Science.gov

Sample records for intact flagellar motor

  1. Intact Flagellar Motor of Borrelia burgdorferi Revealed by Cryo-Electron Tomography: Evidence for Stator Ring Curvature and Rotor/C-Ring Assembly Flexion▿ †

    PubMed Central

    Liu, Jun; Lin, Tao; Botkin, Douglas J.; McCrum, Erin; Winkler, Hanspeter; Norris, Steven J.

    2009-01-01

    The bacterial flagellar motor is a remarkable nanomachine that provides motility through flagellar rotation. Prior structural studies have revealed the stunning complexity of the purified rotor and C-ring assemblies from flagellar motors. In this study, we used high-throughput cryo-electron tomography and image analysis of intact Borrelia burgdorferi to produce a three-dimensional (3-D) model of the in situ flagellar motor without imposing rotational symmetry. Structural details of B. burgdorferi, including a layer of outer surface proteins, were clearly visible in the resulting 3-D reconstructions. By averaging the 3-D images of ∼1,280 flagellar motors, a ∼3.5-nm-resolution model of the stator and rotor structures was obtained. flgI transposon mutants lacked a torus-shaped structure attached to the flagellar rod, establishing the structural location of the spirochetal P ring. Treatment of intact organisms with the nonionic detergent NP-40 resulted in dissolution of the outermost portion of the motor structure and the C ring, providing insight into the in situ arrangement of the stator and rotor structures. Structural elements associated with the stator followed the curvature of the cytoplasmic membrane. The rotor and the C ring also exhibited angular flexion, resulting in a slight narrowing of both structures in the direction perpendicular to the cell axis. These results indicate an inherent flexibility in the rotor-stator interaction. The FliG switching and energizing component likely provides much of the flexibility needed to maintain the interaction between the curved stator and the relatively symmetrical rotor/C-ring assembly during flagellar rotation. PMID:19429612

  2. Molecular Architecture of the Bacterial Flagellar Motor in Cells

    PubMed Central

    2015-01-01

    The flagellum is one of the most sophisticated self-assembling molecular machines in bacteria. Powered by the proton-motive force, the flagellum rapidly rotates in either a clockwise or counterclockwise direction, which ultimately controls bacterial motility and behavior. Escherichia coli and Salmonella enterica have served as important model systems for extensive genetic, biochemical, and structural analysis of the flagellum, providing unparalleled insights into its structure, function, and gene regulation. Despite these advances, our understanding of flagellar assembly and rotational mechanisms remains incomplete, in part because of the limited structural information available regarding the intact rotor–stator complex and secretion apparatus. Cryo-electron tomography (cryo-ET) has become a valuable imaging technique capable of visualizing the intact flagellar motor in cells at molecular resolution. Because the resolution that can be achieved by cryo-ET with large bacteria (such as E. coli and S. enterica) is limited, analysis of small-diameter bacteria (including Borrelia burgdorferi and Campylobacter jejuni) can provide additional insights into the in situ structure of the flagellar motor and other cellular components. This review is focused on the application of cryo-ET, in combination with genetic and biophysical approaches, to the study of flagellar structures and its potential for improving the understanding of rotor–stator interactions, the rotational switching mechanism, and the secretion and assembly of flagellar components. PMID:24697492

  3. Na+-driven bacterial flagellar motors.

    PubMed

    Imae, Y; Atsumi, T

    1989-12-01

    Bacterial flagellar motors are the reversible rotary engine which propels the cell by rotating a helical flagellar filament as a screw propeller. The motors are embedded in the cytoplasmic membrane, and the energy for rotation is supplied by the electrochemical potential of specific ions across the membrane. Thus, the analysis of motor rotation at the molecular level is linked to an understanding of how the living system converts chemical energy into mechanical work. Based on the coupling ions, the motors are divided into two types; one is the H+-driven type found in neutrophiles such as Bacillus subtilis and Escherichia coli and the other is the Na+-driven type found in alkalophilic Bacillus and marine Vibrio. In this review, we summarize the current status of research on the rotation mechanism of the Na+-driven flagellar motors, which introduces several new aspects in the analysis.

  4. Taking control of the flagellar motor

    NASA Astrophysics Data System (ADS)

    Gauthier, Mathieu; Truchon, Dany; Rainville, Simon

    2008-06-01

    Numerous types of bacteria swim in their environment by rotating long helical filaments. At the base of each filament is a tiny rotary motor called the bacterial flagellar motor. A lot is already known about the structure, assembly and function of this splendid molecular machine of nanoscopic dimensions. Nevertheless many fundamental questions remain open and the study of the flagellar motor is a very exciting area of current research. We are developing an in vitro assay to enable studies of the bacterial flagellar motor in precisely controlled conditions and to gain direct access to the inner components of the motor. We partly squeeze a filamentous E. coli bacterium inside a micropipette, leaving a working flagellar motor outside. We then punch a hole through the cell wall at the end of the bacterium located inside the micropipette using a brief train of ultrashort (~60 fs) laser pulses. This enables us to control the rotation of the motor with an external voltage (for at least 15 minutes). In parallel, new methods to monitor the speed of rotation of the motor in the low load (high speed) regime are being developed using various nanoparticules.

  5. Steps in the Bacterial Flagellar Motor

    PubMed Central

    Mora, Thierry; Yu, Howard; Sowa, Yoshiyuki; Wingreen, Ned S.

    2009-01-01

    The bacterial flagellar motor is a highly efficient rotary machine used by many bacteria to propel themselves. It has recently been shown that at low speeds its rotation proceeds in steps. Here we propose a simple physical model, based on the storage of energy in protein springs, that accounts for this stepping behavior as a random walk in a tilted corrugated potential that combines torque and contact forces. We argue that the absolute angular position of the rotor is crucial for understanding step properties and show this hypothesis to be consistent with the available data, in particular the observation that backward steps are smaller on average than forward steps. We also predict a sublinear speed versus torque relationship for fixed load at low torque, and a peak in rotor diffusion as a function of torque. Our model provides a comprehensive framework for understanding and analyzing stepping behavior in the bacterial flagellar motor and proposes novel, testable predictions. More broadly, the storage of energy in protein springs by the flagellar motor may provide useful general insights into the design of highly efficient molecular machines. PMID:19851449

  6. Proposed model for the flagellar rotary motor.

    PubMed

    Mitsui, Toshio; Ohshima, Hiroyuki

    2005-11-25

    Flagellated bacteria swim by rotating helical filaments driven by motors embedded in the cell wall and cytoplasmic membrane. A model is proposed to explain the mechanism of the motor. The protons passing through the channels induce a strong electric field in Mot molecules. This field originates an impulse force to cause the flagellar rotation if the following conditions are fulfilled: (a) Mot molecules have a spontaneous electric polarization. (b) The lipid bilayers are viscoelastic. (c) There is a delay of deformation in response to stress in Mot molecules. The conclusions driven from the model are in agreement with the following experimental observations, denoting the flagellar rotation velocity as omega. (1) The torque is practically constant independent of omega from 0 to a critical value omega(cr) and then decreases sharply. (2) When omega is smaller than omega(cr), the torque varies little with temperature. (3) The critical velocity omega(cr) shifts to lower speed at lower temperatures. (4) Where omega is larger than omega(cr), declining of the torque steepens at lower temperatures. (5) When omega is smaller than omega(cr), one revolution of the flagellar rotation consists of a constant number of steps. (6) When omega is smaller than omega(cr), omega is proportional to the transmembrane potential difference. (7) The stator produces constant torque even when the stator is rotated relative to the rotor by external forces. (8) How the flagellar rotation velocity changes when the direction of the proton passage is reversed. (9) The motor has a switch that reverses the sense of the flagelllar rotation with the same absolute value of torque.

  7. Structural diversity of bacterial flagellar motors

    PubMed Central

    Chen, Songye; Beeby, Morgan; Murphy, Gavin E; Leadbetter, Jared R; Hendrixson, David R; Briegel, Ariane; Li, Zhuo; Shi, Jian; Tocheva, Elitza I; Müller, Axel; Dobro, Megan J; Jensen, Grant J

    2011-01-01

    The bacterial flagellum is one of nature's most amazing and well-studied nanomachines. Its cell-wall-anchored motor uses chemical energy to rotate a microns-long filament and propel the bacterium towards nutrients and away from toxins. While much is known about flagellar motors from certain model organisms, their diversity across the bacterial kingdom is less well characterized, allowing the occasional misrepresentation of the motor as an invariant, ideal machine. Here, we present an electron cryotomographical survey of flagellar motor architectures throughout the Bacteria. While a conserved structural core was observed in all 11 bacteria imaged, surprisingly novel and divergent structures as well as different symmetries were observed surrounding the core. Correlating the motor structures with the presence and absence of particular motor genes in each organism suggested the locations of five proteins involved in the export apparatus including FliI, whose position below the C-ring was confirmed by imaging a deletion strain. The combination of conserved and specially-adapted structures seen here sheds light on how this complex protein nanomachine has evolved to meet the needs of different species. PMID:21673657

  8. Load-Dependent Assembly of the Bacterial Flagellar Motor

    PubMed Central

    Tipping, Murray J.; Delalez, Nicolas J.; Lim, Ren; Berry, Richard M.; Armitage, Judith P.

    2013-01-01

    ABSTRACT It is becoming clear that the bacterial flagellar motor output is important not only for bacterial locomotion but also for mediating the transition from liquid to surface living. The output of the flagellar motor changes with the mechanical load placed on it by the external environment: at a higher load, the motor runs more slowly and produces higher torque. Here we show that the number of torque-generating units bound to the flagellar motor also depends on the external mechanical load, with fewer stators at lower loads. Stalled motors contained at least as many stators as rotating motors at high load, indicating that rotation is unnecessary for stator binding. Mutant stators incapable of generating torque could not be detected around the motor. We speculate that a component of the bacterial flagellar motor senses external load and mediates the strength of stator binding to the rest of the motor. PMID:23963182

  9. Shear stress transmission model for the flagellar rotary motor.

    PubMed

    Mitsui, Toshio; Ohshima, Hiroyuki

    2008-09-01

    Most bacteria that swim are propelled by flagellar filaments, which are driven by a rotary motor powered by proton flux. The mechanism of the flagellar motor is discussed by reforming the model proposed by the present authors in 2005. It is shown that the mean strength of Coulomb field produced by a proton passing the channel is very strong in the Mot assembly so that the Mot assembly can be a shear force generator and induce the flagellar rotation. The model gives clear calculation results in agreement with experimental observations, e g., for the characteristic torque-velocity relationship of the flagellar rotation.

  10. How molecular motors shape the flagellar beat

    PubMed Central

    Riedel-Kruse, Ingmar H.; Hilfinger, Andreas; Howard, Jonathon; Jülicher, Frank

    2007-01-01

    Cilia and eukaryotic flagella are slender cellular appendages whose regular beating propels cells and microorganisms through aqueous media. The beat is an oscillating pattern of propagating bends generated by dynein motor proteins. A key open question is how the activity of the motors is coordinated in space and time. To elucidate the nature of this coordination we inferred the mechanical properties of the motors by analyzing the shape of beating sperm: Steadily beating bull sperm were imaged and their shapes were measured with high precision using a Fourier averaging technique. Comparing our experimental data with wave forms calculated for different scenarios of motor coordination we found that only the scenario of interdoublet sliding regulating motor activity gives rise to satisfactory fits. We propose that the microscopic origin of such “sliding control” is the load dependent detachment rate of motors. Agreement between observed and calculated wave forms was obtained only if significant sliding between microtubules occurred at the base. This suggests a novel mechanism by which changes in basal compliance could reverse the direction of beat propagation. We conclude that the flagellar beat patterns are determined by an interplay of the basal properties of the axoneme and the mechanical feedback of dynein motors. PMID:19404446

  11. Variable Symmetry in Salmonella typhimurium Flagellar Motors

    PubMed Central

    Young, Howard S.; Dang, Hongyue; Lai, Yimin; DeRosier, David J.; Khan, Shahid

    2003-01-01

    Electron cryomicroscopy of rotor complexes of the Salmonella typhimurium flagellar motor, overproduced in a nonmotile Escherichia coli host, has revealed a variation in subunit symmetry of the cytoplasmic ring (C ring) module. C rings with subunit symmetries ranging from 31 to 38 were found. They formed a Gaussian distribution around a mean between 34 and 35, a similar number to that determined for native C rings. C-ring diameter scaled with the number of subunits, indicating that the elliptical-shaped subunits maintained constant intersubunit spacing. Taken together with evidence that the M ring does not correspondingly increase in size, this finding indicates that rotor assembly does not require strict stoichiometric interactions between the M- and C-ring subunits. Implications for motor function are discussed. PMID:12524310

  12. Limiting Speed of the Bacterial Flagellar Motor

    NASA Astrophysics Data System (ADS)

    Nirody, Jasmine; Berry, Richard; Oster, George

    The bacterial flagellar motor (BFM) drives swimming in a wide variety of bacterial species, making it crucial for several fundamental biological processes including chemotaxis and community formation. Recent experiments have shown that the structure of this nanomachine is more dynamic than previously believed. Specifically, the number of active torque-generating units (stators) was shown to vary across applied loads. This finding invalidates the experimental evidence reporting that limiting (zero-torque) speed is independent of the number of active stators. Here, we put forward a model for the torque generation mechanism of this motor and propose that the maximum speed of the motor increases as additional torque-generators are recruited. This is contrary to the current widely-held belief that there is a universal upper limit to the speed of the BFM. Our result arises from the assumption that stators disengage from the motor for a significant portion of their mechanochemical cycles at low loads. We show that this assumption is consistent with current experimental evidence and consolidate our predictions with arguments that a processive motor must have a high duty ratio at high loads.

  13. Loose coupling in the bacterial flagellar motor

    PubMed Central

    Boschert, Ryan; Adler, Frederick R.; Blair, David F.

    2015-01-01

    Physiological properties of the flagellar rotary motor have been taken to indicate a tightly coupled mechanism in which each revolution is driven by a fixed number of energizing ions. Measurements that would directly test the tight-coupling hypothesis have not been made. Energizing ions flow through membrane-bound complexes formed from the proteins MotA and MotB, which are anchored to the cell wall and constitute the stator. Genetic and biochemical evidence points to a “power stroke” mechanism in which the ions interact with an aspartate residue of MotB to drive conformational changes in MotA that are transmitted to the rotor protein FliG. Each stator complex contains two separate ion-binding sites, raising the question of whether the power stroke is driven by one, two, or either number of ions. Here, we describe simulations of a model in which the conformational change can be driven by either one or two ions. This loosely coupled model can account for the observed physiological properties of the motor, including those that have been taken to indicate tight coupling; it also accords with recent measurements of motor torque at high load that are harder to explain in tight-coupling models. Under loads relevant to a swimming cell, the loosely coupled motor would perform about as well as a two-proton motor and significantly better than a one-proton motor. The loosely coupled motor is predicted to be especially advantageous under conditions of diminished energy supply, or of reduced temperature, turning faster than an obligatorily two-proton motor while using fewer ions. PMID:25825730

  14. Quantification of flagellar motor stator dynamics through in vivo proton-motive force control.

    PubMed

    Tipping, Murray J; Steel, Bradley C; Delalez, Nicolas J; Berry, Richard M; Armitage, Judith P

    2013-01-01

    The bacterial flagellar motor, one of the few rotary motors in nature, produces torque to drive the flagellar filament by ion translocation through membrane-bound stator complexes. We used the light-driven proton pump proteorhodopsin (pR) to control the proton-motive force (PMF) in vivo by illumination. pR excitation was shown to be sufficient to replace native PMF generation, and when excited in cells with intact native PMF generation systems increased motor speed beyond the physiological norm. We characterized the effects of rapid in vivo PMF changes on the flagellar motor. Transient PMF disruption events from loss of illumination caused motors to stop, with rapid recovery of their previous rotation rate after return of illumination. However, extended periods of PMF loss led to stepwise increases in rotation rate upon PMF return as stators returned to the motor. The rate constant for stator binding to a putative single binding site on the motor was calculated to be 0.06 s(-1). Using GFP-tagged MotB stator proteins, we found that transient PMF disruption leads to reversible stator diffusion away from the flagellar motor, showing that PMF presence is necessary for continued motor integrity, and calculated a stator dissociation rate of 0.038 s(-1).

  15. An ultrasonic motor model for bacterial flagellar motors.

    PubMed

    Atsumi, T

    2001-11-07

    A model for the transduction of energy occurring in bacterial flagellar motors is presented. In this model, the influx of ions across the channel causes the cyclic conformational change of the channel itself, which in turn produces travelling waves in one of the subcomponents of the motor, the C ring. This wave stabilizes the cyclical movement of the channel which generates the rotating force. The estimated frequency of cyclic conformational change is between 36 kHz and 6.3 MHz, i.e. in the ultrasonic range. This phenomenon is therefore referred to as the ultrasonic micromotor of microorganisms. Copyright 2001 Academic Press.

  16. Torque-speed relationship of the bacterial flagellar motor.

    PubMed

    Xing, Jianhua; Bai, Fan; Berry, Richard; Oster, George

    2006-01-31

    Many swimming bacteria are propelled by flagellar filaments driven by a rotary motor. Each of these tiny motors can generate an impressive torque. The motor torque vs. speed relationship is considered one of the most important measurable characteristics of the motor and therefore is a major criterion for judging models proposed for the working mechanism. Here we give an explicit explanation for this torque-speed curve. The same physics also can explain certain puzzling properties of other motors.

  17. Torque–speed relationship of the bacterial flagellar motor

    PubMed Central

    Xing, Jianhua; Bai, Fan; Berry, Richard; Oster, George

    2006-01-01

    Many swimming bacteria are propelled by flagellar filaments driven by a rotary motor. Each of these tiny motors can generate an impressive torque. The motor torque vs. speed relationship is considered one of the most important measurable characteristics of the motor and therefore is a major criterion for judging models proposed for the working mechanism. Here we give an explicit explanation for this torque–speed curve. The same physics also can explain certain puzzling properties of other motors. PMID:16432218

  18. Hybrid flagellar motor/MEMS based TNT detection system

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Woo; Tung, Steve

    2006-05-01

    Effective and rapid detection of nitroaromatic explosive compounds, especially trinitrotoluene (TNT), is very important to homeland security as well as to environmental monitoring of contaminants in soil and water, and landmine detection. In this research, we explore a novel nanoscale flagellar motor based TNT detection system (nFMTNT). The nFMTNT is a bio-hybrid MEMS system which combines genetically engineered flagellar motors and MEMS devices. The system consists of three major components: (1) a non-pathogenic, genetically modified Escherichia coli strain KAF95 with a rotating flagellar filament, (2) a microchannel with tethered cells, and (3) a sub-micron bead attached to a rotating flagellar filament. The operational principle of nFMTNT is based on detecting the change in the rotational behavior of the nanoscale flagellar filament in the presence of TNT. The rotational behavior of flagellar filaments of E. coli KAF95 was shown to be extremely sensitive to the presence of nitrate or nitrite. Normally, the flagellar filaments were locked in to rotate in the counterclockwise direction. However, when a nitrate or nitrite was present in the immediate environment, the filaments cease to rotate. Our results indicate that the threshold concentrations required for this response were 10 -4 M for nitrate and 10 -3 M for nitrite. This is equivalent to around 10 pg of nitrate and 100 pg of nitrite, based on the dimension of the MEMS-based reaction system used for the experiment (400 μm × 100 μm × 40 μm). These detection limits can be even lower when the size of the system is reduced.

  19. An Element of Determinism in a Stochastic Flagellar Motor Switch

    PubMed Central

    Xie, Li; Altindal, Tuba; Wu, Xiao-Lun

    2015-01-01

    Marine bacterium Vibrio alginolyticus uses a single polar flagellum to navigate in an aqueous environment. Similar to Escherichia coli cells, the polar flagellar motor has two states; when the motor is counter-clockwise, the cell swims forward and when the motor is clockwise, the cell swims backward. V. alginolyticus also incorporates a direction randomization step at the start of the forward swimming interval by flicking its flagellum. To gain an understanding on how the polar flagellar motor switch is regulated, distributions of the forward Δf and backward Δb intervals are investigated herein. We found that the steady-state probability density functions, P(Δf) and P(Δb), of freely swimming bacteria are strongly peaked at a finite time, suggesting that the motor switch is not Poissonian. The short-time inhibition is sufficiently strong and long lasting, i.e., several hundred milliseconds for both intervals, which is readily observed and characterized. Treating motor reversal dynamics as a first-passage problem, which results from conformation fluctuations of the motor switch, we calculated P(Δf) and P(Δb) and found good agreement with the measurements. PMID:26554590

  20. Hybrid-fuel bacterial flagellar motors in Escherichia coli.

    PubMed

    Sowa, Yoshiyuki; Homma, Michio; Ishijima, Akihiko; Berry, Richard M

    2014-03-04

    The bacterial flagellar motor rotates driven by an electrochemical ion gradient across the cytoplasmic membrane, either H(+) or Na(+) ions. The motor consists of a rotor ∼50 nm in diameter surrounded by multiple torque-generating ion-conducting stator units. Stator units exchange spontaneously between the motor and a pool in the cytoplasmic membrane on a timescale of minutes, and their stability in the motor is dependent upon the ion gradient. We report a genetically engineered hybrid-fuel flagellar motor in Escherichia coli that contains both H(+)- and Na(+)-driven stator components and runs on both types of ion gradient. We controlled the number of each type of stator unit in the motor by protein expression levels and Na(+) concentration ([Na(+)]), using speed changes of single motors driving 1-μm polystyrene beads to determine stator unit numbers. De-energized motors changed from locked to freely rotating on a timescale similar to that of spontaneous stator unit exchange. Hybrid motor speed is simply the sum of speeds attributable to individual stator units of each type. With Na(+) and H(+) stator components expressed at high and medium levels, respectively, Na(+) stator units dominate at high [Na(+)] and are replaced by H(+) units when Na(+) is removed. Thus, competition between stator units for spaces in a motor and sensitivity of each type to its own ion gradient combine to allow hybrid motors to adapt to the prevailing ion gradient. We speculate that a similar process may occur in species that naturally express both H(+) and Na(+) stator components sharing a common rotor.

  1. Coordinated switching of bacterial flagellar motors: evidence for direct motor-motor coupling?

    PubMed

    Hu, Bo; Tu, Yuhai

    2013-04-12

    The swimming of Escherichia coli is powered by its multiple flagellar motors. Each motor spins either clockwise or counterclockwise, under the control of an intracellular regulator, CheY-P. There can be two mechanisms (extrinsic and intrinsic) to coordinate the switching of bacterial motors. The extrinsic one arises from the fact that different motors in the same cell sense a common input (CheY-P) which fluctuates near the motors' response threshold. An alternative, intrinsic mechanism is direct motor-motor coupling which makes synchronized switching energetically favorable. Here, we develop simple models for both mechanisms and uncover their different hallmarks. A quantitative comparison to the recent experiments suggests that the direct coupling mechanism may be accountable for the observed sharp correlation between motors in a single Escherichia coli. Possible origins of this coupling (e.g., hydrodynamic interaction) are discussed.

  2. Resurrection of the flagellar rotary motor near zero load

    PubMed Central

    Yuan, Junhua; Berg, Howard C.

    2008-01-01

    Flagellated bacteria, such as Escherichia coli, are propelled by helical flagellar filaments, each driven at its base by a reversible rotary motor, powered by a transmembrane proton flux. Torque is generated by the interaction of stator proteins, MotA and MotB, with a rotor protein FliG. The physiology of the motor has been studied extensively in the regime of relatively high load and low speed, where it appears to operate close to thermodynamic equilibrium. Here, we describe an assay that allows systematic study of the motor near zero load, where proton translocation and movement of mechanical components are rate limiting. Sixty-nanometer-diameter gold spheres were attached to hooks of cells lacking flagellar filaments, and light scattered from a sphere was monitored at the image plane of a microscope through a small pinhole. Paralyzed motors of cells carrying a motA point mutation were resurrected at 23°C by expression of wild-type MotA, and speeds jumped from zero to a maximum value (≈300 Hz) in one step. Thus, near zero load, the speed of the motor is independent of the number of torque-generating units. Evidently, the units act independently (they do not interfere with one another), and there are no intervals during which a second unit can add to the speed generated by the first (the duty ratio is close to 1). PMID:18202173

  3. Coordinated Switching of Bacterial Flagellar Motors: Evidence for Direct Motor-Motor Coupling?

    NASA Astrophysics Data System (ADS)

    Hu, Bo; Tu, Yuhai

    2013-04-01

    The swimming of Escherichia coli is powered by its multiple flagellar motors. Each motor spins either clockwise or counterclockwise, under the control of an intracellular regulator, CheY-P. There can be two mechanisms (extrinsic and intrinsic) to coordinate the switching of bacterial motors. The extrinsic one arises from the fact that different motors in the same cell sense a common input (CheY-P) which fluctuates near the motors’ response threshold. An alternative, intrinsic mechanism is direct motor-motor coupling which makes synchronized switching energetically favorable. Here, we develop simple models for both mechanisms and uncover their different hallmarks. A quantitative comparison to the recent experiments suggests that the direct coupling mechanism may be accountable for the observed sharp correlation between motors in a single Escherichia coli. Possible origins of this coupling (e.g., hydrodynamic interaction) are discussed.

  4. Constraints on models for the flagellar rotary motor.

    PubMed Central

    Berg, H C

    2000-01-01

    Most bacteria that swim are propelled by flagellar filaments, each driven at its base by a rotary motor embedded in the cell wall and cytoplasmic membrane. A motor is about 45 nm in diameter and made up of about 20 different kinds of parts. It is assembled from the inside out. It is powered by a proton (or in some species, a sodium-ion) flux. It steps at least 400 times per revolution. At low speeds and high torques, about 1000 protons are required per revolution, speed is proportional to protonmotive force, and torque varies little with temperature or hydrogen isotope. At high speeds and low torques, torque increases with temperature and is sensitive to hydrogen isotope. At room temperature, torque varies remarkably little with speed from about -100 Hz (the present limit of measurement) to about 200 Hz, and then it declines rapidly reaching zero at about 300 Hz. These are facts that motor models should explain. None of the existing models for the flagellar rotary motor completely do so. PMID:10836502

  5. Mechanics of torque generation in the bacterial flagellar motor

    PubMed Central

    Mandadapu, Kranthi K.; Nirody, Jasmine A.; Berry, Richard M.; Oster, George

    2015-01-01

    The bacterial flagellar motor (BFM) is responsible for driving bacterial locomotion and chemotaxis, fundamental processes in pathogenesis and biofilm formation. In the BFM, torque is generated at the interface between transmembrane proteins (stators) and a rotor. It is well established that the passage of ions down a transmembrane gradient through the stator complex provides the energy for torque generation. However, the physics involved in this energy conversion remain poorly understood. Here we propose a mechanically specific model for torque generation in the BFM. In particular, we identify roles for two fundamental forces involved in torque generation: electrostatic and steric. We propose that electrostatic forces serve to position the stator, whereas steric forces comprise the actual “power stroke.” Specifically, we propose that ion-induced conformational changes about a proline “hinge” residue in a stator α-helix are directly responsible for generating the power stroke. Our model predictions fit well with recent experiments on a single-stator motor. The proposed model provides a mechanical explanation for several fundamental properties of the flagellar motor, including torque–speed and speed–ion motive force relationships, backstepping, variation in step sizes, and the effects of key mutations in the stator. PMID:26216959

  6. Mechanics of torque generation in the bacterial flagellar motor.

    PubMed

    Mandadapu, Kranthi K; Nirody, Jasmine A; Berry, Richard M; Oster, George

    2015-08-11

    The bacterial flagellar motor (BFM) is responsible for driving bacterial locomotion and chemotaxis, fundamental processes in pathogenesis and biofilm formation. In the BFM, torque is generated at the interface between transmembrane proteins (stators) and a rotor. It is well established that the passage of ions down a transmembrane gradient through the stator complex provides the energy for torque generation. However, the physics involved in this energy conversion remain poorly understood. Here we propose a mechanically specific model for torque generation in the BFM. In particular, we identify roles for two fundamental forces involved in torque generation: electrostatic and steric. We propose that electrostatic forces serve to position the stator, whereas steric forces comprise the actual "power stroke." Specifically, we propose that ion-induced conformational changes about a proline "hinge" residue in a stator α-helix are directly responsible for generating the power stroke. Our model predictions fit well with recent experiments on a single-stator motor. The proposed model provides a mechanical explanation for several fundamental properties of the flagellar motor, including torque-speed and speed-ion motive force relationships, backstepping, variation in step sizes, and the effects of key mutations in the stator.

  7. Model Studies of the Dynamics of Bacterial Flagellar Motors

    SciTech Connect

    Bai, F; Lo, C; Berry, R; Xing, J

    2009-03-19

    The Bacterial Flagellar Motor is a rotary molecular machine that rotates the helical filaments which propel swimming bacteria. Extensive experimental and theoretical studies exist on the structure, assembly, energy input, power generation and switching mechanism of the motor. In our previous paper, we explained the general physics underneath the observed torque-speed curves with a simple two-state Fokker-Planck model. Here we further analyze this model. In this paper we show (1) the model predicts that the two components of the ion motive force can affect the motor dynamics differently, in agreement with the latest experiment by Lo et al.; (2) with explicit consideration of the stator spring, the model also explains the lack of dependence of the zero-load speed on stator number in the proton motor, recently observed by Yuan and Berg; (3) the model reproduces the stepping behavior of the motor even with the existence of the stator springs and predicts the dwelling time distribution. Predicted stepping behavior of motors with two stators is discussed, and we suggest future experimental verification.

  8. Model studies of the dynamics of bacterial flagellar motors.

    PubMed

    Bai, Fan; Lo, Chien-Jung; Berry, Richard M; Xing, Jianhua

    2009-04-22

    The bacterial flagellar motor is a rotary molecular machine that rotates the helical filaments that propel swimming bacteria. Extensive experimental and theoretical studies exist on the structure, assembly, energy input, power generation, and switching mechanism of the motor. In a previous article, we explained the general physics underneath the observed torque-speed curves with a simple two-state Fokker-Planck model. Here, we further analyze that model, showing that 1), the model predicts that the two components of the ion motive force can affect the motor dynamics differently, in agreement with latest experiments; 2), with explicit consideration of the stator spring, the model also explains the lack of dependence of the zero-load speed on stator number in the proton motor, as recently observed; and 3), the model reproduces the stepping behavior of the motor even with the existence of the stator springs and predicts the dwell-time distribution. The predicted stepping behavior of motors with two stators is discussed, and we suggest future experimental procedures for verification.

  9. Torque and rotation rate of the bacterial flagellar motor.

    PubMed Central

    Läuger, P

    1988-01-01

    This paper describes an analysis of microscopic models for the coupling between ion flow and rotation of bacterial flagella. In model I it is assumed that intersecting half-channels exist on the rotor and the stator and that the driving ion is constrained to move together with the intersection site. Model II is based on the assumption that ion flow drives a cycle of conformational transitions in a channel-like stator subunit that are coupled to the motion of the rotor. Analysis of both mechanisms yields closed expressions relating the torque M generated by the flagellar motor to the rotation rate v. Model I (and also, under certain assumptions, model II) accounts for the experimentally observed linear relationship between M and v. The theoretical equations lead to predictions on the relationship between rotation rate and driving force which can be tested experimentally. PMID:3342270

  10. Helix Rotation Model of the Flagellar Rotary Motor

    PubMed Central

    Schmitt, Rüdiger

    2003-01-01

    A new model of the flagellar motor is proposed that is based on established dynamics of the KcsA potassium ion channel and on known genetic, biochemical, and biophysical facts, which accounts for the mechanics of torque generation, force transmission, and reversals of motor rotation. It predicts that proton (or in some species sodium ion) flow generates short, reversible helix rotations of the MotA-MotB channel complex (the stator) that are transmitted by Coulomb forces to the FliG segments at the rotor surface. Channels are arranged as symmetric pairs, S and T, that swing back and forth in synchrony. S and T alternate in attaching to the rotor, so that force transmission proceeds in steps. The sense of motor rotation can be readily reversed by conformationally switching the position of charged groups on the rotor so that they interact with the stator during the reverse rather than forward strokes. An elastic device accounts for the observed smoothness of rotation and a prolonged attachment of the torque generators to the rotor, i.e., a high duty ratio of each torque-generating unit. PMID:12885632

  11. Specificity of motor components in the dual flagellar system of Shewanella putrefaciens CN-32.

    PubMed

    Bubendorfer, Sebastian; Held, Susanne; Windel, Natalie; Paulick, Anja; Klingl, Andreas; Thormann, Kai M

    2012-01-01

    Bacterial flagellar motors are intricate nanomachines in which the stator units and rotor component FliM may be dynamically exchanged during function. Similar to other bacterial species, the gammaproteobacterium Shewanella putrefaciens CN-32 possesses a complete secondary flagellar system along with a corresponding stator unit. Expression of the secondary system occurs during planktonic growth in complex media and leads to the formation of a subpopulation with one or more additional flagella at random positions in addition to the primary polar system. We used physiological and phenotypic characterizations of defined mutants in concert with fluorescent microscopy on labelled components of the two different systems, the stator proteins PomB and MotB, the rotor components FliM(1) and FliM(2), and the auxiliary motor components MotX and MotY, to determine localization, function and dynamics of the proteins in the flagellar motors. The results demonstrate that the polar flagellum is driven by a Na(+)-dependent FliM(1)/PomAB/MotX/MotY flagellar motor while the secondary system is rotated by a H(+)-dependent FliM(2)/MotAB motor. The components were highly specific for their corresponding motor and are unlikely to be extensively swapped or shared between the two flagellar systems under planktonic conditions. The results have implications for both specificity and dynamics of flagellar motor components. © 2011 Blackwell Publishing Ltd.

  12. Transient pauses of the bacterial flagellar motor at low load

    NASA Astrophysics Data System (ADS)

    Nord, A. L.; Pedaci, F.; Berry, R. M.

    2016-11-01

    The bacterial flagellar motor (BFM) is the molecular machine responsible for the swimming and chemotaxis of many species of motile bacteria. The BFM is bidirectional, and changes in the rotation direction of the motor are essential for chemotaxis. It has previously been observed that many species of bacteria also demonstrate brief pauses in rotation, though the underlying cause of such events remains poorly understood. We examine the rotation of Escherichia coli under low mechanical load with high spatial and temporal resolution. We observe and characterize transient pauses in rotation in a strain which lacks a functional chemosensory network, showing that such events are a phenomenon separate from a change in rotational direction. Rotating at low load, the BFM of E. coli exhibits about 10 pauses s-1, lasting on average 5 ms, during which time the rotor diffuses with net forwards rotation. Replacing the wild type stators with Na+ chimera stators has no substantial effect on the pausing. We discuss possible causes of such events, which are likely a product of a transient change in either the stator complex or the rotor.

  13. Coordinated regulation of multiple flagellar motors by the Escherichia coli chemotaxis system.

    PubMed

    Fukuoka, Hajime; Inoue, Yuichi; Ishijima, Akihiko

    2012-01-01

    Escherichia coli cells swim toward a favorable environment by chemotaxis. The chemotaxis system regulates the swimming behavior of the bacteria by controlling the rotational direction of their flagellar motors. Extracellular stimuli sensed by chemoreceptors are transduced to an intracellular signal molecule, phosphorylated CheY (CheY-P), that switches the rotational direction of the flagellar motors from counterclockwise (CCW) to clockwise (CW) or from CW to CCW. Many studies have focused on identifying the proteins involved in the chemotaxis system, and findings on the structures and intracellular localizations of these proteins have largely elucidated the molecular pathway. On the other hand, quantitative evaluations of the chemotaxis system, including the process of intracellular signaling by the propagation of CheY-P and the rotational switching of flagellar motor by binding of CheY-P molecules, are still uncertain. For instance, scientific consensus has held that the flagellar motors of an E. coli cell switch rotational direction asynchronously. However, recent work shows that the rotational switching of any two different motors on a single E. coli cell is highly coordinated; a sub-second switching delay between motors is clearly correlated with the relative distance of each motor from the chemoreceptor patch located at one pole of the cell. In this review of previous studies and our recent findings, we discuss the regulatory mechanism of the multiple flagellar motors on an individual E. coli cell and the intracellular signaling process that can be inferred from this coordinated switching.

