability of the new system for the correction of mutations in the genes of Lys- and Leu-specific tRNAs of the human mitochondrial genome associated with serious and widespread human mitochondrial diseases such as myoclonic epilepsy with lactic acidosis (MELAS) and myoclonic epilepsy with ragged-red fibers (MERRF) is shown.
Production of membrane proteins without cells or detergents.
Rajesh, Sundaresan; Knowles, Timothy; Overduin, Michael
2011-04-30
The production of membrane proteins in cellular systems is besieged by several problems due to their hydrophobic nature which often causes misfolding, protein aggregation and cytotoxicity, resulting in poor yields of stable proteins. Cell-free expression has emerged as one of the most versatile alternatives for circumventing these obstacles by producing membrane proteins directly into designed hydrophobic environments. Efficient optimisation of expression and solubilisation conditions using a variety of detergents, membrane mimetics and lipids has yielded structurally and functionally intact membrane proteins, with yields several fold above the levels possible from cell-based systems. Here we review recently developed techniques available to produce functional membrane proteins, and discuss amphipols, nanodisc and styrene maleic acid lipid particle (SMALP) technologies that can be exploited alongside cell-free expression of membrane proteins. Copyright © 2010 Elsevier B.V. All rights reserved.
Immuno-biosensor for Detection of CD20-Positive Cells Using Surface Plasmon Resonance.
Shanehbandi, Dariush; Majidi, Jafar; Kazemi, Tohid; Baradaran, Behzad; Aghebati-Maleki, Leili; Fathi, Farzaneh; Ezzati Nazhad Dolatabadi, Jafar
2017-06-01
Purpose: Surface plasmon resonance (SPR) sensing confers a real-time assessment of molecular interactions between biomolecules and their ligands. This approach is highly sensitive and reproducible and could be employed to confirm the successful binding of drugs to cell surface targets. The specific affinity of monoclonal antibodies (MAb) for their target antigens is being utilized for development of immuno-sensors and therapeutic agents. CD20 is a surface protein of B lymphocytes which has been widely employed for immuno-targeting of B-cell related disorders. In the present study, binding ability of an anti-CD20 MAb to surface antigens of intact target cells was investigated by SPR technique. Methods: Two distinct strategies were used for immobilization of the anti-CD20 MAb onto gold (Au) chips. MUA (11-mercaptoundecanoic acid) and Staphylococcus aureus protein A (SpA) were the two systems used for this purpose. A suspension of CD20-positive Raji cells was injected in the analyte phase and the resulting interactions were analyzed and compared to those of MOLT-4 cell line as CD20-negative control. Results: Efficient binding of anti-CD20 MAb to the surface antigens of Raji cell line was confirmed by both immobilizing methods, whereas this MAb had not a noticeable affinity to the MOLT-4 cells. Conclusion: According to the outcomes, the investigated MAb had acceptable affinity and specificity to the target antigens on the cell surface and could be utilized for immuno-detection of CD20-positive intact cells by SPR method.
Immuno-biosensor for Detection of CD20-Positive Cells Using Surface Plasmon Resonance
Shanehbandi, Dariush; Majidi, Jafar; Kazemi, Tohid; Baradaran, Behzad; Aghebati-Maleki, Leili; Fathi, Farzaneh; Ezzati Nazhad Dolatabadi, Jafar
2017-01-01
Purpose: Surface plasmon resonance (SPR) sensing confers a real-time assessment of molecular interactions between biomolecules and their ligands. This approach is highly sensitive and reproducible and could be employed to confirm the successful binding of drugs to cell surface targets. The specific affinity of monoclonal antibodies (MAb) for their target antigens is being utilized for development of immuno-sensors and therapeutic agents. CD20 is a surface protein of B lymphocytes which has been widely employed for immuno-targeting of B-cell related disorders. In the present study, binding ability of an anti-CD20 MAb to surface antigens of intact target cells was investigated by SPR technique. Methods: Two distinct strategies were used for immobilization of the anti-CD20 MAb onto gold (Au) chips. MUA (11-mercaptoundecanoic acid) and Staphylococcus aureus protein A (SpA) were the two systems used for this purpose. A suspension of CD20-positive Raji cells was injected in the analyte phase and the resulting interactions were analyzed and compared to those of MOLT-4 cell line as CD20-negative control. Results: Efficient binding of anti-CD20 MAb to the surface antigens of Raji cell line was confirmed by both immobilizing methods, whereas this MAb had not a noticeable affinity to the MOLT-4 cells. Conclusion: According to the outcomes, the investigated MAb had acceptable affinity and specificity to the target antigens on the cell surface and could be utilized for immuno-detection of CD20-positive intact cells by SPR method. PMID:28761820
Grothe, Claudia; Claus, Peter; Haastert, Kirsten; Lutwak, Ela; Ron, Dina
2008-01-01
Fibroblast growth factors (FGFs) signal via four distinct high affinity cell surface tyrosine kinase receptors, termed FGFR1-FGFR4 (FGFR-FGF-receptor). Recently, a new modulator of the FGF signaling pathway, the transmembrane protein 'similar expression to FGF genes' (Sef), has been identified in zebrafish and subsequently in mammals. Sef from mouse and human inhibits FGF mitogenic activity. In the present study, we analyzed the expression of Sef in distinct rat brain areas, in the spinal cord and in peripheral nerves and spinal ganglia using semi-quantitative RT-PCR. Furthermore, we studied the cellular expression pattern of Sef in intact spinal ganglia and sciatic nerves and, in addition, after crush lesion, using in situ hybridization and immunohistochemistry. Sef transcripts were expressed in all brain areas evaluated and in the spinal cord. A neuronal expression was found in both intact and injured spinal ganglia. Intact sciatic nerves, however, showed little or no Sef expression. Seven days after injury, high Sef expression was concentrated to the crush site, and Schwann cells seemed to be the source of Sef. The labeling pattern of up-regulated Sef was complementary to the patterns of FGF-2 and FGFR1-3, which were localized proximal and distal to the crush site. These results suggest an involvement of Sef during the nerve regeneration process, possibly by fine-tuning the effects of FGF signaling.
Buyel, Johannes F; Hubbuch, Jürgen; Fischer, Rainer
2016-08-08
Plants not only provide food, feed and raw materials for humans, but have also been developed as an economical production system for biopharmaceutical proteins, such as antibodies, vaccine candidates and enzymes. These must be purified from the plant biomass but chromatography steps are hindered by the high concentrations of host cell proteins (HCPs) in plant extracts. However, most HCPs irreversibly aggregate at temperatures above 60 °C facilitating subsequent purification of the target protein. Here, three methods are presented to achieve the heat precipitation of tobacco HCPs in either intact leaves or extracts. The blanching of intact leaves can easily be incorporated into existing processes but may have a negative impact on subsequent filtration steps. The opposite is true for heat precipitation of leaf extracts in a stirred vessel, which can improve the performance of downstream operations albeit with major changes in process equipment design, such as homogenizer geometry. Finally, a heat exchanger setup is well characterized in terms of heat transfer conditions and easy to scale, but cleaning can be difficult and there may be a negative impact on filter capacity. The design-of-experiments approach can be used to identify the most relevant process parameters affecting HCP removal and product recovery. This facilitates the application of each method in other expression platforms and the identification of the most suitable method for a given purification strategy.
The Specificity of Trimming of MHC Class I-Presented Peptides in the Endoplasmic Reticulum1
Hearn, Arron; York, Ian A.; Rock, Kenneth L.
2010-01-01
Aminopeptidases in the endoplasmic reticulum (ER) can cleave antigenic peptides and in so doing either create or destroy MHC class I-presented epitopes. However the specificity of this trimming process overall and of the major ER aminopeptidase ERAP1 in particular is not well understood. This issue is important because peptide trimming influences the magnitude and specificity of CD8 T cell responses. By systematically varying the N-terminal flanking sequences of peptides in a cell free biochemical system and in intact cells, we elucidated the specificity of ERAP1 and of ER trimming overall. ERAP1 can cleave after many amino acids on the N-terminus of epitope precursors but does so at markedly different rates. The specificity seen with purified ERAP1 is similar to that observed for trimming and presentation of epitopes in the ER of intact cells. We define N-terminal sequences that are favorable or unfavorable for antigen presentation in ways that are independent from the epitopes core sequence. When databases of known presented peptides were analyzed, the residues that were preferred for the trimming of model peptide precursors were found to be overrepresented in N-terminal flanking sequences of epitopes generally. These data define key determinants in the specificity of antigen processing. PMID:19828632
Small Particles Intact Capture Experiment (SPICE)
NASA Technical Reports Server (NTRS)
Nishioka, Ken-Ji; Carle, G. C.; Bunch, T. E.; Mendez, David J.; Ryder, J. T.
1994-01-01
The Small Particles Intact Capture Experiment (SPICE) will develop technologies and engineering techniques necessary to capture nearly intact, uncontaminated cosmic and interplanetary dust particles (IDP's). Successful capture of such particles will benefit the exobiology and planetary science communities by providing particulate samples that may have survived unaltered since the formation of the solar system. Characterization of these particles may contribute fundamental data to our knowledge of how these particles could have formed into our planet Earth and, perhaps, contributed to the beginnings of life. The term 'uncontaminated' means that captured cosmic and IDP particles are free of organic contamination from the capture process and the term 'nearly intact capture' means that their chemical and elemental components are not materially altered during capture. The key to capturing cosmic and IDP particles that are organic-contamination free and nearly intact is the capture medium. Initial screening of capture media included organic foams, multiple thin foil layers, and aerogel (a silica gel); but, with the exception of aerogel, the requirements of no contamination or nearly intact capture were not met. To ensure no contamination of particles in the capture process, high-purity aerogel was chosen. High-purity aerogel results in high clarity (visual clearness), a useful quality in detection and recovery of embedded captured particles from the aerogel. P. Tsou at the Jet Propulsion Laboratory (JPL) originally described the use of aerogel for this purpose and reported laboratory test results. He has flown aerogel as a 'GAS-can Lid' payload on STS-47 and is evaluating the results. The Timeband Capture Cell Experiment (TICCE), a Eureca 1 experiment, is also flying aerogel and is scheduled for recovery in late April.
Daniel J. Yelle; John Ralph; Charles R. Frihart
2011-01-01
Solution-state NMR provides a powerful tool to observe the presence or absence of covalent bonds between wood and adhesives. Finely ground wood can be dissolved in an NMR compatible solvent system containing dimethylsulfoxide-d6 and N-methylimidazole-d6, in which the wood polymers remain largely intact. High-resolution...
Nanoparticles in Medicine: Selected Observations and Experimental Caveats.
Thomsen, Sharon; Pearce, John A; Giustini, Andrew; Hoopes, P Jack
2013-02-26
Medically useful nanoparticles measure 1-100 nm in at least one dimension and are engineered and manufactured for specific diagnostic and treatment applications. Most nanoparticles used currently used in medicine are engineered and manufactured for specific purposes. Medically significant nanoparticles are composed of a 1) central core that is usually the medically active component, 2) one or more layers of organic or inorganic materials that forms a capsule (corona) covering the core and 3) an outer surface layer that interacts with the environment and/or targeted cells and tissues. Effective nanoparticle function in the living, intact animal or human requires electrochemical stability necessary to bypass the reticuloendothelial system (RES) and avoid filtration through the renal glomerulus into the urine. Nanoparticles are present in "natural" as well as the manufacturing and clinical environments thus could pose as significant toxins because of their small sizes, their chemical and drug content and potential effect of causing long term disease including allergies, chronic inflammation and cancer. Currently published studies have focused on the effects of nanoparticles on cells in the extremely artificial environments of cell cultures. More clinical and preclinical studies documenting the short term and long term effects nanoparticle in the intact experimental animal and human are needed.
Nanoparticles in medicine: selected observations and experimental caveats
NASA Astrophysics Data System (ADS)
Thomsen, Sharon; Pearce, John A.; Giustini, Andrew; Hoopes, P. Jack
2013-02-01
Medically useful nanoparticles measure 1-100 nm in at least one dimension and are engineered and manufactured for specific diagnostic and treatment applications. Most nanoparticles used currently used in medicine are engineered and manufactured for specific purposes. Medically significant nanoparticles are composed of a 1) central core that is usually the medically active component, 2) one or more layers of organic or inorganic materials that forms a capsule (corona) covering the core and 3) an outer surface layer that interacts with the environment and/or targeted cells and tissues. Effective nanoparticle function in the living, intact animal or human requires electrochemical stability necessary to bypass the reticuloendothelial system (RES) and avoid filtration through the renal glomerulus into the urine. Nanoparticles are present in " natural" as well as the manufacturing and clinical environments thus could pose as significant toxins because of their small sizes, their chemical and drug content and potential effect of causing long term disease including allergies, chronic inflammation and cancer. Currently published studies have focused on the effects of nanoparticles on cells in the extremely artificial environments of cell cultures. More clinical and preclinical studies documenting the short term and long term effects nanoparticle in the intact experimental animal and human are needed.
Ice formation in isolated human hepatocytes and human liver tissue.
Bischof, J C; Ryan, C M; Tompkins, R G; Yarmush, M L; Toner, M
1997-01-01
Cryopreservation of isolated cells and tissue slices of human liver is required to furnish extracorporeal bioartificial liver devices with a ready supply of hepatocytes, and to create in vitro drug metabolism and toxicity models. Although both the bioartificial liver and many current biotoxicity models are based on reconstructing organ functions from single isolated hepatocytes, tissue slices offer an in vitro system that may more closely resemble the in vivo situation of the cells because of cell-cell and cell-extracellular matrix interactions. However, successful cryopreservation of both cellular and tissue level systems requires an increased understanding of the fundamental mechanisms involved in the response of the liver and its cells to freezing stress. This study investigates the biophysical mechanisms of water transport and intracellular ice formation during freezing in both isolated human hepatocytes and whole liver tissue. The effects of cooling rate on individual cells were measured using a cryomicroscope. Biophysical parameters governing water transport (Lpg = 2.8 microns/min-atm and ELp = 79 kcal/mole) and intracellular heterogeneous ice nucleation (omega het = 1.08 x 10(9) m-2s-1 and kappa het = 1.04 x 10(9) K5) were determined. These parameters were then incorporated into a theoretical Krogh cylinder model developed to simulate water transport and ice formation in intact liver tissue. Model simulations indicated that the cellular compartment of the Krogh model maintained more water than isolated cells under the same freezing conditions. As a result, intracellular ice nucleation occurred at lower cooling rates in the Krogh model than in isolated cells. Furthermore, very rapid cooling rates (1000 degrees C/min) showed a depression of heterogeneous nucleation and a shift toward homogeneous nucleation. The results of this study are in qualitative agreement with the findings of a previous experimental study of the response to freezing of intact human liver.
Split rheometer Couette attachment to enable sample extraction
NASA Astrophysics Data System (ADS)
Guthrie, Sarah E.; Idziak, Stefan H. J.
2005-02-01
We report on the development of a Couette attachment insert for a rheometer, which is designed to split in half, enabling intact sample extraction of cocoa butter crystallized from the melt under known dynamic stress conditions. This cell is capable of producing a sample 1mm thick. At shear rates of 90-720s-1 and final temperatures of 18-20°C it was shown that the sample will completely separate from the cell surface intact.
Würtzen, Peter Adler; Lund, Lise; Lund, Gitte; Holm, Jens; Millner, Anders; Henmar, Helene
2007-01-01
In Europe, specific immunotherapy is currently conducted with vaccines containing allergen preparations based on intact extracts. In addition to this, chemically modified allergen extracts (allergoids) are used for specific allergy treatment. Reduced allergenicity and thereby reduced risk of side effects in combination with retained ability to activate T cells and induce protective allergen-specific antibody responses has been claimed for allergoids. In the current study, we compared intact allergen extracts and allergoids with respect to allergenicity and immunogenicity. The immunological response to birch allergen extract, alum-adsorbed extract, birch allergoid and alum-adsorbed allergoid was investigated in vitro in human basophil histamine release assay and by stimulation of human allergen-specific T cell lines. In vivo, Bet v 1-specific IgG titers in mice were determined after repetitive immunizations. In all patients tested (n = 8), allergoid stimulations led to reduced histamine release compared to the intact allergen extract. However, the allergoid preparations were not recognized by Bet v 1-specific T cell lines (n = 7), which responded strongly to the intact allergen extract. Mouse immunizations showed a clearly reduced IgG induction by allergoids and a strongly potentiating effect of the alum adjuvant. Optimal IgG titers were obtained after 3 immunizations with intact allergen extracts, while 5 immunizations were needed to obtain maximal response to the allergoid. The reduced histamine release observed for allergoid preparations may be at the expense of immunological efficacy because the chemical modifications lead to a clear reduction in T cell activation and the ability to induce allergen-specific IgG antibody responses. Copyright 2007 S. Karger AG, Basel.
Surface plasmon resonance sensing: from purified biomolecules to intact cells.
Su, Yu-Wen; Wang, Wei
2018-04-12
Surface plasmon resonance (SPR) has become a well-recognized label-free technique for measuring the binding kinetics between biomolecules since the invention of the first SPR-based immunosensor in 1980s. The most popular and traditional format for SPR analysis is to monitor the real-time optical signals when a solution containing ligand molecules is flowing over a sensor substrate functionalized with purified receptor molecules. In recent years, rapid development of several kinds of SPR imaging techniques have allowed for mapping the dynamic distribution of local mass density within single living cells with high spatial and temporal resolutions and reliable sensitivity. Such capability immediately enabled one to investigate the interaction between important biomolecules and intact cells in a label-free, quantitative, and single cell manner, leading to an exciting new trend of cell-based SPR bioanalysis. In this Trend Article, we first describe the principle and technical features of two types of SPR imaging techniques based on prism and objective, respectively. Then we survey the intact cell-based applications in both fundamental cell biology and drug discovery. We conclude the article with comments and perspectives on the future developments. Graphical abstract Recent developments in surface plasmon resonance (SPR) imaging techniques allow for label-free mapping the mass-distribution within single living cells, leading to great expansions in biomolecular interactions studies from homogeneous substrates functionalized with purified biomolecules to heterogeneous substrates containing individual living cells.
García-Álvarez, Isabel; Garrido, Leoncio; Romero-Ramírez, Lorenzo; Nieto-Sampedro, Manuel; Fernández-Mayoralas, Alfonso; Campos-Olivas, Ramón
2013-01-01
The effect of the treatment with glycolipid derivatives on the metabolic profile of intact glioma cells and tumor tissues, investigated using proton high resolution magic angle spinning (1H HR-MAS) nuclear magnetic resonance (NMR) spectroscopy, is reported here. Two compounds were used, a glycoside and its thioglycoside analogue, both showing anti-proliferative activity on glioma C6 cell cultures; however, only the thioglycoside exhibited antitumor activity in vivo. At the drug concentrations showing anti-proliferative activity in cell culture (20 and 40 µM), significant increases in choline containing metabolites were observed in the 1H NMR spectra of the same intact cells. In vivo experiments in nude mice bearing tumors derived from implanted C6 glioma cells, showed that reduction of tumor volume was associated with significant changes in the metabolic profile of the same intact tumor tissues; and were similar to those observed in cell culture. Specifically, the activity of the compounds is mainly associated with an increase in choline and phosphocholine, in both the cell cultures and tumoral tissues. Taurine, a metabolite that has been considered a biomarker of apoptosis, correlated with the reduction of tumor volume. Thus, the results indicate that the mode of action of the glycoside involves, at least in part, alteration of phospholipid metabolism, resulting in cell death. PMID:24194925
Intact Arabidopsis RPB1 functions in stem cell niches maintenance and cell cycling control.
Zhang, Qian-Qian; Li, Ying; Fu, Zhao-Ying; Liu, Xun-Biao; Yuan, Kai; Fang, Ying; Liu, Yan; Li, Gang; Zhang, Xian-Sheng; Chong, Kang; Ge, Lei
2018-05-12
Plant meristem activity depends on accurate execution of transcriptional networks required for establishing optimum functioning of stem cell niches. An Arabidopsis mutant card1-1 (constitutive auxin response with DR5:GFP) that encodes a truncated RPB1 (RNA Polymerase II's largest subunit) with shortened C-terminal domain (CTD) was identified. Phosphorylation of the CTD repeats of RPB1 is coupled to transcription in eukaryotes. Here we uncover that the truncated CTD of RPB1 disturbed cell cycling and enlarged the size of shoot and root meristem. The defects in patterning of root stem cell niche in card1-1 indicates that intact CTD of RPB1 is necessary for fine-tuning the specific expression of genes responsible for cell-fate determination. The gene-edited plants with different CTD length of RPB1, created by CRISPR-CAS9 technology, confirmed that both the full length and the DK-rich tail of RPB1's CTD play roles in the accurate transcription of CYCB1;1 encoding a cell-cycle marker protein in root meristem and hence participate in maintaining root meristem size. Our experiment proves that the intact RPB1 CTD is necessary for stem cell niche maintenance, which is mediated by transcriptional regulation of cell cycling genes. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.
DeFeo, T T; Morgan, K G
1985-05-01
A modified method for enzymatically isolating mammalian vascular smooth muscle cells has been developed and tested for ferret portal vein smooth muscle. This method produces a high proportion of fully relaxed cells and these cells appear to have normal pharmacological responsiveness. The ED50 values for both alpha stimulation and potassium depolarization are not significantly different in the isolated cells from those obtained from intact strips of ferret portal vein, suggesting that the enzymatic treatment does not destroy receptors or alter the electrical responsiveness of the cells. It was also possible to demonstrate a vasodilatory action of papaverine, nitroprusside and adenosine directly on the isolated cells indicating that the pathways involved are intact in the isolated cells. This method should be of considerable usefulness, particularly in combination with the new fluorescent indicators and cell sorter techniques which require isolated cells.
Protein vs electrolytes and all of the Starling forces.
Peters, R M; Hargens, A R
1981-10-01
Hemodilution-induced reductions of the intravascular protein concentration in patients and experimental animals with intact capillaries do not lead to pulmonary edema, despite significant increases in the amount of extravascular water in the systemic interstitial space. The protective factors are a drop in the extravascular concentration of protein, a rise in interstitial tissue pressure, and an increase in lymph flow. If the capillary endothelium is damaged, protein leaks into the extravascular space, and protein infusion has a diminished effect on fluid exchange across the capillary. Whether capillaries are intact or injured, prevention of increases in capillary hydrostatic pressure is the most important factor in preventing pulmonary edema. Administration of hypertonic fluids may provide a useful method of limiting total fluid infusion and reducing cell swelling after blood loss.
Henmar, H; Lund, G; Lund, L; Petersen, A; Würtzen, P A
2008-09-01
Different vaccines containing intact allergens or chemically modified allergoids as active ingredients are commercially available for specific immunotherapy. Allergoids are claimed to have decreased allergenicity without loss of immunogenicity and this is stated to allow administration of high allergoid doses. We compared the allergenicity and immunogenicity of four commercially available chemically modified grass pollen allergoid products with three commercially available intact grass pollen allergen vaccines. The allergenicity was investigated with immunoglobulin (Ig)E-inhibition and basophil activation assays. Human T cell proliferation and specific IgG-titres following mouse immunizations were used to address immunogenicity. Furthermore, intact allergen vaccines with different contents of active ingredients were selected to study the influence of the allergen dose. In general, a lower allergenicity for allergen vaccines was clearly linked to a reduced immunogenicity. Compared with the vaccine with the highest amount of intact allergen, the allergoids caused reduced basophil activation as well as diminished immunogenicity demonstrated by reduced T cell activation and/or reduced induction of murine grass-specific IgG antibodies. Interestingly, intact allergen vaccines with lower content of active ingredient exhibited similarly reduced allergenicity, while immunogenicity was still higher or equal to that of allergoids. The low allergenicity observed for some allergoids was inherently linked to a significantly lower immunogenic response questioning the rationale behind the chemical modification into allergoids. In addition, the linkage between allergenicity, immunogenicity and dose found for intact allergen vaccines and the immunogen as well as allergenic immune responses observed for allergoids suggest that the modified allergen vaccines do not contain high doses of immunologically active ingredients.
Macko, Antoni R.; Yates, Dustin T.; Chen, Xiaochuan; Shelton, Leslie A.; Kelly, Amy C.; Davis, Melissa A.; Camacho, Leticia E.; Anderson, Miranda J.
2016-01-01
In pregnancies complicated by placental insufficiency and intrauterine growth restriction (IUGR), fetal glucose and oxygen concentrations are reduced, whereas plasma norepinephrine and epinephrine concentrations are elevated throughout the final third of gestation. Here we study the effects of chronic hypoxemia and hypercatecholaminemia on β-cell function in fetal sheep with placental insufficiency-induced IUGR that is produced by maternal hyperthermia. IUGR and control fetuses underwent a sham (intact) or bilateral adrenal demedullation (AD) surgical procedure at 0.65 gestation. As expected, AD-IUGR fetuses had lower norepinephrine concentrations than intact-IUGR fetuses despite being hypoxemic and hypoglycemic. Placental insufficiency reduced fetal weights, but the severity of IUGR was less with AD. Although basal plasma insulin concentrations were lower in intact-IUGR and AD-IUGR fetuses compared with intact-controls, glucose-stimulated insulin concentrations were greater in AD-IUGR fetuses compared with intact-IUGR fetuses. Interestingly, AD-controls had lower glucose- and arginine-stimulated insulin concentrations than intact-controls, but AD-IUGR and AD-control insulin responses were not different. To investigate chronic hypoxemia in the IUGR fetus, arterial oxygen tension was increased to normal levels by increasing the maternal inspired oxygen fraction. Oxygenation of IUGR fetuses enhanced glucose-stimulated insulin concentrations 3.3-fold in intact-IUGR and 1.7-fold in AD-IUGR fetuses but did not lower norepinephrine and epinephrine concentrations. Together these findings show that chronic hypoxemia and hypercatecholaminemia have distinct but complementary roles in the suppression of β-cell responsiveness in IUGR fetuses. PMID:26937714
Structural and molecular interrogation of intact biological systems
Chung, Kwanghun; Wallace, Jenelle; Kim, Sung-Yon; Kalyanasundaram, Sandhiya; Andalman, Aaron S.; Davidson, Thomas J.; Mirzabekov, Julie J.; Zalocusky, Kelly A.; Mattis, Joanna; Denisin, Aleksandra K.; Pak, Sally; Bernstein, Hannah; Ramakrishnan, Charu; Grosenick, Logan; Gradinaru, Viviana; Deisseroth, Karl
2014-01-01
Obtaining high-resolution information from a complex system, while maintaining the global perspective needed to understand system function, represents a key challenge in biology. Here we address this challenge with a method (termed CLARITY) for the transformation of intact tissue into a nanoporous hydrogel-hybridized form (crosslinked to a three-dimensional network of hydrophilic polymers) that is fully assembled but optically transparent and macromolecule-permeable. Using mouse brains, we show intact-tissue imaging of long-range projections, local circuit wiring, cellular relationships, subcellular structures, protein complexes, nucleic acids and neurotransmitters. CLARITY also enables intact-tissue in situ hybridization, immunohistochemistry with multiple rounds of staining and de-staining in non-sectioned tissue, and antibody labelling throughout the intact adult mouse brain. Finally, we show that CLARITY enables fine structural analysis of clinical samples, including non-sectioned human tissue from a neuropsychiatric-disease setting, establishing a path for the transmutation of human tissue into a stable, intact and accessible form suitable for probing structural and molecular underpinnings of physiological function and disease. PMID:23575631
DE Jonge, N
2018-02-01
Receptor membrane proteins in the plasma membranes of cells respond to extracellular chemical signals by conformational changes, spatial redistribution, and (re-)assembly into protein complexes, for example, into homodimers (pairs of the same protein type). The functional state of the proteins can be determined from information about how subunits are assembled into protein complexes. Stoichiometric information about the protein complex subunits, however, is generally not obtained from intact cells but from pooled material extracted from many cells, resulting in a lack of fundamental knowledge about the functioning of membrane proteins. First, functional states may dramatically differ from cell to cell on account of cell heterogeneity. Second, extracting the membrane proteins from the plasma membrane may lead to many artefacts. Liquid-phase scanning transmission electron microscopy (STEM), in short liquid STEM, is a new technique capable of determining the locations of individual membrane proteins within the intact plasma membranes of cells in liquid. Many tens of whole cells can readily be imaged. It is possible to analyse the stoichiometry of membrane proteins in single cells while accounting for heterogenic cell populations. Liquid STEM was used to image epidermal growth factor receptors in whole COS7 cells. A study of the dimerisation of the HER2 protein in breast cancer cells revealed the presence of rare cancer cells in which HER2 was in a different functional state than in the bulk cells. Stoichiometric information about receptors is essential not only for basic science but also for biomedical application because they present many important pharmaceutical targets. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.
Fast kinetic studies of plasmid DNA transfer in intact yeast cells mediated by electropulsation.
Ganeva, V; Galutzov, B; Teissie, J
1995-09-25
Intact yeast cell Electrotransformation process was investigated. It is a two step process. The plasmid must be pre-mixed and present in contact with the cells during the pulse. During the millisecond field pulse, plasmid DNA is associated to the envelope. It therefore crosses the membrane by a process which lasts several seconds as shown by its sensitivity to a post pulse addition of DNase. Electrotransformation is not supported by an electrophoretic transfer due to the external field nor by a free diffusion across the electropermeabilized envelope. DNA is first bound during the field pulse and then is transferred by a still unknown active process due to cell metabolism.
NASA Technical Reports Server (NTRS)
Van Volkenburgh, E.; Cleland, R. E.
1990-01-01
Cell expansion in dicotyledonous leaves is strongly stimulated by bright white light (WL), at least in part as a result of light-induced acidification of the cell walls. It has been proposed that photosynthetic reactions are required for light-stimulated transport processes across plasma membranes of leaf cells, including proton excretion. The involvement of photosynthesis in growth and wall acidification of primary leaves of bean has been tested by inhibiting photosynthesis in two ways: by reducing chlorophyll content of intact plants with tentoxin (TX) and by treating leaf discs with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). Exposure to bright WL stimulated growth of intact leaves of TX-treated plants. Discs excised from green as well as from TX-or DCMU-treated leaves also responded by growing faster in WL, as long as exogenous sucrose was supplied to the photosynthetically inhibited tissues. The WL caused acidification of the epidermal surface of intact TX-leaves, but acidification of the incubation medium by mesophyll cells only occurred when photosynthesis was not inhibited. It is concluded that light-stimulated cell enlargement of bean leaves, and the necessary acidification of epidermal cell walls, are mediated by a pigment other than chlorophyll. Light-induced proton excretion by mesophyll cells, on the other hand, may require both a photosynthetic product (or exogenous sugars) and a non-photosynthetic light effect.
Fiber-Optic SPR Immunosensors Tailored To Target Epithelial Cells through Membrane Receptors.
Malachovská, Viera; Ribaut, Clotilde; Voisin, Valérie; Surin, Mathieu; Leclère, Philippe; Wattiez, Ruddy; Caucheteur, Christophe
2015-06-16
We report, for the first time, the use of a surface plasmon resonance (SPR) fiber-optic immunosensor for selective cellular detection through membrane protein targeting. The sensor architecture lies on gold-coated tilted fiber Bragg gratings (Au-coated TFBGs) photoimprinted in the fiber core via a laser technique. TFBGs operate in the near-infrared wavelength range at ∼1550 nm, yielding optical and SPR sensing characteristics that are advantageous for the analyses of cellular bindings and technical compatibility with relatively low-cost telecommunication-grade measurement devices. In this work, we take consider their numerous assets to figure out their ability to selectively detect intact epithelial cells as analytes in cell suspensions in the range of 2-5 × 10(6) cells mL(-1). For this, the probe was first thermally annealed to ensure a strong adhesion of the metallic coating to the fiber surface. Its surface was then functionalized with specific monoclonal antibodies via alkanethiol self-assembled monolayers (SAMs) against extracellular domain of epidermal growth factor receptors (EGFRs) and characterized by peak force tapping atomic force microscopy. A differential diagnosis has been demonstrated between two model systems. The developed immunosensors were able to monitor, in real time, the specific attachment of single intact cells in concentrations from 3 × 10(6) cells mL(-1). Such results confirm that the developed probe fits the lab-on-fiber technology and has the potential to be used as a disposable device for in situ and real-time clinical diagnosis.
Moralli, Daniela; Monaco, Zoia L
2015-02-01
De novo artificial chromosomes expressing genes have been generated in human embryonic stem cells (hESc) and are maintained following differentiation into other cell types. Human artificial chromosomes (HAC) are small, functional, extrachromosomal elements, which behave as normal chromosomes in human cells. De novo HAC are generated following delivery of alpha satellite DNA into target cells. HAC are characterized by high levels of mitotic stability and are used as models to study centromere formation and chromosome organisation. They are successful and effective as gene expression vectors since they remain autonomous and can accommodate larger genes and regulatory regions for long-term expression studies in cells unlike other viral gene delivery vectors currently used. Transferring the essential DNA sequences for HAC formation intact across the cell membrane has been challenging for a number of years. A highly efficient delivery system based on HSV-1 amplicons has been used to target DNA directly to the ES cell nucleus and HAC stably generated in human embryonic stem cells (hESc) at high frequency. HAC were detected using an improved protocol for hESc chromosome harvesting, which consistently produced high-quality metaphase spreads that could routinely detect HAC in hESc. In tumour cells, the input DNA often integrated in the host chromosomes, but in the host ES genome, it remained intact. The hESc containing the HAC formed embryoid bodies, generated teratoma in mice, and differentiated into neuronal cells where the HAC were maintained. The HAC structure and chromatin composition was similar to the endogenous hESc chromosomes. This review will discuss the technological advances in HAC vector delivery using HSV-1 amplicons and the improvements in the identification of de novo HAC in hESc.
Tueller, Daniel J; Harley, Jackson S; Hancock, Chad R
2017-10-21
Curcumin may improve blood glucose management, but the mechanism is not fully established. We demonstrated that curcumin (40 μM) reduced the mitochondrial coupling efficiency (percentage of oxygen consumption coupled to ATP synthesis) of intact skeletal muscle cells. A 30-minute pretreatment with curcumin reduced mitochondrial coupling efficiency by 17.0 ± 0.4% relative to vehicle (p < 0.008). Curcumin pretreatment also decreased the rate of hydrogen peroxide emission by 43 ± 13% compared to vehicle (p < 0.05). Analysis of cell respiration in the presence of curcumin revealed a 40 ± 4% increase in the rate of oxygen consumption upon curcumin administration (p < 0.05 compared to vehicle). No difference in mitochondrial coupling efficiency was observed between vehicle- and curcumin-pretreated cells after permeabilization of cell membranes (p > 0.7). The interaction between curcumin and ursolic acid, another natural compound that may improve blood glucose management, was also examined. Pretreatment with ursolic acid (0.12 μM) increased the mitochondrial coupling efficiency of intact cells by 4.1 ± 1.1% relative to vehicle (p < 0.008) and attenuated the effect of curcumin when the two compounds were used in combination. The observed changes to mitochondrial coupling efficiency and hydrogen peroxide emission were consistent with the established effects of curcumin on blood glucose control. Our findings also show that changes to mitochondrial coupling efficiency after curcumin pretreatment may go undetected unless cells are assessed in the intact condition. Copyright © 2017 Elsevier Inc. All rights reserved.
Effects of reactive Mn(III)-oxalate complexes on structurally intact plant cell walls
NASA Astrophysics Data System (ADS)
Summering, J. A.; Keiluweit, M.; Goni, M. A.; Nico, P. S.; Kleber, M.
2011-12-01
Lignin components in the in plant litter are commonly assumed to have longer residence times in soil than many other compounds, which are supposedly, more easily degradable. The supposed resistance of lignin compounds to decomposition is generally attributed to the complex chain of biochemical steps required to create footholds in the non-porous structure of ligno-cellulose in cell walls. Interestingly, Mn(III) complexes have shown the ability to degrade ligno-cellulose. Mn(III) chelated by ligands such as oxalate are soluble oxidizers with a high affinity for lignin structures. Here we determined (i) the formation and decay kinetics of the Mn(III)-oxalate complexes in aqueous solution and (ii) the effects that these complexes have on intact ligno-cellulose. UV/vis spectroscopy and iodometric titrations confirmed the transient nature of Mn(III)-oxalate complexes with decay rates being in the order of hours. Zinnia elegans tracheary elements - a model ligno-cellulose substrate - were treated with Mn(III)-oxalate complexes in a newly developed flow-through reactor. Soluble decomposition products released during the treatment were analyzed by GC/MS and the degree of cell integrity was measured by cell counts, pre- and post-treatment counts indicate a decrease in intact Zinnia elegans as a result of Mn(III)-treatment. GC/MS results showed the release of a multitude of solubilized lignin breakdown products from plant cell walls. We conclude that Mn(III)-oxalate complexes have the ability to lyse intact plant cells and solubilize lignin. Lignin decomposition may thus be seen as resource dependent, with Mn(III) a powerful resource that should be abundant in terrestrial characterized by frequent redox fluctuations.
Smooth muscle-protein translocation and tissue function.
Eddinger, Thomas J
2014-09-01
Smooth muscle (SM) tissue is a complex organization of multiple cell types and is regulated by numerous signaling molecules (neurotransmitters, hormones, cytokines, etc.). SM contractile function can be regulated via expression and distribution of the contractile and cytoskeletal proteins, and activation of any of the second messenger pathways that regulate them. Spatial-temporal changes in the contractile, cytoskeletal or regulatory components of SM cells (SMCs) have been proposed to alter SM contractile activity. Ca(2+) sensitization/desensitization can occur as a result of changes at any of these levels, and specific pathways have been identified at all of these levels. Understanding when and how proteins can translocate within the cytoplasm, or to-and-from the plasmalemma and the cytoplasm to alter contractile activity is critical. Numerous studies have reported translocation of proteins associated with the adherens junction and G protein-coupled receptor activation pathways in isolated SMC systems. Specific examples of translocation of vinculin to and from the adherens junction and protein kinase C (PKC) and 17 kDa PKC-potentiated inhibitor of myosin light chain phosphatase (CPI-17) to and from the plasmalemma in isolated SMC systems but not in intact SM tissues are discussed. Using both isolated SMC systems and SM tissues in parallel to pursue these studies will advance our understanding of both the role and mechanism of these pathways as well as their possible significance for Ca(2+) sensitization in intact SM tissues and organ systems. © 2014 Wiley Periodicals, Inc.
Zhang, Shuwen; Lv, Jiaping; Menghe, Bilige; Zhang, Heping; Zhang, Liyu; Song, Jinhui; Wang, Zhifei
2009-02-01
We evaluated antioxidative effect of two antioxidative strains, isolated from the traditional fermented dairy products. Both intact cells and cell-free extract of Lactobacillus casei subsp. casei SY13 and Lactobacillus delbrueckii subsp. bulgaricus LJJ were used to study the inhibited effect of linoleic acid peroxidation, the ability of scavenging 1,1-diphenyl-2-picrylhydrazyl radical, hydroxyl radical, superoxide anion radical,the ability of tolerancing hydrogen peroxide and the chelating capacity of ferrous ion and reducting activity. Lactobacillus casei subsp. casei SY13 and Lactobacillus delbrueckii subsp. bulgaricus LJJ demonstrated highest inhibition on linoleic acid peroxidation by 62.95% and 66.16%, respectively. The cell-free extract showed excellent scavenging superoxide anion and hydroxyl radicals activity. However, the intact cells of Lactobacillus delbrueckii subsp. bulgaricus LJJ scavenging superoxide and hydroxyl radicals capacity were not detected. The intact cells of Lactobacillus casei subsp. casei SY13 and Lactobacillus delbrueckii subsp. bulgaricus LJJ on 1,1-diphenyl-2-picrylhydrazyl radical scavenging ability and chelating ferrous ion capacity were superior to cell-free extract. The highest reduced activety was equivalent to 305 micromol/L and 294 micromol/L L-cysteine. Two latobacilli strains had good antioxidant capacity. As potential probiotics, it can be used in future.
Acetylcholine and acetylcarnitine transport in peritoneum: Role of the SLC22A4 (OCTN1) transporter.
Pochini, Lorena; Scalise, Mariafrancesca; Di Silvestre, Sara; Belviso, Stefania; Pandolfi, Assunta; Arduini, Arduino; Bonomini, Mario; Indiveri, Cesare
2016-04-01
A suitable experimental tool based on proteoliposomes for assaying Organic Cation Transporter Novel member 1 (OCTN1) of peritoneum was pointed out. OCTN1, recently acknowledged as acetylcholine transporter, was immunodetected in rat peritoneum. Transport was assayed following flux of radiolabelled TEA, acetylcholine or acetylcarnitine in proteoliposomes reconstituted with peritoneum extract. OCTN1 mediated, besides TEA, also acetylcholine and a slower acetylcarnitine transport. External sodium inhibited acetylcholine uptake but not its release from proteoliposomes. Differently, sodium did not affect acetylcarnitine uptake. These results suggested that physiologically, acetylcholine should be released while acetylcarnitine was taken up by peritoneum cells. Transport was impaired by OCTN1 inhibitors, butyrobetaine, spermine, and choline. Biotin was also found as acetylcholine transport inhibitor. Anti-OCTN1 antibody specifically inhibited acetylcholine transport confirming the involvement of OCTN1. The transporter was also immunodetected in human mesothelial primary cells. Extract from these cells was reconstituted in proteoliposomes. Transport features very similar to those found with rat peritoneum were observed. Validation of the proteoliposome model for peritoneal transport study was then achieved assaying transport in intact mesothelial cells. TEA, butyrobetaine and Na(+) inhibited acetylcholine transport in intact cells while efflux was Na(+) insensitive. Therefore transport features in intact cells overlapped those found in proteoliposomes. Copyright © 2015 Elsevier B.V. All rights reserved.
Chaney, L K; Jacobson, B S
1983-08-25
Plasma membrane (PM) can be isolated by binding to a positively charged solid support. Using this concept, we have developed a novel method of PM isolation using cationic colloidal silica. The method is designed for the comparative study of various physiological states of PM and for transbilayer protein mapping. The procedure consists of coating intact cells with a dense pellicle of silica particles and polyanion. Since cells remain intact during pellicle formation, the external face of the PM is selectively coated. The pellicle greatly enhances PM density and stabilizes it against vesiculation or lateral reorientation. Upon cell lysis, large open sheets of PM are rapidly isolated by centrifugation. PM from Dictyostelium discoideum was prepared by this method. Marker enzymes, cell surface labeling and microscopy demonstrate that the PM was isolated in high yield (70-80%) with a 10-17-fold purification and only low levels of cytoplasmic contamination. The pellicle remains intact during cell lysis and membrane isolation, shielding the external surface of the membranes up to 92% from chemical or enzymatic attack. The PM can thus be labeled selectively from inside and/or outside. Transmembrane proteins were identified in Dictyostelium PM by means of lactoperoxidase iodination and autoradiography.
NASA Astrophysics Data System (ADS)
David, Peter H.; Hommel, Marcel; Miller, Louis H.; Udeinya, Iroka J.; Oligino, Lynette D.
1983-08-01
Sequestration, the adherence of infected erythrocytes containing late developmental stages of the parasite (trophozoites and schizonts) to the endothelium of capillaries and venules, is characteristic of Plasmodium falciparum infections. We have studied two host factors, the spleen and antibody, that influence sequestration of P. falciparum in the squirrel monkey. Sequestration of trophozoite/schizont-infected erythrocytes that occurs in intact animals is reduced in splenectomized animals; in vitro, when infected blood is incubated with monolayers of human melanoma cells, trophozoite/schizont-infected erythrocytes from intact animals but not from splenectomized animals bind to the melanoma cells. The switch in cytoadherence characteristics of the infected erythrocytes from nonbinding to binding occurs with a cloned parasite. Immune serum can inhibit and reverse in vitro binding to melanoma cells of infected erythrocytes from intact animals. Similarly, antibody can reverse in vivo sequestration as shown by the appearance of trophozoite/schizont-infected erythrocytes in the peripheral blood of an intact animal after inoculation with immune serum. These results indicate that the spleen modulates the expression of parasite alterations of the infected erythrocyte membrane responsible for sequestration and suggest that the prevention and reversal of sequestration could be one of the effector mechanisms involved in antibody-mediated protection against P. falciparum malaria.
Yang, Xuejun; Zhang, Wenhao; Dong, Ming; Boubriak, Ivan; Huang, Zhenying
2011-01-01
Despite proposed ecological importance of mucilage in seed dispersal, germination and seedling establishment, little is known about the role of mucilage in seed pre-germination processes. Here we investigated the role of mucilage in assisting achene cells to repair DNA damage during dew deposition in the desert. Artemisia sphaerocephala achenes were first treated γ-irradiation to induce DNA damage, and then they were repaired in situ in the desert dew. Dew deposition duration can be as long as 421 min in early mornings. Intact achenes absorbed more water than demucilaged achenes during dew deposition and also carried water for longer time following sunrise. After 4-d dew treatment, DNA damage of irradiated intact and demucilaged achenes was reduced to 24.38% and 46.84%, respectively. The irradiated intact achenes exhibited much higher DNA repair ratio than irradiated demucilaged achenes. Irradiated intact achenes showed an improved germination and decreased nonviable achenes after dew treatment, and significant differences in viability between the two types of achenes were detected after 1020 min of dew treatment. Achene mucilage presumably plays an ecologically important role in the life cycle of A. sphaerocephala by aiding DNA repair of achene cells in genomic-stressful habitats. PMID:21912689
Povey, Jane F; O'Malley, Christopher J; Root, Tracy; Martin, Elaine B; Montague, Gary A; Feary, Marc; Trim, Carol; Lang, Dietmar A; Alldread, Richard; Racher, Andrew J; Smales, C Mark
2014-08-20
Despite many advances in the generation of high producing recombinant mammalian cell lines over the last few decades, cell line selection and development is often slowed by the inability to predict a cell line's phenotypic characteristics (e.g. growth or recombinant protein productivity) at larger scale (large volume bioreactors) using data from early cell line construction at small culture scale. Here we describe the development of an intact cell MALDI-ToF mass spectrometry fingerprinting method for mammalian cells early in the cell line construction process whereby the resulting mass spectrometry data are used to predict the phenotype of mammalian cell lines at larger culture scale using a Partial Least Squares Discriminant Analysis (PLS-DA) model. Using MALDI-ToF mass spectrometry, a library of mass spectrometry fingerprints was generated for individual cell lines at the 96 deep well plate stage of cell line development. The growth and productivity of these cell lines were evaluated in a 10L bioreactor model of Lonza's large-scale (up to 20,000L) fed-batch cell culture processes. Using the mass spectrometry information at the 96 deep well plate stage and phenotype information at the 10L bioreactor scale a PLS-DA model was developed to predict the productivity of unknown cell lines at the 10L scale based upon their MALDI-ToF fingerprint at the 96 deep well plate scale. This approach provides the basis for the very early prediction of cell lines' performance in cGMP manufacturing-scale bioreactors and the foundation for methods and models for predicting other mammalian cell phenotypes from rapid, intact-cell mass spectrometry based measurements. Copyright © 2014 Elsevier B.V. All rights reserved.
[Modification of red cell membranes with perftoran in papaine emphysema in rats].
Zoirova, N I; Arifkhanov, S I; Rakhmatullaev, Kh U; Tadzhikhodzhaev, Iu Kh
2006-01-01
Papaine emphysema model on 75 mongrel mature white male rats (10 intact rats were control) was used to study the size, form, surface architechtonics, deformability and state of membrane-receptor erythrocyte complex before and after perftoran intraperitoneal administration. Perftoran emulsion produced a membrane-modulating effect with recovery of hormonal reception sensitivity, PHA-, cAMP-receptor systems as well as restoration of erythrocytic normocytosis and diskocytosis.
Binette, Tanya M; Seeberger, Karen L; Lyon, James G; Rajotte, Ray V; Korbutt, Gregory S
2004-07-01
Porcine islets represent an alternative source of insulin-producing tissue, however, porcine endogenous retrovirus (PERV) remains a concern. In this study, SCID mice were transplanted with nonencapsulated (non-EC), microencapsulated (EC) or macroencapsulated (in a TheraCyte trade mark device) neonatal porcine islets (NPIs), and peripheral tissues were screened for presence of viral DNA and mRNA. To understand the role of an intact immune system in PERV incidence, mice with established NPI grafts were reconstituted with splenocytes. Peripheral tissues were screened for PERV and porcine DNA using PCR. Tissues with positive DNA were analyzed for PERV mRNA using RT-PCR. No significant difference was observed between non-EC and EC transplants regarding presence of PERV or porcine-specific DNA or mRNA. In reconstituted animals, little PERV or porcine DNA, and no PERV mRNA was detected. No PERV or porcine-specific DNA was observed in animals implanted with a TheraCyte trade mark device. In conclusion, an intact immune system significantly lowered the presence of PERV. Microencapsulation of islets did not alter PERV presence, however, macroencapsulation in the TheraCyte device did. Lower PERV incidence coincided with lower porcine DNA in peripheral tissues, linking the presence of PERV to migration of porcine cells.
NASA Astrophysics Data System (ADS)
Kim, Kyoohyun; Choe, Kibaek; Park, Inwon; Kim, Pilhan; Park, Yongkeun
2016-09-01
Intravital microscopy is an essential tool that reveals behaviours of live cells under conditions close to natural physiological states. So far, although various approaches for imaging cells in vivo have been proposed, most require the use of labelling and also provide only qualitative imaging information. Holographic imaging approach based on measuring the refractive index distributions of cells, however, circumvent these problems and offer quantitative and label-free imaging capability. Here, we demonstrate in vivo two- and three-dimensional holographic imaging of circulating blood cells in intact microcapillaries of live mice. The measured refractive index distributions of blood cells provide morphological and biochemical properties including three-dimensional cell shape, haemoglobin concentration, and haemoglobin contents at the individual cell level. With the present method, alterations in blood flow dynamics in live healthy and sepsis-model mice were also investigated.
A quantitative metabolomics peek into planarian regeneration.
Natarajan, Nivedita; Ramakrishnan, Padma; Lakshmanan, Vairavan; Palakodeti, Dasaradhi; Rangiah, Kannan
2015-05-21
The fresh water planarian species Schmidtea mediterranea is an emerging stem cell model because of its capability to regenerate a whole animal from a small piece of tissue. It is one of the best model systems to address the basic mechanisms essential for regeneration. Here, we are interested in studying the roles of various amines, thiols and nucleotides in planarian regeneration, stem cell function and growth. We developed mass spectrometry based quantitative methods and validated the differential enrichment of 35 amines, 7 thiol metabolites and 4 nucleotides from both intact and regenerating planarians. Among the amines, alanine in sexual and asparagine in asexual are the highest (>1000 ng/mg) in the intact planarians. The levels of thiols such as cysteine and GSH are 651 and 1107 ng mg(-1) in planarians. Among the nucleotides, the level of cGMP is the lowest (0.03 ng mg(-1)) and the level of AMP is the highest (187 ng mg(-1)) in both of the planarian strains. We also noticed increasing levels of amines in both anterior and posterior regenerating planarians. The blastema from day 3 regenerating planarians also showed higher amounts of many amines. Interestingly, the thiol (cysteine and GSH) levels are well maintained during planarian regeneration. This suggests an inherent and effective mechanism to control induced oxidative stress because of the robust regeneration and stem cell proliferation. Like in intact planarians, the level of cGMP is also very low in regenerating planarians. Surprisingly, the levels of amines and thiols in head regenerating blastemas are ∼3 times higher compared to those for tail regenerating blastemas. Thus our results strongly indicate the potential roles of amines, thiols and nucleotides in planarian regeneration.
Ratio of inner cell mass and trophoblastic cells in demi- and intact pig embryos.
Tao, T; Reichelt, B; Niemann, H
1995-07-01
Pig morulae, early blastocysts and blastocysts were microsurgically bisected to produce zona-free demi-embryos or remained nonbisected with or without zona pellucida, and the presence of inner cell mass cells was determined using a differential fluorochrome staining technique. After 24 h of in vitro culture, all demi-embryos were classified into three categories, based on morphological criteria: 1, excellent; 2, fair; and 3, degenerated. The average number of total cells and inner cell mass cells in intact embryos cultured without zona pellucida for 24 h was higher (P < 0.05) than that for those with zona pellucida in morulae and early blastocysts. The percentage of demi-embryos without inner cell mass cells in these different morphological categories was 18.7%, 22.2% and 29.8% for morulae, respectively; 3.8%, 16.7% and 30.8% for early blastocysts, respectively; and 3.7%, 32.0% and 36.4% for blastocysts, respectively. The percentage of demi-embryos without inner cell mass cells was lower (P < 0.01) in demi-embryos classified in category 1 compared with category 3 in early blastocysts and in category 1 compared with categories 2 and 3 in blastocysts. Significant differences in the total number of cells and the number of inner cell mass cells were apparent among the three morphological categories of demi-embryos derived from morulae, early blastocysts and blastocysts. The ratio of total cells to inner cell mass cells was similar among intact pig embryos and the different morphological categories of demi-embryos derived from morulae, early blastocysts and blastocysts, with the exception of that between demi-blastocysts of category 1 and the other groups.(ABSTRACT TRUNCATED AT 250 WORDS)
Salehen, Nur'ain; Stover, Cordula
2008-01-24
The complement system, a well-characterised arm of the innate immune system, significantly influences the adaptive immune response via direct cell-cell interaction and maintenance of lymphoid organ architecture. Development of vaccines is a major advance in modern health care. In this review, we highlight the importance of the marginal zone in response to both, polysaccharide and conjugated vaccines, and discuss the relevance of complement herein, based on findings obtained from animal models with specific deletions of certain complement components and from vaccination reports of complement-deficient individuals. We conclude that both, intactness of the complement system and maturity of expression of its components, are relatively more important to aid in the immune response to polysaccharide vaccine than to conjugated vaccines.
Kuznetsov, A V
1992-09-01
Dendritic cells of central lymph of rabbits have been identified according to the form of the cell body, characteristics of formation and branchiness of its processes in health, in atherosclerosis, its correction with radon, polyphenol preparations made of Sanguisorba officinalis and in combination of the latter. Two main types of dendritic cells have been distinguished. Type I is characterized by a rounded body with clear outlines, protrusions and one compact process. Such cells are often found in lymph of intact animals. Type II has a cell body of various forms with two and more compact or branching processes. This type is mainly detected in atherosclerosis and its correction. The prevalence of the above phenotypes of dendritic cells is attributed to the response of the immune system to atherosclerosis and its correction.
Le Prell, Colleen G.; Kawamoto, Kohei; Raphael, Yehoash; Dolan, David F.
2011-01-01
When sinusoidal electric stimulation is applied to the intact cochlea, a frequency-specific acoustic emission can be recorded in the ear canal. Acoustic emissions are produced by basilar membrane motion, and have been used to suggest a corresponding acoustic sensation termed “electromotile hearing.” Electromotile hearing has been specifically attributed to electric stimulation of outer hair cells in the intact organ of Corti. To determine the nature of the auditory perception produced by electric stimulation of a cochlea with intact outer hair cells, we tested guinea pigs in a psychophysical task. First, subjects were trained to report detection of sinusoidal acoustic stimuli and dynamic range was assessed using response latency. Subjects were then implanted with a ball electrode placed into scala tympani. Following the surgical implant procedure, subjects were transferred to a task in which acoustic signals were replaced by sinusoidal electric stimulation, and dynamic range was assessed again. Finally, the ability of acoustic pure-tone stimuli to mask the detection of the electric signals was assessed. Based on the masking effects, we conclude that sinusoidal electric stimulation of the intact cochlea results in perception of a tonal (rather than a broad-band or noisy) sound at a frequency of 8 kHz or above. PMID:17225416
Shigeri, Yasushi; Matsui, Tatsunobu; Watanabe, Kunihiko
2009-11-01
In order to develop a practical method for the decomposition of intact chicken feathers, a moderate thermophile strain, Meiothermus ruber H328, having strong keratinolytic activity, was used in a bio-type garbage-treatment machine working with an acidulocomposting process. The addition of strain H328 cells (15 g) combined with acidulocomposting in the garbage machine resulted in 70% degradation of intact chicken feathers (30 g) within 14 d. This degradation efficiency is comparable to a previous result employing the strain as a single bacterium in flask culture, and it indicates that strain H328 can promote intact feather degradation activity in a garbage machine currently on the market.
Automated cell-type classification in intact tissues by single-cell molecular profiling
2018-01-01
A major challenge in biology is identifying distinct cell classes and mapping their interactions in vivo. Tissue-dissociative technologies enable deep single cell molecular profiling but do not provide spatial information. We developed a proximity ligation in situ hybridization technology (PLISH) with exceptional signal strength, specificity, and sensitivity in tissue. Multiplexed data sets can be acquired using barcoded probes and rapid label-image-erase cycles, with automated calculation of single cell profiles, enabling clustering and anatomical re-mapping of cells. We apply PLISH to expression profile ~2900 cells in intact mouse lung, which identifies and localizes known cell types, including rare ones. Unsupervised classification of the cells indicates differential expression of ‘housekeeping’ genes between cell types, and re-mapping of two sub-classes of Club cells highlights their segregated spatial domains in terminal airways. By enabling single cell profiling of various RNA species in situ, PLISH can impact many areas of basic and medical research. PMID:29319504
Melanocortin signaling and anorexia in chronic disease states.
Wisse, Brent E; Schwartz, Michael W; Cummings, David E
2003-06-01
Data from both rodent models and humans suggest that intact neuronal melanocortin signaling is essential to prevent obesity, as mutations that decrease the melanocortin signal within the brain induce hyperphagia and excess body fat accumulation. Melanocortins are also involved in the pathogenesis of disorders at the opposite end of the spectrum of energy homeostasis, the anorexia and weight loss associated with inflammatory and neoplastic disease processes. Studies using melanocortin antagonists (SHU9119 or agouti-related peptide) or genetic approaches (melanocortin-4 receptor null mice) suggest that intact melanocortin tone is required for anorexia and weight loss induced by injected lipopolysaccharide (an inflammatory gram-negative bacterial cell wall product) or by implantation of prostate or lung cancer cells. Although the precise mechanism whereby peripheral inflammatory/neoplastic factors activate the melanocortin system remains unknown, the proinflammatory cytokines (interleukin-1, interleukin-6, and tumor necrosis factor-alpha) that are produced in the hypothalamus of rodents during both inflammatory and neoplastic disease processes likely play a role. The data presented in this paper summarize findings that implicate neuronal melanocortin signaling in inflammatory anorexia.
Liu, Jing; Zhao, Yong; Ge, Wei; Zhang, Pengfei; Liu, Xinqi; Zhang, Weidong; Hao, Yanan; Yu, Shuai; Li, Lan; Chu, Meiqiang; Min, Lingjiang; Zhang, Hongfu; Shen, Wei
2017-06-27
The impacts of zinc oxide nanoparticles on embryonic development following oocyte stage exposure are unknown and the underlying mechanisms are sparsely understood. In the current investigation, intact nanoparticles were detected in ovarian tissue in vivo and cultured cells in vitro under zinc oxide nanoparticles treatment. Zinc oxide nanoparticles exposure during the oocyte stage inhibited embryonic development. Notably, in vitro culture data closely matched in vivo embryonic data, in that the impairments caused by Zinc oxide nanoparticles treatment passed through cell generations; and both gamma-H2AX and NF-kappaB pathways were involved in zinc oxide nanoparticles caused embryo-toxicity. Copper oxide and silicon dioxide nanoparticles have been used to confirm that particles are important for the toxicity of zinc oxide nanoparticles. The toxic effects of zinc oxide nanoparticles emanate from both intact nanoparticles and Zn2+. Our investigation along with others suggests that zinc oxide nanoparticles are toxic to the female reproductive system [ovaries (oocytes)] and subsequently embryo-toxic and that precaution should be taken regarding human exposure to their everyday use.
van Unen, Jakobus; Woolard, Jeanette; Rinken, Ago; Hoffmann, Carsten; Hill, Stephen J; Goedhart, Joachim; Bruchas, Michael R; Bouvier, Michel; Adjobo-Hermans, Merel J W
2015-09-01
The last frontier for a complete understanding of G-protein-coupled receptor (GPCR) biology is to be able to assess GPCR activity, interactions, and signaling in vivo, in real time within biologically intact systems. This includes the ability to detect GPCR activity, trafficking, dimerization, protein-protein interactions, second messenger production, and downstream signaling events with high spatial resolution and fast kinetic readouts. Resonance energy transfer (RET)-based biosensors allow for all of these possibilities in vitro and in cell-based assays, but moving RET into intact animals has proven difficult. Here, we provide perspectives on the optimization of biosensor design, of signal detection in living organisms, and the multidisciplinary development of in vitro and cell-based assays that more appropriately reflect the physiologic situation. In short, further development of RET-based probes, optical microscopy techniques, and mouse genome editing hold great potential over the next decade to bring real-time in vivo GPCR imaging to the forefront of pharmacology. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.
