Structural and molecular interrogation of intact biological systems
Chung, Kwanghun; Wallace, Jenelle; Kim, Sung-Yon; Kalyanasundaram, Sandhiya; Andalman, Aaron S.; Davidson, Thomas J.; Mirzabekov, Julie J.; Zalocusky, Kelly A.; Mattis, Joanna; Denisin, Aleksandra K.; Pak, Sally; Bernstein, Hannah; Ramakrishnan, Charu; Grosenick, Logan; Gradinaru, Viviana; Deisseroth, Karl
2014-01-01
Obtaining high-resolution information from a complex system, while maintaining the global perspective needed to understand system function, represents a key challenge in biology. Here we address this challenge with a method (termed CLARITY) for the transformation of intact tissue into a nanoporous hydrogel-hybridized form (crosslinked to a three-dimensional network of hydrophilic polymers) that is fully assembled but optically transparent and macromolecule-permeable. Using mouse brains, we show intact-tissue imaging of long-range projections, local circuit wiring, cellular relationships, subcellular structures, protein complexes, nucleic acids and neurotransmitters. CLARITY also enables intact-tissue in situ hybridization, immunohistochemistry with multiple rounds of staining and de-staining in non-sectioned tissue, and antibody labelling throughout the intact adult mouse brain. Finally, we show that CLARITY enables fine structural analysis of clinical samples, including non-sectioned human tissue from a neuropsychiatric-disease setting, establishing a path for the transmutation of human tissue into a stable, intact and accessible form suitable for probing structural and molecular underpinnings of physiological function and disease. PMID:23575631
Newbury, H. John; Possingham, John V.
1977-01-01
Using conventional methods it is impossible to extract RNA as uncomplexed intact molecules from the leaves of grapevines (Vitis vinifera L.) and from a number of woody perennial species that contain high levels of reactive phenolic compounds. A procedure involving the use of high concentrations of the chaotropic agent sodium perchlorate prevents the binding of phenolic compounds to RNA during extraction. Analyses of the phenolics present in plant tissues used in these experiments indicate that there is a poor correlation between the total phenolic content and the complexing of RNA. However, qualitative analyses suggest that proanthocyanidins are involved in the tanning of RNA during conventional extractions. PMID:16660134
Kovaleski, John E; Heitman, Robert J; Gurchiek, Larry R; Hollis, J M; Liu, Wei; Pearsall, Albert W
2014-01-01
The mechanical property of stiffness may be important to investigating how lateral ankle ligament injury affects the behavior of the viscoelastic properties of the ankle complex. A better understanding of injury effects on tissue elastic characteristics in relation to joint laxity could be obtained from cadaveric study. To biomechanically determine the laxity and stiffness characteristics of the cadaver ankle complex before and after simulated injury to the anterior talofibular ligament (ATFL) and calcaneofibular ligament (CFL) during anterior drawer and inversion loading. Cross-sectional study. University research laboratory. Seven fresh-frozen cadaver ankle specimens. All ankles underwent loading before and after simulated lateral ankle injury using an ankle arthrometer. The dependent variables were anterior displacement, anterior end-range stiffness, inversion rotation, and inversion end-range stiffness. Isolated ATFL and combined ATFL and CFL sectioning resulted in increased anterior displacement but not end-range stiffness when compared with the intact ankle. With inversion loading, combined ATFL and CFL sectioning resulted in increased range of motion and decreased end-range stiffness when compared with the intact and ATFL-sectioned ankles. The absence of change in anterior end-range stiffness between the intact and ligament-deficient ankles indicated bony and other soft tissues functioned to maintain stiffness after pathologic joint displacement, whereas inversion loading of the CFL-deficient ankle after pathologic joint displacement indicated the ankle complex was less stiff when supported only by the secondary joint structures.
Quantitative real-time analysis of collective cancer invasion and dissemination
NASA Astrophysics Data System (ADS)
Ewald, Andrew J.
2015-05-01
A grand challenge in biology is to understand the cellular and molecular basis of tissue and organ level function in mammals. The ultimate goals of such efforts are to explain how organs arise in development from the coordinated actions of their constituent cells and to determine how molecularly regulated changes in cell behavior alter the structure and function of organs during disease processes. Two major barriers stand in the way of achieving these goals: the relative inaccessibility of cellular processes in mammals and the daunting complexity of the signaling environment inside an intact organ in vivo. To overcome these barriers, we have developed a suite of tissue isolation, three dimensional (3D) culture, genetic manipulation, nanobiomaterials, imaging, and molecular analysis techniques to enable the real-time study of cell biology within intact tissues in physiologically relevant 3D environments. This manuscript introduces the rationale for 3D culture, reviews challenges to optical imaging in these cultures, and identifies current limitations in the analysis of complex experimental designs that could be overcome with improved imaging, imaging analysis, and automated classification of the results of experimental interventions.
Wu, Mingxuan; Zhang, Yanning; Liu, Huijuan; Dong, Fusheng
2018-01-01
Background The ideal healing technique for periodontal tissue defects would involve the functional regeneration of the alveolar bone, cementum, and periodontal ligament, with new periodontal attachment formation. In this study, gingival fibroblasts were induced and a “sandwich” tissue-engineered complex (a tissue-engineered periodontal membrane between 2 tissue-engineered mineralized membranes) was constructed to repair periodontal defects. We evaluated the effects of gingival fibroblasts used as seed cells on the repair of periodontal defects and periodontal regeneration. Material/Methods Primitively cultured gingival fibroblasts were seeded bilaterally on Bio-Gide collagen membrane (a tissue-engineered periodontal membrane) or unilaterally on small intestinal submucosa segments, and their mineralization was induced. A tissue-engineered sandwich was constructed, comprising the tissue-engineered periodontal membrane flanked by 2 mineralized membranes. Periodontal defects in premolar regions of Beagles were repaired using the tissue-engineered sandwich or periodontal membranes. Periodontal reconstruction was compared to normal and trauma controls 10 or 20 days postoperatively. Results Periodontal defects were completely repaired by the sandwich tissue-engineered complex, with intact new alveolar bone and cementum, and a new periodontal ligament, 10 days postoperatively. Conclusions The sandwich tissue-engineered complex can achieve ideal periodontal reconstruction rapidly. PMID:29470454
Serezhenkov, Vladimir A; Timoshin, Alexander A; Orlova, Tsvetina R; Mikoyan, Vasak D; Kubrina, Lioudmila N; Poltorakov, Alexander P; Ruuge, Enno K; Sanina, Natalia A; Vanin, Anatoly F
2008-05-01
EPR studies have shown that water-soluble mononitrosyl iron complexes with N-methyl-d-glucamine dithiocarbamate (MNIC-MGD) (3 micromol) injected to intact mice were decomposed virtually completely within 1h. The total content of MNIC-MGD in animal urine did not exceed 30 nmol/ml. In the liver, a small amount of MNIC-MGD were converted into dinitrosyl iron complexes (30 nmol/g of liver tissue). The same was observed in intact rabbits in which MNIC-MGD formation was induced by endogenous or exogenous NO binding to NO traps, viz., iron complexes with MGD. In mice, the content of MNIC-MGD in urine samples did not change after bacterial lipopolysaccharide-induced expression of iNOS. It was supposed that MNIC-MGD decomposition in intact animals was largely due to the release of NO from the complexes and its further transfer to other specific acceptors. In mice with iNOS expression, the main contribution to MNIC-MGD decomposition was made by superoxide ions whose destructive effect is mediated by an oxidative mechanism. This effect could fully compensate the augmented synthesis of MNIC-MGD involving endogenous NO whose production was supported by iNOS. Water-soluble dinitrosyl iron complexes (DNIC) with various thiol-containing ligands and thiosulfate injected to intact mice were also decomposed; however, in this case the effect was less pronounced than in the case of MNIC-MGD. It was concluded that DNIC decomposition was largely due to the oxidative effect of superoxide ions on these complexes.
Extracellular matrix fragmentation in young, healthy cartilaginous tissues.
Craddock, R J; Hodson, N W; Ozols, M; Shearer, T; Hoyland, J A; Sherratt, M J
2018-02-09
Although the composition and structure of cartilaginous tissues is complex, collagen II fibrils and aggrecan are the most abundant assemblies in both articular cartilage (AC) and the nucleus pulposus (NP) of the intervertebral disc (IVD). Whilst structural heterogeneity of intact aggrecan ( containing three globular domains) is well characterised, the extent of aggrecan fragmentation in healthy tissues is poorly defined. Using young, yet skeletally mature (18-30 months), bovine AC and NP tissues, it was shown that, whilst the ultrastructure of intact aggrecan was tissue-dependent, most molecules (AC: 95 %; NP: 99.5 %) were fragmented (lacking one or more globular domains). Fragments were significantly smaller and more structurally heterogeneous in the NP compared with the AC (molecular area; AC: 8543 nm2; NP: 4625 nm2; p < 0.0001). In contrast, fibrillar collagen appeared structurally intact and tissue-invariant. Molecular fragmentation is considered indicative of a pathology; however, these young, skeletally mature tissues were histologically and mechanically (reduced modulus: AC: ≈ 500 kPa; NP: ≈ 80 kPa) comparable to healthy tissues and devoid of notable gelatinase activity (compared with rat dermis). As aggrecan fragmentation was prevalent in neonatal bovine AC (99.5 % fragmented, molecular area: 5137 nm2) as compared with mature AC (95.0 % fragmented, molecular area: 8667 nm2), it was hypothesised that targeted proteolysis might be an adaptive process that modified aggrecan packing (as simulated computationally) and, hence, tissue charge density, mechanical properties and porosity. These observations provided a baseline against which pathological and/or age-related fragmentation of aggrecan could be assessed and suggested that new strategies might be required to engineer constructs that mimic the mechanical properties of native cartilaginous tissues.
NASA Astrophysics Data System (ADS)
Van As, Henk; van Duynhoven, John
2013-04-01
The importance and prospects for MRI as applied to intact plants and to foods are presented in view of one of humanity's most pressing concerns, the sustainable and healthy feeding of a worldwide increasing population. Intact plants and foods have in common that their functionality is determined by complex multiple length scale architectures. Intact plants have an additional level of complexity since they are living systems which critically depend on transport and signalling processes between and within tissues and organs. The combination of recent cutting-edge technical advances and integration of MRI accessible parameters has the perspective to contribute to breakthroughs in understanding complex regulatory plant performance mechanisms. In food science and technology MRI allows for quantitative multi-length scale structural assessment of food systems, non-invasive monitoring of heat and mass transport during shelf-life and processing, and for a unique view on food properties under shear. These MRI applications are powerful enablers of rationally (re)designed food formulations and processes. Limitations and bottlenecks of the present plant and food MRI methods are mainly related to short T2 values and susceptibility artefacts originating from small air spaces in tissues/materials. We envisage cross-fertilisation of solutions to overcome these hurdles in MRI applications in plants and foods. For both application areas we witness a development where MRI is moving from highly specialised equipment to mobile and downscaled versions to be used by a broad user base in the field, greenhouse, food laboratory or factory.
Benayahu, Dafna; Socher, Rina; Shur, Irena
2008-01-01
Laser capture microdissection (LCM) method allows selection of individual or clustered cells from intact tissues. This technology enables one to pick cells from tissues that are difficult to study individually, sort the anatomical complexity of these tissues, and make the cells available for molecular analyses. Following the cells' extraction, the nucleic acids and proteins can be isolated and used for multiple applications that provide an opportunity to uncover the molecular control of cellular fate in the natural microenvironment. Utilization of LCM for the molecular analysis of cells from skeletal tissues will enable one to study differential patterns of gene expression in the native intact skeletal tissue with reliable interpretation of function for known genes as well as to discover novel genes. Variability between samples may be caused either by differences in the tissue samples (different areas isolated from the same section) or some variances in sample handling. LCM is a multi-task technology that combines histology, microscopy work, and dedicated molecular biology. The LCM application will provide results that will pave the way toward high throughput profiling of tissue-specific gene expression using Gene Chip arrays. Detailed description of in vivo molecular pathways will make it possible to elaborate on control systems to apply for the repair of genetic or metabolic diseases of skeletal tissues.
Raman spectroscopy of normal oral buccal mucosa tissues: study on intact and incised biopsies
NASA Astrophysics Data System (ADS)
Deshmukh, Atul; Singh, S. P.; Chaturvedi, Pankaj; Krishna, C. Murali
2011-12-01
Oral squamous cell carcinoma is one of among the top 10 malignancies. Optical spectroscopy, including Raman, is being actively pursued as alternative/adjunct for cancer diagnosis. Earlier studies have demonstrated the feasibility of classifying normal, premalignant, and malignant oral ex vivo tissues. Spectral features showed predominance of lipids and proteins in normal and cancer conditions, respectively, which were attributed to membrane lipids and surface proteins. In view of recent developments in deep tissue Raman spectroscopy, we have recorded Raman spectra from superior and inferior surfaces of 10 normal oral tissues on intact, as well as incised, biopsies after separation of epithelium from connective tissue. Spectral variations and similarities among different groups were explored by unsupervised (principal component analysis) and supervised (linear discriminant analysis, factorial discriminant analysis) methodologies. Clusters of spectra from superior and inferior surfaces of intact tissues show a high overlap; whereas spectra from separated epithelium and connective tissue sections yielded clear clusters, though they also overlap on clusters of intact tissues. Spectra of all four groups of normal tissues gave exclusive clusters when tested against malignant spectra. Thus, this study demonstrates that spectra recorded from the superior surface of an intact tissue may have contributions from deeper layers but has no bearing from the classification of a malignant tissues point of view.
Kadam, Rajendra S.
2010-01-01
In vitro bovine eye tissue/phosphate-buffered saline, pH 7.4, partition coefficients (Kt:b), in vitro binding to natural melanin, and in vivo delivery at 1 h after posterior subconjunctival injection in Brown Norway rats were determined for eight β-blockers. The Kt:b was in the order intact tissue, dry weight method ≥ intact tissue, wet weight method corrected for tissue water and drug in tissue water ≫ intact tissue, wet weight method > homogenized tissue. In intact tissue methods, Kt:b followed the order choroid-retinal pigment epithelium (RPE) > trabecular meshwork > retina > sclera ∼ optic nerve; propranolol > betaxolol > pindolol ∼ timolol ∼ metoprolol > sotalol ∼ atenolol ∼ nadolol. Intact tissue, wet weight log (Kt:b) correlated positively with log D for all tissues (R2 of 0.7–0.9). Log (melanin binding capacity) correlated positively with choroid-RPE log (Kt:b) (R2 of 0.5). With an increase in concentration, Kt:b decreased in trabecular meshwork for all β-blockers and for some lipophilic β-blockers in choroid-RPE and sclera. With an increase in drug lipophilicity, in vivo tissue distribution increased in choroid-RPE, iris-ciliary body, sclera, and cornea but exhibited a declining trend in retina, vitreous, and lens. In vitro bovine intact tissue, wet weight Kt:b correlated positively with rat in vivo tissue/vitreous humor distribution for sclera, choroid-RPE, and retina (R2 of 0.985–0.993). In vitro tissue partition coefficients might be useful in predicting in vivo drug distribution after trans-scleral delivery. Less lipophilic solutes exhibiting limited nonproductive binding in choroid-RPE might exhibit greater trans-scleral delivery to the retina and vitreous. PMID:19926800
Tissue-Specific Regulation of Chromatin Insulator Function
Matzat, Leah H.; Dale, Ryan K.; Moshkovich, Nellie; Lei, Elissa P.
2012-01-01
Chromatin insulators organize the genome into distinct transcriptional domains and contribute to cell type–specific chromatin organization. However, factors regulating tissue-specific insulator function have not yet been discovered. Here we identify the RNA recognition motif-containing protein Shep as a direct interactor of two individual components of the gypsy insulator complex in Drosophila. Mutation of shep improves gypsy-dependent enhancer blocking, indicating a role as a negative regulator of insulator activity. Unlike ubiquitously expressed core gypsy insulator proteins, Shep is highly expressed in the central nervous system (CNS) with lower expression in other tissues. We developed a novel, quantitative tissue-specific barrier assay to demonstrate that Shep functions as a negative regulator of insulator activity in the CNS but not in muscle tissue. Additionally, mutation of shep alters insulator complex nuclear localization in the CNS but has no effect in other tissues. Consistent with negative regulatory activity, ChIP–seq analysis of Shep in a CNS-derived cell line indicates substantial genome-wide colocalization with a single gypsy insulator component but limited overlap with intact insulator complexes. Taken together, these data reveal a novel, tissue-specific mode of regulation of a chromatin insulator. PMID:23209434
A Biological Tissue Adhesive and Dissolvent System for Intraocular Tumor Plaque Brachytherapy.
Zloto, Ofira; Vishnevskia-Dai, Vicktoria; Moisseiev, Joseph; Belkin, Michael; Fabian, Ido Didi
2016-02-01
To examine a novel technique for simplified placement and removal of plaque brachytherapy by fibrin glue and urokinase (medac Gmbh, Hamburg, Germany). In six enucleated porcine eyes, plaques were placed on the episclera and fibrin glue was applied to cover it. Urokinase was used to dissolve the glue in three eyes and saline was used in three eyes. Adhesion strength was measured further on 15 plaques affixed to porcine eyes (glued in five with intact conjunctiva, glued in five with removed conjunctiva, and sutured in five). Saline had no effect on the glue-plaque-eye complex, whereas the urokinase (0.38 mL ± 0.08 mL) easily dissolved the adhesion between the glue layer and surrounding tissues. The weight required to detach the plaques was 0.349 kg ± 0.173 kg for glued eyes with intact conjunctiva, 0.405 kg ± 0.083 kg for sutured eyes (P = .59), and 0.032 kg ± 0.004 kg for glued eyes without intact conjunctiva (P ≤ .015). The usage of the biological adhesive and dissolvent system was applicable for plaque surgery in an ex vivo animal model. Copyright 2016, SLACK Incorporated.
Phase Transformations in a Human Tooth Tissue at the Initial Stage of Caries
Prutskij, Tatiana; Ippolitov, Yury
2015-01-01
The aim of the paper is to study phase transformations in solid tissues of the human teeth during the development of fissure caries by Raman and fluorescence microspectroscopy. The study of the areas with fissure caries confirmed the assumption of the formation of a weak interaction between phosphate apatite enamel and organic acids (products of microorganisms). The experimental results obtained with by Raman microspectroscopy showed the formation of dicalcium phosphate dihydrate - CaHPO4-2H2O in the area of mural demineralization of carious fissure. A comparative analysis of structural and spectroscopic data for the intact and carious enamel shows that emergence of a more soluble phase - carbonate-substituted hydroxyapatite - is typical for the initial stage of caries. It is shown that microareas of dental hard tissues in the carious fissure due to an emerging misorientation of apatite crystals have a higher fluorescence yield than the area of the intact enamel. These areas can be easily detected even prior to a deep demineralization (white spot stage) for the case of irreversibly changed organomineral complex and intensive removal of the mineral component. PMID:25901743
49 CFR 173.137 - Class 8-Assignment of packing group.
Code of Federal Regulations, 2010 CFR
2010-10-01
... subchapter) as follows: (a) Packing Group I. Materials that cause full thickness destruction of intact skin... full thickness destruction of intact skin tissue within an observation period of up to 14 days starting... destruction of intact skin tissue within an observation period of up to 14 days starting after the exposure...
Liu, Ming-Qi; Zeng, Wen-Feng; Fang, Pan; Cao, Wei-Qian; Liu, Chao; Yan, Guo-Quan; Zhang, Yang; Peng, Chao; Wu, Jian-Qiang; Zhang, Xiao-Jin; Tu, Hui-Jun; Chi, Hao; Sun, Rui-Xiang; Cao, Yong; Dong, Meng-Qiu; Jiang, Bi-Yun; Huang, Jiang-Ming; Shen, Hua-Li; Wong, Catherine C L; He, Si-Min; Yang, Peng-Yuan
2017-09-05
The precise and large-scale identification of intact glycopeptides is a critical step in glycoproteomics. Owing to the complexity of glycosylation, the current overall throughput, data quality and accessibility of intact glycopeptide identification lack behind those in routine proteomic analyses. Here, we propose a workflow for the precise high-throughput identification of intact N-glycopeptides at the proteome scale using stepped-energy fragmentation and a dedicated search engine. pGlyco 2.0 conducts comprehensive quality control including false discovery rate evaluation at all three levels of matches to glycans, peptides and glycopeptides, improving the current level of accuracy of intact glycopeptide identification. The N-glycoproteome of samples metabolically labeled with 15 N/ 13 C were analyzed quantitatively and utilized to validate the glycopeptide identification, which could be used as a novel benchmark pipeline to compare different search engines. Finally, we report a large-scale glycoproteome dataset consisting of 10,009 distinct site-specific N-glycans on 1988 glycosylation sites from 955 glycoproteins in five mouse tissues.Protein glycosylation is a heterogeneous post-translational modification that generates greater proteomic diversity that is difficult to analyze. Here the authors describe pGlyco 2.0, a workflow for the precise one step identification of intact N-glycopeptides at the proteome scale.
Marciniak, Anja; Selck, Claudia; Friedrich, Betty; Speier, Stephan
2013-01-01
Studies on pancreatic cell physiology rely on the investigation of exocrine and endocrine cells in vitro. Particularly, in the case of the exocrine tissue these studies have suffered from a reduced functional viability of acinar cells in culture. As a result not only investigations on dispersed acinar cells and isolated acini were limited in their potential, but also prolonged studies on pancreatic exocrine and endocrine cells in an intact pancreatic tissue environment were unfeasible. To overcome these limitations, we aimed to establish a pancreas tissue slice culture platform to allow long-term studies on exocrine and endocrine cells in the intact pancreatic environment. Mouse pancreas tissue slice morphology was assessed to determine optimal long-term culture settings for intact pancreatic tissue. Utilizing optimized culture conditions, cell specificity and function of exocrine acinar cells and endocrine beta cells were characterized over a culture period of 7 days. We found pancreas tissue slices cultured under optimized conditions to have intact tissue specific morphology for the entire culture period. Amylase positive intact acini were present at all time points of culture and acinar cells displayed a typical strong cell polarity. Amylase release from pancreas tissue slices decreased during culture, but maintained the characteristic bell-shaped dose-response curve to increasing caerulein concentrations and a ca. 4-fold maximal over basal release. Additionally, endocrine beta cell viability and function was well preserved until the end of the observation period. Our results show that the tissue slice culture platform provides unprecedented maintenance of pancreatic tissue specific morphology and function over a culture period for at least 4 days and in part even up to 1 week. This analytical advancement now allows mid -to long-term studies on the cell biology of pancreatic disorder pathogenesis and therapy in an intact surrounding in situ.
Marciniak, Anja; Selck, Claudia; Friedrich, Betty; Speier, Stephan
2013-01-01
Studies on pancreatic cell physiology rely on the investigation of exocrine and endocrine cells in vitro. Particularly, in the case of the exocrine tissue these studies have suffered from a reduced functional viability of acinar cells in culture. As a result not only investigations on dispersed acinar cells and isolated acini were limited in their potential, but also prolonged studies on pancreatic exocrine and endocrine cells in an intact pancreatic tissue environment were unfeasible. To overcome these limitations, we aimed to establish a pancreas tissue slice culture platform to allow long-term studies on exocrine and endocrine cells in the intact pancreatic environment. Mouse pancreas tissue slice morphology was assessed to determine optimal long-term culture settings for intact pancreatic tissue. Utilizing optimized culture conditions, cell specificity and function of exocrine acinar cells and endocrine beta cells were characterized over a culture period of 7 days. We found pancreas tissue slices cultured under optimized conditions to have intact tissue specific morphology for the entire culture period. Amylase positive intact acini were present at all time points of culture and acinar cells displayed a typical strong cell polarity. Amylase release from pancreas tissue slices decreased during culture, but maintained the characteristic bell-shaped dose-response curve to increasing caerulein concentrations and a ca. 4-fold maximal over basal release. Additionally, endocrine beta cell viability and function was well preserved until the end of the observation period. Our results show that the tissue slice culture platform provides unprecedented maintenance of pancreatic tissue specific morphology and function over a culture period for at least 4 days and in part even up to 1 week. This analytical advancement now allows mid -to long-term studies on the cell biology of pancreatic disorder pathogenesis and therapy in an intact surrounding in situ. PMID:24223842
Köhler, Simone; Wojcik, Michal; Dernburg, Abby F.
2017-01-01
When cells enter meiosis, their chromosomes reorganize as linear arrays of chromatin loops anchored to a central axis. Meiotic chromosome axes form a platform for the assembly of the synaptonemal complex (SC) and play central roles in other meiotic processes, including homologous pairing, recombination, and chromosome segregation. However, little is known about the 3D organization of components within the axes, which include cohesin complexes and additional meiosis-specific proteins. Here, we investigate the molecular organization of meiotic chromosome axes in Caenorhabditis elegans through STORM (stochastic optical reconstruction microscopy) and PALM (photo-activated localization microscopy) superresolution imaging of intact germ-line tissue. By tagging one axis protein (HIM-3) with a photoconvertible fluorescent protein, we established a spatial reference for other components, which were localized using antibodies against epitope tags inserted by CRISPR/Cas9 genome editing. Using 3D averaging, we determined the position of all known components within synapsed chromosome axes to high spatial precision in three dimensions. We find that meiosis-specific HORMA domain proteins span a gap between cohesin complexes and the central region of the SC, consistent with their essential roles in SC assembly. Our data further suggest that the two different meiotic cohesin complexes are distinctly arranged within the axes: Although cohesin complexes containing the kleisin REC-8 protrude above and below the plane defined by the SC, complexes containing COH-3 or -4 kleisins form a central core, which may physically separate sister chromatids. This organization may help to explain the role of the chromosome axes in promoting interhomolog repair of meiotic double-strand breaks by inhibiting intersister repair. PMID:28559338
The Structure Of Intact Side Tissue Loss Based On FTIR Spectroscopic Measurements
NASA Astrophysics Data System (ADS)
Hussain, N.; Al-Hadithi, K. O.; Jaafar, M. S.
2009-09-01
Laser applications in dentistry were strongly evolved during the last three decades. Among those applications are laser ablation of dental hard tissue, caries inhibition treatments by localized surface heating, and surface conditioning for bonding. In addition, infra-red lasers are ideally suited for the selective and precise removal of carious dental hard tissue while minimizing the healthy tissue loss. In the present study we applied laser spectroscopy technique FTIR for the study of the structure of intact side tissue of teeth. The aim of the recent work is to study the effect of race and sex (genealogy) on the structure of intact side tissue loss. Our sample consists of twenty Malay females' teeth where the FTIR has been applied. The data show a decrease in the amounts of main substances (like Hydroxyapatite crystals ([Ca5(PO4)3(OH)4], CaF2) than those in healthy teeth. The measured spectra represent the enamel with the characteristic peaks due to the phosphate group in carbonated, hydroxyapatite at 1000 cm-1 and two small peaks near 1500 cm-1 due to the carbonate group. The data explains the effect of the several factors on the intact side tissue loss.
NASA Astrophysics Data System (ADS)
Salman Shahid, Syed; Gaul, Robert T.; Kerskens, Christian; Flamini, Vittoria; Lally, Caitríona
2017-12-01
Diffusion magnetic resonance imaging (dMRI) can provide insights into the microstructure of intact arterial tissue. The current study employed high magnetic field MRI to obtain ultra-high resolution dMRI at an isotropic voxel resolution of 117 µm3 in less than 2 h of scan time. A parameter selective single shell (128 directions) diffusion-encoding scheme based on Stejskel-Tanner sequence with echo-planar imaging (EPI) readout was used. EPI segmentation was used to reduce the echo time (TE) and to minimise the susceptibility-induced artefacts. The study utilised the dMRI analysis with diffusion tensor imaging (DTI) framework to investigate structural heterogeneity in intact arterial tissue and to quantify variations in tissue composition when the tissue is cut open and flattened. For intact arterial samples, the region of interest base comparison showed significant differences in fractional anisotropy and mean diffusivity across the media layer (p < 0.05). For open cut flat samples, DTI based directionally invariant indices did not show significant differences across the media layer. For intact samples, fibre tractography based indices such as calculated helical angle and fibre dispersion showed near circumferential alignment and a high degree of fibre dispersion, respectively. This study demonstrates the feasibility of fast dMRI acquisition with ultra-high spatial and angular resolution at 7 T. Using the optimised sequence parameters, this study shows that DTI based markers are sensitive to local structural changes in intact arterial tissue samples and these markers may have clinical relevance in the diagnosis of atherosclerosis and aneurysm.
Treweek, Jennifer B; Chan, Ken Y; Flytzanis, Nicholas C; Yang, Bin; Deverman, Benjamin E; Greenbaum, Alon; Lignell, Antti; Xiao, Cheng; Cai, Long; Ladinsky, Mark S; Bjorkman, Pamela J; Fowlkes, Charless C; Gradinaru, Viviana
2015-11-01
To facilitate fine-scale phenotyping of whole specimens, we describe here a set of tissue fixation-embedding, detergent-clearing and staining protocols that can be used to transform excised organs and whole organisms into optically transparent samples within 1-2 weeks without compromising their cellular architecture or endogenous fluorescence. PACT (passive CLARITY technique) and PARS (perfusion-assisted agent release in situ) use tissue-hydrogel hybrids to stabilize tissue biomolecules during selective lipid extraction, resulting in enhanced clearing efficiency and sample integrity. Furthermore, the macromolecule permeability of PACT- and PARS-processed tissue hybrids supports the diffusion of immunolabels throughout intact tissue, whereas RIMS (refractive index matching solution) grants high-resolution imaging at depth by further reducing light scattering in cleared and uncleared samples alike. These methods are adaptable to difficult-to-image tissues, such as bone (PACT-deCAL), and to magnified single-cell visualization (ePACT). Together, these protocols and solutions enable phenotyping of subcellular components and tracing cellular connectivity in intact biological networks.
Isolation of tissues and preservation of RNA from intact, germinated barley grain.
Betts, Natalie S; Berkowitz, Oliver; Liu, Ruijie; Collins, Helen M; Skadhauge, Birgitte; Dockter, Christoph; Burton, Rachel A; Whelan, James; Fincher, Geoffrey B
2017-08-01
Isolated barley (Hordeum vulgare L.) aleurone layers have been widely used as a model system for studying gene expression and hormonal regulation in germinating cereal grains. A serious technological limitation of this approach has been the inability to confidently extrapolate conclusions obtained from isolated tissues back to the whole grain, where the co-location of several living and non-living tissues results in complex tissue-tissue interactions and regulatory pathways coordinated across the multiple tissues. Here we have developed methods for isolating fragments of aleurone, starchy endosperm, embryo, scutellum, pericarp-testa, husk and crushed cell layers from germinated grain. An important step in the procedure involves the rapid fixation of the intact grain to freeze the transcriptional activity of individual tissues while dissection is effected for subsequent transcriptomic analyses. The developmental profiles of 19 611 gene transcripts were precisely defined in the purified tissues and in whole grain during the first 24 h of germination by RNA sequencing. Spatial and temporal patterns of transcription were validated against well-defined data on enzyme activities in both whole grain and isolated tissues. Transcript profiles of genes involved in mitochondrial assembly and function were used to validate the very early stages of germination, while the profiles of genes involved in starch and cell wall mobilisation matched existing data on activities of corresponding enzymes. The data will be broadly applicable for the interrogation of co-expression and differential expression patterns and for the identification of transcription factors that are important in the early stages of grain and seed germination. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.
Andreev, I O; Spiridonova, K V; Solovyan, V T; Kunakh, V A
2005-01-01
An analysis of 18S-25S and 5S rRNA genes in intact plants and cultured tissues of some Rauwolfia species was performed to compare these sequences variability occurred as a result of the species evolution in nature and that induced by tissue culture. The restriction fragment length polymorphism of 18S-25S and 5S rDNA was found both in intact plants of various Rauwolfia species and in long-term Rauwolfia serpentina tissue cultures. In addition, changes in the amount of 18S-25S rRNA genes were observed in long-term R. serpentina tissue cultures. The results demonstrate that rDNA variability observed in intact plants as well as in long-term cultures is attributed to differences in the same regions of ribosomal RNA genes.
Muir, Peter; Danova, Nichole A; Argyle, David J; Manley, Paul A; Hao, Zhengling
2005-01-01
To determine expression of collagenolytic genes and collagen degradation in stifle tissues of dogs with ruptured cranial cruciate ligament (CCL). Six dogs with CCL rupture and 11 dogs with intact CCL. Gene expression in CCL tissue and synovial fluid cells was studied using reverse transcriptase-polymerase chain reaction (RT-PCR). Collagen degradation was studied using CCL explant cultures and a synovial fluid bioassay. Expression of matrix metalloproteases (MMP) was not found in young Beagles with intact CCL; however, increased expression of MMP-3 was found in CCL tissue from older hounds with intact CCL, when compared with young Beagles. In dogs with ruptured CCL, expression of MMP-2 and -9 was increased in stifle tissues, when compared with dogs with intact CCL. Similar to MMP-9, expression of tartrate-resistant acid phosphatase (TRAP) and cathepsin S was only found in stifle tissues from dogs with ruptured CCL; in contrast, expression of cathepsin K was found in all ruptured and intact CCL. Collagen degradation was increased in ruptured CCL, when compared with intact CCL. Rupture of the CCL is associated with up-regulation of expression of MMP-2 and -9 (gelatinase A and B), TRAP, and cathepsin S, and increased degradation of collagen. These findings suggest that MMP-2, -9, cathepsin S, and TRAP may be important mediators of progressive joint destruction in dogs with CCL rupture. These genes are markers for macrophages and dendritic cells. MMP and cathepsin S pathways may offer novel targets for anti-inflammatory medical therapy aimed at ameliorating joint degradation associated with inflammatory arthritis.
Smooth muscle-protein translocation and tissue function.
Eddinger, Thomas J
2014-09-01
Smooth muscle (SM) tissue is a complex organization of multiple cell types and is regulated by numerous signaling molecules (neurotransmitters, hormones, cytokines, etc.). SM contractile function can be regulated via expression and distribution of the contractile and cytoskeletal proteins, and activation of any of the second messenger pathways that regulate them. Spatial-temporal changes in the contractile, cytoskeletal or regulatory components of SM cells (SMCs) have been proposed to alter SM contractile activity. Ca(2+) sensitization/desensitization can occur as a result of changes at any of these levels, and specific pathways have been identified at all of these levels. Understanding when and how proteins can translocate within the cytoplasm, or to-and-from the plasmalemma and the cytoplasm to alter contractile activity is critical. Numerous studies have reported translocation of proteins associated with the adherens junction and G protein-coupled receptor activation pathways in isolated SMC systems. Specific examples of translocation of vinculin to and from the adherens junction and protein kinase C (PKC) and 17 kDa PKC-potentiated inhibitor of myosin light chain phosphatase (CPI-17) to and from the plasmalemma in isolated SMC systems but not in intact SM tissues are discussed. Using both isolated SMC systems and SM tissues in parallel to pursue these studies will advance our understanding of both the role and mechanism of these pathways as well as their possible significance for Ca(2+) sensitization in intact SM tissues and organ systems. © 2014 Wiley Periodicals, Inc.
Ramsey, Mary; Crews, David
2007-08-01
Many turtles, including the red-eared slider turtle (Trachemys scripta elegans) have temperature-dependent sex determination in which gonadal sex is determined by temperature during the middle third of incubation. The gonad develops as part of a heterogenous tissue complex that comprises the developing adrenal, kidney, and gonad (AKG complex). Owing to the difficulty in excising the gonad from the adjacent tissues, the AKG complex is often used as tissue source in assays examining gene expression in the developing gonad. However, the gonad is a relatively small component of the AKG, and gene expression in the adrenal-kidney (AK) compartment may interfere with the detection of gonad-specific changes in gene expression, particularly during early key phases of gonadal development and sex determination. In this study, we examine transcript levels as measured by quantitative real-time polymerase chain reaction for five genes important in slider turtle sex determination and differentiation (AR, ERalpha, ERbeta, aromatase, and Sf1) in AKG, AK, and isolated gonad tissues. In all cases, gonad-specific gene expression patterns were attenuated in AKG versus gonad tissue. All five genes were expressed in the AK in addition to the gonad at all stages/temperatures. Inclusion of the AK compartment masked important changes in gonadal gene expression. In addition, AK and gonad expression patterns are not additive, and gonadal gene expression cannot be predicted from intact AKG measurements. (c) 2007 Wiley-Liss, Inc.
Three-Dimensional Optical Mapping of Nanoparticle Distribution in Intact Tissues.
Sindhwani, Shrey; Syed, Abdullah Muhammad; Wilhelm, Stefan; Glancy, Dylan R; Chen, Yih Yang; Dobosz, Michael; Chan, Warren C W
2016-05-24
The role of tissue architecture in mediating nanoparticle transport, targeting, and biological effects is unknown due to the lack of tools for imaging nanomaterials in whole organs. Here, we developed a rapid optical mapping technique to image nanomaterials in intact organs ex vivo and in three-dimensions (3D). We engineered a high-throughput electrophoretic flow device to simultaneously transform up to 48 tissues into optically transparent structures, allowing subcellular imaging of nanomaterials more than 1 mm deep into tissues which is 25-fold greater than current techniques. A key finding is that nanomaterials can be retained in the processed tissue by chemical cross-linking of surface adsorbed serum proteins to the tissue matrix, which enables nanomaterials to be imaged with respect to cells, blood vessels, and other structures. We developed a computational algorithm to analyze and quantitatively map nanomaterial distribution. This method can be universally applied to visualize the distribution and interactions of materials in whole tissues and animals including such applications as the imaging of nanomaterials, tissue engineered constructs, and biosensors within their intact biological environment.
Treweek, Jennifer B; Deverman, Benjamin E; Greenbaum, Alon; Lignell, Antti; Xiao, Cheng; Cai, Long; Ladinsky, Mark S; Bjorkman, Pamela J; Fowlkes, Charless C; Gradinaru, Viviana
2016-01-01
To facilitate fine-scale phenotyping of whole specimens, we describe here a set of tissue fixation-embedding, detergent-clearing and staining protocols that can be used to transform excised organs and whole organisms into optically transparent samples within 1–2 weeks without compromising their cellular architecture or endogenous fluorescence. PACT (passive CLARITY technique) and PARS (perfusion-assisted agent release in situ) use tissue-hydrogel hybrids to stabilize tissue biomolecules during selective lipid extraction, resulting in enhanced clearing efficiency and sample integrity. Furthermore, the macromolecule permeability of PACT- and PARS-processed tissue hybrids supports the diffusion of immunolabels throughout intact tissue, whereas RIMS (refractive index matching solution) grants high-resolution imaging at depth by further reducing light scattering in cleared and uncleared samples alike. These methods are adaptable to difficult-to-image tissues, such as bone (PACT-deCAL), and to magnified single-cell visualization (ePACT). Together, these protocols and solutions enable phenotyping of subcellular components and tracing cellular connectivity in intact biological networks. PMID:26492141
Clerc, Pascaline; Polster, Brian M.
2012-01-01
Mitochondrial dysfunction is a component of many neurodegenerative conditions. Measurement of oxygen consumption from intact neurons enables evaluation of mitochondrial bioenergetics under conditions that are more physiologically realistic compared to isolated mitochondria. However, mechanistic analysis of mitochondrial function in cells is complicated by changing energy demands and lack of substrate control. Here we describe a technique for sequentially measuring respiration from intact and saponin-permeabilized cortical neurons on single microplates. This technique allows control of substrates to individual electron transport chain complexes following permeabilization, as well as side-by-side comparisons to intact cells. To illustrate the utility of the technique, we demonstrate that inhibition of respiration by the drug KB-R7943 in intact neurons is relieved by delivery of the complex II substrate succinate, but not by complex I substrates, via acute saponin permeabilization. In contrast, methyl succinate, a putative cell permeable complex II substrate, failed to rescue respiration in intact neurons and was a poor complex II substrate in permeabilized cells. Sequential measurements of intact and permeabilized cell respiration should be particularly useful for evaluating indirect mitochondrial toxicity due to drugs or cellular signaling events which cannot be readily studied using isolated mitochondria. PMID:22496810
Kellie, John F; Higgs, Richard E; Ryder, John W; Major, Anthony; Beach, Thomas G; Adler, Charles H; Merchant, Kalpana; Knierman, Michael D
2014-07-23
A robust top down proteomics method is presented for profiling alpha-synuclein species from autopsied human frontal cortex brain tissue from Parkinson's cases and controls. The method was used to test the hypothesis that pathology associated brain tissue will have a different profile of post-translationally modified alpha-synuclein than the control samples. Validation of the sample processing steps, mass spectrometry based measurements, and data processing steps were performed. The intact protein quantitation method features extraction and integration of m/z data from each charge state of a detected alpha-synuclein species and fitting of the data to a simple linear model which accounts for concentration and charge state variability. The quantitation method was validated with serial dilutions of intact protein standards. Using the method on the human brain samples, several previously unreported modifications in alpha-synuclein were identified. Low levels of phosphorylated alpha synuclein were detected in brain tissue fractions enriched for Lewy body pathology and were marginally significant between PD cases and controls (p = 0.03).
Anti-Ig autoantibody and complement-mediated destruction of neoplastic cells
NASA Technical Reports Server (NTRS)
Towmey, J. J.
1976-01-01
Some immune response are effected through immunoglobulins (Ig), of which five classes have been recognized, namely, IgA, IgD, IgE, IgG, and IgM. Auto-antibodies associated with rheumatoid arthritis, termed rheumatoid factors (RF) react with antigenic determinants on IgG heavy chains. RF has predominant but not complete IgM specificity. This auto-antibody response was not detected in treated patients with primary brain tumors (where tissue is sequestered from the immune system by an intact bloodbrain barrier) or with multiple myeloma where humoral immunity is usually impaired. In addition, the prevalence of RF is not increased with solid tumors prior to initiation of chemotherapy or radiotherapy. It is proposed that RF is related to prior chemotherapy or radiotherapy of tumors anatomically accessible to immunologic tissues capable of antibody responses. A primary IgG response occurs, antigen-antibody complexes form, complexed IgG becomes immunologic, and an RF response results.
PAR-1 and PAR-2 Expression Is Enhanced in Inflamed Odontoblast Cells.
Alvarez, M M P; Moura, G E; Machado, M F M; Viana, G M; de Souza Costa, C A; Tjäderhane, L; Nader, H B; Tersariol, I L S; Nascimento, F D
2017-12-01
Protease-activated receptors (PARs) are G protein-coupled receptors, which are activated by proteolytical cleavage of the amino-terminus and act as sensors for extracellular proteases. We hypothesized that PAR-1 and PAR-2 can be modulated by inflammatory stimulus in human dental pulp cells. PAR-1 and PAR-2 gene expression in human pulp tissue and MDPC-23 cells were analyzed by quantitative polymerase chain reaction. Monoclonal PAR-1 and PAR-2 antibodies were used to investigate the cellular expression of these receptors using Western blot, flow cytometry, and confocal microscopy in MDPC-23 cells. Immunofluorescence assays of human intact and carious teeth were performed to assess the presence of PAR-1 and PAR-2 in the dentin-pulp complex. The results show for the first time that human odontoblasts and MDPC-23 cells constitutively express PAR-1 and PAR-2. PAR-2 activation increased significantly the messenger RNA expression of matrix metalloproteinase (MMP)-2, MMP-9, MMP-13, and MMP-14 in MDPC-23 cells ( P < 0.05), while the expression of these enzymes decreased significantly in the PAR-1 agonist group ( P < 0.05). The high-performance liquid chromatography and matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry analysis showed the presence of MMP-13 activity cleaving PAR-1 at specific, noncanonical site TLDPRS 42 ↓F 43 LL in human dental pulp tissues. Also, we detected a presence of a trypsin-like activity cleaving PAR-2 at canonical site SKGR 20 ↓S 21 LIGRL in pulp tissues. Confocal microscopy analysis of human dentin-pulp complex showed intense positive staining of PAR-1 and PAR-2 in the odontoblast processes in dentinal tubules of carious teeth compared to intact ones. The present results support the hypothesis of activation of the upregulated PAR-1 and PAR-2 by endogenous proteases abundant during the inflammatory response in dentin-pulp complex.
Pirolo, Joseph M; Le, Wei; Yao, Jeffrey
2016-05-01
To evaluate the effect of thermal treatment on neural tissue in the triangular fibrocartilage complex (TFCC), scapholunate interosseous ligament (SLIL), and lunotriquetral interosseous ligament (LTIL). The intact TFCC, SLIL, and LTIL were harvested from cadaveric specimens and treated with a radiofrequency probe as would be performed intraoperatively. Slides were stained using a triple-stain technique for neurotrophin receptor p75, pan-neuronal marker protein gene product 9.5 (PGP 9.5), and 4',6-diamidino-2-phenylindole for neural identification. Five TFCC, 5 SLIL, and 4 LTIL specimens were imaged with fluorescence microscopy. Imaging software was used to measure fluorescence signals and compare thermally treated areas with adjacent untreated areas. A paired t test was used to compare treated versus untreated areas. P < .05 was considered significant. For the TFCC, a mean of 94.9% ± 2.7% of PGP 9.5-positive neural tissue was ablated within a mean area of 11.7 ± 2.5 mm(2) (P = .02). For the SLIL treated from the radiocarpal surface, 97.4% ± 1.0% was ablated to a mean depth of 2.4 ± 0.3 mm from the surface and a mean horizontal spread of 3.4 ± 0.5 mm (P = .01). For the LTIL, 96.0% ± 1.5% was ablated to a mean depth of 1.7 ± 0.7 mm and a mean horizontal spread of 2.6 ± 1.0 mm (P = .02). Differences in the presence of neural tissue between treated areas and adjacent untreated areas were statistically significant for all specimens. Our study confirms elimination of neuronal markers after thermal treatment of the TFCC, SLIL, and LTIL in cadaveric specimens. This effect penetrates below the surface to innervated collagen tissue that is left structurally intact after treatment. Electrothermal treatment as commonly performed to treat symptomatic SLIL, LTIL, and TFCC tears eliminates neuronal tissue in treated areas and may function to relieve pain through a denervation effect. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Wang, Hao; Tian, Zhixin
2018-06-06
Analysis of phosphoproteins always faces the challenge of low stoichiometry, which demands highly selective and efficient enrichment in the initial sample preparation. Here we report our synthesis of the novel titanium (IV) ion immobilized adenosine triphosphate functionalized silica nanoparticles (Ti 4+ -ATP-NPs) for efficient enrichment of intact phosphoproteins. The average diameter of Ti 4+ -ATP-NPs was about 128 nm with good dispersibility and the saturated adsorption capacity for β-casein was 1046.5 mg/g. In addition, Ti 4+ -ATP-NPs exhibited high specificity and selectivity in enriching phosphoproteins from both standard protein mixtures and complex biological samples (non-fat milk, chicken egg white and mouse heart tissue extract) as demonstrated by SDS-PAGE. Copyright © 2018 Elsevier B.V. All rights reserved.
The sensitivity in the IR spectrum of the intact and pathological tissues by laser biophotometry.
Ravariu, Cristian; Bondarciuc, Ala
2014-03-01
In this paper, we use the laser biophotometry for in vivo investigations, searching the most sensitive interactions of the near-infrared spectrum with different tissues. The experimental methods are based on the average reflection coefficient (ARC) measurements. For healthy persons, ARC is the average of five values provided by the biophotometer. The probe is applied on dry skin with minimum pilosity, in five regions: left-right shank, left-right forearm, and epigastrium. For the pathological tissues, the emitting terminal is moved over the suspected area, controlling the reflection coefficient level, till a minimum value occurs, as ARC-Pathological. Then, the probe is moved on the symmetrical healthy region of the body to read the complementary coefficient from intact tissue, ARC-Intact, from the same patient. The experimental results show an ARC range between 67 and 59 mW for intact tissues and a lower range, up to 58-42 mW, for pathological tissues. The method is efficient only in those pathological processes accompanied by variable skin depigmentation, water retention, inflammation, thrombosis, or swelling. Frequently, the ARC ranges are overlapping for some diseases. This induces uncertain diagnosis. Therefore, a statistical algorithm is adopted for a differential diagnosis. The laser biophotometry provides a quantitative biometric parameter, ARC, suitable for fast diagnosis in the internal and emergency medicine. These laser biophotometry measurements are representatives for the Romanian clinical trials.
NASA Astrophysics Data System (ADS)
Seredin, P. V.; Goloshchapov, D. L.; Gushchin, M. S.; Ippolitov, Y. A.; Prutskij, T.
2017-11-01
The objective of this paper was to investigate whether it is possible to obtain biomimetic materials recreating the luminescent properties and molecular composition of intact dental tissues. Biomimetic materials were produced and their properties compared with native dental tissues. In addition, the overall contribution of the organic and non-organic components in the photoluminescence band was investigated. The results showed that it is possible to develop biomimetic materials with similar molecular composition and optical properties to native dental tissues for the early identification of dental caries.
Saathoff, Hinnerk; Brofelth, Mattias; Trinh, Anne; Parker, Benjamin L; Ryan, Daniel P; Low, Jason K K; Webb, Sarah R; Silva, Ana P G; Mackay, Joel P; Shepherd, Nicholas E
2015-03-01
We have developed an approach for directly isolating an intact multi-protein chromatin remodeling complex from mammalian cell extracts using synthetic peptide affinity reagent 4. FOG1(1-15), a short peptide sequence known to target subunits of the nucleosome remodeling and deacetylase (NuRD) complex, was joined via a 35-atom hydrophilic linker to the StreptagII peptide. Loading this peptide onto Streptactin beads enabled capture of the intact NuRD complex from MEL cell nuclear extract. Gentle biotin elution yielded the desired intact complex free of significant contaminants and in a form that was catalytically competent in a nucleosome remodeling assay. The efficiency of 4 in isolating the NuRD complex was comparable to other reported methods utilising recombinantly produced GST-FOG1(1-45). Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
The activity state of the branched-chain 2-oxo acid dehydrogenase complex in rat tissues.
Wagenmakers, A J; Schepens, J T; Veldhuizen, J A; Veerkamp, J H
1984-01-01
An assay is described to define the proportion of the branched-chain 2-oxo acid dehydrogenase complex that is present in the active state in rat tissues. Activities are measured in homogenates in two ways: actual activities, present in tissues, by blocking both the kinase and phosphatase of the enzyme complex during homogenization, preincubation, and incubation with 1-14C-labelled branched-chain 2-oxo acid, and total activities by blocking only the kinase during the 5 min preincubation (necessary for activation). The kinase is blocked by 5 mM-ADP and absence of Mg2+ and the phosphatase by the simultaneous presence of 50 mM-NaF. About 6% of the enzyme is active in skeletal muscle of fed rats, 7% in heart, 20% in diaphragm, 47% in kidney, 60% in brain and 98% in liver. An entirely different assay, which measures activities in crude tissue extracts before and after treatment with a broad-specificity protein phosphatase, gave similar results for heart, liver and kidney. Advantages of our assay with homogenates are the presence of intact mitochondria, the simplicity, the short duration and the high sensitivity. The actual activities measured indicate that the degradation of branched-chain 2-oxo acids predominantly occurs in liver and kidney and is limited in skeletal muscle in the fed state. PMID:6430280
The activity state of the branched-chain 2-oxo acid dehydrogenase complex in rat tissues.
Wagenmakers, A J; Schepens, J T; Veldhuizen, J A; Veerkamp, J H
1984-05-15
An assay is described to define the proportion of the branched-chain 2-oxo acid dehydrogenase complex that is present in the active state in rat tissues. Activities are measured in homogenates in two ways: actual activities, present in tissues, by blocking both the kinase and phosphatase of the enzyme complex during homogenization, preincubation, and incubation with 1-14C-labelled branched-chain 2-oxo acid, and total activities by blocking only the kinase during the 5 min preincubation (necessary for activation). The kinase is blocked by 5 mM-ADP and absence of Mg2+ and the phosphatase by the simultaneous presence of 50 mM-NaF. About 6% of the enzyme is active in skeletal muscle of fed rats, 7% in heart, 20% in diaphragm, 47% in kidney, 60% in brain and 98% in liver. An entirely different assay, which measures activities in crude tissue extracts before and after treatment with a broad-specificity protein phosphatase, gave similar results for heart, liver and kidney. Advantages of our assay with homogenates are the presence of intact mitochondria, the simplicity, the short duration and the high sensitivity. The actual activities measured indicate that the degradation of branched-chain 2-oxo acids predominantly occurs in liver and kidney and is limited in skeletal muscle in the fed state.
Gao, Wenqing; Kearbey, Jeffrey D.; Nair, Vipin A.; Chung, Kiwon; Parlow, A. F.; Miller, Duane D.; Dalton, James T.
2007-01-01
Tissue-selective androgen receptor modulators (SARMs) demonstrate tissue selectivity in both castrated and intact male rats, behaving as partial agonists in androgenic tissues (i.e. prostate and seminal vesicle), but full agonists in anabolic tissues (i.e. levator ani muscle). The partial agonist activity of SARMs (compounds S-1 and S-4) in the prostate of intact rats suggested that SARM could be used for androgen suppression in the treatment of benign prostate hyperplasia (BPH). This study was designed to explore the mechanisms of action of SARM and to characterize the tissue selectivity of S-1 in intact male rats compared with that of hydroxyflutamide (antiandrogen) and finasteride (5α-reductase inhibitor), two major drugs used for androgen suppression treatment of BPH. In intact male rats, S-1 (5, 10, and 25 mg/kg) selectively decreased the prostate weight with similar efficacy to finasteride (5 mg/kg), without affecting the levator ani muscle or increasing the plasma levels of testosterone, LH, and FSH. Hydroxyflutamide (0.5, 1, 5, 10, and 25 mg/kg), however, decreased both the prostate and levator ani muscle weights without any selectivity and increased plasma hormone levels in a dose-dependent manner. Furthermore, S-1 and S-4 showed very weak inhibitory effects toward transiently expressed type I and II human 5α-reductase (Ki, >20 µM) during in vitro assays. Therefore, although S-1 and finasteride showed very similar suppressive effects in the prostate of intact male rats, they decreased prostate size via different mechanisms of action. S-1 simply worked as androgen receptor partial agonist, whereas finasteride inhibited prostatic 5α-reductase. These studies indicate that SARMs may demonstrate clinical utility as single agent or combination therapy for BPH. PMID:15308613
Tumor detection and elimination by a targeted gallium corrole
Agadjanian, Hasmik; Ma, Jun; Rentsendorj, Altan; Valluripalli, Vinod; Hwang, Jae Youn; Mahammed, Atif; Farkas, Daniel L.; Gray, Harry B.; Gross, Zeev; Medina-Kauwe, Lali K.
2009-01-01
Sulfonated gallium(III) corroles are intensely fluorescent macrocyclic compounds that spontaneously assemble with carrier proteins to undergo cell entry. We report in vivo imaging and therapeutic efficacy of a tumor-targeted corrole noncovalently assembled with a heregulin-modified protein directed at the human epidermal growth factor receptor (HER). Systemic delivery of this protein-corrole complex results in tumor accumulation, which can be visualized in vivo owing to intensely red corrole fluorescence. Targeted delivery in vivo leads to tumor cell death while normal tissue is spared. These findings contrast with the effects of doxorubicin, which can elicit cardiac damage during therapy and required direct intratumoral injection to yield similar levels of tumor shrinkage compared with the systemically delivered corrole. The targeted complex ablated tumors at >5 times a lower dose than untargeted systemic doxorubicin, and the corrole did not damage heart tissue. Complexes remained intact in serum and the carrier protein elicited no detectable immunogenicity. The sulfonated gallium(III) corrole functions both for tumor detection and intervention with safety and targeting advantages over standard chemotherapeutic agents. PMID:19342490
In situ characterization of the brain-microdevice interface using Device Capture Histology
Woolley, Andrew J.; Desai, Himanshi A.; Steckbeck, Mitchell A.; Patel, Neil K.; Otto, Kevin J.
2011-01-01
Accurate assessment of brain-implantable microdevice bio-integration remains a formidable challenge. Prevailing histological methods require device extraction prior to tissue processing, often disrupting and removing the tissue of interest which had been surrounding the device. The Device-Capture Histology method, presented here, overcomes many limitations of the conventional Device-Explant Histology method, by collecting the device and surrounding tissue intact for subsequent labeling. With the implant remaining in situ, accurate and precise imaging of the morphologically preserved tissue at the brain/microdevice interface can then be collected and quantified. First, this article presents the Device-Capture Histology method for obtaining and processing the intact, undisturbed microdevice-tissue interface, and images using fluorescent labeling and confocal microscopy. Second, this article gives examples of how to quantify features found in the captured peridevice tissue. We also share histological data capturing 1) the impact of microdevice implantation on tissue, 2) the effects of an experimental anti-inflammatory coating, 3) a dense grouping of cell nuclei encapsulating a long-term implant, and 4) atypical oligodendrocyte organization neighboring a longterm implant. Data sets collected using the Device-Capture Histology method are presented to demonstrate the significant advantages of processing the intact microdevice-tissue interface, and to underscore the utility of the method in understanding the effects of the brain-implantable microdevices on nearby tissue. PMID:21802446
In vitro comparison of human fibroblasts from intact and ruptured ACL for use in tissue engineering.
Brune, T; Borel, A; Gilbert, T W; Franceschi, J P; Badylak, S F; Sommer, P
2007-12-17
The present study compares fibroblasts extracted from intact and ruptured human anterior cruciate ligaments (ACL) for creation of a tissue engineered ACL-construct, made of porcine small intestinal submucosal extracellular matrix (SIS-ECM) seeded with these ACL cells. The comparison is based on histological, immunohistochemical and RT-PCR analyses. Differences were observed between cells in a ruptured ACL (rACL) and cells in an intact ACL (iACL), particularly with regard to the expression of integrin subunits and smooth muscle actin (SMA). Despite these differences in the cell source, both cell populations behaved similarly when seeded on an SIS-ECM scaffold, with similar cell morphology, connective tissue organization and composition, SMA and integrin expression. This study shows the usefulness of naturally occurring scaffolds such as SIS-ECM for the study of cell behaviour in vitro, and illustrates the possibility to use autologous cells extracted from ruptured ACL biopsies as a source for tissue engineered ACL constructs.
Ugurbil, Kamil
2011-01-01
Magnetic resonance spectroscopy-based magnetization transfer techniques (MT) are commonly used to assess the rate of oxidative (i.e., mitochondrial) ATP synthesis in intact tissues. Physiologically appropriate interpretation of MT rate data depends on accurate appraisal of the biochemical events that contribute to a specific MT rate measurement. The relative contributions of the specific enzymatic reactions that can contribute to a MT Pi→ATP rate measurement are tissue dependent; nonrecognition of this fact can bias the interpretation of MT Pi→ATP rate data. The complexities of MT-based measurements of mitochondrial ATP synthesis rates made in striated muscle and other tissues are reviewed, following which, the adverse impacts of erroneous Pi→ATP rate data analyses on the physiological inferences presented in selected published studies of cardiac and skeletal muscle are considered. PMID:21368294
Molluscan cells in culture: primary cell cultures and cell lines
Yoshino, T. P.; Bickham, U.; Bayne, C. J.
2013-01-01
In vitro cell culture systems from molluscs have significantly contributed to our basic understanding of complex physiological processes occurring within or between tissue-specific cells, yielding information unattainable using intact animal models. In vitro cultures of neuronal cells from gastropods show how simplified cell models can inform our understanding of complex networks in intact organisms. Primary cell cultures from marine and freshwater bivalve and gastropod species are used as biomonitors for environmental contaminants, as models for gene transfer technologies, and for studies of innate immunity and neoplastic disease. Despite efforts to isolate proliferative cell lines from molluscs, the snail Biomphalaria glabrata Say, 1818 embryonic (Bge) cell line is the only existing cell line originating from any molluscan species. Taking an organ systems approach, this review summarizes efforts to establish molluscan cell cultures and describes the varied applications of primary cell cultures in research. Because of the unique status of the Bge cell line, an account is presented of the establishment of this cell line, and of how these cells have contributed to our understanding of snail host-parasite interactions. Finally, we detail the difficulties commonly encountered in efforts to establish cell lines from molluscs and discuss how these difficulties might be overcome. PMID:24198436
Histological assessment of testicular residues in lambs and calves after Burdizzo castration.
Stoffel, M H; von Rotz, A; Kocher, M; Merkli, M; Boesch, D; Steiner, A
2009-04-25
To assess the reliability of the Burdizzo procedure for castrating calves and lambs, testicular tissue from 63 bull calves (15 intact and 48 castrated) and 69 male lambs (35 intact and 34 castrated) was collected at slaughter and assessed histologically. The bull calves were castrated at either one, four to five or 12 to 16 weeks of age and the lambs at either one or 10 weeks. There was clear evidence of spermatogenesis in testicular tissue from all the intact animals. In the samples from the calves that had been castrated at 12 to 16 weeks functional testicular tissue was completely lacking. However, there was evidence of spermatogenesis and steroidogenesis in the calves that had been castrated at one week or four to five weeks, respectively. Failure to achieve complete involution of the testicular parenchyma was observed in the majority of lambs, irrespective of the age at which they had been castrated.
Spirina, L V; Kondakova, I V; Koval', V D; Kolomiets, L A; Chernyshova, A L; Choinzonov, E L; Sharova, N P
2012-08-01
The development of endometrial cancer is related to the status of the intracellular proteasome system. Total proteasome activity and pools 26S and 20S activities are higher in tumor tissue than in intact endometrium, and their composition is different. The expression of α1α2α3α5α6α7 is lower in endometrial cancer tissue in comparison with intact endometrium and the content of immune subunits LMP7, LMP2, and PA28β is increased. Total proteasome activity depends on the disease stage.
Rapid wall relaxation in elongating tissues.
Matyssek, R; Maruyama, S; Boyer, J S
1988-04-01
Reported differences in the relaxation of cell walls in enlarging stem tissues of soybean (Glycine max [L.] Merr.) and pea (Pisum sativum L.) cause measurements of the yield threshold turgor, an important growth parameter, to be in doubt. Using the pressure probe and guillotine psychrometer, we investigated wall relaxation in these species by excising the elongating tissue in air to remove the water supply. We found that the rapid kinetics usually exhibited by soybean could be delayed and made similar to the slow kinetics previously reported for pea if slowly growing or mature tissue was left attached to the rapidly growing tissue when relaxation was initiated. The greater the amount of attached tissue, the slower the relaxation, suggesting that slowly growing tissue acted as a water source. Consistent with this concept was a lower water potential in the rapidly elongating tissue than in the slowly growing tissue. Previous reports of wall relaxation in pea included slowly growing tissue. If this tissue was removed from pea, relaxation became as rapid as usually exhibited by soybean. It is concluded that the true relaxation of cell walls to the yield threshold requires only a few minutes and that the yield threshold should be constant during so short a time, thus reflecting the yield threshold in the intact plant before excision. Under these conditions, the yield threshold was close to the turgor in the intact plant regardless of the species. The presence of slowly growing or mature tissue delays wall relaxation and should be avoided during such measurements. However, this delay can be used to advantage when turgor of intact growing tissues is being measured using excised tissues because turgor does not change for a considerable time after excision.
Rapid Wall Relaxation in Elongating Tissues 1
Matyssek, Rainer; Maruyama, Sachio; Boyer, John S.
1988-01-01
Reported differences in the relaxation of cell walls in enlarging stem tissues of soybean (Glycine max [L.] Merr.) and pea (Pisum sativum L.) cause measurements of the yield threshold turgor, an important growth parameter, to be in doubt. Using the pressure probe and guillotine psychrometer, we investigated wall relaxation in these species by excising the elongating tissue in air to remove the water supply. We found that the rapid kinetics usually exhibited by soybean could be delayed and made similar to the slow kinetics previously reported for pea if slowly growing or mature tissue was left attached to the rapidly growing tissue when relaxation was initiated. The greater the amount of attached tissue, the slower the relaxation, suggesting that slowly growing tissue acted as a water source. Consistent with this concept was a lower water potential in the rapidly elongating tissue than in the slowly growing tissue. Previous reports of wall relaxation in pea included slowly growing tissue. If this tissue was removed from pea, relaxation became as rapid as usually exhibited by soybean. It is concluded that the true relaxation of cell walls to the yield threshold requires only a few minutes and that the yield threshold should be constant during so short a time, thus reflecting the yield threshold in the intact plant before excision. Under these conditions, the yield threshold was close to the turgor in the intact plant regardless of the species. The presence of slowly growing or mature tissue delays wall relaxation and should be avoided during such measurements. However, this delay can be used to advantage when turgor of intact growing tissues is being measured using excised tissues because turgor does not change for a considerable time after excision. PMID:16666048
Li, Weizhe; Germain, Ronald N.
2017-01-01
Organ homeostasis, cellular differentiation, signal relay, and in situ function all depend on the spatial organization of cells in complex tissues. For this reason, comprehensive, high-resolution mapping of cell positioning, phenotypic identity, and functional state in the context of macroscale tissue structure is critical to a deeper understanding of diverse biological processes. Here we report an easy to use method, clearing-enhanced 3D (Ce3D), which generates excellent tissue transparency for most organs, preserves cellular morphology and protein fluorescence, and is robustly compatible with antibody-based immunolabeling. This enhanced signal quality and capacity for extensive probe multiplexing permits quantitative analysis of distinct, highly intermixed cell populations in intact Ce3D-treated tissues via 3D histo-cytometry. We use this technology to demonstrate large-volume, high-resolution microscopy of diverse cell types in lymphoid and nonlymphoid organs, as well as to perform quantitative analysis of the composition and tissue distribution of multiple cell populations in lymphoid tissues. Combined with histo-cytometry, Ce3D provides a comprehensive strategy for volumetric quantitative imaging and analysis that bridges the gap between conventional section imaging and disassociation-based techniques. PMID:28808033
Appleton, P L; Quyn, A J; Swift, S; Näthke, I
2009-05-01
Visualizing overall tissue architecture in three dimensions is fundamental for validating and integrating biochemical, cell biological and visual data from less complex systems such as cultured cells. Here, we describe a method to generate high-resolution three-dimensional image data of intact mouse gut tissue. Regions of highest interest lie between 50 and 200 mum within this tissue. The quality and usefulness of three-dimensional image data of tissue with such depth is limited owing to problems associated with scattered light, photobleaching and spherical aberration. Furthermore, the highest-quality oil-immersion lenses are designed to work at a maximum distance of =10-15 mum into the sample, further compounding the ability to image at high-resolution deep within tissue. We show that manipulating the refractive index of the mounting media and decreasing sample opacity greatly improves image quality such that the limiting factor for a standard, inverted multi-photon microscope is determined by the working distance of the objective as opposed to detectable fluorescence. This method negates the need for mechanical sectioning of tissue and enables the routine generation of high-quality, quantitative image data that can significantly advance our understanding of tissue architecture and physiology.
In vivo imaging of coral tissue and skeleton with optical coherence tomography
Wentzel, Camilla; Jacques, Steven L.; Wagner, Michael
2017-01-01
Application of optical coherence tomography (OCT) for in vivo imaging of tissue and skeleton structure of intact living corals enabled the non-invasive visualization of coral tissue layers (endoderm versus ectoderm), skeletal cavities and special structures such as mesenterial filaments and mucus release from intact living corals. Coral host chromatophores containing green fluorescent protein-like pigment granules appeared hyper-reflective to near-infrared radiation allowing for excellent optical contrast in OCT and a rapid characterization of chromatophore size, distribution and abundance. In vivo tissue plasticity could be quantified by the linear contraction velocity of coral tissues upon illumination resulting in dynamic changes in the live coral tissue surface area, which varied by a factor of 2 between the contracted and expanded state of a coral. Our study provides a novel view on the in vivo organization of coral tissue and skeleton and highlights the importance of microstructural dynamics for coral ecophysiology. PMID:28250104
Strategies for the physiome project.
Bassingthwaighte, J B
2000-08-01
The physiome is the quantitative description of the functioning organism in normal and pathophysiological states. The human physiome can be regarded as the virtual human. It is built upon the morphome, the quantitative description of anatomical structure, chemical and biochemical composition, and material properties of an intact organism, including its genome, proteome, cell, tissue, and organ structures up to those of the whole intact being. The Physiome Project is a multicentric integrated program to design, develop, implement, test and document, archive and disseminate quantitative information, and integrative models of the functional behavior of molecules, organelles, cells, tissues, organs, and intact organisms from bacteria to man. A fundamental and major feature of the project is the databasing of experimental observations for retrieval and evaluation. Technologies allowing many groups to work together are being rapidly developed. Internet II will facilitate this immensely. When problems are huge and complex, a particular working group can be expert in only a small part of the overall project. The strategies to be worked out must therefore include how to pull models composed of many submodules together even when the expertise in each is scattered amongst diverse institutions. The technologies of bioinformatics will contribute greatly to this effort. Developing and implementing code for large-scale systems has many problems. Most of the submodules are complex, requiring consideration of spatial and temporal events and processes. Submodules have to be linked to one another in a way that preserves mass balance and gives an accurate representation of variables in nonlinear complex biochemical networks with many signaling and controlling pathways. Microcompartmentalization vitiates the use of simplified model structures. The stiffness of the systems of equations is computationally costly. Faster computation is needed when using models as thinking tools and for iterative data analysis. Perhaps the most serious problem is the current lack of definitive information on kinetics and dynamics of systems, due in part to the almost total lack of databased observations, but also because, though we are nearly drowning in new information being published each day, either the information required for the modeling cannot be found or has never been obtained. "Simple" things like tissue composition, material properties, and mechanical behavior of cells and tissues are not generally available. The development of comprehensive models of biological systems is a key to pharmaceutics and drug design, for the models will become gradually better predictors of the results of interventions, both genomic and pharmaceutic. Good models will be useful in predicting the side effects and long term effects of drugs and toxins, and when the models are really good, to predict where genomic intervention will be effective and where the multiple redundancies in our biological systems will render a proposed intervention useless. The Physiome Project will provide the integrating scientific basis for the Genes to Health initiative, and make physiological genomics a reality applicable to whole organisms, from bacteria to man.
Strategies for the Physiome Project
Bassingthwaighte, James B.
2010-01-01
The physiome is the quantitative description of the functioning organism in normal and pathophysiological states. The human physiome can be regarded as the virtual human. It is built upon the morphome, the quantitative description of anatomical structure, chemical and biochemical composition, and material properties of an intact organism, including its genome, proteome, cell, tissue, and organ structures up to those of the whole intact being. The Physiome Project is a multicentric integrated program to design, develop, implement, test and document, archive and disseminate quantitative information, and integrative models of the functional behavior of molecules, organelles, cells, tissues, organs, and intact organisms from bacteria to man. A fundamental and major feature of the project is the databasing of experimental observations for retrieval and evaluation. Technologies allowing many groups to work together are being rapidly developed. Internet II will facilitate this immensely. When problems are huge and complex, a particular working group can be expert in only a small part of the overall project. The strategies to be worked out must therefore include how to pull models composed of many submodules together even when the expertise in each is scattered amongst diverse institutions. The technologies of bioinformatics will contribute greatly to this effort. Developing and implementing code for large-scale systems has many problems. Most of the submodules are complex, requiring consideration of spatial and temporal events and processes. Submodules have to be linked to one another in a way that preserves mass balance and gives an accurate representation of variables in nonlinear complex biochemical networks with many signaling and controlling pathways. Microcompartmentalization vitiates the use of simplified model structures. The stiffness of the systems of equations is computationally costly. Faster computation is needed when using models as thinking tools and for iterative data analysis. Perhaps the most serious problem is the current lack of definitive information on kinetics and dynamics of systems, due in part to the almost total lack of databased observations, but also because, though we are nearly drowning in new information being published each day, either the information required for the modeling cannot be found or has never been obtained. “Simple” things like tissue composition, material properties, and mechanical behavior of cells and tissues are not generally available. The development of comprehensive models of biological systems is a key to pharmaceutics and drug design, for the models will become gradually better predictors of the results of interventions, both genomic and pharmaceutic. Good models will be useful in predicting the side effects and long term effects of drugs and toxins, and when the models are really good, to predict where genomic intervention will be effective and where the multiple redundancies in our biological systems will render a proposed intervention useless. The Physiome Project will provide the integrating scientific basis for the Genes to Health initiative, and make physiological genomics a reality applicable to whole organisms, from bacteria to man. PMID:11144666
Ahrens, Eric T.; Young, Won-Bin; Xu, Hongyan; Pusateri, Lisa K.
2016-01-01
Quantification of inflammation in tissue samples can be a time-intensive bottleneck in therapeutic discovery and preclinical endeavors. We describe a versatile and rapid approach to quantitatively assay macrophage burden in intact tissue samples. Perfluorocarbon (PFC) emulsion is injected intravenously, and the emulsion droplets are effectively taken up by monocytes and macrophages. These ‘in situ’ labeled cells participate in inflammatory events in vivo resulting in PFC accumulation at inflammatory loci. Necropsied tissues or intact organs are subjected to conventional fluorine-19 (19F) NMR spectroscopy to quantify the total fluorine content per sample, proportional to the macrophage burden. We applied these methods to a rat model of experimental allergic encephalomyelitis (EAE) exhibiting extensive inflammation and demyelination in the central nervous system (CNS), particularly in the spinal cord. In a cohort of EAE rats, we used 19F NMR to derive an inflammation index (IFI) in intact CNS tissues. Immunohistochemistry was used to confirm intracellular colocalization of the PFC droplets within CNS CD68+ cells having macrophage morphology. The IFI linearly correlated to mRNA levels of CD68 via real-time PCR analysis. This 19F NMR approach can accelerate tissue analysis by at least an order of magnitude compared with histological approaches. PMID:21548906
Mitochondrial Targeted Coenzyme Q, Superoxide, and Fuel Selectivity in Endothelial Cells
Fink, Brian D.; O'Malley, Yunxia; Dake, Brian L.; Ross, Nicolette C.; Prisinzano, Thomas E.; Sivitz, William I.
2009-01-01
Background Previously, we reported that the “antioxidant” compound “mitoQ” (mitochondrial-targeted ubiquinol/ubiquinone) actually increased superoxide production by bovine aortic endothelial (BAE) cell mitochondria incubated with complex I but not complex II substrates. Methods and Results To further define the site of action of the targeted coenzyme Q compound, we extended these studies to include different substrate and inhibitor conditions. In addition, we assessed the effects of mitoquinone on mitochondrial respiration, measured respiration and mitochondrial membrane potential in intact cells, and tested the intriguing hypothesis that mitoquinone might impart fuel selectivity in intact BAE cells. In mitochondria respiring on differing concentrations of complex I substrates, mitoquinone and rotenone had interactive effects on ROS consistent with redox cycling at multiple sites within complex I. Mitoquinone increased respiration in isolated mitochondria respiring on complex I but not complex II substrates. Mitoquinone also increased oxygen consumption by intact BAE cells. Moreover, when added to intact cells at 50 to 1000 nM, mitoquinone increased glucose oxidation and reduced fat oxidation, at doses that did not alter membrane potential or induce cell toxicity. Although high dose mitoquinone reduced mitochondrial membrane potential, the positively charged mitochondrial-targeted cation, decyltriphenylphosphonium (mitoquinone without the coenzyme Q moiety), decreased membrane potential more than mitoquinone, but did not alter fuel selectivity. Therefore, non-specific effects of the positive charge were not responsible and the quinone moiety is required for altered nutrient selectivity. Conclusions In summary, the interactive effects of mitoquinone and rotenone are consistent with redox cycling at more than one site within complex I. In addition, mitoquinone has substrate dependent effects on mitochondrial respiration, increases repiration by intact cells, and alters fuel selectivity favoring glucose over fatty acid oxidation at the intact cell level. PMID:19158951
Mitochondrial targeted coenzyme Q, superoxide, and fuel selectivity in endothelial cells.
Fink, Brian D; O'Malley, Yunxia; Dake, Brian L; Ross, Nicolette C; Prisinzano, Thomas E; Sivitz, William I
2009-01-01
Previously, we reported that the "antioxidant" compound "mitoQ" (mitochondrial-targeted ubiquinol/ubiquinone) actually increased superoxide production by bovine aortic endothelial (BAE) cell mitochondria incubated with complex I but not complex II substrates. To further define the site of action of the targeted coenzyme Q compound, we extended these studies to include different substrate and inhibitor conditions. In addition, we assessed the effects of mitoquinone on mitochondrial respiration, measured respiration and mitochondrial membrane potential in intact cells, and tested the intriguing hypothesis that mitoquinone might impart fuel selectivity in intact BAE cells. In mitochondria respiring on differing concentrations of complex I substrates, mitoquinone and rotenone had interactive effects on ROS consistent with redox cycling at multiple sites within complex I. Mitoquinone increased respiration in isolated mitochondria respiring on complex I but not complex II substrates. Mitoquinone also increased oxygen consumption by intact BAE cells. Moreover, when added to intact cells at 50 to 1000 nM, mitoquinone increased glucose oxidation and reduced fat oxidation, at doses that did not alter membrane potential or induce cell toxicity. Although high dose mitoquinone reduced mitochondrial membrane potential, the positively charged mitochondrial-targeted cation, decyltriphenylphosphonium (mitoquinone without the coenzyme Q moiety), decreased membrane potential more than mitoquinone, but did not alter fuel selectivity. Therefore, non-specific effects of the positive charge were not responsible and the quinone moiety is required for altered nutrient selectivity. In summary, the interactive effects of mitoquinone and rotenone are consistent with redox cycling at more than one site within complex I. In addition, mitoquinone has substrate dependent effects on mitochondrial respiration, increases repiration by intact cells, and alters fuel selectivity favoring glucose over fatty acid oxidation at the intact cell level.
Skinner, Owen S; Schachner, Luis F; Kelleher, Neil L
2016-12-08
Recent advances in top-down mass spectrometry using native electrospray now enable the analysis of intact protein complexes with relatively small sample amounts in an untargeted mode. Here, we describe how to characterize both homo- and heteropolymeric complexes with high molecular specificity using input data produced by tandem mass spectrometry of whole protein assemblies. The tool described is a "search engine for multi-proteoform complexes," (SEMPC) and is available for free online. The output is a list of candidate multi-proteoform complexes and scoring metrics, which are used to define a distinct set of one or more unique protein subunits, their overall stoichiometry in the intact complex, and their pre- and post-translational modifications. Thus, we present an approach for the identification and characterization of intact protein complexes from native mass spectrometry data. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.
Optimization of Evans blue quantitation in limited rat tissue samples
Wang, Hwai-Lee; Lai, Ted Weita
2014-01-01
Evans blue dye (EBD) is an inert tracer that measures plasma volume in human subjects and vascular permeability in animal models. Quantitation of EBD can be difficult when dye concentration in the sample is limited, such as when extravasated dye is measured in the blood-brain barrier (BBB) intact brain. The procedure described here used a very small volume (30 µl) per sample replicate, which enabled high-throughput measurements of the EBD concentration based on a standard 96-well plate reader. First, ethanol ensured a consistent optic path length in each well and substantially enhanced the sensitivity of EBD fluorescence spectroscopy. Second, trichloroacetic acid (TCA) removed false-positive EBD measurements as a result of biological solutes and partially extracted EBD into the supernatant. Moreover, a 1:2 volume ratio of 50% TCA ([TCA final] = 33.3%) optimally extracted EBD from the rat plasma protein-EBD complex in vitro and in vivo, and 1:2 and 1:3 weight-volume ratios of 50% TCA optimally extracted extravasated EBD from the rat brain and liver, respectively, in vivo. This procedure is particularly useful in the detection of EBD extravasation into the BBB-intact brain, but it can also be applied to detect dye extravasation into tissues where vascular permeability is less limiting. PMID:25300427
Optimization of Evans blue quantitation in limited rat tissue samples
NASA Astrophysics Data System (ADS)
Wang, Hwai-Lee; Lai, Ted Weita
2014-10-01
Evans blue dye (EBD) is an inert tracer that measures plasma volume in human subjects and vascular permeability in animal models. Quantitation of EBD can be difficult when dye concentration in the sample is limited, such as when extravasated dye is measured in the blood-brain barrier (BBB) intact brain. The procedure described here used a very small volume (30 µl) per sample replicate, which enabled high-throughput measurements of the EBD concentration based on a standard 96-well plate reader. First, ethanol ensured a consistent optic path length in each well and substantially enhanced the sensitivity of EBD fluorescence spectroscopy. Second, trichloroacetic acid (TCA) removed false-positive EBD measurements as a result of biological solutes and partially extracted EBD into the supernatant. Moreover, a 1:2 volume ratio of 50% TCA ([TCA final] = 33.3%) optimally extracted EBD from the rat plasma protein-EBD complex in vitro and in vivo, and 1:2 and 1:3 weight-volume ratios of 50% TCA optimally extracted extravasated EBD from the rat brain and liver, respectively, in vivo. This procedure is particularly useful in the detection of EBD extravasation into the BBB-intact brain, but it can also be applied to detect dye extravasation into tissues where vascular permeability is less limiting.
Down-regulate of Djrfc2 causes tissues hypertrophy during planarian regeneration.
Guo, Qi; Zhao, Guixia; Ni, Jiajia; Guo, Yanan; Zhang, Yizhe; Tian, Qingnan; Zhang, Shoutao
2017-11-25
Planarians are an ideal model organism for regeneration research due to their amazing ability to regenerate. DNA replication is crucial for genome stability. Replication factor C (RFC), which is a replication factor C-like complex and plays an important role during DNA replication in eukaryotes, has been reported as a wound response factor during planarian regeneration. However, how RFC controls regeneration in planarians by regulating DNA replication remains to be explained. Here, we used a two-dimensional electrophoresis (2-DE) proteomic approach to identify differentially expressed proteins in intact and regenerated planarians. Approximately 132 protein spots showed differences between intact and regenerative tissues. We selected 21 significantly expressed protein spots and processed them using TOF MS analysis. Finally, we cloned three of these candidate genes (Djhsp70, Djrfc2, Djfaim), focusing on the function of Djrfc2 during regeneration. We found that the distribution of Djrfc2 tends toward the wound site. RNA interference (RNAi) of Djrfc2 increases the number of dividing cells and the expression level of planarian neoblast marker genes, which may result in hyper-proliferation. Our studies use an available approach to directly study the regeneration dynamic at the protein level and provide further evidence to support a function of Djrfc2 in planarian regeneration. Copyright © 2017. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Girkin, John M.; Burns, David; Dawson, Martin D.
1999-06-01
We report on the development of practical and user friendly lasers for multiphoton imaging of biological material. The laser developed for the work is a laser diode pumped Cr:LiSAF source modelocked using a saturable Bragg reflector as the passive modelocking element. For this system we routinely obtain 100 fs pulses at a repetition rate 200 MHz with an average output power of 20 mW. The laser has a single operator control and is particularly suitable for use by non-laser specialists. We have used the source developed to image a range of biologically significant samples. The initial work has centered on the imaging of intact human dental tissue. The first two-photon images of dental tissue are reported showing the development of early dental disease from depths up to 500 micrometers into the tooth. These results demonstrate the detection of carious lesions before the more conventional techniques currently used by dental practitioners. Work on other living intact biological tissue is also reported, in particular plants containing a genetically bred fluorescent marker to enable the examination of complete and intact living plant tissue.
Wong, Nikki L; Achike, Francis I
2010-08-09
Hyperglycaemia initiates endothelial dysfunction causing diabetic macro- and micro-vasculopathy, the main causes of morbidity and mortality in diabetes mellitus. The vasculopathy exhibits gender peculiarities. We therefore explored gender differences in comparing the effects of hyperglycaemia (50 mM) per se with its hyperosmolar (50 mM) effects on vascular tissue responses to insulin. Endothelium-intact or denuded thoracic aortic rings from age-matched male and female Sprague-Dawley rats were incubated for 10 min or 6 h (acute versus chronic exposure) in normal, hyperglycaemic or hyperosmolar Krebs solution. Relaxant responses to insulin (6.9x10(-7)-6.9x10(-5) M) of the phenylephrine-contracted tissues were recorded. Endothelium denudation in both genders inhibited relaxation to insulin in all conditions, more significantly in female than in male tissues, suggesting the female response to insulin is more endothelium-dependent than the male. Acutely and chronically exposed normoglycemic endothelium-intact or -denuded tissues responded similarly to insulin. Chronic hyperglycemic or hyperosmolar exposure did not alter the endothelium-denuded tissue responses to insulin, whereas the responses of the endothelium-intact male and female hyperosmolar, and male hyperglycemic tissues were enhanced. The results show that insulin exerts an endothelium-dependent and independent relaxation with the female tissue responses more endothelium-dependent than the male. The data also suggest that hyperosmolarity per se enhances aortic tissue relaxant responses to insulin whereas hyperglycemia per se inhibits the same and more so in female than male tissues. These effects are endothelium-dependent. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Gangolli, Mihika; Holleran, Laurena; Kim, Joong Hee; Stein, Thor D.; Alvarez, Victor; McKee, Ann C.; Brody, David L.