  14. Coordinated regulation of multiple flagellar motors by the Escherichia coli chemotaxis system

    PubMed Central

    Fukuoka, Hajime; Inoue, Yuichi; Ishijima, Akihiko

    2012-01-01

    Escherichia coli cells swim toward a favorable environment by chemotaxis. The chemotaxis system regulates the swimming behavior of the bacteria by controlling the rotational direction of their flagellar motors. Extracellular stimuli sensed by chemoreceptors are transduced to an intracellular signal molecule, phosphorylated CheY (CheY-P), that switches the rotational direction of the flagellar motors from counterclockwise (CCW) to clockwise (CW) or from CW to CCW. Many studies have focused on identifying the proteins involved in the chemotaxis system, and findings on the structures and intracellular localizations of these proteins have largely elucidated the molecular pathway. On the other hand, quantitative evaluations of the chemotaxis system, including the process of intracellular signaling by the propagation of CheY-P and the rotational switching of flagellar motor by binding of CheY-P molecules, are still uncertain. For instance, scientific consensus has held that the flagellar motors of an E. coli cell switch rotational direction asynchronously. However, recent work shows that the rotational switching of any two different motors on a single E. coli cell is highly coordinated; a sub-second switching delay between motors is clearly correlated with the relative distance of each motor from the chemoreceptor patch located at one pole of the cell. In this review of previous studies and our recent findings, we discuss the regulatory mechanism of the multiple flagellar motors on an individual E. coli cell and the intracellular signaling process that can be inferred from this coordinated switching. PMID:27857608

  15. A Delicate Nanoscale Motor Made by Nature—The Bacterial Flagellar Motor

    PubMed Central

    Xue, Ruidong; Ma, Qi

    2015-01-01

    The bacterial flagellar motor (BFM) is a molecular complex ca. 45 nm in diameter that rotates the propeller that makes nearly all bacteria swim. The motor self‐assembles out of ca. 20 different proteins and can not only rotate at up to 50 000 rpm, but can also switch rotational direction in milliseconds and navigate its environment to maneuver, on average, towards regions of greater benefit. The BFM is a pinnacle of evolution that informs and inspires the design of novel nanotechnology in the new era of synthetic biology. PMID:27980978

  16. Nonconventional cation-coupled flagellar motors derived from the alkaliphilic Bacillus and Paenibacillus species.

    PubMed

    Ito, Masahiro; Takahashi, Yuka

    2017-01-01

    Prior to 2008, all previously studied conventional bacterial flagellar motors appeared to utilize either H(+) or Na(+) as coupling ions. Membrane-embedded stator complexes support conversion of energy using transmembrane electrochemical ion gradients. The main H(+)-coupled stators, known as MotAB, differ from Na(+)-coupled stators, PomAB of marine bacteria, and MotPS of alkaliphilic Bacillus. However, in 2008, a MotAB-type flagellar motor of alkaliphilic Bacillus clausii KSM-K16 was revealed as an exception with the first dual-function motor. This bacterium was identified as the first bacterium with a single stator-rotor that can utilize both H(+) and Na(+) for ion-coupling at different pH ranges. Subsequently, another exception, a MotPS-type flagellar motor of alkaliphilic Bacillus alcalophilus AV1934, was reported to utilize Na(+) plus K(+) and Rb(+) as coupling ions for flagellar rotation. In addition, the alkaline-tolerant bacterium Paenibacillus sp. TCA20, which can utilize divalent cations such as Ca(2+), Mg(2+), and Sr(2+), was recently isolated from a hot spring in Japan, which contains a high Ca(2+) concentration. These findings show that bacterial flagellar motors isolated from unique environments utilize unexpected coupling ions. This suggests that bacteria that grow in different extreme environments adapt to local conditions and evolve their motility machinery.

  17. Dynamics in the Dual Fuel Flagellar Motor of Shewanella oneidensis MR-1.

    PubMed

    Brenzinger, Susanne; Thormann, Kai M

    2017-01-01

    The stator is an eminent component of the flagellar motor and determines a number of the motor's properties, such as the rotation-energizing coupling ion (H(+) or Na(+)) or the torque that can be generated. The stator consists of several units located in the cytoplasmic membrane surrounding the flagellar drive shaft. Studies on flagellar motors of several bacterial species have provided evidence that the number as well as the retention time of stators coupled to the motor is highly dynamic and depends on the environmental conditions. Notably, numerous species possess more than a single distinct set of stators. It is likely that the presence of different stator units enables these bacteria to adjust the flagellar motor properties and function to meet the environmental requirements. One of these species is Shewanella oneidensis MR-1 that is equipped with a single polar flagellum and two stator units, the Na(+)-dependent PomAB and the H(+)-dependent MotAB. Here, we describe a method to determine stator dynamics by fluorescence microscopy, demonstrating how bacteria can change the composition of an intricate molecular machine according to environmental conditions.

  18. A quantitative model of the switch cycle of an archaeal flagellar motor and its sensory control.

    PubMed

    Nutsch, Torsten; Oesterhelt, Dieter; Gilles, Ernst Dieter; Marwan, Wolfgang

    2005-10-01

    By reverse-engineering we have detected eight kinetic phases of the symmetric switch cycle of the Halobacterium salinarum flagellar motor assembly and identified those steps in the switch cycle that are controlled by sensory rhodopsins during phototaxis. Upon switching the rotational sense, the flagellar motor assembly passes through a stop state from which all subunits synchronously resume rotation in the reverse direction. The assembly then synchronously proceeds through three subsequent functional states of the switch: Refractory, Competent, and Active, from which the rotational sense is switched again. Sensory control of the symmetric switch cycle occurs at two steps in each rotational sense by inversely regulating the probabilities for a change from the Refractory to the Competent and from Competent to the Active rotational mode. We provide a mathematical model for flagellar motor switching and its sensory control, which is able to explain all tested experimental results on spontaneous and light-controlled motor switching, and give a mechanistic explanation based on synchronous conformational transitions of the subunits of the switch complex after reversible dissociation and binding of a response regulator (CheYP). We conclude that the kinetic mechanism of flagellar motor switching and its sensory control is fundamentally different in the archaeon H. salinarum and the bacterium Escherichia coli.

  19. Applying torque to the Escherichia coli flagellar motor using magnetic tweezers.

    PubMed

    van Oene, Maarten M; Dickinson, Laura E; Cross, Bronwen; Pedaci, Francesco; Lipfert, Jan; Dekker, Nynke H

    2017-03-07

    The bacterial flagellar motor of Escherichia coli is a nanoscale rotary engine essential for bacterial propulsion. Studies on the power output of single motors rely on the measurement of motor torque and rotation under external load. Here, we investigate the use of magnetic tweezers, which in principle allow the application and active control of a calibrated load torque, to study single flagellar motors in Escherichia coli. We manipulate the external load on the motor by adjusting the magnetic field experienced by a magnetic bead linked to the motor, and we probe the motor's response. A simple model describes the average motor speed over the entire range of applied fields. We extract the motor torque at stall and find it to be similar to the motor torque at drag-limited speed. In addition, use of the magnetic tweezers allows us to force motor rotation in both forward and backward directions. We monitor the motor's performance before and after periods of forced rotation and observe no destructive effects on the motor. Our experiments show how magnetic tweezers can provide active and fast control of the external load while also exposing remaining challenges in calibration. Through their non-invasive character and straightforward parallelization, magnetic tweezers provide an attractive platform to study nanoscale rotary motors at the single-motor level.

  20. Applying torque to the Escherichia coli flagellar motor using magnetic tweezers

    PubMed Central

    van Oene, Maarten M.; Dickinson, Laura E.; Cross, Bronwen; Pedaci, Francesco; Lipfert, Jan; Dekker, Nynke H.

    2017-01-01

    The bacterial flagellar motor of Escherichia coli is a nanoscale rotary engine essential for bacterial propulsion. Studies on the power output of single motors rely on the measurement of motor torque and rotation under external load. Here, we investigate the use of magnetic tweezers, which in principle allow the application and active control of a calibrated load torque, to study single flagellar motors in Escherichia coli. We manipulate the external load on the motor by adjusting the magnetic field experienced by a magnetic bead linked to the motor, and we probe the motor’s response. A simple model describes the average motor speed over the entire range of applied fields. We extract the motor torque at stall and find it to be similar to the motor torque at drag-limited speed. In addition, use of the magnetic tweezers allows us to force motor rotation in both forward and backward directions. We monitor the motor’s performance before and after periods of forced rotation and observe no destructive effects on the motor. Our experiments show how magnetic tweezers can provide active and fast control of the external load while also exposing remaining challenges in calibration. Through their non-invasive character and straightforward parallelization, magnetic tweezers provide an attractive platform to study nanoscale rotary motors at the single-motor level. PMID:28266562

  1. Characterization of the flagellar motor composed of functional GFP-fusion derivatives of FliG in the Na+-driven polar flagellum of Vibrio alginolyticus

    PubMed Central

    Koike, Masafumi; Nishioka, Noriko; Kojima, Seiji; Homma, Michio

    2011-01-01

    The polar flagellum of Vibrio alginolyticus is driven by sodium ion flux via a stator complex, composed of PomA and PomB, across the cell membrane. The interaction between PomA and the rotor component FliG is believed to generate torque required for flagellar rotation. Previous research reported that a GFP-fused FliG retained function in the Vibrio flagellar motor. In this study, we found that N-terminal or C-terminal fusion of GFP has different effects on both torque generation and the switching frequency of the direction of flagellar motor rotation. We could detect the GFP-fused FliG in the basal-body (rotor) fraction although its association with the basal body was less stable than that of intact FliG. Furthermore, the fusion of GFP to the C-terminus of FliG, which is believed to be directly involved in torque generation, resulted in very slow motility and prohibited the directional change of motor rotation. On the other hand, the fusion of GFP to the N-terminus of FliG conferred almost the same swimming speed as intact FliG. These results are consistent with the premise that the C-terminal domain of FliG is directly involved in torque generation and the GFP fusions are useful to analyze the functions of various domains of FliG. PMID:27857593

  2. Low flagellar motor torque and high swimming efficiency of Caulobacter crescentus swarmer cells.

    PubMed

    Li, Guanglai; Tang, Jay X

    2006-10-01

    We determined the torque of the flagellar motor of Caulobacter crescentus for different motor rotation rates by measuring the rotation rate and swimming speed of the cell body and found it to be remarkably different from that of other bacteria, such as Escherichia coli and Vibrio alginolyticus. The average stall torque of the Caulobacter flagellar motor was approximately 350 pN nm, much smaller than the values of the other bacteria measured. Furthermore, the torque of the motor remained constant in the range of rotation rates up to those of freely swimming cells. In contrast, the torque of a freely swimming cell for V. alginolyticus is typically approximately 20% of the stall torque. We derive from these results that the C. crescentus swarmer cells swim more efficiently than both E. coli and V. alginolyticus. Our findings suggest that C. crescentus is optimally adapted to low nutrient aquatic environments.

  3. Bio-Hybrid Micro/Nanodevices Powered by Flagellar Motor: Challenges and Strategies

    PubMed Central

    Kim, Jin-Woo; Tung, Steve

    2015-01-01

    Molecular motors, which are precision engineered by nature, offer exciting possibilities for bio-hybrid engineered systems. They could enable real applications ranging from micro/nano fluidics, to biosensing, to medical diagnoses. This review describes the fundamental biological insights and fascinating potentials of these remarkable sensing and actuation machines, in particular, bacterial flagellar motors, as well as their engineering perspectives with regard to applications in bio-engineered hybrid systems. PMID:26284237

  4. Monitoring bacterial chemotaxis by using bioluminescence resonance energy transfer: Absence of feedback from the flagellar motors

    PubMed Central

    Shimizu, Thomas S.; Delalez, Nicolas; Pichler, Klemens; Berg, Howard C.

    2006-01-01

    We looked for a feedback system in Escherichia coli that might sense the rotational bias of flagellar motors and regulate the activity of the chemotaxis receptor kinase. Our search was based on the assumption that any machinery that senses rotational bias will be perturbed if flagellar rotation stops. We monitored the activity of the kinase in swimming cells by bioluminescence resonance energy transfer (BRET) between Renilla luciferase fused to the phosphatase, CheZ, and yellow fluorescent protein fused to the response regulator, CheY. Then we jammed the flagellar motors by adding an antifilament antibody that crosslinks adjacent filaments in flagellar bundles. At steady state, the rate of phosphorylation of CheY is equal to the rate of dephosphorylation of CheY-P, which is proportional to the degree of association between CheZ and CheY-P, the quantity sensed by BRET. No changes were observed, even upon addition of an amount of antibody that stopped the swimming of >95% of cells within a few seconds. So, the kinase does not appear to be sensitive to motor output. The BRET technique is complementary to one based on FRET, described previously. Its reliability was confirmed by measurements of the response of cells to the addition of attractants. PMID:16452163

  5. A novel type bacterial flagellar motor that can use divalent cations as a coupling ion

    PubMed Central

    Imazawa, Riku; Takahashi, Yuka; Aoki, Wataru; Sano, Motohiko; Ito, Masahiro

    2016-01-01

    The bacterial flagellar motor is a sophisticated nanomachine embedded in the cell envelope and powered by an electrochemical gradient of H+, Na+, or K+across the cytoplasmic membrane. Here we describe a new member of the bacterial flagellar stator channel family (MotAB1 of Paenibacillus sp. TCA20 (TCA-MotAB1)) that is coupled to divalent cations (Ca2+and Mg2+). In the absence of divalent cations of alkaline earth metals, no swimming was observed in Paenibacillus sp. TCA20, which grows optimally in Ca2+-rich environments. This pattern was confirmed by swimming assays of a stator-free Bacillus subtilis mutant expressing TCA-MotAB1. Both a stator-free and major Mg2+uptake system-deleted B. subtilis mutant expressing TCA-MotAB1 complemented both growth and motility deficiency under low Mg2+conditions and exhibited [Mg2+]in identical to that of the wild-type. This is the first report of a flagellar motor that can use Ca2+and Mg2+as coupling ions. These findings will promote the understanding of the operating principles of flagellar motors and molecular mechanisms of ion selectivity. PMID:26794857

  6. Coordinated Reversal of Flagellar Motors on a Single Escherichia coli Cell

    PubMed Central

    Terasawa, Shun; Fukuoka, Hajime; Inoue, Yuichi; Sagawa, Takashi; Takahashi, Hiroto; Ishijima, Akihiko

    2011-01-01

    An Escherichia coli cell transduces extracellular stimuli sensed by chemoreceptors to the state of an intracellular signal molecule, which regulates the switching of the rotational direction of the flagellar motors from counterclockwise (CCW) to clockwise (CW) and from CW back to CCW. Here, we performed high-speed imaging of flagellar motor rotation and show that the switching of two different motors on a cell is controlled coordinatedly by an intracellular signal protein, phosphorylated CheY (CheY-P). The switching is highly coordinated with a subsecond delay between motors in clear correlation with the distance of each motor from the chemoreceptor patch localized at a cell pole, which would be explained by the diffusive motion of CheY-P molecules in the cell. The coordinated switching becomes disordered by the expression of a constitutively active CheY mutant that mimics the CW-rotation stimulating function. The coordinated switching requires CheZ, which is the phosphatase for CheY-P. Our results suggest that a transient increase and decrease in the concentration of CheY-P caused by a spontaneous burst of its production by the chemoreceptor patch followed by its dephosphorylation by CheZ, which is probably a wavelike propagation in a subsecond timescale, triggers and regulates the coordinated switching of flagellar motors. PMID:21539787

  7. Bacterial Flagellar Motor Switch in Response to CheY-P Regulation and Motor Structural Alterations

    PubMed Central

    Ma, Qi; Sowa, Yoshiyuki; Baker, Matthew A.B.; Bai, Fan

    2016-01-01

    The bacterial flagellar motor (BFM) is a molecular machine that rotates the helical filaments and propels the bacteria swimming toward favorable conditions. In our previous works, we built a stochastic conformational spread model to explain the dynamic and cooperative behavior of BFM switching. Here, we extended this model to test whether it can explain the latest experimental observations regarding CheY-P regulation and motor structural adaptivity. We show that our model predicts a strong correlation between rotational direction and the number of CheY-Ps bound to the switch complex, in agreement with the latest finding from Fukuoka et al. It also predicts that the switching sensitivity of the BFM can be fine-tuned by incorporating additional units into the switch complex, as recently demonstrated by Yuan et al., who showed that stoichiometry of FliM undergoes dynamic change to maintain ultrasensitivity in the motor switching response. In addition, by locking some rotor switching units on the switch complex into the stable clockwise-only conformation, our model has accurately simulated recent experiments expressing clockwise-locked FliG(ΔPAA) into the switch complex and reproduced the increased switching rate of the motor. PMID:27028650

  8. How Biophysics May Help Us Understand the Flagellar Motor of Bacteria Which Cause Infections.

    PubMed

    Baker, Matthew A B

    2016-01-01

    Motor proteins are molecules which convert chemical energy to mechanical work and are responsible for motility across all levels: for transport within a cell, for the motion of an individual cell in its surroundings, and for movement in multicellular aggregates, such as muscles. The bacterial flagellar motor is one of the canonical examples of a molecular complex made from several motor proteins, which self-assembles on demand and provides the locomotive force for bacteria. This locomotion provides a key aspect of bacteria's prevalence. Here, we outline the biophysics behind the assembly, the energetics, the switching and the rotation of this remarkable nanoscale electric motor that is Nature's first wheel.

  9. From conformational spread to allosteric and cooperative models of E. coli flagellar motor

    NASA Astrophysics Data System (ADS)

    Pezzotta, A.; Adorisio, M.; Celani, A.

    2017-02-01

    Escherichia coli swims using flagella activated by rotary motors. The direction of rotation of the motors is indirectly regulated by the binding of a single messenger protein. The conformational spread model has been shown to accurately describe the equilibrium properties as well as the dynamics of the flagellar motor. In this paper we study this model from an analytic point of view. By exploiting the separation of timescales observed in experiments, we show how to reduce the conformational spread model to a coarse-grained, cooperative binding model. We show that this simplified model reproduces very well the dynamics of the motor switch.

  10. Diverse high-torque bacterial flagellar motors assemble wider stator rings using a conserved protein scaffold

    PubMed Central

    Ribardo, Deborah A.; Brennan, Caitlin A.; Ruby, Edward G.; Jensen, Grant J.; Hendrixson, David R.

    2016-01-01

    Although it is known that diverse bacterial flagellar motors produce different torques, the mechanism underlying torque variation is unknown. To understand this difference better, we combined genetic analyses with electron cryo-tomography subtomogram averaging to determine in situ structures of flagellar motors that produce different torques, from Campylobacter and Vibrio species. For the first time, to our knowledge, our results unambiguously locate the torque-generating stator complexes and show that diverse high-torque motors use variants of an ancestrally related family of structures to scaffold incorporation of additional stator complexes at wider radii from the axial driveshaft than in the model enteric motor. We identify the protein components of these additional scaffold structures and elucidate their sequential assembly, demonstrating that they are required for stator-complex incorporation. These proteins are widespread, suggesting that different bacteria have tailored torques to specific environments by scaffolding alternative stator placement and number. Our results quantitatively account for different motor torques, complete the assignment of the locations of the major flagellar components, and provide crucial constraints for understanding mechanisms of torque generation and the evolution of multiprotein complexes. PMID:26976588

  11. Diverse high-torque bacterial flagellar motors assemble wider stator rings using a conserved protein scaffold.

    PubMed

    Beeby, Morgan; Ribardo, Deborah A; Brennan, Caitlin A; Ruby, Edward G; Jensen, Grant J; Hendrixson, David R

    2016-03-29

    Although it is known that diverse bacterial flagellar motors produce different torques, the mechanism underlying torque variation is unknown. To understand this difference better, we combined genetic analyses with electron cryo-tomography subtomogram averaging to determine in situ structures of flagellar motors that produce different torques, from Campylobacter and Vibrio species. For the first time, to our knowledge, our results unambiguously locate the torque-generating stator complexes and show that diverse high-torque motors use variants of an ancestrally related family of structures to scaffold incorporation of additional stator complexes at wider radii from the axial driveshaft than in the model enteric motor. We identify the protein components of these additional scaffold structures and elucidate their sequential assembly, demonstrating that they are required for stator-complex incorporation. These proteins are widespread, suggesting that different bacteria have tailored torques to specific environments by scaffolding alternative stator placement and number. Our results quantitatively account for different motor torques, complete the assignment of the locations of the major flagellar components, and provide crucial constraints for understanding mechanisms of torque generation and the evolution of multiprotein complexes.

  12. Structure and function of the bi-directional bacterial flagellar motor.

    PubMed

    Morimoto, Yusuke V; Minamino, Tohru

    2014-02-18

    The bacterial flagellum is a locomotive organelle that propels the bacterial cell body in liquid environments. The flagellum is a supramolecular complex composed of about 30 different proteins and consists of at least three parts: a rotary motor, a universal joint, and a helical filament. The flagellar motor of Escherichia coli and Salmonella enterica is powered by an inward-directed electrochemical potential difference of protons across the cytoplasmic membrane. The flagellar motor consists of a rotor made of FliF, FliG, FliM and FliN and a dozen stators consisting of MotA and MotB. FliG, FliM and FliN also act as a molecular switch, enabling the motor to spin in both counterclockwise and clockwise directions. Each stator is anchored to the peptidoglycan layer through the C-terminal periplasmic domain of MotB and acts as a proton channel to couple the proton flow through the channel with torque generation. Highly conserved charged residues at the rotor-stator interface are required not only for torque generation but also for stator assembly around the rotor. In this review, we will summarize our current understanding of the structure and function of the proton-driven bacterial flagellar motor.

  13. Structure and Function of the Bi-Directional Bacterial Flagellar Motor

    PubMed Central

    Morimoto, Yusuke V.; Minamino, Tohru

    2014-01-01

    The bacterial flagellum is a locomotive organelle that propels the bacterial cell body in liquid environments. The flagellum is a supramolecular complex composed of about 30 different proteins and consists of at least three parts: a rotary motor, a universal joint, and a helical filament. The flagellar motor of Escherichia coli and Salmonella enterica is powered by an inward-directed electrochemical potential difference of protons across the cytoplasmic membrane. The flagellar motor consists of a rotor made of FliF, FliG, FliM and FliN and a dozen stators consisting of MotA and MotB. FliG, FliM and FliN also act as a molecular switch, enabling the motor to spin in both counterclockwise and clockwise directions. Each stator is anchored to the peptidoglycan layer through the C-terminal periplasmic domain of MotB and acts as a proton channel to couple the proton flow through the channel with torque generation. Highly conserved charged residues at the rotor–stator interface are required not only for torque generation but also for stator assembly around the rotor. In this review, we will summarize our current understanding of the structure and function of the proton-driven bacterial flagellar motor. PMID:24970213

  14. Signal processing and flagellar motor switching during phototaxis of Halobacterium salinarum.

    PubMed

    Nutsch, Torsten; Marwan, Wolfgang; Oesterhelt, Dieter; Gilles, Ernst Dieter

    2003-11-01

    Prokaryotic taxis, the active search of motile cells for the best environmental conditions, is one of the paradigms for signal transduction. The search algorithm implemented by the cellular biochemistry modulates the probability of switching the rotational direction of the flagellar motor, a nanomachine that propels prokaryotic cells. On the basis of the well-known biochemical mechanisms of chemotaxis in Escherichia coli, kinetic modeling of the events leading from chemoreceptor activation by ligand binding to the motility response has been performed with great success. In contrast to Escherichia coli, Halobacterium salinarum, in addition, responds to visible light, which is sensed through specific photoreceptors of different wavelength sensitivity (phototaxis). Light stimuli of defined intensity and time course can be controlled precisely, which facilitates input-output measurements used for system analysis of the molecular network connecting the sensory receptors to the flagellar motor switch. Here, we analyze the response of halobacterial cells to single and double-pulse light stimuli and present the first kinetic model for prokaryotic cells that couples the signal-transduction pathway with the flagellar motor switch. Modeling based on experimental data supports the current biochemical model of halobacterial phototaxis. Moreover, the simulations demonstrate that motor switching occurs through subsequent rate-limiting steps, which are both under sensory control, suggesting that two signals may be involved in halobacterial phototaxis.

  15. Modeling torque versus speed, shot noise, and rotational diffusion of the bacterial flagellar motor.

    PubMed

    Mora, Thierry; Yu, Howard; Wingreen, Ned S

    2009-12-11

    We present a minimal physical model for the flagellar motor that enables bacteria to swim. Our model explains the experimentally measured torque-speed relationship of the proton-driven E. coli motor at various pH and temperature conditions. In particular, the dramatic drop of torque at high rotation speeds (the "knee") is shown to arise from saturation of the proton flux. Moreover, we show that shot noise in the proton current dominates the diffusion of motor rotation at low loads. This suggests a new way to probe the discreteness of the energy source, analogous to measurements of charge quantization in superconducting tunnel junctions.

  16. Modeling Torque Versus Speed, Shot Noise, and Rotational Diffusion of the Bacterial Flagellar Motor

    NASA Astrophysics Data System (ADS)

    Mora, Thierry; Yu, Howard; Wingreen, Ned S.

    2009-12-01

    We present a minimal physical model for the flagellar motor that enables bacteria to swim. Our model explains the experimentally measured torque-speed relationship of the proton-driven E. coli motor at various pH and temperature conditions. In particular, the dramatic drop of torque at high rotation speeds (the “knee”) is shown to arise from saturation of the proton flux. Moreover, we show that shot noise in the proton current dominates the diffusion of motor rotation at low loads. This suggests a new way to probe the discreteness of the energy source, analogous to measurements of charge quantization in superconducting tunnel junctions.

  17. Structure of the torque ring of the flagellar motor and the molecular basis for rotational switching

    SciTech Connect

    Lee, Lawrence K.; Ginsburg, Michael A.; Crovace, Claudia; Donohoe, Mhairi; Stock, Daniela

    2010-09-13

    The flagellar motor drives the rotation of flagellar filaments at hundreds of revolutions per second, efficiently propelling bacteria through viscous media. The motor uses the potential energy from an electrochemical gradient of cations across the cytoplasmic membrane to generate torque. A rapid switch from anticlockwise to clockwise rotation determines whether a bacterium runs smoothly forward or tumbles to change its trajectory. A protein called FliG forms a ring in the rotor of the flagellar motor that is involved in the generation of torque through an interaction with the cation-channel-forming stator subunit MotA. FliG has been suggested to adopt distinct conformations that induce switching but these structural changes and the molecular mechanism of switching are unknown. Here we report the molecular structure of the full-length FliG protein, identify conformational changes that are involved in rotational switching and uncover the structural basis for the formation of the FliG torque ring. This allows us to propose a model of the complete ring and switching mechanism in which conformational changes in FliG reverse the electrostatic charges involved in torque generation.

  18. Evidence for symmetry in the elementary process of bidirectional torque generation by the bacterial flagellar motor

    PubMed Central

    Nakamura, Shuichi; Kami-ike, Nobunori; Yokota, Jun-ichi P.; Minamino, Tohru; Namba, Keiichi

    2010-01-01

    The bacterial flagellar motor can rotate in both counterclockwise (CCW) and clockwise (CW) directions. It has been shown that the sodium ion-driven chimeric flagellar motor rotates with 26 steps per revolution, which corresponds to the number of FliG subunits that form part of the rotor ring, but the size of the backward step is smaller than the forward one. Here we report that the proton-driven flagellar motor of Salmonella also rotates with 26 steps per revolution but symmetrical in both CCW and CW directions with occasional smaller backward steps in both directions. Occasional shift in the stepping positions is also observed, suggesting the frequent exchange of stators in one of the 11–12 possible anchoring positions around the rotor. These observations indicate that the elementary process of torque generation by the cyclic association/dissociation of the stator with every FliG subunit along the circumference of the rotor is symmetric in CCW and CW rotation even though the structure of FliG is highly asymmetric and suggests a 180° rotation of a FliG domain for the rotor-stator interaction to reverse the direction of rotation. PMID:20876126

  19. Torque generated by the flagellar motor of Escherichia coli.

    PubMed Central

    Berg, H C; Turner, L

    1993-01-01

    Cells of the bacterium Escherichia coli were tethered and spun in a high-frequency rotating electric field at a series of discrete field strengths. This was done first at low field strengths, then at field strengths generating speeds high enough to disrupt motor function, and finally at low field strengths. Comparison of the initial and final speed versus applied-torque plots yielded relative motor torque. For backward rotation, motor torque rose steeply at speeds close to zero, peaking, on average, at about 2.2 times the stall torque. For forward rotation, motor torque remained approximately constant up to speeds of about 60% of the zero-torque speed. Then the torque dropped linearly with speed, crossed zero, and reached a minimum, on average, at about -1.7 times the stall torque. The zero-torque speed increased with temperature (about 90 Hz at 11 degrees C, 140 Hz at 16 degrees C, and 290 Hz at 23 degrees C), while other parameters remained approximately constant. Sometimes the motor slipped at either extreme (delivered constant torque over a range of speeds), but eventually it broke. Similar results were obtained whether motors broke catastrophically (suddenly and completely) or progressively or were de-energized by brief treatment with an uncoupler. These results are consistent with a tightly coupled ratchet mechanism, provided that elastic deformation of force-generating elements is limited by a stop and that mechanical components yield at high applied torques. PMID:8298044

  20. Constant torque in flagellar bacterial motors optimizes space exploration

    NASA Astrophysics Data System (ADS)

    Condat, Carlos A.; di Salvo, Mario E.

    2012-02-01

    Experiments indicate that the torque provided by the bacterial rotary motor is approximately constant over a large range of angular speeds. Constant torque implies that the power spent in active motion is proportional to the instantaneous bacterial speed, if the relation between angular speed and swimming speed is linear. Here we show that a constant torque maximizes the volume of the region explored by a bacterium in a resource-depleted medium. Given that nutrients in the ocean are often concentrated in separate, ephemeral patches, we propose that the observed constancy of the torque may be a trait evolved to maximize bacterial survival in the ocean. We also discuss the dependence of the explored volume with the particular features of the bacterial propulsion mechanism.

  1. A molecular brake, not a clutch, stops the Rhodobacter sphaeroides flagellar motor

    PubMed Central

    Pilizota, Teuta; Brown, Mostyn T.; Leake, Mark C.; Branch, Richard W.; Berry, Richard M.; Armitage, Judith P.

    2009-01-01

    Many bacterial species swim by employing ion-driven molecular motors that power the rotation of helical filaments. Signals are transmitted to the motor from the external environment via the chemotaxis pathway. In bidirectional motors, the binding of phosphorylated CheY (CheY-P) to the motor is presumed to instigate conformational changes that result in a different rotor-stator interface, resulting in rotation in the alternative direction. Controlling when this switch occurs enables bacteria to accumulate in areas favorable for their survival. Unlike most species that swim with bidirectional motors, Rhodobacter sphaeroides employs a single stop-start flagellar motor. Here, we asked, how does the binding of CheY-P stop the motor in R. sphaeroides—using a clutch or a brake? By applying external force with viscous flow or optical tweezers, we show that the R. sphaeroides motor is stopped using a brake. The motor stops at 27–28 discrete angles, locked in place by a relatively high torque, approximately 2–3 times its stall torque. PMID:19571004

  2. The effect of flagellar motor-rotor complexes on twitching motility in P. aeruginosa

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Utada, Andrew; Gibiansky, Maxsim; Xian, Wujing; Wong, Gerard

    2013-03-01

    P. aeruginosa is an opportunistic bacterium responsible for a broad range of biofilm infections. In order for biofilms to form, P. aeruginosa uses different types of surface motility. In the current understanding, flagella are used for swarming motility and type IV pili are used for twitching motility. The flagellum also plays important roles in initial surface attachment and in shaping the architectures of mature biofilms. Here we examine how flagella and pili interact during surface motility, by using cell tracking techniques. We show that the pili driven twitching motility of P. aeruginosa can be affected by the motor-rotor complexes of the flagellar system.

  3. Ion selectivity of the Vibrio alginolyticus flagellar motor.

    PubMed

    Liu, J Z; Dapice, M; Khan, S

    1990-09-01

    The marine bacterium, Vibrio alginolyticus, normally requires sodium for motility. We found that lithium will substitute for sodium. In neutral pH buffers, the membrane potential and swimming speed of glycolyzing bacteria reached maximal values as sodium or lithium concentration was increased. While the maximal potentials obtained in the two cations were comparable, the maximal swimming speed was substantially lower in lithium. Over a wide range of sodium concentration, the bacteria maintained an invariant sodium electrochemical potential as determined by membrane potential and intracellular sodium measurements. Over this range the increase of swimming speed took Michaelis-Menten form. Artificial energization of swimming motility required imposition of a voltage difference in concert with a sodium pulse. The cation selectivity and concentration dependence exhibited by the motile apparatus depended on the viscosity of the medium. In high-viscosity media, swimming speeds were relatively independent of either ion type or concentration. These facts parallel and extend observations of the swimming behavior of bacteria propelled by proton-powered flagella. In particular, they show that ion transfers limit unloaded motor speed in this bacterium and imply that the coupling between ion transfers and force generation must be fairly tight.

  4. Coupling between switching regulation and torque generation in bacterial flagellar motor

    PubMed Central

    Bai, Fan; Minamino, Tohru; Wu, Zhanghan; Namba, Keiichi

    2013-01-01

    The bacterial flagellar motor plays a crucial role in both bacterial locomotion and chemotaxis. Recent experiments reveal that the switching dynamics of the motor depend on the rotation speed of the motor, and thus the motor torque, non-monotonically. Here we present a unified mathematical model which treats motor torque generation based on experimental torque-speed curves and the torque-dependent switching based on the conformational spread model. The model successfully reproduces the observed switching rate as a function of the rotation speed, and provides a generic physical explanation independent of most details. A stator affects the switching dynamics through two mechanisms: accelerating the conformational flipping rate of individual rotor-switching units, which contributes most when the stator works at a high torque and thus a low speed; and influencing a larger number of rotor-switching units within unit time, whose contribution is the greatest when the motor rotates at a high speed. Consequently, the switching rate shows a maximum at intermediate speed, where the above two mechanisms find an optimal output. The load-switching relation may serve as a mechanism for sensing the physical environment, similar to the chemotaxis mechanism for sensing the chemical environment. It may also coordinate the switch dynamics of motors within the same cell. PMID:22680910

  5. Coupling between Switching Regulation and Torque Generation in Bacterial Flagellar Motor

    NASA Astrophysics Data System (ADS)

    Bai, Fan; Minamino, Tohru; Wu, Zhanghan; Namba, Keiichi; Xing, Jianhua

    2012-04-01

    The bacterial flagellar motor plays a crucial role in both bacterial locomotion and chemotaxis. Recent experiments reveal that the switching dynamics of the motor depend on the rotation speed of the motor, and thus the motor torque, nonmonotonically. Here we present a unified mathematical model which treats motor torque generation based on experimental torque-speed curves and the torque-dependent switching based on the conformational spread model. The model successfully reproduces the observed switching rate as a function of the rotation speed, and provides a generic physical explanation independent of most details. A stator affects the switching dynamics through two mechanisms: accelerating the conformational flipping rate of individual rotor-switching units, which contributes most when the stator works at a high torque and thus a low speed; and influencing a larger number of rotor-switching units within unit time, whose contribution is the greatest when the motor rotates at a high speed. Consequently, the switching rate shows a maximum at intermediate speed, where the above two mechanisms find an optimal output. The load-switching relation may serve as a mechanism for sensing the physical environment, similar to the chemotaxis mechanism for sensing the chemical environment. It may also coordinate the switch dynamics of motors within the same cell.

  6. Resonance in the response of the bacterial flagellar motor to thermal oscillations

    NASA Astrophysics Data System (ADS)

    Demir, Mahmut; Salman, Hanna

    2017-02-01

    We have studied the dynamics of the Escherichia coli flagellar motor's angular velocity in response to thermal oscillations. We find that the oscillations' amplitude of the motor's angular velocity exhibits resonance when the temperature is oscillated at frequencies around 4 Hz. This resonance appears to be due to the existence of a natural mode of oscillation in the state of the motor, specifically in the torque generated by the motor. Natural modes of oscillation in torque generation cannot result from random fluctuations in the state of the motor. Their presence points to the existence of a coupling mechanism between the magnitude of the torque generated by the motor and the rates of transition between the different states of the motor components responsible for torque generation. The results presented here show resonance response in torque generation to external perturbations. They are explained with a simple phenomenological model, which can help future studies identify the source of the feedback mechanism between the torque and the interactions responsible for its generation. It can also help us to quantitatively estimate the strength of these interactions and how they are affected by the magnitude of the torque they generate.

  7. A molecular mechanism of direction switching in the flagellar motor of Escherichia coli

    PubMed Central

    Paul, Koushik; Brunstetter, Duncan; Titen, Sienna; Blair, David F.