Effects of benzoic and cinnamic acids on membrane permeability of soybean roots.
Baziramakenga, R; Leroux, G D; Simard, R R
1995-09-01
Benzoic (BEN) and cinnamic (CIN) acids are commonly found in soils and are considered as strong allelochemicals. Published information suggest that BEN and CIN and other phenolic acids decrease plant growth in part by suppressing nutrient absorption. However, studies on the mechanism of action were not conclusive. We examined the effects of BEN and CIN on the cell plasma membrane in intact soybean (Glycine max L. cv. Maple Bell) seedlings. Treating intact root systems with BEN or CIN rapidly increased electrolyte leakage and ultraviolet absorption of materials into the surrounding solution. After 12 hr of treatment, BEN and CIN lowered the extracellular sulfhydryl group content in roots. The two allelochemicals induced lipid peroxidation, which resulted from free radical formation in plasma membranes, inhibition of catalase and peroxidase activities, and sulfhydryl group depletion. Oxidation or cross-linking of plasma membrane sulfhydryl groups is the first mode of action of both compounds. The BEN- and CIN-induced decrease in soybean nutrient absorption may be a consequence of damage to cell membrane integrity caused by a decrease in sulfhydryl groups followed by lipid peroxidation.
Magnetic targeting of nanoparticles across the intact blood–brain barrier
Kong, Seong Deok; Lee, Jisook; Ramachandran, Srinivasan; Eliceiri, Brian P.; Shubayev, Veronica I.; Lal, Ratnesh; Jin, Sungho
2015-01-01
Delivery of therapeutic or diagnostic agents across an intact blood–brain barrier (BBB) remains a major challenge. Here we demonstrate in a mouse model that magnetic nanoparticles (MNPs) can cross the normal BBB when subjected to an external magnetic field. Following a systemic administration, an applied external magnetic field mediates the ability of MNPs to permeate the BBB and accumulate in a perivascular zone of the brain parenchyma. Direct tracking and localization inside endothelial cells and in the perivascular extracellular matrix in vivo was established using fluorescent MNPs. These MNPs were inert and associated with low toxicity, using a non-invasive reporter for astrogliosis, biochemical and histological studies. Atomic force microscopy demonstrated that MNPs were internalized by endothelial cells, suggesting that trans-cellular trafficking may be a mechanism for the MNP crossing of the BBB observed. The silica-coated magnetic nanocapsules (SiMNCs) allow on-demand drug release via remote radio frequency (RF) magnetic field. Together, these results establish an effective strategy for regulating the biodistribution of MNPs in the brain through the application of an external magnetic field. PMID:23063548
Liu, Jing; Zhao, Yong; Ge, Wei; Zhang, Pengfei; Liu, Xinqi; Zhang, Weidong; Hao, Yanan; Yu, Shuai; Li, Lan; Chu, Meiqiang; Min, Lingjiang; Zhang, Hongfu; Shen, Wei
2017-01-01
The impacts of zinc oxide nanoparticles on embryonic development following oocyte stage exposure are unknown and the underlying mechanisms are sparsely understood. In the current investigation, intact nanoparticles were detected in ovarian tissue in vivo and cultured cells in vitro under zinc oxide nanoparticles treatment. Zinc oxide nanoparticles exposure during the oocyte stage inhibited embryonic development. Notably, in vitro culture data closely matched in vivo embryonic data, in that the impairments caused by Zinc oxide nanoparticles treatment passed through cell generations; and both gamma-H2AX and NF-kappaB pathways were involved in zinc oxide nanoparticles caused embryo-toxicity. Copper oxide and silicon dioxide nanoparticles have been used to confirm that particles are important for the toxicity of zinc oxide nanoparticles. The toxic effects of zinc oxide nanoparticles emanate from both intact nanoparticles and Zn2+. Our investigation along with others suggests that zinc oxide nanoparticles are toxic to the female reproductive system [ovaries (oocytes)] and subsequently embryo-toxic and that precaution should be taken regarding human exposure to their everyday use. PMID:28487501
Zhang, Jinjie; Li, Jianbo; Ju, Yuan; Fu, Yao; Gong, Tao; Zhang, Zhirong
2015-02-02
Phospholipid complex (PLC) based self-nanoemulsifying drug delivery system (PLC-SNEDDS) has been developed for efficient delivery of drugs with poor solubility and low permeability. In the present study, a BCS class IV drug and a P-glycoprotein (P-gp) substrate, morin, was selected as the model drug to elucidate the oral absorption mechanism of PLC-SNEDDS. PLC-SNEDDS was superior to PLC in protecting morin from degradation by intestinal enzymes in vitro. In situ perfusion study showed increased intestinal permeability by PLC was duodenum-specific. In contrast, PLC-SNEDDS increased morin permeability in all intestinal segments and induced a change in the main absorption site of morin from colon to ileum. Moreover, ileum conducted the lymphatic transport of PLC-SNEDDS, which was proven by microscopic intestinal visualization of Nile red labeled PLC-SNEDDS and lymph fluids in vivo. Low cytotoxicity and increased Caco-2 cell uptake suggested a safe and efficient delivery of PLC-SNEDDS. The increased membrane fluidity and disrupted actin filaments were closely associated with the increased cell uptake of PLC-SNEDDS. PLC-SNEDDS could be internalized into enterocytes as an intact form in a cholesterol-dependent manner via clathrin-mediated endocytosis and macropinocytosis. The enhanced oral absorption of morin was attributed to the P-gp inhibition by Cremophor RH and the intact internalization of M-PLC-SNEDDS into Caco-2 cells bypassing P-gp recognition. Our findings thus provide new insights into the development of novel nanoemulsions for poorly absorbed drugs.
Hyperandrogenism from an ovarian interstitial-cell tumor in an alpaca.
Gilbert, Rosanne; Kutzler, Michelle; Valentine, Beth A; Semevolos, Stacy
2006-11-01
An 8-year-old intact female Huacaya alpaca (Lama pacos) was presented for recent development of male behavior. Serum testosterone concentration was determined to be 969.1 pg/ml by using radioimmunoassay, while the range in 33 healthy female adult intact alpacas was 11.7-62.1 pg/ml. An ovarian mass was suspected, and an exploratory laparotomy was performed. A tan mass was present on the left ovary. Histologically, the mass was composed of closely packed, plump, polygonal cells with central round nuclei with granular chromatin and abundant eosinophilic finely granular to vesiculate cytoplasm. An ovarian benign interstitial (Leydig) cell tumor was diagnosed.
Quantitative proteomic analysis of intact plastids.
Shiraya, Takeshi; Kaneko, Kentaro; Mitsui, Toshiaki
2014-01-01
Plastids are specialized cell organelles in plant cells that are differentiated into various forms including chloroplasts, chromoplasts, and amyloplasts, and fulfill important functions in maintaining the overall cell metabolism and sensing environmental factors such as sunlight. It is therefore important to grasp the mechanisms of differentiation and functional changes of plastids in order to enhance the understanding of vegetality. In this chapter, details of a method for the extraction of intact plastids that makes analysis possible while maintaining the plastid functions are provided; in addition, a quantitative shotgun method for analyzing the composition and changes in the content of proteins in plastids as a result of environmental impacts is described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capraro, Jessica; Magni, Chiara, E-mail: chiara.magni@unimi.it; Faoro, Franco
Highlights: •A glycaemia-reducing lupin seed protein is internalized by HepG2 cells. •The protein accumulates in the cytosol in an intact form. •The internalized protein is multiply phosphorylated. -- Abstract: Lupin seed γ-Conglutin is a protein capable of reducing glycaemia in mammalians and increasing glucose uptake by model cells. This work investigated whether γ-Conglutin is internalised into the target cells and undergoes any covalent change during the process, as a first step to understanding its mechanism of action. To this purpose, γ-Conglutin-treated and untreated HepG2 cells were submitted to confocal and transmission electron microscopy. Immune-revelation of γ-Conglutin at various intervals revealedmore » its accumulation inside the cytosol. In parallel, 2D-electrophoresis of the cell lysates and antibody reaction of the blotted maps showed the presence of the protein intact subunits inside the treated cells, whilest no trace of the protein was found in the control cells. However, γ-Conglutin-related spots with an unexpectedly low pI were also observed in the maps. These spots were excised, trypsin-treated and submitted to MS/MS spectrometric analysis. The presence of phosphorylated amino acids was detected. These findings, by showing that γ-Conglutin is internalised by HepG2 cells in an intact form and is modified by multiple phosphorylation, open the way to the understanding of the lupin γ-Conglutin insulin-mimetic activity.« less
1991-01-01
Plasmodesmata or intercellular bridges that connect plant cells are cylindrical channels approximately 40 nm in diameter. Running through the center of each is a dense rod, the desmotubule, that is connected to the endoplasmic reticulum of adjacent cells. Fern, Onoclea sensibilis, gametophytes were cut in half and the cut surfaces exposed to the detergent, Triton X 100, then fixed. Although the plasma membrane limiting the plasmodesma is solubilized partially or completely, the desmotubule remains intact. Alternatively, if the cut surface is exposed to papain, then fixed, the desmotubule disappears, but the plasma membrane limiting the plasmodesmata remains intact albeit swollen and irregular in profile. Gametophytes were plasmolyzed, and then fixed. As the cells retract from their cell walls they leave behind the plasmodesmata still inserted in the cell wall. They can break cleanly when the cell proper retracts or can pull away portions of the plasma membrane of the cell with them. Where the desmotubule remains intact, the plasmodesma retains its shape. These images and the results with detergents and proteases indicate that the desmotubule provides a cytoskeletal element for each plasmodesma, an element that not only stabilizes the whole structure, but also limits its size and porosity. It is likely to be composed in large part of protein. Suggestions are made as to why this structure has been selected for in evolution. PMID:1993740
Functional interaction of glutathione S-transferase pi and peroxiredoxin 6 in intact cells.
Zhou, Suiping; Lien, Yu-Chin; Shuvaeva, Tea; DeBolt, Kristine; Feinstein, Sheldon I; Fisher, Aron B
2013-02-01
Peroxiredoxin 6 (Prdx6) is a 1-Cys member of the peroxiredoxin superfamily that plays an important role in antioxidant defense. Glutathionylation of recombinant Prdx6 mediated by π glutathione S-transferase (GST) is required for reduction of the oxidized Cys and completion of the peroxidatic catalytic cycle in vitro. This study investigated the requirement for πGST in intact cells. Transfection with a plasmid construct expressing πGST into MCF7, a cell line that lacks endogenous πGST, significantly increased phospholipid peroxidase activity as measured in cell lysates and protected intact cells against a peroxidative stress. siRNA knockdown indicated that this increased peroxidase activity was Prdx6 dependent. Interaction between πGST and Prdx6, evaluated by the Duolink Proximity Ligation Assay, was minimal under basal conditions but increased dramatically following treatment of cells with the oxidant, tert-butyl hydroperoxide. Interaction was abolished by mutation of C47, the active site for Prdx6 peroxidase activity. Depletion of cellular GSH by treatment of cells with buthionine sulfoximine had no effect on the interaction of Prdx6 and πGST. These data are consistent with the hypothesis that oxidation of the catalytic cysteine in Prdx6 is required for its interaction with πGST and that the interaction plays an important role in regenerating the peroxidase activity of Prdx6. Copyright © 2012 Elsevier Ltd. All rights reserved.
Henmar, H; Lund, G; Lund, L; Petersen, A; Würtzen, P A
2008-01-01
Different vaccines containing intact allergens or chemically modified allergoids as active ingredients are commercially available for specific immunotherapy. Allergoids are claimed to have decreased allergenicity without loss of immunogenicity and this is stated to allow administration of high allergoid doses. We compared the allergenicity and immunogenicity of four commercially available chemically modified grass pollen allergoid products with three commercially available intact grass pollen allergen vaccines. The allergenicity was investigated with immunoglobulin (Ig)E-inhibition and basophil activation assays. Human T cell proliferation and specific IgG-titres following mouse immunizations were used to address immunogenicity. Furthermore, intact allergen vaccines with different contents of active ingredients were selected to study the influence of the allergen dose. In general, a lower allergenicity for allergen vaccines was clearly linked to a reduced immunogenicity. Compared with the vaccine with the highest amount of intact allergen, the allergoids caused reduced basophil activation as well as diminished immunogenicity demonstrated by reduced T cell activation and/or reduced induction of murine grass-specific IgG antibodies. Interestingly, intact allergen vaccines with lower content of active ingredient exhibited similarly reduced allergenicity, while immunogenicity was still higher or equal to that of allergoids. The low allergenicity observed for some allergoids was inherently linked to a significantly lower immunogenic response questioning the rationale behind the chemical modification into allergoids. In addition, the linkage between allergenicity, immunogenicity and dose found for intact allergen vaccines and the immunogen as well as allergenic immune responses observed for allergoids suggest that the modified allergen vaccines do not contain high doses of immunologically active ingredients. PMID:18647321
Gorskaya, Yu F; Danilova, T A; Mezentseva, M V; Shapoval, I M; Narovlyanskii, A N; Nesterenko, V G
2011-06-01
Injection of S. typhimurium antigens significantly (9-fold) increased cloning efficiency and, hence, the content of stromal precursor cells in the spleen as soon as after 24 h. These parameters returned to normal by days 6-15 after immunization. Cultured splenocytes collected from immune (but not intact) animals expressed the genes of proinflammatory cytokines IL-1β (on days 1, 6, 15) and IL-6 (on days 1 and 6), TNF-α (on days 6 and 15), and of IFN-α and IL-18 (on days 6 and 15). The expression of IL-4 gene was suppressed on day 6 after immunization, of IL-10 gene on days 1 and 6, of IL-6 gene on day 15. Hence, no signs of immune response suppression by stromal cells were found in this system. The spectrum and dynamics of the expression of pro- and anti-inflammatory cytokine genes in stromal cell cultures from the spleen of immunized mice seemed to correspond to those needed for support of the immune response to S. typhimurium antigens, observed in immunized animals. The results indicate possible involvement of stromal cells in the realization of immune response in vivo. The increase of stromal precursor cells cloning efficiency in response to antigen injection could not be reproduced in vitro: the presence of S. typhimurium antigens in primary cultures of intact mouse bone marrow and spleen throughout the entire period of culturing ≈ 20-fold reduced cloning efficiency in cultures.
Effect of delignification upon in vitro digestion of forage cellulose.
Darcy, B K; Belyea, R L
1980-10-01
Orchardgrass forages harvested at two maturities (early and late) were ground through two screens (1 and 8 mm) and digested in vitro as intact forage and forage delignified by permanganate oxidation. Initial and residual cell wall, initial and residual cellulose and potentially digestible cellulose were greater in late intact forage than in the early. In the delignified forage, late cut forage had less residual cellulose than did the early, but initial and potentially digestible cellulose were similar. Particle size had less consistent and smaller effects upon cell wall and cellulose than did maturity. Cellulose of intact orchardgrass was 64% digested at 72 h vs 94% for cellulose of delignified orchardgrass. Digestion rate of cellulose was .0197 and .0220 logn units/hr for early and late cut intact forage and .0554 and .0719 logn units/hr for early and late cut delignified forage. Removal of the inhibitory effects of lignin increased the amount of digestible cellulose, increased the rate at which cellulose degraded and decreased the indigestible cellulose residue. Reduction in lignin could greatly improve forage intake and utilization at moderate levels of animal production.
Diolistic labeling of neuronal cultures and intact tissue using a hand-held gene gun
O'Brien, John A; Lummis, Sarah CR
2009-01-01
Diolistic labeling is a highly efficient method for introducing dyes into cells using biolistic techniques. The use of lipophilic carbocyanine dyes, combined with particle-mediated biolistic delivery using a hand-held gene gun, allows non-toxic labeling of multiple cells in both living and fixed tissue. The technique is rapid (labeled cells can be visualized in minutes) and technically undemanding. Here, we provide a detailed protocol for diolistic labeling of cultured human embryonic kidney 293 cells and whole brain using a hand-held gene gun. There are four major steps: (i) coating gold microcarriers with one or more dyes; (ii) transferring the microcarriers into a cartridge to make a bullet; (iii) preparation of cells or intact tissue; and (iv) firing the microcarriers into cells or tissue. The method can be readily adapted to other cell types and tissues. This protocol can be completed in less than 1 h. PMID:17406443
Imaging CD4 T Cell Interstitial Migration in the Inflamed Dermis
Gaylo, Alison; Overstreet, Michael G.; Fowell, Deborah J.
2016-01-01
The ability of CD4 T cells to carry out effector functions is dependent upon the rapid and efficient migration of these cells in inflamed peripheral tissues through an as-yet undefined mechanism. The application of multiphoton microscopy to the study of the immune system provides a tool to measure the dynamics of immune responses within intact tissues. Here we present a protocol for non-invasive intravital multiphoton imaging of CD4 T cells in the inflamed mouse ear dermis. Use of a custom imaging platform and a venous catheter allows for the visualization of CD4 T cell dynamics in the dermal interstitium, with the ability to interrogate these cells in real-time via the addition of blocking antibodies to key molecular components involved in motility. This system provides advantages over both in vitro models and surgically invasive imaging procedures. Understanding the pathways used by CD4 T cells for motility may ultimately provide insight into the basic function of CD4 T cells as well as the pathogenesis of both autoimmune diseases and pathology from chronic infections. PMID:27078264
Synthesis and biological activity of tripeptidyl polyoxins as antifungal agents.
Naider, F; Shenbagamurthi, P; Steinfeld, A S; Smith, H A; Boney, C; Becker, J M
1983-01-01
Three tripeptidyl polyoxins were synthesized and found to inhibit Candida albicans. Compared with the naturally occurring polyoxin D, the three synthetic polyoxins had little effect on chitin synthetase when assayed with a C. albicans membrane preparation. However, all the compounds inhibited growth, affected cell morphology in a manner similar to that of polyoxin D, and were hydrolyzed by cell extracts of C. albicans. Hydrolysis did not occur extracellularly, and at least one of the synthetic polyoxins, leucyl-norleucyl-uracil polyoxin C, inhibited peptide uptake, suggesting entrance into the cell via the peptide transport system. Thus, the intact tripeptidyl polyoxins are inactive prodrugs that are converted to active moieties by cellular enzymes. Images PMID:6362556
Mechanism of uptake of nitrosoureas by L5178Y lymphoblasts in vitro.
Begleiter, A; Lam, H P; Goldenberg, G J
1977-04-01
The mechanism of uptake of nitrosoureas by L5178Y cells in vitro was investigated. A time course of the uptake of radioactivity on incubation of L5178Y lymphoblast with [14C]-1,3-bis(2-chloroethyl)-1-nitrosourea was linear for 30 min and then entered a plateau phase; it was markedly temperature dependent. A similar time course for cells incubated with [14C]ethylene-labeled 1-(2-chlorethyl)-3-cyclohexyl-1-nitrosourea reached equilibrium rapidly, was temperature independent, and resulted in a relatively low level of uptake of radioactivity. However, cells treated with 3-[cyclohexyl-14C]-1-(2-chlorethyl)-1-nitrosourea had a time course that was linear for 30 min, resulted in much higher levels of uptake of radioactivity, and was strongly temperature dependent. These findings, at least for 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea, suggest that some drug decomposition precedes uptake. The percentage of radioactivity found in the cell sap fraction was at least 85% of total cell activity when cells were incubated with any of the three 14C-labeled nitrosoureas. Furthermore, thin-layer chromatography of the cell sap fraction revealed the presence of free intact drug. These findings indicate that intracellular uptake of intact nitrosoureas occurred. A time course of uptake of intact 1,3-bis(2-chloroethyl)-1-nitrosourea reached equilibrium rapidly with cell/medium distribution ratios of 0.2 to 0.6 and was temperature independent. The addition of excess unlabeled 1,3-bis(2-chlorethyl)-1-nitrosourea or 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea had no effect on uptake of [14C]-1,3-bis(2-chloroethyl)-1-nitrosourea, These findings suggest that uptake of intact 1,3-bis(2-chloroethyl)-1-nitrosourea was by passive diffusion. A time course of the uptake of intact 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea with either [14C]ethylene- or ring-labeled drug rapidly reached equilibrium, was temperature independent, and attained a cell/medium ratio greater than unity. Uptake of 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea was sodium independent and was unaffected by the metabolic inhibitors (sodium fluoride, sodium cyanide, or 2,4-dinitrophenol) or by urea, a potential physiological competitor. Furthermore, addition of unlabeled 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea or 1,3-bis(2-chlorethyl)-1-nitrosourea had no effect on uptake of labeled 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea. These findings suggest that uptake of 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea also occurs by passive diffusion.
Rakhra, Kavya; Bachireddy, Pavan; Zabuawala, Tahera; Zeiser, Robert; Xu, Liwen; Kopelman, Andrew; Fan, Alice C.; Yang, Qiwei; Braunstein, Lior; Crosby, Erika; Ryeom, Sandra; Felsher, Dean W.
2010-01-01
Summary Oncogene addiction is thought to occur cell autonomously. Immune effectors are implicated in the induction and restraint of tumorigenesis, but their role in oncogene inactivation mediated tumor regression is unclear. Here, we show that an intact immune system, specifically CD4+ T-cells, is required for the induction of cellular senescence, shut down of angiogenesis and chemokine expression resulting in sustained tumor regression upon inactivation of the MYC or BCR-ABL oncogenes in mouse models of T-cell acute lymphoblastic lymphoma and pro-B-cell leukemia, respectively. Moreover, immune effectors knocked out for thrombospondins failed to induce sustained tumor regression. Hence, CD4+ T-cells are required for the remodeling of the tumor microenvironment through the expression of chemokines, such as thrombospondins, in order to elicit oncogene addiction. PMID:21035406
Fortin, Jérôme; Boehm, Ulrich; Weinstein, Michael B.; Graff, Jonathan M.; Bernard, Daniel J.
2014-01-01
The activin/inhibin system regulates follicle-stimulating hormone (FSH) synthesis and release by pituitary gonadotrope cells in mammals. In vitro cell line data suggest that activins stimulate FSH β-subunit (Fshb) transcription via complexes containing the receptor-regulated SMAD proteins SMAD2 and SMAD3. Here, we used a Cre-loxP approach to determine the necessity for SMAD2 and/or SMAD3 in FSH synthesis in vivo. Surprisingly, mice with conditional mutations in both Smad2 and Smad3 specifically in gonadotrope cells are fertile and produce FSH at quantitatively normal levels. Notably, however, we discovered that the recombined Smad3 allele produces a transcript that encodes the entirety of the SMAD3 C-terminal Mad homology 2 (MH2) domain. This protein behaves similarly to full-length SMAD3 in Fshb transcriptional assays. As the truncated protein lacks the N-terminal Mad homology 1 (MH1) domain, these results show that SMAD3 DNA-binding activity as well as SMAD2 are dispensable for normal FSH synthesis in vivo. Furthermore, the observation that deletion of proximal exons does not remove all SMAD3 function may facilitate interpretation of divergent phenotypes previously described in different Smad3 knockout mouse lines.—Fortin, J., Boehm, U., Weinstein, M. B., Graff, J. M., Bernard, D. J. Follicle-stimulating hormone synthesis and fertility are intact in mice lacking SMAD3 DNA binding activity and SMAD2 in gonadotrope cells. PMID:24308975
Inhibition of PTEN and activation of Akt by menadione.
Yoshikawa, Kyoko; Nigorikawa, Kiyomi; Tsukamoto, Mariko; Tamura, Namiko; Hazeki, Kaoru; Hazeki, Osamu
2007-04-01
Menadione (vitamin K(3)) has been shown to activate Erk in several cell lines. This effect has been shown to be due to the activation of EGF receptors (EGFR) as a result of inhibition of some protein tyrosine phosphatases. In the present study, we examined the effects of menadione on Akt in Chinese hamster ovary cells. The phosphorylation of Akt by menadione was not inhibited by AG1478, an inhibitor of EGFR. Menadione inhibited the lipid phosphatase activity of PTEN in a cell-free system. In an intact cell system, menadione inhibited the effect of transfected PTEN on Akt. Thus, one mechanism of its action was considered the accelerated activation of Akt through inhibition of PTEN. This was not the sole mechanism responsible for the EGFR-independent activation of Akt, because menadione attenuated the rate of Akt dephosphorylation even in PTEN-null PC3 cells. The decelerated inactivation of Akt, probably through inhibition of some tyrosine phosphatases, was considered another mechanism of its action.
Magnetic microfluidic system for isolation of single cells
NASA Astrophysics Data System (ADS)
Mitterboeck, Richard; Kokkinis, Georgios; Berris, Theocharis; Keplinger, Franz; Giouroudi, Ioanna
2015-06-01
This paper presents the design and realization of a compact, portable and cost effective microfluidic system for isolation and detection of rare circulating tumor cells (CTCs) in suspension. The innovative aspect of the proposed isolation method is that it utilizes superparamagnetic particles (SMPs) to label CTCs and then isolate those using microtraps with integrated current carrying microconductors. The magnetically labeled and trapped CTCs can then be detected by integrated magnetic microsensors e.g. giant magnetoresistive (GMR) or giant magnetoimpedance (GMI) sensors. The channel and trap dimensions are optimized to protect the cells from shear stress and achieve high trapping efficiency. These intact single CTCs can then be used for additional analysis, testing and patient specific drug screening. Being able to analyze the CTCs metastasis-driving capabilities on the single cell level is considered of great importance for developing patient specific therapies. Experiments showed that it is possible to capture single labeled cells in multiple microtraps and hold them there without permanent electric current and magnetic field.
Yurek, D M; Hasselrot, U; Cass, W A; Sesenoglu-Laird, O; Padegimas, L; Cooper, M J
2015-01-22
In previous studies that used compacted DNA nanoparticles (DNP) to transfect cells in the brain, we observed higher transgene expression in the denervated striatum when compared to transgene expression in the intact striatum. We also observed that long-term transgene expression occurred in astrocytes as well as neurons. Based on these findings, we hypothesized that the higher transgene expression observed in the denervated striatum may be a function of increased gliosis. Several aging studies have also reported an increase of gliosis as a function of normal aging. In this study we used DNPs that encoded for human glial cell line-derived neurotrophic factor (hGDNF) and either a non-specific human polyubiquitin C (UbC) or an astrocyte-specific human glial fibrillary acidic protein (GFAP) promoter. The DNPs were injected intracerebrally into the denervated or intact striatum of young, middle-aged or aged rats, and glial cell line-derived neurotrophic factor (GDNF) transgene expression was subsequently quantified in brain tissue samples. The results of our studies confirmed our earlier finding that transgene expression was higher in the denervated striatum when compared to intact striatum for DNPs incorporating either promoter. In addition, we observed significantly higher transgene expression in the denervated striatum of old rats when compared to young rats following injections of both types of DNPs. Stereological analysis of GFAP+ cells in the striatum confirmed an increase of GFAP+ cells in the denervated striatum when compared to the intact striatum and also an age-related increase; importantly, increases in GFAP+ cells closely matched the increases in GDNF transgene levels. Thus neurodegeneration and aging may lay a foundation that is actually beneficial for this particular type of gene therapy while other gene therapy techniques that target neurons are actually targeting cells that are decreasing as the disease progresses. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Čapek, Jan; Hauschke, Martina; Brůčková, Lenka; Roušar, Tomáš
2017-11-01
Fluorometric glutathione assays have been generally preferred for their high specificity and sensitivity. An additional advantage offered by fluorescent bimane dyes is their ability to penetrate inside the cell. Their ability to react with glutathione within intact cells is frequently useful in flow cytometry and microscopy. Hence, the aims of our study were to use monochlorobimane for optimizing a spectrofluorometric glutathione assay in cells and then to compare that assay with the frequently used ortho-phthalaldehyde assay. We used glutathione-depleting agents (e.g., cisplatin and diethylmalonate) to induce cell impairment. For glutathione assessment, monochlorobimane (40μM) was added to cells and fluorescence was detected at 394/490nm. In addition to the regularly used calculation of glutathione levels from fluorescence change after 60min, we used an optimized calculation from the linear part of the fluorescence curve after 10min of measurement. We found that 10min treatment of cells with monochlorobimane is sufficient for evaluating cellular glutathione concentration and provides results entirely comparable with those from the standard ortho-phthalaldehyde assay. In contrast, the results obtained by the standardly used evaluation after 60min of monochlorobimane treatment provided higher glutathione values. We conclude that measuring glutathione using monochlorobimane with the here-described optimized evaluation of fluorescence signal could be a simple and useful method for routine and rapid assessment of glutathione within intact cells in large numbers of samples. Copyright © 2017 Elsevier Inc. All rights reserved.
Nanoparticles in Medicine: Selected Observations and Experimental Caveats
Thomsen, Sharon; Pearce, John A.; Giustini, Andrew; Hoopes, P. Jack
2014-01-01
Medically useful nanoparticles measure 1-100 nm in at least one dimension and are engineered and manufactured for specific diagnostic and treatment applications. Most nanoparticles used currently used in medicine are engineered and manufactured for specific purposes. Medically significant nanoparticles are composed of a 1) central core that is usually the medically active component, 2) one or more layers of organic or inorganic materials that forms a capsule (corona) covering the core and 3) an outer surface layer that interacts with the environment and/or targeted cells and tissues. Effective nanoparticle function in the living, intact animal or human requires electrochemical stability necessary to bypass the reticuloendothelial system (RES) and avoid filtration through the renal glomerulus into the urine. Nanoparticles are present in “natural” as well as the manufacturing and clinical environments thus could pose as significant toxins because of their small sizes, their chemical and drug content and potential effect of causing long term disease including allergies, chronic inflammation and cancer. Currently published studies have focused on the effects of nanoparticles on cells in the extremely artificial environments of cell cultures. More clinical and preclinical studies documenting the short term and long term effects nanoparticle in the intact experimental animal and human are needed. PMID:25301992
Chromatin- and temperature-dependent modulation of radiation-induced double-strand breaks.
Elmroth, K; Nygren, J; Stenerlöw, B; Hultborn, R
2003-10-01
To investigate the influence of chromatin organization and scavenging capacity in relation to irradiation temperature on the induction of double-strand breaks (DSB) in structures derived from human diploid fibroblasts. Agarose plugs with different chromatin structures (intact cells+/-wortmannin, permeabilized cells with condensed chromatin, nucleoids and DNA) were prepared and irradiated with X-rays at 2 or 37 degrees C and lysed using two different lysis protocols (new ice-cold lysis or standard lysis at 37 degrees C). Induction of DSB was determined by constant-field gel electrophoresis. The dose-modifying factor (DMF(temp)) for irradiation at 37 compared with 2 degrees C was 0.92 in intact cells (i.e. more DSB induced at 2 degrees C), but gradually increased to 1.5 in permeabilized cells, 2.2 in nucleoids and 2.6 in naked DNA, suggesting a role of chromatin organization for temperature modulation of DNA damage. In addition, DMF(temp) was influenced by the presence of 0.1 M DMSO or 30 mM glutathione, but not by post-irradiation temperature. The protective effect of low temperature was correlated to the indirect effects of ionizing radiation and was not dependent on post-irradiation temperature. Reasons for a dose modifying factor <1 in intact cells are discussed.
Regional heterogeneity of endothelial cells in the porcine vortex vein system.
Tan, Priscilla Ern Zhi; Yu, Paula K; Cringle, Stephen J; Morgan, William H; Yu, Dao-Yi
2013-09-01
The aim of this study was to investigate whether region-dependent endothelial heterogeneity is present within the porcine vortex vein system. The superior temporal vortex vein in young adult pig eyes were dissected out and cannulated. The intact vortex vein system down to the choroidal veins was then perfused with labels for f-actin and nucleic acid. The endothelial cells within the choroidal veins, pre-ampulla, anterior portion of the ampulla, mid-ampulla, posterior portion of the ampulla, post-ampulla, intra-scleral canal and the extra-ocular vortex vein regions were studied in detail using a confocal microscopy technique. The endothelial cell and nuclei length, width, area and perimeter were measured and compared between the different regions. Significant regional differences in the endothelial cell and nuclei length, width, area and perimeter were observed throughout the porcine vortex vein system. Most notably, very narrow and elongated endothelia were found in the post-ampulla region. A lack of smooth muscle cells was noted in the ampulla region compared to other regions. Heterogeneity in endothelial cell morphology is present throughout the porcine vortex vein system and there is a lack of smooth muscle cells in the ampulla region. This likely reflects the highly varied haemodynamic conditions and potential blood flow control mechanisms in different regions of the vortex vein system. Copyright © 2013 Elsevier Inc. All rights reserved.
Comparison of the Identation and Elasticity of E.coli and its Spheroplasts by AFM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, Claretta J; Venkataraman, Sankar; Retterer, Scott T
2007-01-01
Atomic force microscopy (AFM) provides a unique opportunity to study live individual bacteria at the nanometer scale. In addition to providing accurate morphological information, AFM can be exploited to investigate membrane protein localization and molecular interactions on the surface of living cells. A prerequisite for these studies is the development of robust procedures for sample preparation. While such procedures are established for intact bacteria, they are only beginning to emerge for bacterial spheroplasts. Spheroplasts are useful research models for studying mechanosensitive ion channels, membrane transport, lipopolysaccharide translocation, solute uptake, and the effects of antimicrobial agents on membranes. Furthermore, given themore » similarities between spheroplasts and cell wall-deficient (CWD) forms of pathogenic bacteria, spheroplast research could be relevant in biomedical research. In this paper, a new technique for immobilizing spheroplasts on mica pretreated with aminopropyltriethoxysilane (APTES) and glutaraldehyde is described. Using this mounting technique, the indentation and cell elasticity of glutaraldehyde-fixed and untreated spheroplasts of E. coli in liquid were measured. These values are compared to those of intact E. coli. Untreated spheroplasts were found to be much softer than the intact cells and the silicon nitride cantilevers used in this study.« less
Fan, C L; Rodwell, V W
1975-12-01
We investigated the degradation of radioisotopically labeled intracellular protein in starved, intact cells of Pseudomonas putida P2 (ATCC 25571) and the regulation of this process. Intracellular protein isotopically labeled with L-[4,5-3H]leucine during log-phase growth at 30 C is degraded at rates of 1 to 2%/h in log-phase cells and 7 to 9%/h in starved cells. Rifampin, chloramphenicol, and tosyllysine chloromethylketone lower the rate of protein degradation by starved cells. Addition to starved cells of a nutrient upon which the culture is induced for growth rapidly lowers the rate of protein degradation from 7 to 9%/h to less than 1.5%/h. A nutrient that is oxidized but that cannot immediately support growth also lowers the rate of starvation-induced protein degradation. Proteolytic activity of cell extracts requires a divalent metal ion and may be inhibited up to 60% by tosyllysine chloromethylketone or p-toluenesulfonyl fluoride. Rifampin and chloramphenicol have no effect. In contrast to intact cells, extracts of growing or starving cells degrade protein at equivalent rates. We also investigated the stabilities of the inducible transport system and of four inducible intracellular enzymes of L-arginine catabolism. These include: the membrane-associated, L-arginine-specific transport system; L-arginine oxidase (oxidase); alpha-ketoarginine decarboxylase (decarboxylase); gamma-guanidinobutyraldehyde dehydrogenase ( dehydrogenase); and gamma-guanidinobutyrate amidinohydrolase (hydrolase). In starved cells, the rates of loss of activities were: transport and dehydrogenase activities, stable; oxidase and decarboxylase activities, 20 to 30%/h; hydrolase activity, 5 to 8%/h. Chloramphenicol decreases the rate of loss of oxidase, decarboxylase, and hydrolase activity, whereas p-toluenesulfonyl fluoride lowers the rate of loss of decarboxylase but not of oxidase or hydrolase activity. Addition to starved cells of a nutrient for which they are already induced for growth (e.g., malate, a noninducer of arginine catabolic enzymes) decreases the rate of loss of oxidase and decarboxylase activity but not that of the hydrolase.
Bulychev, Alexander A.; Foissner, Ilse
2017-01-01
ABSTRACT Proton flows across the plant cell membranes play a major role in electrogenesis and regulation of photosynthesis and ion balance. The profiles of external pH along the illuminated internodal cells of characean algae consist of alternating high- and low-pH zones that are spatially coordinated with the distribution of photosynthetic activity of chloroplasts underlying these zones. The results based on confocal laser scanning fluorescence microscopy, pH microsensors, and pulse-amplitude-modulated chlorophyll microfluorometry revealed that the coordination of H+ transport and photosynthesis is disrupted by the 2 different environmental cues (low light and wounding) and by a chemical, wortmannin interfering with the inositol phospholipid metabolism. On the one hand, the transition from moderate to low irradiance diminished the peaks in the profiles of photosystem II (PSII) quantum efficiency but did not remove the pH bands. On the other hand, the microwounding of the internode with a glass micropipette, impacting primarily the cell wall, resulted in a rapid local alkalinization of the external medium (by 2–2.5 pH units) near the cell surface, thus mimicking the appearance of natural pH bands. Despite their seeming similarity, the alkaline bands of intact cells were eliminated by wortmannin, whereas the wound-induced alkalinization was insensitive to this drug. Furthermore, the attenuation of natural pH bands in wortmannin-treated cells was accompanied by the enhancement in spatial heterogeneity of PSII efficiency and electron transport rates, which indicates the complexity of chloroplast–plasma membrane interactions. The results suggest that the light- and wound-induced alkaline areas on the cell surface are associated with different ion-transport systems. PMID:28805493
Cellular Electron Cryotomography: Toward Structural Biology In Situ.
Oikonomou, Catherine M; Jensen, Grant J
2017-06-20
Electron cryotomography (ECT) provides three-dimensional views of macromolecular complexes inside cells in a native frozen-hydrated state. Over the last two decades, ECT has revealed the ultrastructure of cells in unprecedented detail. It has also allowed us to visualize the structures of macromolecular machines in their native context inside intact cells. In many cases, such machines cannot be purified intact for in vitro study. In other cases, the function of a structure is lost outside the cell, so that the mechanism can be understood only by observation in situ. In this review, we describe the technique and its history and provide examples of its power when applied to cell biology. We also discuss the integration of ECT with other techniques, including lower-resolution fluorescence imaging and higher-resolution atomic structure determination, to cover the full scale of cellular processes.
Potenza, Donatella; Belvisi, Laura
2008-01-21
The aim of this work is to show that transferred-NOE provides useful and detailed information on membrane-bound receptor-ligand interactions in living cells. Here, we study the interaction between intact human platelets and some ligands containing the RGD sequence. Conformational properties of the free and bound pentapeptides are reported.
Femtosecond optical injection of intact plant cells using a reconfigurable platform
NASA Astrophysics Data System (ADS)
Mitchell, Claire A.; Kalies, Stefan; Cizmar, Tomas; Bellini, Nicola; Kubasik-Thayil, Anisha; Heisterkamp, Alexander; Torrance, Lesley; Roberts, Alison G.; Gunn-Moore, Frank J.; Dholakia, Kishan
2014-03-01
The use of ultrashort-pulsed lasers for molecule delivery and transfection has proved to be a non-invasive and highly efficient technique for a wide range of mammalian cells. This present study investigates the effectiveness of femtosecond photoporation in plant cells, a hard-to-manipulate yet agriculturally relevant cell type, specifically suspension tobacco BY-2 cells. Both spatial and temporal shaping of the light field is employed to optimise the delivery of membrane impermeable molecules into plant cells using a reconfigurable optical system designed to be able to switch easily between different spatial modes and pulse durations. The use of a propagation invariant Bessel beam was found to increase the number of cells that could be viably optoinjected, when compared to the use of a Gaussian beam. Photoporation with a laser producing sub-12 fs pulses, coupled with a dispersion compensation system to retain the pulse duration at focus, reduced the power required for efficient optical injection by 1.5-1.8 times when compared to a photoporation with a 140 fs laser output.
Muir, Peter; Danova, Nichole A; Argyle, David J; Manley, Paul A; Hao, Zhengling
2005-01-01
To determine expression of collagenolytic genes and collagen degradation in stifle tissues of dogs with ruptured cranial cruciate ligament (CCL). Six dogs with CCL rupture and 11 dogs with intact CCL. Gene expression in CCL tissue and synovial fluid cells was studied using reverse transcriptase-polymerase chain reaction (RT-PCR). Collagen degradation was studied using CCL explant cultures and a synovial fluid bioassay. Expression of matrix metalloproteases (MMP) was not found in young Beagles with intact CCL; however, increased expression of MMP-3 was found in CCL tissue from older hounds with intact CCL, when compared with young Beagles. In dogs with ruptured CCL, expression of MMP-2 and -9 was increased in stifle tissues, when compared with dogs with intact CCL. Similar to MMP-9, expression of tartrate-resistant acid phosphatase (TRAP) and cathepsin S was only found in stifle tissues from dogs with ruptured CCL; in contrast, expression of cathepsin K was found in all ruptured and intact CCL. Collagen degradation was increased in ruptured CCL, when compared with intact CCL. Rupture of the CCL is associated with up-regulation of expression of MMP-2 and -9 (gelatinase A and B), TRAP, and cathepsin S, and increased degradation of collagen. These findings suggest that MMP-2, -9, cathepsin S, and TRAP may be important mediators of progressive joint destruction in dogs with CCL rupture. These genes are markers for macrophages and dendritic cells. MMP and cathepsin S pathways may offer novel targets for anti-inflammatory medical therapy aimed at ameliorating joint degradation associated with inflammatory arthritis.
Mel'nyk, V M; Spiridonova, K V; Andrieiev, I O; Strashniuk, N M; Kunakh, V A
2002-01-01
The comparative study of the genomes of intact plants-representatives of some species of the genus Gentiana L. as well as cultured cells of G. lutea and G. punctata was performed using restriction analysis. Species specificity of restriction fragment patterns for studied representatives of this genus was revealed. The differences between electrophoretic patterns of digested DNA purified from rhizome and leaves of G. lutea and G. punctata were found. The changes in genomes of G. lutea and G. punctata cells cultured in vitro compared with the genomes of intact plants were detected. The data obtained evidence that some of them may be of nonrandom character.
NASA Technical Reports Server (NTRS)
Fattaey, A.; Lenz, L.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)
1992-01-01
Eleven hybridoma cell lines producing monoclonal antibodies (MAbs) against intact budgerigar fledgling disease (BFD) virions were produced and characterized. These antibodies were selected for their ability to react with BFD virions in an enzyme-linked immunosorbent assay. Each of these antibodies was reactive in the immunofluorescent detection of BFD virus-infected cells. These antibodies immunoprecipitated intact virions and specifically recognized the major capsid protein, VP1, of the dissociated virion. The MAbs were found to preferentially recognize native BFD virus capsid protein when compared with denatured virus protein. These MAbs were capable of detecting BFD virus protein in chicken embryonated cell-culture lysates by dot-blot analysis.
Tabor, Rico; Friedrich, Rainer W.
2008-01-01
Although synaptic functions of ionotropic glutamate receptors in the olfactory bulb have been studied in vitro, their roles in pattern processing in the intact system remain controversial. We therefore examined the functions of ionotropic glutamate receptors during odor processing in the intact olfactory bulb of zebrafish using pharmacological manipulations. Odor responses of mitral cells and interneurons were recorded by electrophysiology and 2-photon Ca2+ imaging. The combined blockade of AMPA/kainate and NMDA receptors abolished odor-evoked excitation of mitral cells. The blockade of AMPA/kainate receptors alone, in contrast, increased the mean response of mitral cells and decreased the mean response of interneurons. The blockade of NMDA receptors caused little or no change in the mean responses of mitral cells and interneurons. However, antagonists of both receptor types had diverse effects on the magnitude and time course of individual mitral cell and interneuron responses and, thus, changed spatio-temporal activity patterns across neuronal populations. Oscillatory synchronization was abolished or reduced by AMPA/kainate and NMDA receptor antagonists, respectively. These results indicate that (1) interneuron responses depend mainly on AMPA/kainate receptor input during an odor response, (2) interactions among mitral cells and interneurons regulate the total olfactory bulb output activity, (3) AMPA/kainate receptors participate in the synchronization of odor-dependent neuronal ensembles, and (4) ionotropic glutamate receptor-containing synaptic circuits shape odor-specific patterns of olfactory bulb output activity. These mechanisms are likely to be important for the processing of odor-encoding activity patterns in the olfactory bulb. PMID:18183297
Merlavsky, V M; Manko, B O; Ikkert, O V; Manko, V V
2015-01-01
To verify experimentally the model of permeabilized hepatocytes, the degree of cell permeability was assessed using trypan blue and polarographycally determined cell respiration rate upon succinate (0.35 mM) and a-ketoglutarate (1 mM) oxidation. Oxidative phosphorylation was stimulated by ADP (750 μM). Hepatocyte permeabilization depends on digitonin concentraion in medium and on the number of cells in suspension. Thus, the permeabilization of 0.9-1.7 million cells/ml was completed by 25 μg/ml of digitonin, permeabilization of 2.0-3.0 million cells/ml--by 50 μg/ml of digitonin and permeabilization of 4.0-5.6 million cells/ml--by 100 μg/ml. Thus, the higher is the suspension density, the higher digitonin concentration is required. Treatment of hepatocytes with digitonin resulted in a decrease of endogenous respiration rate to a minimum upon 20-22 μg of digitonin per 1 million cells. Supplementation of permeabilized hepatocytes with α-ketoglutarate maintained stable respiration rate, on the level higher than endogenous respiration at the corresponding digitonin concentration, unlike the intact cells. Respiration rate of permeabilized hepatocytes at the simultaneous addition of α-ketoglutarate and ADP increased to the level of intact cell respiration, irrespective of digitonin concentration. Addition of solely succinate and especially succinate plus ADP markedly intensified the respiration of permeabilized hepatocytes to the level higher than that of intact cells. The dependence of succinate-stimulated respiration on digitonin concentration reached maximum at 20-22 αg of digitonin per 1 million cells. Optimal ratio of digitonin amount and the cell number in suspension is expected to be different in various tissues.
Lipid-protein interactions in plasma membranes of fiber cells isolated from the human eye lens.
Raguz, Marija; Mainali, Laxman; O'Brien, William J; Subczynski, Witold K
2014-03-01
The protein content in human lens membranes is extremely high, increases with age, and is higher in the nucleus as compared with the cortex, which should strongly affect the organization and properties of the lipid bilayer portion of intact membranes. To assess these effects, the intact cortical and nuclear fiber cell plasma membranes isolated from human lenses from 41- to 60-year-old donors were studied using electron paramagnetic resonance spin-labeling methods. Results were compared with those obtained for lens lipid membranes prepared from total lipid extracts from human eyes of the same age group [Mainali, L., Raguz, M., O'Brien, W. J., and Subczynski, W. K. (2013) Biochim. Biophys. Acta]. Differences were considered to be mainly due to the effect of membrane proteins. The lipid-bilayer portions of intact membranes were significantly less fluid than lipid bilayers of lens lipid membranes, prepared without proteins. The intact membranes were found to contain three distinct lipid environments termed the bulk lipid domain, boundary lipid domain, and trapped lipid domain. However, the cholesterol bilayer domain, which was detected in cortical and nuclear lens lipid membranes, was not detected in intact membranes. The relative amounts of bulk and trapped lipids were evaluated. The amount of lipids in domains uniquely formed due to the presence of membrane proteins was greater in nuclear membranes than in cortical membranes. Thus, it is evident that the rigidity of nuclear membranes is greater than that of cortical membranes. Also the permeability coefficients for oxygen measured in domains of nuclear membranes were significantly lower than appropriate coefficients measured in cortical membranes. Relationships between the organization of lipids into lipid domains in fiber cells plasma membranes and the organization of membrane proteins are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.
Lipid-Protein Interactions in Plasma Membranes of Fiber Cells Isolated from the Human Eye Lens
Raguz, Marija; Mainali, Laxman; O’Brien, William J.; Subczynski, Witold K.
2014-01-01
The protein content in human lens membranes is extremely high, increases with age, and is higher in the nucleus as compared with the cortex, which should strongly affect the organization and properties of the lipid bilayer portion of intact membranes. To assess these effects, the intact cortical and nuclear fiber cell plasma membranes isolated from human lenses from 41- to 60-year-old donors were studied using electron paramagnetic resonance spin-labeling methods. Results were compared with those obtained for lens lipid membranes prepared from total lipid extracts from human eyes of the same age group [Mainali,L., Raguz, M., O’Brien, W. J., and Subczynski, W. K. (2013) Biochim. Biophys. Acta]. Differences were considered to be mainly due to the effect of membrane proteins. The lipid-bilayer portions of intact membranes were significantly less fluid than lipid bilayers of lens lipid membranes, prepared without proteins. The intact membranes were found to contain three distinct lipid environments termed the bulk lipid domain, boundary lipid domain, and trapped lipid domain. However, the cholesterol bilayer domain, which was detected in cortical and nuclear lens lipid membranes, was not detected in intact membranes. The relative amounts of bulk and trapped lipids were evaluated. The amount of lipids in domains uniquely formed due to the presence of membrane proteins was greater in nuclear membranes than in cortical membranes. Thus, it is evident that the rigidity of nuclear membranes is greater than that of cortical membranes. Also the permeability coefficients for oxygen measured in domains of nuclear membranes were significantly lower than appropriate coefficients measured in cortical membranes. Relationships between the organization of lipids into lipid domains in fiber cells plasma membranes and the organization of membrane proteins are discussed. PMID:24486794
NASA Astrophysics Data System (ADS)
Allen, Steven P.; Vlaisavljevich, Eli; Shi, Jiaqi; Hernandez-Garcia, Luis; Cain, Charles A.; Xu, Zhen; Hall, Timothy L.
2017-09-01
Histotripsy is a non-invasive, focused ultrasound lesioning technique that can ablate precise volumes of soft tissue using a novel mechanical fractionation mechanism. Previous research suggests that magnetic resonance imaging (MRI) may be a sensitive image-based feedback mechanism for histotripsy. However, there are insufficient data to form some unified understanding of the response of the MR contrast mechanisms in tissues to histotripsy. In this paper, we investigate the response of the MR contrast parameters R1, R2, and the apparent diffusion coefficient (ADC) to various treatment levels of histotripsy in in vitro porcine liver, kidney, muscle, and blood clot as well in formulations of bovine red blood cells suspended in agar gel. We also make a histological analysis of histotripsy lesions in porcine liver. We find that R2 and the ADC are both sensitive to ablation in all materials tested here, and the degree of response varies with tissue type. Correspondingly, under histologic analysis, the porcine liver exhibited various levels of mechanical disruption and necrotic debris that are characteristic of histotripsy. While the area of intact red blood cells and nuclei found within these lesions both decreased with increasing amounts of treatment, the area of red blood cells decreased much more rapidly than the area of intact nuclei. Additionally, the decrease in area of intact red blood cells saturated at the same treatment levels at which the response of the R2 saturated while the area of intact nuclei appeared to vary linearly with the response of the ADC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kloosterboer, H.J.; Vonk-Noordegraaf, C.A.; Turpijn, E.W.
1988-09-01
The relative binding affinities (RBAs) of four progestational compounds (norethisterone, levonorgestrel, 3-keto-desogestrel and gestodene) for the human progesterone and androgen receptors were measured in MCF-7 cytosol and intact MCF-7 cells. For the binding to the progesterone receptor, both Org 2058 and Org 3236 (or 3-keto-desogestrel) were used as labelled ligands. The following ranking (low to high) for the RBA of the nuclear (intact cells) progesterone receptor irrespective of the ligand used is found: norethisterone much less than levonorgestrel less than 3-keto-destogestrel less than gestodene. The difference between the various progestagens is significant with the exception of that between 3-keto-desogestrel andmore » gestodene, when Org 2058 is used as ligand. For the cytosolic progesterone receptor, the same order is found with the exception that similar RBAs are found for gestodene and 3-keto-desogestrel. The four progestagens clearly differ with respect to binding to the androgen receptor using dihydrotestosterone as labelled ligand in intact cells; the ranking (low to high) is: norethisterone less than 3 keto-desogestrel less than levonorgestrel and gestodene. The difference between 3-keto-desogestrel and levonorgestrel or gestodene is significant. The selectivity indices (ratio of the mean RBA for the progesterone receptor to that of androgen receptor) in intact cells are significantly higher for 3-keto-desogestrel and gestodene than for levonorgestrel and norethisterone. From these results we conclude that the introduction of the 18-methyl in norethisterone (levonorgestel) increases both the binding to the progesterone and androgen receptors.« less
NASA Astrophysics Data System (ADS)
Kim, Byoung Chan; Lee, Inseon; Kwon, Seok-Joon; Wee, Youngho; Kwon, Ki Young; Jeon, Chulmin; An, Hyo Jin; Jung, Hee-Tae; Ha, Su; Dordick, Jonathan S.; Kim, Jungbae
2017-01-01
CNTs need to be dispersed in aqueous solution for their successful use, and most methods to disperse CNTs rely on tedious and time-consuming acid-based oxidation. Here, we report the simple dispersion of intact multi-walled carbon nanotubes (CNTs) by adding them directly into an aqueous solution of glucose oxidase (GOx), resulting in simultaneous CNT dispersion and facile enzyme immobilization through sequential enzyme adsorption, precipitation, and crosslinking (EAPC). The EAPC achieved high enzyme loading and stability because of crosslinked enzyme coatings on intact CNTs, while obviating the chemical pretreatment that can seriously damage the electron conductivity of CNTs. EAPC-driven GOx activity was 4.5- and 11-times higher than those of covalently-attached GOx (CA) on acid-treated CNTs and simply-adsorbed GOx (ADS) on intact CNTs, respectively. EAPC showed no decrease of GOx activity for 270 days. EAPC was employed to prepare the enzyme anodes for biofuel cells, and the EAPC anode produced 7.5-times higher power output than the CA anode. Even with a higher amount of bound non-conductive enzymes, the EAPC anode showed 1.7-fold higher electron transfer rate than the CA anode. The EAPC on intact CNTs can improve enzyme loading and stability with key routes of improved electron transfer in various biosensing and bioelectronics devices.
Wang, Han; Chen, Beibei; He, Man; Hu, Bin
2017-05-02
Single cell analysis is a significant research field in recent years reflecting the heterogeneity of cells in a biological system. In this work, a facile droplet chip was fabricated and online combined with time-resolved inductively coupled plasma mass spectrometry (ICPMS) via a microflow nebulizer for the determination of zinc in single HepG2 cells. On the focusing geometric designed PDMS microfluidic chip, the aqueous cell suspension was ejected and divided by hexanol to generate droplets. The droplets encapsulated single cells remain intact during the transportation into ICP for subsequent detection. Under the optimized conditions, the frequency of droplet generation is 3-6 × 10 6 min -1 , and the injected cell number is 2500 min -1 , which can ensure the single cell encapsulation. ZnO nanoparticles (NPs) were used for the quantification of zinc in single cells, and the accuracy was validated by conventional acid digestion-ICPMS method. The ZnO NPs incubated HepG2 cells were analyzed as model samples, and the results exhibit the heterogeneity of HepG2 cells in the uptake/adsorption of ZnO NPs. The developed online droplet-chip-ICPMS analysis system achieves stable single cell encapsulation and has high throughput for single cell analysis. It has the potential in monitoring the content as well as distribution of trace elements/NPs at the single cell level.
Haffner-Luntzer, Melanie; Heilmann, Aline; Heidler, Verena; Liedert, Astrid; Schinke, Thorsten; Amling, Michael; Yorgan, Timur Alexander; Vom Scheidt, Annika; Ignatius, Anita
2016-11-01
Efficient calcium absorption is essential for skeletal health. Patients with impaired gastric acidification display low bone mass and increased fracture risk because calcium absorption is dependent on gastric pH. We investigated fracture healing and post-traumatic bone turnover in mice deficient in Cckbr, encoding a gastrin receptor that affects acid secretion by parietal cells. Cckbr-/- mice display hypochlorhydria, calcium malabsorption, and osteopenia. Cckbr-/- and wildtype (WT) mice received a femur osteotomy and were fed either a standard or calcium-enriched diet. Healed and intact bones were assessed by biomechanical testing, histomorphometry, micro-computed tomography, and quantitative backscattering. Parathyroid hormone (PTH) serum levels were determined by enzyme-linked immunosorbent assay. Fracture healing was unaffected in Cckbr-/- mice. However, Cckbr-/- mice displayed increased calcium mobilization from the intact skeleton during bone healing, confirmed by significantly elevated PTH levels and osteoclast numbers compared to WT mice. Calcium supplementation significantly reduced secondary hyperparathyroidism and bone resorption in the intact skeleton in both genotypes, but more efficiently in WT mice. Furthermore, calcium administration improved bone healing in WT mice, indicated by significantly increased mechanical properties and bone mineral density of the fracture callus, whereas it had no significant effect in Cckbr-/- mice. Therefore, under conditions of hypochlorhydria-induced calcium malabsorption, calcium, which is essential for callus mineralization, appears to be increasingly mobilized from the intact skeleton in favor of fracture healing. Calcium supplementation during fracture healing prevented systemic calcium mobilization, thereby maintaining bone mass and improving fracture healing in healthy individuals whereas the effect was limited by gastric hypochlorhydria. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1914-1921, 2016. © 2016 The Authors. Journal of Orthopaedic Research Published by by Wiley Periodicals, Inc.
Mitochondria released by cells undergoing TNF-α-induced necroptosis act as danger signals.
Maeda, A; Fadeel, B
2014-07-03
Necrosis leads to the release of so-called damage-associated molecular patterns (DAMPs), which may provoke inflammatory responses. However, the release of organelles from dying cells, and the consequences thereof have not been documented before. We demonstrate here that mitochondria are released from cells undergoing tumor necrosis factor-α (TNF-α)-induced, receptor-interacting protein (RIP)1-dependent necroptosis, a form of programmed necrosis. The released, purified mitochondria were determined to be intact as they did not emit appreciable amounts of mitochondrial DNA (mtDNA). Pharmacological inhibition of dynamin-related protein 1 (Drp1) prevented mitochondrial fission in TNF-α-triggered cells, but this did not block necroptosis nor the concomitant release of mitochondria. Importantly, primary human macrophages and dendritic cells engulfed mitochondria from necroptotic cells leading to modulation of macrophage secretion of cytokines and induction of dendritic cell maturation. Our results show that intact mitochondria are released from necroptotic cells and suggest that these organelles act as bona fide danger signals.
In vivo labeling of cortical astrocytes with sulforhodamine 101 (SR101).
Nimmerjahn, Axel; Helmchen, Fritjof
2012-03-01
Fluorescent markers that stain particular cell types in the intact brain are essential tools for fluorescence microscopy because they enable studies of structure and function of cells identified in this way. Although cell type-specific fluorescence staining can be achieved through promoter-driven expression of fluorescent proteins, this genetic approach is generally labor- and cost-intensive. Alternative viral approaches for targeted fluorophore expression are relatively invasive. For astrocytes, there is a simple alternative. This protocol describes an easy and robust method for rapid (within minutes) and high-contrast staining of astrocytes in defined regions of the intact rodent cortex using the synthetic, water-soluble but non-fixable red fluorescent dye sulforhodamine 101 (SR101). Selective staining is achieved through local uptake and gap junction-mediated spread of SR101 following its topical application or injection into tissue. Applications, technical pitfalls, and limitations of the SR101-staining technique are discussed. Given its simplicity and reliability, SR101 staining is a valuable tool for the study of astrocyte function in the intact brain and for in vivo fluorescence microscopy in general.
McCord, Lauren A.; Li, Feixue; Rosewell, Katherine L.; Brännström, Mats; Curry, Thomas E.