2017-01-01
Advanced diffusion MRI methods have recently been proposed for detection of pathologies such as traumatic axonal injury and chronic traumatic encephalopathy which commonly affect complex cortical brain regions. However, radiological-pathological correlations in human brain tissue that detail the relationship between the multi-component diffusion signal and underlying pathology are lacking. We present a nonlinear voxel based two dimensional coregistration method that is useful for matching diffusion signals to quantitative metrics of high resolution histological images. When validated in ex vivo human cortical tissue at a 250 × 250 × 500 micron spatial resolution, the method proved robust in correlations between generalized q-sampling imaging and histologically based white matter fiber orientations, with r = 0.94 for the primary fiber direction and r = 0.88 for secondary fiber direction in each voxel. Importantly, however, the correlation was substantially worse with reduced spatial resolution or with fiber orientations derived using a diffusion tensor model. Furthermore, we have detailed a quantitative histological metric of white matter fiber integrity termed power coherence capable of distinguishing between architecturally complex but intact white matter from disrupted white matter regions. These methods may allow for more sensitive and specific radiological-pathological correlations of neurodegenerative diseases affecting complex gray and white matter. PMID:28365421
NASA Astrophysics Data System (ADS)
Allen, Steven P.; Vlaisavljevich, Eli; Shi, Jiaqi; Hernandez-Garcia, Luis; Cain, Charles A.; Xu, Zhen; Hall, Timothy L.
2017-09-01
Histotripsy is a non-invasive, focused ultrasound lesioning technique that can ablate precise volumes of soft tissue using a novel mechanical fractionation mechanism. Previous research suggests that magnetic resonance imaging (MRI) may be a sensitive image-based feedback mechanism for histotripsy. However, there are insufficient data to form some unified understanding of the response of the MR contrast mechanisms in tissues to histotripsy. In this paper, we investigate the response of the MR contrast parameters R1, R2, and the apparent diffusion coefficient (ADC) to various treatment levels of histotripsy in in vitro porcine liver, kidney, muscle, and blood clot as well in formulations of bovine red blood cells suspended in agar gel. We also make a histological analysis of histotripsy lesions in porcine liver. We find that R2 and the ADC are both sensitive to ablation in all materials tested here, and the degree of response varies with tissue type. Correspondingly, under histologic analysis, the porcine liver exhibited various levels of mechanical disruption and necrotic debris that are characteristic of histotripsy. While the area of intact red blood cells and nuclei found within these lesions both decreased with increasing amounts of treatment, the area of red blood cells decreased much more rapidly than the area of intact nuclei. Additionally, the decrease in area of intact red blood cells saturated at the same treatment levels at which the response of the R2 saturated while the area of intact nuclei appeared to vary linearly with the response of the ADC.
Chemical Probes for Visualizing Intact Animal and Human Brain Tissue.
Lai, Hei Ming; Ng, Wai-Lung; Gentleman, Steve M; Wu, Wutian
2017-06-22
Newly developed tissue clearing techniques can be used to render intact tissues transparent. When combined with fluorescent labeling technologies and optical sectioning microscopy, this allows visualization of fine structure in three dimensions. Gene-transfection techniques have proved very useful in visualizing cellular structures in animal models, but they are not applicable to human brain tissue. Here, we discuss the characteristics of an ideal chemical fluorescent probe for use in brain and other cleared tissues, and offer a comprehensive overview of currently available chemical probes. We describe their working principles and compare their performance with the goal of simplifying probe selection for neuropathologists and stimulating probe development by chemists. We propose several approaches for the development of innovative chemical labeling methods which, when combined with tissue clearing, have the potential to revolutionize how we study the structure and function of the human brain. Copyright © 2017 Elsevier Ltd. All rights reserved.
Local gene silencing in plants via synthetic dsRNA and carrier peptide.
Numata, Keiji; Ohtani, Misato; Yoshizumi, Takeshi; Demura, Taku; Kodama, Yutaka
2014-10-01
Quick and facile transient RNA interference (RNAi) is one of the most valuable plant biotechnologies for analysing plant gene functions. To establish a novel double-strand RNA (dsRNA) delivery system for plants, we developed an ionic complex of synthetic dsRNA with a carrier peptide in which a cell-penetrating peptide is fused with a polycation sequence as a gene carrier. The dsRNA-peptide complex is 100-300 nm in diameter and positively charged. Infiltration of the complex into intact leaf cells of Arabidopsis thaliana successfully induced rapid and efficient down-regulation of exogenous and endogenous genes such as yellow fluorescent protein and chalcone synthase. The present method realizes quick and local gene silencing in specific tissues and/or organs in plants. © 2014 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
DNA purification by triplex-affinity capture and affinity capture electrophoresis
Cantor, Charles R.; Ito, Takashi; Smith, Cassandra L.
1996-01-01
The invention provides a method for purifying or isolating double stranded DNA intact using triple helix formation. The method includes the steps of complexing an oligonucleotide and double stranded DNA to generate a triple helix and immobilization of the triple helix on a solid phase by means of a molecular recognition system such as avidin/biotin. The purified DNA is then recovered intact by treating the solid phase with a reagent that breaks the bonds between the oligonucleotide and the intact double stranded DNA while not affecting the Watson-Crick base pairs of the double helix. The present invention also provides a method for purifying or isolating double stranded DNA intact by complexing the double stranded DNA with a specific binding partner and recovering the complex during electrophoresis by immobilizing it on a solid phase trap imbedded in an electrophoretic gel.
Top-down mass spectrometry imaging of intact proteins by laser ablation ESI FT-ICR MS.
Kiss, András; Smith, Donald F; Reschke, Brent R; Powell, Matthew J; Heeren, Ron M A
2014-05-01
Laser ablation ESI (LAESI) is a recent development in MS imaging. It has been shown that lipids and small metabolites can be imaged in various samples such as plant material, tissue sections or bacterial colonies without any sample pretreatment. Further, LAESI has been shown to produce multiply charged protein ions from liquids or solid surfaces. This presents a means to address one of the biggest challenges in MS imaging; the identification of proteins directly from biological tissue surfaces. Such identification is hindered by the lack of multiply charged proteins in common MALDI ion sources and the difficulty of performing tandem MS on such large, singly charged ions. We present here top-down identification of intact proteins from tissue with a LAESI ion source combined with a hybrid ion-trap FT-ICR mass spectrometer. The performance of the system was first tested with a standard protein with electron capture dissociation and infrared multiphoton dissociation fragmentation to prove the viability of LAESI FT-ICR for top-down proteomics. Finally, the imaging of a tissue section was performed, where a number of intact proteins were measured and the hemoglobin α chain was identified directly from tissue using CID and infrared multiphoton dissociation fragmentation. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Schröder, Leif; Schmitz, Christian; Bachert, Peter
2004-12-01
Coupling constants of nuclear spin systems can be determined from phase modulation of multiplet resonances. Strongly coupled systems such as citrate in prostatic tissue exhibit a more complex modulation than AX connectivities, because of substantial mixing of quantum states. An extreme limit is the coupling of n isochronous spins (A n system). It is observable only for directly connected spins like the methylene protons of creatine and phosphocreatine which experience residual dipolar coupling in intact muscle tissue in vivo. We will demonstrate that phase modulation of this "pseudo-strong" system is quite simple compared to those of AB systems. Theory predicts that the spin-echo experiment yields conditions as in the case of weak interactions, in particular, the phase modulation depends linearly on the line splitting and the echo time.
Ambient ozone and pulmonary innate immunity
Al-Hegelan, Mashael; Tighe, Robert M.; Castillo, Christian; Hollingsworth, John W.
2013-01-01
Ambient ozone is a criteria air pollutant that impacts both human morbidity and mortality. The effect of ozone inhalation includes both toxicity to lung tissue and alteration of the host immunologic response. The innate immune system facilitates immediate recognition of both foreign pathogens and tissue damage. Emerging evidence supports that ozone can modify the host innate immune response and that this response to inhaled ozone is dependent on genes of innate immunity. Improved understanding of the complex interaction between environmental ozone and host innate immunity will provide fundamental insight into the pathogenesis of inflammatory airways disease. We review the current evidence supporting that environmental ozone inhalation: (1) modifies cell types required for intact innate immunity, (2) is partially dependent on genes of innate immunity, (3) primes pulmonary innate immune responses to LPS, and (4) contributes to innate-adaptive immune system cross-talk. PMID:21132467
In vivo imaging of coral tissue and skeleton with optical coherence tomography.
Wangpraseurt, Daniel; Wentzel, Camilla; Jacques, Steven L; Wagner, Michael; Kühl, Michael
2017-03-01
Application of optical coherence tomography (OCT) for in vivo imaging of tissue and skeleton structure of intact living corals enabled the non-invasive visualization of coral tissue layers (endoderm versus ectoderm), skeletal cavities and special structures such as mesenterial filaments and mucus release from intact living corals. Coral host chromatophores containing green fluorescent protein-like pigment granules appeared hyper-reflective to near-infrared radiation allowing for excellent optical contrast in OCT and a rapid characterization of chromatophore size, distribution and abundance. In vivo tissue plasticity could be quantified by the linear contraction velocity of coral tissues upon illumination resulting in dynamic changes in the live coral tissue surface area, which varied by a factor of 2 between the contracted and expanded state of a coral. Our study provides a novel view on the in vivo organization of coral tissue and skeleton and highlights the importance of microstructural dynamics for coral ecophysiology. © 2017 The Author(s).
Mechanical analysis of a heat-shock induced developmental defect
NASA Astrophysics Data System (ADS)
Crews, Sarah M.; McCleery, W. Tyler; Hutson, M. Shane
2014-03-01
Embryonic development in Drosophila is a complex process involving coordinated movements of mechanically interacting tissues. Perturbing this system with a transient heat shock can result in a number of developmental defects. In particular, a heat shock applied during the earliest morphogenetic movements of gastrulation can lead to apparent recovery, but then subsequent morphogenetic failure 5-6 hours later during germ band retraction. The process of germ band retraction requires an intact amnioserosa - a single layered extra-embryonic epithelial tissue - and heat shock at gastrulation can induce the later opening of holes in the amnioserosa. These holes are highly correlated with failures of germ band retraction. These holes could be caused by a combination of mechanical weakness in the amnioserosa or local increases in mechanical stress. Here, we assess the role of mechanical stress using confocal imaging to compare cell and tissue morphology in the amnioserosa of normal and heat-shocked embryos and laser hole drilling to map the stress field around the times and locations at which heat-shock induced holes open.
In vivo three-photon microscopy of subcortical structures within an intact mouse brain
NASA Astrophysics Data System (ADS)
Horton, Nicholas G.; Wang, Ke; Kobat, Demirhan; Clark, Catharine G.; Wise, Frank W.; Schaffer, Chris B.; Xu, Chris
2013-03-01
Two-photon fluorescence microscopy enables scientists in various fields including neuroscience, embryology and oncology to visualize in vivo and ex vivo tissue morphology and physiology at a cellular level deep within scattering tissue. However, tissue scattering limits the maximum imaging depth of two-photon fluorescence microscopy to the cortical layer within mouse brain, and imaging subcortical structures currently requires the removal of overlying brain tissue or the insertion of optical probes. Here, we demonstrate non-invasive, high-resolution, in vivo imaging of subcortical structures within an intact mouse brain using three-photon fluorescence microscopy at a spectral excitation window of 1,700 nm. Vascular structures as well as red fluorescent protein-labelled neurons within the mouse hippocampus are imaged. The combination of the long excitation wavelength and the higher-order nonlinear excitation overcomes the limitations of two-photon fluorescence microscopy, enabling biological investigations to take place at a greater depth within tissue.
Diolistic labeling of neuronal cultures and intact tissue using a hand-held gene gun
O'Brien, John A; Lummis, Sarah CR
2009-01-01
Diolistic labeling is a highly efficient method for introducing dyes into cells using biolistic techniques. The use of lipophilic carbocyanine dyes, combined with particle-mediated biolistic delivery using a hand-held gene gun, allows non-toxic labeling of multiple cells in both living and fixed tissue. The technique is rapid (labeled cells can be visualized in minutes) and technically undemanding. Here, we provide a detailed protocol for diolistic labeling of cultured human embryonic kidney 293 cells and whole brain using a hand-held gene gun. There are four major steps: (i) coating gold microcarriers with one or more dyes; (ii) transferring the microcarriers into a cartridge to make a bullet; (iii) preparation of cells or intact tissue; and (iv) firing the microcarriers into cells or tissue. The method can be readily adapted to other cell types and tissues. This protocol can be completed in less than 1 h. PMID:17406443
DNA purification by triplex-affinity capture and affinity capture electrophoresis
Cantor, C.R.; Ito, Takashi; Smith, C.L.
1996-01-09
The invention provides a method for purifying or isolating double stranded DNA intact using triple helix formation. The method includes the steps of complexing an oligonucleotide and double stranded DNA to generate a triple helix and immobilization of the triple helix on a solid phase by means of a molecular recognition system such as avidin/biotin. The purified DNA is then recovered intact by treating the solid phase with a reagent that breaks the bonds between the oligonucleotide and the intact double stranded DNA while not affecting the Watson-Crick base pairs of the double helix. The present invention also provides a method for purifying or isolating double stranded DNA intact by complexing the double stranded DNA with a specific binding partner and recovering the complex during electrophoresis by immobilizing it on a solid phase trap imbedded in an electrophoretic gel. 6 figs.
Miragoli, Michele; Moshkov, Alexey; Novak, Pavel; Shevchuk, Andrew; Nikolaev, Viacheslav O.; El-Hamamsy, Ismail; Potter, Claire M. F.; Wright, Peter; Kadir, S.H. Sheikh Abdul; Lyon, Alexander R.; Mitchell, Jane A.; Chester, Adrian H.; Klenerman, David; Lab, Max J.; Korchev, Yuri E.; Harding, Sian E.; Gorelik, Julia
2011-01-01
Cardiovascular diseases are complex pathologies that include alterations of various cell functions at the levels of intact tissue, single cells and subcellular signalling compartments. Conventional techniques to study these processes are extremely divergent and rely on a combination of individual methods, which usually provide spatially and temporally limited information on single parameters of interest. This review describes scanning ion conductance microscopy (SICM) as a novel versatile technique capable of simultaneously reporting various structural and functional parameters at nanometre resolution in living cardiovascular cells at the level of the whole tissue, single cells and at the subcellular level, to investigate the mechanisms of cardiovascular disease. SICM is a multimodal imaging technology that allows concurrent and dynamic analysis of membrane morphology and various functional parameters (cell volume, membrane potentials, cellular contraction, single ion-channel currents and some parameters of intracellular signalling) in intact living cardiovascular cells and tissues with nanometre resolution at different levels of organization (tissue, cellular and subcellular levels). Using this technique, we showed that at the tissue level, cell orientation in the inner and outer aortic arch distinguishes atheroprone and atheroprotected regions. At the cellular level, heart failure leads to a pronounced loss of T-tubules in cardiac myocytes accompanied by a reduction in Z-groove ratio. We also demonstrated the capability of SICM to measure the entire cell volume as an index of cellular hypertrophy. This method can be further combined with fluorescence to simultaneously measure cardiomyocyte contraction and intracellular calcium transients or to map subcellular localization of membrane receptors coupled to cyclic adenosine monophosphate production. The SICM pipette can be used for patch-clamp recordings of membrane potential and single channel currents. In conclusion, SICM provides a highly informative multimodal imaging platform for functional analysis of the mechanisms of cardiovascular diseases, which should facilitate identification of novel therapeutic strategies. PMID:21325316
NASA Astrophysics Data System (ADS)
Matsushima, U.; Graf, W.; Zabler, S.; Manke, I.; Dawson, M.; Choinka, G.; Hilger, A.; Herppich, W. B.
2013-01-01
Synchrotron X-ray computer microtomography was used to analyze the microstructure of rose peduncles. Samples from three rose cultivars, differing in anatomy, were scanned to study the relation between tissue structure and peduncles mechanical strength. Additionally, chlorophyll fluorescence imaging and conventional light microscopy was applied to quantify possible irradiation-induced damage to plant physiology and tissue structure. The spatial resolution of synchrotron X-ray computer microtomography was sufficiently high to investigate the complex tissues of intact rose peduncles without the necessity of any preparation. However, synchrotron X-radiation induces two different types of damage on irradiated tissues. First, within a few hours after first X-ray exposure, there is a direct physical destruction of cell walls. In addition, a slow and delayed destruction of chlorophyll and, consequently, of photosynthetic activity occurred within hours/ days after the exposure. The results indicate that synchrotron X-ray computer microtomography is well suited for three-dimensional visualization of the microstructure of rose peduncles. However, in its current technique, synchrotron X-ray computer microtomography is not really non-destructive but induce tissue damage. Hence, this technique needs further optimization before it can be applied for time-series investigations of living plant materials
Automatic and adaptive heterogeneous refractive index compensation for light-sheet microscopy.
Ryan, Duncan P; Gould, Elizabeth A; Seedorf, Gregory J; Masihzadeh, Omid; Abman, Steven H; Vijayaraghavan, Sukumar; Macklin, Wendy B; Restrepo, Diego; Shepherd, Douglas P
2017-09-20
Optical tissue clearing has revolutionized researchers' ability to perform fluorescent measurements of molecules, cells, and structures within intact tissue. One common complication to all optically cleared tissue is a spatially heterogeneous refractive index, leading to light scattering and first-order defocus. We designed C-DSLM (cleared tissue digital scanned light-sheet microscopy) as a low-cost method intended to automatically generate in-focus images of cleared tissue. We demonstrate the flexibility and power of C-DSLM by quantifying fluorescent features in tissue from multiple animal models using refractive index matched and mismatched microscope objectives. This includes a unique measurement of myelin tracks within intact tissue using an endogenous fluorescent reporter where typical clearing approaches render such structures difficult to image. For all measurements, we provide independent verification using standard serial tissue sectioning and quantification methods. Paired with advancements in volumetric image processing, C-DSLM provides a robust methodology to quantify sub-micron features within large tissue sections.Optical clearing of tissue has enabled optical imaging deeper into tissue due to significantly reduced light scattering. Here, Ryan et al. tackle first-order defocus, an artefact of a non-uniform refractive index, extending light-sheet microscopy to partially cleared samples.
Nikkhoo, Mohammad; Hsu, Yu-Chun; Haghpanahi, Mohammad; Parnianpour, Mohamad; Wang, Jaw-Lin
2013-06-01
Finite element analysis is an effective tool to evaluate the material properties of living tissue. For an interactive optimization procedure, the finite element analysis usually needs many simulations to reach a reasonable solution. The meta-model analysis of finite element simulation can be used to reduce the computation of a structure with complex geometry or a material with composite constitutive equations. The intervertebral disc is a complex, heterogeneous, and hydrated porous structure. A poroelastic finite element model can be used to observe the fluid transferring, pressure deviation, and other properties within the disc. Defining reasonable poroelastic material properties of the anulus fibrosus and nucleus pulposus is critical for the quality of the simulation. We developed a material property updating protocol, which is basically a fitting algorithm consisted of finite element simulations and a quadratic response surface regression. This protocol was used to find the material properties, such as the hydraulic permeability, elastic modulus, and Poisson's ratio, of intact and degenerated porcine discs. The results showed that the in vitro disc experimental deformations were well fitted with limited finite element simulations and a quadratic response surface regression. The comparison of material properties of intact and degenerated discs showed that the hydraulic permeability significantly decreased but Poisson's ratio significantly increased for the degenerated discs. This study shows that the developed protocol is efficient and effective in defining material properties of a complex structure such as the intervertebral disc.
Murakami, Takashi; Zhang, Yong; Wang, Xiaoen; Hiroshima, Yukihiko; Kasashima, Hiroaki; Yashiro, Masakazu; Hirakawa, Kosei; Miwa, Atsushi; Kiyuna, Tasuku; Matsuyama, Ryusei; Tanaka, Kuniya; Bouvet, Michael; Endo, Itaru; Hoffman, Robert M
2016-05-01
Orthotopic (literally "correct place") implantation of cancer in nude mice has long been known to be superior to subcutaneous transplantation because the orthotopic tumor can metastasize. We reported previously on surgical orthotopic implantation (SOI) of gastric cancer tissue in nude mice resulting in the formation of metastases in 100% of the mice with extensive primary growth to the regional lymph nodes, liver, and lung. In contrast, when cell suspensions were used to inject gastric cancer cells orthotopically, metastases occurred in only 6.7% of the mice with local tumor formation, emphasizing the importance of orthotopically implanting intact tissue to allow full expression of metastatic potential. However, the different behavior of tumors implanted orthotopically by the two methods has not been visualized in real time. OCUM-2MD3 human gastric cancer cells labeled with the fluorescent protein Azami-Green were implanted orthotopically as cells or tissue in nude mice. Orthotopic implantation of cells resulted in local spread on the stomach. In contrast, SOI of tumor tissue of OCUM-2MD3 resulted in vessel spread of the Azami-Green-expressing cancer cells. Metastasis was also observed in the left lobe of the liver after SOI. These results demonstrate the physiological importance of intact cancer tissue for orthotopic implantation in order for tumors to properly grow and express their metastatic potential. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Time-Dependent Changes in T1 during Fracture Healing in Juvenile Rats: A Quantitative MR Approach
Baron, Katharina; Neumayer, Bernhard; Amerstorfer, Eva; Scheurer, Eva; Diwoky, Clemens; Stollberger, Rudolf; Sprenger, Hanna; Weinberg, Annelie M.
2016-01-01
Quantitative magnetic resonance imaging (qMRI) offers several advantages in imaging and determination of soft tissue alterations when compared to qualitative imaging techniques. Although applications in brain and muscle tissues are well studied, its suitability to quantify relaxation times of intact and injured bone tissue, especially in children, is widely unknown. The objective observation of a fracture including its age determination can become of legal interest in cases of child abuse or maltreatment. Therefore, the aim of this study is the determination of time dependent changes in intact and corresponding injured bones in immature rats via qMRI, to provide the basis for an objective and radiation-free approach for fracture dating. Thirty-five MR scans of 7 Sprague-Dawley rats (male, 4 weeks old, 100 ± 5 g) were acquired on a 3T MRI scanner (TimTrio, Siemens AG, Erlangen, Germany) after the surgical infliction of an epiphyseal fracture in the tibia. The images were taken at days 1, 3, 7, 14, 28, 42 and 82 post-surgery. A proton density-weighted and a T1-weighted 3D FLASH sequence were acquired to calculate the longitudinal relaxation time T1 of the fractured region and the surrounding tissues. The calculation of T1 in intact and injured bone resulted in a quantitative observation of bone development in intact juvenile tibiae as well as the bone healing process in the injured tibiae. In both areas, T1 decreased over time. To evaluate the differences in T1 behaviour between the intact and injured bone, the relative T1 values (bone-fracture) were calculated, showing clear detectable alterations of T1 after fracture occurrence. These results indicate that qMRI has a high potential not only for clinically relevant applications to detect growth defects or developmental alterations in juvenile bones, but also for forensically relevant applications such as the dating of fractures in cases of child abuse or maltreatment. PMID:27832068
Delgado-Goñi, Teresa; Campo, Sonia; Martín-Sitjar, Juana; Cabañas, Miquel E; San Segundo, Blanca; Arús, Carles
2013-08-01
In most plants, sucrose is the primary product of photosynthesis, the transport form of assimilated carbon, and also one of the main factors determining sweetness in fresh fruits. Traditional methods for sugar quantification (mainly sucrose, glucose and fructose) require obtaining crude plant extracts, which sometimes involve substantial sample manipulation, making the process time-consuming and increasing the risk of sample degradation. Here, we describe and validate a fast method to determine sugar content in intact plant tissue by using high-resolution magic angle spinning nuclear magnetic resonance spectroscopy (HR-MAS NMR). The HR-MAS NMR method was used for quantifying sucrose, glucose and fructose in mesocarp tissues from melon fruits (Cucumis melo var. reticulatus and Cucumis melo var. cantalupensis). The resulting sugar content varied among individual melons, ranging from 1.4 to 7.3 g of sucrose, 0.4-2.5 g of glucose; and 0.73-2.83 g of fructose (values per 100 g fw). These values were in agreement with those described in the literature for melon fruit tissue, and no significant differences were found when comparing them with those obtained using the traditional, enzymatic procedure, on melon tissue extracts. The HR-MAS NMR method offers a fast (usually <30 min) and sensitive method for sugar quantification in intact plant tissues, it requires a small amount of tissue (typically 50 mg fw) and avoids the interferences and risks associated with obtaining plant extracts. Furthermore, this method might also allow the quantification of additional metabolites detectable in the plant tissue NMR spectrum.
Novel Micropatterned Cardiac Cell Cultures with Realistic Ventricular Microstructure
Badie, Nima; Bursac, Nenad
2009-01-01
Systematic studies of cardiac structure-function relationships to date have been hindered by the intrinsic complexity and variability of in vivo and ex vivo model systems. Thus, we set out to develop a reproducible cell culture system that can accurately replicate the realistic microstructure of native cardiac tissues. Using cell micropatterning techniques, we aligned cultured cardiomyocytes at micro- and macroscopic spatial scales to follow local directions of cardiac fibers in murine ventricular cross sections, as measured by high-resolution diffusion tensor magnetic resonance imaging. To elucidate the roles of ventricular tissue microstructure in macroscopic impulse conduction, we optically mapped membrane potentials in micropatterned cardiac cultures with realistic tissue boundaries and natural cell orientation, cardiac cultures with realistic tissue boundaries but random cell orientation, and standard isotropic monolayers. At 2 Hz pacing, both microscopic changes in cell orientation and ventricular tissue boundaries independently and synergistically increased the spatial dispersion of conduction velocity, but not the action potential duration. The realistic variations in intramural microstructure created unique spatial signatures in micro- and macroscopic impulse propagation within ventricular cross-section cultures. This novel in vitro model system is expected to help bridge the existing gap between experimental structure-function studies in standard cardiac monolayers and intact heart tissues. PMID:19413993
Hu, Peng; Fabyanic, Emily; Kwon, Deborah Y; Tang, Sheng; Zhou, Zhaolan; Wu, Hao
2017-12-07
Massively parallel single-cell RNA sequencing can precisely resolve cellular diversity in a high-throughput manner at low cost, but unbiased isolation of intact single cells from complex tissues such as adult mammalian brains is challenging. Here, we integrate sucrose-gradient-assisted purification of nuclei with droplet microfluidics to develop a highly scalable single-nucleus RNA-seq approach (sNucDrop-seq), which is free of enzymatic dissociation and nucleus sorting. By profiling ∼18,000 nuclei isolated from cortical tissues of adult mice, we demonstrate that sNucDrop-seq not only accurately reveals neuronal and non-neuronal subtype composition with high sensitivity but also enables in-depth analysis of transient transcriptional states driven by neuronal activity, at single-cell resolution, in vivo. Copyright © 2017 Elsevier Inc. All rights reserved.
Integrating Mass Spectrometry of Intact Protein Complexes into Structural Proteomics
Hyung, Suk-Joon; Ruotolo, Brandon T.
2013-01-01
Summary Mass spectrometry analysis of intact protein complexes has emerged as an established technology for assessing the composition and connectivity within dynamic, heterogeneous multiprotein complexes at low concentrations and in the context of mixtures. As this technology continues to move forward, one of the main challenges is to integrate the information content of such intact protein complex measurements with other mass spectrometry approaches in structural biology. Methods such as H/D exchange, oxidative foot-printing, chemical cross-linking, affinity purification, and ion mobility separation add complementary information that allows access to every level of protein structure and organization. Here, we survey the structural information that can be retrieved by such experiments, demonstrate the applicability of integrative mass spectrometry approaches in structural proteomics, and look to the future to explore upcoming innovations in this rapidly-advancing area. PMID:22611037
Hayashi, Kei; Bhandal, Jitender; Kim, Sun Young; Rodriguez, Carlos O; Entwistle, Rachel; Naydan, Diane; Kapatkin, Amy; Stover, Susan M
2011-02-01
To (1) describe vascular distribution in the grossly intact canine cranial cruciate ligament (CCL) using immunohistochemical techniques specific to 2 components of blood vessels (factor VIII for endothelial cells, laminin for basement membrane); and (2) compare the vascularity in different areas of interest (craniomedial versus caudolateral bands; core versus epiligamentous regions; and proximal versus middle versus distal portions) in the intact normal canine CCL. In vitro study. Large, mature dogs (n=7) of breeds prone to CCL disease that were euthanatized for nonorthopedic conditions. Intact CCL were collected from fresh canine cadavers free from stifle pathology. CCL tissue was processed for immunohistochemistry and stained for factor VIII and laminin. Vascular density was determined by histomorphometric analysis. Specific vascular staining was sparsely identified throughout the CCL; however, the proximal portion of the CCL appears to have a greater number of vessels than the middle or distal portion of the ligament. The CCL is a hypovascular tissue and its vascular distribution is not homogeneous. © Copyright 2010 by The American College of Veterinary Surgeons.
NASA Astrophysics Data System (ADS)
Muller, Ludovic; Baldwin, Kathrine; Barbacci, Damon C.; Jackson, Shelley N.; Roux, Aurélie; Balaban, Carey D.; Brinson, Bruce E.; McCully, Michael I.; Lewis, Ernest K.; Schultz, J. Albert; Woods, Amina S.
2017-08-01
Mass spectrometry imaging (MSI) of tissue implanted with silver nanoparticulate (AgNP) matrix generates reproducible imaging of lipids in rodent models of disease and injury. Gas-phase production and acceleration of size-selected 8 nm AgNP is followed by controlled ion beam rastering and soft landing implantation of 500 eV AgNP into tissue. Focused 337 nm laser desorption produces high quality images for most lipid classes in rat brain tissue (in positive mode: galactoceramides, diacylglycerols, ceramides, phosphatidylcholines, cholesteryl ester, and cholesterol, and in negative ion mode: phosphatidylethanolamides, sulfatides, phosphatidylinositol, and sphingomyelins). Image reproducibility in serial sections of brain tissue is achieved within <10% tolerance by selecting argentated instead of alkali cationized ions. The imaging of brain tissues spotted with pure standards was used to demonstrate that Ag cationized ceramide and diacylglycerol ions are from intact, endogenous species. In contrast, almost all Ag cationized fatty acid ions are a result of fragmentations of numerous lipid types having the fatty acid as a subunit. Almost no argentated intact fatty acid ions come from the pure fatty acid standard on tissue.
Kim-Kang, H; Crouch, L S; Bova, A; Robinson, R A; Wu, J
2001-11-01
An accurate, reliable, and reproducible assay for the determination of residual concentrations of emamectin B(1a) in muscle, skin, and intact muscle/skin in natural proportions from Atlantic salmon treated with SCH 58854 (emamectin benzoate) is described. The determinative method was developed and validated using fortified control tissues at five levels over a range of 50-800 ng/g as well as tissues containing incurred levels in the same range. Incurred tissues were obtained from a metabolism study of [(3)H]emamectin benzoate in Atlantic salmon. The assay employs processing of a tissue ethyl acetate extract on a propylsulfonic acid solid phase extraction cartridge, followed by derivatization with trifluoroacetic anhydride in the presence of N-methylimidazole. Following separation using reversed phase HPLC, the amount of derivatized emamectin B(1a) is determined by fluorescence detection. The theoretical limits of detection were determined from the analysis of control tissue matrices to be 2.6, 3.3, and 3.8 ng/g as emamectin B(1a) for muscle, skin, and intact muscle/skin, respectively. Likewise, the theoretical limits of quantitation (LOQ) were determined to be 6.9, 8.1, and 9.5 ng/g as emamectin B(1a) for muscle, skin, and intact muscle/skin, respectively. The lowest fortification level used for method validation was 50 ng/g, which served as the effective LOQ for the method. The overall percent recoveries (+/-% CV) were 94.4 +/- 6.89% (n = 25) for muscle, 88.4 +/- 5.35% (n = 25) for skin, and 88.0 +/- 3.73% for intact muscle/skin (n = 25). Accuracy, precision, linearity, selectivity, and ruggedness were demonstrated. The structure of the final fluorescent derivative of emamectin B(1a) free base was identified by ESI(+)/LC-MS. The frozen storage stability of [(3)H]emamectin B(1a) in tissues with incurred residues was demonstrated for approximately 15 months by radiometric analysis and for an additional approximately 13 months by fluorometric analysis for a total of approximately 28 months.
Soo, M S; Kornguth, P J; Walsh, R; Elenberger, C D; Georgiade, G S
1996-06-01
Detection of intracapsular rupture of silicone breast prostheses using MR imaging is often performed by identifying the "linguine sign" [1]. The linguine sign is easily differentiated from simple radial folds that are seen in intact implants. However, more subtle signs of intracapsular rupture, including undulating subcapsular lines and the "teardrop sign," are less often recognized [2-5] and may prove difficult for the less experienced radiologist to differentiate from complex radial folds of intact implants. In this essay, we illustrate the MR imaging findings of complex radial folds in intact implants and compare them with findings of incomplete shell collapse in ruptured implants in a surgically confirmed series of explanted silicone breast prostheses.
Express diagnostics of intact and pathological dental hard tissues by optical PNC method
NASA Astrophysics Data System (ADS)
Masychev, Victor I.; Alexandrov, Michail T.
2000-03-01
The results of hard tooth tissues research by the optical PNC- method in experimental and clinical conditions are presented. In the experiment under 90 test-sample of tooth slices with thickness about 1 mm (enamel, dentine and cement) were researched. The results of the experiment were processed by the method of correlation analyze. Clinical researches were executed on teeth of 210 patients. The regions of tooth tissue diseases with initial, moderate and deep caries were investigated. Spectral characteristics of intact and pathologically changed tooth tissues are presented and their peculiar features are discussed. The results the optical PNC- method application while processing tooth carious cavities are presented in order to estimate efficiency of the mechanical and antiseptic processing of teeth. It is revealed that the PNC-method can be used as for differential diagnostics of a degree dental carious stage, as for estimating of carefulness of tooth cavity processing before filling.
Massuger, L F; Boerman, O C; Corstens, F H; Verheijen, R H; Claessens, R A; Poels, L G; van den Broek, W J; Kenemans, P
1991-01-01
The monoclonal antibody OV-TL 3, directed against an ovarian carcinoma-associated antigenic determinant, was tested as a vehicle for radioimmunolocalization of ovarian carcinomas in athymic mice bearing NIH:OVCAR-3 xenografts. The biodistribution of intact. OV-TL 3 was compared with the distribution of OC 125. Tumor uptake with OV-TL 3 was significantly higher than with OC 125, and almost 7 times higher than with a non-specific control antibody (OV-TL 19). Administration of a mixture of intact OV-TL 3 and OC 125 did not improve tumor uptake in comparison with OV-TL 3 alone. Subsequently, intact OV-TL 3 and its F(ab')2 fragments were labeled with either 111In or 125I. The highest tumor uptake was obtained with 111In-labeled intact OV-TL 3 (14.7% ID/g, 48 hr p.i.). For both antibody forms uptake of 111In in liver, spleen and kidneys was very high. Furthermore, 111In cleared more slowly from most tissues than 125I. As a result, tumor/tissue ratios with 111In-labeled OV-TL 3 were lower than with 125I-labeled OV-TL 3. The highest tumor/tissue ratios (6.9 to 53) were obtained with 125I-labeled OV-TL 3 F(ab')2 fragments, 48 hr post injection. 111In-labeled OV-TL 3 F(ab')2 has already been shown to be a clinically useful label for the detection of ovarian cancer. The results of our comparative animal study suggest that these clinical results may even be improved by using 123I-labeled OV-TL 3 F(ab')2.
Al-Ayed, Mohammed Saeed Zayed
2018-06-01
This study aimed at investigating the potential ghrelin relaxing effect on guinea pig isolated tracheal smooth muscle (TSM). Using an in vitro experimental approach, the physiological role of the airway epithelium on smooth muscle relaxation has been investigated by analyzing the dose-response curves for carbachol- or histamine-induced contractions on epithelium intact versus denuded tracheal tissue. The relaxant effect of ghrelin (5-200 μmol/L) then investigated on carbachol-contracted, non-sensitized, and ovalbumin (OVA)-sensitized guinea pig TSM with an intact or denuded epithelium. The isolated TSMs from identical guinea pigs were incubated in Krebs solution aerated with 95% O 2 and 5% CO 2 through an automated tissue organ bath system (n = 6 for each group). The ghrelin relaxation mechanism was assessed by adding L-NAME, indomethacin, and YIL-781 for GHS-R1 into the tissue chamber. The spasmogens carbachol and histamine have shown a significantly higher contracting effect on epithelium-denuded than in epithelium-intact TSM confirmed by the significantly higher mean pEC50 of both agonists on the epithelium-denuded trachea (p < 0.05). Ghrelin has shown a concentration-dependent relaxing effect on carbachol-contracted TSM (r = 0.96, p = 0.00). The effect was more evident in the intact non-sensitized than in epithelium-denuded or OVA-sensitized groups (p < 0.05). Preincubation with nitric oxide (NO) and prostaglandin E 2 (PGE 2 ) inhibitors has significantly reduced the ghrelin-induced relaxation on epithelium-intact TSM suggesting an epithelium-dependant mechanism. However, GHS-R1a antagonist has also succeeded to reduce ghrelin relaxant effect, which needs further clarification. Ghrelin proved to have a potential TSM relaxant effect possibly through epithelium-dependant mechanisms involving NO and PGE 2 .
Hydroponics on a chip: analysis of the Fe deficient Arabidopsis thylakoid membrane proteome.
Laganowsky, Arthur; Gómez, Stephen M; Whitelegge, Julian P; Nishio, John N
2009-04-13
The model plant Arabidopsis thaliana was used to evaluate the thylakoid membrane proteome under Fe-deficient conditions. Plants were cultivated using a novel hydroponic system, called "hydroponics on a chip", which yields highly reproducible plant tissue samples for physiological analyses, and can be easily used for in vivo stable isotope labeling. The thylakoid membrane proteome, from intact chloroplasts isolated from Fe-sufficient and Fe-deficient plants grown with hydroponics on a chip, was analyzed using liquid chromatography coupled to mass spectrometry. Intact masses of thylakoid membrane proteins were measured, many for the first time, and several proteins were identified with post-translational modifications that were altered by Fe deficiency; for example, the doubly phosphorylated form of the photosystem II oxygen evolving complex, PSBH, increased under Fe-deficiency. Increased levels of photosystem II protein subunit PSBS were detected in the Fe-deficient samples. Antioxidant enzymes, including ascorbate peroxidase and peroxiredoxin Q, were only detected in the Fe-deficient samples. We present the first biochemical evidence that the two major LHC IIb proteins (LHCB1 and LHCB2) may have significantly different functions in the thylakoid membrane. The study illustrates the utility of intact mass proteomics as an indispensable tool for functional genomics. "Hydroponics on a chip" provides the ability to grow A. thaliana under defined conditions that will be useful for systems biology.
Schwartz, B S; Edgington, T S
1981-09-01
It has previously been described that soluble antigen:antibody complexes in antigen excess can induce an increase in the procoagulant activity of human peripheral blood mononuclear cells. It has been proposed that this response may explain the presence of fibrin in immune complex-mediated tissue lesions. In the present study we define cellular participants and their roles in the procoagulant response to soluble immune complexes. Monocytes were shown by cell fractionation and by a direct cytologic assay to be the cell of origin of the procoagulant activity; and virtually all monocytes were able to participate in the response. Monocytes, however, required the presence of lymphocytes to respond. The procoagulant response required cell cooperation, and this collaborative interaction between lymphocytes and monocytes appeared to be unidirectional. Lymphocytes once triggered by immune complexes induced monocytes to synthesize the procoagulant product. Intact viable lymphocytes were required to present instructions to monocytes; no soluble mediator could be found to subserve this function. Indeed, all that appeared necessary to induce monocytes to produce procoagulant activity was an encounter with lymphocytes that had previously been in contact with soluble immune complexes. The optimum cellular ratio for this interaction was four lymphocytes per monocyte, about half the ratio in peripheral blood. The procoagulant response was rapid, reaching a maximum within 6 h after exposure to antigen:antibody complexes. The procoagulant activity was consistent with tissue factor because Factors VII and X and prothrombin were required for clotting of fibrinogen. WE propose that this pathway differs from a number of others involving cells of the immune system. Elucidation of the pathway may clarify the role of this lymphocyte-instructed monocyte response in the Shwartzman phenomenon and other thrombohemorrhagic events associated with immune cell function and the formation of immune complexes.
Wei, Zewen; Huang, Yuanyu; Zhao, Deyao; Hu, Zhiyuan; Li, Zhihong; Liang, Zicai
2015-01-05
Delivery of nucleic acids into animal tissues by electroporation is an appealing approach for various types of gene therapy, but efficiency of existing methodsis not satisfactory. Here we present the validation of novel electroporation patch (ep-Patch) for efficient delivery of DNA and siRNA into mouse tissues. Using micromachining technology, closely spaced gold electrodes were made on the pliable parylene substrate to form a patch-like electroporation metrics. It enabled large coverage of the target tissues and close surface contact between the tissues and electrodes, thus providing a uniform electric field to deliver nucleic acids into tissues, even beneath intact skin. Using this ep-Patch for efficiently delivery of both DNA and siRNA, non-invasive electroporation of healthy mouse muscle tissue was successfully achieved. Delivery of these nucleic acids was performed to intact tumors with satisfactory results. Silencing of tumor genes using the ep-Patch was also demonstrated on mice. This pliable electroporation patch method constitutes a novel way of in vivo delivery of siRNA and DNA to certain tissues or organs to circumvent the disadvantages of existing methodologies for in vivo delivery of nucleic acid molecules.
Skin autofluorescence associates with vascular calcification in chronic kidney disease.
Wang, Angela Yee-Moon; Wong, Chun-Kwok; Yau, Yat-Yin; Wong, Sharon; Chan, Iris Hiu-Shuen; Lam, Christopher Wai-Kei
2014-08-01
This study aims to evaluate the relationship between tissue advanced glycation end products, as reflected by skin autofluorescence, and vascular calcification in chronic kidney disease. Three hundred patients with stage 3 to 5 chronic kidney disease underwent multislice computed tomography to estimate total coronary artery calcium score (CACS) and had tissue advanced glycation end product assessed using a skin autofluorescence reader. Intact parathyroid hormone (P<0.001) displaced estimated glomerular filtration rate as third most significant factor associated with skin autofluorescence after age (P<0.001) and diabetes mellitus (P<0.001) in multiple regression analysis. On univariate multinomial logistic regression analysis, every 1-U increase in skin autofluorescence was associated with a 7.43-fold (95% confidence intervals, 3.59-15.37; P<0.001) increased odds of having CACS ≥400 compared with those with zero CACS. Skin autofluorescence retained significance in predicting CACS ≥400 (odds ratio, 3.63; 95% confidence intervals, 1.44-9.18; P=0.006) when adjusting for age, sex, serum calcium, phosphate, albumin, C-reactive protein, lipids, blood pressure, estimated glomerular filtration rate, and intact parathyroid hormone but marginally lost significance when additionally adjusting for diabetes mellitus (odds ratio, 2.23; 95% confidence intervals, 0.81-6.14; P=0.1). Combination of diabetes mellitus and higher intact parathyroid hormone was associated with greater skin autofluorescence and CACS versus those without diabetes mellitus and having lower intact parathyroid hormone. Tissue advanced glycation end product, as reflected by skin autofluorescence, showed a significant novel association with vascular calcification in chronic kidney disease. These data suggest that increased tissue advanced glycation end product may contribute to vascular calcification in chronic kidney disease and diabetes mellitus and warrant further experimental investigation. © 2014 American Heart Association, Inc.
Transport of sup 14 C-IAA and sup 14 C-ACC within floral organs of Ipomoea nil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiss, H.G.; Maurice, H.R.; Koning, R.E.
1989-04-01
The transport of {sup 14}C-IAA {sup 14}C-ACC from agarose donor blocks applied to I. nil filaments their recovery as {sup 14}C-accumulation into floral organs was examined. The accumulation of the isotopes in the corolla tissue was greater when {sup 14}C-ACC was applied than {sup 14}C-IAA in intact isolated flower buds. Greater levels of the isotopes accumulated in the pistil, with minimal levels in receptacle and calyx tissues from isolated buds. With intact buds, greater levels of the isotopes were recovered in pistil, calyx receptacle tissues. This study provides further evidence for the role of the filaments as transport vectors formore » IAA ACC for the production of ethylene.« less
Rapid wall relaxation in elongating tissues. [Glycine max (L. ); Pisum sativum L
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matyssek, R.; Maruyama, S.; Boyer, J.S.
1988-01-01
Reported differences in the relaxation of cell walls in enlarging stem tissues of soybean (Glycine max (L.) Merr.) and pea (Pisum sativum L.) cause measurements of the yield threshold turgor, an important growth parameter, to be in doubt. Using the pressure probe and guillotine psychrometer, the authors investigated wall relaxation in these species by excising the elongating tissue in air to remove the water supply. The authors found that the rapid kinetics usually exhibited by soybean could be delayed and made similar to the slow kinetics previously reported for pea if slowly growing or mature tissue was left attached tomore » the rapidly growing tissue when relaxation was initiated. The greater the amount of attached tissue, the slower the relaxation, suggesting that slowly growing tissue acted as a water source. Consistent with this concept was a lower water potential in the rapidly elongating tissue than in the slowly growing tissue. If this tissue was removed from pea, relaxation became as rapid as usually exhibited by soybean. It is concluded that the true relaxation of cell walls to the yield threshold requires only a few minutes and that the yield threshold in the intact plant before excision. Under these conditions, the yield threshold was close to the turgor in the intact plant regardless of the species.« less
Assays for the activities of polyamine biosynthetic enzymes using intact tissues
Rakesh Minocha; Stephanie Long; Hisae Maki; Subhash C. Minocha
1999-01-01
Traditionally, most enzyme assays utilize homogenized cell extracts with or without dialysis. Homogenization and centrifugation of large numbers of samples for screening of mutants and transgenic cell lines is quite cumbersome and generally requires sufficiently large amounts (hundreds of milligrams) of tissue. However, in situations where the tissue is available in...
Novel Passive Clearing Methods for the Rapid Production of Optical Transparency in Whole CNS Tissue.
Woo, Jiwon; Lee, Eunice Yoojin; Park, Hyo-Suk; Park, Jeong Yoon; Cho, Yong Eun
2018-05-08
Since the development of CLARITY, a bioelectrochemical clearing technique that allows for three-dimensional phenotype mapping within transparent tissues, a multitude of novel clearing methodologies including CUBIC (clear, unobstructed brain imaging cocktails and computational analysis), SWITCH (system-wide control of interaction time and kinetics of chemicals), MAP (magnified analysis of the proteome), and PACT (passive clarity technique), have been established to further expand the existing toolkit for the microscopic analysis of biological tissues. The present study aims to improve upon and optimize the original PACT procedure for an array of intact rodent tissues, including the whole central nervous system (CNS), kidneys, spleen, and whole mouse embryos. Termed psPACT (process-separate PACT) and mPACT (modified PACT), these novel techniques provide highly efficacious means of mapping cell circuitry and visualizing subcellular structures in intact normal and pathological tissues. In the following protocol, we provide a detailed, step-by-step outline on how to achieve maximal tissue clearance with minimal invasion of their structural integrity via psPACT and mPACT.
Kulikova, Olga I; Berezhnoy, Daniil S; Stvolinsky, Sergey L; Lopachev, Alexander V; Orlova, Valentina S; Fedorova, Tatiana N
2018-06-01
In a model of early-stage Parkinson's disease induced by a single intranasal administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to Wistar rats, a neuroprotective effect of a new derivative of carnosine and α-lipoic acid (C/LA nanomicellar complex) was demonstrated. Acute intraperitoneal administration of carnosine, α-lipoic acid and C/LA complex following MPTP administration normalized the total antioxidant activity in the brain tissue. Of all the compounds tested only C/LA complex normalized the metabolism of dopamine (DA) and serotonin (5-HT), while its components did not show similar effects when used separately. C/LA complex effectively restored the level of DA metabolites: the level of DOPAC was increased by 24.7 ± 5.6% compared to the animals that had received MPTP only, and the level of HVA was restored to the values observed in the intact animals. Integral metabolic indices of DA (DOPAC/DA and HVA/DA ratios) and 5-HT turnover (5-HIAA/5-HT ratio) in the striatum tended to increase in case of C/LA complex administration. Copyright © 2018 Elsevier Inc. All rights reserved.
Complex suicide with black powder muzzle loading derringer.
Hejna, Petr; Šafr, Miroslav; Zátopková, Lenka; Straka, Luboš
2012-09-01
Planned complex suicide is defined as the combination of more than one method of suicide, previously planned by the victim, to prevent failure of the first method. Herein, we present a case of planned complex suicide, committed by a black powder muzzle loading handgun and hanging. A 39-year-old man was found dead in the bathroom of his flat, hanging by the neck with a huge atypical gunshot entrance in the right temporal region of his head with extensive backspatter. The skin defects, as well as soft tissues in the subcutaneous pocket undermining, were heavily burnt. Along the wound canal were multiple bone fragments, and at the end of the path at the left temple was an embedded lead ogival projectile with a cross shaped artificial incision at its tip. The hanging was incomplete. There were no fractures of the hyoid bone and laryngeal cartilages. Cervical muscles and vessels were intact. Simon's sign was negative. Signs of asphyxia were not present. This is the first reported case of complex suicide with a black powder derringer and manipulated projectile.
Badar, Muhammad; Lünsdorf, Heinrich; Evertz, Florian; Rahim, Muhammad Imran; Glasmacher, Birgit; Hauser, Hansjörg; Mueller, Peter P
2013-07-01
Magnesium alloys have been proposed as prospective degradable implant materials. To elucidate the complex interactions between the corroding implants and the tissue, magnesium implants were analyzed in a mouse model and the response was compared to that induced by Ti and by the resorbable polymer polyglactin, respectively. One month after implantation, distinct traces of corrosion were apparent but the magnesium implants were still intact, whereas resorbable polymeric wound suture implants were already fragmented. Analysis of magnesium implants 2weeks after implantation by energy-dispersive X-ray spectroscopy indicated that magnesium, oxygen, calcium and phosphate were present at the implant surface. One month after implantation, the element composition of the outermost layer of the implant was indicative of tissue without detectable levels of magnesium, indicating a protective barrier function of this organic layer. In agreement with this notion, gene expression patterns in the surrounding tissue were highly similar for all implant materials investigated. However, high-resolution imaging using energy-filtered transmission electron microscopy revealed magnesium-containing microparticles in the tissue in the proximity of the implant. The release of such corrosion particles may contribute to the accumulation of calcium phosphate in the nearby tissue and to bone conductive activities of magnesium implants. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Hormone synthesis and secretion by rat parathyroid glands in tissue culture.
Au, W Y; Poland, A P; Stern, P H; Raisz, L G
1970-09-01
Rat parathyroid glands maintained in organ culture secrete biologically active parathyroid hormone (PTH) and synthesize and secrete labeled proteins from (3)H- or (14)C-labeled amino acids added to the medium. The amounts of biological activity and labeled protein in the medium are both inversely proportional to the calcium concentration. Some of the labeled low molecular weight protein was identified as PTH which had been synthesized and secreted in culture by preliminary isolation on Sephadex G-100 columns and further purification using an antibody to bovine PTH which cross-reacted with rat PTH. The cross-reacting antibody inhibited the biological effects of rat PTH and caused hypocalcemia in intact rats. The antibody bound some of the labeled low molecular weight protein of the medium at neutral pH so that it migrated as a large molecular weight complex on Sephadex. Biologically active, labeled PTH was recovered by dissociation of this complex in acid and rechromatography.
Comparison of Ripening Processes in Intact Tomato Fruit and Excised Pericarp Discs 1
Campbell, Alan D.; Huysamer, Marius; Stotz, Henrik U.; Greve, L. Carl; Labavitch, John M.
1990-01-01
Physiological processes characteristic of ripening in tissues of intact tomato fruit (Lycopersicon esculentum Mill.) were examined in excised pericarp discs. Pericarp discs were prepared from mature-green tomato fruit and stored in 24-well culture plates, in which individual discs could be monitored for color change, ethylene biosynthesis, and respiration, and selected for cell wall analysis. Within the context of these preparation and handling procedures, most whole fruit ripening processes were maintained in pericarp discs. Pericarp discs and matched intact fruit passed through the same skin color stages at similar rates, as expressed in the L*a*b* color space, changing from green (a* < −5) to red (a* > 15) in about 6 days. Individual tissues of the pericarp discs changed color in the same sequence seen in intact fruit (exocarp, endocarp, then vascular parenchyma). Discs from different areas changed in the same spatial sequence seen in intact fruit (bottom, middle, top). Pericarp discs exhibited climacteric increases in ethylene biosynthesis and CO2 production comparable with those seen in intact fruit, but these were more tightly linked to rate of color change, reaching a peak around a* = 5. Tomato pericarp discs decreased in firmness as color changed. Cell wall carbohydrate composition changed with color as in intact fruit: the quantity of water-soluble pectin eluted from the starch-free alcohol insoluble substances steadily increased and more tightly bound, water-insoluble, pectin decreased in inverse relationship. The cell wall content of the neutral sugars arabinose, rhamnose, and galactose steadily decreased as color changed. The extractable activity of specific cell wall hydrolases changed as in intact fruit: polygalacturonase activity, not detectable in green discs (a* = −5), appeared as discs turned yellow-red (a* = 5), and increased another eight-fold as discs became full red (a* value +20). Carboxymethyl-cellulase activity, low in extracts from green discs, increased about six-fold as discs changed from yellow (a* = 0) to red. PMID:16667893
Solis, Leandro R; Liggins, Adrian; Uwiera, Richard R E; Poppe, Niek; Pehowich, Enid; Seres, Peter; Thompson, Richard B; Mushahwar, Vivian K
2012-08-01
The overall goal of this project is to develop interventions for the prevention of deep tissue injury (DTI), a form of pressure ulcers that originates in deep tissue around bony prominences. The present study focused on: (1) obtaining detailed measures of the distribution of pressure experienced by tissue around the ischial tuberosities, and (2) investigating the effectiveness of intermittent electrical stimulation (IES), a novel strategy for the prevention of DTI, in alleviating pressure in regions at risk of breakdown due to sustained loading. The experiments were conducted in adult pigs. Five animals had intact spinal cords and healthy muscles and one had a spinal cord injury that led to substantial muscle atrophy at the time of the experiment. A force-controlled servomotor was used to load the region of the buttocks to levels corresponding to 25%, 50% or 75% of each animal's body weight. A pressure transducer embedded in a catheter was advanced into the tissue to measure pressure along a three dimensional grid around the ischial tuberosity of one hind leg. For all levels of external loading in intact animals, average peak internal pressure was 2.01 ± 0.08 times larger than the maximal interfacial pressure measured at the level of the skin. In the animal with spinal cord injury, similar absolute values of internal pressure as that in intact animals were recorded, but the substantial muscle atrophy produced larger maximal interfacial pressures. Average peak internal pressure in this animal was 1.43 ± 0.055 times larger than the maximal interfacial pressure. Peak internal pressure was localized within a ±2 cm region medio-laterally and dorso-ventrally from the bone in intact animals and ±1 cm in the animal with spinal cord injury. IES significantly redistributed internal pressure, shifting the peak values away from the bone in spinally intact and injured animals. These findings provide critical information regarding the relationship between internal and interfacial pressure around the ischial tuberosities during loading levels equivalent to those experienced while sitting. The information could guide future computer models investigating the etiology of DTI, as well as inform the design and prescription of seating cushions for people with reduced mobility. The findings also suggest that IES may be an effective strategy for the prevention of DTI.
Thorne, John H.
1982-01-01
The environmental sensitivity of the processes associated with the import of photosynthate by developing soybean seeds was investigated within intact fruit and with excised, immature embryos. Intact pods of field-grown (Glycine max [L.] Merr.) Amsoy 71 soybeans were subjected to localized regimes of 0, 21, or 100% O2 and 15, 25, or 35°C during pulsechase translocation experiments and, 2.5 hours later, the uptake and distribution of 14C-photosynthate among dissected fruit tissues determined. In other experiments, excised embryos were incubated in [14C]sucrose solutions under various experimental conditions to separate the effects of these treatments on accumulation by the embryos from those which may operate on phloem unloading in the maternal seedcoat. Import of 14C-photosynthate by intact soybean fruit was both temperature- and O2-dependent. This dependency was shown to occur only within the seeds; import by the pod walls was essentially insensitive to fruit temperature or O2 treatments. The embryos of anaerobic fruit were completely unlabeled, regardless of fruit temperature. But under anaerobic in vitro incubation conditions, uptake of [14C]sucrose in excised embryos was only 30% less than that in aerobic in vitro conditions. The data suggest that, within intact fruit, anoxia prevented sucrose efflux from the seed coat phloem and any subsequent uptake by the embryo. The demonstrated energy dependence of phloem unloading may reflect requirements for membrane integrity or energy metabolism in the companion cell-sieve element complex, consistent with a facilitated unloading process. Collectively, these data characterize the environmental sensitivity of photosynthate import in developing soybean fruit. They imply that environmental regulation of import may occur at both the embryo level and at the phloem terminals within the seed coat. PMID:16662182
Talme, Toomas; Bergdahl, Eva; Sundqvist, Karl-Gösta
2014-06-01
T lymphocytes are highly motile and constantly reposition themselves between a free-floating vascular state, transient adhesion and migration in tissues. The regulation behind this unique dynamic behaviour remains unclear. Here we show that T cells have a cell surface mechanism for integrated regulation of motility and adhesion and that integrin ligands and CXCL12/SDF-1 influence motility and adhesion through this mechanism. Targeting cell surface-expressed low-density lipoprotein receptor-related protein 1 (LRP1) with an antibody, or blocking transport of LRP1 to the cell surface, perturbed the cell surface distribution of endogenous thrombospondin-1 (TSP-1) while inhibiting motility and potentiating cytoplasmic spreading on intercellular adhesion molecule 1 (ICAM-1) and fibronectin. Integrin ligands and CXCL12 stimulated motility and enhanced cell surface expression of LRP1, intact TSP-1 and a 130,000 MW TSP-1 fragment while preventing formation of a de-adhesion-coupled 110 000 MW TSP-1 fragment. The appearance of the 130 000 MW TSP-1 fragment was inhibited by the antibody that targeted LRP1 expression, inhibited motility and enhanced spreading. The TSP-1 binding site in the LRP1-associated protein, calreticulin, stimulated adhesion to ICAM-1 through intact TSP-1 and CD47. Shear flow enhanced cell surface expression of intact TSP-1. Hence, chemokines and integrin ligands up-regulate a dominant motogenic pathway through LRP1 and TSP-1 cleavage and activate an associated adhesion pathway through the LRP1-calreticulin complex, intact TSP-1 and CD47. This regulation of T-cell motility and adhesion makes pro-adhesive stimuli favour motile responses, which may explain why T cells prioritize movement before permanent adhesion.
Ford, Steven J; Bigliardi, Paul L; Sardella, Thomas C P; Urich, Alexander; Burton, Neal C; Kacprowicz, Marcin; Bigliardi, Mei; Olivo, Malini; Razansky, Daniel
2016-04-01
Visualizing anatomical and functional features of hair follicle development in their unperturbed environment is key in understanding complex mechanisms of hair pathophysiology and in discovery of novel therapies. Of particular interest is in vivo visualization of the intact pilosebaceous unit, vascularization of the hair bulb, and evaluation of the hair cycle, particularly in humans. Furthermore, noninvasive visualization of the sebaceous glands could offer crucial insight into the pathophysiology of follicle-related diseases and dry or seborrheic skin, in particular by combining in vivo imaging with other phenotyping, genotyping, and microbial analyses. The available imaging techniques are limited in their ability for deep tissue in vivo imaging of hair follicles and lipid-rich sebaceous glands in their entirety without biopsy. We developed a noninvasive, painless, and risk-free volumetric multispectral optoacoustic tomography method for deep tissue three-dimensional visualization of whole hair follicles and surrounding structures with high spatial resolution below 80 μm. Herein we demonstrate on-the-fly assessment of key morphometric parameters of follicles and lipid content as well as functional oxygenation parameters of the associated capillary bed. The ease of handheld operation and versatility of the newly developed approach poise it as an indispensable tool for early diagnosis of disorders of the pilosebaceous unit and surrounding structures, and for monitoring the efficacy of cosmetic and therapeutic interventions. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Novel in vivo techniques to visualize kidney anatomy and function.
Peti-Peterdi, János; Kidokoro, Kengo; Riquier-Brison, Anne
2015-07-01
Intravital imaging using multiphoton microscopy (MPM) has become an increasingly popular and widely used experimental technique in kidney research over the past few years. MPM allows deep optical sectioning of the intact, living kidney tissue with submicron resolution, which is unparalleled among intravital imaging approaches. MPM has solved a long-standing critical technical barrier in renal research to study several complex and inaccessible cell types and anatomical structures in vivo in their native environment. Comprehensive and quantitative kidney structure and function MPM studies helped our better understanding of the cellular and molecular mechanisms of the healthy and diseased kidney. This review summarizes recent in vivo MPM studies with a focus on the glomerulus and the filtration barrier, although select, glomerulus-related renal vascular and tubular functions are also mentioned. The latest applications of serial MPM of the same glomerulus in vivo, in the intact kidney over several days, during the progression of glomerular disease are discussed. This visual approach, in combination with genetically encoded fluorescent markers of cell lineage, has helped track the fate and function (e.g., cell calcium changes) of single podocytes during the development of glomerular pathologies, and provided visual proof for the highly dynamic, rather than static, nature of the glomerular environment. Future intravital imaging applications have the promise to further push the limits of optical microscopy, and to advance our understanding of the mechanisms of kidney injury. Also, MPM will help to study new mechanisms of tissue repair and regeneration, a cutting-edge area of kidney research.
García-Álvarez, Isabel; Garrido, Leoncio; Romero-Ramírez, Lorenzo; Nieto-Sampedro, Manuel; Fernández-Mayoralas, Alfonso; Campos-Olivas, Ramón
2013-01-01
The effect of the treatment with glycolipid derivatives on the metabolic profile of intact glioma cells and tumor tissues, investigated using proton high resolution magic angle spinning (1H HR-MAS) nuclear magnetic resonance (NMR) spectroscopy, is reported here. Two compounds were used, a glycoside and its thioglycoside analogue, both showing anti-proliferative activity on glioma C6 cell cultures; however, only the thioglycoside exhibited antitumor activity in vivo. At the drug concentrations showing anti-proliferative activity in cell culture (20 and 40 µM), significant increases in choline containing metabolites were observed in the 1H NMR spectra of the same intact cells. In vivo experiments in nude mice bearing tumors derived from implanted C6 glioma cells, showed that reduction of tumor volume was associated with significant changes in the metabolic profile of the same intact tumor tissues; and were similar to those observed in cell culture. Specifically, the activity of the compounds is mainly associated with an increase in choline and phosphocholine, in both the cell cultures and tumoral tissues. Taurine, a metabolite that has been considered a biomarker of apoptosis, correlated with the reduction of tumor volume. Thus, the results indicate that the mode of action of the glycoside involves, at least in part, alteration of phospholipid metabolism, resulting in cell death. PMID:24194925
From static to animated: Measuring mechanical forces in tissues
2017-01-01
Cells are physical objects that exert mechanical forces on their surroundings as they migrate and take their places within tissues. New techniques are now poised to enable the measurement of cell-generated mechanical forces in intact tissues in vivo, which will illuminate the secret dynamic lives of cells and change our current perception of cell biology. PMID:28003332
Schäfer, Karl-Christian; Balog, Júlia; Szaniszló, Tamás; Szalay, Dániel; Mezey, Géza; Dénes, Júlia; Bognár, László; Oertel, Matthias; Takáts, Zoltán
2011-10-15
Direct combination of cavitron ultrasonic surgical aspirator (CUSA) and sonic spray ionization mass spectrometry is presented. A commercially available ultrasonic surgical device was coupled to a Venturi easy ambient sonic-spray ionization (V-EASI) source by directly introducing liquified tissue debris into the Venturi air jet pump. The Venturi air jet pump was found to efficiently nebulize the suspended tissue material for gas phase ion production. The ionization mechanism involving solely pneumatic spraying was associated with that of sonic spray ionization. Positive and negative ionization spectra were obtained from brain and liver samples reflecting the primary application areas of the surgical device. Mass spectra were found to feature predominantly complex lipid-type constituents of tissues in both ion polarity modes. Multiply charged peptide anions were also detected. The influence of instrumental settings was characterized in detail. Venturi pump geometry and flow parameters were found to be critically important in ionization efficiency. Standard solutions of phospholipids and peptides were analyzed in order to test the dynamic range, sensitivity, and suppression effects. The spectra of the intact tissue specimens were found to be highly specific to the histological tissue type. The principal component analysis (PCA) and linear discriminant analysis (LDA) based data analysis method was developed for real-time tissue identification in a surgical environment. The method has been successfully tested on post-mortem and ex vivo human samples including astrocytomas, meningeomas, metastatic brain tumors, and healthy brain tissue. © 2011 American Chemical Society
Collagen fibre characterisation in arterial tissue under load using SALS.
Gaul, R T; Nolan, D R; Lally, C
2017-11-01
The collagen fibre architecture of arterial tissue is known to play a key role in its resultant mechanical behaviour, while maladaptive remodelling of this architecture may be linked to disease. Many of the techniques currently used to analyse collagen fibre architecture require time consuming tissue preparation procedures and are destructive in nature. The aim of this study is to fully explore Small Angle Light Scattering (SALS) as a means to non-destructively assess collagen fibre architecture in arterial tissue and subsequently gain insights into load induced reorientation. The optimised configuration of the SALS system for arterial tissue was determined using quantitative comparisons to histological analyses of porcine carotid artery as its basis. Once established, layer specific fibre orientation and the influence of tissue loading was determined for thin sections of carotid artery using SALS. This process was subsequently repeated for intact carotid artery layers. A single family of circumferentially orientated collagen fibres were found in the intima (- 0.1 ± 1.4° (5.5°)) and media (- 1.7 ± 1.9° (4.7°)) while two perpendicular families of fibres were identified in the adventitia (- 6.4 ± 0.7° (37.7°)) and (118.3 ± 2.7 (39.9°)). An increase in fibre alignment in response to a 20% circumferential strain was also identified using SALS, characterised by an increase in scattered light eccentricity. determined using SALS agreed with those found using traditional destructive techniques, however SALS has the important benefits of allowing vessel layers to remain intact, and has a fast processing time. SALS unique ability to identify load induced reorganisation in intact arterial layers offers an efficient means to gain crucial insights into arterial disease and its development over time. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Abookasis, David; Moshe, Tomer
2014-11-01
This paper demonstrates the insertion of lens array in the front of a CCD camera in a laser speckle imaging (LSI) like-technique to acquire multiple speckle reflectance projections for imaging blood flow in an intact biological tissue. In some of LSI applications, flow imaging is obtained by thinning or removing of the upper tissue layers to access blood vessels. In contrast, with the proposed approach flow imaging can be achieved while the tissue is intact. In the system, each lens from an hexagonal lens array observed the sample from slightly different perspectives and captured with a CCD camera. In the computer, these multiview raw images are converted to speckled contrast maps. Then, a self-deconvolution shift-and-add algorithm is employed for processing yields high contrast flow information. The method is experimentally validated first with a plastic tube filled with scattering liquid running at different controlled flow rates hidden in a biological tissue and then extensively tested for imaging of cerebral blood flow in an intact rodent head experience different conditions. A total of fifteen mice were used in the experiments divided randomly into three groups as follows: Group 1 (n=5) consisted of injured mice experience hypoxic ischemic brain injury monitored for ~40 min. Group 2 (n=5) injured mice experience anoxic brain injury monitored up to 20 min. Group 3 (n=5) experience functional activation monitored up to ~35 min. To increase tissue transparency and the penetration depth of photons through head tissue layers, an optical clearing method was employed. To our knowledge, this work presents for the first time the use of lens array in LSI scheme.
Korzeniewski, Bernard
2015-10-01
The effects of inborn oxidative phosphorylation (OXPHOS) complex deficiencies or possible each-step activation (ESA) dysfunction on the bioenergetic system in working intact skeletal muscle are studied using a computer model of OXPHOS published previously. The curves representing the dependencies of V˙O2 and metabolite concentrations on single complex activity, entire OXPHOS activity or ESA intensity exhibit a characteristic threshold at some OXPHOS complex activity/ESA intensity. This threshold for V˙O2 of single complex activities is significantly lower in intact muscle during moderate and heavy work, than in isolated mitochondria in state 3. Metabolite concentrations and pH in working muscle start to change significantly at much higher OXPHOS complex activities/ESA intensities than V˙O2. The effect of entire OXPHOS deficiency or ESA dysfunction is potentially much stronger than the effect of a single complex deficiency. Implications of these findings for the genesis of mitochondrial myopathies are discussed. It is concluded that V˙O2 in state 3 and its dependence on complex activity in isolated mitochondria is not a universal quantitative determinant of the effect of mitochondrial dysfunctions in vivo. Moderate and severe mitochondria dysfunctions are defined: the former affect significantly only metabolite concentrations and pH, while the latter also decrease significantly V˙O2 in intact skeletal muscle during work. The dysfunction-caused decrease in V˙O2/oxidative ATP synthesis flux, disturbance of metabolite homeostasis, elevated ROS production and anaerobic glycolysis recruitment can account for such mitochondrial myopathy symptoms as muscle weakness, exercise intolerance (exertional fatigue) and lactic acidosis. Copyright © 2015 Elsevier B.V. All rights reserved.
Effects of reactive Mn(III)-oxalate complexes on structurally intact plant cell walls
NASA Astrophysics Data System (ADS)
Summering, J. A.; Keiluweit, M.; Goni, M. A.; Nico, P. S.; Kleber, M.
2011-12-01
Lignin components in the in plant litter are commonly assumed to have longer residence times in soil than many other compounds, which are supposedly, more easily degradable. The supposed resistance of lignin compounds to decomposition is generally attributed to the complex chain of biochemical steps required to create footholds in the non-porous structure of ligno-cellulose in cell walls. Interestingly, Mn(III) complexes have shown the ability to degrade ligno-cellulose. Mn(III) chelated by ligands such as oxalate are soluble oxidizers with a high affinity for lignin structures. Here we determined (i) the formation and decay kinetics of the Mn(III)-oxalate complexes in aqueous solution and (ii) the effects that these complexes have on intact ligno-cellulose. UV/vis spectroscopy and iodometric titrations confirmed the transient nature of Mn(III)-oxalate complexes with decay rates being in the order of hours. Zinnia elegans tracheary elements - a model ligno-cellulose substrate - were treated with Mn(III)-oxalate complexes in a newly developed flow-through reactor. Soluble decomposition products released during the treatment were analyzed by GC/MS and the degree of cell integrity was measured by cell counts, pre- and post-treatment counts indicate a decrease in intact Zinnia elegans as a result of Mn(III)-treatment. GC/MS results showed the release of a multitude of solubilized lignin breakdown products from plant cell walls. We conclude that Mn(III)-oxalate complexes have the ability to lyse intact plant cells and solubilize lignin. Lignin decomposition may thus be seen as resource dependent, with Mn(III) a powerful resource that should be abundant in terrestrial characterized by frequent redox fluctuations.
A study of the intrarenal recycling of urea in the rat with chronic experimental pyelonephritis.
Gilbert, R M; Weber, H; Turchin, L; Fine, L G; Bourgoignie, J J; Bricker, N S
1976-01-01
The concentrating ability of the kidney was studied by clearance and micropuncture techniques and tissue slice analyses in normal rats with two intact kidneys (intact controls), normal rats with a solitary kidney (uninephrectomized controls), and uremic rats with a single pyelonephritic kidney. Urinary osmolality after water deprivation for 24 h and administration of antidiuretic hormone was 2,501+/-217 and 2,874+/-392 mosmol/kg H2O in intact and uninephrectomized control rats, respectively, and 929+/-130 mosmol/kg H2O in pyelonephritic rats (P less than 0.001 compared to each control group). Fractional water reabsorption and concentrating ability were significantly decreased in the pyelonephritic group, and, to achieve an equivalent fractional excretion of urea, a greater fractional excretion of water was required in the pyelonephritic rats than in the control rats. Whole animal glomerular filtration rate was 1.57+/-0.19 ml/min and 1.39+/-0.18 ml/min in intact and in uninephrectomized controls, respectively, and 0.30+/-0.07 ml/min in pyelonephritic rats (P less than 0.001 compared to each control group). Single nephron glomerular filtration rate was 35.6+/-3.8 nl/min in intact control rats and was significantly increased (P less than 0.05) in both uninephrectomized (88.0+/-10.8 nl/min) and pyelonephritic rats (71.5+/-14.4 nl/min). In all groups fractional water delivery and fractional sodium delivery were closely comparable at the end of the proximal convoluted tubule and at the beginning of the distal convoluted tubule. In contrast, fractional urea delivery out of the proximal tubule was greater in the intact control group (73+/-8%) than in either the uninephrectomized (52+/-2%) or the pyelonephritic group (53+/-3%) (P less than 0.005). Fractional urea delivery at the early part of the distal tubule increased significantly to 137+/-11% and 93+/-6% of the filtered load in intact control and uninephrectomized control rats, respectively (P less than 0.001 compared to the late proximal values of each group), but failed to increase significantly in pyelonephritic rats (65+/-13%), indicating interruption of the normal recycling of urea in the latter group. Analysis of tissue slices demonstrated a rising corticopapillary gradient for total tissue water solute concentration as well as for tissue water urea concentration in both groups of control rats. In contrast, the pyelonephritic animals exhibited no similar gradients from cortex to papilla. These data indicate that the pyelonephritic kidney fails to recycle urea and accumulate interstitial solute. The latter must inevitably lead to a concentrating defect. Images PMID:993348
Hole, David J.; Smith, J. D.; Cobb, B. Greg
1989-01-01
Sectors of Zea mays cobs, with and without kernels were cultured in vitro in the presence and absence of fluridone. Cultured kernels, cob tissue, and embryos developed similarly to those grown in the field. Abscisic acid (ABA) levels in the embryos were evaluated by enzyme-linked immunosorbant assay. ABA levels in intact embryos cultured in the presence of fluridone were extremely low and indicate an inhibition of ABA synthesis. ABA levels in isolated cob tissue indicate that ABA can be produced by cob tissue. Sections containing kernels cultured in the presence of fluridone were transferred to medium containing fluridone and ABA. Dormancy was induced in more than 50% of the kernels transferred from 13 to 15 days after pollination, but all of the kernels transferred at 16 days after pollination or later were viviparous. ABA recovered from kernels that were placed in medium containing fluridone and ABA suggest that ABA can be transported through the cob tissue into developing embryos and that ABA is required for induction of dormancy in intact embryos. PMID:16666978
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibeault, J.D.; Cravens, R.B. Jr.; Chvapil, M.
A lathyrogen, ({sup 14}C)aminopropionitrile (beta APN), was administered to 34 rats either in K-Y jelly or saline vehicles onto intact shaven skin or onto a healed splinted deep excision wound. The dynamics of beta APN transport and content in the skin or repair tissue was observed after 2, 5, 8, and 24 hr of topical administration. The repair tissue quickly absorbed the lathyrogen and reached maximum at the 2-hr sampling. The content of beta APN in the repair tissue was twice as high as that in K-Y jelly vehicle and remained high and stable for at least 24 hr onlymore » when beta APN was administered through a saline vehicle. The transport of beta APN through intact skin, irrespective of the vehicle tested, was slow and continuously increased. The study showed that almost 20% of the beta APN administered onto the wounded skin area was transported into the repair tissue within 2 hr. We suggest that, due to the absence of epidermal stratum corneum from the repair tissue, drugs, such as beta APN, penetrate quickly into the wound.« less
Ultrasound elastography assessment of bone/soft tissue interface
NASA Astrophysics Data System (ADS)
Parmar, Biren J.; Yang, Xu; Chaudhry, Anuj; Shafeeq Shajudeen, Peer; Nair, Sanjay P.; Weiner, Bradley K.; Tasciotti, Ennio; Krouskop, Thomas A.; Righetti, Raffaella
2016-01-01
We report on the use of elastographic imaging techniques to assess the bone/soft tissue interface, a region that has not been previously investigated but may provide important information about fracture and bone healing. The performance of axial strain elastograms and axial shear strain elastograms at the bone/soft tissue interface was studied ex vivo on intact and fractured canine and ovine tibias. Selected ex vivo results were corroborated on intact sheep tibias in vivo. The elastography results were statistically analyzed using elastographic image quality tools. The results of this study demonstrate distinct patterns in the distribution of the normalized local axial strains and axial shear strains at the bone/soft tissue interface with respect to the background soft tissue. They also show that the relative strength and distribution of the elastographic parameters change in the presence of a fracture and depend on the degree of misalignment between the fracture fragments. Thus, elastographic imaging modalities might be used in the future to obtain information regarding the integrity of bones and to assess the severity of fractures, alignment of bone fragments as well as to follow bone healing.
Ontogeny reveals function and evolution of the hadrosaurid dinosaur dental battery.
LeBlanc, Aaron R H; Reisz, Robert R; Evans, David C; Bailleul, Alida M
2016-07-28
Hadrosaurid dinosaurs, dominant Late Cretaceous herbivores, possessed complex dental batteries with up to 300 teeth in each jaw ramus. Despite extensive interest in the adaptive significance of the dental battery, surprisingly little is known about how the battery evolved from the ancestral dinosaurian dentition, or how it functioned in the living organism. We undertook the first comprehensive, tissue-level study of dental ontogeny in hadrosaurids using several intact maxillary and dentary batteries and compared them to sections of other archosaurs and mammals. We used these comparisons to pinpoint shifts in the ancestral reptilian pattern of tooth ontogeny that allowed hadrosaurids to form complex dental batteries. Comparisons of hadrosaurid dental ontogeny with that of other amniotes reveals that the ability to halt normal tooth replacement and functionalize the tooth root into the occlusal surface was key to the evolution of dental batteries. The retention of older generations of teeth was driven by acceleration in the timing and rate of dental tissue formation. The hadrosaurid dental battery is a highly modified form of the typical dinosaurian gomphosis with a unique tooth-to-tooth attachment that permitted constant and perfectly timed tooth eruption along the whole battery. We demonstrate that each battery was a highly dynamic, integrated matrix of living replacement and, remarkably, dead grinding teeth connected by a network of ligaments that permitted fine scale flexibility within the battery. The hadrosaurid dental battery, the most complex in vertebrate evolution, conforms to a surprisingly simple evolutionary model in which ancestral reptilian tissue types were redeployed in a unique manner. The hadrosaurid dental battery thus allows us to follow in great detail the development and extended life history of a particularly complex food processing system, providing novel insights into how tooth development can be altered to produce complex dentitions, the likes of which do not exist in any living vertebrate.
Rumen Protozoal Degradation of Structurally Intact Forage Tissues
Amos, Henry E.; Akin, Danny E.
1978-01-01
The association with and digestion of intact leaf sections of cool- and warm-season grasses by cattle rumen protozoa were investigated by light and scanning electron microscopy and by in vitro dry matter disappearance studies. Within extensively degraded areas of mesophyll tissue in cool-season forages, almost all protozoa were Epidinium ecaudatum form caudatum, with maximum numbers at 4 to 10 h of incubation. However, few protozoa were found inside warm-season forage leaves. In in vitro dry matter disappearance studies of a series of incubations with and without 1.6 mg of streptomycin per ml, which inhibited the cellulolytic activity of the bacteria, and in comparison with uninoculated controls, rumen protozoa degraded 11.0 and 3.7 percentage units of orchardgrass and bermuda-grass, respectively. Scanning electron microscopy showed that the tissues degraded in orchardgrass consisted of large amounts of mesophyll and portions of the parenchyma bundle sheath and epidermis; no tissue loss due to the protozoa was observed in bermudagrass. The relationship of these observations to forage digestion is discussed. Images PMID:16345315
Ponglowhapan, S; Church, D B; Khalid, M
2009-05-01
As pituitary gonadotrophins can induce prostaglandin (PG) synthesis and receptors for LH and FSH are present in the canine lower urinary tract (LUT), the objectives of this study were to (i) investigate the expression of COX-2, a key rate-limiting enzyme in PG production, in the canine LUT and (ii) determine if COX-2 expression differs between gender, gonadal status (intact and gonadectomised) and LUT regions. Four regions (body and neck of the bladder as well as proximal and distal urethra) of the LUT were obtained from 20 clinically healthy dogs (5 intact males, 5 intact anoestrous females, 4 castrated males, 6 spayed females). In situ hybridization and immunohistochemistry were performed to determine the presence of COX-2 mRNA and protein, respectively. The mRNA and protein expression was semi-quantitatively assessed. The scoring system combined both the distribution and intensity of positive staining and was carried out separately on the three tissue layers (epithelium, sub-epithelial stroma and muscle) for each of four regions of the LUT. In comparison to intact dogs, lower expression (P<0.001) of COX-2 and its mRNA in gonadectomised males and females was observed in all tissue layers of each region of the LUT except in the distal urethra where there was no difference in mRNA expression between gonadal statuses. Regardless of region and tissue layer, intact females expressed more (P<0.05) COX-2 and its mRNA than intact males. However, in gonadectomised dogs, mRNA expression of COX-2 did not differ between genders; males had higher (P<0.001) protein level of COX-2 compared to females. In conclusion, both COX-2 and its mRNA were expressed in the canine LUT and COX-2-regulated PG synthesis in the canine LUT may differ between gonadal statuses and genders. The lower expression of COX-2 in gonadectomised dogs may impair normal function of the LUT and probably implicated in the development of neutering-induced urinary incontinence in the dog.
Chovanec, P; Hovorka, O; Novák, K
2008-01-01
In rhizobial symbiosis with legume plant hosts, the symbiotic tissue in the root nodules of indeterminate type is localized to the basal part of the nodule where the symbiotic zones contain infected cells (IC) interspersed with uninfected cells (UC) that are devoid of rhizobia. Although IC are easily distinguished in nodule sections using standard histochemical techniques, their observation in intact nodules is hampered by nodule tissue characteristics. Tagging of Rhizobium leguminosarum bv. viciae strain 128C30 with a constitutively expressed gene for green fluorescent protein (nonshifted mutant form cycle3) in combination with the advantages of the tiny nodules formed by Vicia tetrasperma (L.) SCHREB . allowed for vital observation of symbiotic tissue using fluorescence microscopy. Separation of a red-shifted background channel and digital image stacking along z-axis enabled us to construct a nodule image in a classical fluorescence microscopy of nodules exceeding 1 mm in diameter. In parallel, visualization of nodule bacteria inside the symbiotic tissue by confocal microscopy at the excitation wavelength 488 nm clearly distinguished IC/UC pattern in the nodule virtual sections and revealed red-shifted fluorescence of nonrhizobial origin. This signal was located on the periphery of IC and increased with their degradation, thus suggesting accumulation of secondary metabolites, presumably flavonoids. The simultaneous detection of bacteria and secondary metabolites can be used for monitoring changes to intact nodule physiology in the model legumes. The advantage of V. tetrasperma as a suggested laboratory model for pea cross-inoculation group has been demonstrated.