    2011-01-01

    The direction of flagellar rotation is regulated by a rotor-mounted protein assembly, termed the “switch complex,” formed from multiple copies of the proteins FliG, FliM, and FliN. The structures of major parts of these proteins are known, and the overall organization of proteins in the complex has been elucidated previously using a combination of protein-binding, mutational, and cross-linking approaches. In Escherichia coli, the switch from counterclockwise to clockwise rotation is triggered by the signaling protein phospho-CheY, which binds to the lower part of the switch complex and induces small movements of FliM and FliN subunits relative to each other. Direction switching also must produce movements in the upper part of the complex, particularly in the C-terminal domain of FliG (FliGC), which interacts with the stator to generate the torque for flagellar rotation. In the present study, protein movements in the middle and upper parts of the switch complex have been probed by means of targeted cross-linking and mutational analysis. Switching induces a tilting movement of the FliM domains that form the middle part of the switch and a consequent rotation of the affixed FliGC domains that reorients the stator interaction sites by about 90°. In a recently proposed hypothesis for the motor mechanism, such a reorientation of FliGC would reverse the direction of motor rotation. PMID:21969567

  8. The flagellar motor of Caulobacter crescentus generates more torque when a cell swims backward

    PubMed Central

    Lele, Pushkar P.; Roland, Thibault; Shrivastava, Abhishek; Chen, Yihao; Berg, Howard C.

    2016-01-01

    Caulobacter crescentus, a monotrichous bacterium, swims by rotating a single right-handed helical filament. CW motor rotation thrusts the cell forward 1, a mode of motility known as the pusher mode; CCW motor rotation pulls the cell backward, a mode of motility referred to as the puller mode 2. The situation is opposite in E. coli, a peritrichous bacterium, where CCW rotation of multiple left-handed filaments drives the cell forward. The flagellar motor in E. coli generates more torque in the CCW direction than the CW direction in swimming cells 3,4. However, monotrichous bacteria including C. crescentus swim forward and backward at similar speeds, prompting the assumption that motor torques in the two modes are the same 5,6. Here, we present evidence that motors in C. crescentus develop higher torques in the puller mode than in the pusher mode, and suggest that the anisotropy in torque-generation is similar in two species, despite the differences in filament handedness and motor bias (probability of CW rotation). PMID:27499800

  9. Switching of bacterial flagellar motors [corrected] triggered by mutant FliG.

    PubMed

    Lele, Pushkar P; Berg, Howard C

    2015-03-10

    Binding of the chemotaxis response regulator CheY-P promotes switching between rotational states in flagellar motors of the bacterium Escherichia coli. Here, we induced switching in the absence of CheY-P by introducing copies of a mutant FliG locked in the clockwise (CW) conformation (FliG(CW)). The composition of the mixed FliG ring was estimated via fluorescence imaging, and the probability of CW rotation (CWbias) was determined from the rotation of tethered cells. The results were interpreted in the framework of a 1D Ising model. The data could be fit by assuming that mutant subunits are more stable in the CW conformation than in the counterclockwise conformation. We found that CWbias varies depending on the spatial arrangement of the assembled subunits in the FliG ring. This offers a possible explanation for a previous observation of hysteresis in the switch function in analogous mixed FliM motors-in motors containing identical fractions of mutant FliM(CW) in otherwise wild-type motors, the CWbias differed depending on whether mutant subunits were expressed in strains with native motors or native subunits were expressed in strains with mutant motors. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  10. Coupling between Switching Regulation and Torque Generation in Bacterial Flagellar Motor

    NASA Astrophysics Data System (ADS)

    Xing, Jianhua; Bai, Fan; Minamino, Tohru; Wu, Zhanghan; Namba, Keiichi

    2013-03-01

    The bacterial flagellar motor plays a crucial role in both bacterial locomotion and chemotaxis. Recent experiments reveal that the switching dynamics of the motor depend on the rotation speed of the motor, and thus the motor torque, nonmonotonically. Here we present a unified mathematical model that treats motor torque generation based on experimental torque-speed curves and the torque-dependent switching based on the Ising type conformational spread model. The model successfully reproduces the observed switching rate as a function of the rotation speed, and provides a generic physical explanation independent of most details. A stator affects the switching dynamics through two mechanisms: accelerating the conformational flipping rate of individual rotor-switching units, which contributes most when the stator works at a high torque and thus a low speed; and influencing a larger number of rotor-switching units within unit time, whose contribution is the greatest when the motor rotates at a high speed. Consequently, the switching rate shows a maximum at intermediate speed, where the above two mechanisms find an optimal output. The load-switching relation may serve as a mechanism for sensing the physical environment, similar to the chemotaxis mechanism for sensing the chemical environment.

  11. Mechanism and kinetics of a sodium-driven bacterial flagellar motor

    PubMed Central

    Lo, Chien-Jung; Sowa, Yoshiyuki; Pilizota, Teuta; Berry, Richard M.

    2013-01-01

    The bacterial flagellar motor is a large rotary molecular machine that propels swimming bacteria, powered by a transmembrane electrochemical potential difference. It consists of an ∼50-nm rotor and up to ∼10 independent stators anchored to the cell wall. We measured torque–speed relationships of single-stator motors under 25 different combinations of electrical and chemical potential. All 25 torque–speed curves had the same concave-down shape as fully energized wild-type motors, and each stator passes at least 37 ± 2 ions per revolution. We used the results to explore the 25-dimensional parameter space of generalized kinetic models for the motor mechanism, finding 830 parameter sets consistent with the data. Analysis of these sets showed that the motor mechanism has a “powerstroke” in either ion binding or transit; ion transit is channel-like rather than carrier-like; and the rate-limiting step in the motor cycle is ion binding at low concentration, ion transit, or release at high concentration. PMID:23788659

  12. Asymmetry in the clockwise and counterclockwise rotation of the bacterial flagellar motor.

    PubMed

    Yuan, Junhua; Fahrner, Karen A; Turner, Linda; Berg, Howard C

    2010-07-20

    Cells of Escherichia coli are able to swim up gradients of chemical attractants by modulating the direction of rotation of their flagellar motors, which spin alternately clockwise (CW) and counterclockwise (CCW). Rotation in either direction has been thought to be symmetric and exhibit the same torques and speeds. The relationship between torque and speed is one of the most important measurable characteristics of the motor, used to distinguish specific mechanisms of motor rotation. Previous measurements of the torque-speed relationship have been made with cells lacking the response regulator CheY that spin their motors exclusively CCW. In this case, the torque declines slightly up to an intermediate speed called the "knee speed" after which it falls rapidly to zero. This result is consistent with a "power-stroke" mechanism for torque generation. Here, we measure the torque-speed relationship for cells that express large amounts of CheY and only spin their motors CW. We find that the torque decreases linearly with speed, a result remarkably different from that for CCW rotation. We obtain similar results for wild-type cells by reexamining data collected in previous work. We speculate that CCW rotation might be optimized for runs, with higher speeds increasing the ability of cells to sense spatial gradients, whereas CW rotation might be optimized for tumbles, where the object is to change cell trajectories. But why a linear torque-speed relationship might be optimum for the latter purpose we do not know.

  13. The flagellar motor of Caulobacter crescentus generates more torque when a cell swims backwards

    NASA Astrophysics Data System (ADS)

    Lele, Pushkar P.; Roland, Thibault; Shrivastava, Abhishek; Chen, Yihao; Berg, Howard C.

    2016-02-01

    The bacterium Caulobacter crescentus swims by rotating a single right-handed helical filament. These cells have two swimming modes: a pusher mode, in which clockwise (CW) rotation of the filament thrusts the cell body forwards, and a puller mode, in which counterclockwise (CCW) rotation pulls it backwards. The situation is reversed in Escherichia coli, a bacterium that rotates several left-handed filaments CCW to drive the cell body forwards. The flagellar motor in E. coli generates more torque in the CCW direction than the CW direction in swimming cells. However, C. crescentus and other bacteria with single filaments swim forwards and backwards at similar speeds, prompting the assumption that motor torques in the two modes are the same. Here, we present evidence that motors in C. crescentus develop higher torques in the puller mode than in the pusher mode, and suggest that the anisotropy in torque generation is similar in the two species, despite the differences in filament handedness and motor bias.

  14. Physiological characterization of motor unit properties in intact cats.

    PubMed

    O'Donovan, M J; Hoffer, J A; Loeb, G E

    1983-02-01

    Single motor units were isolated in intact cats, by microstimulation through chronically implanted microwires in the L5 ventral roots. Motor unit axonal and mechanical properties were obtained by stimulus-triggered averaging the signals from an implanted femoral nerve recording cuff and patellar tendon force transducer. All unit types were sampled with this technique, and it was also possible to stimulate in isolation an axon whose ventral root spike was recorded during treadmill locomotion. A new technique was described, spike-triggered microstimulation, for verifying the identity of a stimulated and a recorded axon.

  15. New mutations in flagellar motors identified by whole genome sequencing in Chlamydomonas

    PubMed Central

    2013-01-01

    Background The building of a cilium or flagellum requires molecular motors and associated proteins that allow the relocation of proteins from the cell body to the distal end and the return of proteins to the cell body in a process termed intraflagellar transport (IFT). IFT trains are carried out by kinesin and back to the cell body by dynein. Methods We used whole genome sequencing to identify the causative mutations for two temperature-sensitive flagellar assembly mutants in Chlamydomonas and validated the changes using reversion analysis. We examined the effect of these mutations on the localization of IFT81, an IFT complex B protein, the cytoplasmic dynein heavy chain (DHC1b), and the dynein light intermediate chain (D1bLIC). Results The strains, fla18 and fla24, have mutations in kinesin-2 and cytoplasmic dynein, respectively. The fla18 mutation alters the same glutamic acid (E24G) mutated in the fla10-14 allele (E24K). The fla18 strain loses flagella at 32?C more rapidly than the E24K allele but less rapidly than the fla10-1 allele. The fla18 mutant loses its flagella by detachment rather than by shortening. The fla24 mutation falls in cytoplasmic dynein and changes a completely conserved amino acid (L3243P) in an alpha helix in the AAA5 domain. The fla24 mutant loses its flagella by shortening within 6 hours at 32?C. DHC1b protein is reduced by 18-fold and D1bLIC is reduced by 16-fold at 21?C compared to wild-type cells. We identified two pseudorevertants (L3243S and L3243R), which remain flagellated at 32?C. Although fla24 cells assemble full-length flagella at 21?C, IFT81 protein localization is dramatically altered. Instead of localizing at the basal body and along the flagella, IFT81 is concentrated at the proximal end of the flagella. The pseudorevertants show wild-type IFT81 localization at 21?C, but proximal end localization of IFT81 at 32?C. Conclusions The change in the AAA5 domain of the cytoplasmic dynein in fla24 may block the recycling of IFT

  16. Cell cycle-controlled proteolysis of a flagellar motor protein that is asymmetrically distributed in the Caulobacter predivisional cell.

    PubMed Central

    Jenal, U; Shapiro, L

    1996-01-01

    Flagellar biogenesis and release are developmental events tightly coupled to the cell cycle of Caulobacter crescentus. A single flagellum is assembled at the swarmer pole of the predivisional cell and is released later in the cell cycle. Here we show that the MS-ring monomer FliF, a central motor component that anchors the flagellum in the cell membrane, is synthesized only in the predivisional cell and is integrated into the membrane at the incipient swarmer cell pole, where it initiates flagellar assembly. FliF is proteolytically turned over during swarmer-to-stalked cell differentiation, coinciding with the loss of the flagellum, suggesting that its degradation is coupled to flagellar release. The membrane topology of FliF was determined and a region of the cytoplasmic C-terminal domain was shown to be required for the interaction with a component of the motor switch. The very C-terminal end of FliF contains a turnover determinant, required for the cell cycle-dependent degradation of the MS-ring. The cell cycle-dependent proteolysis of FliF and the targeting of FliF to the swarmer pole together contribute to the asymmetric localization of the MS-ring in the predivisional cell. Images PMID:8665847

  17. Proteomic analysis of intact flagella of procyclic Trypanosoma brucei cells identifies novel flagellar proteins with unique sub-localization and dynamics.

    PubMed

    Subota, Ines; Julkowska, Daria; Vincensini, Laetitia; Reeg, Nele; Buisson, Johanna; Blisnick, Thierry; Huet, Diego; Perrot, Sylvie; Santi-Rocca, Julien; Duchateau, Magalie; Hourdel, Véronique; Rousselle, Jean-Claude; Cayet, Nadège; Namane, Abdelkader; Chamot-Rooke, Julia; Bastin, Philippe

    2014-07-01

    Cilia and flagella are complex organelles made of hundreds of proteins of highly variable structures and functions. Here we report the purification of intact flagella from the procyclic stage of Trypanosoma brucei using mechanical shearing. Structural preservation was confirmed by transmission electron microscopy that showed that flagella still contained typical elements such as the membrane, the axoneme, the paraflagellar rod, and the intraflagellar transport particles. It also revealed that flagella severed below the basal body, and were not contaminated by other cytoskeletal structures such as the flagellar pocket collar or the adhesion zone filament. Mass spectrometry analysis identified a total of 751 proteins with high confidence, including 88% of known flagellar components. Comparison with the cell debris fraction revealed that more than half of the flagellum markers were enriched in flagella and this enrichment criterion was taken into account to identify 212 proteins not previously reported to be associated to flagella. Nine of these were experimentally validated including a 14-3-3 protein not yet reported to be associated to flagella and eight novel proteins termed FLAM (FLAgellar Member). Remarkably, they localized to five different subdomains of the flagellum. For example, FLAM6 is restricted to the proximal half of the axoneme, no matter its length. In contrast, FLAM8 is progressively accumulating at the distal tip of growing flagella and half of it still needs to be added after cell division. A combination of RNA interference and Fluorescence Recovery After Photobleaching approaches demonstrated very different dynamics from one protein to the other, but also according to the stage of construction and the age of the flagellum. Structural proteins are added to the distal tip of the elongating flagellum and exhibit slow turnover whereas membrane proteins such as the arginine kinase show rapid turnover without a detectible polarity.

  18. Proteomic Analysis of Intact Flagella of Procyclic Trypanosoma brucei Cells Identifies Novel Flagellar Proteins with Unique Sub-localization and Dynamics*

    PubMed Central

    Subota, Ines; Julkowska, Daria; Vincensini, Laetitia; Reeg, Nele; Buisson, Johanna; Blisnick, Thierry; Huet, Diego; Perrot, Sylvie; Santi-Rocca, Julien; Duchateau, Magalie; Hourdel, Véronique; Rousselle, Jean-Claude; Cayet, Nadège; Namane, Abdelkader; Chamot-Rooke, Julia; Bastin, Philippe

    2014-01-01

    Cilia and flagella are complex organelles made of hundreds of proteins of highly variable structures and functions. Here we report the purification of intact flagella from the procyclic stage of Trypanosoma brucei using mechanical shearing. Structural preservation was confirmed by transmission electron microscopy that showed that flagella still contained typical elements such as the membrane, the axoneme, the paraflagellar rod, and the intraflagellar transport particles. It also revealed that flagella severed below the basal body, and were not contaminated by other cytoskeletal structures such as the flagellar pocket collar or the adhesion zone filament. Mass spectrometry analysis identified a total of 751 proteins with high confidence, including 88% of known flagellar components. Comparison with the cell debris fraction revealed that more than half of the flagellum markers were enriched in flagella and this enrichment criterion was taken into account to identify 212 proteins not previously reported to be associated to flagella. Nine of these were experimentally validated including a 14-3-3 protein not yet reported to be associated to flagella and eight novel proteins termed FLAM (FLAgellar Member). Remarkably, they localized to five different subdomains of the flagellum. For example, FLAM6 is restricted to the proximal half of the axoneme, no matter its length. In contrast, FLAM8 is progressively accumulating at the distal tip of growing flagella and half of it still needs to be added after cell division. A combination of RNA interference and Fluorescence Recovery After Photobleaching approaches demonstrated very different dynamics from one protein to the other, but also according to the stage of construction and the age of the flagellum. Structural proteins are added to the distal tip of the elongating flagellum and exhibit slow turnover whereas membrane proteins such as the arginine kinase show rapid turnover without a detectible polarity. PMID:24741115

  19. Absence of a barrier to backwards rotation of the bacterial flagellar motor demonstrated with optical tweezers

    PubMed Central

    Berry, Richard M.; Berg, Howard C.

    1997-01-01

    A cell of the bacterium Escherichia coli was tethered covalently to a glass coverslip by a single flagellum, and its rotation was stopped by using optical tweezers. The tweezers acted directly on the cell body or indirectly, via a trapped polystyrene bead. The torque generated by the flagellar motor was determined by measuring the displacement of the laser beam on a quadrant photodiode. The coverslip was mounted on a computer-controlled piezo-electric stage that moved the tether point in a circle around the center of the trap so that the speed of rotation of the motor could be varied. The motor generated ≈4500 pN nm of torque at all angles, regardless of whether it was stalled, allowed to rotate very slowly forwards, or driven very slowly backwards. This argues against models of motor function in which rotation is tightly coupled to proton transit and back-transport of protons is severely limited. PMID:9405630

  20. Coevolved Mutations Reveal Distinct Architectures for Two Core Proteins in the Bacterial Flagellar Motor

    PubMed Central

    Pandini, Alessandro; Kleinjung, Jens; Rasool, Shafqat; Khan, Shahid

    2015-01-01

    Switching of bacterial flagellar rotation is caused by large domain movements of the FliG protein triggered by binding of the signal protein CheY to FliM. FliG and FliM form adjacent multi-subunit arrays within the basal body C-ring. The movements alter the interaction of the FliG C-terminal (FliGC) “torque” helix with the stator complexes. Atomic models based on the Salmonella entrovar C-ring electron microscopy reconstruction have implications for switching, but lack consensus on the relative locations of the FliG armadillo (ARM) domains (amino-terminal (FliGN), middle (FliGM) and FliGC) as well as changes during chemotaxis. The generality of the Salmonella model is challenged by the variation in motor morphology and response between species. We studied coevolved residue mutations to determine the unifying elements of switch architecture. Residue interactions, measured by their coevolution, were formalized as a network, guided by structural data. Our measurements reveal a common design with dedicated switch and motor modules. The FliM middle domain (FliMM) has extensive connectivity most simply explained by conserved intra and inter-subunit contacts. In contrast, FliG has patchy, complex architecture. Conserved structural motifs form interacting nodes in the coevolution network that wire FliMM to the FliGC C-terminal, four-helix motor module (C3-6). FliG C3-6 coevolution is organized around the torque helix, differently from other ARM domains. The nodes form separated, surface-proximal patches that are targeted by deleterious mutations as in other allosteric systems. The dominant node is formed by the EHPQ motif at the FliMMFliGM contact interface and adjacent helix residues at a central location within FliGM. The node interacts with nodes in the N-terminal FliGc α-helix triad (ARM-C) and FliGN. ARM-C, separated from C3-6 by the MFVF motif, has poor intra-network connectivity consistent with its variable orientation revealed by structural data. ARM-C could

  1. Nonequivalence of membrane voltage and ion-gradient as driving forces for the bacterial flagellar motor at low load.

    PubMed

    Lo, Chien-Jung; Leake, Mark C; Pilizota, Teuta; Berry, Richard M

    2007-07-01

    Many bacterial species swim using flagella. The flagellar motor couples ion flow across the cytoplasmic membrane to rotation. Ion flow is driven by both a membrane potential (V(m)) and a transmembrane concentration gradient. To investigate their relation to bacterial flagellar motor function we developed a fluorescence technique to measure V(m) in single cells, using the dye tetramethyl rhodamine methyl ester. We used a convolution model to determine the relationship between fluorescence intensity in images of cells and intracellular dye concentration, and calculated V(m) using the ratio of intracellular/extracellular dye concentration. We found V(m) = -140 +/- 14 mV in Escherichia coli at external pH 7.0 (pH(ex)), decreasing to -85 +/- 10 mV at pH(ex) 5.0. We also estimated the sodium-motive force (SMF) by combining single-cell measurements of V(m) and intracellular sodium concentration. We were able to vary the SMF between -187 +/- 15 mV and -53 +/- 15 mV by varying pH(ex) in the range 7.0-5.0 and extracellular sodium concentration in the range 1-85 mM. Rotation rates for 0.35-microm- and 1-microm-diameter beads attached to Na(+)-driven chimeric flagellar motors varied linearly with V(m). For the larger beads, the two components of the SMF were equivalent, whereas for smaller beads at a given SMF, the speed increased with sodium gradient and external sodium concentration.

  2. Kinetically resolved states of the Halobacterium halobium flagellar motor switch and modulation of the switch by sensory rhodopsin I.

    PubMed Central

    McCain, D A; Amici, L A; Spudich, J L

    1987-01-01

    Spontaneous switching of the rotation sense of the flagellar motor of the archaebacterium Halobacterium halobium and modulation of the switch by attractant and repellent photostimuli were analyzed by using a computerized cell-tracking system with 67-ms resolution coupled to electronic shutters. The data fit a three-state model of the switch, in which a Poisson process governs the transition from state N (nonreversing) to state R (reversing). After a reversal, the switch returns to state N, passing through an intermediate state I (inactive), which produces a ca. 2-s period of low reversal frequency before the state N Poisson rate is restored. The stochastic nature of the H. halobium switch reveals a close similarity to Escherichia coli flagellar motor properties as elucidated previously. Sensory modulation of the switch by both photoattractant and photorepellent signals can be interpreted in terms of modulation of the single forward rate constant of the N to R transition. Insight into the mechanism of modulation by the phototaxis receptor sensory rhodopsin I (SR-I) was gained by increasing the lifetime of the principal photointermediate of the SR-I photochemical reaction cycle, S373, by replacing the native chromophore, all-trans-retinal, with the acyclic analog, 3,7,11-trimethyl-2,4,6,8-dodecapentaenal. Flash photolysis of analog-containing cells revealed an eightfold decrease in the rate of thermal decay of S373, and behavioral analysis showed longer periods of reversal suppression than that of cells with the native chromophore over similar ranges of illumination intensities. This indicates that attractant signaling is governed by the lifetime of the S373 intermediate rather than by the frequency of photocycling. In this sense, SR-I is similar to rhodopsin, whose function depends on an active photoproduct (Meta-II). PMID:3654583

  3. Function of the Histone-Like Protein H-NS in Motility of Escherichia coli: Multiple Regulatory Roles Rather than Direct Action at the Flagellar Motor

    PubMed Central

    Kim, Eun A

    2015-01-01

    ABSTRACT A number of investigations of Escherichia coli have suggested that the DNA-binding protein H-NS, in addition to its well-known functions in chromosome organization and gene regulation, interacts directly with the flagellar motor to modulate its function. Here, in a study initially aimed at characterizing the H-NS/motor interaction further, we identify problems and limitations in the previous work that substantially weaken the case for a direct H-NS/motor interaction. Null hns mutants are immotile, largely owing to the downregulation of the flagellar master regulators FlhD and FlhC. We, and others, previously reported that an hns mutant remains poorly motile even when FlhDC are expressed constitutively. In the present work, we use better-engineered strains to show that the motility defect in a Δhns, FlhDC-constitutive strain is milder than that reported previously and does not point to a direct action of H-NS at the motor. H-NS regulates numerous genes and might influence motility via a number of regulatory molecules besides FlhDC. To examine the sources of the motility defect that persists in an FlhDC-constitutive Δhns mutant, we measured transcript levels and overexpression effects of a number of genes in candidate regulatory pathways. The results indicate that H-NS influences motility via multiple regulatory linkages that include, minimally, the messenger molecule cyclic di-GMP, the biofilm regulatory protein CsgD, and the sigma factors σS and σF. The results are in accordance with the more standard view of H-NS as a regulator of gene expression rather than a direct modulator of flagellar motor performance. IMPORTANCE Data from a number of previous studies have been taken to indicate that the nucleoid-organizing protein H-NS influences motility not only by its well-known DNA-based mechanisms but also by binding directly to the flagellar motor to alter function. In this study, H-NS is shown to influence motility through diverse regulatory pathways

  4. Defects in the Flagellar Motor Increase Synthesis of Poly-γ-Glutamate in Bacillus subtilis

    PubMed Central

    Chan, Jia Mun; Guttenplan, Sarah B.

    2014-01-01

    Bacillus subtilis swims in liquid media and swarms over solid surfaces, and it encodes two sets of flagellar stator homologs. Here, we show that B. subtilis requires only the MotA/MotB stator during swarming motility and that the residues required for stator force generation are highly conserved from the Proteobacteria to the Firmicutes. We further find that mutants that abolish stator function also result in an overproduction of the extracellular polymer poly-γ-glutamate (PGA) to confer a mucoid colony phenotype. PGA overproduction appeared to be the result of an increase in the expression of the pgs operon that encodes genes for PGA synthesis. Transposon mutagenesis was conducted to identify insertions that abolished colony mucoidy and disruptions in known transcriptional regulators of PGA synthesis (Com and Deg two-component systems) as well as mutants defective in transcription-coupled DNA repair (Mfd)-reduced expression of the pgs operon. A final class of insertions disrupted proteins involved in the assembly of the flagellar filament (FliD, FliT, and FlgL), and these mutants did not reduce expression of the pgs operon, suggesting a second mechanism of PGA control. PMID:24296669

  5. Dynamics of the bacterial flagellar motor: the effects of stator compliance, back steps, temperature, and rotational asymmetry.

    PubMed

    Meacci, Giovanni; Lan, Ganhui; Tu, Yuhai

    2011-04-20

    The rotation of a bacterial flagellar motor (BFM) is driven by multiple stators tethered to the cell wall. Here, we extend a recently proposed power-stroke model to study the BFM dynamics under different biophysical conditions. Our model explains several key experimental observations and reveals their underlying mechanisms. 1), The observed independence of the speed at low load on the number of stators is explained by a force-dependent stepping mechanism that is independent of the strength of the stator tethering spring. Conversely, without force-dependent stepping, an unrealistically weak stator spring is required. 2), Our model with back-stepping naturally explains the observed absence of a barrier to backward rotation. Using the same set of parameters, it also explains BFM behaviors in the high-speed negative-torque regime. 3), From the measured temperature dependence of the maximum speed, our model shows that stator-stepping is a thermally activated process with an energy barrier. 4), The recently observed asymmetry in the torque-speed curve between counterclockwise- and clockwise-rotating BFMs can be quantitatively explained by the asymmetry in the stator-rotor interaction potentials, i.e., a quasilinear form for the counterclockwise motor and a quadratic form for the clockwise motor.

  6. Dynamics of the Bacterial Flagellar Motor: The Effects of Stator Compliance, Back Steps, Temperature, and Rotational Asymmetry

    PubMed Central

    Meacci, Giovanni; Lan, Ganhui; Tu, Yuhai

    2011-01-01

    The rotation of a bacterial flagellar motor (BFM) is driven by multiple stators tethered to the cell wall. Here, we extend a recently proposed power-stroke model to study the BFM dynamics under different biophysical conditions. Our model explains several key experimental observations and reveals their underlying mechanisms. 1), The observed independence of the speed at low load on the number of stators is explained by a force-dependent stepping mechanism that is independent of the strength of the stator tethering spring. Conversely, without force-dependent stepping, an unrealistically weak stator spring is required. 2), Our model with back-stepping naturally explains the observed absence of a barrier to backward rotation. Using the same set of parameters, it also explains BFM behaviors in the high-speed negative-torque regime. 3), From the measured temperature dependence of the maximum speed, our model shows that stator-stepping is a thermally activated process with an energy barrier. 4), The recently observed asymmetry in the torque-speed curve between counterclockwise- and clockwise-rotating BFMs can be quantitatively explained by the asymmetry in the stator-rotor interaction potentials, i.e., a quasilinear form for the counterclockwise motor and a quadratic form for the clockwise motor. PMID:21504735

  7. Helicobacter pylori CheZ(HP) and ChePep form a novel chemotaxis-regulatory complex distinct from the core chemotaxis signaling proteins and the flagellar motor.

    PubMed

    Lertsethtakarn, Paphavee; Howitt, Michael R; Castellon, Juan; Amieva, Manuel R; Ottemann, Karen M

    2015-09-01

    Chemotaxis is important for Helicobacter pylori to colonize the stomach. Like other bacteria, H. pylori uses chemoreceptors and conserved chemotaxis proteins to phosphorylate the flagellar rotational response regulator, CheY, and modulate the flagellar rotational direction. Phosphorylated CheY is returned to its non-phosphorylated state by phosphatases such as CheZ. In previously studied cases, chemotaxis phosphatases localize to the cellular poles by interactions with either the CheA chemotaxis kinase or flagellar motor proteins. We report here that the H. pylori CheZ, CheZ(HP), localizes to the poles independently of the flagellar motor, CheA, and all typical chemotaxis proteins. Instead, CheZ(HP) localization depends on the chemotaxis regulatory protein ChePep, and reciprocally, ChePep requires CheZ(HP) for its polar localization. We furthermore show that these proteins interact directly. Functional domain mapping of CheZ(HP) determined the polar localization motif lies within the central domain of the protein and that the protein has regions outside of the active site that participate in chemotaxis. Our results suggest that CheZ(HP) and ChePep form a distinct complex. These results therefore suggest the intriguing idea that some phosphatases localize independently of the other chemotaxis and motility proteins, possibly to confer unique regulation on these proteins' activities.

  8. Motor Rotation Is Essential for the Formation of the Periplasmic Flagellar Ribbon, Cellular Morphology, and Borrelia burgdorferi Persistence within Ixodes scapularis Tick and Murine Hosts

    PubMed Central

    Sultan, Syed Z.; Sekar, Padmapriya; Zhao, Xiaowei; Manne, Akarsh; Liu, Jun; Wooten, R. Mark

    2015-01-01

    Borrelia burgdorferi must migrate within and between its arthropod and mammalian hosts in order to complete its natural enzootic cycle. During tick feeding, the spirochete transmits from the tick to the host dermis, eventually colonizing and persisting within multiple, distant tissues. This dissemination modality suggests that flagellar motor rotation and, by extension, motility are crucial for infection. We recently reported that a nonmotile flaB mutant that lacks periplasmic flagella is rod shaped and unable to infect mice by needle or tick bite. However, those studies could not differentiate whether motor rotation or merely the possession of the periplasmic flagella was crucial for cellular morphology and host persistence. Here, we constructed and characterized a motB mutant that is nonmotile but retains its periplasmic flagella. Even though ΔmotB bacteria assembled flagella, part of the mutant cell is rod shaped. Cryoelectron tomography revealed that the flagellar ribbons are distorted in the mutant cells, indicating that motor rotation is essential for spirochetal flat-wave morphology. The ΔmotB cells are unable to infect mice, survive in the vector, or migrate out of the tick. Coinfection studies determined that the presence of these nonmotile ΔmotB cells has no effect on the clearance of wild-type spirochetes during murine infection and vice versa. Together, our data demonstrate that while flagellar motor rotation is necessary for spirochetal morphology and motility, the periplasmic flagella display no additional properties related to immune clearance and persistence within relevant hosts. PMID:25690096

  9. The Rhodobacter sphaeroides flagellar motor is a variable-speed rotor.

    PubMed

    Packer, H L; Lawther, H; Armitage, J P

    1997-06-02

    The rotation rate of the unidirectional stop/start motor of Rhodobacter sphaeroides was investigated using computerised motion analysis of tethered cells. The R. sphaeroides motor was found to have a variable rotation rate compared to the virtually constant-speed motor of wild-type and CheR mutant (smooth swimming) Escherichia coli. In addition, the dynamics of the R. sphaeroides motor during stopping was analysed with no consistent correlation behaviour. The motor could go from full rotation to stop, or stop to full rotation within one video frame, i.e. 0.02 s, but it could also slow down into a stop or restart slowly, taking up to 0.25 s. The R. sphaeroides motor under chemokinetic stimulation was also analysed and was found to show increased torque generation and reduced variation in rotation rate.

  10. The tetrameric MotA complex as the core of the flagellar motor stator from hyperthermophilic bacterium

    PubMed Central

    Takekawa, Norihiro; Terahara, Naoya; Kato, Takayuki; Gohara, Mizuki; Mayanagi, Kouta; Hijikata, Atsushi; Onoue, Yasuhiro; Kojima, Seiji; Shirai, Tsuyoshi; Namba, Keiichi; Homma, Michio

    2016-01-01

    Rotation of bacterial flagellar motor is driven by the interaction between the stator and rotor, and the driving energy is supplied by ion influx through the stator channel. The stator is composed of the MotA and MotB proteins, which form a hetero-hexameric complex with a stoichiometry of four MotA and two MotB molecules. MotA and MotB are four- and single-transmembrane proteins, respectively. To generate torque, the MotA/MotB stator unit changes its conformation in response to the ion influx, and interacts with the rotor protein FliG. Here, we overproduced and purified MotA of the hyperthermophilic bacterium Aquifex aeolicus. A chemical crosslinking experiment revealed that MotA formed a multimeric complex, most likely a tetramer. The three-dimensional structure of the purified MotA, reconstructed by electron microscopy single particle imaging, consisted of a slightly elongated globular domain and a pair of arch-like domains with spiky projections, likely to correspond to the transmembrane and cytoplasmic domains, respectively. We show that MotA molecules can form a stable tetrameric complex without MotB, and for the first time, demonstrate the cytoplasmic structure of the stator. PMID:27531865

  11. Serine 26 in the PomB Subunit of the Flagellar Motor Is Essential for Hypermotility of Vibrio cholerae

    PubMed Central

    Halang, Petra; Vorburger, Thomas; Steuber, Julia

    2015-01-01

    Vibrio cholerae is motile by means of its single polar flagellum which is driven by the sodium-motive force. In the motor driving rotation of the flagellar filament, a stator complex consisting of subunits PomA and PomB converts the electrochemical sodium ion gradient into torque. Charged or polar residues within the membrane part of PomB could act as ligands for Na+, or stabilize a hydrogen bond network by interacting with water within the putative channel between PomA and PomB. By analyzing a large data set of individual tracks of swimming cells, we show that S26 located within the transmembrane helix of PomB is required to promote very fast swimming of V. cholerae. Loss of hypermotility was observed with the S26T variant of PomB at pH 7.0, but fast swimming was restored by decreasing the H+ concentration of the external medium. Our study identifies S26 as a second important residue besides D23 in the PomB channel. It is proposed that S26, together with D23 located in close proximity, is important to perturb the hydration shell of Na+ before its passage through a constriction within the stator channel. PMID:25874792

  12. Flagellar Motor Switching in Caulobacter Crescentus Obeys First Passage Time Statistics

    NASA Astrophysics Data System (ADS)

    Morse, Michael; Bell, Jordan; Li, Guanglai; Tang, Jay X.

    2015-11-01

    A Caulobacter crescentus swarmer cell is propelled by a helical flagellum, which is rotated by a motor at its base. The motor alternates between rotating in clockwise and counterclockwise directions and spends variable intervals of time in each state. We measure the distributions of these intervals for cells either free swimming or tethered to a glass slide. A peak time of around one second is observed in the distributions for both motor directions with counterclockwise intervals more sharply peaked and clockwise intervals displaying a larger tail at long times. We show that distributions of rotation intervals fit first passage time statistics for a biased random walker and the dynamic binding of CheY-P to FliM motor subunits accounts for this behavior. Our results also suggest that the presence of multiple CheY proteins in C. crescentus may be responsible for differences between its switching behavior and that of the extensively studied E. coli.

  13. Roles of charged residues of rotor and stator in flagellar rotation: comparative study using H+-driven and Na+-driven motors in Escherichia coli.

    PubMed

    Yakushi, Toshiharu; Yang, Junghoon; Fukuoka, Hajime; Homma, Michio; Blair, David F

    2006-02-01

    In Escherichia coli, rotation of the flagellar motor has been shown to depend upon electrostatic interactions between charged residues of the stator protein MotA and the rotor protein FliG. These charged residues are conserved in the Na+-driven polar flagellum of Vibrio alginolyticus, but mutational studies in V. alginolyticus suggested that they are relatively unimportant for motor rotation. The electrostatic interactions detected in E. coli therefore might not be a general feature of flagellar motors, or, alternatively, the V. alginolyticus motor might rely on similar interactions but incorporate additional features that make it more robust against mutation. Here, we have carried out a comparative study of chimeric motors that were resident in E. coli but engineered to use V. alginolyticus stator components, rotor components, or both. Charged residues in the V. alginolyticus rotor and stator proteins were found to be essential for motor rotation when the proteins functioned in the setting of the E. coli motor. Patterns of synergism and suppression in rotor/stator double mutants indicate that the V. alginolyticus proteins interact in essentially the same way as their counterparts in E. coli. The robustness of the rotor-stator interface in V. alginolyticus is in part due to the presence of additional charged residues in PomA but appears mainly due to other factors, because an E. coli motor using both rotor and stator components from V. alginolyticus remained sensitive to mutation. Motor function in V. alginolyticus may be enhanced by the proteins MotX and MotY.