2011-01-01
ABSTRACT The matrix metalloproteinases (MMPs) are postulated to facilitate follicular rupture. In the present study, expression of the stromelysins (MMP3, MMP10, MMP11) was analyzed in the periovulatory human and rat ovary. Human granulosa and theca cells were collected from the dominant follicle at various times after human chorionic gonadotropin (hCG). Intact rat ovaries, granulosa cells, and residual tissue (tissue remaining after granulosa cell collection) were isolated from equine CG (eCG)-hCG-primed animals. Mmp10 mRNA was highly induced in human granulosa and theca cells and intact rat ovaries, granulosa cells, and residual tissue. Localization of MMP10 to granulosa and theca cells in both human and rat ovarian follicles was confirmed by immunohistochemistry. Mmp3 mRNA was unchanged in human cells and rat granulosa cells, but increased in intact rat ovaries and residual tissue. Mmp11 mRNA decreased following hCG treatment in human granulosa and theca cells as well as rat granulosa cells. Regulation of Mmp10 in cultured rat granulosa cells revealed that the EGF inhibitor AG1478 and the progesterone receptor antagonist RU486 suppressed the induction of Mmp10 mRNA, whereas the prostaglandin inhibitor NS398 had no effect. Studies on the Mmp10 promoter demonstrated that forskolin plus PMA stimulated promoter activity, which was dependent upon a proximal AP1 site. In conclusion, there are divergent patterns of stromelysin expression associated with ovulation, with a marked induction of Mmp10 mRNA and a decrease in Mmp11 mRNA, yet a species-dependent pattern on Mmp3 mRNA expression. The induction of Mmp10 expression suggests an important role for this MMP in the follicular changes associated with ovulation and subsequent luteinization. PMID:22116802
McCord, Lauren A; Li, Feixue; Rosewell, Katherine L; Brännström, Mats; Curry, Thomas E
2012-03-01
The matrix metalloproteinases (MMPs) are postulated to facilitate follicular rupture. In the present study, expression of the stromelysins (MMP3, MMP10, MMP11) was analyzed in the periovulatory human and rat ovary. Human granulosa and theca cells were collected from the dominant follicle at various times after human chorionic gonadotropin (hCG). Intact rat ovaries, granulosa cells, and residual tissue (tissue remaining after granulosa cell collection) were isolated from equine CG (eCG)-hCG-primed animals. Mmp10 mRNA was highly induced in human granulosa and theca cells and intact rat ovaries, granulosa cells, and residual tissue. Localization of MMP10 to granulosa and theca cells in both human and rat ovarian follicles was confirmed by immunohistochemistry. Mmp3 mRNA was unchanged in human cells and rat granulosa cells, but increased in intact rat ovaries and residual tissue. Mmp11 mRNA decreased following hCG treatment in human granulosa and theca cells as well as rat granulosa cells. Regulation of Mmp10 in cultured rat granulosa cells revealed that the EGF inhibitor AG1478 and the progesterone receptor antagonist RU486 suppressed the induction of Mmp10 mRNA, whereas the prostaglandin inhibitor NS398 had no effect. Studies on the Mmp10 promoter demonstrated that forskolin plus PMA stimulated promoter activity, which was dependent upon a proximal AP1 site. In conclusion, there are divergent patterns of stromelysin expression associated with ovulation, with a marked induction of Mmp10 mRNA and a decrease in Mmp11 mRNA, yet a species-dependent pattern on Mmp3 mRNA expression. The induction of Mmp10 expression suggests an important role for this MMP in the follicular changes associated with ovulation and subsequent luteinization.
NASA Astrophysics Data System (ADS)
Chen, Chulung; Yin, Shizhuo; Li, Jiang; Yu, Francis T. S.; Cheung, Joseph Y.; Zhang, Xueqian; Lei, Xiaoxiao; Wu, Zhongkong
1998-05-01
Cell is the basic structural and fundamental unit of all organisms; the smallest structure capable of performing all the activities vital to life. One goal of current research interest is to learn how the muscle varies the strength of its contraction in response to electric stimuli. A wide variety of techniques have been developed to monitor the mechanical response of isolated cardiac myocytes. Some success has been reported either with the use of intact rat myocytes supported by suction micropipettes or in guinea pig myocytes adhering to glass beams. However, the usual measuring techniques exhibit destructive contact performance on live cells. They could not solve the problem, since the cell may die during or after the time-consuming attachment process at the beginning of each experiment. In contrast, a novel optical system, which consists of a microglass tube with an inner diameter the same size of a real cardiac cell, is proposed to simulate real cell's twitch process. the physical parameters of synthetic cell are well known. By comparing the dynamics of the real cell with that of the simulated cell, the twitch characteristics of the real cell can be measured.
Clewell, Rebecca A; Andersen, Melvin E
2016-05-01
Assessing the shape of dose-response curves for DNA-damage in cellular systems and for the consequences of DNA damage in intact animals remains a controversial topic. This overview looks at aspects of the pharmacokinetics (PK) and pharmacodynamics (PD) of cellular DNA-damage/repair and their role in defining the shape of dose-response curves using an in vivo example with formaldehyde and in vitro examples for micronuclei (MN) formation with several test compounds. Formaldehyde is both strongly mutagenic and an endogenous metabolite in cells. With increasing inhaled concentrations, there were transitions in gene changes, from activation of selective stress pathway genes at low concentrations, to activation of pathways for cell-cycle control, p53-DNA damage, and stem cell niche pathways at higher exposures. These gene expression changes were more consistent with dose-dependent transitions in the PD responses to formaldehyde in epithelial cells in the intact rat rather than the low-dose linear extrapolation methods currently used for carcinogens. However, more complete PD explanations of non-linear dose response for creation of fixed damage in cells require detailed examination of cellular responses in vitro using measures of DNA damage and repair that are not easily accessible in the intact animal. In the second section of the article, we illustrate an approach from our laboratory that develops fit-for-purpose, in vitro assays and evaluates the PD of DNA damage and repair through studies using prototypical DNA-damaging agents. Examination of a broad range of responses in these cells showed that transcriptional upregulation of cell cycle control and DNA repair pathways only occurred at doses higher than those causing overt damage fixed damage-measured as MN formation. Lower levels of damage appear to be handled by post-translational repair process using pre-existing proteins. In depth evaluation of the PD properties of one such post-translational process (formation of DNA repair centers; DRCs) has indicated that the formation of DRCs and their ability to complete repair before replication are consistent with threshold behaviours for mutagenesis and, by extension, with chemical carcinogenesis. © The Author 2016. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Iodine susceptibility of pseudomonads grown attached to stainless steel surfaces
NASA Technical Reports Server (NTRS)
Pyle, B. H.; McFeters, G. A.
1990-01-01
Pseudomonads were adapted to grow in phosphate-buffered water and on stainless steel surfaces to study the iodine sensitivity of attached and planktonic cells. Cultures adapted to low nutrient growth were incubated at room temperature in a circulating reactor system with stainless steel coupons to allow biofilm formation on the metal surfaces. In some experiments, the reactor was partially emptied and refilled with buffer at each sampling time to simulate a "fill-and-draw" water system. Biofilms of attached bacteria, resuspended biofilm bacteria, and reactor suspension, were exposed to 1 mg l-1 iodine for 2 min. Attached bacterial populations which established on coupons within 3 to 5 days displayed a significant increase in resistance to iodine. Increased resistance was also observed for resuspended cells from the biofilm and planktonic bacteria in the system suspension. Generally, intact biofilms and resuspended biofilm cells were most resistant, followed by planktonic bacteria and phosphate buffer cultures. Thus, biofilm formation on stainless steel surfaces within water systems can result in significantly increased disinfection resistance of commonly-occurring water-borne bacteria that may enhance their ability to colonise water treatment and distribution systems.
Yun, Xinming; Huang, Qingchun; Rao, Wenbing; Xiao, Ciying; Zhang, Tao; Mao, Zhifan; Wan, Ziyi
2017-03-01
The cytotoxic potential of 13 commonly used agricultural insecticides was examined using cell-based systems with three human HepG2, Hek293, HeLa cells and three insect Tn5B1-4, Sf-21, and Drosophila S2 cells. Data showed that (1) an enhancement of some insecticides (e.g. pyrethroids) on cells proliferation; (2) an inhibition of some insecticides on cells viability; (3) various levels of susceptibility of different cells to the same insecticide; and (4) the cell type dependent sensitivity to different insecticides. The degree of cytotoxicity of insecticides on human cells was significantly lower than that on insect cells (P<0.05). Methomyl, even 20μg/ml, showed little cytotoxicity at 24h exposure whereas emamectin benzoate possessed the strongest cytotoxic potential in a dose-dependent fashion. The results revealed comparable cytotoxic property of agricultural insecticides against intact cells. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Forestieri, A. F.; Ratajczak, A. F.
1974-01-01
The NASA-Lewis Research Center program of transferring the FEP-encapsulated solar cell technology developed for the space program to terrestrial applications is presented. The electrical power system design and the array mechanical design are described, and power systems being tested are discussed. The latter are located at NOAA-RAMOS weather stations at Sterling, Va., and Mammoth Mountain, Calif.; on the roof of the Lewis Research Center; on a NOAA-Coast Guard buoy in the Gulf of Mexico; in a U.S. Forest Service mountaintop voice repeater station in the Inyo National Forest, Calif., and in a backpack charger for portable transmitter/receivers being used in the same place. Preliminary results of testing are still incomplete, but show that rime ice can cause cracks in modular cells without damaging the FEP though, which keeps the grid lines intact, and that electrically active elements of the module must be completely sealed from salt water to prevent FEP delamination.
Rotem, Dvir; Schuldiner, Shimon
2004-11-19
Multidrug transporters recognize and transport substrates with apparently little common structural features. At times these substrates are neutral, negatively, or positively charged, and only limited information is available as to how these proteins deal with the energetic consequences of transport of substrates with different charges. Multidrug transporters and drug-specific efflux systems are responsible for clinically significant resistance to chemotherapeutic agents in pathogenic bacteria, fungi, parasites, and human cancer cells. Understanding how these efflux systems handle different substrates may also have practical implications in the development of strategies to overcome the resistance mechanisms mediated by these proteins. Here, we compare transport of monovalent and divalent substrates by EmrE, a multidrug transporter from Escherichia coli, in intact cells and in proteoliposomes reconstituted with the purified protein. The results demonstrated that whereas the transport of monovalent substrates involves charge movement (i.e. electrogenic), the transport of divalent substrate does not (i.e. electroneutral). Together with previous results, these findings suggest that an EmrE dimer exchanges two protons per substrate molecule during each transport cycle. In intact cells, under conditions where the only driving force is the electrical potential, EmrE confers resistance to monovalent substrates but not to divalent ones. In the presence of proton gradients, resistance to both types of substrates is detected. The finding that under some conditions EmrE does not remove certain types of drugs points out the importance of an in-depth understanding of mechanisms of action of multidrug transporters to devise strategies for coping with the problem of multidrug resistance.
Nitrous oxide-forming codenitrification catalyzed by cytochrome P450nor.
Su, Fei; Takaya, Naoki; Shoun, Hirofumi
2004-02-01
Intact cells of the denitrifying fungus Fusarium oxysporum were previously shown to catalyze codenitrification to form a hybrid nitrous oxide (N2O) species from nitrite and other nitrogen compounds such as azide and ammonia. Here we show that cytochrome P450nor can catalyze the codenitrification reaction to form N2O from nitric oxide (NO) but not nitrite, and azide or ammonia. The results show that the direct substrate of the codenitrification by intact cells should not be nitrite but NO, which is formed from nitrite by the reaction of a dissimilatory nitrite reductase.
Infused polymers for cell sheet release
NASA Astrophysics Data System (ADS)
Juthani, Nidhi; Howell, Caitlin; Ledoux, Haylea; Sotiri, Irini; Kelso, Susan; Kovalenko, Yevgen; Tajik, Amanda; Vu, Thy L.; Lin, Jennifer J.; Sutton, Amy; Aizenberg, Joanna
2016-05-01
Tissue engineering using whole, intact cell sheets has shown promise in many cell-based therapies. However, current systems for the growth and release of these sheets can be expensive to purchase or difficult to fabricate, hindering their widespread use. Here, we describe a new approach to cell sheet release surfaces based on silicone oil-infused polydimethylsiloxane. By coating the surfaces with a layer of fibronectin (FN), we were able to grow mesenchymal stem cells to densities comparable to those of tissue culture polystyrene controls (TCPS). Simple introduction of oil underneath an edge of the sheet caused it to separate from the substrate. Characterization of sheets post-transfer showed that they retain their FN layer and morphology, remain highly viable, and are able to grow and proliferate normally after transfer. We expect that this method of cell sheet growth and detachment may be useful for low-cost, flexible, and customizable production of cellular layers for tissue engineering.
Infused polymers for cell sheet release
Juthani, Nidhi; Howell, Caitlin; Ledoux, Haylea; Sotiri, Irini; Kelso, Susan; Kovalenko, Yevgen; Tajik, Amanda; Vu, Thy L.; Lin, Jennifer J.; Sutton, Amy; Aizenberg, Joanna
2016-01-01
Tissue engineering using whole, intact cell sheets has shown promise in many cell-based therapies. However, current systems for the growth and release of these sheets can be expensive to purchase or difficult to fabricate, hindering their widespread use. Here, we describe a new approach to cell sheet release surfaces based on silicone oil-infused polydimethylsiloxane. By coating the surfaces with a layer of fibronectin (FN), we were able to grow mesenchymal stem cells to densities comparable to those of tissue culture polystyrene controls (TCPS). Simple introduction of oil underneath an edge of the sheet caused it to separate from the substrate. Characterization of sheets post-transfer showed that they retain their FN layer and morphology, remain highly viable, and are able to grow and proliferate normally after transfer. We expect that this method of cell sheet growth and detachment may be useful for low-cost, flexible, and customizable production of cellular layers for tissue engineering. PMID:27189419
Infused polymers for cell sheet release.
Juthani, Nidhi; Howell, Caitlin; Ledoux, Haylea; Sotiri, Irini; Kelso, Susan; Kovalenko, Yevgen; Tajik, Amanda; Vu, Thy L; Lin, Jennifer J; Sutton, Amy; Aizenberg, Joanna
2016-05-18
Tissue engineering using whole, intact cell sheets has shown promise in many cell-based therapies. However, current systems for the growth and release of these sheets can be expensive to purchase or difficult to fabricate, hindering their widespread use. Here, we describe a new approach to cell sheet release surfaces based on silicone oil-infused polydimethylsiloxane. By coating the surfaces with a layer of fibronectin (FN), we were able to grow mesenchymal stem cells to densities comparable to those of tissue culture polystyrene controls (TCPS). Simple introduction of oil underneath an edge of the sheet caused it to separate from the substrate. Characterization of sheets post-transfer showed that they retain their FN layer and morphology, remain highly viable, and are able to grow and proliferate normally after transfer. We expect that this method of cell sheet growth and detachment may be useful for low-cost, flexible, and customizable production of cellular layers for tissue engineering.
Genomic stability of lyophilized sheep somatic cells before and after nuclear transfer.
Iuso, Domenico; Czernik, Marta; Di Egidio, Fiorella; Sampino, Silvestre; Zacchini, Federica; Bochenek, Michal; Smorag, Zdzislaw; Modlinski, Jacek A; Ptak, Grazyna; Loi, Pasqualino
2013-01-01
The unprecedented decline of biodiversity worldwide is urging scientists to collect and store biological material from seriously threatened animals, including large mammals. Lyophilization is being explored as a low-cost system for storage in bio-banks of cells that might be used to expand or restore endangered or extinct species through the procedure of Somatic Cell Nuclear Transfer (SCNT). Here we report that the genome is intact in about 60% of lyophylized sheep lymphocytes, whereas DNA damage occurs randomly in the remaining 40%. Remarkably, lyophilized nuclei injected into enucleated oocytes are repaired by a robust DNA repairing activity of the oocytes, and show normal developmental competence. Cloned embryos derived from lyophylized cells exhibited chromosome and cellular composition comparable to those of embryos derived from fresh donor cells. These findings support the feasibility of lyophylization as a storage procedure of mammalian cells to be used for SCNT.
Genomic Stability of Lyophilized Sheep Somatic Cells before and after Nuclear Transfer
Iuso, Domenico; Czernik, Marta; Di Egidio, Fiorella; Sampino, Silvestre; Zacchini, Federica; Bochenek, Michal; Smorag, Zdzislaw; Modlinski, Jacek A.; Ptak, Grazyna; Loi, Pasqualino
2013-01-01
The unprecedented decline of biodiversity worldwide is urging scientists to collect and store biological material from seriously threatened animals, including large mammals. Lyophilization is being explored as a low-cost system for storage in bio-banks of cells that might be used to expand or restore endangered or extinct species through the procedure of Somatic Cell Nuclear Transfer (SCNT). Here we report that the genome is intact in about 60% of lyophylized sheep lymphocytes, whereas DNA damage occurs randomly in the remaining 40%. Remarkably, lyophilized nuclei injected into enucleated oocytes are repaired by a robust DNA repairing activity of the oocytes, and show normal developmental competence. Cloned embryos derived from lyophylized cells exhibited chromosome and cellular composition comparable to those of embryos derived from fresh donor cells. These findings support the feasibility of lyophylization as a storage procedure of mammalian cells to be used for SCNT. PMID:23308098
Cowles, Martis W; Omuro, Kerilyn C; Stanley, Brianna N; Quintanilla, Carlo G; Zayas, Ricardo M
2014-10-01
Members of the COE family of transcription factors are required for central nervous system (CNS) development. However, the function of COE in the post-embryonic CNS remains largely unknown. An excellent model for investigating gene function in the adult CNS is the freshwater planarian. This animal is capable of regenerating neurons from an adult pluripotent stem cell population and regaining normal function. We previously showed that planarian coe is expressed in differentiating and mature neurons and that its function is required for proper CNS regeneration. Here, we show that coe is essential to maintain nervous system architecture and patterning in intact (uninjured) planarians. We took advantage of the robust phenotype in intact animals to investigate the genetic programs coe regulates in the CNS. We compared the transcriptional profiles of control and coe RNAi planarians using RNA sequencing and identified approximately 900 differentially expressed genes in coe knockdown animals, including 397 downregulated genes that were enriched for nervous system functional annotations. Next, we validated a subset of the downregulated transcripts by analyzing their expression in coe-deficient planarians and testing if the mRNAs could be detected in coe+ cells. These experiments revealed novel candidate targets of coe in the CNS such as ion channel, neuropeptide, and neurotransmitter genes. Finally, to determine if loss of any of the validated transcripts underscores the coe knockdown phenotype, we knocked down their expression by RNAi and uncovered a set of coe-regulated genes implicated in CNS regeneration and patterning, including orthologs of sodium channel alpha-subunit and pou4. Our study broadens the knowledge of gene expression programs regulated by COE that are required for maintenance of neural subtypes and nervous system architecture in adult animals.
Wang, Yinsong; Liu, Quan; Chung, Hee Sun; Kwon, Young Min; Shin, Meong Cheol; Lee, Kyuri; Yang, Victor C
2014-01-01
Red blood cells (RBCs) based drug carrier appears to be the most appealing for protein drugs due to their unmatched biocompatability, biodegradability, and long lifespan in the circulation. Numerous methods for encapsulating protein drugs into RBCs were developed, however, most of them induce partial disruption of the cell membrane, resulting in irreversible alterations in both physical and chemical properties of RBCs. Herein, we introduce a novel method for encapsulating proteins into intact RBCs, which was meditated by a cell penetrating peptide (CPP) developed in our lab—low molecular weight protamine (LMWP). L-asparaginase, one of the primary drugs used in treatment of acute lymphoblastic leukemia (ALL), was chosen as a model protein to illustrate the encapsulation into erythrocytes mediated by CPPs. In addition current treatment of ALL using different L-asparaginase delivery and encapsulation methods as well as their associated problems were also reviewed. PMID:24374002
Yavuz, Sevil; Warren, Graham
2017-01-01
A single Golgi stack is duplicated and partitioned into two daughter cells during the cell cycle of the protozoan parasite Trypanosoma brucei. The source of components required to generate the new Golgi and the mechanism by which it forms are poorly understood. Using photoactivatable GFP, we show that the existing Golgi supplies components directly to the newly forming Golgi in both intact and semipermeabilized cells. The movement of a putative glycosyltransferase, GntB, requires the Sar1 and ARF1 GTPases in intact cells. In addition, we show that transfer of GntB from the existing Golgi to the new Golgi can be recapitulated in semipermeabilized cells and is sensitive to the GTP analogue GTPγS. We suggest that the existing Golgi is a key source of components required to form the new Golgi and that this process is regulated by small GTPases. PMID:28495798
Ultrastructure of Prototheca zopfii in bovine granulomatous mastitis.
Cheville, N F; McDonald, J; Richard, J
1984-05-01
Mammary glands from cows with protothecal mastitis were examined by light and electron microscopy at 6, 13, 20, and greater than 180 days after infection. With increasing time, there were increases in severity of granulomatous inflammation, number of endospores and sporangia, and ratio of degenerate to intact algae. Algae were found in macrophages but were not seen in neutrophils, epithelial cells, or myoepithelial cells. Macrophages containing algae were markedly enlarged, chiefly from reduplication of the Golgi complex and its associated vesicles. Intracellular algae were degenerate and consisted of intact cell wall profiles which contained membrane fragments but lacked nuclei and cytoplasmic organelles. Degenerate algae in vitro had thin cell walls and did not undergo internal lysis. Cell wall material of intracellular algae stained as an acidic, nonsulfated, carboxylated glycoprotein. These findings suggest that intracellular Prototheca zopfii degenerate by progressive lysis of internal organelles with persistence of cell wall glycans and that development of aberrant cell wall forms occurs as a defective response by host macrophages.
Chaotic electrical activity of living β-cells in the mouse pancreatic islet
NASA Astrophysics Data System (ADS)
Kanno, Takahiro; Miyano, Takaya; Tokuda, Isao; Galvanovskis, Juris; Wakui, Makoto
2007-02-01
To test for chaotic dynamics of the insulin producing β-cell and explore its biological role, we observed the action potentials with the perforated patch clamp technique, for isolated cells as well as for intact cells of the mouse pancreatic islet. The time series obtained were analyzed using nonlinear diagnostic algorithms associated with the surrogate method. The isolated cells exhibited short-term predictability and visible determinism, in the steady state response to 10 mM glucose, while the intact cells did not. In the latter case, determinism became visible after the application of a gap junction inhibitor. This tendency was enhanced by the stimulation with tolbutamide. Our observations suggest that, thanks to the integration of individual chaotic dynamics via gap junction coupling, the β-cells will lose memory of fluctuations occurring at any instant in their electrical activity more rapidly with time. This is likely to contribute to the functional stability of the islet against uncertain perturbations.
FRET imaging approaches for in vitro and in vivo characterization of synthetic lipid nanoparticles.
Gravier, Julien; Sancey, Lucie; Hirsjärvi, Samuli; Rustique, Emilie; Passirani, Catherine; Benoît, Jean-Pierre; Coll, Jean-Luc; Texier, Isabelle
2014-09-02
DiI and DiD, two fluorophores able to interact by FRET (Förster resonance energy transfer), were coencapsulated in the core of lipid nanocapsules (LNCs) and nanoemulsions (LNEs), lipophilic reservoirs for the delivery of drugs. The ability of FRET imaging to provide information on the kinetics of dissociation of the nanoparticles in the presence of bovine serum albumin (BSA) or whole serum, or after incubation with cancer cells, and after systemic administration in tumor-bearing mice, was studied. Both microscopic and macroscopic imaging was performed to determine the behavior of the nanostructures in a biological environment. When 2 mg/mL FRET LNEs or LNCs were dispersed in buffer, in the presence of unloaded nanoparticles, BSA, or in whole serum, the presence of serum was the most active in destroying the particles. This occurred immediately with a diminution of 20% of FRET, then slowly, ending up with still 30% intact nanoparticles at 24 h. LNCs were internalized rapidly in cultured cells with the FRET signal decreasing within the first minutes of incubation, and then a plateau was reached and LNCs remained intact during 3 h. In contrast, LNEs were poorly internalized and were rapidly dissociated after internalization. Following their iv injection, LNCs appeared very stable in subcutaneous tumors implanted in mice. Intact particles were found using microscopic FRET determination on tumor sections 24 h after injection, that correlated well with the 8% calculated noninvasively on live animals. FRET investigations showed the potential to determine valid and reliable information about in vitro and in vivo behavior of nanoparticles.
Jing, Da; Baik, Andrew D.; Lu, X. Lucas; Zhou, Bin; Lai, Xiaohan; Wang, Liyun; Luo, Erping; Guo, X. Edward
2014-01-01
Osteocytes have been hypothesized to be the major mechanosensors in bone. How in situ osteocytes respond to mechanical stimuli is still unclear because of technical difficulties. In vitro studies have shown that osteocytes exhibited unique calcium (Ca2+) oscillations to fluid shear. However, whether this mechanotransduction phenomenon holds for in situ osteocytes embedded within a mineralized bone matrix under dynamic loading remains unknown. Using a novel synchronized loading/imaging technique, we successfully visualized in real time and quantified Ca2+ responses in osteocytes and bone surface cells in situ under controlled dynamic loading on intact mouse tibia. The resultant fluid-induced shear stress on the osteocyte in the lacunocanalicular system (LCS) was also quantified. Osteocytes, but not surface cells, displayed repetitive Ca2+ spikes in response to dynamic loading, with spike frequency and magnitude dependent on load magnitude, tissue strain, and shear stress in the LCS. The Ca2+ oscillations were significantly reduced by endoplasmic reticulum (ER) depletion and P2 purinergic receptor (P2R)/phospholipase C (PLC) inhibition. This study provides direct evidence that osteocytes respond to in situ mechanical loading by Ca2+ oscillations, which are dependent on the P2R/PLC/inositol trisphosphate/ER pathway. This study develops a novel approach in skeletal mechanobiology and also advances our fundamental knowledge of bone mechanotransduction.—Jing, D., Baik, A. D., Lu, X. L., Zhou, B., Lai, X., Wang, L., Luo, E., Guo, X. E. In situ intracellular calcium oscillations in osteocytes in intact mouse long bones under dynamic mechanical loading. PMID:24347610
Fungiform taste bud degeneration in C57BL/6J mice following chorda-lingual nerve transection.
Guagliardo, Nick A; Hill, David L
2007-09-10
Taste buds are dependent on innervation for normal morphology and function. Fungiform taste bud degeneration after chorda tympani nerve injury has been well documented in rats, hamsters, and gerbils. The current study examines fungiform taste bud distribution and structure in adult C57BL/6J mice from both intact taste systems and after unilateral chorda-lingual nerve transection. Fungiform taste buds were visualized and measured with the aid of cytokeratin 8. In control mice, taste buds were smaller and more abundant on the anterior tip (<1 mm) of the tongue. By 5 days after nerve transection taste buds were smaller and fewer on the side of the tongue ipsilateral to the transection and continued to decrease in both size and number until 15 days posttransection. Degenerating fungiform taste buds were smaller due to a loss of taste bud cells rather than changes in taste bud morphology. While almost all taste buds disappeared in more posterior fungiform papillae by 15 days posttransection, the anterior tip of the tongue retained nearly half of its taste buds compared to intact mice. Surviving taste buds could not be explained by an apparent innervation from the remaining intact nerves. Contralateral effects of nerve transection were also observed; taste buds were larger due to an increase in the number of taste bud cells. These data are the first to characterize adult mouse fungiform taste buds and subsequent degeneration after unilateral nerve transection. They provide the basis for more mechanistic studies in which genetically engineered mice can be used. (c) 2007 Wiley-Liss, Inc.
Age-Related Changes in Mouse Taste Bud Morphology, Hormone Expression, and Taste Responsivity
Shin, Yu-Kyong; Cong, Wei-na; Cai, Huan; Kim, Wook; Maudsley, Stuart; Martin, Bronwen
2012-01-01
Normal aging is a complex process that affects every organ system in the body, including the taste system. Thus, we investigated the effects of the normal aging process on taste bud morphology, function, and taste responsivity in male mice at 2, 10, and 18 months of age. The 18-month-old animals demonstrated a significant reduction in taste bud size and number of taste cells per bud compared with the 2- and 10-month-old animals. The 18-month-old animals exhibited a significant reduction of protein gene product 9.5 and sonic hedgehog immunoreactivity (taste cell markers). The number of taste cells expressing the sweet taste receptor subunit, T1R3, and the sweet taste modulating hormone, glucagon-like peptide-1, were reduced in the 18-month-old mice. Concordant with taste cell alterations, the 18-month-old animals demonstrated reduced sweet taste responsivity compared with the younger animals and the other major taste modalities (salty, sour, and bitter) remained intact. PMID:22056740
Immune privilege of the CNS is not the consequence of limited antigen sampling
NASA Astrophysics Data System (ADS)
Harris, Melissa G.; Hulseberg, Paul; Ling, Changying; Karman, Jozsef; Clarkson, Benjamin D.; Harding, Jeffrey S.; Zhang, Mengxue; Sandor, Adam; Christensen, Kelsey; Nagy, Andras; Sandor, Matyas; Fabry, Zsuzsanna
2014-03-01
Central nervous system (CNS) immune privilege is complex, and it is still not understood how CNS antigens are sampled by the peripheral immune system under steady state conditions. To compare antigen sampling from immune-privileged or nonprivileged tissues, we created transgenic mice with oligodendrocyte or gut epithelial cell expression of an EGFP-tagged fusion protein containing ovalbumin (OVA) antigenic peptides and tested peripheral anti-OVA peptide-specific sentinel OT-I and OT-II T cell activation. We report that oligodendrocyte or gut antigens are sampled similarly, as determined by comparable levels of OT-I T cell activation. However, activated T cells do not access the CNS under steady state conditions. These data show that afferent immunity is normally intact as there is no barrier at the antigen sampling level, but that efferent immunity is restricted. To understand how this one-sided surveillance contributes to CNS immune privilege will help us define mechanisms of CNS autoimmune disease initiation.
Age-related changes in mouse taste bud morphology, hormone expression, and taste responsivity.
Shin, Yu-Kyong; Cong, Wei-na; Cai, Huan; Kim, Wook; Maudsley, Stuart; Egan, Josephine M; Martin, Bronwen
2012-04-01
Normal aging is a complex process that affects every organ system in the body, including the taste system. Thus, we investigated the effects of the normal aging process on taste bud morphology, function, and taste responsivity in male mice at 2, 10, and 18 months of age. The 18-month-old animals demonstrated a significant reduction in taste bud size and number of taste cells per bud compared with the 2- and 10-month-old animals. The 18-month-old animals exhibited a significant reduction of protein gene product 9.5 and sonic hedgehog immunoreactivity (taste cell markers). The number of taste cells expressing the sweet taste receptor subunit, T1R3, and the sweet taste modulating hormone, glucagon-like peptide-1, were reduced in the 18-month-old mice. Concordant with taste cell alterations, the 18-month-old animals demonstrated reduced sweet taste responsivity compared with the younger animals and the other major taste modalities (salty, sour, and bitter) remained intact.
Novel Passive Clearing Methods for the Rapid Production of Optical Transparency in Whole CNS Tissue.
Woo, Jiwon; Lee, Eunice Yoojin; Park, Hyo-Suk; Park, Jeong Yoon; Cho, Yong Eun
2018-05-08
Since the development of CLARITY, a bioelectrochemical clearing technique that allows for three-dimensional phenotype mapping within transparent tissues, a multitude of novel clearing methodologies including CUBIC (clear, unobstructed brain imaging cocktails and computational analysis), SWITCH (system-wide control of interaction time and kinetics of chemicals), MAP (magnified analysis of the proteome), and PACT (passive clarity technique), have been established to further expand the existing toolkit for the microscopic analysis of biological tissues. The present study aims to improve upon and optimize the original PACT procedure for an array of intact rodent tissues, including the whole central nervous system (CNS), kidneys, spleen, and whole mouse embryos. Termed psPACT (process-separate PACT) and mPACT (modified PACT), these novel techniques provide highly efficacious means of mapping cell circuitry and visualizing subcellular structures in intact normal and pathological tissues. In the following protocol, we provide a detailed, step-by-step outline on how to achieve maximal tissue clearance with minimal invasion of their structural integrity via psPACT and mPACT.
Celia, Christian; Ferrati, Silvia; Bansal, Shyam; van de Ven, Anne L.; Ruozi, Barbara; Zabre, Erika; Hosali, Sharath; Paolino, Donatella; Sarpietro, Maria Grazia; Fine, Daniel; Fresta, Massimo; Ferrari, Mauro
2014-01-01
Metronomic chemotherapy supports the idea that long-term, sustained, constant administration of chemotherapeutics, currently not achievable, could be effective against numerous cancers. Particularly appealing are liposomal formulations, used to solubilize hydrophobic therapeutics and minimize side effects, while extending drug circulation time and enabling passive targeting. As liposome alone cannot survive in circulation beyond 48 hrs, sustaining their constant plasma level for many days is a challenge. To address this, we developed, as a proof of concept, an implantable nanochannel delivery system and ultra-stable PEGylated lapatinib loaded-liposomes, and we demonstrate the release of intact vesicles for over 18 days. Further, we investigate intravasation kinetics of subcutaneously delivered liposomes and verify their biological activity post nanochannel release on BT474 breast cancer cells. The key innovation of this work is the combination of two nanotechnologies to exploit the synergistic effect of liposomes, demonstrated as passive-targeting vectors and nanofluidics to maintain therapeutic constant plasma levels. In principle, this approach could maximize efficacy of metronomic treatments. PMID:23881575
Hoenerhoff, Mark; Hixon, Julie A.; Durum, Scott K.; Qiu, Ting-hu; He, Siping; Burkett, Sandra; Liu, Zi-Yao; Swanson, Steven M.; Green, Jeffrey E.
2016-01-01
Triple negative breast cancer (TNBC) is an aggressive subtype of breast cancer that is associated with a poor prognosis and for which no targeted therapies currently exist. In order to improve preclinical testing for TNBC that relies primarily on using human xenografts in immunodeficient mice, we have developed a novel immunocompetent syngeneic murine tumor transplant model for basal-like triple-negative breast cancer. The C3(1)/SV40-T/t-antigen (C3(1)/Tag) mouse mammary tumor model in the FVB/N background shares important similarities with human basal-like TNBC. However, these tumors or derived cell lines are rejected when transplanted into wt FVB/N mice, likely due to the expression of SV40 T-antigen. We have developed a sub-line of mice (designated REAR mice) that carry only one copy of the C3(1)/Tag-antigen transgene resulting from a spontaneous transgene rearrangement in the original founder line. Unlike the original C3(1)/Tag mice, REAR mice do not develop mammary tumors or other phenotypes observed in the original C3(1)/Tag transgenic mice. REAR mice are more immunologically tolerant to SV40 T-antigen driven tumors and cell lines in an FVB/N background (including prostate tumors from TRAMP mice), but are otherwise immunologically intact. This transplant model system offers the ability to synchronously implant the C3(1)/Tag tumor-derived M6 cell line or individual C3(1)/Tag tumors from various stages of tumor development into the mammary fat pads or tail veins of REAR mice. C3(1)/Tag tumors or M6 cells implanted into the mammary fat pads spontaneously metastasize at a high frequency to the lung and liver. M6 cells injected by tail vein can form brain metastases. We demonstrate that irradiated M6 tumor cells or the same cells expressing GM-CSF can act as a vaccine to retard tumor growth of implanted tumor cells in the REAR model. Preclinical studies performed in animals with an intact immune system should more authentically replicate treatment responses in human patients. PMID:27171183
NASA Astrophysics Data System (ADS)
Mosharova, I. V.; Mosharov, S. A.; Ilinskiy, V. V.
2017-01-01
The distribution of bacterioplankton with active electron transport chains, as well as bacteria with intact cell membranes, was investigated for the first time in the region of St. Anna Trough in the Kara Sea. The average number of bacteria with active electron transport chains in the waters of the St. Anna Trough was 15.55 × 103 cells mL-1 (the limits of variation were 1.06-92.17 × 103 cells mL-1). The average number of bacteria with intact membranes was 33.46 × 103 cells mL-1 (the limits of variation were 6.78 to 103.18 × 103 cells mL-1). Almost all bacterioplankton microorganisms in the studied area were potentially viable, and the average share of bacteria with intact membranes was 92.1% of the total number of bacterioplankton (TNB) (the limits of variation were 76.2 to 98.4%). The share of bacteria with active metabolisms was 38.2% of the TNB (the limits of variation were 5.6-93.4%). The shares of the bacteria with active metabolisms were maximum in areas with the most stable environmental conditions (on the shelf and in deep water), whereas on the slope, where the gradients of water temperature and salinity were maximum, these values were lower.
Hybrid mechanosensing system to generate the polarity needed for migration in fish keratocytes
Okimura, Chika; Iwadate, Yoshiaki
2016-01-01
ABSTRACT Crawling cells can generate polarity for migration in response to forces applied from the substratum. Such reaction varies according to cell type: there are both fast- and slow-crawling cells. In response to periodic stretching of the elastic substratum, the intracellular stress fibers in slow-crawling cells, such as fibroblasts, rearrange themselves perpendicular to the direction of stretching, with the result that the shape of the cells extends in that direction; whereas fast-crawling cells, such as neutrophil-like differentiated HL-60 cells and Dictyostelium cells, which have no stress fibers, migrate perpendicular to the stretching direction. Fish epidermal keratocytes are another type of fast-crawling cell. However, they have stress fibers in the cell body, which gives them a typical slow-crawling cell structure. In response to periodic stretching of the elastic substratum, intact keratocytes rearrange their stress fibers perpendicular to the direction of stretching in the same way as fibroblasts and migrate parallel to the stretching direction, while blebbistatin-treated stress fiber-less keratocytes migrate perpendicular to the stretching direction, in the same way as seen in HL-60 cells and Dictyostelium cells. Our results indicate that keratocytes have a hybrid mechanosensing system that comprises elements of both fast- and slow-crawling cells, to generate the polarity needed for migration. PMID:27124267
[The sense of smell in daily life].
Steinbach, S; Hundt, W; Zahnert, T
2008-09-01
An intact olfactory system affects all areas of life including the creation of new life, partner selection, daily hygiene, food intake, and the perception of danger from gas and smoke. The olfactory system is most effective from adolescence to middle age. With advancing age the regeneration of olfactory receptor cells decreases, often resulting in an increasing loss of smell. Functional anosmia affects 5% of the general population and 10% of those over 65. Therefore, olfactory dysfunctions are not uncommon. The following provides an overview of the physiology of smell, olfactory testing, special olfactory dysfunctions as well as treatment and general recommendations.
North, J R; Dresser, D W
1977-01-01
A comparison has been made of the in vitro and in vivo response of primed mouse spleen cells to the hapten DNP. The responses were analysed in terms of six classes (sub-classes) of humoral antibody directed against the cross-reacting hapten TNP. By comparison with the response in intact mice the adoptive secondary response is delayed by 3 days in addition to being somewhat lesser in magnitude. The timing of the response in vitro is similar to that observed in intact mice. The preponderant class in all three responses was gammaG1 with gammaA and gammaG3 secreting cells consistently comprising the smallest proportion of the total of antibody-secreting cells. PMID:863475
North, J R; Dresser, D W
1977-05-01
A comparison has been made of the in vitro and in vivo response of primed mouse spleen cells to the hapten DNP. The responses were analysed in terms of six classes (sub-classes) of humoral antibody directed against the cross-reacting hapten TNP. By comparison with the response in intact mice the adoptive secondary response is delayed by 3 days in addition to being somewhat lesser in magnitude. The timing of the response in vitro is similar to that observed in intact mice. The preponderant class in all three responses was gammaG1 with gammaA and gammaG3 secreting cells consistently comprising the smallest proportion of the total of antibody-secreting cells.
Inhibition of protein synthesis in intact HeLa cells by Shigella dysenteriae 1 toxin.
Brown, J E; Rothman, S W; Doctor, B P
1980-07-01
Shiga toxin purified to near homogeneity from cell lysates of Shigella dysenteriae 1 inhibited protein and deoxyribonucle acid syntheses in intact HeLa cells. Inhibition was dependent on toxin concentration and time of incubation. A minimal latent period of 30 min was observed with saturating doses of toxin. Ribonucleic acid synthesis, uptake of alpha-aminoisobutyric acid, and maintenance of intracellular K+ concentrations were not affected until well after maximal inhibition of protein and deoxyribonucleic acid syntheses. The inhibitory effect of toxin was sensitive to heat inactivation and was prevented by antibody neutralization. Several cytotoxic components were separated by polyacrylamide gel electrophoresis of the purified toxin preparations; all inhibited protein and deoxyribonucleic acid syntheses equally.
Upregulating Apoptotic Signaling in Neurofibromatosis
2009-09-01
Schwannoma) cells that are NF1 deficient cells were used. Rat pheochromocytoma PC12 cells were selected as a control, in which Ras signaling is normal. The...Down and Detection kit. The baseline level of GTP bound Ras was detected in PC12 cells (rat pheochromocytoma ) in which Ras signaling is intact. In
Anari, M R; Khan, S; Liu, Z C; O'Brien, P J
1995-12-01
Cytochrome P450 (P450) can utilize organic hydroperoxides and peracids to support hydroxylation and dealkylation of various P450 substrates. However, the biological significance of this P450 peroxygenase/peroxidase activity in the bioactivation of xenobiotics in intact cells has not been demonstrated. We have shown that tert-butyl hydroperoxide (tBHP) markedly enhances 3-20-fold the cytotoxicity of various aromatic hydrocarbons and their phenolic metabolites. The tBHP-enhanced hepatocyte cytotoxicity of 4-nitroanisole (4-NA) and 4-hydroxyanisole (4-HA) was also accompanied by an increase in the hepatocyte O-demethylation of 4-NA and 4-HA up to 7.5- and 21-fold, respectively. Hepatocyte GSH conjugation by 4-HA was also markedly increased by tBHP. An LC/MS analysis of the GSH conjugates identified hydroquinone-GSH and 4-methoxy-catechol:GSH conjugates as the predominant adducts. Pretreatment of hepatocytes with P450 inhibitors, e.g., phenylimidazole, prevented tBHP-enhanced 4-HA metabolism, GSH depletion, and cytotoxicity. In conclusion, hydroperoxides can therefore be used by intact cells to support the bioactivation of xenobiotics through the P450 peroxidase/peroxygenase system.
Beije, B; Jenssen, D
1982-03-01
Mutagenic effect of styrene and styrene-7,8-oxide was studied with the isolated perfused rat liver as metabolizing system and Chinese hamster V79 cells as genetic target cells. Styrene-7,8-oxide which is mutagenic per se was rapidly metabolized by the perfused rat liver. Thus no mutagenic effect was detected neither in the perfusion medium nor in the bile. However when styrene was added to the perfusion system, an increase in V79 mutants was observed regardless of where in the circulating perfusion medium the V79 cells were placed: the same effect was obtained with V79 cells close to the liver as well as at a distance from the liver. No mutagenic effect was observed in the bile. Simultaneous analysis of the styrene-7,8-oxide concentration in the perfusion medium, suggest that this metabolite is not the cause of the mutagenic effect observed during perfusion with styrene. The effect of the two test compounds on some liver functions was also studied. Both styrene and styrene-7,8-oxide changed the bile flow without affecting bile acid secretion: styrene caused a reduction in bile flow as compared to control perfusions and styrene-7,8-oxide increased the bile flow. Styrene, but not styrene-7,8-oxide, reduced gluconeogenesis from lactate. Styrene had no effect on the liver's capacity to incorporate amino acids into plasma proteins, whereas styrene-7,8-oxide reduced the amino acid incorporation. The microsomal cytochrome P-450 content was not affected by the two test compounds. No alteration in microsomal N- and C-oxygenation of N,N-dimethylaniline (DMA) was observed with styrene-7,8-oxide or the lower styrene dose used (240 mumol), whereas the higher styrene concentration (480 mumol) reduced N-oxygenation and thus also the total DNA metabolism. It is suggested that the results on styrene and styrene-7,8-oxide found here using the liver perfusion/cell culture system mimic the metabolism expected to be found in the intact animal, thus indicating that styrene-7,8-oxide is not the principal mutagenic metabolite of styrene in vivo.
Mainali, Laxman; Raguz, Marija; O’Brien, William J.; Subczynski, Witold K.
2012-01-01
The organization and physical properties of the lipid bilayer portion of intact cortical and nuclear fiber cell plasma membranes isolated from the eyes lenses of two-year-old pigs were studied using electron paramagnetic resonance (EPR) spin-labeling. Membrane fluidity, hydrophobicity, and the oxygen transport parameter (OTP) were assessed from the EPR spectra of precisely positioned spin labels. Intact cortical and nuclear membranes, which include membrane proteins, were found to contain three distinct lipid environments. These lipid environments were termed the bulk lipid domain, boundary lipid domain, and trapped lipid domain (lipids in protein aggregates). The amount of boundary and trapped lipids was greater in intact nuclear membranes than in cortical membranes. The properties of intact membranes were compared with the organization and properties of lens lipid membranes made of the total lipid extracts from the lens cortex or nucleus. In cortical lens lipid membranes, only one homogenous environment was detected, which was designated as a bulk lipid domain (phospholipid bilayer saturated with cholesterol). Lens lipid membranes prepared from the lens nucleus possessed two domains, assigned as a bulk lipid domain and a cholesterol bilayer domain (CBD). In intact nuclear membranes, it was difficult to discriminate the CBD, which was clearly detected in nuclear lens lipid membranes because the OTP measured in the CBD is the same as in the domain formed by trapped lipids. The two domains unique to intact membranes—namely, the domain formed by boundary lipids and the domain formed by trapped lipids—were most likely formed due to the presence of membrane proteins. It is concluded that formation of rigid and practically impermeable domains is enhanced in the lens nucleus, indicating changes in membrane composition that may help to maintain low oxygen concentration in this lens region. PMID:22326289
Tzeng, E; Billiar, T R; Robbins, P D; Loftus, M; Stuehr, D J
1995-01-01
Murine inducible nitric oxide (NO) synthase (iNOS) is catalytically active only in dimeric form. Assembly of its purified subunits into a dimer requires H4B. To understand the structure-activity relationships of human iNOS, we constitutively expressed recombinant human iNOS in NIH 3T3 cells by using a retroviral vector. These cells are deficient in de novo H4B biosynthesis and the role of H4B in the expression and assembly of active iNOS in an intact cell system could be studied. In the absence of added H4B, NO synthesis by the cells was minimal, whereas cells grown with supplemental H4B or the H4B precursor sepiapterin generated NO (74.1 and 63.3 nmol of nitrite per 10(6) cells per 24 h, respectively). NO synthesis correlated with an increase in intracellular H4B but no increase in iNOS protein. Instead, an increased percentage of dimeric iNOS was observed, rising from 20% in cytosols from unsupplemented cells to 66% in H4B-supplemented cell cytosols. In all cases, only dimeric iNOS displayed catalytic activity. Cytosols prepared from H4B-deficient cells exhibited little iNOS activity but acquired activity during a 60- to 120-min incubation with H4B, reaching final activities of 60-72 pmol of citrulline per mg of protein per min. Reconstitution of cytosolic NO synthesis activity was associated with conversion of monomers into dimeric iNOS during the incubation. Thus, human iNOS subunits dimerize to form an active enzyme, and H4B plays a critical role in promoting dimerization in intact cells. This reveals a post-translational mechanism by which intracellular H4B can regulate iNOS expression. Images Fig. 1 Fig. 3 Fig. 4 Fig. 5 PMID:8524846
[Electrical response of inner membrane structures of corynebacteria during electrotransformation].
Tiurin, M V; Voroshilova, E B; Rostova, Iu G; Oparina, N Iu; Gusiatiner, M M
1998-01-01
The efficiency of the electrotransformation of intact cells of corynebacteria by a solitary impulse with a complex shape amounted to 10(6) transformants/microgram of plasmid pNV1 DNA at an electric field strength of 14.2 kW/cm; the voltage-current curve of the cell samples was nonlinear. Under these conditions, the structure of the electric current impulse passing intact cells or protoplasts included oscillations characterized by increasing amplitude and a duration of 170 microseconds, which were not detected in the structure of the electric current impulses at field strengths insufficient for obtaining transformants. These changes in the impulse shape suggest the involvement of internal closed membrane structures in the electrical response of cells to the exogenous electric impulse. Most probably, under conditions of electrical treatment optimal for transformation, electropores are formed in the intracellular membranes of corynebacteria.
Wellburn, A. R.; Hemming, F. W.
1967-01-01
Intact chloroplasts and cell walls were prepared from horse-chestnut leaves that had previously metabolized [2-14C]mevalonate. The bulk of the castaprenols and plastoquinone-9 was found within the chloroplasts. The remaining portion of the castaprenols was associated with the cell-wall preparation whereas that of the plastoquinone-9 was probably localized in the soluble fraction of the plant cell. The 14C content of these compounds of different cell fractions indicated the presence of polyisoprenoid-synthesizing activity both inside and outside the chloroplasts. This was confirmed by the relative incorporation of 14C when ultrasonically treated and intact chloroplasts were incubated with [2-14C]mevalonate. As the leaves aged (on the tree) an increase in extraplastidic castaprenols and plastoquinone-9, together with associated synthesizing activities, was observed. PMID:6068175
Single-cell in vivo imaging of adult neural stem cells in the zebrafish telencephalon.
Barbosa, Joana S; Di Giaimo, Rossella; Götz, Magdalena; Ninkovic, Jovica
2016-08-01
Adult neural stem cells (aNSCs) in zebrafish produce mature neurons throughout their entire life span in both the intact and regenerating brain. An understanding of the behavior of aNSCs in their intact niche and during regeneration in vivo should facilitate the identification of the molecular mechanisms controlling regeneration-specific cellular events. A greater understanding of the process in regeneration-competent species may enable regeneration to be achieved in regeneration-incompetent species, including humans. Here we describe a protocol for labeling and repetitive imaging of aNSCs in vivo. We label single aNSCs, allowing nonambiguous re-identification of single cells in repetitive imaging sessions using electroporation of a red-reporter plasmid in Tg(gfap:GFP)mi2001 transgenic fish expressing GFP in aNSCs. We image using two-photon microscopy through the thinned skull of anesthetized and immobilized fish. Our protocol allows imaging every 2 d for a period of up to 1 month. This methodology allowed the visualization of aNSC behavior in vivo in their natural niche, in contrast to previously available technologies, which rely on the imaging of either dissociated cells or tissue slices. We used this protocol to follow the mode of aNSC division, fate changes and cell death in both the intact and injured zebrafish telencephalon. This experimental setup can be widely used, with minimal prior experience, to assess key factors for processes that modulate aNSC behavior. A typical experiment with data analysis takes up to 1.5 months.
Murakami, Takashi; Zhang, Yong; Wang, Xiaoen; Hiroshima, Yukihiko; Kasashima, Hiroaki; Yashiro, Masakazu; Hirakawa, Kosei; Miwa, Atsushi; Kiyuna, Tasuku; Matsuyama, Ryusei; Tanaka, Kuniya; Bouvet, Michael; Endo, Itaru; Hoffman, Robert M
2016-05-01
Orthotopic (literally "correct place") implantation of cancer in nude mice has long been known to be superior to subcutaneous transplantation because the orthotopic tumor can metastasize. We reported previously on surgical orthotopic implantation (SOI) of gastric cancer tissue in nude mice resulting in the formation of metastases in 100% of the mice with extensive primary growth to the regional lymph nodes, liver, and lung. In contrast, when cell suspensions were used to inject gastric cancer cells orthotopically, metastases occurred in only 6.7% of the mice with local tumor formation, emphasizing the importance of orthotopically implanting intact tissue to allow full expression of metastatic potential. However, the different behavior of tumors implanted orthotopically by the two methods has not been visualized in real time. OCUM-2MD3 human gastric cancer cells labeled with the fluorescent protein Azami-Green were implanted orthotopically as cells or tissue in nude mice. Orthotopic implantation of cells resulted in local spread on the stomach. In contrast, SOI of tumor tissue of OCUM-2MD3 resulted in vessel spread of the Azami-Green-expressing cancer cells. Metastasis was also observed in the left lobe of the liver after SOI. These results demonstrate the physiological importance of intact cancer tissue for orthotopic implantation in order for tumors to properly grow and express their metastatic potential. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Yoneyama, Masanori; Iwamoto, Naoko; Nagashima, Reiko; Sugiyama, Chie; Kawada, Koichi; Kuramoto, Nobuyuki; Shuto, Makoto; Ogita, Kiyokazu
2008-10-01
The heat shock protein (Hsp) 110 family is composed of HSP105, APG-1, and APG-2. As the response of these proteins to neuronal damage is not yet fully understood, in the present study, we assessed their expression in mouse hippocampal neurons following trimethyltin chloride (TMT) treatment in vivo and in vitro. Although each of these three Hsps had a distinct regional distribution within the hippocampus, a low level of all of them was observed in the granule cell layer of the dentate gyrus in naïve animals. TMT was effective in markedly increasing the level of these Hsps in the granule cell layer, at least 16h to 4days after the treatment. In the dentate granule cell layer on day 2 after TMT treatment, HSP105 was expressed mainly in the perikarya of NeuN-positive cells (intact neurons); whereas APG-1 and APG-2 were predominantly found in NeuN-negative cells (damaged neurons as evidenced by signs of cell shrinkage and condensation of chromatin). Assessments using primary cultures of mouse hippocampal neurons exposed to TMT revealed that whereas HSP105 was observed in intact neurons rather than in damaged neurons, APG-1 and APG-2 were detected in both damaged neurons and intact neurons. Taken together, our data suggest that APG-1 and APG-2 may play different roles from HSP105 in neurons damaged by TMT.
Kappus, R P; Berger, S; Thomas, C A; Ottmann, O G; Ganser, A; Stille, W; Shah, P M
1992-07-01
Clinical observations show that the HIV infection is often associated with affections of the skin. In order to examine the involvement of the epidermal immune system in the HIV infection, we determined accessory cell function of epidermal cells from HIV-1-infected patients. For this we measured the proliferative response of enriched CD(4+)-T-lymphocytes from HIV-infected patients and noninfected controls to stimulation with anti-CD3 and IL-2 in the presence of epidermal cells; the enhancement of the response is dependent on the presence of functionally intact accessory cells. The capacity of epidermal cells to increase the anti-CD3-stimulated T-cell proliferative response was significantly enhanced in HIV patients (CDC III/IVA) as compared with noninfected donors. It is discussed, whether the increased activity of epidermal cells from HIV-infected patients may be responsible for several of the dermal lesions in the course of an HIV infection as due to an enhanced production and release of epidermal cell-derived cytokines.
Axonal sprouting and laminin appearance after destruction of glial sheaths.
Masuda-Nakagawa, L M; Muller, K J; Nicholls, J G
1993-01-01
Laminin, a large extracellular matrix molecule, is associated with axonal outgrowth during development and regeneration of the nervous system in a variety of animals. In the leech central nervous system, laminin immunoreactivity appears after axon injury in advance of the regenerating axons. Although studies of vertebrate nervous system in culture have implicated glial and Schwann cells as possible sources, the cells that deposit laminin at sites crucial for regeneration in the living animal are not known. We have made a direct test to determine whether, in the central nervous system of the leech, cells other than ensheathing glial cells can produce laminin. Ensheathing glial cells of adult leeches were ablated selectively by intracellular injection of a protease. As a result, leech laminin accumulated within 10 days in regions of the central nervous system where it is not normally found, and undamaged, intact axons began to sprout extensively. In normal leeches laminin immunoreactivity is situated only in the basement membrane that surrounds the central nervous system, whereas after ablation of ensheathing glia it appeared in spaces through which neurons grew. Within days of ablation of the glial cell, small mobile phagocytes, or microglia, accumulated in the spaces formerly occupied by the glial cell. Microglia were concentrated at precisely the sites of new laminin appearance and axon sprouting. These results suggest that in the animal, as in culture, leech laminin promotes sprouting and that microglia may be responsible for its appearance. Images Fig. 1 Fig. 2 Fig. 3 PMID:8506343
Full-thickness skin with mature hair follicles generated from tissue culture expanded human cells.
Wu, Xunwei; Scott, Larry; Washenik, Ken; Stenn, Kurt
2014-12-01
The goal of regenerative medicine is to reconstruct fully functional organs from tissue culture expanded human cells. In this study, we report a method for human reconstructed skin (hRSK) when starting with human cells. We implanted tissue culture expanded human epidermal and dermal cells into an excision wound on the back of immunodeficient mice. Pigmented skin covered the wound 4 weeks after implantation. Hair shafts were visible at 12 weeks and prominent at 14 weeks. Histologically, the hRSK comprises an intact epidermis and dermis with mature hair follicles, sebaceous glands and most notably, and unique to this system, subcutis. Morphogenesis, differentiation, and maturation of the hRSK mirror the human fetal process. Human antigen markers demonstrate that the constituent cells are of human origin for at least 6 months. The degree of new skin formation is most complete when using tissue culture expanded cells from fetal skin, but it also occurs with expanded newborn and adult cells; however, no appendages formed when we grafted both adult dermal and epidermal cells. The hRSK system promises to be valuable as a laboratory model for studying biological, pathological, and pharmaceutical problems of human skin.
Strehl, Johanna D; Wachter, David L; Fiedler, Jutta; Heimerl, Engelbert; Beckmann, Matthias W; Hartmann, Arndt; Agaimy, Abbas
2015-08-01
The role of the switch/sucrose nonfermenting chromatin remodeling complex in the initiation and progression of cancer is emerging. In the female genital tract, only ovarian small cell carcinoma, hypercalcemic type harbors recurrent inactivating SMARCA4 mutations. Otherwise, only rare case reports documented SMARCB1 involvement in endometrial cancer. We analyzed 24 grade 3 uterine endometrioid adenocarcinomas and 2 undifferentiated carcinomas for immunohistochemical expression of SMARCB1 and SMARCA4. All tumors showed high-grade nuclear features with a predominance of solid growth pattern. All cases showed intact nuclear SMARCB1 expression in all tumor cells. However, 1 case of a 78-year-old woman showed complete loss of SMARCA4 in 90% of the tumor with retained expression in 10% of the tumor. The SMARCA4-intact component was a moderate-to-poorly differentiated endometrioid adenocarcinoma. The SMARCA4-deficient dominating component showed solid growth of highly anaplastic undifferentiated large cells with prominent rhabdoid features. None of the 25 SMARCA4-intact cases showed rhabdoid cell morphology. To our knowledge, this is the first systematic study of SMARCB1 and SMARCA4 expression in endometrioid adenocarcinoma of uterus and the first description of a novel SMARCA4-deficient variant of dedifferentiated/undifferentiated endometrial carcinoma. The presence of a differentiated SMARCA4-intact endometrioid component points to a novel pathway of dedifferentiation in endometrioid adenocarcinoma as a consequence of a "second hit." This case further underlines the close link between the "rhabdoid phenotype" and the SWI/SNF pathway. Copyright © 2015 Elsevier Inc. All rights reserved.
Cheng, Ching-Yi; Hsieh, Hsi-Lung; Hsiao, Li-Der; Yang, Chuen-Mao
2012-07-01
Matrix metalloproteinase-9 (MMP-9) plays an important role in the outgrowth of expanded human limbal epithelial cells on intact amniotic membranes (AM). The mechanisms of MMP-9 expression and cell outgrowth remain unknown. Here, we demonstrated that MMP-9 is preferentially expressed at the leading edge of limbal epithelial outgrowth. Treatment with the inhibitors of PI3-K (LY294002), Akt (SH-5), MEK1/2 (U0126), and JNK1/2 (SP600125) attenuated the outgrowth area, indicating that PI3-K/Akt, p42/p44 MAPK, and JNK1/2 are involved in the outgrowth of intact AM-expanded limbal epithelial cells. However, MMP-9 expression at both transcriptional and translational levels was attenuated by treatment with SP600125, LY294002, or SH-5, not by U0126 and SB202190, suggesting that JNK1/2 and PI3-K/Akt participate in MMP-9 expression. Moreover, NF-κB phosphorylation and nuclear translocation was especially noted at the leading edge, which was attenuated by treatment with SP600125 or LY294002. Helenalin, a selective NF-κB inhibitor, reduced both the limbal epithelial outgrowth and MMP-9 expression. Finally, the data reveal that PI3-K/Akt is an upstream component of the JNK1/2 pathway in MMP-9 expression. Thus, both MAPKs and PI3-K/Akt are required for limbal epithelial outgrowth on intact AM, only the PI3-K/Akt/JNK is essential for MMP-9 expression mediated through activation of transcriptional factor NF-κB in this model. Copyright © 2012 Elsevier B.V. All rights reserved.