Berke, Ian M.; Miola, Joseph P.; David, Michael A.; Smith, Melanie K.; Price, Christopher
2016-01-01
In situ, cells of the musculoskeletal system reside within complex and often interconnected 3-D environments. Key to better understanding how 3-D tissue and cellular environments regulate musculoskeletal physiology, homeostasis, and health is the use of robust methodologies for directly visualizing cell-cell and cell-matrix architecture in situ. However, the use of standard optical imaging techniques is often of limited utility in deep imaging of intact musculoskeletal tissues due to the highly scattering nature of biological tissues. Drawing inspiration from recent developments in the deep-tissue imaging field, we describe the application of immersion based optical clearing techniques, which utilize the principle of refractive index (RI) matching between the clearing/mounting media and tissue under observation, to improve the deep, in situ imaging of musculoskeletal tissues. To date, few optical clearing techniques have been applied specifically to musculoskeletal tissues, and a systematic comparison of the clearing ability of optical clearing agents in musculoskeletal tissues has yet to be fully demonstrated. In this study we tested the ability of eight different aqueous and non-aqueous clearing agents, with RIs ranging from 1.45 to 1.56, to optically clear murine knee joints and cortical bone. We demonstrated and quantified the ability of these optical clearing agents to clear musculoskeletal tissues and improve both macro- and micro-scale imaging of musculoskeletal tissue across several imaging modalities (stereomicroscopy, spectroscopy, and one-, and two-photon confocal microscopy) and investigational techniques (dynamic bone labeling and en bloc tissue staining). Based upon these findings we believe that optical clearing, in combination with advanced imaging techniques, has the potential to complement classical musculoskeletal analysis techniques; opening the door for improved in situ investigation and quantification of musculoskeletal tissues. PMID:26930293
Berke, Ian M; Miola, Joseph P; David, Michael A; Smith, Melanie K; Price, Christopher
2016-01-01
In situ, cells of the musculoskeletal system reside within complex and often interconnected 3-D environments. Key to better understanding how 3-D tissue and cellular environments regulate musculoskeletal physiology, homeostasis, and health is the use of robust methodologies for directly visualizing cell-cell and cell-matrix architecture in situ. However, the use of standard optical imaging techniques is often of limited utility in deep imaging of intact musculoskeletal tissues due to the highly scattering nature of biological tissues. Drawing inspiration from recent developments in the deep-tissue imaging field, we describe the application of immersion based optical clearing techniques, which utilize the principle of refractive index (RI) matching between the clearing/mounting media and tissue under observation, to improve the deep, in situ imaging of musculoskeletal tissues. To date, few optical clearing techniques have been applied specifically to musculoskeletal tissues, and a systematic comparison of the clearing ability of optical clearing agents in musculoskeletal tissues has yet to be fully demonstrated. In this study we tested the ability of eight different aqueous and non-aqueous clearing agents, with RIs ranging from 1.45 to 1.56, to optically clear murine knee joints and cortical bone. We demonstrated and quantified the ability of these optical clearing agents to clear musculoskeletal tissues and improve both macro- and micro-scale imaging of musculoskeletal tissue across several imaging modalities (stereomicroscopy, spectroscopy, and one-, and two-photon confocal microscopy) and investigational techniques (dynamic bone labeling and en bloc tissue staining). Based upon these findings we believe that optical clearing, in combination with advanced imaging techniques, has the potential to complement classical musculoskeletal analysis techniques; opening the door for improved in situ investigation and quantification of musculoskeletal tissues.
Coherent X-Ray Imaging of Collagen Fibril Distributions within Intact Tendons
Berenguer, Felisa; Bean, Richard J.; Bozec, Laurent; Vila-Comamala, Joan; Zhang, Fucai; Kewish, Cameron M.; Bunk, Oliver; Rodenburg, John M.; Robinson, Ian K.
2014-01-01
The characterization of the structure of highly hierarchical biosamples such as collagen-based tissues at the scale of tens of nanometers is essential to correlate the tissue structure with its growth processes. Coherent x-ray Bragg ptychography is an innovative imaging technique that gives high resolution images of the ordered parts of such samples. Herein, we report how we used this method to image the collagen fibrillar ultrastructure of intact rat tail tendons. The images show ordered fibrils extending over 10–20 μm in length, with a quantifiable D-banding spacing variation of 0.2%. Occasional defects in the fibrils distribution have also been observed, likely indicating fibrillar fusion events. PMID:24461021
Disney, C M; Lee, P D; Hoyland, J A; Sherratt, M J; Bay, B K
2018-04-14
Many biological tissues have a complex hierarchical structure allowing them to function under demanding physiological loading conditions. Structural changes caused by ageing or disease can lead to loss of mechanical function. Therefore, it is necessary to characterise tissue structure to understand normal tissue function and the progression of disease. Ideally intact native tissues should be imaged in 3D and under physiological loading conditions. The current published in situ imaging methodologies demonstrate a compromise between imaging limitations and maintaining the samples native mechanical function. This review gives an overview of in situ imaging techniques used to visualise microstructural deformation of soft tissue, including three case studies of different tissues (tendon, intervertebral disc and artery). Some of the imaging techniques restricted analysis to observational mechanics or discrete strain measurement from invasive markers. Full-field local surface strain measurement has been achieved using digital image correlation. Volumetric strain fields have successfully been quantified from in situ X-ray microtomography (micro-CT) studies of bone using digital volume correlation but not in soft tissue due to low X-ray transmission contrast. With the latest developments in micro-CT showing in-line phase contrast capability to resolve native soft tissue microstructure, there is potential for future soft tissue mechanics research where 3D local strain can be quantified. These methods will provide information on the local 3D micromechanical environment experienced by cells in healthy, aged and diseased tissues. It is hoped that future applications of in situ imaging techniques will impact positively on the design and testing of potential tissue replacements or regenerative therapies. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.
Burkhart, Timothy A; Herman, Benjamin V; Perry, Kevin; Vandekerckhove, Pieter-Jan; Howard, James; Lanting, Brent
2017-11-01
Total knee arthroplasty is an effective treatment for osteoarthritis. Restoration of physiologic varus alignment may restore the native soft tissue tension and improve outcomes. Six paired fresh-frozen knee specimens were used to perform total knee arthroplastys. The left and right sides of were randomly assigned to have either a physiologic alignment cut or a standard of care neutral alignment bony cut prior to the implantation. Loads of 100 and 200N were applied at 0, 30, 60, and 90° of flexion and the magnitude of the medial and lateral compartment distraction was measured. The loads were applied with the knee specimen intact and post arthroplasty. The physiologic alignment had no difference between medial and lateral gaps at either load. With 100N of load the physiologic alignment had a greater gap at 90° than at full extension while the standard alignment had significantly more gap at 60° of flexion than full extension. The physiologic alignment had a significantly greater gap with the implant compared to the intact condition at both loads. The standard alignment had no significant difference in overall gap between the implant and intact condition with any load. Although performing a physiologic aligned TKA resulted in medial-lateral soft tissue balance, the flexion gap was found to have greater magnitude than the intact knee. Notably, a neutral aligned TKA was found to be balanced, but also was found to recreate the intact knee flexion gaps. These results suggest that coronal plane stability can be achieved with physiologic alignment objectives, but the clinician needs to be aware of the potential to have greater laxity than the intact and neutral alignment surgical objectives. Copyright © 2017 Elsevier Ltd. All rights reserved.
A cadmium-sensitive, glutathione-deficient mutant of Arabidopsis thaliana.
Howden, R; Andersen, C R; Goldsbrough, P B; Cobbett, C S
1995-01-01
The roots of the cadmium-sensitive mutant of Arabidopsis thaliana, cad1-1, become brown in the presence of cadmium. A new cadmium-sensitive mutant affected at a second locus, cad2, has been identified using this phenotype. Genetic analysis has grown that the sensitive phenotype is recessive to the wild type and segregates as a single Mendelian locus. Assays of cadmium accumulation by intact plants indicated that the mutant is deficient in its ability to sequester cadmium. Undifferentiated callus tissue was also cadmium sensitive, suggesting that the mutant phenotype is expressed at the cellular level. The level of cadmium-binding complexes formed in vivo was decreased compared with the wild type and accumulation of phytochelatins was about 10% of that in the wild type. The level of glutathione, the substrate for phytochelatin biosynthesis, in tissues of the mutant was decreased to about 15 to 30% of that in the wild type. Thus, the deficiency in phytochelatin biosynthesis can be explained by a deficiency in glutathione. PMID:7770518
Tawhai, M. H.; Clark, A. R.; Donovan, G. M.; Burrowes, K. S.
2011-01-01
Computational models of lung structure and function necessarily span multiple spatial and temporal scales, i.e., dynamic molecular interactions give rise to whole organ function, and the link between these scales cannot be fully understood if only molecular or organ-level function is considered. Here, we review progress in constructing multiscale finite element models of lung structure and function that are aimed at providing a computational framework for bridging the spatial scales from molecular to whole organ. These include structural models of the intact lung, embedded models of the pulmonary airways that couple to model lung tissue, and models of the pulmonary vasculature that account for distinct structural differences at the extra- and intra-acinar levels. Biophysically based functional models for tissue deformation, pulmonary blood flow, and airway bronchoconstriction are also described. The development of these advanced multiscale models has led to a better understanding of complex physiological mechanisms that govern regional lung perfusion and emergent heterogeneity during bronchoconstriction. PMID:22011236
2010-01-01
The importance of effective and timely traceability in both the recall of substances of human origin (blood, cells, tissues and organs) implicated in infectious transmission, and in the prevention of inappropriate use of substances of human origin is now well recognised. However, traceability remains poorly understood and inadequately controlled in many cases. In particular there is: a lack of appreciation of the complexity of the traceability pathway; a fragmented approach to traceability; and, an assumption that traceability data is static. The traceability path for a single tissue donor may involve dozens or even hundreds of different organizations, each responsible for one segment of the path. Whilst responsibility within each organization may be clearly defined, responsibility for maintaining the interfaces between organizations is often less clear. Traceability is seldom regarded in a holistic manner, the assumption being made that if each segment of the pathway is correctly maintained then the full path will be intact. End to end traceability audits are not routinely performed, and the only true test of the trail occurs when recall is required—often with inadequate results. PMID:20628821
Transmission geometry laserspray ionization vacuum using an atmospheric pressure inlet.
Lutomski, Corinne A; El-Baba, Tarick J; Inutan, Ellen D; Manly, Cory D; Wager-Miller, James; Mackie, Ken; Trimpin, Sarah
2014-07-01
This represents the first report of laserspray ionization vacuum (LSIV) with operation directly from atmospheric pressure for use in mass spectrometry. Two different types of electrospray ionization source inlets were converted to LSIV sources by equipping the entrance of the atmospheric pressure inlet aperture with a customized cone that is sealed with a removable glass plate holding the matrix/analyte sample. A laser aligned in transmission geometry (at 180° relative to the inlet) ablates the matrix/analyte sample deposited on the vacuum side of the glass slide. Laser ablation from vacuum requires lower inlet temperature relative to laser ablation at atmospheric pressure. However, higher inlet temperature is required for high-mass analytes, for example, α-chymotrypsinogen (25.6 kDa). Labile compounds such as gangliosides and cardiolipins are detected in the negative ion mode directly from mouse brain tissue as intact doubly deprotonated ions. Multiple charging enhances the ion mobility spectrometry separation of ions derived from complex tissue samples.
Transmission Geometry Laserspray Ionization Vacuum Using an Atmospheric Pressure Inlet
2015-01-01
This represents the first report of laserspray ionization vacuum (LSIV) with operation directly from atmospheric pressure for use in mass spectrometry. Two different types of electrospray ionization source inlets were converted to LSIV sources by equipping the entrance of the atmospheric pressure inlet aperture with a customized cone that is sealed with a removable glass plate holding the matrix/analyte sample. A laser aligned in transmission geometry (at 180° relative to the inlet) ablates the matrix/analyte sample deposited on the vacuum side of the glass slide. Laser ablation from vacuum requires lower inlet temperature relative to laser ablation at atmospheric pressure. However, higher inlet temperature is required for high-mass analytes, for example, α-chymotrypsinogen (25.6 kDa). Labile compounds such as gangliosides and cardiolipins are detected in the negative ion mode directly from mouse brain tissue as intact doubly deprotonated ions. Multiple charging enhances the ion mobility spectrometry separation of ions derived from complex tissue samples. PMID:24896880
Listgarten, M A; Buser, D; Steinemann, S G; Donath, K; Lang, N P; Weber, H P
1992-02-01
This experiment was aimed at studying the intact tissue/implant interface of non-submerged dental implants with a titanium surface. Epoxy-resin replicas were fabricated from 3.05 x 8 mm cylindrical titanium implants with a plasma-sprayed apical portion and a smooth coronal collar. The replicas were coated with a 90-120-nm-thick layer of pure titanium and autoclaved. The coated replicas were inserted as non-submerged endosseous implants in the edentulous premolar region of dog mandibles and allowed to heal for three months. Jaw sections containing the implants were processed for light and electron microscopic study of the intact tissue/implant interface with and without prior demineralization. Gingival connective tissue fibers were closely adapted to the titanium layer, in an orientation more or less parallel to the implant surface. There was no evidence of any fiber insertions into the surface irregularities of the smooth or rough titanium surface. Undemineralized bone was intimately adapted to the titanium surface without any intervening space. In demineralized sections, the collagen fibers of the bone matrix tended to be somewhat thinner and occasionally less densely packed in the vicinity of the implant surface. However, they extended all the way to the titanium surface, without any intervening fibril-free layer.
Mark, Christina; Zór, Kinga; Heiskanen, Arto; Dufva, Martin; Emnéus, Jenny; Finnie, Christine
2016-12-15
Redox regulation is important for numerous processes in plant cells including abiotic stress, pathogen defence, tissue development, seed germination and programmed cell death. However, there are few methods allowing redox homeostasis to be addressed in whole plant cells, providing insight into the intact in vivo environment. An electrochemical redox assay that applies the menadione-ferricyanide double mediator is used to assess changes in the intracellular and extracellular redox environment in living aleurone layers of barley (Hordeum vulgare cv. Himalaya) grains, which respond to the phytohormones gibberellic acid and abscisic acid. Gibberellic acid is shown to elicit a mobilisation of electrons as detected by an increase in the reducing capacity of the aleurone layers. By taking advantage of the membrane-permeable menadione/menadiol redox pair to probe the membrane-impermeable ferricyanide/ferrocyanide redox pair, the mobilisation of electrons was dissected into an intracellular and an extracellular, plasma membrane-associated component. The intracellular and extracellular increases in reducing capacity were both suppressed when the aleurone layers were incubated with abscisic acid. By probing redox levels in intact plant tissue, the method provides a complementary approach to assays of reactive oxygen species and redox-related enzyme activities in tissue extracts. Copyright © 2016 Elsevier Inc. All rights reserved.
Causal effect of disconnection lesions on interhemispheric functional connectivity in rhesus monkeys
O’Reilly, Jill X.; Croxson, Paula L.; Jbabdi, Saad; Sallet, Jerome; Noonan, MaryAnn P.; Mars, Rogier B.; Browning, Philip G.F.; Wilson, Charles R. E.; Mitchell, Anna S.; Miller, Karla L.; Rushworth, Matthew F. S.; Baxter, Mark G.
2013-01-01
In the absence of external stimuli or task demands, correlations in spontaneous brain activity (functional connectivity) reflect patterns of anatomical connectivity. Hence, resting-state functional connectivity has been used as a proxy measure for structural connectivity and as a biomarker for brain changes in disease. To relate changes in functional connectivity to physiological changes in the brain, it is important to understand how correlations in functional connectivity depend on the physical integrity of brain tissue. The causal nature of this relationship has been called into question by patient data suggesting that decreased structural connectivity does not necessarily lead to decreased functional connectivity. Here we provide evidence for a causal but complex relationship between structural connectivity and functional connectivity: we tested interhemispheric functional connectivity before and after corpus callosum section in rhesus monkeys. We found that forebrain commissurotomy severely reduced interhemispheric functional connectivity, but surprisingly, this effect was greatly mitigated if the anterior commissure was left intact. Furthermore, intact structural connections increased their functional connectivity in line with the hypothesis that the inputs to each node are normalized. We conclude that functional connectivity is likely driven by corticocortical white matter connections but with complex network interactions such that a near-normal pattern of functional connectivity can be maintained by just a few indirect structural connections. These surprising results highlight the importance of network-level interactions in functional connectivity and may cast light on various paradoxical findings concerning changes in functional connectivity in disease states. PMID:23924609
Orabi, Mohamed A A; Taniguchi, Shoko; Terabayashi, Susumu; Hatano, Tsutomu
2011-11-01
Shoot cultures of Tamarix tetrandra on Linsmaier-Skoog (LS) agar medium with 30 g l(-1) sucrose, 2.13 mg l(-1) indoleacetic acid and 2.25 mg l(-1) benzyl adenine produced ellagitannins found in intact plants of the Tamaricaceae. This was demonstrated by the isolation of 14 monomeric-tetrameric ellagitannins from the aq. Me2CO extract of the cultured tissues. This is the first report on the production of ellagitannin tetramers by plant tissue culture. The effects of light and certain medium constituents on tissue growth and ellagitannin production were examined. The contents of representative tannins of different types [i.e., tellimagrandin II (monomer), hirtellin A (linear GOG-type dimer), hirtellin B (hellinoyl-type dimer), hirtellin C (macrocyclic-type dimer), and hirtellin T1 (linear GOG-type trimer)] in the resultant tissues in response to these factors were estimated by HPLC, and the optimal condition for production of these tannins were established. Shoots cultured on LS hormone-free medium promoted root development, and regenerated plants could adapt to ordinary soil and climate. Acclimatized and intact T. tetrandra plants that were collected in November and May, respectively, demonstrated seasonal differences in individual ellagitannin contents. HPLC comparison of individual ellagitannin contents in different plant materials (i.e., leaves, stems, and roots) of intact T. tetrandra plants is also reported. The results are discussed with respect to cellular deposition and biosynthetic relationship of tannins. Copyright © 2011 Elsevier Ltd. All rights reserved.
Madathil, Bernadette K.; Anil Kumar, Pallickaveedu RajanAsari; Kumary, Thrikkovil Variyath
2014-01-01
Endothelial keratoplasty is a recent shift in the surgical treatment of corneal endothelial dystrophies, where the dysfunctional endothelium is replaced whilst retaining the unaffected corneal layers. To overcome the limitation of donor corneal shortage, alternative use of tissue engineered constructs is being researched. Tissue constructs with intact extracellular matrix are generated using stimuli responsive polymers. In this study we evaluated the feasibility of using the thermoresponsive poly(N-isopropylacrylamide-co-glycidylmethacrylate) polymer as a culture surface to harvest viable corneal endothelial cell sheets. Incubation below the lower critical solution temperature of the polymer allowed the detachment of the intact endothelial cell sheet. Phase contrast and scanning electron microscopy revealed the intact architecture, cobble stone morphology, and cell-to-cell contact in the retrieved cell sheet. Strong extracellular matrix deposition was also observed. The RT-PCR analysis confirmed functionally active endothelial cells in the cell sheet as evidenced by the positive expression of aquaporin 1, collagen IV, Na+-K+ ATPase, and FLK-1. Na+-K+ ATPase protein expression was also visualized by immunofluorescence staining. These results suggest that the in-house developed thermoresponsive culture dish is a suitable substrate for the generation of intact corneal endothelial cell sheet towards transplantation for endothelial keratoplasty. PMID:25003113
Roussis, Ioannis M; Guille, Matthew; Myers, Fiona A; Scarlett, Garry P
2016-01-01
Techniques for studying RNA-protein interactions have lagged behind those for DNA-protein complexes as a consequence of the complexities associated with working with RNA. Here we present a method for the modification of the existing In Situ Hybridisation-Proximity Ligation Assay (ISH-PLA) protocol to adapt it to the study of RNA regulation (rISH-PLA). As proof of principle we used the well-characterised interaction of the Xenopus laevis Staufen RNA binding protein with Vg1 mRNA, the complex of which co-localises to the vegetal pole of Xenopus oocytes. The applicability of both the Stau1 antibody and the Locked Nucleic Acid probe (LNA) recognising Vg1 mRNA were independently validated by whole-mount Immunohistochemistry and whole-mount in situ hybridisation assays respectively prior to combining them in the rISH-PLA assay. The rISH-PLA assay allows the identification of a given RNA-protein complex at subcellular and single cell resolution, thus avoiding the lack of spatial resolution and sensitivity associated with assaying heterogenous cell populations from which conventional RNA-protein interaction detection techniques suffer. This technique will be particularly usefully for studying the activity of RNA binding proteins (RBPs) in complex mixtures of cells, for example tissue sections or whole embryos.
Takaku, Tomoiku; Malide, Daniela; Chen, Jichun; Calado, Rodrigo T; Kajigaya, Sachiko; Young, Neal S
2010-10-14
In many animals, blood cell production occurs in the bone marrow. Hematopoiesis is complex, requiring self-renewing and pluripotent stem cells, differentiated progenitor and precursor cells, and supportive stroma, adipose tissue, vascular structures, and extracellular matrix. Although imaging is a vital tool in hematology research, the 3-dimensional architecture of the bone marrow tissue in situ remains largely uncharacterized. The major hindrance to imaging the intact marrow is the surrounding bone structures are almost impossible to cut/image through. We have overcome these obstacles and describe a method whereby whole-mounts of bone marrow tissue were immunostained and imaged in 3 dimensions by confocal fluorescence and reflection microscopy. We have successfully mapped by multicolor immunofluorescence the localization pattern of as many as 4 cell features simultaneously over large tiled views and to depths of approximately 150 μm. Three-dimensional images can be assessed qualitatively and quantitatively to appreciate the distribution of cell types and their interrelationships, with minimal perturbations of the tissue. We demonstrate its application to normal mouse and human marrow, to murine models of marrow failure, and to patients with aplastic anemia, myeloid, and lymphoid cell malignancies. The technique should be generally adaptable for basic laboratory investigation and for clinical diagnosis of hematologic diseases.
Nia, Hadi Tavakoli; Han, Lin; Bozchalooi, Iman Soltani; Roughley, Peter; Youcef-Toumi, Kamal; Grodzinsky, Alan J; Ortiz, Christine
2015-03-24
Poroelastic interactions between interstitial fluid and the extracellular matrix of connective tissues are critical to biological and pathophysiological functions involving solute transport, energy dissipation, self-stiffening and lubrication. However, the molecular origins of poroelasticity at the nanoscale are largely unknown. Here, the broad-spectrum dynamic nanomechanical behavior of cartilage aggrecan monolayer is revealed for the first time, including the equilibrium and instantaneous moduli and the peak in the phase angle of the complex modulus. By performing a length scale study and comparing the experimental results to theoretical predictions, we confirm that the mechanism underlying the observed dynamic nanomechanics is due to solid-fluid interactions (poroelasticity) at the molecular scale. Utilizing finite element modeling, the molecular-scale hydraulic permeability of the aggrecan assembly was quantified (kaggrecan = (4.8 ± 2.8) × 10(-15) m(4)/N·s) and found to be similar to the nanoscale hydraulic permeability of intact normal cartilage tissue but much lower than that of early diseased tissue. The mechanisms underlying aggrecan poroelasticity were further investigated by altering electrostatic interactions between the molecule's constituent glycosaminoglycan chains: electrostatic interactions dominated steric interactions in governing molecular behavior. While the hydraulic permeability of aggrecan layers does not change across species and age, aggrecan from adult human cartilage is stiffer than the aggrecan from newborn human tissue.
Seidel, Ronald; Blumer, Michael; Pechriggl, Elisabeth-Judith; Lyons, Kady; Hall, Brian K; Fratzl, Peter; Weaver, James C; Dean, Mason N
2017-10-01
The primary skeletal tissue in elasmobranchs -sharks, rays and relatives- is cartilage, forming both embryonic and adult endoskeletons. Only the skeletal surface calcifies, exhibiting mineralized tiles (tesserae) sandwiched between a cartilage core and overlying fibrous perichondrium. These two tissues are based on different collagens (Coll II and I, respectively), fueling a long-standing debate as to whether tesserae are more like calcified cartilage or bone (Coll 1-based) in their matrix composition. We demonstrate that stingray (Urobatis halleri) tesserae are bipartite, having an upper Coll I-based 'cap' that merges into a lower Coll II-based 'body' zone, although tesserae are surrounded by cartilage. We identify a 'supratesseral' unmineralized cartilage layer, between tesserae and perichondrium, distinguished from the cartilage core in containing Coll I and X (a common marker for mammalian mineralization), in addition to Coll II. Chondrocytes within tesserae appear intact and sit in lacunae filled with Coll II-based matrix, suggesting tesserae originate in cartilage, despite comprising a diversity of collagens. Intertesseral joints are also complex in their collagenous composition, being similar to supratesseral cartilage closer to the perichondrium, but containing unidentified fibrils nearer the cartilage core. Our results indicate a unique potential for tessellated cartilage in skeletal biology research, since it lacks features believed diagnostic for vertebrate cartilage mineralization (e.g. hypertrophic and apoptotic chondrocytes), while offering morphologies amenable for investigating the regulation of complex mineralized ultrastructure and tissues patterned on multiple collagens. Copyright © 2017 Elsevier Inc. All rights reserved.
Zhang, Lu; Li, Dongyue; Luo, Shuqian
2011-02-25
Early detection of lung cancer is known to improve the chances of successful treatment. However, lungs are soft tissues with complex three-dimensional configuration. Conventional X-ray imaging is based purely on absorption resulting in very low contrast when imaging soft tissues without contrast agents. It is difficult to obtain adequate information of lung lesions from conventional X-ray imaging. In this study, a recently emerged imaging technique, in-line X-ray phase contrast imaging (IL-XPCI) was used. This powerful technique enabled high-resolution investigations of soft tissues without contrast agents. We applied IL-XPCI to observe the lungs in an intact mouse for the purpose of defining quantitatively the micro-structures in lung. The three-dimensional model of the lung was successfully established, which provided an excellent view of lung airways. We highlighted the use of IL-XPCI in the visualization and assessment of alveoli which had rarely been studied in three dimensions (3D). The precise view of individual alveolus was achieved. The morphological parameters, such as diameter and alveolar surface area were measured. These parameters were of great importance in the diagnosis of diseases related to alveolus and alveolar scar. Our results indicated that IL-XPCI had the ability to represent complex anatomical structures in lung. This offered a new perspective on the diagnosis of respiratory disease and may guide future work in the study of respiratory mechanism on the alveoli level.
NIH Mouse Metabolic Phenotyping Centers: the power of centralized phenotyping.
Laughlin, Maren R; Lloyd, K C Kent; Cline, Gary W; Wasserman, David H
2012-10-01
The Mouse Metabolic Phenotyping Centers (MMPCs) were founded in 2001 by the National Institutes of Health (NIH) to advance biomedical research by providing the scientific community with standardized, high-quality phenotyping services for mouse models of diabetes, obesity, and their complications. The intent is to allow researchers to take optimum advantage of the many new mouse models produced in labs and in high-throughput public efforts. The six MMPCs are located at universities around the country and perform complex metabolic tests in intact mice and hormone and analyte assays in tissues on a fee-for-service basis. Testing is subsidized by the NIH in order to reduce the barriers for mouse researchers. Although data derived from these tests belong to the researcher submitting mice or tissues, these data are archived after publication in a public database run by the MMPC Coordinating and Bioinformatics Unit. It is hoped that data from experiments performed in many mouse models of metabolic diseases, using standard protocols, will be useful in understanding the nature of these complex disorders. The current areas of expertise include energy balance and body composition, insulin action and secretion, whole-body and tissue carbohydrate and lipid metabolism, cardiovascular and renal function, and metabolic pathway kinetics. In addition to providing services, the MMPC staff provides expertise and advice to researchers, and works to develop and refine test protocols to best meet the community's needs in light of current scientific developments. Test technology is disseminated by publications and through annual courses.
Pulpo-dentin complex response after direct capping with self-etch adhesive systems.
Nowicka, Alicja; Parafiniuk, Miroslaw; Lipski, Mariusz; Lichota, Damian; Buczkowska-Radlinska, Jadwiga
2012-01-01
The purpose of the present study was to evaluate morphologically the response of feline teeth pulp to direct pulp capping with two different self-etch adhesive systems. Twenty-four cavities in feline teeth were mechanically exposed and assigned to one of two experimental groups: AdheSE + Tetric Ceram (the ASE group), or Adper Prompt L-Pop + Filtek Supreme (the APLP group). There was also a control group Dycal Ca(OH)(2) liner + Amalgam (the CH group eight teeth), and six teeth were used as an intact control group. The animals were sacrificed after 40 days. The teeth were removed and processed for standard histological evaluation, using a scoring system for inflammatory cell response, pulp tissue disorganisation, reparative tissue formation, and the presence of bacteria. Statistical analysis revealed no significant differences between the ASE and APLP self-etching resin systems during the observation period. The majority of the specimens presented inflammatory pulp response with tissue disorganisation and a lack of dentinal bridge formation. CH capping resulted in a significantly smaller inflammatory pulp response and a considerably higher incidence of reparative dentin formation. ASE and APLP were comparably effective as direct pulp capping materials, but their application resulted in significantly greater pulp tissue damage than CH capping. Further in vivo human studies are necessary to determine which adhesive resin systems should be clinically used for direct pulp capping without incurring severe damage to the pulpal tissue.
OCT as a convenient tool to assess the quality and application of organotypic retinal samples
NASA Astrophysics Data System (ADS)
Gater, Rachel; Khoshnaw, Nicholas; Nguyen, Dan; El Haj, Alicia J.; Yang, Ying
2016-03-01
Eye diseases such as macular degeneration and glaucoma have profound consequences on the quality of human life. Without treatment, these diseases can lead to loss of sight. To develop better treatments for retinal diseases, including cell therapies and drug intervention, establishment of an efficient and reproducible 3D native retinal tissue system, enabled over a prolonged culture duration, will be valuable. The retina is a complex tissue, consisting of ten layers with a different density and cellular composition to each. Uniquely, as a light transmitting tissue, retinal refraction of light differs among the layers, forming a good basis to use optical coherence tomography (OCT) in assessing the layered structure of the retina and its change during the culture and treatments. In this study, we develop a new methodology to generate retinal organotypic tissues and compare two substrates: filter paper and collagen hydrogel, to culture the organotypic tissue. Freshly slaughtered pig eyes have been obtained for use in this study. The layered morphology of intact organotypic retinal tissue cultured on two different substrates has been examined by spectral domain OCT. The viability of the tissues has been examined by live/dead fluorescence dye kit to cross validate the OCT images. For the first time, it is demonstrated that the use of a collagen hydrogel supports the viability of retinal organotypic tissue, capable of prolonged culture up to 2 weeks. OCT is a convenient tool for appraising the quality and application of organotypic retinal samples and is important in the development of current organotypic models.
Gerli, Mattia Francesco Maria; Guyette, Jacques Paul; Evangelista-Leite, Daniele; Ghoshhajra, Brian Burns; Ott, Harald Christian
2018-01-01
Muscle and fasciocutaneous flaps taken from autologous donor sites are currently the most utilized approach for trauma repair, accounting annually for 4.5 million procedures in the US alone. However, the donor tissue size is limited and the complications related to these surgical techniques lead to morbidities, often involving the donor sites. Alternatively, recent reports indicated that extracellular matrix (ECM) scaffolds boost the regenerative potential of the injured site, as shown in a small cohort of volumetric muscle loss patients. Perfusion decellularization is a bioengineering technology that allows the generation of clinical-scale ECM scaffolds with preserved complex architecture and with an intact vascular template, from a variety of donor organs and tissues. We recently reported that this technology is amenable to generate full composite tissue scaffolds from rat and non-human primate limbs. Translating this platform to human extremities could substantially benefit soft tissue and volumetric muscle loss patients providing tissue- and species-specific grafts. In this proof-of-concept study, we show the successful generation a large-scale, acellular composite tissue scaffold from a full cadaveric human upper extremity. This construct retained its morphological architecture and perfusable vascular conduits. Histological and biochemical validation confirmed the successful removal of nuclear and cellular components, and highlighted the preservation of the native extracellular matrix components. Our results indicate that perfusion decellularization can be applied to produce human composite tissue acellular scaffolds. With its preserved structure and vascular template, these biocompatible constructs, could have significant advantages over the currently implanted matrices by means of nutrient distribution, size-scalability and immunological response.
Bradykinin regulates human colonic ion transport in vitro
Baird, A W; Skelly, M M; O'Donoghue, D P; Barrett, K E; Keely, S J
2008-01-01
Background and purpose: Kinins are acknowledged as important regulators of intestinal function during inflammation; however, their effects on human intestinal ion transport have not been reported. Here, we used muscle-stripped human colonic tissue and cultured T84-cell monolayers to study bradykinin (BK) actions on human intestinal ion transport. Experimental approach: Ion transport was measured as changes in short-circuit current (Isc) across colonic epithelia mounted in Ussing chambers. Key results: In intact tissue, there was a distinct polarity to BK-elicited Isc responses. Whereas basolateral BK stimulated sustained responses (EC50=0.5±0.1 μM), those to apical BK were more rapid and transient (EC50=4.1±1.2 nM). In T84 cells, responses to both apical and basolateral BK were similar to those seen upon apical addition to intact tissues. Cross-desensitization between apical and basolateral domains was not observed. BK-induced responses were largely due to Cl− secretion as shown by their sensitivity to bumetanide and removal of Cl− from the bathing solution. Studies using selective agonists and antagonists indicate responses to BK are mediated by B2 receptors. Finally, responses to basolateral BK in intact tissues were inhibited by tetrodotoxin (1 μM), atropine (1 μM), capsaicin (100 μM) and piroxicam (10 μM). BK-stimulated prostaglandin (PG)E2 release from colonic tissue. Conclusions: BK stimulates human colonic Cl− secretion by activation of apical and basolateral B2 receptors. Responses to apical BK reflect a direct action on epithelial cells, whereas those to basolateral BK are amplified by stimulation of enteric nerves and PG synthesis. PMID:18604228
Dopstadt, Julian; Vens-Cappell, Simeon; Neubauer, Lisa; Tudzynski, Paul; Cramer, Benedikt; Dreisewerd, Klaus; Humpf, Hans-Ulrich
2017-02-01
The fungus Claviceps purpurea produces highly toxic ergot alkaloids and accumulates these in the hardened bodies of fungal mycelium. These so-called sclerotia, or ergot bodies, replace the crop seed of infected plants, which can include numerous important food- and feedstuff such as rye and wheat. While several studies have explored details of the infection process and development of ergot bodies, little information is available on the spatial distribution of the mycotoxins in the sclerotia. Here we used matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) at a lateral resolution of 35 μm to visualize the distribution of two representative alkaloids, ergocristine and ergometrine, produced by Ecc93 and Gal 310 variants of C. purpurea, respectively, after infection of rye. To improve cryosectioning of this fragile biological material tissue with complex texture, we developed a practical embedding protocol based on cellulose polymers. The MALDI-MS images recorded from the so produced intact tissues sections revealed that ergometrine exhibited a relatively homogeneous distribution throughout the ergot body, whereas ergocristine was found to be enriched in the proximal region. This finding can be correlated to the morphological development of sclerotia as ergot alkaloids are only produced in the sphacelial stage. The ability to localize toxins and other secondary metabolites in intact sections of crop-infecting fungi with high lateral resolution renders MALDI-MSI a powerful tool for investigating biosynthetic pathways and for obtaining a deeper understanding of the parasite-host interaction. Graphical abstract Workflow for identification and spatial localization of ergot alkaloids in infected rye grains.
Tan, Glaiza A; Furber, Kendra L; Thangaraj, Merlin P; Sobchishin, LaRhonda; Doucette, J Ronald; Nazarali, Adil J
2018-01-01
Experimental models of multiple sclerosis (MS) have significantly advanced our understanding of pathophysiology and therapeutic interventions. Although in vivo rodent models are considered to most closely represent the complex cellular and molecular disease states of the human central nervous system (CNS), these can be costly to maintain and require long timelines. Organotypic slice cultures maintain the cytotypic organization observed in the intact CNS, yet provide many of the experimental advantages of in vitro cell culture models. Cerebellar organotypic cultures have proven useful for studying myelination and remyelination, but this model has only been established using early postnatal tissue. This young brain tissue allows for neuro development ex vivo to mimic the 'mature' CNS; however, there are many differences between postnatal and adult organotypic cultures. This may be particularly relevant to MS, as a major barrier to myelin regeneration is age. This paper describes a modified protocol to study demyelination and remyelination in adult cerebellar tissue, which has been used to demonstrate neuroprotection with omega-3 fatty acids. Thus, adult cerebellar organotypic cultures provide a novel ex vivo platform for screening potential therapies in myelin degeneration and repair.
Kanaan, Georges N; Ichim, Bianca; Gharibeh, Lara; Maharsy, Wael; Patten, David A; Xuan, Jian Ying; Reunov, Arkadiy; Marshall, Philip; Veinot, John; Menzies, Keir; Nemer, Mona; Harper, Mary-Ellen
2018-04-01
Glutaredoxin 2 (GRX2), a mitochondrial glutathione-dependent oxidoreductase, is central to glutathione homeostasis and mitochondrial redox, which is crucial in highly metabolic tissues like the heart. Previous research showed that absence of Grx2, leads to impaired mitochondrial complex I function, hypertension and cardiac hypertrophy in mice but the impact on mitochondrial structure and function in intact cardiomyocytes and in humans has not been explored. We hypothesized that Grx2 controls cardiac mitochondrial dynamics and function in cellular and mouse models, and that low expression is associated with human cardiac dysfunction. Here we show that Grx2 absence impairs mitochondrial fusion, ultrastructure and energetics in primary cardiomyocytes and cardiac tissue. Moreover, provision of the glutathione precursor, N-acetylcysteine (NAC) to Grx2-/- mice did not restore glutathione redox or prevent impairments. Using genetic and histopathological data from the human Genotype-Tissue Expression consortium we demonstrate that low GRX2 is associated with fibrosis, hypertrophy, and infarct in the left ventricle. Altogether, GRX2 is important in the control of cardiac mitochondrial structure and function, and protects against human cardiac pathologies. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Debrided Skin as a Source of Autologous Stem Cells for Wound Repair
2011-08-01
dermal tissue shows the presence of hyalinized collagen (bold arrows) with loss of individual collagen bundles and cellular necrosis . The hypodermal...region consisted of intact adipo- cytes separated by intact interlobular septae and thermally collapsed areas with complete necrosis of both fat cells...and no dsASCs showed predom- inantly acellular multifocal amorphous matrix (Supporting In- formation Fig. S3A, S3B) and was avascular (Supporting Infor
Understanding Collagen Organization in Breast Tumors to Predict and Prevent Metastasis
2014-09-01
Harmonic Generation to Image the Extracellular Matrix During Tumor Progression. Invited Perspective Intravital Manuscript Submitted. Sullivan K...harmonic generation (the SHG “F/B ratio”) in thick intact tissue, with a single image scan. This will be necessary for us to pursue our goal of...quantifying matrix changes dynamically, in intact tumor models. The first method determines F/B by generating a series of backscattered images using a series
Sepehr, Reyhaneh; Staniszewski, Kevin; Maleki, Sepideh; Jacobs, Elizabeth R.; Audi, Said
2012-01-01
Abstract. Ventilation with enhanced fractions of O2 (hyperoxia) is a common and necessary treatment for hypoxemia in patients with lung failure, but prolonged exposure to hyperoxia causes lung injury. Ischemia-reperfusion (IR) injury of lung tissue is common in lung transplant or crush injury to the chest. These conditions are associated with apoptosis and decreased survival of lung tissue. The objective of this work is to use cryoimaging to evaluate the effect of exposure to hyperoxia and IR injury on lung tissue mitochondrial redox state in rats. The autofluorescent mitochondrial metabolic coenzymes nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) are electron carriers in ATP generation. These intrinsic fluorophores were imaged for rat lungs using low-temperature fluorescence imaging (cryoimaging). Perfused lungs from four groups of rats were studied: normoxia (control), control perfused with an mitochondrial complex IV inhibitor (potassium cyanide, KCN), rats exposed to hyperoxia (85% O2) for seven days, and from rats subjected to lung IR in vivo 24 hours prior to study. Each lung was sectioned sequentially in the transverse direction, and the images were used to reconstruct a three-dimensional (3-D) rendering. In KCN perfused lungs the respiratory chain was more reduced, whereas hyperoxic and IR lung tissue have a more oxidized respiratory chain than control lung tissue, consistent with previously measured mitochondrial dysfunction in both hyperoxic and IR lungs. PMID:22559688
NASA Astrophysics Data System (ADS)
Hellebust, Anne; Rosbach, Kelsey; Wu, Jessica Keren; Nguyen, Jennifer; Gillenwater, Ann; Vigneswaran, Nadarajah; Richards-Kortum, Rebecca
2013-12-01
In this longitudinal study, a mouse model of 4-nitroquinoline 1-oxide chemically induced tongue carcinogenesis was used to assess the ability of optical imaging with exogenous and endogenous contrast to detect neoplastic lesions in a heterogeneous mucosal surface. Widefield autofluorescence and fluorescence images of intact 2-NBDG-stained and proflavine-stained tissues were acquired at multiple time points in the carcinogenesis process. Confocal fluorescence images of transverse fresh tissue slices from the same specimens were acquired to investigate how changes in tissue microarchitecture affect widefield fluorescence images of intact tissue. Widefield images were analyzed to develop and evaluate an algorithm to delineate areas of dysplasia and cancer. A classification algorithm for the presence of neoplasia based on the mean fluorescence intensity of 2-NBDG staining and the standard deviation of the fluorescence intensity of proflavine staining was found to separate moderate dysplasia, severe dysplasia, and cancer from non-neoplastic regions of interest with 91% sensitivity and specificity. Results suggest this combination of noninvasive optical imaging modalities can be used in vivo to discriminate non-neoplastic from neoplastic tissue in this model with the potential to translate this technology to the clinic.
Ahmadzadeh, A; Ghalehnoei, H; Farzi, N; Yadegar, A; Alebouyeh, M; Aghdaei, H A; Molaei, M; Zali, M R; Pour Hossein Gholi, M A
2015-12-01
The Helicobacter pylori cag pathogenicity island (cagPAI) is involved in delivery of CagA effector protein and peptidoglycan into host cells and also in IL-8 induction in the human gastric tissue. Diversity of cagPAI may affect disease status and clinical outcome of the infected patients. Our study was aimed to investigate diversity of this island and its intactness in Iranian patients to investigate possible associations between cagPAI integrity and pathological changes of the infected tissue. Out of the 75 patients, H. pylori strains were obtained from 30 patients with severe active gastritis (SAG) (n=11), moderate chronic gastritis (CG) (n=14) and intestinal metaplasia/dysplasia (IM) (n=5). Intactness of the cagPAI was determined using 12 sets of primer pairs specific for functionally important loci of cagPAI by polymerase chain reaction (PCR). The cagPAI positive strains were significantly observed in patients with SAG (52.4%) in comparison to those presenting CG (33.3%) and IM (14.3%). In addition, the presence of intact cagPAI was 87.5% in H. pylori strains isolated from patients with SAG, which was higher than those obtained from patients with CG (12.5%) or IM (0%). A significant increase in the frequency of cagα-cagY and cagW-cagT segments, as exterior proteins of the CagPAI, was illustrated in strains from SAG patients compared with those from patients with CG. Overall, these results strongly proposed an association between the severity of histopathological changes and intactness of cagPAI in the gastric tissue of patients infected with H. pylori. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Binette, Tanya M; Seeberger, Karen L; Lyon, James G; Rajotte, Ray V; Korbutt, Gregory S
2004-07-01
Porcine islets represent an alternative source of insulin-producing tissue, however, porcine endogenous retrovirus (PERV) remains a concern. In this study, SCID mice were transplanted with nonencapsulated (non-EC), microencapsulated (EC) or macroencapsulated (in a TheraCyte trade mark device) neonatal porcine islets (NPIs), and peripheral tissues were screened for presence of viral DNA and mRNA. To understand the role of an intact immune system in PERV incidence, mice with established NPI grafts were reconstituted with splenocytes. Peripheral tissues were screened for PERV and porcine DNA using PCR. Tissues with positive DNA were analyzed for PERV mRNA using RT-PCR. No significant difference was observed between non-EC and EC transplants regarding presence of PERV or porcine-specific DNA or mRNA. In reconstituted animals, little PERV or porcine DNA, and no PERV mRNA was detected. No PERV or porcine-specific DNA was observed in animals implanted with a TheraCyte trade mark device. In conclusion, an intact immune system significantly lowered the presence of PERV. Microencapsulation of islets did not alter PERV presence, however, macroencapsulation in the TheraCyte device did. Lower PERV incidence coincided with lower porcine DNA in peripheral tissues, linking the presence of PERV to migration of porcine cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wissemeier, A.H.; Horst, W.J.
In cowpea (Vigna unguiculata (L.) Walp.) dark brown speckles on old leaves are typical symptoms of Mn toxicity and indicate Mn sensitivity of leaf tissue. Induction and subsequent quantification of brown Mn speckles in leaf tissues were used to screen cowpea cultivars for Mn leaf-tissue tolerance using three different techniques: (i) leaf cuttings cultured for 22 days in solution culture with 20 {mu}M MnSO{sub 4}, (ii) leaf rings mounted on leaves of intact plants and filled with 500 {mu}M MnSO{sub 4} for 5 days, and (iii) leaf disks floated for 3 days on 500 {mu}M MnSO{sub 4}. Density of brownmore » speckles differed considerably among the six cultivars tested, and was not related to the Mn concentrations of the leaf tissues. There were close relationships between genotypic Mn-toxicity symptom expression and depression of dry matter production of the cultivars at high Mn supply in a long-term sand culture experiment. The floating leaf-disk method is particularly suited for screening large numbers of cowpea cultivars for Mn leaf-tissue tolerance because it requires only 3 days. The ranking of the cultivars for Mn tolerance was highly correlated to Mn tolerance of intact plants.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Almukhtar, H.; Garle, M.J.; Smith, P.A.
2016-08-15
Statins induce acute vasorelaxation which may contribute to the overall benefits of statins in the treatment of cardiovascular disease. The mechanism underlying this relaxation is unknown. As statins have been shown to alter mitochondrial function, in this study we investigated the role of mitochondria in the relaxation to simvastatin. Relaxation of porcine coronary artery segments by statins was measured using isolated tissue baths. Mitochondrial activity was determined by measuring changes in rhodamine 123 fluorescence. Changes in intracellular calcium levels were determined in freshly isolated smooth muscle cells with Fluo-4 using standard epifluorescent imaging techniques. Simvastatin, but not pravastatin, produced amore » slow relaxation of the coronary artery, which was independent of the endothelium. The relaxation was attenuated by the mitochondrial complex I inhibitor rotenone (10 μM) and the complex III inhibitor myxothiazol (10 μM), or a combination of the two. The complex III inhibitor antimycin A (10 μM) produced a similar time-dependent relaxation of the porcine coronary artery, which was attenuated by rotenone. Changes in rhodamine 123 fluorescence showed that simvastatin (10 μM) depolarized the membrane potential of mitochondria in both isolated mitochondria and intact blood vessels. Simvastatin and antimycin A both inhibited calcium-induced contractions in isolated blood vessels and calcium influx in smooth muscle cells and this inhibition was prevented by rotenone. In conclusion, simvastatin produces an endothelium-independent relaxation of the porcine coronary artery which is dependent, in part, upon effects on the mitochondria. The effects on the mitochondria may lead to a reduction in calcium influx and hence relaxation of the blood vessel. - Highlights: • Simvastatin produces a relaxation of the porcine coronary artery. • This relaxation is inhibited by mitochondrial complex inhibitors. • Simvastatin alters mitochondrial membrane potential in intact blood vessels. • Simvastatin inhibits calcium influx in smooth muscle cells, prevented by a mitochondrial inhibitor. • Simvastatin-induced relaxations are dependent upon mitochondrial activity.« less
Hormone synthesis and secretion by rat parathyroid glands in tissue culture
Au, William Y. W.; Poland, Alan P.; Stern, Paula H.; Raisz, Lawrence G.
1970-01-01
Rat parathyroid glands maintained in organ culture secrete biologically active parathyroid hormone (PTH) and synthesize and secrete labeled proteins from 3H- or 14C-labeled amino acids added to the medium. The amounts of biological activity and labeled protein in the medium are both inversely proportional to the calcium concentration. Some of the labeled low molecular weight protein was identified as PTH which had been synthesized and secreted in culture by preliminary isolation on Sephadex G-100 columns and further purification using an antibody to bovine PTH which cross-reacted with rat PTH. The cross-reacting antibody inhibited the biological effects of rat PTH and caused hypocalcemia in intact rats. The antibody bound some of the labeled low molecular weight protein of the medium at neutral pH so that it migrated as a large molecular weight complex on Sephadex. Biologically active, labeled PTH was recovered by dissociation of this complex in acid and rechromatography. PMID:5449703
Astrocyte activation and wound healing in intact-skull mouse after focal brain injury.
Suzuki, Takayuki; Sakata, Honami; Kato, Chiaki; Connor, John A; Morita, Mitsuhiro
2012-12-01
Localised brain tissue damage activates surrounding astrocytes, which significantly influences subsequent long-term pathological processes. Most existing focal brain injury models in rodents employ craniotomy to localise mechanical insults. However, the craniotomy procedure itself induces gliosis. To investigate perilesional astrocyte activation under conditions in which the skull is intact, we created focal brain injuries using light exposure through a cranial window made by thinning the skull without inducing gliosis. The lesion size was maximal at ~ 12 h and showed substantial recovery over the subsequent 30 days. Two distinct types of perilesional reactive astrocyte, identified by GFAP upregulation and hypertrophy, were found. In proximal regions the reactive astrocytes proliferated and expressed nestin, whereas in regions distal to the injury core the astrocytes showed increased GFAP expression but did not proliferate, lacked nestin expression, and displayed different morphology. Simply making the window did not induce any of these changes. There were also significant numbers of neurons in the recovering cortical tissue. In the recovery region, reactive astrocytes radially extended processes which appeared to influence the shapes of neuronal nuclei. The proximal reactive astrocytes also formed a cell layer which appeared to serve as a protective barrier, blocking the spread of IgG deposition and migration of microglia from the lesion core to surrounding tissue. The recovery was preceded by perilesional accumulation of leukocytes expressing vascular endothelial growth factor. These results suggest that, under intact skull conditions, focal brain injury is followed by perilesional reactive astrocyte activities that foster cortical tissue protection and recovery. © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Kendall, D M; Bjostad, L B
1990-03-01
Herbivory byThrips tabaci affected production of the phytohormone ethylene from living onion foliage. Ethylene analysis was performed by gas chromatography on intact onion tissue. Thrips feeding damage and a crushed thrips extract stimulated significantly greater production of eihylene than could be explained by either one-time or semicontinuous mechanical damage alone, suggesting that ethylene-inducing cues may be transferred to the plant during feeding. This is the first demonstration of increased ethylene production from insect-infested intact plants. This study suggests that herbivores affect both the phytohormone physiology and secondary chemistry of living plants because ethylene has been shown to enhance production of defensive phytochemicals.
NASA Astrophysics Data System (ADS)
Petruk, Vasyl; Kvaternyuk, Sergii; Bolyuh, Boris; Bolyuh, Dmitry; Dronenko, Vladimir; Harasim, Damian; Annabayev, Azamat
2016-09-01
Melanoma skin is difficult to diagnose in the early stages of development despite its location outside. Melanoma is difficult to visually differentiate from benign melanocytic nevi. In the work we investigated parameters of human intact skin in near-infrared range for different racial and gender groups. This allows to analyze statistical differences in the coefficient of diffuse reflection and use them in the differential diagnosis of cancer by optical methods subject.
Sukhinich, K K; Kosykh, A V; Aleksandrova, M A
2015-11-01
We studied the behavior and cell-cell interactions of embryonic brain cell from GFP-reporter mice after their transplantation into the intact adult brain. Fragments or cell suspensions of fetal neocortical cells at different stages of development were transplanted into the neocortex and striatum of adult recipients. Even in intact brain, the processes of transplanted neurons formed extensive networks in the striatum and neocortical layers I and V-VI. Processes of transplanted cells at different stages of development attained the rostral areas of the frontal cortex and some of them reached the internal capsule. However, the cells transplanted in suspension had lower process growth potency than cells from tissue fragments. Tyrosine hydroxylase fibers penetrated from the recipient brain into grafts at both early and late stages of development. Our experiments demonstrated the formation of extensive reciprocal networks between the transplanted fetal neural cells and recipient brain neurons even in intact brain.
Measurement of the Mechanical Properties of Intact Collagen Fibrils
NASA Astrophysics Data System (ADS)
Mercedes, H.; Heim, A.; Matthews, W. G.; Koob, T.
2006-03-01
Motivated by the genetic disorder Ehlers-Danlos syndrome (EDS), in which proper collagen synthesis is interrupted, we are investigating the structural and mechanical properties of collagen fibrils. The fibrous glycoprotein collagen is the most abundant protein found in the human body and plays a key role in the extracellular matrix of the connective tissue, the properties of which are altered in EDS. We have selected as our model system the collagen fibrils of the sea cucumber dermis, a naturally mutable tissue. This system allows us to work with native fibrils which have their proteoglycan complement intact, something that is not possible with reconstituted mammalian collagen fibrils. Using atomic force microscopy, we measure, as a function of the concentration of divalent cations, the fibril diameter, its response to force loading, and the changes in its rigidity. Through these experiments, we will shed light on the mechanisms which control the properties of the sea cucumber dermis and hope to help explain the altered connective tissue extracellular matrix properties associated with EDS.
Automated cell-type classification in intact tissues by single-cell molecular profiling
2018-01-01
A major challenge in biology is identifying distinct cell classes and mapping their interactions in vivo. Tissue-dissociative technologies enable deep single cell molecular profiling but do not provide spatial information. We developed a proximity ligation in situ hybridization technology (PLISH) with exceptional signal strength, specificity, and sensitivity in tissue. Multiplexed data sets can be acquired using barcoded probes and rapid label-image-erase cycles, with automated calculation of single cell profiles, enabling clustering and anatomical re-mapping of cells. We apply PLISH to expression profile ~2900 cells in intact mouse lung, which identifies and localizes known cell types, including rare ones. Unsupervised classification of the cells indicates differential expression of ‘housekeeping’ genes between cell types, and re-mapping of two sub-classes of Club cells highlights their segregated spatial domains in terminal airways. By enabling single cell profiling of various RNA species in situ, PLISH can impact many areas of basic and medical research. PMID:29319504
Petroselli, Gabriela; Mandal, Mridul Kanti; Chen, Lee Chuin; Ruiz, Gustavo T; Wolcan, Ezequiel; Hiraoka, Kenzo; Nonami, Hiroshi; Erra-Balsells, Rosa
2012-03-01
A group of rhenium (I) complexes including in their structure ligands such as CF(3)SO(3)-, CH(3)CO(2)-, CO, 2,2'-bipyridine, dipyridil[3,2-a:2'3'-c]phenazine, naphthalene-2-carboxylate, anthracene-9-carboxylate, pyrene-1-carboxylate and 1,10-phenanthroline have been studied for the first time by mass spectrometry. The probe electrospray ionization (PESI) is a technique based on electrospray ionization (ESI) that generates electrospray from the tip of a solid metal needle. In this work, mass spectra for organometallic complexes obtained by PESI were compared with those obtained by classical ESI and high flow rate electrospray ionization assisted by corona discharge (HF-ESI-CD), an ideal method to avoid decomposition of the complexes and to induce their oxidation to yield intact molecular cation radicals in gas state [M](+·) and to produce their reduction yielding the gas species [M](-·). It was found that both techniques showed in general the intact molecular ions of the organometallics studied and provided additional structure characteristic diagnostic fragments. As the rhenium complexes studied in the present work showed strong absorption in the UV-visible region, particularly at 355 nm, laser desorption ionization (LDI) mass spectrometry experiments could be conducted. Although intact molecular ions could be detected in a few cases, LDI mass spectra showed diagnostic fragments for characterization of the complexes structure. Furthermore, matrix-assisted laser desorption ionization (MALDI) mass spectra were obtained. Nor-harmane, a compound with basic character, was used as matrix, and the intact molecular ions were detected in two examples, in negative ion mode as the [M](-·) species. Results obtained with 2-[(2E)-3-(4-tert-buthylphenyl)-2-methylprop-2-enylidene] malononitrile (DCTB) as matrix are also described. LDI experiments provided more information about the rhenium complex structures than did the MALDI ones. Copyright © 2012 John Wiley & Sons, Ltd.
Castroneves, Luciana A; Jugo, Rebecca H; Maynard, Michelle A; Lee, Jennifer S; Wassner, Ari J; Dorfman, David; Bronson, Roderick T; Ukomadu, Chinweike; Agoston, Agoston T; Ding, Lai; Luongo, Cristina; Guo, Cuicui; Song, Huaidong; Demchev, Valeriy; Lee, Nicholas Y; Feldman, Henry A; Vella, Kristen R; Peake, Roy W; Hartigan, Christina; Kellogg, Mark D; Desai, Anal; Salvatore, Domenico; Dentice, Monica; Huang, Stephen A
2014-10-01
Type 3 deiodinase (D3), the physiologic inactivator of thyroid hormones, is induced during tissue injury and regeneration. This has led to the hypotheses that D3 impacts injury tolerance by reducing local T3 signaling and contributes to the fall in serum triiodothyronine (T3) observed in up to 75% of sick patients (termed the low T3 syndrome). Here we show that a novel mutant mouse with hepatocyte-specific D3 deficiency has normal local responses to toxin-induced hepatonecrosis, including normal degrees of tissue necrosis and intact regeneration, but accelerated systemic recovery from illness-induced hypothyroxinemia and hypotriiodothyroninemia, demonstrating that peripheral D3 expression is a key modulator of the low T3 syndrome.
Castroneves, Luciana A.; Jugo, Rebecca H.; Maynard, Michelle A.; Lee, Jennifer S.; Wassner, Ari J.; Dorfman, David; Bronson, Roderick T.; Ukomadu, Chinweike; Agoston, Agoston T.; Ding, Lai; Luongo, Cristina; Guo, Cuicui; Song, Huaidong; Demchev, Valeriy; Lee, Nicholas Y.; Feldman, Henry A.; Vella, Kristen R.; Peake, Roy W.; Hartigan, Christina; Kellogg, Mark D.; Desai, Anal; Salvatore, Domenico; Dentice, Monica
2014-01-01
Type 3 deiodinase (D3), the physiologic inactivator of thyroid hormones, is induced during tissue injury and regeneration. This has led to the hypotheses that D3 impacts injury tolerance by reducing local T3 signaling and contributes to the fall in serum triiodothyronine (T3) observed in up to 75% of sick patients (termed the low T3 syndrome). Here we show that a novel mutant mouse with hepatocyte-specific D3 deficiency has normal local responses to toxin-induced hepatonecrosis, including normal degrees of tissue necrosis and intact regeneration, but accelerated systemic recovery from illness-induced hypothyroxinemia and hypotriiodothyroninemia, demonstrating that peripheral D3 expression is a key modulator of the low T3 syndrome. PMID:25004090
Hughes, Daniel F; Walker, Ellen M; Gignac, Paul M; Martinez, Anais; Negishi, Kenichiro; Lieb, Carl S; Greenbaum, Eli; Khan, Arshad M
2016-01-01
Biodiversity hotspots, which harbor more endemic species than elsewhere on Earth, are increasingly threatened. There is a need to accelerate collection efforts in these regions before threatened or endangered species become extinct. The diverse geographical, ecological, genetic, morphological, and behavioral data generated from the on-site collection of an individual specimen are useful for many scientific purposes. However, traditional methods for specimen preparation in the field do not permit researchers to retrieve neuroanatomical data, disregarding potentially useful data for increasing our understanding of brain diversity. These data have helped clarify brain evolution, deciphered relationships between structure and function, and revealed constraints and selective pressures that provide context about the evolution of complex behavior. Here, we report our field-testing of two commonly used laboratory-based techniques for brain preservation while on a collecting expedition in the Congo Basin and Albertine Rift, two poorly known regions associated with the Eastern Afromontane biodiversity hotspot. First, we found that transcardial perfusion fixation and long-term brain storage, conducted in remote field conditions with no access to cold storage laboratory equipment, had no observable impact on cytoarchitectural features of lizard brain tissue when compared to lizard brain tissue processed under laboratory conditions. Second, field-perfused brain tissue subjected to prolonged post-fixation remained readily compatible with subsequent immunohistochemical detection of neural antigens, with immunostaining that was comparable to that of laboratory-perfused brain tissue. Third, immersion-fixation of lizard brains, prepared under identical environmental conditions, was readily compatible with subsequent iodine-enhanced X-ray microcomputed tomography, which facilitated the non-destructive imaging of the intact brain within its skull. In summary, we have validated multiple approaches to preserving intact lizard brains in remote field conditions with limited access to supplies and a high degree of environmental exposure. This protocol should serve as a malleable framework for researchers attempting to rescue perishable and irreplaceable morphological and molecular data from regions of disappearing biodiversity. Our approach can be harnessed to extend the numbers of species being actively studied by the neuroscience community, by reducing some of the difficulty associated with acquiring brains of animal species that are not readily available in captivity.
Hughes, Daniel F.; Walker, Ellen M.; Gignac, Paul M.; Martinez, Anais; Negishi, Kenichiro; Lieb, Carl S.; Greenbaum, Eli
2016-01-01
Biodiversity hotspots, which harbor more endemic species than elsewhere on Earth, are increasingly threatened. There is a need to accelerate collection efforts in these regions before threatened or endangered species become extinct. The diverse geographical, ecological, genetic, morphological, and behavioral data generated from the on-site collection of an individual specimen are useful for many scientific purposes. However, traditional methods for specimen preparation in the field do not permit researchers to retrieve neuroanatomical data, disregarding potentially useful data for increasing our understanding of brain diversity. These data have helped clarify brain evolution, deciphered relationships between structure and function, and revealed constraints and selective pressures that provide context about the evolution of complex behavior. Here, we report our field-testing of two commonly used laboratory-based techniques for brain preservation while on a collecting expedition in the Congo Basin and Albertine Rift, two poorly known regions associated with the Eastern Afromontane biodiversity hotspot. First, we found that transcardial perfusion fixation and long-term brain storage, conducted in remote field conditions with no access to cold storage laboratory equipment, had no observable impact on cytoarchitectural features of lizard brain tissue when compared to lizard brain tissue processed under laboratory conditions. Second, field-perfused brain tissue subjected to prolonged post-fixation remained readily compatible with subsequent immunohistochemical detection of neural antigens, with immunostaining that was comparable to that of laboratory-perfused brain tissue. Third, immersion-fixation of lizard brains, prepared under identical environmental conditions, was readily compatible with subsequent iodine-enhanced X-ray microcomputed tomography, which facilitated the non-destructive imaging of the intact brain within its skull. In summary, we have validated multiple approaches to preserving intact lizard brains in remote field conditions with limited access to supplies and a high degree of environmental exposure. This protocol should serve as a malleable framework for researchers attempting to rescue perishable and irreplaceable morphological and molecular data from regions of disappearing biodiversity. Our approach can be harnessed to extend the numbers of species being actively studied by the neuroscience community, by reducing some of the difficulty associated with acquiring brains of animal species that are not readily available in captivity. PMID:27196138
Thompson, William R; Keller, Benjamin V; Davis, Matthew L; Dahners, Laurence E; Weinhold, Paul S
2015-05-01
Low-magnitude, high-frequency vibration accelerates fracture and wound healing and prevents disuse atrophy in musculoskeletal tissues. To investigate the role of low-magnitude, high-frequency vibration as a treatment to accelerate healing of an acute ligament injury and to examine gene expression in the intact Achilles tendon of the injured limb after low-magnitude, high-frequency vibration. Controlled laboratory study. Complete surgical transection of the medial collateral ligament (MCL) was performed in 32 Sprague-Dawley rats, divided into control and low-magnitude, high-frequency vibration groups. Low-magnitude, high-frequency vibration started on postoperative day 2, and rats received vibration for 30 minutes a day for 12 days. All rats were sacrificed 2 weeks after the operation, and their intact and injured MCLs were biomechanically tested or used for histological analysis. Intact Achilles tendons from the injured limb were evaluated for differences in gene expression. Mechanical testing revealed no differences in the ultimate tensile load or the structural stiffness between the control and vibration groups for either the injured or intact MCL. Vibration exposure increased gene expression of collagen 1 alpha (3-fold), interleukin 6 (7-fold), cyclooxygenase 2 (5-fold), and bone morphogenetic protein 12 (4-fold) in the intact Achilles tendon when compared with control tendons ( P < .05). While no differences were observed in the mechanical or histological properties of the fully transected MCL after low-magnitude, high-frequency vibration treatment, significant enhancements in gene expression were observed in the intact Achilles tendon. These included collagen, several inflammatory cytokines, and growth factors critical for tendons. As low-magnitude, high-frequency vibration had no negative effects on ligament healing, vibration therapy may be a useful tool to accelerate healing of other tissues (bone) in multitrauma injuries without inhibiting ligament healing. Additionally, the enhanced gene expression in response to low-magnitude, high-frequency vibration in the intact Achilles tendon suggests the need to further study its potential to accelerate tendon healing in partial injury or repair models.
Nielsen, Mette J.; Sand, Jannie M.; Henriksen, Kim; Genovese, Federica; Bay-Jensen, Anne-Christine; Smith, Victoria; Adamkewicz, Joanne I.; Christiansen, Claus; Leeming, Diana J.
2013-01-01
Abstract Increased attention is paid to the structural components of tissues. These components are mostly collagens and various proteoglycans. Emerging evidence suggests that altered components and noncoded modifications of the matrix may be both initiators and drivers of disease, exemplified by excessive tissue remodeling leading to tissue stiffness, as well as by changes in the signaling potential of both intact matrix and fragments thereof. Although tissue structure until recently was viewed as a simple architecture anchoring cells and proteins, this complex grid may contain essential information enabling the maintenance of the structure and normal functioning of tissue. The aims of this review are to (1) discuss the structural components of the matrix and the relevance of their mutations to the pathology of diseases such as fibrosis and cancer, (2) introduce the possibility that post-translational modifications (PTMs), such as protease cleavage, citrullination, cross-linking, nitrosylation, glycosylation, and isomerization, generated during pathology, may be unique, disease-specific biochemical markers, (3) list and review the range of simple enzyme-linked immunosorbent assays (ELISAs) that have been developed for assessing the extracellular matrix (ECM) and detecting abnormal ECM remodeling, and (4) discuss whether some PTMs are the cause or consequence of disease. New evidence clearly suggests that the ECM at some point in the pathogenesis becomes a driver of disease. These pathological modified ECM proteins may allow insights into complicated pathologies in which the end stage is excessive tissue remodeling, and provide unique and more pathology-specific biochemical markers. PMID:23046407
Cryobiology of coral fragments.
Hagedorn, Mary; Farrell, Ann; Carter, Virginia L
2013-02-01
Around the world, coral reefs are dying due to human influences, and saving habitat alone may not stop this destruction. This investigation focused on the biological processes that will provide the first steps in understanding the cryobiology of whole coral fragments. Coral fragments are a partnership of coral tissue and endosymbiotic algae, Symbiodinium sp., commonly called zooxanthellae. These data reflected their separate sensitivities to chilling and a cryoprotectant (dimethyl sulfoxide) for the coral Pocillopora damicornis, as measured by tissue loss and Pulse Amplitude Modulated fluorometry 3weeks post-treatment. Five cryoprotectant treatments maintained the viability of the coral tissue and zooxanthellae at control values (1M dimethyl sulfoxide at 1.0, 1.5 and 2.0h exposures, and 1.5M dimethyl sulfoxide at 1.0 and 1.5h exposures, P>0.05, ANOVA), whereas 2M concentrations did not (P<0.05, ANOVA). A seasonal response to chilling was observed in the coral tissue, but not in the zooxanthellae. During the winter when the fragments were chilled, the coral tissue remained relatively intact (∼25% loss) post-treatment, but the zooxanthellae numbers in the tissue declined after 5min of chilling (P<0.05, ANOVA). However, in the late spring, coral tissue (∼75% loss) and zooxanthellae numbers declined in response to chilling alone (P<0.05, ANOVA). When a cryoprotectant (1M dimethyl sulfoxide) was used in concert with chilling it protected the coral against tissue loss after 45min of cryoprotectant exposure (P>0.05, ANOVA), but it did not protect against the loss of zooxanthellae (P<0.05, ANOVA). The zooxanthellae are the most sensitive element in the coral fragment complex and future cryopreservation protocols must be guided by their greater sensitivity. Copyright © 2012 Elsevier Inc. All rights reserved.
From chloroplasts to photosystems: in situ scanning force microscopy on intact thylakoid membranes
Kaftan, David; Brumfeld, Vlad; Nevo, Reinat; Scherz, Avigdor; Reich, Ziv
2002-01-01
Envelope-free chloroplasts were imaged in situ by contact and tapping mode scanning force microscopy at a lateral resolution of 3–5 nm and vertical resolution of ∼0.3 nm. The images of the intact thylakoids revealed detailed structural features of their surface, including individual protein complexes over stroma, grana margin and grana-end membrane domains. Structural and immunogold-assisted assignment of two of these complexes, photosystem I (PS I) and ATP synthase, allowed direct determination of their surface density, which, for both, was found to be highest in grana margins. Surface rearrangements and pigment– protein complex redistribution associated with salt-induced membrane unstacking were followed on native, hydrated specimens. Unstacking was accompanied by a substantial increase in grana diameter and, eventually, led to their merging with the stroma lamellae. Concomitantly, PS IIα effective antenna size decreased by 21% and the mean size of membrane particles increased substantially, consistent with attachment of mobile light-harvesting complex II to PS I. The ability to image intact photosynthetic membranes at molecular resolution, as demonstrated here, opens up new vistas to investigate thylakoid structure and function. PMID:12426386
Release of Esterase Following Germination of Lettuce Seed (Lactuca sativa L.)
Chandra, G. Ram; Toole, Vivian K.
1977-01-01
Light-insensitive lettuce seeds, Lactuca sativa L. cv. Great Lakes, release esterases for a period following radicle protrusion. Very little or no enzymes are released prior to 24 hours or after 48 hours of germination. As compared to intact seeds, half-seeds readily release esterases and the release is not affected by far red irradiation. Bulk of the released esterases are derived from the endosperm tissue and presumably exists in the intact seed as a component of the extraembryonic fluid. PMID:16659992
A two-layered mechanical model of the rat esophagus. Experiment and theory
Fan, Yanhua; Gregersen, Hans; Kassab, Ghassan S
2004-01-01
Background The function of esophagus is to move food by peristaltic motion which is the result of the interaction of the tissue forces in the esophageal wall and the hydrodynamic forces in the food bolus. The structure of the esophagus is layered. In this paper, the esophagus is treated as a two-layered structure consisting of an inner collagen-rich submucosa layer and an outer muscle layer. We developed a model and experimental setup for determination of elastic moduli in the two layers in circumferential direction and related the measured elastic modulus of the intact esophagus to the elastic modulus computed from the elastic moduli of the two layers. Methods Inflation experiments were done at in vivo length and pressure-diameters relations were recorded for the rat esophagus. Furthermore, the zero-stress state was taken into consideration. Results The radius and the strain increased as function of pressure in the intact as well as in the individual layers of the esophagus. At pressures higher than 1.5 cmH2O the muscle layer had a larger radius and strain than the mucosa-submucosa layer. The strain for the intact esophagus and for the muscle layer was negative at low pressures indicating the presence of residual strains in the tissue. The stress-strain curve for the submucosa-mucosa layer was shifted to the left of the curves for the muscle layer and for the intact esophagus at strains higher than 0.3. The tangent modulus was highest in the submucosa-mucosa layer, indicating that the submucosa-mucosa has the highest stiffness. A good agreement was found between the measured elastic modulus of the intact esophagus and the elastic modulus computed from the elastic moduli of the two separated layers. PMID:15518591
McDonnell, Bronagh M; Buchanan, Paul J; Prise, Kevin M; McCloskey, Karen D
2018-01-01
Radiation-induced bladder toxicity is associated with radiation therapy for pelvic malignancies, arising from unavoidable irradiation of neighbouring normal bladder tissue. This study aimed to investigate the acute impact of ionizing radiation on the contractility of bladder strips and identify the radiation-sensitivity of the mucosa vs the detrusor. Guinea-pig bladder strips (intact or mucosa-free) received ex vivo sham or 20Gy irradiation and were studied with in vitro myography, electrical field stimulation and Ca2+-fluorescence imaging. Frequency-dependent, neurogenic contractions in intact strips were reduced by irradiation across the force-frequency graph. The radiation-difference persisted in atropine (1μM); subsequent addition of PPADs (100μM) blocked the radiation effect at higher stimulation frequencies and decreased the force-frequency plot. Conversely, neurogenic contractions in mucosa-free strips were radiation-insensitive. Radiation did not affect agonist-evoked contractions (1μM carbachol, 5mM ATP) in intact or mucosa-free strips. Interestingly, agonist-evoked contractions were larger in irradiated mucosa-free strips vs irradiated intact strips suggesting that radiation may have unmasked an inhibitory mucosal element. Spontaneous activity was larger in control intact vs mucosa-free preparations; this difference was absent in irradiated strips. Spontaneous Ca2+-transients in smooth muscle cells within tissue preparations were reduced by radiation. Radiation affected neurogenic and agonist-evoked bladder contractions and also reduced Ca2+-signalling events in smooth muscle cells when the mucosal layer was present. Radiation eliminated a positive modulatory effect on spontaneous activity by the mucosa layer. Overall, the findings suggest that radiation impairs contractility via mucosal regulatory mechanisms independent of the development of radiation cystitis.
In situ monitoring of surgical flap viability using THz imaging (Conference Presentation)
NASA Astrophysics Data System (ADS)
Bajwa, Neha; Sung, Shijun; Grundfest, Warren; Taylor, Zachary
2016-03-01
This paper explores the utility of reflective THz imaging to assess the viability of surgical flaps. Flap surgery is a technique where tissue is harvested from a donor site and moved to a recipient while keeping the blood supply intact. This technique is common in head and neck tumor resection surgery where the reconstruction of complex and sensitive anatomic structures is routine following the resection of large and/or invasive tumors. Successful flap surgery results in tissue that is sufficiently perfused with both blood and extracellular water. If insufficient fluid levels are maintained, the flap tissue becomes necrotic and must be excised immediately to prevent infection developing and spreading to the surrounding areas. The goal of this work is to investigate the hydration of surgical flaps and correlate image features to successful graft outcomes. Advancement flaps were created on the abdomens of rat models. One rat model was labeled control and care was taken to ensure a successful flap outcome. The flap on the second rat was compromised with restricted blood flow and allowed to fail. The flaps of both rats were imaged once a day over the course of a week at which point the compromised flap had begun to show signs of necrosis. Significant differences in tissue water content were observed between rats over the experimental period. The results suggest that THz imaging may enable early assessment of flap viability.
Turley, Sean M; Thambyah, Ashvin; Riggs, Christopher M; Firth, Elwyn C; Broom, Neil D
2014-01-01
The palmar aspect of the third metacarpal (MC3) condyle of equine athletes is known to be subjected to repetitive overloading that can lead to the accumulation of joint tissue damage, degeneration, and stress fractures, some of which result in catastrophic failure. However, there is still a need to understand at a detailed microstructural level how this damage progresses in the context of the wider joint tissue complex, i.e. the articular surface, the hyaline and calcified cartilage, and the subchondral bone. MC3 bones from non-fractured joints were obtained from the right forelimbs of 16 Thoroughbred racehorses varying in age between 3 and 8 years, with documented histories of active race training. Detailed microstructural analysis of two clinically important sites, the parasagittal grooves and the mid-condylar regions, identified extensive levels of microdamage in the calcified cartilage and subchondral bone concealed beneath outwardly intact hyaline cartilage. The study shows a progression in microdamage severity, commencing with mild hard-tissue microcracking in younger animals and escalating to severe subchondral bone collapse and lesion formation in the hyaline cartilage with increasing age and thus athletic activity. The presence of a clearly distinguishable fibrous tissue layer at the articular surface immediately above sites of severe subchondral collapse suggested a limited reparative response in the hyaline cartilage. PMID:24689513
Interaction of Vascular Smooth Muscle Cells Under Low Shear Stress
NASA Technical Reports Server (NTRS)
Seidel, Charles L.
1998-01-01
The blood vessel wall consists of three cellular layers, an outer adventitial, a middle medial and an inner intimal layer. When the blood vessel forms in the embryo it begins as a tube composed of a single cell type called endothelial cells. Over time, other cells are recruited from the surrounding tissue to form additional layers on the outer surface of the endothelial tube. The cells that are recruited are called mesenchymal cells. Mesenchymal cells are responsible for the production of connective tissue that holds the blood vessel together and for developing into vascular smooth muscle cells that are responsible for regulating the diameter of the vessel (1) and therefore, blood flow. In a fully developed blood vessel, the endothelial cells make- up the majority of cells in the intimal layer while the mesenchymal cells make-up the majority of cells in the medial and adventitial layers. Within the medial layer of a mature vessel, cells are organized into multiple circular layers of alternating bands of connective tissue and cells. The cell layer is composed of a mixture of mesenchymal cells that have not developed into smooth muscle cells and fully developed smooth muscle cells (2). The assembly and organization of complex tissues is directed in part by a signaling system composed of proteins on the cell surface called adhesion molecules. Adhesion molecules enable cells to recognize each other as well as the composition of the connective tissue in which they reside (3). It was hypothesized that the different cell types that compose the vascular wall possess different adhesion molecules that enable them to recognize each other and through this recognition system, form the complex layered organization of the vascular wall. In other words, the layered organization is an intrinsic property of the cells. If this hypothesis is correct then the different cells that make up the vessel wall, when mixed together, should organize themselves into a layered structure resembling an intact blood vessel. Experiments described below were designed to test this hypothesis.
To, Tsz-Leung; Fadul, Michael J.; Shu, Xiaokun
2014-01-01
Many cellular processes are carried out by large protein complexes that can span several tens of nanometers. Whereas Forster resonance energy transfer has a detection range of <10 nm, here we report the theoretical development and experimental demonstration of a new fluorescence imaging technology with a detection range of up to several tens of nanometers: singlet oxygen triplet energy transfer. We demonstrate that our method confirms the topology of a large protein complex in intact cells, which spans from the endoplasmic reticulum to the outer mitochondrial membrane and the matrix. This new method is thus suited for mapping protein proximity in large protein complexes. PMID:24905026
Slack length reduces the contractile phenotype of the Swine carotid artery.
Rembold, Christopher M; Garvey, Sean M; Tejani, Ankit D
2013-01-01
Contraction is the primary function of adult arterial smooth muscle. However, in response to vessel injury or inflammation, arterial smooth muscle is able to phenotypically modulate from the contractile state to several 'synthetic' states characterized by proliferation, migration and/or increased cytokine secretion. We examined the effect of tissue length (L) on the phenotype of intact, isometrically held, initially contractile swine carotid artery tissues. Tissues were studied (1) without prolonged incubation at the optimal length for force generation (1.0 Lo, control), (2) with prolonged incubation for 17 h at 1.0 Lo, or (3) with prolonged incubation at slack length (0.6 Lo) for 16 h and then restoration to 1.0 Lo for 1 h. Prolonged incubation at 1.0 Lo minimally reduced the contractile force without substantially altering the mediators of contraction (crossbridge phosphorylation, shortening velocity or stimulated actin polymerization). Prolonged incubation of tissues at slack length (0.6 Lo), despite return of length to 1.0 Lo, substantially reduced contractile force, reduced crossbridge phosphorylation, nearly abolished crossbridge cycling (shortening velocity) and abolished stimulated actin polymerization. These data suggest that (1) slack length treatment significantly alters the contractile phenotype of arterial tissue, and (2) slack length treatment is a model to study acute phenotypic modulation of intact arterial smooth muscle. Copyright © 2013 S. Karger AG, Basel.
Construction of biocompatible porous tissue scaffold from the decellularized umbilical artery.
Xin, Yi; Wu, Guanghui; Wu, Man; Zhang, Xiaoxia; Velot, Emilie; Decot, Véronique; Cui, Wei; Huang, Yimin; Stoltz, Jean-Francois; Du, Jie; Li, Na
2015-01-01
The scaffolds prepared from the tissue decellularization conserve the porous 3-D structure and provide an optimal matrix for the tissue regeneration. Since decade, the enzymatic digestion, chemical reagent treatment and mechanical actions such as eversion and abrasion have been used to remove the cells from the intact matrix. In this study, we optimized an enzymatic method to decellularize the umbilical artery to construct a 3-D porous scaffold which is suitable for the culture of mesenchymal stem cells (MSCs). The scaffold maintained the interconnected porous structure. It remained the similar high water content 95.3 ± 1% compared to 94.9 ± 0.6% in the intact umbilical artery (p>0.05). The decellularization process decreased the stress from 0.24 ± 0.05 mPa to 0.15 ± 0.06 mPa (p<0.05). However the decellularization did not change the strain of the artery (45 ± 15% vs. 53 ± 10%, p>0.05). When the scaffold was transplanted to the subcutaneous tissue in the wild type mice, there were less T cells appeared in the surrounding tissue which meant the decreased the immunogenicity by decellularization. This scaffold also supported the adhesion and proliferation of the MSCs. In this study, we constructed a biological compatible porous scaffold from the decellularized umbilical artery which may provide a suitable scaffold for cell-matrix interaction studies and for tissue engineering.
Transconjunctival penetration of mitomycin C.
Velpandian, T; Sihota, Ramanjit; Sinha, Ankur; Gupta, Viney
2008-01-01
The study was performed to estimate transconjunctival penetration of mitomycin C (MMC) to Tenon's tissue following application over the intact conjunctiva before routine trabeculectomy. Institution-based case series. In 41 eyes of 41 patients, MMC (0.4 mg/ml for 3 min) was applied over the intact conjunctiva before beginning trabeculectomy. Tenon's capsule directly beneath the site of application was excised during trabeculectomy and was homogenized, centrifuged and MMC concentrations were analyzed using high-performance liquid chromatography (HPLC). Statistical analysis was performed using STATA 8.0 version software (STATA Corporation, Houston, TX, USA). In this study, P -values less than 0.05 were considered as statistically significant. The average weight of the sample of Tenon's tissue excised was 5.51+/-4.42 mg (range: 0.9-17.1) and the average estimated MMC concentration found to be present in Tenon's tissue using HPLC was 18.67+/-32.36 x 10(-6) moles/kg of the tissue (range: 0.38-197.05 x 10(-6)). In 36 of the 41 patients (87.80%), the MMC concentration reached above 2 x 10(-6) moles/kg of the tissue concentration required to inhibit human conjunctival fibroblasts. Mitomycin C does permeate into the subconjunctival tissue after supraconjunctival application for 3 min. Application of MMC over the conjunctiva may be a useful alternative to subconjunctival or subscleral application during routine trabeculectomy and as an adjunct for failing blebs.
Computational physiology and the Physiome Project.
Crampin, Edmund J; Halstead, Matthew; Hunter, Peter; Nielsen, Poul; Noble, Denis; Smith, Nicolas; Tawhai, Merryn
2004-01-01
Bioengineering analyses of physiological systems use the computational solution of physical conservation laws on anatomically detailed geometric models to understand the physiological function of intact organs in terms of the properties and behaviour of the cells and tissues within the organ. By linking behaviour in a quantitative, mathematically defined sense across multiple scales of biological organization--from proteins to cells, tissues, organs and organ systems--these methods have the potential to link patient-specific knowledge at the two ends of these spatial scales. A genetic profile linked to cardiac ion channel mutations, for example, can be interpreted in relation to body surface ECG measurements via a mathematical model of the heart and torso, which includes the spatial distribution of cardiac ion channels throughout the myocardium and the individual kinetics for each of the approximately 50 types of ion channel, exchanger or pump known to be present in the heart. Similarly, linking molecular defects such as mutations of chloride ion channels in lung epithelial cells to the integrated function of the intact lung requires models that include the detailed anatomy of the lungs, the physics of air flow, blood flow and gas exchange, together with the large deformation mechanics of breathing. Organizing this large body of knowledge into a coherent framework for modelling requires the development of ontologies, markup languages for encoding models, and web-accessible distributed databases. In this article we review the state of the field at all the relevant levels, and the tools that are being developed to tackle such complexity. Integrative physiology is central to the interpretation of genomic and proteomic data, and is becoming a highly quantitative, computer-intensive discipline.