  14. Observed frequency-independent torque in flagellar bacterial motors optimizes space exploration

    NASA Astrophysics Data System (ADS)

    Di Salvo, Mario E.; Condat, C. A.

    2012-12-01

    A surprising feature of many bacterial motors is the apparently conserved form of their torque-frequency relation. Experiments indicate that the torque provided by the bacterial rotary motor is approximately constant over a large range of angular speeds. This is observed in both monotrichous and peritrichous bacteria, independently of whether they are propelled by a proton flux or by a Na+ ion flux. If the relation between angular speed ω and swimming speed is linear, a ω-independent torque implies that the power spent in active motion is proportional to the instantaneous bacterial speed. Using realistic values of the relevant parameters, we show that a constant torque maximizes the volume of the region explored by a bacterium in a resource-depleted medium. Given that nutrients in the ocean are often concentrated in separate, ephemeral patches, we propose that the observed constancy of the torque may be a trait evolved to maximize bacterial survival in the ocean.

  15. Observed frequency-independent torque in flagellar bacterial motors optimizes space exploration.

    PubMed

    Di Salvo, Mario E; Condat, C A

    2012-12-01

    A surprising feature of many bacterial motors is the apparently conserved form of their torque-frequency relation. Experiments indicate that the torque provided by the bacterial rotary motor is approximately constant over a large range of angular speeds. This is observed in both monotrichous and peritrichous bacteria, independently of whether they are propelled by a proton flux or by a Na(+) ion flux. If the relation between angular speed ω and swimming speed is linear, a ω-independent torque implies that the power spent in active motion is proportional to the instantaneous bacterial speed. Using realistic values of the relevant parameters, we show that a constant torque maximizes the volume of the region explored by a bacterium in a resource-depleted medium. Given that nutrients in the ocean are often concentrated in separate, ephemeral patches, we propose that the observed constancy of the torque may be a trait evolved to maximize bacterial survival in the ocean.

  16. Dynamism and regulation of the stator, the energy conversion complex of the bacterial flagellar motor.

    PubMed

    Kojima, Seiji

    2015-12-01

    Many motile bacteria swim by rotating their motility organ, the flagellum. Rotation of the flagellum is driven by a motor at its base, and torque is generated by the rotor-stator interaction coupled with the specific ion flow through the channel in the stator. Because the stator works as an energy-conversion complex in the motor, understanding the functional mechanism of the stator is critically important. But its characterization has been hampered due to the difficulty in isolating the functional stator complex from the membrane. Recently, successful new approaches for studying the stator have been reported that reveal its novel properties. Two of those, visualization of the in vivo behavior of stator units using fluorescently tagged proteins and structure-guided functional analyses of the soluble region in the stator, are summarized in this short review.

  17. Motor rotation is essential for the formation of the periplasmic flagellar ribbon, cellular morphology, and Borrelia burgdorferi persistence within Ixodes scapularis tick and murine hosts.

    PubMed

    Sultan, Syed Z; Sekar, Padmapriya; Zhao, Xiaowei; Manne, Akarsh; Liu, Jun; Wooten, R Mark; Motaleb, M A

    2015-05-01

    Borrelia burgdorferi must migrate within and between its arthropod and mammalian hosts in order to complete its natural enzootic cycle. During tick feeding, the spirochete transmits from the tick to the host dermis, eventually colonizing and persisting within multiple, distant tissues. This dissemination modality suggests that flagellar motor rotation and, by extension, motility are crucial for infection. We recently reported that a nonmotile flaB mutant that lacks periplasmic flagella is rod shaped and unable to infect mice by needle or tick bite. However, those studies could not differentiate whether motor rotation or merely the possession of the periplasmic flagella was crucial for cellular morphology and host persistence. Here, we constructed and characterized a motB mutant that is nonmotile but retains its periplasmic flagella. Even though ΔmotB bacteria assembled flagella, part of the mutant cell is rod shaped. Cryoelectron tomography revealed that the flagellar ribbons are distorted in the mutant cells, indicating that motor rotation is essential for spirochetal flat-wave morphology. The ΔmotB cells are unable to infect mice, survive in the vector, or migrate out of the tick. Coinfection studies determined that the presence of these nonmotile ΔmotB cells has no effect on the clearance of wild-type spirochetes during murine infection and vice versa. Together, our data demonstrate that while flagellar motor rotation is necessary for spirochetal morphology and motility, the periplasmic flagella display no additional properties related to immune clearance and persistence within relevant hosts. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  18. Insight into the assembly mechanism in the supramolecular rings of the sodium-driven Vibrio flagellar motor from the structure of FlgT

    PubMed Central

    Terashima, Hiroyuki; Li, Na; Sakuma, Mayuko; Koike, Masafumi; Kojima, Seiji; Homma, Michio; Imada, Katsumi

    2013-01-01

    Flagellar motility is a key factor for bacterial survival and growth in fluctuating environments. The polar flagellum of a marine bacterium, Vibrio alginolyticus, is driven by sodium ion influx and rotates approximately six times faster than the proton-driven motor of Escherichia coli. The basal body of the sodium motor has two unique ring structures, the T ring and the H ring. These structures are essential for proper assembly of the stator unit into the basal body and to stabilize the motor. FlgT, which is a flagellar protein specific for Vibrio sp., is required to form and stabilize both ring structures. Here, we report the crystal structure of FlgT at 2.0-Å resolution. FlgT is composed of three domains, the N-terminal domain (FlgT-N), the middle domain (FlgT-M), and the C-terminal domain (FlgT-C). FlgT-M is similar to the N-terminal domain of TolB, and FlgT-C resembles the N-terminal domain of FliI and the α/β subunits of F1-ATPase. To elucidate the role of each domain, we prepared domain deletion mutants of FlgT and analyzed their effects on the basal-body ring formation. The results suggest that FlgT-N contributes to the construction of the H-ring structure, and FlgT-M mediates the T-ring association on the LP ring. FlgT-C is not essential but stabilizes the H-ring structure. On the basis of these results, we propose an assembly mechanism for the basal-body rings and the stator units of the sodium-driven flagellar motor. PMID:23530206

  19. Internal and external components of the bacterial flagellar motor rotate as a unit

    PubMed Central

    Hosu, Basarab G.; Nathan, Vedavalli S. J.; Berg, Howard C.

    2016-01-01

    Most bacteria that swim, including Escherichia coli, are propelled by helical filaments, each driven at its base by a rotary motor powered by a proton or a sodium ion electrochemical gradient. Each motor contains a number of stator complexes, comprising 4MotA 2MotB or 4PomA 2PomB, proteins anchored to the rigid peptidoglycan layer of the cell wall. These proteins exert torque on a rotor that spans the inner membrane. A shaft connected to the rotor passes through the peptidoglycan and the outer membrane through bushings, the P and L rings, connecting to the filament by a flexible coupling known as the hook. Although the external components, the hook and the filament, are known to rotate, having been tethered to glass or marked by latex beads, the rotation of the internal components has remained only a reasonable assumption. Here, by using polarized light to bleach and probe an internal YFP-FliN fusion, we show that the innermost components of the cytoplasmic ring rotate at a rate similar to that of the hook. PMID:27071081

  20. An electrostatic mechanism closely reproducing observed behavior in the bacterial flagellar motor.

    PubMed Central

    Walz, D; Caplan, S R

    2000-01-01

    A mechanism coupling the transmembrane flow of protons to the rotation of the bacterial flagellum is studied. The coupling is accomplished by means of an array of tilted rows of positive and negative charges around the circumference of the rotor, which interacts with a linear array of proton binding sites in channels. We present a rigorous treatment of the electrostatic interactions using minimal assumptions. Interactions with the transition states are included, as well as proton-proton interactions in and between channels. In assigning values to the parameters of the model, experimentally determined structural characteristics of the motor have been used. According to the model, switching and pausing occur as a consequence of modest conformational changes in the rotor. In contrast to similar approaches developed earlier, this model closely reproduces a large number of experimental findings from different laboratories, including the nonlinear behavior of the torque-frequency relation in Escherichia coli, the stoichiometry of the system in Streptococcus, and the pH-dependence of swimming speed in Bacillus subtilis. PMID:10653777

  1. Mutations alter the sodium versus proton use of a Bacillus clausii flagellar motor and confer dual ion use on Bacillus subtilis motors.

    PubMed

    Terahara, Naoya; Krulwich, Terry A; Ito, Masahiro

    2008-09-23

    Bacterial flagella contain membrane-embedded stators, Mot complexes, that harness the energy of either transmembrane proton or sodium ion gradients to power motility. Use of sodium ion gradients is associated with elevated pH and sodium concentrations. The Mot complexes studied to date contain channels that use either protons or sodium ions, with some bacteria having only one type and others having two distinct Mot types with different ion-coupling. Here, alkaliphilic Bacillus clausii KSM-K16 was shown to be motile in a pH range from 7 to 11 although its genome encodes only one Mot (BCl-MotAB). Assays of swimming as a function of pH, sodium concentration, and ion-selective motility inhibitors showed that BCl-MotAB couples motility to sodium at the high end of its pH range but uses protons at lower pH. This pattern was confirmed in swimming assays of a statorless Bacillus subtilis mutant expressing either BCl-MotAB or one of the two B. subtilis stators, sodium-coupled Bs-MotPS or proton-coupled Bs-MotAB. Pairs of mutations in BCl-MotB were identified that converted the naturally bifunctional BCl-MotAB to stators that preferentially use either protons or sodium ions across the full pH range. We then identified trios of mutations that added a capacity for dual-ion coupling on the distinct B. subtilis Bs-MotAB and Bs-MotPS motors. Determinants that alter the specificity of bifunctional and single-coupled flagellar stators add to insights from studies of other ion-translocating transporters that use both protons and sodium ions.

  2. Load- and polysaccharide-dependent activation of the Na+-type MotPS stator in the Bacillus subtilis flagellar motor

    PubMed Central

    Terahara, Naoya; Noguchi, Yukina; Nakamura, Shuichi; Kami-ike, Nobunori; Ito, Masahiro; Namba, Keiichi; Minamino, Tohru

    2017-01-01

    The flagellar motor of Bacillus subtilis possesses two distinct H+-type MotAB and Na+-type MotPS stators. In contrast to the MotAB motor, the MotPS motor functions efficiently at elevated viscosity in the presence of 200 mM NaCl. Here, we analyzed the torque-speed relationship of the Bacillus MotAB and MotPS motors over a wide range of external loads. The stall torque of the MotAB and MotPS motors at high load was about 2,200 pN nm and 220 pN nm, respectively. The number of active stators in the MotAB and MotPS motors was estimated to be about ten and one, respectively. However, the number of functional stators in the MotPS motor was increased up to ten with an increase in the concentration of a polysaccharide, Ficoll 400, as well as in the load. The maximum speeds of the MotAB and MotPS motors at low load were about 200 Hz and 50 Hz, respectively, indicating that the rate of the torque-generation cycle of the MotPS motor is 4-fold slower than that of the MotAB motor. Domain exchange experiments showed that the C-terminal periplasmic domain of MotS directly controls the assembly and disassembly dynamics of the MotPS stator in a load- and polysaccharide-dependent manner. PMID:28378843

  3. Suppressor analysis of the MotB(D33E) mutation to probe bacterial flagellar motor dynamics coupled with proton translocation.

    PubMed

    Che, Yong-Suk; Nakamura, Shuichi; Kojima, Seiji; Kami-ike, Nobunori; Namba, Keiichi; Minamino, Tohru

    2008-10-01

    MotA and MotB form the stator of the proton-driven bacterial flagellar motor, which conducts protons and couples proton flow with motor rotation. Asp-33 of Salmonella enterica serovar Typhimurium MotB, which is a putative proton-binding site, is critical for torque generation. However, the mechanism of energy coupling remains unknown. Here, we carried out genetic and motility analysis of a slowly motile motB(D33E) mutant and its pseudorevertants. We first confirmed that the poor motility of the motB(D33E) mutant is due to neither protein instability, mislocalization, nor impaired interaction with MotA. We isolated 17 pseudorevertants and identified the suppressor mutations in the transmembrane helices TM2 and TM3 of MotA and in TM and the periplasmic domain of MotB. The stall torque produced by the motB(D33E) mutant motor was about half of the wild-type level, while those for the pseudorevertants were recovered nearly to the wild-type levels. However, the high-speed rotations of the motors under low-load conditions were still significantly impaired, suggesting that the rate of proton translocation is still severely limited at high speed. These results suggest that the second-site mutations recover a torque generation step involving stator-rotor interactions coupled with protonation/deprotonation of Glu-33 but not maximum proton conductivity.

  4. Biophysical characterization of the C-terminal region of FliG, an essential rotor component of the Na+-driven flagellar motor.

    PubMed

    Gohara, Mizuki; Kobayashi, Shiori; Abe-Yoshizumi, Rei; Nonoyama, Natsumi; Kojima, Seiji; Asami, Yasuo; Homma, Michio

    2014-02-01

    The bacterial flagellar motor generates a rotational force by the flow of ions through the membrane. The rotational force is generated by the interaction between the cytoplasmic regions of the rotor and the stator. FliG is directly involved in the torque generation of the rotor protein by its interaction. FliG is composed of three domains: the N-terminal, Middle and C-terminal domains, based on its structure. The C-terminal domain of FliG is assumed to be important for the interaction with the stator that generates torque. In this study, using CD spectra, gel filtration chromatography and DSC (differential scanning calorimetry), we characterized the physical properties of the C-terminal domain (G214-Stop) of wild-type (WT) FliG and its non-motile phenotype mutant derivatives (L259Q, L270R and L271P), which were derived from the sodium-driven motor of Vibrio. The CD spectra and gel filtration chromatography revealed a slight difference between the WT and the mutant FliG proteins, but the DSC results suggested a large difference in their stabilities. That structural difference was confirmed by differences in protease sensitivity. Based on these results, we conclude that mutations which confer the non-motile phenotype destabilize the C-terminal domain of FliG.

  5. Crystallization and preliminary X-ray analysis of MotY, a stator component of the Vibrio alginolyticus polar flagellar motor

    SciTech Connect

    Shinohara, Akari; Sakuma, Mayuko; Yakushi, Toshiharu; Kojima, Seiji; Namba, Keiichi; Homma, Michio; Imada, Katsumi

    2007-02-01

    Crystals of MotY, a stator protein of the V. alginolyticus polar flagellar motor, have been produced and characterized by X-ray diffraction. The polar flagellum of Vibrio alginolyticus is rotated by the sodium motor. The stator unit of the sodium motor consists of four different proteins: PomA, PomB, MotX and MotY. MotX and MotY, which are unique components of the sodium motor, form the T-ring structure attached to the LP ring in the periplasmic space. MotY has a putative peptidoglycan-binding motif in its C-terminal region and MotX is suggested to interact with PomB. Thus, MotX and MotY are thought to be required for incorporation and stabilization of the PomA/B complex. In this study, mature MotY composed of 272 amino-acid residues and its SeMet derivative were expressed with a C-terminal hexahistidine-tag sequence, purified and crystallized. Native crystals were grown in the hexagonal space group P6{sub 1}22/P6{sub 5}22, with unit-cell parameters a = b = 104.1, c = 132.6 Å. SeMet-derivative crystals belonged to the same space group with the same unit-cell parameters as the native crystals. Anomalous difference Patterson maps of the SeMet derivative showed significant peaks in their Harker sections, indicating that the derivatives are suitable for structure determination.

  6. Normal motor adaptation in cervical dystonia: a fundamental cerebellar computation is intact.

    PubMed

    Sadnicka, Anna; Patani, Bansi; Saifee, Tabish A; Kassavetis, Panagiotis; Pareés, Isabel; Korlipara, Prasad; Bhatia, Kailash P; Rothwell, John C; Galea, Joseph M; Edwards, Mark J

    2014-10-01

    The potential role of the cerebellum in the pathophysiology of dystonia has become a focus of recent research. However, direct evidence for a cerebellar contribution in humans with dystonia is difficult to obtain. We examined motor adaptation, a test of cerebellar function, in 20 subjects with primary cervical dystonia and an equal number of aged matched controls. Adaptation to both visuomotor (distorting visual feedback by 30°) and forcefield (applying a velocity-dependent force) conditions were tested. Our hypothesis was that cerebellar abnormalities observed in dystonia research would translate into deficits of cerebellar adaptation. We also examined the relationship between adaptation and dystonic head tremor as many primary tremor models implicate the cerebellothalamocortical network which is specifically tested by this motor paradigm. Rates of adaptation (learning) in cervical dystonia were identical to healthy controls in both visuomotor and forcefield tasks. Furthermore, the ability to adapt was not clearly related to clinical features of dystonic head tremor. We have shown that a key motor control function of the cerebellum is intact in the most common form of primary dystonia. These results have important implications for current anatomical models of the pathophysiology of dystonia. It is important to attempt to progress from general statements that implicate the cerebellum to a more specific evidence-based model. The role of the cerebellum in this enigmatic disease perhaps remains to be proven.

  7. The maximum number of torque-generating units in the flagellar motor of Escherichia coli is at least 11

    PubMed Central

    Reid, Stuart W.; Leake, Mark C.; Chandler, Jennifer H.; Lo, Chien-Jung; Armitage, Judith P.; Berry, Richard M.

    2006-01-01

    Torque is generated in the rotary motor at the base of the bacterial flagellum by ion translocating stator units anchored to the peptidoglycan cell wall. Stator units are composed of the proteins MotA and MotB in proton-driven motors, and they are composed of PomA and PomB in sodium-driven motors. Strains of Escherichia coli lacking functional stator proteins produce flagella that do not rotate, and induced expression of the missing proteins leads to restoration of motor rotation in discrete speed increments, a process known as “resurrection.” Early work suggested a maximum of eight units. More recent indications that WT motors may contain more than eight units, based on recovery of disrupted motors, are inconclusive. Here we demonstrate conclusively that the maximum number of units in a motor is at least 11. Using back-focal-plane interferometry of 1-μm polystyrene beads attached to flagella, we observed at least 11 distinct speed increments during resurrection with three different combinations of stator proteins in E. coli. The average torques generated by a single unit and a fully induced motor were lower than previous estimates. Speed increments at high numbers of units are smaller than those at low numbers, indicating that not all units in a fully induced motor are equivalent. PMID:16698936

  8. Hydrodynamic interaction of bacterial flagella - flagellar bundling

    NASA Astrophysics Data System (ADS)

    Lim, Sookkyung

    2013-11-01

    Flagellar bundling is an important aspect of locomotion in bacteria such as Escherichia coli. To study the hydrodynamic behavior of helical flagella, we present a computational model that is based on the geometry of the bacterial flagellar filament at the micrometer scale. We consider two model flagella, each of which has a rotary motor at its base with the rotation rate of the motor set at 100 Hz. Bundling occurs when both flagella are left-handed helices turning counterclockwise (when viewed from the nonmotor end of the flagellum looking back toward the motor) or when both flagella are right-handed helices turning clockwise. Helical flagella of the other combinations of handedness and rotation direction do not bundle. In this work we use the generalized immersed boundary method combined with the unconstrained Kirchhoff rod theory, which allows us to study the complicated hydrodynamics of flagellar behavior. This is a joint work with Charlie Peskin at NYU. NSF

  9. Corticospinal activity evoked and modulated by non-invasive stimulation of the intact human motor cortex.

    PubMed

    Di Lazzaro, Vincenzo; Rothwell, John C

    2014-10-01

    A number of methods have been developed recently that stimulate the human brain non-invasively through the intact scalp. The most common are transcranial magnetic stimulation (TMS), transcranial electric stimulation (TES) and transcranial direct current stimulation (TDCS). They are widely used to probe function and connectivity of brain areas as well as therapeutically in a variety of conditions such as depression or stroke. They are much less focal than conventional invasive methods which use small electrodes placed on or in the brain and are often thought to activate all classes of neurones in the stimulated area. However, this is not true. A large body of evidence from experiments on the motor cortex shows that non-invasive methods of brain stimulation can be surprisingly selective and that adjusting the intensity and direction of stimulation can activate different classes of inhibitory and excitatory inputs to the corticospinal output cells. Here we review data that have elucidated the action of TMS and TES, concentrating mainly on the most direct evidence available from spinal epidural recordings of the descending corticospinal volleys. The results show that it is potentially possible to test and condition specific neural circuits in motor cortex that could be affected differentially by disease, or be used in different forms of natural behaviour. However, there is substantial interindividual variability in the specificity of these protocols. Perhaps in the future it will be possible, with the advances currently being made to model the electrical fields induced in individual brains, to develop forms of stimulation that can reliably target more specific populations of neurones, and open up the internal circuitry of the motor cortex for study in behaving humans.

  10. Flagellar rotation in the archaeon Halobacterium salinarum depends on ATP.

    PubMed

    Streif, Stefan; Staudinger, Wilfried Franz; Marwan, Wolfgang; Oesterhelt, Dieter

    2008-12-05

    Halobacterium salinarum swims with the help of a polarly inserted flagellar bundle. In energized cells, the flagellar motors rotate continuously, occasionally switching the rotational sense. Starving cells become immotile as the energy level drops. Presumably, there is a threshold of energy required for flagellar rotation. When starved, immotile cells are energized by exposure to light, the speed of flagellar rotation increases gradually to its steady state over several minutes. Since the light-driven proton pump bacteriorhodopsin energizes the cell membrane to the maximal level within a fraction of a second, the delay in reaching the maximal swimming speed suggests that the halobacterial flagellar motor may not be driven directly by proton motive force. Swimming cells, which obtain their energy exclusively through light-driven proton pumping, become immotile within 20 min when treated with N,N'-dicyclohexylcarbodiimide (DCCD), an inhibitor of the proton translocating ATP synthase. However, flagellar motility in DCCD-treated cells can be restored by the addition of L-arginine, which serves as a fermentative energy source and restores the cytoplasmic ATP level in the presence of DCCD. This suggests that flagellar motor rotation depends on ATP, and this is confirmed by the observation that motility is increased strongly by L-arginine at zero proton motive force levels. The flagellar motor may be driven either by ATP directly or by an ATP-generated ion gradient that is not coupled directly to the proton gradient or the proton motive force of the cell.

  11. Mutations in the Borrelia burgdorferi Flagellar Type III Secretion System Genes fliH and fliI Profoundly Affect Spirochete Flagellar Assembly, Morphology, Motility, Structure, and Cell Division

    PubMed Central

    Gao, Lihui; Zhao, Xiaowei; Liu, Jun; Norris, Steven J.

    2015-01-01

    ABSTRACT The Lyme disease spirochete Borrelia burgdorferi migrates to distant sites in the tick vectors and mammalian hosts through robust motility and chemotaxis activities. FliH and FliI are two cytoplasmic proteins that play important roles in the type III secretion system (T3SS)-mediated export and assembly of flagellar structural proteins. However, detailed analyses of the roles of FliH and FliI in B. burgdorferi have not been reported. In this study, fliH and fliI transposon mutants were utilized to dissect the mechanism of the Borrelia type III secretion system. The fliH and fliI mutants exhibited rod-shaped or string-like morphology, greatly reduced motility, division defects (resulting in elongated organisms with incomplete division points), and noninfectivity in mice by needle inoculation. Mutants in fliH and fliI were incapable of translational motion in 1% methylcellulose or soft agar. Inactivation of either fliH or fliI resulted in the loss of the FliH-FliI complex from otherwise intact flagellar motors, as determined by cryo-electron tomography (cryo-ET). Flagellar assemblies were still present in the mutant cells, albeit in lower numbers than in wild-type cells and with truncated flagella. Genetic complementation of fliH and fliI mutants in trans restored their wild-type morphology, motility, and flagellar motor structure; however, full-length flagella and infectivity were not recovered in these complemented mutants. Based on these results, disruption of either fliH or fliI in B. burgdorferi results in a severe defect in flagellar structure and function and cell division but does not completely block the export and assembly of flagellar hook and filament proteins. PMID:25968649

  12. Isolation of Vibrio alginolyticus sodium-driven flagellar motor complex composed of PomA and PomB solubilized by sucrose monocaprate.

    PubMed

    Yakushi, Toshiharu; Kojima, Masaru; Homma, Michio

    2004-04-01

    The polar flagella of Vibrio alginolyticus have sodium-driven motors, and four membrane proteins, PomA, PomB, MotX and MotY, are essential for torque generation of the motor. PomA and PomB are believed to form a sodium-conducting channel. This paper reports the purification of the motor complex by using sucrose monocaprate, a non-ionic detergent, to solubilize the complex. Plasmid pKJ301, which encodes intact PomA, and PomB tagged with a C-terminal hexahistidine that does not interfere with PomB function, was constructed. The membrane fraction of cells transformed with pKJ301 was solubilized with sucrose monocaprate, and the solubilized materials were applied to a Ni-NTA column. The imidazole eluate contained both PomA and PomB, which were further purified by anion-exchange chromatography. Gel-filtration chromatography was used to investigate the apparent molecular size of the complex; the PomA/PomB complex was eluted as approx. 900 kDa and PomB alone was eluted as approx. 260 kDa. These findings suggest that the motor complex may have a larger structure than previously assumed.

  13. RetroDISCO: Clearing technique to improve quantification of retrograde labeled motor neurons of intact mouse spinal cords.

    PubMed

    Žygelytė, Emilija; Bernard, Megan E; Tomlinson, Joy E; Martin, Matthew J; Terhorst, Allegra; Bradford, Harriet E; Lundquist, Sarah A; Sledziona, Michael; Cheetham, Jonathan

    2016-09-15

    Quantification of the number of axons reinnervating a target organ is often used to assess regeneration after peripheral nerve repair, but because of axonal branching, this method can overestimate the number of motor neurons regenerating across an injury. Current methods to count the number of regenerated motor neurons include retrograde labeling followed by cryosectioning and counting labeled motor neuron cell bodies, however, the process of sectioning introduces error from potential double counting of cells in adjacent sections. We describe a method, retroDISCO, that optically clears whole mouse spinal cord without loss of fluorescent signal to allow imaging of retrograde labeled motor neurons using confocal microscopy. Complete optical clearing of spinal cords takes four hours and confocal microscopy can obtain z-stacks of labeled motor neuron pools within 3-5min. The technique is able to detect anticipated differences in motor neuron number after cross-suture and conduit repair compared to intact mice and is highly repeatable. RetroDISCO is inexpensive, simple, robust and uses commonly available microscopy techniques to determine the number of motor neurons extending axons across an injury site, avoiding the need for labor-intensive cryosectioning and potential double counting of motor neuron cell bodies in adjacent sections. RetroDISCO allows rapid quantification of the degree of reinnervation without the confounding produced by axonal sprouting. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Note: A compact, rigid, and easy-to-build piezo motor: the intact-tube GeckoDrive.

    PubMed

    Wang, Qi; Hou, Yubin; Lu, Qingyou

    2013-05-01

    We report an extremely simple, rigid, low machine tolerance, yet high performance piezoelectric motor, in which two rings are coaxially glued at the ends of one intact piezotube, respectively, using the proper gluing method. A central shaft is pushed to press against the inner edges of the rings by a spring strip at a proper axial position and in the gap between the shaft and the inner wall of the piezotube. It is compared with other important forms of three-friction driven motors and shows advantageous structure and unexpectedly excellent performance, hence deserving a new name: the GeckoDrive.

  15. The LC7 Light Chains of Chlamydomonas Flagellar Dyneins Interact with Components Required for Both Motor Assembly and Regulation

    PubMed Central

    DiBella, Linda M.; Sakato, Miho; Patel-King, Ramila S.; Pazour, Gregory J.; King, Stephen M.

    2004-01-01

    Members of the LC7/Roadblock family of light chains (LCs) have been found in both cytoplasmic and axonemal dyneins. LC7a was originally identified within Chlamydomonas outer arm dynein and associates with this motor's cargo-binding region. We describe here a novel member of this protein family, termed LC7b that is also present in the Chlamydomonas flagellum. Levels of LC7b are reduced ∼20% in axonemes isolated from strains lacking inner arm I1 and are ∼80% lower in the absence of the outer arms. When both dyneins are missing, LC7b levels are diminished to <10%. In oda9 axonemal extracts that completely lack outer arms, LC7b copurifies with inner arm I1, whereas in ida1 extracts that are devoid of I1 inner arms it associates with outer arm dynein. We also have observed that some LC7a is present in both isolated axonemes and purified 18S dynein from oda1, suggesting that it is also a component of both the outer arm and inner arm I1. Intriguingly, in axonemal extracts from the LC7a null mutant, oda15, which assembles ∼30% of its outer arms, LC7b fails to copurify with either dynein, suggesting that it interacts with LC7a. Furthermore, both the outer arm γ heavy chain and DC2 from the outer arm docking complex completely dissociate after salt extraction from oda15 axonemes. EDC cross-linking of purified dynein revealed that LC7b interacts with LC3, an outer dynein arm thioredoxin; DC2, an outer arm docking complex component; and also with the phosphoprotein IC138 from inner arm I1. These data suggest that LC7a stabilizes both the outer arms and inner arm I1 and that both LC7a and LC7b are involved in multiple intradynein interactions within both dyneins. PMID:15304520

  16. Motor timing intraindividual variability in amnestic mild cognitive impairment and cognitively intact elders at genetic risk for Alzheimer's disease.

    PubMed

    Kay, Christina D; Seidenberg, Michael; Durgerian, Sally; Nielson, Kristy A; Smith, J Carson; Woodard, John L; Rao, Stephen M

    2017-11-01

    Intraindividual variability (IIV) in motor performance has been shown to predict future cognitive decline. The apolipoprotein E-epsilon 4 (APOE-ε4) allele is also a well-established risk factor for memory decline. Here, we present novel findings examining the influence of the APOE-ε4 allele on the performance of asymptomatic healthy elders in comparison to individuals with amnestic MCI (aMCI) on a fine motor synchronization, paced finger-tapping task (PFTT). Two Alzheimer's disease (AD) risk groups, individuals with aMCI (n = 24) and cognitively intact APOE-ε4 carriers (n = 41), and a control group consisting of cognitively intact APOE-ε4 noncarriers (n = 65) completed the Rey Auditory Verbal Learning Test and the PFTT, which requires index finger tapping in synchrony with a visual stimulus (interstimulus interval = 333 ms). Motor timing IIV, as reflected by the standard deviation of the intertap interval (ITI), was greater in the aMCI group than in the two groups of cognitively intact elders; in contrast, all three groups had statistically equivalent mean ITI. No significant IIV differences were observed between the asymptomatic APOE-ε4 carriers and noncarriers. Poorer episodic memory performance was associated with greater IIV, particularly in the aMCI group. Results suggest that increased IIV on a fine motor synchronization task is apparent in aMCI. This IIV measure was not sensitive in discriminating older asymptomatic individuals at genetic risk for AD from those without such a genetic risk. In contrast, episodic memory performance, a well-established predictor of cognitive decline in preclinical AD, was able to distinguish between the two cognitively intact groups based on genetic risk.

  17. Flagellar waveform analysis of swimming algal cells

    NASA Astrophysics Data System (ADS)

    Kurtuldu, Huseyin; Johnson, Karl; Gollub, Jerry

    2011-11-01

    The twin flagella of the green alga Chlamydomas reinhardtii are driven by dynein molecular motors to oscillate at about 50-60 Hz in a breaststroke motion. For decades, Chlamydomas has been used as a model organism for studies of flagellar motility, and of genetic disorders of ciliary motion. However, little is known experimentally about the flagellar waveforms, and the resulting time-dependent force distribution along the 250 nm diameter flagella. Here, we study flagellar dynamics experimentally by confining cells in quasi-2D liquid films. From simultaneous measurements of the cell body velocity and the time-dependent velocities along the center lines of the two flagella, we determine the drag coefficients, and estimate the power expended by the body and the flagella, comparing our findings with measurements based on the induced fluid flow field. We contrast the results for the quite different beating patterns of synchronous and asynchronous flagella, respectively. Supported by NSF Grant DMR-0803153.

  18. Clinically Relevant Levels of 4-Aminopyridine Strengthen Physiological Responses in Intact Motor Circuits in Rats, Especially After Pyramidal Tract Injury.

    PubMed

    Sindhurakar, Anil; Mishra, Asht M; Gupta, Disha; Iaci, Jennifer F; Parry, Tom J; Carmel, Jason B

    2017-04-01

    4-Aminopyridine (4-AP) is a Food and Drug Administration-approved drug to improve motor function in people with multiple sclerosis. Preliminary results suggest the drug may act on intact neural circuits and not just on demyelinated ones. To determine if 4-AP at clinically relevant levels alters the excitability of intact motor circuits. In anesthetized rats, electrodes were placed over motor cortex and the dorsal cervical spinal cord for electrical stimulation, and electromyogram electrodes were inserted into biceps muscle to measure responses. The motor responses to brain and spinal cord stimulation were measured before and for 5 hours after 4-AP administration both in uninjured rats and rats with a cut lesion of the pyramidal tract. Blood was collected at the same time as electrophysiology to determine drug plasma concentration with a goal of 20 to 100 ng/mL. We first determined that a bolus infusion of 0.32 mg/kg 4-AP was optimal: it produced on average 61.5 ± 1.8 ng/mL over the 5 hours after infusion. This dose of 4-AP increased responses to spinal cord stimulation by 1.3-fold in uninjured rats and 3-fold in rats with pyramidal tract lesion. Responses to cortical stimulation also increased by 2-fold in uninjured rats and up to 4-fold in the injured. Clinically relevant levels of 4-AP strongly augment physiological responses in intact circuits, an effect that was more robust after partial injury, demonstrating its broad potential in treating central nervous system injuries.

  19. Simultaneous measurement of bacterial flagellar rotation rate and swimming speed.

    PubMed Central

    Magariyama, Y; Sugiyama, S; Muramoto, K; Kawagishi, I; Imae, Y; Kudo, S

    1995-01-01

    Swimming speeds and flagellar rotation rates of individual free-swimming Vibrio alginolyticus cells were measured simultaneously by laser dark-field microscopy at 25, 30, and 35 degrees C. A roughly linear relation between swimming speed and flagellar rotation rate was observed. The ratio of swimming speed to flagellar rotation rate was 0.113 microns, which indicated that a cell progressed by 7% of pitch of flagellar helix during one flagellar rotation. At each temperature, however, swimming speed had a tendency to saturate at high flagellar rotation rate. That is, the cell with a faster-rotating flagellum did not always swim faster. To analyze the bacterial motion, we proposed a model in which the torque characteristics of the flagellar motor were considered. The model could be analytically solved, and it qualitatively explained the experimental results. The discrepancy between the experimental and the calculated ratios of swimming speed to flagellar rotation rate was about 20%. The apparent saturation in swimming speed was considered to be caused by shorter flagella that rotated faster but produced less propelling force. Images FIGURE 1 FIGURE 4 PMID:8580359

  20. Regulation of Eukaryotic Flagellar Motility

    NASA Astrophysics Data System (ADS)

    Mitchell, David R.

    2005-03-01

    The central apparatus is essential for normal eukaryotic flagellar bend propagation as evidenced by the paralysis associated with mutations that prevent central pair (CP) assembly. Interactions between doublet-associated radial spokes and CP projections are thought to modulate spoke-regulated protein kinases and phosphatases on outer doublets, and these enzymes in turn modulate dynein activity. To better understand CP control mechanisms, we determined the three-dimensional structure of the Chlamydomonas reinhardtii CP complex and analyzed CP orientation during formation and propagation of flagellar bending waves. We show that a single CP microtubule, C1, is near the outermost doublet in curved regions of the flagellum, and this orientation is maintained by twists between successive principal and reverse bends. The Chlamydomonas CP is inherently twisted; twists are not induced by bend formation, and do not depend on forces or signals transmitted through spoke-central pair interactions. We hypothesize that CP orientation passively responds to bend formation, and that bend propagation drives rotation of the CP and maintains a constant CP orientation in bends, which in turn permits signal transduction between specific CP projections and specific doublet-associated dyneins through radial spokes. The central pair kinesin, Klp1, although essential for normal motility, is therefore not the motor that drives CP rotation. The CP also acts as a scaffold for enzymes that maintain normal intraflagellar ATP concentration.

  1. Active Phase and Amplitude Fluctuations of Flagellar Beating

    NASA Astrophysics Data System (ADS)

    Ma, Rui; Klindt, Gary S.; Riedel-Kruse, Ingmar H.; Jülicher, Frank; Friedrich, Benjamin M.