Heydenreich, Bärbel; Bellinghausen, Iris; Lorenz, Steffen; Henmar, Helene; Strand, Dennis; Würtzen, Peter A; Saloga, Joachim
2012-01-01
Although allergen-specific immunotherapy is a clinically effective therapy for IgE-mediated allergic diseases, the risk of IgE-mediated adverse effects still exists. For this reason, chemically modified allergoids have been introduced, which may destroy IgE-binding sites while T-cell activation should be retained. The aim of the study was to analyse the differences between intact allergens and differently modified/aggregated allergoids concerning their internalization as well as T-cell and basophil activation. For this purpose human monocyte-derived immature dendritic cells (DC) were incubated with Phleum pratense or Betula verrucosa pollen extract or with the corresponding allergoids, modified with formaldehyde or glutaraldehyde. After an additional maturation process, the antigen-loaded mature DC were co-cultured with autologous CD4+ T cells. Allergenicity was tested by leukotriene release from basophils. In addition, the uptake of intact allergens and allergoids by immature DC was analysed. The proliferation of, as well as the interleukin-4 (IL-4), IL-10, IL-13 and interferon-γ production by, CD4+ T cells which had been stimulated with glutaraldehyde allergoid-treated DC was reduced compared with CD4+ T cells stimulated with intact allergen-treated or formaldehyde allergoid-treated DC. In line with this, glutaraldehyde-modified allergoids were more aggregated and were internalized more slowly. Furthermore, only the allergoids modified with glutaraldehyde induced a decreased leukotriene release by activated basophils. These findings suggest that IgE-reactive epitopes were destroyed more efficiently by modification with glutaraldehyde than with formaldehyde under the conditions chosen for these investigations. Glutaraldehyde-modified allergoids also displayed lower T-cell stimulatory capacity, which is mainly the result of greater modification/aggregation and diminished uptake by DC. PMID:22348538
Heydenreich, Bärbel; Bellinghausen, Iris; Lorenz, Steffen; Henmar, Helene; Strand, Dennis; Würtzen, Peter A; Saloga, Joachim
2012-06-01
Although allergen-specific immunotherapy is a clinically effective therapy for IgE-mediated allergic diseases, the risk of IgE-mediated adverse effects still exists. For this reason, chemically modified allergoids have been introduced, which may destroy IgE-binding sites while T-cell activation should be retained. The aim of the study was to analyse the differences between intact allergens and differently modified/aggregated allergoids concerning their internalization as well as T-cell and basophil activation. For this purpose human monocyte-derived immature dendritic cells (DC) were incubated with Phleum pratense or Betula verrucosa pollen extract or with the corresponding allergoids, modified with formaldehyde or glutaraldehyde. After an additional maturation process, the antigen-loaded mature DC were co-cultured with autologous CD4(+) T cells. Allergenicity was tested by leukotriene release from basophils. In addition, the uptake of intact allergens and allergoids by immature DC was analysed. The proliferation of, as well as the interleukin-4 (IL-4), IL-10, IL-13 and interferon-γ production by, CD4(+) T cells which had been stimulated with glutaraldehyde allergoid-treated DC was reduced compared with CD4(+) T cells stimulated with intact allergen-treated or formaldehyde allergoid-treated DC. In line with this, glutaraldehyde-modified allergoids were more aggregated and were internalized more slowly. Furthermore, only the allergoids modified with glutaraldehyde induced a decreased leukotriene release by activated basophils. These findings suggest that IgE-reactive epitopes were destroyed more efficiently by modification with glutaraldehyde than with formaldehyde under the conditions chosen for these investigations. Glutaraldehyde-modified allergoids also displayed lower T-cell stimulatory capacity, which is mainly the result of greater modification/aggregation and diminished uptake by DC. © 2012 The Authors. Immunology © 2012 Blackwell Publishing Ltd.
Labas, Valérie; Teixeira-Gomes, Ana-Paula; Bouguereau, Laura; Gargaros, Audrey; Spina, Lucie; Marestaing, Aurélie; Uzbekova, Svetlana
2018-03-20
Intact cell MALDI-TOF mass spectrometry (ICM-MS) was adapted to bovine follicular cells from individual ovarian follicles to obtain the protein/peptide signatures (<17kDa) of single oocytes, cumulus cells (CC) and granulosa cells (GC), which shared a total of 439 peaks. By comparing the ICM-MS profiles of single oocytes and CC before and after in vitro maturation (IVM), 71 different peaks were characterised, and their relative abundance was found to vary depending on the stage of oocyte meiotic maturation. To identify these endogenous biomolecules, top-down workflow using high resolution MS/MS (TD HR-MS) was performed on the protein extracts from oocytes, CC and GC. The TD HR-MS proteomic approach allowed for: (1) identification of 386 peptide/proteoforms encoded by 194 genes; and (2) characterisation of proteolysis products likely resulting from the action of kallikreins and caspases. In total, 136 peaks observed by ICM-MS were annotated by TD HR-MS (ProteomeXchange PXD004892). Among these, 16 markers of maturation were identified, including IGF2 binding protein 3 and hemoglobin B in the oocyte, thymosins beta-4 and beta-10, histone H2B and ubiquitin in CC. The combination of ICM-MS and TD HR-MS proved to be a suitable strategy to identify non-invasive markers of oocyte quality using limited biological samples. Intact cell MALDI-TOF mass spectrometry on single oocytes and their surrounding cumulus cells, coupled to an optimised top-down HR-MS proteomic approach on ovarian follicular cells, was used to identify specific markers of oocyte meiotic maturation represented by whole low molecular weight proteins or products of degradation by specific proteases. Copyright © 2017 Elsevier B.V. All rights reserved.
Rat pancreatic islet size standardization by the "hanging drop" technique.
Cavallari, G; Zuellig, R A; Lehmann, R; Weber, M; Moritz, W
2007-01-01
Rejection and hypoxia are the main factors that limit islet engraftment in the recipient liver in the immediate posttransplant period. Recently authors have reported a negative relationship of graft function and islet size, concluding that small islets are superior to large islets. Islets can be dissociated into single cells and reaggregated into so called "pseudoislets," which are functionally equivalent to intact islets but exhibit reduced immunogenicity. The aim of our study was develop a technique that enabled one to obtain pseudoislets of defined, preferably small, dimensions. Islets were harvested from Lewis rats by the collagenase digestion procedure. After purification, the isolated islets were dissociated into single cells by trypsin digestion. Fractions with different cell numbers were seeded into single drops onto cell culture dishes, which were inverted and incubated for 5 to 8 days under cell culture conditions. Newly formed pseudoislets were analyzed for dimension, morphology, and cellular composition. The volume of reaggregated pseudoislets strongly correlated with the cell number (r(2) = .995). The average diameter of a 250-cell aggregate was 95 +/- 8 microm (mean +/- SD) compared with 122 +/- 46 microm of freshly isolated islets. Islet cell loss may be minimized by performing reaggregation in the presence of medium glucose (11 mmol/L) and the GLP-1 analogue Exendin-4. Morphology, cellular composition, and architecture of reaggregated islets were comparable to intact islets. The "hanging drop" culture method allowed us to obtain pseudoislets of standardized size and regular shape, which did not differ from intact islets in terms of cellular composition or architecture. Further investigations are required to minimize cell loss and test in vivo function of transplanted pseudoislets.
Hayflick, L
1979-07-01
Cultured normal human and animal cells are predestinued to undergo irreversible functional decrements that mimick age changes in the whole organism. When normal human embryonic fibroblasts are cultured in vitro, 50 +/- 10 population doublings occur. This maximum potential is diminished in cells derived from older donors and appears to be inversely proportional to their age. The 50 population doubling limit can account for all cells produced during a lifetime. The limitation on doubling potential of cultured normal cells is also expressed in vivo when serial transplants are made. There may be a direct correlation between the mean maximum life spans of several species and the population doubling potential of their cultured cells. A plethora of functional decrements occur in cultured normal cells as they approach their maximum division capability. Many of these decrements are similar to those occurring in intact animals as they age. We have concluded that these functional decrements expressed in vitro, rather than cessation of cell division, are the essential contributors to age changes in intact animals. Thus, the study of events leading to functional losses in cultured normal cells may provide useful insights into the biology of aging.
Dayger, C. A.; Mehrotra, P.; Belton, R. J.; Nowak, R. A.
2012-01-01
Endometrial remodeling is a physiological process involved in the gynecological disease, endometriosis. Tissue remodeling is directed by uterine fibroblast production of matrix metalloproteinases (MMPs). Several MMPs are regulated directly by the protein extracellular matrix metalloproteinase inducer (EMMPRIN) and also by proinflammatory cytokines such as interleukin (IL)1-α/β. We hypothesized that human uterine epithelial cells (HESs) secrete intact EMMPRIN to stimulate MMPs. Microvesicles from HES cell-conditioned medium (CM) expressed intact EMMPRIN protein. Treatment of HES cells with estradiol or phorbyl 12-myristate-13-acetate increased the release of EMMPRIN-containing microvesicles. The HES CM stimulated MMP-1, -2, and -3 messenger RNA levels in human uterine fibroblasts (HUFs) and EMMPRIN immunodepletion from HES-cell concentrated CM reduced MMP stimulation (P < .05). Treatment of HUF cells with low concentrations of IL-1β/α stimulated MMP production (P < .05). These results indicate that HES cells regulate MMP production by HUF cells by secretion of EMMPRIN, in response to ovarian hormones, proinflammatory cytokines as well as activation of protein kinase C. PMID:22729071
Braundmeier, A G; Dayger, C A; Mehrotra, P; Belton, R J; Nowak, R A
2012-12-01
Endometrial remodeling is a physiological process involved in the gynecological disease, endometriosis. Tissue remodeling is directed by uterine fibroblast production of matrix metalloproteinases (MMPs). Several MMPs are regulated directly by the protein extracellular matrix metalloproteinase inducer (EMMPRIN) and also by proinflammatory cytokines such as interleukin (IL)1-α/β. We hypothesized that human uterine epithelial cells (HESs) secrete intact EMMPRIN to stimulate MMPs. Microvesicles from HES cell-conditioned medium (CM) expressed intact EMMPRIN protein. Treatment of HES cells with estradiol or phorbyl 12-myristate-13-acetate increased the release of EMMPRIN-containing microvesicles. The HES CM stimulated MMP-1, -2, and -3 messenger RNA levels in human uterine fibroblasts (HUFs) and EMMPRIN immunodepletion from HES-cell concentrated CM reduced MMP stimulation (P < .05). Treatment of HUF cells with low concentrations of IL-1β/α stimulated MMP production (P < .05). These results indicate that HES cells regulate MMP production by HUF cells by secretion of EMMPRIN, in response to ovarian hormones, proinflammatory cytokines as well as activation of protein kinase C.
Magnetic field exposure stiffens regenerating plant protoplast cell walls.
Haneda, Toshihiko; Fujimura, Yuu; Iino, Masaaki
2006-02-01
Single suspension-cultured plant cells (Catharanthus roseus) and their protoplasts were anchored to a glass plate and exposed to a magnetic field of 302 +/- 8 mT for several hours. Compression forces required to produce constant cell deformation were measured parallel to the magnetic field by means of a cantilever-type force sensor. Exposure of intact cells to the magnetic field did not result in any changes within experimental error, while exposure of regenerating protoplasts significantly increased the measured forces and stiffened regenerating protoplasts. The diameters of intact cells or regenerating protoplasts were not changed after exposure to the magnetic field. Measured forces for regenerating protoplasts with and without exposure to the magnetic field increased linearly with incubation time, with these forces being divided into components based on the elasticity of synthesized cell walls and cytoplasm. Cell wall synthesis was also measured using a cell wall-specific fluorescent dye, and no changes were noted after exposure to the magnetic field. Analysis suggested that exposure to the magnetic field roughly tripled the Young's modulus of the newly synthesized cell wall without any lag.
STUDIES ON CONTAMINANT BIODEGRADATION IN SLURRY, WAFER, AND COMPACTED SOIL TUBE REACTORS
A systematic experimental approach is presented to quantitatively evaluate biodegradation rates in intact soil systems. Knowledge of bioremediation rates in intact soil systems is important for evaluating the efficacy of in-situ biodegradation and approaches for enhancing degrad...
Contact activation: a revision.
Schmaier, A H
1997-07-01
In conclusion, a revised view of the contact system has been presented. This system has little to do with the initiation of hemostasis. Like lupus anticoagulants, deficiencies of contact proteins give prolonged APTTs but may be risk factors for thrombosis. BK from kininogens is a potent modulator of vascular biology inducing vasodilation, tissue plasminogen activator release, and prostacyclin liberation. Kininogens, themselves, are selective inhibitors of alpha-thrombin-induced platelet activation preventing alpha-thrombin from cleaving the cloned thrombin receptor after arginine41. Kininogens' alpha-thrombin inhibitory activity exists in intact kininogens, BK, and all of BK's breakdown products. HK also is the pivotal protein for contact protein assembly on endothelium. It is the receptor for prekallikrein which when bound to HK becomes activated to kallikrein by an endothelial cell enzyme system independent of activated forms of plasma factor XII. Prekallikrein activation on endothelial cells results in kinetically favorable single chain urokinase and plasminogen activation. Thus the "physiologic, negatively charged surface" for contact system activation is really the assembly of these proteins on cell membranes and activation by membrane-associated enzymes.
Szucs, Peter; Pinto, Vitor; Safronov, Boris V
2009-03-15
Light-emitting diodes (LEDs) have recently been used for the imaging of unstained living cells in the whole brain and spinal cord preparations, in which one cut was done to remove the overlying white matter. Here we show that in many cases the neurones can be visualized through the white matter in an intact nervous tissue (rats P0-P36 and mice P0-P2). We used an upright microscope with a water immersion objective and a powerful infrared LED (emission peak, 850 nm; maximum radiant intensity, 270 mW/sr) as a source of oblique illumination. In the isolated spinal cord, we were able to visualize lamina I and II neurones as well as motoneurones. In the brainstem, the neurones from the superficial nuclei were successfully viewed. In the sensory ganglion, we obtained images of unstained cells as well as intracellular structures, like endoplasmic reticulum, nucleus and nucleolus. In isolated cerebellum, parallel fibers, Purkinje and granule cells were viewed. Whole-cell recordings were done to fill spinal lamina I neurones, motoneurones and brainstem neurones with biocytin for detailed 2D-3D reconstruction of their dendritic and axonal arbores. Our imaging technique also allowed labelling individual intact neurones by injecting biocytin through the extracellular cell-attached pipette. This imaging technique opens broad possibilities for functional studies of neurones with completely preserved anatomical structures and synaptic inputs. We also show that the application of oblique infrared LED illumination allows a construction of a simple digital videomicroscope for the high-quality living cell imaging in intact nervous tissue.
Inhibition of proteolysis by cell swelling in the liver requires intact microtubular structures.
vom Dahl, S; Stoll, B; Gerok, W; Häussinger, D
1995-01-01
In the perfused rat liver, proteolysis is inhibited by cell swelling in response to hypo-osmotic media, glutamine and insulin. Colchicine, an inhibitor of microtubules, did not affect cell swelling in response to these agonists. However, the antiproteolytic action of these effectors was largely blunted in the presence of colchicine or the microtubule inhibitors colcemid and taxol. On the other hand, inhibition of proteolysis by phenylalanine, asparagine or NH4Cl, i.e. compounds which exert their antiproteolytic effects by mechanisms distinct from cell swelling, was not sensitive to colchicine. Swelling-induced inhibition of proteolysis was not affected by cytochalasin B. The anti-proteolytic effect of hypo-osmotic cell swelling and insulin was largely abolished in freshly isolated rat hepatocytes; however, it reappeared upon cultivation of the hepatocytes for 6-10 h. The restoration of the sensitivity of proteolysis to cell volume changes was accompanied by a progressive reorganization of microtubule structures, as shown by immunohistochemical staining for tubulin. It is concluded that intact microtubules are required for the control of proteolysis by cell volume, but not for the control of proteolysis by phenylalanine, asparagine or NH4Cl. These findings may explain why others [Meijer, Gustafson, Luiken, Blommaart, Caro, Van Woerkom, Spronk and Boon (1993) Eur. J. Biochem. 215, 449-454] failed to detect an antiproteolytic effect of hypo-osmotic exposure of freshly isolated hepatocytes. This effect, however, which is consistently found in the intact perfused rat liver, also reappeared in isolated hepatocytes when they were allowed to reorganize their microtubular structures in culture. Images Figure 6 PMID:7772037
Green light inhibits GnRH-I expression by stimulating the melatonin-GnIH pathway in the chick brain.
Zhang, L; Chen, F; Cao, J; Dong, Y; Wang, Z; Hu, M; Chen, Y
2017-05-01
To study the mechanism by which monochromatic light affects gonadotrophin-releasing hormone (GnRH) expression in chicken hypothalamus, a total of 192 newly-hatched chicks were divided into intact, sham-operated and pinealectomy groups and exposed to white (WL), red (RL), green (GL) and blue (BL) lights using a light-emitting diode system for 2 weeks. In the GL intact group, the mRNA and protein levels of GnRH-I in the hypothalamus, the mean cell area and mean cell optical density (OD) of GnRH-I-immunoreactive (-ir) cells of the nucleus commissurae pallii were decreased by 13.2%-34.5%, 5.7%-39.1% and 9.9%-17.3% compared to those in the chicks exposed to the WL, RL and BL, respectively. GL decreased these factors related to GnRH-I expression and the effect of GL was not observed in pinealectomised birds. However, the mRNA and protein levels of hypothalamic gonadotrophin-inhibitory hormone (GnIH) and GnIH receptor (GnIHR), the mean cell area and mean cell OD of the GnIH-ir cells of the paraventricularis magnocellularis, and the plasma melatonin concentration in the chicks exposed to GL were increased by 18.6%-49.2%, 21.1%-60.0% and 8.6%-30.6% compared to the WL, RL and BL intact groups, respectively. The plasma melatonin concentration showed a negative correlation with GnRH-I protein and a positive correlation with GnIH and GnIHR proteins. Protein expression of both GnRH-I and GnIHR showed a negative correlation in the hypothalamus. After pinealectomy, GnRH-I expression increased, whereas plasma melatonin concentration, GnIH and GnIHR expression decreased, and there were no significant differences among the WL, RL, GL and BL groups. Double-labelled immunofluorescence showed that GnIH axon terminals were near GnRH-I neurones, some GnRH-I neurones coexpressed with GnIHR and GnIH neurones coexpressed with melatonin receptor subtype quinone reductase 2. These results demonstrate that green light inhibits GnRH-I expression by increasing melatonin secretion and stimulating melatonin receptor-GnIH-GnIH receptor pathway in the chick brain. © 2017 British Society for Neuroendocrinology.
Dolgova, Evgeniya V; Potter, Ekaterina A; Proskurina, Anastasiya S; Minkevich, Alexandra M; Chernych, Elena R; Ostanin, Alexandr A; Efremov, Yaroslav R; Bayborodin, Sergey I; Nikolin, Valeriy P; Popova, Nelly A; Kolchanov, Nikolay A; Bogachev, Sergey S
2016-05-25
Previously, we demonstrated that poorly differentiated cells of various origins, including tumor-initiating stem cells present in the ascites form of mouse cancer cell line Krebs-2, are capable of naturally internalizing both linear double-stranded DNA and circular plasmid DNA. The method of co-incubating Krebs-2 cells with extracellular plasmid DNA (pUC19) or TAMRA-5'-dUTP-labeled polymerase chain reaction (PCR) product was used. It was found that internalized plasmid DNA isolated from Krebs-2 can be transformed into competent Escherichia coli cells. Thus, the internalization processes taking place in the Krebs-2 cell subpopulation have been analyzed and compared, as assayed by E. coli colony formation assay (plasmid DNA) and cytofluorescence (TAMRA-DNA). We showed that extracellular DNA both in the form of plasmid DNA and a PCR product is internalized by the same subpopulation of Krebs-2 cells. We found that the saturation threshold for Krebs-2 ascites cells is 0.5 μg DNA/10(6) cells. Supercoiled plasmid DNA, human high-molecular weight DNA, and 500 bp PCR fragments are internalized into the Krebs-2 tumor-initiating stem cells via distinct, non-competing internalization pathways. Under our experimental conditions, each cell may harbor 340-2600 copies of intact plasmid material, or up to 3.097 ± 0.044×10(6) plasmid copies (intact or not), as detected by quantitative PCR. The internalization dynamics of extracellular DNA, copy number of the plasmids taken up by the cells, and competition between different types of double-stranded DNA upon internalization into tumor-initiating stem cells of mouse ascites Krebs-2 have been comprehensively analyzed. Investigation of the extracellular DNA internalization into tumor-initiating stem cells is an important part of understanding their properties and possible destruction mechanisms. For example, a TAMRA-labeled DNA probe may serve as an instrument to develop a target for the therapy of cancer, aiming at elimination of tumor stem cells, as well as developing a straightforward test system for the quantification of poorly differentiated cells, including tumor-initiating stem cells, in the bulk tumor sample (biopsy or surgery specimen).
Kiryakova, S; Söhnchen, J; Grosheva, M; Schuetz, U; Marinova, Ts; Dzhupanova, R; Sinis, N; Hübbers, C U; Skouras, E; Ankerne, J; Fries, J W U; Irintchev, A; Dunlop, S A; Angelov, D N
2010-04-01
Recently, we showed that manual stimulation (MS) of denervated vibrissal muscles enhanced functional recovery following facial nerve cut and suture (FFA) by reducing poly-innervation at the neuro-muscular junctions (NMJ). Although the cellular correlates of poly-innervation are established, with terminal Schwann cells (TSC) processes attracting axon sprouts to "bridge" adjacent NMJ, molecular correlates are poorly understood. Since quantitative RT-PCR revealed a rapid increase of IGF-1 mRNA in denervated muscles, we examined the effect of daily MS for 2 months after FFA in IGF-1(+/-) heterozygous mice; controls were wild-type (WT) littermates including intact animals. We quantified vibrissal motor performance and the percentage of NMJ bridged by S100-positive TSC. There were no differences between intact WT and IGF-1(+/-) mice for vibrissal whisking amplitude (48 degrees and 49 degrees ) or the percentage of bridged NMJ (0%). After FFA and handling alone (i.e. no MS) in WT animals, vibrissal whisking amplitude was reduced (60% lower than intact) and the percentage of bridged NMJ increased (42% more than intact). MS improved both the amplitude of vibrissal whisking (not significantly different from intact) and the percentage of bridged NMJ (12% more than intact). After FFA and handling in IGF-1(+/-) mice, the pattern was similar (whisking amplitude 57% lower than intact; proportion of bridged NMJ 42% more than intact). However, MS did not improve outcome (whisking amplitude 47% lower than intact; proportion of bridged NMJ 40% more than intact). We conclude that IGF-I is required to mediate the effects of MS on target muscle reinnervation and recovery of whisking function. Copyright 2010 Elsevier Inc. All rights reserved.
Ochoa, Mariela L; Harrington, Peter B
2005-02-01
Whole-cell bacteria were characterized and differentiated by thermal desorption ion mobility spectrometry and chemometric modeling. Principal component analysis was used to evaluate the differences in the ion mobility spectra of whole-cell bacteria and the fatty acid methyl esters (FAMEs) generated in situ after derivatization of the bacterial lipids. Alternating least squares served to extract bacterial peaks from the complex ion mobility spectra of intact microorganisms and, therefore, facilitated the characterization of bacterial strains, species, and Gram type. In situ thermal hydrolysis/methylation with tetramethylammonium hydroxide was necessary for the differentiation of Escherichia coli strains, which otherwise could not be distinguished by spectra acquired with the ITEMISER ion mobility spectrometer. The addition of the methylating agent had no effect on Gram-positive bacteria, and therefore, they could not be differentiated by genera. The classification of E. coli strains was possible by analysis of the IMS spectra from the FAMEs generated in situ. By using the fuzzy multivariate rule-building expert system and cross-validation, a correct classification rate of 96% (22 out of 23 spectra) was obtained. Chemometric modeling on bacterial ion mobility spectra coupled to thermal hydrolysis/methylation proved a simple, rapid (2 min/sample), inexpensive, and sensitive technique to characterize and differentiate intact microorganisms. The ITEMISER ion mobility spectrometer could detect as few as 4 x 10(6) cells/sample.
Leiva, Natalia; Pavarotti, Martín; Colombo, María I; Damiani, María T
2006-06-10
By phagocytosis, macrophages engulf large particles, microorganisms and senescent cells in vesicles called phagosomes. Many internalized proteins rapidly shuttle back to the plasma membrane following phagosome biogenesis. Here, we report a new approach to the study of recycling from the phagosomal compartment: streptolysin O- (SLO) permeabilized macrophages. In this semi-intact cell system, energy and cytosol are required to efficiently reconstitute recycling transport. Addition of GDPbetaS strongly inhibits this transport step, suggesting that a GTP-binding protein modulates the dynamics of cargo exit from the phagosomal compartment. GTPases of the Rab family control vesicular trafficking, and Rab11 is involved in transferrin receptor recycling. To unravel the role of Rab11 in the phagocytic pathway, we added recombinant proteins to SLO-permeabilized macrophages. Rab11:S25N, a negative mutant, strongly diminishes the release of recycled proteins from phagosomes. In contrast, wild type Rab11 and its positive mutant (Rab11:Q70L) favor this vesicular transport event. Using biochemical and morphological assays, we confirm that overexpression of Rab11:S25N substantially decreases recycling from phagosomes in intact cells. These findings show the requirement of a functional Rab11 for the retrieval to the plasma membrane of phagosomal content. SLO-permeabilized macrophages likely constitute a useful tool to identify new molecules involved in regulating transport along the phagocytic pathway.
Screening test for rapid food safety evaluation by menadione-catalysed chemiluminescent assay.
Yamashoji, Shiro; Yoshikawa, Naoko; Kirihara, Masayuki; Tsuneyoshi, Toshihiro
2013-06-15
The chemiluminescent assay of menadione-catalysed H2O2 production by living mammalian cells was proposed to be useful for rapid food safety evaluation. The tested foods were extracted with water, ethanol and dimethylsulfoxide, and each extract was incubated with NIH3T3, Neuro-2a and HepG2 cells for 4h. Menadione-catalysed H2O2 production by living mammalian cells exposed to each extract was determined by the chemiluminescent assay requiring only 10 min, and the viability of the cells was estimated as percentage based on H2O2 production by intact cells. In this study the cytotoxicity of food was rated in order of inhibitory effect on H2O2 production by intact cells. The well known natural toxins such as Fusarium mycotoxin, tomato toxin tomatine, potato toxin solanine and marine toxins terodotoxin and brevetoxin could be detected by the above chemiluminescent assay. Copyright © 2012 Elsevier Ltd. All rights reserved.
Effect of surface modifiers on an ectoenzyme: granulocyte 5'-nucleotidase.
Smolen, J E; Karnovsky, M L
1980-05-01
Several agents that react with plasma membranes, namely the native lectins concanavalin A, Ricinus communis agglutinin, and wheat germ agglutinin, the modified lectin succinyl concanavalin A, and sodium meta-periodate, inhibited the ecto-5'-nucleotidase of intact guinea pig granulocytes. Stimulation of the enzyme was not observed at any lectin concentration. Inhibition by native lectins could be blocked or reversed by appropriate competing hapten sugars. In the case of concanavalin A, reversal could be achieved at 37 degrees C, but not at 5 degrees C. When lectins were used in combination with each other, the effects were found to be largely independent. However, when concanavalin A and R. communis agglutinin were applied together, complications arose because the former lectin binds to the latter as well as to the cell surface. To avoid some of the complexities inherent in studying intact cell 5'-nucleotidase and to gain additional information about the system, two broken cell enzyme preparations were also examined. The enzyme of plasma membrane-enriched fractions was inhibited by all five agents mentioned above. 5'-Nucleotidase solubilized in sodium deoxycholate was inhibited by the four lectins but stimulated by periodate. The effects of the surface modifiers on kinetic data for all three enzyme preparations are consistent with the hypothesis that direct interactions with the enzyme molecule give rise to changes in Vmax; interactions at membrane sites other than 5'-nucleotidase itself could cause increases in apparent Km values. Effects of interactions of ectoenzymes with plant lectins may serve as models for phenomena that result from cell-cell interactions or from interactions of animal cells with lectin-like components of the cellular environment.
Aly, Haytham; Rohatgi, Nidhi; Marshall, Connie A.; Grossenheider, Tiffani C.; Miyoshi, Hiroyuki; Stappenbeck, Thaddeus S.; Matkovich, Scot J.; McDaniel, Michael L.
2013-01-01
Our previous studies demonstrated that Wnt/GSK-3/β-catenin and mTOR signaling are necessary to stimulate proliferative processes in adult human β-cells. Direct inhibition of GSK-3, that engages Wnt signaling downstream of the Wnt receptor, increases β-catenin nuclear translocation and β-cell proliferation but results in lower insulin content. Our current goal was to engage canonical and non-canonical Wnt signaling at the receptor level to significantly increase human β-cell proliferation while maintaining a β-cell phenotype in intact islets. We adopted a system that utilized conditioned medium from L cells that expressed Wnt3a, R-spondin-3 and Noggin (L-WRN conditioned medium). In addition we used a ROCK inhibitor (Y-27632) and SB-431542 (that results in RhoA inhibition) in these cultures. Treatment of intact human islets with L-WRN conditioned medium plus inhibitors significantly increased DNA synthesis ∼6 fold in a rapamycin-sensitive manner. Moreover, this treatment strikingly increased human β-cell proliferation ∼20 fold above glucose alone. Only the combination of L-WRN conditioned medium with RhoA/ROCK inhibitors resulted in substantial proliferation. Transcriptome-wide gene expression profiling demonstrated that L-WRN medium provoked robust changes in several signaling families, including enhanced β-catenin-mediated and β-cell-specific gene expression. This treatment also increased expression of Nr4a2 and Irs2 and resulted in phosphorylation of Akt. Importantly, glucose-stimulated insulin secretion and content were not downregulated by L-WRN medium treatment. Our data demonstrate that engaging Wnt signaling at the receptor level by this method leads to necessary crosstalk between multiple signaling pathways including activation of Akt, mTOR, Wnt/β-catenin, PKA/CREB, and inhibition of RhoA/ROCK that substantially increase human β-cell proliferation while maintaining the β-cell phenotype. PMID:23776620
Aly, Haytham; Rohatgi, Nidhi; Marshall, Connie A; Grossenheider, Tiffani C; Miyoshi, Hiroyuki; Stappenbeck, Thaddeus S; Matkovich, Scot J; McDaniel, Michael L
2013-01-01
Our previous studies demonstrated that Wnt/GSK-3/β-catenin and mTOR signaling are necessary to stimulate proliferative processes in adult human β-cells. Direct inhibition of GSK-3, that engages Wnt signaling downstream of the Wnt receptor, increases β-catenin nuclear translocation and β-cell proliferation but results in lower insulin content. Our current goal was to engage canonical and non-canonical Wnt signaling at the receptor level to significantly increase human β-cell proliferation while maintaining a β-cell phenotype in intact islets. We adopted a system that utilized conditioned medium from L cells that expressed Wnt3a, R-spondin-3 and Noggin (L-WRN conditioned medium). In addition we used a ROCK inhibitor (Y-27632) and SB-431542 (that results in RhoA inhibition) in these cultures. Treatment of intact human islets with L-WRN conditioned medium plus inhibitors significantly increased DNA synthesis ∼6 fold in a rapamycin-sensitive manner. Moreover, this treatment strikingly increased human β-cell proliferation ∼20 fold above glucose alone. Only the combination of L-WRN conditioned medium with RhoA/ROCK inhibitors resulted in substantial proliferation. Transcriptome-wide gene expression profiling demonstrated that L-WRN medium provoked robust changes in several signaling families, including enhanced β-catenin-mediated and β-cell-specific gene expression. This treatment also increased expression of Nr4a2 and Irs2 and resulted in phosphorylation of Akt. Importantly, glucose-stimulated insulin secretion and content were not downregulated by L-WRN medium treatment. Our data demonstrate that engaging Wnt signaling at the receptor level by this method leads to necessary crosstalk between multiple signaling pathways including activation of Akt, mTOR, Wnt/β-catenin, PKA/CREB, and inhibition of RhoA/ROCK that substantially increase human β-cell proliferation while maintaining the β-cell phenotype.
Ultrastructure of the digestive tract of Paradiplozoon homoion (Monogenea).
Konstanzová, V; Koubková, B; Kašný, M; Ilgová, J; Dzika, E; Gelnar, M
2015-04-01
Paradiplozoon homoion is a representative of blood-feeding ectoparasites from the family Diplozoidae (Polyopisthocotylea, Monogenea). Although these worms have been the subject of numerous taxonomical, phylogenetic and ecological studies, the ultrastructure of the alimentary system and related structures, as well as the mechanisms of essential processes like fish blood digestion, remain mostly unknown. Our observation of P. homoion using a transmission electron microscopy (TEM) revealed two main types of digestive cells-U-shaped haematin cells and connecting syncytium. Particular structures such as mouth cavity with specialised receptors, two oval-shaped muscular buccal suckers, pharynx surrounded with the glandular cells, oesophagus, the intestinal caeca with intact erythrocytes in the lumen, the apical pinocytotic fibrous surface complex and haematin vesicles of U-shaped cells have been shown in detail. According to our results, the P. homoion is degrading the blood components predominantly intracellularly.
Isochoric and isobaric freezing of fish muscle.
Năstase, Gabriel; Lyu, Chenang; Ukpai, Gideon; Şerban, Alexandru; Rubinsky, Boris
2017-04-01
We have recently shown that, a living organism, which succumbs to freezing to -4 °C in an isobaric thermodynamic system (constant atmospheric pressure), can survive freezing to -4 °C in an isochoric thermodynamic system (constant volume). It is known that the mechanism of cell damage in an isobaric system is the freezing caused increase in extracellular osmolality, and, the consequent cell dehydration. An explanation for the observed survival during isochoric freezing is the thermodynamic modeling supported hypothesis that, in the isochoric frozen solution the extracellular osmolality is comparable to the cell intracellular osmolality. Therefore, cells in the isochoric frozen organism do not dehydrate, and the tissue maintains its morphological integrity. Comparing the histology of: a) fresh fish white muscle, b) fresh muscle frozen to -5 °C in an isobaric system and c) fresh muscle frozen to -5 °C I in an isochoric system, we find convincing evidence of the mechanism of cell dehydration during isobaric freezing. In contrast, the muscle tissue frozen to -5 °C in an isochoric system appears morphologically identical to fresh tissue, with no evidence of dehydration. This is the first experimental evidence in support of the hypothesis that in isochoric freezing there is no cellular dehydration and therefore the morphology of the frozen tissue remains intact. Copyright © 2017 Elsevier Inc. All rights reserved.
9 CFR 113.31 - Detection of avian lymphoid leukosis.
Code of Federal Regulations, 2010 CFR
2010-01-01
... preparation of such questionable vaccine. (2) When cell cultures are tested, 5 ml of the final cell suspension... times to disrupt intact cells and release the group specific antigen. (2) The antiserum used in the..., shall be done in chick embryo cell cultures. (1) Each vaccine virus, cytopathic to chick embryo...
Integrated sequencing of exome and mRNA of large-sized single cells.
Wang, Lily Yan; Guo, Jiajie; Cao, Wei; Zhang, Meng; He, Jiankui; Li, Zhoufang
2018-01-10
Current approaches of single cell DNA-RNA integrated sequencing are difficult to call SNPs, because a large amount of DNA and RNA is lost during DNA-RNA separation. Here, we performed simultaneous single-cell exome and transcriptome sequencing on individual mouse oocytes. Using microinjection, we kept the nuclei intact to avoid DNA loss, while retaining the cytoplasm inside the cell membrane, to maximize the amount of DNA and RNA captured from the single cell. We then conducted exome-sequencing on the isolated nuclei and mRNA-sequencing on the enucleated cytoplasm. For single oocytes, exome-seq can cover up to 92% of exome region with an average sequencing depth of 10+, while mRNA-sequencing reveals more than 10,000 expressed genes in enucleated cytoplasm, with similar performance for intact oocytes. This approach provides unprecedented opportunities to study DNA-RNA regulation, such as RNA editing at single nucleotide level in oocytes. In future, this method can also be applied to other large cells, including neurons, large dendritic cells and large tumour cells for integrated exome and transcriptome sequencing.
Roels, K; Smits, K; Ververs, C; Govaere, J; D'Herde, K; Van Soom, A
2018-06-01
In horse breeding, intracytoplasmic sperm injection (ICSI) has gained interest to obtain offspring from subfertile individuals. This paper presents a case report of a stallion with severe testicular degeneration. Semen analysis showed very low motility and 83.5% of detached heads. Histology of a testicular biopsy showed severely decreased spermatogenesis, while transmission electron microscopy of the sperm cells revealed no significant abnormalities. A total of 39 oocytes were fertilized by ICSI with frozen-thawed spermatozoa of this stallion: 25 oocytes with intact spermatozoa and 24 with detached heads. When using intact sperm cells, 8 out of the 25 oocytes cleaved, and 1 developed to the blastocyst stage 9 days after ICSI. None of the oocytes injected with a detached sperm head cleaved. Studies on the paternal influence on ICSI outcome are limited in the horse and further research is needed to define which stallion factors may influence ICSI results. Here, we report the possibility to produce a blastocyst by ICSI of a stallion suffering from testicular degeneration with a poor spermiogram, as long as an intact sperm cell containing a centriole is selected. © 2018 Blackwell Verlag GmbH.
Dose-dependent effects of ouabain on spiral ganglion neurons and Schwann cells in mouse cochlea.
Zhang, Zhi-Jian; Guan, Hong-Xia; Yang, Kun; Xiao, Bo-Kui; Liao, Hua; Jiang, Yang; Zhou, Tao; Hua, Qing-Quan
2017-10-01
This study aimed in fully investigating the toxicities of ouabain to mouse cochlea and the related cellular environment, and providing an optimal animal model system for cell transplantation in the treatment of auditory neuropathy (AN) and sensorineural hearing loss (SNHL). Different dosages of ouabain were applied to mouse round window. The auditory brainstem responses and distortion product otoacoustic emissions were used to evaluate the cochlear function. The immunohistochemical staining and cochlea surface preparation were performed to detect the spiral ganglion neurons (SGNs), Schwann cells and hair cells. Ouabain at the dosages of 0.5 mM, 1 mM and 3 mM selectively and permanently destroyed SGNs and their functions, while leaving the hair cells relatively intact. Ouabain at 3 mM resulted in the most severe SGNs loss and induced significant loss of Schwann cells started as early as 7 days and with further damages at 14 and 30 days after ouabain exposure. The application of ouabain to mouse round window induces damages of SGNs and Schwann cells in a dose- and time-dependent manner, this study established a reliable and accurate animal model system of AN and SNHL.
Roy, Upasana; Jaja-Chimedza, Asha; Sanchez, Kristel; Matysik, Joerg
2016-01-01
Abstract Techniques based on nuclear magnetic resonance (NMR) for imaging and chemical analyses of in vivo, or otherwise intact, biological systems are rapidly emerging and finding diverse applications within a wide range of fields. Very recently, several NMR-based techniques have been developed for the zebrafish as a model animal system. In the current study, the novel application of high-resolution magic angle spinning (HR-MAS) NMR is presented as a means of metabolic profiling of intact zebrafish embryos. Toward investigating the utility of HR-MAS NMR as a toxicological tool, these studies specifically examined metabolic changes of embryos exposed to polymethoxy-1-alkenes (PMAs)—a recently identified family of teratogenic compounds from freshwater algae—as emerging environmental contaminants. One-dimensional and two-dimensional HR-MAS NMR analyses were able to effectively identify and quantify diverse metabolites in early-stage (≤36 h postfertilization) embryos. Subsequent comparison of the metabolic profiles between PMA-exposed and control embryos identified several statistically significant metabolic changes associated with subacute exposure to the teratogen, including (1) elevated inositol as a recognized component of signaling pathways involved in embryo development; (2) increases in several metabolites, including inositol, phosphoryl choline, fatty acids, and cholesterol, which are associated with lipid composition of cell membranes; (3) concomitant increase in glucose and decrease in lactate; and (4) decreases in several biochemically related metabolites associated with central nervous system development and function, including γ-aminobutyric acid, glycine, glutamate, and glutamine. A potentially unifying model/hypothesis of PMA teratogenicity based on the data is presented. These findings, taken together, demonstrate that HR-MAS NMR is a promising tool for metabolic profiling in the zebrafish embryo, including toxicological applications. PMID:27348393
19F NMR measurements of the rotational mobility of proteins in vivo.
Williams, S P; Haggie, P M; Brindle, K M
1997-01-01
Three glycolytic enzymes, hexokinase, phosphoglycerate kinase, and pyruvate kinase, were fluorine labeled in the yeast Saccharomyces cerevisiae by biosynthetic incorporation of 5-fluorotryptophan. 19F NMR longitudinal relaxation time measurements on the labeled enzymes were used to assess their rotational mobility in the intact cell. Comparison with the results obtained from relaxation time measurements of the purified enzymes in vitro and from theoretical calculations showed that two of the labeled enzymes, phosphoglycerate kinase and hexokinase, were tumbling in a cytoplasm that had a viscosity approximately twice that of water. There were no detectable signals from pyruvate kinase in vivo, although it could be detected in diluted cell extracts, indicating that there was some degree of motional restriction of the enzyme in the intact cell. PMID:8994636
Chapelin, Fanny; Gao, Shang; Okada, Hideho; Weber, Thomas G; Messer, Karen; Ahrens, Eric T
2017-12-18
Discovery of effective cell therapies against cancer can be accelerated by the adaptation of tools to rapidly quantitate cell biodistribution and survival after delivery. Here, we describe the use of nuclear magnetic resonance (NMR) 'cytometry' to quantify the biodistribution of immunotherapeutic T cells in intact tissue samples. In this study, chimeric antigen receptor (CAR) T cells expressing EGFRvIII targeting transgene were labeled with a perfluorocarbon (PFC) emulsion ex vivo and infused into immunocompromised mice bearing subcutaneous human U87 glioblastomas expressing EGFRvIII and luciferase. Intact organs were harvested at day 2, 7 and 14 for whole-sample fluorine-19 ( 19 F) NMR to quantitatively measure the presence of PFC-labeled CAR T cells, followed by histological validation. NMR measurements showed greater CAR T cell homing and persistence in the tumors and spleen compared to untransduced T cells. Tumor growth was monitored with bioluminescence imaging, showing that CAR T cell treatment resulted in significant tumor regression compared to untransduced T cells. Overall, 19 F NMR cytometry is a rapid and quantitative method to evaluate cell biodistribution, tumor homing, and fate in preclinical studies.
Femtosecond Optoinjection of Intact Tobacco BY-2 Cells Using a Reconfigurable Photoporation Platform
Mitchell, Claire A.; Kalies, Stefan; Cizmár, Tomás; Heisterkamp, Alexander; Torrance, Lesley; Roberts, Alison G.; Gunn-Moore, Frank J.; Dholakia, Kishan
2013-01-01
A tightly-focused ultrashort pulsed laser beam incident upon a cell membrane has previously been shown to transiently increase cell membrane permeability while maintaining the viability of the cell, a technique known as photoporation. This permeability can be used to aid the passage of membrane-impermeable biologically-relevant substances such as dyes, proteins and nucleic acids into the cell. Ultrashort-pulsed lasers have proven to be indispensable for photoporating mammalian cells but they have rarely been applied to plant cells due to their larger sizes and rigid and thick cell walls, which significantly hinders the intracellular delivery of exogenous substances. Here we demonstrate and quantify femtosecond optical injection of membrane impermeable dyes into intact BY-2 tobacco plant cells growing in culture, investigating both optical and biological parameters. Specifically, we show that the long axial extent of a propagation invariant (“diffraction-free”) Bessel beam, which relaxes the requirements for tight focusing on the cell membrane, outperforms a standard Gaussian photoporation beam, achieving up to 70% optoinjection efficiency. Studies on the osmotic effects of culture media show that a hypertonic extracellular medium was found to be necessary to reduce turgor pressure and facilitate molecular entry into the cells. PMID:24244456
Mitchell, Claire A; Kalies, Stefan; Cizmár, Tomás; Heisterkamp, Alexander; Torrance, Lesley; Roberts, Alison G; Gunn-Moore, Frank J; Dholakia, Kishan
2013-01-01
A tightly-focused ultrashort pulsed laser beam incident upon a cell membrane has previously been shown to transiently increase cell membrane permeability while maintaining the viability of the cell, a technique known as photoporation. This permeability can be used to aid the passage of membrane-impermeable biologically-relevant substances such as dyes, proteins and nucleic acids into the cell. Ultrashort-pulsed lasers have proven to be indispensable for photoporating mammalian cells but they have rarely been applied to plant cells due to their larger sizes and rigid and thick cell walls, which significantly hinders the intracellular delivery of exogenous substances. Here we demonstrate and quantify femtosecond optical injection of membrane impermeable dyes into intact BY-2 tobacco plant cells growing in culture, investigating both optical and biological parameters. Specifically, we show that the long axial extent of a propagation invariant ("diffraction-free") Bessel beam, which relaxes the requirements for tight focusing on the cell membrane, outperforms a standard Gaussian photoporation beam, achieving up to 70% optoinjection efficiency. Studies on the osmotic effects of culture media show that a hypertonic extracellular medium was found to be necessary to reduce turgor pressure and facilitate molecular entry into the cells.
Assessing the secretory capacity of pancreatic acinar cells.
Geron, Erez; Schejter, Eyal D; Shilo, Ben-Zion
2014-08-28
Pancreatic acinar cells produce and secrete digestive enzymes. These cells are organized as a cluster which forms and shares a joint lumen. This work demonstrates how the secretory capacity of these cells can be assessed by culture of isolated acini. The setup is advantageous since isolated acini, which retain many characteristics of the intact exocrine pancreas can be manipulated and monitored more readily than in the whole animal. Proper isolation of pancreatic acini is a key requirement so that the ex vivo culture will represent the in vivo nature of the acini. The protocol demonstrates how to isolate intact acini from the mouse pancreas. Subsequently, two complementary methods for evaluating pancreatic secretion are presented. The amylase secretion assay serves as a global measure, while direct imaging of pancreatic secretion allows the characterization of secretion at a sub-cellular resolution. Collectively, the techniques presented here enable a broad spectrum of experiments to study exocrine secretion.
Numerical modeling of heat transfer and pasteurizing value during thermal processing of intact egg.
Abbasnezhad, Behzad; Hamdami, Nasser; Monteau, Jean-Yves; Vatankhah, Hamed
2016-01-01
Thermal Pasteurization of Eggs, as a widely used nutritive food, has been simulated. A three-dimensional numerical model, computational fluid dynamics codes of heat transfer equations using heat natural convection, and conduction mechanisms, based on finite element method, was developed to study the effect of air cell size and eggshell thickness. The model, confirmed by comparing experimental and numerical results, was able to predict the temperature profiles, the slowest heating zone, and the required heating time during pasteurization of intact eggs. The results showed that the air cell acted as a heat insulator. Increasing the air cell volume resulted in decreasing of the heat transfer rate, and the increasing the required time of pasteurization (up to 14%). The findings show that the effect on thermal pasteurization of the eggshell thickness was not considerable in comparison to the air cell volume.
Octopamine: a new feeding modulator in Lymnaea
Vehovszky, Á.
1998-01-01
The role of octopamine (OA) in the feeding system of the pond snail, Lymnaea stagnalis, was studied by applying behavioural tests on intact animals, and a combination of electrophysiological analysis and morphological labelling in the isolated central nervous system. OA antagonists phentolamine, demethylchlordimeform (DCDM) and 2-chloro-4-methyl-2-(phenylimino)-imidazolidine (NC-7) were injected into intact snails and the sucrose-induced feeding response of animals was monitored. Snails that received 25 to 50 mg kg-1 phentolamine did not start feeding in sucrose, and the same dose of NC-7 reduced the number of feeding animals by 80 to 90% 1 to 3 hours after injection. DCDM treatment reduced feeding by 20 to 60%. In addition, both phentolamine and NC-7 significantly decreased the feeding rate of those animals that still accepted food after 1 to 6 hours of injection. In the central nervous system a pair of buccal neurons was identified by electrophysiological and morphological criteria. After double labelling (intracellular staining with Lucifer yellow followed by OA-immunocytochemistry) these neurons were shown to be OA immunoreactive, and electrophysiological experiments confirmed that they are members of the buccal feeding system. Therefore the newly identified buccal neurons were called OC neurons (putative octopamine containing neurons or octopaminergic cells). Synchronous intracellular recordings demonstrated that the OC neurons share a common rhythm with feeding neurons either appearing spontaneously or evoked by intracellularly stimulated feeding interneurons. OC neurons also have synaptic connections with identified members of the feeding network: electrical coupling was demonstrated between OC neurons and members of the B4 cluster motoneurons, furthermore, chemically transmitted synaptic responses were recorded both on feeding motoneurons (B1, B2 cells) and the SO modulatory interneuron after the stimulation of OC neurons. However, elementary synaptic potentials could not be recorded on the follower cells of OC neurons. Prolonged (20 to 30 s) intracellular stimulation of OC cells activated the buccal feeding neurons leading to rhythmic activity pattern (fictive feeding) in a way similar to OA applied by perfusion onto isolated central nervous system (CNS) preparations. Our results suggest that OA acts as a modulatory substance in the feeding system of Lymnaea stagnalis and the newly identified pair of OC neurons belongs to the buccal feeding network.
Kar, Swagata; Arjunaraja, Swadhinya; Akkoyunlu, Mustafa; Pier, Gerald B; Snapper, Clifford M
2016-06-01
Priming of mice with intact, heat-killed cells of Gram-negative Neisseria meningitidis, capsular serogroup C (MenC) or Gram-positive group B Streptococcus, capsular type III (GBS-III) bacteria resulted in augmented serum polysaccharide (PS)-specific IgG titers following booster immunization. Induction of memory required CD4(+) T cells during primary immunization. We determined whether PS-specific memory for IgG production was contained within the B cell and/or T cell populations, and whether augmented IgG responses following booster immunization were also dependent on CD4(+) T cells. Adoptive transfer of purified B cells from MenC- or GBS-III-primed, but not naive mice resulted in augmented PS-specific IgG responses following booster immunization. Similar responses were observed when cotransferred CD4(+) T cells were from primed or naive mice. Similarly, primary immunization with unencapsulated MenC or GBS-III, to potentially prime CD4(+) T cells, failed to enhance PS-specific IgG responses following booster immunization with their encapsulated isogenic partners. Furthermore, in contrast to GBS-III, depletion of CD4(+) T cells during secondary immunization with MenC or another Gram-negative bacteria, Acinetobacter baumannii, did not inhibit augmented PS-specific IgG booster responses of mice primed with heat-killed cells. Also, in contrast with GBS-III, booster immunization of MenC-primed mice with isolated MenC-PS, a TI Ag, or a conjugate of MenC-PS and tetanus toxoid elicited an augmented PS-specific IgG response similar to booster immunization with intact MenC. These data demonstrate that memory for augmented PS-specific IgG booster responses to Gram-negative and Gram-positive bacteria is contained solely within the B cell compartment, with a differential requirement for CD4(+) T cells for augmented IgG responses following booster immunization. Copyright © 2016 by The American Association of Immunologists, Inc.
Zhang, Wei-Dong; Zhao, Yong; Zhang, Hong-Fu; Wang, Shu-Kun; Hao, Zhi-Hui; Liu, Jing; Yuan, Yu-Qing; Zhang, Peng-Fei; Yang, Hong-Di; Shen, Wei; Li, Lan
2016-08-01
Granulosa cells (GCs) are those somatic cells closest to the female germ cell. GCs play a vital role in oocyte growth and development, and the oocyte is necessary for multiplication of a species. Zinc oxide (ZnO) nanoparticles (NPs) readily cross biologic barriers to be absorbed into biologic systems that make them promising candidates as food additives. The objective of the present investigation was to explore the impact of intact NPs on gene expression and the functional classification of altered genes in hen GCs in vivo, to compare the data from in vivo and in vitro studies, and finally to point out the adverse effects of ZnO NPs on the reproductive system. After a 24-week treatment, hen GCs were isolated and gene expression was quantified. Intact NPs were found in the ovary and other organs. Zn levels were similar in ZnO-NP-100 mg/kg- and ZnSO4-100 mg/kg-treated hen ovaries. ZnO-NP-100 mg/kg and ZnSO4-100 mg/kg regulated the expression of the same sets of genes, and they also altered the expression of different sets of genes individually. The number of genes altered by the ZnO-NP-100 mg/kg and ZnSO4-100 mg/kg treatments was different. Gene Ontology (GO) functional analysis reported that different results for the two treatments and, in Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, 12 pathways (out of the top 20 pathways) in each treatment were different. These results suggested that intact NPs and Zn(2+) had different effects on gene expression in GCs in vivo. In our recent publication, we noted that intact NPs and Zn(2+) differentially altered gene expression in GCs in vitro. However, GO functional classification and KEGG pathway enrichment analyses revealed close similarities for the changed genes in vivo and in vitro after ZnO NP treatment. Furthermore, close similarities were observed for the changed genes after ZnSO4 treatments in vivo and in vitro by GO functional classification and KEGG pathway enrichment analyses. Therefore, the effects of ZnO NPs on gene expression in vitro might represent their effects on gene expression in vivo. The results from this study and our earlier studies support previous findings indicating ZnO NPs promote adverse effects on organisms. Therefore, precautions should be taken when ZnO NPs are used as diet additives for hens because they might cause reproductive issues. Copyright © 2016 Elsevier Inc. All rights reserved.
A Novel Ex Vivo Method for Visualizing Live-Cell Calcium Response Behavior in Intact Human Tumors.
Koh, James; Hogue, Joyce A; Sosa, Julie A
2016-01-01
The functional impact of intratumoral heterogeneity has been difficult to assess in the absence of a means to interrogate dynamic, live-cell biochemical events in the native tissue context of a human tumor. Conventional histological methods can reveal morphology and static biomarker expression patterns but do not provide a means to probe and evaluate tumor functional behavior and live-cell responsiveness to experimentally controlled stimuli. Here, we describe an approach that couples vibratome-mediated viable tissue sectioning with live-cell confocal microscopy imaging to visualize human parathyroid adenoma tumor cell responsiveness to extracellular calcium challenge. Tumor sections prepared as 300 micron-thick tissue slices retain viability throughout a >24 hour observation period and retain the native architecture of the parental tumor. Live-cell observation of biochemical signaling in response to extracellular calcium challenge in the intact tissue slices reveals discrete, heterogeneous kinetic waveform categories of calcium agonist reactivity within each tumor. Plotting the proportion of maximally responsive tumor cells as a function of calcium concentration yields a sigmoid dose-response curve with a calculated calcium EC50 value significantly elevated above published reference values for wild-type calcium-sensing receptor (CASR) sensitivity. Subsequent fixation and immunofluorescence analysis of the functionally evaluated tissue specimens allows alignment and mapping of the physical characteristics of individual cells within the tumor to specific calcium response behaviors. Evaluation of the relative abundance of intracellular PTH in tissue slices challenged with variable calcium concentrations demonstrates that production of the hormone can be dynamically manipulated ex vivo. The capability of visualizing live human tumor tissue behavior in response to experimentally controlled conditions opens a wide range of possibilities for personalized ex vivo therapeutic testing. This highly adaptable system provides a unique platform for live-cell ex vivo provocative testing of human tumor responsiveness to a range of physiological agonists or candidate therapeutic compounds.
Xu, Qi; Resch, Michael G; Podkaminer, Kara; Yang, Shihui; Baker, John O; Donohoe, Bryon S; Wilson, Charlotte; Klingeman, Dawn M; Olson, Daniel G; Decker, Stephen R; Giannone, Richard J; Hettich, Robert L; Brown, Steven D; Lynd, Lee R; Bayer, Edward A; Himmel, Michael E; Bomble, Yannick J
2016-02-01
Clostridium thermocellum is the most efficient microorganism for solubilizing lignocellulosic biomass known to date. Its high cellulose digestion capability is attributed to efficient cellulases consisting of both a free-enzyme system and a tethered cellulosomal system wherein carbohydrate active enzymes (CAZymes) are organized by primary and secondary scaffoldin proteins to generate large protein complexes attached to the bacterial cell wall. This study demonstrates that C. thermocellum also uses a type of cellulosomal system not bound to the bacterial cell wall, called the "cell-free" cellulosomal system. The cell-free cellulosome complex can be seen as a "long range cellulosome" because it can diffuse away from the cell and degrade polysaccharide substrates remotely from the bacterial cell. The contribution of these two types of cellulosomal systems in C. thermocellum was elucidated by characterization of mutants with different combinations of scaffoldin gene deletions. The primary scaffoldin, CipA, was found to play the most important role in cellulose degradation by C. thermocellum, whereas the secondary scaffoldins have less important roles. Additionally, the distinct and efficient mode of action of the C. thermocellum exoproteome, wherein the cellulosomes splay or divide biomass particles, changes when either the primary or secondary scaffolds are removed, showing that the intact wild-type cellulosomal system is necessary for this essential mode of action. This new transcriptional and proteomic evidence shows that a functional primary scaffoldin plays a more important role compared to secondary scaffoldins in the proper regulation of CAZyme genes, cellodextrin transport, and other cellular functions.
Efficient culture of Chlamydia pneumoniae with cell lines derived from the human respiratory tract.
Wong, K H; Skelton, S K; Chan, Y K
1992-01-01
Two established cell lines, H 292 and HEp-2, originating from the human respiratory tract, were found to be significantly more efficient and practical than the currently used HeLa 229 cells for growth of Chlamydia pneumoniae. Six strains of C. pneumoniae recently isolated from patients with respiratory ailments were used as test cultures. The H 292 and HEp-2 cells yielded much higher inclusion counts for all the test strains than did HeLa 229 cells. When they were compared with each other, H 292 cells yielded more inclusions than did HEp-2 cells, and the differences were statistically significant in 10 of 18 test sets. A simple system with these two cell lines appeared to be very efficient for culturing C. pneumoniae. It does not require treatment of tissue cells with DEAE-dextran before infection, and it may eliminate the need for serial subpassages of specimens to increase culture sensitivity. Monolayers of these cells remained intact and viable in the Chlamydia growth medium so that reinfection could take place, resulting in greatly increased inclusion counts for specimens containing few infectious units. This system may make it more practical for laboratories to culture for C. pneumoniae for treatment of infections and outbreak intervention and will facilitate studies on this recently recognized pathogen. PMID:1629316
Main chain acid-degradable polymers for the delivery of bioactive materials
Frechet, Jean M. J. [Oakland, CA; Standley, Stephany M [Evanston, IL; Jain, Rachna [Milpitas, CA; Lee, Cameron C [Cambridge, MA
2012-03-20
Novel main chain acid degradable polymer backbones and drug delivery systems comprised of materials capable of delivering bioactive materials to cells for use as vaccines or other therapeutic agents are described. The polymers are synthesized using monomers that contain acid-degradable linkages cleavable under mild acidic conditions. The main chain of the resulting polymers readily degrade into many small molecules at low pH, but remain relatively stable and intact at physiological pH. The new materials have the common characteristic of being able to degrade by acid hydrolysis under conditions commonly found within the endosomal or lysosomal compartments of cells thereby releasing their payload within the cell. The materials can also be used for the delivery of therapeutics to the acidic regions of tumors and other sites of inflammation.
Systems and synthetic biology approaches to alter plant cell walls and reduce biomass recalcitrance
Kalluri, Udaya C.; Yin, Hengfu; Yang, Xiaohan; ...