Paradoxical behavior of neuromedin U in isolated smooth muscle cells and intact tissue.
Brighton, Paul J; Wise, Alan; Dass, Narinder B; Willars, Gary B
2008-04-01
Neuromedin U (NmU) is a neuropeptide showing high levels of structural conservation across different species. Since its discovery in 1985, NmU has been implicated in numerous physiological roles, including smooth muscle contraction, energy homeostasis, stress, intestinal ion transport, pronociception, and circadian rhythm. Two G-protein-coupled receptors have been identified for NmU and cloned from humans, rats, and mice. Recombinantly expressed NmU receptors couple to both Galpha(q/11) and Galpha(i) G-proteins, and NmU binds essentially irreversibly, preventing signaling to repetitive applications of NmU. However, it is unclear whether these properties reflect those of endogenously expressed NmU receptors or how these properties influence the functional consequences of NmU receptor signaling. Here, we have explored the signaling by rat NmU receptors expressed endogenously in cultured rat colonic smooth muscle cells and explore the functional consequence of this signaling by investigating the NmU-mediated contraction of ex vivo rat colonic smooth muscle preparations. We demonstrate that endogenous rat NmU receptors couple to both Galpha(q/11) and Galpha(i) G-proteins. Furthermore, we show complex patterns of Ca(2+) signaling, including oscillations, and provide evidence of essentially irreversible binding of NmU to smooth muscle cells. Challenge of either circular or longitudinal rat isolated colonic smooth muscle preparations with NmU resulted in robust contractions. Stimulation was direct, and paradoxically, repetitive applications of NmU mediated repetitive contractions with no evidence of desensitization, highlighting a major discrepancy in the behavior of NmU in single cells and in intact tissues. The reason for this discrepancy is presently unknown.
Scopes, Robert K.
1974-01-01
The reconstituted glycolytic system described previously (Scopes, 1973) was used to simulate post-mortem glycolytic metabolism in muscle. The effects of the following factors have been investigated: ATPase (adenosine triphosphatase) amount, AMP deaminase amount, percentage of the phosphorylase in the a form and the effect of diluting the glycolytic enzyme complex as a whole. It was confirmed that the rate of metabolism was solely dependent on the amount of ATPase present and that various concentrations of the glycolytic enzymes had no effect over a wide range encompassing the variation found in anatomically different muscles. The extent of metabolism, represented by the value of the `ultimate' pH, depended markedly on the amount of phosphorylase in the a form; as little as 1% of the a form resulted in a considerably lower pH than in its absence. To a lesser extent the amount of AMP deaminase also affected the ultimate pH, but this was probably only significant for comparisons of genetically distinct muscles with widely differing amounts of AMP deaminase. The reconstituted system behaved almost identically with regard to post-mortem glycolytic metabolism compared with intact muscle tissue. It is concluded that the controlling effectors found with the reconstituted system apply to intact muscle also. PMID:4280304
NASA Technical Reports Server (NTRS)
Butler, J. H.; Hu, S.; Brady, S. R.; Dixon, M. W.; Muday, G. K.
1998-01-01
The N-1-naphthylphthalamic acid (NPA)-binding protein is part of the auxin efflux carrier, the protein complex that controls polar auxin transport in plant tissues. This study tested the hypothesis that the NPA-binding protein (NBP) is associated with the actin cytoskeleton in vitro and that an intact actin cytoskeleton is required for polar auxin transport in vivo. Cytoskeletal polymerization was altered in extracts of zucchini hypocotyls with reagents that stabilized either the polymeric or monomeric forms of actin or tubulin. Phalloidin treatment altered actin polymerization, as demonstrated by immunoblot analyses following native and denaturing electrophoresis. Phalloidin increased both filamentous actin (F-actin) and NPA-binding activity, while cytochalasin D and Tris decreased both F-actin and NPA-binding activity in cytoskeletal pellets. The microtubule stabilizing drug taxol increased pelletable tubulin, but did not alter either the amount of pelletable actin or NPA-binding activity. Treatment of etiolated zucchini hypocotyls with cytochalasin D decreased the amount of auxin transport and its regulation by NPA. These experimental results are consistent with an in vitro actin cytoskeletal association of the NPA-binding protein and with the requirement of an intact actin cytoskeleton for maximal polar auxin transport in vivo.
How to measure CFTR-dependent bicarbonate transport: from single channels to the intact epithelium.
Hug, Martin J; Clarke, Lane L; Gray, Michael A
2011-01-01
Bicarbonate serves many functions in our body. It is the predominant buffer maintaining a physiological pH in the blood and within our cells. It is also essential for proper digestion of nutrients and solubilization of complex protein mixtures, such as digestive enzymes and mucins, in epithelial secretions. Transepithelial HCO3- transport also drives net fluid secretion in many epithelial tissues including those in the gastrointestinal and reproductive tracts as well as the airways. Indeed, defective bicarbonate secretion is a hallmark of the pathophysiology in the pancreas of most patients suffering from cystic fibrosis. Some, but not all, disease-causing mutations in the CF gene lead to impaired bicarbonate transport when expressed in heterologous systems. Recently developed pharmacological modulators of mutant CFTR have demonstrated an ability to activate chloride transport but little is known about whether they also increase the secretion of bicarbonate. It is therefore essential to assay bicarbonate transport when studying the effect of small molecules on CFTR function. However, due to the chaotropic nature of the ion, the measurement of the absolute bicarbonate concentration and its permeability through CFTR is far from trivial. In this chapter we will review some of the techniques available to measure bicarbonate transport through single ion channels, individual cells, and intact epithelial layers.
Three-dimensional co-culture process
NASA Technical Reports Server (NTRS)
Wolf, David A. (Inventor); Goodwin, Thomas J. (Inventor)
1992-01-01
The present invention relates to a 3-dimensional co-culture process, more particularly to methods or co-culturing at least two types of cells in a culture environment, either in space or in unit gravity, with minimum shear stress, freedom for 3-dimensional spatial orientation of the suspended particles and localization of particles with differing or similar sedimentation properties in a similar spatial region to form 3-dimensional tissue-like structures. Several examples of multicellular 3-dimensional experiences are included. The protocol and procedure are also set forth. The process allows simultaneous culture of multiple cell types and supporting substrates in a manner which does not disrupt the 3-dimensional spatial orientation of these components. The co-cultured cells cause a mutual induction effect which mimics the natural hormonal signals and cell interactions found in the intact organism. This causes the tissues to differentiate and form higher 3-dimensional structures such as glands, junctional complexes polypoid geometries, and microvilli which represent the corresponding in-vitro structures to a greater degree than when the cell types are cultured individually or by conventional processes. This process was clearly demonstrated for the case of two epithelial derived colon cancer lines, each co-cultured with normal human fibroblasts and with microcarrier bead substrates. The results clearly demonstrate increased 3-dimensional tissue-like structure and biochemical evidence of an increased differentiation state. With the present invention a variety of cells may be co-cultured to produce tissue which has 3-dimensionality and has some of the characteristics of in-vitro tissue. The process provides enhanced 3-dimensional tissue which create a multicellular organoid differentiation model.
McCord, Lauren A.; Li, Feixue; Rosewell, Katherine L.; Brännström, Mats; Curry, Thomas E.
2011-01-01
ABSTRACT The matrix metalloproteinases (MMPs) are postulated to facilitate follicular rupture. In the present study, expression of the stromelysins (MMP3, MMP10, MMP11) was analyzed in the periovulatory human and rat ovary. Human granulosa and theca cells were collected from the dominant follicle at various times after human chorionic gonadotropin (hCG). Intact rat ovaries, granulosa cells, and residual tissue (tissue remaining after granulosa cell collection) were isolated from equine CG (eCG)-hCG-primed animals. Mmp10 mRNA was highly induced in human granulosa and theca cells and intact rat ovaries, granulosa cells, and residual tissue. Localization of MMP10 to granulosa and theca cells in both human and rat ovarian follicles was confirmed by immunohistochemistry. Mmp3 mRNA was unchanged in human cells and rat granulosa cells, but increased in intact rat ovaries and residual tissue. Mmp11 mRNA decreased following hCG treatment in human granulosa and theca cells as well as rat granulosa cells. Regulation of Mmp10 in cultured rat granulosa cells revealed that the EGF inhibitor AG1478 and the progesterone receptor antagonist RU486 suppressed the induction of Mmp10 mRNA, whereas the prostaglandin inhibitor NS398 had no effect. Studies on the Mmp10 promoter demonstrated that forskolin plus PMA stimulated promoter activity, which was dependent upon a proximal AP1 site. In conclusion, there are divergent patterns of stromelysin expression associated with ovulation, with a marked induction of Mmp10 mRNA and a decrease in Mmp11 mRNA, yet a species-dependent pattern on Mmp3 mRNA expression. The induction of Mmp10 expression suggests an important role for this MMP in the follicular changes associated with ovulation and subsequent luteinization. PMID:22116802
McCord, Lauren A; Li, Feixue; Rosewell, Katherine L; Brännström, Mats; Curry, Thomas E
2012-03-01
The matrix metalloproteinases (MMPs) are postulated to facilitate follicular rupture. In the present study, expression of the stromelysins (MMP3, MMP10, MMP11) was analyzed in the periovulatory human and rat ovary. Human granulosa and theca cells were collected from the dominant follicle at various times after human chorionic gonadotropin (hCG). Intact rat ovaries, granulosa cells, and residual tissue (tissue remaining after granulosa cell collection) were isolated from equine CG (eCG)-hCG-primed animals. Mmp10 mRNA was highly induced in human granulosa and theca cells and intact rat ovaries, granulosa cells, and residual tissue. Localization of MMP10 to granulosa and theca cells in both human and rat ovarian follicles was confirmed by immunohistochemistry. Mmp3 mRNA was unchanged in human cells and rat granulosa cells, but increased in intact rat ovaries and residual tissue. Mmp11 mRNA decreased following hCG treatment in human granulosa and theca cells as well as rat granulosa cells. Regulation of Mmp10 in cultured rat granulosa cells revealed that the EGF inhibitor AG1478 and the progesterone receptor antagonist RU486 suppressed the induction of Mmp10 mRNA, whereas the prostaglandin inhibitor NS398 had no effect. Studies on the Mmp10 promoter demonstrated that forskolin plus PMA stimulated promoter activity, which was dependent upon a proximal AP1 site. In conclusion, there are divergent patterns of stromelysin expression associated with ovulation, with a marked induction of Mmp10 mRNA and a decrease in Mmp11 mRNA, yet a species-dependent pattern on Mmp3 mRNA expression. The induction of Mmp10 expression suggests an important role for this MMP in the follicular changes associated with ovulation and subsequent luteinization.
USDA-ARS?s Scientific Manuscript database
Testosterone deficiency is associated with obesity in humans. It has been proven that long non-coding RNAs (lncRNAs) regulate adipose tissue metabolism; therefore, we first study the role of lncRNAs on testosterone deficiency-induced fat deposition using castrated male pigs as the model animal. The ...
Neethling, William M L; Strange, Geoff; Firth, Laura; Smit, Francis E
2013-10-01
This study evaluated the safety, efficacy and clinical performance of the tissue-engineered ADAPT® bovine pericardial patch (ABPP) in paediatric patients with a range of congenital cardiac anomalies. In this single-centre, prospective, non-randomized clinical study, paediatric patients underwent surgery for insertion of the ABPP. Primary efficacy measures included early (<30 day) morbidity; incidence of device-related complications; haemodynamic performance derived from echocardiography assessment at 6- and 12-month follow-up and magnetic resonance imaging findings in 10 randomly selected patients at 12 months. Secondary measures included device-handling characteristics; shape and sizing characteristics and perioperative implant complications. The Aristotle complexity scoring system was used to score the complexity level of all surgical procedures. Patients completing the 12-month study were eligible to enter a long-term evaluation study. Between April 2008 and September 2009, the ABPP was used in 30 paediatric patients. In the 30-day postoperative period, no graft-related morbidity was observed. In total, there were 5 deaths (2 in the 30-day postoperative period and 3 within the first 6 postoperative months). All deaths were deemed due to comorbid non-graft-related events. Echocardiography assessment at 6 and 12 months revealed intact anatomical and haemodynamically stable repairs without any visible calcification of the patch. Magnetic resonance imaging assessment in 10 patients at 12 months revealed no signs of calcification. Fisher's exact test demonstrated that patients undergoing more complex, higher risk surgical repairs (Aristotle complexity score >8) were significantly more likely to die (P = 0.0055, 58% survival compared with 100% survival for less complex surgical repairs). In 19 patients, echocardiographic data were available at 18-36 months with no evidence of device calcification, infection, thromboembolic events or device failure. This study demonstrates the safety and efficacy of this engineered bovine pericardial patch as a cardiovascular substitute for surgical repair of both simple and more complex congenital cardiac defects.
Handling, storage, and preparation of human tissues.
Dressler, L G; Visscher, D
2001-05-01
Human tissue for flow cytometry must be prepared as an adequate single-cell suspension. The appropriate methods for tissue collection, transport, storage, and dissociation depend on the cell parameters being measured and the localization of the markers. This unit includes a general method for collecting and transporting human tissue and preparing a tissue imprint. Protocols are supplied for tissue disaggregation by either mechanical or enzymatic means and for preparation of single-cell suspensions of whole cells from fine-needle aspirates, pleural effusions, abdominal fluids, or other body fluids. Other protocols detail preparation of intact nuclei from fresh, frozen, or paraffin-embedded tissue. Support protocols cover fixation, cryospin preparation, cryopreservation, and removal of debris.
Shimakura, J; Fujimoto, K; Komuro, S; Nakano, M; Kanamaru, H
2002-05-01
1. The disposition of SM-11355, an anticancer platinum complex for hepatocellular carcinoma, was investigated in dog by measuring platinum (Pt) and radioactivity levels following intrahepatic arterial administration of (14)C-SM-11355 suspended in Lipiodol, an oily lymphographic agent. Plasma and excretion profiles were monitored in six animals, with tissue distribution studied after 1 day, 4 and 13 weeks (n = 2/time point). 2. SM-11355 was released very slowly into the systemic circulation from Lipiodol, resulting in very low levels of Pt compounds in plasma, urine, faeces and organs. Plasma levels of Pt and radioactivity declined with apparent half-lives of 5-7 weeks. Excretion continued even at 3 months after the administration with proportions excreted for Pt and radioactivity up to 30-60% in urine and 8-10% in faeces. 3. The Pt and radioactivity in the liver accounted for 80-100% of the dose at 1 day and for 20-50% at 13 weeks after the administration, predominately as intact SM-11355. The concentrations were highest in the left lobe of the liver, the administration site, but levels in the remainder of the liver were also markedly higher than those in plasma and other tissues. 4. The results strongly support the concept that SM-11355 targets the liver with highly selectivity and sustained release of Pt compounds.
In vivo quantitative analysis of Talin turnover in response to force
Hákonardóttir, Guðlaug Katrín; López-Ceballos, Pablo; Herrera-Reyes, Alejandra Donají; Das, Raibatak; Coombs, Daniel; Tanentzapf, Guy
2015-01-01
Cell adhesion to the extracellular matrix (ECM) allows cells to form and maintain three-dimensional tissue architecture. Cell–ECM adhesions are stabilized upon exposure to mechanical force. In this study, we used quantitative imaging and mathematical modeling to gain mechanistic insight into how integrin-based adhesions respond to increased and decreased mechanical forces. A critical means of regulating integrin-based adhesion is provided by modulating the turnover of integrin and its adhesion complex (integrin adhesion complex [IAC]). The turnover of the IAC component Talin, a known mechanosensor, was analyzed using fluorescence recovery after photobleaching. Experiments were carried out in live, intact flies in genetic backgrounds that increased or decreased the force applied on sites of adhesion. This analysis showed that when force is elevated, the rate of assembly of new adhesions increases such that cell–ECM adhesion is stabilized. Moreover, under conditions of decreased force, the overall rate of turnover, but not the proportion of adhesion complex components undergoing turnover, increases. Using point mutations, we identify the key functional domains of Talin that mediate its response to force. Finally, by fitting a mathematical model to the data, we uncover the mechanisms that mediate the stabilization of ECM-based adhesion during development. PMID:26446844
Xie, Ying; Zhong, Caigao; Zeng, Ming; Guan, Lan; Luo, Lei
2013-01-01
In the present study, we explored reactive axygen species (ROS) production in mitochondria, the mechanism of hexavalent chromium (Cr(VI)) hepatotoxicity, and the role of protection by GSH. Intact mitochondria were isolated from rat liver tissues and mitochondrial basal respiratory rates of NADH and FADH2 respiratory chains were determined. Mitochondria were treated with Cr(VI), GSH and several complex inhibitors. Mitochondria energized by glutamate/malate were separately or jointly treated with Rotenone (Rot), diphenyleneiodonium (DPI) and antimycinA (Ant), while mitochondria energized by succinate were separately or jointly treated with Rot, DPI ' thenoyltrifluoroacetone (TTFA) and Ant. Cr(VI) concentration-dependently induced ROS production in the NADH and FADH2 respiratory chain in liver mitochondria. Basal respiratory rate of the mitochondrial FADH2 respiratory chain was significantly higher than that of NADH respiratory chain. Hepatic mitochondrial electron leakage induced by Cr(VI) from NADH respiratory chain were mainly from ubiquinone binding sites of complex I and complex III. Treatment with 50µM Cr(VI) enhances forward movement of electrons through FADH2 respiratory chain and leaking through the ubiquinone binding site of complex III. Moreover, the protective effect of GSH on liver mitochondria electron leakage is through removing excess H2O2 and reducing total ROS. Copyright © 2013 S. Karger AG, Basel.
Kwiatkowski, M; Wurlitzer, M; Krutilin, A; Kiani, P; Nimer, R; Omidi, M; Mannaa, A; Bussmann, T; Bartkowiak, K; Kruber, S; Uschold, S; Steffen, P; Lübberstedt, J; Küpker, N; Petersen, H; Knecht, R; Hansen, N O; Zarrine-Afsar, A; Robertson, W D; Miller, R J D; Schlüter, H
2016-02-16
Posttranslational modifications and proteolytic processing regulate almost all physiological processes. Dysregulation can potentially result in pathologic protein species causing diseases. Thus, tissue species proteomes of diseased individuals provide diagnostic information. Since the composition of tissue proteomes can rapidly change during tissue homogenization by the action of enzymes released from their compartments, disease specific protein species patterns can vanish. Recently, we described a novel, ultrafast and soft method for cold vaporization of tissue via desorption by impulsive vibrational excitation (DIVE) using a picosecond-infrared-laser (PIRL). Given that DIVE extraction may provide improved access to the original composition of protein species in tissues, we compared the proteome composition of tissue protein homogenates after DIVE homogenization with conventional homogenizations. A higher number of intact protein species was observed in DIVE homogenates. Due to the ultrafast transfer of proteins from tissues via gas phase into frozen condensates of the aerosols, intact protein species were exposed to a lesser extent to enzymatic degradation reactions compared with conventional protein extraction. In addition, total yield of the number of proteins is higher in DIVE homogenates, because they are very homogenous and contain almost no insoluble particles, allowing direct analysis with subsequent analytical methods without the necessity of centrifugation. Enzymatic protein modifications during tissue homogenization are responsible for changes of the in-vivo protein species composition. Cold vaporization of tissues by PIRL-DIVE is comparable with taking a snapshot at the time of the laser irradiation of the dynamic changes that occur continuously under in-vivo conditions. At that time point all biomolecules are transferred into an aerosol, which is immediately frozen. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Kwiatkowski, M.; Wurlitzer, M.; Krutilin, A.; Kiani, P.; Nimer, R.; Omidi, M.; Mannaa, A.; Bussmann, T.; Bartkowiak, K.; Kruber, S.; Uschold, S.; Steffen, P.; Lübberstedt, J.; Küpker, N.; Petersen, H.; Knecht, R.; Hansen, N.O.; Zarrine-Afsar, A.; Robertson, W.D.; Miller, R.J.D.; Schlüter, H.
2016-01-01
Posttranslational modifications and proteolytic processing regulate almost all physiological processes. Dysregulation can potentially result in pathologic protein species causing diseases. Thus, tissue species proteomes of diseased individuals provide diagnostic information. Since the composition of tissue proteomes can rapidly change during tissue homogenization by the action of enzymes released from their compartments, disease specific protein species patterns can vanish. Recently, we described a novel, ultrafast and soft method for cold vaporization of tissue via desorption by impulsive vibrational excitation (DIVE) using a picosecond-infrared-laser (PIRL). Given that DIVE extraction may provide improved access to the original composition of protein species in tissues, we compared the proteome composition of tissue protein homogenates after DIVE homogenization with conventional homogenizations. A higher number of intact protein species was observed in DIVE homogenates. Due to the ultrafast transfer of proteins from tissues via gas phase into frozen condensates of the aerosols, intact protein species were exposed to a lesser extent to enzymatic degradation reactions compared with conventional protein extraction. In addition, total yield of the number of proteins is higher in DIVE homogenates, because they are very homogenous and contain almost no insoluble particles, allowing direct analysis with subsequent analytical methods without the necessity of centrifugation. Biological significance Enzymatic protein modifications during tissue homogenization are responsible for changes of the in-vivo protein species composition. Cold vaporization of tissues by PIRL-DIVE is comparable with taking a snapshot at the time of the laser irradiation of the dynamic changes that occur continuously under in-vivo conditions. At that time point all biomolecules are transferred into an aerosol, which is immediately frozen. PMID:26778141
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choudhury, Sanjukta; Thomas, Jith; Sylvain, Nicole J.
Maternal transfer of elevated selenium (Se) to offspring is an important route of Se exposure for fish in the natural environment. However, there is a lack of information on the tissue specific spatial distribution and speciation of Se in the early developmental stages of fish, which provide important information about Se toxicokinetics. The effect of maternal transfer of Se was studied by feeding adult zebrafish a Se-elevated or a control diet followed by collection of larvae from both groups. Novel confocal synchrotron-based techniques were used to investigate Se within intact preserved larvae. Confocal X-ray fluorescence imaging was used to comparemore » Se distributions within specific planes of an intact larva from each of the two groups. The elevated Se treatment showed substantially higher Se levels than the control; Se preferentially accumulated to highest levels in the eye lens, with lower levels in the retina, yolk and other tissues. Confocal X-ray absorption spectroscopy was used to determine that the speciation of Se within the eye lens of the intact larva was a selenomethionine-like species. Preferential accumulation of Se in the eye lens may suggest a direct cause-and-effect relationship between exposure to elevated Se and Se-induced ocular impairments reported previously. This study illustrates the effectiveness of confocal X-ray fluorescence methods for investigating trace element distribution and speciation in intact biological specimens« less
Potential clinical applications of photoacoustics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosencwaig, A.
1982-09-01
Photoacoustic spectroscopy offers the opportunity for extending the exact science of noninvasive spectral analysis to intact medical substances such as tissues. Thermal-wave imaging offers the potential for microscopic imaging of thermal features in biological matter.
Fast widefield techniques for fluorescence and phase endomicroscopy
NASA Astrophysics Data System (ADS)
Ford, Tim N.
Endomicroscopy is a recent development in biomedical optics which gives researchers and physicians microscope-resolution views of intact tissue to complement macroscopic visualization during endoscopy screening. This thesis presents HiLo endomicroscopy and oblique back-illumination endomicroscopy, fast wide-field imaging techniques with fluorescence and phase contrast, respectively. Fluorescence imaging in thick tissue is often hampered by strong out-of-focus background signal. Laser scanning confocal endomicroscopy has been developed for optically-sectioned imaging free from background, but reliance on mechanical scanning fundamentally limits the frame rate and represents significant complexity and expense. HiLo is a fast, simple, widefield fluorescence imaging technique which rejects out-of-focus background signal without the need for scanning. It works by acquiring two images of the sample under uniform and structured illumination and synthesizing an optically sectioned result with real-time image processing. Oblique back-illumination microscopy (OBM) is a label-free technique which allows, for the first time, phase gradient imaging of sub-surface morphology in thick scattering tissue with a reflection geometry. OBM works by back-illuminating the sample with the oblique diffuse reflectance from light delivered via off-axis optical fibers. The use of two diametrically opposed illumination fibers allows simultaneous and independent measurement of phase gradients and absorption contrast. Video-rate single-exposure operation using wavelength multiplexing is demonstrated.
Single-stage soft tissue reconstruction and orbital fracture repair for complex facial injuries.
Wu, Peng Sen; Matoo, Reshvin; Sun, Hong; Song, Li Yuan; Kikkawa, Don O; Lu, Wei
2017-02-01
Orbital fractures with open periorbital wounds cause significant morbidity. Timing of debridement with fracture repair and soft tissue reconstruction is controversial. This study focuses on the efficacy of early single-stage repair in combined bony and soft tissue injuries. Retrospective review. Twenty-three patients with combined open soft tissue wounds and orbital fractures were studied for single-stage orbital reconstruction and periorbital soft tissue repair. Inclusion criteria were open soft tissue wounds with clinical and radiographic evidence of orbital fractures and repair performed within 48 h after injury. Surgical complications and reconstructive outcomes were assessed over 6 months. The main outcome measures were enophthalmos, pre- and post-CT imaging of orbits, scar evaluation, presence of diplopia, and eyelid position. Enophthalmos was corrected in 16/19 cases and improved in 3/19 cases. 3D reconstruction of CT images showed markedly improved orbital alignment with objective measurements of the optic foramen to cornea distance (mm) in reconstructed orbits relative to intact orbits of 0.66, 95% confidence interval [CI] (lower 0.33, upper 0.99) mm. The mean baseline of Stony Brook Scar Evaluation Scale was 0.6, 95%CI (0.30-0.92), and for 6 months, the mean score was 3.4, 95%CI (3.05-3.73). Residual diplopia in secondary gazes was present in two patients; one patient had ectropion. Complications included one case of local wound infection. An early single-stage repair of combined soft tissue and orbital fractures yields satisfactory functional and aesthetic outcomes. Complications are low and likely related to trauma severity. Copyright © 2016 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
Wedemeyer, N V; Bickhard, M H; Cooper, R G
1989-12-01
Twenty-eight boys and 28 girls at each of the Piagetian preoperational, concrete operational, and formal operational cognitive stages were given an interview focusing on their concepts of family. Half of each group were from intact families, and half were from divorced families. Interviews were scored for two structural aspects of the concept of family: conceptual level, and use of dimensions that structure the concept. The complexity of children's concepts was strongly related to cognitive stage and, to a lesser degree, to sex. Frequency of use of concept dimensions was strongly affected by general developmental level, though not specifically cognitive stage, and by intactness of family, but to a lesser degree by sex. Specific information is provided on the effect of these factors on perceptions of family composition, parental roles, and breadth of family activities.
Histological image data of limb skeletal tissue from larval and adult Ambystoma mexicanum.
McCusker, Catherine D; Diaz-Castillo, Carlos; Sosnik, Julian; Phan, Anne; Gardiner, David M
2016-09-01
The data presented in this article are related to the article entitled "Cartilage and bone cells do not participate in skeletal regeneration in Ambystoma mexicanum limbs" [1]. Here we present image data of the post-embryonic development of the forelimb skeletal tissue of Ambystoma Mexicanum. Histological staining was performed on sections from the intact limbs of young (6.5 cm) and old (25 cm) animals, and on dissected skeletal tissues (cartilage, bone, and periosteum) from these animals.
The role of cryopreservation for women prior to treatment of malignancy.
Donnez, Jacques; Dolmans, Marie-Madeleine; Martinez-Madrid, Belen; Demylle, Dominique; Van Langendonckt, Anne
2005-08-01
The purpose of this review is to investigate recent advances in xenografting, as well as in orthotopic and heterotopic autotransplantation of human cryopreserved ovarian tissue. The first livebirth after orthotopic transplantation of cryopreserved ovarian tissue was reported recently. We discuss this case and other cases of reimplantation of cryopreserved ovarian tissue, bearing in mind that many questions remain. Finally, we report the latest developments in research on the transplantation of an intact ovary and the reimplantation of isolated follicles.
Wound repair in Montipora capitata
Work, Thierry M.; Aeby, Greta S.
2010-01-01
We documented the microscopic morphology of tissue healing in Montipora capitata. Fragments from two healthy coral colonies were traumatized by scraping tissue and skeleton and monitored in flow-through seawater tables every 2-4. days for 40. days for gross and cellular changes. Grossly, corals appeared healed and repigmented by Day 40. Histologically, traumatized issues were undistinguishable from intact untraumatized tissues by Day 12. We suspect that the calicoblastic epidermis of basal body wall is pluripotential and can develop into surface epidermis when needed. ?? 2010.
Afara, I O; Singh, S; Oloyede, A
2013-04-01
The conventional mechanical properties of articular cartilage, such as compressive stiffness, have been demonstrated to be limited in their capacity to distinguish intact (visually normal) from degraded cartilage samples. In this paper, we explore the correlation between a new mechanical parameter, namely the reswelling of articular cartilage following unloading from a given compressive load, and the near infrared (NIR) spectrum. The capacity to distinguish mechanically intact from proteoglycan-depleted tissue relative to the "reswelling" characteristic was first established, and the result was subsequently correlated with the NIR spectral data of the respective tissue samples. To achieve this, normal intact and enzymatically degraded samples were subjected to both NIR probing and mechanical compression based on a load-unload-reswelling protocol. The parameter δr, characteristic of the osmotic "reswelling" of the matrix after unloading to a constant small load in the order of the osmotic pressure of cartilage, was obtained for the different sample types. Multivariate statistics was employed to determine the degree of correlation between δr and the NIR absorption spectrum of relevant specimens using Partial Least Squared (PLS) regression. The results show a strong relationship (R(2)=95.89%, p<0.0001) between the spectral data and δr. This correlation of δr with NIR spectral data suggests the potential for determining the reswelling characteristics non-destructively. It was also observed that δr values bear a significant relationship with the cartilage matrix integrity, indicated by its proteoglycan content, and can therefore differentiate between normal and artificially degraded proteoglycan-depleted cartilage samples. It is therefore argued that the reswelling of cartilage, which is both biochemical (osmotic) and mechanical (hydrostatic pressure) in origin, could be a strong candidate for characterizing the tissue, especially in regions surrounding focal cartilage defects in joints. Copyright © 2012 Elsevier Ltd. All rights reserved.
Vascellari, Marta; Capello, Katia; Carminato, Antonio; Zanardello, Claudia; Baioni, Elisa; Mutinelli, Franco
2016-04-01
Although mammary gland tumors (MT) are the most-common type of tumor in intact female dogs, there is little information about their incidence in dog population. Data on MT in female dogs was retrieved from the Animal Tumor registry of dogs and cats of Venice and Vicenza provinces during 2005-2013 and was analyzed to visualize crude incidence rates by breed and across age categories. Overall, 2744 mammary tumors were reported accounting for 54% of all tumors in female dogs. The annual incidence rate (IR) was 250 cases per 100,000 dogs. The most frequent malignant tumors were complex carcinomas, consisting of both epithelial and myoepithelial tissues (IR=71.89), and simple carcinomas (IR=62.59). The MT incidence rate increased through the study period; particularly in the last 4 years, and malignant neoplasms occurred more frequently (70%) than the benign counterparts (30%). Seventy-four percent of tumors were diagnosed in intact females, and the mean age at diagnosis was significantly higher for spayed dogs than for intact ones. MT were less frequent in dogs younger than 6 years and increased up to approximately 60% for ages between 8 and 13 years. The purebred dogs had a higher probability to have a malignant neoplasm than mixed-breed dogs, particularly in dogs younger than 7 years, and the Samoyed, Dobermann, Schnauzer and Yorkshire Terrier breeds were more inclined to develop malignant MT. The incidence of MT in dogs is increasing, and IRs are comparable to that in women. The epidemiological similarities between dogs and women support the validity of canine MT as a model for human breast cancer. Copyright © 2016 Elsevier B.V. All rights reserved.
Brunmair, Barbara; Staniek, Katrin; Lehner, Zsuzsanna; Dey, Debendranath; Bolten, Charles W; Stadlbauer, Karin; Luger, Anton; Fürnsinn, Clemens
2011-06-01
The pharmacology of thiazolidinediones (TZDs) seems to be driven not only by activation of peroxisome proliferator-activated receptor-γ (PPARγ), but also by PPARγ-independent effects on mitochondrial function and cellular fuel handling. This study portrayed such actions of the novel hydrophilic TZD compound BLX-1002 and compared them to those of conventional TZDs. Mitochondrial function and fuel handling were examined in disrupted rat muscle mitochondria, intact rat liver mitochondria, and specimens of rat skeletal muscle. BLX-1002 was superior to most other TZDs as an inhibitor of respiratory complex 1 in disrupted mitochondria, but had less effect than any other TZD on oxygen consumption by intact mitochondria and on fuel metabolism by intact tissue. The latter finding was obviously related to the hydrophilic properties of BLX-1002, because high potentials of individual TZDs to shift muscle fuel metabolism from the aerobic into the anaerobic pathway were associated with high ClogP values indicative of high lipophilicity and low hydrophilicity (e.g., % increase in lactate release induced by 10 μmol/l of respective compound: BLX-1002, ClogP 0.39, +10 ± 8%, not significant; pioglitazone, ClogP 3.53, +68 ± 12%, P < 0.001; troglitazone, ClogP 5.58, +157 ± 14%, P < 0.001). The observed specific properties of BLX-1002 could result from relatively strong direct affinity to an unknown mitochondrial target, but limited access to this target. Results suggest 1) that impairment of mitochondrial function and increased anaerobic fuel metabolism are unlikely to account for PPARγ-independent glucose lowering by BLX-1002, and 2) that higher lipophilicity of an individual TZD is associated with stronger acceleration of anaerobic glycolysis.
Ex-vivo imaging of excised tissue using vital dyes and confocal microscopy
Johnson, Simon; Rabinovitch, Peter
2012-01-01
Vital dyes routinely used for staining cultured cells can also be used to stain and image live tissue slices ex-vivo. Staining tissue with vital dyes allows researchers to collect structural and functional data simultaneously and can be used for qualitative or quantitative fluorescent image collection. The protocols presented here are useful for structural and functional analysis of viable properties of cells in intact tissue slices, allowing for the collection of data in a structurally relevant environment. With these protocols, vital dyes can be applied as a research tool to disease processes and properties of tissue not amenable to cell culture based studies. PMID:22752953
Plant uptake of pentachlorophenol from sludge-amended soils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bellin, C.A.; O'Connor, G.A.
A greenhouse study was conducted to determine the effects of sludge on plant uptake of {sup 14}C-pentachlorophenol (PCP). Plants included tall fescue (Festuca arundinacea Schreb.), lettuce (Latuca sativa L.), carrot (Daucus carota L.), and chile pepper (Capsicum annum L.). Minimal intact PCP was detected in the fescue and lettuce by gas chromatography/mass spectrometry (GC/MS) analysis. No intact PCP was detected in the carrot tissue extracts. Chile pepper was not analyzed for intact PCP because methylene chloride extracts contained minimal {sup 14}C. The GC/MS analysis of soil extracts at harvest suggests a half-life of PCP of about 10 d independent ofmore » sludge rate or PCP loading rate. Rapid degradation of PCP in the soil apparently limited PCP availability to the plant. Bioconcentration factors (dry plant wt./initial soil PCP concentration) based on intact PCP were <0.01 for all crops, suggesting little PCP uptake. Thus, food-chain crop PCP uptake in these alkaline soils should not limit land application of sludge.« less
Plant uptake of pentachlorophenol from sludge-amended soils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bellin, C.A.; O'Connor, G.A.
A greenhouse study was conducted to determine the effects of sludge on plant uptake of {sup 14}C-pentachlorophenol (PCP). Plants included tall fescue (Festuca arundinacea Schreb.), lettuce (Latuca sativa L.), carrot (Daucus carota L.), and chile pepper (Capsicum annum L.). Minimal intact PCP was detected in the fescue and lettuce by gas chromatography/mass spectrometry (GC/MS) analysis. No intact PCP was detected in the carrot tissue extracts. Chile pepper was not analyzed for intact PCP because methylene chloride extracts contained minimal {sup 14}C. The GC/MS analysis of soil extracts at harvest suggests a half-life of PCP of about 10 d independent ofmore » sludge rate or PCP loading rate. Rapid degradation of PCP in the soil apparently limited PCP availability to the plant. Bioconcentration factors (dry plant wt./initial soil PCP concentration) based on intact PCP were < 0.01 for all crops, suggesting little PCP uptake. Thus, food-chain crop PCP uptake in these alkaline soils should not limit land application of sludge.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polf, J; Chung, H; Langen, K
Purpose: To validate the stoichiometric calibration of the Hounsfield Unit (HU) to Stopping Power Ratio (SPR) calibration used to commission a commercial treatment planning system (TPS) for proton radiotherapy dose calculation. Methods and Materials: The water equivalent thickness (WET) of several individual pig tissues (lung, fat, muscle, liver, intestine, rib, femur), mixed tissue samples (muscle/rib, ice/femur, rib/air cavity/muscle), and an intact pig head were measured with a multi-layer ionization chamber (MLIC). A CT scan of each sample was obtained and imported into a commercial TPS. The WET calculated by the TPS for each tissue sample was compared to the measuredmore » WET value to determine the accuracy of the HU-to-SPR calibration curve used by the TPS to calculate dose. Results: The WET values calculated by the TPS showed good agreement (< 2.0%) with the measured values for bone and all soft tissues except fat (3.1% difference). For the mixed tissue samples and the intact pig head measurements, the difference in the TPS and measured WET values all agreed to within 3.5%. In addition, SPR values were calculated from the measured WET of each tissue, and compared to SPR values of reference tissues from ICRU 46 used to generate the HU-to-SPR calibration for the TPS. Conclusion: For clinical scenarios where the beam passes through multiple tissue types and its path is dominated by soft tissues, we believe using an uncertainty of 3.5% of the planned beam range is acceptable to account for uncertainties in the TPS WET determination.« less
Biomechanical analyses of whiplash injuries using an experimental model.
Yoganandan, Narayan; Pintar, Frank A; Cusick, Joseph F
2002-09-01
Neck pain and headaches are the two most common symptoms of whiplash. The working hypothesis is that pain originates from excessive motions in the upper and lower cervical segments. The research design used an intact human cadaver head-neck complex as an experimental model. The intact head-neck preparation was fixed at the thoracic end with the head unconstrained. Retroreflective targets were placed on the mastoid process, anterior regions of the vertebral bodies, and lateral masses at every spinal level. Whiplash loading was delivered using a mini-sled pendulum device. A six-axis load cell and an accelerometer were attached to the inferior fixation of the specimen. High-speed video cameras were used to obtain the kinematics. During the initial stages of loading, a transient decoupling of the head occurs with respect to the neck exhibiting a lag of the cranium. The upper cervical spine-head undergoes local flexion concomitant with a lag of the head while the lower column is in local extension. This establishes a reverse curvature to the head-neck complex. With continuing application of whiplash loading, the inertia of the head catches up with the neck. Later, the entire head-neck complex is under an extension mode with a single extension curvature. The lower cervical facet joint kinematics demonstrates varying local compression and sliding. While the anterior- and posterior-most regions of the facet joint slide, the posterior-most region of the joint compresses more than the anterior-most region. These varying kinematics at the two ends of the facet joint result in a pinching mechanism. Excessive flexion of the posterior upper cervical regions can be correlated to headaches. The pinching mechanism of the facet joints can be correlated to neck pain. The kinematics of the soft tissue-related structures explain the mechanism of these common whiplash associated disorders.
Interaction of intraluminal tissue and coronary sinus lead stabilized with stent placement.
Balázs, Tibor; Merkely, Béla; Bognár, Eszter; Zima, Endre
2013-04-01
The aim of our investigation was to examine the intraluminal interaction of the vascular tissue and the implanted coronary sinus lead stabilized with stent on two human hearts removed before transplantation. The coronary sinus lumen was sectioned under operational microscope and opened carefully. The leads and stents were found separately positioned beside each other completely covered by an intact intimal tissue layer. No sign of occluding proliferative tissue was observed. Stent fixation technique and extraction of the CS lead in our cases did not have any particular damaging effect on the vascular system. © 2012 Wiley Periodicals, Inc.
The bovine patella as a model of early osteoarthritis.
Hargrave-Thomas, E J; Thambyah, A; McGlashan, S R; Broom, N D
2013-12-01
The bovine patella model has been used extensively for studying important structure-function aspects of articular cartilage, including its degeneration. However, the degeneration seen in this model has, to our knowledge, never been adequately compared with human osteoarthritis (OA). In this study, bovine patellae displaying normal to severely degenerate states were compared with human tissue displaying intact cartilage to severe OA. Comparisons of normal and OA features were made with histological scoring, morphometric measurements, and qualitative observations. Differential interference contrast microscopy was used to image early OA changes in the articular cartilage matrix and to investigate whether this method provided comparable quality of visualisation of key structural features with standard histology. The intact bovine cartilage was found to be similar to healthy human cartilage and the degenerate bovine cartilage resembled the human OA tissues with regard to structural disruption, cellularity changes, and staining loss. The extent of degeneration in the bovine tissues matched the mild to moderate range of human OA tissues; however, no bovine samples exhibited late-stage OA. Additionally, in both bovine and human tissues, cartilage degeneration was accompanied by calcified cartilage thickening, tidemark duplication, and the advancement of the cement line by protrusions of bony spicules into the calcified cartilage. This comparison of degeneration in the bovine and human tissues suggests a common pathway for the progression of OA and thus the bovine patella is proposed to be an appropriate model for investigating the structural changes associated with early OA. © 2013 Anatomical Society.
Transconjunctival penetration of mitomycin C
Velpandian, T; Sihota, Ramanjit; Gupta, Viney
2008-01-01
Aims: The study was performed to estimate transconjunctival penetration of mitomycin C (MMC) to Tenon′s tissue following application over the intact conjunctiva before routine trabeculectomy. Settings and Design: Institution-based case series. Materials and Methods: In 41 eyes of 41 patients, MMC (0.4 mg/ml for 3 min) was applied over the intact conjunctiva before beginning trabeculectomy. Tenon′s capsule directly beneath the site of application was excised during trabeculectomy and was homogenized, centrifuged and MMC concentrations were analyzed using high-performance liquid chromatography (HPLC). Statistical Analysis Used: Statistical analysis was performed using stata0 8.0 version software (STATA Corporation, Houston, TX, USA). In this study, P -values less than 0.05 were considered as statistically significant. Results: The average weight of the sample of Tenon′s tissue excised was 5.51 ± 4.42 mg (range: 0.9-17.1) and the average estimated MMC concentration found to be present in Tenon′s tissue using HPLC was 18.67 ± 32.36 × 10−6 moles/kg of the tissue (range: 0.38-197.05 x 10−6 ). In 36 of the 41 patients (87.80%), the MMC concentration reached above 2 x 10−6 moles/kg of the tissue concentration required to inhibit human conjunctival fibroblasts. Conclusions: Mitomycin C does permeate into the subconjunctival tissue after supraconjunctival application for 3 min. Application of MMC over the conjunctiva may be a useful alternative to subconjunctival or subscleral application during routine trabeculectomy and as an adjunct for failing blebs. PMID:18417819
The bovine patella as a model of early osteoarthritis
Hargrave-Thomas, E J; Thambyah, A; McGlashan, S R; Broom, N D
2013-01-01
The bovine patella model has been used extensively for studying important structure–function aspects of articular cartilage, including its degeneration. However, the degeneration seen in this model has, to our knowledge, never been adequately compared with human osteoarthritis (OA). In this study, bovine patellae displaying normal to severely degenerate states were compared with human tissue displaying intact cartilage to severe OA. Comparisons of normal and OA features were made with histological scoring, morphometric measurements, and qualitative observations. Differential interference contrast microscopy was used to image early OA changes in the articular cartilage matrix and to investigate whether this method provided comparable quality of visualisation of key structural features with standard histology. The intact bovine cartilage was found to be similar to healthy human cartilage and the degenerate bovine cartilage resembled the human OA tissues with regard to structural disruption, cellularity changes, and staining loss. The extent of degeneration in the bovine tissues matched the mild to moderate range of human OA tissues; however, no bovine samples exhibited late-stage OA. Additionally, in both bovine and human tissues, cartilage degeneration was accompanied by calcified cartilage thickening, tidemark duplication, and the advancement of the cement line by protrusions of bony spicules into the calcified cartilage. This comparison of degeneration in the bovine and human tissues suggests a common pathway for the progression of OA and thus the bovine patella is proposed to be an appropriate model for investigating the structural changes associated with early OA. PMID:24111904
Gorselink, M; Drost, M R; de Louw, J; Willems, P J; Hesselink, M K; Dekkers, E C; Rosielle, N; van der Vusse, G J
2001-05-01
The availability of animal models with disrupted genes has increased the need for small-scale measurement devices. Recently, we developed an experimental device to assess in situ mechanical properties of isometric contractions of intact muscle complexes of the mouse. Although this apparatus provides valuable information on muscle mechanical performance, it is not appropriate for determining contractile properties during shortening and lengthening contractions. In the present study we therefore developed and evaluated an experimental apparatus for assessment of shortening and lengthening contractile properties of intact plantar and dorsal flexors of the mouse. The current through a custom-built, low-inertia servomotor was measured to assess contractile muscular torque ranging from -50 to mN.m. Evaluation of the fixation procedure of the animal to the apparatus via 3-D monitoring of the muscle-tendon complex length showed that the additional shortening in length due to a contraction with maximal torque output has only minor effects on the measured torque. Furthermore, misalignment of the axis of rotation of the apparatus relative to the axis of rotation in the ankle joint, i.e. eccentricity, during a routine experiment was estimated to be less than 1.0 mm and hence did not influence the measured torque output under our experimental conditions. Peak power per unit muscle mass (mean +/- SD) of intact dorsal and plantar flexors was 0.27 +/- 0.02 and 0.19 +/- 0.03 W.g-1, respectively. The angular velocity at maximal peak power generated by the dorsal flexor complex and the plantar flexor complex was 1100 +/- 190 and 700 +/- 90 degrees.s-1, respectively.
McCullough, D P; Gudla, P R; Harris, B S; Collins, J A; Meaburn, K J; Nakaya, M A; Yamaguchi, T P; Misteli, T; Lockett, S J
2008-05-01
Communications between cells in large part drive tissue development and function, as well as disease-related processes such as tumorigenesis. Understanding the mechanistic bases of these processes necessitates quantifying specific molecules in adjacent cells or cell nuclei of intact tissue. However, a major restriction on such analyses is the lack of an efficient method that correctly segments each object (cell or nucleus) from 3-D images of an intact tissue specimen. We report a highly reliable and accurate semi-automatic algorithmic method for segmenting fluorescence-labeled cells or nuclei from 3-D tissue images. Segmentation begins with semi-automatic, 2-D object delineation in a user-selected plane, using dynamic programming (DP) to locate the border with an accumulated intensity per unit length greater that any other possible border around the same object. Then the two surfaces of the object in planes above and below the selected plane are found using an algorithm that combines DP and combinatorial searching. Following segmentation, any perceived errors can be interactively corrected. Segmentation accuracy is not significantly affected by intermittent labeling of object surfaces, diffuse surfaces, or spurious signals away from surfaces. The unique strength of the segmentation method was demonstrated on a variety of biological tissue samples where all cells, including irregularly shaped cells, were accurately segmented based on visual inspection.
NASA Astrophysics Data System (ADS)
Vlakh, E. G.; Grachova, E. V.; Zhukovsky, D. D.; Hubina, A. V.; Mikhailova, A. S.; Shakirova, J. R.; Sharoyko, V. V.; Tunik, S. P.; Tennikova, T. B.
2017-02-01
The growing attention to the luminescent nanocarriers is strongly stimulated by their potential application as drug delivery systems and by the necessity to monitor their distribution in cells and tissues. In this communication we report on the synthesis of amphiphilic polypeptides bearing C-terminal phosphorescent label together with preparation of nanoparticles using the polypeptides obtained. The approach suggested is based on a unique and highly technological process where the new phosphorescent Pt-cysteine complex serves as initiator of the ring-opening polymerization of α-amino acid N-carboxyanhydrides to obtain the polypeptides bearing intact the platinum chromophore covalently bound to the polymer chain. It was established that the luminescent label retains unchanged its emission characteristics not only in the polypeptides but also in more complicated nanoaggregates such as the polymer derived amphiphilic block-copolymers and self-assembled nanoparticles. The phosphorescent nanoparticles display no cytotoxicity and hemolytic activity in the tested range of concentrations and easily internalize into living cells that makes possible in vivo cell visualization, including prospective application in time resolved imaging and drug delivery monitoring.
XPS and XANES studies of biomimetic composites based on B-type nano-hydroxyapatite
NASA Astrophysics Data System (ADS)
Goloshchapov, D. L.; Gushchin, M. S.; Kashkarov, V. M.; Seredin, P. V.; Ippolitov, Y. A.; Khmelevsky, N. O.; Aksenenko, A. Yu.
2018-06-01
The paper presents an investigation of the local atomic structure of nanocrystalline carbonate-substituted hydroxyapatite (CHAP) contained in biomimetic composites - analogues of intact human tooth tissues. Using the XPS technique, the presence of impurity Mg and F atoms and structurally bound carbon in CHAP, at the concentrations typical of apatite enamel and dentine was determined. The XANES method was used to study the changes occurring in P L2,3 spectra of biocomposites with CHAP, depending on the percentage of the amino acid matrix. The appearance of maxima in the spectra of XANES P L2,3 near 135.7 eV for the samples with the composition of amino acid complex/hydroxyapatite - 5/95, 25/75 and the splitting of a broad peak of 146.9 eV in the spectrum of a biocomposite with a composition of 40/60 indicates at the interaction of molecular complex of amino acids with atomic environment of phosphorus. This fact can be used in the fundamental medicine for synthesizing of new biomaterials in dentistry.
Fokidis, H Bobby; Yieng Chin, Mei; Ho, Victor W; Adomat, Hans H; Soma, Kiran K; Fazli, Ladan; Nip, Ka Mun; Cox, Michael; Krystal, Gerald; Zoubeidi, Amina; Tomlinson Guns, Emma S
2015-06-01
Dietary factors continue to preside as dominant influences in prostate cancer prevalence and progression-free survival following primary treatment. We investigated the influence of a low carbohydrate diet, compared to a typical Western diet, on prostate cancer (PCa) tumor growth in vivo. LNCaP xenograft tumor growth was studied in both intact and castrated mice, representing a more advanced castration resistant PCa (CRPC). No differences in LNCaP tumor progression (total tumor volume) with diet was observed for intact mice (P = 0.471) however, castrated mice on the Low Carb diet saw a statistically significant reduction in tumor growth rate compared with Western diet fed mice (P = 0.017). No correlation with serum PSA was observed. Steroid profiles, alongside serum cholesterol and cholesteryl ester levels, were significantly altered by both diet and castration. Specifically, DHT concentration with the Low Carb diet was 58% that of the CRPC-bearing mice on the Western diet. Enzymes in the steroidogenesis pathway were directly impacted and tumors isolated from intact mice on the Low Carb diet had higher AKR1C3 protein levels and lower HSD17B2 protein levels than intact mice on the Western diet (ARK1C3: P = 0.074; HSD17B2: P = 0.091, with α = 0.1). In contrast, CRPC tumors from mice on Low Carb diets had higher concentrations of both HSD17B2 (P = 0.016) and SRD5A1 (P = 0.058 with α = 0.1) enzymes. There was no correlation between tumor growth in castrated mice for Low Carb diet versus Western diet and (a) serum insulin (b) GH serum levels (c) insulin receptor (IR) or (d) IGF-1R in tumor tissue. Intact mice fed Western diet had higher serum insulin which was associated with significantly higher blood glucose and tumor tissue IR. We conclude that both diet and castration have a significant impact on the endocrinology of mice bearing LNCaP xenograft tumors. The observed effects of diet on cholesterol and steroid regulation impact tumor tissue DHT specifically and are likely to be mechanistic drivers behind the observed tumor growth suppression. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cell counting in whole mount tissue volumes using expansion OCT (Conference Presentation)
NASA Astrophysics Data System (ADS)
Liu, Yehe; Gu, Shi; Watanabe, Michiko; Rollins, Andrew M.; Jenkins, Michael W.
2017-02-01
Abnormal cell proliferation and migration during heart development can lead to severe congenital heart defects (CHDs). Studying the spatial distribution of cells during embryonic development helps our understanding of how the heart develops and the etiology of certain CHDs. However, imaging large groups of single cells in intact tissue volumes is challenging. No current technique can accomplish this task in both a time-efficient and cost-effective manner. OCT has potential with its large field of view and micron-scale resolution, but even the highest resolution OCT systems have poor contrast for counting cells and have a small field of view compared to conventional OCT. We propose using a conventional OCT system and processing the sample to enhance cellular contrast. Inspired by the recently developed Expansion Microscopy, we permeated whole-mount embryonic tissue with a superabsorbent monomer solution and polymerized into a hydrogel. When hydrated in DI water, the tissue-hydrogel complex was uniformly enlarged ( 5X in all dimensions) without distorting the microscopic structure. This had a twofold effect: it increased the resolution by a factor of 5 and decreased scattering, which allowed us to resolve cellular level features deep in the tissue with high contrast using conventional OCT. We noted that cell nuclei caused significantly more backscattering than the other subcellular structures after expansion. Based on this property, we were able to distinguish individual cell nuclei, and thus count cells, in expanded OCT images with simple intensity thresholding. We demonstrate the technique with embryonic quail hearts at various developmental stages.
Della Torre, Sara; Biserni, Andrea; Rando, Gianpaolo; Monteleone, Giuseppina; Ciana, Paolo; Komm, Barry
2011-01-01
By the use of in vivo imaging, we investigated the dynamics of estrogen receptor (ER) activity in intact, ovariectomized, and hormone-replaced estrogen response element-luciferase reporter mice. The study revealed the existence of a long-paced, noncircadian oscillation of ER transcriptional activity. Among the ER-expressing organs, this oscillation was asynchronous and its amplitude and period were tissue dependent. Ovariectomy affected the amplitude but did not suppress ER oscillations, suggesting the presence of tissue endogenous oscillators. Long-term administration of raloxifene, bazedoxifene, combined estrogens alone or with basedoxifene to ovariectomized estrogen response element-luciferase mice showed that each treatment induced a distinct spatiotemporal profile of ER activity, demonstrating that the phasing of ER activity among tissues may be regulated by the chemical nature and the concentration of circulating estrogen. This points to the possibility of a hierarchical organization of the tissue-specific pacemakers. Conceivably, the rhythm of ER transcriptional activity translates locally into the activation of specific gene networks enabling ER to significantly change its physiological activity according to circulating estrogens. In reproductive and nonreproductive organs this hierarchical regulation may provide ER with the signaling plasticity necessary to drive the complex metabolic changes occurring at each female reproductive status. We propose that the tissue-specific oscillatory activity here described is an important component of ER signaling necessary for the full hormone action including the beneficial effects reported for nonreproductive organs. Thus, this mechanism needs to be taken in due consideration to develop novel, more efficacious, and safer hormone replacement therapies. PMID:21505049
Lees, Robert M; Peddie, Christopher J; Collinson, Lucy M; Ashby, Michael C; Verkade, Paul
2017-01-01
Linking cellular structure and function has always been a key goal of microscopy, but obtaining high resolution spatial and temporal information from the same specimen is a fundamental challenge. Two-photon (2P) microscopy allows imaging deep inside intact tissue, bringing great insight into the structural and functional dynamics of cells in their physiological environment. At the nanoscale, the complex ultrastructure of a cell's environment in tissue can be reconstructed in three dimensions (3D) using serial block face scanning electron microscopy (SBF-SEM). This provides a snapshot of high resolution structural information pertaining to the shape, organization, and localization of multiple subcellular structures at the same time. The pairing of these two imaging modalities in the same specimen provides key information to relate cellular dynamics to the ultrastructural environment. Until recently, approaches to relocate a region of interest (ROI) in tissue from 2P microscopy for SBF-SEM have been inefficient or unreliable. However, near-infrared branding (NIRB) overcomes this by using the laser from a multiphoton microscope to create fiducial markers for accurate correlation of 2P and electron microscopy (EM) imaging volumes. The process is quick and can be user defined for each sample. Here, to increase the efficiency of ROI relocation, multiple NIRB marks are used in 3D to target ultramicrotomy. A workflow is described and discussed to obtain a data set for 3D correlated light and electron microscopy, using three different preparations of brain tissue as examples. Copyright © 2017 Elsevier Inc. All rights reserved.
Middleton, A M; Chadwick, M V; Nicholson, A G; Dewar, A; Groger, R K; Brown, E J; Wilson, R
2000-10-01
Mycobacterium avium complex (MAC) are opportunistic respiratory pathogens that infect non-immunocompromised patients with established lung disease, although they can also cause primary infections. The ability to bind fibronectin is conserved among many mycobacterial species. We have investigated the adherence of a sputum isolate of MAC to the mucosa of organ cultures constructed with human tissue and the contribution of M. avium fibronectin attachment protein (FAP) to the process. MAC adhered to fibrous, but not globular mucus, and to extracellular matrix (ECM) in areas of epithelial damage, but not to intact extruded cells and collagen fibres. Bacteria occasionally adhered to healthy unciliated epithelium and to cells that had degenerated exposing their contents, but never to ciliated cells. The results obtained with different respiratory tissues were similar. Two ATCC strains of MAC gave similar results. There was a significant reduction (P < 0.05) in the number of bacteria adhering to ECM after preincubation of bacteria with fibronectin and after preincubation of the tissue with M. avium FAP in a concentration-dependant manner. The number of bacteria adhering to fibrous mucus was unchanged. Immunogold labelling demonstrated fibronectin in ECM as well as in other areas of epithelial damage, but only ECM bound FAP. A Mycobacterium smegmatis strain had the same pattern of adherence to the mucosa as MAC. When the FAP gene was deleted, the strain demonstrated reduced adherence to ECM, and adherence was restored when the strain was transfected with an M. avium FAP expression construct. We conclude that MAC adheres to ECM in areas of epithelial damage via FAP and to mucus with a fibrous appearance via another adhesin. Epithelial damage exposing ECM and poor mucus clearance will predispose to MAC airway infection.
Second harmonic generation imaging of skeletal muscle tissue and myofibrils
NASA Astrophysics Data System (ADS)
Campagnola, Paul J.; Mohler, William H.; Plotnikov, Sergey; Millard, Andrew C.
2006-02-01
Second Harmonic Generation (SHG) imaging microscopy is used to examine the morphology and structural properties of intact muscle tissue. Using biochemical and optical analysis, we characterize the molecular structure underlying SHG from the complex muscle sarcomere. We find that SHG from isolated myofibrils is abolished by extraction of myosin, but is unaffected by removal or addition of actin filaments. We thus determined that the SHG emission arises from domains of the sarcomere containing thick filaments. By fitting the SHG polarization anisotropy to theoretical response curves, we find an orientation for the harmonophore that corresponds well to the pitch angle of the myosin rod α-helix with respect to the thick filament axis. Taken together, these data indicate that myosin rod domains are the key structures giving rise to SHG from striated muscle. Using SHG imaging microscopy, we have also examined the effect of optical clearing with glycerol to achieve greater penetration into specimens of skeletal muscle tissue. We find that treatment with 50% glycerol results in a 2.5 fold increase in achievable SHG imaging depth. Fast Fourier Transform (FFT) analysis shows quantitatively that the periodicity of the sarcomere structure is unaltered by the clearing process. Also, comparison of the SHG angular polarization dependence shows no change in the supramolecular organization of acto-myosin complexes. We suggest that the primary mechanism of optical clearing in muscle with glycerol treatment results from the reduction of cytoplasmic protein concentration and concomitant decrease in the secondary inner filter effect on the SHG signal. The pronounced lack of dependence of glycerol concentration on the imaging depth indicates that refractive index matching plays only a minor role in the optical clearing of muscle.
Bongard, Robert D; Yan, Ke; Hoffmann, Raymond G; Audi, Said H; Zhang, Xiao; Lindemer, Brian J; Townsley, Mary I; Merker, Marilyn P
2013-12-01
Mitochondrial dysfunction is associated with various forms of lung injury and disease that also involve alterations in pulmonary endothelial permeability, but the relationship, if any, between the two is not well understood. This question was addressed by perfusing isolated intact rat lung with a buffered physiological saline solution in the absence or presence of the mitochondrial complex I inhibitor rotenone (20 μM). Compared to control, rotenone depressed whole lung tissue ATP from 5.66 ± 0.46 (SEM) to 2.34 ± 0.15 µmol · g(-1) dry lung, with concomitant increases in the ADP:ATP and AMP:ATP ratios. Rotenone also increased lung perfusate lactate (from 12.36 ± 1.64 to 38.62 ± 3.14 µmol · 15 min(-1) perfusion · g(-1) dry lung) and the lactate:pyruvate ratio, but had no detectable impact on lung tissue GSH:GSSG redox status. The amphipathic quinone coenzyme Q1 (CoQ1; 50 μM) mitigated the impact of rotenone on the adenine nucleotide balance, wherein mitigation was blocked by NAD(P)H-quinone oxidoreductase 1 or mitochondrial complex III inhibitors. In separate studies, rotenone increased the pulmonary vascular endothelial filtration coefficient (Kf) from 0.043 ± 0.010 to 0.156 ± 0.037 ml · min(-1) · cm H2O(-1) · g(-1) dry lung, and CoQ1 protected against the effect of rotenone on Kf. A second complex I inhibitor, piericidin A, qualitatively reproduced the impact of rotenone on Kf and the lactate:pyruvate ratio. Taken together, the observations imply that pulmonary endothelial barrier integrity depends on mitochondrial bioenergetics as reflected in lung tissue ATP levels and that compensatory activation of whole lung glycolysis cannot protect against pulmonary endothelial hyperpermeability in response to mitochondrial blockade. The study further suggests that low-molecular-weight amphipathic quinones may have therapeutic utility in protecting lung barrier function in mitochondrial insufficiency. Published by Elsevier Inc.
Merker, Marilyn P; Audi, Said H; Lindemer, Brian J; Krenz, Gary S; Bongard, Robert D
2007-09-01
The objective was to determine the impact of intact normoxic and hyperoxia-exposed (95% O(2) for 48 h) bovine pulmonary arterial endothelial cells in culture on the redox status of the coenzyme Q(10) homolog coenzyme Q(1) (CoQ(1)). When CoQ(1) (50 microM) was incubated with the cells for 30 min, its concentration in the medium decreased over time, reaching a lower level for normoxic than hyperoxia-exposed cells. The decreases in CoQ(1) concentration were associated with generation of CoQ(1) hydroquinone (CoQ(1)H(2)), wherein 3.4 times more CoQ(1)H(2) was produced in the normoxic than hyperoxia-exposed cell medium (8.2 +/- 0.3 and 2.4 +/- 0.4 microM, means +/- SE, respectively) after 30 min. The maximum CoQ(1) reduction rate for the hyperoxia-exposed cells, measured using the cell membrane-impermeant redox indicator potassium ferricyanide, was about one-half that of normoxic cells (11.4 and 24.1 nmol x min(-1) x mg(-1) cell protein, respectively). The mitochondrial electron transport complex I inhibitor rotenone decreased the CoQ(1) reduction rate by 85% in the normoxic cells and 44% in the hyperoxia-exposed cells. There was little or no inhibitory effect of NAD(P)H:quinone oxidoreductase 1 (NQO1) inhibitors on CoQ(1) reduction. Intact cell oxygen consumption rates and complex I activities in mitochondria-enriched fractions were also lower for hyperoxia-exposed than normoxic cells. The implication is that intact pulmonary endothelial cells influence the redox status of CoQ(1) via complex I-mediated reduction to CoQ(1)H(2), which appears in the extracellular medium, and that the hyperoxic exposure decreases the overall CoQ(1) reduction capacity via a depression in complex I activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keenan, B.S.; Greger, N.C.; Hedge, A.M.
1986-07-01
Two forms of the human genital skin fibroblast (GSF) androgen receptor (AR) complexed with (/sup 3/H)17 alpha-methyltrienolone were compared: 1) the intact complex formed in cytosol at 4 C (broken cell or B/C complex); and 2) the complex formed in the whole cell at 37 C (W/C complex). The intact form of the B/C complex was distinguished from partly degraded forms by the gel filtration profile in 0.5 M KCl. The W/C complex was considered to represent the transformed state of the receptor. The W/C complex had a smaller molecular radius than the B/C complex by gel filtration (Kav =more » 0.26-0.28 vs. 0.11-0.18). By low salt density gradient centrifugation, the B/C complex sedimented at 8.8S and the W/C complex at 6.6S. However, in 0.5 M KCl, each sedimented at 5.1S, and they were homogeneous, indicating that the monomeric forms differed markedly in molecular radius, but by only about 20,000 daltons in calculated mol wt (134,500 vs. 114,300 daltons). The complexes were separated from DNA, desalted, and compared by chromatography on DEAE-Sephacel and hydroxylapatite (HAP). The B/C complex bound readily to both column matrices and eluted from each as a sharp homogeneous peak: from DEAE at 172-190 mM KCl and from HAP at 123 mM phosphate. The W/C complex, however, was heterogeneous. One component did not bind to DEAE, and one eluted at 22-40 mM KCl. The W/C complex eluted from HAP as a peak at 42 mM, with a shoulder at 102 mM phosphate. Thus, transformation of the human genital skin fibroblast androgen receptor involves a major decrease in molecular radius and loss of negative charge with a possible loss of a 20,000-dalton macromolecular component.« less
Desrochers, Jane; Duncan, Neil A
2014-01-01
Cells in the intervertebral disc, as in other connective tissues including tendon, ligament and bone, form interconnected cellular networks that are linked via functional gap junctions. These cellular networks may be necessary to affect a coordinated response to mechanical and environmental stimuli. Using confocal microscopy with fluorescence recovery after photobleaching methods, we explored the in situ strain environment of the outer annulus of an intact bovine disc and the effect of high-level flexion on gap junction signalling. The in situ strain environment in the extracellular matrix of the outer annulus under high flexion load was observed to be non-uniform with the extensive cellular processes remaining crimped sometimes at flexion angles greater than 25°. A significant transient disruption of intercellular communication via functional gap junctions was measured after 10 and 20 min under high flexion load. This study illustrates that in healthy annulus fibrosus tissue, high mechanical loads can impede the functioning of the gap junctions. Future studies will explore more complex loading conditions to determine whether losses in intercellular communication can be permanent and whether gap junctions in aged and degenerated tissues become more susceptible to load. The current research suggests that cellular structures such as gap junctions and intercellular networks, as well as other cell-cell and cell-matrix interconnections, need to be considered in computational models in order to fully understand how macroscale mechanical signals are transmitted across scales to the microscale and ultimately into a cellular biosynthetic response in collagenous tissues.
Turco, Anne E.; Gottschalk, Adam; Halberg, Richard B.; Guo, Jinjin; McMahon, Jill A.; McMahon, Andrew P.
2017-01-01
Though many methods can be used to identify cell types contained in complex tissues, most require cell disaggregation and destroy information about where cells reside in relation to their microenvironment. Here, we describe a polytomous key for cell type identification in intact sections of adult mouse prostate and prostatic urethra. The key is organized as a decision tree and initiates with one round of immunostaining for nerve, epithelial, fibromuscular/hematolymphoid, or vascular associated cells. Cell identities are recursively eliminated by subsequent staining events until the remaining pool of potential cell types can be distinguished by direct comparison to other cells. We validated our identification key using wild type adult mouse prostate and urethra tissue sections and it currently resolves sixteen distinct cell populations which include three nerve fiber types as well as four epithelial, five fibromuscular/hematolymphoid, one nerve-associated, and three vascular-associated cell types. We demonstrate two uses of this novel identification methodology. We first used the identification key to characterize prostate stromal cell type changes in response to constitutive phosphatidylinositide-3-kinase activation in prostate epithelium. We then used the key to map cell lineages in a new reporter mouse strain driven by Wnt10aem1(cre/ERT2)Amc. The identification key facilitates rigorous and reproducible cell identification in prostate tissue sections and can be expanded to resolve additional cell types as new antibodies and other resources become available. PMID:29145476
Honeybee product therapeutic as stem cells homing for ovary failure.
Safitri, Erma; Widiyatno, Thomas V; Prasetyo, R Heru
2016-11-01
Complexity of the method of isolation, cultivation in vitro and the expensive cost of transplantation process of stem cells, it would require an innovation to homing and differentiation of stem cells and increase folliculogenesis. The stem cells homing was achieved through the provision of food or beverages derived from natural materials like honeybee product. Through honeybee product, there will be homing of stem cells and accompany with the sources from the body itself will take place in regeneration of the ovary. Female rats model of degenerative ovary was obtained through food fasting but still have drinking water for 5 days. It caused malnutrition and damage of the ovarian tissue. The administration of 50% honeybee product (T1) was performed for 10 consecutive days, while the positive control group (T0+) was fasted and not given honeybee product and the negative control (T0-) not fasted and without honeybee product. Observations were taken for homing of stem cells, raised of folliculogenesis, differentiation of stem cells, and regeneration of the ovarian tissue using routine H&E staining. Homing of stem cells shown the vascular endothelial growth factor and granulocyte colony-stimulating factor expression; enhancement of folliculogenesis was indicated by an increase of follicle dee Graaf count; enhancement of differentiation of stem cells was indicated by growth differentiation factor-9 expression; and regeneration of ovarian tissue indicated by intact ovarian tissue with growing follicles. Honeybee product can be induced endogenous stem cells in regeneration of ovary failure due to malnutrition.
Effects of Tribulus terrestris on endocrine sensitive organs in male and female Wistar rats.
Martino-Andrade, Anderson J; Morais, Rosana N; Spercoski, Katherinne M; Rossi, Stefani C; Vechi, Marina F; Golin, Munisa; Lombardi, Natália F; Greca, Cláudio S; Dalsenter, Paulo R
2010-01-08
Investigate the possible effects of Tribulus terrestris (TT) on endocrine sensitive organs in intact and castrated male rats as well as in a post-menopausal rat model using ovariectomized females. Three different dose levels of TT (11, 42 and 110 mg/kg/day) were administered to castrated males for 7 days and to intact males and castrated females for 28 days. In addition to TT treatment, all experiments also included a group of rats treated with dehydroepiandrosterone (DHEA). In experiments using castrated males and females we also used testosterone and 17 alpha-ethynylestradiol, respectively, as positive controls for androgenicity and estrogenicity. Neither DHEA nor TT was able to stimulate androgen sensitive tissues like the prostate and seminal vesicle in both intact and castrated male rats. In addition, administration of TT to intact male rats for 28 days did not change serum testosterone levels as well as did not produce any quantitative change in the fecal excretion of androgenic metabolites. However, a slight increase in the number of homogenization-resistant spermatids was observed in rats treated with 11 mg/kg/day of TT extract. In ovariectomized females, TT did not produce any stimulatory effects in uterine and vaginal epithelia. Tribulus terrestris was not able to stimulate endocrine sensitive tissues such as the prostate, seminal vesicle, uterus and vagina in Wistar rats, indicating lack of androgenic and estrogenic activity in vivo. We also showed a positive effect of TT administration on rat sperm production, associated with unchanged levels of circulating androgens. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.
Synchrotron IR microspectroscopy for protein structure analysis: Potential and questions
Yu, Peiqiang
2006-01-01
Synchrotron radiation-based Fourier transform infrared microspectroscopy (S-FTIR) has been developed as a rapid, direct, non-destructive, bioanalytical technique. This technique takes advantage of synchrotron light brightness and small effective source size and is capable of exploring the molecular chemical make-up within microstructures of a biological tissue without destruction of inherent structures at ultra-spatial resolutions within cellular dimension. To date there has been very little application of this advanced technique to the study of pure protein inherent structure at a cellular level in biological tissues. In this review, a novel approach was introduced to show the potential of the newly developed, advancedmore » synchrotron-based analytical technology, which can be used to localize relatively “pure“ protein in the plant tissues and relatively reveal protein inherent structure and protein molecular chemical make-up within intact tissue at cellular and subcellular levels. Several complex protein IR spectra data analytical techniques (Gaussian and Lorentzian multi-component peak modeling, univariate and multivariate analysis, principal component analysis (PCA), and hierarchical cluster analysis (CLA) are employed to relatively reveal features of protein inherent structure and distinguish protein inherent structure differences between varieties/species and treatments in plant tissues. By using a multi-peak modeling procedure, RELATIVE estimates (but not EXACT determinations) for protein secondary structure analysis can be made for comparison purpose. The issues of pro- and anti-multi-peaking modeling/fitting procedure for relative estimation of protein structure were discussed. By using the PCA and CLA analyses, the plant molecular structure can be qualitatively separate one group from another, statistically, even though the spectral assignments are not known. The synchrotron-based technology provides a new approach for protein structure research in biological tissues at ultraspatial resolutions.« less
Bathen, Tone F; Sitter, Beathe; Sjøbakk, Torill E; Tessem, May-Britt; Gribbestad, Ingrid S
2010-09-01
Personalized medicine is increasingly important in cancer treatment for its role in staging and its potential to improve stratification of patients. Different types of molecules, genes, proteins, and metabolites are being extensively explored as potential biomarkers. This review discusses the major findings and potential of tissue metabolites determined by high-resolution magic angle spinning magnetic resonance spectroscopy for cancer detection, characterization, and treatment monitoring.
NASA Astrophysics Data System (ADS)
Walton, Lucy A.; Bradley, Robert S.; Withers, Philip J.; Newton, Victoria L.; Watson, Rachel E. B.; Austin, Clare; Sherratt, Michael J.
2015-05-01
Characterisation and quantification of tissue structures is limited by sectioning-induced artefacts and by the difficulties of visualising and segmenting 3D volumes. Here we demonstrate that, even in the absence of X-ray contrast agents, X-ray computed microtomography (microCT) and nanotomography (nanoCT) can circumvent these problems by rapidly resolving compositionally discrete 3D tissue regions (such as the collagen-rich adventitia and elastin-rich lamellae in intact rat arteries) which in turn can be segmented due to their different X-ray opacities and morphologies. We then establish, using X-ray tomograms of both unpressurised and pressurised arteries that intra-luminal pressure not only increases lumen cross-sectional area and straightens medial elastic lamellae but also induces profound remodelling of the adventitial layer. Finally we apply microCT to another human organ (skin) to visualise the cell-rich epidermis and extracellular matrix-rich dermis and to show that conventional histological and immunohistochemical staining protocols are compatible with prior X-ray exposure. As a consequence we suggest that microCT could be combined with optical microscopy to characterise the 3D structure and composition of archival paraffin embedded biological materials and of mechanically stressed dynamic tissues such as the heart, lungs and tendons.
Walton, Lucy A.; Bradley, Robert S.; Withers, Philip J.; Newton, Victoria L.; Watson, Rachel E. B.; Austin, Clare; Sherratt, Michael J.
2015-01-01
Characterisation and quantification of tissue structures is limited by sectioning-induced artefacts and by the difficulties of visualising and segmenting 3D volumes. Here we demonstrate that, even in the absence of X-ray contrast agents, X-ray computed microtomography (microCT) and nanotomography (nanoCT) can circumvent these problems by rapidly resolving compositionally discrete 3D tissue regions (such as the collagen-rich adventitia and elastin-rich lamellae in intact rat arteries) which in turn can be segmented due to their different X-ray opacities and morphologies. We then establish, using X-ray tomograms of both unpressurised and pressurised arteries that intra-luminal pressure not only increases lumen cross-sectional area and straightens medial elastic lamellae but also induces profound remodelling of the adventitial layer. Finally we apply microCT to another human organ (skin) to visualise the cell-rich epidermis and extracellular matrix-rich dermis and to show that conventional histological and immunohistochemical staining protocols are compatible with prior X-ray exposure. As a consequence we suggest that microCT could be combined with optical microscopy to characterise the 3D structure and composition of archival paraffin embedded biological materials and of mechanically stressed dynamic tissues such as the heart, lungs and tendons. PMID:25975937
Abes, Generoso T; Abes, Franco Louie L B; Jamir, Joselito C
2011-06-01
Tuberculosis (TB) is a rare cause of otitis media. This study aims to increase awareness on the clinical presentation of TB otitis media and illustrate how early detection affects treatment outcome. Chart review of 12 patients (13 ears) from a tertiary hospital in Manila, Philippines, seen from 2004 to 2009. Clinical predictors of the disease were summarized. Clinical, radiologic, and audiometric outcomes after treatment were compared between treatment groups. The 5 otoscopic presentations were multiple perforations, single perforation with refractory otorrhea and exuberant granulation tissue formation, single perforation with minimal otorrhea and no granulation tissue formation, intact tympanic membrane with middle ear effusion, and intact tympanic membrane with tumorlike tissue in the middle ear. Clinical predictors of the disease were history of pulmonary TB, work-related contamination of the infection, positive purified protein derivative test, positive chest radiographic finding and intraoperative granulation tissue with cheesy material, and temporal bone computed tomographic scan findings. Patients who had no middle ear surgery showed significantly better clinical, radiologic, and audiometric outcomes than those who were diagnosed late and had more complicated surgical procedure. The clinical presentation of TB otitis media is variable. Early detection of the early forms entail less surgical intervention and favors better treatment results.
Hypertrophic gene expression induced by chronic stretch of excised mouse heart muscle.
Raskin, Anna M; Hoshijima, Masahiko; Swanson, Eric; McCulloch, Andrew D; Omens, Jeffrey H
2009-09-01
Altered mechanical stress and strain in cardiac myocytes induce modifications in gene expression that affects cardiac remodeling and myocyte contractile function. To study the mechanisms of mechanotransduction in cardiomyocytes, probing alterations in mechanics and gene expression has been an effective strategy. However, previous studies are self-limited due to the general use of isolated neonatal rodent myocytes or intact animals. The main goal of this study was to develop a novel tissue culture chamber system for mouse myocardium that facilitates loading of cardiac tissue, while measuring tissue stress and deformation within a physiological environment. Intact mouse right ventricular papillary muscles were cultured in controlled conditions with superfusate at 95% O2/ 5% CO2, and 34 degrees C, such that cell to extracellular matrix adhesions as well as cell to cell adhesions were undisturbed and both passive and active mechanical properties were maintained without significant changes. The system was able to measure the induction of hypertrophic markers (BNP, ANP) in tissue after 2 hrs and 5 hrs of stretch. ANP induction was highly correlated with the diastolic load of the muscle but not with developed systolic load. Load induced ANP expression was blunted in muscles from muscle-LIM protein knockout mice, in which defective mechanotransduction pathways have been predicted.
Ingec, Metin; Calik, Muhammet; Gundogdu, Cemal; Kurt, Ali; Yilmaz, Mehmet; Isaoglu, Unal; Salman, Suleyman; Akcay, Fatih; Suleyman, Halis
2012-04-01
The effects of moclobemide on damaged ovarian tissue induced by ischemia- reperfusion and damaged contralateral ovarian tissue were investigated in rats, biochemically and histologically. In this experimental study, 40 rats were equally divided into four groups: 10 mg/kg moclobemide, 20 mg/kg moclobemide, ischemia/reperfusion control, and intact control groups. A 2-2.5-cm-long vertical incision was made in the lower abdomen of each rat in order to reach the ovaries, after which a vascular clip was placed on the lower side of the right ovary of each animal in the two treatment groups and the ischemia-reperfusion control group, but not in the healthy (intact control) animal group. The purpose of this procedure was to create ischemia over the course of three hours, then the clips were unclamped to provide reperfusion for the next two hours. At the end of the two hours of reperfusion, all the animals were killed by high-dose anaesthesia and their ovaries were taken and subjected to histological and biochemical (malondialdehyde, nitric oxide, glutathione) studies. The obtained results showed that moclobemide suppressed nitric oxide and malondialdehyde production in the ischemia-reperfusion damage area, and prevented the decrease in endogenous antioxidant levels (glutathione) in the rat ovarian tissue. Moclobemide also prevented infiltration of leukocytes to the ovarian tissue. These results showed that moclobemide protected ovarian tissue against ischemiareperfusion injury. This study shows that moclobemide represses malondialdehyde and nitric oxide production in the rat ovarian tissue subjected to ischemia-reperfusion injury and keeps the endogenous antioxidant glutathione level from decreasing. Moclobemide also inhibits leukocytic migration into ovarian tissue following ischemia-reperfusion injury. From these results, it is suggested that moclobemide can be used in the treatment of ovarian ischemia-reperfusion injury.
An update on pathobiologic roles of anti-glycan antibodies in Guillain-Barré syndrome
Zhang, Gang
2010-01-01
Anti-glycan antibodies directed against gangliosides are now considered the major immune effectors that induce damage to intact nerve fibers in some variants of the monophasic neuropathic disorders that comprise Guillain-Barré syndrome. Recent experimental studies elucidating the complexity of anti-glycan antibody-mediated pathobiologic effects on intact and injured nerves undergoing repair are discussed. PMID:20948812
Reuther, Katherine E.; Thomas, Stephen J.; Sarver, Joseph J.; Tucker, Jennica J.; Lee, Chang-Soo; Gray, Chancellor F.; Glaser, David L.; Soslowsky, Louis J.
2013-01-01
Rotator cuff tears are common conditions that can alter shoulder mechanics and may lead to damage of intact joint tissues. These injuries are of particular concern in populations who perform tasks requiring repetitive overhead activity (e.g., athletes and laborers) and who are likely to return to aggressive pre-injury activity levels despite limited understanding of the potentially damaging effects on the remaining tissues. Therefore, we investigated the effect of returning to overuse activity following a supraspinatus tear on shoulder function and the mechanical properties of the remaining intact tendons and glenoid cartilage. Forty rats underwent 4 weeks of overuse activity to create a tendinopathic condition followed by detachment of the supraspinatus tendon and were then randomized into two groups: continued overuse or cage activity. Ambulatory measurements were performed throughout the 8 weeks prior to euthaniasia, and properties of the adjacent tendons and cartilage were evaluated. Results demonstrated that shoulder function was not compromised in the return to overuse group. However, alterations of the glenoid cartilage and biceps tendon properties occurred. Our results help define the contributory roles of common mechanical injury mechanisms and provide a framework by which physicians could better prescribe long-term treatment strategies for patients. PMID:23280495
Reuther, Katherine E; Thomas, Stephen J; Sarver, Joseph J; Tucker, Jennica J; Lee, Chang-Soo; Gray, Chancellor F; Glaser, David L; Soslowsky, Louis J
2013-05-01
Rotator cuff tears are common conditions that can alter shoulder mechanics and may lead to damage of intact joint tissues. These injuries are of particular concern in populations who perform tasks requiring repetitive overhead activity (e.g., athletes and laborers) and who are likely to return to aggressive pre-injury activity levels despite limited understanding of the potentially damaging effects on the remaining tissues. Therefore, we investigated the effect of returning to overuse activity following a supraspinatus tear on shoulder function and the mechanical properties of the remaining intact tendons and glenoid cartilage. Forty rats underwent 4 weeks of overuse activity to create a tendinopathic condition followed by detachment of the supraspinatus tendon and were then randomized into two groups: continued overuse or cage activity. Ambulatory measurements were performed throughout the 8 weeks prior to euthaniasia, and properties of the adjacent tendons and cartilage were evaluated. Results demonstrated that shoulder function was not compromised in the return to overuse group. However, alterations of the glenoid cartilage and biceps tendon properties occurred. Our results help define the contributory roles of common mechanical injury mechanisms and provide a framework by which physicians could better prescribe long-term treatment strategies for patients. Copyright © 2012 Orthopaedic Research Society.