    2014-07-01

    The eukaryotic flagellum beats periodically, driven by the oscillatory dynamics of molecular motors, to propel cells and pump fluids. Small but perceivable fluctuations in the beat of individual flagella have physiological implications for synchronization in collections of flagella as well as for hydrodynamic interactions between flagellated swimmers. Here, we characterize phase and amplitude fluctuations of flagellar bending waves using shape mode analysis and limit-cycle reconstruction. We report a quality factor of flagellar oscillations Q =38.0±16.7 (mean±s.e.). Our analysis shows that flagellar fluctuations are dominantly of active origin. Using a minimal model of collective motor oscillations, we demonstrate how the stochastic dynamics of individual motors can give rise to active small-number fluctuations in motor-cytoskeleton systems.

  2. Combining d-cycloserine with motor training does not result in improved general motor learning in neurologically intact people or in people with stroke.

    PubMed

    Cherry, Kendra M; Lenze, Eric J; Lang, Catherine E

    2014-06-15

    Neurological rehabilitation involving motor training has resulted in clinically meaningful improvements in function but is unable to eliminate many of the impairments associated with neurological injury. Thus there is a growing need for interventions that facilitate motor learning during rehabilitation therapy, to optimize recovery. d-Cycloserine (DCS), a partial N-methyl-d-aspartate (NMDA) receptor agonist that enhances neurotransmission throughout the central nervous system (Ressler KJ, Rothbaum BO, Tannenbaum L, Anderson P, Graap K, Zimand E, Hodges L, Davis M. Arch Gen Psychiatry 61: 1136-1144, 2004), has been shown to facilitate declarative and emotional learning. We therefore tested whether combining DCS with motor training facilitates motor learning after stroke in a series of two experiments. Forty-one healthy adults participated in experiment I, and twenty adults with stroke participated in experiment II of this two-session, double-blind study. Session one consisted of baseline assessment, subject randomization, and oral administration of DCS or placebo (250 mg). Subjects then participated in training on a balancing task, a simulated feeding task, and a cognitive task. Subjects returned 1-3 days later for posttest assessment. We found that all subjects had improved performance from pretest to posttest on the balancing task, the simulated feeding task, and the cognitive task. Subjects who were given DCS before motor training, however, did not show enhanced learning on the balancing task, the simulated feeding task, or the associative recognition task compared with subjects given placebo. Moreover, training on the balancing task did not generalize to a similar, untrained balance task. Our findings suggest that DCS does not enhance motor learning or motor skill generalization in neurologically intact adults or in adults with stroke. Copyright © 2014 the American Physiological Society.

  3. Intact sensory-motor network structure and function in far from onset premanifest Huntington's disease.

    PubMed

    Gorges, Martin; Müller, Hans-Peter; Mayer, Isabella Maria Sophie; Grupe, Gesa Sophie; Kammer, Thomas; Grön, Georg; Kassubek, Jan; Landwehrmeyer, G Bernhard; Wolf, Robert Christian; Orth, Michael

    2017-03-07

    Structural and functional changes attributable to the neurodegenerative process in Huntington's disease (HD) may be evident in HTT CAG repeat expansion carriers before the clinical manifestations of HD. It remains unclear, though, how far from motor onset a consistent signature of the neurodegenerative process in HD can be detected. Twelve far from onset preHD and 22 age-matched healthy control participants underwent volumetric structural magnetic resonance imaging (MRI), diffusion tensor imaging (DTI), and resting-state functional MRI (11 preHD, 22 controls) as well as electrophysiological measurements (12 preHD, 13 controls). There were no significant differences in white matter macro- and microstructure between far from onset preHD participants and controls. Functional connectivity in a basal ganglia-thalamic and motor networks, all measures of the motor efferent and sensory afferent pathways as well as sensory-motor integration were also similar in far from onset preHD and controls. With the methods used in far from onset preHD sensory-motor neural macro- or micro-structure and brain function were similar to healthy controls. This suggests that any observable structural and functional change in preHD nearer to onset, or in manifest HD, at least using comparable techniques such as in this study, most likely reflects an ongoing neurodegenerative process.

  4. A high-throughput screening assay for inhibitors of bacterial motility identifies a novel inhibitor of the Na+-driven flagellar motor and virulence gene expression in Vibrio cholerae.

    PubMed

    Rasmussen, Lynn; White, E Lucile; Pathak, Ashish; Ayala, Julio C; Wang, Hongxia; Wu, Jian-He; Benitez, Jorge A; Silva, Anisia J

    2011-09-01

    Numerous bacterial pathogens, particularly those that colonize fast-flow areas in the bladder and gastrointestinal tract, require motility to establish infection and spread beyond the initially colonized tissue. Vibrio cholerae strains of serogroups O1 and O139, the causative agents of the diarrheal illness cholera, express a single polar flagellum powered by sodium motive force and require motility to colonize and spread along the small intestine. Therefore, motility may be an attractive target for small molecules that can prevent and/or block the infective process. In this study, we describe a high-throughput screening (HTS) assay to identify small molecules that selectively inhibit bacterial motility. The HTS assay was used to screen an ∼8,000-compound structurally diverse chemical library for inhibitors of V. cholerae motility. The screen identified a group of quinazoline-2,4-diamino analogs that completely suppressed motility without affecting the growth rate in broth. A further study on the effects of one analog, designated Q24DA, showed that it induces a flagellated but nonmotile (Mot(-)) phenotype and is specific for the Na(+)-driven flagellar motor of pathogenic Vibrio species. A mutation conferring phenamil-resistant motility did not eliminate inhibition of motility by Q24DA. Q24DA diminished the expression of cholera toxin and toxin-coregulated pilus as well as biofilm formation and fluid secretion in the rabbit ileal loop model. Furthermore, treatment of V. cholerae with Q24DA impacted additional phenotypes linked to Na(+) bioenergetics, such as the function of the primary Na(+) pump, Nqr, and susceptibility to fluoroquinolones. The above results clearly show that the described HTS assay is capable of identifying small molecules that specifically block bacterial motility. New inhibitors such as Q24DA may be instrumental in probing the molecular architecture of the Na(+)-driven polar flagellar motor and in studying the role of motility in the

  5. A High-Throughput Screening Assay for Inhibitors of Bacterial Motility Identifies a Novel Inhibitor of the Na+-Driven Flagellar Motor and Virulence Gene Expression in Vibrio cholerae▿†

    PubMed Central

    Rasmussen, Lynn; White, E. Lucile; Pathak, Ashish; Ayala, Julio C.; Wang, Hongxia; Wu, Jian-He; Benitez, Jorge A.; Silva, Anisia J.

    2011-01-01

    Numerous bacterial pathogens, particularly those that colonize fast-flow areas in the bladder and gastrointestinal tract, require motility to establish infection and spread beyond the initially colonized tissue. Vibrio cholerae strains of serogroups O1 and O139, the causative agents of the diarrheal illness cholera, express a single polar flagellum powered by sodium motive force and require motility to colonize and spread along the small intestine. Therefore, motility may be an attractive target for small molecules that can prevent and/or block the infective process. In this study, we describe a high-throughput screening (HTS) assay to identify small molecules that selectively inhibit bacterial motility. The HTS assay was used to screen an ∼8,000-compound structurally diverse chemical library for inhibitors of V. cholerae motility. The screen identified a group of quinazoline-2,4-diamino analogs that completely suppressed motility without affecting the growth rate in broth. A further study on the effects of one analog, designated Q24DA, showed that it induces a flagellated but nonmotile (Mot−) phenotype and is specific for the Na+-driven flagellar motor of pathogenic Vibrio species. A mutation conferring phenamil-resistant motility did not eliminate inhibition of motility by Q24DA. Q24DA diminished the expression of cholera toxin and toxin-coregulated pilus as well as biofilm formation and fluid secretion in the rabbit ileal loop model. Furthermore, treatment of V. cholerae with Q24DA impacted additional phenotypes linked to Na+ bioenergetics, such as the function of the primary Na+ pump, Nqr, and susceptibility to fluoroquinolones. The above results clearly show that the described HTS assay is capable of identifying small molecules that specifically block bacterial motility. New inhibitors such as Q24DA may be instrumental in probing the molecular architecture of the Na+-driven polar flagellar motor and in studying the role of motility in the expression of

  6. Preliminary evidence of motor impairment among polysubstance 3,4-methylenedioxymethamphetamine users with intact neuropsychological functioning.

    PubMed

    Bousman, Chad A; Cherner, Mariana; Emory, Kristen T; Barron, Daniel; Grebenstein, Patricia; Atkinson, J Hampton; Heaton, Robert K; Grant, Igor

    2010-11-01

    Neuropsychological disturbances have been reported in association with use of the recreational drug "ecstasy," or 3,4-methylenedioxymethamphetamine (MDMA), but findings have been inconsistent. We performed comprehensive neuropsychological testing examining seven ability domains in 21 MDMA users (MDMA+) and 21 matched control participants (MDMA-). Among MDMA+ participants, median [interquartile range] lifetime MDMA use was 186 [111, 516] doses, with 120 [35-365] days of abstinence. There were no significant group differences in neuropsychological performance, with the exception of the motor speed/dexterity domain in which 43% of MDMA+ were impaired compared with 5% of MDMA- participants (p = .004). Motor impairment differences were not explained by use of other substances and were unrelated to length of abstinence or lifetime number of MDMA doses. Findings provide limited evidence for neuropsychological differences between MDMA+ and MDMA- participants with the exception of motor impairments observed in the MDMA+ group. However, replication of this finding in a larger sample is warranted.

  7. Synergistic plasticity of intrinsic conductance and electrical coupling restores synchrony in an intact motor network.

    PubMed

    Lane, Brian J; Samarth, Pranit; Ransdell, Joseph L; Nair, Satish S; Schulz, David J

    2016-08-23

    Motor neurons of the crustacean cardiac ganglion generate virtually identical, synchronized output despite the fact that each neuron uses distinct conductance magnitudes. As a result of this variability, manipulations that target ionic conductances have distinct effects on neurons within the same ganglion, disrupting synchronized motor neuron output that is necessary for proper cardiac function. We hypothesized that robustness in network output is accomplished via plasticity that counters such destabilizing influences. By blocking high-threshold K(+) conductances in motor neurons within the ongoing cardiac network, we discovered that compensation both resynchronized the network and helped restore excitability. Using model findings to guide experimentation, we determined that compensatory increases of both GA and electrical coupling restored function in the network. This is one of the first direct demonstrations of the physiological regulation of coupling conductance in a compensatory context, and of synergistic plasticity across cell- and network-level mechanisms in the restoration of output.

  8. Synergistic plasticity of intrinsic conductance and electrical coupling restores synchrony in an intact motor network

    PubMed Central

    Lane, Brian J; Samarth, Pranit; Ransdell, Joseph L; Nair, Satish S; Schulz, David J

    2016-01-01

    Motor neurons of the crustacean cardiac ganglion generate virtually identical, synchronized output despite the fact that each neuron uses distinct conductance magnitudes. As a result of this variability, manipulations that target ionic conductances have distinct effects on neurons within the same ganglion, disrupting synchronized motor neuron output that is necessary for proper cardiac function. We hypothesized that robustness in network output is accomplished via plasticity that counters such destabilizing influences. By blocking high-threshold K+ conductances in motor neurons within the ongoing cardiac network, we discovered that compensation both resynchronized the network and helped restore excitability. Using model findings to guide experimentation, we determined that compensatory increases of both GA and electrical coupling restored function in the network. This is one of the first direct demonstrations of the physiological regulation of coupling conductance in a compensatory context, and of synergistic plasticity across cell- and network-level mechanisms in the restoration of output. DOI: http://dx.doi.org/10.7554/eLife.16879.001 PMID:27552052

  9. Intact Acquisition and Short-Term Retention of Non-Motor Procedural Learning in Parkinson's Disease.

    PubMed

    Panouillères, Muriel T N; Tofaris, George K; Brown, Peter; Jenkinson, Ned

    2016-01-01

    Procedural learning is a form of memory where people implicitly acquire a skill through repeated practice. People with Parkinson's disease (PD) have been found to acquire motor adaptation, a form of motor procedural learning, similarly to healthy older adults but they have deficits in long-term retention. A similar pattern of normal learning on initial exposure with a deficit in retention seen on subsequent days has also been seen in mirror-reading, a form of non-motor procedural learning. It is a well-studied fact that disrupting sleep will impair the consolidation of procedural memories. Given the prevalence of sleep disturbances in PD, the lack of retention on following days seen in these studies could simply be a side effect of this well-known symptom of PD. Because of this, we wondered whether people with PD would present with deficits in the short-term retention of a non-motor procedural learning task, when the test of retention was done the same day as the initial exposure. The aim of the present study was then to investigate acquisition and retention in the immediate short term of cognitive procedural learning using the mirror-reading task in people with PD. This task involved two conditions: one where triads of mirror-inverted words were always new that allowed assessing the learning of mirror-reading skill and another one where some of the triads were presented repeatedly during the experiment that allowed assessing the word-specific learning. People with PD both ON and OFF their normal medication were compared to healthy older adults and young adults. Participants were re-tested 50 minutes break after initial exposure to probe for short-term retention. The results of this study show that all groups of participants acquired and retained the two skills (mirror-reading and word-specific) similarly. These results suggest that neither healthy ageing nor the degeneration within the basal ganglia that occurs in PD does affect the mechanisms that underpin the

  10. Motor learning in children with spina bifida: intact learning and performance on a ballistic task.

    PubMed

    Dennis, Maureen; Jewell, Derryn; Edelstein, Kim; Brandt, Michael E; Hetherington, Ross; Blaser, Susan E; Fletcher, Jack M

    2006-09-01

    Learning and performance on a ballistic task were investigated in children with spina bifida meningomyelocele (SBM), with either upper level spinal lesions (n = 21) or lower level spinal lesions (n = 81), and in typically developing controls (n = 35). Participants completed three phases (20 trials each) of an elbow goniometer task that required a ballistic arm movement to move a cursor to one of two target positions on a screen, including (1) an initial learning phase, (2) an adaptation phase with a gain change such that recalibration of the ballistic arm movement was required, and (3) a learning reactivation phase under the original gain condition. Initial error rate, asymptotic error rate, and learning rate did not differ significantly between the SBM and control groups. Relative to controls, the SBM group had reduced volumes in the cerebellar hemispheres and pericallosal gray matter (the region including the basal ganglia), although only the pericallosal gray matter was significantly correlated with motor adaptation. Congenital cerebellar dysmorphology is associated with preserved motor skill learning on voluntary, nonreflexive tasks in children with SBM, in whom the relative roles of the cerebellum and basal ganglia may differ from those in the adult brain.

  11. Studies on the mechanism of bacterial flagellar rotation and the flagellar number regulation.

    PubMed

    Kojima, Seiji

    2016-01-01

    Many motile bacteria have the motility organ, the flagellum. It rotates by the rotary motor driven by the ion-motive force and is embedded in the cell surface at the base of each flagellar filament. Many researchers have been studying its rotary mechanism for years, but most of the energy conversion processes have been remained in mystery. We focused on the flagellar stator, which works at the core process of energy conversion, and found that the periplasmic region of the stator changes its conformation to be activated only when the stator units are incorporated into the motor and anchored at the cell wall. Meanwhile, the physiologically important supramolecular complex is localized in the cell at the right place and the right time with a proper amount. How the cell achieves such a proper localization is the fundamental question for life science, and we undertake this problem by analyzing the mechanism for biogenesis of a single polar flagellum of Vibrio alginolyticus. Here I describe the molecular mechanism of how the flagellum is generated at the specific place with a proper number, and also how the flagellar stator is incorporated into the motor to complete the functional motor assembly, based on our studies.

  12. Motor-evoked potentials in masseter muscle by electrical and magnetic stimulation in intact alert man.

    PubMed

    Macaluso, G M; Pavesi, G; Bonanini, M; Mancia, D; Gennari, P U

    1990-01-01

    The electromyographic responses of the masseter after different types of transcranial stimulation were recorded with surface and needle electrodes. Magnetic stimulation at 4 cm lateral to the vertex on the biauricular line elicited MEPs in the contralateral masseter (latency 6.9 ms) due to activation of motor cortex or adjacent elements along the cortico-nuclear pathway. The ipsilateral responses to the same stimuli and to more lateral ones had shorter latencies and were ascribed to direct stimulation of the trigeminal nerve, probably its intracisternal portion. This was also the probable origin of the ipsilateral MEPs after both anodic and cathodic bipolar electrical stimulation at 7 and 11 cm lateral to the vertex on the biauricular line.

  13. Mutations in the Borrelia burgdorferi Flagellar Type III Secretion System Genes fliH and fliI Profoundly Affect Spirochete Flagellar Assembly, Morphology, Motility, Structure, and Cell Division.

    PubMed

    Lin, Tao; Gao, Lihui; Zhao, Xiaowei; Liu, Jun; Norris, Steven J

    2015-05-12

    The Lyme disease spirochete Borrelia burgdorferi migrates to distant sites in the tick vectors and mammalian hosts through robust motility and chemotaxis activities. FliH and FliI are two cytoplasmic proteins that play important roles in the type III secretion system (T3SS)-mediated export and assembly of flagellar structural proteins. However, detailed analyses of the roles of FliH and FliI in B. burgdorferi have not been reported. In this study, fliH and fliI transposon mutants were utilized to dissect the mechanism of the Borrelia type III secretion system. The fliH and fliI mutants exhibited rod-shaped or string-like morphology, greatly reduced motility, division defects (resulting in elongated organisms with incomplete division points), and noninfectivity in mice by needle inoculation. Mutants in fliH and fliI were incapable of translational motion in 1% methylcellulose or soft agar. Inactivation of either fliH or fliI resulted in the loss of the FliH-FliI complex from otherwise intact flagellar motors, as determined by cryo-electron tomography (cryo-ET). Flagellar assemblies were still present in the mutant cells, albeit in lower numbers than in wild-type cells and with truncated flagella. Genetic complementation of fliH and fliI mutants in trans restored their wild-type morphology, motility, and flagellar motor structure; however, full-length flagella and infectivity were not recovered in these complemented mutants. Based on these results, disruption of either fliH or fliI in B. burgdorferi results in a severe defect in flagellar structure and function and cell division but does not completely block the export and assembly of flagellar hook and filament proteins. Many bacteria are able to rapidly transport themselves through their surroundings using specialized organelles called flagella. In spiral-shaped organisms called spirochetes, flagella act like inboard motors and give the bacteria the ability to bore their way through dense materials (such as human

  14. A study of bacterial flagellar bundling.

    PubMed

    Flores, Heather; Lobaton, Edgar; Méndez-Diez, Stefan; Tlupova, Svetlana; Cortez, Ricardo

    2005-01-01

    Certain bacteria, such as Escherichia coli (E. coli) and Salmonella typhimurium (S. typhimurium), use multiple flagella often concentrated at one end of their bodies to induce locomotion. Each flagellum is formed in a left-handed helix and has a motor at the base that rotates the flagellum in a corkscrew motion. We present a computational model of the flagellar motion and their hydrodynamic interaction. The model is based on the equations of Stokes flow to describe the fluid motion. The elasticity of the flagella is modeled with a network of elastic springs while the motor is represented by a torque at the base of each flagellum. The fluid velocity due to the forces is described by regularized Stokeslets and the velocity due to the torques by the associated regularized rotlets. Their expressions are derived. The model is used to analyze the swimming motion of a single flagellum and of a group of three flagella in close proximity to one another. When all flagellar motors rotate counterclockwise, the hydrodynamic interaction can lead to bundling. We present an analysis of the flow surrounding the flagella. When at least one of the motors changes its direction of rotation, the same initial conditions lead to a tumbling behavior characterized by the separation of the flagella, changes in their orientation, and no net swimming motion. The analysis of the flow provides some intuition for these processes.

  15. Flagellar membranes are rich in raft-forming phospholipids

    PubMed Central

    Serricchio, Mauro; Schmid, Adrien W.; Steinmann, Michael E.; Sigel, Erwin; Rauch, Monika; Julkowska, Daria; Bonnefoy, Serge; Fort, Cécile; Bastin, Philippe; Bütikofer, Peter

    2015-01-01

    ABSTRACT The observation that the membranes of flagella are enriched in sterols and sphingolipids has led to the hypothesis that flagella might be enriched in raft-forming lipids. However, a detailed lipidomic analysis of flagellar membranes is not available. Novel protocols to detach and isolate intact flagella from Trypanosoma brucei procyclic forms in combination with reverse-phase liquid chromatography high-resolution tandem mass spectrometry allowed us to determine the phospholipid composition of flagellar membranes relative to whole cells. Our analyses revealed that phosphatidylethanolamine, phosphatidylserine, ceramide and the sphingolipids inositol phosphorylceramide and sphingomyelin are enriched in flagella relative to whole cells. In contrast, phosphatidylcholine and phosphatidylinositol are strongly depleted in flagella. Within individual glycerophospholipid classes, we observed a preference for ether-type over diacyl-type molecular species in membranes of flagella. Our study provides direct evidence for a preferential presence of raft-forming phospholipids in flagellar membranes of T. brucei. PMID:26276100

  16. Structural Analysis of the Flagellar Component Proteins in Solution by Small Angle X-Ray Scattering.

    PubMed

    Lee, Lawrence K

    2017-01-01

    Small angle X-ray scattering is an increasingly utilized method for characterizing the shape and structural properties of proteins in solution. The technique is amenable to very large protein complexes and to dynamic particles with different conformational states. It is therefore ideally suited to the analysis of some flagellar motor components. Indeed, we recently used the method to analyze the solution structure of the flagellar motor protein FliG, which when combined with high-resolution snapshots of conformational states from crystal structures, led to insights into conformational transitions that are important in mediating the self-assembly of the bacterial flagellar motor. Here, we describe procedures for X-ray scattering data collection of flagellar motor components, data analysis, and interpretation.

  17. Growth rate control of flagellar assembly in Escherichia coli strain RP437

    PubMed Central

    Sim, Martin; Koirala, Santosh; Picton, David; Strahl, Henrik; Hoskisson, Paul A.; Rao, Christopher V.; Gillespie, Colin S.; Aldridge, Phillip D.

    2017-01-01

    The flagellum is a rotary motor that enables bacteria to swim in liquids and swarm over surfaces. Numerous global regulators control flagellar assembly in response to cellular and environmental factors. Previous studies have also shown that flagellar assembly is affected by the growth-rate of the cell. However, a systematic study has not yet been described under controlled growth conditions. Here, we investigated the effect of growth rate on flagellar assembly in Escherichia coli using steady-state chemostat cultures where we could precisely control the cell growth-rate. Our results demonstrate that flagellar abundance correlates with growth rate, where faster growing cells produce more flagella. They also demonstrate that this growth-rate dependent control occurs through the expression of the flagellar master regulator, FlhD4C2. Collectively, our results demonstrate that motility is intimately coupled to the growth-rate of the cell. PMID:28117390

  18. Instability of hooks during bacterial flagellar swimming

    NASA Astrophysics Data System (ADS)

    Jabbarzadeh, Mehdi; Fu, Henry C.; Henry Fu Team

    2016-11-01

    In bacteria, a flexible hook transmits torque from the rotary motor at the cell body to the flagellum. Previously, the hook has been modeled as a Kirchhoff rod between the cell body and rotating flagellum. To study effects of the hook's flexibility on the bacteria's swimming speed and trajectory for wide range hook stiffnesses and flagellum configurations, we develop an efficient simplified spring model for the hook by linearizing the Kirchhoff rod. We treat the hydrodynamics of the cell body and helical flagellum using resistance matrices calculated by the method of regularized Stokeslets. We investigate flagellar and swimming dynamics for a range of hook flexibilities and flagellar orientations relative to the cell body and compare the results to models without hook flexibility. We investigate in detail parameters corresponding to E. coli and Vibrio alginolyticus. Generally, the flagellum changes orientation relative to the cell body, undergoing an orbit with the period of the motor rotation. We find that as the hook stiffness decreases, steady-state orbits of the flagellum first become unstable before the hook buckles, which may suggest a new mechanism of flick initiation in run-reverse-flick motility. We also find that for some parameter ranges, there are multiple stable steady state orbits, which may have implications for the tumbling and turning of bacteria.

  19. Hydrodynamic synchronization of flagellar oscillators

    NASA Astrophysics Data System (ADS)

    Friedrich, Benjamin

    2016-11-01

    In this review, we highlight the physics of synchronization in collections of beating cilia and flagella. We survey the nonlinear dynamics of synchronization in collections of noisy oscillators. This framework is applied to flagellar synchronization by hydrodynamic interactions. The time-reversibility of hydrodynamics at low Reynolds numbers requires swimming strokes that break time-reversal symmetry to facilitate hydrodynamic synchronization. We discuss different physical mechanisms for flagellar synchronization, which break this symmetry in different ways.

  20. SEROLOGICAL SIMILARITY OF FLAGELLAR AND MITOTIC MICROTUBULES

    PubMed Central

    Fulton, Chandler; Kane, R. E.; Stephens, R. E.

    1971-01-01

    An antiserum to flagellar axonemes from sperm of Arbacia punctulata contains antibodies which react both with intact flagellar outer fibers and with purified tubulin from the outer fibers. Immunodiffusion tests indicate the presence of similar antigenic determinants on outer-fiber tubulins from sperm flagella of five species of sea urchins and a sand dollar, but not a starfish. The antibodies also react with extracts containing tubulins from different classes of microtubules, including central-pair fibers and both A- and B-subfibers from outer fibers of sperm flagella, an extract from unfertilized eggs, mitotic apparatuses from first cleavage embryos, and cilia from later embryos. Though most tubulins tested share similar antigenic determinants, some clear differences have been detected, even, in Pseudoboletia indiana, between the outer-fiber tubulins of sperm flagella and blastular cilia. Though tubulins are "actin-like" proteins, antitubulin serum does not react with actin from sea urchin lantern muscle. On the basis of these observations, we suggest that various echinoid microtubules are built of similar, but not identical, tubulins. PMID:4106543

  1. Second-Chance Signal Transduction Explains Cooperative Flagellar Switching

    PubMed Central

    Zot, Henry G.; Hasbun, Javier E.; Van Minh, Nguyen

    2012-01-01

    The reversal of flagellar motion (switching) results from the interaction between a switch complex of the flagellar rotor and a torque-generating stationary unit, or stator (motor unit). To explain the steeply cooperative ligand-induced switching, present models propose allosteric interactions between subunits of the rotor, but do not address the possibility of a reaction that stimulates a bidirectional motor unit to reverse direction of torque. During flagellar motion, the binding of a ligand-bound switch complex at the dwell site could excite a motor unit. The probability that another switch complex of the rotor, moving according to steady-state rotation, will reach the same dwell site before that motor unit returns to ground state will be determined by the independent decay rate of the excited-state motor unit. Here, we derive an analytical expression for the energy coupling between a switch complex and a motor unit of the stator complex of a flagellum, and demonstrate that this model accounts for the cooperative switching response without the need for allosteric interactions. The analytical result can be reproduced by simulation when (1) the motion of the rotor delivers a subsequent ligand-bound switch to the excited motor unit, thereby providing the excited motor unit with a second chance to remain excited, and (2) the outputs from multiple independent motor units are constrained to a single all-or-none event. In this proposed model, a motor unit and switch complex represent the components of a mathematically defined signal transduction mechanism in which energy coupling is driven by steady-state and is regulated by stochastic ligand binding. Mathematical derivation of the model shows the analytical function to be a general form of the Hill equation (Hill AV (1910) The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J Physiol 40: iv–vii). PMID:22844429

  2. H{sup +} and Na{sup +} are involved in flagellar rotation of the spirochete Leptospira

    SciTech Connect

    Islam, Md. Shafiqul; Morimoto, Yusuke V.; Kudo, Seishi; Nakamura, Shuichi

    2015-10-16

    Leptospira is a spirochete possessing intracellular flagella. Each Leptospira flagellar filament is linked with a flagellar motor composed of a rotor and a dozen stators. For many bacterial species, it is known that the stator functions as an ion channel and that the ion flux through the stator is coupled with flagellar rotation. The coupling ion varies depending on the species; for example, H{sup +} is used in Escherichia coli, and Na{sup +} is used in Vibrio spp. to drive a polar flagellum. Although genetic and structural studies illustrated that the Leptospira flagellar motor also contains a stator, the coupling ion for flagellar rotation remains unknown. In the present study, we analyzed the motility of Leptospira under various pH values and salt concentrations. Leptospira cells displayed motility in acidic to alkaline pH. In the presence of a protonophore, the cells completely lost motility in acidic to neutral pH but displayed extremely slow movement under alkaline conditions. This result suggests that H{sup +} is a major coupling ion for flagellar rotation over a wide pH range; however, we also observed that the motility of Leptospira was significantly enhanced by the addition of Na{sup +}, though it vigorously moved even under Na{sup +}-free conditions. These results suggest that H{sup +} is preferentially used and that Na{sup +} is secondarily involved in flagellar rotation in Leptospira. The flexible ion selectivity in the flagellar system could be advantageous for Leptospira to survive in a wide range of environment. - Highlights: • This is a study on input energy for motility in the spirochete Leptospira. • Leptospira biflexa exhibited active motility in acidic to alkaline pH. • Both H{sup +} and Na{sup +} are involved in flagellar rotation in Leptospira. • H{sup +} is a primary energy source, but Na{sup +} can secondarily enhance motility.

  3. Analysis of flagellar phosphoproteins from Chlamydomonas reinhardtii.

    PubMed

    Boesger, Jens; Wagner, Volker; Weisheit, Wolfram; Mittag, Maria

    2009-07-01

    Cilia and flagella are cell organelles that are highly conserved throughout evolution. For many years, the green biflagellate alga Chlamydomonas reinhardtii has served as a model for examination of the structure and function of its flagella, which are similar to certain mammalian cilia. Proteome analysis revealed the presence of several kinases and protein phosphatases in these organelles. Reversible protein phosphorylation can control ciliary beating, motility, signaling, length, and assembly. Despite the importance of this posttranslational modification, the identities of many ciliary phosphoproteins and knowledge about their in vivo phosphorylation sites are still missing. Here we used immobilized metal affinity chromatography to enrich phosphopeptides from purified flagella and analyzed them by mass spectrometry. One hundred forty-one phosphorylated peptides were identified, belonging to 32 flagellar proteins. Thereby, 126 in vivo phosphorylation sites were determined. The flagellar phosphoproteome includes different structural and motor proteins, kinases, proteins with protein interaction domains, and many proteins whose functions are still unknown. In several cases, a dynamic phosphorylation pattern and clustering of phosphorylation sites were found, indicating a complex physiological status and specific control by reversible protein phosphorylation in the flagellum.

  4. Select Acetophenones Modulate Flagellar Motility in Chlamydomonas

    PubMed Central

    Evans, Shakila K.; Pearce, Austin A.; Ibezim, Prudence K.; Primm, Todd P.; Gaillard, Anne R.

    2009-01-01

    Acetophenones were screened for activity against positive phototaxis of Chlamydomonas cells, a process that requires coordinated flagellar motility. The structure-activity relationships of a series of acetophenones are reported, including acetophenones that affect flagellar motility and cell viability. Notably, 4-methoxyacetophenone, 3,4-dimethoxyacetophenone, and 4-hydroxyacetophenone induced negative phototaxis in Chlamydomonas, suggesting interference with activity of flagellar proteins and control of flagellar dominance. PMID:20659114

  5. Intact sensory-motor network structure and function in far from onset premanifest Huntington’s disease

    PubMed Central

    Gorges, Martin; Müller, Hans-Peter; Mayer, Isabella Maria Sophie; Grupe, Gesa Sophie; Kammer, Thomas; Grön, Georg; Kassubek, Jan; Landwehrmeyer, G. Bernhard; Wolf, Robert Christian; Orth, Michael

    2017-01-01

    Structural and functional changes attributable to the neurodegenerative process in Huntington’s disease (HD) may be evident in HTT CAG repeat expansion carriers before the clinical manifestations of HD. It remains unclear, though, how far from motor onset a consistent signature of the neurodegenerative process in HD can be detected. Twelve far from onset preHD and 22 age-matched healthy control participants underwent volumetric structural magnetic resonance imaging (MRI), diffusion tensor imaging (DTI), and resting-state functional MRI (11 preHD, 22 controls) as well as electrophysiological measurements (12 preHD, 13 controls). There were no significant differences in white matter macro- and microstructure between far from onset preHD participants and controls. Functional connectivity in a basal ganglia-thalamic and motor networks, all measures of the motor efferent and sensory afferent pathways as well as sensory-motor integration were also similar in far from onset preHD and controls. With the methods used in far from onset preHD sensory-motor neural macro- or micro-structure and brain function were similar to healthy controls. This suggests that any observable structural and functional change in preHD nearer to onset, or in manifest HD, at least using comparable techniques such as in this study, most likely reflects an ongoing neurodegenerative process. PMID:28266655

  6. Intraflagellar transport (IFT) cargo: IFT transports flagellar precursors to the tip and turnover products to the cell body.

    PubMed

    Qin, Hongmin; Diener, Dennis R; Geimer, Stefan; Cole, Douglas G; Rosenbaum, Joel L

    2004-01-19

    Intraflagellar transport (IFT) is the bidirectional movement of multisubunit protein particles along axonemal microtubules and is required for assembly and maintenance of eukaryotic flagella and cilia. One posited role of IFT is to transport flagellar precursors to the flagellar tip for assembly. Here, we examine radial spokes, axonemal subunits consisting of 22 polypeptides, as potential cargo for IFT. Radial spokes were found to be partially assembled in the cell body, before being transported to the flagellar tip by anterograde IFT. Fully assembled radial spokes, detached from axonemal microtubules during flagellar breakdown or turnover, are removed from flagella by retrograde IFT. Interactions between IFT particles, motors, radial spokes, and other axonemal proteins were verified by coimmunoprecipitation of these proteins from the soluble fraction of Chlamydomonas flagella. These studies indicate that one of the main roles of IFT in flagellar assembly and maintenance is to transport axonemal proteins in and out of the flagellum.

  7. Modulation of Training by Single-Session Transcranial Direct Current Stimulation to the Intact Motor Cortex Enhances Motor Skill Acquisition of the Paretic Hand

    PubMed Central

    Zimerman, Máximo; Heise, Kirstin F.; Hoppe, Julia; Cohen, Leonardo G.; Gerloff, Christian; Hummel, Friedhelm C.

    2016-01-01

    Background and Purpose Mechanisms of skill learning are paramount components for stroke recovery. Recent noninvasive brain stimulation studies demonstrated that decreasing activity in the contralesional motor cortex might be beneficial, providing transient functional improvements after stroke. The more crucial question, however, is whether this intervention can also enhance the acquisition of complex motor tasks, yielding longer-lasting functional improvements. In the present study, we tested the capacity of cathodal transcranial direct current stimulation (tDCS) applied over the contralesional motor cortex during training to enhance the acquisition and retention of complex sequential finger movements of the paretic hand. Method Twelve well-recovered chronic patients with subcortical stroke attended 2 training sessions during which either cathodal tDCS or a sham intervention were applied to the contralesional motor cortex in a double-blind, crossover design. Two different motor sequences, matched for their degree of complexity, were tested in a counterbalanced order during as well as 90 minutes and 24 hours after the intervention. Potential underlying mechanisms were evaluated with transcranial magnetic stimulation. Results tDCS facilitated the acquisition of a new motor skill compared with sham stimulation (P=0.04) yielding better task retention results. A significant correlation was observed between the tDCS-induced improvement during training and the tDCS-induced changes of intracortical inhibition (R2=0.63). Conclusions These results indicate that tDCS is a promising tool to improve not only motor behavior, but also procedural learning. They further underline the potential of noninvasive brain stimulation as an adjuvant treatment for long-term recovery, at least in patients with mild functional impairment after stroke. PMID:22618381

  8. An adolescent with intact motor skills and intelligence after infant hemorrhagic stroke without rehabilitation therapy: a case report.

    PubMed

    Lee, Shenghuo; Yan, Tiebin; Lu, Xiao

    2012-01-01

    Devastating intracerebral hemorrhagic stroke is rarely encountered in children, but it has a high mortality rate. The case of a 15-year-old boy who survived a major stroke at 40 days old is described. He showed no significant motor or intelligence impairment in adolescence until he was hospitalized for transient left had tremors and slight left hand weakness caused by a cyst. The patient's almost complete motor recovery highlights the power of neural plasticity in young patients. The pediatric stroke was huge, but this did not affect his adolescent movement or intelligence, demonstrating the great neuroplastic potential of the developing human brain. These observations may help increase our knowledge about stroke in children and improve the treatment of pediatric stroke patients.