2014-11-03
Fine-tuning plant cell wall properties to render plant biomass more amenable to biofuel conversion is a colossal challenge. A deep knowledge of the biosynthesis and regulation of plant cell wall and a high-precision genome engineering toolset are the two essential pillars of efforts to alter plant cell walls and reduce biomass recalcitrance. The past decade has seen a meteoric rise in use of transcriptomics and high-resolution imaging methods resulting in fresh insights into composition, structure, formation and deconstruction of plant cell walls. Subsequent gene manipulation approaches, however, commonly include ubiquitous mis-expression of a single candidate gene in a host thatmore » carries an intact copy of the native gene. The challenges posed by pleiotropic and unintended changes resulting from such an approach are moving the field towards synthetic biology approaches. Finally, synthetic biology builds on a systems biology knowledge base and leverages high-precision tools for high-throughput assembly of multigene constructs and pathways, precision genome editing and site-specific gene stacking, silencing and/or removal. Here, we summarize the recent breakthroughs in biosynthesis and remodelling of major secondary cell wall components, assess the impediments in obtaining a systems-level understanding and explore the potential opportunities in leveraging synthetic biology approaches to reduce biomass recalcitrance.« less
Systems and synthetic biology approaches to alter plant cell walls and reduce biomass recalcitrance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalluri, Udaya C.; Yin, Hengfu; Yang, Xiaohan
Fine-tuning plant cell wall properties to render plant biomass more amenable to biofuel conversion is a colossal challenge. A deep knowledge of the biosynthesis and regulation of plant cell wall and a high-precision genome engineering toolset are the two essential pillars of efforts to alter plant cell walls and reduce biomass recalcitrance. The past decade has seen a meteoric rise in use of transcriptomics and high-resolution imaging methods resulting in fresh insights into composition, structure, formation and deconstruction of plant cell walls. Subsequent gene manipulation approaches, however, commonly include ubiquitous mis-expression of a single candidate gene in a host thatmore » carries an intact copy of the native gene. The challenges posed by pleiotropic and unintended changes resulting from such an approach are moving the field towards synthetic biology approaches. Finally, synthetic biology builds on a systems biology knowledge base and leverages high-precision tools for high-throughput assembly of multigene constructs and pathways, precision genome editing and site-specific gene stacking, silencing and/or removal. Here, we summarize the recent breakthroughs in biosynthesis and remodelling of major secondary cell wall components, assess the impediments in obtaining a systems-level understanding and explore the potential opportunities in leveraging synthetic biology approaches to reduce biomass recalcitrance.« less
Novel Micropatterned Cardiac Cell Cultures with Realistic Ventricular Microstructure
Badie, Nima; Bursac, Nenad
2009-01-01
Systematic studies of cardiac structure-function relationships to date have been hindered by the intrinsic complexity and variability of in vivo and ex vivo model systems. Thus, we set out to develop a reproducible cell culture system that can accurately replicate the realistic microstructure of native cardiac tissues. Using cell micropatterning techniques, we aligned cultured cardiomyocytes at micro- and macroscopic spatial scales to follow local directions of cardiac fibers in murine ventricular cross sections, as measured by high-resolution diffusion tensor magnetic resonance imaging. To elucidate the roles of ventricular tissue microstructure in macroscopic impulse conduction, we optically mapped membrane potentials in micropatterned cardiac cultures with realistic tissue boundaries and natural cell orientation, cardiac cultures with realistic tissue boundaries but random cell orientation, and standard isotropic monolayers. At 2 Hz pacing, both microscopic changes in cell orientation and ventricular tissue boundaries independently and synergistically increased the spatial dispersion of conduction velocity, but not the action potential duration. The realistic variations in intramural microstructure created unique spatial signatures in micro- and macroscopic impulse propagation within ventricular cross-section cultures. This novel in vitro model system is expected to help bridge the existing gap between experimental structure-function studies in standard cardiac monolayers and intact heart tissues. PMID:19413993
Hwang, M-S; Schwall, C T; Pazarentzos, E; Datler, C; Alder, N N; Grimm, S
2014-01-01
Massive Ca2+ influx into mitochondria is critically involved in cell death induction but it is unknown how this activates the organelle for cell destruction. Using multiple approaches including subcellular fractionation, FRET in intact cells, and in vitro reconstitutions, we show that mitochondrial Ca2+ influx prompts complex II of the respiratory chain to disintegrate, thereby releasing an enzymatically competent sub-complex that generates excessive reactive oxygen species (ROS) for cell death induction. This Ca2+-dependent dissociation of complex II is also observed in model membrane systems, but not when cardiolipin is replaced with a lipid devoid of Ca2+ binding. Cardiolipin is known to associate with complex II and upon Ca2+ binding coalesces into separate homotypic clusters. When complex II is deprived of this lipid, it disintegrates for ROS formation and cell death. Our results reveal Ca2+ binding to cardiolipin for complex II disintegration as a pivotal step for oxidative stress and cell death induction. PMID:24948011
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ingram, Jani Cheri; Lehman, Richard Michael; Bauer, William Francis
We report the use of a surface analysis approach, static secondary ion mass spectrometry (SIMS) equipped with a molecular (ReO4-) ion primary beam, to analyze the surface of intact microbial cells. SIMS spectra of 28 microorganisms were compared to fatty acid profiles determined by gas chromatographic analysis of transesterfied fatty acids extracted from the same organisms. The results indicate that surface bombardment using the molecular primary beam cleaved the ester linkage characteristic of bacteria at the glycerophosphate backbone of the phospholipid components of the cell membrane. This cleavage enables direct detection of the fatty acid conjugate base of intact microorganismsmore » by static SIMS. The limit of detection for this approach is approximately 107 bacterial cells/cm2. Multivariate statistical methods were applied in a graded approach to the SIMS microbial data. The results showed that the full data set could initially be statistically grouped based upon major differences in biochemical composition of the cell wall. The gram-positive bacteria were further statistically analyzed, followed by final analysis of a specific bacterial genus that was successfully grouped by species. Additionally, the use of SIMS to detect microbes on mineral surfaces is demonstrated by an analysis of Shewanella oneidensis on crushed hematite. The results of this study provide evidence for the potential of static SIMS to rapidly detect bacterial species based on ion fragments originating from cell membrane lipids directly from sample surfaces.« less
Culturing of avian embryos for time-lapse imaging.
Rupp, Paul A; Rongish, Brenda J; Czirok, Andras; Little, Charles D
2003-02-01
Monitoring morphogenetic processes, at high resolution over time, has been a long-standing goal of many developmental cell biologists. It is critical to image cells in their natural environment whenever possible; however, imaging many warm-blooded vertebrates, especially mammals, is problematic. At early stages of development, birds are ideal for imaging, since the avian body plan is very similar to that of mammals. We have devised a culturing technique that allows for the acquisition of high-resolution differential interference contrast and epifluorescence images of developing avian embryos in a 4-D (3-D + time) system. The resulting information, from intact embryos, is derived from an area encompassing several millimeters, at micrometer resolution for up to 30 h.
Computational physiology and the Physiome Project.
Crampin, Edmund J; Halstead, Matthew; Hunter, Peter; Nielsen, Poul; Noble, Denis; Smith, Nicolas; Tawhai, Merryn
2004-01-01
Bioengineering analyses of physiological systems use the computational solution of physical conservation laws on anatomically detailed geometric models to understand the physiological function of intact organs in terms of the properties and behaviour of the cells and tissues within the organ. By linking behaviour in a quantitative, mathematically defined sense across multiple scales of biological organization--from proteins to cells, tissues, organs and organ systems--these methods have the potential to link patient-specific knowledge at the two ends of these spatial scales. A genetic profile linked to cardiac ion channel mutations, for example, can be interpreted in relation to body surface ECG measurements via a mathematical model of the heart and torso, which includes the spatial distribution of cardiac ion channels throughout the myocardium and the individual kinetics for each of the approximately 50 types of ion channel, exchanger or pump known to be present in the heart. Similarly, linking molecular defects such as mutations of chloride ion channels in lung epithelial cells to the integrated function of the intact lung requires models that include the detailed anatomy of the lungs, the physics of air flow, blood flow and gas exchange, together with the large deformation mechanics of breathing. Organizing this large body of knowledge into a coherent framework for modelling requires the development of ontologies, markup languages for encoding models, and web-accessible distributed databases. In this article we review the state of the field at all the relevant levels, and the tools that are being developed to tackle such complexity. Integrative physiology is central to the interpretation of genomic and proteomic data, and is becoming a highly quantitative, computer-intensive discipline.
Kopp, Mathis; Rotan, Olga; Papadopoulos, Chrisovalantis; Schulze, Nina; Meyer, Hemmo; Epple, Matthias
2017-01-01
Nanoparticles can be used as carriers to transport biomolecules like proteins and synthetic molecules across the cell membrane because many molecules are not able to cross the cell membrane on their own. The uptake of nanoparticles together with their cargo typically occurs via endocytosis, raising concerns about the possible degradation of the cargo in the endolysosomal system. As the tracking of a dye-labelled protein during cellular uptake and processing is not indicative of the presence of the protein itself but only for the fluorescent label, a label-free tracking was performed with the red-fluorescing model protein R-phycoerythrin (R-PE). Four different eukaryotic cell lines were investigated: HeLa, HEK293T, MG-63, and MC3T3. Alone, the protein was not taken up by any cell line; only with the help of calcium phosphate nanoparticles, an efficient uptake occurred. After the uptake into HeLa cells, the protein was found in early endosomes (shown by the marker EEA1) and lysosomes (shown by the marker Lamp1). There, it was still intact and functional (i.e. properly folded) as its red fluorescence was detected. However, a few hours after the uptake, proteolysis started as indicated by the decreasing red fluorescence intensity in the case of HeLa and MC3T3 cells. 12 h after the uptake, the protein was almost completely degraded in HeLa cells and MC3T3 cells. In HEK293T cells and MG-63 cells, no degradation of the protein was observed. In the presence of Bafilomycin A1, an inhibitor of acidification and protein degradation in lysosomes, the fluorescence of R-PE remained intact over the whole observation period in the four cell lines. These results indicate that despite an efficient nanoparticle-mediated uptake of proteins by cells, a rapid endolysosomal degradation may prevent the desired (e.g. therapeutic) effect of a protein inside a cell.
HIV-1-associated PKA acts as a cofactor for genome reverse transcription
2013-01-01
Background Host cell proteins, including cellular kinases, are embarked into intact HIV-1 particles. We have previously shown that the Cα catalytic subunit of cAMP-dependent protein kinase is packaged within HIV-1 virions as an enzymatically active form able to phosphorylate a synthetic substrate in vitro (Cartier et al. J. Biol. Chem. 278:35211 (2003)). The present study was conceived to investigate the contribution of HIV-1-associated PKA to the retroviral life cycle. Results NL4.3 viruses were produced from cells cultured in the presence of PKA inhibitors H89 (H89-NL4.3) or Myr-PKI (PKI-NL4.3) and analyzed for viral replication. Despite being mature and normally assembled, and containing expected levels of genomic RNA and RT enzymatic activity, such viruses showed poor infectivity. Indeed, infection generated reduced amounts of strong-strop minus strand DNA, while incoming RNA levels in target cells were unaffected. Decreased cDNA synthesis was also evidenced in intact H89-NL4.3 and PKI-NL4.3 cell free particles using endogenous reverse transcription (ERT) experiments. Moreover, similar defects were reproduced when wild type NL4.3 particles preincubated with PKA inhibitors were subjected to ERT reactions. Conclusions Altogether, our results indicate that HIV-1-associated PKA is required for early reverse transcription of the retroviral genome both in cell free intact viruses and in target cells. Accordingly, virus-associated PKA behaves as a cofactor of an intraviral process required for optimal reverse transcription and for early post-entry events. PMID:24344931
DOE Office of Scientific and Technical Information (OSTI.GOV)
Czajkowski, C.M.
1987-01-01
Experiments were performed utilizing trypsinization of the GABA/BZD-R in intact cells to determine (1) the subcellular distribution of membrane-associated GABA/BZD-Rs and (2) aspects of the transmembrane topology of the BZD-R. Additionally, R07-0213, a positively charged benzodiazepine, was used to distinguish between cell surface and intracellular BZD-Rs. Following trypsin treatment of intact cells a cleaved receptor fragment of M{sub r} = 24,000 (xRF24) is generated. It remains anchored in the plasma membrane and not only retains the ability to bind ({sup 3}H)flunitrazepan reversibly and irreversibly but also retains the ability to be modulated by GABA. xRF24 is not observed following trypsinizationmore » of saponin-treated cells or cell homogenates, indicating that it has a cytoplasmic domain as well as a cell surface domain, as expected for a transmembrane fragment of the BZD-R. By utilizing ({sup 3}H)flunitrazepam as an irreversible photoaffinity label, BZD-R turnover was also investigated.« less
Prototypic and Arkypallidal Neurons in the Dopamine-Intact External Globus Pallidus
Abdi, Azzedine; Mallet, Nicolas; Mohamed, Foad Y.; Sharott, Andrew; Dodson, Paul D.; Nakamura, Kouichi C.; Suri, Sana; Avery, Sophie V.; Larvin, Joseph T.; Garas, Farid N.; Garas, Shady N.; Vinciati, Federica; Morin, Stéphanie; Bezard, Erwan
2015-01-01
Studies in dopamine-depleted rats indicate that the external globus pallidus (GPe) contains two main types of GABAergic projection cell; so-called “prototypic” and “arkypallidal” neurons. Here, we used correlative anatomical and electrophysiological approaches in rats to determine whether and how this dichotomous organization applies to the dopamine-intact GPe. Prototypic neurons coexpressed the transcription factors Nkx2-1 and Lhx6, comprised approximately two-thirds of all GPe neurons, and were the major GPe cell type innervating the subthalamic nucleus (STN). In contrast, arkypallidal neurons expressed the transcription factor FoxP2, constituted just over one-fourth of GPe neurons, and innervated the striatum but not STN. In anesthetized dopamine-intact rats, molecularly identified prototypic neurons fired at relatively high rates and with high regularity, regardless of brain state (slow-wave activity or spontaneous activation). On average, arkypallidal neurons fired at lower rates and regularities than prototypic neurons, and the two cell types could be further distinguished by the temporal coupling of their firing to ongoing cortical oscillations. Complementing the activity differences observed in vivo, the autonomous firing of identified arkypallidal neurons in vitro was slower and more variable than that of prototypic neurons, which tallied with arkypallidal neurons displaying lower amplitudes of a “persistent” sodium current important for such pacemaking. Arkypallidal neurons also exhibited weaker driven and rebound firing compared with prototypic neurons. In conclusion, our data support the concept that a dichotomous functional organization, as actioned by arkypallidal and prototypic neurons with specialized molecular, structural, and physiological properties, is fundamental to the operations of the dopamine-intact GPe. PMID:25926446
He, Huining; Ye, Junxiao; Wang, Yinsong; Liu, Quan; Chung, Hee Sun; Kwon, Young Min; Shin, Meong Cheol; Lee, Kyuri; Yang, Victor C
2014-02-28
Red blood cells (RBCs) based drug carrier appears to be the most appealing for protein drugs due to their unmatched biocompatability, biodegradability, and long lifespan in the circulation. Numerous methods for encapsulating protein drugs into RBCs were developed, however, most of them induce partial disruption of the cell membrane, resulting in irreversible alterations in both physical and chemical properties of RBCs. Herein, we introduce a novel method for encapsulating proteins into intact RBCs, which was meditated by a cell penetrating peptide (CPP) developed in our lab-low molecular weight protamine (LMWP). l-asparaginase, one of the primary drugs used in treatment of acute lymphoblastic leukemia (ALL), was chosen as a model protein to illustrate the encapsulation into erythrocytes mediated by CPPs. In addition current treatment of ALL using different l-asparaginase delivery and encapsulation methods as well as their associated problems were also reviewed. Copyright © 2013 Elsevier B.V. All rights reserved.
Aluminum and temperature alteration of cell membrane permeability of Quercus rubra
DOE Office of Scientific and Technical Information (OSTI.GOV)
Junping Chen; Sucoff, E.I.; Stadelmann, E.J.
1991-06-01
Al toxicity is the major factor limiting plant growth in acid soils. This report extends research on Al-induced changes in membrane behavior of intact root cortex cells of Northern red oak (Quercus rubra). Membrane permeability was determined by the plasmometric method for individual intact cells at temperatures from 2 or 4 to 35 C. Al (0.37 millimolar) significantly increased membrane permeability to urea and monoethyl urea and decreased permeability to water. Al significantly altered the activation energy required to transport water (+ 32%), urea (+ 9%), and monoethyl urea ({minus}7%) across cell membranes. Above 9 C, Al increased the lipidmore » partiality of the cell membranes; below 7 C, Al decreased it. Al narrowed by 6 C the temperature range over which plasmolysis occurred without membrane damage. These changes in membrane behavior are explainable if Al reduced membrane lipid fluidity and kink frequency and increases packing density and the occurrence of straight lipid chains.« less
McMahon, Tanis C.; Blais, Burton W.; Wong, Alex; Carrillo, Catherine D.
2017-01-01
Foodborne illness attributed to enterohemorrhagic E. coli (EHEC), a highly pathogenic subset of Shiga toxin-producing E. coli (STEC), is increasingly recognized as a significant public health issue. Current microbiological methods for identification of EHEC in foods often use PCR-based approaches to screen enrichment broth cultures for characteristic gene markers [i.e., Shiga toxin (stx) and intimin (eae)]. However, false positives arise when complex food matrices, such as beef, contain mixtures of eae-negative STEC and eae-positive E. coli, but no EHEC with both markers in a single cell. To reduce false-positive detection of EHEC in food enrichment samples, a Multiplexed, Single Intact Cell droplet digital PCR (MuSIC ddPCR) assay capable of detecting the co-occurrence of the stx and eae genes in a single bacterial cell was developed. This method requires: (1) dispersal of intact bacteria into droplets; (2) release of genomic DNA (gDNA) by heat lysis; and (3) amplification and detection of genetic targets (stx and eae) using standard TaqMan chemistries with ddPCR. Performance of the method was tested with panels of EHEC and non-target E. coli. By determining the linkage (i.e., the proportion of droplets in which stx and eae targets were both amplified), samples containing EHEC (typically greater than 20% linkage) could be distinguished from samples containing mixtures of eae-negative STEC and eae-positive E. coli (0–2% linkage). The use of intact cells was necessary as this linkage was not observed with gDNA extracts. EHEC could be accurately identified in enrichment broth cultures containing excess amounts of background E. coli and in enrichment cultures derived from ground beef/pork and leafy-green produce samples. To our knowledge, this is the first report of dual-target detection in single bacterial cells using ddPCR. The application of MuSIC ddPCR to enrichment-culture screening would reduce false-positives, thereby improving the cost, speed, and accuracy of current methods for EHEC detection in foods. PMID:28303131
McMahon, Tanis C; Blais, Burton W; Wong, Alex; Carrillo, Catherine D
2017-01-01
Foodborne illness attributed to enterohemorrhagic E. coli (EHEC), a highly pathogenic subset of Shiga toxin-producing E. coli (STEC), is increasingly recognized as a significant public health issue. Current microbiological methods for identification of EHEC in foods often use PCR-based approaches to screen enrichment broth cultures for characteristic gene markers [i.e., Shiga toxin ( stx ) and intimin ( eae )]. However, false positives arise when complex food matrices, such as beef, contain mixtures of eae -negative STEC and eae -positive E. coli , but no EHEC with both markers in a single cell. To reduce false-positive detection of EHEC in food enrichment samples, a Multiplexed, Single Intact Cell droplet digital PCR (MuSIC ddPCR) assay capable of detecting the co-occurrence of the stx and eae genes in a single bacterial cell was developed. This method requires: (1) dispersal of intact bacteria into droplets; (2) release of genomic DNA (gDNA) by heat lysis; and (3) amplification and detection of genetic targets ( stx and eae ) using standard TaqMan chemistries with ddPCR. Performance of the method was tested with panels of EHEC and non-target E. coli . By determining the linkage (i.e., the proportion of droplets in which stx and eae targets were both amplified), samples containing EHEC (typically greater than 20% linkage) could be distinguished from samples containing mixtures of eae -negative STEC and eae -positive E. coli (0-2% linkage). The use of intact cells was necessary as this linkage was not observed with gDNA extracts. EHEC could be accurately identified in enrichment broth cultures containing excess amounts of background E. coli and in enrichment cultures derived from ground beef/pork and leafy-green produce samples. To our knowledge, this is the first report of dual-target detection in single bacterial cells using ddPCR. The application of MuSIC ddPCR to enrichment-culture screening would reduce false-positives, thereby improving the cost, speed, and accuracy of current methods for EHEC detection in foods.
Silva, A C; Varela, A S; Cardoso, T F; Silva, E F; Loebmann, D; Corcini, C D
2017-01-01
Erythrolamprus poecilogyrus sublineatus (Cope, 1860), is a species widely distributed in the Pampa Domain, occurring in Rio Grande do Sul, Argentina and Uruguay, mainlyin the pampa region. In the coastal region of southern Brazil this is serpent is considered one of the most abundant. The purpose of the present study is to describe the techniques of sperm evaluation in vitro for E. poecilogyrus sublineatus in the coastal plain of Rio Grande do Sul, Brazil. After laparatomy the efferent vases were collected and the semen was diluted in 1ml Beltsville Thawing Solution. The characteristics of motility, membrane integrity, mitochondria, acrosome, DNA, cell viability and cellular functionality were evaluated. Fluorescent probes were used for the evaluation of sperm structure in epifluorescence microscope. With the techniques described, it was possible to identify intact and injured cells, enabling the determination of cell characteristics for the spring season (October and November). It was observed in the analyses that 80% of sperm cells were mobile and that 84.1 ± 8.0% of sperm membranes were intact. The standards found were of 48 ± 13.8% of intact acrosome, 73.6 ± 6.0 of perfect DNA and of 91.8 ± 4.0 of functional mitochondria. Thus, these values from the sperm analysis can be used as standards for the species Erythrolamprus poecilogyrus sublineatus.
From static to animated: Measuring mechanical forces in tissues
2017-01-01
Cells are physical objects that exert mechanical forces on their surroundings as they migrate and take their places within tissues. New techniques are now poised to enable the measurement of cell-generated mechanical forces in intact tissues in vivo, which will illuminate the secret dynamic lives of cells and change our current perception of cell biology. PMID:28003332
Langerhans Cells Maintain Local Tissue Tolerance in a Model of Systemic Autoimmune Disease1
King, Jennifer K.; Philips, Rachael L.; Eriksson, Anna U.; Kim, Peter J.; Halder, Ramesh C.; Lee, Delphine J.; Singh, Ram Raj
2015-01-01
Systemic autoimmune diseases such as lupus affect multiple organs, usually in a diverse fashion where only certain organs are affected in individual patients. It is unclear whether the ‘local’ immune cells play a role in regulating tissue specificity in relation to disease heterogeneity in systemic autoimmune diseases. Here, we used skin as a model to determine the role of tissue-resident dendritic cells in local and systemic involvement within a systemic lupus disease model. Skin-resident dendritic cells, namely Langerhans cells (LC), have been implicated in regulating tolerance or autoimmunity using elegant transgenic models, however, their role in local versus systemic immune regulation is unknown. We demonstrate that while lymphocytes from skin-draining lymph nodes of autoimmune-prone MRL/MpJ-Faslpr/lpr mice react spontaneously to a physiological skin self-Ag desmoglein-3, epicutaneous applications of desmoglein-3 induced tolerance that is dependent on LCs. Inducible ablation of LCs in adult, preclinical MRL/MpJ-Faslpr/lpr and MRL/MpJ-Fas+/+ mice resulted in increased autoantibodies against skin Ags and markedly accelerated lupus dermatitis with increased local macrophage infiltration, but had no effect on systemic autoantibodies such as anti-dsDNA Abs or disease in other organs such as kidneys, lung, and liver. Furthermore, skin-draining lymph nodes of LC-ablated MRL/MpJ-Faslpr/lpr mice had significantly fewer CD4+ T-cells producing anti-inflammatory cytokine IL-10 than LC-intact controls. These results indicate that a skin-resident dendritic cell population regulates local tolerance in systemic lupus and emphasize the importance of the local immune milieu in preventing tissue-specific autoimmunity yet have no effect on systemic autoimmunity. PMID:26071559
NASA Astrophysics Data System (ADS)
Yamauchi, Toyohiko; Kakuno, Yumi; Goto, Kentaro; Fukami, Tadashi; Sugiyama, Norikazu; Iwai, Hidenao; Mizuguchi, Yoshinori; Yamashita, Yutaka
2014-03-01
There is an increasing need for non-invasive imaging techniques in the field of stem cell research. Label-free techniques are the best choice for assessment of stem cells because the cells remain intact after imaging and can be used for further studies such as differentiation induction. To develop a high-resolution label-free imaging system, we have been working on a low-coherence quantitative phase microscope (LC-QPM). LC-QPM is a Linnik-type interference microscope equipped with nanometer-resolution optical-path-length control and capable of obtaining three-dimensional volumetric images. The lateral and vertical resolutions of our system are respectively 0.5 and 0.93 μm and this performance allows capturing sub-cellular morphological features of live cells without labeling. Utilizing LC-QPM, we reported on three-dimensional imaging of membrane fluctuations, dynamics of filopodia, and motions of intracellular organelles. In this presentation, we report three-dimensional morphological imaging of human induced pluripotent stem cells (hiPS cells). Two groups of monolayer hiPS cell cultures were prepared so that one group was cultured in a suitable culture medium that kept the cells undifferentiated, and the other group was cultured in a medium supplemented with retinoic acid, which forces the stem cells to differentiate. The volumetric images of the 2 groups show distinctive differences, especially in surface roughness. We believe that our LC-QPM system will prove useful in assessing many other stem cell conditions.
AI-augmented time stretch microscopy
NASA Astrophysics Data System (ADS)
Mahjoubfar, Ata; Chen, Claire L.; Lin, Jiahao; Jalali, Bahram
2017-02-01
Cell reagents used in biomedical analysis often change behavior of the cells that they are attached to, inhibiting their native signaling. On the other hand, label-free cell analysis techniques have long been viewed as challenging either due to insufficient accuracy by limited features, or because of low throughput as a sacrifice of improved precision. We present a recently developed artificial-intelligence augmented microscope, which builds upon high-throughput time stretch quantitative phase imaging (TS-QPI) and deep learning to perform label-free cell classification with record high-accuracy. Our system captures quantitative optical phase and intensity images simultaneously by frequency multiplexing, extracts multiple biophysical features of the individual cells from these images fused, and feeds these features into a supervised machine learning model for classification. The enhanced performance of our system compared to other label-free assays is demonstrated by classification of white blood T-cells versus colon cancer cells and lipid accumulating algal strains for biofuel production, which is as much as five-fold reduction in inaccuracy. This system obtains the accuracy required in practical applications such as personalized drug development, while the cells remain intact and the throughput is not sacrificed. Here, we introduce a data acquisition scheme based on quadrature phase demodulation that enables interruptionless storage of TS-QPI cell images. Our proof of principle demonstration is capable of saving 40 TB of cell images in about four hours, i.e. pictures of every single cell in 10 mL of a sample.
Effect of peripheral nerve injury on receptive fields of cells in the cat spinal cord.
Devor, M; Wall, P D
1981-06-20
When the sciatic and saphenous nerves are cut and ligated in adult cats, the immediate effect is the production of a completely anesthetic foot and a region in medial lumbar dorsal horn where almost all cells have lost their natural receptive fields (RFs). Beginning at about 1 week and maturing by 4 weeks, some 40% of cells in the medial dorsal horn gain a novel RF on proximal skin, that is, upper and lower leg, thigh, lower back, or perineum. This new RF is supplied by intact proximal nerves and not by sciatic and saphenous nerve fibers that sprouted in the periphery. During the period of switching of RFs from distal to proximal skin there was no gross atrophy of dorsal horn grey matter and no Fink-Heimer stainable degeneration of central arbors and terminals of peripherally axotomized afferents. In intact animals medial dorsal horn cells showed no sign of response to mechanical stimulation of proximal skin. RFs of some of the cells had spontaneous variations in size and sensitivity, but these were not nearly sufficient to explain the large shifts observed after chronic nerve section. Tetanic electrical stimulation of skin or peripheral nerves often caused RFs to shrink, but never to expand. Although natural stimuli of proximal skin would not excite medial dorsal horn cells in intact or acutely deafferented animals, it was found that electrical stimulation of proximal nerves did excite many of these cells, often at short latencies. In the discussion we justify our working hypothesis that the appearance of novel RFs is due to the strengthening or unmasking of normally present but ineffective afferent terminals, rather than to long-distance sprouting of new afferent arbors within the spinal cord.
Griffiths, E J; Wei, S K; Haigney, M C; Ocampo, C J; Stern, M D; Silverman, H S
1997-04-01
The aims of this study were to determine: (i) whether clonazepam and CGP37157, which inhibit the Na+/Ca2+ exchanger of isolated mitochondria, could inhibit mitochondrial Ca2+ efflux in intact cells; and (ii) whether any sustained increase in mitochondrial [Ca2+] ([Ca2+]m) could alter mitochondrial NADH levels. [Ca2+]m was measured in Indo-1/AM loaded rat ventricular myocytes where the cytosolic fluorescence signal was quenched by superfusion with Mn2+. NADH levels were determined from cell autofluorescence. Upon exposure of myocytes to 50 nM norepinephrine (NE) and a stimulation rate of 3 Hz, [Ca2+]m increased from 59 +/- 3 nM to a peak of 517 +/- 115 nM (n = 8) which recovered rapidly upon return to low stimulation rate (0.2 Hz) and washout of NE. In the presence of clonazepam, the peak increase in [Ca2+]m was 937 +/- 192 nM (n = 5) which remained elevated at 652 +/- 131 nM upon removal of the stimulus. CGP37157 in some cells did give the same inhibition of mitochondrial Ca2+ efflux as clonazepam, but the effect was inconsistent since not all cells were capable of following the stimulation rate in presence of this compound. NADH levels increased upon exposure to rapid stimulation in the presence of NE alone and recovered upon return to low stimulation rates, whereas in clonazepam treated cells the recovery of NADH was prevented. We conclude that clonazepam is an effective inhibitor of mitochondrial [Ca2+] efflux in intact cells and also maintains the increase in NADH levels which occurs upon rapid stimulation of cells.
Immuno-detection of OCTN1 (SLC22A4) in HeLa cells and characterization of transport function.
Pochini, Lorena; Scalise, Mariafrancesca; Indiveri, Cesare
2015-11-01
OCTN1 was immuno-detected in the cervical cancer cell HeLa, in which the complete pattern of acetylcholine metabolizing enzymes is expressed. Comparison of immuno-staining intensity of HeLa OCTN1 with the purified recombinant human OCTN1 allowed measuring the specific OCTN1 concentration in the HeLa cell extract and, hence calculating the HeLa OCTN1 specific transport activity that was about 10 nmol×min(-1)×mg protein(-1), measured as uptake of [(3)H]acetylcholine in proteoliposomes reconstituted with HeLa extract. This value was very similar to the specific activity of the recombinant protein. Acetylcholine transport was suppressed by incubation of the protein or proteoliposomes with the anti-OCTN1 antibody and was strongly inhibited by PLP and MTSEA, known inhibitors of OCTN1. The absence of ATP in the internal side of proteoliposomes strongly impaired transport function of both the HeLa and, as expected, the recombinant OCTN1. HeLa OCTN1 was inhibited by spermine, NaCl (Na(+)), TEA, γ-butyrobetaine, choline, acetylcarnitine and ipratropium but not by neostigmine. Besides acetylcholine, choline was taken up by HeLa OCTN1 proteoliposomes. The transporter catalyzed also acetylcholine and choline efflux which, differently from uptake, was not inhibited by MTSEA. Time course of [(3)H]acetylcholine uptake in intact HeLa cells was measured. As in proteoliposomes, acetylcholine transport in intact cells was inhibited by TEA and NaCl. Efflux of [(3)H]acetylcholine occurred in intact cells, as well. The experimental data concur in demonstrating a role of OCTN1 in transporting acetylcholine and choline in HeLa cells. Copyright © 2015 Elsevier B.V. All rights reserved.
Xiao, Yuhong; Kwon, Kwang-Chul; Hoffman, Brad E; Kamesh, Aditya; Jones, Noah T; Herzog, Roland W; Daniell, Henry
2016-02-01
Targeted oral delivery of GFP fused with a GM1 receptor binding protein (CTB) or human cell penetrating peptide (PTD) or dendritic cell peptide (DCpep) was investigated. Presence of GFP(+) intact plant cells between villi of ileum confirm their protection in the digestive system from acids/enzymes. Efficient delivery of GFP to gut-epithelial cells by PTD or CTB and to M cells by all these fusion tags confirm uptake of GFP in the small intestine. PTD fusion delivered GFP more efficiently to most tissues or organs than the other two tags. GFP was efficiently delivered to the liver by all fusion tags, likely through the gut-liver axis. In confocal imaging studies of human cell lines using purified GFP fused with different tags, GFP signal of DCpep-GFP was only detected within dendritic cells. PTD-GFP was only detected within kidney or pancreatic cells but not in immune modulatory cells (macrophages, dendritic, T, B, or mast cells). In contrast, CTB-GFP was detected in all tested cell types, confirming ubiquitous presence of GM1 receptors. Such low-cost oral delivery of protein drugs to sera, immune system or non-immune cells should dramatically lower their cost by elimination of prohibitively expensive fermentation, protein purification cold storage/transportation and increase patient compliance. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
The Postnatal Development of Spinal Sensory Processing
NASA Astrophysics Data System (ADS)
Fitzgerald, Maria; Jennings, Ernest
1999-07-01
The mechanisms by which infants and children process pain should be viewed within the context of a developing sensory nervous system. The study of the neurophysiological properties and connectivity of sensory neurons in the developing spinal cord dorsal horn of the intact postnatal rat has shed light on the way in which the newborn central nervous system analyzes cutaneous innocuous and noxious stimuli. The receptive field properties and evoked activity of newborn dorsal horn cells to single repetitive and persistent innocuous and noxious inputs are developmentally regulated and reflect the maturation of excitatory transmission within the spinal cord. These changes will have an important influence on pain processing in the postnatal period.
Activated release of membrane-anchored TGF-alpha in the absence of cytosol
1993-01-01
The ectodomain of proTGF-alpha, a membrane-anchored growth factor, is converted into soluble TGF-alpha by a regulated cellular proteolytic system that recognizes proTGF-alpha via the C-terminal valine of its cytoplasmic tail. In order to define the biochemical components involved in proTGF-alpha cleavage, we have used cells permeabilized with streptolysin O (SLO) that have been extensively washed to remove cytosol. PMA, acting through a Ca(2+)-independent protein kinase C, activates cleavage as efficiently in permeabilized cells as it does in intact cells. ProTGF-alpha cleavage is also stimulated by GTP gamma S through a mechanism whose pharmacological properties suggest the involvement of a heterotrimeric G protein acting upstream of the PMA- sensitive Ca(2+)-independent protein kinase C. Activated proTGF-alpha cleavage is dependent on ATP hydrolysis, appears not to require vesicular traffic, and acts specifically on proTGF-alpha that has reached the cell surface. These results indicate that proTGF-alpha is cleaved from the cell surface by a regulated system whose signaling, recognition, and proteolytic components are retained in cells devoid of cytosol. PMID:8314849
Recent advances in the cell biology of aging.
Hayflick, L
1980-01-01
Cultured normal human and animal cells are predestined to undergo irreversible functional decrements that mimic age changes in the whole organism. When normal human embryonic fibroblasts are cultured in vitro, 50 +/- 10 population doublings occur. This maximum potential is diminished in cells derived from older donors and appears to be inversely proportional to their age. The 50 population doubling limit can account for all cells produced during a lifetime. The limitation on doubling potential of cultured normal cells is also expressed in vivo when serial transplants are made. There may be a direct correlation between the mean maximum life spans of several species and the population doubling potential of their cultured cells. A plethora of functional decrements occurs in cultured normal cells as they approach their maximum division capability. Many of these decrements are similar to those occurring in intact animals as they age. We have concluded that these functional decrements expressed in vitro, rather than cessation of cell division, are the essential contributors to age changes in intact animals. Thus, the study of events leading to functional losses in cultured normal cells may provide useful insights into the biology of aging.
Sugimoto, K; Williamson, R E; Wasteneys, G O
2000-12-01
This article explores root epidermal cell elongation and its dependence on two structural elements of cells, cortical microtubules and cellulose microfibrils. The recent identification of Arabidopsis morphology mutants with putative cell wall or cytoskeletal defects demands a procedure for examining and comparing wall architecture and microtubule organization patterns in this species. We developed methods to examine cellulose microfibrils by field emission scanning electron microscopy and microtubules by immunofluorescence in essentially intact roots. We were able to compare cellulose microfibril and microtubule alignment patterns at equivalent stages of cell expansion. Field emission scanning electron microscopy revealed that Arabidopsis root epidermal cells have typical dicot primary cell wall structure with prominent transverse cellulose microfibrils embedded in pectic substances. Our analysis showed that microtubules and microfibrils have similar orientation only during the initial phase of elongation growth. Microtubule patterns deviate from a predominantly transverse orientation while cells are still expanding, whereas cellulose microfibrils remain transverse until well after expansion finishes. We also observed microtubule-microfibril alignment discord before cells enter their elongation phase. This study and the new technology it presents provide a starting point for further investigations on the physical properties of cell walls and their mechanisms of assembly.
Schmidt, Claudia; Karge, Bianka; Misgeld, Rainer; Prokop, Aram; Franke, Raimo; Brönstrup, Mark; Ott, Ingo
2017-02-03
Gold complexes with N-heterocyclic carbene (NHC) ligands represent a promising class of metallodrugs for the treatment of cancer or infectious diseases. In this report, the synthesis and the biological evaluation of halogen-containing NHC-Au I -Cl complexes are described. The complexes 1 and 5 a-5 f displayed good cytotoxic activity against tumor cells, and cellular uptake studies suggested that an intact Au-NHC fragment is essential for the accumulation of high amounts of both the metal and the NHC ligand. However, the bioavailability was negatively affected by serum components of the cell culture media and was influenced by likely transformations of the complex. One example (5 d) efficiently induced apoptosis in vincristine- and daunorubicin-resistant P-glycoprotein overexpressing Nalm-6 leukemia cells. Cellular uptake studies with this compound showed that both the wild-type and resistant Nalm-6 cells accumulated comparable amounts of gold, indicating that the gold drug was not excreted by P-glycoprotein or other efflux transporters. The effective inhibition of mammalian and bacterial thioredoxin reductases (TrxR) was confirmed for all of the gold complexes. Antibacterial screening of the gold complexes showed a particularly high activity against Gram-positive strains, reflecting their high dependence on an intact Trx/TrxR system. This result is of particular interest as the inhibition of bacterial TrxR represents a relatively little explored mechanism of new anti-infectives. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NaK-ATPase pump sites in cultured bovine corneal endothelium of varying cell density at confluence.
Crawford, K M; Ernst, S A; Meyer, R F; MacCallum, D K
1995-06-01
The driving force for ion and water flow necessary for efficient deturgesence of the corneal stroma resides in the ouabain-sensitive sodium (Na) pump of corneal endothelial cells. Using a cell culture model of corneal endothelial cell hypertrophy, the authors examined the expression of Na pumps at the cell surface to see how this central element of the endothelial pump changed as corneal endothelial cell density decreased to a level associated with corneal decompensation in vivo. 3H-ouabain binding to NaK-ATPase at saturating conditions was used to quantitate the number of Na pump sites on cultured bovine corneal endothelial cells as the confluent density decreased from approximately 2750 cells/mm2 to approximately 275 cells/mm2. The mean number of Na pump sites per cell at confluence (1.92 +/- 0.07 x 10(6)) did not change as the cell density decreased 2.7-fold from 2763 cells/mm2 to 1000 cells/mm2. However, pump site expression doubled to approximately 4 x 10(6) sites/cell as the cell density decreased from 1000 cells/mm2 to 275 cells/mm2. Despite the incremental increase in Na pump site expression that occurred as the cells hypertrophied below a density of 1000/mm2 to achieve confluence, this increase was insufficient to prevent a decrease in Na pump site density of the intact monolayer, expressed as pump sites/mm2. The confluent cell density of cultured bovine corneal endothelial cells can be varied from that found in the normal native cornea to that associated with corneal decompensation. In confluent cultures with cell densities ranging from 2750 cells/mm2 to 1000 cells/mm2, the number of pump sites per cell remains relatively unchanged. Below cell densities of 1000 cells/mm2, the number of pump sites per cell progressively increases. The increased Na pump site abundance in markedly hypertrophied endothelial cells cannot adequately compensate for the progressive reduction in the number of transporting cells per unit area within the intact monolayer. Even when considered with the decrease in the size of the paracellular ion conductive pathway that is a consequence of progressive endothelial hypertrophy, the overall pumping capacity of the intact endothelial monolayer declines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lapotko, D O; Kuchinskii, G S; Zharov, V P
1999-12-31
An investigation of the influence of the photodynamic effect on S.aureus and E.coli bacteria in the presence of blood cells was made by the laser photothermal cytometry method. Elements of the theory of the photothermal method are considered for the case of pulsed lasers used in microscopy. Chlorin in doses of 0.02 mg litre{sup -1} was used as a photosensitiser. The results of the investigation made it possible to propose the possibility of an immunomodulation effect caused by introducing photoactivated chlorin into the cell - microbe system. It was found that the photothermal parameters of the cells interacting with microbesmore » in the presence of photoactivated chlorin differed from the parameters of intact cells much less than in the absence of chlorin. However, a more pronounced bactericidal effect was observed in the samples treated with chlorin. (lasers in medicine)« less
NASA Astrophysics Data System (ADS)
Lapotko, D. O.; Zharov, V. P.; Romanovskaya, T. R.; Kuchinskii, G. S.
1999-12-01
An investigation of the influence of the photodynamic effect on S.aureus and E.coli bacteria in the presence of blood cells was made by the laser photothermal cytometry method. Elements of the theory of the photothermal method are considered for the case of pulsed lasers used in microscopy. Chlorin in doses of 0.02 mg litre-1 was used as a photosensitiser. The results of the investigation made it possible to propose the possibility of an immunomodulation effect caused by introducing photoactivated chlorin into the cell — microbe system. It was found that the photothermal parameters of the cells interacting with microbes in the presence of photoactivated chlorin differed from the parameters of intact cells much less than in the absence of chlorin. However, a more pronounced bactericidal effect was observed in the samples treated with chlorin.
Basma, Abu Arra; Zuraini, Zakaria; Sasidharan, Sreenivasan
2011-01-01
Objective To determine the major changes in the microstructure of Candida albicans (C. albicans) after treatment with Euphorbia hirta (E. hirta) L. leaf extract. Methods Transmission electron microscopy was used to study the ultrastructural changes caused by E. hirta extract on C. albicans cells at various exposure time. Results It was found that the main abnormalities were the alterations in morphology, lysis and complete collapse of the yeast cells after 36 h of exposure to the extract. Whereas the control cultures showed a typical morphology of Candida with a uniform central density, typically structured nucleus, and a cytoplasm with several elements of endomembrane system and enveloped by a regular, intact cell wall. Conclusions The significant antifungal activity shown by this methanol extract of E. hirta L. suggests its potential against infections caused by C. albicans. The extract may be developed as an anticandidal agent. PMID:23569719
Functional Stem Cell Integration into Neural Networks Assessed by Organotypic Slice Cultures.
Forsberg, David; Thonabulsombat, Charoensri; Jäderstad, Johan; Jäderstad, Linda Maria; Olivius, Petri; Herlenius, Eric
2017-08-14
Re-formation or preservation of functional, electrically active neural networks has been proffered as one of the goals of stem cell-mediated neural therapeutics. A primary issue for a cell therapy approach is the formation of functional contacts between the implanted cells and the host tissue. Therefore, it is of fundamental interest to establish protocols that allow us to delineate a detailed time course of grafted stem cell survival, migration, differentiation, integration, and functional interaction with the host. One option for in vitro studies is to examine the integration of exogenous stem cells into an existing active neural network in ex vivo organotypic cultures. Organotypic cultures leave the structural integrity essentially intact while still allowing the microenvironment to be carefully controlled. This allows detailed studies over time of cellular responses and cell-cell interactions, which are not readily performed in vivo. This unit describes procedures for using organotypic slice cultures as ex vivo model systems for studying neural stem cell and embryonic stem cell engraftment and communication with CNS host tissue. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.
In vitro permeation of palladium powders through intact and damaged human skin.
Crosera, Matteo; Mauro, Marcella; Bovenzi, Massimo; Adami, Gianpiero; Baracchini, Elena; Maina, Giovanni; Larese Filon, Francesca
2018-05-01
The use of palladium (Pd) has grown in the last decades, commonly used in automotive catalytic converters, jewellery and dental restorations sectors. Both general and working population can be exposed to this metal, which may act as skin sensitizer. This study investigated in vitro palladium powders permeation through excised intact and damaged human skin using the Franz diffusion cell method and the effect of rapid skin decontamination using sodium laureth-sulphate. 1 mL of a 10 min sonicated suspension made of 2.5 g of Pd powder in 50 mL synthetic sweat at pH 4.5 and room temperature was applied to the outer surface of the skin membranes for 24 h. Pd permeation, assessed by ICP-MS, was higher when damaged skin was used (p = 0.03). Final flux permeation values and lag times were 0.02 ± 0.01 μg cm -2 h -1 and 6.00 ± 3.95 h for intact, and 0.10 ± 0.02 μg cm -2 h -1 and 2.05 ± 1.49 h for damaged skin samples, respectively. Damaged skin protocol enhances Pd skin penetration inside dermal layer (p = 0.04), thus making the metal available for systemic uptake. Pd penetration (p = 0.02) and permeation (p = 0.012) through intact skin decreased significantly when a cleaning procedure was applied. This study demonstrates that after skin exposure to Pd powders a small permeation of the metal happen both through intact and damaged skin and that an early decontamination with a common cleanser can significantly decrease the final amount of metal available forsystemic uptake. Copyright © 2018 Elsevier B.V. All rights reserved.
Döge, Nadine; Hönzke, Stefan; Schumacher, Fabian; Balzus, Benjamin; Colombo, Miriam; Hadam, Sabrina; Rancan, Fiorenza; Blume-Peytavi, Ulrike; Schäfer-Korting, Monika; Schindler, Anke; Rühl, Eckart; Skov, Per Stahl; Church, Martin K; Hedtrich, Sarah; Kleuser, Burkhard; Bodmeier, Roland; Vogt, Annika
2016-11-28
Understanding penetration not only in intact, but also in lesional skin with impaired skin barrier function is important, in order to explore the surplus value of nanoparticle-based drug delivery for anti-inflammatory dermatotherapy. Herein, short-term ex vivo cultures of (i) intact human skin, (ii) skin pretreated with tape-strippings and (iii) skin pre-exposed to sodium lauryl sulfate (SLS) were used to assess the penetration of dexamethasone (Dex). Intradermal microdialysis was utilized for up to 24h after drug application as commercial cream, nanocrystals or ethyl cellulose nanocarriers applied at the therapeutic concentration of 0.05%, respectively. In addition, Dex was assessed in culture media and extracts from stratum corneum, epidermis and dermis after 24h, and the results were compared to those in heat-separated split skin from studies in Franz diffusion cells. Providing fast drug release, nanocrystals significantly accelerated the penetration of Dex. In contrast to the application of cream and ethyl cellulose nanocarriers, Dex was already detectable in eluates after 6h when applying nanocrystals on intact skin. Disruption of the skin barrier further accelerated and enhanced the penetration. Encapsulation in ethyl cellulose nanocarriers delayed Dex penetration. Interestingly, for all formulations highly increased concentrations in the dialysate were observed in tape-stripped skin, whereas the extent of enhancement was less in SLS-exposed skin. The results were confirmed in tissue extracts and were in line with the predictions made by in vitro release studies and ex vivo Franz diffusion cell experiments. The use of 45kDa probes further enabled the collection of inflammatory cytokines. However, the estimation of glucocorticoid efficacy by Interleukin (IL)-6 and IL-8 analysis was limited due to the trauma induced by the probe insertion. Ex vivo intradermal microdialysis combined with culture media analysis provides an effective, skin-sparing method for preclinical assessment of novel drug delivery systems at therapeutic doses in models of diseased skin. Copyright © 2016 Elsevier B.V. All rights reserved.
To, Tsz-Leung; Fadul, Michael J.; Shu, Xiaokun
2014-01-01
Many cellular processes are carried out by large protein complexes that can span several tens of nanometers. Whereas Forster resonance energy transfer has a detection range of <10 nm, here we report the theoretical development and experimental demonstration of a new fluorescence imaging technology with a detection range of up to several tens of nanometers: singlet oxygen triplet energy transfer. We demonstrate that our method confirms the topology of a large protein complex in intact cells, which spans from the endoplasmic reticulum to the outer mitochondrial membrane and the matrix. This new method is thus suited for mapping protein proximity in large protein complexes. PMID:24905026
Bohlen, Christopher J.; Bennett, F. Chris; Tucker, Andrew F.; Collins, Hannah Y.; Mulinyawe, Sara B.; Barres, Ben A.
2017-01-01
Summary Microglia, the resident macrophages of the central nervous system (CNS), engage in various CNS-specific functions that are critical for development and health. To better study microglia and the properties that distinguish them from other tissue macrophage populations, we have optimized serum-free culture conditions to permit robust survival of highly ramified adult microglia under defined-medium conditions. We find that astrocyte-derived factors prevent microglial death ex vivo and that this activity results from three primary components, CSF-1/IL-34, TGF-β2, and cholesterol. Using microglial cultures that have never been exposed to serum, we demonstrate a dramatic and lasting change in phagocytic capacity after serum exposure. Finally, we find that mature microglia rapidly lose signature gene expression after isolation, and that this loss can be reversed by engrafting cells back into an intact CNS environment. These data indicate that the specialized gene expression profile of mature microglia requires continuous instructive signaling from the intact CNS. PMID:28521131
Farazifard, Rasoul; Kiani, Roozbeh; Esteky, Hossein
2005-07-19
C-fiber depletion results in expansion of low threshold somatosensory mechanoreceptive fields. In this study, we investigated the role of intact C-fibers in GABAA-mediated inhibition in barrel cortical neurons. We used electronically controlled mechanical stimulation of whiskers to quantitatively examine the responses of barrel cells to whisker displacements. After systemic injection of picrotoxin neuronal responses were recorded at 5 min intervals for 20 min and then at 10 min intervals for 100 min. Picrotoxin injection caused a 3-fold increase in response magnitude of adjacent whisker stimulation and 1.4-fold increase in response magnitude of principal whisker stimulation with a maximum enhancement 50 min after the injection. There was no significant change in spontaneous activity following picrotoxin injection. The response enhancement and receptive field expansion observed in normal rats were completely absent in the C-fiber-depleted rats. These results suggest that the GABAA-mediated inhibition that modulates the receptive field functional organization of the barrel cortex depends on intact C-fibers.
ATP forms a stable complex with the essential histidine kinase WalK (YycG) domain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Celikel, Reha; Veldore, Vidya Harini; Mathews, Irimpan
The histidine WalK (YycG) plays a crucial role in coordinating murein synthesis with cell division and the crystal structure of its ATP binding domain has been determined. Interestingly the bound ATP was not hydrolyzed during crystallization and remains intact in the crystal lattice. In Bacillus subtilis, the WalRK (YycFG) two-component system coordinates murein synthesis with cell division. It regulates the expression of autolysins that function in cell-wall remodeling and of proteins that modulate autolysin activity. The transcription factor WalR is activated upon phosphorylation by the histidine kinase WalK, a multi-domain homodimer. It autophosphorylates one of its histidine residues by transferringmore » the γ-phosphate from ATP bound to its ATP-binding domain. Here, the high-resolution crystal structure of the ATP-binding domain of WalK in complex with ATP is presented at 1.61 Å resolution. The bound ATP remains intact in the crystal lattice. It appears that the strong binding interactions and the nature of the binding pocket contribute to its stability. The triphosphate moiety of ATP wraps around an Mg{sup 2+} ion, providing three O atoms for coordination in a near-ideal octahedral geometry. The ATP molecule also makes strong interactions with the protein. In addition, there is a short contact between the exocyclic O3′ of the sugar ring and O2B of the β-phosphate, implying an internal hydrogen bond. The stability of the WalK–ATP complex in the crystal lattice suggests that such a complex may exist in vivo poised for initiation of signal transmission. This feature may therefore be part of the sensing mechanism by which the WalRK two-component system is so rapidly activated when cells encounter conditions conducive for growth.« less
Koda, Ryo; Kazama, Junichiro James; Matsuo, Koji; Kawamura, Kazuko; Yamamoto, Suguru; Wakasugi, Minako; Takeda, Tetsuro; Narita, Ichiei
2015-08-01
The parathyroid gland secretes 1-84 and 7-84 parathyroid hormone (PTH) fragments, and its regulation is dependent on stimulation of the extracellular calcium-sensing receptor. While the intact PTH system detects both PTH fragments, the whole PTH system detects the 1-84PTH but not the 7-84PTH. Cinacalcet hydrochloride (CH) binds to calcium-sensing receptor as a calcimimetic. Here we investigated the role of CH treatment in the assessment of parathyroid gland function. Stable adult dialysis patients for whom CH therapy was planned were included. Patients for whom CH therapy was not planned were simultaneously included as the control group. The CH group (n = 44) showed significantly higher circulating levels of Ca, intact PTH, and whole PTH, before the CH treatment than the control group (n = 112). The Ca, intact PTH, and whole PTH levels decreased along with the CH therapy, and the Ca levels became comparable in the 8th week of treatment and thereafter. The CH group in the 8th week and thereafter showed significantly lower whole/intact PTH ratios than the control group, while the whole/intact PTH ratio was not significantly different between before and during the CH therapy. A multiple regression analysis revealed that the whole/intact PTH ratio was almost constant, but both the serum Ca level and a CH therapy could potentially modify the fixed number. When the whole PTH levels were estimated by intact PTH levels using the relationship between them in the control group, the levels were clearly overestimated in the CH group. Although the direct effect of CH on the whole/intact PTH ratio is masked by its hypocalcemic action, we could successfully demonstrate that the ratio in CH users is lower than that in the non-users with comparable levels of serum Ca. Evaluating parathyroid function with intact PTH according to the clinical practice guidelines in patients being treated with CH may lead to significant overestimation and subsequent overtreatment.
Delalande, Jean-Marie; Thapar, Nikhil; Burns, Alan J
2015-05-28
All developing organs need to be connected to both the nervous system (for sensory and motor control) as well as the vascular system (for gas exchange, fluid and nutrient supply). Consequently both the nervous and vascular systems develop alongside each other and share striking similarities in their branching architecture. Here we report embryonic manipulations that allow us to study the simultaneous development of neural crest-derived nervous tissue (in this case the enteric nervous system), and the vascular system. This is achieved by generating chicken chimeras via transplantation of discrete segments of the neural tube, and associated neural crest, combined with vascular DiI injection in the same embryo. Our method uses transgenic chick(GFP) embryos for intraspecies grafting, making the transplant technique more powerful than the classical quail-chick interspecies grafting protocol used with great effect since the 1970s. Chick(GFP)-chick intraspecies grafting facilitates imaging of transplanted cells and their projections in intact tissues, and eliminates any potential bias in cell development linked to species differences. This method takes full advantage of the ease of access of the avian embryo (compared with other vertebrate embryos) to study the co-development of the enteric nervous system and the vascular system.
Delalande, Jean-Marie; Thapar, Nikhil; Burns, Alan J.
2015-01-01
All developing organs need to be connected to both the nervous system (for sensory and motor control) as well as the vascular system (for gas exchange, fluid and nutrient supply). Consequently both the nervous and vascular systems develop alongside each other and share striking similarities in their branching architecture. Here we report embryonic manipulations that allow us to study the simultaneous development of neural crest-derived nervous tissue (in this case the enteric nervous system), and the vascular system. This is achieved by generating chicken chimeras via transplantation of discrete segments of the neural tube, and associated neural crest, combined with vascular DiI injection in the same embryo. Our method uses transgenic chickGFP embryos for intraspecies grafting, making the transplant technique more powerful than the classical quail-chick interspecies grafting protocol used with great effect since the 1970s. ChickGFP-chick intraspecies grafting facilitates imaging of transplanted cells and their projections in intact tissues, and eliminates any potential bias in cell development linked to species differences. This method takes full advantage of the ease of access of the avian embryo (compared with other vertebrate embryos) to study the co-development of the enteric nervous system and the vascular system. PMID:26065540
RNase activity in erythroid cell lysates.
Burka, E R
1969-09-01
The characteristics of degradation of reticulocyte ribonucleic acid (RNA) and ribosomes were studied in a whole erythroid cell lysate system. The process followed Michaelis-Menten kinetics, and indicated that RNA degradation in the erythroid cell is mediated by an enzyme previously isolated from reticulocyte hemolysates. Erythroid cell RNase activity had a temperature optimum of 50 degrees C, a pH optimum of 7.0, was not energy dependent, was heat labile at physiologic pH, and was inhibited by Mg(++), Ca(++), and exposure to bentonite and deoxycholate. Free sulfhydryl groups were not essential for RNase activity. Of the substrates occurring naturally within the erythroid cell, isolated ribosomal RNA was most susceptible to the action of the enzyme, intact ribosomes least susceptible, and transfer RNA intermediate between them. Natural substrates were degraded completely to nucleotides in cell lysates. Competitive inhibition studies indicate that one enzyme system is capable of degrading both RNA and ribosomes, although the existence of more than one enzyme has not been excluded. Erythroid cell lysates quickly broke down polyribosomes into single ribosomes. The more rapid degradation of ribosomes, as compared with transfer RNA, which occurs in vivo, as opposed to findings in vitro, suggests that there is a special intracellular mechanism responsible for ribosome degradation in the maturing erythroid cell.
How to measure CFTR-dependent bicarbonate transport: from single channels to the intact epithelium.
Hug, Martin J; Clarke, Lane L; Gray, Michael A
2011-01-01
Bicarbonate serves many functions in our body. It is the predominant buffer maintaining a physiological pH in the blood and within our cells. It is also essential for proper digestion of nutrients and solubilization of complex protein mixtures, such as digestive enzymes and mucins, in epithelial secretions. Transepithelial HCO3- transport also drives net fluid secretion in many epithelial tissues including those in the gastrointestinal and reproductive tracts as well as the airways. Indeed, defective bicarbonate secretion is a hallmark of the pathophysiology in the pancreas of most patients suffering from cystic fibrosis. Some, but not all, disease-causing mutations in the CF gene lead to impaired bicarbonate transport when expressed in heterologous systems. Recently developed pharmacological modulators of mutant CFTR have demonstrated an ability to activate chloride transport but little is known about whether they also increase the secretion of bicarbonate. It is therefore essential to assay bicarbonate transport when studying the effect of small molecules on CFTR function. However, due to the chaotropic nature of the ion, the measurement of the absolute bicarbonate concentration and its permeability through CFTR is far from trivial. In this chapter we will review some of the techniques available to measure bicarbonate transport through single ion channels, individual cells, and intact epithelial layers.
Manda, Kailash; Ueno, Megumi; Moritake, Takashi; Anzai, Kazunori
2007-02-12
Reactive oxygen species are implicated in neurodegeneration and cognitive disorders due to higher vulnerability of neuronal tissues. The cerebellum is recently reported to be involved in cognitive function. Therefore, present study aimed at investigating the role alpha-lipoic acid against radiation-induced oxidative stress and antioxidant status in cerebellum and its correlation with cognitive dysfunction. We observed spontaneous motor activities and spatial memory task of mice using pyroelectric infrared sensor and programmed video tracking system, respectively. Whole body X-irradiation (6 Gy) of mice substantially impaired the reference memory and motor activities of mice. However, acute intraperitoneal treatment of mice with alpha-lipoic acid prior to irradiation significantly attenuated such cognitive dysfunction. Alpha-lipoic acid pretreatment exerted a very high magnitude of protection against radiation-induced augmentation of protein carbonyls and thiobarbituric acid reactive substance (TBARS) in mice cerebellum. Further, radiation-induced deficit of total, nonprotein and protein-bound sulfhydryl (T-SH, NP-SH, PB-SH) contents of cerebellum and plasma ferric reducing power (FRAP) was also inhibited by alpha-lipoic acid pre-treatment. Moreover, alpha-lipoic acid treated mice showed an intact cytoarchitecture of cerebellum, higher counts of intact Purkinje cells and granular cells in comparison to untreated irradiated mice. Results clearly indicate that alpha-lipoic acid is potent neuroprotective antioxidant.
Gomez-Cadena, A; Urueña, C; Prieto, K; Martinez-Usatorre, A; Donda, A; Barreto, A; Romero, P; Fiorentino, S
2016-01-01
Recent findings suggest that part of the anti-tumor effects of several chemotherapeutic agents require an intact immune system. This is in part due to the induction of immunogenic cell death. We have identified a gallotannin-rich fraction, obtained from Caesalpinia spinosa (P2Et) as an anti-tumor agent in both breast carcinoma and melanoma. Here, we report that P2Et treatment results in activation of caspase 3 and 9, mobilization of cytochrome c and externalization of annexin V in tumor cells, thus suggesting the induction of apoptosis. This was preceded by the onset of autophagy and the expression of immunogenic cell death markers. We further demonstrate that P2Et-treated tumor cells are highly immunogenic in vaccinated mice and induce immune system activation, clearly shown by the generation of interferon gamma (IFN-γ) producing tyrosine-related protein 2 antigen-specific CD8+ T cells. Moreover, the tumor protective effects of P2Et treatment were abolished in immunodeficient mice, and partially lost after CD4 and CD8 depletion, indicating that P2Et's anti-tumor activity is highly dependent on immune system and at least in part of T cells. Altogether, these results support the hypothesis that the gallotannin-rich fraction P2Et's anti-tumor effects are mediated to a great extent by the endogenous immune response following to the exposure to immunogenic dying tumor cells. PMID:27253407
Effects of prolonged chlorine exposures upon PCR detection of Helicobacter pylori DNA.
The effect of low doses of free chlorine on the detection by qPCR of Helicobacter pylori (H. pylori) cells by qPCR in tap water was monitored. H. pylori target sequences (within suspended, intact cells at densities of 102 to 103 cells /ml) were rendered undetectable by qPCR an...
NASA Astrophysics Data System (ADS)
French, David W.; Huguet, Carme; Wakeham, Stuart; Turich, Courtney; Carlson, Laura T.; Ingalls, Anitra E.