Losing a jewel—Rapid declines in Myanmar’s intact forests from 2002-2014
Horning, Ned; Khaing, Thiri; Thein, Zaw Min; Aung, Kyaw Moe; Aung, Kyaw Htet; Phyo, Paing; Tun, Ye Lin; Oo, Aung Htat; Neil, Anthony; Thu, Win Myo; Songer, Melissa; Huang, Qiongyu; Connette, Grant; Leimgruber, Peter
2017-01-01
New and rapid political and economic changes in Myanmar are increasing the pressures on the country’s forests. Yet, little is known about the past and current condition of these forests and how fast they are declining. We mapped forest cover in Myanmar through a consortium of international organizations and environmental non-governmental groups, using freely-available public domain data and open source software tools. We used Landsat satellite imagery to assess the condition and spatial distribution of Myanmar’s intact and degraded forests with special focus on changes in intact forest between 2002 and 2014. We found that forests cover 42,365,729 ha or 63% of Myanmar, making it one of the most forested countries in the region. However, severe logging, expanding plantations, and degradation pose increasing threats. Only 38% of the country’s forests can be considered intact with canopy cover >80%. Between 2002 and 2014, intact forests declined at a rate of 0.94% annually, totaling more than 2 million ha forest loss. Losses can be extremely high locally and we identified 9 townships as forest conversion hotspots. We also delineated 13 large (>100,000 ha) and contiguous intact forest landscapes, which are dispersed across Myanmar. The Northern Forest Complex supports four of these landscapes, totaling over 6.1 million ha of intact forest, followed by the Southern Forest Complex with three landscapes, comprising 1.5 million ha. These remaining contiguous forest landscape should have high priority for protection. Our project demonstrates how open source data and software can be used to develop and share critical information on forests when such data are not readily available elsewhere. We provide all data, code, and outputs freely via the internet at (for scripts: https://bitbucket.org/rsbiodiv/; for the data: http://geonode.themimu.info/layers/geonode%3Amyan_lvl2_smoothed_dec2015_resamp) PMID:28520726
Losing a jewel-Rapid declines in Myanmar's intact forests from 2002-2014.
Bhagwat, Tejas; Hess, Andrea; Horning, Ned; Khaing, Thiri; Thein, Zaw Min; Aung, Kyaw Moe; Aung, Kyaw Htet; Phyo, Paing; Tun, Ye Lin; Oo, Aung Htat; Neil, Anthony; Thu, Win Myo; Songer, Melissa; LaJeunesse Connette, Katherine; Bernd, Asja; Huang, Qiongyu; Connette, Grant; Leimgruber, Peter
2017-01-01
New and rapid political and economic changes in Myanmar are increasing the pressures on the country's forests. Yet, little is known about the past and current condition of these forests and how fast they are declining. We mapped forest cover in Myanmar through a consortium of international organizations and environmental non-governmental groups, using freely-available public domain data and open source software tools. We used Landsat satellite imagery to assess the condition and spatial distribution of Myanmar's intact and degraded forests with special focus on changes in intact forest between 2002 and 2014. We found that forests cover 42,365,729 ha or 63% of Myanmar, making it one of the most forested countries in the region. However, severe logging, expanding plantations, and degradation pose increasing threats. Only 38% of the country's forests can be considered intact with canopy cover >80%. Between 2002 and 2014, intact forests declined at a rate of 0.94% annually, totaling more than 2 million ha forest loss. Losses can be extremely high locally and we identified 9 townships as forest conversion hotspots. We also delineated 13 large (>100,000 ha) and contiguous intact forest landscapes, which are dispersed across Myanmar. The Northern Forest Complex supports four of these landscapes, totaling over 6.1 million ha of intact forest, followed by the Southern Forest Complex with three landscapes, comprising 1.5 million ha. These remaining contiguous forest landscape should have high priority for protection. Our project demonstrates how open source data and software can be used to develop and share critical information on forests when such data are not readily available elsewhere. We provide all data, code, and outputs freely via the internet at (for scripts: https://bitbucket.org/rsbiodiv/; for the data: http://geonode.themimu.info/layers/geonode%3Amyan_lvl2_smoothed_dec2015_resamp).
Protein complex purification from Thermoplasma acidophilum using a phage display library.
Hubert, Agnes; Mitani, Yasuo; Tamura, Tomohiro; Boicu, Marius; Nagy, István
2014-03-01
We developed a novel protein complex isolation method using a single-chain variable fragment (scFv) based phage display library in a two-step purification procedure. We adapted the antibody-based phage display technology which has been developed for single target proteins to a protein mixture containing about 300 proteins, mostly subunits of Thermoplasma acidophilum complexes. T. acidophilum protein specific phages were selected and corresponding scFvs were expressed in Escherichia coli. E. coli cell lysate containing the expressed His-tagged scFv specific against one antigen protein and T. acidophilum crude cell lysate containing intact target protein complexes were mixed, incubated and subjected to protein purification using affinity and size exclusion chromatography steps. This method was confirmed to isolate intact particles of thermosome and proteasome suitable for electron microscopy analysis and provides a novel protein complex isolation strategy applicable to organisms where no genetic tools are available. Copyright © 2013 Elsevier B.V. All rights reserved.
Stoichiometry of mercury-thiol complexes on bacterial cell envelopes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishra, Bhoopesh; Shoenfelt, Elizabeth; Yu, Qiang
We have examined the speciation of Hg(II) complexed with intact cell suspensions (1013 cells L- 1) of Bacillus subtilis, a common gram-positive soil bacterium, Shewanella oneidensis MR-1, a facultative gram-negative aquatic organism, and Geobacter sulfurreducens, a gram-negative anaerobic bacterium capable of Hg-methylation at Hg(II) loadings spanning four orders of magnitude (120 nM to 350 μM) at pH 5.5 (± 0.2). The coordination environments of Hg on bacterial cells were analyzed using synchrotron based X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy at the Hg LIII edge. The abundance of thiols on intact cells wasmore » determined by a fluorescence-spectroscopy based method using a soluble bromobimane, monobromo(trimethylammonio)bimane (qBBr) to block thiol sites, and potentiometric titrations of biomass with and without qBBr treatment. The chemical forms of S on intact bacterial cells were determined using S k-edge XANES spectroscopy.« less
McCourt, Maggie R; Dieterly, Alexandra M; Mackey, Paige E; Lyon, Shane D; Rizzi, Theresa E; Ritchey, Jerry W
2018-05-07
An 8-year-old, intact female, mixed-breed dog presented to the Oklahoma State University Boren Veterinary Medical Teaching Hospital for evaluation of progressive lameness and joint effusion of multiple joints. Physical examination revealed joint effusion of the elbow, hock, and stifle joints bilaterally, enlarged left axillary and right popliteal lymph nodes, a subcutaneous mass over the left elbow, and a subcutaneous mass involving the left second and third mammary glands. Cytologic examination of the mammary mass, enlarged lymph nodes, and joint fluid from most affected joints revealed a monomorphic population of loosely cohesive neoplastic epithelial cells. The patient was humanely euthanized, and subsequent necropsy with histopathologic examination revealed a complex mammary carcinoma with metastases to enlarged lymph nodes, subcutaneous tissue over the left elbow, and the synovium of multiple joints. Immunohistochemical stains were performed and showed diffusely positive pan cytokeratin, CK8/18, and CK19 staining in the neoplastic luminal epithelial cells of the mammary carcinoma, synovium, and lymph nodes, and showed diffusely positive vimentin staining of the myoepithelial cells. Myoepithelial calponin positivity was diffuse in the mammary mass and lymph nodes but minimal in the synovium. Only the mammary mass showed p63 positivity. Metastatic mammary neoplasia is relatively common in dogs; however, metastasis to the synovium has only been reported once previously in the literature. This is the first case utilizing immunohistochemistry for confirmation and characterization of metastases. © 2018 American Society for Veterinary Clinical Pathology.
Sedlic, Filip; Pravdic, Danijel; Hirata, Naoyuki; Mio, Yasushi; Sepac, Ana; Camara, Amadou K.; Wakatsuki, Tetsuro; Bosnjak, Zeljko J.; Bienengraeber, Martin
2010-01-01
Mitochondrial bioenergetic studies mostly rely on isolated mitochondria thus excluding the regulatory role of other cellular compartments important for the overall mitochondrial function. In intact cardiomyocytes, we followed the dynamics of electron fluxes along specific sites of the electron transport chain (ETC) by simultaneous detection of NAD(H)P and flavoprotein (FP) fluorescence intensities using a laser-scanning confocal microscope. This method was used to delineate the effects of isoflurane, a volatile anesthetic and cardioprotective agent, on the ETC. Comparison to the effects of well-characterized ETC inhibitors and uncoupling agent revealed two distinct effects of isoflurane: uncoupling-induced mitochondrial depolarization and inhibition of ETC at the level of complex I. In correlation, oxygen consumption measurements in cardiomyocytes confirmed a dose-dependent, dual effect of isoflurane, and in isolated mitochondria an obstruction of the ETC primarily at the level of complex I. These effects are likely responsible for the reported mild stimulation of mitochondrial reactive oxygen species (ROS) production required for the cardioprotective effects of isoflurane. In conclusion, isoflurane exhibits complex effects on the ETC in intact cardiomyocytes, altering its electron fluxes, and thereby enhancing ROS production. The NAD(P)H-FP fluorometry is a useful method for exploring the effect of drugs on mitochondria and identifying their specific sites of action within the ETC of intact cardiomyocytes. PMID:20646994
Isolation and Oxidative Properties of Intact Mitochondria Isolated from Spinach Leaves 1
Douce, Roland; Moore, Antony L.; Neuburger, Michel
1977-01-01
A procedure was described for preparing intact mitochondria from spinach (Spinacia oleracea L.) leaves. These mitochondria oxidized succinate, malate, pyruvate, α-ketoglutarate, and NADH with good respiratory control and ADP/O ratios comparable to those observed with mitochondria from other plant tissues. Glycine was oxidized by the preparations. This oxidation linked to the mitochondrial electron transport chain, was coupled to three phosphorylation sites and was sensitive to electron transport and phosphorylation inhibitors. Cyanide completely inhibited the oxidation of NADH. The oxidation of succinate, malate, and glycine was only partially inhibited. Images PMID:16660151
Lai, Hei Ming; Liu, Alan King Lun; Ng, Wai-Lung; DeFelice, John; Lee, Wing Sang; Li, Heng; Li, Wen; Ng, Ho Man; Chang, Raymond Chuen-Chung; Lin, Bin; Wu, Wutian; Gentleman, Steve M.
2016-01-01
Three-dimensional visualization of intact tissues is now being achieved by turning tissues transparent. CLARITY is a unique tissue clearing technique, which features the use of detergents to remove lipids from fixed tissues to achieve optical transparency. To preserve tissue integrity, an acrylamide-based hydrogel has been proposed to embed the tissue. In this study, we examined the rationale behind the use of acrylamide in CLARITY, and presented evidence to suggest that the omission of acrylamide-hydrogel embedding in CLARITY does not alter the preservation of tissue morphology and molecular information in fixed tissues. We therefore propose a novel and simplified workflow for formaldehyde-fixed tissue clearing, which will facilitate the laboratory implementation of this technique. Furthermore, we have investigated the basic tissue clearing process in detail and have highlighted some areas for targeted improvement of technologies essential for the emerging subject of three-dimensional histology. PMID:27359336
Zheng, Huanquan
2015-01-01
Plant viruses move systemically in plants through the phloem. They move as virions or as ribonucleic protein complexes, although it is not clear what these complexes are made of. The approximately 10-kb RNA genome of Turnip mosaic virus (TuMV) encodes a membrane protein, known as 6K2, that induces endomembrane rearrangements for the formation of viral replication factories. These factories take the form of vesicles that contain viral RNA (vRNA) and viral replication proteins. In this study, we report the presence of 6K2-tagged vesicles containing vRNA and the vRNA-dependent RNA polymerase in phloem sieve elements and in xylem vessels. Transmission electron microscopy observations showed the presence in the xylem vessels of vRNA-containing vesicles that were associated with viral particles. Stem-girdling experiments, which leave xylem vessels intact but destroy the surrounding tissues, confirmed that TuMV could establish a systemic infection of the plant by going through xylem vessels. Phloem sieve elements and xylem vessels from Potato virus X-infected plants also contained lipid-associated nonencapsidated vRNA, indicating that the presence of membrane-associated ribonucleic protein complexes in the phloem and xylem may not be limited to TuMV. Collectively, these studies indicate that viral replication factories could end up in the phloem and the xylem. PMID:25717035
Robinson, Colin
2011-09-01
Bacterial biofilms in the mouth are prime mediators of the destruction of the dental and oral tissues. This brief review summarises recent work using a device for generating intact plaque in the mouth on natural enamel surfaces such that quantitative studies of mass transfer through natural plaque biofilms could be carried out in relation to plaque architecture. This data is discussed against the background of existing information. The device revealed complex plaque architecture with high a surface area to mass ratio decreasing from the exterior of the biofilm towards the tissue surface. Fluoride, a potent inhibitor of caries was concentrated in the outer regions of the biofilm. This implies some restriction of diffusion and possibly binding to the high surface area of the outer biofilm. Whilst all components examined conformed to this distribution pattern, some relatively uncharged materials penetrated the bacterial biomass whilst other, more highly charged materials tended to be restricted to the channels or biomass surface. Plaque architecture was robust but could be altered using detergent indicating that biomass architecture and chemistry could be manipulated as a possible means of facilitating mass transport of therapeutics. Copyright © 2011 Elsevier Ltd. All rights reserved.
Localized cervical facet joint kinematics under physiological and whiplash loading.
Stemper, Brian D; Yoganandan, Narayan; Gennarelli, Thomas A; Pintar, Frank A
2005-12-01
Although facet joints have been implicated in the whiplash injury mechanism, no investigators have determined the degree to which joint motions in whiplash are nonphysiological. The purpose of this investigation was to quantify the correlation between facet joint and segmental motions under physiological and whiplash loading. Human cadaveric cervical spine specimens were exercise tested under physiological extension loading, and intact human head-neck complexes were exercise tested under whiplash loading to correlate the localized component motions of the C4-5 facet joint with segmental extension. Facet joint shear and distraction kinematics demonstrated a linear correlation with segmental extension under both loading modes. Facet joints responded differently to whiplash and physiological loading, with significantly increased kinematics for the same-segmental angulation. The limitations of this study include removal of superficial musculature and the limited sample size for physiological testing. The presence of increased facet joint motions indicated that synovial joint soft-tissue components (that is, synovial membrane and capsular ligament) sustain increased distortion that may subject these tissues to a greater likelihood of injury. This finding is supported by clinical investigations in which lower cervical facet joint injury resulted in similar pain patterns due to the most commonly reported whiplash symptoms.
Zekonis, Gediminas; Zekonis, Jonas
2004-01-01
The aim of the present investigation was to explore the oxidative activity of peripheral blood polymorphonuclear neutrophils of periodontitis patients and of healthy subjects stimulated with non-opsonized E. coli and lipopolysaccharide of E. coli. The leukocytes for this study were obtained from peripheral venous blood of 22 parodontitis patients and 16 healthy subjects. Oxidative activity of peripheral blood polymorphonuclear neutrophils was measured by method of the luminol-dependent chemiluminescence. The luminol-dependent chemiluminescence of stimulated neutrophils of periodontitis patients with non-opsonized E. coli increased less significantly (p<0.001) as compared to analogous chemiluminescence of control subjects (147126+/-8386 cpm and 189247+/-9134 cpm, respectively). However, the luminol-dependent chemiluminescence of stimulated neutrophils of periodontitis patients with lipopolysaccharide was five times higher than that of the subjects with intact periodontal tissues and comprised 13261+/-1251 cpm and 2627+/-638 cpm, respectively. Our study results show a complex dependence of oxidative function of peripheral polymorphonuclear neutrophils of periodontitis patients upon the nature of stimulants. Therefore further attempts should be made to evaluate its significance in the etiopathogenesis of periodontal tissue diseases of inflammatory origin.
Jeschke, Marc G; Sadri, Ali-Reza; Belo, Cassandra; Amini-Nik, Saeid
2017-04-01
Due to the poor regenerative capacity of adult mammalian skin, there is a need to develop effective skin substitutes for promoting skin regeneration after a severe wound. However, the complexity of skin biology has made it difficult to enable perfect regeneration of skin. Thus, animal models are being used to test potential skin substitutes. Murine models are valuable but their healing process involves dermal contraction. We have developed a device called a dome that is able to eliminate the contraction effect of rodent skin while simultaneously housing a bioengineered skin graft. The dome comes in two models, which enables researchers to evaluate the cells that contribute in wound healing from neighboring intact tissue during skin healing/regeneration. This protocol simplifies grafting of skin substitutes, eliminates the contraction effect of surrounding skin, and summarizes a simple method for animal surgery for wound healing and skin regeneration studies.
A genetically encoded fluorescent sensor of ERK activity.
Harvey, Christopher D; Ehrhardt, Anka G; Cellurale, Cristina; Zhong, Haining; Yasuda, Ryohei; Davis, Roger J; Svoboda, Karel
2008-12-09
The activity of the ERK has complex spatial and temporal dynamics that are important for the specificity of downstream effects. However, current biochemical techniques do not allow for the measurement of ERK signaling with fine spatiotemporal resolution. We developed a genetically encoded, FRET-based sensor of ERK activity (the extracellular signal-regulated kinase activity reporter, EKAR), optimized for signal-to-noise ratio and fluorescence lifetime imaging. EKAR selectively and reversibly reported ERK activation in HEK293 cells after epidermal growth factor stimulation. EKAR signals were correlated with ERK phosphorylation, required ERK activity, and did not report the activities of JNK or p38. EKAR reported ERK activation in the dendrites and nucleus of hippocampal pyramidal neurons in brain slices after theta-burst stimuli or trains of back-propagating action potentials. EKAR therefore permits the measurement of spatiotemporal ERK signaling dynamics in living cells, including in neuronal compartments in intact tissues.
A novel and rapid method for obtaining high titre intact prion strains from mammalian brain.
Wenborn, Adam; Terry, Cassandra; Gros, Nathalie; Joiner, Susan; D'Castro, Laura; Panico, Silvia; Sells, Jessica; Cronier, Sabrina; Linehan, Jacqueline M; Brandner, Sebastian; Saibil, Helen R; Collinge, John; Wadsworth, Jonathan D F
2015-05-07
Mammalian prions exist as multiple strains which produce characteristic and highly reproducible phenotypes in defined hosts. How this strain diversity is encoded by a protein-only agent remains one of the most interesting and challenging questions in biology with wide relevance to understanding other diseases involving the aggregation or polymerisation of misfolded host proteins. Progress in understanding mammalian prion strains has however been severely limited by the complexity and variability of the methods used for their isolation from infected tissue and no high resolution structures have yet been reported. Using high-throughput cell-based prion bioassay to re-examine prion purification from first principles we now report the isolation of prion strains to exceptional levels of purity from small quantities of infected brain and demonstrate faithful retention of biological and biochemical strain properties. The method's effectiveness and simplicity should facilitate its wide application and expedite structural studies of prions.
A novel and rapid method for obtaining high titre intact prion strains from mammalian brain
Wenborn, Adam; Terry, Cassandra; Gros, Nathalie; Joiner, Susan; D’Castro, Laura; Panico, Silvia; Sells, Jessica; Cronier, Sabrina; Linehan, Jacqueline M.; Brandner, Sebastian; Saibil, Helen R.; Collinge, John; Wadsworth, Jonathan D. F.
2015-01-01
Mammalian prions exist as multiple strains which produce characteristic and highly reproducible phenotypes in defined hosts. How this strain diversity is encoded by a protein-only agent remains one of the most interesting and challenging questions in biology with wide relevance to understanding other diseases involving the aggregation or polymerisation of misfolded host proteins. Progress in understanding mammalian prion strains has however been severely limited by the complexity and variability of the methods used for their isolation from infected tissue and no high resolution structures have yet been reported. Using high-throughput cell-based prion bioassay to re-examine prion purification from first principles we now report the isolation of prion strains to exceptional levels of purity from small quantities of infected brain and demonstrate faithful retention of biological and biochemical strain properties. The method’s effectiveness and simplicity should facilitate its wide application and expedite structural studies of prions. PMID:25950908
Interspecies Scaling in Blast Neurotrauma
2015-08-27
shows increased force magnitude with similar relaxation form. ............................ 123 Figure 5-7: Relaxation test behavior for L1, Post L2...and Post L3 tests to assess progressive changes in material behavior for a) Mouse, b) Ferret, and c) Pig show changes in tissue behavior after higher...characterizations. Testing of brain tissue in vivo (in a living animal) or in situ (in a post -mortem intact skull) holds advantages of the common in vitro
Steinke, Hanno; Saito, Toshiyuki; Herrmann, Gudrun; Miyaki, Takayoshi; Hammer, Niels; Sandrock, Mara; Itoh, Masahiro; Spanel-Borowski, Katharina
2010-01-01
Gross dissection for demonstrating anatomy of the human pelvis has traditionally involved one of two approaches, each with advantages and disadvantages. Classic hemisection in the median plane through the pelvic ring transects the visceral organs but maintains two symmetric pelvic halves. An alternative paramedial transection compromises one side of the bony pelvis but leaves the internal organs intact. The authors propose a modified technique that combines advantages of both classical dissections. This novel approach involves dividing the pubic symphysis and sacrum in the median plane after shifting all internal organs to one side. The hemipelvis without internal organs is immediately available for further dissection of the lower limb. The hemipelvis with intact internal organs is ideal for showing the complex spatial relationships of the pelvic organs and vessels relative to the intact pelvic floor.
A Pharmacological and Toxicological Profile of Silver as an Antimicrobial Agent in Medical Devices
Lansdown, Alan B. G.
2010-01-01
Silver is used widely in wound dressings and medical devices as a broad-spectrum antibiotic. Metallic silver and most inorganic silver compounds ionise in moisture, body fluids, and secretions to release biologically active Ag+. The ion is absorbed into the systemic circulation from the diet and drinking water, by inhalation and through intraparenteral administration. Percutaneous absorption of Ag+ through intact or damaged skin is low. Ag+ binds strongly to metallothionein, albumins, and macroglobulins and is metabolised to all tissues other than the brain and the central nervous system. Silver sulphide or silver selenide precipitates, bound lysosomally in soft tissues, are inert and not associated with an irreversible toxic change. Argyria and argyrosis are the principle effects associated with heavy deposition of insoluble silver precipitates in the dermis and cornea/conjunctiva. Whilst these changes may be profoundly disfiguring and persistent, they are not associated with pathological damage in any tissue. The present paper discusses the mechanisms of absorption and metabolism of silver in the human body, presumed mechanisms of argyria and argyrosis, and the elimination of silver-protein complexes in the bile and urine. Minimum blood silver levels consistent with early signs of argyria or argyrosis are not known. Silver allergy does occur but the extent of the problem is not known. Reference values for silver exposure are discussed. PMID:21188244
Anisimova, N Y; Kiselevsky, M V; Sukhorukova, I V; Shvindina, N V; Shtansky, D V
2015-09-01
The present paper was focused on the development of a new method of decellularized extracellular matrix (DECM) fabrication via a chemical treatment of a native bone tissue. Particular attention was paid to the influence of chemical treatment on the mechanical properties of native bones, sterility, and biological performance in vivo using the syngeneic heterotopic and orthotopic implantation models. The obtained data indicated that after a chemical decellularization treatment in 4% aqueous sodium chlorite, no noticeable signs of the erosion of compact cortical bone surface or destruction of trabeculae of spongy bone in spinal channel were observed. The histological studies showed that the chemical treatment resulted in the decellularization of both bone and cartilage tissues. The DECM samples demonstrated no signs of chemical and biological degradation in vivo. Thorough structural characterization revealed that after decellularization, the mineral frame retained its integrity with the organic phase; however clotting and destruction of organic molecules and fibers were observed. FTIR studies revealed several structural changes associated with the destruction of organic molecules, although all organic components typical of intact bone were preserved. The decellularization-induced structural changes in the collagen constituent resulted changed the deformation under compression mechanism: from the major fracture by crack propagation throughout the sample to the predominantly brittle fracture. Although the mechanical properties of radius bones subjected to decellularization were observed to degrade, the mechanical properties of ulna bones in compression and humerus bones in bending remained unchanged. The compressive strength of both the intact and decellularized ulna bones was 125-130 MPa and the flexural strength of humerus bones was 156 and 145 MPa for the intact and decellularized samples, respectively. These results open new avenues for the use of DECM samples as the replacement of wide bone tissue defects. Copyright © 2015 Elsevier Ltd. All rights reserved.
Moni, Janaki; Saleeby, Jonathan; Bannon, Elizabeth; Lo, Yuan-Chyuan; Fitzgerald, Thomas J
2015-01-01
To evaluate the effect of the AeroForm (AirXpanders Inc, Palo Alto, CA) tissue expander on the dose distribution in a phantom from a simulated postmastectomy radiation treatment for breast cancer. Experiments were conducted to determine the effect on the dose distribution with the metallic reservoir irradiated independently and with the entire AeroForm tissue expander placed on a RANDO phantom (The Phantom Laboratory, Salem, NY). The metallic reservoir was irradiated on a block of solid water with film at various depths ranging from 0 to 8.2 cm from the surface. The intact 400 cc AeroForm was inflated to full capacity and irradiated while positioned on a RANDO phantom, with 12 optically stimulated luminescent dosimeters (OSLDs) placed at clinically relevant expander-tissue interface points. Film dosimetry with the reservoir perpendicular to film reveals 40% transmission at a depth of 0.7 cm, which increases to 60% at a depth of 8.2 cm. In the parallel position, the results vary depending on which area under the reservoir is examined, indicating that the reservoir is not a uniformly dense object. Testing of the intact expander on the phantom revealed that the average percent difference (measured vs expected dose) was 2.7%, σ = 6.2% with heterogeneity correction and 3.7%, σ = 2.4% without heterogeneity correction. The only position where the OSLD readings were consistently higher than the calculated dose by >5% was at position 1, just deep to the canister at the expander-phantom interface. At this position, the readings varied from 5.2% to 14.5%, regardless of heterogeneity correction. Film dosimetry demonstrated beam attenuation in the shadow of the metallic reservoir in the expander. This decrease in dose was not reproduced on the intact expander on the phantom designed to replicate a clinical setup. Copyright © 2015 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.
Energetics of acclimation to NaCl by submerged, anoxic rice seedlings
Kurniasih, Budiastuti; Greenway, Hank; Colmer, Timothy David
2017-01-01
Background and aims Our aim was to elucidate how plant tissues under a severe energy crisis cope with imposition of high NaCl, which greatly increases ion fluxes and hence energy demands. The energy requirements for ion regulation during combined salinity and anoxia were assessed to gain insights into ion transport processes in the anoxia-tolerant coleoptile of rice. Methods We studied the combined effects of anoxia plus 50 or 100 mm NaCl on tissue ions and growth of submerged rice (Oryza sativa) seedlings. Excised coleoptiles allowed measurements in aerated or anoxic conditions of ion net fluxes and O2 consumption or ethanol formation and by inference energy production. Key Results Over 80 h of anoxia, coleoptiles of submerged intact seedlings grew at 100 mm NaCl, but excised coleoptiles, with 50 mm exogenous glucose, survived only at 50 mm NaCl, possibly due to lower energy production with glucose than for intact coleoptiles with sucrose as substrate. Rates of net uptake of Na+ and Cl− by coleoptiles in anoxia were about half those in aerated solution. Ethanol formation in anoxia and O2 uptake in aerobic solution were each increased by 13–15 % at 50 mm NaCl, i.e. ATP formation was stimulated. For acclimation to 50 mm NaCl, the anoxic tissues used only 25 % of the energy that was expended by aerobic tissues. Following return of coleoptiles to aerated non-saline solution, rates of net K+ uptake recovered to those in continuously aerated solution, demonstrating there was little injury during anoxia with 50 mm NaCl. Conclusion Rice seedlings survive anoxia, without the coleoptile incurring significant injury, even with the additional energy demands imposed by NaCl (100 mm when intact, 50 mm when excised). Energy savings were achieved in saline anoxia by less coleoptile growth, reduced ion fluxes as compared to aerobic coleoptiles and apparent energy-economic ion transport systems. PMID:27694332
Vespa, Alisa; Darmon, Alison J; Turner, Christopher E; D'Souza, Sudhir J A; Dagnino, Lina
2003-03-28
Integrin complexes are necessary for proper proliferation and differentiation of epidermal keratinocytes. Differentiation of these cells is accompanied by down-regulation of integrins and focal adhesions as well as formation of intercellular adherens junctions through E-cadherin homodimerization. A central component of integrin adhesion complexes is integrin-linked kinase (ILK), which can induce loss of E-cadherin expression and epithelial-mesenchymal transformation when ectopically expressed in intestinal and mammary epithelia. In cultured primary mouse keratinocytes, we find that ILK protein levels are independent of integrin expression and signaling, since they remain constant during Ca(2+)-induced differentiation. In contrast, keratinocyte differentiation is accompanied by marked reduction in kinase activity in ILK immunoprecipitates and altered ILK subcellular distribution. Specifically, ILK distributes in close apposition to actin fibers along intercellular junctions in differentiated but not in undifferentiated keratinocytes. ILK localization to cell-cell borders occurs independently of integrin signaling and requires Ca(2+) as well as an intact actin cytoskeleton. Further, and in contrast to what is observed in other epithelial cells, ILK overexpression in differentiated keratinocytes does not promote E-cadherin down-regulation and epithelial-mesenchymal transition. Thus, novel tissue-specific mechanisms control the formation of ILK complexes associated with cell-cell junctions in differentiating murine epidermal keratinocytes.
Gledhill, Karl; Guo, Zongyou; Umegaki-Arao, Noriko; Higgins, Claire A; Itoh, Munenari; Christiano, Angela M
2015-01-01
The current utility of 3D skin equivalents is limited by the fact that existing models fail to recapitulate the cellular complexity of human skin. They often contain few cell types and no appendages, in part because many cells found in the skin are difficult to isolate from intact tissue and cannot be expanded in culture. Induced pluripotent stem cells (iPSCs) present an avenue by which we can overcome this issue due to their ability to be differentiated into multiple cell types in the body and their unlimited growth potential. We previously reported generation of the first human 3D skin equivalents from iPSC-derived fibroblasts and iPSC-derived keratinocytes, demonstrating that iPSCs can provide a foundation for modeling a complex human organ such as skin. Here, we have increased the complexity of this model by including additional iPSC-derived melanocytes. Epidermal melanocytes, which are largely responsible for skin pigmentation, represent the second most numerous cell type found in normal human epidermis and as such represent a logical next addition. We report efficient melanin production from iPSC-derived melanocytes and transfer within an entirely iPSC-derived epidermal-melanin unit and generation of the first functional human 3D skin equivalents made from iPSC-derived fibroblasts, keratinocytes and melanocytes.
Ambient ionisation mass spectrometry for in situ analysis of intact proteins
Kocurek, Klaudia I.; Griffiths, Rian L.
2018-01-01
Abstract Ambient surface mass spectrometry is an emerging field which shows great promise for the analysis of biomolecules directly from their biological substrate. In this article, we describe ambient ionisation mass spectrometry techniques for the in situ analysis of intact proteins. As a broad approach, the analysis of intact proteins offers unique advantages for the determination of primary sequence variations and posttranslational modifications, as well as interrogation of tertiary and quaternary structure and protein‐protein/ligand interactions. In situ analysis of intact proteins offers the potential to couple these advantages with information relating to their biological environment, for example, their spatial distributions within healthy and diseased tissues. Here, we describe the techniques most commonly applied to in situ protein analysis (liquid extraction surface analysis, continuous flow liquid microjunction surface sampling, nano desorption electrospray ionisation, and desorption electrospray ionisation), their advantages, and limitations and describe their applications to date. We also discuss the incorporation of ion mobility spectrometry techniques (high field asymmetric waveform ion mobility spectrometry and travelling wave ion mobility spectrometry) into ambient workflows. Finally, future directions for the field are discussed. PMID:29607564
Benatti, Fabiana Braga; Lira, Fábio Santos; Oyama, Lila Missae; do Nascimento, Cláudia Maria da Penha Oller; Lancha, Antonio Herbert
2011-01-01
Liposuction is the most popular aesthetic surgery performed in Brazil and worldwide. Evidence showing that adipose tissue is a metabolically active tissue has led to the suggestion that liposuction could be a viable method for improving metabolic profile through the immediate loss of adipose tissue. However, the immediate liposuction-induced increase in the proportion of visceral to subcutaneous adipose tissue could be detrimental to metabolism, because a high proportion of visceral to subcutaneous adipose tissue is associated with risk factors for cardiovascular disease. The results of studies investigating the effects of liposuction on the metabolic profile are inconsistent, however, with most studies reporting either no change or improvements in one or more cardiovascular risk factors. In addition, animal studies have demonstrated a compensatory growth of intact adipose tissue in response to lipectomy, although studies with humans have reported inconsistent results. Exercise training improves insulin sensitivity, inflammatory balance, lipid oxidation, and adipose tissue distribution; increases or preserves the fat-free mass; and increases total energy expenditure. Thus, liposuction and exercise appear to directly affect metabolism in similar ways, which suggests a possible interaction between these two strategies. To our knowledge, no studies have reported the associated effects of liposuction and exercise in humans. Nonetheless, one could suggest that exercise training associated with liposuction could attenuate or even block the possible compensatory fat deposition in intact depots or regrowth of the fat mass and exert an additive or even a synergistic effect to liposuction on improving insulin sensitivity and the inflammatory balance, resulting in an improvement of cardiovascular risk factors. Consequently, one could suggest that liposuction and exercise appear to be safe and effective strategies for either the treatment of metabolic disorders or aesthetic purposes. PMID:21779146
Saar, Galit; Shinar, Hadassah; Navon, Gil
2007-04-01
One of the functions of articular cartilage is to withstand recurrent pressure applied in everyday life. In previous studies, osmotic pressure has been used to mimic the effects of mechanical pressure. In the present study, the response of the collagen network of intact and proteoglycans (PG)-depleted cartilage to mechanical and osmotic pressures is compared. The technique used is one-dimensional (2)H double quantum filtered spectroscopic MRI, which gives information about the degree of order and the density of the collagen fibers at the different locations throughout the intact tissue. For the nonpressurized plugs, the depletion had no effect on these parameters. Major differences were found in the zones near the bone between the effects of the two types of application of pressure for both intact and depleted plugs. While the order is lost in these zones as a result of mechanical load, it is preserved under osmotic pressure. For both intact and PG-depleted plugs under osmotic stress most of the collagen fibers become disordered. Our results indicate that different modes of strain are produced by unidirectional mechanical load and the isotropic osmotic stress. Thus, osmotic stress cannot serve as a model for the effect of load on cartilage in vivo.
Chen, Xiaoping; Song, Fengyu; Jhamb, Deepali; Li, Jiliang; Bottino, Marco C.; Palakal, Mathew J.; Stocum, David L.
2015-01-01
We tested the ability of the axolotl (Ambystoma mexicanum) fibula to regenerate across segment defects of different size in the absence of intervention or after implant of a unique 8-braid pig small intestine submucosa (SIS) scaffold, with or without incorporated growth factor combinations or tissue protein extract. Fractures and defects of 10% and 20% of the total limb length regenerated well without any intervention, but 40% and 50% defects failed to regenerate after either simple removal of bone or implanting SIS scaffold alone. By contrast, scaffold soaked in the growth factor combination BMP-4/HGF or in protein extract of intact limb tissue promoted partial or extensive induction of cartilage and bone across 50% segment defects in 30%-33% of cases. These results show that BMP-4/HGF and intact tissue protein extract can promote the events required to induce cartilage and bone formation across a segment defect larger than critical size and that the long bones of axolotl limbs are an inexpensive model to screen soluble factors and natural and synthetic scaffolds for their efficacy in stimulating this process. PMID:26098852
The v-Liver is part of a broader EPA effort on Virtual Tissues (VT) aimed at reducing the magnitude and spectrum of animal testing by integrative in silico and in vitro models, which recapitulate the properties of intact organs. The other VT projects include the Virtual Embryo (...
Wood, Daniel K; Chouinard, Philippe A; Major, Alex J; Goodale, Melvyn A
2017-12-01
Most object-directed limb movements can be carried out with a comfortable grasp posture. However, the orientation of an object relative to our bodies can sometimes lead us to select an uncomfortable or awkward grasp posture due to limitations imposed by the biomechanics of the arm. In a series of experiments, we identified a network of cortical areas that are engaged during the selection of movement strategies. Neurologically intact participants and two brain-damaged patients with overlapping lesions in the right posterior superior parietal lobule (pSPL) performed a grasp posture selection task in which biomechanical constraints were the primary consideration for selecting an action. The task induced states of bistable actions whereby the same stimulus gave rise to categorically different grasp postures. In a behavioral experiment, the two patients displayed a large range of manual bistability with the contralesional hand, resulting in a higher incidence of awkward grasping postures. In neurologically intact participants, a separate functional magnetic resonance imaging (fMRI) experiment revealed activation of a parieto-frontal network, which included the posterior intraparietal sulcus (pIPS) along the banks of the pSPL that was parametrically modulated by the degree of bistability in grasp posture selection. Superimposing this activation over the patients' structural MRIs revealed that the pIPS/pSPL activation in the neurologically intact participants overlapped with lesioned cortical tissue in both patients; all other areas of activation overlapped with intact cortical tissue in the patients. These results provide converging evidence that the posterior parietal cortex plays a critical role in selecting biomechanically appropriate postures during reach-to-grasp behaviors. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ichikawa, Shoji; Guigonis, Vincent; Imel, Erik A; Courouble, Mélanie; Heissat, Sophie; Henley, John D; Sorenson, Andrea H; Petit, Barbara; Lienhardt, Anne; Econs, Michael J
2007-05-01
Hyperostosis-hyperphosphatemia syndrome (HHS) is a rare metabolic disorder characterized by hyperphosphatemia and localized hyperostosis. HHS is caused by mutations in GALNT3, which encodes UDP-N-acetyl-alpha-D-galactosamine:polypeptide N- acetylgalactosaminyltransferase 3. Familial tumoral calcinosis (TC), characterized by ectopic calcifications and hyperphosphatemia, is caused by mutations in the GALNT3 or fibroblast growth factor 23 (FGF23) genes. Our objective was to identify mutations in FGF23 or GALNT3 and determine serum FGF23 levels in an HHS patient. Mutation detection in FGF23 and GALNT3 was performed by DNA sequencing, and serum FGF23 concentrations were measured by ELISA. A 5-year-old French boy with HHS and his family members participated. The patient presented with painful cortical lesions in his leg. Radiographs of the affected bone showed diaphyseal hyperostosis. The lesional tissue comprised trabeculae of immature, woven bone surrounded by fibrous tissue. Biochemistry revealed elevated phosphate, tubular maximum rate for phosphate reabsorption per deciliter of glomerular filtrate, and 1,25-dihydroxyvitamin D levels. The patient was a compound heterozygote for two novel GALNT3 mutations. His parents and brother were heterozygous for one of the mutations and had no biochemical abnormalities. Intact FGF23 level in the patient was low normal, whereas C-terminal FGF23 was elevated, a pattern similar to TC. The presence of GALNT3 mutations and elevated C-terminal, but low intact serum FGF23, levels in HHS resemble those seen in TC, suggesting that HHS and TC are different manifestations of the same disorder. The absence of biochemical abnormalities in the heterozygous individuals suggests that one normal allele is sufficient for secretion of intact FGF23.
Effect of milk on somatostatin degradation in suckling rat jejunum in vivo.
Rao, R K; Davis, T P; Williams, C; Koldovsky, O
1999-01-01
Somatostatin-14 is present in breast milk, and intact somatostatin-14 has been recovered from gastric lumen of infants. Studies have shown that somatostatin-14 is metabolized in the intestinal luminal contents in vitro, which could be prevented by the presence of breast milk. In this study, the effect of milk on stability of somatostatin-14 in suckling rat jejunum in vivo was examined. 125I-Somatostatin-14[Tyr 11] was administered to the isolated jejunal loops in anesthetized suckling rats in the absence or presence of milk, fractions of milk, or known protease-peptidase inhibitors. Structural integrity of 125I-somatostatin-14[Tyr 11] recovered from tissues at different intervals was analyzed by gel filtration and high-performance liquid chromatography. Radioactivity rapidly disappeared from the jejunal lumen with a 50% clearance achieved by 1.2 minutes. Gel filtration and high-performance liquid chromatography analyses showed that 125I-somatostatin- 14[Tyr 11] was rapidly degraded into smaller fragments. At 1 minute, jejunal luminal radioactivity was eluted in a major peak with retention time of 42.4 minutes, along with other minor peaks (retention time, 5.6, 8.0, 10.4, and 14.4 minutes); only a trace amount of intact 125I-somatostatin-14[Tyr 11] (retention time, 44.8 minutes) was present. Coadministration of rat's milk or its soluble fraction increased the level of intact 125I-somatostatin-14[Tyr 11] in the jejunal lumen and jejunal tissue. Presence of rat's milk-casein or peptidase inhibitors (bestatin, phosphoramidon, or Bowman-Birk inhibitor), however, failed to increase the level of intact 125I-somatostatin-14[Tyr 11]. These results suggest that somatostatin-14 is rapidly degraded in the jejunal lumen of suckling rats, and that milk-borne peptidase inhibitors prevent this somatostatin-14 degradation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, P.; Block, H; Doiron, K
Conventional 'wet' chemical analyses rely heavily on the use of harsh chemicals and derivatization, thereby altering native seed structures leaving them unable to detect any original inherent structures within an intact tissue sample. A synchrotron is a giant particle accelerator that turns electrons into light (million times brighter than sunlight) which can be used to study the structure of materials at the molecular level. Synchrotron radiation-based Fourier transform IR microspectroscopy (SR-FTIRM) has been developed as a rapid, direct, non-destructive and bioanalytical technique. This technique, taking advantage of the brightness of synchrotron light and a small effective source size, is capablemore » of exploring the molecular chemistry within the microstructures of a biological tissue without the destruction of inherent structures at ultraspatial resolutions within cellular dimensions. This is in contrast to traditional 'wet' chemical methods, which, during processing for analysis, often result in the destruction of the intrinsic structures of feeds. To date there has been very little application of this technique to the study of plant seed tissue in relation to nutrient utilization. The objective of this study was to use novel synchrotron radiation-based technology (SR-FTIRM) to identify the differences in the molecular chemistry and conformation of carbohydrate and protein in various plant seed endosperms within intact tissues at cellular and subcellular level from grains with different biodegradation kinetics. Barley grain (cv. Harrington) with a high rate (31.3%/h) and extent (78%), corn grain (cv. Pioneer) with a low rate (9.6%/h) and extent of (57%), and wheat grain (cv. AC Barrie) with an intermediate rate (23%/h) and extent (72%) of ruminal DM degradation were selected for evaluation. SR-FTIRM evaluations were performed at the National Synchrotron Light Source at the Brookhaven National Laboratory (Brookhaven, NY). These results suggest that SR-FTIRM plus the multivariate analyses can be used to identify spectral features associated with the molecular structure of endosperm from grains with different biodegradation kinetics, especially in relation to protein structure. The Novel synchrotron radiation-based bioanalytical technique provides a new approach for plant seed structural molecular studies at ultraspatial resolution and within intact tissue in relation to nutrient availability.« less
Köbel, Martin; Hoang, Lien N; Tessier-Cloutier, Basile; Meng, Bo; Soslow, Robert A; Stewart, Colin J R; Lee, Cheng-Han
2018-01-01
Undifferentiated endometrial carcinoma is an aggressive type of endometrial carcinoma that typically presents with advanced stage disease and rapid clinical progression. In contrast to dedifferentiated endometrial carcinoma, undifferentiated carcinoma lacks a concurrent differentiated (typically low-grade endometrioid) carcinoma component, though the undifferentiated component of dedifferentiated carcinoma is similar histologically and immunophenotypically to pure undifferentiated carcinoma. We recently identified 3 mutually exclusive mechanisms of switch/sucrose nonfermentable (SWI/SNF) complex inactivation (BRG1 inactivation, INI1 inactivation or ARID1A/ARID1B co-inactivation) that are associated with histologic dedifferentiation in the majority of dedifferentiated endometrial carcinoma. In the current study, we aimed to determine by immunohistochemistry whether these patterns of SWI/SNF inactivation also occur in undifferentiated endometrial carcinomas. Of the 34 undifferentiated carcinomas examined, 17 (50%) exhibited SWI/SNF complex inactivation, with 11 tumors showing complete loss of both ARID1A and ARID1B, 5 showing complete loss of BRG1 and 1 showing complete loss of INI1. Ten of the remaining 17 undifferentiated carcinomas showed the following alterations: 5 tumors (15%) showed loss of ARID1A only with intact ARID1B, BRG1, and INI1 expression, 4 tumors (12%) showed mutated patterns of p53 staining with intact SWI/SNF protein expression, and 1 tumor (3%) harbored a POLE exonuclease domain mutation (P286R). SWI/SNF complex-inactivated tumors presented more frequently with extrauterine disease spread than those with intact expression (88% vs. 41%, respectively). In addition, patients with SWI/SNF complex-inactivated tumors had a significantly worse disease-specific survival (P=0.02). The findings here demonstrate frequent SWI/SNF complex inactivation in undifferentiated endometrial carcinomas, which has future implications regarding therapies that target chromatin remodelling and epigenetic control.
A novel protocol for generating intact, whole-head spider cephalothorax tissue sections.
Long, Skye M
2018-04-01
The diversity of spider behavior and sensory systems provides an excellent opportunity for comparative studies of the relationship between the brain and behavior. However, the morphology of spiders poses a challenge for histologists since the spider cephalothorax contains heterogeneous tissues and has both tough external and internal sclerotized regions. Unlike the heads of insects, the cephalothorax is highly pressurized, which can cause tissues to shift during processing and can reduce tissue cohesion in thick sections. This work describes a novel protocol for producing thick whole-head sections for morphological study by softening the exoskeleton and stabilizing friable tissue, without freezing or dehydration. It also presents an effective whole-head DiI staining method that uses minimal dehydration and highlights neural structures.
Long, Rose G; Rotman, Stijn G; Hom, Warren W; Assael, Dylan J; Illien-Jünger, Svenja; Grijpma, Dirk W; Iatridis, James C
2018-02-01
Herniated intervertebral discs (IVDs) are a common cause of back and neck pain. There is an unmet clinical need to seal annulus fibrosus (AF) defects, as discectomy surgeries address acute pain but are complicated by reherniation and recurrent pain. Copolymers of polyethylene glycol with trimethylene carbonate (TMC) and hexamethylene diisocyanate (HDI) end-groups were formulated as AF sealants as the HDI form covalent bonds with native AF tissue. TMC adhesives were evaluated and optimized using the design criteria: stable size, strong adherence to AF tissue, high cytocompatibility, restoration of IVD biomechanics to intact levels following in situ repair, and low extrusion risk. TMC adhesives had high adhesion strength as assessed with a pushout test (150 kPa), and low degradation rates over 3 weeks in vitro. Both TMC adhesives had shear moduli (220 and 490 kPa) similar to, but somewhat higher than, AF tissue. The adhesive with three TMC moieties per branch (TMC3) was selected for additional in situ testing because it best matched AF shear properties. TMC3 restored torsional stiffness, torsional hysteresis area and axial range of motion to intact states. However, in a failure test of compressive deformation under fixed 5 ° flexion, some herniation risk was observed with failure strength of 5.9 MPa compared with 13.5 MPa for intact samples; TMC3 herniated under cyclic organ culture testing. These TMC adhesives performed well during in vitro and in situ testing, but additional optimization to enhance failure strength is required to further this material to advanced screening tests, such as long-term degradation. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Effect of Soft Tissue Releases on Joint Space Opening in Total Knee Arthroplasty.
Burkhart, Timothy A; Perry, Kevin I; Dobbin, Emily; Howard, James; Lanting, Brent
2016-12-01
The purpose of this study was to determine the gap achieved to the medial and lateral compartments following sectioning and release of the relevant soft tissues in preparation for a total knee arthroplasty. A custom-designed knee tensioner allowed the application of forces to the medial and lateral compartments of 12 cadaveric knee specimens. Loads of 100 N and 200 N were applied to each compartment, and the resulting displacement was measured in the following conditions: (1) All soft tissues intact, (2) an arthrotomy, (3) anterior cruciate ligament (ACL) sectioned, (4) posterior cruciate ligament (PCL) sectioned, and (5) release of the anterior aspect of the deep medial collateral ligament (MCL) fibers. Tensions were applied for all conditions from 90° to 0° of knee flexion in 30° increments. No differences were found in medial or lateral displacement after the arthrotomy or releasing the ACL or PCL at either 100 N or 200 N. At the 100 N load application, there was a significant increase in gap width when the anterior portion of the deep MCL was released (7.49 mm) compared to the intact (5.28 mm) and arthrotomy (5.75 mm) conditions. With respect to the 200 N load application, there were statistically significant differences detected between the deep MCL fiber release (11.09 mm) and intact conditions (8.05 mm) and release of the deep MCL and arthrotomy conditions (8.77 mm). The medial parapetellar arthrotomy, ACL and PCL sectioning did not result in medial or lateral displacement changes. The release of the anterior fibers of the deep MCL as part of the surgical exposure increased the medial gap magnitude. Copyright © 2016 Elsevier Inc. All rights reserved.
Guan, Na N.; Thor, Anna; Hallén, Katarina; Wiklund, N. Peter; Gustafsson, Lars E.
2014-01-01
Our aim was to investigate whether guinea pig urothelium-derived bioactivities compatible with the existence of urothelium-derived inhibitory factor could be demonstrated by in vitro serial bioassay and whether purinergic P1 receptor agonists, nitric oxide, nitrite or prostaglandins might explain observed activities. In a cascade superfusion system, urothelium-denuded guinea pig ureters were used as bioassay tissues, recording their spontaneous rhythmic contractions in presence of scopolamine. Urothelium-intact or -denuded guinea pig urinary bladders were used as donor tissues, stimulated by intermittent application of carbachol before or during the nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME), the adenosine/P1 nucleoside receptor antagonist 8-(p-sulfophenyl)theophylline (8-PST) or the cyclo-oxygenase inhibitor diclofenac infused to bath donor and bioassay tissues. The spontaneous contractions of bioassay ureters were unaltered by application of carbachol 1–5 µM in the presence of scopolamine 5–30 µM. When carbachol was applied over the urothelium-denuded bladder, the assay ureter contraction rate was unaltered. Introducing carbachol over the everted urothelium-intact bladder significantly inhibited the contraction frequency of the assay ureter, suggesting the transfer of an inhibitory activity from the bladder to the assay ureter. The transmissible inhibitory activity was not markedly antagonized by L-NAME, 8-PST or diclofenac, while L-NAME nearly abolished nitrite release from the urothelium-intact bladder preparations. We suggest that urothelium-derived inhibitory factor is a transmissible entity over a significant distance as demonstrated in this novel cascade superfusion assay and seems less likely to be nitric oxide, nitrite, an adenosine receptor agonist or subject to inhibition by administration of a cyclo-oxygenase inhibitor. PMID:25084114
Guan, Na N; Thor, Anna; Hallén, Katarina; Wiklund, N Peter; Gustafsson, Lars E
2014-01-01
Our aim was to investigate whether guinea pig urothelium-derived bioactivities compatible with the existence of urothelium-derived inhibitory factor could be demonstrated by in vitro serial bioassay and whether purinergic P1 receptor agonists, nitric oxide, nitrite or prostaglandins might explain observed activities. In a cascade superfusion system, urothelium-denuded guinea pig ureters were used as bioassay tissues, recording their spontaneous rhythmic contractions in presence of scopolamine. Urothelium-intact or -denuded guinea pig urinary bladders were used as donor tissues, stimulated by intermittent application of carbachol before or during the nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME), the adenosine/P1 nucleoside receptor antagonist 8-(p-sulfophenyl)theophylline (8-PST) or the cyclo-oxygenase inhibitor diclofenac infused to bath donor and bioassay tissues. The spontaneous contractions of bioassay ureters were unaltered by application of carbachol 1-5 µM in the presence of scopolamine 5-30 µM. When carbachol was applied over the urothelium-denuded bladder, the assay ureter contraction rate was unaltered. Introducing carbachol over the everted urothelium-intact bladder significantly inhibited the contraction frequency of the assay ureter, suggesting the transfer of an inhibitory activity from the bladder to the assay ureter. The transmissible inhibitory activity was not markedly antagonized by L-NAME, 8-PST or diclofenac, while L-NAME nearly abolished nitrite release from the urothelium-intact bladder preparations. We suggest that urothelium-derived inhibitory factor is a transmissible entity over a significant distance as demonstrated in this novel cascade superfusion assay and seems less likely to be nitric oxide, nitrite, an adenosine receptor agonist or subject to inhibition by administration of a cyclo-oxygenase inhibitor.
Evidence does not support absorption of intact solid lipid nanoparticles via oral delivery
NASA Astrophysics Data System (ADS)
Hu, Xiongwei; Fan, Wufa; Yu, Zhou; Lu, Yi; Qi, Jianping; Zhang, Jian; Dong, Xiaochun; Zhao, Weili; Wu, Wei
2016-03-01
Whether and to what extent solid lipid nanoparticles (SLNs) can be absorbed integrally via oral delivery should be clarified because it is the basis for elucidation of absorption mechanisms. To address this topic, the in vivo fate of SLNs as well as their interaction with biomembranes is investigated using water-quenching fluorescent probes that can signal structural variations of lipid-based nanocarriers. Live imaging indicates prolonged retention of SLNs in the stomach, whereas in the intestine, SLNs can be digested quickly. No translocation of intact SLNs to other organs or tissues can be observed. The in situ perfusion study shows bioadhesion of both SLNs and simulated mixed micelles (SMMs) to intestinal mucus, but no evidence of penetration of integral nanocarriers. Both SLNs and SMMs exhibit significant cellular uptake, but fail to penetrate cell monolayers. Confocal laser scanning microscopy reveals that nanocarriers mainly concentrate on the surface of the monolayers, and no evidence of penetration of intact vehicles can be obtained. The mucous layer acts as a barrier to the penetration of both SLNs and SMMs. Both bile salt-decoration and SMM formulation help to strengthen the interaction with biomembranes. It is concluded that evidence does not support absorption of intact SLNs via oral delivery.Whether and to what extent solid lipid nanoparticles (SLNs) can be absorbed integrally via oral delivery should be clarified because it is the basis for elucidation of absorption mechanisms. To address this topic, the in vivo fate of SLNs as well as their interaction with biomembranes is investigated using water-quenching fluorescent probes that can signal structural variations of lipid-based nanocarriers. Live imaging indicates prolonged retention of SLNs in the stomach, whereas in the intestine, SLNs can be digested quickly. No translocation of intact SLNs to other organs or tissues can be observed. The in situ perfusion study shows bioadhesion of both SLNs and simulated mixed micelles (SMMs) to intestinal mucus, but no evidence of penetration of integral nanocarriers. Both SLNs and SMMs exhibit significant cellular uptake, but fail to penetrate cell monolayers. Confocal laser scanning microscopy reveals that nanocarriers mainly concentrate on the surface of the monolayers, and no evidence of penetration of intact vehicles can be obtained. The mucous layer acts as a barrier to the penetration of both SLNs and SMMs. Both bile salt-decoration and SMM formulation help to strengthen the interaction with biomembranes. It is concluded that evidence does not support absorption of intact SLNs via oral delivery. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07474f
[18S-25S rDNA variation in tissue culture of some Gentiana L. species].
Mel'nyk, V M; Andrieiev, I O; Spiridonova, K V; Strashniuk, N M; Kunakh, V A
2007-01-01
18S-25S rDNA of intact plants and tissue cultures of G. acaulis, G. punctata and G. lutea have been investigated by using blot-hybridization. The decrease of rDNA amount was found in the callus cultures as compared with the plants. In contrast to other species, G. lutea showed intragenome heterogeneity of rRNA genes as well as qualitative rDNA changes in tissue culture, in particular appearance of altered repeats. The relationship between the peculiarities of rRNA gene structure and their rearrangements in in vitro culture was suggested.
Sarder, Pinaki; Yazdanfar, Siavash; Akers, Walter J.; Tang, Rui; Sudlow, Gail P.; Egbulefu, Christopher
2013-01-01
Abstract. The era of molecular medicine has ushered in the development of microscopic methods that can report molecular processes in thick tissues with high spatial resolution. A commonality in deep-tissue microscopy is the use of near-infrared (NIR) lasers with single- or multiphoton excitations. However, the relationship between different NIR excitation microscopic techniques and the imaging depths in tissue has not been established. We compared such depth limits for three NIR excitation techniques: NIR single-photon confocal microscopy (NIR SPCM), NIR multiphoton excitation with visible detection (NIR/VIS MPM), and all-NIR multiphoton excitation with NIR detection (NIR/NIR MPM). Homologous cyanine dyes provided the fluorescence. Intact kidneys were harvested after administration of kidney-clearing cyanine dyes in mice. NIR SPCM and NIR/VIS MPM achieved similar maximum imaging depth of ∼100 μm. The NIR/NIR MPM enabled greater than fivefold imaging depth (>500 μm) using the harvested kidneys. Although the NIR/NIR MPM used 1550-nm excitation where water absorption is relatively high, cell viability and histology studies demonstrate that the laser did not induce photothermal damage at the low laser powers used for the kidney imaging. This study provides guidance on the imaging depth capabilities of NIR excitation-based microscopic techniques and reveals the potential to multiplex information using these platforms. PMID:24150231
Connexin43 contributes to electrotonic conduction across scar tissue in the intact heart
NASA Astrophysics Data System (ADS)
Mahoney, Vanessa M.; Mezzano, Valeria; Mirams, Gary R.; Maass, Karen; Li, Zhen; Cerrone, Marina; Vasquez, Carolina; Bapat, Aneesh; Delmar, Mario; Morley, Gregory E.
2016-05-01
Studies have demonstrated non-myocytes, including fibroblasts, can electrically couple to myocytes in culture. However, evidence demonstrating current can passively spread across scar tissue in the intact heart remains elusive. We hypothesize electrotonic conduction occurs across non-myocyte gaps in the heart and is partly mediated by Connexin43 (Cx43). We investigated whether non-myocytes in ventricular scar tissue are electrically connected to surrounding myocardial tissue in wild type and fibroblast-specific protein-1 driven conditional Cx43 knock-out mice (Cx43fsp1KO). Electrical coupling between the scar and uninjured myocardium was demonstrated by injecting current into the myocardium and recording depolarization in the scar through optical mapping. Coupling was significantly reduced in Cx43fsp1KO hearts. Voltage signals were recorded using microelectrodes from control scars but no signals were obtained from Cx43fsp1KO hearts. Recordings showed significantly decreased amplitude, depolarized resting membrane potential, increased duration and reduced upstroke velocity compared to surrounding myocytes, suggesting that the non-excitable cells in the scar closely follow myocyte action potentials. These results were further validated by mathematical simulations. Optical mapping demonstrated that current delivered within the scar could induce activation of the surrounding myocardium. These data demonstrate non-myocytes in the scar are electrically coupled to myocytes, and coupling depends on Cx43 expression.
Chang, C-Hong; Davies, Jamie A
2012-01-01
Tissue engineering of functional kidney tissue is an important goal for clinical restoration of renal function in patients damaged by infectious, toxicological, or genetic disease. One promising approach is the use of the self-organizing abilities of embryonic kidney cells to arrange themselves, from a simply reaggregated cell suspension, into engineered organs similar to fetal kidneys. The previous state-of-the-art method for this results in the formation of a branched collecting duct tree, immature nephrons (S-shaped bodies) beside and connected to it, and supportive stroma. It does not, though, result in the significant formation of morphologically detectable loops of Henle - anatomical features of the nephron that are critical to physiological function. We have combined the best existing technique for renal tissue engineering from cell suspensions with a low-volume culture technique that allows intact kidney rudiments to make loops of Henle to test whether engineered kidneys can produce these loops. The result is the formation of loops of Henle in engineered cultured 'fetal kidneys', very similar in both morphology and in number to those formed by intact organ rudiments. This brings the engineering technique one important step closer to production of a fully realistic organ. Copyright © 2012 S. Karger AG, Basel.
A simple cell transport device keeps culture alive and functional during shipping.
Miller, Paula G; Wang, Ying I; Swan, Glen; Shuler, Michael L
2017-09-01
Transporting living complex cellular constructs through the mail while retaining their full viability and functionality is challenging. During this process, cells often suffer from exposure to suboptimal life-sustaining conditions (e.g. temperature, pH), as well as damage due to shear stress. We have developed a transport device for shipping intact cell/tissue constructs from one facility to another that overcomes these obstacles. Our transport device maintained three different cell lines (Caco2, A549, and HepG2 C3A) individually on transwell membranes with high viability (above 97%) for 48 h under simulated shipping conditions without an incubator. The device was also tested by actual overnight shipping of blood brain barrier constructs consisting of human induced pluripotent brain microvascular endothelial cells and rat astrocytes on transwell membranes to a remote facility (approximately 1200 miles away). The blood brain barrier constructs arrived with high cell viability and were able to regain full barrier integrity after equilibrating in the incubator for 24 h; this was assessed by the presence of continuous tight junction networks and in vivo-like values for trans-endothelial electrical resistance (TEER). These results demonstrated that our cell transport device could be a useful tool for long-distance transport of membrane-bound cell cultures and functional tissue constructs. Studies that involve various cell and tissue constructs, such as the "Multi-Organ-on-Chip" devices (where multiple microscale tissue constructs are integrated on a single microfluidic device) and studies that involve microenvironments where multiple tissue interactions are of interest, would benefit from the ability to transport or receive these constructs. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1257-1266, 2017. © 2017 American Institute of Chemical Engineers.
Nuclear binding of progesterone in hen oviduct. Binding to multiple sites in vitro.
Pikler, G M; Webster, R A; Spelsberg, T C
1976-01-01
Steroid hormones, including progesterone, are known to bind with high affinity (Kd approximately 1x10(-10)M) to receptor proteins once they enter target cells. This complex (the progesterone-receptor) then undergoes a temperature-and/or salt-dependent activation which allows it to migrate to the cell nucleus and to bind to the deoxyribonucleoproteins. The present studies demonstrate that binding the hormone-receptor complex in vitro to isolated nuclei from the oviducts of laying hens required the same conditions as do other studies of bbinding in vitro reported previously, e.g. the hormone must be complexed to intact and activated receptor. The assay of the nuclear binding by using multiple concentrations of progesterone receptor reveals the presence of more than one class of binding site in the oviduct nuclei. The affinity of each of these classes of binding sites range from Kd approximately 1x10(-9)-1x10(-8)M. Assays using free steroid (not complexed with receptor) show no binding to these sites. The binding to each of the classes of sites, displays a differential stability to increasing ionic concentrations, suggesting primarily an ionic-type interaction for all classes. Only the highest-affinity class of binding site is capable of binding progesterone receptor under physioligical-saline conditions. This class represent 6000-10000 sites per cell nucleus and resembles the sites detected in vivo (Spelsberg, 1976, Biochem. J. 156, 391-398) which cause maximal transcriptional response when saturated with the progesterone receptor. The multiple binding sites for the progesterone receptor either are not present or are found in limited numbers in the nuclei of non-target organs. Differences in extent of binding to the nuclear material between a target tissue (oviduct) and other tissues (spleen or erythrocyte) are markedly dependent on the ionic conditions, and are probably due to binding to different classes of sites in the nuclei. PMID:182147
Muscle complex saving posterior sagittal anorectoplasty.
Zaiem, Maher; Zaiem, Feras
2017-05-01
Posterior sagittal anorectoplasty (PSARP) published by DeVries and Peña in 1982 had become the preferred surgical technique for the management of anorectal malformations (ARM). The original technique is based upon complete exposure of the anorectal region by means of a median sagittal incision that runs from the sacrum to the anal dimple, cutting through all muscle structures behind the rectum by dividing the levator muscle and the muscle complex. Then, the rectum is located in front of the levator and within the limits of the muscle complex. In this review, we described Muscle Complex Saving-Posterior Sagittal Anorectoplasty (MCS-PSARP), which is a less invasive technique that consists of keeping this funnel-shaped muscle complex completely intact and not divided, and pulling the rectum through this funnel, toward fixing the new anus to the skin. This technique aimed both to respect the lower part of the sphincter mechanism consisting of the muscle complex, and to avoid the disturbance of this important structure by dividing and resuturing it. We presented six cases of male patients who were born with anorectal malformation (ARM) and underwent MCS-PSARP. The surgical technique proved to be feasible to achieve the dissection of the rectal pouch and the division of the rectourethral fistula in all patients, by opening only the upper part of the sphincter mechanism, the levator muscle, and keeping the lower part consisting of intact muscle complex. The early results in our series are encouraging; however, long-term functional outcomes of these patients are awaited. The surgical tips were also discussed. This proposed approach in the management of anorectal malformation cases provides an opportunity to maximize preservation of the existing continence mechanisms. It preserves the muscle complex components of the levator muscle intact, allowing a better function of the continence mechanism. Copyright © 2016 Elsevier Inc. All rights reserved.
Label-free volumetric optical imaging of intact murine brains
NASA Astrophysics Data System (ADS)
Ren, Jian; Choi, Heejin; Chung, Kwanghun; Bouma, Brett E.
2017-04-01
A central effort of today’s neuroscience is to study the brain’s ’wiring diagram’. The nervous system is believed to be a network of neurons interacting with each other through synaptic connection between axons and dendrites, therefore the neuronal connectivity map not only depicts the underlying anatomy, but also has important behavioral implications. Different approaches have been utilized to decipher neuronal circuits, including electron microscopy (EM) and light microscopy (LM). However, these approaches typically demand extensive sectioning and reconstruction for a brain sample. Recently, tissue clearing methods have enabled the investigation of a fully assembled biological system with greatly improved light penetration. Yet, most of these implementations, still require either genetic or exogenous contrast labeling for light microscopy. Here we demonstrate a high-speed approach, termed as Clearing Assisted Scattering Tomography (CAST), where intact brains can be imaged at optical resolution without labeling by leveraging tissue clearing and the scattering contrast of optical frequency domain imaging (OFDI).
Passage of delta sleep-inducing peptide (DSIP) across the blood-cerebrospinal fluid barrier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zlokovic, B.V.; Segal, M.B.; Davson, H.
1988-05-01
Unidirectional flux of /sup 125/I-labeled DSIP at the blood-tissue interface of the blood-cerebrospinal fluid (CSF) barrier was studied in the perfused in situ choroid plexuses of the lateral ventricles of the sheep. Arterio-venous loss of /sup 125/I-radioactivity suggested a low-to-moderate permeability of the choroid epithelium to the intact peptide from the blood side. A saturable mechanism with Michaelis-Menten type kinetics with high affinity and very low capacity (approximate values: Kt = 5.0 +/- 0.4 nM; Vmax = 272 +/- 10 fmol.min-1) was demonstrated at the blood-tissue interface of the choroid plexus. The clearance of DSIP from the ventricles during ventriculo-cisternalmore » perfusion in the rabbit indicated no significant flux of the intact peptide out of the CSF. The results suggest that DSIP crosses the blood-CSF barrier, while the system lacks the specific mechanisms for removal from the CSF found with most, if not all, amino acids and several peptides.« less
Porcine intact and wounded skin responses to atmospheric nonthermal plasma.
Wu, Andrew S; Kalghatgi, Sameer; Dobrynin, Danil; Sensenig, Rachel; Cerchar, Ekaternia; Podolsky, Erica; Dulaimi, Essel; Paff, Michelle; Wasko, Kimberly; Arjunan, Krishna Priya; Garcia, Kristin; Fridman, Gregory; Balasubramanian, Manjula; Ownbey, Robert; Barbee, Kenneth A; Fridman, Alexander; Friedman, Gary; Joshi, Suresh G; Brooks, Ari D
2013-01-01
Thermal plasma is a valued tool in surgery for its coagulative and ablative properties. We suggested through in vitro studies that nonthermal plasma can sterilize tissues, inactive pathogens, promote coagulation, and potentiate wound healing. The present research was undertaken to study acute toxicity in porcine skin tissues. We demonstrate that floating electrode-discharge barrier discharge (FE-DBD) nonthermal plasma is electrically safe to apply to living organisms for short periods. We investigated the effects of FE-DBD plasma on Yorkshire pigs on intact and wounded skin immediately after treatment or 24h posttreatment. Macroscopic or microscopic histological changes were identified using histological and immunohistochemical techniques. The changes were classified into four groups for intact skin: normal features, minimal changes or congestive changes, epidermal layer damage, and full burn and into three groups for wounded skin: normal, clot or scab, and full burn-like features. Immunohistochemical staining for laminin layer integrity showed compromise over time. A marker for double-stranded DNA breaks, γ-H2AX, increased over plasma-exposure time. These findings identified a threshold for plasma exposure of up to 900s at low power and <120s at high power. Nonthermal FE-DBD plasma can be considered safe for future studies of external use under these threshold conditions for evaluation of sterilization, coagulation, and wound healing. Copyright © 2013 Elsevier Inc. All rights reserved.
Gianfrilli, Daniele; Pierotti, Silvia; Leonardo, Costantino; Ciccariello, Mauro
2014-01-01
In vitro studies reveal that androgens, oestrogens, and their metabolites play a crucial role in prostate homeostasis. Most of the studies evaluated intraprostatic hormone metabolism using cell lines or preprocessed specimens. Using an ex vivo model of intact tissue cultures with preserved architecture, we characterized the enzymatic profile of biopsies from patients with benign prostatic hyperplasia (BPH) or cancer (PC), focusing on 17β-hydroxy-steroid-dehydrogenases (17β-HSDs) and aromatase activities. Samples from 26 men who underwent prostate needle core biopsies (BPH n = 14; PC n = 12) were incubated with radiolabeled 3H-testosterone or 3H-androstenedione. Conversion was evaluated by TLC separation and beta-scanning of extracted supernatants. We identified three major patterns of conversion. The majority of BPHs revealed no active testosterone/oestradiol conversion as opposed to prostate cancer. Conversion correlated with histology and PSA, but not circulating hormones. Highest Gleason scores had a higher androstenedion-to-testosterone conversion and expression of 17β-HSD-isoenzymes-3/5. Conclusions. We developed an easy tool to profile individual intraprostatic enzymatic activity by characterizing conversion pathways in an intact tissue environment. In fresh biopsies we found that 17β-HSD-isoenzymes and aromatase activities correlate with biological behaviour allowing for morphofunctional phenotyping of pathology specimens and clinical monitoring of novel enzyme-targeting drugs. PMID:25184140
A fluorescent method for visualization of Nosema infection in whole-mount honey bee tissues.
Snow, Jonathan W
2016-03-01
Honey bees are critical pollinators in both agricultural and ecological settings. The Nosema species, ceranae and apis, are microsporidian parasites that are pathogenic to honey bees. While current methods for detecting Nosema infection have key merits, additional techniques with novel properties for studying the cell biology of Nosema infection are highly desirable. We demonstrate that whole-mount staining of honey bee midgut tissue with chitin-binding agent Fluorescent Brightener 28 and DNA dye Propidium Iodide allows for observation of Nosema infection in structurally intact tissue, providing a new tool for increasing our understanding of Nosema infection at the cellular and tissue level. Copyright © 2016 Elsevier Inc. All rights reserved.
Uptake of ingested bovine lactoferrin and its accumulation in adult mouse tissues.
Fischer, Romy; Debbabi, Hajer; Blais, Anne; Dubarry, Michel; Rautureau, Michèle; Boyaka, Prosper N; Tome, Daniel
2007-10-01
Lactoferrin is a glycoprotein with antimicrobial and immunoregulatory properties, which is found in milk, other external secretions, and in the secondary granules of neutrophils. The present study examined the time course of uptake and the pattern of tissue accumulation of bovine lactoferrin (bLf) following intragastric intubation of a single dose to adult naïve mice or to mice daily fed bLf for 4 weeks. Following ingestion, bLf was transferred from the intestine into peripheral blood in a form with intact molecular weight (80 kDa) and localized within 10 to 20 min after oral administration in the liver, kidneys, gall bladder, spleen, and brain of both groups of mice. Immunoreactive bLf could also be detected in the luminal contents of the stomach, small intestine and colon 1 h after intragastric intubation. Interestingly, serum and tissue accumulation of bLf was approximately 50% lower in mice chronically fed this protein than in those given only the single oral dose. Furthermore, significant levels of bLf-specific IgA and IgG antibodies as well as bLf-containing IgA- and IgG immune complexes were detected in mice chronically fed bLf but not in those fed only once. Taken together, these results indicate that bLf resists major proteolytic degradation in the intestinal lumen and is readily absorbed in an antigenic form in blood and various mouse tissues. Chronic ingestion of lactoferrin reduces its uptake, probably through mechanisms such as immune exclusion, which minimize potential harmful reactions to food products.
Beckmann, Anna-Madeleine; Glebov, Konstantin; Walter, Jochen; Merkel, Olaf; Mangold, Martin; Schmidt, Frederike; Becker-Pauly, Christoph; Gütschow, Michael; Stirnberg, Marit
2016-08-01
Proteolytic processing of the amyloid precursor protein (APP) leads to amyloid-β (Aβ) peptides. So far, the mechanism of APP processing is insufficiently characterized at the molecular level. Whereas the knowledge of Aβ generation by several proteases has been expanded, the contribution of the Kunitz-type protease inhibitor domain (KPI) present in two major APP isoforms to the complex proteolytic processing of APP is poorly understood. In this study, we have identified KPI-containing APP as a very potent, slow-binding inhibitor for the membrane-bound proteolytic regulator of iron homeostasis matriptase-2 by forming stable complexes with its target protease in HEK cells. Inhibition and complex formation depend on the intact KPI domain. By inhibiting matriptase-2, KPI-containing APP is protected from matriptase-2-mediated proteolysis within the Aβ region, thus preventing the generation of N-terminally truncated Aβ.
Sommer, Gerhard; Schriefl, Andreas; Zeindlinger, Georg; Katzensteiner, Andreas; Ainödhofer, Herwig; Saxena, Amulya; Holzapfel, Gerhard A
2013-12-01
Congenital defects of the esophagus are relatively frequent, with 1 out of 2500 babies suffering from such a defect. A new method of treatment by implanting tissue engineered esophagi into newborns is currently being developed and tested using ovine esophagi. For the reconstruction of the biological function of native tissues with engineered esophagi, their cellular structure as well as their mechanical properties must be considered. Since very limited mechanical and structural data for the esophagus are available, the aim of this study was to investigate the multiaxial mechanical behavior of the ovine esophagus and the underlying microstructure. Therefore, uniaxial tensile, biaxial tensile and extension-inflation tests on esophagi were performed. The underlying microstructure was examined in stained histological sections through standard optical microscopy techniques. Moreover, the uniaxial ultimate tensile strength and residual deformations of the tissue were determined. Both the mucosa-submucosa and the muscle layers showed nonlinear and anisotropic mechanical behavior during uniaxial, biaxial and inflation testing. Cyclical inflation of the intact esophageal tube caused marked softening of the passive esophagi in the circumferential direction. The rupture strength of the mucosa-submucosa layer was much higher than that of the muscle layer. Overall, the ovine esophagus showed a heterogeneous and anisotropic behavior with different mechanical properties for the individual layers. The intact and layer-specific multiaxial properties were characterized using a well-known three-dimensional microstructurally based strain-energy function. This novel and complete set of data serves the basis for a better understanding of tissue remodeling in diseased esophagi and can be used to perform computer simulations of surgical interventions or medical-device applications. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Margalit, Eshed; Biederman, Irving; Tjan, Bosco S; Shah, Manan P
2017-09-01
The lateral occipital complex (LOC), the cortical region critical for shape perception, is localized with fMRI by its greater BOLD activity when viewing intact objects compared with their scrambled versions (resembling texture). Despite hundreds of studies investigating LOC, what the LOC localizer accomplishes-beyond distinguishing shape from texture-has never been resolved. By independently scattering the intact parts of objects, the axis structure defining the relations between parts was no longer defined. This led to a diminished BOLD response, despite the increase in the number of independent entities (the parts) produced by the scattering, thus indicating that LOC specifies interpart relations, in addition to specifying the shape of the parts themselves. LOC's sensitivity to relations is not confined to those between parts but is also readily apparent between objects, rendering it-and not subsequent "place" areas-as the critical region for the representation of scenes. Moreover, that these effects are witnessed with novel as well as familiar intact objects and scenes suggests that the relations are computed on the fly, rather than being retrieved from memory.
Systems genetics identifies Hp1bp3 as a novel modulator of cognitive aging.
Neuner, Sarah M; Garfinkel, Benjamin P; Wilmott, Lynda A; Ignatowska-Jankowska, Bogna M; Citri, Ami; Orly, Joseph; Lu, Lu; Overall, Rupert W; Mulligan, Megan K; Kempermann, Gerd; Williams, Robert W; O'Connell, Kristen M S; Kaczorowski, Catherine C
2016-10-01
An individual's genetic makeup plays an important role in determining susceptibility to cognitive aging. Identifying the specific genes that contribute to cognitive aging may aid in early diagnosis of at-risk patients, as well as identify novel therapeutics targets to treat or prevent development of symptoms. Challenges to identifying these specific genes in human studies include complex genetics, difficulty in controlling environmental factors, and limited access to human brain tissue. Here, we identify Hp1bp3 as a novel modulator of cognitive aging using a genetically diverse population of mice and confirm that HP1BP3 protein levels are significantly reduced in the hippocampi of cognitively impaired elderly humans relative to cognitively intact controls. Deletion of functional Hp1bp3 in mice recapitulates memory deficits characteristic of aged impaired mice and humans, further supporting the idea that Hp1bp3 and associated molecular networks are modulators of cognitive aging. Overall, our results suggest Hp1bp3 may serve as a potential target against cognitive aging and demonstrate the utility of genetically diverse animal models for the study of complex human disease. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Improved method for sectioning pectoral spines of catfish for age determination
Blouin, Marc A.; Hall, Glenda R.
1990-01-01
The advantages of this method are: (1) spine sections are clear, with uniform thickness and little tissue damage; (2) no time-consuming procedures are necessary; (3) the original spine remains intact for future sectioning; and (4) the thick, single blade does not warp.
2005-07-01
as an access graft is addressed using statistical methods below. Graft consistency can be defined statistically as the variance associated with the...addressed using statistical methods below. Graft consistency can be defined statistically as the variance associated with the sample of grafts tested in...measured using a refractometer (Brix % method). The equilibration data are shown in Graph 1. The results suggest the following equilibration scheme: 40% v/v
In vivo multiphoton microscopy of deep tissue with gradient index lenses
NASA Astrophysics Data System (ADS)
Levene, Michael J.; Dombeck, Daniel A.; Williams, Rebecca M.; Skoch, Jesse; Hickey, Gregory A.; Kasischke, Karl A.; Molloy, Raymond P.; Ingelsson, Martin; Stern, Edward A.; Klucken, Jochen; Bacskai, Brian J.; Zipfel, Warren R.; Hyman, Bradley T.; Webb, Watt W.
2004-06-01
Gradient index lenses enable multiphoton microscopy of deep tissues in the intact animal. In order to assess their applicability to clinical research, we present in vivo multiphoton microscopy with gradient index lenses in brain regions associated with Alzheimer's disease and Parkinson's disease in both transgenic and wild-type mice. We also demonstrate microscopy of ovary in wild type mouse using only intrinsic fluorescence and second harmonic generation, signal sources which may prove useful for both the study and diagnosis of cancer.
C3 fixed in vivo to cornea from horses inoculated with Leptospira interrogans.
Parma, A E; Cerone, S I; Sansinanea, S A; Ghezzi, M
1992-10-01
C3 was detected bound in vivo to the opaque cornea of horses inoculated with killed Leptospira interrogans. Employing epithelial corneal cells isolated from a monolayer in tissue culture, we proved that C3 is fixed in vitro to the intact cell surface after incubation with a fresh equine anti-Leptospira serum. These findings, in addition to the infiltration of cornea with neutrophils and lymphocytes, may explain the mechanisms of tissue damage in recurrent uveitis of horses with leptospirosis.
Development and Translation of a Tissue-Engineered Disc in a Preclinical Rodent Model
2014-02-01
maturation of MSC - laden DAPS at a length scale of the full intact tissue. This is the first study to our knowledge 5 showing beneficial effects of...was also published in the Journal of the Mechanical Behavior of Biomedical Materials in 2012. To carry out this study , MSCs were isolated from...in our preliminary studies . Cylindrical MSC -based NP constructs (Ø4 × 2.25mm) were cultured in a chemically defined medium (1mL/construct
Freemont, Anthony J; Hoyland, Judith
2006-01-01
Cartilage repair is a major goal of modern tissue engineering. To produce novel engineered implants requires a knowledge of the basic biology of the tissues that are to be replaced or reproduced. Hyaline articular cartilage and meniscal fibrocartilage are two tissues that have excited attention because of the frequency with which they are damaged. A basic strategy is to re-engineer these tissues ex vivo by stimulating stem cells to differentiate into the cells of the mature tissue capable of producing an intact functional matrix. In this brief review, the sources of cells for tissue engineering cartilage and the culture conditions that have promoted differentiation are discussed within the context of natural cartilage repair. In particular, the role of cell density, cytokines, load, matrices and oxygen tension are discussed.
Surgical reduction of adipose tissue in the male Sprague-Dawley rat.
Kral, J G
1976-10-01
The lipostatic theory of regulation of adipose tissue mass was tested by a method for surgical reduction (adipectomy) of 24% of the total body fat of nonobese adult Sprague-Dawley rats, as judged from carcass analyses. The reduction persisted during an observation period of 12 wk without any evidence of altered food intake, weight gain, or compensatory hypertrophy or hyperplasia of adipose tissue compared with sham-operated controls. No changes were found in serum free fatty acids, glycerol, triglycerides, cholesterol, or insulin between adipectomized and control animals, implying an intact quantitative function of the remaining adipose tissue. It is concluded that the size of the adipocytes rather than the number is important for a presumed lipostatic regulation of adipose tissue mass in the adult male Sprague-Dawley rat.
Speech Perception in MRI Scanner Noise by Persons with Aphasia
ERIC Educational Resources Information Center
Healy, Eric W.; Moser, Dana C.; Morrow-Odom, K. Leigh; Hall, Deborah A.; Fridriksson, Julius
2007-01-01
Purpose: To examine reductions in performance on auditory tasks by aphasic and neurologically intact individuals as a result of concomitant magnetic resonance imaging (MRI) scanner noise. Method: Four tasks together forming a continuum of linguistic complexity were developed. They included complex-tone pitch discrimination, same-different…
Histotripsy for Pediatric Cardiac Applications: In Vivo Neonatal Pig Model
NASA Astrophysics Data System (ADS)
Miller, Ryan M.; Owens, Gabe; Ensing, Gregory; Ludomirsky, Achiau; Cain, Charles; Xu, Zhen
2010-03-01
This study investigated the in vivo feasibility of using histotripsy to non-invasively create a flow channel between the ventricles by generating a perforation of the ventricular septum, clinically referred to as a ventricular septum defect (VSD). The overall goal is to develop a non-invasive procedure to aid in the treatment of neonatal patients with complex congenital heart diseases such as Hypoplastic Left Heart Syndrome (HLHS). Histotripsy is a therapeutic ultrasound technique that produces mechanical fractionation of soft tissue through controlled cavitation. The study was conducted in a live and intact neonatal pig model. The ventricular septum in the neonatal pig heart was treated with histotripsy delivered by a spherically focused 1 MHz transducer positioned outside the chest wall. Histotripsy treatment was applied using 5-cycle ultrasound pulses at 1 kHz pulse repetition frequency with 12-18 MPa peak negative pressure. The treatment was guided and monitored with ultrasound imaging. In all nine subjects treated, a bubble cloud was generated on the ventricular septum using histotripsy, and visualized with ultrasound imaging. Within 20 seconds to 4 minutes following the initiation of a bubble cloud, a VSD was created in all nine pigs and confirmed by the detection of blood flow through the ventricular septum with color Doppler ultrasound. Gross morphology and histology on all hearts showed a demarcated perforation in the ventricular septum. This study shows that a VSD can be created in an intact neonatal animal using extracorporeal histotripsy under real-time ultrasound guidance.