  9. Intact neurogenesis is required for benefits of exercise on spatial memory but not motor performance or contextual fear conditioning in C57BL/6J mice.

    PubMed

    Clark, P J; Brzezinska, W J; Thomas, M W; Ryzhenko, N A; Toshkov, S A; Rhodes, J S

    2008-09-09

    The mammalian hippocampus continues to generate new neurons throughout life. Experiences such as exercise, anti-depressants, and stress regulate levels of neurogenesis. Exercise increases adult hippocampal neurogenesis and enhances behavioral performance on rotarod, contextual fear and water maze in rodents. To directly test whether intact neurogenesis is required for gains in behavioral performance from exercise in C57BL/6J mice, neurogenesis was reduced using focal gamma irradiation (3 sessions of 5 Gy). Two months after treatment, mice (total n=42 males and 42 females) (Irradiated or Sham), were placed with or without running wheels (Runner or Sedentary) for 54 days. The first 10 days mice received daily injections of bromodeoxyuridine (BrdU) to label dividing cells. The last 14 days mice were tested on water maze (two trials per day for 5 days, then 1 h later probe test), rotarod (four trials per day for 3 days), and contextual fear conditioning (2 days), then measured for neurogenesis using immunohistochemical detection of BrdU and neuronal nuclear protein (NeuN) mature neuronal marker. Consistent with previous studies, in Sham animals, running increased neurogenesis fourfold and gains in performance were observed for the water maze (spatial learning and memory), rotarod (motor performance), and contextual fear (conditioning). These positive results provided the reference to determine whether gains in performance were blocked by irradiation. Irradiation reduced neurogenesis by 50% in both groups, Runner and Sedentary. Irradiation did not affect running or baseline performance on any task. Minimal changes in microglia associated with inflammation (using immunohistochemical detection of cd68) were detected at the time of behavioral testing. Irradiation did not reduce gains in performance on rotarod or contextual fear, however it eliminated gain in performance on the water maze. Results support the hypothesis that intact exercise-induced hippocampal neurogenesis

  10. Nonlinear amplitude dynamics in flagellar beating

    NASA Astrophysics Data System (ADS)

    Oriola, David; Gadêlha, Hermes; Casademunt, Jaume

    2017-03-01

    The physical basis of flagellar and ciliary beating is a major problem in biology which is still far from completely understood. The fundamental cytoskeleton structure of cilia and flagella is the axoneme, a cylindrical array of microtubule doublets connected by passive cross-linkers and dynein motor proteins. The complex interplay of these elements leads to the generation of self-organized bending waves. Although many mathematical models have been proposed to understand this process, few attempts have been made to assess the role of dyneins on the nonlinear nature of the axoneme. Here, we investigate the nonlinear dynamics of flagella by considering an axonemal sliding control mechanism for dynein activity. This approach unveils the nonlinear selection of the oscillation amplitudes, which are typically either missed or prescribed in mathematical models. The explicit set of nonlinear equations are derived and solved numerically. Our analysis reveals the spatio-temporal dynamics of dynein populations and flagellum shape for different regimes of motor activity, medium viscosity and flagellum elasticity. Unstable modes saturate via the coupling of dynein kinetics and flagellum shape without the need of invoking a nonlinear axonemal response. Hence, our work reveals a novel mechanism for the saturation of unstable modes in axonemal beating.

  11. Nonlinear amplitude dynamics in flagellar beating

    PubMed Central

    Casademunt, Jaume

    2017-01-01

    The physical basis of flagellar and ciliary beating is a major problem in biology which is still far from completely understood. The fundamental cytoskeleton structure of cilia and flagella is the axoneme, a cylindrical array of microtubule doublets connected by passive cross-linkers and dynein motor proteins. The complex interplay of these elements leads to the generation of self-organized bending waves. Although many mathematical models have been proposed to understand this process, few attempts have been made to assess the role of dyneins on the nonlinear nature of the axoneme. Here, we investigate the nonlinear dynamics of flagella by considering an axonemal sliding control mechanism for dynein activity. This approach unveils the nonlinear selection of the oscillation amplitudes, which are typically either missed or prescribed in mathematical models. The explicit set of nonlinear equations are derived and solved numerically. Our analysis reveals the spatio-temporal dynamics of dynein populations and flagellum shape for different regimes of motor activity, medium viscosity and flagellum elasticity. Unstable modes saturate via the coupling of dynein kinetics and flagellum shape without the need of invoking a nonlinear axonemal response. Hence, our work reveals a novel mechanism for the saturation of unstable modes in axonemal beating. PMID:28405357

  12. Non-equilibrium effect in the allosteric regulation of the bacterial flagellar switch

    NASA Astrophysics Data System (ADS)

    Wang, Fangbin; Shi, Hui; He, Rui; Wang, Renjie; Zhang, Rongjing; Yuan, Junhua

    2017-07-01

    The switching mechanism of the flagellar motor provides the basis for the motile behaviour of flagellated bacteria. Its highly sensitive response has previously been understood in terms of equilibrium models, either the classical two-state concerted allosteric model, or more generally, the Ising-type conformation spread model. Here, we systematically study motor switching under various load conditions from high to zero load, under different proton motive force (pmf) conditions and varying the number of torque-generating units (stators). In doing so, we reveal the signature of a non-equilibrium effect. To consistently account for the motor-switching dependence on each those conditions, a previously neglected non-equilibrium effect--the energy input from the motor torque--has to be incorporated into models of the flagellar switch. We further show that this effect increases the sensitivity of the flagellar switch. Exploiting a very small fraction of the energy expense of the flagellar motor for functional regulation increases its sensitivity greatly. Similar mechanisms are expected to be found in other protein complexes.

  13. Mechanism for adaptive remodeling of the bacterial flagellar switch

    PubMed Central

    Lele, Pushkar P.; Branch, Richard W.; Nathan, Vedhavalli S. J.; Berg, Howard C.

    2012-01-01

    The bacterial flagellar motor has been shown in previous work to adapt to changes in the steady-state concentration of the chemotaxis signaling molecule, CheY-P, by changing the FliM content. We show here that the number of FliM molecules in the motor and the fraction of FliM molecules that exchange depend on the direction of flagellar rotation, not on CheY-P binding per se. Our results are consistent with a model in which the structural differences associated with the direction of rotation modulate the strength of FliM binding. When the motor spins counterclockwise, FliM binding strengthens, the fraction of FliM molecules that exchanges decreases, and the ring content increases. The larger number of CheY-P binding sites enhances the motor’s sensitivity, i.e., the motor adapts. An interesting unresolved question is how additional copies of FliM might be accommodated. PMID:23169659

  14. Signal-dependent turnover of the bacterial flagellar switch protein FliM

    PubMed Central

    Delalez, Nicolas J.; Wadhams, George H.; Rosser, Gabriel; Xue, Quan; Brown, Mostyn T.; Dobbie, Ian M.; Berry, Richard M.; Leake, Mark C.; Armitage, Judith P.

    2010-01-01

    Most biological processes are performed by multiprotein complexes. Traditionally described as static entities, evidence is now emerging that their components can be highly dynamic, exchanging constantly with cellular pools. The bacterial flagellar motor contains ∼13 different proteins and provides an ideal system to study functional molecular complexes. It is powered by transmembrane ion flux through a ring of stator complexes that push on a central rotor. The Escherichia coli motor switches direction stochastically in response to binding of the response regulator CheY to the rotor switch component FliM. Much is known of the static motor structure, but we are just beginning to understand the dynamics of its individual components. Here we measure the stoichiometry and turnover of FliM in functioning flagellar motors, by using high-resolution fluorescence microscopy of E. coli expressing genomically encoded YPet derivatives of FliM at physiological levels. We show that the ∼30 FliM molecules per motor exist in two discrete populations, one tightly associated with the motor and the other undergoing stochastic turnover. This turnover of FliM molecules depends on the presence of active CheY, suggesting a potential role in the process of motor switching. In many ways the bacterial flagellar motor is as an archetype macromolecular assembly, and our results may have further implications for the functional relevance of protein turnover in other large molecular complexes. PMID:20498085

  15. Flagellar flows around bacterial swarms

    NASA Astrophysics Data System (ADS)

    Dauparas, Justas; Lauga, Eric

    2016-08-01

    Flagellated bacteria on nutrient-rich substrates can differentiate into a swarming state and move in dense swarms across surfaces. A recent experiment measured the flow in the fluid around an Escherichia coli swarm [Wu, Hosu, and Berg, Proc. Natl. Acad. Sci. USA 108, 4147 (2011)], 10.1073/pnas.1016693108. A systematic chiral flow was observed in the clockwise direction (when viewed from above) ahead of the swarm with flow speeds of about 10 μ m /s , about 3 times greater than the radial velocity at the edge of the swarm. The working hypothesis is that this flow is due to the action of cells stalled at the edge of a colony that extend their flagellar filaments outward, moving fluid over the virgin agar. In this work we quantitatively test this hypothesis. We first build an analytical model of the flow induced by a single flagellum in a thin film and then use the model, and its extension to multiple flagella, to compare with experimental measurements. The results we obtain are in agreement with the flagellar hypothesis. The model provides further quantitative insight into the flagella orientations and their spatial distributions as well as the tangential speed profile. In particular, the model suggests that flagella are on average pointing radially out of the swarm and are not wrapped tangentially.

  16. Rhythmicity, Recurrence, and Recovery of Flagellar Beating

    NASA Astrophysics Data System (ADS)

    Wan, Kirsty Y.; Goldstein, Raymond E.

    2014-12-01

    The eukaryotic flagellum beats with apparently unfailing periodicity, yet responds rapidly to stimuli. Like the human heartbeat, flagellar oscillations are now known to be noisy. Using the alga C. reinhardtii, we explore three aspects of nonuniform flagellar beating. We report the existence of rhythmicity, waveform noise peaking at transitions between power and recovery strokes, and fluctuations of interbeat intervals that are correlated and even recurrent, with memory extending to hundreds of beats. These features are altered qualitatively by physiological perturbations. Further, we quantify the recovery of periodic breaststroke beating from transient hydrodynamic forcing. These results will help constrain microscopic theories on the origins and regulation of flagellar beating.

  17. Protein Arginine Methyltransferases Interact with IFT Particles and Change Location During Flagellar Growth and Resorption.

    PubMed

    Mizuno, Katsutoshi; Sloboda, Roger D

    2017-03-15

    Changes in protein activity driven by post translational modifications comprise an important mechanism for the control of many cellular processes. Several flagellar proteins are methylated on arginine residues during flagellar resorption; however, the function is not understood. To learn more about the role of protein methylation during flagellar dynamics, we have focused on protein arginine methyltransferases (PRMTs) 1, 3, 5, and 10. These PRMTs localize to the tip of flagella and in a punctate pattern along the length, very similar, but not identical, to that of intraflagellar transport (IFT) components. In addition, we found that PRMTs 1 and 3 are also highly enriched at the base of the flagella, and the basal localization of these PRMTs changes during flagellar regeneration and resorption. Proteins with methyl arginine residues are also enriched at the tip and base of flagella, and their localization also changes during flagellar assembly and disassembly. PRMTs are lost from the flagella of fla10-1 cells, which carry a temperature sensitive mutation in the anterograde motor for IFT. The data define the distribution of specific PRMTs and their target proteins in flagella, and demonstrate that PRMTs are cargo for translocation within flagella by the process of IFT.

  18. Bacterial flagellar microhydrodynamics: Laminar flow over complex flagellar filaments, analog archimedean screws and cylinders, and its perturbations.

    PubMed

    Trachtenberg, Shlomo; Fishelov, Dalia; Ben-Artzi, Matania

    2003-09-01

    The flagellar filament, the bacterial organelle of motility, is the smallest rotary propeller known. It consists of 1), a basal body (part of which is the proton driven rotary motor), 2), a hook (universal joint-allowing for off-axial transmission of rotary motion), and 3), a filament (propeller-a long, rigid, supercoiled helical assembly allowing for the conversion of rotary motion into linear thrust). Helically perturbed (so-called "complex") filaments have a coarse surface composed of deep grooves and ridges following the three-start helical lines. These surface structures, reminiscent of a turbine or Archimedean screw, originate from symmetry reduction along the six-start helical lines due to dimerization of the flagellin monomers from which the filament self assembles. Using high-resolution electron microscopy and helical image reconstruction methods, we calculated three-dimensional density maps of the complex filament of Rhizobium lupini H13-3 and determined its surface pattern and boundaries. The helical symmetry of the filament allows viewing it as a stack of identical slices spaced axially and rotated by constant increments. Here we use the closed outlines of these slices to explore, in two dimensions, the hydrodynamic effect of the turbine-like boundaries of the flagellar filament. In particular, we try to determine if, and under what conditions, transitions from laminar to turbulent flow (or perturbations of the laminar flow) may occur on or near the surface of the bacterial propeller. To address these questions, we apply the boundary element method in a manner allowing the handling of convoluted boundaries. We tested the method on several simple, well-characterized cylindrical structures before applying it to real, highly convoluted biological surfaces and to simplified mechanical analogs. Our results indicate that under extreme structural and functional conditions, and at low Reynolds numbers, a deviation from laminar flow might occur on the flagellar

  19. Structure of the microtubule-binding domain of flagellar dynein.

    PubMed

    Kato, Yusuke S; Yagi, Toshiki; Harris, Sarah A; Ohki, Shin-ya; Yura, Kei; Shimizu, Youské; Honda, Shinya; Kamiya, Ritsu; Burgess, Stan A; Tanokura, Masaru

    2014-11-04

    Flagellar dyneins are essential microtubule motors in eukaryotes, as they drive the beating motions of cilia and flagella. Unlike myosin and kinesin motors, the track binding mechanism of dyneins and the regulation between the strong and weak binding states remain obscure. Here we report the solution structure of the microtubule-binding domain of flagellar dynein-c/DHC9 (dynein-c MTBD). The structure reveals a similar overall helix-rich fold to that of the MTBD of cytoplasmic dynein (cytoplasmic MTBD), but dynein-c MTBD has an additional flap, consisting of an antiparallel b sheet. The flap is positively charged and highly flexible. Despite the structural similarity to cytoplasmic MTBD, dynein-c MTBD shows only a small change in the microtubule- binding affinity depending on the registry change of coiled coil-sliding, whereby lacks the apparent strong binding state. The surface charge distribution of dynein-c MTBD also differs from that of cytoplasmic MTBD, which suggests a difference in the microtubule-binding mechanism.

  20. Flagellar Synchronization Is a Simple Alternative to Cell Cycle Synchronization for Ciliary and Flagellar Studies.

    PubMed

    Dutta, Soumita; Avasthi, Prachee

    2017-01-01

    The unicellular green alga Chlamydomonas reinhardtii is an ideal model organism for studies of ciliary function and assembly. In assays for biological and biochemical effects of various factors on flagellar structure and function, synchronous culture is advantageous for minimizing variability. Here, we have characterized a method in which 100% synchronization is achieved with respect to flagellar length but not with respect to the cell cycle. The method requires inducing flagellar regeneration by amputation of the entire cell population and limiting regeneration time. This results in a maximally homogeneous distribution of flagellar lengths at 3 h postamputation. We found that time-limiting new protein synthesis during flagellar synchronization limits variability in the unassembled pool of limiting flagellar protein and variability in flagellar length without affecting the range of cell volumes. We also found that long- and short-flagella mutants that regenerate normally require longer and shorter synchronization times, respectively. By minimizing flagellar length variability using a simple method requiring only hours and no changes in media, flagellar synchronization facilitates the detection of small changes in flagellar length resulting from both chemical and genetic perturbations in Chlamydomonas. This method increases our ability to probe the basic biology of ciliary size regulation and related disease etiologies. IMPORTANCE Cilia and flagella are highly conserved antenna-like organelles that found in nearly all mammalian cell types. They perform sensory and motile functions contributing to numerous physiological and developmental processes. Defects in their assembly and function are implicated in a wide range of human diseases ranging from retinal degeneration to cancer. Chlamydomonas reinhardtii is an algal model system for studying mammalian cilium formation and function. Here, we report a simple synchronization method that allows detection of small

  1. Identification of Archaea-specific chemotaxis proteins which interact with the flagellar apparatus

    PubMed Central

    2009-01-01

    Background Archaea share with bacteria the ability to bias their movement towards more favorable locations, a process known as taxis. Two molecular systems drive this process: the motility apparatus and the chemotaxis signal transduction system. The first consists of the flagellum, the flagellar motor, and its switch, which allows cells to reverse the rotation of flagella. The second targets the flagellar motor switch in order to modulate the switching frequency in response to external stimuli. While the signal transduction system is conserved throughout archaea and bacteria, the archaeal flagellar apparatus is different from the bacterial one. The proteins constituting the flagellar motor and its switch in archaea have not yet been identified, and the connection between the bacterial-like chemotaxis signal transduction system and the archaeal motility apparatus is unknown. Results Using protein-protein interaction analysis, we have identified three proteins in Halobacterium salinarum that interact with the chemotaxis (Che) proteins CheY, CheD, and CheC2, as well as the flagella accessory (Fla) proteins FlaCE and FlaD. Two of the proteins belong to the protein family DUF439, the third is a HEAT_PBS family protein. In-frame deletion strains for all three proteins were generated and analyzed as follows: a) photophobic responses were measured by a computer-based cell tracking system b) flagellar rotational bias was determined by dark-field microscopy, and c) chemotactic behavior was analyzed by a swarm plate assay. Strains deleted for the HEAT_PBS protein or one of the DUF439 proteins proved unable to switch the direction of flagellar rotation. In these mutants, flagella rotate only clockwise, resulting in exclusively forward swimming cells that are unable to respond to tactic signals. Deletion of the second DUF439 protein had only minimal effects. HEAT_PBS proteins could be identified in the chemotaxis gene regions of all motile haloarchaea sequenced so far, but not

  2. Probing the role of IFT particle complex A and B in flagellar entry and exit of IFT-dynein in Chlamydomonas.

    PubMed

    Williamson, Shana M; Silva, David A; Richey, Elizabeth; Qin, Hongmin

    2012-07-01

    Mediating the transport of flagellar precursors and removal of turnover products, intraflagellar transport (IFT) is required for flagella assembly and maintenance. The IFT apparatus is composed of the anterograde IFT motor kinesin II, the retrograde IFT motor IFT-dynein, and IFT particles containing two complexes, A and B. In order to have a balanced two-way transportation, IFT-dynein has to be carried into flagella and transported to the flagellar tip by kinesin II, where it is activated to drive the retrograde IFT back to the flagellar base. In this study, we investigated the role of complex A and complex B in the flagellar entry and exit of IFT-dynein. We showed that regardless of the amount of complex A, IFT-dynein accumulated proportionally to the amount of complex B in the flagella of fla15/ift144 and fla17-1/ift139, two complex A temperature-sensitive mutants. Complex A was depleted from both cellular and flagellar compartments in fla15/ift144 mutant. However, in fla17-1/ift139 mutant, the flagellar level of complex A was at the wild-type level, which was in radical contrast to the significantly reduced cellular amount of complex A. These results support that complex A is not required for the flagellar entry of IFT-dynein, but might be essential for the lagellar exit of IFT-dynein. Additionally, we confirmed the essential role of IFT172, a complex B subunit, in the flagellar entry of IFT-dynein. These results indicate that complexes A and B play complementary but distinct roles for IFT-dynein, with complex B carrying IFT-dynein into the flagella while complex A mediates the flagellar exit of IFT-dynein.

  3. Flagellar proteins of motile spores of Actinomycetes.

    PubMed

    Vesselinova, N I; Ensign, J C

    1996-06-01

    Flagella of some of the actinoplanete genera were purified and the molecular sizes of their flagellin subunits compared by SDS-PAGE analysis to flagellins of cells of other bacteria. Several species of Actinoplanes have a major flagellar protein of subunit sizes of 42-43 kDa and a lesser amount of a second protein, possibly a minor flagellin subunit, of 60 kDa. The flagellar protein sizes of other actinoplanetes ranged from 32-43 kDa (major) and 48-58 kDa (minor). Antibodies formed against the 42-kDa protein of A. rectilineatus showed cross-reactivity in Western blots against flagellar proteins of spores of other Actinoplanes species, two species of Dactylosporangium and an Ampullariella species. Cross-reactivity was also observed with motile cells of two other actinomycetes, Arthrobacter atrocyaneus and a Geodermatophilus species, and with Bacillus subtilis. No cross-reactivity was observed with Escherichia coli or Planomonospora parontospora flagellar proteins. The amino acid composition and partial N-terminal sequence of the 42-kDa flagellar protein of A. rectilineatus was compared to literature data for other bacterial flagellins and found to be most similar to B. subtilis 168.

  4. Analysis of unstable modes distinguishes mathematical models of flagellar motion

    PubMed Central

    Bayly, P. V.; Wilson, K. S.

    2015-01-01

    The mechanisms underlying the coordinated beating of cilia and flagella remain incompletely understood despite the fundamental importance of these organelles. The axoneme (the cytoskeletal structure of cilia and flagella) consists of microtubule doublets connected by passive and active elements. The motor protein dynein is known to drive active bending, but dynein activity must be regulated to generate oscillatory, propulsive waveforms. Mathematical models of flagellar motion generate quantitative predictions that can be analysed to test hypotheses concerning dynein regulation. One approach has been to seek periodic solutions to the linearized equations of motion. However, models may simultaneously exhibit both periodic and unstable modes. Here, we investigate the emergence and coexistence of unstable and periodic modes in three mathematical models of flagellar motion, each based on a different dynein regulation hypothesis: (i) sliding control; (ii) curvature control and (iii) control by interdoublet separation (the ‘geometric clutch’ (GC)). The unstable modes predicted by each model are used to critically evaluate the underlying hypothesis. In particular, models of flagella with ‘sliding-controlled’ dynein activity admit unstable modes with non-propulsive, retrograde (tip-to-base) propagation, sometimes at the same parameter values that lead to periodic, propulsive modes. In the presence of these retrograde unstable modes, stable or periodic modes have little influence. In contrast, unstable modes of the GC model exhibit switching at the base and propulsive base-to-tip propagation. PMID:25833248

  5. Analysis of Flagellar Phosphoproteins from Chlamydomonas reinhardtii▿ †

    PubMed Central

    Boesger, Jens; Wagner, Volker; Weisheit, Wolfram; Mittag, Maria

    2009-01-01

    Cilia and flagella are cell organelles that are highly conserved throughout evolution. For many years, the green biflagellate alga Chlamydomonas reinhardtii has served as a model for examination of the structure and function of its flagella, which are similar to certain mammalian cilia. Proteome analysis revealed the presence of several kinases and protein phosphatases in these organelles. Reversible protein phosphorylation can control ciliary beating, motility, signaling, length, and assembly. Despite the importance of this posttranslational modification, the identities of many ciliary phosphoproteins and knowledge about their in vivo phosphorylation sites are still missing. Here we used immobilized metal affinity chromatography to enrich phosphopeptides from purified flagella and analyzed them by mass spectrometry. One hundred forty-one phosphorylated peptides were identified, belonging to 32 flagellar proteins. Thereby, 126 in vivo phosphorylation sites were determined. The flagellar phosphoproteome includes different structural and motor proteins, kinases, proteins with protein interaction domains, and many proteins whose functions are still unknown. In several cases, a dynamic phosphorylation pattern and clustering of phosphorylation sites were found, indicating a complex physiological status and specific control by reversible protein phosphorylation in the flagellum. PMID:19429781

  6. Rhythmicity, recurrence, and recovery of flagellar beating

    NASA Astrophysics Data System (ADS)

    Wan, Kirsty; Goldstein, Raymond

    2015-03-01

    The eukaryotic flagellum beats with apparently unfailing periodicity, yet responds rapidly to stimuli. Like the human heartbeat, flagellar oscillations are now known to be noisy. Using the unicellular alga Chlamydomonas reinhardtii, we explore three aspects of nonuniform flagellar beating. We report the existence of rhythmicity, waveform noise peaking at transitions between power and recovery strokes, and fluctuations of interbeat intervals that are correlated and even recurrent, with memory extending to hundreds of beats. These features are altered qualitatively by physiological perturbations. Further, we quantify the recovery of periodic breaststroke beating from transient hydrodynamic forcing. These results will help constrain microscopic theories on the origins and regulation of flagellar beating. Financial support is acknowledged from the EPSRC, ERC Advanced Investigator Grant No. 247333, and a Senior Investigator Award from the Wellcome Trust.

  7. Silencing of a putative inner arm dynein heavy chain results in flagellar immotility in Trypanosoma brucei

    PubMed Central

    Springer, Amy L.; Bruhn, David F.; Kinzel, Kathryn W.; Rosenthal, Noël F.; Zukas, Randi; Klingbeil, Michele M.

    2010-01-01

    The Trypanosoma brucei flagellum controls motility and is crucial for cell polarity and division. Unique features of trypanosome motility suggest that flagellar beat regulation in this organism is unusual and worthy of study. The flagellar axoneme, required for motility, has a structure that is highly conserved among eukaryotes. Of the several dyneins in the axonemal inner arm complex, dynein f is thought to control flagellar waveform shape. A T. brucei gene predicted to encode the dynein f alpha heavy chain, TbDNAH10, was silenced using RNA interference in procyclic T. brucei cells. This resulted in immotile flagella, showing no movement except for occasional slight twitches at the tips. Cell growth slowed dramatically and cells were found in large clusters. Microscopic analysis of silenced cultures showed many cells with detached flagella, sometimes entangled between multiple cells. DAPI staining showed an increased frequency of mis-positioned kinetoplasts and multinucleate cells, suggesting that these cells experience disruption at an early cell cycle stage, probably secondary to the motility defect. TEM images showed apparently normal axonemes and no discernable defects in inner arm structure. This study demonstrates use of RNAi as an effective method to study very large genes such as dynein heavy chains (HCs), and the immotility phenotype of these dynein knockdowns suggests that an intact inner arm is necessary for flagellar beating in T. brucei. Since analogous mutants in Chlamydomonas reinhardtii retain motility, this phenotype likely reflects differences in requirements for motility and/or dynein assembly between the two organisms and these comparative studies will help elucidate the mechanisms of flagellar beat regulation. PMID:20888370

  8. A solid-state control system for dynein-based ciliary/flagellar motility

    PubMed Central

    2013-01-01

    Ciliary and flagellar beating requires the coordinated action of multiple dyneins with different enzymatic and motor properties. In this issue, Yamamoto et al. (2013. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201211048) identify the MIA (modifier of inner arms) complex within the Chlamydomonas reinhardtii axoneme that physically links to a known regulatory structure and provides a signaling conduit from the radial spokes to an inner arm dynein essential for waveform determination. PMID:23569213

  9. Regulation of Flagellar Gene Expression in Bacteria.

    PubMed

    Osterman, I A; Dikhtyar, Yu Yu; Bogdanov, A A; Dontsova, O A; Sergiev, P V

    2015-11-01

    The flagellum of a bacterium is a supramolecular structure of extreme complexity comprising simultaneously both a unique system of protein transport and a molecular machine that enables the bacterial cell movement. The cascade of expression of genes encoding flagellar components is closely coordinated with the steps of molecular machine assembly, constituting an amazing regulatory system. Data on structure, assembly, and regulation of flagellar gene expression are summarized in this review. The regulatory mechanisms and correlation of the process of regulation of gene expression and flagellum assembly known from the literature are described.

  10. Load Response of the Flagellar Beat

    NASA Astrophysics Data System (ADS)

    Klindt, Gary S.; Ruloff, Christian; Wagner, Christian; Friedrich, Benjamin M.

    2016-12-01

    Cilia and flagella exhibit regular bending waves that perform mechanical work on the surrounding fluid, to propel cellular swimmers and pump fluids inside organisms. Here, we quantify a force-velocity relationship of the beating flagellum, by exposing flagellated Chlamydomonas cells to controlled microfluidic flows. A simple theory of flagellar limit-cycle oscillations, calibrated by measurements in the absence of flow, reproduces this relationship quantitatively. We derive a link between the energy efficiency of the flagellar beat and its ability to synchronize to oscillatory flows.

  11. DRC3 connects the N-DRC to dynein g to regulate flagellar waveform

    PubMed Central

    Awata, Junya; Song, Kangkang; Lin, Jianfeng; King, Stephen M.; Sanderson, Michael J.; Nicastro, Daniela; Witman, George B.

    2015-01-01

    The nexin-dynein regulatory complex (N-DRC), which is a major hub for the control of flagellar motility, contains at least 11 different subunits. A major challenge is to determine the location and function of each of these subunits within the N-DRC. We characterized a Chlamydomonas mutant defective in the N-DRC subunit DRC3. Of the known N-DRC subunits, the drc3 mutant is missing only DRC3. Like other N-DRC mutants, the drc3 mutant has a defect in flagellar motility. However, in contrast to other mutations affecting the N-DRC, drc3 does not suppress flagellar paralysis caused by loss of radial spokes. Cryo–electron tomography revealed that the drc3 mutant lacks a portion of the N-DRC linker domain, including the L1 protrusion, part of the distal lobe, and the connection between these two structures, thus localizing DRC3 to this part of the N-DRC. This and additional considerations enable us to assign DRC3 to the L1 protrusion. Because the L1 protrusion is the only non-dynein structure in contact with the dynein g motor domain in wild-type axonemes and this is the only N-DRC–dynein connection missing in the drc3 mutant, we conclude that DRC3 interacts with dynein g to regulate flagellar waveform. PMID:26063732

  12. Bacteria exploit a polymorphic instability of the flagellar filament to escape from traps.

    PubMed

    Kühn, Marco J; Schmidt, Felix K; Eckhardt, Bruno; Thormann, Kai M

    2017-06-13

    Many bacterial species swim by rotating single polar helical flagella. Depending on the direction of rotation, they can swim forward or backward and change directions to move along chemical gradients but also to navigate their obstructed natural environment in soils, sediments, or mucus. When they get stuck, they naturally try to back out, but they can also resort to a radically different flagellar mode, which we discovered here. Using high-speed microscopy, we monitored the swimming behavior of the monopolarly flagellated species Shewanella putrefaciens with fluorescently labeled flagellar filaments at an agarose-glass interface. We show that, when a cell gets stuck, the polar flagellar filament executes a polymorphic change into a spiral-like form that wraps around the cell body in a spiral-like fashion and enables the cell to escape by a screw-like backward motion. Microscopy and modeling suggest that this propagation mode is triggered by an instability of the flagellum under reversal of the rotation and the applied torque. The switch is reversible and bacteria that have escaped the trap can return to their normal swimming mode by another reversal of motor direction. The screw-type flagellar arrangement enables a unique mode of propagation and, given the large number of polarly flagellated bacteria, we expect it to be a common and widespread escape or motility mode in complex and structured environments.

  13. The role of the dynein light intermediate chain in retrograde IFT and flagellar function in Chlamydomonas.

    PubMed

    Reck, Jaimee; Schauer, Alexandria M; VanderWaal Mills, Kristyn; Bower, Raqual; Tritschler, Douglas; Perrone, Catherine A; Porter, Mary E

    2016-08-01

    The assembly of cilia and flagella depends on the activity of two microtubule motor complexes, kinesin-2 and dynein-2/1b, but the specific functions of the different subunits are poorly defined. Here we analyze Chlamydomonas strains expressing different amounts of the dynein 1b light intermediate chain (D1bLIC). Disruption of D1bLIC alters the stability of the dynein 1b complex and reduces both the frequency and velocity of retrograde intraflagellar transport (IFT), but it does not eliminate retrograde IFT. Flagellar assembly, motility, gliding, and mating are altered in a dose-dependent manner. iTRAQ-based proteomics identifies a small subset of proteins that are significantly reduced or elevated in d1blic flagella. Transformation with D1bLIC-GFP rescues the mutant phenotypes, and D1bLIC-GFP assembles into the dynein 1b complex at wild-type levels. D1bLIC-GFP is transported with anterograde IFT particles to the flagellar tip, dissociates into smaller particles, and begins processive retrograde IFT in <2 s. These studies demonstrate the role of D1bLIC in facilitating the recycling of IFT subunits and other proteins, identify new components potentially involved in the regulation of IFT, flagellar assembly, and flagellar signaling, and provide insight into the role of D1bLIC and retrograde IFT in other organisms.

  14. The role of the dynein light intermediate chain in retrograde IFT and flagellar function in Chlamydomonas

    PubMed Central

    Reck, Jaimee; Schauer, Alexandria M.; VanderWaal Mills, Kristyn; Bower, Raqual; Tritschler, Douglas; Perrone, Catherine A.; Porter, Mary E.

    2016-01-01

    The assembly of cilia and flagella depends on the activity of two microtubule motor complexes, kinesin-2 and dynein-2/1b, but the specific functions of the different subunits are poorly defined. Here we analyze Chlamydomonas strains expressing different amounts of the dynein 1b light intermediate chain (D1bLIC). Disruption of D1bLIC alters the stability of the dynein 1b complex and reduces both the frequency and velocity of retrograde intraflagellar transport (IFT), but it does not eliminate retrograde IFT. Flagellar assembly, motility, gliding, and mating are altered in a dose-dependent manner. iTRAQ-based proteomics identifies a small subset of proteins that are significantly reduced or elevated in d1blic flagella. Transformation with D1bLIC-GFP rescues the mutant phenotypes, and D1bLIC-GFP assembles into the dynein 1b complex at wild-type levels. D1bLIC-GFP is transported with anterograde IFT particles to the flagellar tip, dissociates into smaller particles, and begins processive retrograde IFT in <2 s. These studies demonstrate the role of D1bLIC in facilitating the recycling of IFT subunits and other proteins, identify new components potentially involved in the regulation of IFT, flagellar assembly, and flagellar signaling, and provide insight into the role of D1bLIC and retrograde IFT in other organisms. PMID:27251063

  15. Regulation of sperm flagellar motility activation and chemotaxis caused by egg-derived substance(s) in sea cucumber.

    PubMed

    Morita, Masaya; Kitamura, Makoto; Nakajima, Ayako; Sri Susilo, Endang; Takemura, Akihiro; Okuno, Makoto

    2009-04-01

    The sea cucumber Holothuria atra is a broadcast spawner. Among broadcast spawners, fertilization occurs by means of an egg-derived substance(s) that induces sperm flagellar motility activation and chemotaxis. Holothuria atra sperm were quiescent in seawater, but exhibited flagellar motility activation near eggs with chorion (intact eggs). In addition, they moved in a helical motion toward intact eggs as well as a capillary filled with the water layer of the egg extracts, suggesting that an egg-derived compound(s) causes motility activation and chemotaxis. Furthermore, demembranated sperm flagella were reactivated in high pH (> 7.8) solution without cAMP, and a phosphorylation assay using (gamma-32P)ATP showed that axonemal protein phosphorylation and dephosphorylation also occurred in a pH-dependent manner. These results suggest that the activation of sperm motility in holothurians is controlled by pH-sensitive changes in axonemal protein phosphorylation. Ca2+ concentration affected the swimming trajectory of demembranated sperm, indicating that Ca2+-binding proteins present at the flagella may be associated with regulation of flagellar waveform. Moreover, the phosphorylation states of several axonemal proteins were Ca2+-sensitive, indicating that Ca2+ impacts both kinase and phosphatase activities. In addition, in vivo sperm protein phosphorylation occurred after treatment with a water-soluble egg extract. Our results suggest that one or more egg-derived compounds activate motility and subsequent chemotactic behavior via Ca2+-sensitive flagellar protein phosphorylation.