2015-04-01
Branched and isoprenoid glycerol dialkyl glycerol tetraethers (GDGTs) are used to reconstruct carbon flow from terrestrial landscapes to the ocean in a proxy called the branched vs isoprenoid tetraether index, or BIT Index. The index is based on analysis of core GDGTs from non-living material that originate from the cell membranes of bacteria living in soils and archaea living primarily in the marine environment. However, uncertainty in the identity and location of branched GDGTs (BrGDGTs) producing organisms and the likely production of isoprenoid GDGTs (IsoGDGTs) in terrestrial environments hinders interpretation of the BIT Index. Since BrGDGTs remain our only tool to study BrGDGT producing organisms, it is particularly important to use the intact form of BrGDGTs, present in living cells, to infer organism distributions. In situ production within riverine, lacustrine, and marine environments is currently thought to be possible, yet few measures of intact BrGDGTs (I-BrGDGTs) are available to confirm this. Here we assess the spatial distribution of both core and intact GDGTs throughout the Columbia River basin and nearby areas in Washington and Oregon in order to elucidate source environments for these lipids. The presence of I-BrGDGTs throughout the studied soils, rivers and estuaries suggests in situ production across the continuum from soil to marine environments. Likewise, intact crenarchaeol, the marine endmember isoprenoidal GDGT used in the BIT index, was present in all samples. Widespread production of each GDGT class along terrestrial carbon transport paths likely alters the BIT Index along this continuum. The core to intact GDGT ratios and the weak correlation between I-GDGT derived BIT values and carbon isotope signatures suggest a mixture of allocthonous and autochthonous sources of GDGTs in riverine and marine environments. Our findings highlight the need for further work into the provenance of GDGTs to improve the BIT index and other environmental proxies that rely on these compounds.
Mills, Anne; Zadeh, Sara; Sloan, Emily; Chinn, Zachary; Modesitt, Susan C; Ring, Kari L
2018-03-20
Mismatch repair-deficient endometrial carcinomas are optimal candidates for immunotherapy given their high neoantigen loads, robust lymphoid infiltrates, and frequent PD-L1 expression. However, co-opting the PD-1/PD-L1 pathway is just one mechanism that tumors can utilize to evade host immunity. Another immune modulatory molecule that has been demonstrated in endometrial carcinoma is indoleamine 2,3-dioxygenase (IDO). We herein evaluate IDO expression in 60 endometrial carcinomas and assess results in relation to PD-L1 and mismatch repair status. IDO immunohistochemistry was performed on 60 endometrial carcinomas (20 Lynch syndrome (LS)-associated, 20 MLH1 promoter hypermethylated, and 20 mismatch repair-intact). Eight-five percent of endometrial carcinomas showed IDO tumor staining in >1% of cells. Twenty-five percent were positive in >25% of tumor cells and only 7% exceeded 50% staining. Mismatch repair-deficient cancers were more likely than mismatch repair-intact cancers to be >25% IDO-positive (35% vs. 5% p = 0.024). Differences were amplified when Lynch syndrome-associated cases were evaluated in isolation (50% Lynch syndrome-associated vs. 10% mismatch repair-intact and MLH1-hypermethylated, p = 0.001). Of the four cases showing >50% staining, three were Lynch syndrome-associated and one was MLH1-hypermethylated; no mismatch repair-intact cases had >50% staining. Forty-three percent of IDO-positive tumors were also positive for PD-L1, whereas only two cases showed tumoral PD-L1 in the absence of IDO. In summary, IDO expression is prevalent in endometrial carcinomas and diffuse staining is significantly more common in mismatch repair-deficient cancers, particularly Lynch syndrome-associated cases. Given that the majority of PD-L1 positive cancers also express IDO, synergistic combination therapy with anti-IDO and anti-PD1/PD-L1 may be relevant in this tumor type. Furthermore, anti-IDO therapy may be an option for a small subset of mismatch repair-intact cancers.
Tagging potato leafroll virus with the jellyfish green fluorescent protein gene.
Nurkiyanova, K M; Ryabov, E V; Commandeur, U; Duncan, G H; Canto, T; Gray, S M; Mayo, M A; Taliansky, M E
2000-03-01
A full-length cDNA corresponding to the RNA genome of Potato leafroll virus (PLRV) was modified by inserting cDNA that encoded the jellyfish green fluorescent protein (GFP) into the P5 gene near its 3' end. Nicotiana benthamiana protoplasts electroporated with plasmid DNA containing this cDNA behind the 35S RNA promoter of Cauliflower mosaic virus became infected with the recombinant virus (PLRV-GFP). Up to 5% of transfected protoplasts showed GFP-specific fluorescence. Progeny virus particles were morphologically indistinguishable from those of wild-type PLRV but, unlike PLRV particles, they bound to grids coated with antibodies to GFP. Aphids fed on extracts of these protoplasts transmitted PLRV-GFP to test plants, as shown by specific fluorescence in some vascular tissue and epidermal cells and subsequent systemic infection. In plants agroinfected with PLRV-GFP cDNA in pBIN19, some cells became fluorescent and systemic infections developed. However, after either type of inoculation, fluorescence was mostly restricted to single cells and the only PLRV genome detected in systemically infected tissues lacked some or all of the inserted GFP cDNA, apparently because of naturally occurring deletions. Thus, intact PLRV-GFP was unable to move from cell to cell. Nevertheless, PLRV-GFP has novel potential for exploring the initial stages of PLRV infection.
Ochayon, David E; Baranovski, Boris M; Malkin, Peter; Schuster, Ronen; Kalay, Noa; Ben-Hamo, Rotem; Sloma, Ido; Levinson, Justin; Brazg, Jared; Efroni, Sol; Lewis, Eli C; Nevo, Uri
2016-01-01
Immune tolerance toward "self" is critical in multiple immune disorders. While there are several mechanisms to describe the involvement of immune cells in the process, the role of peripheral tissue cells in that context is not yet clear. The theory of ecoimmunity postulates that interactions between immune and tissue cells represent a predator-prey relationship. A lifelong interaction, shaped mainly during early ontogeny, leads to selection of nonimmune cell phenotypes. Normally, therefore, nonimmune cells that evolve alongside an intact immune system would be phenotypically capable of evading immune responses, and cells whose phenotype falls short of satisfying this steady state would expire under hostile immune responses. This view was supported until recently by experimental evidence showing an inferior endurance of severe combined immunodeficiency (SCID)-derived pancreatic islets when engrafted into syngeneic immune-intact wild-type (WT) mice, relative to islets from WT. Here we extend the experimental exploration of ecoimmunity by searching for the presence of the phenotypic changes suggested by the theory. Immune-related phenotypes of islets, spleen, and bone marrow immune cells were determined, as well as SCID and WT nonlymphocytic cells. Islet submass grafting was performed to depict syngeneic graft functionality. Islet cultures were examined under both resting and inflamed conditions for expression of CD40 and major histocompatibility complex (MHC) class I/II and release of interleukin-1α (IL-1α), IL-1β, IL-6, tumor necrosis factor-α (TNF-α), IL-10, and insulin. Results depict multiple pathways that appear to be related to the sculpting of nonimmune cells by immune cells; 59 SCID islet genes displayed relative expression changes compared with WT islets. SCID cells expressed lower tolerability to inflammation and higher levels of immune-related molecules, including MHC class I. Accordingly, islets exhibited a marked increase in insulin release upon immunocyte depletion, in effect resuming endocrine function that was otherwise suppressed by resident immunocytes. This work provides further support of the ecoimmunity theory and encourages subsequent studies to identify its role in the emergence and treatment of autoimmune pathologies, transplant rejection, and cancer.
Resolving stem and progenitor cells in the adult mouse incisor through gene co-expression analysis
Seidel, Kerstin; Marangoni, Pauline; Tang, Cynthia; Houshmand, Bahar; Du, Wen; Maas, Richard L; Murray, Steven; Oldham, Michael C; Klein, Ophir D
2017-01-01
Investigations into stem cell-fueled renewal of an organ benefit from an inventory of cell type-specific markers and a deep understanding of the cellular diversity within stem cell niches. Using the adult mouse incisor as a model for a continuously renewing organ, we performed an unbiased analysis of gene co-expression relationships to identify modules of co-expressed genes that represent differentiated cells, transit-amplifying cells, and residents of stem cell niches. Through in vivo lineage tracing, we demonstrated the power of this approach by showing that co-expression module members Lrig1 and Igfbp5 define populations of incisor epithelial and mesenchymal stem cells. We further discovered that two adjacent mesenchymal tissues, the periodontium and dental pulp, are maintained by distinct pools of stem cells. These findings reveal novel mechanisms of incisor renewal and illustrate how gene co-expression analysis of intact biological systems can provide insights into the transcriptional basis of cellular identity. DOI: http://dx.doi.org/10.7554/eLife.24712.001 PMID:28475038
Mark, Christina; Zór, Kinga; Heiskanen, Arto; Dufva, Martin; Emnéus, Jenny; Finnie, Christine
2016-12-15
Redox regulation is important for numerous processes in plant cells including abiotic stress, pathogen defence, tissue development, seed germination and programmed cell death. However, there are few methods allowing redox homeostasis to be addressed in whole plant cells, providing insight into the intact in vivo environment. An electrochemical redox assay that applies the menadione-ferricyanide double mediator is used to assess changes in the intracellular and extracellular redox environment in living aleurone layers of barley (Hordeum vulgare cv. Himalaya) grains, which respond to the phytohormones gibberellic acid and abscisic acid. Gibberellic acid is shown to elicit a mobilisation of electrons as detected by an increase in the reducing capacity of the aleurone layers. By taking advantage of the membrane-permeable menadione/menadiol redox pair to probe the membrane-impermeable ferricyanide/ferrocyanide redox pair, the mobilisation of electrons was dissected into an intracellular and an extracellular, plasma membrane-associated component. The intracellular and extracellular increases in reducing capacity were both suppressed when the aleurone layers were incubated with abscisic acid. By probing redox levels in intact plant tissue, the method provides a complementary approach to assays of reactive oxygen species and redox-related enzyme activities in tissue extracts. Copyright © 2016 Elsevier Inc. All rights reserved.
Hu, Xueyun; Makita, Satoru; Schelbert, Silvia; Sano, Shinsuke; Tsuchiya, Tohru; Hasegawa, Shigeaki F.; Hörtensteiner, Stefan; Tanaka, Ayumi
2015-01-01
Chlorophyllase (CLH) is a common plant enzyme that catalyzes the hydrolysis of chlorophyll to form chlorophyllide, a more hydrophilic derivative. For more than a century, the biological role of CLH has been controversial, although this enzyme has been often considered to catalyze chlorophyll catabolism during stress-induced chlorophyll breakdown. In this study, we found that the absence of CLH does not affect chlorophyll breakdown in intact leaf tissue in the absence or the presence of methyl-jasmonate, which is known to enhance stress-induced chlorophyll breakdown. Fractionation of cellular membranes shows that Arabidopsis (Arabidopsis thaliana) CLH is located in the endoplasmic reticulum and the tonoplast of intact plant cells. These results indicate that CLH is not involved in endogenous chlorophyll catabolism. Instead, we found that CLH promotes chlorophyllide formation upon disruption of leaf cells, or when it is artificially mistargeted to the chloroplast. These results indicate that CLH is responsible for chlorophyllide formation after the collapse of cells, which led us to hypothesize that chlorophyllide formation might be a process of defense against chewing herbivores. We found that Arabidopsis leaves with genetically enhanced CLH activity exhibit toxicity when fed to Spodoptera litura larvae, an insect herbivore. In addition, purified chlorophyllide partially suppresses the growth of the larvae. Taken together, these results support the presence of a unique binary defense system against insect herbivores involving chlorophyll and CLH. Potential mechanisms of chlorophyllide action for defense are discussed. PMID:25583926
Crow, J. Allen; Herring, Katye L.; Xie, Shuqi; Borazjani, Abdolsamad; Potter, Philip M.; Ross, Matthew K.
2009-01-01
Summary Two major isoforms of human carboxylesterases (CEs) are found in metabolically active tissues, CES1 and CES2. These hydrolytic enzymes are involved in xenobiotic and endobiotic metabolism. CES1 is abundantly expressed in human liver and monocytes/macrophages, including the THP1 cell line; CES2 is expressed in liver but not in monocytes/macrophages. The cholesteryl ester hydrolysis activity in human macrophages has been attributed to CES1. Here, we report the direct inhibitory effects of several endogenous oxysterols and fatty acids on the CE activity of THP1 monocytes/macrophages and recombinant human CES1 and CES2. Using THP1 whole-cell lysates we found: (1) 27-hydroxycholesterol (27-HC) is a potent inhibitor of carboxylesterase activity (IC50=33 nM); (2) 24(S),25-epoxycholesterol had moderate inhibitory activity (IC50=8.1 μM); and (3) cholesterol, 7-ketocholesterol, 22(R)-hydroxycholesterol, 24(S)-hydroxycholesterol, and 25-hydroxycholesterol each had little inhibitory activity. 27-HC was a partially noncompetitive inhibitor of recombinant CES1 (Kiapp=10 nM) and impaired intracellular CES1 activity following treatment of intact THP1 cells. In contrast, recombinant CES2 activity was not inhibited by 27-HC, suggesting isoform-selective inhibition by 27-HC. Furthermore, unsaturated fatty acids were better inhibitors of CES1 activity than saturated fatty acids, while CES2 activity was unaffected by any fatty acid. Arachidonic acid (AA) was the most potent fatty acid inhibitor of recombinant CES1 and acted by a noncompetitive mechanism (Kiapp=1.7 μM); when not complexed to albumin, exogenous AA penetrated intact THP1 cells and inhibited CES1. Inhibition results are discussed in light of recent structural models for CES1 that describe ligand binding sites separate from the active site. In addition, oxysterol-mediated inhibition of CES1 activity was demonstrated by pretreatment of human liver homogenates or intact THP1 cells with exogenous 27-HC, which resulted in significantly reduced hydrolysis of the pyrethroid insecticide bioresmethrin, a CES1-specific xenobiotic substrate. Collectively, these findings suggest that CE activity of recombinant CES1, cell lysates, and intact cells can be impaired by naturally occurring lipids, which may compromise the ability of CES1 to both detoxify environmental pollutants and metabolize endogenous compounds in vivo. PMID:19761868
Valletta, Elisa; Kučera, Lukáš; Prokeš, Lubomír; Amato, Filippo; Pivetta, Tiziana; Hampl, Aleš; Havel, Josef; Vaňhara, Petr
2016-01-01
Cross-contamination of eukaryotic cell lines used in biomedical research represents a highly relevant problem. Analysis of repetitive DNA sequences, such as Short Tandem Repeats (STR), or Simple Sequence Repeats (SSR), is a widely accepted, simple, and commercially available technique to authenticate cell lines. However, it provides only qualitative information that depends on the extent of reference databases for interpretation. In this work, we developed and validated a rapid and routinely applicable method for evaluation of cell culture cross-contamination levels based on mass spectrometric fingerprints of intact mammalian cells coupled with artificial neural networks (ANNs). We used human embryonic stem cells (hESCs) contaminated by either mouse embryonic stem cells (mESCs) or mouse embryonic fibroblasts (MEFs) as a model. We determined the contamination level using a mass spectra database of known calibration mixtures that served as training input for an ANN. The ANN was then capable of correct quantification of the level of contamination of hESCs by mESCs or MEFs. We demonstrate that MS analysis, when linked to proper mathematical instruments, is a tangible tool for unraveling and quantifying heterogeneity in cell cultures. The analysis is applicable in routine scenarios for cell authentication and/or cell phenotyping in general.
Prokeš, Lubomír; Amato, Filippo; Pivetta, Tiziana; Hampl, Aleš; Havel, Josef; Vaňhara, Petr
2016-01-01
Cross-contamination of eukaryotic cell lines used in biomedical research represents a highly relevant problem. Analysis of repetitive DNA sequences, such as Short Tandem Repeats (STR), or Simple Sequence Repeats (SSR), is a widely accepted, simple, and commercially available technique to authenticate cell lines. However, it provides only qualitative information that depends on the extent of reference databases for interpretation. In this work, we developed and validated a rapid and routinely applicable method for evaluation of cell culture cross-contamination levels based on mass spectrometric fingerprints of intact mammalian cells coupled with artificial neural networks (ANNs). We used human embryonic stem cells (hESCs) contaminated by either mouse embryonic stem cells (mESCs) or mouse embryonic fibroblasts (MEFs) as a model. We determined the contamination level using a mass spectra database of known calibration mixtures that served as training input for an ANN. The ANN was then capable of correct quantification of the level of contamination of hESCs by mESCs or MEFs. We demonstrate that MS analysis, when linked to proper mathematical instruments, is a tangible tool for unraveling and quantifying heterogeneity in cell cultures. The analysis is applicable in routine scenarios for cell authentication and/or cell phenotyping in general. PMID:26821236
Heyworth, P G; Erickson, R W; Ding, J; Curnutte, J T; Badwey, J A
1995-01-01
Selective antagonists of myosin light chain kinase (MLCK) [e.g. ML-7; 1-(5-iodonaphthalene-1-sulphonyl)-1H-hexahydro-1,4-diazepine hydrochloride] were found to inhibit superoxide (O2-) release from stimulated neutrophils. The concentrations of ML-7 that were inhibitory were substantially lower than those reported for a selective antagonist of protein kinase C [i.e. H-7; 1-(5-isoquinolinesulphonyl)-2-methylpiperazine dihydrochloride]. ML-7 also reduced the phosphorylation of the 47 kDa subunit of the NADPH-oxidase system (p47-phox) and blocked translocation of this protein to the Triton X-100-insoluble fraction in stimulated cells. Interestingly, ML-7 also inhibited O2- production in a cell-free system derived from neutrophils at concentrations similar to those that were effective in vivo. This cell-free system does not require ATP and is insensitive to all other inhibitors of protein kinases tested, including some highly effective against MLCK (i.e. staurosporine). Thus, the data suggest that ML-7 does not block O2- release by inhibiting a protein kinase but instead may interact directly with a subunit of the oxidase. The binding site for ML-7 may provide a valuable target for inhibiting the inflammatory properties of phagocytic leucocytes by naphthalenesulphonamides designed to lack activity against protein kinases. Images Figure 3 Figure 4 PMID:7575484
Taylor, U; Rath, D; Zerbe, H; Schuberth, H J
2008-04-01
New insemination techniques allow a tremendous sperm reduction for successful artificial insemination (AI) if highly diluted semen is deposited in the tip of the uterine horn and close to the utero-tubal junction. High sperm losses are known to occur during uterine passage and it was the general question whether specific binding mechanisms are involved. Upon arrival in the uterus, spermatozoa are confronted with mainly two different cell types: uterine epithelial cells (UEC) and neutrophilic granulocytes (polymorphonuclear neutrophil, PMN). As cell-sperm interactions can hardly be observed in vivo, an ex vivo system was established to study the interaction between spermatozoa and the UEC. Uterine segments (10 cm) from freshly slaughtered synchronized juvenile gilts were inseminated for 60 min at 38 degrees C. Thereafter spermatozoa were recovered, counted flow cytometrically and examined for changes in viability and mitochondrial membrane potential (MMP). Significantly less spermatozoa with a functioning MMP and intact plasma membranes could be retrieved (55 +/- 7%), while the number of damaged spermatozoa hardly changed (93 +/- 12%), indicating retention of viable sperm cells in the uterine lumen. The interactions between porcine PMN and spermatozoa (motile, immotile, membrane-damaged) were studied in coincubation assays in vitro. The binding of membrane-damaged sperm cells to PMN was virtually non-existent (3 +/- 2%). Viable and motile spermatozoa attached to PMN without being phagocytosed within 60 min (45 +/- 3%), whereas binding to sodium fluoride (NaF)-immobilized spermatozoa was reduced to 20 +/- 2%. The binding of viable sperm to PMN is most likely not lectin-dependent; although both viable cell types were shown to express a broad range of different lectin-binding sugar residues, none of the lectins tested was able to selectively block PMN-sperm binding significantly. The results of the study suggest that viable spermatozoa are already subject to selective processes within the uterus before further selection is initiated at the utero-tubal junction and in the oviductal isthmus.
Barboza-Silva, E; Castro, A C D; Marquis, R E
2005-12-01
Fluoride is known to be a potent inhibitor of bacterial ureases and can also act in the form of hydrofluoric acid as a transmembrane proton conductor to acidify the cytoplasm of intact cells with possible indirect, acid inhibition of urease. Our research objectives were to assess the inhibitory potencies of fluoride for three urease-positive bacteria commonly found in the mouth and to determine the relative importance of direct and indirect inhibition of ureases for overall inhibition of intact cells or biofilms. The experimental design involved intact bacteria in suspensions, mono-organism biofilms, cell extracts, and dental plaque. Standard enzymatic assays for ammonia production from urea were used. We found that ureolysis by cells in suspensions or mono-organism biofilms of Staphylococcus epidermidis, Streptococcus salivarius or Actinomyces naeslundii was inhibited by fluoride at plaque levels of 0.1-0.5 mm in a pH-dependent manner. The results of experiments with the organic weak acids indomethacin and capric acid, which do not directly inhibit urease enzyme, indicated that weak-acid effects leading to cytoplasmic acidification are also involved in fluoride inhibition. However, direct fluoride inhibition of urease appeared to be the major mechanism for reduction in ureolytic activity in acid environments. Results of experiments with freshly harvested supragingival dental plaque indicated responses to fluoride similar to those of S. salivarius with pH-dependent fluoride inhibition and both direct and indirect inhibition of urease. Fluoride can act to diminish alkali production from urea by oral bacteria through direct and indirect mechanisms.
Zhao, Wenqiang; Yang, Shanshan; Huang, Qiaoyun; Cai, Peng
2015-04-01
This study investigated the effect of loosely bound extracellular polymeric substances (LB-EPS) on the comprehensive surface properties of four bacteria (Bacillus subtilis, Streptococcus suis, Escherichia coli and Pseudomonas putida). The removal of LB-EPS from bacterial surfaces by high-speed centrifugation (12,000×g) was confirmed by SEM images. Viability tests showed that the percentages of viable cells ranged from 95.9% to 98.0%, and no significant difference was found after treatment (P>0.05). FTIR spectra revealed the presence of phosphodiester, carboxylic, phosphate, and amino functional groups on bacteria surfaces, and the removal of LB-EPS did not alter the types of cell surface functional groups. Potentiometric titration results suggested the total site concentrations on the intact bacteria were higher than those on LB-EPS free bacteria. Most of the acidity constants (pKa) were almost identical, except the increased pKa values of phosphodiester groups on LB-EPS free S. suis and E. coli surfaces. The electrophoretic mobilities and hydrodynamic diameters of the intact and LB-EPS free bacteria were statistically unchanged (P>0.05), indicating LB-EPS had no influence on the net surface charges and size distribution of bacteria. However, LB-ESP could enhance cell aggregation processes. The four LB-EPS free bacteria all exhibited fewer hydrophobicity values (26.1-65.0%) as compared to the intact cells (47.4-69.3%), suggesting the removal of uncharged nonpolar compounds (e.g., carbohydrates) in LB-EPS. These findings improve our understanding of the changes in cell surface characterizations induced by LB-EPS, and have important implications for assessing the role of LB-EPS in bacterial adhesion and transport behaviors. Copyright © 2015 Elsevier B.V. All rights reserved.
Urade, M; Yonemura, Y; Fujimura, T; Takegawa, S; Kamata, T; Fushida, Y; Miyazaki, I
1989-03-01
A 60-year-old woman was diagnosed as having liver metastasis from gastric cancer 14 months after total gastrectomy and total pancreatectomy. The liver tumor was so huge and the complication, diabetes mellitus, was so severe that she was palliatively treated by hyperthermo-chemo-radiotherapy (HCR therapy) with 8-MHz capacitive heating system. Because hyperthermia for deep seated tumor is very difficult, irradiation (10 MV X-ray, 36 Gy) and systemic chemotherapy (CDDP, MMC) were combinedly used. After 10 session of hyperthermia, the tumor showed a remarkable regression in size, followed by S8 subsegmentectomy of the liver. Histologically, cancer cells were still viable in the midst of fibrosis around coagulation necrosis, while normal liver cells remained intact. Multidisciplinary HCR therapy is quite a useful modality for liver tumors and may serve to expand the indication for surgical operation.
Photoacoustic Imaging of Epilepsy
2014-04-01
with the skin and skull intact. MCA, middle cerebral artery; RH, right hemispheres; LH, left hemispheres; LOB, left olfactory bulbs; ROB, Right...moving rat brain with skin and skull intact. (D) Open-skull photograph of the rat cortex surface after the PAT experiments The PAT detecting...22D shows a typical non-invasive PAT image obtained with the miniature PAT imaging system of a freely moving rat brain with skin and skull intact. Fig
Dramatic performance of Clostridium thermocellum explained by its wide range of cellulase modalities
Xu, Qi; Resch, Michael G.; Podkaminer, Kara; ...
2016-02-05
Clostridium thermocellum is the most efficient microorganism for solubilizing lignocellulosic biomass known to date. Its high cellulose digestion capability is attributed to efficient cellulases consisting of both a free-enzyme system and a tethered cellulosomal system wherein carbohydrate active enzymes (CAZymes) are organized by primary and secondary scaffoldin proteins to generate large protein complexes attached to the bacterial cell wall. This study demonstrates that C. thermocellum also uses a type of cellulosomal system not bound to the bacterial cell wall, called the “cell-free” cellulosomal system. The cell-free cellulosome complex can be seen as a “long range cellulosome” because it can diffusemore » away from the cell and degrade polysaccharide substrates remotely from the bacterial cell. The contribution of these two types of cellulosomal systems in C. thermocellum was elucidated by characterization of mutants with different combinations of scaffoldin gene deletions. The primary scaffoldin, CipA, was found to play the most important role in cellulose degradation by C. thermocellum, whereas the secondary scaffoldins have less important roles. Additionally, the distinct and efficient mode of action of the C. thermocellum exoproteome, wherein the cellulosomes splay or divide biomass particles, changes when either the primary or secondary scaffolds are removed, showing that the intact wild-type cellulosomal system is necessary for this essential mode of action. As a result, this new transcriptional and proteomic evidence shows that a functional primary scaffoldin plays a more important role compared to secondary scaffoldins in the proper regulation of CAZyme genes, cellodextrin transport, and other cellular functions.« less
Dramatic performance of Clostridium thermocellum explained by its wide range of cellulase modalities
Xu, Qi; Resch, Michael G.; Podkaminer, Kara; Yang, Shihui; Baker, John O.; Donohoe, Bryon S.; Wilson, Charlotte; Klingeman, Dawn M.; Olson, Daniel G.; Decker, Stephen R.; Giannone, Richard J.; Hettich, Robert L.; Brown, Steven D.; Lynd, Lee R.; Bayer, Edward A.; Himmel, Michael E.; Bomble, Yannick J.
2016-01-01
Clostridium thermocellum is the most efficient microorganism for solubilizing lignocellulosic biomass known to date. Its high cellulose digestion capability is attributed to efficient cellulases consisting of both a free-enzyme system and a tethered cellulosomal system wherein carbohydrate active enzymes (CAZymes) are organized by primary and secondary scaffoldin proteins to generate large protein complexes attached to the bacterial cell wall. This study demonstrates that C. thermocellum also uses a type of cellulosomal system not bound to the bacterial cell wall, called the “cell-free” cellulosomal system. The cell-free cellulosome complex can be seen as a “long range cellulosome” because it can diffuse away from the cell and degrade polysaccharide substrates remotely from the bacterial cell. The contribution of these two types of cellulosomal systems in C. thermocellum was elucidated by characterization of mutants with different combinations of scaffoldin gene deletions. The primary scaffoldin, CipA, was found to play the most important role in cellulose degradation by C. thermocellum, whereas the secondary scaffoldins have less important roles. Additionally, the distinct and efficient mode of action of the C. thermocellum exoproteome, wherein the cellulosomes splay or divide biomass particles, changes when either the primary or secondary scaffolds are removed, showing that the intact wild-type cellulosomal system is necessary for this essential mode of action. This new transcriptional and proteomic evidence shows that a functional primary scaffoldin plays a more important role compared to secondary scaffoldins in the proper regulation of CAZyme genes, cellodextrin transport, and other cellular functions. PMID:26989779
Pesavento, James J; Garcia, Benjamin A; Streeky, James A; Kelleher, Neil L; Mizzen, Craig A
2007-09-01
Recent developments in top down mass spectrometry have enabled closely related histone variants and their modified forms to be identified and quantitated with unprecedented precision, facilitating efforts to better understand how histones contribute to the epigenetic regulation of gene transcription and other nuclear processes. It is therefore crucial that intact MS profiles accurately reflect the levels of variants and modified forms present in a given cell type or cell state for the full benefit of such efforts to be realized. Here we show that partial oxidation of Met and Cys residues in histone samples prepared by conventional methods, together with oxidation that can accrue during storage or during chip-based automated nanoflow electrospray ionization, confounds MS analysis by altering the intact MS profile as well as hindering posttranslational modification localization after MS/MS. We also describe an optimized performic acid oxidation procedure that circumvents these problems without catalyzing additional oxidations or altering the levels of posttranslational modifications common in histones. MS and MS/MS of HeLa cell core histones confirmed that Met and Cys were the only residues oxidized and that complete oxidation restored true intact abundance ratios and significantly enhanced MS/MS data quality. This allowed for the unequivocal detection, at the intact molecule level, of novel combinatorially modified forms of H4 that would have been missed otherwise. Oxidation also enhanced the separation of human core histones by reverse phase chromatography and decreased the levels of salt-adducted forms observed in ESI-FTMS. This method represents a simple and easily automated means for enhancing the accuracy and sensitivity of top down analyses of combinatorially modified forms of histones that may also be of benefit for top down or bottom up analyses of other proteins.
Reorganization of the raccoon cuneate nucleus after peripheral denervation.
Rasmusson, D D; Northgrave, S A
1997-12-01
The effects of peripheral nerve transection on the cuneate nucleus were studied in anesthetized raccoons using extracellular, single-unit recordings. The somatotopic organization of the cuneate nucleus first was examined in intact, control animals. The cuneate nucleus in the raccoon is organized with the digits represented in separate cell clusters. The dorsal cap region of the cuneate nucleus contains a representation of the claws and hairy skin of the digits. Within the representation of the glabrous skin, neurons with rapidly adapting properties tended to be segregated from those with slowly adapting properties. The representations of the distal and proximal pads on a digit also were segregated. Electrical stimulation of two adjacent digits provided a detailed description of the responses originating from the digit that contains the tactile receptive field (the on-focus digit) and from the adjacent (off-focus) digit. Stimulation of the on-focus digit produced a short latency excitation in all 99 neurons tested, with a mean of 10.5 ms. These responses had a low threshold (426 microA). Stimulation of an off-focus digit activated 65% of these neurons. These responses had a significantly longer latency (15.3 ms) than on-focus responses and the threshold was more than twice as large. Two to five months after amputation of digit 4, 97 cells were tested with stimulation of digits 3 and 5. A total of 44 were in the intact regions of the cuneate nucleus. They had small receptive fields on intact digits and their responses to electrical stimulation did not differ from the control neurons. The remaining 53 neurons were judged to be deafferented and in the fourth digit region on the basis of their location with respect to intact neurons. All but two of these cells had receptive fields that were much larger than normal, often including more than one digit and part of the palm. When compared with the off-focus control neurons, their responses to electrical stimulation had lower thresholds and an increased response probability and magnitude. The latencies of these cells did not decrease, however, and were the same as the off-focus control values. The enhanced responses of the deafferented neurons to adjacent digit stimulation indicate that there is a strengthening of synapses that were previously ineffective. The increased proportion of neurons that could be activated after amputation suggests that there is also a growth of new connections. This experiment demonstrates that reorganization in the adult somatotopic system does occur at the level of the dorsal column nuclei. As a consequence, many of the changes reported at the cortex and thalamus may be due to the changes occurring at this first synapse in the somatosensory pathway.
Dayawansa, Samantha; Zhang, Jun; Shih, Chung-Hsuan; Tharakan, Binu; Huang, Jason H
2016-04-01
Functional data are essential when confirming the efficacy of elongated dorsal root ganglia (DRG) cells as a substitute for autografting. We present the quantitative functional motor, electrophysiological findings of engineered DRG recipients for the first time. Elongated DRG neurons and autografts were transplanted to bridge 1-cm sciatic nerve lesions of Sprague Dawley (SD) rats. Motor recoveries of elongated DRG recipients (n=9), autograft recipients (n=9), unrepaired rats (n=9) and intact rats (n=6) were investigated using the angle board challenge test following 16 weeks of recovery. Electrophysiology studies were conducted to assess the functional recovery at 16 weeks. In addition, elongated DRGs were subjected to histology assessments. At threshold levels (35° angle) of the angle board challenge test, the autograft recipients', DRG recipients' and unrepaired group's performances were equal to each other and were less than the intact group (p<0.05). However, during the subthreshold (30°) angle board challenge test, the elongated DRG recipients' performance was similar to both the intact group and the autograft nerve recipients, and was better (p<0.05) than the unrepaired group. The autograft recipients' performance was similar to the unrepaired group and was significantly different (p<0.05) compared with the performance of the intact group. During electrophysiological testing, the rats with transplanted engineered DRG constructs had intact signal transmission when recorded over the lesion, while the unrepaired rats did not. It was observed that elongated DRG neurons closely resembled an autograft during histological assessments. Performances of autograft and elongated DRG construct recipients were similar. Elongated DRG neurons should be further investigated as a substitute for autografting.
McDonnell, Bronagh M; Buchanan, Paul J; Prise, Kevin M; McCloskey, Karen D
2018-01-01
Radiation-induced bladder toxicity is associated with radiation therapy for pelvic malignancies, arising from unavoidable irradiation of neighbouring normal bladder tissue. This study aimed to investigate the acute impact of ionizing radiation on the contractility of bladder strips and identify the radiation-sensitivity of the mucosa vs the detrusor. Guinea-pig bladder strips (intact or mucosa-free) received ex vivo sham or 20Gy irradiation and were studied with in vitro myography, electrical field stimulation and Ca2+-fluorescence imaging. Frequency-dependent, neurogenic contractions in intact strips were reduced by irradiation across the force-frequency graph. The radiation-difference persisted in atropine (1μM); subsequent addition of PPADs (100μM) blocked the radiation effect at higher stimulation frequencies and decreased the force-frequency plot. Conversely, neurogenic contractions in mucosa-free strips were radiation-insensitive. Radiation did not affect agonist-evoked contractions (1μM carbachol, 5mM ATP) in intact or mucosa-free strips. Interestingly, agonist-evoked contractions were larger in irradiated mucosa-free strips vs irradiated intact strips suggesting that radiation may have unmasked an inhibitory mucosal element. Spontaneous activity was larger in control intact vs mucosa-free preparations; this difference was absent in irradiated strips. Spontaneous Ca2+-transients in smooth muscle cells within tissue preparations were reduced by radiation. Radiation affected neurogenic and agonist-evoked bladder contractions and also reduced Ca2+-signalling events in smooth muscle cells when the mucosal layer was present. Radiation eliminated a positive modulatory effect on spontaneous activity by the mucosa layer. Overall, the findings suggest that radiation impairs contractility via mucosal regulatory mechanisms independent of the development of radiation cystitis.
Watanabe, Hirotaka; Ishibashi, Kojiro; Mano, Hiroki; Kitamoto, Sho; Sato, Nanami; Hoshiba, Kazuya; Kato, Mugihiko; Matsuzawa, Fumihiko; Takeuchi, Yasuto; Shirai, Takanobu; Ishikawa, Susumu; Morioka, Yuka; Imagawa, Toshiaki; Sakaguchi, Kazuyasu; Yonezawa, Suguru; Kon, Shunsuke; Fujita, Yasuyuki
2018-06-26
p53 is a tumor suppressor protein, and its missense mutations are frequently found in human cancers. During the multi-step progression of cancer, p53 mutations generally accumulate at the mid or late stage, but not in the early stage, and the underlying mechanism is still unclear. In this study, using mammalian cell culture and mouse ex vivo systems, we demonstrate that when p53R273H- or p53R175H-expressing cells are surrounded by normal epithelial cells, mutant p53 cells undergo necroptosis and are basally extruded from the epithelial monolayer. When mutant p53 cells alone are present, cell death does not occur, indicating that necroptosis results from cell competition with the surrounding normal cells. Furthermore, when p53R273H mutation occurs within RasV12-transformed epithelia, cell death is strongly suppressed and most of the p53R273H-expressing cells remain intact. These results suggest that the order of oncogenic mutations in cancer development could be dictated by cell competition. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Atrial natriuretic peptide receptor heterogeneity and effects on cyclic GMP accumulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leitman, D.C.
1988-01-01
The effects of atrial natriuretic peptide (ANP), oxytocin (OT) and vasopressin (AVP) on guanylate cyclase activity and cyclic GMP accumulation were examined, since these hormones appear to be intimately associated with blood pressure and intravascular volume homeostasis. ANP was found to increase cyclic GMP accumulation in ten cell culture systems, which were derived from blood vessels, adrenal cortex, kidney, lung, testes and mammary gland. ANP receptors were characterized in intact cultured cells using {sup 125}I-ANP{sub 8-33}. Specific {sup 125}I-ANP binding was saturable and of high affinity. Scratchard analysis of the binding data for all cell types exhibited a straight line,more » indicating that these cells possessed a single class of binding sites. Despite the presence of linear Scatchard plots, these studies demonstrated that cultured cells possess two functionally and physically distinct ANP-binding sites. Most of the ANP-binding sites in cultured cells have a molecular size of 66,000 daltons under reducing conditions. The identification of cultured cell types in which hormones (ANP and oxytocin) regulate guanylate cyclase activity and increase cyclic GMP synthesis will provide valuable systems to determine the mechanisms of hormone-receptor coupling to guanylate cyclase and the cellular processes regulated by cyclic GMP.« less
Saito, Masaya; Matsuura, Tomokazu; Nagatsuma, Keisuke; Tanaka, Ken; Maehashi, Haruka; Shimizu, Keiko; Hataba, Yoshiaki; Kato, Fumitaka; Kashimori, Isao; Tajiri, Hisao; Braet, Filip
2007-06-01
Functional intact liver organoid can be reconstructed in a radial-flow bioreactor when human hepatocellular carcinoma (FLC-5), mouse immortalized sinusoidal endothelial M1 (SEC) and A7 (HSC) hepatic stellate cell lines are cocultured. The structural and functional characteristics of the reconstructed organoid closely resemble the in vivo liver situation. Previous liver organoid studies indicated that cell-to-cell communications might be an important factor for the functional and structural integrity of the reconstructed organoid, including the expression of fenestrae. Therefore, we examined the possible relationship between functional intact gap junctional intercellular communication (GJIC) and fenestrae dynamics in M1-SEC cells. The fine morphology of liver organoid was studied in the presence of (1) irsogladine maleate (IM), (2) oleamide and (3) oleamide followed by IM treatment. Fine ultrastructural changes were studied by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) and compared with control liver organoid data. TEM revealed that oleamide affected the integrity of cell-to-cell contacts predominantly in FLC-5 hepatocytes. SEM observation showed the presence of fenestrae on M1-SEC cells; however, oleamide inhibited fenestrae expression on the surface of endothelial cells. Interestingly, fenestrae reappeared when IM was added after initial oleamide exposure. GJIC mediates the number of fenestrae in endothelial cells of the liver organoid.
Rac-mediated Stimulation of Phospholipase Cγ2 Amplifies B Cell Receptor-induced Calcium Signaling*♦
Walliser, Claudia; Tron, Kyrylo; Clauss, Karen; Gutman, Orit; Kobitski, Andrei Yu.; Retlich, Michael; Schade, Anja; Röcker, Carlheinz; Henis, Yoav I.; Nienhaus, G. Ulrich; Gierschik, Peter
2015-01-01
The Rho GTPase Rac is crucially involved in controlling multiple B cell functions, including those regulated by the B cell receptor (BCR) through increased cytosolic Ca2+. The underlying molecular mechanisms and their relevance to the functions of intact B cells have thus far remained unknown. We have previously shown that the activity of phospholipase Cγ2 (PLCγ2), a key constituent of the BCR signalosome, is stimulated by activated Rac through direct protein-protein interaction. Here, we use a Rac-resistant mutant of PLCγ2 to functionally reconstitute cultured PLCγ2-deficient DT40 B cells and to examine the effects of the Rac-PLCγ2 interaction on BCR-mediated changes of intracellular Ca2+ and regulation of Ca2+-regulated and nuclear-factor-of-activated-T-cell-regulated gene transcription at the level of single, intact B cells. The results show that the functional Rac-PLCγ2 interaction causes marked increases in the following: (i) sensitivity of B cells to BCR ligation; (ii) BCR-mediated Ca2+ release from intracellular stores; (iii) Ca2+ entry from the extracellular compartment; and (iv) nuclear translocation of the Ca2+-regulated nuclear factor of activated T cells. Hence, Rac-mediated stimulation of PLCγ2 activity serves to amplify B cell receptor-induced Ca2+ signaling. PMID:25903139
Electron microscopy using the genetically encoded APEX2 tag in cultured mammalian cells
Martell, Jeffrey D; Deerinck, Thomas J; Lam, Stephanie S; Ellisman, Mark H; Ting, Alice Y
2018-01-01
Electron microscopy (EM) is the premiere technique for high-resolution imaging of cellular ultrastructure. Unambiguous identification of specific proteins or cellular compartments in electron micrographs, however, remains challenging because of difficulties in delivering electron-dense contrast agents to specific subcellular targets within intact cells. We recently reported enhanced ascorbate peroxidase 2 (APEX2) as a broadly applicable genetic tag that generates EM contrast on a specific protein or subcellular compartment of interest. This protocol provides guidelines for designing and validating APEX2 fusion constructs, along with detailed instructions for cell culture, transfection, fixation, heavy-metal staining, embedding in resin, and EM imaging. Although this protocol focuses on EM in cultured mammalian cells, APEX2 is applicable to many cell types and contexts, including intact tissues and organisms, and is useful for numerous applications beyond EM, including live-cell proteomic mapping. This protocol, which describes procedures for sample preparation from cell monolayers and cell pellets, can be completed in 10 d, including time for APEX2 fusion construct validation, cell growth, and solidification of embedding resins. Notably, the only additional steps required relative to a standard EM sample preparation are cell transfection and a 2- to 45-min staining period with 3,3′-diaminobenzidine (DAB) and hydrogen peroxide (H2O2). PMID:28796234
Morphological changes in cysticerci of Taenia taeniaeformis after mebendazole treatment.
Borgers, M; De Nollin, S; Verheyen, A; Vanparijs, O; Thienpont, D
1975-10-01
The progressive micromorphological changes in Taenia taeniaeformis cysticerci, induced by a single parenteral treatment of the infected mice with mebendazole, are described. The time-related alterations concerned the tegument and tegumental cells and were successively: disappearance of microtubules, accumulation of secretory substances in the Golgi areas, decrease in number to complete loss of microtriches, "ballooning" of all tegumental cells with subsequent burst, vacuolization and degeneration of the tegument, and finally necrosis of the pseudoproglottids. Similar but less pronounced injuries were seen in the scolices, although microtubules disappeared as early as in the pseudoproglottids. Microtubules from the host tissues remained intact. The meaning of the apparent primary interference of mebendazole with the microtubular system in relation to the subsequently observed death of the cysticercoids is discussed.
Brinkmann, Constantin; Nehlmeier, Inga; Walendy-Gnirß, Kerstin; Nehls, Julia; González Hernández, Mariana; Hoffmann, Markus; Qiu, Xiangguo; Takada, Ayato; Schindler, Michael; Pöhlmann, Stefan
2016-12-15
The glycoprotein of Ebola virus (EBOV GP), a member of the family Filoviridae, facilitates viral entry into target cells. In addition, EBOV GP antagonizes the antiviral activity of the host cell protein tetherin, which may otherwise restrict EBOV release from infected cells. However, it is unclear how EBOV GP antagonizes tetherin, and it is unknown whether the GP of Lloviu virus (LLOV), a filovirus found in dead bats in Northern Spain, also counteracts tetherin. Here, we show that LLOV GP antagonizes tetherin, indicating that tetherin may not impede LLOV spread in human cells. Moreover, we demonstrate that appropriate processing of N-glycans in tetherin/GP-coexpressing cells is required for tetherin counteraction by EBOV GP. Furthermore, we show that an intact receptor-binding domain (RBD) in the GP1 subunit of EBOV GP is a prerequisite for tetherin counteraction. In contrast, blockade of Niemann-Pick disease type C1 (NPC1), a cellular binding partner of the RBD, did not interfere with tetherin antagonism. Finally, we provide evidence that an antibody directed against GP1, which protects mice from a lethal EBOV challenge, may block GP-dependent tetherin antagonism. Our data, in conjunction with previous reports, indicate that tetherin antagonism is conserved among the GPs of all known filoviruses and demonstrate that the GP1 subunit of EBOV GP plays a central role in tetherin antagonism. Filoviruses are reemerging pathogens that constitute a public health threat. Understanding how Ebola virus (EBOV), a highly pathogenic filovirus responsible for the 2013-2016 Ebola virus disease epidemic in western Africa, counteracts antiviral effectors of the innate immune system might help to define novel targets for antiviral intervention. Similarly, determining whether Lloviu virus (LLOV), a filovirus detected in bats in northern Spain, is inhibited by innate antiviral effectors in human cells might help to determine whether the virus constitutes a threat to humans. The present study shows that LLOV, like EBOV, counteracts the antiviral effector protein tetherin via its glycoprotein (GP), suggesting that tetherin does not pose a defense against LLOV spread in humans. Moreover, our work identifies the GP1 subunit of EBOV GP, in particular an intact receptor-binding domain, as critical for tetherin counteraction and provides evidence that antibodies directed against GP1 can interfere with tetherin counteraction. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Peckys, Diana B; de Jonge, Niels
2015-09-11
This protocol describes the labeling of epidermal growth factor receptor (EGFR) on COS7 fibroblast cells, and subsequent correlative fluorescence microscopy and environmental scanning electron microscopy (ESEM) of whole cells in hydrated state. Fluorescent quantum dots (QDs) were coupled to EGFR via a two-step labeling protocol, providing an efficient and specific protein labeling, while avoiding label-induced clustering of the receptor. Fluorescence microscopy provided overview images of the cellular locations of the EGFR. The scanning transmission electron microscopy (STEM) detector was used to detect the QD labels with nanoscale resolution. The resulting correlative images provide data of the cellular EGFR distribution, and the stoichiometry at the single molecular level in the natural context of the hydrated intact cell. ESEM-STEM images revealed the receptor to be present as monomer, as homodimer, and in small clusters. Labeling with two different QDs, i.e., one emitting at 655 nm and at 800 revealed similar characteristic results.
Ayliffe, Michael John; Behrens, Judith; Stern, Simon; Sumar, Nazira
2012-08-01
This study investigated bone marrow plasma cell subsets and monoclonal free light chain concentrations in blood of monoclonal gammopathy patients. 54 bone marrow samples were stained by double immunofluorescence to enumerate cellular subsets making either intact monoclonal immunoglobulin or free light chains only. Blood taken at the same time was assayed for free light chains by an automated immunoassay. Patients were assigned to three cellular population categories: single intact monoclonal immunoglobulin (59%), dual monoclonal immunoglobulin and free light chain only (31%), or single free light chain only (9%). The median affected free light chain concentration of each group was 75 mg/l, 903 mg/l and 3320 mg/l, respectively, but with substantial overlap. In myeloma patients the difference in serum free light chain concentrations between patients with free light chain only marrow cells and those without was statistically significant. Serum free light chain levels >600 mg/l result mostly from marrow cells restricted to free light chain production.
Saeki, Y; Ishiyama, K; Ishida, N; Tanaka, Y; Ohdan, H
Both liver natural killer (NK) and NK T cells of the innate immune system play a crucial role in islet graft loss after intraportal islet transplantation, although a relationship between NK and NK T cells in islet loss has not been proven. In this study, we investigated the role of NK cells in the innate immune system in islet graft loss after intraportal islet transplantation. To investigate the involvement of liver NK cells in islet destruction, we assessed the differences in graft survival after intraportal islet transplantation between CD1d -/- diabetic mice and NK cell-depleted CD1d -/- diabetic mice. The transplantation of 400 islets into the liver was sufficient to reverse hyperglycemia in wild-type diabetic mice (100%, 4/4). However, normoglycemia could not be achieved when 200 islets were transplanted (0%, 0/4). In contrast, intraportal transplantation of 200 islets in NK cell-depleted CD1d -/- diabetic mice ameliorated hyperglycemia in 71% of cases (5/7), whereas transplantation of the same number of islets in CD1d -/- diabetic mice did not (0%, 0/4). Histologic findings also confirmed that intact islets were observed in NK cell-depleted CD1d -/- diabetic mice, but were difficult to observe in CD1d -/- diabetic mice. The involvement of liver NK cells in the innate immune system related to islet graft loss after intraportal islet transplantation is revealed by improved graft survival and function in NK cell-depleted CD1d -/- diabetic mice. Our data reveal that regulation of NK cell activity is particularly important when insufficient islet numbers are used for transplantation. Copyright © 2016 Elsevier Inc. All rights reserved.
Ariyaratne, H B; Mills, N; Mason, J I; Mendis-Handagama, S M
2000-10-01
We tested the effects of thyroid hormone on Leydig cell (LC) regeneration in the adult rat testis after ethane dimethyl sulphonate (EDS) treatment. Ninety-day-old, thyroid-intact (n = 96) and thyroidectomized (n = 5) male Sprague-Dawley rats were injected intraperitoneally (single injection) with EDS (75 mg/kg) to destroy LC. Thyroid-intact, EDS-treated rats were equally divided into three groups (n = 32 per group) and treated as follows: control (saline-injected), hypothyroid (provided 0.1% propyl thiouracil in drinking water), and hyperthyroid (received daily subcutaneous injections of tri-iodothyronine, 100 microg/kg). Testing was done at Days 2, 7, 14, and 21 for thyroid-intact rats and at Day 21 for thyroidectomized rats after the EDS treatment. Leydig cells were absent in control and hyperthyroid rats at Days 2, 7, and 14; in hypothyroid rats at all ages; and in thyroidectomized rats at Day 21. The LC number per testis in hyperthyroid rats was twice as those of controls at Day 21. 3beta-Hydroxysteroid dehydrogenase (LC marker) immunocytochemistry results agreed with these findings. Mesenchymal cell number per testis was similar in the three treatment groups of thyroid-intact rats on Days 2 and 7, but it was different on Days 14 and 21. The highest number was in the hypothyroid rats, and the lowest was in the hyperthyroid rats. Serum testosterone levels could be measured in control rats only on Day 21, were undetectable in hypothyroid rats at all stages, and were detected in hyperthyroid rats on Days 14 and 21. These levels in hyperthyroid rats were twofold greater than those of controls on Day 21. Serum androstenedione levels could be measured only in the hyperthyroid rats on Day 21. Testosterone and androstenedione levels in the incubation media showed similar patterns to those in serum, but with larger values. These findings indicate that hypothyroidism inhibits LC regeneration and hyperthyroidism results in accelerated differentiation of more mesenchymal cells into LC following the EDS treatment. The observations of the EDS-treated, thyroidectomized rats confirmed that the findings in hypothyroid rats were, indeed, due to the deficiency of thyroid hormone.
Zhao, Pan; Geyer, R Ryan; Boron, Walter F
2017-01-01
We report a novel carbonic-anhydrase (CA) assay and its use for quantitating red-blood-cell (RBC) lysis during stopped-flow (SF) experiments. We combine two saline solutions, one containing HEPES/pH 7.03 and the other, ~1% CO 2 /44 mM [Formula: see text]/pH 8.41, to generate an out-of-equilibrium CO 2 /[Formula: see text] solution containing ~0.5% CO 2 /22 [Formula: see text]/pH ~7.25 (10°C) in the SF reaction cell. CA catalyzes relaxation of extracellular pH to ~7.50: [Formula: see text] + H + → CO 2 + H 2 O. Proof-of-concept studies (no intact RBCs) show that the pH-relaxation rate constant ( k ΔpH )-measured via pyranine fluorescence-rises linearly with increases in [bovine CAII] or [murine-RBC lysate]. The y-intercept (no CA) was k ΔpH = 0.0183 s -1 . Combining increasing amounts of murine-RBC lysate with ostensibly intact RBCs (pre-SF hemolysis ≅0.4%)-fixing total [hemoglobin] at 2.5 μM in the reaction cell to simulate hemolysis from ostensibly 0 to 100%-causes k ΔpH to increase linearly. This y-intercept (0% lysate/100% ostensibly intact RBCs) was k ΔpH = 0.0820 s -1 , and the maximal k ΔpH (100% lysate/0% intact RBCs) was 1.304 s -1 . Thus, mean percent hemolysis in the reaction cell was ~4.9%. Phenol-red absorbance assays yield indistinguishable results. The increase from 0.4 to 4.9% presumably reflects mechanical RBC disruption during rapid mixing. In all fluorescence studies, the CA blocker acetazolamide reduces k ΔpH to near-uncatalyzed values, implying that all CA activity is extracellular. Our lysis assay is simple, sensitive, and precise, and will be valuable for correcting for effects of lysis in physiological SF experiments. The underlying CA assay, applied to blood plasma, tissue-culture media, and organ perfusates could assess lysis in a variety of applications.
Zhao, Pan; Geyer, R. Ryan; Boron, Walter F.
2017-01-01
We report a novel carbonic-anhydrase (CA) assay and its use for quantitating red-blood-cell (RBC) lysis during stopped-flow (SF) experiments. We combine two saline solutions, one containing HEPES/pH 7.03 and the other, ~1% CO2/44 mM HCO3-/pH 8.41, to generate an out-of-equilibrium CO2/HCO3- solution containing ~0.5% CO2/22 HCO3-/pH ~7.25 (10°C) in the SF reaction cell. CA catalyzes relaxation of extracellular pH to ~7.50: HCO3- + H+ → CO2 + H2O. Proof-of-concept studies (no intact RBCs) show that the pH-relaxation rate constant (kΔpH)—measured via pyranine fluorescence—rises linearly with increases in [bovine CAII] or [murine-RBC lysate]. The y-intercept (no CA) was kΔpH = 0.0183 s−1. Combining increasing amounts of murine-RBC lysate with ostensibly intact RBCs (pre-SF hemolysis ≅0.4%)—fixing total [hemoglobin] at 2.5 μM in the reaction cell to simulate hemolysis from ostensibly 0 to 100%—causes kΔpH to increase linearly. This y-intercept (0% lysate/100% ostensibly intact RBCs) was kΔpH = 0.0820 s−1, and the maximal kΔpH (100% lysate/0% intact RBCs) was 1.304 s−1. Thus, mean percent hemolysis in the reaction cell was ~4.9%. Phenol-red absorbance assays yield indistinguishable results. The increase from 0.4 to 4.9% presumably reflects mechanical RBC disruption during rapid mixing. In all fluorescence studies, the CA blocker acetazolamide reduces kΔpH to near-uncatalyzed values, implying that all CA activity is extracellular. Our lysis assay is simple, sensitive, and precise, and will be valuable for correcting for effects of lysis in physiological SF experiments. The underlying CA assay, applied to blood plasma, tissue-culture media, and organ perfusates could assess lysis in a variety of applications. PMID:28400735
Interleukin-1β transfer across the blood–brain barrier in the ovine fetus
Sadowska, Grazyna B; Chen, Xiaodi; Zhang, Jiyong; Lim, Yow-Pin; Cummings, Erin E; Makeyev, Oleksandr; Besio, Walter G; Gaitanis, John; Padbury, James F; Banks, William A; Stonestreet, Barbara S
2015-01-01
Pro-inflammatory cytokines contribute to hypoxic–ischemic brain injury. Blood–brain barrier (BBB) dysfunction represents an important component of hypoxic–ischemic brain injury in the fetus. Hypoxic–ischemic injury could accentuate systemic cytokine transfer across the fetal BBB. There has been considerable conjecture suggesting that systemic cytokines could cross the BBB during the perinatal period. Nonetheless, evidence to support this contention is sparse. We hypothesized that ischemia–reperfusion increases the transfer of systemic interleukin-1β (IL-1β) across the BBB in the fetus. Ovine fetuses at 127 days of gestation were studied 4 hours after 30 minutes of bilateral carotid artery occlusion and compared with a nonischemic group. Recombinant ovine IL-1β protein was expressed from an IL-1β pGEX-2 T vector in E. coli BL-21 cells and purified. The BBB function was quantified in 12 brain regions using a blood-to-brain transfer constant with intravenous 125I-radiolabeled IL-1β (125I-IL-1β). Interleukin-1β crossed the intact BBB in nonischemic fetuses. Blood-to-brain transport of 125I-IL-1β was higher (P<0.05) across brain regions in fetuses exposed to ischemia–reperfusion than nonischemic fetuses. We conclude that systemic IL-1β crosses the intact fetal BBB, and that ischemia–reperfusion increases transfer of this cytokine across the fetal BBB. Therefore, altered BBB function after hypoxia–ischemia facilitates entry of systemic cytokines into the brain of the fetus. PMID:26082012
Interleukin-1β transfer across the blood-brain barrier in the ovine fetus.
Sadowska, Grazyna B; Chen, Xiaodi; Zhang, Jiyong; Lim, Yow-Pin; Cummings, Erin E; Makeyev, Oleksandr; Besio, Walter G; Gaitanis, John; Padbury, James F; Banks, William A; Stonestreet, Barbara S
2015-09-01
Pro-inflammatory cytokines contribute to hypoxic-ischemic brain injury. Blood-brain barrier (BBB) dysfunction represents an important component of hypoxic-ischemic brain injury in the fetus. Hypoxic-ischemic injury could accentuate systemic cytokine transfer across the fetal BBB. There has been considerable conjecture suggesting that systemic cytokines could cross the BBB during the perinatal period. Nonetheless, evidence to support this contention is sparse. We hypothesized that ischemia-reperfusion increases the transfer of systemic interleukin-1β (IL-1β) across the BBB in the fetus. Ovine fetuses at 127 days of gestation were studied 4 hours after 30 minutes of bilateral carotid artery occlusion and compared with a nonischemic group. Recombinant ovine IL-1β protein was expressed from an IL-1β pGEX-2 T vector in E. coli BL-21 cells and purified. The BBB function was quantified in 12 brain regions using a blood-to-brain transfer constant with intravenous (125)I-radiolabeled IL-1β ((125)I-IL-1β). Interleukin-1β crossed the intact BBB in nonischemic fetuses. Blood-to-brain transport of (125)I-IL-1β was higher (P<0.05) across brain regions in fetuses exposed to ischemia-reperfusion than nonischemic fetuses. We conclude that systemic IL-1β crosses the intact fetal BBB, and that ischemia-reperfusion increases transfer of this cytokine across the fetal BBB. Therefore, altered BBB function after hypoxia-ischemia facilitates entry of systemic cytokines into the brain of the fetus.
Targeted Vascular Drug Delivery in Cerebral Cancer.
Humle, Nanna; Johnsen, Kasper Bendix; Arendt, Gitte Abildgaard; Nielsen, Rikke Paludan; Moos, Torben; Thomsen, Louiza Bohn
2016-01-01
This review presents the present-day literature on the anatomy and physiological mechanisms of the blood-brain barrier and the problematic of cerebral drug delivery in relation to malignant brain tumors. First step in treatment of malignant brain tumors is resection, but there is a high risk of single remnant infiltrative tumor cells in the outer zone of the brain tumor. These infiltrative single-cells will be supplied by capillaries with an intact BBB as opposed to the partly leaky BBB found in the tumor tissue before resection. Even though BBB penetrance of a chemotherapeutic agent is considered irrelevant though the limited success rate for chemotherapeutic treatability of GBM tumors indicate otherwise. Therefore drug delivery strategies to cerebral cancer after resection should be tailored to being able to both penetrate the intact BBB and target the cancer cells. In this review the intact bloodbrain barrier and cerebral cancer with main focus on glioblastoma multiforme (GBM) is introduced. The GBM induced formation of a blood-tumor barrier and the consequences hereof is described and discussed with emphasis on the impact these changes of the BBB has on drug delivery to GBM. The most commonly used drug carriers for drug delivery to GBM is described and the current drug delivery strategies for glioblastoma multiforme including possible routes through the BBB and epitopes, which can be targeted on the GBM cells is outlined. Overall, this review aims to address targeted drug delivery in GBM treatment when taking the differing permeability of the BBB into consideration.