Bastan, Idil; Robinson, Nicholas A; Ge, Xiao Na; Rendahl, Aaron K; Rao, Savita P; Washabau, Robert J; Sriramarao, P
2017-01-01
OBJECTIVE To evaluate a method for identifying intact and degranulated eosinophils in the small intestine of dogs with inflammatory bowel disease (IBD) by use of a monoclonal antibody (mAb) against eosinophil peroxidase (EPX). ANIMALS 11 untreated dogs with IBD, 5 dogs with IBD treated with prednisolone, and 8 control dogs with no clinical evidence of gastrointestinal tract disease and no immunosuppressive treatment. PROCEDURES 4-μm-thick sections of paraffin-embedded tissues from necropsy specimens were immunostained with EPX mAb. Stained intact and degranulated eosinophils in consecutive microscopic fields (400X magnification) of the upper (villus tips) and lower (between the muscularis mucosae and crypts) regions of the lamina propria of the jejunum were manually counted. RESULTS Compared with control and treated IBD dogs, untreated IBD dogs had a significantly higher number of degranulated eosinophils in the lower region of the lamina propria. However, no significant differences were detected in the number of intact eosinophils in this region among groups. In the upper region of the lamina propria, untreated IBD dogs had a significantly higher number of degranulated and intact eosinophils, compared with control and treated IBD dogs. Number of degranulated and intact eosinophils did not differ significantly between control and treated IBD dogs. CONCLUSIONS AND CLINICAL RELEVANCE Immunohistologic analysis with EPX mAb yielded prominent granule staining that allowed reliable morphological identification of degranulated and intact eosinophils, which may provide a strategy for quantitative and selective evaluation of eosinophils in gastrointestinal biopsy specimens and a potential method to diagnose IBD and evaluate treatment outcome.
Passive contribution of the rotator cuff to abduction and joint stability.
Tétreault, Patrice; Levasseur, Annie; Lin, Jenny C; de Guise, Jacques; Nuño, Natalia; Hagemeister, Nicola
2011-11-01
The purpose of this study is to compare shoulder joint biomechanics during abduction with and without intact non-functioning rotator cuff tissue. A cadaver model was devised to simulate the clinical findings seen in patients with a massive cuff tear. Eight full upper limb shoulder specimens were studied. Initially, the rotator cuff tendons were left intact, representing a non-functional rotator cuff, as seen in suprascapular nerve paralysis or in cuff repair with a patch. Subsequently, a massive rotator cuff tear was re-created. Three-dimensional kinematics and force requirements for shoulder abduction were analyzed for each condition using ten abduction cycles in the plane of the scapula. Mediolateral displacements of the glenohumeral rotation center (GHRC) during abduction with an intact non-functioning cuff were minimal, but massive cuff tear resulted in significant lateral displacement of the GHRC (p < 0.013). Similarly, massive cuff tear caused increased superior migration of the GHRC during abduction compared with intact non-functional cuff (p < 0.01). From 5 to 30° of abduction, force requirements were significantly less with an intact non-functioning cuff than with massive cuff tear (p < 0.009). During abduction, an intact but non-functioning rotator cuff resulted in decreased GHRC displacement in two axes as well as lowered the force requirement for abduction from 5 to 30° as compared with the results following a massive rotator cuff tear. This provides insight into the potential biomechanical effect of repairing massive rotator cuff tears with a biological or synthetic "patch," which is a new treatment for massive cuff tear.
1990-01-01
induced by decalin exposure are processes, accelerated apoptosis has been describedin renal tissue with hydronephrosis (6), during the clearly intact...experimental hydronephrosis in topathology and cell proliferation induced by 2,2.4- the rat. Lab. Invest. 56(3): 273-281. trimethylpentane in the
Vitamins E and C - effects on matrix components in the vascular system
USDA-ARS?s Scientific Manuscript database
The connective tissue in the vascular system, consisting mainly of vascular smooth muscle cells (VSMC) and the interstitial extracellular matrix (ECM), plays important roles in the maintenance of an intact vascular wall as well as in the repair of atherosclerotic lesions during disease development. ...
Defining the Role of Integrin Alpha 11 in Wound Healing and Fibrosis
2009-09-01
Introduction Scleroderma is characterized by fibrosis, the replacement of healthy tissue with collagenous matrix. The collagen-binding integrins are...Itga11 and determine its role in the etiology of fibrosis and scleroderma . Body The heterozygous (Het) phenotype of one intact Itga11 allele and one
The mechanics of development: models and methods for tissue morphogenesis
Gjorevski, Nikolce; Nelson, Celeste M.
2011-01-01
Embryonic development is a physical process during which masses of cells are sculpted into functional organs. The mechanical properties of tissues and the forces exerted on them serve as epigenetic regulators of morphogenesis. Understanding these mechanobiological effects in the embryo requires new experimental approaches. Here we focus on branching of the lung airways and bending of the heart tube to describe examples of mechanical and physical cues that guide cell fate decisions and organogenesis. We highlight recent technological advances to measure tissue elasticity and endogenous mechanical stresses in real time during organ development. We also discuss recent progress in manipulating forces in intact embryos. PMID:20860059
Life sciences research in space: The requirement for animal models
NASA Technical Reports Server (NTRS)
Fuller, C. A.; Philips, R. W.; Ballard, R. W.
1987-01-01
Use of animals in NASA space programs is reviewed. Animals are needed because life science experimentation frequently requires long-term controlled exposure to environments, statistical validation, invasive instrumentation or biological tissue sampling, tissue destruction, exposure to dangerous or unknown agents, or sacrifice of the subject. The availability and use of human subjects inflight is complicated by the multiple needs and demands upon crew time. Because only living organisms can sense, integrate and respond to the environment around them, the sole use of tissue culture and computer models is insufficient for understanding the influence of the space environment on intact organisms. Equipment for spaceborne experiments with animals is described.
Free tissue transfer of the rectus abdominis myoperitoneal flap for oral reconstruction in a dog.
Lanz, O I
2001-12-01
A five-month-old intact/male Boxer dog was presented 5-days following bite wound trauma to the maxillary region resulting in an oronasal fistula extending from the maxillary canine teeth to the soft palate. Multiple surgical procedures using local, buccal mucosal flaps failed to repair the oronasal fistula. Free tissue transfer of the rectus abdominis myoperitoneal flap using microvascular surgical techniques was successful in providing soft tissue reconstruction of the hard palate area. Complications of these surgical techniques included muscle contraction and subsequent muzzle distortion. Small, refractory oronasal fistulae at the perimeter of the myoperitoneal flap were repaired by primary wound closure.
Static and dynamic stress heterogeneity in a multiscale model of the asthmatic airway wall
Hiorns, J. E.
2016-01-01
Airway hyperresponsiveness (AHR) is a key characteristic of asthma that remains poorly understood. Tidal breathing and deep inspiration ordinarily cause rapid relaxation of airway smooth muscle (ASM) (as demonstrated via application of length fluctuations to tissue strips) and are therefore implicated in modulation of AHR, but in some cases (such as application of transmural pressure oscillations to isolated intact airways) this mechanism fails. Here we use a multiscale biomechanical model for intact airways that incorporates strain stiffening due to collagen recruitment and dynamic force generation by ASM cells to show that the geometry of the airway, together with interplay between dynamic active and passive forces, gives rise to large stress and compliance heterogeneities across the airway wall that are absent in tissue strips. We show further that these stress heterogeneities result in auxotonic loading conditions that are currently not replicated in tissue-strip experiments; stresses in the strip are similar to hoop stress only at the outer airway wall and are under- or overestimates of stresses at the lumen. Taken together these results suggest that a previously underappreciated factor, stress heterogeneities within the airway wall and consequent ASM cellular response to this micromechanical environment, could contribute to AHR and should be explored further both theoretically and experimentally. PMID:27197860
Research on optical properties of dental enamel for early caries diagnostics using a He-Ne laser
NASA Astrophysics Data System (ADS)
Tang, Jing; Liu, Li; Li, Song-zhan
2008-12-01
A new and non-invasive method adapted for optical diagnosis of early caries is proposed by researching on the interaction mechanism of laser with dental tissue and relations of remitted light with optical properties of the tissue. This method is based on simultaneous analyses of the following parameters: probing radiation, backscattering and auto-fluorescence. Investigation was performed on 104 dental samples in vitro by using He-Ne laser (λ=632.8nm, 2.0+/-0.1mW) as the probing. Spectrums of all samples were obtained. Characteristic spectrums of dental caries in various stages (intact, initial, moderate and deep) were given. Using the back-reflected light to normalize the intensity of back-scattering and fluorescence, a quantitative diagnosis standard for different stages of caries is proposed. In order to verify the test, comparison research was conducted among artificial caries, morphological damaged enamel, dental calculus and intact tooth. Results show that variations in backscattering characteristic changes in bio-tissue morphological and the quantity of auto-fluorescence is correlated with concentration of anaerobic microflora in hearth of caries lesion. This method poses a high potential of diagnosing various stages of dental caries, and is more reliability to detect early caries, surface damage of health enamel and dental calculus.
Microsomal receptor for steroid hormones: functional implications for nuclear activity.
Muldoon, T G; Watson, G H; Evans, A C; Steinsapir, J
1988-01-01
Target tissues for steroid hormones are responsive by virtue of and to the extent of their content of functional intracellular receptors. Recent years have seen a shift in considerations of the cellular dynamics and distribution of these receptors, with current views favoring predominant intranuclear localization in the intact cell. This paper summarizes our analyses of the microsomal estrogen and androgen binding capability of rat uterine and ventral prostate tissue, respectively; these studies have revealed a set of high affinity sites that may act as a conduit for estrogen traversing the cell en route to the nucleus. These sites have many properties in common with cytosolic receptors, with the salient difference of a failure to activate to a more avid DNA-binding form under conditions which permit such activation of cytosolic receptors. The microsomal estrogen-binding proteins also have appreciable affinity for progesterone, another distinction from other known cellular estrogen receptor species. Various experimental approaches were employed to demonstrate that the microsomal receptors were not simply cytosol contaminants; the most convincing evidence is the recent successful separation of the cytosolic and microsomal forms by differential ammonium sulfate precipitation. Discrete subfractionation of subcellular components on successive sucrose gradients, with simultaneous assessments of binding capability and marker enzyme concentrations, indicates that the major portion of the binding is localized within the vesicles of the endoplasmic reticulum free of significant plasma membrane contamination. The microsomal receptors are readily solubilized by extraction with high- or low-salt-containing buffers or with steroid. The residual microsomes following such extraction have the characteristics of saturable acceptor sites for cytosolic estrogen-receptor complexes. The extent to which these sites will accept the cytosolic complexes is equal to the concentration of microsomal binding sites extracted. These observations suggest three possible roles for the microsomal receptor-like proteins: (a) modulation of estrogen access to nuclear binding sites; (b) formation of functional complexes which diffuse to other extranuclear sites to alter non-genomic cellular processes; (c) regulation of nuclear concentration of estrogen-receptor complexes by virtue of producing microsomal acceptor sites for uptake of free or loosely associated nuclear complexes, previously thought to exist in the cytoplasm.
Shen, Francis H; Samartzis, Dino
2007-07-01
A case report. To report the successful nonoperative management of a patient with progressive ankylosing spondylitis who sustained a three-column flexion-distraction injury of the upper thoracic spine with an intact sternal-rib complex, thereby emphasizing the existence and clinical relevance of the fourth-column concept in such patients. Three-column injuries of the cervical and lumbar spine are typically unstable and require surgical stabilization. Patients with ankylosing spondylitis are at an increase risk to sustain three-column injuries of the spine due to their progressive inflammatory disease, a state that renders the spine brittle and alters its biomechanical function. A fourth-column model of the thoracic spine has been proposed and incorporates the sternal-rib complex; however, such a model has rarely been addressed in the literature and its role regarding three-column upper thoracic spine injury with an intact sternal-rib complex in patients with ankylosing spondylitis is unknown. METHODS.: A 68-year-old white man with ankylosing spondylitis and Pickwickian body habitus sustained a three-column flexion-distraction injury at T5 following a ground-level fall. The patient complained of midthoracic back pain; however, he was neurologically intact and ambulated without aids. Because of the patient's numerous active medical issues that substantially increased his perioperative risks combined with symptomatic improvement of his pain, the patient refused surgical stabilization. In addition, because of the patient's body habitus and pulmonary issues, external brace immobilization was not tolerated. At 17 months of follow-up, the patient remained neurologically intact, ambulated well, his midthoracic back pain had subsided, and no progressive kyphosis was noted. This case confirms the existence and clinical relevance of the fourth column of the thoracic spine and its role in providing added spinal stability in the patient with ankylosing spondylitis. As such, it is still possible to achieve a favorable clinical outcome in a select subpopulation of patients with ankylosing spondylitis that sustain three-column flexion-distraction injuries who are neurologically intact and are not candidates for surgical stabilization.
Elemental and isotopic imaging to study biogeochemical functioning of intact soil micro-environments
NASA Astrophysics Data System (ADS)
Mueller, Carsten W.
2017-04-01
The complexity of soils extends from the ecosystem-scale to individual micro-aggregates, where nano-scale interactions between biota, organic matter (OM) and mineral particles are thought to control the long-term fate of soil carbon and nitrogen. It is known that such biogeochemical processes show disproportionally high reaction rates within nano- to micro-meter sized isolated zones ('hot spots') in comparison to surrounding areas. However, the majority of soil research is conducted on large bulk (> 1 g) samples, which are often significantly altered prior to analysis and analysed destructively. Thus it has previously been impossible to study elemental flows (e.g. C and N) between plants, microbes and soil in complex environments at the necessary spatial resolution within an intact soil system. By using nano-scale secondary ion mass spectrometry (NanoSIMS) in concert with other imaging techniques (e.g. scanning electron microscopy (SEM) and micro computed tomography (µCT)), classic analyses (isotopic and elemental analysis) and biochemical methods (e.g. GC-MS) it is possible to exhibit a more complete picture of soil processes at the micro-scale. I will present exemplarily results about the fate and distribution of organic C and N in complex micro-scale soil structures for a range of intact soil systems. Elemental imaging was used to study initial soil formation as an increase in the structural connectivity of micro-aggregates. Element distribution will be presented as a key to detect functional spatial patterns and biogeochemical hot spots in macro-aggregate functioning and development. In addition isotopic imaging will be demonstrated as a key to trace the fate of plant derived OM in the intact rhizosphere from the root to microbiota and mineral soil particles. Especially the use of stable isotope enrichment (e.g. 13CO2, 15NH4+) in conjunction with NanoSIMS allows to directly trace the fate of OM or nutrients in soils at the relevant scale (e.g. assimilate C / inorganic N in the rhizosphere). However, especially the elemental mapping requires more sophisticated computational approaches to evaluate (and quantify) the spatial heterogeneities of biogeochemical properties in intact soil systems.
Wavelet-domain de-noising of OCT images of human brain malignant glioma
NASA Astrophysics Data System (ADS)
Dolganova, I. N.; Aleksandrova, P. V.; Beshplav, S.-I. T.; Chernomyrdin, N. V.; Dubyanskaya, E. N.; Goryaynov, S. A.; Kurlov, V. N.; Reshetov, I. V.; Potapov, A. A.; Tuchin, V. V.; Zaytsev, K. I.
2018-04-01
We have proposed a wavelet-domain de-noising technique for imaging of human brain malignant glioma by optical coherence tomography (OCT). It implies OCT image decomposition using the direct fast wavelet transform, thresholding of the obtained wavelet spectrum and further inverse fast wavelet transform for image reconstruction. By selecting both wavelet basis and thresholding procedure, we have found an optimal wavelet filter, which application improves differentiation of the considered brain tissue classes - i.e. malignant glioma and normal/intact tissue. Namely, it allows reducing the scattering noise in the OCT images and retaining signal decrement for each tissue class. Therefore, the observed results reveals the wavelet-domain de-noising as a prospective tool for improved characterization of biological tissue using the OCT.
Lewandowski, Eric M.; Skiba, Joanna; Torelli, Nicholas J.; ...
2015-03-02
We have determined a 1.18 Å resolution X-ray crystal structure of a novel ruthenocenyle-6-aminopenicillinic acid in complex with CTX-M β-lactamase, showing unprecedented details of interactions between ruthenocene and protein. As the first product complex with an intact catalytic serine, the structure also offers insights into β-lactamase catalysis and inhibitor design.
Atomic model of a cell-wall cross-linking enzyme in complex with an intact bacterial peptidoglycan.
Schanda, Paul; Triboulet, Sébastien; Laguri, Cédric; Bougault, Catherine M; Ayala, Isabel; Callon, Morgane; Arthur, Michel; Simorre, Jean-Pierre
2014-12-24
The maintenance of bacterial cell shape and integrity is largely attributed to peptidoglycan, a highly cross-linked biopolymer. The transpeptidases that perform this cross-linking are important targets for antibiotics. Despite this biomedical importance, to date no structure of a protein in complex with an intact bacterial peptidoglycan has been resolved, primarily due to the large size and flexibility of peptidoglycan sacculi. Here we use solid-state NMR spectroscopy to derive for the first time an atomic model of an l,d-transpeptidase from Bacillus subtilis bound to its natural substrate, the intact B. subtilis peptidoglycan. Importantly, the model obtained from protein chemical shift perturbation data shows that both domains-the catalytic domain as well as the proposed peptidoglycan recognition domain-are important for the interaction and reveals a novel binding motif that involves residues outside of the classical enzymatic pocket. Experiments on mutants and truncated protein constructs independently confirm the binding site and the implication of both domains. Through measurements of dipolar-coupling derived order parameters of bond motion we show that protein binding reduces the flexibility of peptidoglycan. This first report of an atomic model of a protein-peptidoglycan complex paves the way for the design of new antibiotic drugs targeting l,d-transpeptidases. The strategy developed here can be extended to the study of a large variety of enzymes involved in peptidoglycan morphogenesis.
Technique: imaging earliest tooth development in 3D using a silver-based tissue contrast agent.
Raj, Muhammad T; Prusinkiewicz, Martin; Cooper, David M L; George, Belev; Webb, M Adam; Boughner, Julia C
2014-02-01
Looking in microscopic detail at the 3D organization of initiating teeth within the embryonic jaw has long-proved technologically challenging because of the radio-translucency of these tiny un-mineralized oral tissues. Yet 3D image data showing changes in the physical relationships among developing tooth and jaw tissues are vital to understand the coordinated morphogenesis of vertebrate teeth and jaws as an animal grows and as species evolve. Here, we present a new synchrotron-based scanning solution to image odontogenesis in 3D and in histological detail using a silver-based contrast agent. We stained fixed, intact wild-type mice aged embryonic (E) day 10 to birth with 1% Protargol-S at 37°C for 12-32 hr. Specimens were scanned at 4-10 µm pixel size at 28 keV, just above the silver K-edge, using micro-computed tomography (µCT) at the Canadian Light Source synchrotron. Synchrotron µCT scans of silver-stained embryos showed even the earliest visible stages of tooth initiation, as well as many other tissue types and structures, in histological detail. Silver stain penetration was optimal for imaging structures in intact embryos E15 and younger. This silver stain method offers a powerful yet straightforward approach to visualize at high-resolution and in 3D the earliest stages of odontogenesis in situ, and demonstrates the important of studying the tooth organ in all three planes of view. Copyright © 2013 Wiley Periodicals, Inc.
Refractive errors and corrections for OCT images in an inflated lung phantom
Golabchi, Ali; Faust, J.; Golabchi, F. N.; Brooks, D. H.; Gouldstone, A.; DiMarzio, C. A.
2012-01-01
Visualization and correct assessment of alveolar volume via intact lung imaging is important to study and assess respiratory mechanics. Optical Coherence Tomography (OCT), a real-time imaging technique based on near-infrared interferometry, can image several layers of distal alveoli in intact, ex vivo lung tissue. However optical effects associated with heterogeneity of lung tissue, including the refraction caused by air-tissue interfaces along alveoli and duct walls, and changes in speed of light as it travels through the tissue, result in inaccurate measurement of alveolar volume. Experimentally such errors have been difficult to analyze because of lack of ’ground truth,’ as the lung has a unique microstructure of liquid-coated thin walls surrounding relatively large airspaces, which is difficult to model with cellular foams. In addition, both lung and foams contain airspaces of highly irregular shape, further complicating quantitative measurement of optical artifacts and correction. To address this we have adapted the Bragg-Nye bubble raft, a crystalline two-dimensional arrangement of elements similar in geometry to alveoli (up to several hundred μm in diameter with thin walls) as an inflated lung phantom in order to understand, analyze and correct these errors. By applying exact optical ray tracing on OCT images of the bubble raft, the errors are predicted and corrected. The results are validated by imaging the bubble raft with OCT from one edge and with a charged coupled device (CCD) camera in transillumination from top, providing ground truth for the OCT. PMID:22567599
Allen, Shannon A.; Carias, Ann M.; Anderson, Meegan R.; Okocha, Eneniziaogochukwu A.; Benning, Lorie; McRaven, Michael D.; Kelley, Z L.; Lurain, John; Veazey, Ronald S.
2015-01-01
ABSTRACT The majority of human immunodeficiency virus type 1 (HIV-1) transmission events occur in women when semen harboring infectious virus is deposited onto the mucosal barriers of the vaginal, ectocervical, and endocervical epithelia. Seminal factors such as semen-derived enhancer of virus infection (SEVI) fibrils were previously shown to greatly enhance the infectivity of HIV-1 in cell culture systems. However, when SEVI is intravaginally applied to living animals, there is no effect on vaginal transmission. To define how SEVI might function in the context of sexual transmission, we applied HIV-1 and SEVI to intact human and rhesus macaque reproductive tract tissues to determine how it influences virus interactions with these barriers. We show that SEVI binds HIV-1 and sequesters most virions to the luminal surface of the stratified squamous epithelium, significantly reducing the number of virions that penetrated the tissue. In the simple columnar epithelium, SEVI was no longer fibrillar in structure and was detached from virions but allowed significantly deeper epithelial virus penetration. These observations reveal that the action of SEVI in intact tissues is very different in the anatomical context of sexual transmission and begin to explain the lack of stimulation of infection observed in the highly relevant mucosal transmission model. IMPORTANCE The most common mode of HIV-1 transmission in women occurs via genital exposure to the semen of HIV-infected men. A productive infection requires the virus to penetrate female reproductive tract epithelial barriers to infect underlying target cells. Certain factors identified within semen, termed semen-derived enhancers of virus infection (SEVI), have been shown to significantly enhance HIV-1 infectivity in cell culture. However, when applied to the genital tracts of living female macaques, SEVI did not enhance virus transmission. Here we show that SEVI functions very differently in the context of intact mucosal tissues. SEVI decreases HIV-1 penetration of squamous epithelial barriers in humans and macaques. At the mucus-coated columnar epithelial barrier, the HIV-1/SEVI interaction is disrupted. These observations suggest that SEVI may not play a significant stimulatory role in the efficiency of male-to-female sexual transmission of HIV. PMID:25740984
Gledhill, Karl; Guo, Zongyou; Umegaki-Arao, Noriko; Higgins, Claire A.; Itoh, Munenari; Christiano, Angela M.
2015-01-01
The current utility of 3D skin equivalents is limited by the fact that existing models fail to recapitulate the cellular complexity of human skin. They often contain few cell types and no appendages, in part because many cells found in the skin are difficult to isolate from intact tissue and cannot be expanded in culture. Induced pluripotent stem cells (iPSCs) present an avenue by which we can overcome this issue due to their ability to be differentiated into multiple cell types in the body and their unlimited growth potential. We previously reported generation of the first human 3D skin equivalents from iPSC-derived fibroblasts and iPSC-derived keratinocytes, demonstrating that iPSCs can provide a foundation for modeling a complex human organ such as skin. Here, we have increased the complexity of this model by including additional iPSC-derived melanocytes. Epidermal melanocytes, which are largely responsible for skin pigmentation, represent the second most numerous cell type found in normal human epidermis and as such represent a logical next addition. We report efficient melanin production from iPSC-derived melanocytes and transfer within an entirely iPSC-derived epidermal-melanin unit and generation of the first functional human 3D skin equivalents made from iPSC-derived fibroblasts, keratinocytes and melanocytes. PMID:26308443
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, Raef S.; Shen, Sui; Ove, Roger
We wanted to describe a technique for the implementation of intensity-modulated radiotherapy (IMRT) with a real-time position monitor (RPM) respiratory gating system for the treatment of pleural space with intact lung. The technique is illustrated by a case of pediatric osteosarcoma, metastatic to the pleura of the right lung. The patient was simulated in the supine position where a breathing tracer and computed tomography (CT) scans synchronized at end expiration were acquired using the RPM system. The gated CT images were used to define target volumes and critical structures. Right pleural gated IMRT delivered at end expiration was prescribed tomore » a dose of 44 Gy, with 55 Gy delivered to areas of higher risk via simultaneous integrated boost (SIB) technique. IMRT was necessary to avoid exceeding the tolerance of intact lung. Although very good coverage of the target volume was achieved with a shell-shaped dose distribution, dose over the targets was relatively inhomogeneous. Portions of target volumes necessarily intruded into the right lung, the liver, and right kidney, limiting the degree of normal tissue sparing that could be achieved. The radiation doses to critical structures were acceptable and well tolerated. With intact lung, delivering a relatively high dose to the pleura with acceptable doses to surrounding normal tissues using respiratory gated pleural IMRT is feasible. Treatment delivery during a limited part of the respiratory cycle allows for reduced CT target volume motion errors, with reduction in the portion of the planning margin that accounts for respiratory motion, and subsequent increase in the therapeutic ratio.« less
Tissue modification with feedback: the smart scalpel
NASA Astrophysics Data System (ADS)
Sebern, Elizabeth L.; Brenan, Colin J. H.; Anderson, R. Rox; Hunter, Ian W.
1998-10-01
While feedback control is widespread throughout many engineering fields, there are almost no examples of surgical instruments that utilize a real-time detection and intervention strategy. This concept of closed loop feedback can be applied to the development of autonomous or semi- autonomous minimally invasive robotic surgical systems for efficient excision or modification of diseased tissue. Spatially localized regions of the tissue are first probed to distinguish pathological from healthy tissue based on differences in histochemical and morphological properties. Energy is directed to only the diseased tissue, minimizing collateral damage by leaving the adjacent healthy tissue intact. Continuous monitoring determines treatment effectiveness and, if needed, enables real-time treatment modifications to produce optimal therapeutic outcomes. The present embodiment of this general concept is a microsurgical instrument we call the Smart Scalpel, designed to treat skin angiodysplasias such as port wine stains. Other potential Smart Scalpel applications include psoriasis treatment and early skin cancer detection and intervention.
Coral disease physiology: the impact of Acroporid white syndrome on Symbiodinium
NASA Astrophysics Data System (ADS)
Roff, G.; Kvennefors, E. C. E.; Ulstrup, K. E.; Fine, M.; Hoegh-Guldberg, O.
2008-06-01
Acroporid white syndrome, a disease-like syndrome from the Great Barrier Reef, results from degenerative host tissue at lesion borders. Tissue preceding lesion borders appears visually healthy, but it is currently unclear whether the endosymbiotic zooxanthellae ( Symbiodinium) are physiologically impacted. Compared to healthy colonies, this study found no significant differences in symbiont density, mitotic index or chlorophyll a content in tissue bordering (0 cm), and 8 cm away from white syndrome lesions. Using chlorophyll a fluorescence techniques, the border tissue did not appear to be photosynthetically compromised, and Symbiodinium extracted from this area were photosynthetically competent. Transmission electron microscopy revealed extensive degeneration of host tissues surrounding symbionts in affected areas, however, Symbiodinium cells were structurally intact with no sign of in situ degradation. Collectively, these results suggest that Symbiodinium at white syndrome lesion borders exist in a dynamic intra-cellular state during active host tissue loss, yet remain physiologically uncompromised.
Bøggild, Andreas; Sofos, Nicholas; Andersen, Kasper R.; Feddersen, Ane; Easter, Ashley D.; Passmore, Lori A.; Brodersen, Ditlev E.
2012-01-01
Summary The bacterial relBE locus encodes a toxin-antitoxin complex in which the toxin, RelE, is capable of cleaving mRNA in the ribosomal A site cotranslationally. The antitoxin, RelB, both binds and inhibits RelE, and regulates transcription through operator binding and conditional cooperativity controlled by RelE. Here, we present the crystal structure of the intact Escherichia coli RelB2E2 complex at 2.8 Å resolution, comprising both the RelB-inhibited RelE and the RelB dimerization domain that binds DNA. RelE and RelB associate into a V-shaped heterotetrameric complex with the ribbon-helix-helix (RHH) dimerization domain at the apex. Our structure supports a model in which relO is optimally bound by two adjacent RelB2E heterotrimeric units, and is not compatible with concomitant binding of two RelB2E2 heterotetramers. The results thus provide a firm basis for understanding the model of conditional cooperativity at the molecular level. PMID:22981948
Excitons in intact cells of photosynthetic bacteria.
Freiberg, Arvi; Pajusalu, Mihkel; Rätsep, Margus
2013-09-26
Live cells and regular crystals seem fundamentally incompatible. Still, effects characteristic to ideal crystals, such as coherent sharing of excitation, have been recently used in many studies to explain the behavior of several photosynthetic complexes, especially the inner workings of the light-harvesting apparatus of the oldest known photosynthetic organisms, the purple bacteria. To this date, there has been no concrete evidence that the same effects are instrumental in real living cells, leaving a possibility that this is an artifact of unnatural study conditions, not a real effect relevant to the biological operation of bacteria. Hereby, we demonstrate survival of collective coherent excitations (excitons) in intact cells of photosynthetic purple bacteria. This is done by using excitation anisotropy spectroscopy for tracking the temperature-dependent evolution of exciton bands in light-harvesting systems of increasing structural complexity. The temperature was gradually raised from 4.5 K to ambient temperature, and the complexity of the systems ranged from detergent-isolated complexes to complete bacterial cells. The results provide conclusive evidence that excitons are indeed one of the key elements contributing to the energetic and dynamic properties of photosynthetic organisms.
Autism Spectrum Disorder and intact executive functioning.
Ferrara, R; Ansermet, F; Massoni, F; Petrone, L; Onofri, E; Ricci, P; Archer, T; Ricci, S
2016-01-01
Earliest notions concerning autism (Autism Spectrum Disorders, ASD) describe the disturbance in executive functioning. Despite altered definition, executive functioning, expressed as higher cognitive skills required complex behaviors linked to the prefrontal cortex, are defective in autism. Specific difficulties in children presenting autism or verbal disabilities at executive functioning levels have been identified. Nevertheless, the developmental deficit of executive functioning in autism is highly diversified with huge individual variation and may even be absent. The aim of the present study to examine the current standing of intact executive functioning intact in ASD. Analysis of ASD populations, whether high-functioning, Asperger's or autism Broad Phenotype, studied over a range of executive functions including response inhibition, planning, cognitive flexibility, cognitive inhibition, and alerting networks indicates an absence of damage/impairment compared to the typically-developed normal control subjects. These findings of intact executive functioning in ASD subjects provide a strong foundation on which to construct applications for growth environments and the rehabilitation of autistic subjects.
Crow, J. Allen; Herring, Katye L.; Xie, Shuqi; Borazjani, Abdolsamad; Potter, Philip M.; Ross, Matthew K.
2009-01-01
Summary Two major isoforms of human carboxylesterases (CEs) are found in metabolically active tissues, CES1 and CES2. These hydrolytic enzymes are involved in xenobiotic and endobiotic metabolism. CES1 is abundantly expressed in human liver and monocytes/macrophages, including the THP1 cell line; CES2 is expressed in liver but not in monocytes/macrophages. The cholesteryl ester hydrolysis activity in human macrophages has been attributed to CES1. Here, we report the direct inhibitory effects of several endogenous oxysterols and fatty acids on the CE activity of THP1 monocytes/macrophages and recombinant human CES1 and CES2. Using THP1 whole-cell lysates we found: (1) 27-hydroxycholesterol (27-HC) is a potent inhibitor of carboxylesterase activity (IC50=33 nM); (2) 24(S),25-epoxycholesterol had moderate inhibitory activity (IC50=8.1 μM); and (3) cholesterol, 7-ketocholesterol, 22(R)-hydroxycholesterol, 24(S)-hydroxycholesterol, and 25-hydroxycholesterol each had little inhibitory activity. 27-HC was a partially noncompetitive inhibitor of recombinant CES1 (Kiapp=10 nM) and impaired intracellular CES1 activity following treatment of intact THP1 cells. In contrast, recombinant CES2 activity was not inhibited by 27-HC, suggesting isoform-selective inhibition by 27-HC. Furthermore, unsaturated fatty acids were better inhibitors of CES1 activity than saturated fatty acids, while CES2 activity was unaffected by any fatty acid. Arachidonic acid (AA) was the most potent fatty acid inhibitor of recombinant CES1 and acted by a noncompetitive mechanism (Kiapp=1.7 μM); when not complexed to albumin, exogenous AA penetrated intact THP1 cells and inhibited CES1. Inhibition results are discussed in light of recent structural models for CES1 that describe ligand binding sites separate from the active site. In addition, oxysterol-mediated inhibition of CES1 activity was demonstrated by pretreatment of human liver homogenates or intact THP1 cells with exogenous 27-HC, which resulted in significantly reduced hydrolysis of the pyrethroid insecticide bioresmethrin, a CES1-specific xenobiotic substrate. Collectively, these findings suggest that CE activity of recombinant CES1, cell lysates, and intact cells can be impaired by naturally occurring lipids, which may compromise the ability of CES1 to both detoxify environmental pollutants and metabolize endogenous compounds in vivo. PMID:19761868
A Novel Ex Vivo Method for Visualizing Live-Cell Calcium Response Behavior in Intact Human Tumors.
Koh, James; Hogue, Joyce A; Sosa, Julie A
2016-01-01
The functional impact of intratumoral heterogeneity has been difficult to assess in the absence of a means to interrogate dynamic, live-cell biochemical events in the native tissue context of a human tumor. Conventional histological methods can reveal morphology and static biomarker expression patterns but do not provide a means to probe and evaluate tumor functional behavior and live-cell responsiveness to experimentally controlled stimuli. Here, we describe an approach that couples vibratome-mediated viable tissue sectioning with live-cell confocal microscopy imaging to visualize human parathyroid adenoma tumor cell responsiveness to extracellular calcium challenge. Tumor sections prepared as 300 micron-thick tissue slices retain viability throughout a >24 hour observation period and retain the native architecture of the parental tumor. Live-cell observation of biochemical signaling in response to extracellular calcium challenge in the intact tissue slices reveals discrete, heterogeneous kinetic waveform categories of calcium agonist reactivity within each tumor. Plotting the proportion of maximally responsive tumor cells as a function of calcium concentration yields a sigmoid dose-response curve with a calculated calcium EC50 value significantly elevated above published reference values for wild-type calcium-sensing receptor (CASR) sensitivity. Subsequent fixation and immunofluorescence analysis of the functionally evaluated tissue specimens allows alignment and mapping of the physical characteristics of individual cells within the tumor to specific calcium response behaviors. Evaluation of the relative abundance of intracellular PTH in tissue slices challenged with variable calcium concentrations demonstrates that production of the hormone can be dynamically manipulated ex vivo. The capability of visualizing live human tumor tissue behavior in response to experimentally controlled conditions opens a wide range of possibilities for personalized ex vivo therapeutic testing. This highly adaptable system provides a unique platform for live-cell ex vivo provocative testing of human tumor responsiveness to a range of physiological agonists or candidate therapeutic compounds.
Koh, Jason L; Yi, Seung Jin; Ren, Yupeng; Zimmerman, Todd A; Zhang, Li-Qun
2016-11-02
The meniscus is known to increase the contact area and decrease contact pressure in the tibiofemoral compartments of the knee. Radial tears of the meniscal root attachment along with partial resections of the torn meniscal tissue decrease the contact area and increase pressure; however, there is a lack of information on the effects of a horizontal cleavage tear (HCT) and partial leaf meniscectomy of such tears on tibiofemoral contact pressure and contact area. Twelve fresh-frozen human cadaveric knees were tested under 10 conditions: 5 serial conditions of posterior medial meniscectomy (intact meniscus, HCT, repaired HCT, inferior leaf resection, and resection of both inferior and superior leaves), each at 2 knee flexion angles (0° and 60°) under an 800-N axial load. Tekscan sensors (model 4000) were used to measure the contact pressure and contact area. HCT and HCT repair resulted in small changes in the contact area and an increase in contact pressure compared with the intact condition. Resection of the inferior leaf resulted in significantly decreased contact area (to a mean 82.3% of the intact condition at 0° of flexion and 81.8% at 60° of flexion; p < 0.05) and increased peak contact pressure (a mean 36.3% increase at 0° flexion and 43.2% increase at 60° flexion; p < 0.05) in the medial compartment. Further resection of the remaining superior leaf resulted in additional significant decreases in contact area (to a mean 60.1% of the intact condition at 0° of flexion and 49.7% at 60° of flexion; p < 0.05) and increases in peak contact pressure (a mean 79.2% increase at 0° of flexion and 74.9% increase at 60° of flexion; p < 0.05). Resection of meniscal tissue forming the inferior leaf of an HCT resulted in substantially decreased contact area and increased contact pressure. Additional resection of the superior leaf resulted in a further significant decrease in contact area and increase in contact pressure in the medial compartment. Repair or minimal resection of meniscal tissue of an HCT may be preferred to complete leaf resection to maintain knee tibiofemoral contact mechanics. Copyright © 2016 by The Journal of Bone and Joint Surgery, Incorporated.
Valeja, Santosh G; Xiu, Lichen; Gregorich, Zachery R; Guner, Huseyin; Jin, Song; Ge, Ying
2015-01-01
To address the complexity of the proteome in mass spectrometry (MS)-based top-down proteomics, multidimensional liquid chromatography (MDLC) strategies that can effectively separate proteins with high resolution and automation are highly desirable. Although various MDLC methods that can effectively separate peptides from protein digests exist, very few MDLC strategies, primarily consisting of 2DLC, are available for intact protein separation, which is insufficient to address the complexity of the proteome. We recently demonstrated that hydrophobic interaction chromatography (HIC) utilizing a MS-compatible salt can provide high resolution separation of intact proteins for top-down proteomics. Herein, we have developed a novel 3DLC strategy by coupling HIC with ion exchange chromatography (IEC) and reverse phase chromatography (RPC) for intact protein separation. We demonstrated that a 3D (IEC-HIC-RPC) approach greatly outperformed the conventional 2D IEC-RPC approach. For the same IEC fraction (out of 35 fractions) from a crude HEK 293 cell lysate, a total of 640 proteins were identified in the 3D approach (corresponding to 201 nonredundant proteins) as compared to 47 in the 2D approach, whereas simply prolonging the gradients in RPC in the 2D approach only led to minimal improvement in protein separation and identifications. Therefore, this novel 3DLC method has great potential for effective separation of intact proteins to achieve deep proteome coverage in top-down proteomics.
BILIARY EXCRETION AND TISSUE DISTRIBUTION OF CADMIUM-109 ADMINISTERED TO RATS
The difference in the excretion of cadmium in urine and feces was measured in rats with either ligated or intact bile ducts. Three days following a single oral-administration of cadmium-109 plus stabe cadmium chloride, 0.004 percent of the dose was excreted in the urine of rats w...
This study investigates compensatory mechanisms and feedback control within Fathead minnow (Pimephales promelas) by comparing genomic and biochemical responses of ovary tissue exposed in vitro to those of ovaries from intact fish after exposure to two model steroidogenesis...
USDA-ARS?s Scientific Manuscript database
Extracellular ice nucleation usually occurs at mild subzero temperatures in most plants. For persistent supercooling of certain plant parts ice barriers are necessary that prevent the entry of ice from otherwise already frozen tissues. The reproductive shoot of the evergreen woody dwarf shrub Callun...
Intracellular trafficking of a pH-responsive drug metal complex.
Kheirolomoom, Azadeh; Ingham, Elizabeth S; Commisso, Joel; Abushaban, Neveen; Ferrara, Katherine W
2016-12-10
We previously developed a pH-responsive copper-doxorubicin (CuDox) cargo in lysolipid-based temperature-sensitive liposomes (LTSLs). The CuDox complex is released from the particle by elevated temperature; however, full release of doxorubicin from CuDox requires a reduced pH, such as that expected in lysosomes. The primary goal of this study is to evaluate the cellular uptake and intracellular trafficking of the drug-metal complex in comparison with intact liposomes and free drug. We found that the CuDox complex was efficiently internalized by mammary carcinoma cells after release from LTSLs. Intracellular doxorubicin and copper were 6-fold and 5-fold greater, respectively, after a 0.5h incubation with the released CuDox complex, as compared to incubation with intact liposomes containing the complex. Total cellular doxorubicin fluorescence was similar following CuDox and free doxorubicin incubation. Imaging and mass spectrometry assays indicated that the CuDox complex was initially internalized intact but breaks down over time within cells, with intracellular copper decreasing more rapidly than intracellular doxorubicin. Doxorubicin fluorescence was reduced when complexed with copper, and nuclear fluorescence was reduced when cells were incubated with the CuDox complex as compared with free doxorubicin. Therapeutic efficacy, which typically results from intercalation of doxorubicin with DNA, was equivalent for the CuDox complex and free doxorubicin and was superior to that of liposomal doxorubicin formulations. Taken together, the results suggest that quenched CuDox reaches the nucleus and remains efficacious. In order to design protocols for the use of these temperature-sensitive particles in cancer treatment, the timing of hyperthermia relative to drug administration must be examined. When cells were heated to 42°C prior to the addition of free doxorubicin, nuclear drug accumulation increased by 1.8-fold in cancer cells after 5h, and cytotoxicity increased 1.4-fold in both cancer and endothelial cells. Endothelial cytotoxicity was similarly augmented with mild hyperthermia applied prior to treatment with released CuDox. In summary, we find that the drug-metal complex formed in temperature-sensitive particles can be internalized by cancer and endothelial cells resulting in therapeutic efficacy that is similar to free doxorubicin, and this efficacy can be enhanced by elevated temperature. Copyright © 2016 Elsevier B.V. All rights reserved.
The multiple strategies of an insect herbivore to overcome plant cyanogenic glucoside defence.
Pentzold, Stefan; Zagrobelny, Mika; Roelsgaard, Pernille Sølvhøj; Møller, Birger Lindberg; Bak, Søren
2014-01-01
Cyanogenic glucosides (CNglcs) are widespread plant defence compounds that release toxic hydrogen cyanide by plant β-glucosidase activity after tissue damage. Specialised insect herbivores have evolved counter strategies and some sequester CNglcs, but the underlying mechanisms to keep CNglcs intact during feeding and digestion are unknown. We show that CNglc-sequestering Zygaena filipendulae larvae combine behavioural, morphological, physiological and biochemical strategies at different time points during feeding and digestion to avoid toxic hydrolysis of the CNglcs present in their Lotus food plant, i.e. cyanogenesis. We found that a high feeding rate limits the time for plant β-glucosidases to hydrolyse CNglcs. Larvae performed leaf-snipping, a minimal disruptive feeding mode that prevents mixing of plant β-glucosidases and CNglcs. Saliva extracts did not inhibit plant cyanogenesis. However, a highly alkaline midgut lumen inhibited the activity of ingested plant β-glucosidases significantly. Moreover, insect β-glucosidases from the saliva and gut tissue did not hydrolyse the CNglcs present in Lotus. The strategies disclosed may also be used by other insect species to overcome CNglc-based plant defence and to sequester these compounds intact.
Characterization of Cadmium Uptake by Plant Tissue 12
Cutler, Jay M.; Rains, Donald W.
1974-01-01
The uptake of cadmium by excised root tissue of barley (Hordeum vulgare L. cv. Arivat) was investigated with respect to kinetics, concentration, and interactions with various cations. The role of metabolism in Cd absorption was examined using a range of temperatures, anaerobic treatments, and chemical inhibitors. The uptake and distribution of Cd in intact barley plants was also determined. A large fraction of the Cd taken up by excised barley roots was apparently the result of exchange adsorption and was displaced by subsequent desorption with unlabeled Cd, Zn, Cu, or Hg. Another fraction of Cd which could not be displaced by desorption in unlabeled Cd was thought to result from strong irreversible binding of Cd, perhaps on sites of the cell wall. The fraction of the Cd taken up beyond that by exchange adsorption by fresh roots was a linear function of temperature, and inhibited by conditions of low oxygen and by the presence of 2,4-dinitrophenol. It was concluded that this fraction of Cd entered excised barley roots by diffusion. Diffusion, when followed by sequestering, probably accounts for the accumulation of Cd observed in intact barley plants. PMID:16658840
Intestinal stem cells remain viable after prolonged tissue storage
Fuller, Megan K.; Faulk, Denver M.; Sundaram, Nambirajan; Mahe, Maxime M.; Stout, Kara M.; von Furstenberg, Richard J.; Smith, Brian J.; McNaughton, Kirk K.; Shroyer, Noah F.; Helmrath, Michael A.; Henning, Susan J.
2013-01-01
Intestinal stem cells (ISCs) are responsible for renewal of the epithelium both during normal homeostasis and following injury. As such they have significant therapeutic potential. However, it is unknown whether ISCs can survive tissue storage. We hypothesized that, although the majority of epithelial cells may die, ISCs would remain viable for at least 24 h at 4°C. To explore this hypothesis, jejuni of C57Bl6/J or Lgr5-LacZ mice were removed and either processed immediately or placed in phosphate buffered saline (PBS) at 4°C. Delayed isolations of epithelia were performed after 24, 30, or 48 h storage. At the light microscope level, despite extensive apoptosis of villus epithelial cells, small intestinal crypts remained morphologically intact through 30 h and ISCs were identifiable via Lgr5-LacZ positivity. Electron microscopy showed that ISCs retain high integrity through 24 h. When assessed by flow cytometry, ISCs were more resistant to degeneration than the rest of the epithelium, including neighboring Paneth cells, with higher viability across all time points. Culture of isolated crypts showed no loss of capacity to form complex enteroids after 24 h tissue storage, with efficiencies after 7 days of culture remaining above 80%. By 30 h storage, efficiencies declined but budding capability was retained. We conclude that, with delay in isolation, ISCs remain viable and retain their proliferative capacity. In contrast, the remainder of the epithelium, including the Paneth cells, exhibits degeneration and programmed cell death. If these findings are recapitulated with human tissue, storage at 4°C may offer a valuable temporal window for harvest of crypts or ISCs for therapeutic application. PMID:23820734
Rahman, Hafizur; Currier, Eric; Johnson, Marshall; Goding, Rick; Johnson, Amy Wagoner; Kersh, Mariana E
2017-11-01
Rotator cuff tears (RCTs) are one of the primary causes of shoulder pain and dysfunction in the upper extremity accounting over 4.5 million physician visits per year with 250,000 rotator cuff repairs being performed annually in the U.S. While the tear is often considered an injury to a specific tendon/tendons and consequently treated as such, there are secondary effects of RCTs that may have significant consequences for shoulder function. Specifically, RCTs have been shown to affect the joint cartilage, bone, the ligaments, as well as the remaining intact tendons of the shoulder joint. Injuries associated with the upper extremities account for the largest percent of workplace injuries. Unfortunately, the variable success rate related to RCTs motivates the need for a better understanding of the biomechanical consequences associated with the shoulder injuries. Understanding the timing of the injury and the secondary anatomic consequences that are likely to have occurred are also of great importance in treatment planning because the approach to the treatment algorithm is influenced by the functional and anatomic state of the rotator cuff and the shoulder complex in general. In this review, we summarized the contribution of RCTs to joint stability in terms of both primary (injured tendon) and secondary (remaining tissues) consequences including anatomic changes in the tissues surrounding the affected tendon/tendons. The mechanical basis of normal shoulder joint function depends on the balance between active muscle forces and passive stabilization from the joint surfaces, capsular ligaments, and labrum. Evaluating the role of all tissues working together as a system for maintaining joint stability during function is important to understand the effects of RCT, specifically in the working population, and may provide insight into root causes of shoulder injury.
Characterization of Tissue Structure at Varying Length Scales Using Temporal Diffusion Spectroscopy
Gore, John C.; Xu, Junzhong; Colvin, Daniel C.; Yankeelov, Thomas E.; Parsons, Edward C.; Does, Mark D.
2011-01-01
The concepts, theoretical behavior and experimental applications of temporal diffusion spectroscopy are reviewed and illustrated. Temporal diffusion spectra are obtained by using oscillating gradient waveforms in diffusion-weighted measurements, and represent the manner in which various spectral components of molecular velocity correlations vary in different geometrical structures that restrict or hinder free movements. Measurements made at different gradient frequencies reveal information on the scale of restrictions or hindrances to free diffusion, and the shape of a spectrum reveals the relative contributions of spatial restrictions at different distance scales. Such spectra differ from other so-called diffusion spectra which depict spatial frequencies and are defined at a fixed diffusion time. Experimentally, oscillating gradients at moderate frequency are more feasible for exploring restrictions at very short distances, which in tissues correspond to structures smaller than cells. We describe the underlying concepts of temporal diffusion spectra and provide analytical expressions for the behavior of the diffusion coefficient as a function of gradient frequency in simple geometries with different dimensions. Diffusion in more complex model media that mimic tissues has been simulated using numerical methods. Experimental measurements of diffusion spectra have been obtained in suspensions of particles and cells, as well as in vivo in intact animals. An observation of particular interest is the increased contrast and heterogeneity observed in tumors using oscillating gradients at moderate frequency compared to conventional pulse gradient methods, and the potential for detecting changes in tumors early in their response to treatment. Computer simulations suggest that diffusion spectral measurements may be sensitive to intracellular structures such as nuclear size, and that changes in tissue diffusion properties may be measured before there are changes in cell density. PMID:20677208
Structural determination of intact proteins using mass spectrometry
Kruppa, Gary [San Francisco, CA; Schoeniger, Joseph S [Oakland, CA; Young, Malin M [Livermore, CA
2008-05-06
The present invention relates to novel methods of determining the sequence and structure of proteins. Specifically, the present invention allows for the analysis of intact proteins within a mass spectrometer. Therefore, preparatory separations need not be performed prior to introducing a protein sample into the mass spectrometer. Also disclosed herein are new instrumental developments for enhancing the signal from the desired modified proteins, methods for producing controlled protein fragments in the mass spectrometer, eliminating complex microseparations, and protein preparatory chemical steps necessary for cross-linking based protein structure determination.Additionally, the preferred method of the present invention involves the determination of protein structures utilizing a top-down analysis of protein structures to search for covalent modifications. In the preferred method, intact proteins are ionized and fragmented within the mass spectrometer.
Panzica, Martin; Janzik, Janne; Bobrowitsch, Evgenij; Krettek, Christian; Hawi, Nael; Hurschler, Christof; Jagodzinski, Michael
2015-11-01
To date, various surgical techniques to treat posterolateral knee instability have been described. Recent studies recommended an anatomical and isometric reconstruction of the posterolateral corner addressing the key structures, such as lateral collateral ligament (LCL), popliteus tendon (POP) and popliteofibular ligament (PFL). Two clinical established autologous respective local reconstruction methods of the posterolateral complex were tested for knot-bone cylinder press-fit fixation to assess efficacy of each reconstruction technique in comparison to the intact knee. The knot-bone cylinder press-fit fixation for both anatomic and isometric reconstruction techniques of the posterolateral complex shows equal biomechanical stability as the intact posterolateral knee structures. This was a controlled laboratory study. Two surgical techniques (Larson: fibula-based semitendinosus autograft for LCL and PFL reconstruction/Kawano: biceps femoris and iliotibial tract autograft for LCL, PFL and POP reconstruction) with press-fit fixation were used for restoration of posterolateral knee stability. Seven cadaveric knees (66 ± 3.4 years) were tested under three conditions: intact knee, sectioned state and reconstructed knee for each surgical technique. Biomechanical stress tests were performed for every state at 30° and 90° knee flexion for anterior-posterior translation (60 N), internal-external and varus-valgus rotation (5 Nm) at 0°, 30° and 90° using a kinemator (Kuka robot). At 30° and 90° knee flexion, no significant differences between the four knee states were registered for anterior-posterior translation loading. Internal-external and varus-valgus rotational loading showed significantly higher instability for the sectioned state than for the intact or reconstructed posterolateral structures (p < 0.05). There were no significant differences between the intact and reconstructed knee states for internal-external rotation, varus-valgus rotation and anterior-posterior translation at any flexion angles (p > 0.05). Comparing both reconstruction techniques, significant higher varus-/valgus stability was registered for the fibula-based Larson technique at 90° knee flexion (p < 0.05). Both PLC reconstructions showed equal biomechanical stability as the intact posterolateral knee structures when using knot-bone cylinder press-fit fixation. We registered restoration of the rotational and varus-valgus stability with both surgical techniques. The anterior-posterior translational stability was not influenced significantly. The Larson technique showed significant higher varus/valgus stability in 90° flexion. The latter is easier to perform and takes half the preparation time, but needs grafting of the semitendinosus tendon. The Kawano reconstruction technique is an interesting alternative in cases of missing autografts.
Funabashi, Martha; Nougarou, François; Descarreaux, Martin; Prasad, Narasimha; Kawchuk, Greg
In order to define the relation between spinal manipulative therapy (SMT) input parameters and the distribution of load within spinal tissues, the aim of this study was to determine the influence of force magnitude and application site when SMT is applied to cadaveric spines. In 10 porcine cadavers, a servo-controlled linear actuator motor provided a standardized SMT simulation using 3 different force magnitudes (100N, 300N, and 500N) to 2 different cutaneous locations: L3/L4 facet joint (FJ), and L4 transverse processes (TVP). Vertebral kinematics were tracked optically using indwelling bone pins, the motion segment removed and mounted in a parallel robot equipped with a 6-axis load cell. The kinematics of each SMT application were replicated robotically. Serial dissection of spinal structures was conducted to quantify loading characteristics of discrete spinal tissues. Forces experienced by the L3/L4 segment and spinal structures during SMT replication were recorded and analyzed. Spinal manipulative therapy force magnitude and application site parameters influenced spinal tissues loading. A significant main effect (P < .05) of force magnitude was observed on the loads experienced by the intact specimen and supra- and interspinous ligaments. The main effect of application site was also significant (P < .05), influencing the loading of the intact specimen and facet joints, capsules, and ligamentum flavum (P < .05). Spinal manipulative therapy input parameters of force magnitude and application site significantly influence the distribution of forces within spinal tissues. By controlling these SMT parameters, clinical outcomes may potentially be manipulated. Copyright © 2017. Published by Elsevier Inc.
Isochoric and isobaric freezing of fish muscle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Năstase, Gabriel; Department of Building Services, University of Transilvania, Braşov, Braşov, 500152; Lyu, Chenang
We have recently shown that, a living organism, which succumbs to freezing to −4 °C in an isobaric thermodynamic system (constant atmospheric pressure), can survive freezing to −4 °C in an isochoric thermodynamic system (constant volume). It is known that the mechanism of cell damage in an isobaric system is the freezing caused increase in extracellular osmolality, and, the consequent cell dehydration. An explanation for the observed survival during isochoric freezing is the thermodynamic modeling supported hypothesis that, in the isochoric frozen solution the extracellular osmolality is comparable to the cell intracellular osmolality. Therefore, cells in the isochoric frozen organism do not dehydrate, andmore » the tissue maintains its morphological integrity. Comparing the histology of: a) fresh fish white muscle, b) fresh muscle frozen to −5 °C in an isobaric system and c) fresh muscle frozen to −5 °C I in an isochoric system, we find convincing evidence of the mechanism of cell dehydration during isobaric freezing. In contrast, the muscle tissue frozen to −5 °C in an isochoric system appears morphologically identical to fresh tissue, with no evidence of dehydration. This is the first experimental evidence in support of the hypothesis that in isochoric freezing there is no cellular dehydration and therefore the morphology of the frozen tissue remains intact. - Highlights: • Preservation of fish muscle at, subfreezing temperatures, in an isochoric system, is demonstrated. • Experiments were performed to an average pressure of 41.3 MPa and temperatures of −5 °C. • Isochoric subfreezing temperature is a new preservation method that does not require the.use of cryoprotectants. • No cellular dehydration and therefore the morphology of the frozen tissue remains intact.« less
Immune privilege of the CNS is not the consequence of limited antigen sampling
NASA Astrophysics Data System (ADS)
Harris, Melissa G.; Hulseberg, Paul; Ling, Changying; Karman, Jozsef; Clarkson, Benjamin D.; Harding, Jeffrey S.; Zhang, Mengxue; Sandor, Adam; Christensen, Kelsey; Nagy, Andras; Sandor, Matyas; Fabry, Zsuzsanna
2014-03-01
Central nervous system (CNS) immune privilege is complex, and it is still not understood how CNS antigens are sampled by the peripheral immune system under steady state conditions. To compare antigen sampling from immune-privileged or nonprivileged tissues, we created transgenic mice with oligodendrocyte or gut epithelial cell expression of an EGFP-tagged fusion protein containing ovalbumin (OVA) antigenic peptides and tested peripheral anti-OVA peptide-specific sentinel OT-I and OT-II T cell activation. We report that oligodendrocyte or gut antigens are sampled similarly, as determined by comparable levels of OT-I T cell activation. However, activated T cells do not access the CNS under steady state conditions. These data show that afferent immunity is normally intact as there is no barrier at the antigen sampling level, but that efferent immunity is restricted. To understand how this one-sided surveillance contributes to CNS immune privilege will help us define mechanisms of CNS autoimmune disease initiation.
Visualisation of insect tracheal systems by lactic acid immersion.
Ruan, Y; Li, Y; Zhang, M; Chen, X; Liu, Z; Wang, S; Jiang, S
2018-05-15
The endeavours to reveal the tracheal system of insects and some arachnids has a long history. The traditional way to observe a tracheal system in an insect body is by utilising the glycerin immersion method. In this study, we developed the lactic acid immersion method, which reveals a more complete tracheal system. By mounting various types of live specimens or body parts directly into lactic acid, multiple intact and complex tracheal systems were clearly visualised. The lactic acid immersion contributed to revealing tracheal systems by penetrating body tissue while reserving enough time for observation before the penetration of the tracheae. Preliminary comparisons were conducted between lactic acid and other mediae, including glycerin. It turned out that lactic acid immersion provides better details and more distinct structures. In our test, the optimal time for observing the tracheal system was 10-25 min after the organism was immersed in lactic acid. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.
Townson, Jason L.; Lin, Yu-Shen; Chou, Stanley S.; ...
2014-12-08
Structural preservation of complex biological systems from the subcellular to whole organism level in robust forms, enabling dissection and imaging while preserving 3D context, represents an enduring grand challenge in biology. Here we report a simple immersion method for structurally preserving intact organisms via conformal stabilization within silica. This self-limiting process, which we refer to as silica bioreplication, occurs by condensation of water-soluble silicic acid proximally to biomolecular interfaces throughout the organism. Conformal nanoscopic silicification of all biomolecular features imparts structural rigidity enabling the preservation of shape and nano-to-macroscale dimensional features upon drying to form a biocomposite and further highmore » temperature oxidative calcination to form silica replicas or reductive pyrolysis to form electrically conductive carbon replicas of complete organisms. Ultimately, the simplicity and generalizability of this approach should facilitate efforts in biological preservation and analysis and could enable the development of new classes of biomimetic composite materials.« less
Cell Membrane-formed Nanovesicles for Disease-Targeted Delivery
Gao, Jin; Chu, Dafeng; Wang, Zhenjia
2016-01-01
Vascular inflammation is underlying components of most diseases. To target inflamed vasculature, nanoparticles are commonly engineered by conjugating antibody to the nanoparticle surface, but this bottom-up approach could affect nanoparticle targeting and therapeutic efficacy in complex, physiologically related systems. During vascular inflammation endothelium via the NF-κB pathway instantly upregulates intercellular adhesion molecule 1 (ICAM-1) which binds integrin β2 on neutrophil membrane. Inspired by this interaction, we created a nanovesicle-based drug delivery system using nitrogen cavitation which rapidly disrupts activated neutrophils to make cell membrane nanovesicles. Studies using intravital microscopy of live mouse cremaster venules showed that these vesicles can selectively bind inflamed vasculature because they possess intact targeting molecules of integrin β2. Administering of nanovesicles loaded with TPCA-1 (a NF-κB inhibitor) markedly mitigated mouse acute lung inflammation. Our studies reveal a new top-down strategy for directly employing a diseased tissue to produce biofunctional nanovesicle-based drug delivery systems potentially applied to treat various diseases. PMID:26778696
Functional Human Podocytes Generated in Organoids from Amniotic Fluid Stem Cells
Benedetti, Valentina; Novelli, Rubina; Abbate, Mauro; Rizzo, Paola; Conti, Sara; Tomasoni, Susanna; Corna, Daniela; Pozzobon, Michela; Cavallotti, Daniela; Yokoo, Takashi; Morigi, Marina; Benigni, Ariela; Remuzzi, Giuseppe
2016-01-01
Generating kidney organoids using human stem cells could offer promising prospects for research and therapeutic purposes. However, no cell-based strategy has generated nephrons displaying an intact three-dimensional epithelial filtering barrier. Here, we generated organoids using murine embryonic kidney cells, and documented that these tissues recapitulated the complex three-dimensional filtering structure of glomerular slits in vivo and accomplished selective glomerular filtration and tubular reabsorption. Exploiting this technology, we mixed human amniotic fluid stem cells with mouse embryonic kidney cells to establish three-dimensional chimeric organoids that engrafted in vivo and grew to form vascularized glomeruli and tubular structures. Human cells contributed to the formation of glomerular structures, differentiated into podocytes with slit diaphragms, and internalized exogenously infused BSA, thus attaining in vivo degrees of specialization and function unprecedented for donor stem cells. In conclusion, human amniotic fluid stem cell chimeric organoids may offer new paths for studying renal development and human podocyte disease, and for facilitating drug discovery and translational research. PMID:26516208
Isolation and Purification of Versican and Analysis of Versican Proteolysis
Foulcer, Simon J.; Day, Anthony J.; Apte, Suneel S.
2017-01-01
Versican is a widely distributed chondroitin sulfate proteoglycan that forms large complexes with the glycosaminoglycan hyaluronan (HA). As a consequence of HA binding to its receptor CD44 and interactions of the versican C-terminal globular (G3) domain with a variety of extracellular matrix proteins, versican is a key component of well-defined networks in pericellular matrix and extracellular matrix. It is crucial for several developmental processes in the embryo and there is increasing interest in its roles in cancer and inflammation. Versican proteolysis by ADAMTS proteases is highly regulated, occurs at specific peptide bonds, and is relevant to several physiological and disease mechanisms. In this chapter, methods are described for the isolation and detection of intact and cleaved versican in tissues using morphologic and biochemical techniques. These, together with the methodologies for purification and analysis of recombinant versican and a versican fragment provided here, are likely to facilitate further progress on the biology of versican and its proteolysis. PMID:25325983
Isolation and purification of versican and analysis of versican proteolysis.
Foulcer, Simon J; Day, Anthony J; Apte, Suneel S
2015-01-01
Versican is a widely distributed chondroitin sulfate proteoglycan that forms large complexes with the glycosaminoglycan hyaluronan (HA). As a consequence of HA binding to its receptor CD44 and interactions of the versican C-terminal globular (G3) domain with a variety of extracellular matrix proteins, versican is a key component of well-defined networks in pericellular matrix and extracellular matrix. It is crucial for several developmental processes in the embryo and there is increasing interest in its roles in cancer and inflammation. Versican proteolysis by ADAMTS proteases is highly regulated, occurs at specific peptide bonds, and is relevant to several physiological and disease mechanisms. In this chapter, methods are described for the isolation and detection of intact and cleaved versican in tissues using morphologic and biochemical techniques. These, together with the methodologies for purification and analysis of recombinant versican and a versican fragment provided here, are likely to facilitate further progress on the biology of versican and its proteolysis.
Successful subtotal orbitectomy in a cat with osteoma
Corgozinho, Katia B; Cunha, Simone CS; Siqueira, Ricardo S; Souza, Heloisa JM
2015-01-01
Case summary A 14-year-old Siamese neutered male cat was evaluated for anorexia and a left periorbital mass. Skull radiographic findings showed a well-defined lesion resembling new compact bone formation without destruction. A subtotal orbitectomy was indicated. The tumor was removed intact with a normal tissue margin of at least 1 cm. There were no postsurgical complications. Histopathologic examination revealed an osteoma. The cat returned to normal appetite and activity 15 days after surgery. Six months after surgery, there were no gross signs of recurrence. Relevance and novel information Periorbital tumors are infrequently diagnosed in companion animals and most are malignant. In this case, the diagnosis was orbital osteoma. The most commonly affected bone for osteoma in cats is the mandibular bone; few cases have been identified in orbital bones. Orbital surgery has the potential to be challenging owing to complex anatomy, difficult exposure and the tendency to bleed. Surgical complications are common. In this case, although the disease was advanced, subtotal orbitectomy was successfully performed. PMID:28491397
2004-12-01
and -2. However, there was no product breakage. The product stabilizers breakage can be addressed by either using stronger Styrofoam or using the same...dry ice shipper is suitable for use as a 72hrs shipping container for the frozen UVG and that, if necessary, the shipping time can be extended to at...concentrations for two hours at room temperature under constant agitation (85 rpm). The step-wise equilibration was measured using a refractometer
Erosion of pelvicol used in sacrocolpopexy.
Mukati, Marium S; Shobeiri, S Abbas
2013-01-01
Biologic graft materials are used more frequently in pelvic reconstructive surgeries. We describe here the complete process of removal of such a biologic graft in the office. We report a case of a 69-year-old woman with pig dermal graft erosion 1 year after placement. The patient presented with complaints of vaginal discharge. Upon examination, the graft material was seen eroding through the vaginal apex. The pig tissue was removed whole and intact in the office without complications. Transvaginal removal of pig tissue in the office relieved the patient's symptoms.
Hryn, V H; Svintsytska, N L; Piliuhin, V; Ustenko, R L; Katsenko, A L
Functional and morphological state of the organs and tissues mainly depends on the adequate blood supply and lymph movement, function of which is integrated by the nervous system. A crucial link in the morphogenesis of the gastric lesions is the intensity of vascularization, as well as the fact that in its venous part the gastric bloodstream is almost entirely included into the portal vein system. Knowledge of the anatomy of the normal human stomach conditions is of indispensable practical value, since they are required for the proper interpretation of the pathological changes occurred in it. To obtain the spatial visual information about the angioarchitecture of the extraorganic bloodstream of human intact stomach deep in the gastric wall. 10 post-autopsy adult total stomach specimens of patients, died for the reasons not associated with manifested gastrointestinal diseases have been analyzed. The specimens were extracted during the dissection together with portions of lesser and greater omentum, and segment of aorta with celiac trunk. To neutralize the acidic contents of the stomach, its cavity was washed by 4% sodium bicarbonate solution with subsequent wash in warm running water. The vascular injection method with subsequent corrosion of soft tissues was used in investigation of gastric bloodstream. On the basis of the investigations the advantages of the countercurrent-crossing method of injection of extraorganic vessels to fill the bloodstream of human stomach have been discussed. Positive results of the suggested technique for morphological study of blood vessels have been noted. The three-dimensional spatial organization of the extraorganic bloodstream of the intact stomach can be studied on the basis of the injection-corrosive casts. Thus, the use of the suggested method enables to obtain the fine three-dimensional reproduction of extraorganic bloodstream of the human stomach. The obtained high-quality casts, in turn, are used for the subsequent morphological studies of the intact stomach.
Three-dimensional micro-scale strain mapping in living biological soft tissues.
Moo, Eng Kuan; Sibole, Scott C; Han, Sang Kuy; Herzog, Walter
2018-04-01
Non-invasive characterization of the mechanical micro-environment surrounding cells in biological tissues at multiple length scales is important for the understanding of the role of mechanics in regulating the biosynthesis and phenotype of cells. However, there is a lack of imaging methods that allow for characterization of the cell micro-environment in three-dimensional (3D) space. The aims of this study were (i) to develop a multi-photon laser microscopy protocol capable of imprinting 3D grid lines onto living tissue at a high spatial resolution, and (ii) to develop image processing software capable of analyzing the resulting microscopic images and performing high resolution 3D strain analyses. Using articular cartilage as the biological tissue of interest, we present a novel two-photon excitation imaging technique for measuring the internal 3D kinematics in intact cartilage at sub-micrometer resolution, spanning length scales from the tissue to the cell level. Using custom image processing software, we provide accurate and robust 3D micro-strain analysis that allows for detailed qualitative and quantitative assessment of the 3D tissue kinematics. This novel technique preserves tissue structural integrity post-scanning, therefore allowing for multiple strain measurements at different time points in the same specimen. The proposed technique is versatile and opens doors for experimental and theoretical investigations on the relationship between tissue deformation and cell biosynthesis. Studies of this nature may enhance our understanding of the mechanisms underlying cell mechano-transduction, and thus, adaptation and degeneration of soft connective tissues. We presented a novel two-photon excitation imaging technique for measuring the internal 3D kinematics in intact cartilage at sub-micrometer resolution, spanning from tissue length scale to cellular length scale. Using a custom image processing software (lsmgridtrack), we provide accurate and robust micro-strain analysis that allowed for detailed qualitative and quantitative assessment of the 3D tissue kinematics. The approach presented here can also be applied to other biological tissues such as meniscus and annulus fibrosus, as well as tissue-engineered tissues for the characterization of their mechanical properties. This imaging technique opens doors for experimental and theoretical investigation on the relationship between tissue deformation and cell biosynthesis. Studies of this nature may enhance our understanding of the mechanisms underlying cell mechano-transduction, and thus, adaptation and degeneration of soft connective tissues. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Ashjian, Peter; Elbarbary, Amir; Zuk, Patricia; DeUgarte, Daniel A; Benhaim, Prosper; Marcu, Laura; Hedrick, Marc H
2004-01-01
The clinical implantation of bioengineered tissues requires an in situ nondestructive evaluation of the quality of tissue constructs developed in vitro before transplantation. Time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) is demonstrated here to noninvasively monitor the formation of osteogenic extracellular matrix (ECM) produced by putative stem cells (PLA cells) derived from human adipose tissue. We show that this optical spectroscopy technique can assess the relative expression of collagens (types I, III, IV, and V) within newly forming osteogenic ECM. The results are consistent with those obtained by conventional histochemical techniques (immunofluorescence and Western blot) and demonstrate that TR-LIFS is a potential tool for monitoring the expression of distinct collagen types and the formation of collagen cross-links in intact tissue constructs.
Effect of demedullation on freezing injury in hind limbs of rats
NASA Astrophysics Data System (ADS)
Dhingra, Shashi; Bhatia, B.; Chhina, G. S.; Singh, Baldev
1987-09-01
Freezing incidence and tissue loss on exposure of hind limbs of female Wistar rats to freezing mixture was reduced by demedullation 6 days prior to cold exposure (p<0.01 and p<0.001 respectively); demedullation 1 h after freezing injury had no effect on tissue loss. Noradrenaline (1 mg/kg i.p.) 5 min before exposure increased the freezing incidence in intact (p<0.05) as well as in demedullated rats (p<0.01), with no effect on tissue loss. Adrenaline (500 mg/kg i.p.) had no effect on either. A sustained fall in plasma adrenaline after demedullation leading to reduced reactivity of the blood vessels to some vasoactive agents is postulated.
Activity of Pure Streptovaricins and Fractionated Streptovaricin Complex Against Friend Virus
Horoszewicz, Julius S.; Rinehart, Kenneth L.; Leong, Susan S.; Carter, William A.
1975-01-01
Chromatographic fractionation of streptovaricin complex yields two stable components enriched (4- to 16-fold) in activity directed against the polycythemic strain of Friend virus; both components apparently contain no streptovaricins. When compared with their unfractionated parent streptovaricin complex, eight individual intact streptovaricins (A through G and J) show at least a 30-fold reduction in antiviral activity. These results further support the conclusion that the diversified biological properties of streptovaricin complex probably reside in different molecular structures. PMID:237470
Blanes-Mira, Clara; Merino, Jaime M; Valera, Elvira; Fernández-Ballester, Gregorio; Gutiérrez, Luis M; Viniegra, Salvador; Pérez-Payá, Enrique; Ferrer-Montiel, Antonio
2004-01-01
Synthetic peptides patterned after the C-terminus of synaptosomal associated protein of 25 kDa (SNAP25) efficiently abrogate regulated exocytosis. In contrast, the use of SNAP25 N-terminal-derived peptides to modulate SNAP receptors (SNARE) complex assembly and neurosecretion has not been explored. Here, we show that the N-terminus of SNAP25, specially the segment that encompasses 22Ala-44Ile, is essential for the formation of the SNARE complex. Peptides patterned after this protein domain are potent inhibitors of SNARE complex formation. The inhibitory activity correlated with their propensity to adopt an alpha-helical secondary structure. These peptides abrogated SNARE complex formation only when added previous to the onset of aggregate assembly. Analysis of the mechanism of action revealed that these peptides disrupted the binary complex formed by SNAP25 and syntaxin. The identified peptides inhibited Ca2+-dependent exocytosis from detergent-permeabilized excitable cells. Noteworthy, these amino acid sequences markedly protected intact hippocampal neurones against hypoglycaemia-induced, glutamate-mediated excitotoxicity with a potency that rivalled that displayed by botulinum neurotoxins. Our findings indicate that peptides patterned after the N-terminus of SNAP25 are potent inhibitors of SNARE complex formation and neuronal exocytosis. Because of their activity in intact neurones, these cell permeable peptides may be hits for antispasmodic and analgesic drug development.
Banerjee, A; Emanuel, K; Parafina, J; Bagchi, M
1992-10-01
A water soluble growth inhibitor was isolated from the mammalian ocular iris-ciliary complex. The molecular weight of this protein is 10 kD or lower as determined by ultrafiltration fractionation. The iris-ciliary (IC) complex water soluble protein(s) significantly inhibits synthesis of lower molecular weight proteins of the epithelial cells of the organ cultured mammalian ocular lens. It was also found that this inhibitory effect of IC is mediated via the structural organization of the lens. Monolayer cultures of the lens epithelial cells exposed to IC did not manifest any inhibition of their protein synthesis. Moreover, these tissue cultured lens epithelial (TCLE) cells showed a significant increase in their protein synthetic activities in response to the presence of IC factors in the culture medium. It is postulated that the IC activity is modulated via either the lens capsule, an extracellular matrix, or due to the specific organization of the intact lens. The specific effects of IC on the cytoskeletal organization and synthesis in the organ cultured lens epithelial (OCLE) and TCLE cells were also examined. Both groups, treated with IC factors, manifested significant alterations in their protein synthetic activities and cytoskeletal architecture. The 3H-leucine incorporation experiments showed that alpha-actin and alpha-tubulin synthesis is partially inhibited by IC factors in OCLE cells but vimentin synthesis is not, whereas in TCLE cells all of them showed increased synthesis in response to IC factors. Turnover rates of these proteins in both OCLE and TCLE cells were also computed. The immunofluorescence and microscopic evaluation of OCLE and TCLE cells exposed to IC factors illustrated significant alteration in the cytoarchitecture of the filaments. We demonstrate that an inhibitor(s) molecule of 10 kD or lower size isolated from IC inhibited protein synthesis of OCLE cells and stimulated protein synthesis in TCLE cells. The IC factor also affects the synthesis and organization of cytoskeletal filaments of both the OCLE and TCLE cells.
In vitro terahertz spectroscopy of gelatin-embedded human brain tumors: a pilot study
NASA Astrophysics Data System (ADS)
Chernomyrdin, N. V.; Gavdush, A. A.; Beshplav, S.-I. T.; Malakhov, K. M.; Kucheryavenko, A. S.; Katyba, G. M.; Dolganova, I. N.; Goryaynov, S. A.; Karasik, V. E.; Spektor, I. E.; Kurlov, V. N.; Yurchenko, S. O.; Komandin, G. A.; Potapov, A. A.; Tuchin, V. V.; Zaytsev, K. I.
2018-04-01
We have performed the in vitro terahertz (THz) spectroscopy of human brain tumors. In order to fix tissues for the THz measurements, we have applied the gelatin embedding. It allows for preserving tissues from hydration/dehydration and sustaining their THz response similar to that of the freshly-excised tissues for a long time after resection. We have assembled an experimental setup for the reflection-mode measurements of human brain tissues based on the THz pulsed spectrometer. We have used this setup to study in vitro the refractive index and the amplitude absorption coefficient of 2 samples of malignant glioma (grade IV), 1 sample of meningioma (grade I), and samples of intact tissues. We have observed significant differences between the THz responses of normal and pathological tissues of the brain. The results of this paper highlight the potential of the THz technology in the intraoperative neurodiagnosis of tumors relying on the endogenous labels of tumorous tissues.
Microwave Therapy for Bone Tumors
NASA Astrophysics Data System (ADS)
Takakuda, Kazuo; Inaoka, Shuken; Saito, Hirokazu; Hassan, Moinuddin; Koyama, Yoshikazu; Kuroda, Hiroshi; Kanaya, Tomohiro; Kosaka, Toshifumi; Tanaka, Shigeo; Miyairi, Hiroo; Shinomiya, Kenichi
In vivo microwave treatments for bone tumor are designed, which enable us to conserve the activity and functionality of the matrix of living tissues. This treatment is composed of two steps. In the first step, the tumor was coagulated by the application of microwaves emitted from the antenna inserted into the tumor tissue, and then removed. In the second step, the surrounding tissue suspected to be invaded with transformed cells was covered with hydro gels and heated similarly. The tissue itself was heated by the conduction from the gels. The tissue temperature should be kept at 60°C for 30 minutes. This treatment should kill the whole cells within the tissues, but the mechanical strength and the biochemical activity of the matrix should be left intact. The matrix preserves the mechanical functions and ensures the maximum regeneration ability of the tissue. In this study, various hydro gels were examined and the most promising one was selected. Animal experiments were carried out and successful heating verified the applicability of the treatment.
Intact Capture, Aerogel, SOCCER, Stardust and LIFE
NASA Astrophysics Data System (ADS)
Tsou, P.
2013-11-01
In order to definitively determine many complex exploration curiosities, we must bring samples to terrestrial laboratories for detailed analyses by collaborating laboratories and analysts. We report this endeavor in SOCCER, NEARER, Stardust and LIFE.
Mycobacteria employ two different mechanisms to cross the blood-brain barrier.
van Leeuwen, Lisanne M; Boot, Maikel; Kuijl, Coen; Picavet, Daisy I; van Stempvoort, Gunny; van der Pol, Susanne M A; de Vries, Helga E; van der Wel, Nicole N; van der Kuip, Martijn; van Furth, A Marceline; van der Sar, Astrid M; Bitter, Wilbert
2018-05-10
Central nervous system (CNS) infection by Mycobacterium tuberculosis is one of the most devastating complications of tuberculosis, in particular in early childhood. In order to induce CNS infection, M. tuberculosis needs to cross specialised barriers protecting the brain. How M. tuberculosis crosses the blood-brain barrier (BBB) and enters the CNS is not well understood. Here, we use transparent zebrafish larvae and the closely related pathogen Mycobacterium marinum to answer this question. We show that in the early stages of development, mycobacteria rapidly infect brain tissue, either as free mycobacteria or within circulating macrophages. After the formation of a functionally intact BBB, the infiltration of brain tissue by infected macrophages is delayed, but not blocked, suggesting that crossing the BBB via phagocytic cells is one of the mechanisms used by mycobacteria to invade the CNS. Interestingly, depletion of phagocytic cells did not prevent M. marinum from infecting the brain tissue, indicating that free mycobacteria can independently cause brain infection. Detailed analysis showed that mycobacteria are able to cause vasculitis by extracellular outgrowth in the smaller blood vessels and by infecting endothelial cells. Importantly, we could show that this second mechanism is an active process that depends on an intact ESX-1 secretion system, which extends the role of ESX-1 secretion beyond the macrophage infection cycle. © 2018 The Authors Cellular Microbiology Published by John Wiley & Sons Ltd.
Effect of supramolecular organization of a cartilaginous tissue on thermal stability of collagen II
NASA Astrophysics Data System (ADS)
Ignat'eva, N. Yu.; Averkiev, S. V.; Lunin, V. V.; Grokhovskaya, T. E.; Obrezkova, M. V.
2006-08-01
The thermal stability of collagen II in various cartilaginous tissues was studied. It was found that heating a tissue of nucleus pulposus results in collagen II melting within a temperature range of 60-70°C; an intact tissue of hyaline cartilage (of nasal septum and cartilage endplates) is a thermally stable system, where collagen II is not denatured completely up to 100°C. It was found that partial destruction of glycosaminoglycans in hyaline cartilage leads to an increase in the degree of denaturation of collagen II upon heating, although a significant fraction remains unchanged. It was shown that electrostatic interactions of proteoglycans and collagen only slightly affect the thermal stability of collagen II in the tissues. Evidently, proteoglycan aggregates play a key role: they create topological hindrances for moving polypeptide chains, thereby reducing the configurational entropy of collagen macromolecules in the state of a random coil.
Self-interference 3D super-resolution microscopy for deep tissue investigations.
Bon, Pierre; Linarès-Loyez, Jeanne; Feyeux, Maxime; Alessandri, Kevin; Lounis, Brahim; Nassoy, Pierre; Cognet, Laurent
2018-06-01
Fluorescence localization microscopy has achieved near-molecular resolution capable of revealing ultra-structures, with a broad range of applications, especially in cellular biology. However, it remains challenging to attain such resolution in three dimensions and inside biological tissues beyond the first cell layer. Here we introduce SELFI, a framework for 3D single-molecule localization within multicellular specimens and tissues. The approach relies on self-interference generated within the microscope's point spread function (PSF) to simultaneously encode equiphase and intensity fluorescence signals, which together provide the 3D position of an emitter. We combined SELFI with conventional localization microscopy to visualize F-actin 3D filament networks and reveal the spatial distribution of the transcription factor OCT4 in human induced pluripotent stem cells at depths up to 50 µm inside uncleared tissue spheroids. SELFI paves the way to nanoscale investigations of native cellular processes in intact tissues.
Swatland, H J
1988-09-01
The fluorescence of bovine tissues was measured post mortem by microscopy of frozen sections and by using optical fibres to excite fluorescence and to measure fluorescence emission spectra. Mechanical disruption of the tissue (by comminution or sectioning) did not appreciably change tissue fluorescence spectra. Ligamentum nuchae had the strongest fluorescence and lung tissue had the weakest. In samples measured with a minimum prior exposure to ultraviolet light, the peak fluorescence emission was at 410 or 420 nm (with excitation at 365 nm). Exposure to ultraviolet light for about 1 minute shifted the fluorescence peak to 450 to 470 nm. Further exposure (about 30 minutes) caused a loss of the 450 to 470 nm fluorescence peak, while emissions above 530 nm were maintained or strengthened. Microscopy showed that the fluorescence that was measured by fibre optics from intact connective tissues originated mostly from collagen and elastin fibres.
Mueller matrix approach for probing multifractality in the underlying anisotropic connective tissue
NASA Astrophysics Data System (ADS)
Das, Nandan Kumar; Dey, Rajib; Ghosh, Nirmalya
2016-09-01
Spatial variation of refractive index (RI) in connective tissues exhibits multifractality, which encodes useful morphological and ultrastructural information about the disease. We present a spectral Mueller matrix (MM)-based approach in combination with multifractal detrended fluctuation analysis (MFDFA) to exclusively pick out the signature of the underlying connective tissue multifractality through the superficial epithelium layer. The method is based on inverse analysis on selected spectral scattering MM elements encoding the birefringence information on the anisotropic connective tissue. The light scattering spectra corresponding to the birefringence carrying MM elements are then subjected to the Born approximation-based Fourier domain preprocessing to extract ultrastructural RI fluctuations of anisotropic tissue. The extracted RI fluctuations are subsequently analyzed via MFDFA to yield the multifractal tissue parameters. The approach was experimentally validated on a simple tissue model comprising of TiO2 as scatterers of the superficial isotropic layer and rat tail collagen as an underlying anisotropic layer. Finally, the method enabled probing of precancer-related subtle alterations in underlying connective tissue ultrastructural multifractality from intact tissues.
In vivo tissue response and durability of five novel synthetic polymers in a rabbit model.