  16. Genetic and Molecular Characterization of Flagellar Assembly in Shewanella oneidensis

    PubMed Central

    Wu, Lin; Wang, Jixuan; Tang, Peng; Chen, Haijiang; Gao, Haichun

    2011-01-01

    Shewanella oneidensis is a highly motile organism by virtue of a polar flagellum. Unlike most flagellated bacteria, it contains only one major chromosome segment encoding the components of the flagellum with the exception of the motor proteins. In this region, three genes encode flagellinsaccording to the original genome annotation. However, we find that only flaA and flaB encode functional filament subunits. Although these two genesare under the control of different promoters, they are actively transcribed and subsequently translated, producing a considerable number of flagellin proteins. Additionally, both flagellins are able to interact with their chaperon FliS and are subjected to feedback regulation. Furthermore, FlaA and FlaB are glycosylated by a pathwayinvolving a major glycosylating enzyme,PseB, in spite of the lack of the majority of theconsensus glycosylation sites. In conclusion, flagellar assembly in S. oneidensis has novel features despite the conservation of homologous genes across taxa. PMID:21731763

  17. Flagellar Synchronization Is a Simple Alternative to Cell Cycle Synchronization for Ciliary and Flagellar Studies

    PubMed Central

    Dutta, Soumita

    2017-01-01

    ABSTRACT The unicellular green alga Chlamydomonas reinhardtii is an ideal model organism for studies of ciliary function and assembly. In assays for biological and biochemical effects of various factors on flagellar structure and function, synchronous culture is advantageous for minimizing variability. Here, we have characterized a method in which 100% synchronization is achieved with respect to flagellar length but not with respect to the cell cycle. The method requires inducing flagellar regeneration by amputation of the entire cell population and limiting regeneration time. This results in a maximally homogeneous distribution of flagellar lengths at 3 h postamputation. We found that time-limiting new protein synthesis during flagellar synchronization limits variability in the unassembled pool of limiting flagellar protein and variability in flagellar length without affecting the range of cell volumes. We also found that long- and short-flagella mutants that regenerate normally require longer and shorter synchronization times, respectively. By minimizing flagellar length variability using a simple method requiring only hours and no changes in media, flagellar synchronization facilitates the detection of small changes in flagellar length resulting from both chemical and genetic perturbations in Chlamydomonas. This method increases our ability to probe the basic biology of ciliary size regulation and related disease etiologies. IMPORTANCE Cilia and flagella are highly conserved antenna-like organelles that found in nearly all mammalian cell types. They perform sensory and motile functions contributing to numerous physiological and developmental processes. Defects in their assembly and function are implicated in a wide range of human diseases ranging from retinal degeneration to cancer. Chlamydomonas reinhardtii is an algal model system for studying mammalian cilium formation and function. Here, we report a simple synchronization method that allows detection of

  18. Polar flagellar motility of the Vibrionaceae.

    PubMed

    McCarter, L L

    2001-09-01

    Polar flagella of Vibrio species can rotate at speeds as high as 100,000 rpm and effectively propel the bacteria in liquid as fast as 60 microm/s. The sodium motive force powers rotation of the filament, which acts as a propeller. The filament is complex, composed of multiple subunits, and sheathed by an extension of the cell outer membrane. The regulatory circuitry controlling expression of the polar flagellar genes of members of the Vibrionaceae is different from the peritrichous system of enteric bacteria or the polar system of Caulobacter crescentus. The scheme of gene control is also pertinent to other members of the gamma purple bacteria, in particular to Pseudomonas species. This review uses the framework of the polar flagellar system of Vibrio parahaemolyticus to provide a synthesis of what is known about polar motility systems of the Vibrionaceae. In addition to its propulsive role, the single polar flagellum of V. parahaemolyticus is believed to act as a tactile sensor controlling surface-induced gene expression. Under conditions that impede rotation of the polar flagellum, an alternate, lateral flagellar motility system is induced that enables movement through viscous environments and over surfaces. Although the dual flagellar systems possess no shared structural components and although distinct type III secretion systems direct the simultaneous placement and assembly of polar and lateral organelles, movement is coordinated by shared chemotaxis machinery.

  19. Right lower limb apraxia in a patient with left supplementary motor area infarction: intactness of the corticospinal tract confirmed by transcranial magnetic stimulation.

    PubMed

    Chang, Min Cheol; Chun, Min Ho

    2015-02-01

    We reported a 50-year-old female patient with left supplementary motor area infarction who presented right lower limb apraxia and investigated the possible causes using transcranial magnetic stimulation. The patient was able to walk and climb stairs spontaneously without any assistance at 3 weeks after onset. However, she was unable to intentionally move her right lower limb although she understood what she supposed to do. The motor evoked potential evoked by transcranial magnetic stimulation from the right lower limb was within the normal range, indicating that the corticospinal tract innervating the right lower limb was uninjured. Thus, we thought that her motor dysfunction was not induced by motor weakness, and confirmed her symptoms as apraxia. In addition, these results also suggest that transcranial magnetic stimulation is helpful for diagnosing apraxia.

  20. Architecture of the flagellar rotor

    PubMed Central

    Paul, Koushik; Gonzalez-Bonet, Gabriela; Bilwes, Alexandrine M; Crane, Brian R; Blair, David

    2011-01-01

    Rotation and switching of the bacterial flagellum depends on a large rotor-mounted protein assembly composed of the proteins FliG, FliM and FliN, with FliG most directly involved in rotation. The crystal structure of a complex between the central domains of FliG and FliM, in conjunction with several biochemical and molecular-genetic experiments, reveals the arrangement of the FliG and FliM proteins in the rotor. A stoichiometric mismatch between FliG (26 subunits) and FliM (34 subunits) is explained in terms of two distinct positions for FliM: one where it binds the FliG central domain and another where it binds the FliG C-terminal domain. This architecture provides a structural framework for addressing the mechanisms of motor rotation and direction switching and for unifying the large body of data on motor performance. Recently proposed alternative models of rotor assembly, based on a subunit contact observed in crystals, are not supported by experiment. PMID:21673656

  1. Inhibitio of Flagellar Coordination in Spirillum volutans

    PubMed Central

    Krieg, Noel R.; Tomelty, Joseph P.; Wells, J. Scott

    1967-01-01

    The motility of Spirillum volutans is caused by the rotation of each polar flagellar fascicle in a direction opposite to that of the more slowly rotating cell. Both flagella form cones of revolution oriented in the same direction. When the cell reverses its motion, both fascicles simultaneously reverse their rotation and also the orientation of their cones of revolution, with the tail fascicle becoming the head and vice versa. Chloral hydrate and phenol were found to cause uncoordination, with both fascicles becoming the head type; MgSO4, Mg(NO3)2, NiSO4, NiCl2, CuSO4, and CuCl2 also caused uncoordination, with both fascicles becoming the tail type. In all cases, the flagellar fascicles remained highly active but the cells were motionless because of the opposing propulsion; the rotation of the fascicles was in a constant direction without reversal. Uncoordinated states could be maintained for 30 to 60 min. Neutralization of the dual-tail flagellation caused by NiSO4 could be accomplished with chloral hydrate. At the null point, the flagellar orientation was intermediate between head and tail; the fascicles continually reversed direction of rotation, and, now coordinated, caused the cells to move back and forth. Higher concentrations of chloral hydrate completely overcame the effect of NiSO4 and caused dual-head flagellation. Optimal concentrations of test compounds were determined with the use of pure cultures and a reproducible growth medium. Images PMID:6057800

  2. Studies on flagellar shortening in Chlamydomonas reinhardtii

    SciTech Connect

    Cherniack, J.

    1985-01-01

    Flagellar shortening of Chlamydomonas reinhardtii was promoted by sodium chloride, pyrophosphate (sodium, potassium and ammonium salts), EDTA and EGTA, succinate, citrate and oxalate (sodium salts), caffeine and aminophylline. Removal of calcium from the medium potentiated the effects of these agents in inducing shortening. Investigations of the release of phosphorylated compounds to the medium during pyrophosphate-induced flagellar shortening of cells pre-labelled with /sup 32/P, revealed an as yet unidentified /sup 32/P-labelled compound with distinct chromatographic properties. Chromatography and electrophoresis indicates that it is a small, highly polar molecule with a high charge to mass ratio, containing thermo- and acid-labile phosphate linkages. Investigations showed of the release of /sup 35/S-labelled protein to the medium from cells pre-labelled with /sup 35/S-sulfate showed that flagellated cells released two prominent polypeptides which comigrated with ..cap alpha..- and ..beta..-flagellar tubulin on SDS polyacrylamide gel electrophoresis, while deflagellated cells did not.

  3. Aeromonas hydrophila Lateral Flagellar Gene Transcriptional Hierarchy

    PubMed Central

    Wilhelms, Markus; Gonzalez, Victor; Merino, Susana

    2013-01-01

    Aeromonas hydrophila AH-3 lateral flagella are not assembled when bacteria grow in liquid media; however, lateral flagellar genes are transcribed. Our results indicate that A. hydrophila lateral flagellar genes are transcribed at three levels (class I to III genes) and share some similarities with, but have many important differences from, genes of Vibrio parahaemolyticus. A. hydrophila lateral flagellum class I gene transcription is σ70 dependent, which is consistent with the fact that lateral flagellum is constitutively transcribed, in contrast to the characteristics of V. parahaemolyticus. The fact that multiple genes are included in class I highlights that lateral flagellar genes are less hierarchically transcribed than polar flagellum genes. The A. hydrophila lafK-fliEJL gene cluster (where the subscript L distinguishes genes for lateral flagella from those for polar flagella) is exclusively from class I and is in V. parahaemolyticus class I and II. Furthermore, the A. hydrophila flgAMNL cluster is not transcribed from the σ54/LafK-dependent promoter and does not contain class II genes. Here, we propose a gene transcriptional hierarchy for the A. hydrophila lateral flagella. PMID:23335410

  4. Regulation of flagellar motility during biofilm formation

    PubMed Central

    Guttenplan, Sarah B.; Kearns, Daniel B.

    2013-01-01

    Many bacteria swim in liquid or swarm over solid surfaces by synthesizing rotary flagella. The same bacteria that are motile also commonly form non-motile multicellular aggregates held together by an extracellular matrix called biofilms. Biofilms are an important part of the lifestyle of pathogenic bacteria and it is assumed that there is a motility-to-biofilm transition wherein the inhibition of motility promotes biofilm formation. The transition is largely inferred from regulatory mutants that reveal the opposite regulation of the two phenotypes. Here we review the regulation of motility during biofilm formation in Bacillus, Pseudomonas, Vibrio, and Escherichia, and we conclude that the motility-to-biofilm transition, if necessary, likely involves two steps. In the short term, flagella are functionally regulated to either inhibit rotation or modulate the basal flagellar reversal frequency. Over the long term, flagellar gene transcription is inhibited and in the absence of de novo synthesis, flagella are likely diluted to extinction through growth. Both short term and long term control is likely important to the motility-to-biofilm transition to stabilize aggregates and optimize resource investment. We emphasize the newly discovered classes of flagellar functional regulators and speculate that others await discovery in the context of biofilm formation. PMID:23480406

  5. Chlamydomonas IFT172 is encoded by FLA11, interacts with CrEB1, and regulates IFT at the flagellar tip.

    PubMed

    Pedersen, Lotte B; Miller, Mark S; Geimer, Stefan; Leitch, Jeffery M; Rosenbaum, Joel L; Cole, Douglas G

    2005-02-08

    The transport of flagellar precursors and removal of turnover products from the flagellar tip is mediated by intraflagellar transport (IFT) , which is essential for both flagellar assembly and maintenance . Large groups of IFT particles are moved from the flagellar base to the tip by kinesin-2, and smaller groups are returned to the base by cytoplasmic dynein 1b. The IFT particles are composed of two protein complexes, A and B, comprising approximately 16-18 polypeptides. How cargo is unloaded from IFT particles, turnover products loaded, and active IFT motors exchanged at the tip is unknown. We previously showed that the Chlamydomonas microtubule end binding protein 1 (CrEB1) localizes to the flagellar tip and is depleted from the tips of the temperature-sensitive (ts) mutant fla11ts . We demonstrate here that FLA11 encodes IFT protein 172, a component of IFT complex B, and show that IFT172 interacts with CrEB1. Because fla11ts cells are defective in IFT particle turnaround at the tip, our results indicate that IFT172 is involved in regulating the transition between anterograde and retrograde IFT at the tip, perhaps by a mechanism involving CrEB1. Therefore, IFT172 is involved in the control of flagellar assembly/disassembly at the tip.

  6. Emergence of flagellar beating from the collective behavior of individual ATP-powered dyneins

    NASA Astrophysics Data System (ADS)

    Namdeo, S.; Onck, P. R.

    2016-10-01

    Flagella are hair-like projections from the surface of eukaryotic cells, and they play an important role in many cellular functions, such as cell-motility. The beating of flagella is enabled by their internal architecture, the axoneme, and is powered by a dense distribution of motor proteins, dyneins. The dyneins deliver the required mechanical work through the hydrolysis of ATP. Although the dynein-ATP cycle, the axoneme microstructure, and the flagellar-beating kinematics are well studied, their integration into a coherent picture of ATP-powered flagellar beating is still lacking. Here we show that a time-delayed negative-work-based switching mechanism is able to convert the individual sliding action of hundreds of dyneins into a regular overall beating pattern leading to propulsion. We developed a computational model based on a minimal representation of the axoneme consisting of two representative doublet microtubules connected by nexin links. The relative sliding of the microtubules is incorporated by modeling two groups of ATP-powered dyneins, each responsible for sliding in opposite directions. A time-delayed switching mechanism is postulated, which is key in converting the local individual sliding action of multiple dyneins into global beating. Our results demonstrate that an overall nonreciprocal beating pattern can emerge with time due to the spatial and temporal coordination of the individual dyneins. These findings provide insights in the fundamental working mechanism of axonemal dyneins and could possibly open new research directions in the field of flagellar motility.

  7. The bacterial flagellar protein export apparatus processively transports flagellar proteins even with extremely infrequent ATP hydrolysis.

    PubMed

    Minamino, Tohru; Morimoto, Yusuke V; Kinoshita, Miki; Aldridge, Phillip D; Namba, Keiichi

    2014-12-22

    For self-assembly of the bacterial flagellum, a specific protein export apparatus utilizes ATP and proton motive force (PMF) as the energy source to transport component proteins to the distal growing end. The export apparatus consists of a transmembrane PMF-driven export gate and a cytoplasmic ATPase complex composed of FliH, FliI and FliJ. The FliI(6)FliJ complex is structurally similar to the α(3)β(3)γ complex of F(O)F(1)-ATPase. FliJ allows the gate to efficiently utilize PMF to drive flagellar protein export but it remains unknown how. Here, we report the role of ATP hydrolysis by the FliI(6)FliJ complex. The export apparatus processively transported flagellar proteins to grow flagella even with extremely infrequent or no ATP hydrolysis by FliI mutation (E211D and E211Q, respectively). This indicates that the rate of ATP hydrolysis is not at all coupled with the export rate. Deletion of FliI residues 401 to 410 resulted in no flagellar formation although this FliI deletion mutant retained 40% of the ATPase activity, suggesting uncoupling between ATP hydrolysis and activation of the gate. We propose that infrequent ATP hydrolysis by the FliI6FliJ ring is sufficient for gate activation, allowing processive translocation of export substrates for efficient flagellar assembly.

  8. Quorum sensing controls flagellar morphogenesis in Burkholderia glumae.

    PubMed

    Jang, Moon Sun; Goo, Eunhye; An, Jae Hyung; Kim, Jinwoo; Hwang, Ingyu

    2014-01-01

    Burkholderia glumae is a motile plant pathogenic bacterium that has multiple polar flagella and one LuxR/LuxI-type quorum sensing (QS) system, TofR/TofI. A QS-dependent transcriptional regulator, QsmR, activates flagellar master regulator flhDC genes. FlhDC subsequently activates flagellar gene expression in B. glumae at 37°C. Here, we confirm that the interplay between QS and temperature is critical for normal polar flagellar morphogenesis in B. glumae. In the wild-type bacterium, flagellar gene expression and flagellar number were greater at 28°C compared to 37°C. The QS-dependent flhC gene was significantly expressed at 28°C in two QS-defective (tofI::Ω and qsmR::Ω) mutants. Thus, flagella were present in both tofI::Ω and qsmR::Ω mutants at 28°C, but were absent at 37°C. Most tofI::Ω and qsmR::Ω mutant cells possessed polar or nonpolar flagella at 28°C. Nonpolarly flagellated cells processing flagella around cell surface of both tofI::Ω and qsmR::Ω mutants exhibited tumbling and spinning movements. The flhF gene encoding GTPase involved in regulating the correct placement of flagella in other bacteria was expressed in QS mutants in a FlhDC-dependent manner at 28°C. However, FlhF was mislocalized in QS mutants, and was associated with nonpolar flagellar formation in QS mutants at 28°C. These results indicate that QS-independent expression of flagellar genes at 28°C allows flagellar biogenesis, but is not sufficient for normal polar flagellar morphogenesis in B. glumae. Our findings demonstrate that QS functions together with temperature to control flagellar morphogenesis in B. glumae.

  9. Quorum Sensing Controls Flagellar Morphogenesis in Burkholderia glumae

    PubMed Central

    Jang, Moon Sun; Goo, Eunhye; An, Jae Hyung; Kim, Jinwoo; Hwang, Ingyu

    2014-01-01

    Burkholderia glumae is a motile plant pathogenic bacterium that has multiple polar flagella and one LuxR/LuxI-type quorum sensing (QS) system, TofR/TofI. A QS-dependent transcriptional regulator, QsmR, activates flagellar master regulator flhDC genes. FlhDC subsequently activates flagellar gene expression in B. glumae at 37°C. Here, we confirm that the interplay between QS and temperature is critical for normal polar flagellar morphogenesis in B. glumae. In the wild-type bacterium, flagellar gene expression and flagellar number were greater at 28°C compared to 37°C. The QS-dependent flhC gene was significantly expressed at 28°C in two QS-defective (tofI::Ω and qsmR::Ω) mutants. Thus, flagella were present in both tofI::Ω and qsmR::Ω mutants at 28°C, but were absent at 37°C. Most tofI::Ω and qsmR::Ω mutant cells possessed polar or nonpolar flagella at 28°C. Nonpolarly flagellated cells processing flagella around cell surface of both tofI::Ω and qsmR::Ω mutants exhibited tumbling and spinning movements. The flhF gene encoding GTPase involved in regulating the correct placement of flagella in other bacteria was expressed in QS mutants in a FlhDC-dependent manner at 28°C. However, FlhF was mislocalized in QS mutants, and was associated with nonpolar flagellar formation in QS mutants at 28°C. These results indicate that QS-independent expression of flagellar genes at 28°C allows flagellar biogenesis, but is not sufficient for normal polar flagellar morphogenesis in B. glumae. Our findings demonstrate that QS functions together with temperature to control flagellar morphogenesis in B. glumae. PMID:24416296

  10. A Complete Set of Flagellar Genes Acquired by Horizontal Transfer Coexists with the Endogenous Flagellar System in Rhodobacter sphaeroides▿ †

    PubMed Central

    Poggio, Sebastian; Abreu-Goodger, Cei; Fabela, Salvador; Osorio, Aurora; Dreyfus, Georges; Vinuesa, Pablo; Camarena, Laura

    2007-01-01

    Bacteria swim in liquid environments by means of a complex rotating structure known as the flagellum. Approximately 40 proteins are required for the assembly and functionality of this structure. Rhodobacter sphaeroides has two flagellar systems. One of these systems has been shown to be functional and is required for the synthesis of the well-characterized single subpolar flagellum, while the other was found only after the genome sequence of this bacterium was completed. In this work we found that the second flagellar system of R. sphaeroides can be expressed and produces a functional flagellum. In many bacteria with two flagellar systems, one is required for swimming, while the other allows movement in denser environments by producing a large number of flagella over the entire cell surface. In contrast, the second flagellar system of R. sphaeroides produces polar flagella that are required for swimming. Expression of the second set of flagellar genes seems to be positively regulated under anaerobic growth conditions. Phylogenic analysis suggests that the flagellar system that was initially characterized was in fact acquired by horizontal transfer from a γ-proteobacterium, while the second flagellar system contains the native genes. Interestingly, other α-proteobacteria closely related to R. sphaeroides have also acquired a set of flagellar genes similar to the set found in R. sphaeroides, suggesting that a common ancestor received this gene cluster. PMID:17293429

  11. On Flagellar Structure in Certain Flagellates

    PubMed Central

    Gibbons, I. R.; Grimstone, A. V.

    1960-01-01

    This paper describes the structure of the flagella, basal bodies, and some of the associated fibre systems in three genera of complex flagellates, Trichonympha, Pseudotrichonympha, and Holomastigotoides. Three groups of longitudinal fibres occur in a flagellum: two central and nine outer fibres such as have been repeatedly described in other material, and an additional set of nine smaller secondary fibres not previously identified as such. Each central fibre shows a helical substructure; the pair of them are enveloped in a common sheath. Each outer fibre is a doublet with one subfibre bearing projections—called arms—that extend toward the adjacent outer fibre. The basal body is formed by a cylinder of nine triplet outer fibres. Two subfibres of each triplet continue into the flagellum and constitute the doublets. The third subfibre terminates at the transition of basal body to flagellum, possibly giving rise to the nine radial transitional fibres that seem to attach the end of the basal body to the surface of the organism. The central and secondary flagellar fibres are not present in the lumen of the basal body, but other complex structures occur there. The form of these intraluminal structures differs from genus to genus. The flagellar unit is highly asymmetrical. All the flagella examined have possessed the same one of the two possible enantiomorphic forms. At least two systems of fibres are associated with the basal bodies of all three genera. PMID:13827900

  12. Flagellar synchronization through direct hydrodynamic interactions.

    PubMed

    Brumley, Douglas R; Wan, Kirsty Y; Polin, Marco; Goldstein, Raymond E

    2014-07-29

    Flows generated by ensembles of flagella are crucial to development, motility and sensing, but the mechanisms behind this striking coordination remain unclear. We present novel experiments in which two micropipette-held somatic cells of Volvox carteri, with distinct intrinsic beating frequencies, are studied by high-speed imaging as a function of their separation and orientation. Analysis of time series shows that the interflagellar coupling, constrained by lack of connections between cells to be hydrodynamical, exhibits a spatial dependence consistent with theory. At close spacings it produces robust synchrony for thousands of beats, while at increasing separations synchrony is degraded by stochastic processes. Manipulation of the relative flagellar orientation reveals in-phase and antiphase states, consistent with dynamical theories. Flagellar tracking with exquisite precision reveals waveform changes that result from hydrodynamic coupling. This study proves unequivocally that flagella coupled solely through a fluid can achieve robust synchrony despite differences in their intrinsic properties.DOI: http://dx.doi.org/10.7554/eLife.02750.001.

  13. Polar features in the flagellar propulsion of E. coli bacteria.

    PubMed

    Bianchi, S; Saglimbeni, F; Lepore, A; Di Leonardo, R

    2015-06-01

    E. coli bacteria swim following a run and tumble pattern. In the run state all flagella join in a single helical bundle that propels the cell body along approximately straight paths. When one or more flagellar motors reverse direction the bundle unwinds and the cell randomizes its orientation. This basic picture represents an idealization of a much more complex dynamical problem. Although it has been shown that bundle formation can occur at either pole of the cell, it is still unclear whether these two run states correspond to asymmetric propulsion features. Using holographic microscopy we record the 3D motions of individual bacteria swimming in optical traps. We find that most cells possess two run states characterized by different propulsion forces, total torque, and bundle conformations. We analyze the statistical properties of bundle reversal and compare the hydrodynamic features of forward and backward running states. Our method is naturally multi-particle and opens up the way towards controlled hydrodynamic studies of interacting swimming cells.

  14. Polar features in the flagellar propulsion of E. coli bacteria

    NASA Astrophysics Data System (ADS)

    Bianchi, S.; Saglimbeni, F.; Lepore, A.; Di Leonardo, R.

    2015-06-01

    E. coli bacteria swim following a run and tumble pattern. In the run state all flagella join in a single helical bundle that propels the cell body along approximately straight paths. When one or more flagellar motors reverse direction the bundle unwinds and the cell randomizes its orientation. This basic picture represents an idealization of a much more complex dynamical problem. Although it has been shown that bundle formation can occur at either pole of the cell, it is still unclear whether these two run states correspond to asymmetric propulsion features. Using holographic microscopy we record the 3D motions of individual bacteria swimming in optical traps. We find that most cells possess two run states characterized by different propulsion forces, total torque, and bundle conformations. We analyze the statistical properties of bundle reversal and compare the hydrodynamic features of forward and backward running states. Our method is naturally multi-particle and opens up the way towards controlled hydrodynamic studies of interacting swimming cells.

  15. Gene Expression Profiling of Flagellar Disassembly in Chlamydomonas reinhardtii

    PubMed Central

    Chamberlain, Kara L.; Miller, Steven H.; Keller, Laura R.

    2008-01-01

    Flagella are sensory organelles that interact with the environment through signal transduction and gene expression networks. We used microarray profiling to examine gene regulation associated with flagellar length change in the green alga Chlamydomonas reinhardtii. Microarrays were probed with fluorescently labeled cDNAs synthesized from RNA extracted from cells before and during flagellar assembly or disassembly. Evaluation of the gene expression profiles identified >100 clones showing at least a twofold change in expression during flagellar length changes. Products of these genes are associated not only with flagellar structure and motility but also with other cellular responses, including signal transduction and metabolism. Expression of specific genes from each category was further characterized at higher resolution by using quantitative real-time PCR (qRT–PCR). Analysis and comparison of the gene expression profiles coupled to flagellar assembly and disassembly revealed that each process involves a new and uncharacterized whole-cell response to flagellar length changes. This analysis lays the groundwork for a more comprehensive understanding of the cellular and molecular networks regulating flagellar length changes. PMID:18493036

  16. Synthesis, transport, and utilization of specific flagellar proteins during flagellar regeneration in Chlamydomonas

    PubMed Central

    1982-01-01

    We labeled gametes of Chlamydomonas with 10-min pulses of 35SO4(-2) before and at various times after deflagellation, and isolated whole cells and flagella immediately after the pulse. The labeled proteins were separated by one- or two-dimensional gel electrophoresis, and the amount of isotope incorporated into specific proteins was determined. Individual proteins were identified with particular structures by correlating missing axonemal polypeptides with ultrastructural defects in paralyzed mutants, or by polypeptide analysis of flagellar fractions. Synthesis of most flagellar proteins appeared to be coordinately induced after flagellar amputation. The rate of synthesis for most quantified proteins increased at least 4- to 10-fold after deflagellation. The kinetics of synthesis of proteins contained together within a structure (e.g., the radial spoke proteins [RSP] ) were frequently similar; however, the kinetics of synthesis of proteins contained in different structures (e.g., RSP vs. alpha- and beta- tubulins) were different. Most newly synthesized flagellar proteins were rapidly transported into the flagellum with kinetics reflecting the rate of growth of the organelle; exceptions included a central tubule complex protein (CT1) and an actinlike component, both of which appeared to be supplied almost entirely from pre-existing, unlabeled pools. Isotope dilution experiments showed that, for most quantified axonemal proteins, a minimum of 35-40% of the polypeptide chains used in assembling a new axoneme was synthesized during regeneration; these proteins appeared to have predeflagellation pools of approximately the same size relative to their stoichiometries in the axoneme. In contrast, CT1 and the actinlike protein had comparatively large pools. PMID:7118994

  17. Flagellar central pair assembly in Chlamydomonas reinhardtii

    PubMed Central

    2013-01-01

    Background Most motile cilia and flagella have nine outer doublet and two central pair (CP) microtubules. Outer doublet microtubules are continuous with the triplet microtubules of the basal body, are templated by the basal body microtubules, and grow by addition of new subunits to their distal (“plus”) ends. In contrast, CP microtubules are not continuous with basal body microtubules, raising the question of how these microtubules are assembled and how their polarity is established. Methods CP assembly in Chlamydomonas reinhardtii was analyzed by electron microscopy and wide-field and super-resolution immunofluorescence microscopy. To analyze CP assembly independently from flagellar assembly, the CP-deficient katanin mutants pf15 or pf19 were mated to wild-type cells. HA-tagged tubulin and the CP-specific protein hydin were used as markers to analyze de novo CP assembly inside the formerly mutant flagella. Results In regenerating flagella, the CP and its projections assemble near the transition zone soon after the onset of outer doublet elongation. During de novo CP assembly in full-length flagella, the nascent CP was first apparent in a subdistal region of the flagellum. The developing CP replaces a fibrous core that fills the axonemal lumen of CP-deficient flagella. The fibrous core contains proteins normally associated with the C1 CP microtubule and proteins involved in intraflagellar transport (IFT). In flagella of the radial spoke-deficient mutant pf14, two pairs of CPs are frequently present with identical correct polarities. Conclusions The temporal separation of flagellar and CP assembly in dikaryons formed by mating CP-deficient gametes to wild-type gametes revealed that the formation of the CP does not require proximity to the basal body or transition zone, or to the flagellar tip. The observations on pf14 provide further support that the CP self-assembles without a template and eliminate the possibility that CP polarity is established by interaction

  18. Regulation of flagellar motility by the conserved flagellar protein CG34110/Ccdc135/FAP50

    PubMed Central

    Yang, Yong; Cochran, Deborah A.; Gargano, Mary D.; King, Iryna; Samhat, Nayef K.; Burger, Benjain P.; Sabourin, Katherine R.; Hou, Yuqing; Awata, Junya; Parry, David A.D.; Marshall, Wallace F.; Witman, George B.; Lu, Xiangyi

    2011-01-01

    Eukaryotic cilia and flagella are vital sensory and motile organelles. The calcium channel PKD2 mediates sensory perception on cilia and flagella, and defects in this can contribute to ciliopathic diseases. Signaling from Pkd2-dependent Ca2+ rise in the cilium to downstream effectors may require intermediary proteins that are largely unknown. To identify these proteins, we carried out genetic screens for mutations affecting Drosophila melanogaster sperm storage, a process mediated by Drosophila Pkd2. Here we show that a new mutation lost boys (lobo) encodes a conserved flagellar protein CG34110, which corresponds to vertebrate Ccdc135 (E = 6e-78) highly expressed in ciliated respiratory epithelia and sperm, and to FAP50 (E = 1e-28) in the Chlamydomonas reinhardtii flagellar proteome. CG34110 localizes along the fly sperm flagellum. FAP50 is tightly associated with the outer doublet microtubules of the axoneme and appears not to be a component of the central pair, radial spokes, dynein arms, or structures defined by the mbo waveform mutants. Phenotypic analyses indicate that both Pkd2 and lobo specifically affect sperm movement into the female storage receptacle. We hypothesize that the CG34110/Ccdc135/FAP50 family of conserved flagellar proteins functions within the axoneme to mediate Pkd2-dependent processes in the sperm flagellum and other motile cilia. PMID:21289096

  19. Flagellar hook protein from Salmonella SJ25.

    PubMed

    Kagawa, H; Owaribe, K; Asakura, S; Takahashi, N

    1976-01-01

    From acid-disintegrated flagellar hooks of Salmonella SJ25 an immunochemically pure preparation of hook protein was obtained by column chromatography. The molecular weight of the protein determined by sodium dodecyl sulfate-gel electrophoresis was 43,000, whereas that of SJ25 flagellin was 56,000. The amino-terminal residue of the hook protein was determined to be seryl. The amino acid composition of the protein was determined, the results being very similar to that for an Escheria coli hook protein reported by Silverman and Simon (1972). Within a wavelength range of 200 to 250 nm, our purified preparation of hook protein gave a circular dichroism spectrum with unusually small amplitudes, suggesting that the alpha-helix content of the protein was very low.

  20. Flagellar hook protein from Salmonella SJ25.

    PubMed Central

    Kagawa, H; Owaribe, K; Asakura, S; Takahashi, N

    1976-01-01

    From acid-disintegrated flagellar hooks of Salmonella SJ25 an immunochemically pure preparation of hook protein was obtained by column chromatography. The molecular weight of the protein determined by sodium dodecyl sulfate-gel electrophoresis was 43,000, whereas that of SJ25 flagellin was 56,000. The amino-terminal residue of the hook protein was determined to be seryl. The amino acid composition of the protein was determined, the results being very similar to that for an Escheria coli hook protein reported by Silverman and Simon (1972). Within a wavelength range of 200 to 250 nm, our purified preparation of hook protein gave a circular dichroism spectrum with unusually small amplitudes, suggesting that the alpha-helix content of the protein was very low. Images PMID:54355

  1. Flagellar oscillation: a commentary on proposed mechanisms.

    PubMed

    Woolley, David M

    2010-08-01

    Eukaryotic flagella and cilia have a remarkably uniform internal 'engine' known as the '9+2' axoneme. With few exceptions, the function of cilia and flagella is to beat rhythmically and set up relative motion between themselves and the liquid that surrounds them. The molecular basis of axonemal movement is understood in considerable detail, with the exception of the mechanism that provides its rhythmical or oscillatory quality. Some kind of repetitive 'switching' event is assumed to occur; there are several proposals regarding the nature of the 'switch' and how it might operate. Herein I first summarise all the factors known to influence the rate of the oscillation (the beating frequency). Many of these factors exert their effect through modulating the mean sliding velocity between the nine doublet microtubules of the axoneme, this velocity being the determinant of bend growth rate and bend propagation rate. Then I explain six proposed mechanisms for flagellar oscillation and review the evidence on which they are based. Finally, I attempt to derive an economical synthesis, drawing for preference on experimental research that has been minimally disruptive of the intricate structure of the axoneme. The 'provisional synthesis' is that flagellar oscillation emerges from an effect of passive sliding direction on the dynein arms. Sliding in one direction facilitates force-generating cycles and dynein-to-dynein synchronisation along a doublet; sliding in the other direction is inhibitory. The direction of the initial passive sliding normally oscillates because it is controlled hydrodynamically through the alternating direction of the propulsive thrust. However, in the absence of such regulation, there can be a perpetual, mechanical self-triggering through a reversal of sliding direction due to the recoil of elastic structures that deform as a response to the prior active sliding. This provisional synthesis may be a useful basis for further examination of the problem.

  2. THE FLAGELLAR PHOTORESPONSE IN VOLVOX SPECIES (VOLVOCACEAE, CHLOROPHYCEAE)(1).

    PubMed

    Solari, Cristian A; Drescher, Knut; Goldstein, Raymond E

    2011-06-01

    Steering their swimming direction toward the light is crucial for the viability of Volvox colonies, the larger members of the volvocine algae. While it is known that this phototactic steering is achieved by a difference in behavior of the flagella on the illuminated and shaded sides, conflicting reports suggest that this asymmetry arises either from a change in beating direction or a change in beating frequency. Here, we report direct observations of the flagellar behavior of various Volvox species with different phyletic origin in response to light intensity changes and thereby resolve this controversy: Volvox barberi W. Shaw from the section Volvox sensu Nozaki (2003) changes the direction of the flagellar beating plane, while species encompassed in the group Eudorina (Volvox carteri F. Stein, Volvox aureus Ehrenb., and Volvox tertius Art. Mey.) decrease the flagellar beating frequency, sometimes down to flagellar arrest. © 2011 Phycological Society of America.

  3. Comprehensive Mapping of the Escherichia coli Flagellar Regulatory Network

    PubMed Central

    Fitzgerald, Devon M.; Bonocora, Richard P.; Wade, Joseph T.

    2014-01-01

    Flagellar synthesis is a highly regulated process in all motile bacteria. In Escherichia coli and related species, the transcription factor FlhDC is the master regulator of a multi-tiered transcription network. FlhDC activates transcription of a number of genes, including some flagellar genes and the gene encoding the alternative Sigma factor FliA. Genes whose expression is required late in flagellar assembly are primarily transcribed by FliA, imparting temporal regulation of transcription and coupling expression to flagellar assembly. In this study, we use ChIP-seq and RNA-seq to comprehensively map the E. coli FlhDC and FliA regulons. We define a surprisingly restricted FlhDC regulon, including two novel regulated targets and two binding sites not associated with detectable regulation of surrounding genes. In contrast, we greatly expand the known FliA regulon. Surprisingly, 30 of the 52 FliA binding sites are located inside genes. Two of these intragenic promoters are associated with detectable noncoding RNAs, while the others either produce highly unstable RNAs or are inactive under these conditions. Together, our data redefine the E. coli flagellar regulatory network, and provide new insight into the temporal orchestration of gene expression that coordinates the flagellar assembly process. PMID:25275371

  4. Fuel of the Bacterial Flagellar Type III Protein Export Apparatus.

    PubMed

    Minamino, Tohru; Kinoshita, Miki; Namba, Keiichi

    2017-01-01

    The flagellar type III export apparatus utilizes ATP and proton motive force (PMF) across the cytoplasmic membrane as the energy sources and transports flagellar component proteins from the cytoplasm to the distal growing end of the growing structure to construct the bacterial flagellum beyond the cellular membranes. The flagellar type III export apparatus coordinates flagellar protein export with assembly by ordered export of substrates to parallel with their order of the assembly. The export apparatus is composed of a PMF-driven transmembrane export gate complex and a cytoplasmic ATPase complex. Since the ATPase complex is dispensable for flagellar protein export, PMF is the primary fuel for protein unfolding and translocation. Interestingly, the export gate complex can also use sodium motive force across the cytoplasmic membrane in addition to PMF when the ATPase complex does not work properly. Here, we describe experimental protocols, which have allowed us to identify the export substrate class and the primary fuel of the flagellar type III protein export apparatus in Salmonella enterica serovar Typhimurium.