Xu, Yan; Chen, Yan; Li, Daliang; Liu, Qing; Xuan, Zhenyu; Li, Wen-Hong
2017-02-01
MicroRNAs are small non-coding RNAs acting as posttranscriptional repressors of gene expression. Identifying mRNA targets of a given miRNA remains an outstanding challenge in the field. We have developed a new experimental approach, TargetLink, that applied locked nucleic acid (LNA) as the affinity probe to enrich target genes of a specific microRNA in intact cells. TargetLink also consists a rigorous and systematic data analysis pipeline to identify target genes by comparing LNA-enriched sequences between experimental and control samples. Using miR-21 as a test microRNA, we identified 12 target genes of miR-21 in a human colorectal cancer cell by this approach. The majority of the identified targets interacted with miR-21 via imperfect seed pairing. Target validation confirmed that miR-21 repressed the expression of the identified targets. The cellular abundance of the identified miR-21 target transcripts varied over a wide range, with some targets expressed at a rather low level, confirming that both abundant and rare transcripts are susceptible to regulation by microRNAs, and that TargetLink is an efficient approach for identifying the target set of a specific microRNA in intact cells. C20orf111, one of the novel targets identified by TargetLink, was found to reside in the nuclear speckle and to be reliably repressed by miR-21 through the interaction at its coding sequence.
Passport, a native Tc1 transposon from flatfish, is functionally active in vertebrate cells
Clark, Karl J.; Carlson, Daniel F.; Leaver, Michael J.; Foster, Linda K.; Fahrenkrug, Scott C.
2009-01-01
The Tc1/mariner family of DNA transposons is widespread across fungal, plant and animal kingdoms, and thought to contribute to the evolution of their host genomes. To date, an active Tc1 transposon has not been identified within the native genome of a vertebrate. We demonstrate that Passport, a native transposon isolated from a fish (Pleuronectes platessa), is active in a variety of vertebrate cells. In transposition assays, we found that the Passport transposon system improved stable cellular transgenesis by 40-fold, has an apparent preference for insertion into genes, and is subject to overproduction inhibition like other Tc1 elements. Passport represents the first vertebrate Tc1 element described as both natively intact and functionally active, and given its restricted phylogenetic distribution, may be contemporaneously active. The Passport transposon system thus complements the available genetic tools for the manipulation of vertebrate genomes, and may provide a unique system for studying the infiltration of vertebrate genomes by Tc1 elements. PMID:19136468
Passport, a native Tc1 transposon from flatfish, is functionally active in vertebrate cells.
Clark, Karl J; Carlson, Daniel F; Leaver, Michael J; Foster, Linda K; Fahrenkrug, Scott C
2009-03-01
The Tc1/mariner family of DNA transposons is widespread across fungal, plant and animal kingdoms, and thought to contribute to the evolution of their host genomes. To date, an active Tc1 transposon has not been identified within the native genome of a vertebrate. We demonstrate that Passport, a native transposon isolated from a fish (Pleuronectes platessa), is active in a variety of vertebrate cells. In transposition assays, we found that the Passport transposon system improved stable cellular transgenesis by 40-fold, has an apparent preference for insertion into genes, and is subject to overproduction inhibition like other Tc1 elements. Passport represents the first vertebrate Tc1 element described as both natively intact and functionally active, and given its restricted phylogenetic distribution, may be contemporaneously active. The Passport transposon system thus complements the available genetic tools for the manipulation of vertebrate genomes, and may provide a unique system for studying the infiltration of vertebrate genomes by Tc1 elements.
Cell Membrane-formed Nanovesicles for Disease-Targeted Delivery
Gao, Jin; Chu, Dafeng; Wang, Zhenjia
2016-01-01
Vascular inflammation is underlying components of most diseases. To target inflamed vasculature, nanoparticles are commonly engineered by conjugating antibody to the nanoparticle surface, but this bottom-up approach could affect nanoparticle targeting and therapeutic efficacy in complex, physiologically related systems. During vascular inflammation endothelium via the NF-κB pathway instantly upregulates intercellular adhesion molecule 1 (ICAM-1) which binds integrin β2 on neutrophil membrane. Inspired by this interaction, we created a nanovesicle-based drug delivery system using nitrogen cavitation which rapidly disrupts activated neutrophils to make cell membrane nanovesicles. Studies using intravital microscopy of live mouse cremaster venules showed that these vesicles can selectively bind inflamed vasculature because they possess intact targeting molecules of integrin β2. Administering of nanovesicles loaded with TPCA-1 (a NF-κB inhibitor) markedly mitigated mouse acute lung inflammation. Our studies reveal a new top-down strategy for directly employing a diseased tissue to produce biofunctional nanovesicle-based drug delivery systems potentially applied to treat various diseases. PMID:26778696
2016-03-11
50, Immunology. 26 | P a g e blood-borne antigens. The white pulp consists of the periarteriolar lymphoid sheath (PALS) which contain T cells ...and CD8α+ dendritic (DC), and adjacent lymphoid follicles containing mainly circulating B cells , known as follicular B cells (FB). The outer boundary...complexes, for initial priming within the T cell zones of secondary lymphoid organs followed by migration of T cells to the T cell -B cell border. B
The use of specific antibodies to mediate fusion between Sendai virus envelopes and living cells.
Loyter, A; Tomasi, M; Gitman, A G; Etinger, L; Nussbaum, O
1984-01-01
Incubation of Sendai virus particles with non-ionic detergents such as Triton X-100 completely solubilizes the viral envelopes. Removal of the detergent from the supernatant (which contains the two main viral glycoproteins) leads to the formation of fusogenic, reconstituted viral envelopes. Soluble macromolecules such as DNA or proteins can be enclosed within the reconstituted vesicles, while membrane components can be inserted into the viral envelopes. Fusion of such loaded or 'hybrid' reconstituted envelopes with living cells in culture results in either microinjection or transfer of the viral components to the recipient cells. Thus such reconstituted envelopes can serve as efficient carriers for the introduction of macromolecules of biological interest into living cells in culture. A more specific vehicle has been constructed by chemically coupling anti-cell membrane antibodies (anti-human erythrocyte antibody) to the viral envelope. Such antibody-bearing intact virus particles or reconstituted envelopes bound to and fused with virus receptor-depleted cells. In addition, anti-Sendai virus antibodies were coupled to neuraminidase-treated human erythrocytes. Such antibodies mediated the binding and fusion of intact Sendai virus particles and their reconstituted envelopes to virus receptor-depleted cells.
Mito, T; Kuwahara, S; Delamere, N A
1995-08-01
Experiments were conducted to test the influence of thapsigargin on the NaK-ATPase activity of cultured cells (ODM2) derived from human nonpigmented ciliary epithelium. The rate of ouabain-sensitive ATP hydrolysis (Na,K-ATPase activity) was diminished in cells that had been pretreated with thapsigargin then permeabilized. Following 20 min exposure of intact cells to thapsigargin, the cells were permeabilized with digitonin and the rate of ouabain-sensitive ATP hydrolysis (Na,K-ATPase activity) was measured immediately in a calcium-free buffer. In permeabilized cells that had been pretreated with 1 microM thapsigargin for 20 min, the rate of ouabain-sensitive ATP hydrolysis (Na,K-ATPase activity) was reduced by 38%. Pretreatment with lesser concentrations of thapsigargin caused smaller changes of Na,K-ATPase activity. The decrease of Na,K-ATPase activity was the same whether or not calmodulin antagonists W7 or trifluoperazine were present during the thapsigargin pretreatment period. This inhibitory effect upon the Na,K-ATPase may serve to limit the extent of sodium pump activation that takes place in intact cells when thapsigargin causes sodium pump stimulation by a mechanism that appears to involve changes in cytoplasmic ion levels when potassium channels open.
Muralidharan, Bhavana
2018-01-01
We established an efficient cell culture assay that permits combinatorial genetic perturbations in hippocampal progenitors to examine cell-autonomous mechanisms of fate specification. The procedure begins with ex vivo electroporation of isolated, intact embryonic brains, in a manner similar to in utero electroporation but with greatly improved access and targeting. The electroporated region is then dissected and transiently maintained in organotypic explant culture, followed by dissociation and plating of cells on coverslips for in vitro culture. This assay recapitulates data obtained in vivo with respect to the neuron-glia cell fate switch and can be effectively used to test intrinsic or extrinsic factors that regulate this process. The advantages of this ex vivo procedure over in utero electroporation include the fact that distinct combinations of perturbative reagents can be introduced in different embryos from a single litter, and issues related to embryonic lethality of transgenic animals can be circumvented. PMID:29760561
Noninvasive imaging of protein-protein interactions in living animals
NASA Astrophysics Data System (ADS)
Luker, Gary D.; Sharma, Vijay; Pica, Christina M.; Dahlheimer, Julie L.; Li, Wei; Ochesky, Joseph; Ryan, Christine E.; Piwnica-Worms, Helen; Piwnica-Worms, David
2002-05-01
Protein-protein interactions control transcription, cell division, and cell proliferation as well as mediate signal transduction, oncogenic transformation, and regulation of cell death. Although a variety of methods have been used to investigate protein interactions in vitro and in cultured cells, none can analyze these interactions in intact, living animals. To enable noninvasive molecular imaging of protein-protein interactions in vivo by positron-emission tomography and fluorescence imaging, we engineered a fusion reporter gene comprising a mutant herpes simplex virus 1 thymidine kinase and green fluorescent protein for readout of a tetracycline-inducible, two-hybrid system in vivo. By using micro-positron-emission tomography, interactions between p53 tumor suppressor and the large T antigen of simian virus 40 were visualized in tumor xenografts of HeLa cells stably transfected with the imaging constructs. Imaging protein-binding partners in vivo will enable functional proteomics in whole animals and provide a tool for screening compounds targeted to specific protein-protein interactions in living animals.
Muralidharan, Bhavana; D'Souza, Leora; Tole, Shubha
2018-01-01
We established an efficient cell culture assay that permits combinatorial genetic perturbations in hippocampal progenitors to examine cell-autonomous mechanisms of fate specification. The procedure begins with ex vivo electroporation of isolated, intact embryonic brains, in a manner similar to in utero electroporation but with greatly improved access and targeting. The electroporated region is then dissected and transiently maintained in organotypic explant culture, followed by dissociation and plating of cells on coverslips for in vitro culture. This assay recapitulates data obtained in vivo with respect to the neuron-glia cell fate switch and can be effectively used to test intrinsic or extrinsic factors that regulate this process. The advantages of this ex vivo procedure over in utero electroporation include the fact that distinct combinations of perturbative reagents can be introduced in different embryos from a single litter, and issues related to embryonic lethality of transgenic animals can be circumvented.
Establishment of cell surface engineering and its development.
Ueda, Mitsuyoshi
2016-07-01
Cell surface display of proteins/peptides has been established based on mechanisms of localizing proteins to the cell surface. In contrast to conventional intracellular and extracellular (secretion) expression systems, this method, generally called an arming technology, is particularly effective when using yeasts as a host, because the control of protein folding that is often required for the preparation of proteins can be natural. This technology can be employed for basic and applied research purposes. In this review, I describe various strategies for the construction of engineered yeasts and provide an outline of the diverse applications of this technology to industrial processes such as the production of biofuels and chemicals, as well as bioremediation and health-related processes. Furthermore, this technology is suitable for novel protein engineering and directed evolution through high-throughput screening, because proteins/peptides displayed on the cell surface can be directly analyzed using intact cells without concentration and purification. Functional proteins/peptides with improved or novel functions can be created using this beneficial, powerful, and promising technique.
Dorrell, Craig; Abraham, Stephanie L; Lanxon-Cookson, Kelsea M; Canaday, Pamela S; Streeter, Philip R; Grompe, Markus
2008-09-01
We have developed a novel panel of cell-surface markers for the isolation and study of all major cell types of the human pancreas. Hybridomas were selected after subtractive immunization of Balb/C mice with intact or dissociated human islets and assessed for cell-type specificity and cell-surface reactivity by immunohistochemistry and flow cytometry. Antibodies were identified by specific binding of surface antigens on islet (panendocrine or alpha-specific) and nonislet pancreatic cell subsets (exocrine and duct). These antibodies were used individually or in combination to isolate populations of alpha, beta, exocrine, or duct cells from primary human pancreas by FACS and to characterize the detailed cell composition of human islet preparations. They were also employed to show that human islet expansion cultures originated from nonendocrine cells and that insulin expression levels could be increased to up to 1% of normal islet cells by subpopulation sorting and overexpression of the transcription factors Pdx-1 and ngn3, an improvement over previous results with this culture system. These methods permit the analysis and isolation of functionally distinct pancreatic cell populations with potential for cell therapy.
Fujisawa, T; Aikawa, K; Takahashi, T; Yamai, S
2000-09-01
While the beta-glucuronidase activity of intact cells of Clostridium perfringens was higher in 0.95% sodium chloride (NaCl) than that in 0, 0.1 or 0.5%, that of Escherichia coli was higher in 0.1% NaCl than that in 0, 0.5 or 0.95% NaCl in 0.1 mol l-1 KH2PO4. However, the enzyme activity of both species of intact cells was higher in buffer containing 16 mEq sodium, 134 mEq potassium and 16 mEq chloride per litre than in that containing 146 mEq sodium, 13 mEq potassium and 146 mEq chloride. These findings suggest that bacterial cells are affected by the presence of NaCl and that the effect of NaCl on the activity of bacterial beta-glucuronidase may differ by location in the large intestine.
Bennekou, Poul; Barksmann, Trine L; Jensen, Lars R; Kristensen, Berit I; Christophersen, Palle
2004-05-01
Suspension of intact human red cells in media with low chloride and sodium concentrations (isotonic sucrose substitution) results in strongly inside positive membrane potentials, which activate the voltage-dependent non-selective cation (NSVDC) channel. By systematic variation of the initial Nernst potentials for chloride (degree of ion substitution) as well as the chloride conductance (block by NS1652), and by exploiting the interplay between the Ca(2+)-permeable NSVDC channel, the Ca(2+)-activated K+ channel (the Gárdos channel) and the Ca(2+)-pump, a graded activation of the NSVDC channel was achieved. Under these conditions, it was shown that the NSVDC channels exist in two states of activation depending on the initial conditions for the activation. The hysteretic behaviour, which in patch clamp experiments has been found for the individual channel unit, is thus retained at the cellular level and can be demonstrated with red cells in suspension.
Belizon, A; Kirman, I; Balik, E; Karten, M; Jain, S; Whelan, R L
2007-04-01
The authors previously demonstrated a significant decrease in plasma levels of intact insulin-like growth factor binding protein-3 (IGFBP-3) after major open but not after laparoscopic-assisted surgery in humans. They postulated that this decrease may have an effect on postoperative tumor growth. It also has been shown that plasma levels of matrix metalloproteinase-9 (MMP-9), a protease capable of degrading IGFBP-3, are transiently increased after open colectomy in humans. The authors aimed to develop an animal model that would allow further study of the effect that surgical trauma has on plasma levels IGFBP-3 and MMP-9. In addition, they set out to assess the concentration of MMP-9 in circulating monocytes before and after surgery. The 30 mice included in this study were divided into three groups: sham laparotomy, carbon dioxide (CO2) pneumoperitoneum, and anesthesia control. All mice were IGFBP-3 transgenics (overexpressing human IGFBP-3) on a CD1 background. The mice were anesthetized using ketamine and xylazine. Blood was drawn retroorbitally 48 h before the procedure. The duration of the procedure was 30 min. The animals were killed 24 h postoperatively and blood was drawn. Intact IGFBP-3 levels were measured using a combination of Western blot analysis and enzyme-linked immunoassay (ELISA) at the two time points: before and after the operation. Plasma and peripheral blood mononuclear cell levels of MMP-9 were measured at each time point using zymography. Mononuclear cell lysates were used to determine intracellular MMP-9 levels. Plasma levels of intact IGFBP-3 were significantly lower than preoperative levels after sham laparotomy. A mean decrease of 76.6% was noted (p < 0.05). Zymography demonstrated significantly higher plasma MMP-9-related proteolytic activity than observed preoperatively after sham laparotomy (78.5 vs 42.3 Relative Units [RU]; p < 0.05). In the pneumoperitoneum group, no significant decrease was found between the pre- and postoperative levels of intact IGFBP-3. A nonsignificant increase in MMP-9 was noted after CO2 pneumoperitoneum (38 RU preoperatively vs. 46.4 RU postoperatively; p > 0.05). The anesthesia control group did not demonstrate a significant change in either circulating intact IGFBP-3 levels or MMP-9 levels. Mononuclear intracellular levels of MMP-9 were significantly lower after laparotomy than the preoperative levels (3 vs 37 RU). The postprocedure intracellular levels of MMP-9 were not significantly decreased in the pneumoperitoneum or anesthesia control group. Plasma levels of intact IGFBP-3, a cell growth regulating factor, were found to be decreased significantly after laparotomy. This decrease was not seen after pneumoperitoneum. Depletion of intact IGFBP-3 after laparotomy correlated with a rapid release of MMP-9 from mononuclear cells and an increase in circulating plasma MMP-9 levels. Matrix metalloproteinase-9 may play an important role in IGFBP-3 proteolysis after surgical trauma. Furthermore, circulating mononuclear cells are one source of MMP-9 after surgery. Finally, the model used reproduces events in humans after surgery, and thus should permit further study on the mechanism of IGFBP-3 proteolysis after surgical trauma.
Analysis of the cytochrome c-dependent apoptosis apparatus in cells from human pancreatic carcinoma
Gerhard, M C; Schmid, R M; Häcker, G
2002-01-01
Defects in the apoptotic system are likely to play a role in tumorigenesis. Pancreatic carcinoma cells are extremely resistant to apoptosis induction by chemotherapy suggesting that the apoptosis machinery is faulty. We investigated the integrity of the cytochrome c-dependent apoptotic apparatus in 10 human pancreatic carcinoma cell lines. Expression of Apaf-1, caspase-3, -6, -7, -8 and -9, Hsp-70 and XIAP was detected in all cell lines. The expression levels of Apaf-1 and caspase-8 were homogenous in all cell lines whereas differences in expression of other caspases were seen. In cytosolic fractions, all investigated caspases were processed in response to cytochrome c but the extent of processing varied between the cell lines. No stringent correlation between the amount of processing of caspase-9 and effector caspases was seen. Cytochrome c-induced effector caspase activity was quantitated by enzyme assay. Especially at low concentrations of added cytochrome c, this response varied greatly between the cell lines. These data demonstrate that the apoptotic system downstream of the mitochondria is qualitatively intact in pancreatic carcinoma. They further show that the response to cytochrome c can be quantitated in a cell-free system and that determinants other than mere expression of apoptotic molecules can regulate cytochrome c-induced apoptosis. British Journal of Cancer (2002) 86, 893–898. DOI: 10.1038/sj/bjc/6600171 www.bjcancer.com © 2002 Cancer Research UK PMID:11953820
Goldstein, G W; Betz, A L; Bowman, P D; Dorovini-Zis, K
1986-01-01
The endothelial cells in brain capillaries are the anatomic site of the blood-brain barrier. To learn more about the biology of these specialized cells, we developed methods to prepare suspensions of purified brain microvessels as well as primary cultures of endothelial cells in monolayer. These two preparations allow for direct investigation of the metabolism, transport properties, and receptor content of the brain capillary. We used isolated brain microvessels to study distribution of membrane carriers between the luminal and the abluminal plasma membrane of endothelial cells. We found that Na+K+-ATPase and the A-system amino-acid transport system are located predominantly on the abluminal surface of brain capillary endothelial cells. This distribution of transport carriers is consistent with the low permeability of potassium and small neutral amino acids in the blood-to-brain direction. It suggests, however, that both solutes can be actively transported across brain capillaries from the brain interstitial fluid to the blood. In tissue culture, the endothelial cells form continuous tight junctions with their neighbors. This results in a cellular layer impermeable to protein tracers. When exposed to hyperosmolar solutions, in an attempt to mimic the conditions that open the blood-brain barrier in vivo, we found a reversible separation of the tight junctions between contiguous endothelial cells. No indication of activation of pinocytosis was observed. In vitro systems provide a novel approach for studying the function of the blood-brain barrier and allow for observations not possible with intact animals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumari, S. Sindhu; Varadaraj, Kulandaiappan, E-mail: kulandaiappan.varadaraj@stonybrook.edu; SUNY Eye Institute, New York, NY
Highlights: • Intact AQP0 functions as fiber cell-to-fiber cell adhesion protein. • AQP0 facilitates reduction in extracellular space and lens water content. • AQP0 adhesion function aids in lens refractive index gradient (RING) formation. • AQP0 prevents lens spherical aberration by establishing RING. • AQP0 is critical for lens transparency and homeostasis. - Abstract: Aquaporin 0 (AQP0) is a transmembrane channel that constitutes ∼45% of the total membrane protein of the fiber cells in mammalian lens. It is critical for lens transparency and homeostasis as mutations and knockout cause autosomal dominant lens cataract. AQP0 functions as a water channel andmore » as a cell-to-cell adhesion (CTCA) molecule in the lens. Our recent in vitro studies showed that the CTCA function of AQP0 could be crucial to establish lens refractive index gradient (RING). However, there is a lack of in vivo data to corroborate the role of AQP0 as a fiber CTCA molecule which is critical for creating lens RING. The present investigation is undertaken to gather in vivo evidence for the involvement of AQP0 in developing lens RING. Lenses of wild type (WT) mouse, AQP0 knockout (heterozygous, AQP0{sup +/−}) and AQP0 knockout lens transgenically expressing AQP1 (heterozygous AQP0{sup +/−}/AQP1{sup +/−}) mouse models were used for the study. Data on AQP0 protein profile of intact and N- and/or C-terminal cleaved AQP0 in the lens by MALDI-TOF mass spectrometry and SDS–PAGE revealed that outer cortex fiber cells have only intact AQP0 of ∼28 kDa, inner cortical and outer nuclear fiber cells have both intact and cleaved forms, and inner nuclear fiber cells have only cleaved forms (∼26–24 kDa). Knocking out of 50% of AQP0 protein caused light scattering, spherical aberration (SA) and cataract. Restoring the lost fiber cell membrane water permeability (P{sub f}) by transgene AQP1 did not reinstate complete lens transparency and the mouse lenses showed light scattering and SA. Transmission and scanning electron micrographs of lenses of both mouse models showed increased extracellular space between fiber cells. Water content determination study showed increase in water in the lenses of these mouse models. In summary, lens transparency, CTCA and compact packing of fiber cells were affected due to the loss of 50% AQP0 leading to larger extracellular space, more water content and SA, possibly due to alteration in RING. To our knowledge, this is the first report identifying the role of AQP0 in RING development to ward off lens SA during focusing.« less
Quantification of DNA in simple eukaryotic cells using Fourier transform infrared spectroscopy.
Whelan, Donna R; Bambery, Keith R; Puskar, Ljiljana; McNaughton, Don; Wood, Bayden R
2013-10-01
A technique capable of detecting and monitoring nucleic acid concentration offers potential in diagnosing cancer and further developing an understanding of the biochemistry of disease. The application of Fourier transform infrared (FTIR) spectroscopy has previously been hindered by the supposed non-Beer-Lambert absorption behavior of DNA in intact cells making elucidation of the DNA bands difficult. We use known composition DNA/hemoglobin standards to successfully estimate the DNA content in avian erythrocyte nuclei (44.2%) and intact erythrocytes (12.8%). Furthermore we demonstrate that the absorption of cellular DNA does follow the Beer-Lambert Law and highlights the role of conformation and hydration in FTIR spectroscopy of biological samples. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yeast Immobilization Systems for Alcoholic Wine Fermentations: Actual Trends and Future Perspectives
Moreno-García, Jaime; García-Martínez, Teresa; Mauricio, Juan C.; Moreno, Juan
2018-01-01
Yeast immobilization is defined as the physical confinement of intact cells to a region of space with conservation of biological activity. The use of these methodologies for alcoholic fermentation (AF) offers many advantages over the use of the conventional free yeast cell method and different immobilization systems have been proposed so far for different applications, like winemaking. The most studied methods for yeast immobilization include the use of natural supports (e.g., fruit pieces), organic supports (e.g., alginate), inorganic (e.g., porous ceramics), membrane systems, and multi-functional agents. Some advantages of the yeast-immobilization systems include: high cell densities, product yield improvement, lowered risk of microbial contamination, better control and reproducibility of the processes, as well as reuse of the immobilization system for batch fermentations and continuous fermentation technologies. However, these methods have some consequences on the behavior of the yeasts, affecting the final products of the fermentative metabolism. This review compiles current information about cell immobilizer requirements for winemaking purposes, the immobilization methods applied to the production of fermented beverages to date, and yeast physiological consequences of immobilization strategies. Finally, a recent inter-species immobilization methodology has been revised, where yeast cells are attached to the hyphae of a Generally Recognized As Safe fungus and remain adhered following loss of viability of the fungus. The bio-capsules formed with this method open new and promising strategies for alcoholic beverage production (wine and low ethanol content beverages). PMID:29497415
Direct quantification of rare earth doped titania nanoparticles in individual human cells
NASA Astrophysics Data System (ADS)
Jeynes, J. C. G.; Jeynes, C.; Palitsin, V.; Townley, H. E.
2016-07-01
There are many possible biomedical applications for titania nanoparticles (NPs) doped with rare earth elements (REEs), from dose enhancement and diagnostic imaging in radiotherapy, to biosensing. However, there are concerns that the NPs could disintegrate in the body thus releasing toxic REE ions to undesired locations. As a first step, we investigate how accurately the Ti/REE ratio from the NPs can be measured inside human cells. A quantitative analysis of whole, unsectioned, individual human cells was performed using proton microprobe elemental microscopy. This method is unique in being able to quantitatively analyse all the elements in an unsectioned individual cell with micron resolution, while also scanning large fields of view. We compared the Ti/REE signal inside cells to NPs that were outside the cells, non-specifically absorbed onto the polypropylene substrate. We show that the REE signal in individual cells co-localises with the titanium signal, indicating that the NPs have remained intact. Within the uncertainty of the measurement, there is no difference between the Ti/REE ratio inside and outside the cells. Interestingly, we also show that there is considerable variation in the uptake of the NPs from cell-to-cell, by a factor of more than 10. We conclude that the NPs enter the cells and remain intact. The large heterogeneity in NP concentrations from cell-to-cell should be considered if they are to be used therapeutically.
Metabolism of fluoranthene in different plant cell cultures and intact plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolb, M.; Harms, H.
The metabolism of fluoranthene was investigated in 11 cell cultures of different plant species using a [{sup 14}C]-labeled standard. Most species metabolized less than 5% of fluoranthene to soluble metabolites and formed less than 5% nonextractable residues during the standardized 48-h test procedure. Higher metabolic rates were observed in lettuce (Lactuca sativa, 6%), wheat (Tricitum aestivum, 9%), and tomato (Lycopersicon esculentum, 15%). A special high metabolic rate of nearly 50% was determined for the rose species Paul's Scarlet. Chromatographic analysis of metabolites extracted from aseptically grown tomato plants proved that the metabolites detected in the cell cultures were also formedmore » in the intact plants. Metabolites produced in tomato and rose cells from [{sup 14}C]-fluoranthene were conjugated with glucose, glucuronic acid, and other cell components. After acid hydrolyses, the main metabolite of both species was 1-hydroxyfluoranthene as identified by gas chromatography-mass spectrometry and high-performance liquid chromatography with diode array detection. The second metabolite formed by both species was 8-hydroxyfluoranthene. A third metabolite in tomatoes was 3-hydroxyfluoranthene.« less
Cell tracking supports secondary gastrulation in the moon jellyfish Aurelia.
Gold, David A; Nakanishi, Nagayasu; Hensley, Nicholai M; Hartenstein, Volker; Jacobs, David K
2016-11-01
The moon jellyfish Aurelia exhibits a dramatic reorganization of tissue during its metamorphosis from planula larva to polyp. There are currently two competing hypotheses regarding the fate of embryonic germ layers during this metamorphosis. In one scenario, the original endoderm undergoes apoptosis and is replaced by a secondary endoderm derived from ectodermal cells. In the second scenario, both ectoderm and endoderm remain intact through development. In this study, we performed a pulse-chase experiment to trace the fate of larval ectodermal cells. We observed that prior to metamorphosis, ectodermal cells that proliferated early in larval development concentrate at the future oral end of the polyp. During metamorphosis, these cells migrate into the endoderm, extending all the way to the aboral portion of the gut. We therefore reject the hypothesis that larval endoderm remains intact during metamorphosis and provide additional support for the "secondary gastrulation" hypothesis. Aurelia appears to offer the first and only described case where a cnidarian derives its endoderm twice during normal development, adding to a growing body of evidence that germ layers can be dramatically reorganized in cnidarian life cycles.
Layered Double Hydroxide Nanotransporter for Molecule Delivery to Intact Plant Cells
Bao, Wenlong; Wang, Junya; Wang, Qiang; O’Hare, Dermot; Wan, Yinglang
2016-01-01
Here we report a powerful method that facilitates the transport of biologically active materials across the cell wall barrier in plant cells. Positively charged delaminated layered double hydroxide lactate nanosheets (LDH-lactate-NS) with a 0.5‒2 nm thickness and 30‒60 nm diameter exhibit a high adsorptive capacity for negatively charged biomolecules, including fluorescent dyes such as tetramethyl rhodamine isothiocyanate (TRITC), fluorescein isothiocyanate isomer I(FITC) and DNA molecules, forming neutral LDH-nanosheet conjugates. These neutral conjugates can shuttle the bound fluorescent dye into the cytosol of intact plant cell very efficiently. Furthermore, typical inhibitors of endocytosis and low temperature incubation did not prevent LDH-lactate-NS internalization, suggesting that LDH-lactate-NS penetrated the plasma membrane via non-endocytic pathways, which will widen the applicability to a variety of plant cells. Moreover, the absence of unwanted side effects in our cytological studies, and the nuclear localization of ssDNA-FITC suggest that nano-LDHs have potential application as a novel gene carrier to plants. PMID:27221055
A Cell Culture Model of Resistance Arteries.
Biwer, Lauren A; Lechauve, Christophe; Vanhoose, Sheri; Weiss, Mitchell J; Isakson, Brant E
2017-09-08
The myoendothelial junction (MEJ), a unique signaling microdomain in small diameter resistance arteries, exhibits localization of specific proteins and signaling processes that can control vascular tone and blood pressure. As it is a projection from either the endothelial or smooth muscle cell, and due to its small size (on average, an area of ~1 µm 2 ), the MEJ is difficult to study in isolation. However, we have developed a cell culture model called the vascular cell co-culture (VCCC) that allows for in vitro MEJ formation, endothelial cell polarization, and dissection of signaling proteins and processes in the vascular wall of resistance arteries. The VCCC has a multitude of applications and can be adapted to suit different cell types. The model consists of two cell types grown on opposite sides of a filter with 0.4 µm pores in which the in vitro MEJs can form. Here we describe how to create the VCCC via plating of cells and isolation of endothelial, MEJ, and smooth muscle fractions, which can then be used for protein isolation or activity assays. The filter with intact cell layers can be fixed, embedded, and sectioned for immunofluorescent analysis. Importantly, many of the discoveries from this model have been confirmed using intact resistance arteries, underscoring its physiological relevance.
Strategies for the physiome project.
Bassingthwaighte, J B
2000-08-01
The physiome is the quantitative description of the functioning organism in normal and pathophysiological states. The human physiome can be regarded as the virtual human. It is built upon the morphome, the quantitative description of anatomical structure, chemical and biochemical composition, and material properties of an intact organism, including its genome, proteome, cell, tissue, and organ structures up to those of the whole intact being. The Physiome Project is a multicentric integrated program to design, develop, implement, test and document, archive and disseminate quantitative information, and integrative models of the functional behavior of molecules, organelles, cells, tissues, organs, and intact organisms from bacteria to man. A fundamental and major feature of the project is the databasing of experimental observations for retrieval and evaluation. Technologies allowing many groups to work together are being rapidly developed. Internet II will facilitate this immensely. When problems are huge and complex, a particular working group can be expert in only a small part of the overall project. The strategies to be worked out must therefore include how to pull models composed of many submodules together even when the expertise in each is scattered amongst diverse institutions. The technologies of bioinformatics will contribute greatly to this effort. Developing and implementing code for large-scale systems has many problems. Most of the submodules are complex, requiring consideration of spatial and temporal events and processes. Submodules have to be linked to one another in a way that preserves mass balance and gives an accurate representation of variables in nonlinear complex biochemical networks with many signaling and controlling pathways. Microcompartmentalization vitiates the use of simplified model structures. The stiffness of the systems of equations is computationally costly. Faster computation is needed when using models as thinking tools and for iterative data analysis. Perhaps the most serious problem is the current lack of definitive information on kinetics and dynamics of systems, due in part to the almost total lack of databased observations, but also because, though we are nearly drowning in new information being published each day, either the information required for the modeling cannot be found or has never been obtained. "Simple" things like tissue composition, material properties, and mechanical behavior of cells and tissues are not generally available. The development of comprehensive models of biological systems is a key to pharmaceutics and drug design, for the models will become gradually better predictors of the results of interventions, both genomic and pharmaceutic. Good models will be useful in predicting the side effects and long term effects of drugs and toxins, and when the models are really good, to predict where genomic intervention will be effective and where the multiple redundancies in our biological systems will render a proposed intervention useless. The Physiome Project will provide the integrating scientific basis for the Genes to Health initiative, and make physiological genomics a reality applicable to whole organisms, from bacteria to man.
Strategies for the Physiome Project
Bassingthwaighte, James B.
2010-01-01
The physiome is the quantitative description of the functioning organism in normal and pathophysiological states. The human physiome can be regarded as the virtual human. It is built upon the morphome, the quantitative description of anatomical structure, chemical and biochemical composition, and material properties of an intact organism, including its genome, proteome, cell, tissue, and organ structures up to those of the whole intact being. The Physiome Project is a multicentric integrated program to design, develop, implement, test and document, archive and disseminate quantitative information, and integrative models of the functional behavior of molecules, organelles, cells, tissues, organs, and intact organisms from bacteria to man. A fundamental and major feature of the project is the databasing of experimental observations for retrieval and evaluation. Technologies allowing many groups to work together are being rapidly developed. Internet II will facilitate this immensely. When problems are huge and complex, a particular working group can be expert in only a small part of the overall project. The strategies to be worked out must therefore include how to pull models composed of many submodules together even when the expertise in each is scattered amongst diverse institutions. The technologies of bioinformatics will contribute greatly to this effort. Developing and implementing code for large-scale systems has many problems. Most of the submodules are complex, requiring consideration of spatial and temporal events and processes. Submodules have to be linked to one another in a way that preserves mass balance and gives an accurate representation of variables in nonlinear complex biochemical networks with many signaling and controlling pathways. Microcompartmentalization vitiates the use of simplified model structures. The stiffness of the systems of equations is computationally costly. Faster computation is needed when using models as thinking tools and for iterative data analysis. Perhaps the most serious problem is the current lack of definitive information on kinetics and dynamics of systems, due in part to the almost total lack of databased observations, but also because, though we are nearly drowning in new information being published each day, either the information required for the modeling cannot be found or has never been obtained. “Simple” things like tissue composition, material properties, and mechanical behavior of cells and tissues are not generally available. The development of comprehensive models of biological systems is a key to pharmaceutics and drug design, for the models will become gradually better predictors of the results of interventions, both genomic and pharmaceutic. Good models will be useful in predicting the side effects and long term effects of drugs and toxins, and when the models are really good, to predict where genomic intervention will be effective and where the multiple redundancies in our biological systems will render a proposed intervention useless. The Physiome Project will provide the integrating scientific basis for the Genes to Health initiative, and make physiological genomics a reality applicable to whole organisms, from bacteria to man. PMID:11144666
Coupling and Elastic Loading Affect the Active Response by the Inner Ear Hair Cell Bundles
Strimbu, Clark Elliott; Fredrickson-Hemsing, Lea; Bozovic, Dolores
2012-01-01
Active hair bundle motility has been proposed to underlie the amplification mechanism in the auditory endorgans of non-mammals and in the vestibular systems of all vertebrates, and to constitute a crucial component of cochlear amplification in mammals. We used semi-intact in vitro preparations of the bullfrog sacculus to study the effects of elastic mechanical loading on both natively coupled and freely oscillating hair bundles. For the latter, we attached glass fibers of different stiffness to the stereocilia and observed the induced changes in the spontaneous bundle movement. When driven with sinusoidal deflections, hair bundles displayed phase-locked response indicative of an Arnold Tongue, with the frequency selectivity highest at low amplitudes and decreasing under stronger stimulation. A striking broadening of the mode-locked response was seen with increasing stiffness of the load, until approximate impedance matching, where the phase-locked response remained flat over the physiological range of frequencies. When the otolithic membrane was left intact atop the preparation, the natural loading of the bundles likewise decreased their frequency selectivity with respect to that observed in freely oscillating bundles. To probe for signatures of the active process under natural loading and coupling conditions, we applied transient mechanical stimuli to the otolithic membrane. Following the pulses, the underlying bundles displayed active movement in the opposite direction, analogous to the twitches observed in individual cells. Tracking features in the otolithic membrane indicated that it moved in phase with the bundles. Hence, synchronous active motility evoked in the system of coupled hair bundles by external input is sufficient to displace large overlying structures. PMID:22479461
Zhou, Xianxuan; Meng, Xiaoming; Sun, Baolin
2008-09-01
Quorum sensing (QS) is a bacterial cell-cell communication process by which bacteria communicate using extracellular signals called autoinducers. Two QS systems have been identified in Escherichia coli K-12, including an intact QS system 2 that is stimulated by the cyclic AMP (cAMP)-cAMP receptor protein (CRP) complex and a partial QS system 1 that consists of SdiA (suppressor of cell division inhibitor) responding to signals generated by other microbial species. The relationship between QS system 1 and system 2 in E. coli, however, remains obscure. Here, we show that an EAL domain protein, encoded by ydiV, and cAMP are involved in the interaction between the two QS systems in E. coli. Expression of sdiA and ydiV is inhibited by glucose. SdiA binds to the ydiV promoter region in a dose-dependent, but nonspecific, manner; extracellular autoinducer 1 from other species stimulates ydiV expression in an sdiA-dependent manner. Furthermore, we discovered that the double sdiA-ydiV mutation, but not the single mutation, causes a 2-fold decrease in intracellular cAMP concentration that leads to the inhibition of QS system 2. These results indicate that signaling pathways that respond to important environmental cues, such as autoinducers and glucose, are linked together for their control in E. coli.
Signal Transduction in T Cell Activation and Tolerance
1993-01-01
chains and ’ chains may transduce different signals in intact T cells. These studies demonstrate that while c- deficient and c-containing TCR complexes...three independently derived pairs of CD45- and CD45+ murine T cell lymphomas, the CD45- expressing cells were consistently deficient in...D.B., Larsen, A. and Wilson, C.B. (1986) Reduced interferon-gamma mRNA levels in human neonates: Evidence for an intrinsic T cell deficiency yi 114
Boekema, Bouke K. H. L.; Van Putten, Jos P. M.; Stockhofe-Zurwieden, Norbert; Smith, Hilde E.
2004-01-01
Type IV pili (Tfp) of gram-negative species share many characteristics, including a common architecture and conserved biogenesis pathway. Much less is known about the regulation of Tfp expression in response to changing environmental conditions. We investigated the diversity of Tfp regulatory systems by searching for the molecular basis of the reported variable expression of the Tfp gene cluster of the pathogen Actinobacillus pleuropneumoniae. Despite the presence of an intact Tfp gene cluster consisting of four genes, apfABCD, no Tfp were formed under standard growth conditions. Sequence analysis of the predicted major subunit protein ApfA showed an atypical alanine residue at position −1 from the prepilin peptidase cleavage site in 42 strains. This alanine deviates from the consensus glycine at this position in Tfp from other species. Yet, cloning of the apfABCD genes under a constitutive promoter in A. pleuropneumoniae resulted in pilin and Tfp assembly. Tfp promoter-luxAB reporter gene fusions demonstrated that the Tfp promoter was intact but tightly regulated. Promoter activity varied with bacterial growth phase and was detected only when bacteria were grown in chemically defined medium. Infection experiments with cultured epithelial cells demonstrated that Tfp promoter activity was upregulated upon adherence of the pathogen to primary cultures of lung epithelial cells. Nonadherent bacteria in the culture supernatant exhibited virtually no promoter activity. A similar upregulation of Tfp promoter activity was observed in vivo during experimental infection of pigs. The host cell contact-induced and in vivo-upregulated Tfp promoter activity in A. pleuropneumoniae adds a new dimension to the diversity of Tfp regulation. PMID:14742510
An immortal cell line to study the role of endogenous CFTR in electrolyte absorption.
Bell, C L; Quinton, P M
1995-01-01
The intact human reabsorptive sweat duct (RD) has been a reliable model for investigations of the functional role of "endogenous" CFTR (cystic fibrosis transmembrane conductance regulator) in normal and abnormal electrolyte absorptive function. But to overcome the limitations imposed by the use of fresh, intact tissue, we transformed cultured RD cells using the chimeric virus Ad5/SV40 1613 ori-. The resultant cell line, RD2(NL), has remained differentiated forming a polarized epithelium that expressed two fundamental components of absorption, a cAMP activated Cl- conductance (GCl) and an amiloride-sensitive Na+ conductance (GNa). In the unstimulated state, there was a low level of transport activity; however, addition of forskolin (10(-5) M) significantly increased the Cl- diffusion potential (Vt) generated by a luminally directed Cl- gradient from -15.3 +/- 0.7 mV to -23.9 +/- 1.1 mV, n = 39; and decreased the transepithelial resistance (Rt) from 814.8 +/- 56.3 omega.cm2 to 750.5 +/- 47.5 omega.cm2, n = 39, (n = number of cultures). cAMP activation, anion selectivity (Cl- > I- > gluconate), and a dependence upon metabolic energy (metabolic poisoning inhibited GCl), all indicate that the GCl expressed in RD2(NL) is in fact CFTR-GCl. The presence of an apical amiloride-sensitive GNa was shown by the amiloride (10(-5) M) inhibition of GNa as indicated by a reduction of Vt and equivalent short circuit current by 78.0 +/- 3.1% and 77.9 +/- 2.6%, respectively, and an increase in Rt by 7.2 +/- 0.8%, n = 36. In conclusion, the RD2(NL) cell line presents the first model system in which CFTR-GCl is expressed in a purely absorptive tissue.(ABSTRACT TRUNCATED AT 250 WORDS)
McGrath-Morrow, Sharon A; Ndeh, Roland; Collaco, Joseph M; Poupore, Amy K; Dikeman, Dustin; Zhong, Qiong; Singer, Benjamin D; D'Alessio, Franco; Scott, Alan
2017-09-01
Neonates have greater morbidity/mortality from lower respiratory tract infections (LRTI) compared to older children. Lack of conditioning of the pulmonary immune system due to limited environmental exposures and/or infectious challenges likely contributes to the increase susceptibility in the neonate. In this study, we sought to gain insights into the nature and dynamics of the neonatal pulmonary immune response to LRTI using a murine model. Wildtype (WT) and Ccr2 -/- C57BL/6 neonatal and juvenile mice received E. coli or PBS by direct pharyngeal aspiration. Flow cytometry was used to measure immune cell dynamics and identify cytokine-producing cells. Real-time PCR and ELISA were used to measure cytokine/chemokine expression. Innate immune cell recruitment in response to E. coli-induced LRTI was delayed in the neonatal lung compared to juvenile lung. Lung clearance of bacteria was also significantly delayed in the neonate. Ccr2 -/- neonates, which lack an intact CCL2-CCR2 axis, had higher mortality after E. coli challenged than Ccr2 +/+ neonates. A greater percentage of CD8 + T cells and monocytes from WT neonates challenged with E. coli produced TNF compared to controls. The pulmonary immune response to E. coli-induced LRTI differed significantly between neonatal and juvenile mice. Neonates were more susceptible to increasing doses of E. coli and exhibited greater mortality than juveniles. In the absence of an intact CCL2-CCR2 axis, susceptibility to LRTI-induced mortality was further increased in neonatal mice. Taken together these findings underscore the importance of age-related differences in the innate immune response to LRTI during early stages of postnatal life. Copyright © 2017 Elsevier Ltd. All rights reserved.
Schuetz, Alexandra; Deleage, Claire; Sereti, Irini; Rerknimitr, Rungsun; Phanuphak, Nittaya; Phuang-Ngern, Yuwadee; Estes, Jacob D.; Sandler, Netanya G.; Sukhumvittaya, Suchada; Marovich, Mary; Jongrakthaitae, Surat; Akapirat, Siriwat; Fletscher, James L. K.; Kroon, Eugene; Dewar, Robin; Trichavaroj, Rapee; Chomchey, Nitiya; Douek, Daniel C.; O′Connell, Robert J.; Ngauy, Viseth; Robb, Merlin L.; Phanuphak, Praphan; Michael, Nelson L.; Excler, Jean-Louis; Kim, Jerome H.; de Souza, Mark S.; Ananworanich, Jintanat
2014-01-01
Mucosal Th17 cells play an important role in maintaining gut epithelium integrity and thus prevent microbial translocation. Chronic HIV infection is characterized by mucosal Th17 cell depletion, microbial translocation and subsequent immune-activation, which remain elevated despite antiretroviral therapy (ART) correlating with increased mortality. However, when Th17 depletion occurs following HIV infection is unknown. We analyzed mucosal Th17 cells in 42 acute HIV infection (AHI) subjects (Fiebig (F) stage I-V) with a median duration of infection of 16 days and the short-term impact of early initiation of ART. Th17 cells were defined as IL-17+ CD4+ T cells and their function was assessed by the co-expression of IL-22, IL-2 and IFNγ. While intact during FI/II, depletion of mucosal Th17 cell numbers and function was observed during FIII correlating with local and systemic markers of immune-activation. ART initiated at FI/II prevented loss of Th17 cell numbers and function, while initiation at FIII restored Th17 cell numbers but not their polyfunctionality. Furthermore, early initiation of ART in FI/II fully reversed the initially observed mucosal and systemic immune-activation. In contrast, patients treated later during AHI maintained elevated mucosal and systemic CD8+ T-cell activation post initiation of ART. These data support a loss of Th17 cells at early stages of acute HIV infection, and highlight that studies of ART initiation during early AHI should be further explored to assess the underlying mechanism of mucosal Th17 function preservation. PMID:25503054
Hong, Jian; Wang, Wei-Bing; Zhou, Xue-Ping; Hu, Dong-Wei
2006-06-01
The alteration of ultrastructure in Pisum sativum and Vicia faba leaf cells infected with B935 isolate of BBWV 2 were investigated by electron microscopy, immunogold-labeling technique. The results showed that the membranous proliferation, virus-formed crystals and tubular structures were found in leaf cells of two hosts. At early stages of infection, the tubules containing virus-like particles associate with plasmodesmata in mesophyll cell. Immunogold particles anti-BBWV 2 were localized to the plasmodesmata modified by tubules passing through them. The membranous proliferation and virus-formed tubules were also found in the parenchyma cells, companion cells and transfer cells of vascular bundle. Some virus-like particles located within sieve tube can be labeled immunogold particles anti-BBWV 2. These suggest that BBWV 2, similar CPMV, produce tubules extending into the plasmodesmata. Virions assembled in the cytoplasm are escorted to the tubular structures through interactions with their MP and are then transported to the adjacent cell. Many 160 nm in diameter virus-formed tubules in the cytoplasm, as a special aggregate, not directly relate to cell-to-cell movement; Intact virions are long-distance sustemic transported possibly through sieve elements.
Neonatal rat heart cells cultured in simulated microgravity
NASA Technical Reports Server (NTRS)
Akins, Robert E.; Schroedl, Nancy A.; Gonda, Steve R.; Hartzell, Charles R.
1994-01-01
In vitro characteristics of cardiac cells cultured in simulated microgravity are reported. Tissue culture methods performed at unit gravity constrain cells to propagate, differentiate, and interact in a two dimensional (2D) plane. Neonatal rat cardiac cells in 2D culture organize predominantly as bundles of cardiomyocytes with the intervening areas filled by non-myocyte cell types. Such cardiac cell cultures respond predictably to the addition of exogenous compounds, and in many ways they represent an excellent in vitro model system. The gravity-induced 2D organization of the cells, however, does not accurately reflect the distribution of cells in the intact tissue. We have begun characterizations of a three-dimensional (3D) culturing system designed to mimic microgravity. The NASA designed High-Aspect-Ratio-Vessel (HARV) bioreactors provide a low shear environment which allows cells to be cultured in static suspension. HARV-3D cultures were prepared on microcarrier beads and compared to control-2D cultures using a combination of microscopic and biochemical techniques. Both systems were uniformly inoculated and medium exchanged at standard intervals. Cells in control cultures adhered to the polystyrene surface of the tissue culture dishes and exhibited typical 2D organization. Cells in cultured in HARV's adhered to microcarrier beads, the beads aggregated into defined clusters containing 8 to 15 beads per cluster, and the clusters exhibited distinct 3D layers: myocytes and fibroblasts appeared attached to the surfaces of beads and were overlaid by an outer cell type. In addition, cultures prepared in HARV's using alternative support matrices also displayed morphological formations not seen in control cultures. Generally, the cells prepared in HARV and control cultures were similar, however, the dramatic alterations in 3D organization recommend the HARV as an ideal vessel for the generation of tissue-like organizations of cardiac cells in simulated microgravity.
Vervloessem, Tamara; Ivanova, Hristina; Luyten, Tomas; Parys, Jan B; Bultynck, Geert
2017-06-01
Anti-apoptotic B cell-lymphoma-2 (Bcl-2) proteins are emerging as therapeutic targets in a variety of cancers for precision medicines, like the BH3-mimetic drug venetoclax (ABT-199), which antagonizes the hydrophobic cleft of Bcl-2. However, the impact of venetoclax on intracellular Ca 2+ homeostasis and dynamics in cell systems has not been characterized in detail. Here, we show that venetoclax did not affect Ca 2+ -transport systems from the endoplasmic reticulum (ER) in permeabilized cell systems. Venetoclax (1μM) did neither trigger Ca 2+ release by itself nor affect agonist-induced Ca 2+ release in a variety of intact cell models. Among the different cell types, we also studied two Bcl-2-dependent cancer cell models with a varying sensitivity towards venetoclax, namely SU-DHL-4 and OCI-LY-1, both diffuse large B-cell lymphoma cell lines. Acute application of venetoclax did also not dysregulate Ca 2+ signaling in these Bcl-2-dependent cancer cells. Moreover, venetoclax-induced cell death was independent of intracellular Ca 2+ overload, since Ca 2+ buffering using BAPTA-AM did not suppress venetoclax-induced cell death. This study therefore shows that venetoclax does not dysregulate the intracellular Ca 2+ homeostasis in a variety of cell types, which may underlie its limited toxicity in human patients. Furthermore, venetoclax-induced cell death in Bcl-2-dependent cancer cells is not mediated by intracellular Ca 2+ overload. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech. Copyright © 2016 Elsevier B.V. All rights reserved.
Jin, Fengyan; Lin, Hai; Gao, Sujun; Hu, Zheng; Zuo, Song; Sun, Liguang; Jin, Chunhui; Li, Wei; Yang, Yanping
2016-01-01
Although natural killer cells (NK cells) were traditionally classified as members of the innate immune system, NK cells have recently been found also to be an important player in the adaptive immune systems. In this context, in vitro activation of NK cells by cytokines leads to generation of NK cells with memory-like properties characterized by increased interferon-γ (IFNγ) production. However, it remains to be defined whether these memory-like NK cells exist in vivo after cytokine activation. Furthermore, it is also unclear whether such memory-like NK cells induced in vivo by cytokines could have effective anti-leukemia response. To address these issues, we used an in vivo pre-activation and re-stimulation system that was able to produce NK cells with increased IFNγ secretion. It was found that after in vivo pre-activation and re-stimulation with interleukins (ILs), NK cells retained a state to produce increased amount of IFNγ. Of note, whereas this intrinsic capacity of enhanced IFNγ production after in vivo IL pre-activation and re-stimulation could be transferred to the next generation of NK cells and was associated with prolonged survival of the mice with acute lymphoid leukemia. Moreover, the anti-leukemia activity of these memory-like NK cells was associated with IFNγ production and up-regulation of NK cells activation receptor-NK Group 2 member D (NKG2D). Together, these findings argue strongly that in vivo IL pre-activation and re-stimulation is capable to induce memory-like NK cells as observed previously in vitro, which are effective against acute lymphoblastic leukemia, likely via NKG2D-dependent IFNγ production, in intact animals. PMID:27816971
Jin, Fengyan; Lin, Hai; Gao, Sujun; Hu, Zheng; Zuo, Song; Sun, Liguang; Jin, Chunhui; Li, Wei; Yang, Yanping
2016-11-29
Although natural killer cells (NK cells) were traditionally classified as members of the innate immune system, NK cells have recently been found also to be an important player in the adaptive immune systems. In this context, in vitro activation of NK cells by cytokines leads to generation of NK cells with memory-like properties characterized by increased interferon-γ (IFNγ) production. However, it remains to be defined whether these memory-like NK cells exist in vivo after cytokine activation. Furthermore, it is also unclear whether such memory-like NK cells induced in vivo by cytokines could have effective anti-leukemia response. To address these issues, we used an in vivo pre-activation and re-stimulation system that was able to produce NK cells with increased IFNγ secretion. It was found that after in vivo pre-activation and re-stimulation with interleukins (ILs), NK cells retained a state to produce increased amount of IFNγ. Of note, whereas this intrinsic capacity of enhanced IFNγ production after in vivo IL pre-activation and re-stimulation could be transferred to the next generation of NK cells and was associated with prolonged survival of the mice with acute lymphoid leukemia. Moreover, the anti-leukemia activity of these memory-like NK cells was associated with IFNγ production and up-regulation of NK cells activation receptor-NK Group 2 member D (NKG2D). Together, these findings argue strongly that in vivo IL pre-activation and re-stimulation is capable to induce memory-like NK cells as observed previously in vitro, which are effective against acute lymphoblastic leukemia, likely via NKG2D-dependent IFNγ production, in intact animals.
Neonatal rat heart cells cultured in simulated microgravity
NASA Technical Reports Server (NTRS)
Akins, R. E.; Schroedl, N. A.; Gonda, S. R.; Hartzell, C. R.
1997-01-01
In vitro characteristics of cardiac cells cultured in simulated microgravity are reported. Tissue culture methods performed at unit gravity constrain cells to propagate, differentiate, and interact in a two-dimensional (2D) plane. Neonatal rat cardiac cells in 2D culture organize predominantly as bundles of cardiomyocytes with the intervening areas filled by nonmyocyte cell types. Such cardiac cell cultures respond predictably to the addition of exogenous compounds, and in many ways they represent an excellent in vitro model system. The gravity-induced 2D organization of the cells, however, does not accurately reflect the distribution of cells in the intact tissue. We have begun characterizations of a three-dimensional (3D) culturing system designed to mimic microgravity. The NASA-designed High-Aspect Ratio Vessel (HARV) bioreactors provide a low shear environment that allows cells to be cultured in static suspension. HARV-3D cultures were prepared on microcarrier beads and compared to control-2D cultures using a combination of microscopic and biochemical techniques. Both systems were uniformly inoculated and medium exchanged at standard intervals. Cells in control cultures adhered to the polystyrene surface of the tissue culture dishes and exhibited typical 2D organization. Cells cultured in HARVs adhered to microcarrier beads, the beads aggregated into defined clusters containing 8 to 15 beads per cluster, and the clusters exhibited distinct 3D layers: myocytes and fibroblasts appeared attached to the surfaces of beads and were overlaid by an outer cell type. In addition, cultures prepared in HARVs using alternative support matrices also displayed morphological formations not seen in control cultures. Generally, the cells prepared in HARV and control cultures were similar; however, the dramatic alterations in 3D organization recommend the HARV as an ideal vessel for the generation of tissuelike organization of cardiac cells in vitro.
NASA Astrophysics Data System (ADS)
Talukder, Muhammad A.; Menyuk, Curtis R.; Kostov, Yordan
2017-02-01
Distinguishing between intact cells, dead but still whole cells, and cell debris is an important but difficult task in life sciences. The most common way to identify dead cells is using a cell-impermeant DNA binding dye, such as propidium iodide. A healthy living cell has an intact cell membrane and will act as a barrier to the dye so that it cannot enter the cell. A dead cell has a compromised cell membrane, and it will allow the dye into the cell to bind to the DNA and become fluorescent. The dead cells therefore will be positive and the live cells will be negative. The dead cells later deteriorate quickly into debris. Different pieces of debris from a single cell can be incorrectly identified as separate dead cells. Although a flow cytometer can quickly perform numerous quantitative, sensitive measurements on each individual cell to determine the viability of cells within a large, heterogeneous population, it is bulky, expensive, and only large hospitals and laboratories can afford them. In this work, we show that the distance-dependent coupling of fluorophore light to surface plasmon coupled emission (SPCE) from fluorescently-labeled cells can be used to distinguish whole cells from cell debris. Once the fluorescent labels are excited by a laser, the fluorescently-labeled whole cells create two distinct intensity rings in the far-field, in contrast to fluorescently-labeled cell debris, which only creates one ring. The distinct far-field patterns can be captured by camera and used to distinguish between whole cells and cell debris.
The Plasma Membrane Calcium Pump
NASA Technical Reports Server (NTRS)
Rasmussen, H.
1983-01-01
Three aspect of cellular calcium metabolism in animal cells was discussed including the importance of the plasma membrane in calcium homeostasis, experiments dealing with the actual mechanism of the calcium pump, and the function of the pump in relationship to the mitochondria and to the function of calmodulin in the intact cell.
1990-01-01
induced by decalin exposure are processes, accelerated apoptosis has been describedin renal tissue with hydronephrosis (6), during the clearly intact...experimental hydronephrosis in topathology and cell proliferation induced by 2,2.4- the rat. Lab. Invest. 56(3): 273-281. trimethylpentane in the
Kim, Jiyun V; Jiang, Ning; Tadokoro, Carlos E; Liu, Liping; Ransohoff, Richard M; Lafaille, Juan J; Dustin, Michael L
2010-01-31
The mouse spinal cord is an important site for autoimmune and injury models. Skull thinning surgery provides a minimally invasive window for microscopy of the mouse cerebral cortex, but there are no parallel methods for the spinal cord. We introduce a novel, facile and inexpensive method for two-photon laser scanning microscopy of the intact spinal cord in the mouse by taking advantage of the naturally accessible intervertebral space. These are powerful methods when combined with gene-targeted mice in which endogenous immune cells are labeled with green fluorescent protein (GFP). We first demonstrate that generation of the intervertebral window does not elicit a reaction of GFP(+) microglial cells in CX3CR1(gfp/+) mice. We next demonstrate a distinct rostrocaudal migration of GFP(+) immune cells in the spinal cord of CXCR6(gfp/+) mice during active experimental autoimmune encephalomyelitis (EAE). Interestingly, infiltration of the cerebral cortex by GFP(+) cells in these mice required three conditions: EAE induction, cortical injury and expression of CXCR6 on immune cells. Copyright 2009 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wu, Xuewen; Ding, Dalian; Jiang, Haiyan; Xing, Xiaowei; Huang, Suping; Liu, Hong; Chen, Zhedong; Sun, Hong
2012-01-01
Hydroxyapatite nanoparticles (nHAT) are known to have excellent biocompatibility, and have attracted increasing attention as new candidates of non-viral vectors for gene therapy. In our previous studies, nHAT carrying a therapeutic gene and a reporter gene were successfully transfected into the spiral ganglion neurons in the inner ear of guinea pigs in vivo as well as in the cultured cell lines, although the transfection efficiencies were never higher than 30%. In this study, the surface modification of nHAT with polyethylenimine (PEI) was made (PEI-nHAT, diameter = 73.09 ± 27.32 nm) and a recombinant plasmid carrying enhanced green fluorescent protein (EGFP) gene and neurotrophin-3 (NT-3) gene was constructed as pEGFPC2-NT3. The PEI modified nHAT and the recombinant plasmid was then connected to form the nHAT-based vector-gene complex (PEI-nHAT-pEGFPC2-NT3). This complex was then placed onto the intact round window membranes of the chinchillas for inner ear transfection. Auditory brainstem response (ABR) was tested to evaluate auditory function. Green fluorescence of EGFP was observed using confocal microscopy 48 h after administering vector-gene complexes. There was no significant threshold shift in tone burst-evoked ABR at any tested frequency. Abundant, condensed green fluorescence was found in dark cells on both sides of the crista and around the macula of the utricle. Scattered EGFP signals were also detected in vestibular hair cells, some Schwann cells in the cochlear spiral ganglion region, some outer pillar cells in the organ of Corti, and a few cells in the stria vascularis. The density of green fluorescence-marked cells was obviously higher in the vestibular dark cell area than in other areas of the inner ear, suggesting that vestibular dark cells may have the ability to actively engulf the nHAT-based vector-gene complexes. Considering the high transfection efficiency in the vestibular system, PEI-nHAT may be a potential vector for gene therapy of inner ear diseases, especially vestibular disorders, and deserves further study.
ADENOVIRUS INTERACTION WITH ITS CELLULAR RECEPTOR CAR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
HOWITT,J.; ANDERSON,C.W.; FREIMUTH,P.