Sahin, E; Cingi, C; Eskiizmir, G; Altintoprak, N; Calli, A; Calli, C; Yilgör, I; Yilgör, E
2016-04-01
Alloplastic materials are frequently used in facial plastic surgeries such as rhinoplasty and nasal reconstruction. Unfortunately, the ideal alloplastic material has not been found. This experimental study evaluates the tissue response and durability of five novel polymers developed as an alloplastic material. In this experimental study involving a tertiary university hospital, six subcuticular pockets were formed at the back of 10 rabbits for the implantation of each polymer and sham group. Each pocket was excised with its adjacent tissue after three months, and collected for histopathological examination. Semi-quantitative examination including neovascularisation, inflammation, fibrosis, abscess formation, multinucleated foreign body giant cells was performed, and integrity of polymer was evaluated. A statistical comparison was performed. No statically significant difference was detected in neovascularisation, inflammation, fibrosis, abscess formation and multinucleated foreign body giant cells when a paired comparison between sham and polymer II, III and IV groups was performed individually. Nevertheless, the degree of fibrosis was less than sham group in polymer I (p = .027) and V (p = .018), although the other variables were almost similar. The integrity of polymers III (9 intact, 1 fragmented) and IV (8 intact, 2 absent) was better than the other polymers. These novel synthetic polymers could be considered as good candidates for clinical applicability. All polymers provided satisfactory results in terms of tissue response; however, fibrovascular integration was higher in polymers II, III and IV. In addition, the durability of polymer III and IV was better than the others. © Copyright by Società Italiana di Otorinolaringologia e Chirurgia Cervico-Facciale, Rome, Italy.
L1 Peptide-Conjugated Fibrin Hydrogels Promote Salivary Gland Regeneration.
Nam, K; Wang, C-S; Maruyama, C L M; Lei, P; Andreadis, S T; Baker, O J
2017-07-01
Hyposalivation contributes to dental caries, periodontitis, and microbial infections. Additionally, it impairs activities of daily living (e.g., speaking, chewing, and swallowing). Treatments for hyposalivation are currently limited to medications (e.g., the muscarinic receptor agonists pilocarpine and cevimeline) that induce saliva secretion from residual acinar cells and the use of saliva substitutes. However, given that these therapies provide only temporary relief, the development of alternative treatments to restore gland function is essential. Previous studies demonstrated that laminin 1 (L1) is critical for intact salivary cell cluster formation and organization. However, the full L1 sequence is not suitable for clinical applications, as each protein domain may contribute to unwanted effects, such as degradation, tumorigenesis, and immune responses that, when compounded, outweigh the potential benefits provided by their sum. Although the L1 peptides YIGSR and A99 linked to fibrin hydrogels (FHs) promote intact salivary epithelial formation in vitro, little is known about their role during salivary gland regeneration in vivo. Therefore, the goal of this study was to demonstrate whether L1 peptides conjugated to FHs promote tissue regeneration in a wound-healing model of mouse submandibular glands (mSMGs). Our results suggest that YIGSR-A99 peptides, chemically conjugated to FHs and applied to wounded mSMGs in vivo, formed new organized salivary tissue. In contrast, wounded mSMGs treated with FHs alone or in the absence of a scaffold showed disorganized collagen formation and poor tissue healing. Together these studies indicate that damaged salivary gland tissue can grow and differentiate when treated with FHs containing L1 peptides.
Farraro, Kathryn F.; Kim, Kwang E.; Woo, Savio L-Y.; Flowers, Jonquil R.; McCullough, Matthew B.
2014-01-01
In recent years, there has been a surge of interest in magnesium (Mg) and its alloys as biomaterials for orthopaedic applications, as they possess desirable mechanical properties, good biocompatibility, and biodegradability. Also shown to be osteoinductive, Mg-based materials could be particularly advantageous in functional tissue engineering to improve healing and serve as scaffolds for delivery of drugs, cells, and cytokines. In this paper, we will present two examples of Mg-based orthopaedic devices: an interference screw to accelerate ACL graft healing and a ring to aid in the healing of an injured ACL. In vitro tests using a robotic/UFS testing system showed that both devices could restore function of the goat stifle joint. Under a 67-N anterior tibial load, both the ACL graft fixed with the Mg-based interference screw and the Mg-based ring-repaired ACL could restore anterior tibial translation (ATT) to within 2 mm and 5 mm, respectively, of the intact joint at 301, 601, and 901 of flexion. In-situ forces in the replacement graft and Mg-based ring-repaired ACL were also similar to those of the intact ACL. Further, early in vivo data using the Mg-based interference screw showed that after 12 weeks, it was non-toxic and the joint stability and graft function reached similar levels as published data. Following these positive results, we will move forward in incorporating bioactive molecules and ECM bioscaffolds to these Mg-based biomaterials to test their potential for functional tissue engineering of musculoskeletal and other tissues. PMID:24373510
Farraro, Kathryn F; Kim, Kwang E; Woo, Savio L-Y; Flowers, Jonquil R; McCullough, Matthew B
2014-06-27
In recent years, there has been a surge of interest in magnesium (Mg) and its alloys as biomaterials for orthopaedic applications, as they possess desirable mechanical properties, good biocompatibility, and biodegradability. Also shown to be osteoinductive, Mg-based materials could be particularly advantageous in functional tissue engineering to improve healing and serve as scaffolds for delivery of drugs, cells, and cytokines. In this paper, we will present two examples of Mg-based orthopaedic devices: an interference screw to accelerate ACL graft healing and a ring to aid in the healing of an injured ACL. In vitro tests using a robotic/UFS testing system showed that both devices could restore function of the goat stifle joint. Under a 67-N anterior tibial load, both the ACL graft fixed with the Mg-based interference screw and the Mg-based ring-repaired ACL could restore anterior tibial translation (ATT) to within 2mm and 5mm, respectively, of the intact joint at 30°, 60°, and 90° of flexion. In-situ forces in the replacement graft and Mg-based ring-repaired ACL were also similar to those of the intact ACL. Further, early in vivo data using the Mg-based interference screw showed that after 12 weeks, it was non-toxic and the joint stability and graft function reached similar levels as published data. Following these positive results, we will move forward in incorporating bioactive molecules and ECM bioscaffolds to these Mg-based biomaterials to test their potential for functional tissue engineering of musculoskeletal and other tissues. © 2013 Published by Elsevier Ltd.
Imaging Feedback of Histotripsy Treatments Using Ultrasound Shear Wave Elastography
Wang, Tzu-Yin; Hall, Timothy L.; Xu, Zhen; Fowlkes, J. Brian; Cain, Charles A.
2013-01-01
Histotripsy is a cavitation-based ultrasound therapy that mechanically fractionates soft solid tissues into fluid-like homogenates. This paper investigates the feasibility of imaging the tissue elasticity change during the histotripsy process as a tool to provide feedback for the treatments. The treatments were performed on agar tissue phantoms and ex vivo kidneys using 3-cycle ultrasound pulses delivered by a 750-kHz therapeutic array at peak negative/positive pressure of 17/108 MPa and a repetition rate of 50 Hz. Lesions with different degrees of damage were created with increasing numbers of therapy pulses from 0 to 2000 pulses per treatment location. The elasticity of the lesions was measured with ultrasound shear wave elastography, in which a quasi-planar shear wave was induced by acoustic radiation force generated by the therapeutic array, and tracked with ultrasound imaging at 3000 frames per second. Based on the shear wave velocity calculated from the sequentially captured frames, the Young’s modulus was reconstructed. Results showed that the lesions were more easily identified on the shear wave velocity images than on B-mode images. As the number of therapy pulses increased from 0 to 2000 pulses/location, the Young’s modulus decreased exponentially from 22.1 ± 2.7 to 2.1 ± 1.1 kPa in the tissue phantoms (R2 = 0.99, N = 9 each), and from 33.0 ± 7.1 to 4.0 ± 2.5 kPa in the ex vivo kidneys (R2 = 0.99, N = 8 each). Correspondingly, the tissues transformed from completely intact to completely fractionated as examined via histology. A good correlation existed between the lesions’ Young’s modulus and the degree of tissue fractionation as examined with the percentage of remaining structurally intact cell nuclei (R2 = 0.91, N = 8 each). These results indicate that lesions produced by histotripsy can be detected with high sensitivity using shear wave elastography. Because the decrease in the tissue elasticity corresponded well with the morphological and histological change, this study provides a basis for predicting the local treatment outcomes from tissue elasticity change. PMID:22711412
Imaging feedback of histotripsy treatments using ultrasound shear wave elastography.
Wang, Tzu-Yin; Hall, Timothy L; Xu, Zhen; Fowlkes, J Brian; Cain, Charles A
2012-06-01
Histotripsy is a cavitation-based ultrasound therapy that mechanically fractionates soft solid tissues into fluid-like homogenates. This paper investigates the feasibility of imaging the tissue elasticity change during the histotripsy process as a tool to provide feedback for the treatments. The treatments were performed on agar tissue phantoms and ex vivo kidneys using 3-cycle ultrasound pulses delivered by a 750-kHz therapeutic array at peak negative/positive pressure of 17/108 MPa and a repetition rate of 50 Hz. Lesions with different degrees of damage were created with increasing numbers of therapy pulses from 0 to 2000 pulses per treatment location. The elasticity of the lesions was measured with ultrasound shear wave elastography, in which a quasi-planar shear wave was induced by acoustic radiation force generated by the therapeutic array, and tracked with ultrasound imaging at 3000 frames per second. Based on the shear wave velocity calculated from the sequentially captured frames, the Young's modulus was reconstructed. Results showed that the lesions were more easily identified on the shear wave velocity images than on B-mode images. As the number of therapy pulses increased from 0 to 2000 pulses/location, the Young's modulus decreased exponentially from 22.1 ± 2.7 to 2.1 ± 1.1 kPa in the tissue phantoms (R2 = 0.99, N = 9 each), and from 33.0 ± 7.1 to 4.0 ± 2.5 kPa in the ex vivo kidneys (R2 = 0.99, N = 8 each). Correspondingly, the tissues transformed from completely intact to completely fractionated as examined via histology. A good correlation existed between the lesions' Young's modulus and the degree of tissue fractionation as examined with the percentage of remaining structurally intact cell nuclei (R2 = 0.91, N = 8 each). These results indicate that lesions produced by histotripsy can be detected with high sensitivity using shear wave elastography. Because the decrease in the tissue elasticity corresponded well with the morphological and histological change, this study provides a basis for predicting the local treatment outcomes from tissue elasticity change.
A raman microprobe investigation of the molecular architecture of loblolly pine tracheids
James S. Bond; Rajai H. Atalla
1999-01-01
Our understanding of the molecular architecture of intact, native plant cell walls is very limited. Traditional methods of investigation disturb the tissue to varying degrees and conclusions based on these methods may be intimately related to the technique used. A promising new technique to study native-state organization is polarized Raman spectroscopy. In this...
Masi, Elisa; Ciszak, Marzena; Colzi, Ilaria; Adamec, Lubomir; Mancuso, Stefano
2016-01-01
In this study the MEA (multielectrode array) system was used to record electrical responses of intact and halved traps, and other trap-free tissues of two aquatic carnivorous plants, Aldrovanda vesiculosa and Utricularia reflexa. They exhibit rapid trap movements and their traps contain numerous glands. Spontaneous generation of spikes with quite uniform shape, propagating across the recording area, has been observed for all types of sample. In the analysis of the electrical network, higher richer synchronous activity was observed relative to other plant species and organs previously described in the literature: indeed, the time intervals between the synchronized clusters (the inter-spike intervals) create organized patterns and the propagation times vary non-linearly with the distance due to this synchronization. Interestingly, more complex electrical activity was found in traps than in trap-free organs, supporting the hypothesis that the nature of the electrical activity may reflect the anatomical and functional complexity of different organs. Finally, the electrical activity of functionally different traps of Aldrovanda (snapping traps) and Utricularia (suction traps) was compared and some differences in the features of signal propagation were found. According to these results, a possible use of the MEA system for the study of different trap closure mechanisms is proposed. PMID:27117956
Ice formation in isolated human hepatocytes and human liver tissue.
Bischof, J C; Ryan, C M; Tompkins, R G; Yarmush, M L; Toner, M
1997-01-01
Cryopreservation of isolated cells and tissue slices of human liver is required to furnish extracorporeal bioartificial liver devices with a ready supply of hepatocytes, and to create in vitro drug metabolism and toxicity models. Although both the bioartificial liver and many current biotoxicity models are based on reconstructing organ functions from single isolated hepatocytes, tissue slices offer an in vitro system that may more closely resemble the in vivo situation of the cells because of cell-cell and cell-extracellular matrix interactions. However, successful cryopreservation of both cellular and tissue level systems requires an increased understanding of the fundamental mechanisms involved in the response of the liver and its cells to freezing stress. This study investigates the biophysical mechanisms of water transport and intracellular ice formation during freezing in both isolated human hepatocytes and whole liver tissue. The effects of cooling rate on individual cells were measured using a cryomicroscope. Biophysical parameters governing water transport (Lpg = 2.8 microns/min-atm and ELp = 79 kcal/mole) and intracellular heterogeneous ice nucleation (omega het = 1.08 x 10(9) m-2s-1 and kappa het = 1.04 x 10(9) K5) were determined. These parameters were then incorporated into a theoretical Krogh cylinder model developed to simulate water transport and ice formation in intact liver tissue. Model simulations indicated that the cellular compartment of the Krogh model maintained more water than isolated cells under the same freezing conditions. As a result, intracellular ice nucleation occurred at lower cooling rates in the Krogh model than in isolated cells. Furthermore, very rapid cooling rates (1000 degrees C/min) showed a depression of heterogeneous nucleation and a shift toward homogeneous nucleation. The results of this study are in qualitative agreement with the findings of a previous experimental study of the response to freezing of intact human liver.
Folasire, Oladayo S; Chess-Williams, Russ; Sellers, Donna J
2017-09-01
The urethral uroepithelium has been implicated in urethral sensation and maintenance of continence. However, relatively little is known about the function of the urethral urothelium compared with that of the bladder. The aim of the study was to examine the role of the urothelium/lamina propria on contractility of the porcine urethra, along with the influence of nitric oxide, prostaglandins and ageing. Porcine urethral tissues, intact and denuded of urothelium/lamina propria, were mounted in tissue baths and contractions to noradrenaline, phenylephrine and carbachol obtained. Contractions in the presence of Nώ-nitro-l-arginine (100 μmol/L) and indomethacin (10 μmol/L) were examined, along with contractions of tissues from young (6 months) and older (3 years) animals. The urothelium/lamina propria of the urethra significantly inhibited contractions to carbachol, noradrenaline and phenylephrine. This inhibitory effect was not significantly different for the three agonists (58.7±10.3%, 60.4±12.6% and 39.4±12.2% inhibition; n=4-7), and was also observed when denuded tissues were co-incubated with a second tissue with intact urothelium/lamina propria (40.6±7.5% inhibition; n=6). Inhibition of nitric oxide and prostaglandin production did not attenuate the inhibitory effect of the urothelium/lamina propria on noradrenaline contractions. In addition, ageing did not alter the inhibitory effect for either phenylephrine contractions (33.9±2.2% vs 41.0±9.7%, young vs older urethral tissues) or noradrenaline contractions (32.9±11.1% vs 53.7±11.0%). In conclusion the urothelium/lamina propria of the urethra has an inhibitory effect on receptor-mediated urethral contraction. This inhibition is due to the release of a diffusible factor, and the effect is not mediated by nitric oxide or prostaglandins, or affected by age. © 2017 John Wiley & Sons Australia, Ltd.
Islam, Anowarul; Bohl, Michael S.; Tsai, Andrew G; Younesi, Mousa; Gillespie, Robert; Akkus, Ozan
2015-01-01
Background Currently, there are no well-established suture protocols to attach fully load-bearing scaffolds which span tendon defects between bone and muscle for repair of critical sized tendon tears. Methods to attach load-bearing tissue repair scaffolds could enable functional repair of tendon injuries. Methods Sixteen rabbit shoulders were dissected (New Zealand white rabbits, 1 yr. old, female) to isolate the humeral-infraspinatus muscle complex. A unique suture technique was developed to allow for a 5 mm segmental defect in infraspinatus tendon to be replaced with a mechanically strong bioscaffold woven from pure collagen threads. The suturing pattern resulted in a fully load-bearing scaffold. The tensile stiffness and strength of scaffold repair was compared with intact infraspinatus and regular direct repair. Findings The failure load and displacement at failure of the scaffold repair group were 59.9 N (Standard Deviation, SD = 10.7) and 10.3 mm (SD = 2.9), respectively and matched those obtained by direct repair group which were 57.5 N (SD = 15.3) and 8.6 mm (SD = 1.5), (p > 0.05). Failure load, displacement at failure and stiffness of both of the repair groups were half of the intact infraspinatus shoulder group. Interpretation With the developed suture technique, scaffolds repair showed similar failure load, displacement at failure and stiffness to the direct repair. This novel suturing pattern and the mechanical robustness of the scaffold at time zero indicates that the proposed model is mechanically viable for future in vivo studies which has a higher potential to translate into clinical uses. PMID:26009492
NASA Astrophysics Data System (ADS)
Moon, J. B.; Wardrop, D. H.; Smithwick, E. A.
2010-12-01
Although small in size, headwater wetland complexes provide a disproportionate share of microbially mediated ecosystem services to the surrounding landscape and hydroscape. Two services that are of current interest to scientists and managers, given their role in regulating climate and water quality, are the retention and transformation of carbon and nitrogen pools. Although it is the wetland complex’s geographic position between the landscape and hydroscape that creates these hotspots of ecosystem function, continuous shifts in the surrounding scapes can also affect the complex’s transformational capacity through changes to its natural hydrologic disturbance regime and subsequent material fluxes. We have begun to investigate the influence of surrounding land cover and associated differences in hydrology on wetland edaphic habitats and their associated microbial communities. These studies are taking place in wetland complexes located in the headwaters of the Chesapeake Bay Watershed, within the Ridge and Valley Region of central Pennsylvania. Within this region, surrounding land cover ranges from intact forested buffers to a matrix of land cover types (e.g., mixed forest, grassland, and impermeable surfaces). Over a preliminary six-month collection period we found higher frequency and intensity of hydrologic fluctuations in wetlands surrounded by a matrix of land cover types, compared to highly stable saturated conditions of wetland complexes with intact forested buffers. Differences were also found in both the abundances of edaphic habitats as well as in the types of habitats present within these surrounding land cover groups. Wetlands with intact forested buffers had (1) fresh organic residue soils with high overall microbial biomasses and relatively high abundances of microeukaryotic groups, (2) reduced muck soils with relatively large proportions of branched fatty acid microbial groups, and (3) carbon and nutrient depleted sandy mineral soils with relatively low microbial biomasses. Riparian wetland complexes surrounded by a matrix of land cover types had narrower ranges of soil properties and were predominately high pH clay loam soils dominated by bacterial groups. Although these wetland complexes had fewer edaphic habitat types than wetland complexes with intact forested buffers, preliminary investigations using the DeNitrification-DeComposition (DNDC) model showed that their higher pH levels and hydrological fluctuations could make them more suitable environments for higher rates of complete denitrification. However, depending on the depth of the water table, wetland complexes surrounded by a matrix of land cover types could also transition into hotspots of methanogenesis. These initial hypotheses will be further refined with additional hydrologic, climatic, vegetation, and soils data and tested over the next year using methods such as push-pull denitrification.
Deregulation of EZH2 expression in human spermatogenic disorders and testicular germ cell tumors.
Hinz, Stefan; Magheli, Ahmed; Weikert, Steffen; Schulze, Wolfgang; Krause, Hans; Schrader, Mark; Miller, Kurt; Kempkensteffen, Carsten
2010-10-01
Enhancer of Zeste 2 (EZH2) is an epigenetic transcriptional repressor involved in cell cycle control and cell fate decisions. Since these processes play key roles during intact spermatogenesis, deregulation of EZH2 expression may contribute to the development and progression of benign and malignant testicular diseases. The objective of this study was to investigate the expression profile of EZH2 in testicular germ cell tumors (TGCT) and spermatogenic defects. Real-time RT-PCR was applied to quantify the m-RNA expression of EZH2 in 64 seminomas 36 non-seminomas, 4 carcinomas in situ (CIS), 40 samples harboring impaired spermatogenesis and 24 normal testicular reference biopsies. EZH2 was expressed in 99% of TGCT samples and in all biopsies with intact spermatogenesis. Its expression levels were highest in normal testicular tissue, and continuously decreased with malignant transformation to CIS and further progression to invasive TGCT (P < 0.001). EZH2 tumor levels were not related to the histological TGCT subtype or clinical tumor stage. Comparison of distinct stages of spermatogenic failure revealed an inverse association of EZH2 levels to the severity of the spermatogenic defect (P < 0.001). Our data strongly suggest that in TGCT EZH2 does not exert its often assumed oncogenic properties during malignant transformation and progression. High EZH2 levels in normal testicular tissue and the inverse association of its expression levels with the severity of spermatogenic failure point to its potential value as a molecular marker for spermatogenic defects and may indicate an important physiological role of EZH2 during intact spermatogenesis.
Mechanical characterization of stomach tissue under uniaxial tensile action.
Jia, Z G; Li, W; Zhou, Z R
2015-02-26
In this article, the tensile properties of gastric wall were investigated by using biomechanical test and theoretical analysis. The samples of porcine stomach strips from smaller and greater curvature of the stomach were cut in longitudinal and circumferential direction, respectively. The loading-unloading, stress relaxation, strain creep, tensile fracture tests were performed at mucosa-submucosa, serosa-muscle and intact layer, respectively. Results showed that the biomechanical properties of the porcine stomach depended on the layers, orientations and locations of the gastric wall and presented typical viscoelastic, nonlinear and anisotropic mechanical properties. During loading-unloading test, the stress of serosa-muscle layer in the longitudinal direction was 15-20% more than that in the circumferential direction at 12% stretch ratio, while it could reach about 40% for the intact layer and 50% for the mucosa-submucosa layer. The results of stress relaxation and strain creep showed that the variation degree was obviously faster in the circumferential direction than that in the longitudinal direction, and the ultimate residual values were also different for the different layers, orientations and locations. In the process of fracture test, the serosa-muscle layer fractured firstly followed by the mucosa-submucosa layer when the intact layer was tested, the longitudinal strips firstly began to fracture and the required stress value was about twice as much as that in the circumferential strips. The anisotropy and heterogeneity of mechanical characterization of the porcine stomach were related to its complicated geometry, structure and functions. The results would help us to understand the biomechanics of soft organ tissue. Copyright © 2015 Elsevier Ltd. All rights reserved.
Szucs, Peter; Pinto, Vitor; Safronov, Boris V
2009-03-15
Light-emitting diodes (LEDs) have recently been used for the imaging of unstained living cells in the whole brain and spinal cord preparations, in which one cut was done to remove the overlying white matter. Here we show that in many cases the neurones can be visualized through the white matter in an intact nervous tissue (rats P0-P36 and mice P0-P2). We used an upright microscope with a water immersion objective and a powerful infrared LED (emission peak, 850 nm; maximum radiant intensity, 270 mW/sr) as a source of oblique illumination. In the isolated spinal cord, we were able to visualize lamina I and II neurones as well as motoneurones. In the brainstem, the neurones from the superficial nuclei were successfully viewed. In the sensory ganglion, we obtained images of unstained cells as well as intracellular structures, like endoplasmic reticulum, nucleus and nucleolus. In isolated cerebellum, parallel fibers, Purkinje and granule cells were viewed. Whole-cell recordings were done to fill spinal lamina I neurones, motoneurones and brainstem neurones with biocytin for detailed 2D-3D reconstruction of their dendritic and axonal arbores. Our imaging technique also allowed labelling individual intact neurones by injecting biocytin through the extracellular cell-attached pipette. This imaging technique opens broad possibilities for functional studies of neurones with completely preserved anatomical structures and synaptic inputs. We also show that the application of oblique infrared LED illumination allows a construction of a simple digital videomicroscope for the high-quality living cell imaging in intact nervous tissue.
North, Ashley E; Sarpong-Kumankomah, Sophia; Bellavie, Andrew R; White, Wade M; Gailer, Jürgen
2017-07-01
Although Cd is a pollutant of public health relevance, many dietary sources from which it can be absorbed into human tissues remain unknown. While it is well established that the biogeochemical cycle of Cd involves its complexation with environment-derived ligands (e.g., humic acids, HAs) and anthropogenic ones (e.g., chelating agents, CAs), the interaction of Cd with both of these ligands is less well understood. To gain insight, a HA-Cd complex was injected on a size-exclusion chromatography (SEC) column coupled on-line with a flame atomic absorption spectrometer (FAAS) using 10mmol/L Tris buffer (pH8.0) as the mobile phase. This approach allowed us to observe the intact HA-Cd complex and the retention behavior of Cd as a function of 2-20μmol/L concentrations of ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DTPA) or methylglycinediacetic acid (MGDA) that were added to the mobile phase. An increase of the retention time of Cd was indicative of a partial or complete abstraction of Cd from HA. Our results revealed that all CAs abstracted Cd from the HA-Cd complex at concentrations of 5μmol/L, while MGDA and DTPA were effective at 2μmol/L. The bioavailability of some of the on-column formed CA-Cd complexes explains the previously reported increased accumulation of Cd in periphyton in the ecosystem downstream of wastewater treatment plants. In addition, our results imply that the use of effluents which contain CAs and Cd for the irrigation of food crops can introduce Cd into the food supply and compromise food safety. Copyright © 2017. Published by Elsevier B.V.
Seyed-Razavi, Yashar; Hickey, Michael J; Kuffová, Lucia; McMenamin, Paul G; Chinnery, Holly R
2013-01-01
Membrane nanotubes (MNTs) are newly discovered cellular extensions that are either blind-ended or can connect widely separated cells. They have predominantly been investigated in cultured isolated cells, however, previously we were the first group to demonstrate the existence of these structures in vivo in intact mammalian tissues. We previously demonstrated the frequency of both cell-cell or bridging MNTs and blind-ended MNTs was greatest between major histocompatibility complex (MHC) class II(+) cells during corneal injury or TLR ligand-mediated inflammation. The present study aimed to further explore the dynamics of MNT formation and their size, presence in another tissue, the dura mater, and response to stress factors and an active local viral infection of the murine cornea. Confocal live cell imaging of myeloid-derived cells in inflamed corneal explants from Cx(3)cr1(GFP) and CD11c(eYFP) transgenic mice revealed that MNTs form de novo at a rate of 15.5 μm/min. This observation contrasts with previous studies that demonstrated that in vitro these structures originate from cell-cell contacts. Conditions that promote formation of MNTs include inflammation in vivo and cell stress due to serum starvation ex vivo. Herpes simplex virus-1 infection did not cause a significant increase in MNT numbers in myeloid cells in the cornea above that observed in injury controls, confirming that corneal epithelium injury alone elicits MNT formation in vivo. These novel observations extend the currently limited understanding of MNTs in live mammalian tissues.
Aicher, Wilhelm K; Rolauffs, Bernd
2014-04-01
Chondrocytes display within the articular cartilage depth-dependent variations of their many properties that are comparable to the depth-dependent changes of the properties of the surrounding extracellular matrix. However, not much is known about the spatial organisation of the chondrocytes throughout the tissue. Recent studies revealed that human chondrocytes display distinct spatial patterns of organisation within the articular surface, and each joint surface is dominated in a typical way by one of four basic spatial patterns. The resulting complex spatial organisations correlate with the specific diarthrodial joint type, suggesting an association of the chondrocyte organisation within the joint surface with the occurring biomechanical forces. In response to focal osteoarthritis (OA), the superficial chondrocytes experience a destruction of their spatial organisation within the OA lesion, but they also undergo a defined remodelling process distant from the OA lesion in the remaining, intact cartilage surface. One of the biological insights that can be derived from this spatial remodelling process is that the chondrocytes are able to respond in a generalised and coordinated fashion to distant focal OA. The spatial characteristics of this process are tremendously different from the cellular aggregations typical for OA lesions, suggesting differences in the underlying mechanisms. Here we summarise the available information on the spatial organisation of chondrocytes and its potential roles in cartilage functioning. The spatial organisation could be used to diagnose early OA onset before manifest OA results in tissue destruction and clinical symptoms. With further development, this concept may become clinically suitable for the diagnosis of preclinical OA.
Characterization of dynamic physiology of the bladder by optical coherence tomography
NASA Astrophysics Data System (ADS)
Yuan, Zhijia; Keng, Kerri; Pan, Rubin; Ren, Hugang; Du, Congwu; Kim, Jason; Pan, Yingtian
2012-03-01
Because of its high spatial resolution and noninvasive imaging capabilities, optical coherence tomography has been used to characterize the morphological details of various biological tissues including urinary bladder and to diagnose their alternations (e.g., cancers). In addition to static morphology, the dynamic features of tissue morphology can provide important information that can be used to diagnose the physiological and functional characteristics of biological tissues. Here, we present the imaging studies based on optical coherence tomography to characterize motion related physiology and functions of rat bladder detrusor muscles and compared the results with traditional biomechanical measurements. Our results suggest that optical coherence tomography is capable of providing quantitative evaluation of contractile functions of intact bladder (without removing bladder epithelium and connective tissue), which is potentially of more clinical relevance for future clinical diagnosis - if incorporated with cystoscopic optical coherence tomography.
Rusina, Tatsiana P; Carlsson, Pernilla; Vrana, Branislav; Smedes, Foppe
2017-10-03
Passive sampling is widely used to measure levels of contaminants in various environmental matrices, including fish tissue. Equilibrium passive sampling (EPS) of persistent organic pollutants (POP) in fish tissue has been hitherto limited to application in lipid-rich tissue. We tested several exposure methods to extend EPS applicability to lean tissue. Thin-film polydimethylsiloxane (PDMS) passive samplers were exposed statically to intact fillet and fish homogenate and dynamically by rolling with cut fillet cubes. The release of performance reference compounds (PRC) dosed to passive samplers prior to exposure was used to monitor the exchange process. The sampler-tissue exchange was isotropic, and PRC were shown to be good indicators of sampler-tissue equilibration status. The dynamic exposures demonstrated equilibrium attainment in less than 2 days for all three tested fish species, including lean fish containing 1% lipid. Lipid-based concentrations derived from EPS were in good agreement with lipid-normalized concentrations obtained using conventional solvent extraction. The developed in-tissue EPS method is robust and has potential for application in chemical monitoring of biota and bioaccumulation studies.
Using pancreas tissue slices for in situ studies of islet of Langerhans and acinar cell biology.
Marciniak, Anja; Cohrs, Christian M; Tsata, Vasiliki; Chouinard, Julie A; Selck, Claudia; Stertmann, Julia; Reichelt, Saskia; Rose, Tobias; Ehehalt, Florian; Weitz, Jürgen; Solimena, Michele; Slak Rupnik, Marjan; Speier, Stephan
2014-12-01
Studies on the cellular function of the pancreas are typically performed in vitro on its isolated functional units, the endocrine islets of Langerhans and the exocrine acini. However, these approaches are hampered by preparation-induced changes of cell physiology and the lack of an intact surrounding. We present here a detailed protocol for the preparation of pancreas tissue slices. This procedure is less damaging to the tissue and faster than alternative approaches, and it enables the in situ study of pancreatic endocrine and exocrine cell physiology in a conserved environment. Pancreas tissue slices facilitate the investigation of cellular mechanisms underlying the function, pathology and interaction of the endocrine and exocrine components of the pancreas. We provide examples for several experimental applications of pancreas tissue slices to study various aspects of pancreas cell biology. Furthermore, we describe the preparation of human and porcine pancreas tissue slices for the validation and translation of research findings obtained in the mouse model. Preparation of pancreas tissue slices according to the protocol described here takes less than 45 min from tissue preparation to receipt of the first slices.
Doni, Andrea; Musso, Tiziana; Morone, Diego; Bastone, Antonio; Zambelli, Vanessa; Sironi, Marina; Castagnoli, Carlotta; Cambieri, Irene; Stravalaci, Matteo; Pasqualini, Fabio; Laface, Ilaria; Valentino, Sonia; Tartari, Silvia; Ponzetta, Andrea; Maina, Virginia; Barbieri, Silvia S.; Tremoli, Elena; Catapano, Alberico L.; Norata, Giuseppe D.; Bottazzi, Barbara; Garlanda, Cecilia
2015-01-01
Pentraxin 3 (PTX3) is a fluid-phase pattern recognition molecule and a key component of the humoral arm of innate immunity. In four different models of tissue damage in mice, PTX3 deficiency was associated with increased fibrin deposition and persistence, and thicker clots, followed by increased collagen deposition, when compared with controls. Ptx3-deficient macrophages showed defective pericellular fibrinolysis in vitro. PTX3-bound fibrinogen/fibrin and plasminogen at acidic pH and increased plasmin-mediated fibrinolysis. The second exon-encoded N-terminal domain of PTX3 recapitulated the activity of the intact molecule. Thus, a prototypic component of humoral innate immunity, PTX3, plays a nonredundant role in the orchestration of tissue repair and remodeling. Tissue acidification resulting from metabolic adaptation during tissue repair sets PTX3 in a tissue remodeling and repair mode, suggesting that matrix and microbial recognition are common, ancestral features of the humoral arm of innate immunity. PMID:25964372
Klyen, Blake R.; Scolaro, Loretta; Shavlakadze, Tea; Grounds, Miranda D.; Sampson, David D.
2014-01-01
We present the assessment of ex vivo mouse muscle tissue by quantitative parametric imaging of the near-infrared attenuation coefficient µt using optical coherence tomography. The resulting values of the local total attenuation coefficient µt (mean ± standard error) from necrotic lesions in the dystrophic skeletal muscle tissue of mdx mice are higher (9.6 ± 0.3 mm−1) than regions from the same tissue containing only necrotic myofibers (7.0 ± 0.6 mm−1), and significantly higher than values from intact myofibers, whether from an adjacent region of the same sample (4.8 ± 0.3 mm−1) or from healthy tissue of the wild-type C57 mouse (3.9 ± 0.2 mm−1) used as a control. Our results suggest that the attenuation coefficient could be used as a quantitative means to identify necrotic lesions and assess skeletal muscle tissue in mouse models of human Duchenne muscular dystrophy. PMID:24761302
Brodsky, William A.; Appelboom, Johannes W.; Dennis, Warren H.; Rehm, Warren S.; Miley, John F.; Diamond, Israel
1956-01-01
The freezing point depression of freshly excised frozen tissues, pulverized in a hydraulic press or in a mortar, is greater than that of plasma. Even at 0°C. the freezing point depression of such homogenates increases significantly with time. Dilution data indicate that such freezing point data are valid. The presence of intact cells has been shown in smears of tissues pulverized in a mortar, but not in smears of those crushed in a hydraulic press. The osmolarity of various diluent solutions affects the calculated osmotic activity of tissue homogenates presumably because of delayed diffusion between the diluent and cell fluid. With a hypertonic NaCl diluent, spuriously low values of tissue osmotic activity are found from calculations assuming instantaneous mixing between homogenates and diluents. The limitations of data from cryoscopic experiments and from tissue-swelling experiments are discussed in relation to the basic question of whether or not cell fluid is isotonic to extracellular fluid. PMID:13385447
Ku, Taeyun; Swaney, Justin; Park, Jeong-Yoon; Albanese, Alexandre; Murray, Evan; Cho, Jae Hun; Park, Young-Gyun; Mangena, Vamsi; Chen, Jiapei; Chung, Kwanghun
2016-09-01
The biology of multicellular organisms is coordinated across multiple size scales, from the subnanoscale of molecules to the macroscale, tissue-wide interconnectivity of cell populations. Here we introduce a method for super-resolution imaging of the multiscale organization of intact tissues. The method, called magnified analysis of the proteome (MAP), linearly expands entire organs fourfold while preserving their overall architecture and three-dimensional proteome organization. MAP is based on the observation that preventing crosslinking within and between endogenous proteins during hydrogel-tissue hybridization allows for natural expansion upon protein denaturation and dissociation. The expanded tissue preserves its protein content, its fine subcellular details, and its organ-scale intercellular connectivity. We use off-the-shelf antibodies for multiple rounds of immunolabeling and imaging of a tissue's magnified proteome, and our experiments demonstrate a success rate of 82% (100/122 antibodies tested). We show that specimen size can be reversibly modulated to image both inter-regional connections and fine synaptic architectures in the mouse brain.
Tidal stretches do not modulate responsiveness of intact airways in vitro
Szabo, Thomas L.; Suki, Béla; Lutchen, Kenneth R.
2010-01-01
Studies on isolated tracheal airway smooth muscle (ASM) strips have shown that length/force fluctuations, similar to those likely occurring during breathing, will mitigate ASM contractility. These studies conjecture that, solely by reducing length oscillations on a healthy, intact airway, one can create airway hyperresponsiveness, but this has never been explicitly tested. The intact airway has additional complexities of geometry and structure that may impact its relevance to isolated ASM strips. We examined the role of transmural pressure (Ptm) fluctuations of physiological amplitudes on the responsiveness of an intact airway. We developed an integrated system utilizing ultrasound imaging to provide real-time measurements of luminal radius and wall thickness over the full length of an intact airway (generation 10 and below) during Ptm oscillations. First, airway constriction dynamics to cumulative acetylcholine (ACh) doses (10−7 to 10−3 M) were measured during static and dynamic Ptm protocols. Regardless of the breathing pattern, the Ptm oscillation protocols were ineffective in reducing the net level of constriction for any ACh dose, compared with the static control (P = 0.225–0.793). Next, Ptm oscillations of increasing peak-to-peak amplitude were applied subsequent to constricting intact airways under static conditions (5.0-cmH2O Ptm) with a moderate ACh dose (10−5 M). Peak-to-peak Ptm oscillations ≤5.0 cmH2O resulted in no statistically significant bronchodilatory response (P = 0.429 and 0.490). Larger oscillations (10 cmH2O, peak to peak) produced modest dilation of 4.3% (P = 0.009). The lack of modulation of airway responsiveness by Ptm oscillations in intact, healthy airways suggests that ASM level mechanisms alone may not be the sole determinant of airway responsiveness. PMID:20431023
In vivo labeling of cortical astrocytes with sulforhodamine 101 (SR101).
Nimmerjahn, Axel; Helmchen, Fritjof
2012-03-01
Fluorescent markers that stain particular cell types in the intact brain are essential tools for fluorescence microscopy because they enable studies of structure and function of cells identified in this way. Although cell type-specific fluorescence staining can be achieved through promoter-driven expression of fluorescent proteins, this genetic approach is generally labor- and cost-intensive. Alternative viral approaches for targeted fluorophore expression are relatively invasive. For astrocytes, there is a simple alternative. This protocol describes an easy and robust method for rapid (within minutes) and high-contrast staining of astrocytes in defined regions of the intact rodent cortex using the synthetic, water-soluble but non-fixable red fluorescent dye sulforhodamine 101 (SR101). Selective staining is achieved through local uptake and gap junction-mediated spread of SR101 following its topical application or injection into tissue. Applications, technical pitfalls, and limitations of the SR101-staining technique are discussed. Given its simplicity and reliability, SR101 staining is a valuable tool for the study of astrocyte function in the intact brain and for in vivo fluorescence microscopy in general.
NASA Astrophysics Data System (ADS)
Beyer, Frederick; Bain, Erich; Long, Tyler; Mrozek, Randy; Savage, Alice; Martin, Halie; Dadmun, Mark; Lenhart, Joseph
Between 2001 and 2009, uncontrolled hemorrhaging from major trauma accounted for the deaths of roughly 80% of wounded soldiers with potentially survivable injuries. Modern hemostatic materials are limited in their ability to deliver therapeutic agents, causing tissue damage themselves, or being difficult to remove intact. The goal of this study is to create a mechanically robust polymer that takes up as much as 1000 wt% water in seconds while maintaining sufficient toughness to be removed intact from the wound intact. A thermoplastic elastomer scaffold in which physical crosslinks provide mechanical toughness might provide an appropriate combination of fast swelling and excellent toughness if the matrix material can be engineered to be strongly hydrophilic and swell rapidly. In this work, a commercial SBS triblock copolymer has been modified with poly(acrylic acid) side chains, resulting in materials that are superabsorbent but retain good mechanical properties when saturated. Although SAXS experiments failed to show any significant changes in morphology, even with 800 wt% water uptake, preliminary SANS experiments using selectively deuterated materials and swelling with D2O show significant changes in morphology. Our most recent findings will be presented.
Effects of tissue mechanical properties on susceptibility to histotripsy-induced tissue damage
NASA Astrophysics Data System (ADS)
Vlaisavljevich, Eli; Kim, Yohan; Owens, Gabe; Roberts, William; Cain, Charles; Xu, Zhen
2014-01-01
Histotripsy is a non-invasive tissue ablation method capable of fractionating tissue by controlling acoustic cavitation. To determine the fractionation susceptibility of various tissues, we investigated histotripsy-induced damage on tissue phantoms and ex vivo tissues with different mechanical strengths. A histotripsy bubble cloud was formed at tissue phantom surfaces using 5-cycle long ultrasound pulses with peak negative pressure of 18 MPa and PRFs of 10, 100, and 1000 Hz. Results showed significantly smaller lesions were generated in tissue phantoms of higher mechanical strength. Histotripsy was also applied to 43 different ex vivo porcine tissues with a wide range of mechanical properties. Gross morphology demonstrated stronger tissues with higher ultimate stress, higher density, and lower water content were more resistant to histotripsy damage in comparison to weaker tissues. Based on these results, a self-limiting vessel-sparing treatment strategy was developed in an attempt to preserve major vessels while fractionating the surrounding target tissue. This strategy was tested in porcine liver in vivo. After treatment, major hepatic blood vessels and bile ducts remained intact within a completely fractionated liver volume. These results identify varying susceptibilities of tissues to histotripsy therapy and provide a rational basis to optimize histotripsy parameters for treatment of specific tissues.
Ochayon, David E; Baranovski, Boris M; Malkin, Peter; Schuster, Ronen; Kalay, Noa; Ben-Hamo, Rotem; Sloma, Ido; Levinson, Justin; Brazg, Jared; Efroni, Sol; Lewis, Eli C; Nevo, Uri
2016-01-01
Immune tolerance toward "self" is critical in multiple immune disorders. While there are several mechanisms to describe the involvement of immune cells in the process, the role of peripheral tissue cells in that context is not yet clear. The theory of ecoimmunity postulates that interactions between immune and tissue cells represent a predator-prey relationship. A lifelong interaction, shaped mainly during early ontogeny, leads to selection of nonimmune cell phenotypes. Normally, therefore, nonimmune cells that evolve alongside an intact immune system would be phenotypically capable of evading immune responses, and cells whose phenotype falls short of satisfying this steady state would expire under hostile immune responses. This view was supported until recently by experimental evidence showing an inferior endurance of severe combined immunodeficiency (SCID)-derived pancreatic islets when engrafted into syngeneic immune-intact wild-type (WT) mice, relative to islets from WT. Here we extend the experimental exploration of ecoimmunity by searching for the presence of the phenotypic changes suggested by the theory. Immune-related phenotypes of islets, spleen, and bone marrow immune cells were determined, as well as SCID and WT nonlymphocytic cells. Islet submass grafting was performed to depict syngeneic graft functionality. Islet cultures were examined under both resting and inflamed conditions for expression of CD40 and major histocompatibility complex (MHC) class I/II and release of interleukin-1α (IL-1α), IL-1β, IL-6, tumor necrosis factor-α (TNF-α), IL-10, and insulin. Results depict multiple pathways that appear to be related to the sculpting of nonimmune cells by immune cells; 59 SCID islet genes displayed relative expression changes compared with WT islets. SCID cells expressed lower tolerability to inflammation and higher levels of immune-related molecules, including MHC class I. Accordingly, islets exhibited a marked increase in insulin release upon immunocyte depletion, in effect resuming endocrine function that was otherwise suppressed by resident immunocytes. This work provides further support of the ecoimmunity theory and encourages subsequent studies to identify its role in the emergence and treatment of autoimmune pathologies, transplant rejection, and cancer.
NASA Astrophysics Data System (ADS)
Vlaisavljevich, Eli
Histotripsy is a noninvasive ultrasound therapy that controls acoustic cavitation to mechanically fractionate soft tissue. This dissertation investigates the physical thresholds to initiate cavitation and produce tissue damage in histotripsy and factors affecting these thresholds in order to develop novel strategies for targeted tissue ablation. In the first part of this dissertation, the effects of tissue properties on histotripsy cavitation thresholds and damage thresholds were investigated. Results demonstrated that the histotripsy shock scattering threshold using multi-cycle pulses increases in stiffer tissues, while the histotripsy intrinsic threshold using single-cycle pulses is independent of tissue stiffness. Further, the intrinsic threshold slightly decreases with lower frequencies and significantly decreases with increasing temperature. The effects of tissue properties on the susceptibility to histotripsy-induced tissue damage were also investigated, demonstrating that stiffer tissues are more resistant to histotripsy. Two strategies were investigated for increasing the effectiveness of histotripsy for the treatment of stiffer tissues, with results showing that thermal preconditioning may be used to alter tissue susceptibility to histotripsy and that lower frequency treatments may increase the efficiency of histotripsy tissue ablation due to enhanced bubble expansion. In the second part of this dissertation, the feasibility of using histotripsy for targeted liver ablation was investigated in an intact in vivo porcine model, with results demonstrating that histotripsy was capable of non-invasively creating precise lesions throughout the entire liver. Additionally, a tissue selective ablation approach was developed, where histotripsy completely fractionated the liver tissue surrounding the major hepatic vessels and gallbladder while being self-limited at the boundaries of these critical structures. Finally, the long-term effects of histotripsy liver ablation were investigated in an intact in vivo rodent model, showing that the liver homogenate resulting from histotripsy-induced tissue fractionation was completely resorbed over the course of 28 days. In the final part of this dissertation, a novel ablation method combining histotripsy with acoustically sensitive nanodroplets was developed for targeted cancer cell ablation, demonstrating the potential of using nanodroplet-mediated histotripsy (NMH) for targeted, multi-focal ablation. Studies demonstrated that lower frequency and higher boiling point perfluorocarbon droplets can improve NMH therapy. The role of positive and negative pressure on cavitation nucleation in NMH was also investigated, showing that NMH cavitation nucleation is caused directly from the peak negative pressure of the incident wave, similar to histotripsy bubbles generated above the intrinsic threshold. Overall, the results of this dissertation provide significant insight into the physical mechanisms underlying histotripsy tissue ablation and will help to guide the future development of histotripsy for clinical applications such as the treatment of liver cancer.
Failure strength of the bovine caudal disc under internal hydrostatic pressure.
Schechtman, Helio; Robertson, Peter A; Broom, Neil D
2006-01-01
The structure of the disc is both complex and inhomogeneous, and it functions as a successful load-bearing organ by virtue of the integration of its various structural regions. These same features also render it impossible to assess the failure strength of the disc from isolated tissue samples, which at best can only yield material properties. This study investigated the intrinsic failure strength of the intact bovine caudal disc under a simple mode of internal hydrostatic pressure. Using a hydraulic actuator, coloured hydrogel was injected under monitored pressure into the nucleus through a hollow screw insert which passed longitudinally through one of the attached vertebrae. Failure did not involve vertebra/endplate structures. Rather, failure of the disc annulus was indicated by the simultaneous manifestation of a sudden loss of gel pressure, a flood of gel colouration appearing in the outer annulus and audible fibrous tearing. A mean hydrostatic failure pressure of 18+/-3 MPa was observed which was approximated as a thick-wall hoop stress of 45+/-7 MPa. The experiment provides a measurement of the intrinsic strength of the disc using a method of internal hydrostatic loading which avoids any disruption of the complex architecture of the annular wall. Although the disc in vivo is subjected to a much more complex pattern of loading than is achieved using simple hydrostatic pressurization, this latter mode provides a useful tool for investigating alterations in intrinsic disc strength associated with prior loading history or degeneration.
Changes in mitochondrial electron transport chain activity during insect metamorphosis.
Chamberlin, M E
2007-02-01
The midgut of the tobacco hornworm (Manduca sexta) is a highly aerobic tissue that is destroyed by programmed cell death during larval-pupal metamorphosis. The death of the epithelium begins after commitment to pupation, and the oxygen consumption of isolated midgut mitochondria decreases soon after commitment. To assess the role of the electron transport chain in this decline in mitochondrial function, the maximal activities of complexes I-IV of the respiratory chain were measured in isolated midgut mitochondria. Whereas there were no developmental changes in the activity of complex I or III, activities of complexes II and IV [cytochrome c oxidase (COX)] were higher in mitochondria from precommitment than postcommitment larvae. This finding is consistent with a higher rate of succinate oxidation in mitochondria isolated from precommitment larvae and reveals that the metamorphic decline in mitochondrial respiration is due to the targeted destruction or inactivation of specific sites within the mitochondria, rather than the indiscriminate destruction of the organelles. The COX turnover number (e- x s(-1) x cytochrome aa3(-1)) was greater for the enzyme from precommitment than postcommitment larvae, indicating a change in the enzyme structure and/or its lipid environment during the early stages of metamorphosis. The turnover number of COX in the intact mitochondria (in organello COX) was also lower in postcommitment larvae. In addition to changes in the protein or membrane phospholipids, the metamorphic decline in this rate constant may be a result of the observed loss of endogenous cytochrome c.
The Anterolateral Capsule of the Knee Behaves Like a Sheet of Fibrous Tissue.
Guenther, Daniel; Rahnemai-Azar, Amir A; Bell, Kevin M; Irarrázaval, Sebastián; Fu, Freddie H; Musahl, Volker; Debski, Richard E
2017-03-01
The function of the anterolateral capsule of the knee has not been clearly defined. However, the contribution of this region of the capsule to knee stability in comparison with other anterolateral structures can be determined by the relative force that each structure carries during loading of the knee. Purpose/Hypothesis: The purpose of this study was to determine the forces in the anterolateral structures of the intact and anterior cruciate ligament (ACL)-deficient knee in response to an anterior tibial load and internal tibial torque. It was hypothesized that the anterolateral capsule would not function like a traditional ligament (ie, transmitting forces only along its longitudinal axis). Controlled laboratory study. Loads (134-N anterior tibial load and 7-N·m internal tibial torque) were applied continuously during flexion to 7 fresh-frozen cadaveric knees in the intact and ACL-deficient state using a robotic testing system. The lateral collateral ligament (LCL) and the anterolateral capsule were separated from the surrounding tissue and from each other. This was done by performing 3 vertical incisions: lateral to the LCL, medial to the LCL, and lateral to the Gerdy tubercle. Attachments of the LCL and anterolateral capsule were detached from the underlying tissue (ie, meniscus), leaving the insertions and origins intact. The force distribution in the anterolateral capsule, ACL, and LCL was then determined at 30°, 60°, and 90° of knee flexion using the principle of superposition. In the intact knee, the force in the ACL in response to an anterior tibial load was greater than that in the other structures ( P < .001). However, in response to an internal tibial torque, no significant differences were found between the ACL, LCL, and forces transmitted between each region of the anterolateral capsule after capsule separation. The anterolateral capsule experienced smaller forces (~50% less) compared with the other structures ( P = .048). For the ACL-deficient knee in response to an anterior tibial load, the force transmitted between each region of the anterolateral capsule was 434% greater than was the force in the anterolateral capsule ( P < .001) and 54% greater than the force in the LCL ( P = .036) at 30° of flexion. In response to an internal tibial torque at 30°, 60°, or 90° of knee flexion, no significant differences were found between the force transmitted between each region of the anterolateral capsule and the LCL. The force in the anterolateral capsule was significantly smaller than that in the other structures at all knee flexion angles for both loading conditions ( P = .004 for anterior tibial load and P = .04 for internal tibial torque). The anterolateral capsule carries negligible forces in the longitudinal direction, and the forces transmitted between regions of the capsule were similar to the forces carried by the other structures at the knee, suggesting that it does not function as a traditional ligament. Thus, the anterolateral capsule should be considered a sheet of tissue. Surgical repair techniques for the anterolateral capsule should restore the ability of the tissue to transmit forces between adjacent regions of the capsule rather than along its longitudinal axis.
Canon, Francis; Paté, Franck; Meudec, Emmanuelle; Marlin, Thérèse; Cheynier, Véronique; Giuliani, Alexandre; Sarni-Manchado, Pascale
2009-12-01
Numerous protein-polyphenol interactions occur in biological and food domains particularly involving proline-rich proteins, which are representative of the intrinsically unstructured protein group (IUP). Noncovalent protein-ligand complexes are readily detected by electrospray ionization mass spectrometry (ESI-MS), which also gives access to ligand binding stoichiometry. Surprisingly, the study of interactions between polyphenolic molecules and proteins is still an area where ESI-MS has poorly benefited, whereas it has been extensively applied to the detection of noncovalent complexes. Electrospray ionization mass spectrometry has been applied to the detection and the characterization of the complexes formed between tannins and a human salivary proline-rich protein (PRP), namely IB5. The study of the complex stability was achieved by low-energy collision-induced dissociation (CID) measurements, which are commonly implemented using triple quadrupole, hybrid quadrupole time-of-flight, or ion trap instruments. Complexes composed of IB5 bound to a model polyphenol EgCG have been detected by ESI-MS and further analyzed by MS/MS. Mild ESI interface conditions allowed us to observe intact noncovalent PRP-tannin complexes with stoichiometries ranging from 1:1 to 1:5. Thus, ESI-MS shows its efficiency for (1) the study of PRP-tannin interactions, (2) the determination of stoichiometry, and (3) the study of complex stability. We were able to establish unambiguously both their stoichiometries and their overall subunit architecture via tandem mass spectrometry and solution disruption experiments. Our results prove that IB5.EgCG complexes are maintained intact in the gas phase.
Implicit Binding of Facial Features During Change Blindness
Lyyra, Pessi; Mäkelä, Hanna; Hietanen, Jari K.; Astikainen, Piia
2014-01-01
Change blindness refers to the inability to detect visual changes if introduced together with an eye-movement, blink, flash of light, or with distracting stimuli. Evidence of implicit detection of changed visual features during change blindness has been reported in a number of studies using both behavioral and neurophysiological measurements. However, it is not known whether implicit detection occurs only at the level of single features or whether complex organizations of features can be implicitly detected as well. We tested this in adult humans using intact and scrambled versions of schematic faces as stimuli in a change blindness paradigm while recording event-related potentials (ERPs). An enlargement of the face-sensitive N170 ERP component was observed at the right temporal electrode site to changes from scrambled to intact faces, even if the participants were not consciously able to report such changes (change blindness). Similarly, the disintegration of an intact face to scrambled features resulted in attenuated N170 responses during change blindness. Other ERP deflections were modulated by changes, but unlike the N170 component, they were indifferent to the direction of the change. The bidirectional modulation of the N170 component during change blindness suggests that implicit change detection can also occur at the level of complex features in the case of facial stimuli. PMID:24498165
Implicit binding of facial features during change blindness.
Lyyra, Pessi; Mäkelä, Hanna; Hietanen, Jari K; Astikainen, Piia
2014-01-01
Change blindness refers to the inability to detect visual changes if introduced together with an eye-movement, blink, flash of light, or with distracting stimuli. Evidence of implicit detection of changed visual features during change blindness has been reported in a number of studies using both behavioral and neurophysiological measurements. However, it is not known whether implicit detection occurs only at the level of single features or whether complex organizations of features can be implicitly detected as well. We tested this in adult humans using intact and scrambled versions of schematic faces as stimuli in a change blindness paradigm while recording event-related potentials (ERPs). An enlargement of the face-sensitive N170 ERP component was observed at the right temporal electrode site to changes from scrambled to intact faces, even if the participants were not consciously able to report such changes (change blindness). Similarly, the disintegration of an intact face to scrambled features resulted in attenuated N170 responses during change blindness. Other ERP deflections were modulated by changes, but unlike the N170 component, they were indifferent to the direction of the change. The bidirectional modulation of the N170 component during change blindness suggests that implicit change detection can also occur at the level of complex features in the case of facial stimuli.
Clinical anatomy of fecal incontinence in women.
Kadam-Halani, Priyanka K; Arya, Lily A; Andy, Uduak U
2017-10-01
Fecal incontinence is a devastating condition that has a severe impact on quality of life. This condition disproportionately affects women and its incidence is increasing with the aging United States population. Fecal continence is maintained by coordination of a functioning anal sphincter complex, intact sensation of the anorectum, rectal compliance, and the ability to consciously control defecation. Particularly important are the puborectalis sling of the levator ani muscle complex and intact innervation of the central and peripheral nervous systems. An understanding of the intricate anatomy required to maintain continence and regulate defecation will help clinicians to provide appropriate medical and surgical management and diminish the negative impact of fecal incontinence. In this article, we describe the anatomic and neural basis of fecal continence and normal defecation as well as changes that occur with fecal incontinence in women. Clin. Anat. 30:901-911, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Absorption, excretion and retention of 51Cr from labelled Cr-(III)-picolinate in rats.
Kottwitz, Karin; Laschinsky, Niels; Fischer, Roland; Nielsen, Peter
2009-04-01
The bioavailability of chromium from Cr-picolinate (CrPic(3)) and Cr-chloride (CrCl(3)) was studied in rats using (51)Cr-labelled compounds and whole-body-counting. The intestinal absorption of Cr was twice as high from CrPic(3) (1.16% vs 0.55%) than from CrCl(3), however most of the absorbed (51)Cr from CrPic(3) was excreted into the urine within 24 h. After i.v. or i.p. injection, the whole-body retention curves fitted well to a multiexponential function, demonstrating that plasma chromium is in equilibrium with three pools. For CrPic(3), a large pool exists with a very rapid exchange (T (1/2) = <0.5 days), suggesting that CrPic(3) is absorbed as intact molecule, from which the main part is directly excreted by the kidney before degradation of the chromium complex in the liver can occur. CrCl(3) is less well absorbed but the rapid exchange pool is much smaller, resulting in even higher Cr concentrations in tissue such as muscle and fat. However, 1-3 days after application, the relative distribution of (51)Cr from both compounds was similar in all tissues studied, indicating that both compounds contribute to the same storage pool. In summary, the bioavailability of CrPic(3) in rats is not superior compared to CrCl(3).
Rai, Vandna; Sharma, Naveen Kumar; Rai, Ashwani K
2006-09-01
Salinity, at a concentration of 10 mM NaCl affected the growth of Azolla pinnata-Anabaena azollae association and became lethal at 40 mM. Plants exposed up to 30 mM NaCl exhibited longer roots than the control, especially during the beginning of incubation. Average root number in plants exposed to 10 and 20 mM NaCl remained almost the same as in control. A further rise in NaCl concentration to 30 mM reduced the root number, and roots shed off at 40 mM NaCl. Presence of NaCl in the nutrient solution increased the cellular Na+ of the intact association exhibiting differential accumulation by individual partners, while it reduced the cellular Ca2+ level. However, cellular K+ content did not show significant change. Cellular Na+ based on fresh weight of respective individual partners (host tissues and cyanobiont) remained higher in the host tissues than the cyanobiont, while reverse was true for K+ and Ca2+ contents. The contribution of A. azollae in the total cellular ion content of the association was a little because of meagre contribution of the cyanobiont mass (19-21%). High salt sensitivity of Azolla-Anabaena complex is due to an inability of the association to maintain low Na+ and high Ca2+ cellular level.
The integrity of the plant Golgi apparatus depends on cell growth-controlled activity of GNL1.
Du, Wenyan; Tamura, Kentaro; Stefano, Giovanni; Brandizzi, Federica
2013-05-01
Membrane traffic and organelle integrity in the plant secretory pathway depend on ARF-GTPases, which are activated by guanine-nucleotide exchange factors (ARF-GEFs). While maintenance of conserved roles, evolution of unique functions as well as tissue-specific roles have been shown for a handful of plant ARF-GEFs, a fundamental yet unanswered question concerns the extent to which their function overlaps during cell growth. To address this, we have characterized pao, a novel allele of GNOM-like 1 (GNL1), a brefeldin A (BFA)-insensitive ARF-GEF, isolated through a confocal microscopy-based forward genetics screen of the Golgi in Arabidopsis thaliana. Specifically, we have analyzed the dependence of the integrity of trafficking routes and secretory organelles on GNL1 availability during expansion stages of cotyledon epidermal cells, an exquisite model system for vegetative cell growth analyses in intact tissues. We show that Golgi traffic is influenced largely by GNL1 availability at early stages of cotyledon cell expansion but by BFA-sensitive GEFs when cell growth terminates. These data reveal an unanticipated level of complexity in the biology of GNL1 by showing that its cellular roles are correlated with cell growth. These results also indicate that the cell growth stage is an important element weighting into functional analyses of the cellular roles of ARF-GEFs.
Pharmacologic basis for the enhanced efficacy of dutasteride against prostatic cancers.
Xu, Yi; Dalrymple, Susan L; Becker, Robyn E; Denmeade, Samuel R; Isaacs, John T
2006-07-01
Prostatic dihydrotestosterone (DHT) concentration is regulated by precursors from systemic circulation and prostatic enzymes of androgen metabolism, particularly 5alpha-reductases (i.e., SRD5A1 and SRD5A2). Therefore, the levels of expression SRD5A1 and SRD5A2 and the antiprostatic cancer growth response to finasteride, a selective SRD5A2 inhibitor, versus the dual SRD5A1 and SRD5A2 inhibitor, dutasteride, were compared. Real-time PCR and enzymatic assays were used to determine the levels of SRD5A1 and SRD5A2 in normal versus malignant rat and human prostatic tissues. Rats bearing the Dunning R-3327H rat prostate cancer and nude mice bearing LNCaP or PC-3 human prostate cancer xenografts were used as model systems. Tissue levels of testosterone and DHT were determined using liquid chromatography-mass spectrometry. Prostate cancer cells express undetectable to low levels of SRD5A2 but elevated levels of SRD5A1 activity compared with nonmalignant prostatic tissue. Daily oral treatment of rats with the SRD5A2 selective inhibitor, finasteride, reduces prostate weight and DHT content but did not inhibit R-3327H rat prostate cancer growth or DHT content in intact (i.e., noncastrated) male rats. In contrast, daily oral treatment with even a low 1 mg/kg/d dose of the dual SRD5A1 and SRD5A2 inhibitor, dutasteride, reduces both normal prostate and H tumor DHT content and weight in intact rats while elevating tissue testosterone. Daily oral treatment with finasteride significantly (P < 0.05) inhibits growth of LNCaP human prostate cancer xenografts in intact male nude mice, but this inhibition is not as great as that by equimolar oral dosing with dutasteride. This anticancer efficacy is not equivalent, however, to that produced by castration. Only combination of dutasteride and castration produces a greater tumor inhibition (P < 0.05) than castration monotherapy against androgen-responsive LNCaP cancers. In contrast, no response was induced by dutasteride in nude mice bearing androgen-independent PC-3 human prostatic cancer xenografts. These results document that testosterone is not as potent as DHT but does stimulate prostate cancer growth, thus combining castration with dutasteride enhances therapeutic efficacy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Dongwen; Chung, Suhman; Miller, Maria
2012-06-19
The ribonuclease H (RNase H) domain of retroviral reverse transcriptase (RT) plays a critical role in the life cycle by degrading the RNA strands of DNA/RNA hybrids. In addition, RNase H activity is required to precisely remove the RNA primers from nascent (-) and (+) strand DNA. We report here three crystal structures of the RNase H domain of xenotropic murine leukemia virus-related virus (XMRV) RT, namely (i) the previously identified construct from which helix C was deleted, (ii) the intact domain, and (iii) the intact domain complexed with an active site {alpha}-hydroxytropolone inhibitor. Enzymatic assays showed that the intactmore » RNase H domain retained catalytic activity, whereas the variant lacking helix C was only marginally active, corroborating the importance of this helix for enzymatic activity. Modeling of the enzyme-substrate complex elucidated the essential role of helix C in binding a DNA/RNA hybrid and its likely mode of recognition. The crystal structure of the RNase H domain complexed with {beta}-thujaplicinol clearly showed that coordination by two divalent cations mediates recognition of the inhibitor.« less
Kang, Jin Seok; Choi, Hwan Jun; Tak, Min Sung
2016-06-01
Free flaps are still the gold standard for large defects of the lower limb, but propeller perforator flaps have become a simpler and faster alternative to free flaps because of some advantages such as reliable vascular pedicle, wide mobilization and rotation, great freedom in design, low donor site morbidity, and easy harvest with no requirement for anastomosis. But when the vessels show insufficient findings in preoperative evaluation using a Doppler probe or the vessel is injured, the surgeon should avoid performing free flap surgery to prevent flap failure and should select a propeller perforator flap as an alternative method on the condition that more than one perforator is intact. In this study, we report reconstruction of soft tissue defects of the heel with a pedicled propeller flap in postfasciotomy and popliteal artery revascularization state by making an incision on the central portion above the Achilles tendon, which can be covered by the posterior tibial artery perforator or the peroneal artery perforator based flaps. In conclusion, we showed that although the popliteal artery was injured, the soft tissue defect can be reconstructed using a perforator propeller flap if intact distal flow in the anastomosis site was confirmed. © The Author(s) 2015.
Light sheet theta microscopy for rapid high-resolution imaging of large biological samples.
Migliori, Bianca; Datta, Malika S; Dupre, Christophe; Apak, Mehmet C; Asano, Shoh; Gao, Ruixuan; Boyden, Edward S; Hermanson, Ola; Yuste, Rafael; Tomer, Raju
2018-05-29
Advances in tissue clearing and molecular labeling methods are enabling unprecedented optical access to large intact biological systems. These developments fuel the need for high-speed microscopy approaches to image large samples quantitatively and at high resolution. While light sheet microscopy (LSM), with its high planar imaging speed and low photo-bleaching, can be effective, scaling up to larger imaging volumes has been hindered by the use of orthogonal light sheet illumination. To address this fundamental limitation, we have developed light sheet theta microscopy (LSTM), which uniformly illuminates samples from the same side as the detection objective, thereby eliminating limits on lateral dimensions without sacrificing the imaging resolution, depth, and speed. We present a detailed characterization of LSTM, and demonstrate its complementary advantages over LSM for rapid high-resolution quantitative imaging of large intact samples with high uniform quality. The reported LSTM approach is a significant step for the rapid high-resolution quantitative mapping of the structure and function of very large biological systems, such as a clarified thick coronal slab of human brain and uniformly expanded tissues, and also for rapid volumetric calcium imaging of highly motile animals, such as Hydra, undergoing non-isomorphic body shape changes.
Optical magnetic detection of single-neuron action potentials using quantum defects in diamond
Barry, John F.; Turner, Matthew J.; Schloss, Jennifer M.; Glenn, David R.; Song, Yuyu; Lukin, Mikhail D.; Park, Hongkun; Walsworth, Ronald L.
2016-01-01
Magnetic fields from neuronal action potentials (APs) pass largely unperturbed through biological tissue, allowing magnetic measurements of AP dynamics to be performed extracellularly or even outside intact organisms. To date, however, magnetic techniques for sensing neuronal activity have either operated at the macroscale with coarse spatial and/or temporal resolution—e.g., magnetic resonance imaging methods and magnetoencephalography—or been restricted to biophysics studies of excised neurons probed with cryogenic or bulky detectors that do not provide single-neuron spatial resolution and are not scalable to functional networks or intact organisms. Here, we show that AP magnetic sensing can be realized with both single-neuron sensitivity and intact organism applicability using optically probed nitrogen-vacancy (NV) quantum defects in diamond, operated under ambient conditions and with the NV diamond sensor in close proximity (∼10 µm) to the biological sample. We demonstrate this method for excised single neurons from marine worm and squid, and then exterior to intact, optically opaque marine worms for extended periods and with no observed adverse effect on the animal. NV diamond magnetometry is noninvasive and label-free and does not cause photodamage. The method provides precise measurement of AP waveforms from individual neurons, as well as magnetic field correlates of the AP conduction velocity, and directly determines the AP propagation direction through the inherent sensitivity of NVs to the associated AP magnetic field vector. PMID:27911765
Optical magnetic detection of single-neuron action potentials using quantum defects in diamond.
Barry, John F; Turner, Matthew J; Schloss, Jennifer M; Glenn, David R; Song, Yuyu; Lukin, Mikhail D; Park, Hongkun; Walsworth, Ronald L
2016-12-06
Magnetic fields from neuronal action potentials (APs) pass largely unperturbed through biological tissue, allowing magnetic measurements of AP dynamics to be performed extracellularly or even outside intact organisms. To date, however, magnetic techniques for sensing neuronal activity have either operated at the macroscale with coarse spatial and/or temporal resolution-e.g., magnetic resonance imaging methods and magnetoencephalography-or been restricted to biophysics studies of excised neurons probed with cryogenic or bulky detectors that do not provide single-neuron spatial resolution and are not scalable to functional networks or intact organisms. Here, we show that AP magnetic sensing can be realized with both single-neuron sensitivity and intact organism applicability using optically probed nitrogen-vacancy (NV) quantum defects in diamond, operated under ambient conditions and with the NV diamond sensor in close proximity (∼10 µm) to the biological sample. We demonstrate this method for excised single neurons from marine worm and squid, and then exterior to intact, optically opaque marine worms for extended periods and with no observed adverse effect on the animal. NV diamond magnetometry is noninvasive and label-free and does not cause photodamage. The method provides precise measurement of AP waveforms from individual neurons, as well as magnetic field correlates of the AP conduction velocity, and directly determines the AP propagation direction through the inherent sensitivity of NVs to the associated AP magnetic field vector.
2011-01-01
Background Menopause is associated with increased adiposity, especially increased deposition of intra-abdominal (IA) adipose tissue (AT). This differs from common or 'dietary' obesity, i.e., obesity apparently due to environmentally stimulated overeating, in which IAAT and subcutaneous (S) AT increase in similar proportions. The effect of menopause on adiposity is thought to be due to the decreased secretion of ovarian estrogens. Ovariectomy in rats and other animals is a commonly used model of menopause. It is well known that ovariectomy increases adiposity and that this can be reversed by estradiol treatment, but whether ovariectomy selectively increases IAAT has not been measured directly. Therefore, we used micro-computed tomography (microCT) to investigate this question in both chow-fed and dietary-obese rats. Methods Ovariectomized, ovariectomized and estradiol treated, and sham-operated (intact) rats were fed chow or chow plus Ensure (Abbott Nutrition; n = 7/group). Total (T) AT, IAAT and SAT were measured periodically by microCT. Regional distribution of AT was expressed as IAAT as a percentage of TAT (%IAAT). Excesses in these measures were calculated with respect to chow-fed intact rats to control for normal maturational changes. Chemical analysis of fat was done in chow-fed intact and ovariectomized rats at study end. Data were analyzed by t-tests and planned comparisons. Results Body mass, TAT, total fat mass, fat-free body mass, and %IAAT all increased in chow-fed intact rats during the 41 d study. In chow-fed rats, ovariectomy increased excess body mass, TAT, fat mass, fat-free body mass, and SAT, but had little effect on IAAT, in chow-fed rats, leading to a decrease in %IAAT. Ensure feeding markedly increased SAT, IAAT and TAT and did not significantly affect %IAAT. Ovariectomy had similar effects in Ensure-fed rats as in chow-fed rats, although less statistically reliable. Estradiol treatment prevented all the effects of ovariectomy. Conclusions Both ovariectomy in rats and menopause are associated with increased TAT. After ovariectomy, fat is preferentially deposited as SAT and lean body mass increases, whereas after menopause fat is preferentially deposited as IAAT and lean body mass decreases. These opposite effects of ovariectomy and menopause on regional AT distribution and lean body mass indicate that ovariectomy in rats is not a homologous model of menopause-associated changes in body composition that should be used with great caution in investigations of adiposity-related diseases. PMID:21569336
Protein vs electrolytes and all of the Starling forces.
Peters, R M; Hargens, A R
1981-10-01
Hemodilution-induced reductions of the intravascular protein concentration in patients and experimental animals with intact capillaries do not lead to pulmonary edema, despite significant increases in the amount of extravascular water in the systemic interstitial space. The protective factors are a drop in the extravascular concentration of protein, a rise in interstitial tissue pressure, and an increase in lymph flow. If the capillary endothelium is damaged, protein leaks into the extravascular space, and protein infusion has a diminished effect on fluid exchange across the capillary. Whether capillaries are intact or injured, prevention of increases in capillary hydrostatic pressure is the most important factor in preventing pulmonary edema. Administration of hypertonic fluids may provide a useful method of limiting total fluid infusion and reducing cell swelling after blood loss.
Mineral Ion Contents and Cell Transmembrane Electropotentials of Pea and Oat Seedling Tissue 1
Higinbotham, N.; Etherton, Bud; Foster, R. J.
1967-01-01
The relationships of concentration gradients to electropotential gradients resulting from passive diffusion processes, after equilibration, are described by the Nernst equation. The primary criterion for the hypothesis that any given ion is actively transported is to establish that it is not diffusing passively. A test was made of how closely the Nernst equation describes the electrochemical equilibrium in seedling tissues. Segments of roots and epicotyl internodes of pea (Pisum sativum var. Alaska) and of roots and coleoptiles of oat (Avena sativa var. Victory) seedlings were immersed and shaken in defined nutrient solutions containing eight major nutrients (K+, Na+, Ca2+, Mg2+, Cl−, NO3−, H2PO4− and SO42−) at 1-fold and 10-fold concentrations. The tissue content of each ion was assayed at 0, 8, 24, and 48 hours. A near-equilibrium condition was approached by roots for most ions; however, the segments of shoot tissue generally continued to show a net accumulation of some ions, mainly K+ and NO3−. Only K+ approached a reasonable fit to the Nernst equation and this was true for the 1-fold concentration but not the 10-fold. The data suggest that for Na+, Mg2+, and Ca2+ the electrochemical gradient is from the external solution to the cell interior; thus passive diffusion should be in an inward direction. Consequently, some mechanism must exist in plant tissue either to exclude these cations or to extrude them (e.g., by an active efflux pump). For each of the anions the electrochemical gradient is from the tissue to the solution; thus an active influx pump for anions seems required. Root segments approach ionic equilibrium with the solution concentration in which the seedlings were grown. Segments of shoot tissue, however, are far removed from such equilibration. Thus in the intact seedling the extracellular (wall space) fluid must be very different from that of the nutrient solution bathing the segments; it would appear that the root is the site of regulation of ion uptake in the intact plant although other correlative mechanisms may be involved. PMID:16656483
Auxin increases the hydraulic conductivity of auxin-sensitive hypocotyl tissue.
Boyer, J S; Wu, G
1978-01-01
The ability of water to enter the cells of growing hypocotyl tissue was determined in etiolated soybean (Glycine max (L.) Merr.) seedlings. Water uptake was restricted to that for cell enlargement, and the seedlings were kept intact insofar as possible. Tissue water potentials (ψ w) were measured at thermodynamic equilibrium with an isopiestic thermocouple psychrometer. ψ wwas below the water potential of the environment by as much as 3.1 bars when the tissue was enlarging rapidly. However, ψ w was similar to the water potential of the environment when cell enlargement was not occurring. The low ψ w in enlarging tissue indicates that there was a low conductivity for water entering the cells.The ability of water to enter the enlarging cells was defined as the apparent hydraulic conductivity of the tissue (L'p). Despite the low L'p of growing cells, L'p decreased further as cell enlargement decreased when intact hypocotyl tissue was deprived of endogenous auxin (indole-3-acetic acid) by removal of the hypocotyl hook. Cell enlargement resumed and L'p increased when auxin was resupplied exogenously. The auxin-induced increase in L'p was correlated with the magnitude of the growth enhancement caused by auxin, and it was observed during the earliest phase of the growth response to auxin. The increase in L'p appeared to be caused by an increase in the hydraulic conductivity of the cell protoplasm, since other factors contributing to L'p remained constant. The rapidity of the response is consistent with a cellular site of action at the plasmalemma, although other sites are not precluded.Because the experiments involved only short times, auxin-induced changes in cell enlargement could not be attributed to changes in cell osmotic potentials. Neither could they be attributed to changes in turgor, which increased when the rate of enlargement decreased. Rather, auxin appeared to act by altering the extensibility of the cell walls and by simultaneously altering the ability of water to enter the growing cells under a given water potential gradient. The hydraulic conductivity and extensibility of the cell walls appeared to contribute about equally to the control of the growth rate of the hypocotyls.
Honjo, Osami; Kotani, Yasuhiro; Bharucha, Tara; Mertens, Luc; Caldarone, Christopher A; Redington, Andrew N; Van Arsdell, Glen
2013-12-01
Transposition of the great arteries (TGA) and left ventricular outflow tract obstruction (LVOTO) with or without ventricular septal defect have multiple surgical treatment options. We sought to identify pre- and intraoperative factors that determine the timing of repair, procedure type and subsequent LVOT outcome. Twenty-eight (8.2% of all TGA) patients with TGA with LVOTO (double outlet ventricle, n = 5, TGA/intact septum, n = 1) between 2000 and 2012 were reviewed. Anatomical factors were identified by prerepair echocardiography. LVOTO complexity was characterized by the degree of obstruction (0 = none, 0.33 = mild, 0.66 moderate and 1 = severe) at various levels: pulmonary valve (PV) dysplasia/hypoplasia, posterior deviation of the infundibular septum, fibromuscular ridge, tissue tag and abnormal chordal attachment. Summation of the obstruction score, at each level, yielded the LVOT complexity score. The descriptive analysis of intraoperative decision-making at late repair was performed. early arterial switch operation (ASO) + LVOT resection (n = 9, 32%), late ASO + LVOT resection (n = 3, 10%), Nikaidoh (n = 8, 29%), Rastelli (n = 6, 21%), single-ventricle palliation (n = 2, 7%). The primary LVOT obstruction mechanism was posterior deviation of the infundibular septum (n = 16, 57%) and PV dysplasia (n = 6, 21%). The early ASO group had a lower PV complexity score (0.42 ± 0.22 vs 0.96 ± 0.55, P = 0.007), tissue tag score (0.03 ± 0.15 vs 0.26 ± 0.34, P = 0.018) and LVOT complexity score (2.11 ± 0.86 vs 3.2 ± 0.96, P = 0.006). The LVOT complexity score in the Nikaidoh group was higher than in the late ASO group (P = 0.019). Of 16 candidates for the Nikaidoh procedure, 6 patients underwent a Rastelli operation due to coronary artery patterns (single coronary, n = 3, 1RL-2Cx, n = 2 or an abnormal left anterior descending coronary artery course, n = 1). Two patients underwent single-ventricle palliation due to the interference of essential chordae. All patients survived the operation. The 3-year survival was 96%. One patient who underwent late ASO required re-LVOT resection. A newly developed scoring system, the LVOT complexity score, helped to quantify the LVOT complexity and was correlated with our choice of the surgical procedure of TGA with LVOTO. The current strategy achieved reasonable survival and LVOT outcome with three quarters of the patients having an anatomically aligned LVOT. The coronary anatomy pattern was the primary determinant in the decision-making between the Nikaidoh procedure and the Rastelli operation.
DE Jonge, N
2018-02-01
Receptor membrane proteins in the plasma membranes of cells respond to extracellular chemical signals by conformational changes, spatial redistribution, and (re-)assembly into protein complexes, for example, into homodimers (pairs of the same protein type). The functional state of the proteins can be determined from information about how subunits are assembled into protein complexes. Stoichiometric information about the protein complex subunits, however, is generally not obtained from intact cells but from pooled material extracted from many cells, resulting in a lack of fundamental knowledge about the functioning of membrane proteins. First, functional states may dramatically differ from cell to cell on account of cell heterogeneity. Second, extracting the membrane proteins from the plasma membrane may lead to many artefacts. Liquid-phase scanning transmission electron microscopy (STEM), in short liquid STEM, is a new technique capable of determining the locations of individual membrane proteins within the intact plasma membranes of cells in liquid. Many tens of whole cells can readily be imaged. It is possible to analyse the stoichiometry of membrane proteins in single cells while accounting for heterogenic cell populations. Liquid STEM was used to image epidermal growth factor receptors in whole COS7 cells. A study of the dimerisation of the HER2 protein in breast cancer cells revealed the presence of rare cancer cells in which HER2 was in a different functional state than in the bulk cells. Stoichiometric information about receptors is essential not only for basic science but also for biomedical application because they present many important pharmaceutical targets. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.
Mechanical Barriers Restrict Invasion of Herpes Simplex Virus 1 into Human Oral Mucosa
Thier, Katharina; Petermann, Philipp; Rahn, Elena; Rothamel, Daniel; Bloch, Wilhelm
2017-01-01
ABSTRACT Oral mucosa is one of the main target tissues of the human pathogen herpes simplex virus 1 (HSV-1). How the virus overcomes the protective epithelial barriers and penetrates the tissue to reach its receptors and initiate infection is still unclear. Here, we established an ex vivo infection assay with human oral mucosa that allows viral entry studies in a natural target tissue. The focus was on the susceptibility of keratinocytes in the epithelium and the characterization of cellular receptors that mediate viral entry. Upon ex vivo infection of gingiva or vestibular mucosa, we observed that intact human mucosa samples were protected from viral invasion. In contrast, the basal layer of the oral epithelium was efficiently invaded once the connective tissue and the basement membrane were removed. Later during infection, HSV-1 spread from basal keratinocytes to upper layers, demonstrating the susceptibility of the stratified squamous epithelium to HSV-1. The analysis of potential receptors revealed nectin-1 on most mucosal keratinocytes, whereas herpesvirus entry mediator (HVEM) was found only on a subpopulation of cells, suggesting that nectin-1 acts as primary receptor for HSV-1 in human oral mucosa. To mimic the supposed entry route of HSV-1 via microlesions in vivo, we mechanically wounded the mucosa prior to infection. While we observed a limited number of infected keratinocytes in some wounded mucosa samples, other samples showed no infected cells. Thus, we conclude that mechanical wounding of mucosa is insufficient for the virus to efficiently overcome epithelial barriers and to make entry-mediating receptors accessible. IMPORTANCE To invade the target tissue of its human host during primary infection, herpes simplex virus (HSV) must overcome the epithelial barriers of mucosa, skin, or cornea. For most viruses, the mechanisms underlying the invasion into the target tissues of their host organism are still open. Here, we established an ex vivo infection model of human oral mucosa to explore how HSV can enter its target tissue. Our results demonstrate that intact mucosa samples and even compromised tissue allow only very limited access of HSV to keratinocytes. Detailed understanding of barrier functions is an essential precondition to unravel how HSV bypasses the barriers and approaches its receptors in tissue and why it is beneficial for the virus to use a cell-cell adhesion molecule, such as nectin-1, as a receptor. PMID:28878080
Mechanical Barriers Restrict Invasion of Herpes Simplex Virus 1 into Human Oral Mucosa.
Thier, Katharina; Petermann, Philipp; Rahn, Elena; Rothamel, Daniel; Bloch, Wilhelm; Knebel-Mörsdorf, Dagmar
2017-11-15
Oral mucosa is one of the main target tissues of the human pathogen herpes simplex virus 1 (HSV-1). How the virus overcomes the protective epithelial barriers and penetrates the tissue to reach its receptors and initiate infection is still unclear. Here, we established an ex vivo infection assay with human oral mucosa that allows viral entry studies in a natural target tissue. The focus was on the susceptibility of keratinocytes in the epithelium and the characterization of cellular receptors that mediate viral entry. Upon ex vivo infection of gingiva or vestibular mucosa, we observed that intact human mucosa samples were protected from viral invasion. In contrast, the basal layer of the oral epithelium was efficiently invaded once the connective tissue and the basement membrane were removed. Later during infection, HSV-1 spread from basal keratinocytes to upper layers, demonstrating the susceptibility of the stratified squamous epithelium to HSV-1. The analysis of potential receptors revealed nectin-1 on most mucosal keratinocytes, whereas herpesvirus entry mediator (HVEM) was found only on a subpopulation of cells, suggesting that nectin-1 acts as primary receptor for HSV-1 in human oral mucosa. To mimic the supposed entry route of HSV-1 via microlesions in vivo , we mechanically wounded the mucosa prior to infection. While we observed a limited number of infected keratinocytes in some wounded mucosa samples, other samples showed no infected cells. Thus, we conclude that mechanical wounding of mucosa is insufficient for the virus to efficiently overcome epithelial barriers and to make entry-mediating receptors accessible. IMPORTANCE To invade the target tissue of its human host during primary infection, herpes simplex virus (HSV) must overcome the epithelial barriers of mucosa, skin, or cornea. For most viruses, the mechanisms underlying the invasion into the target tissues of their host organism are still open. Here, we established an ex vivo infection model of human oral mucosa to explore how HSV can enter its target tissue. Our results demonstrate that intact mucosa samples and even compromised tissue allow only very limited access of HSV to keratinocytes. Detailed understanding of barrier functions is an essential precondition to unravel how HSV bypasses the barriers and approaches its receptors in tissue and why it is beneficial for the virus to use a cell-cell adhesion molecule, such as nectin-1, as a receptor. Copyright © 2017 American Society for Microbiology.
Recognition of thymine in DNA bulges by a Zn(II) macrocyclic complex.
del Mundo, Imee Marie A; Fountain, Matthew A; Morrow, Janet R
2011-08-14
A Zn(II) macrocyclic complex with appended quinoline is a bifunctional recognition agent that uses both the Zn(II) center and the pendent aromatic group to bind to thymine in bulges with good selectivity over DNA containing G, C or A bulges. Spectroscopic studies show that the stem containing the bulge stays largely intact in a DNA hairpin with the Zn(II) complex bound to the thymine bulge. This journal is © The Royal Society of Chemistry 2011
Atala, Anthony; Kasper, F Kurtis; Mikos, Antonios G
2012-11-14
Tissue engineering has emerged at the intersection of numerous disciplines to meet a global clinical need for technologies to promote the regeneration of functional living tissues and organs. The complexity of many tissues and organs, coupled with confounding factors that may be associated with the injury or disease underlying the need for repair, is a challenge to traditional engineering approaches. Biomaterials, cells, and other factors are needed to design these constructs, but not all tissues are created equal. Flat tissues (skin); tubular structures (urethra); hollow, nontubular, viscus organs (vagina); and complex solid organs (liver) all present unique challenges in tissue engineering. This review highlights advances in tissue engineering technologies to enable regeneration of complex tissues and organs and to discuss how such innovative, engineered tissues can affect the clinic.
Musi, Valeria; Spolaore, Barbara; Picotti, Paola; Zambonin, Marcello; De Filippis, Vincenzo; Fontana, Angelo
2004-05-25
Limited proteolysis of the 153-residue chain of horse apomyoglobin (apoMb) by thermolysin results in the selective cleavage of the peptide bond Pro88-Leu89. The N-terminal (residues 1-88) and C-terminal (residues 89-153) fragments of apoMb were isolated to homogeneity and their conformational and association properties investigated in detail. Far-UV circular dichroism (CD) measurements revealed that both fragments in isolation acquire a high content of helical secondary structure, while near-UV CD indicated the absence of tertiary structure. A 1:1 mixture of the fragments leads to a tight noncovalent protein complex (1-88/89-153, nicked apoMb), characterized by secondary and tertiary structures similar to those of intact apoMb. The apoMb complex binds heme in a nativelike manner, as given by CD measurements in the Soret region. Second-derivative absorption spectra in the 250-300 nm region provided evidence that the degree of exposure of Tyr residues in the nicked species is similar to that of the intact protein at neutral pH. Also, the microenvironment of Trp residues, located in positions 7 and 14 of the 153-residue chain of the protein, is similar in both protein species, as given by fluorescence emission data. Moreover, in analogy to intact apoMb, the nicked protein binds the hydrophobic dye 1-anilinonaphthalene-8-sulfonate (ANS). Taken together, our results indicate that the two proteolytic fragments 1-88 and 89-153 of apoMb adopt partly folded states characterized by sufficiently nativelike conformational features that promote their specific association and mutual stabilization into a nicked protein species much resembling in its structural features intact apoMb. It is suggested that the formation of a noncovalent complex upon fragment complementation can mimic the protein folding process of the entire protein chain, with the difference that the folding of the complementary fragments is an intermolecular process. In particular, this study emphasizes the importance of interactions between marginally stable elements of secondary structure in promoting the tertiary contacts of a native protein. Considering that apoMb has been extensively used as a paradigm in protein folding studies for the past few decades, the novel fragment complementing system of apoMb here described appears to be very useful for investigating the initial as well as late events in protein folding.
McMahon, Vern; Stumpf, P. K.
1966-01-01
The capacity of both developing seeds and germinating seedlings of safflower for the incorporation of acetate-C14 into long-chain fatty acids is examined. Intact tissue of the developing seed shows a low rate of acetate incorporation into fatty acid initially but between the tenth and twenty-fifth day after flowering the tissue has a high rate of synthesis, in particular with respect to the unsaturated fatty acids. Centrifuged fractionation of homogenates of this developmental tissue yielded several active fractions, the most active being the PI fraction consisting mostly of plastids. Cofactor requirements and pH effects are examined. Germinating tissue shows a more uniform capacity for synthesis of fatty acids since there is no marked change in synthetic capacity. The newly synthesized fatty acids are consistently palmitic, stearic, and oleic acid. No linoleic synthesis could be detected. The most active fraction of cell-free preparation of germinating tissue is the plastid fraction (PI), similar to what was formed with developing tissue. PMID:5904587
Ohtsu, Yoshiaki; Gibbons, Jacqueline A; Suzuki, Katsuhiro; Fitzsimmons, Michael E; Nozawa, Kohei; Arai, Hiroshi
2017-08-01
Enzalutamide is an androgen receptor inhibitor that has been approved in several countries. Absorption, distribution, metabolism, and excretion (ADME) data in animals would facilitate understanding of the efficacy and safety profiles of enzalutamide, but little information has been reported in public. The purpose of this study was to clarify the missing ADME profile in animals. ADME of 14 C-enzalutamide after oral administration as Labrasol solution were investigated in non-fasted male Sprague-Dawley rats and beagle dogs. Plasma concentrations of 14 C-enzalutamide peaked in rats and dogs at 6-8 h after a single oral administration. In most tissues, radioactivity concentration peaked at 4 h after administration. Excluding the gastrointestinal tract, tissues with the highest concentration of radioactivity were liver, fat, and adrenal glands. The tissue concentrations of radioactivity declined below the limit of quantitation or <0.89 % of maximum concentration by 168 h post-dose. Two known metabolites (M1 and M2) and at least 15 novel possible metabolites were detected in this study. M1 was the most abundant metabolite in both rats and dogs. Unchanged drug was a minor component in excreta. In intact rats, the mean urinary and fecal excretion of radioactivity accounted for 44.20 and 49.80 % of administered radioactivity, respectively. In intact dogs, mean urinary and fecal excretion was 62.00 and 22.30 % of the administered radioactivity, respectively. Rapid oral absorption was observed in rats and dogs when 14 C-enzalutamide was administered as Labrasol solution. Tissue distribution in rats was clarified. The elimination of enzalutamide is mediated primarily by metabolism. Species differences were observed in excretion route.
Bell, Angela D; Hurtig, Mark B; Quenneville, Eric; Rivard, Georges-Étienne; Hoemann, Caroline D
2017-10-01
Objective This study tested the hypothesis that presolidified chitosan-blood implants are retained in subchondral bone channels perforated in critical-size sheep cartilage defects, and promote bone repair and hyaline-like cartilage resurfacing versus blood implant. Design Cartilage defects (10 × 10 mm) with 3 bone channels (1 drill, 2 Jamshidi biopsy, 2 mm diameter), and 6 small microfracture holes were created bilaterally in n = 11 sheep knee medial condyles. In one knee, 10 kDa chitosan-NaCl/blood implant (presolidified using recombinant factor VIIa or tissue factor), was inserted into each drill and Jamshidi hole. Contralateral knee defects received presolidified whole blood clot. Repair tissues were assessed histologically, biochemically, biomechanically, and by micro-computed tomography after 1 day ( n = 1) and 6 months ( n = 10). Results Day 1 defects showed a 60% loss of subchondral bone plate volume fraction along with extensive subchondral hematoma. Chitosan implant was resident at day 1, but had no effect on any subsequent repair parameter compared with blood implant controls. At 6 months, bone defects exhibited remodeling and hypomineralized bone repair and were partly resurfaced with tissues containing collagen type II and scant collagen type I, 2-fold lower glycosaminoglycan and fibril modulus, and 4.5-fold higher permeability compared with intact cartilage. Microdrill holes elicited higher histological ICRS-II overall assessment scores than Jamshidi holes (50% vs. 30%, P = 0.041). Jamshidi biopsy holes provoked sporadic osteonecrosis in n = 3 debrided condyles. Conclusions Ten kilodalton chitosan was insufficient to improve repair. Microdrilling is a feasible subchondral marrow stimulation surgical approach with the potential to elicit poroelastic tissues with at least half the compressive modulus as intact articular cartilage.
Roy, Sashwati; Patel, Darshan; Khanna, Savita; Gordillo, Gayle M.; Biswas, Sabyasachi; Friedman, Avner; Sen, Chandan K.
2007-01-01
Chronic wounds represent a substantial public health problem. The development of tools that would enable sophisticated scrutiny of clinical wound tissue material is highly desirable. This work presents evidence enabling rapid specific identification and laser capture of blood vessels from human tissue in a manner which lends itself to successful high-density (U133A) microarray analysis. Such screening of transcriptome followed by real-time PCR and immunohistochemical verification of candidate genes and their corresponding products were performed by using 3 mm biopsies. Of the 18,400 transcripts and variants screened, a focused set of 53 up-regulated and 24 down-regulated genes were noted in wound-derived blood vessels compared with blood vessels from intact human skin. The mean abundance of periostin in wound-site blood vessels was 96-fold higher. Periostin is known to be induced in response to vascular injury and its expression is associated with smooth muscle cell differentiation in vitro and promotes cell migration. Forty-fold higher expression of heparan sulfate 6-O-endosulfatase1 (Sulf1) was noted in wound-site vessels. Sulf1 has been recently recognized to be anti-angiogenic. During embryonic vasculogenesis, CD24 expression is down-regulated in human embryonic stem cells. Wound-site vessels had lower CD24 expression. The findings of this work provide a unique opportunity to appreciate the striking contrast in the transcriptome composition in blood vessels collected from the intact skin and from the wound-edge tissue. Sets of genes with known vascular functions but never connected to wound healing were identified to be differentially expressed in wound-derived blood vessels paving the way for innovative clinically relevant hypotheses. PMID:17728400
Bell, Angela D.; Hurtig, Mark B.; Quenneville, Eric; Rivard, Georges-Étienne; Hoemann, Caroline D.
2016-01-01
Objective This study tested the hypothesis that presolidified chitosan-blood implants are retained in subchondral bone channels perforated in critical-size sheep cartilage defects, and promote bone repair and hyaline-like cartilage resurfacing versus blood implant. Design Cartilage defects (10 × 10 mm) with 3 bone channels (1 drill, 2 Jamshidi biopsy, 2 mm diameter), and 6 small microfracture holes were created bilaterally in n = 11 sheep knee medial condyles. In one knee, 10 kDa chitosan–NaCl/blood implant (presolidified using recombinant factor VIIa or tissue factor), was inserted into each drill and Jamshidi hole. Contralateral knee defects received presolidified whole blood clot. Repair tissues were assessed histologically, biochemically, biomechanically, and by micro–computed tomography after 1 day (n = 1) and 6 months (n = 10). Results Day 1 defects showed a 60% loss of subchondral bone plate volume fraction along with extensive subchondral hematoma. Chitosan implant was resident at day 1, but had no effect on any subsequent repair parameter compared with blood implant controls. At 6 months, bone defects exhibited remodeling and hypomineralized bone repair and were partly resurfaced with tissues containing collagen type II and scant collagen type I, 2-fold lower glycosaminoglycan and fibril modulus, and 4.5-fold higher permeability compared with intact cartilage. Microdrill holes elicited higher histological ICRS-II overall assessment scores than Jamshidi holes (50% vs. 30%, P = 0.041). Jamshidi biopsy holes provoked sporadic osteonecrosis in n = 3 debrided condyles. Conclusions Ten kilodalton chitosan was insufficient to improve repair. Microdrilling is a feasible subchondral marrow stimulation surgical approach with the potential to elicit poroelastic tissues with at least half the compressive modulus as intact articular cartilage. PMID:28934884
Karaarslan, Numan; Yilmaz, Ibrahim; Ozbek, Hanefi; Sirin Yasar, Duygu; Kaplan, Necati; Akyuva, Yener; Gonultas, Aylin; Ates, Ozkan
2018-01-22
In this scientific research project, the researchers aimed to determine the gene expression patterns of nucleus pulposus (NP) in cell cultures obtained from degenerated or intact tissues. Whereas 12 of the cases were diagnosed with lumbar disc hernia and had undergone lumbar microdiscectomy, 12 cases had undergone traumatic intervertebral discectomy and corpectomy, along with discectomy after spinal trauma. NP-specific markers and gene expressions of the reagents of the extracellular matrix in the experimental setup were tested at the 0th, 24th, and 48th hours by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Visual evaluations were simultaneously made in all samples using invert and fluorescence microscopy. Vitality and proliferation analyses were evaluated by UV spectrophotometer. As a method of statistical evaluation, Spearman was used for categorical variants, and the Pearson correlation was used for variants with numerical and plain distribution. No association was found either between the tissue type and times (r=0.000; p=1.000) or between the region that the tissue was obtained from and hypoxia transcription factor-1 alpha (HIF-1α) gene expression (r=0.098; p=0.245). There was no correlation between cell proliferation and chondroadherin (CHAD) expression or between type II collagen (COL2A1) and CHAD gene expressions. It was found that CHAD and HIF-1α gene expressions and HIF-1α and COL2A1 gene expressions affected cell proliferation. Cell culture setups are of paramount importance because they may influence the pattern of changes in the gene expressions of the cells used in these setups.
Growth of Listeria spp. in shredded cabbage is enhanced by a mild heat treatment.
Ells, Timothy C; Truelstrup Hansen, Lisbeth
2010-03-01
Mild thermal processing can enhance the shelf life of cut fruits and vegetables by delaying the onset of spoilage and preserving the organoleptic properties of shredded cabbage. However, food safety issues related to this process have not been fully investigated. Therefore, the survival and growth of Listeria spp. on cabbage treated in this manner was examined. Experimentally, 24 strains of Listeria spp. (including L. monocytogenes) were inoculated onto cut and intact cabbage tissues and stored at 5 degrees C. All strains on intact tissues exhibited a moderate decline in numbers (up to 1.0 log CFU/cm(2)) over the 28-day storage period. Conversely, cut tissue supported growth of most strains during the first 7 to 14 days of incubation with maximum increases of 1.2 log CFU/cm(2). Subsequently, the survival or growth on heat-treated (50 degrees C for 3 min) and untreated shredded cabbage of four L. monocytogenes and four nonpathogenic Listeria spp. strains were compared during storage for 21 days at 5 degrees C. Growth on untreated shred for all strains was similar to the results observed on cut tissue with a maximum increase of approximately 1.0 log CFU/g. However, in the heat-treated cabbage shred all strains displayed a rapid increase in growth (up to 2.5 log CFU/g) during the first 7 days of incubation, which may be indicative of the destruction of an endogenous growth-inhibiting compound within the cabbage. In conclusion, this study shows that mild thermal treatments of cut cabbage may promote pathogen growth if other inimical barriers are not implemented downstream of the thermal treatment.
Sharp, Jamie; Spitters, Tim Wgm; Vermette, Patrick
2018-03-01
Few studies report whole pancreatic tissue culture, as it is a difficult task using traditional culture methods. Here, a factorial design was used to investigate the singular and combinational effects of flow, dissolved oxygen concentration (D.O.) and pulsation on whole mechanically disrupted rat pancreata in a perfusion bioreactor. Whole rat pancreata were cultured for 72 h under defined bioreactor process conditions. Secreted insulin was measured and histological (haematoxylin and eosin (H&E)) as well as immunofluorescent insulin staining were performed and quantified. The combination of flow and D.O. had the most significant effect on secreted insulin at 5 h and 24 h. The D.O. had the biggest effect on tissue histological quality, and pulsation had the biggest effect on the number of insulin-positive structures. Based on the factorial design analysis, bioreactor conditions using high flow, low D.O., and pulsation were selected to further study glucose-stimulated insulin secretion. Here, mechanically disrupted rat pancreata were cultured for 24 h under these bioreactor conditions and were then challenged with high glucose concentration for 6 h and high glucose + IBMX (an insulin secretagogue) for a further 6 h. These cultures secreted insulin in response to high glucose concentration in the first 6 h, however stimulated-insulin secretion was markedly weaker in response to high glucose concentration + IBMX thereafter. After this bioreactor culture period, higher tissue metabolic activity was found compared to that of non-bioreacted static controls. More insulin- and glucagon-positive structures, and extensive intact endothelial structures were observed compared to non-bioreacted static cultures. H&E staining revealed more intact tissue compared to static cultures. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:432-444, 2018. © 2017 American Institute of Chemical Engineers.
Voluntary wheel running improves adipose tissue immunometabolism in ovariectomized low-fit rats.
Zidon, Terese M; Park, Young-Min; Welly, Rebecca J; Woodford, Makenzie L; Scroggins, Rebecca J; Britton, Steven L; Koch, Lauren G; Booth, Frank W; Padilla, Jaume; Kanaley, Jill A; Vieira-Potter, Victoria J
2018-01-02
Loss of ovarian hormones is associated with increased adiposity, white adipose tissue (WAT) inflammation, and insulin resistance (IR). Previous work demonstrated ovariectomized (OVX) rats bred for high aerobic fitness (HCR) are protected against weight gain and IR compared to rats bred for low aerobic fitness (LCR) yet wheel running prevents OVX-induced IR in LCR rats. The purpose of this study was to determine whether adipose tissue immunometabolic characteristics from female HCR and LCR rats differs before or after OVX, and whether wheel running mitigates OVX-induced adipose tissue immunometabolic changes in LCR rats. Female OVX HCR and LCR rats were all fed a high fat diet (HFD) (n = 7-8/group) and randomized to either a running wheel or remain sedentary for 11 weeks. Ovary-intact rats (n = 7-12/group) were fed a standard chow diet with no wheel. Ovary-intact LCR rats had a greater visceral WAT inflammatory profile compared to HCR. Following OVX, sedentary LCR rats had greater serum leptin (p<0.001) and WAT inflammation (p<0.05) than sedentary HCR. Wheel running normalized the elevated serum leptin and reduced both visceral (p<0.05) and subcutaneous (p<0.03) WAT inflammatory markers in the LCR rats. Paradoxically, wheel running increased some markers of WAT inflammation in OVX HCR rats (p<0.05), which correlated with observed weight gain. Taken together, HCR rats appear to have a healthier WAT immune and metabolic profile compared to LCR, even following OVX. Wheel running improves WAT health in previously sedentary LCR rats. On the other hand, increased WAT inflammation is associated with adiposity gain despite a high volume of wheel running in HCR rats.
Hartmann, R; Fricke, A; Stützel, H; Mansourian, S; Dekker, T; Wohanka, W; Alsanius, B
2017-07-01
Internalization of human pathogens in edible parts of vegetables eaten raw is a major concern, since once internalized they are protected from sanitizing treatments. In this study, we examined the invasion of gfp-labelled Escherichia coli O157:H7 into intact and biotically (infection with Xanthomonas campestris/Pseudomonas syringae) and abiotically (grating with silicon carbide) damaged leaves of wild rocket (Diplotaxis tenuifolia) and Swiss chard (Beta vulgaris subsp. cicla) using laser scanning confocal microscopy. Bacterial cells were found in internal locations of the tissue, irrespective of tissue health status. Contaminated leaf sections of biotically and abiotically damaged wild rocket leaves showed higher susceptibility to microbial invasion, while the pathogen was internalized in greater numbers into intact Swiss chard leaf sections when abiotically, but not biotically, damaged. The greatest differences were observed between the plant species; after surface sanitization, E. coli O157:H7 was still detected in wild rocket leaves, but not in Swiss chard leaves. Contamination of leafy vegetables with Escherichia coli O157:H7 is a growing problem, as reported outbreaks are increasing. However, establishment of this human pathogen in the phyllosphere is not completely understood. Using laser scanning confocal microscopy, we demonstrated that E. coli O157:H7gfp+ can invade plant tissue of Swiss chard and wild rocket leaves and that the bacterium is more sensitive to surface sanitization of Swiss chard leaves. Damage to leaf tissue promoted leaf invasion, but the nature of the damage (abiotic or biotic) and plant species had an impact. © 2017 The Society for Applied Microbiology.
Hanson, Laura K.; Slater, Jacquelyn S.; Karabekian, Zaruhi; Virgin, Herbert W.; Biron, Christine A.; Ruzek, Melanie C.; van Rooijen, Nico; Ciavarra, Richard P.; Stenberg, Richard M.; Campbell, Ann E.
1999-01-01
Blood monocytes or tissue macrophages play a pivotal role in the pathogenesis of murine cytomegalovirus (MCMV) infection, providing functions beneficial to both the virus and the host. In vitro and in vivo studies have indicated that differentiated macrophages support MCMV replication, are target cells for MCMV infection within tissues, and harbor latent MCMV DNA. However, this cell type presumably initiates early, antiviral immune responses as well. In addressing this paradoxical role of macrophages, we provide evidence that the proficiency of MCMV replication in macrophages positively correlates with virulence in vivo. An MCMV mutant from which the open reading frames M139, M140, and M141 had been deleted (RV10) was defective in its ability to replicate in macrophages in vitro and was highly attenuated for growth in vivo. However, depletion of splenic macrophages significantly enhanced, rather than deterred, replication of both wild-type (WT) virus and RV10 in the spleen. The ability of RV10 to replicate in intact or macrophage-depleted spleens was independent of cytokine production, as this mutant virus was a poor inducer of cytokines compared to WT virus in both intact organs and macrophage-depleted organs. Macrophages were, however, a major contributor to the production of tumor necrosis factor alpha and gamma interferon in response to WT virus infection. Thus, the data indicate that tissue macrophages serve a net protective role and may function as “filters” in protecting other highly permissive cell types from MCMV infection. The magnitude of virus replication in tissue macrophages may dictate the amount of virus accessible to the other cells. Concomitantly, infection of this cell type initiates the production of antiviral immune responses to guarantee efficient clearance of acute MCMV infection. PMID:10364349
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Si; Brown, Joseph N.; Tolic, Nikola
There are several notable challenges inherent to fully characterizing the entirety of the human saliva proteome using bottom-up approaches, including polymorphic isoforms, post-translational modifications, unique splice variants, deletions, and truncations. To address these challenges, we have developed a top-down based liquid chromatography-mass spectrometry (LC-MS) approach, which cataloged 20 major human salivary proteins with a total of 83 proteoforms, containing a broad range of post-translational modifications. Among these proteins, several previously reported disease biomarker proteins were identified at the intact protein level, such as beta-2 microglobulin (B2M). In addition, intact glycosylated proteoforms of several saliva proteins were also characterized, including intactmore » N-glycosylated protein prolactin inducible protein (PIP) and O-glycosylated acidic protein rich protein (aPRP). These characterized proteoforms constitute an intact saliva proteoform database, which was used for quantitative comparison of intact salivary proteoforms among six healthy individuals. Human parotid (PS) and submandibular/sublingual gland (SMSL) secretion samples (2 μg of protein each) from six healthy individuals were compared using RPLC coupled with the 12T FTICR mass spectrometer. Significantly different protein and PTM patterns were resolved with high reproducibility between PS and SMSL glands. The results from this study provide further insight into the potential mechanisms of PTM pathways in oral glandular secretion, expanding our knowledge of this complex yet easily accessible fluid. Intact protein LC-MS approach presented herein can potentially be applied for rapid and accurate identification of biomarkers from only a few microliters of human glandular saliva.« less
Full face transplant: the first case report.
Barret, Juan P; Gavaldà, Joan; Bueno, Javier; Nuvials, Xavier; Pont, Teresa; Masnou, Nuria; Colomina, Maria J; Serracanta, Jordi; Arno, Anna; Huguet, Pere; Collado, Jose M; Salamero, Pere; Moreno, Carlos; Deulofeu, Roser; Martínez-Ibáñez, Vicenç
2011-08-01
Since 2005, 11 human face transplants have been performed. In each, varying amounts of tissue have been transplanted. Herein we report a "full" face transplant including all intact aesthetic and functional units. On March 27, 2010, we performed a full face transplant, including all the soft tissues and part of the underlaying bony structure, at the University Hospital Vall d'Hebron, Barcelona, Spain. The donor was a 41-year-old male, who died from a massive brain hemorrhage. The recipient was a 30-year-old male with a severe facial deformity caused by a ballistic trauma in 2005. Harvest and subsequent implant took 24 hours. The patient received initial induction (Thymoglobulin 2 mg/kg/iv; Prednisone 1 gm/iv) and maintenance (Prednisone 1 mg/kg/24hours, Tacrolimus 10-15 ng/mL/PO, and Mycophenolate mofetil 2g/daily/PO) immunosuppression and Infection prophylaxis (Valganciclovir and Co-trimoxazole). There were no intraoperative complications. Postoperative complications included; venous anastomoses thrombosis, acute oro-cutaneous fistula, right parotid sialocele and 2 acute rejection episodes, which were resolved by revision of the anastomosis, profuse irrigation and immunotherapy adjustment, respectively. The patient was discharged from the hospital at 4 months posttransplant with; near-total sensation and partial-motor recovery, no psychological complications and excellent acceptance of his new facial appearance. The early success described in this case report demonstrates the technical and clinical feasibility of transplanting all the tissues of the with all its aesthetic and functional units intact.
MALDI FTICR IMS of Intact Proteins: Using Mass Accuracy to Link Protein Images with Proteomics Data
NASA Astrophysics Data System (ADS)
Spraggins, Jeffrey M.; Rizzo, David G.; Moore, Jessica L.; Rose, Kristie L.; Hammer, Neal D.; Skaar, Eric P.; Caprioli, Richard M.
2015-06-01
MALDI imaging mass spectrometry is a highly sensitive and selective tool used to visualize biomolecules in tissue. However, identification of detected proteins remains a difficult task. Indirect identification strategies have been limited by insufficient mass accuracy to confidently link ion images to proteomics data. Here, we demonstrate the capabilities of MALDI FTICR MS for imaging intact proteins. MALDI FTICR IMS provides an unprecedented combination of mass resolving power (~75,000 at m/z 5000) and accuracy (<5ppm) for proteins up to ~12kDa, enabling identification based on correlation with LC-MS/MS proteomics data. Analysis of rat brain tissue was performed as a proof-of-concept highlighting the capabilities of this approach by imaging and identifying a number of proteins including N-terminally acetylated thymosin β4 ( m/z 4,963.502, 0.6ppm) and ATP synthase subunit ɛ ( m/z 5,636.074, -2.3ppm). MALDI FTICR IMS was also used to differentiate a series of oxidation products of S100A8 ( m/z 10,164.03, -2.1ppm), a subunit of the heterodimer calprotectin, in kidney tissue from mice infected with Staphylococcus aureus. S100A8 - M37O/C42O3 ( m/z 10228.00, -2.6ppm) was found to co-localize with bacterial microcolonies at the center of infectious foci. The ability of MALDI FTICR IMS to distinguish S100A8 modifications is critical to understanding calprotectin's roll in nutritional immunity.
Corvin, Stefan; Sturm, Wolfgang; Schlatter, Evelin; Anastasiadis, Aristotelis; Kuczyk, Markus; Stenzl, Arnulf
2005-09-01
The acceptance of open retroperitoneal lymph node dissection (RPLND) for stage I and II nonseminomatous testicular cancer has decreased because of the intraoperative and postoperative morbidity of the procedure. Laparoscopic RPLND is a minimally invasive and safe alternative for low-stage germ-cell tumors. It is, however, technically demanding and should therefore be performed only in experienced centers. The purpose of the present study was to evaluate the waterjet technique for laparoscopic RPLND. A series of 18 patients with clinical stage I testis cancer (group A) and 7 patients who had received chemotherapy for stage II disease (group B) underwent laparoscopic RPLND at our institution. The procedure was performed identically to the open approach using the modified template according to Weissbach and associates. The waterjet was used for removal of lymphatic tissue from the aorta and the vena cava, as well as from the sympathetic trunk. The operation was completed in all patients without conversion to open surgery. The mean operating time was 232 +/- 48 minutes. The waterjet was able to remove lymphatic tissue easily and atraumatically. At pressures of 20 bar, the lymph-node capsule remained completely intact, thus avoiding tumor-cell spread. Antegrade ejaculation could be preserved in all patients, who, to date, show no evidence of disease. The waterjet allows the safe and complete removal of lymphatic tissue, leaving vulnerable anatomic structures intact. It can decrease the learning curve of laparoscopic RPLND and contribute to better acceptance of this procedure.
Abdelhamid, Alaa; Omran, Mostafa; Bakhshalian, Neema; Tarnow, Dennis; Zadeh, Homayoun H
2016-06-01
The aims of this study were (i) to evaluate the efficacy of ridge preservation and repair procedures involving the application of SocketKAP(™) and SocketKAGE(™) devices following tooth removal and (ii) to evaluate alveolar bone volumetric changes at 6 months post-extraction in intact sockets or those with facial wall dehiscence defects using 3-dimensional pre- and postoperative CBCT data. Thirty-six patients required 61 teeth extracted. Five cohorts were established: Group A: Intact Socket Negative Control Group B: Intact Socket + SocketKAP(™) Group C: Intact Socket Filled with Anorganic Bovine Bone Mineral (ABBM) + SocketKAP(™) Group D: Facial Dehiscence Socket Negative Control Group E: Facial Dehiscence Socket Filled with ABBM + SocketKAP(™) + SocketKAGE(™) . Preoperative CBCT scans were obtained followed by digital subtraction of the test teeth. At 6 months post-extraction, another CBCT scan was obtained. The pre- and postoperative scans were then superimposed, allowing highly accurate quantitative determination of the 3D volumetric alveolar bone volume changes from baseline through 6 months. Significant volumetric bone loss occurred in all sockets, localized mainly in the 0-3 mm zone apical to the ridge crest. For intact sockets, SocketKAP(™) + ABBM treatment led to a statistically significant greater percentage of remaining mineralized tissue volume when compared to negative control group. A significant difference favoring SocketKAP(™) + SocketKAGE(™) + ABBM treatment was observed for sockets with facial dehiscence defects compared to the negative control group. SocketKAP(™) , with ABBM, appears effective in limiting post-extraction volumetric bone loss in intact sockets, while SocketKAP(™) + SocketKAGE + ABBM appears effective in limiting post-extraction bone loss in sockets with dehiscence defects. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Vairis, Achilles; Stefanoudakis, George; Petousis, Markos; Vidakis, Nectarios; Tsainis, Andreas-Marios; Kandyla, Betina
2016-02-01
The human knee joint has a three-dimensional geometry with multiple body articulations that produce complex mechanical responses under loads that occur in everyday life and sports activities. Understanding the complex mechanical interactions of these load-bearing structures is of use when the treatment of relevant diseases is evaluated and assisting devices are designed. The anterior cruciate ligament (ACL) in the knee is one of four main ligaments that connects the femur to the tibia and is often torn during sudden twisting motions, resulting in knee instability. The objective of this work is to study the mechanical behavior of the human knee joint and evaluate the differences in its response for three different states, i.e., intact, ACL-deficient, and surgically treated (reconstructed) knee. The finite element models corresponding to these states were developed. For the reconstructed model, a novel repair device was developed and patented by the author in previous work. Static load cases were applied, as have already been presented in a previous work, in order to compare the calculated results produced by the two models the ACL-deficient and the surgically reconstructed knee joint, under the exact same loading conditions. Displacements were calculated in different directions for the load cases studied and were found to be very close to those from previous modeling work and were in good agreement with experimental data presented in literature. The developed finite element model for both the intact and the ACL-deficient human knee joint is a reliable tool to study the kinematics of the human knee, as results of this study show. In addition, the reconstructed human knee joint model had kinematic behavior similar to the intact knee joint, showing that such reconstruction devices can restore human knee stability to an adequate extent.
Prisk, Victor R; Imhauser, Carl W; O'Loughlin, Padhraig F; Kennedy, John G
2010-10-20
Ankle sprains may damage both the lateral ligaments of the hindfoot and the osteochondral tissue of the ankle joint. When nonoperative treatment fails, operative approaches are indicated to restore both native motion patterns at the hindfoot and ankle joint contact mechanics. The goal of the present study was to determine the effect of lateral ligament injury, repair, and reconstruction on ankle joint contact mechanics and hindfoot motion patterns. Eight cadaveric specimens were tested with use of robotic technology to apply combined compressive (200-N) and inversion (4.5-Nm) loads to the hindfoot at 0° and 20° of plantar flexion. Contact mechanics at the ankle joint were simultaneously measured. A repeated-measures experiment was designed with use of the intact condition as control, with the other conditions including sectioned anterior talofibular and calcaneofibular ligaments, the Broström and Broström-Gould repairs, and graft reconstruction. Ligament sectioning decreased contact area and caused a medial and anterior shift in the center of pressure with inversion loads relative to those with the intact condition. There were no significant differences in inversion or coupled axial rotation with inversion between the Broström repair and the intact condition; however, medial translation of the center of pressure remained elevated after the Broström repair relative to the intact condition. The Gould modification of the Broström procedure provided additional support to the hindfoot relative to the Broström repair, reducing inversion and axial rotation with inversion beyond that of intact ligaments. There were no significant differences in center-of-pressure excursion patterns between the Broström-Gould repair and the intact ligament condition, but this repair increased contact area beyond that with the ligaments intact. Graft reconstruction more closely restored inversion motion than did the Broström-Gould repair at 20° of plantar flexion but limited coupled axial rotation. Graft reconstruction also increased contact areas beyond the lateral ligament-deficient conditions but altered center-of-pressure excursion patterns relative to the intact condition. No lateral ankle ligament reconstruction completely restored native contact mechanics of the ankle joint and hindfoot motion patterns.
Human papillomavirus detection in paraffin-embedded colorectal cancer tissues.
Tanzi, Elisabetta; Bianchi, Silvia; Frati, Elena R; Amicizia, Daniela; Martinelli, Marianna; Bragazzi, Nicola L; Brisigotti, Maria Pia; Colzani, Daniela; Fasoli, Ester; Zehender, Gianguglielmo; Panatto, Donatella; Gasparini, Roberto
2015-01-01
Human papillomavirus (HPV) has a well-recognized aetiological role in the development of cervical cancer and other anogenital tumours. Recently, an association between colorectal cancer and HPV infection has been suggested, although this is still controversial. This study aimed at detecting and characterizing HPV infection in 57 paired biopsies from colorectal cancers and adjacent intact tissues using a degenerate PCR approach. All amplified fragments were genotyped by means of sequencing. Overall, HPV prevalence was 12.3 %. In particular, 15.8 % of tumour tissues and 8.8 % of non-cancerous tissue samples were HPV DNA-positive. Of these samples, 85.7 % were genotyped successfully, with 41.7 % of sequences identifying four genotypes of the HR (high oncogenic risk) clade Group 1; the remaining 58.3 % of HPV-genotyped specimens had an unclassified β-HPV. Examining additional cases and analysing whole genomes will help to outline the significance of these findings.
Extravasation of paclitaxel into breast tissue from central catheter port.
Barutca, Sabri; Kadikoylu, Gurhan; Bolaman, Zahit; Meydan, Nezih; Yavasoglu, Irfan
2002-10-01
A 53-year-old woman with advanced-stage ovarian cancer experienced extravasation of paclitaxel into the breast tissue as a result of inappropriate needle insertion and/or dislodgement; it came from a central catheter port (CCP) that was found to be intact under radiological examination with contrast material. The breast became tender and oedematous with erythema, and local warming was observed within a few hours. The patient improved in the next few days during nonsteroidal anti-inflammatory medication and close observation, and the breast healed with thickened and darkened skin and central scarring in the 6th month of follow-up. To the best of our knowledge, extravasation into breast tissue is rare in the literature. Extravasation of vesicant drugs from CCP can cause tissue necrosis; it is therefore essential that ports be carefully assessed and used by experienced staff to lessen the likelihood of such an unpleasant complication.
Hyperforin accumulates in the translucent glands of Hypericum perforatum.
Soelberg, Jens; Jørgensen, Lise Bolt; Jäger, Anna K
2007-06-01
Hypericum perforatum contains the therapeutically important compounds hypericin and hyperforin. Hypericin is known to accumulate in the dark glands. This investigation aimed to determine the accumulation site of hyperforin. Dark and translucent glands as well as non-secretory tissue in leaves were manually isolated under the microscope. Hyperforin content was quantified by UV HPLC. Secretory structures were surveyed anatomically. The hyperforin content of intact leaves was found to be about 3 mg g(-1) fresh tissue, whereas a content of about 7 mg g(-1) fresh material was found in isolated translucent glands. Hyperforin was found only to occur in minute amounts in dark glands (approx. 0.4 mg g(-1) fresh tissue). In non-secretory tissue no hyperforin was detected. The accumulation of hyperforin detected in the translucent glands supports the proposed hypothesis that hyperforin is synthesized by the same biosynthetic machinery as monoterpenes in the chloroplasts of cells delimiting the gland.
Griffin, J L; Walker, L; Shore, R F; Nicholson, J K
2001-06-01
1. High-resolution magic angle spinning (MAS) 1H-NMR spectroscopy was used to study renal metabolism and the toxicity of As3+, a common environmental contaminant, in the bank vole (Clethrionomys glareolus), a wild species of rodent. 2. Following a 14-day exposure to an environmentally relevant dose of As2O3 (28 mg kg(-1) feed), voles displayed tissue damage at autopsy. MAS 1H spectra indicated abnormal lipid profiles in these samples. 3. Tissue necrosis was also evident from measurements of the apparent diffusion coefficient of water in the intact tissue using MAS 1H diffusion-weighted spectroscopy, its first application to toxicology. 4. Comparison of renal tissue from the wood mouse (Apodemus sylvaticus) exposed to identical exposure levels of As3+ suggested that the bank vole is particularly vulnerable to As3+ toxicity.
Zhang, Xuqing; Allan, George F; Tannenbaum, Pamela; Sbriscia, Tifanie; Linton, Olivia; Lai, Muh-Tsann; Haynes-Johnson, Donna; Bhattacharjee, Sheela; Lundeen, Scott G; Sui, Zhihua
2013-03-01
Selective androgen receptor modulators (SARMs) are androgens with tissue-selective activity. SARMs that have anabolic activity on muscle while having minimal stimulatory activity on prostate are classified as SARM agonists. They can be used to prevent the loss of lean body mass that is associated with cancer, immunodeficiency, renal disease and aging. They may also have anabolic activity on bone; thus, unlike estrogens, they may reverse the loss of bone strength associated with aging or hypogonadism. Our in-house effort on SARM program discovers a nonsteroidal androgen receptor ligand with a unique imidazolopyrazole moiety in its structure. In vitro, this compound is a weak androgen receptor binder and a weak androgen agonist. Despite this, in orchidectomized mature rats it is an effective SARM agonist, with an ED(50) on levator ani muscle of 3.3mg/kg and an ED(50) on ventral prostate of >30mg/kg. It has its maximal effect on muscle at the dose of 10mg/kg. In addition, this compound has mixed agonistic and antagonistic activities on prostate, reducing the weight of that tissue in intact rats by 22% at 10mg/kg. The compound does not have significant effect on gonadotropin levels or testosterone levels in both orchidectomized and intact male rats. It does not have notable progestin, estrogen or glucocorticoid agonistic or antagonistic activity in rats. In a female sexual behavior model, it improves the sexual desire of ovariectomized female rats for sexually mature intact males over nonsexually ovariectomized females. Overall, the imidazolopyrazole is a potent prostate-sparing candidate for development as a SARM agonist with an appropriate pharmacological profile for clinical benefit in muscle-wasting conditions and female sexual function disorders. Copyright © 2012 Elsevier Ltd. All rights reserved.
Link, Kaitlyn A; Koenig, Judith B; Silveira, Andressa; Plattner, Brandon L; Lillie, Brandon N
2013-02-01
To compare the effect of extracorporeal shock wave therapy (ESWT) on expression of fibroblast growth factor-7 (FGF-7), transforming growth factor-β1 (TGF-β1), insulin-like growth factor-1 (IGF-1), platelet-derived growth factor-A (PDGF), and vascular endothelial growth factor-A (VEGF) in skin with surgically created skin wounds and intact skin in horses. 14 healthy horses. 8 horses were treated with ESWT at 6 locations along the neck at 36, 24, 12, 6, 2, or 1 hour prior to collection of full-thickness biopsy specimens from each location; a control specimen was collected from a sham-treated location. In 6 horses, 5 full-thickness wounds were created in each forelimb. Wounds in 1 forelimb/horse received ESWT immediately after creation and subsequently on days 7, 14, and 21; wounds in the contralateral forelimb remained untreated. Biopsy specimens were collected from 1 wound on each forelimb on days 7, 14, 21, 28, and 35. Expression levels of FGF-7, TGF-β1, IGF-1, PDGF, and VEGF were assessed in tissue samples from the horses' necks and forelimbs. In surgically created wounds, ESWT treatment was associated with reduced TGF-β1 expression, compared with expression in control wounds, during the entire study period. At 28 days following wound creation, IGF-1 expression was significantly increased for treated and untreated wounds, compared with findings on days 7, 14, 21, and 35. There was no significant effect of treatment on FGF-7, TGF-β1, IGF-1, PDGF, or VEGF expression in intact skin. Intervention with ESWT to suppress TGF-β1 may decrease granulation tissue production, resulting in improved wound healing on the distal portion of horses' limbs.
Joukar, Siyavash; Vahidi, Reza; Farsinejad, Alireza; Asadi-Shekaari, Majid; Shahouzehi, Beydolah
2017-07-01
Despite the importance of this issue, less has been paid to the influence of exercise on the neural side effects of anabolic androgenic steroids and mechanisms. We investigated the effects of two levels of endurance exercise on neurodegeneration side effects of nandrolone. The study period was 8 weeks. Wistar rats were divided into nine groups including the control (CTL) group, mild exercise (mEx) group, and vehicle (Arach) group which received arachis oil intramuscularly, nandrolone (Nan) group which received nandrolone decanoate 5 mg/kg two times weekly, mEx+Arach group which treated with arachis oil along with mild exercise, mEx+Nan group which treated with nandrolone along with mild exercise, severe exercise (sEx) group, sEx+Arach, and sEx+Nan groups. Finally, brain samples were taken for histopathological, biochemical, and western blot analysis. Nandrolone significantly decreased the intact cells of the hippocampus, total antioxidant capacity (TAC) (P < 0.05 versus CTL and Arach groups), TAC to malondialdehyde ratio (TAC/MDA), and Bcl-2. Nandrolone increased the Bax/Bcl-2 ratio of the brain tissue (P < 0.01 versus CTL and Arach groups). Combination of mild exercise and nandrolone rescued the intact cells to some extent, and this effect was associated with the improvement of Bcl-2 level and Bax/Bcl-2 ratio of brain tissue. Combination of severe exercise and nandrolone rescued the intact cells and improved the TAC, TAC/MDA, and Bax/Bcl-2 ratios. The findings suggest that low- and high-intensity endurance exercise decreased the risk of neurodegeneration effect of nandrolone in the hippocampus of rats. This effect can be explained by the regulation of the redox system and cell homeostasis.
Arab, Alberto; Trigo, José Roberto; Lourenção, André Luiz; Peixoto, Aiane Michele; Ramos, Fernanda; Bento, José Mauricio Simões
2007-10-01
The behavioral responses of the potato tuberworm moth Phthorimaea operculella and the polyphagous predator Orius insidiosus to volatiles emanating from exposed tubers were studied by four-arm olfactometer bioassays. Mated females of P. operculella distinguished volatiles released by intact potato tubers from volatiles damaged mechanically or by conspecific larvae. Volatiles from intact potato tubers were attractive to them. On the other hand, unmated females of P. operculella did not respond to tuber volatiles. Adults of O. insidiosus were attracted to volatiles from tubers damaged by P. operculella larvae, but did not respond to intact or mechanically damaged tubers. Methyl jasmonate (MeJA) was the only compound identified from the headspace of potato tubers (GC-MS of direct headspace sampling). The amount varied with the type of induction, being 0.001 +/- 0.0003 ng g(-1) in tissues of intact fresh tubers, 0.002 +/- 0.0007 ng g(-1) in mechanically damaged tubers, and showing a six- to tenfold increase in P. operculella damaged tubers (0.090 +/- 0.006 ng g(-1)). Behavioral bioassays with synthetic MeJA confirmed that the response of the insects is dependent on MeJA concentration. Mated females of P. operculella showed the highest response at 0.001 ng g(-1) (concentration released by intact tubers), whereas O. insidiosus showed the highest response, between 0.01 and 0.05 ng g(-1), which is close to the concentration released by P. operculella damaged tubers. Based on these results, we postulate that P. operculella and O. insidiosus have adapted their responses to plant volatiles differently, enabling them to locate suitable hosts or prey.
Increased fat deposition in injured skeletal muscle is regulated by sex-specific hormones
McHale, Matthew J.; Sarwar, Zaheer U.; Cardenas, Damon P.; Porter, Laurel; Salinas, Anna S.; Michalek, Joel E.; McManus, Linda M.
2012-01-01
Sex differences in skeletal muscle regeneration are controversial; comparisons of regenerative events between sexes have not been rigorously defined in severe injury models. We comprehensively quantified inflammation and muscle regeneration between sexes and manipulated sex-specific hormones to determine effects on regeneration. Cardiotoxin injury was induced in intact, castrated and ovariectomized female and male mice; ovariectomized mice were replaced with low- or high-dose 17-β estradiol (E2) or progesterone (P4). Extent of injury was comparable between intact mice, but females were more efficient in removal of necrotic debris, despite similar tissue levels of inflammatory cells and chemokines. Myofiber size during regeneration was equivalent between intact mice and after castration or ovariectomy (OVX) but was decreased (P < 0.001) in ovariectomized mice with high-dose E2 replacement. Intermuscular adipocytes were absent in uninjured muscle, whereas adipocyte area was increased among regenerated myofibers in all groups. Interestingly, intermuscular fat was greater (P = 0.03) in intact females at day 14 compared with intact males. Furthermore, castration increased (P = 0.01) and OVX decreased adipocyte accumulation. After OVX, E2, but not P4, replacement decreased (P ≤ 0.03) fat accumulation. In conclusion, sex-dependent differences in regeneration consisted of more efficient removal of necrosis and increased fat deposition in females with similar injury, inflammation, and regenerated myofiber size; high-dose E2 decreased myofiber size and fat deposition. Adipocyte accumulation in regenerating muscle was influenced by sex-specific hormones. Recovery following muscle injury was different between males and females, and sex-specific hormones contributed to these differences, suggesting that sex-specific treatments could be beneficial after injury. PMID:22116509
Mitochondrial motility and vascular smooth muscle proliferation.
Chalmers, Susan; Saunter, Christopher; Wilson, Calum; Coats, Paul; Girkin, John M; McCarron, John G
2012-12-01
Mitochondria are widely described as being highly dynamic and adaptable organelles, and their movement is thought to be vital for cell function. Yet, in various native cells, including those of heart and smooth muscle, mitochondria are stationary and rigidly structured. The significance of the differences in mitochondrial behavior to the physiological function of cells is unclear and was studied in single myocytes and intact resistance-sized cerebral arteries. We hypothesized that mitochondrial dynamics is controlled by the proliferative status of the cells. High-speed fluorescence imaging of mitochondria in live vascular smooth muscle cells shows that the organelle undergoes significant reorganization as cells become proliferative. In nonproliferative cells, mitochondria are individual (≈ 2 μm by 0.5 μm), stationary, randomly dispersed, fixed structures. However, on entering the proliferative state, mitochondria take on a more diverse architecture and become small spheres, short rod-shaped structures, long filamentous entities, and networks. When cells proliferate, mitochondria also continuously move and change shape. In the intact pressurized resistance artery, mitochondria are largely immobile structures, except in a small number of cells in which motility occurred. When proliferation of smooth muscle was encouraged in the intact resistance artery, in organ culture, the majority of mitochondria became motile and the majority of smooth muscle cells contained moving mitochondria. Significantly, restriction of mitochondrial motility using the fission blocker mitochondrial division inhibitor prevented vascular smooth muscle proliferation in both single cells and the intact resistance artery. These results show that mitochondria are adaptable and exist in intact tissue as both stationary and highly dynamic entities. This mitochondrial plasticity is an essential mechanism for the development of smooth muscle proliferation and therefore presents a novel therapeutic target against vascular disease.
Nonami, H; Boyer, J S
1990-08-01
Measurements with a guillotine psychrometer (H Nonami, JS Boyer [1990] Plant Physiol 94: 1601-1609) indicate that the inhibition of stem growth at low water potentials (low psi(w)) is accompanied by decreases in cell wall extensibility and tissue hydraulic conductance to water that eventually limit growth rate in soybean (Glycine max L. Merr.). To check this conclusion, we measured cell wall properties and cell hydraulic conductivities with independent techniques in soybean seedlings grown and treated the same way, i.e. grown in the dark and exposed to low psi(w) by transplanting dark grown seedlings to vermiculite of low water content. Wall properties were measured with an extensiometer modified for intact plants, and conductances were measured with a cell pressure probe in intact plants. Theory was developed to relate the wall measurements to those with the psychrometer. In the elongation zone, the plastic deformability of the walls decreased when measured with the extensiometer while growth was inhibited at low psi(w). It increased during a modest growth recovery. This behavior was the same as that for the wall extensibility observed previously with the psychrometer. Tissue that was killed before measurement with the extensiometer also showed a similar response, indicating that changes in wall extensibility represented changes in wall physical properties and not rates of wall biosynthesis. The elastic compliance (reciprocal of bulk elastic modulus) did not change in the elongating or mature tissue. The hydraulic conductivity of cortical cells decreased in the elongating tissue and increased slightly during growth recovery in a response similar to that observed with the psychrometer. We conclude that the plastic properties of the cell walls and the conductance of the cells to water were decreased at low psi(w) but that the elastic properties of the walls were of little consequence in this response.
Nonami, Hiroshi; Boyer, John S.
1990-01-01
Measurements with a guillotine psychrometer (H Nonami, JS Boyer [1990] Plant Physiol 94: 1601-1609) indicate that the inhibition of stem growth at low water potentials (low ψw) is accompanied by decreases in cell wall extensibility and tissue hydraulic conductance to water that eventually limit growth rate in soybean (Glycine max L. Merr.). To check this conclusion, we measured cell wall properties and cell hydraulic conductivities with independent techniques in soybean seedlings grown and treated the same way, i.e. grown in the dark and exposed to low ψw by transplanting dark grown seedlings to vermiculite of low water content. Wall properties were measured with an extensiometer modified for intact plants, and conductances were measured with a cell pressure probe in intact plants. Theory was developed to relate the wall measurements to those with the psychrometer. In the elongation zone, the plastic deformability of the walls decreased when measured with the extensiometer while growth was inhibited at low ψw. It increased during a modest growth recovery. This behavior was the same as that for the wall extensibility observed previously with the psychrometer. Tissue that was killed before measurement with the extensiometer also showed a similar response, indicating that changes in wall extensibility represented changes in wall physical properties and not rates of wall biosynthesis. The elastic compliance (reciprocal of bulk elastic modulus) did not change in the elongating or mature tissue. The hydraulic conductivity of cortical cells decreased in the elongating tissue and increased slightly during growth recovery in a response similar to that observed with the psychrometer. We conclude that the plastic properties of the cell walls and the conductance of the cells to water were decreased at low ψw but that the elastic properties of the walls were of little consequence in this response. PMID:16667664
Yaniv, Yael; Ahmet, Ismayil; Tsutsui, Kenta; Behar, Joachim; Moen, Jack M; Okamoto, Yosuke; Guiriba, Toni-Rose; Liu, Jie; Bychkov, Rostislav; Lakatta, Edward G
2016-08-01
We aimed to determine how age-associated changes in mechanisms extrinsic and intrinsic to pacemaker cells relate to basal beating interval variability (BIV) reduction in vivo. Beating intervals (BIs) were measured in aged (23-25 months) and adult (3-4 months) C57BL/6 male mice (i) via ECG in vivo during light anesthesia in the basal state, or in the presence of 0.5 mg mL(-1) atropine + 1 mg mL(-1) propranolol (in vivo intrinsic conditions), and (ii) via a surface electrogram, in intact isolated pacemaker tissue. BIV was quantified in both time and frequency domains using linear and nonlinear indices. Although the average basal BI did not significantly change with age under intrinsic conditions in vivo and in the intact isolated pacemaker tissue, the average BI was prolonged in advanced age. In vivo basal BIV indices were found to be reduced with age, but this reduction diminished in the intrinsic state. However, in pacemaker tissue BIV indices increased in advanced age vs. adults. In the isolated pacemaker tissue, the sensitivity of the average BI and BIV in response to autonomic receptor stimulation or activation of mechanisms intrinsic to pacemaker cells by broad-spectrum phosphodiesterase inhibition declined in advanced age. Thus, changes in mechanisms intrinsic to pacemaker cells increase the average BIs and BIV in the mice of advanced age. Autonomic neural input to pacemaker tissue compensates for failure of molecular intrinsic mechanisms to preserve average BI. But this compensation reduces the BIV due to both the imbalance of autonomic neural input to the pacemaker cells and altered pacemaker cell responses to neural input. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
Vyas, Krishna S; Burns, Chase; Ryan, Dylan T; Wong, Lesley
2017-06-01
A 41-year-old man with past medical history of kidney-liver transplantation requiring chronic immunosuppression presented 2 years posttransplant with a necrotizing soft tissue infection of his right thigh. Serial debridement to remove necrotic tissue was performed, and a Matrix HD Allograft Fenestrated (RTI Surgical, Alachua, FL) was applied. At 5-months post grafting, the patient demonstrated fully vascularized and intact skin. Under normal circumstances, a cadaveric allograft sloughs over several weeks and is not usually considered a permanent solution for wound closure. A systematic review of transplant patients on chronic immunosuppression with skin allografts demonstrates the potential for the indefinite survival of an allograft. Necrotizing soft tissue infections can definitively be treated using serial debridement and allograft transplantation in the chronically immunosuppressed.
Characterizing lamina propria of human gastric mucosa by multiphoton microscopy
NASA Astrophysics Data System (ADS)
Liu, Y. C.; Yang, H. Q.; Chen, G.; Zhuo, S. M.; Chen, J. X.; Yan, J.
2011-01-01
Lamina propria (LP) of gastric mucosa plays an important role in progression of gastric cancer because of the site at where inflammatory reactions occur. Multiphoton imaging has been recently employed for microscopic examination of intact tissue. In this paper, using multiphoton microscopy (MPM) based on two-photon excited fluorescence (TPEF) and second harmonic generation (SHG), high resolution multiphoton microscopic images of lamina propria (LP) are obtained in normal human gastric mucosa at excitation wavelength λex = 800 nm. The main source of tissue TPEF originated from the cells of gastric glands, and loose connective tissue, collagen, produced SHG signals. Our results demonstrated that MPM can be effective for characterizing the microstructure of LP in human gastric mucosa. The findings will be helpful for diagnosing and staging early gastric cancer in the clinics.
Long gap esophageal atresia: lengthening technique and primary anastomosis.
Hadidi, Ahmed T; Hosie, Stuart; Waag, Karl-Ludwig
2007-10-01
The treatment of long gap esophageal atresia remains a major surgical challenge. The authors describe a modification of a lengthening technique based on tissue expansion to avoid sutures cutting through the esophagus. Between January 2004 and August 2006, 4 patients did not respond to stretching, and underwent this modified esophageal lengthening technique using silastic tubes. RESULTS AND FOLLOW-UP: All infants recovered and have an intact esophagus. All infants developed gastroesophageal reflux. Thal antireflux procedure was performed in the first infant. The other 3 patients were managed conservatively. Follow-up ranged between 6 and 34 months. The tissue expansion principle can be successfully applied in the esophagus through external traction. Silastic tube fixation at esophageal ends may help to apply even traction and avoid sutures cutting through the esophageal tissue.
Nanotechnology in the Regeneration of Complex Tissues
Cassidy, John W.
2015-01-01
Modern medicine faces a growing crisis as demand for organ transplantations continues to far outstrip supply. By stimulating the body’s own repair mechanisms, regenerative medicine aims to reduce demand for organs, while the closely related field of tissue engineering promises to deliver “off-the-self” organs grown from patients’ own stem cells to improve supply. To deliver on these promises, we must have reliable means of generating complex tissues. Thus far, the majority of successful tissue engineering approaches have relied on macroporous scaffolds to provide cells with both mechanical support and differentiative cues. In order to engineer complex tissues, greater attention must be paid to nanoscale cues present in a cell’s microenvironment. As the extracellular matrix is capable of driving complexity during development, it must be understood and reproduced in order to recapitulate complexity in engineered tissues. This review will summarize current progress in engineering complex tissue through the integration of nanocomposites and biomimetic scaffolds. PMID:26097381
Nonlinear dynamics, chaos and complex cardiac arrhythmias
NASA Technical Reports Server (NTRS)
Glass, L.; Courtemanche, M.; Shrier, A.; Goldberger, A. L.
1987-01-01
Periodic stimulation of a nonlinear cardiac oscillator in vitro gives rise to complex dynamics that is well described by one-dimensional finite difference equations. As stimulation parameters are varied, a large number of different phase-locked and chaotic rhythms is observed. Similar rhythms can be observed in the intact human heart when there is interaction between two pacemaker sites. Simplified models are analyzed, which show some correspondence to clinical observations.
Merl, Juliane; Deeg, Cornelia A; Swadzba, Margarete E; Ueffing, Marius; Hauck, Stefanie M
2013-12-06
Most autoimmune diseases are multifactorial diseases and are caused by the immunological reaction against a number of autoantigens. Key for understanding autoimmune pathologies is the knowledge of the targeted autoantigens, both initially and during disease progression. We present an approach for autoantigen identification based on isolation of intact autoantibody-antigen complexes from body fluids. After organic precipitation of high molecular weight proteins and free immunoglobulins, released autoantigens were identified by quantitative label-free liquid chromatography mass spectrometry. We confirmed feasibility of target enrichment and identification from highly complex body fluid proteomes by spiking of a predefined antibody-antigen complex at low level of abundance. As a proof of principle, we studied the blinding disease autoimmune uveitis, which is caused by autoreactive T-cells attacking the inner eye and is accompanied by autoantibodies. We identified three novel autoantigens in the spontaneous animal model equine recurrent uveitis (secreted acidic phosphoprotein osteopontin, extracellular matrix protein 1, and metalloproteinase inhibitor 2) and confirmed the presence of the corresponding autoantibodies in 15-25% of patient samples by enzyme-linked immunosorbent assay. Thus, this workflow led to the identification of novel autoantigens in autoimmune uveitis and may provide a versatile and useful tool to identify autoantigens in other autoimmune diseases in the future.
Desensitization and Down Regulation of Muscarinic Acetylcholine Receptors
1988-06-22
function, in vitro. This technique offers an easy method to obtain intact differentiated brain cells with minimal diffusion barriers. Preincubation of...neuroblastoma cells (clone NIE- 115 ). This treatment demonstrated that the muscarinic receptors in this neuronal clone can be divided into two types; one...mouse neuroblastoma NlE- 115 cells, and in other tissues, mediated an increase in phosphoinositide hydrolysis. Diacylglycerol is one of the important
Case study: fatal poisoning by malathion.
Thompson, T S; Treble, R G; Magliocco, A; Roettger, J R; Eichhorst, J C
1998-07-20
A case involving a fatal poisoning (suicide) by the insecticide malathion is described. The intact insecticide was found in the post-mortem blood and gastric contents at concentrations of 1.8 and 978 micrograms/ml, respectively. None of the insecticide was found in the autopsied liver tissue. Gas chromatography-mass spectrometry (GC-MS) techniques were used for the identification and quantification of malathion in the body fluids.
Diane L. Wagner; Linda DeFoliart; Patricia Doak; Jenny Schneiderheinze
2008-01-01
The aspen leaf miner, Phyllocnistis populiella, feeds on the contents of epidermal cells on both top (adaxial) and bottom (abaxial) surfaces of quaking aspen leaves, leaving the photosynthetic tissue of the mesophyll intact. This type of feeding is taxonomically restricted to a small subset of leaf mining insects but can cause widespread plant...
Wu, John Z; Cutlip, Robert G; Welcome, Daniel; Dong, Ren G
2006-01-01
Knowledge of viscoelastic properties of soft tissues is essential for the finite element modelling of the stress/strain distributions in finger-pad during vibratory loading, which is important in exploring the mechanism of hand-arm vibration syndrome. In conventional procedures, skin and subcutaneous tissue have to be separated for testing the viscoelastic properties. In this study, a novel method has been proposed to simultaneously determine the viscoelastic properties of skin and subcutaneous tissue in uniaxial stress relaxation tests. A mathematical approach has been derived to obtain the creep and relaxation characteristics of skin and subcutaneous tissue using uniaxial stress relaxation data of skin/subcutaneous composite specimens. The micro-structures of collagen fiber networks in the soft tissue, which underline the tissue mechanical characteristics, will be intact in the proposed method. Therefore, the viscoelastic properties of soft tissues obtained using the proposed method would be more physiologically relevant than those obtained using the conventional method. The proposed approach has been utilized to measure the viscoelastic properties of soft tissues of pig. The relaxation curves of pig skin and subcutaneous tissue obtained in the current study agree well with those in literature. Using the proposed approach, reliable material properties of soft tissues can be obtained in a cost- and time-efficient manner, which simultaneously improves the physiological relevance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jiang; Malmirchegini, G. Reza; Clubb, Robert T.
Native mass spectrometry (MS) has become an invaluable tool for the characterization of proteins and non-covalent protein complexes under near physiological solution conditions. Here we report the structural characterization of human hemoglobin (Hb), a 64 kDa oxygen-transporting protein complex, by high resolution native top-down mass spectrometry using electrospray ionization (ESI) and a 15-Tesla Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. Native MS preserves the non-covalent interactions between the globin subunits, and electron capture dissociation (ECD) produces fragments directly from the intact Hb complex without dissociating the subunits. Using activated ion ECD, we observe the gradual unfolding process of themore » Hb complex in the gas phase. Without protein ion activation, the native Hb shows very limited ECD fragmentation from the N-termini, suggesting a tightly packed structure of the native complex and therefore low fragmentation efficiency. Precursor ion activation allows steady increase of N-terminal fragment ions, while the C-terminal fragments remain limited (38 c ions and 4 z ions on the α chain; 36 c ions and 2 z ions on the β chain). This ECD fragmentation pattern suggests that upon activation, the Hb complex starts to unfold from the N-termini of both subunits, whereas the C-terminal regions and therefore the potential regions involved in the subunit binding interactions remain intact. ECD-MS of the Hb dimer show similar fragmentation patterns as the Hb tetramer, providing further evidence for the hypothesized unfolding process of the Hb complex in the gas phase. Native top-down ECD-MS allows efficient probing of the Hb complex structure and the subunit binding interactions in the gas phase. Finally, it may provide a fast and effective means to probe the structure of novel protein complexes that are intractable to traditional structural characterization tools.« less
Cross-talk between adipose and gastric leptins for the control of food intake and energy metabolism.
Cammisotto, Philippe G; Levy, Emile; Bukowiecki, Ludwik J; Bendayan, Moise
2010-09-01
The understanding of the regulation of food intake has become increasingly complex. More than 20 hormones, both orexigenic and anorexigenic, have been identified. After crossing the blood-brain barrier, they reach their main site of action located in several hypothalamic areas and interact to balance satiety and hunger. One of the most significant advances in this matter has been the discovery of leptin. This hormone plays fundamental roles in the control of appetite and in regulating energy expenditure. In accordance with the lipostatic theory stated by Kennedy in 1953, leptin was originally discovered in white adipose tissue. Its expression by other tissues was later established. Among them, the gastric mucosa has been shown to secrete large amounts of leptin. Both the adipose and the gastric tissues share similar characteristics in the synthesis and storage of leptin in granules, in the formation of a complex with the soluble receptor and a secretion modulated by hormones and energy substrates. However while adipose tissue secretes leptin in a slow constitutive endocrine way, the gastric mucosa releases leptin in a rapid regulated exocrine fashion into the gastric juice. Exocrine-secreted leptin survives the extreme hydrolytic conditions of the gastric juice and reach the duodenal lumen in an intact active form. Scrutiny into transport mechanisms revealed that a significant amount of the exocrine leptin crosses the intestinal wall by active transcytosis. Leptin receptors, expressed on the luminal and basal membrane of intestinal epithelial cells, are involved in the control of nutrient absorption by enterocytes, mucus secretion by goblet cells and motility, among other processes, and this control is indeed different depending upon luminal or basal stimulus. Gastric leptin after transcytosis reaches the central nervous system, to control food intake. Studies using the Caco-2, the human intestinal cell line, in vitro allowed analysis of the mechanisms of leptin actions on the intestinal mucosa, identification of the mechanisms of leptin transcytosis and understanding the modulation of leptin receptors by nutrients and hormones. Exocrine-secreted gastric leptin thus participates in a physiological axis independent in terms of time and regulation from that of adipose tissue to rapidly control food intake and nutrient absorption. Adipocytes and gastric epithelial cells are two cell types the metabolism of which is closely linked to food intake and energy storage. The coordinated secretion of adipose and gastric leptins ensures proper management of food processing and energy storage. Copyright (c) 2010 Elsevier GmbH. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bissell, Mina J.; Radisky, Derek
2001-10-01
The interactions between cancer cells and their micro- and macroenvironment create a context that promotes tumor growth and protects it from immune attack. The functional association of cancer cells with their surrounding tissues forms a new 'organ' that changes as malignancy progresses. Investigation of this process might provide new insights into the mechanisms of tumorigenesis and could also lead to new therapeutic targets. Under normal conditions, ORGANS are made up of TISSUES that exchange information with other cell types via cell-cell contact, cytokines and the EXTRACELLULAR MATRIX (ECM). The ECM, which is produced by collaboration between STROMAL fibroblasts and EPITHELIALmore » cells, provides structural scaffolding for cells, as well as contextual information. The endothelial vasculature provides nutrients and oxygen, and cells of the immune system combat pathogens and remove apoptotic cells. Epithelial cells associate into intact, polarized sheets. These tissues communicate through a complex network of interactions: physically, through direct contact or through the intervening ECM, and biochemically, through both soluble and insoluble signalling molecules. In combination, these interactions provide the information that is necessary to maintain cellular differentiation and to create complex tissue structures. Occasionally, the intercellular signals that define the normal context become disrupted. Alterations in epithelial tissues can lead to movement of epithelial sheets and proliferation - for example, after activation of mesenchymal fibroblasts due to wounding.Normally, these conditions are temporary and reversible, but when inflammation is sustained, an escalating feedback loop ensues.Under persistent inflammatory conditions, continual upregulation of enzymes such as matrix metalloproteinases (MMPs) by stromal fibroblasts can disrupt the ECM, and invading immune cells can overproduce factors that promote abnormal proliferation. As this process progresses, the normal organization of the organ is replaced by a functional disorder. If there are pre-existing epithelial cells within this changing context that possess tumorigenic potential, they can start to proliferate. Alternatively, the abnormal interactions might lead to genomic instability within the epithelial cells and the acquisition of tumorigenic potential. The proliferating cancer cells can then interact with their microenvironment and enhance the abnormal interactions. At this point, the tumor has become its own organ, with a distinct context that now defines all its cellular responses. Here, we will examine how the mechanisms that contribute to the normal context also act to suppress developing tumors, how disruption of this context initiates and supports the process of tumorigenicity, and how some cells with a tumorigenic genotype can become phenotypically normal if the context is appropriately manipulated.« less
Metabolic Portraits of Breast Cancer by HR MAS MR Spectroscopy of Intact Tissue Samples.
Haukaas, Tonje H; Euceda, Leslie R; Giskeødegård, Guro F; Bathen, Tone F
2017-05-16
Despite progress in early detection and therapeutic strategies, breast cancer remains the second leading cause of cancer-related death among women globally. Due to the heterogeneity and complexity of tumor biology, breast cancer patients with similar diagnosis might have different prognosis and response to treatment. Thus, deeper understanding of individual tumor properties is necessary. Cancer cells must be able to convert nutrients to biomass while maintaining energy production, which requires reprogramming of central metabolic processes in the cells. This phenomenon is increasingly recognized as a potential target for treatment, but also as a source for biomarkers that can be used for prognosis, risk stratification and therapy monitoring. Magnetic resonance (MR) metabolomics is a widely used approach in translational research, aiming to identify clinically relevant metabolic biomarkers or generate novel understanding of the molecular biology in tumors. Ex vivo proton high-resolution magic angle spinning (HR MAS) MR spectroscopy is widely used to study central metabolic processes in a non-destructive manner. Here we review the current status for HR MAS MR spectroscopy findings in breast cancer in relation to glucose, amino acid and choline metabolism.
Renovascular disease, microcirculation, and the progression of renal injury: role of angiogenesis
2011-01-01
Emerging evidence supports the pivotal role of renal microvascular disease as a determinant of tubulo-interstitial and glomerular fibrosis in chronic kidney disease. An intact microcirculation is vital to restore blood flow to the injured tissues, which is a crucial step to achieve a successful repair response. The purpose of this review is to discuss the impact and mechanisms of the functional and structural changes of the renal microvascular network, as well as the role of these changes in the progression and irreversibility of renal injury. Damage of the renal microcirculation and deterioration of the angiogenic response may constitute early steps in the complex pathways involved in progressive renal injury. There is limited but provocative evidence that stimulation of vascular proliferation and repair may stabilize renal function and slow the progression of renal disease. The feasibility of novel potential therapeutic interventions for stabilizing the renal microvasculature is also discussed. Targeted interventions to enhance endogenous renoprotective mechanisms focused on the microcirculation, such as cell-based therapy or the use of angiogenic cytokines have shown promising results in some experimental and clinical settings. PMID:21307362
Valente, A J; Walton, K W
1980-10-01
In order to investigate the known associations between hyperlipidaemia and various rheumatic complaints, immune arthritis and hyperlipidaemia have been induced concurrently in rabbits. The results obtained show that: (1) Rabbit apolipoprotein B-containing lipoproteins (LpB), which are normally virtually excluded from joint fluid, gain access to the inflamed joint in the serous effusion and serve as intrinsic indicators of altered local permeability to macromolecules. (2) Much of the LpB entering the joint space is taken up by the phagocytic cells and, following intracellular hydrolysis, leaves a lipid residue. In some chronically affected joints these residues are modified so as to give rise to crystalline cholesterol and its esters. Such crystals may serve as a chronic irritant in the joint. (3) In addition intact LpB is found sequestered in the superficial layers of intra-articular collagenous structures of the challenged joint in a distribution identical with that of similarly sequestered immune complexes and complement, suggesting altered permeability of these intra-articular structures also.
Mapping Kainate Activation of Inner Neurons in the Rat Retina
Nivison-Smith, Lisa; Sun, Daniel; Fletcher, Erica L.; Marc, Robert E.; Kalloniatis, Michael
2014-01-01
Kainate receptors mediate fast, excitatory synaptic transmission for a range of inner neurons in the mammalian retina. However, allocation of functional kainate receptors to known cell types and their sensitivity remains unresolved. Using the cation channel probe 1-amino-4-guanidobutane agmatine (AGB), we investigated kainate sensitivity of neurochemically identified cell populations within the structurally intact rat retina. Most inner retinal neuron populations responded to kainate in a concentration-dependent manner. OFF cone bipolar cells demonstrated the highest sensitivity of all inner neurons to kainate. Immunocytochemical localization of AGB and macromolecular markers confirmed that type 2 bipolar cells were part of this kainate-sensitive population. The majority of amacrine (ACs) and ganglion cells (GCs) showed kainate responses with different sensitivities between major neurochemical classes (γ-aminobutyric acid [GABA]/glycine ACs > glycine ACs > GABA ACs; glutamate [Glu]/weakly GABA GCs > Glu GCs). Conventional and displaced cholinergic ACs were highly responsive to kainate, whereas dopaminergic ACs do not appear to express functional kainate receptors. These findings further contribute to our understanding of neuronal networks in complex multicellular tissues. PMID:23348566
NASA Technical Reports Server (NTRS)
Henry, R. L.; Green, P. D.; Wong, P. P.; Guikema, J. A.; Spooner, B. S. (Principal Investigator)
1990-01-01
Development of a legume root nodule is a complex process culminating in a plant/bacterial symbiosis possessing the capacity for biological dinitrogen fixation. Formation of root nodules is initiated by the binding and stabilization of rhizobia to plant root hairs, mediated in part by a receptor/ligand recognition system composed of lectins on the plant root surface and lectin-binding sites on the rhizobial cell surface. The dinitrogen fixation activity of these root nodules may be an important feature of enclosed, space-based life support systems, and may provide an ecological method to recycle nitrogen for amino acid production. However, the effects on nodule development of varied gravitational fields, or of root nutrient delivery hardware, remain unknown. We have investigated the effects of microgravity on root nodule formation, with preliminary experiments focused upon the receptor/ligand component. Microgravity, obtained during parabolic flight aboard NASA 930, has no apparent effect on the binding of purified lectin to rhizobia, a result that will facilitate forthcoming experiments using intact root tissues.
Sonic hedgehog from both nerves and epithelium is a key trophic factor for taste bud maintenance.
Castillo-Azofeifa, David; Losacco, Justin T; Salcedo, Ernesto; Golden, Erin J; Finger, Thomas E; Barlow, Linda A
2017-09-01
The integrity of taste buds is intimately dependent on an intact gustatory innervation, yet the molecular nature of this dependency is unknown. Here, we show that differentiation of new taste bud cells, but not progenitor proliferation, is interrupted in mice treated with a hedgehog (Hh) pathway inhibitor (HPI), and that gustatory nerves are a source of sonic hedgehog (Shh) for taste bud renewal. Additionally, epithelial taste precursor cells express Shh transiently, and provide a local supply of Hh ligand that supports taste cell renewal. Taste buds are minimally affected when Shh is lost from either tissue source. However, when both the epithelial and neural supply of Shh are removed, taste buds largely disappear. We conclude Shh supplied by taste nerves and local taste epithelium act in concert to support continued taste bud differentiation. However, although neurally derived Shh is in part responsible for the dependence of taste cell renewal on gustatory innervation, neurotrophic support of taste buds likely involves a complex set of factors. © 2017. Published by The Company of Biologists Ltd.
Whiplash syndrome: kinematic factors influencing pain patterns.
Cusick, J F; Pintar, F A; Yoganandan, N
2001-06-01
The overall, local, and segmental kinematic responses of intact human cadaver head-neck complexes undergoing an inertia-type rear-end impact were quantified. High-speed, high-resolution digital video data of individual facet joint motions during the event were statistically evaluated. To deduce the potential for various vertebral column components to be exposed to adverse strains that could result in their participation as pain generators, and to evaluate the abnormal motions that occur during this traumatic event. The vertebral column is known to incur a nonphysiologic curvature during the application of an inertial-type rear-end impact. No previous studies, however, have quantified the local component motions (facet joint compression and sliding) that occur as a result of rear-impact loading. Intact human cadaver head-neck complexes underwent inertia-type rear-end impact with predominant moments in the sagittal plane. High-resolution digital video was used to track the motions of individual facet joints during the event. Localized angular motion changes at each vertebral segment were analyzed to quantify the abnormal curvature changes. Facet joint motions were analyzed statistically to obtain differences between anterior and posterior strains. The spine initially assumed an S-curve, with the upper spinal levels in flexion and the lower spinal levels in extension. The upper C-spine flexion occurred early in the event (approximately 60 ms) during the time the head maintained its static inertia. The lower cervical spine facet joints demonstrated statistically greater compressive motions in the dorsal aspect than in the ventral aspect, whereas the sliding anteroposterior motions were the same. The nonphysiologic kinematic responses during a whiplash impact may induce stresses in certain upper cervical neural structures or lower facet joints, resulting in possible compromise sufficient to elicit either neuropathic or nociceptive pain. These dynamic alterations of the upper level (occiput to C2) could impart potentially adverse forces to related neural structures, with subsequent development of a neuropathic pain process. The pinching of the lower facet joints may lead to potential for local tissue injury and nociceptive pain.
Gündisch, Sibylle; Schott, Christina; Wolff, Claudia; Tran, Kai; Beese, Christian; Viertler, Christian; Zatloukal, Kurt; Becker, Karl-Friedrich
2013-01-01
Precise quantitation of protein biomarkers in clinical tissue specimens is a prerequisite for accurate and effective diagnosis, prognosis, and personalized medicine. Although progress is being made, protein analysis from formalin-fixed and paraffin-embedded tissues is still challenging. In previous reports, we showed that the novel formalin-free tissue preservation technology, the PAXgene Tissue System, allows the extraction of intact and immunoreactive proteins from PAXgene-fixed and paraffin-embedded (PFPE) tissues. In the current study, we focused on the analysis of phosphoproteins and the applicability of two-dimensional gel electrophoresis (2D-PAGE) and enzyme-linked immunosorbent assay (ELISA) to the analysis of a variety of malignant and non-malignant human tissues. Using western blot analysis, we found that phosphoproteins are quantitatively preserved in PFPE tissues, and signal intensities are comparable to that in paired, frozen tissues. Furthermore, proteins extracted from PFPE samples are suitable for 2D-PAGE and can be quantified by ELISA specific for denatured proteins. In summary, the PAXgene Tissue System reliably preserves phosphoproteins in human tissue samples, even after prolonged fixation or stabilization times, and is compatible with methods for protein analysis such as 2D-PAGE and ELISA. We conclude that the PAXgene Tissue System has the potential to serve as a versatile tissue fixative for modern pathology. PMID:23555997
Schmidt, Claudia; Karge, Bianka; Misgeld, Rainer; Prokop, Aram; Franke, Raimo; Brönstrup, Mark; Ott, Ingo
2017-02-03
Gold complexes with N-heterocyclic carbene (NHC) ligands represent a promising class of metallodrugs for the treatment of cancer or infectious diseases. In this report, the synthesis and the biological evaluation of halogen-containing NHC-Au I -Cl complexes are described. The complexes 1 and 5 a-5 f displayed good cytotoxic activity against tumor cells, and cellular uptake studies suggested that an intact Au-NHC fragment is essential for the accumulation of high amounts of both the metal and the NHC ligand. However, the bioavailability was negatively affected by serum components of the cell culture media and was influenced by likely transformations of the complex. One example (5 d) efficiently induced apoptosis in vincristine- and daunorubicin-resistant P-glycoprotein overexpressing Nalm-6 leukemia cells. Cellular uptake studies with this compound showed that both the wild-type and resistant Nalm-6 cells accumulated comparable amounts of gold, indicating that the gold drug was not excreted by P-glycoprotein or other efflux transporters. The effective inhibition of mammalian and bacterial thioredoxin reductases (TrxR) was confirmed for all of the gold complexes. Antibacterial screening of the gold complexes showed a particularly high activity against Gram-positive strains, reflecting their high dependence on an intact Trx/TrxR system. This result is of particular interest as the inhibition of bacterial TrxR represents a relatively little explored mechanism of new anti-infectives. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Plecitá-Hlavatá, Lydie; Jezek, Jan; Jezek, Petr
2009-01-01
Oxidative stress of mitochondrial origin, i.e. elevated mitochondrial superoxide production, belongs to major factors determining aging and oxidative-stress-related diseases. Antioxidants, such as the mitochondria-targeted coenzyme Q, MitoQ(10), may prevent or cure these pathological conditions. To elucidate pro- and anti-oxidant action of MitoQ(10), we studied its effects on HepG2 cell respiration, mitochondrial network morphology, and rates of superoxide release (above that neutralized by superoxide dismutase) to the mitochondrial matrix (J(m)). MitoSOX Red fluorescence confocal microscopy monitoring of J(m) rates showed pro-oxidant effects of 3.5-fold increased J(m) with MitoQ(10). MitoQ(10) induced fission of the mitochondrial network which was recovered after 24h. In rotenone-inhibited HepG2 cells (i.e., already under oxidative stress) MitoQ(10) sharply decreased rotenone-induced J(m), but not together with the Complex II inhibitor thenoyltrifluoroacetone. Respiration of HepG2 cells and isolated rat liver mitochondria with MitoQ(10) increased independently of rotenone. The increase was prevented by thenoyltrifluoroacetone. These results suggest that MitoQ(10) accepts electrons prior to the rotenone-bound Q-site, and the Complex II reverse mode oxidizes MitoQ(10)H(2) to regenerate MitoQ(10). Consequently, MitoQ(10) has a pro-oxidant role in intact cells, whereas it serves as an antioxidant when Complex I-derived superoxide generation is already elevated due to electron flow retardation. Moreover, unlike mitochondrial uncoupling, MitoQ(10) exerted its antioxidant role when Complex I proton pumping was retarded by a hydrophobic amiloride, 5-(N-ethyl-N-isopropyl) amiloride. Consequently, MitoQ(10) may be useful in the treatment of diseases originating from impairment of respiratory chain Complex I due to oxidatively damaged mitochondrial DNA, when its targeted delivery to pathogenic tissues is ensured.
Ropero, M J Patiño; Fariñas, N Rodríguez; Krupp, E; Mateo, R; Nevado, J J Berzas; Martín-Doimeadios, R C Rodríguez
2016-06-01
Mercury (Hg) is likely bound to large biomolecules (e.g. proteins) in living organisms, and in order to assess Hg metabolic pathways and possible toxicological effects, it is essential to study these Hg containing biomolecules. However, the exact nature of most metal binding biomolecules is unknown. Such studies are still in their infancy and information on this topic is scarce because the analysis is challenging, mainly due to their lability upon digestion or extraction from the tissue. New analytical methods that allow complex Hg-biomolecules to be analysed intact are needed and only few very recent studies deal with this approach. Therefore, as an initial step towards the characterization of Hg containing biomolecules, an analytical procedure has been optimised using size-exclusion chromatography (SEC) with inductively coupled plasma mass spectrometry (ICP-MS) detection. We applied this technique to elucidate the distribution and elution profile of Hg and Se, and some physiological important elements such as Fe, Ni, Zn and Cu, to assess metal binding profiles in liver and kidney samples of red deer (Cervus elaphus) and wild boar (Sus scrofa) who roam freely within the largest Hg mining district on Earth, Almadén in Spain. Elemental fractionation profiles of the extracts from different tissues were obtained using two different SEC columns (BioSep-SEC-S2000 GL 300-1kDa and Superdex 75 10/300 GL 70-3kDa). Similar profiles of Hg were observed in red deer and wild boar; however, significant differences were evident for liver and kidney. Moreover, the profiles of Se showed a single peak at high-medium molecular weight in all investigated tissues, while co-elution of Hg with Fe, Ni, Zn and Cu was observed. Copyright © 2016 Elsevier B.V. All rights reserved.
Murray, H W; Hariprashad, J; McDermott, D F; Stoeckle, M Y
1996-01-01
Euthymic C57BL/L ep/ep (pale ear [PE]) mice halt the visceral replication of intracellular Leishmania donovani but fail to properly resolve infection. A previous study identified an isolated defect in tissue granuloma formation in these mice; CD4+ and CD8+ cell number, gamma interferon (IFN-gamma) production, and macrophage antimicrobial activity in vitro were all intact. New in vivo results reported here suggest a considerably more complex immune defect, with evidence indicating (i) enhanced control over L. donovani after transfer of normal C57BL/6 spleen cells, (ii) a partially suppressive Th2 cell-associated response mediated by interleukin-4 (IL-4) but not reversed by CD4+ cell depletion, (iii) absent responses to endogenous Th1 cell lymphokines (IFN-gamma and IL-2) but preserved responsiveness to endogenous tumor necrosis factor alpha, (iv) absent responses to exogenous treatment with recognized antileishmanial cytokines (IFN-gamma, IL-2, IL-12, and granulocyte-macrophage colony-stimulating factor [GM-CSF]) not corrected by transfer of C57BL/6 spleen cells, and (v) a deficient response to antimony chemotherapy. Defective hepatic granuloma formation was not corrected by transfer of C57BL/6 spleen cells or by anti-IL-4 administration. While treatment with IL-2 and GM-CSF modified the tissue reaction and induced selected effector cells to encase tissue macrophages, no antileishmanial activity resulted. Together, these observations suggest that the failure of PE mice to resolve visceral L. donovani infection likely represents expression of multiple suboptimal immune responses and/or partial defects, probably involving a combination of T-cell dysfunction, a Th2 cell response, and target cell (macrophage) hyporesponsiveness. PMID:8557335