The mechanism of adenovirus attachment to the host cell plasma membrane has been revealed in detail by research over the past 10 years. It has long been known that receptor binding activity is associated with the viral fibers, trimeric spike proteins that protrude radially from the vertices of the icosahedral capsid (Philipson et al. 1968). In some adenovirus serotypes, fiber and other virus structural proteins are synthesized in excess and accumulate in the cell nucleus during late stages of infection. Fiber protein can be readily purified from lysates of cells infected with subgroup C viruses, for example Ad2 and Ad5more » (Boulanger and Puvion 1973). Addition of purified fiber protein to virus suspensions during adsorption strongly inhibits infection, indicating that fiber and intact virus particles compete for binding sites on host cells (Philipson et al. 1968; Hautala et al. 1998). Cell binding studies using purified radiolabeled fiber demonstrated that fiber binds specifically and with high affinity to the cell plasma membrane, and that cell lines typically used for laboratory propagation of adenovirus have approximately 10{sup 4} high-affinity receptor sites per cell (Persson et al. 1985; Freimuth 1996). Similar numbers of high-affinity binding sites for radiolabeled intact virus particles also were observed (Seth et al. 1994).« less
NASA Technical Reports Server (NTRS)
Tel-Or, E.; Spath, S.; Packer, L.; Mehlhorn, R. J.
1986-01-01
Carbon turnover in response to abrupt changes in salinity, including the mobilization of glycogen for use in osmoregulation was studied with pulse-chase strategies utilizing nuclear magnetic resonance (NMR)-silent and NMR-detectable 12C and 13C isotopes, respectively. Growth of Agmenellum quadruplicatum in 30%-enriched 13C bicarbonate provided sufficient NMR-detectability of intracellular organic osmoregulants for these studies. A comparison of NMR spectra of intact cells and their ethanol extracts showed that the intact cell data were suitable for quantitative work, and, when combined with ESR measurements of cell volumes, yielded intracellular glucosylglycerol concentrations without disrupting the cells. NMR pulse-chase experiments were used to show that 13C-enriched glycogen, which had previously been accumulated by the cells under nitrogen-limited growth at low salinities, could be utilized for the synthesis of glucosylglycerol when the cells were abruptly transferred to hypersaline media, but only in the light. It was also shown that the accumulation of glucosylglycerol in the light occurred on a time scale similar to that of cell doubling. Depletion of glucosylglycerol when cells abruptly transferred to lower salinities appeared to be rapid--the intracellular pool of this osmoregulant was decreased 2-fold within 2 hours of hypotonic shock.
Akhmedov, Dmitry; Braun, Matthias; Mataki, Chikage; Park, Kyu-Sang; Pozzan, Tullio; Schoonjans, Kristina; Rorsman, Patrik; Wollheim, Claes B; Wiederkehr, Andreas
2010-11-01
Glucose-evoked mitochondrial signals augment ATP synthesis in the pancreatic β cell. This activation of energy metabolism increases the cytosolic ATP/ADP ratio, which stimulates plasma membrane electrical activity and insulin granule exocytosis. We have recently demonstrated that matrix pH increases during nutrient stimulation of the pancreatic β cell. Here, we have tested whether mitochondrial matrix pH controls oxidative phosphorylation and metabolism-secretion coupling in the rat β-cell line INS-1E. Acidification of the mitochondrial matrix pH by nigericin blunted nutrient-dependent respiratory and ATP responses (continuously monitored in intact cells). Using electrophysiology and single cell imaging, we find that the associated defects in energy metabolism suppress glucose-stimulated plasma membrane electrical activity and cytosolic calcium transients. The same parameters were unaffected after direct stimulation of electrical activity with tolbutamide, which bypasses mitochondrial function. Furthermore, lowered matrix pH strongly inhibited sustained, but not first-phase, insulin secretion. Our results demonstrate that the matrix pH exerts a control function on oxidative phosphorylation in intact cells and that this mode of regulation is of physiological relevance for the generation of downstream signals leading to insulin granule exocytosis. We propose that matrix pH serves a novel signaling role in sustained cell activation.
Ivanov, Sergey V.; Kuzmin, Igor; Wei, Ming-Hui; Pack, Svetlana; Geil, Laura; Johnson, Bruce E.; Stanbridge, Eric J.; Lerman, Michael I.
1998-01-01
To discover genes involved in von Hippel-Lindau (VHL)-mediated carcinogenesis, we used renal cell carcinoma cell lines stably transfected with wild-type VHL-expressing transgenes. Large-scale RNA differential display technology applied to these cell lines identified several differentially expressed genes, including an alpha carbonic anhydrase gene, termed CA12. The deduced protein sequence was classified as a one-pass transmembrane CA possessing an apparently intact catalytic domain in the extracellular CA module. Reintroduced wild-type VHL strongly inhibited the overexpression of the CA12 gene in the parental renal cell carcinoma cell lines. Similar results were obtained with CA9, encoding another transmembrane CA with an intact catalytic domain. Although both domains of the VHL protein contribute to regulation of CA12 expression, the elongin binding domain alone could effectively regulate CA9 expression. We mapped CA12 and CA9 loci to chromosome bands 15q22 and 17q21.2 respectively, regions prone to amplification in some human cancers. Additional experiments are needed to define the role of CA IX and CA XII enzymes in the regulation of pH in the extracellular microenvironment and its potential impact on cancer cell growth. PMID:9770531
Laurence, J; Friedman, S M; Chartash, E K; Crow, M K; Posnett, D N
1989-01-01
HIV selectively inhibited the proliferative response of clonal CD4+ T lymphocytes to alloantigen while other alloantigen-dependent responses were unperturbed. Specifically, impaired blastogenesis could be dissociated from alloantigen-specific induction of the B cell activation molecule CD23, IL-4 release, and inositol lipid hydrolysis. In addition, membrane expression of pertinent T cell receptor molecules, including CD2, CD3, and T cell antigen receptor (Ti), remained intact. Using two MHC class II-specific human CD4+ helper T cell clones, the proliferative defect was shown to be an early consequence of HIV infection, occurring within 4 d of viral inoculation and preceding increases in mature virion production. It was generalizable to three distinct methods of T cell activation, all independent of antigen-presenting cells: anti-CD3 mediated cross-linking of the CD3/Ti complex; anti-CD2 and phorbol 12-myristic 13-acetate (PMA); and anti-CD28 plus PMA. These abnormalities were not mitigated by addition of exogenous IL-2, even though expression of the IL-2 receptor (CD25) was unaltered. These studies define a selective blockade in T cell function early after HIV exposure that could serve as a model for certain in vivo manifestations of AIDS. PMID:2470786
Bioengineered humanized livers as better three-dimensional drug testing model system.
Vishwakarma, Sandeep Kumar; Bardia, Avinash; Lakkireddy, Chandrakala; Nagarapu, Raju; Habeeb, Md Aejaz; Khan, Aleem Ahmed
2018-01-27
To develop appropriate humanized three-dimensional ex-vivo model system for drug testing. Bioengineered humanized livers were developed in this study using human hepatic stem cells repopulation within the acellularized liver scaffolds which mimics with the natural organ anatomy and physiology. Six cytochrome P-450 probes were used to enable efficient identification of drug metabolism in bioengineered humanized livers. The drug metabolism study in bioengineered livers was evaluated to identify the absorption, distribution, metabolism, excretion and toxicity responses. The bioengineered humanized livers showed cellular and molecular characteristics of human livers. The bioengineered liver showed three-dimensional natural architecture with intact vasculature and extra-cellular matrix. Human hepatic cells were engrafted similar to the human liver. Drug metabolism studies provided a suitable platform alternative to available ex-vivo and in vivo models for identifying cellular and molecular dynamics of pharmacological drugs. The present study paves a way towards the development of suitable humanized preclinical model systems for pharmacological testing. This approach may reduce the cost and time duration of preclinical drug testing and further overcomes on the anatomical and physiological variations in xenogeneic systems.
Zhou, Xueping; He, Pingnian
2011-11-01
We have previously demonstrated that platelet-activating factor (PAF)-induced increases in microvessel permeability were associated with endothelial gap formation and that the magnitude of peak endothelial intracellular Ca(2+) concentration ([Ca(2+)](i)) and nitric oxide (NO) production at the single vessel level determines the degree of the permeability increase. This study aimed to examine whether the magnitudes of PAF-induced peak endothelial [Ca(2+)](i), NO production, and gap formation are correlated at the individual endothelial cell level in intact rat mesenteric venules. Endothelial gaps were quantified by the accumulation of fluorescent microspheres at endothelial clefts using confocal imaging. Endothelial [Ca(2+)](i) was measured on fura-2- or fluo-4-loaded vessels, and 4,5-diaminofluorescein (DAF-2) was used for NO measurements. The results showed that increases in endothelial [Ca(2+)](i), NO production, and gap formation occurred in all endothelial cells when vessels were exposed to PAF but manifested a spatial heterogeneity in magnitudes among cells in each vessel. PAF-induced peak endothelial [Ca(2+)](i) preceded the peak NO production by 0.6 min at the cellular level, and the magnitudes of NO production and gap formation linearly correlated with that of the peak endothelial [Ca(2+)](i) in each cell, suggesting that the initial levels of endothelial [Ca(2+)](i) determine downstream NO production and gap formation. These results provide direct evidence from intact venules that inflammatory mediator-induced increases in microvessel permeability are associated with the generalized formation of endothelial gaps around all endothelial cells. The spatial differences in the molecular signaling that were initiated by the heterogeneous endothelial Ca(2+) response contribute to the heterogeneity in permeability increases along the microvessel wall during inflammation.
Titanium Dioxide Nanoparticle Penetration into the Skin and Effects on HaCaT Cells
Crosera, Matteo; Prodi, Andrea; Mauro, Marcella; Pelin, Marco; Florio, Chiara; Bellomo, Francesca; Adami, Gianpiero; Apostoli, Pietro; De Palma, Giuseppe; Bovenzi, Massimo; Campanini, Marco; Larese Filon, Francesca
2015-01-01
Titanium dioxide nanoparticles (TiO2NPs) suspensions (concentration 1.0 g/L) in synthetic sweat solution were applied on Franz cells for 24 h using intact and needle-abraded human skin. Titanium content into skin and receiving phases was determined. Cytotoxicity (MTT, AlamarBlue® and propidium iodide, PI, uptake assays) was evaluated on HaCat keratinocytes after 24 h, 48 h, and seven days of exposure. After 24 h of exposure, no titanium was detectable in receiving solutions for both intact and damaged skin. Titanium was found in the epidermal layer after 24 h of exposure (0.47 ± 0.33 μg/cm2) while in the dermal layer, the concentration was below the limit of detection. Damaged skin, in its whole, has shown a similar concentration (0.53 ± 0.26 μg/cm2). Cytotoxicity studies on HaCaT cells demonstrated that TiO2NPs induced cytotoxic effects only at very high concentrations, reducing cell viability after seven days of exposure with EC50s of 8.8 × 10−4 M (MTT assay), 3.8 × 10−5 M (AlamarBlue® assay), and 7.6 × 10−4 M (PI uptake, index of a necrotic cell death). Our study demonstrated that TiO2NPs cannot permeate intact and damaged skin and can be found only in the stratum corneum and epidermis. Moreover, the low cytotoxic effect observed on human HaCaT keratinocytes suggests that these nano-compounds have a potential toxic effect at the skin level only after long-term exposure. PMID:26262634
Mast cell heterogeneity and anti-inflammatory annexin A1 expression in leprosy skin lesions.
Costa, Maurício B; Mimura, Kallyne K O; Freitas, Aline A; Hungria, Emerith M; Sousa, Ana Lúcia O M; Oliani, Sonia M; Stefani, Mariane M A
2018-03-29
Mast cells (MCs) have important immunoregulatory roles in skin inflammation. Annexin A1 (ANXA1) is an endogenous anti-inflammatory protein that can be expressed by mast cells, neutrophils, eosinophils, monocytes, epithelial and T cells. This study investigated MCs heterogeneity and ANXA1 expression in human dermatoses with special emphasis in leprosy. Sixty one skin biopsies from 2 groups were investigated: 40 newly diagnosed untreated leprosy patients (18 reaction-free, 11 type 1 reaction/T1R, 11 type 2 reaction/T2R); 21 patients with other dermatoses. Tryptase/try+ and chymase/chy + phenotypic markers and toluidine blue stained intact/degranulated MC counts/mm 2 were evaluated. Try + /chy + MCs and ANXA1 were identified by streptavidin-biotin-peroxidase immunostaining and density was reported. In leprosy, degranulated MCs outnumbered intact ones regardless of the leprosy form (from tuberculoid/TT to lepromatous/LL), leprosy reactions (reactional/reaction-free) and type of reaction (T1R/T2R). Compared to other dermatoses, leprosy skin lesions showed lower numbers of degranulated and intact MCs. Try + MCs outnumbered chy + in leprosy lesions (reaction-free/reactional, particularly in T2R), but not in other dermatoses. Compared to other dermatoses, ANXA1 expression, which is also expressed in mast cells, was higher in the epidermis of leprosy skin lesions, independently of reactional episode. In leprosy, higher MC degranulation and differential expression of try + /chy + subsets independent of leprosy type and reaction suggest that the Mycobacterium leprae infection itself dictates the inflammatory MCs activation in skin lesions. Higher expression of ANXA1 in leprosy suggests its potential anti-inflammatory role to maintain homeostasis preventing tissue and nerve damage. Copyright © 2018 Elsevier Ltd. All rights reserved.
B61 is a ligand for the ECK receptor protein-tyrosine kinase.
Bartley, T D; Hunt, R W; Welcher, A A; Boyle, W J; Parker, V P; Lindberg, R A; Lu, H S; Colombero, A M; Elliott, R L; Guthrie, B A
1994-04-07
A protein ligand for the ECK receptor protein-tyrosine kinase has been isolated by using the extracellular domain (ECK-X) of the receptor as an affinity reagent. Initially, concentrated cell culture supernatants were screened for receptor binding activity using immobilized ECK-X in a surface plasmon resonance detection system. Subsequently, supernatants from selected cell lines were fractionated directly by receptor affinity chromatography, resulting in the single-step purification of B61, a protein previously identified as the product of an early response gene induced by tumour necrosis factor-alpha. We report here that recombinant B61 induces autophosphorylation of ECK in intact cells, consistent with B61 being an authentic ligand for ECK. ECK is a member of a large orphan receptor protein-tyrosine kinase family headed by EPH, and we suggest that ligands for other members of this family will be related to B61, and can be isolated in the same way.
Visualizing Cochlear Mechanics Using Confocal Microscopy
NASA Astrophysics Data System (ADS)
Ulfendahl, M.; Boutet de Monvel, J.; Fridberger, A.
2003-02-01
The sound-evoked vibration pattern of the hearing organ is based on complex mechanical interactions between different cellular structures. To explore the structural changes occurring within the organ of Corti during basilar-membrane motion, stepwise alterations of the scala tympani pressure were applied in an in vitro preparation of the guinea-pig temporal bone. Confocal images were acquired at each pressure level. In this way, the motion of several structures could be simultaneously observed with high resolution in a nearly intact system. Images were analyzed using a novel wavelet-based optical-flow estimation algorithm. Under the present experimental conditions, the reticular lamina moved as a stiff plate with a center of rotation in the region of the inner hair cells. The outer hair cells appeared non-rigid and the basal, synaptic regions of these cells displayed significant radial motion indicative of cellular bending and internal shearing.
Hydrogel-Tissue Chemistry: Principles and Applications.
Gradinaru, Viviana; Treweek, Jennifer; Overton, Kristin; Deisseroth, Karl
2018-05-20
Over the past five years, a rapidly developing experimental approach has enabled high-resolution and high-content information retrieval from intact multicellular animal (metazoan) systems. New chemical and physical forms are created in the hydrogel-tissue chemistry process, and the retention and retrieval of crucial phenotypic information regarding constituent cells and molecules (and their joint interrelationships) are thereby enabled. For example, rich data sets defining both single-cell-resolution gene expression and single-cell-resolution activity during behavior can now be collected while still preserving information on three-dimensional positioning and/or brain-wide wiring of those very same neurons-even within vertebrate brains. This new approach and its variants, as applied to neuroscience, are beginning to illuminate the fundamental cellular and chemical representations of sensation, cognition, and action. More generally, reimagining metazoans as metareactants-or positionally defined three-dimensional graphs of constituent chemicals made available for ongoing functionalization, transformation, and readout-is stimulating innovation across biology and medicine.
Zhang, Jing-Chuan; Doñate, Fernando; Qi, Xiaoping; Ziats, Nicholas P.; Juarez, Jose C.; Mazar, Andrew P.; Pang, Yuan-Ping; McCrae, Keith R.
2002-01-01
Conformationally altered proteins and protein fragments derived from the extracellular matrix and hemostatic system may function as naturally occurring angiogenesis inhibitors. One example of such a protein is cleaved high molecular weight kininogen (HKa). HKa inhibits angiogenesis by inducing apoptosis of proliferating endothelial cells, effects mediated largely by HKa domain 5. However, the mechanisms underlying the antiangiogenic activity of HKa have not been characterized, and its binding site on proliferating endothelial cells has not been defined. Here, we report that the induction of endothelial cell apoptosis by HKa, as well as the antiangiogenic activity of HKa in the chick chorioallantoic membrane, was inhibited completely by antitropomyosin monoclonal antibody TM-311. TM-311 also blocked the high-affinity Zn2+-dependent binding of HKa to both purified tropomyosin and proliferating endothelial cells. Confocal microscopic analysis of endothelial cells stained with monoclonal antibody TM-311, as well as biotin labeling of cell surface proteins on intact endothelial cells, revealed that tropomyosin exposure was enhanced on the surface of proliferating cells. These studies demonstrate that the antiangiogenic effects of HKa depend on high-affinity binding to endothelial cell tropomyosin. PMID:12196635
Snapper, Clifford M
2016-06-24
Bacterial capsular polysaccharides are major virulence factors and are key targets in a number of licensed anti-bacterial vaccines. Their major characteristics are their large molecular weight and expression of repeating antigenic epitopes that mediate multivalent B cell receptor cross-linking. In addition, since the majority of these antigens cannot associate with MHC-II they fail to recruit CD4+ T cell help and are referred to as T cell-independent antigens. In this review I will discuss a series of studies from my laboratory that have underscored the importance of understanding polysaccharide-specific antibody responses within the context in which the PS is expressed (i.e. in isolation, as a component of conjugate vaccines, and expressed naturally by intact bacteria). We have shown that multivalent B cell receptor crosslinking, as mediated by polysaccharides, uniquely determines the qualitative response of the B cell to subsequent stimuli, but by itself is insufficient to induce antibody secretion or class switching. For these latter events to occur, second signals must act in concert with primary signals derived from the B cell receptor. The co-expression of polysaccharide and protein within intact bacteria promotes recruitment of CD4+ T cell help for the associated PS-specific IgG response, in contrast to isolated polysaccharides. Further, the particulate nature of extracellular bacteria confers properties to the polysaccharide-specific IgG response that makes it distinct immunologically from soluble conjugate vaccines. Finally, the underlying biochemical and/or structural differences that distinguish Gram-positive and Gram-negative bacteria appear to play critical roles in differentially regulating the associated polysaccharide-specific IgG responses to these groups of pathogens. These studies have a number of implications for the understanding and future design of polysaccharide-based vaccines. Published by Elsevier Ltd.
Motta, A; Peltre, G; Dormans, J A M A; Withagen, C E T; Lacroix, G; Bois, F; Steerenberg, P A
2004-02-01
Timothy grass (Phleum pratense) pollen allergens are an important cause of allergic symptoms. However, pollen grains are too large to penetrate the deeper airways. Grass pollen is known to release allergen-bearing starch granules (SG) upon contact with water. These granules can create an inhalable allergenic aerosol capable of triggering an early asthmatic response and are implicated in thunderstorm-associated asthma. We studied the humoral (IgE) and bronchial lymph node cells reactivities to SG from timothy grass pollen in pollen-sensitized rats. Brown-Norway rats were sensitized (day 0) and challenged (day 21) intratracheally with intact pollen and kept immunized by pollen intranasal instillation by 4 weeks intervals during 3 months. Blood and bronchial lymph nodes were collected 7 days after the last intranasal challenge. SG were purified from fresh timothy grass pollen using 5 microm mesh filters. To determine the humoral response (IgE) to SG, we developed an original ELISA inhibition test, based on competition between pollen allergens and purified SG. The cell-mediated response to SG in the bronchial lymph node cells was determined by measuring the uptake of [3H]thymidine in a proliferation assay. An antibody response to SG was induced, and purified SG were able to inhibit the IgE ELISA absorbance by 45%. Pollen extract and intact pollen gave inhibitions of 55% and 52%, respectively. A cell-mediated response was also found, as pollen extract, intact pollen and SG triggered proliferation of bronchial lymph node cells. It was confirmed that timothy grass pollen contains allergen-loaded SG, which are released upon contact with water. These granules were shown to be recognized by pollen-sensitized rats sera and to trigger lymph node cell proliferation in these rats. These data provide new arguments supporting the implication of grass pollen SG in allergic asthma.
Hoka, S; Yamaura, K; Takenaka, T; Takahashi, S
1998-12-01
Venodilation is thought to be one of the mechanisms underlying propofol-induced hypotension. The purpose of this study is to test two hypotheses: (1) propofol increases systemic vascular capacitance, and (2) the capacitance change produced by propofol is a result of an inhibition of sympathetic vasoconstrictor activity. In 33 Wistar rats previously anesthetized with urethane and ketamine, vascular capacitance was examined before and after propofol infusion by measuring mean circulatory filling pressure (Pmcf). The Pmcf was measured during a brief period of circulatory arrest produced by inflating an indwelling balloon in the right atrium. Rats were assigned into four groups: an intact group, a sympathetic nervous system (SNS)-block group produced by hexamethonium infusion, a SNS-block + noradrenaline (NA) group, and a hypovolemic group. The Pmcf was measured at a control state and 2 min after a bolus administration of 2, 10, and 20 mg/kg of propofol. The mean arterial pressure (MAP) was decreased by propofol dose-dependently in intact, hypovolemic, and SNS-block groups, but the decrease in MAP was less in the SNS-block group (-25%) than in the intact (-50%) and hypovolemic (-61%) groups. In the SNS-block + NA group, MAP decreased only at 20 mg/kg of propofol (-18%). The Pmcf decreased in intact and hypovolemic groups in a dose-dependent fashion but was unchanged in the SNS-block and SNS-block + NA groups. The results have provided two principal findings: (1) propofol decreases Pmcf dose-dependently, and (2) the decrease in Pmcf by propofol is elicited only when the sympathetic nervous system is intact, suggesting that propofol increases systemic vascular capacitance as a result of an inhibition of sympathetic nervous system.
Myelopoiesis in the Context of Innate Immunity.
Mitroulis, Ioannis; Kalafati, Lydia; Hajishengallis, George; Chavakis, Triantafyllos
2018-06-06
An intact and fully functional innate immune system is critical in the defense against pathogens. Indeed, during systemic infection, the ability of the organism to cope with the increased demand for phagocytes depends heavily on sufficient replenishment of mature myeloid cells. This process, designated emergency or demand-adapted myelopoiesis, requires the activation of hematopoietic progenitors in the bone marrow (BM), resulting in their proliferation and differentiation toward the myeloid lineage. Failure of BM progenitors to adapt to the enhanced need for mature cells in the periphery can be life-threatening, as indicated by the detrimental effect of chemotherapy-induced myelosuppression on the outcome of systemic infection. Recent advances demonstrate an important role of not only committed myeloid progenitors but also of hematopoietic stem cells (HSCs) in emergency myelopoiesis. In this regard, pathogen-derived products (e.g., Toll-like receptor ligands) activate HSC differentiation towards the myeloid lineage, either directly or indirectly, by inducing the production of inflammatory mediators (e.g., cytokines and growth factors) by hematopoietic and nonhematopoietic cell populations. The inflammatory mediators driving demand-adapted myelopoiesis target not only HSCs but also HSC-supportive cell populations, collectively known as the HSC niche, the microenvironment where HSCs reside. In this review, we discuss recent findings that have further elucidated the mechanisms that drive emergency myelopoiesis, focusing on the interactions of HSCs with their BM microenvironment. © 2018 S. Karger AG, Basel.
Thomas, Edwin L.; Aune, Thomas M.
1978-01-01
The bactericidal action that results from lactoperoxidase-catalyzed oxidation of iodide or thiocyanate was studied, using Escherichia coli as the test organism. The susceptibility of intact cells to bactericidal action was compared with that of cells with altered cell envelopes. Exposure to ethylenediaminetetraacetic acid, to lysozyme and ethylenediaminetetraacetic acid, or to osmotic shock were used to alter the cell envelope. Bactericidal action was greatly increased when the cells were exposed to the lactoperoxidase-peroxide-iodide system at low temperatures, low cell density, or after alteration of the cell envelope. When thiocyanate was substituted for iodide, bactericidal activity was observed only at low cell density or after osmotic shock. Low temperature and low cell density lowered the rate of destruction of peroxide by the bacteria. Therefore, competition for peroxide between the bacteria and lactoperoxidase may influence the extent of bactericidal action. Alteration of the cell envelope had only a small effect on the rate of destruction of peroxide. Instead, the increased susceptibility of these altered cells suggested that bactericidal action required permeation of a reagent through the cell envelope. In addition to altering the cell envelope, these procedures partly depleted cells of oxidizable substrates and sulfhydryl components. Adding an oxidizable substrate did not decrease the susceptibility of the altered cells. On the other hand, mild reducing agents such as sulfhydryl compounds did partly reverse bactericidal action when added after exposure of cells to the peroxidase systems. These studies indicate that alteration of the metabolism, structure, or composition of bacterial cells can greatly increase their susceptibility to peroxidase bactericidal action. PMID:348097
Modeling the Blood-Brain Barrier in a 3D triple co-culture microfluidic system.
Adriani, G; Ma, D; Pavesi, A; Goh, E L K; Kamm, R D
2015-01-01
The need for a blood-brain barrier (BBB) model that accurately mimics the physiological characteristics of the in-vivo situation is well-recognized by researchers in academia and industry. However, there is currently no in-vitro model allowing studies of neuronal growth and/or function influenced by factors from the blood that cross through the BBB. Therefore, we established a 3D triple co-culture microfluidic system using human umbilical vein endothelial cells (HUVEC) together with primary rat astrocytes and neurons. Immunostaining confirmed the successful triple co-culture system consisting of an intact BBB with tight intercellular junctions in the endothelial monolayer. The BBB selective permeability was determined by a fluorescent-based assay using dextrans of different molecular weights. Finally, neuron functionality was demonstrated by calcium imaging.
Detection of Iss and Bor on the surface of Escherichia coli.
Lynne, A M; Skyberg, J A; Logue, C M; Nolan, L K
2007-03-01
To confirm the presence of Iss and Bor on the outer membrane of Escherichia coli using Western blots of outer membrane protein (OMP) preparations and fluorescence microscopy, and explore the use of fluorescence microscopy for the detection of avian pathogenic E. coli (APEC) and diagnosis of avian colibacillosis. Knockout mutants of iss and bor were created using a one-step recombination of target genes with PCR-generated antibiotic resistance cassettes. Anti-Iss monoclonal antibodies (Mabs) that cross-react with Bor protein were used to study the mutants relative to the wild-type organism. These Mabs were used as reagents to study OMP preparations of the mutants with Western blotting and intact E. coli cells with fluorescence microscopy. Iss and Bor were detected in Western blots of OMP preparations of the wild type. Also, Iss was detected on Deltabor mutants, and Bor was detected on Deltaiss mutants. Iss and Bor were also detected on the surface of the intact, wild-type cells and mutants using fluorescence microscopy. These results demonstrate that Bor and Iss are exposed on E. coli's outer membrane where they may be recognized by the host's immune system. To our knowledge, this is the first report confirming Iss' location in the outer membrane of an E. coli isolate. Such surface exposure has implications for the use of these Mabs for APEC detection and colibacillosis control.
Isolated hepatocytes--past, present and future.
Berry, M N; Grivell, A R; Grivell, M B; Phillips, J W
1997-07-01
The first technique for large-scale preparation of isolated hepatocytes was described in 1953 and involved perfusion of rat liver under pressure with a Ca(2+)-free solution containing a chelating agent. Various modifications of this technique were in use over the next ten years, until it was demonstrated that cells prepared in this manner were grossly damaged, losing most of their cytoplasmic enzymes during the preparative procedure. The successful preparation of intact isolated hepatocytes by collagenase-treatment of liver was achieved in 1967, and the widespread use of intact hepatocyte suspensions was accelerated by the development soon after of high-yield preparative techniques involving perfusion of the liver with a medium containing collagenase. The introduction of the isolated hepatocyte preparation has enabled experimental studies that otherwise would not be feasible. Important advances have been the use of cultured hepatocytes, frequently of human origin, for the investigation of the metabolism and toxicology of potential therapeutic agents. Success in this field has been achieved through the steady improvement in techniques for the maintenance in culture of differentiated hepatocytes, and in particular their cytochrome P450 complexes. Another area showing considerable promise is the employment of hepatocytes, generally from a porcine source, in temporary support systems for patients with acute liver failure. Our own studies have concentrated on the demonstration of long-range interactions between hepatocyte compartments which suggest that energy transfer between cell compartments can take place without ATP turnover.
Enqvist, Monika; Nilsonne, Gustav; Hammarfjord, Oscar; Wallin, Robert P A; Björkström, Niklas K; Björnstedt, Mikael; Hjerpe, Anders; Ljunggren, Hans-Gustaf; Dobra, Katalin; Malmberg, Karl-Johan; Carlsten, Mattias
2011-10-01
CD94/NKG2A is an inhibitory receptor that controls the activity of a large proportion of human NK cells following interactions with the nonclassical HLA class Ib molecule HLA-E expressed on target cells. In this study, we show that selenite (SeO(3)(2-)), an inorganic selenium compound, induces an almost complete loss of cell surface expression of HLA-E on tumor cells of various origins. Selenite abrogated the HLA-E expression at a posttranscriptional level, since selenite exposure led to a dose-dependent decrease in cellular HLA-E protein expression whereas the mRNA levels remained intact. The loss of HLA-E expression following selenite treatment was associated with decreased levels of intracellular free thiols in the tumor cells, suggesting that the reduced HLA-E protein synthesis was caused by oxidative stress. Indeed, HLA-E expression and the level of free thiols remained intact following treatment with selenomethionine, a selenium compound that does not generate oxidative stress. Loss of HLA-E expression, but not of total HLA class I expression, on tumor cells resulted in increased susceptibility to CD94/NK group 2A-positive NK cells. Our results suggest that selenite may be used to potentiate the anti-tumor cytotoxicity in settings of NK cell-based immunotherapies.
Faizan, Ahmad; Goel, Vijay K; Biyani, Ashok; Garfin, Steven R; Bono, Christopher M
2012-03-01
Studies delineating the adjacent level effect of single level disc replacement systems have been reported in literature. The aim of this study was to compare the adjacent level biomechanics of bi-level disc replacement, bi-level fusion and a construct having adjoining level disc replacement and fusion system. In total, biomechanics of four models- intact, bi level disc replacement, bi level fusion and fusion plus disc replacement at adjoining levels- was studied to gain insight into the effects of various instrumentation systems on cranial and caudal adjacent levels using finite element analysis (73.6N+varying moment). The bi-level fusion models are more than twice as stiff as compared to the intact model during flexion-extension, lateral bending and axial rotation. Bi-level disc replacement model required moments lower than intact model (1.5Nm). Fusion plus disc replacement model required moment 10-25% more than intact model, except in extension. Adjacent level motions, facet loads and endplate stresses increased substantially in the bi-level fusion model. On the other hand, adjacent level motions, facet loads and endplate stresses were similar to intact for the bi-level disc replacement model. For the fusion plus disc replacement model, adjacent level motions, facet loads and endplate stresses were closer to intact model rather than the bi-level fusion model, except in extension. Based on our finite element analysis, fusion plus disc replacement procedure has less severe biomechanical effects on adjacent levels when compared to bi-level fusion procedure. Bi-level disc replacement procedure did not have any adverse mechanical effects on adjacent levels. Copyright © 2011 Elsevier Ltd. All rights reserved.
Subczynski, Witold Karol; Widomska, Justyna; Mainali, Laxman
2017-01-01
Electron paramagnetic resonance (EPR) spin-label oximetry allows the oxygen permeability coefficient to be evaluated across homogeneous lipid bilayer membranes and, in some cases, across coexisting membrane domains without their physical separation. The most pronounced effect on oxygen permeability is observed for cholesterol, which additionally induces the formation of membrane domains. In intact biological membranes, integral proteins induce the formation of boundary and trapped lipid domains with a low oxygen permeability. The effective oxygen permeability coefficient across the intact biological membrane is affected not only by the oxygen permeability coefficients evaluated for each lipid domain but also by the surface area occupied by these domains in the membrane. All these factors observed in fiber cell plasma membranes of clear human eye lenses are reviewed here.
The metabolism of isocytidine in Escherichia coli
Doskočil, J.; Holý, A.; Filip, J.
1974-01-01
Intact cells and cell-free extracts of E. coli convert isocytidine to isocytosine and uracil. The radioactive label of 5-[3H]isocytidine is incorporated into RNA and, DNA of growing bacteria at a rate equal to about 1.4% of that of cytidine under similar conditions; the radioactivity is found in uridylic, cytidylic and 2′-deoxythymidylic acids, while less than 0.4% of incorporated radioactive material might be due to possible incorporation of intact isocytidine. Uridine phosphorylase and cytidine deaminase apparently do not participate in the metabolic conversion of isocytidine. 5-[3H]isocytidine was prepared by platinum-catalyzed dehalogenation of 5-bromoisocytidine in the presence of tritium. The 5-bromo derivative was obtained from 2′,3′-0- -isopropylideneisocytidine by N-bromsuccinimide bromination followed by acidic hydrolysis. PMID:10793683
Asztalos, Emese; Sipka, Gábor; Kis, Mariann; Trotta, Massimo; Maróti, Péter
2012-06-01
The sensitivity of intact cells of purple photosynthetic bacterium Rhodobacter sphaeroides wild type to low level (<100 μM) of mercury (Hg²⁺) contamination was evaluated by absorption and fluorescence spectroscopies of the bacteriochlorophyll-protein complexes. All assays related to the function of the reaction center (RC) protein (induction of the bacteriochlorophyll fluorescence, delayed fluorescence and light-induced oxidation and reduction of the bacteriochlorophyll dimer and energization of the photosynthetic membrane) showed prompt and later effects of the mercury ions. The damage expressed by decrease of the magnitude and changes of rates of the electron transfer kinetics followed complex (spatial and temporal) pattern according to the different Hg²⁺ sensitivities of the electron transport (donor/acceptor) sites including the reduced bound and free cytochrome c₂ and the primary reduced quinone. In contrast to the RC, the light harvesting system and the bc₁ complex demonstrated much higher resistance against the mercury pollution. The 850 and 875 nm components of the peripheral and core complexes were particularly insensitive to the mercury(II) ions. The concentration of the photoactive RCs and the connectivity of the photosynthetic units decreased upon mercury treatment. The degree of inhibition of the photosynthetic apparatus was always higher when the cells were kept in the light than in the dark indicating the importance of metabolism in active transport of the mercury ions from outside to the intracytoplasmic membrane. Any of the tests applied in this study can be used for detection of changes in photosynthetic bacteria at the early stages of the action of toxicants.
Characterization of Differential Toll-Like Receptor Responses below the Optical Diffraction Limit**
Aaron, Jesse S.; Carson, Bryan D.; Timlin, Jerilyn A.
2013-01-01
Many membrane receptors are recruited to specific cell surface domains to form nanoscale clusters upon ligand activation. This step appears to be necessary to initiate signaling, including pathways in innate immune system activation. However, virulent pathogens such as Yersinia pestis (the causative agent of plague) are known to evade innate immune detection, in contrast to similar microbes (such as E. coli) that elicit a robust response. This disparity has been partly attributed to the structure of lipopolysaccharides (LPS) on the bacterial cell wall, which are recognized by the innate immune receptor TLR4. As such, we hypothesized that nanoscale differences would exist between the spatial clustering of TLR4 upon binding of LPS derived from Y. pestis and E. coli. Although optical imaging can provide exquisite details of the spatial organization of biomolecules, there is a mismatch between the scale at which receptor clustering occurs (<300 nm) and the optical diffraction limit (>400 nm). The last decade has seen the emergence of super-resolution imaging methods that effectively break the optical diffraction barrier to yield truly nanoscale information in intact biological samples. This study reports the first visualizations of TLR4 distributions on intact cells at image resolutions of <30 nm using a novel, dual-color stochastic optical reconstruction microscopy (STORM) technique. This methodology permits distinction between receptors containing bound LPS from those without at the nanoscale. Importantly, we also show that LPS derived from immuno-stimulatory bacteria resulted in significantly higher LPS-TLR4 cluster sizes and a nearly two-fold greater ligand/receptor colocalization as compared to immuno-evading LPS. PMID:22807232
Visualizing long-term single-molecule dynamics in vivo by stochastic protein labeling.
Liu, Hui; Dong, Peng; Ioannou, Maria S; Li, Li; Shea, Jamien; Pasolli, H Amalia; Grimm, Jonathan B; Rivlin, Patricia K; Lavis, Luke D; Koyama, Minoru; Liu, Zhe
2018-01-09
Our ability to unambiguously image and track individual molecules in live cells is limited by packing of multiple copies of labeled molecules within the resolution limit. Here we devise a universal genetic strategy to precisely control copy number of fluorescently labeled molecules in a cell. This system has a dynamic range of ∼10,000-fold, enabling sparse labeling of proteins expressed at different abundance levels. Combined with photostable labels, this system extends the duration of automated single-molecule tracking by two orders of magnitude. We demonstrate long-term imaging of synaptic vesicle dynamics in cultured neurons as well as in intact zebrafish. We found axon initial segment utilizes a "waterfall" mechanism gating synaptic vesicle transport polarity by promoting anterograde transport processivity. Long-time observation also reveals that transcription factor hops between clustered binding sites in spatially restricted subnuclear regions, suggesting that topological structures in the nucleus shape local gene activities by a sequestering mechanism. This strategy thus greatly expands the spatiotemporal length scales of live-cell single-molecule measurements, enabling new experiments to quantitatively understand complex control of molecular dynamics in vivo.
Mitotic trigger waves and the spatial coordination of the Xenopus cell cycle.
Chang, Jeremy B; Ferrell, James E
2013-08-29
Despite the large size of the Xenopus laevis egg (approximately 1.2 mm diameter), a fertilized egg rapidly proceeds through mitosis in a spatially coordinated fashion. Mitosis is initiated by a bistable system of regulatory proteins centred on Cdk1 (refs 1, 2), raising the possibility that this spatial coordination could be achieved through trigger waves of Cdk1 activity. Using an extract system that performs cell cycles in vitro, here we show that mitosis does spread through Xenopus cytoplasm via trigger waves, propagating at a linear speed of approximately 60 µm min(-1). Perturbing the feedback loops that give rise to the bistability of Cdk1 changes the speed and dynamics of the waves. Time-lapse imaging of intact eggs argues that trigger waves of Cdk1 activation are responsible for surface contraction waves, ripples in the cell cortex that precede cytokinesis. These findings indicate that Cdk1 trigger waves help ensure the spatiotemporal coordination of mitosis in large eggs. Trigger waves may be an important general mechanism for coordinating biochemical events over large distances.
Muneoka, Satoshi; Nakamura, Ryuichi; Hoshino, Masato; Utsugisawa, Kimiaki; Makino, Tomohiro
2018-05-29
Membrane proteins, such as G-protein-coupled receptors and ion channels are attractive targets for antibody-based therapeutics as pharmaceutical and biotech companies have increasingly moved their attention to biologics. However, lack of appropriate screening systems to correctly detect specific antibodies against membrane proteins has hampered antibody discovery and development so far. In the present study, we described the development of a novel high-throughput immunoassay platform based on AlphaLISA to screen antibodies against intact membrane proteins, taking nicotinic acetylcholine receptor (nAChR), one of the best-known ion channel membrane proteins, as an example. By using signal transfer between α-bungarotoxin, the ligand of the receptor, conjugated with donor beads, and anti-nAChR antibodies (mAb35 and mAb210) with acceptor beads, we could detect strong and specific signals, directly from the homogenates of cells expressing nAChR. Using this platform, we isolated a new human IgG antibody against nAChR in a high-throughput manner. This methodology can be applied for the discovery of antibodies against other types of membrane proteins. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Sengupta, Arjun; Krishnaiah, Saikumari Y; Rhoades, Seth; Growe, Jacqueline; Slaff, Barry; Venkataraman, Anand; Olarerin-George, Anthony O; Van Dang, Chi; Hogenesch, John B; Weljie, Aalim M
2016-07-27
Oscillations in circadian metabolism are crucial to the well being of organism. Our understanding of metabolic rhythms has been greatly enhanced by recent advances in high-throughput systems biology experimental techniques and data analysis. In an in vitro setting, metabolite rhythms can be measured by time-dependent sampling over an experimental period spanning one or more days at sufficent resolution to elucidate rhythms. We hypothesized that cellular metabolic effects over such a time course would be influenced by both oscillatory and circadian-independent cell metabolic effects. Here we use nuclear magnetic resonance (NMR) spectroscopy-based metabolic profiling of mammalian cell culture media of synchronized U2 OS cells containing an intact transcriptional clock. The experiment was conducted over 48 h, typical for circadian biology studies, and samples collected at 2 h resolution to unravel such non-oscillatory effects. Our data suggest specific metabolic activities exist that change continuously over time in this settting and we demonstrate that the non-oscillatory effects are generally monotonic and possible to model with multivariate regression. Deconvolution of such non-circadian persistent changes are of paramount importance to consider while studying circadian metabolic oscillations.
Sengupta, Arjun; Krishnaiah, Saikumari Y.; Rhoades, Seth; Growe, Jacqueline; Slaff, Barry; Venkataraman, Anand; Olarerin-George, Anthony O.; Van Dang, Chi; Hogenesch, John B.; Weljie, Aalim M.
2016-01-01
Oscillations in circadian metabolism are crucial to the well being of organism. Our understanding of metabolic rhythms has been greatly enhanced by recent advances in high-throughput systems biology experimental techniques and data analysis. In an in vitro setting, metabolite rhythms can be measured by time-dependent sampling over an experimental period spanning one or more days at sufficent resolution to elucidate rhythms. We hypothesized that cellular metabolic effects over such a time course would be influenced by both oscillatory and circadian-independent cell metabolic effects. Here we use nuclear magnetic resonance (NMR) spectroscopy-based metabolic profiling of mammalian cell culture media of synchronized U2 OS cells containing an intact transcriptional clock. The experiment was conducted over 48 h, typical for circadian biology studies, and samples collected at 2 h resolution to unravel such non-oscillatory effects. Our data suggest specific metabolic activities exist that change continuously over time in this settting and we demonstrate that the non-oscillatory effects are generally monotonic and possible to model with multivariate regression. Deconvolution of such non-circadian persistent changes are of paramount importance to consider while studying circadian metabolic oscillations. PMID:27472375
Kenny, J J; Guelde, G; Hansen, C; Mond, J J
1987-03-01
The xid gene, which causes a B lymphocyte immune defect in CBA/N mice, has been bred onto the C3H/HeN background. The resulting X chromosome congenic mice (C3.CBA/N) exhibit immunologic defects that are much more profound than the defect exhibited by CBA/N mice; thus, the B cells from C3.CBA/N mice not only fail to respond to thymus-independent (TI) type 2 antigens such as TNP-Ficoll, but they fail to respond in vitro to TI-type 1 antigens such as TNP-Brucella abortus (BA) and B cell mitogens such as LPS and Nocardia water-soluble mitogen. In this paper we show that the synergistic defect seen in C3.CBA/N B cells is also elicited in adoptive transfer assays to thymus-dependent (TD) antigens such as TNP-KLH and PC-KLH, antigens to which both parental strains respond. Thus, the secondary adoptive transfer response of C3.CBA/N spleen cells is generally less than 5% of the immune response produced by CBA/N or C3H/HeN spleen cells. This synergistic defect is restricted to the C3.CBA/N B cells, since C3.CBA/N T cells can provide help to CBA/N B cells that is equivalent to the help obtained with CBA/N T cells. The low responsiveness of C3.CBA/N spleen cells to TD antigens, which is elicited in adoptive transfer assays, is not seen when the intact animal is immunized with antigen in CFA; this, intact C3.CBA/N mice produce anti-PC-KLH and anti-TNP-KLH responses only slightly lower than the responses of CBA/N mice to these same antigens. In contrast, when these mice are immunized with phenol-extracted LPS, a TI-type 1 antigen, their antibody responses are severely depressed. These data suggest that under conditions in which T cell help may be limiting or in which the intact physiology of the T and B cells has been disrupted, C3.CBA/N B cells demonstrate profound immunologic impairment; however, when adequate T cell help is available and the splenic architecture is not disrupted, their immune responses appear to progress in a normal fashion.
Reddy, D Santhosh; Sivapathasundharam, B; Saraswathi, T R; SriRam, G
2012-01-01
Mast cells are granule containing secretory cells present in oral mucosal and connective tissue environment. Oral lichen planus and oral lichenoid lesions are commonly occurring oral diseases and have some similarity clinically and histologically. Both are characterized by an extensive sub epithelial infiltrate of T cells, together with mast cells, eosinophils and blood capillaries. In this study mast cell and eosinophil densities along with number of blood capillaries were studied to find out if they could aid in histopathological distinction between oral lichen planus and lichenoid mucositis. To enumerate mast cells and compare the status of Mast Cells (Intact or Degranulated) in Lichen planus, Lichenoid mucositis and normal buccal mucosa in tissue sections stained with Toluidine Blue, and also to enumerate Eosinophils and blood capillaries in tissue sections stained with H and E. The study group included 30 cases each of oral lichen planus and oral lichenoid mucositis. 10 cases of clinically normal oral buccal mucosa formed the control group. All the sections were stained with Toluidine blue and H and E separately. Histopathological analysis was done using binocular light microscope equipped with square ocular grid to standardize the field of evaluation. The result of the study showed. · Significant increase in number of mast cells in oral lichen planus and oral lichenoid mucositis compared to normal buccal mucosa. · Significant increase of intact mast cells suepithelially within the inflammatory cell infiltrate in oral lichen planus compared to oral lichenoid mucositis. · Significant increase of degranulated mast cells in oral lichenoid mucositis to oral lichen planus, and increase in number of eosinophil densities in oral lichenoid mucositis compared to oral lichen planus. · Significant increase in number of capillaries in oral lichenoid mucositis compared to oral lichen planus. The findings of increased number of intact mast cells sub epithelially in oral lichen planus to oral lichenoid mucositis and increase in number of degranulated mast cells as well as capillaries subepithelially in oral lichenoid mucositis to oral lichen planus can be used as reliable criteria for histologic distinction between these two lesions. The increase of eosinophils in oral lichenoid mucositis to oral lichen planus could be used as adjunct histologic criterion in the diagnosis of oral lichenoid mucositis.
Deregulation of EZH2 expression in human spermatogenic disorders and testicular germ cell tumors.
Hinz, Stefan; Magheli, Ahmed; Weikert, Steffen; Schulze, Wolfgang; Krause, Hans; Schrader, Mark; Miller, Kurt; Kempkensteffen, Carsten
2010-10-01
Enhancer of Zeste 2 (EZH2) is an epigenetic transcriptional repressor involved in cell cycle control and cell fate decisions. Since these processes play key roles during intact spermatogenesis, deregulation of EZH2 expression may contribute to the development and progression of benign and malignant testicular diseases. The objective of this study was to investigate the expression profile of EZH2 in testicular germ cell tumors (TGCT) and spermatogenic defects. Real-time RT-PCR was applied to quantify the m-RNA expression of EZH2 in 64 seminomas 36 non-seminomas, 4 carcinomas in situ (CIS), 40 samples harboring impaired spermatogenesis and 24 normal testicular reference biopsies. EZH2 was expressed in 99% of TGCT samples and in all biopsies with intact spermatogenesis. Its expression levels were highest in normal testicular tissue, and continuously decreased with malignant transformation to CIS and further progression to invasive TGCT (P < 0.001). EZH2 tumor levels were not related to the histological TGCT subtype or clinical tumor stage. Comparison of distinct stages of spermatogenic failure revealed an inverse association of EZH2 levels to the severity of the spermatogenic defect (P < 0.001). Our data strongly suggest that in TGCT EZH2 does not exert its often assumed oncogenic properties during malignant transformation and progression. High EZH2 levels in normal testicular tissue and the inverse association of its expression levels with the severity of spermatogenic failure point to its potential value as a molecular marker for spermatogenic defects and may indicate an important physiological role of EZH2 during intact spermatogenesis.
Regulation of Pyrimidine Biosynthesis in Intact Cells of Cucurbita pepo.
Lovatt, C J; Albert, L S
1979-10-01
The occurrence of the complete orotic acid pathway for the biosynthesis de novo of pyrimidine nucleotides was demonstrated in the intact cells of roots excised from summer squash (Cucurbita pepo L. cv. Early Prolific Straightneck). Evidence that the biosynthesis of pyrimidine nucleotides proceeds via the orotate pathway in C. pepo included: (a) demonstration of the incorporation of [(14)C]NaHCO(3), [(14)C]carbamylaspartate, and [(14)C]orotic acid into uridine nucleotides; (b) the isolation of [(14)C]orotic acid when [(14)C]NaHCO(3) and [(14)C]carbamylaspartate were used as precursors; (c) the observation that 6-azauridine, a known inhibitor of the pathway, blocked the incorporation of early precursors into uridine nucleotides while causing a concomitant accumulation of orotic acid; and (d) demonstration of the activities of the component enzymes of the orotate pathway in assays employing cell-free extracts.Regulation of the activity of the orotate pathway by end product inhibition was demonstrated in the intact cells of excised roots by measuring the influence of added pyrimidine nucleosides on the incorporation of [(14)C]NaHCO(3) into uridine nucleotides. The addition of either uridine or cytidine inhibited the incorporation of [(14)C]NaHCO(3) into uridine nucleotides by about 80%. The observed inhibition was demonstrated to be readily reversible upon transfer of the roots to a nucleoside-free medium. Experiments employing various radiolabeled precursors indicated that one or both of the first two enzymes in the orotate pathway are the only site(s) of regulation of physiological importance.
Pathogen vacuole purification from legionella-infected amoeba and macrophages.
Hoffmann, Christine; Finsel, Ivo; Hilbi, Hubert
2013-01-01
Legionella pneumophila replicates intracellularly in environmental and immune phagocytes within a unique membrane-bound compartment, the Legionella-containing vacuole (LCV). Formation of LCVs is strictly dependent on the Icm/Dot type IV secretion system and the translocation of "effector" proteins into the cell. Some effector proteins decorate the LCV membrane and subvert host cell vesicle trafficking pathways. Here we describe a method to purify intact LCVs from Dictyostelium discoideum amoebae and RAW 264.7 murine macrophages. The method comprises a two-step protocol: first, LCVs are enriched by immuno-magnetic separation using an antibody against a bacterial effector protein specifically localizing to the LCV membrane, and second, the LCVs are further purified by density gradient centrifugation. The purified LCVs can be characterized by proteomics and other biochemical approaches.
Functional purification of the monocarboxylate transporter of the yeast Candida utilis.
Baltazar, Fátima; Cássio, Fernanda; Leão, Cecília
2006-08-01
Plasma membranes of the yeast, Candida utilis, were solubilized with octyl-beta-D-glucopyranoside and a fraction enriched in the lactate carrier was obtained with DEAE-Sepharose anion-exchange chromatography, after elution with 0.4 M NaCl. The uptake of lactic acid into proteoliposomes, containing the purified protein fraction and cytochrome c oxidase, was dependent on a proton-motive force and the transport specificity was consistent with the one of C. utilis intact cells. Overall, we have obtained a plasma membrane fraction enriched in the lactate carrier of C. utilis in which the transport properties were preserved. Given the similarities between the lactate transport of C. utilis and the one of mammalian cells, this purified system could be further explored to screen for specific lactate inhibitors, with potential therapeutic applications.
Carboxyl methylation of Ras-related proteins during signal transduction in neutrophils.
Philips, M R; Pillinger, M H; Staud, R; Volker, C; Rosenfeld, M G; Weissmann, G; Stock, J B
1993-02-12
In human neutrophils, as in other cell types, Ras-related guanosine triphosphate-binding proteins are directed toward their regulatory targets in membranes by a series of posttranslational modifications that include methyl esterification of a carboxyl-terminal prenylcysteine residue. In intact cells and in a reconstituted in vitro system, the amount of carboxyl methylation of Ras-related proteins increased in response to the chemoattractant N-formyl-methionyl-leucyl-phenylalanine (FMLP). Activation of Ras-related proteins by guanosine-5'-O-(3-thiotriphosphate) had a similar effect and induced translocation of p22rac2 from cytosol to plasma membrane. Inhibitors of prenylcysteine carboxyl methylation effectively blocked neutrophil responses to FMLP. These findings suggest a direct link between receptor-mediated signal transduction and the carboxyl methylation of Ras-related proteins.
Zhang, Jincan; Lin, Li; Sun, Luzhao; Huang, Yucheng; Koh, Ai Leen; Dang, Wenhui; Yin, Jianbo; Wang, Mingzhan; Tan, Congwei; Li, Tianran; Tan, Zhenjun; Liu, Zhongfan; Peng, Hailin
2017-07-01
The atomically thin 2D nature of suspended graphene membranes holds promising in numerous technological applications. In particular, the outstanding transparency to electron beam endows graphene membranes great potential as a candidate for specimen support of transmission electron microscopy (TEM). However, major hurdles remain to be addressed to acquire an ultraclean, high-intactness, and defect-free suspended graphene membrane. Here, a polymer-free clean transfer of sub-centimeter-sized graphene single crystals onto TEM grids to fabricate large-area and high-quality suspended graphene membranes has been achieved. Through the control of interfacial force during the transfer, the intactness of large-area graphene membranes can be as high as 95%, prominently larger than reported values in previous works. Graphene liquid cells are readily prepared by π-π stacking two clean single-crystal graphene TEM grids, in which atomic-scale resolution imaging and temporal evolution of colloid Au nanoparticles are recorded. This facile and scalable production of clean and high-quality suspended graphene membrane is promising toward their wide applications for electron and optical microscopy. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Photoexcited quantum dots for killing multidrug-resistant bacteria
NASA Astrophysics Data System (ADS)
Courtney, Colleen M.; Goodman, Samuel M.; McDaniel, Jessica A.; Madinger, Nancy E.; Chatterjee, Anushree; Nagpal, Prashant
2016-05-01
Multidrug-resistant bacterial infections are an ever-growing threat because of the shrinking arsenal of efficacious antibiotics. Metal nanoparticles can induce cell death, yet the toxicity effect is typically nonspecific. Here, we show that photoexcited quantum dots (QDs) can kill a wide range of multidrug-resistant bacterial clinical isolates, including methicillin-resistant Staphylococcus aureus, carbapenem-resistant Escherichia coli, and extended-spectrum β-lactamase-producing Klebsiella pneumoniae and Salmonella typhimurium. The killing effect is independent of material and controlled by the redox potentials of the photogenerated charge carriers, which selectively alter the cellular redox state. We also show that the QDs can be tailored to kill 92% of bacterial cells in a monoculture, and in a co-culture of E. coli and HEK 293T cells, while leaving the mammalian cells intact, or to increase bacterial proliferation. Photoexcited QDs could be used in the study of the effect of redox states on living systems, and lead to clinical phototherapy for the treatment of infections.
Vellaichamy, Adaikkalam; Tran, John C.; Catherman, Adam D.; Lee, Ji Eun; Kellie, John F.; Sweet, Steve M.M.; Zamdborg, Leonid; Thomas, Paul M.; Ahlf, Dorothy R.; Durbin, Kenneth R.; Valaskovic, Gary A.; Kelleher, Neil L.
2010-01-01
Despite the availability of ultra-high resolution mass spectrometers, methods for separation and detection of intact proteins for proteome-scale analyses are still in a developmental phase. Here we report robust protocols for on-line LC-MS to drive high-throughput top-down proteomics in a fashion similar to bottom-up. Comparative work on protein standards showed that a polymeric stationary phase led to superior sensitivity over a silica-based medium in reversed-phase nanocapillary-LC, with detection of proteins >50 kDa routinely accomplished in the linear ion trap of a hybrid Fourier-Transform mass spectrometer. Protein identification was enabled by nozzle-skimmer dissociation (NSD) and detection of fragment ions with <5 ppm mass accuracy for highly-specific database searching using custom software. This overall approach led to identification of proteins up to 80 kDa, with 10-60 proteins identified in single LC-MS runs of samples from yeast and human cell lines pre-fractionated by their molecular weight using a gel-based sieving system. PMID:20073486
Raman spectroscopy of normal oral buccal mucosa tissues: study on intact and incised biopsies
NASA Astrophysics Data System (ADS)
Deshmukh, Atul; Singh, S. P.; Chaturvedi, Pankaj; Krishna, C. Murali
2011-12-01
Oral squamous cell carcinoma is one of among the top 10 malignancies. Optical spectroscopy, including Raman, is being actively pursued as alternative/adjunct for cancer diagnosis. Earlier studies have demonstrated the feasibility of classifying normal, premalignant, and malignant oral ex vivo tissues. Spectral features showed predominance of lipids and proteins in normal and cancer conditions, respectively, which were attributed to membrane lipids and surface proteins. In view of recent developments in deep tissue Raman spectroscopy, we have recorded Raman spectra from superior and inferior surfaces of 10 normal oral tissues on intact, as well as incised, biopsies after separation of epithelium from connective tissue. Spectral variations and similarities among different groups were explored by unsupervised (principal component analysis) and supervised (linear discriminant analysis, factorial discriminant analysis) methodologies. Clusters of spectra from superior and inferior surfaces of intact tissues show a high overlap; whereas spectra from separated epithelium and connective tissue sections yielded clear clusters, though they also overlap on clusters of intact tissues. Spectra of all four groups of normal tissues gave exclusive clusters when tested against malignant spectra. Thus, this study demonstrates that spectra recorded from the superior surface of an intact tissue may have contributions from deeper layers but has no bearing from the classification of a malignant tissues point of view.
Lehman, M N; Robinson, J E; Karsch, F J; Silverman, A J
1986-02-01
The luteinizing hormone-releasing hormone (LHRH) system of the sheep brain was examined by light microscopic immunocytochemistry with thick, unembedded sections. We compared the distribution and morphology of LHRH cells and their fibers in intact and ovariectomized anestrous ewes, and in breeding season ewes during the mid-luteal phase of their estrous cycle. In all animals, a majority of LHRH neurons were found in the medial preoptic area adjacent to the organum vasculosum of the lamina terminalis. These cells formed a continuum rostrally with immunoreactive neurons in the diagonal band of Broca and medial septum and caudally with cells in the ventrolateral anterior hypothalamus and lateral hypothalamus. Relatively few cells (1-2%) were seen in the arcuate nucleus or its vicinity. Preoptic LHRH neurons project to the tubero-infundibular sulcus of the median eminence by at least two routes: a major ventrolateral projection above the optic tract in the anterior and lateral hypothalamus, and a less prominent periventricular pathway along the third ventricle. LHRH fibers were also observed in a number of extrahypothalamic regions, including the medial amygdala and the accessory olfactory bulb. Immunoreactive LHRH neurons in the sheep exhibited a complex light microscopic morphology unlike that seen in LHRH cells of any other species to date. LHRH cells with extensive, branching processes were frequently found in clusters with close somatic appositions between neighboring cells. Multiple thin protuberances emanated from the soma of many immunoreactive neurons. Immunoreactive fibers with beaded varicosities often were intimately associated with both cell bodies and their dendritic processes. Morphometric analyses revealed that preoptic LHRH neurons in three of four mid-luteal phase ewes had a shorter total dendritic length than those neurons in either intact or ovariectomized anestrous ewes, but this difference between breeding season and anestrous ewes was not statistically significant. Evidence for possible seasonal and/or steroid-induced alterations in the morphology of LHRH neurons must be documented by further studies, including immunocytochemical observations at an ultrastructural level.
A Unifying Theory of Prostate Cancer
2001-09-01
of cell cycle arrest or apoptosis, may lead to genomic instability and the development of cancer. 10 * One of our goals was to determine whether p53...and cell cycle arrest. Therefore, mechanisms responsible for upregulation and activation of p53 are intact in prostatic epithelial cells. We also...such as y-irradiation (Girinsky et al., 1995). The p53 protein is known to be a key regulator of cell cycle arrest and/or apoptosis (Wiman, 1997