  5. Escherichia coli modulates its motor speed on sensing an attractant.

    PubMed

    Karmakar, Richa; Naaz, Farha; Tirumkudulu, Mahesh S; Venkatesh, K V

    2016-10-01

    It is well known that Escherichia coli achieves chemotaxis by modulating the bias of the flagellar motor. Recent experiments have shown that the bacteria vary their swimming speeds as well in presence of attractants. However, this increase in the swimming speed in response to the attractants has not been correlated with the increase in the flagellar motor speed. Using flickering dark-field microscopy, we measure the head-rotation speed of a large population of cells to correlate it with the flagellar motor speed. Experiments performed with wild-type and trg-deletion mutant strains suggest that the cells are capable of modulating the flagellar motor speed via mere sensing of a ligand. The motor speed can be further correlated with the swimming speed of the cells and was found to be linear. These results suggest the existence of a hitherto unknown intra-cellular pathway that modulates the flagellar motor speed in response to sensing of chemicals, thereby making chemotaxis more efficient than previously known.

  6. Flagellar tip activation stimulated by membrane adhesions in Chlamydomonas gametes

    PubMed Central

    1980-01-01

    Membrane adhesions between the flagella of mating-type "plus" and "minus" gametes of Chlamydomonas reinhardi are shown to stimulate a rapid change in the ultrastructure of the flagellar tips, designated as flagellar tip activation (FTA). A dense substance, termed fibrous tip material (FTM), accumulates between the flagellar membrane and the nine single A microtubules of the tip. The A microtubules then elongate, growing into the distal region of the tip, increasing tip length by 30%. This study describes FTA kinetics during normal and mutant matings, presents experiments designed to probe its role in the mating reaction, and offers the following conclusions: (a) FTA is elicited by agents that cross-link flagellar membrane components (including natural sexual agglutinins, antiflagellar antisera, and concanavalin A) but not by flagellar adherence to polylysine-coated films. (b) FTA is reversed by flagellar disadhesion. (c) Gametes can undergo repeated cycles of FTA during successive rounds of adhesion/disadhesion. (d) FTA, flagellar tipping, and sexual signaling are simultaneously blocked by colchicine and by vinblastine, suggesting that tubulinlike molecules, perhaps exposed at the membrane surface, are involved in all three responses. (e) FTA is not blocked by short exposure to chymotrypsin, by cytochalasins B and D, nor by concanavalin A, even though all block cell fusion; the response is therefore autonomous and experimentally dissociable from later stages in the mating reaction. (f) Under no experimental conditions is mating-structure activation observed to occur unless FTA also occurs. This study concludes that FTA is a necessary event in the sexual signaling sequence, and presents a testable working model for its mechanism. PMID:7358792

  7. The flagellar adenylate kinases of Trypanosoma cruzi.

    PubMed

    Camara, María de los Milagros; Bouvier, León A; Miranda, Mariana R; Pereira, Claudio A

    2015-01-01

    Adenylate kinases (ADK) are key enzymes involved in cell energy management. Trypanosomatids present the highest number of variants in a single cell in comparison with the rest of the living organisms. In this work, we characterized two flagellar ADKs from Trypanosoma cruzi, called TcADK1 and TcADK4, which are also located in the cell cytosol. Interestingly, TcADK1 presents a stage-specific expression. This variant was detected in epimastigotes cells, and was completely absent in trypomastigotes and amastigotes, while TcADK4 is present in the major life cycle stages of T. cruzi. Both variants are also regulated, in opposite ways, along the parasite growth curve suggesting that their expression depends on the intra- and extracellular conditions. Both, TcADK1 and TcADK4 present N-terminal extension that could be responsible for their subcellular localization. The presence of ADK variants in the flagellum would be critical for the provision of energy in a process of high ATP consumption such as cell motility. © The Author 2014. Published by Oxford University Press on behalf of FEMS. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Stoichiometry and Turnover of the Bacterial Flagellar Switch Protein FliN

    PubMed Central

    Delalez, Nicolas J.; Berry, Richard M.

    2014-01-01

    ABSTRACT Some proteins in biological complexes exchange with pools of free proteins while the complex is functioning. Evidence is emerging that protein exchange can be part of an adaptive mechanism. The bacterial flagellar motor is one of the most complex biological machines and is an ideal model system to study protein dynamics in large multimeric complexes. Recent studies showed that the copy number of FliM in the switch complex and the fraction of FliM that exchanges vary with the direction of flagellar rotation. Here, we investigated the stoichiometry and turnover of another switch complex component, FliN, labeled with the fluorescent protein CyPet, in Escherichia coli. Our results confirm that, in vivo, FliM and FliN form a complex with stoichiometry of 1:4 and function as a unit. We estimated that wild-type motors contained 120 ± 26 FliN molecules. Motors that rotated only clockwise (CW) or counterclockwise (CCW) contained 114 ± 17 and 144 ± 26 FliN molecules, respectively. The ratio of CCW-to-CW FliN copy numbers was 1.26, very close to that of 1.29 reported previously for FliM. We also measured the exchange of FliN molecules, which had a time scale and dependence upon rotation direction similar to those of FliM, consistent with an exchange of FliM-FliN as a unit. Our work confirms the highly dynamic nature of multimeric protein complexes and indicates that, under physiological conditions, these machines might not be the stable, complete structures suggested by averaged fixed methodologies but, rather, incomplete rings that can respond and adapt to changing environments. PMID:24987089

  9. Architecture of a flagellar apparatus in the fast-swimming magnetotactic bacterium MO-1.

    PubMed

    Ruan, Juanfang; Kato, Takayuki; Santini, Claire-Lise; Miyata, Tomoko; Kawamoto, Akihiro; Zhang, Wei-Jia; Bernadac, Alain; Wu, Long-Fei; Namba, Keiichi

    2012-12-11

    The bacterial flagellum is a motility organelle that consists of a rotary motor and a helical propeller. The flagella usually work individually or by forming a loose bundle to produce thrust. However, the flagellar apparatus of marine bacterium MO-1 is a tight bundle of seven flagellar filaments enveloped in a sheath, and it has been a mystery as to how the flagella rotate smoothly in coordination. Here we have used electron cryotomography to visualize the 3D architecture of the sheathed flagella. The seven filaments are enveloped with 24 fibrils in the sheath, and their basal bodies are arranged in an intertwined hexagonal array similar to the thick and thin filaments of vertebrate skeletal muscles. This complex and exquisite architecture strongly suggests that the fibrils counter-rotate between flagella in direct contact to minimize the friction of high-speed rotation of individual flagella in the tight bundle within the sheath to enable MO-1 cells to swim at about 300 µm/s.

  10. Mechanism of Flagellar Vaccine Protection Related to Pseudomonas Pathogenesis in Trauma Burns

    DTIC Science & Technology

    1989-01-19

    0 MECHANISM OF FLAGELLAR VACCINE PROTECTION RELATED6TO PSEUDOMONAS PATHOGENESIS IN TRAUMA BURNS Annual and Final Report Thomas C. Montie, Ph.D...Classificaun) Mechanism of Flagellar Vaccine Protection Related to Pseudomonas Pathogenesis itr Trauma ( Burns ) 12. PERSONAL AUTHOR(S) Thomas C. Montie, Ph.D. 13a...virulence. Isolated flagellar preparations have provided active protection in a burned mouse model. Passive protection with anti-flagellar sera (anti-LPS-free

  11. Flagellar apparatus gene sequences of Aeromonas hydrophila AL09-73 isolate

    USDA-ARS?s Scientific Manuscript database

    Flagellar apparatus genes of recent outbreak Aeromonas hydrophila AL09-73 isolate were sequenced and characterized. Total 28 flagellar genes were identified. The sizes of the genes range from 318 to 2001 nucleotides, which potentially encode different complex flagellar proteins. At nucleotide and...

  12. Reactivation of flagellar motility in demembranated Leishmania reveals role of cAMP in flagellar wave reversal to ciliary waveform

    PubMed Central

    Mukhopadhyay, Aakash Gautam; Dey, Chinmoy Sankar

    2016-01-01

    The flagellum of parasitic trypanosomes is a multifunctional appendage essential for its viability and infectivity. However, the biological mechanisms that make the flagellum so dynamic remains unexplored. No method is available to access and induce axonemal motility at will to decipher motility regulation in trypanosomes. For the first time we report the development of a detergent-extracted/demembranated ATP-reactivated model for studying flagellar motility in Leishmania. Flagellar beat parameters of reactivated parasites were similar to live ones. Using this model we discovered that cAMP (both exogenous and endogenous) induced flagellar wave reversal to a ciliary waveform in reactivated parasites via cAMP-dependent protein kinase A. The effect was reversible and highly specific. Such an effect of cAMP on the flagellar waveform has never been observed before in any organism. Flagellar wave reversal allows parasites to change direction of swimming. Our findings suggest a possible cAMP-dependent mechanism by which Leishmania responds to its surrounding microenvironment, necessary for its survival. Our demembranated-reactivated model not only serves as an important tool for functional studies of flagellated eukaryotic parasites but has the potential to understand ciliary motility regulation with possible implication on human ciliopathies. PMID:27849021

  13. Magnetic Propulsion of Microswimmers with DNA-Based Flagellar Bundles

    PubMed Central

    2016-01-01

    We show that DNA-based self-assembly can serve as a general and flexible tool to construct artificial flagella of several micrometers in length and only tens of nanometers in diameter. By attaching the DNA flagella to biocompatible magnetic microparticles, we provide a proof of concept demonstration of hybrid structures that, when rotated in an external magnetic field, propel by means of a flagellar bundle, similar to self-propelling peritrichous bacteria. Our theoretical analysis predicts that flagellar bundles that possess a length-dependent bending stiffness should exhibit a superior swimming speed compared to swimmers with a single appendage. The DNA self-assembly method permits the realization of these improved flagellar bundles in good agreement with our quantitative model. DNA flagella with well-controlled shape could fundamentally increase the functionality of fully biocompatible nanorobots and extend the scope and complexity of active materials. PMID:26821214

  14. In situ ellipsometric study of surface immobilization of flagellar filaments

    NASA Astrophysics Data System (ADS)

    Kurunczi, S.; Németh, A.; Hülber, T.; Kozma, P.; Petrik, P.; Jankovics, H.; Sebestyén, A.; Vonderviszt, F.; Fried, M.; Bársony, I.

    2010-10-01

    Protein filaments composed of thousands of subunits are promising candidates as sensing elements in biosensors. In this work in situ spectroscopic ellipsometry is applied to monitor the surface immobilization of flagellar filaments. This study is the first step towards the development of layers of filamentous receptors for sensor applications. Surface activation is performed using silanization and a subsequent glutaraldehyde crosslinking. Structure of the flagellar filament layers immobilized on activated and non-activated Si wafer substrates is determined using a two-layer effective medium model that accounted for the vertical density distribution of flagellar filaments with lengths of 300-1500 nm bound to the surface. The formation of the first interface layer can be explained by the multipoint covalent attachment of the filaments, while the second layer is mainly composed of tail pinned filaments floating upwards with the free parts. As confirmed by atomic force microscopy, covalent immobilization resulted in an increased surface density compared to absorption.

  15. Magnetic Propulsion of Microswimmers with DNA-Based Flagellar Bundles.

    PubMed

    Maier, Alexander M; Weig, Cornelius; Oswald, Peter; Frey, Erwin; Fischer, Peer; Liedl, Tim

    2016-02-10

    We show that DNA-based self-assembly can serve as a general and flexible tool to construct artificial flagella of several micrometers in length and only tens of nanometers in diameter. By attaching the DNA flagella to biocompatible magnetic microparticles, we provide a proof of concept demonstration of hybrid structures that, when rotated in an external magnetic field, propel by means of a flagellar bundle, similar to self-propelling peritrichous bacteria. Our theoretical analysis predicts that flagellar bundles that possess a length-dependent bending stiffness should exhibit a superior swimming speed compared to swimmers with a single appendage. The DNA self-assembly method permits the realization of these improved flagellar bundles in good agreement with our quantitative model. DNA flagella with well-controlled shape could fundamentally increase the functionality of fully biocompatible nanorobots and extend the scope and complexity of active materials.

  16. Flagellar duplication and migration during the Trichomonas vaginalis cell cycle.

    PubMed

    Zuo, Y; Riley, D E; Krieger, J N

    1999-04-01

    Trichomonas vaginalis is a flagellated protozoan, a representative of 1 of the earliest known eukaryotic lineages. Trichomonas vaginalis lacks centrioles but possesses basal bodies. We report here the cell cycle-dependent flagellar dynamics of T. vaginalis. By immunofluorescence, we found that T. vaginalis flagella duplicated during S-phase, segregated toward the nuclear poles, and then emanated from the spindle poles at mitosis. This behavior strongly parallels that of centrioles and other spindle pole-associated structures variously termed centrosomes, spindle pole bodies, or microtubule organizing centers. These observations support the hypothesis that flagellar forces may have provided motile forces for spindle pole alignment in an ancestral eukaryote.

  17. Viscous Dynamics of Lyme Disease and Syphilis Spirochetes Reveal Flagellar Torque and Drag

    PubMed Central

    Harman, Michael; Vig, Dhruv K.; Radolf, Justin D.; Wolgemuth, Charles W.

    2013-01-01

    The spirochetes that cause Lyme disease (Borrelia burgdorferi) and syphilis (Treponema pallidum) swim through viscous fluids, such as blood and interstitial fluid, by undulating their bodies as traveling, planar waves. These undulations are driven by rotation of the flagella within the periplasmic space, the narrow (∼20–40 nm in width) compartment between the inner and outer membranes. We show here that the swimming speeds of B. burgdorferi and T. pallidum decrease with increases in viscosity of the external aqueous milieu, even though the flagella are entirely intracellular. We then use mathematical modeling to show that the measured changes in speed are consistent with the exertion of constant torque by the spirochetal flagellar motors. Comparison of simulations, experiments, and a simple model for power dissipation allows us to estimate the torque and resistive drag that act on the flagella of these major spirochetal pathogens. PMID:24268139

  18. Two flagellar stators and their roles in motility and virulence in Pseudomonas syringae pv. tabaci 6605.

    PubMed

    Kanda, Eiko; Tatsuta, Takafumi; Suzuki, Tomoko; Taguchi, Fumiko; Naito, Kana; Inagaki, Yoshishige; Toyoda, Kazuhiro; Shiraishi, Tomonori; Ichinose, Yuki

    2011-02-01

    The motor proteins around the flagellar basal body consist of two cytoplasmic membrane proteins, MotA and MotB, and function as a complex that acts as the stator to generate the torque that drives rotation. Genome analysis of several Pseudomonas syringae pathovars revealed that there are two sets of genes encoding motor proteins: motAB and motCD. Deduced amino acid sequences for MotA/B and MotC/D showed homologies to the H(+)-driven stator from Escherichia coli and Na(+)-driven stator from Vibrio alginolyticus, respectively. However, the swimming motility of P. syringae pv. tabaci (Pta) 6605 was inhibited by the protonophore carbonyl cyanide m-chlorophenylhydrazone but not by the sodium stator-specific inhibitor phenamil. To identify a gene encoding the stator protein required for motility, ∆motAB, ∆motCD, and ∆motABCD mutants were generated. The ∆motCD mutant had remarkably reduced and the ∆motABCD mutant completely abolished swimming motilities, whereas the ∆motAB mutant retained some degree of these abilities. The ∆motCD and ∆motABCD mutants did not produce N-acyl-homoserine lactones (AHLs), quorum-sensing molecules in this pathogen, and remarkably reduced the ability to cause disease in host tobacco leaves, as we previously observed in the ∆fliC mutant strain. These results strongly indicate that both stator pairs in Pta 6605 are proton-dependent and that MotCD is important for not only flagellar motility but also for production of AHLs and the ability to cause disease in host plants.

  19. Assembly mechanism of Trypanosoma brucei BILBO1 at the flagellar pocket collar.

    PubMed

    Vidilaseris, Keni; Lesigang, Johannes; Morriswood, Brooke; Dong, Gang

    2015-01-01

    The flagellar pocket is a bulb-like invagination of the plasma membrane that encloses the base of the single flagellum in trypanosomes. It is the site of all endo- and exocytic activity in the parasite and has thus been proposed to be a therapeutic target. At the neck of the flagellar pocket is an electron-dense cytoskeletal structure named the flagellar pocket collar. The protein BILBO1 was the first characterized and remains the only known component of the flagellar pocket collar, with essential functions in the biogenesis of both the flagellar pocket and flagellar pocket collar. We recently reported that the filamentous assembly of Trypanosoma brucei BILBO1 (TbBILBO1) is mediated by its central coiled coil domain and C-terminal leucine zipper. Here, we discuss how TbBILBO1 might assemble at the flagellar pocket collar in T. brucei.

  20. Functional Activation of the Flagellar Type III Secretion Export Apparatus

    PubMed Central

    Phillips, Andrew M.; Calvo, Rebecca A.; Kearns, Daniel B.

    2015-01-01

    Flagella are assembled sequentially from the inside-out with morphogenetic checkpoints that enforce the temporal order of subunit addition. Here we show that flagellar basal bodies fail to proceed to hook assembly at high frequency in the absence of the monotopic protein SwrB of Bacillus subtilis. Genetic suppressor analysis indicates that SwrB activates the flagellar type III secretion export apparatus by the membrane protein FliP. Furthermore, mutants defective in the flagellar C-ring phenocopy the absence of SwrB for reduced hook frequency and C-ring defects may be bypassed either by SwrB overexpression or by a gain-of-function allele in the polymerization domain of FliG. We conclude that SwrB enhances the probability that the flagellar basal body adopts a conformation proficient for secretion to ensure that rod and hook subunits are not secreted in the absence of a suitable platform on which to polymerize. PMID:26244495

  1. Identification and characterization of flagellar biosynthetic genes in Yersinia ruckeri

    USDA-ARS?s Scientific Manuscript database

    Using transposon mutagenesis we have identified a Yersinia ruckeri serovar I mutant defective in both motility and production of secreted lipase activity. Sequence analysis of this mutant revealed a single transposon insertion in an open reading frame (ORF) with homology to flhA, a flagellar biosynt...

  2. Divalent Cation Control of Flagellar Motility in African Trypanosomes

    NASA Astrophysics Data System (ADS)

    Westergard, Anna M.; Hutchings, Nathan R.

    2005-03-01

    Changes in calcium concentration have been shown to dynamically affect flagellar motility in several eukaryotic systems. The African trypanosome is a monoflagellated protozoan parasite and the etiological agent of sleeping sickness. Although cell motility has been implicated in disease progression, very little is currently known about biochemical control of the trypanosome flagellum. In this study, we assess the effects of extracellular changes in calcium and nickel concentration on trypanosome flagellar movement. Using a flow through chamber, we determine the relative changes in motility in individual trypanosomes in response to various concentrations of calcium and nickel, respectively. Extracellular concentrations of calcium and nickel (as low as 100 micromolar) significantly inhibit trypanosome cell motility. The effects are reversible, as indicated by the recovery of motion after removal of the calcium or nickel from the chamber. We are currently investigating the specific changes in flagellar oscillation and coordination that result from calcium and nickel, respectively. These results verify the presence of a calcium-responsive signaling mechanism(s) that regulates flagellar beat in trypanosomes.

  3. The Ability of Proteus mirabilis To Sense Surfaces and Regulate Virulence Gene Expression Involves FliL, a Flagellar Basal Body Protein

    PubMed Central

    Belas, Robert; Suvanasuthi, Rooge

    2005-01-01

    Proteus mirabilis is a urinary tract pathogen that differentiates from a short swimmer cell to an elongated, highly flagellated swarmer cell. Swarmer cell differentiation parallels an increased expression of several virulence factors, suggesting that both processes are controlled by the same signal. The molecular nature of this signal is not known but is hypothesized to involve the inhibition of flagellar rotation. In this study, data are presented supporting the idea that conditions inhibiting flagellar rotation induce swarmer cell differentiation and implicating a rotating flagellar filament as critical to the sensing mechanism. Mutations in three genes, fliL, fliF, and fliG, encoding components of the flagellar basal body, result in the inappropriate development of swarmer cells in noninducing liquid media or hyperelongated swarmer cells on agar media. The fliL mutation was studied in detail. FliL− mutants are nonmotile and fail to synthesize flagellin, while complementation of fliL restores wild-type cell elongation but not motility. Overexpression of fliL+ in wild-type cells prevents swarmer cell differentiation and motility, a result also observed when P. mirabilis fliL+ was expressed in Escherichia coli. These results suggest that FliL plays a role in swarmer cell differentiation and implicate FliL as critical to transduction of the signal inducing swarmer cell differentiation and virulence gene expression. In concert with this idea, defects in fliL up-regulate the expression of two virulence genes, zapA and hpmB. These results support the hypothesis that P. mirabilis ascertains its location in the environment or host by assessing the status of its flagellar motors, which in turn control swarmer cell gene expression. PMID:16166542

  4. Mutational Analysis of the Flagellar Rotor Protein FliN: Identification of Surfaces Important for Flagellar Assembly and Switching†

    PubMed Central

    Paul, Koushik; Harmon, Jacob G.; Blair, David F.

    2006-01-01

    FliN is a component of the flagellar switch complex in many bacterial species. The crystal structure is known for most of FliN, and a targeted cross-linking study (K. Paul and D. F. Blair, J. Bacteriol. 188:2502-2511, 2006) showed that it is organized in ring-shaped tetramers at the bottom of the basal body C ring. FliN is essential for flagellar assembly and direction switching, but its precise functions have not been defined. Here, we identify functionally important regions on FliN by systematic mutagenesis. Nonconservative mutations were made at positions sampling the surface of the protein, and the effects on flagellar assembly and function were measured. Flagellar assembly was disrupted by mutations in a conserved hydrophobic patch centered on the dimer twofold axis or by mutations on the surface that forms the dimer-dimer interface in the tetramer. The assembly defect in hydrophobic-patch mutants was partially rescued by overexpression of the flagellar export proteins FliH and FliI, and coprecipitation assays demonstrated a binding interaction between FliN and FliH that was weakened by mutations in the hydrophobic patch. Thus, FliN might contribute to export by providing binding sites for FliH or FliH-containing complexes. The region around the hydrophobic patch is also important for switching; certain mutations in or near the patch caused a smooth-swimming chemotaxis defect that in most cases could be partially rescued by overexpression of the clockwise-signaling protein CheY. The results indicate that FliN is more closely involved in switching than has been supposed, possibly contributing to the binding site for CheY on the switch. PMID:16816196

  5. Flagellar regeneration in the scaly green flagellate Tetraselmis striata (Prasinophyceae): regeneration kinetics and effect of inhibitors

    NASA Astrophysics Data System (ADS)

    Reize, I. B.; Melkonian, M.

    1987-06-01

    Flagellar regeneration after experimental amputation was studied in synchronized axenic cultures of the scaly green flagellate Tetraselmis striata (Prasinophyceae). After removal of flagella by mechanical shearing, 95% of the cells regrow all four flagella (incl. the scaly covering) to nearly full length with a linear velocity of 50 nm/min under standard conditions. Flagellar regeneration is independent of photosynthesis (no effect of DCMU; the same regeneration rate in the light or in the dark), but depends on de novo protein synthesis: cycloheximide at a low concentration (0.35 μM) blocks flagellar regeneration reversibly. No pool of flagellar precursors appears to be present throughout the flagellated phase of the cell cycle. A transient pool of flagellar precursors, sufficient to generate 2.5 μm of flagellar length, however, develops during flagellar regeneration. Tunicamycin (2 μg/ml) inhibits flagellar regeneration only after a second flagellar amputation, when flagella reach only one third the length of the control. Flagellar regeneration in T. striata differs considerably from that of Chlamydomonas reinhardtii and represents an excellent model system for the study of synchronous Golgi apparatus (GA) activation, and transport and exocytosis of GA-derived macromolecules (scales).

  6. The glycosylphosphatidylinositol-PLC in Trypanosoma brucei forms a linear array on the exterior of the flagellar membrane before and after activation.

    PubMed

    Hanrahan, Orla; Webb, Helena; O'Byrne, Robert; Brabazon, Elaine; Treumann, Achim; Sunter, Jack D; Carrington, Mark; Voorheis, H Paul

    2009-06-01

    Bloodstream forms of Trypanosoma brucei contain a glycosylphosphatidylinositol-specific phospholipase C (GPI-PLC) that cleaves the GPI-anchor of the variable surface glycoprotein (VSG). Its location in trypanosomes has been controversial. Here, using confocal microscopy and surface labelling techniques, we show that the GPI-PLC is located exclusively in a linear array on the outside of the flagellar membrane, close to the flagellar attachment zone, but does not co-localize with the flagellar attachment zone protein, FAZ1. Consequently, the GPI-PLC and the VSG occupy the same plasma membrane leaflet, which resolves the topological problem associated with the cleavage reaction if the VSG and the GPI-PLC were on opposite sides of the membrane. The exterior location requires the enzyme to be tightly regulated to prevent VSG release under basal conditions. During stimulated VSG release in intact cells, the GPI-PLC did not change location, suggesting that the release mechanism involves lateral diffusion of the VSG in the plane of the membrane to the fixed position of the GPI-PLC.

  7. Structure and assembly of the flagellar hook-basal body complex of Salmonella typhimurium

    SciTech Connect

    Jones, C.J.

    1989-01-01

    The hook-basal body (HBB) complex is a multi-component structure which comprises a significant part of the bacterial flagellar motor. Electrophoretic mobility shifts of HBB complex component proteins from four non-flagellate mutants have enabled the author to assign each protein as being the product of the gene defective in each of the respective strains. The author has purified and characterized HBB complexes lacking either the L ring or both the P and L rings, and concluded that the 27-kDa basal-body protein is the major component of the L ring, and that the 38-kDa basal-body protein is the major component of the P ring. He has sequenced the genes encoding the subunit proteins of the M, P, and L rings of the basal body, and have examined both the gene and deduced amino acid sequences for clues regarding the regulation of these genes and the structure of their products. By quantitating the amount of {sup 35}S incorporated into the component protein vivo and correcting for the amount of contained in each protein (as deduced from gene sequencing data), he has determined the relative stoichiometries of most of the known component proteins of the HBB complex. He has developed a protocol for differential {sup 35}S-radiolabeling of HBB complexes in vivo and used it to examine the HBB complex assembly process. He has identified proteins required for M-ring assembly or stabilization and for the possible initiation of rod assembly. The rod is not stable until the P ring is assembled onto it. The monomers of the P and L rings are exported independent of flagellar assembly. These radiolabeling experiments have also enabled me to identify several new component proteins of the HBB complex.

  8. Mechanoregulation of molecular motors in flagella

    NASA Astrophysics Data System (ADS)

    Gadelha, Hermes

    2014-11-01

    Molecular motors are nano-biological machines responsible for exerting forces that drive movement in living organisms, from cargo transport to cell division and motility. Interestingly, despite the inherent complexity of many interacting motors, order and structure may arise naturally, as exemplified by the harmonic, self-organized undulatory motion of the flagellum. The real mechanisms behind this collective spontaneous oscillation are still unknown, and it is challenging task to measure experimentally the molecular motor dynamics within the flagellar structure in real time. In this talk we will explore different competing hypotheses that are capable of generating flagellar bending waves that ``resemble'' in-vitro observations, emphasizing the need for further mathematical analysis and model validation. It also highlight that this is a fertile and challenging area of inter-disciplinary research for applied mathematicians and demonstrates the importance of future observational and theoretical studies in understanding the underlying mechanics of these motile cell appendages.

  9. Opsonic activity of anti-flagellar serum against Clostridium chauvoei by mouse polymorphonuclear leucocytes.

    PubMed

    Tamura, Y; Tanaka, M

    1987-05-01

    The role of anti-flagellar serum against Clostridium chauvoei in phagocytosis by mouse polymorphonuclear leucocytes was examined. Anti-flagellar serum markedly increased phagocytic rate against the flagellated strain Okinawa but not against a non-flagellated mutant (NFM) derived from the same strain, while anti-NFM serum increased the phagocytic rate against both strains. These results indicate that anti-flagellar serum exerts its protective effect by opsonic activity.

  10. Escherichia coli swimming is robust against variations in flagellar number

    PubMed Central

    Mears, Patrick J; Koirala, Santosh; Rao, Chris V; Golding, Ido; Chemla, Yann R

    2014-01-01

    Bacterial chemotaxis is a paradigm for how environmental signals modulate cellular behavior. Although the network underlying this process has been studied extensively, we do not yet have an end-to-end understanding of chemotaxis. Specifically, how the rotational states of a cell’s flagella cooperatively determine whether the cell ‘runs’ or ‘tumbles’ remains poorly characterized. Here, we measure the swimming behavior of individual E. coli cells while simultaneously detecting the rotational states of each flagellum. We find that a simple mathematical expression relates the cell’s run/tumble bias to the number and average rotational state of its flagella. However, due to inter-flagellar correlations, an ‘effective number’ of flagella—smaller than the actual number—enters into this relation. Data from a chemotaxis mutant and stochastic modeling suggest that fluctuations of the regulator CheY-P are the source of flagellar correlations. A consequence of inter-flagellar correlations is that run/tumble behavior is only weakly dependent on number of flagella. DOI: http://dx.doi.org/10.7554/eLife.01916.001 PMID:24520165

  11. Interactions between chemotaxis genes and flagellar genes in Escherichia coli.

    PubMed Central

    Parkinson, J S; Parker, S R; Talbert, P B; Houts, S E

    1983-01-01

    Escherichia coli mutants defective in cheY and cheZ function are motile but generally nonchemotactic; cheY mutants have an extreme counterclockwise bias in flagellar rotation, whereas cheZ mutants have a clockwise rotational bias. Chemotactic pseudorevertants of cheY and cheZ mutants were isolated on semisolid agar and examined for second-site suppressors in other chemotaxis-related loci. Approximately 15% of the cheZ revertants and over 95% of the cheY revertants contained compensatory mutations in the flaA or flaB locus. When transferred to an otherwise wild-type background, most of these suppressor mutations resulted in a generally nonchemotactic phenotype: suppressors of cheY caused a clockwise rotational bias; suppressors of cheZ produced a counterclockwise rotational bias. Chemotactic double mutants containing a che and a fla mutation invariably exhibited flagellar rotation patterns in between the opposing extremes characteristic of the component mutations. This additive effect on flagellar rotation resulted in essentially wild-type swimming behavior and is probably the major basis of suppressor action. However, suppression effects were also allele specific, suggesting that the cheY and cheZ gene products interact directly with the flaA and flaB products. These interactions may be instrumental in establishing the unstimulated swimming pattern of E. coli. Images PMID:6305913

  12. Direct evidence of flagellar synchronization through hydrodynamic interactions

    NASA Astrophysics Data System (ADS)

    Brumley, Douglas; Polin, Marco; Wan, Kirsty; Goldstein, Raymond

    2013-11-01

    Eukaryotic cilia and flagella exhibit striking coordination, from the synchronous beating of two flagella in Chlamydomonas to the metachronal waves and large-scale flows displayed by carpets of cilia. However, the precise mechanisms responsible for flagellar synchronization remain unclear. We perform a series of experiments involving two individual flagella in a quiescent fluid. Cells are isolated from the colonial alga Volvox carteri, held in place at a fixed distance d, and oriented so that their flagellar beating planes coincide. In this fashion, we are able to explicitly assess the role of hydrodynamics in achieving synchronization. For closely separated cells, the flagella are capable of exhibiting a phase-locked state for thousands of beats at a time, despite significant differences in their intrinsic frequencies. For intermediate values of d, synchronous periods are interrupted by brief phase slips, while for d >> 1 the flagellar phase difference drifts almost linearly with time. The coupling strength extracted through analysis of the synchronization statistics exhibits excellent agreement with hydrodynamic predictions. This study unambiguously reveals that flagella coupled only through hydrodynamics are capable of exhibiting robust synchrony.

  13. Genetic and Transcriptional Analyses of the Flagellar Gene Cluster in Actinoplanes missouriensis.

    PubMed

    Jang, Moon-Sun; Mouri, Yoshihiro; Uchida, Kaoru; Aizawa, Shin-Ichi; Hayakawa, Masayuki; Fujita, Nobuyuki; Tezuka, Takeaki; Ohnishi, Yasuo

    2016-08-15

    Actinoplanes missouriensis, a Gram-positive and soil-inhabiting bacterium, is a member of the rare actinomycetes. The filamentous cells produce sporangia, which contain hundreds of flagellated spores that can swim rapidly for a short period of time until they find niches for germination. These swimming cells are called zoospores, and the mechanism of this unique temporal flagellation has not been elucidated. Here, we report all of the flagellar genes in the bacterial genome and their expected function and contribution for flagellar morphogenesis. We identified a large flagellar gene cluster composed of 33 genes that encode the majority of proteins essential for assembling the functional flagella of Gram-positive bacteria. One noted exception to the cluster was the location of the fliQ gene, which was separated from the cluster. We examined the involvement of four genes in flagellar biosynthesis by gene disruption, fliQ, fliC, fliK, and lytA Furthermore, we performed a transcriptional analysis of the flagellar genes using RNA samples prepared from A. missouriensis grown on a sporangium-producing agar medium for 1, 3, 6, and 40 days. We demonstrated that the transcription of the flagellar genes was activated in conjunction with sporangium formation. Eleven transcriptional start points of the flagellar genes were determined using the rapid amplification of cDNA 5' ends (RACE) procedure, which revealed the highly conserved promoter sequence CTCA(N15-17)GCCGAA. This result suggests that a sigma factor is responsible for the transcription of all flagellar genes and that the flagellar structure assembles simultaneously. The biology of a zoospore is very interesting from the viewpoint of morphogenesis, survival strategy, and evolution. Here, we analyzed flagellar genes in A. missouriensis, which produces sporangia containing hundreds of flagellated spores each. Zoospores released from the sporangia swim for a short time before germination occurs. We identified a large

  14. Genetic and Transcriptional Analyses of the Flagellar Gene Cluster in Actinoplanes missouriensis

    PubMed Central

    Jang, Moon-Sun; Mouri, Yoshihiro; Uchida, Kaoru; Aizawa, Shin-Ichi; Hayakawa, Masayuki; Fujita, Nobuyuki; Tezuka, Takeaki

    2016-01-01

    ABSTRACT Actinoplanes missouriensis, a Gram-positive and soil-inhabiting bacterium, is a member of the rare actinomycetes. The filamentous cells produce sporangia, which contain hundreds of flagellated spores that can swim rapidly for a short period of time until they find niches for germination. These swimming cells are called zoospores, and the mechanism of this unique temporal flagellation has not been elucidated. Here, we report all of the flagellar genes in the bacterial genome and their expected function and contribution for flagellar morphogenesis. We identified a large flagellar gene cluster composed of 33 genes that encode the majority of proteins essential for assembling the functional flagella of Gram-positive bacteria. One noted exception to the cluster was the location of the fliQ gene, which was separated from the cluster. We examined the involvement of four genes in flagellar biosynthesis by gene disruption, fliQ, fliC, fliK, and lytA. Furthermore, we performed a transcriptional analysis of the flagellar genes using RNA samples prepared from A. missouriensis grown on a sporangium-producing agar medium for 1, 3, 6, and 40 days. We demonstrated that the transcription of the flagellar genes was activated in conjunction with sporangium formation. Eleven transcriptional start points of the flagellar genes were determined using the rapid amplification of cDNA 5′ ends (RACE) procedure, which revealed the highly conserved promoter sequence CTCA(N15–17)GCCGAA. This result suggests that a sigma factor is responsible for the transcription of all flagellar genes and that the flagellar structure assembles simultaneously. IMPORTANCE The biology of a zoospore is very interesting from the viewpoint of morphogenesis, survival strategy, and evolution. Here, we analyzed flagellar genes in A. missouriensis, which produces sporangia containing hundreds of flagellated spores each. Zoospores released from the sporangia swim for a short time before germination occurs

  15. Structure of the Flagellar Type III Export Chaperone FliT, and Its Regulatory Mechanism of Flagellar Assembly

    NASA Astrophysics Data System (ADS)

    Imada, Katsumi; Minamino, Tohru; Namba, Keiichi

    Flagellar export chaperones are multifunctional small proteins required for efficient construction of the bacterial flagellum. FliT is a flagellar export chaperone for the filament-capping protein FliD. We have determined the structure of FliT at 3.2 Å resolution. FliT adopts an anti-parallel α-helical bundle structure with a unique C-terminal helical segment of flexible orientation. The structure and following genetic and biochemical studies indicated that a conformational change of the C-terminal segment is responsible for switching the binding partners to regulate gene expression and protein export. This finding reveals how the complex pattern of interactions with various binding partners is regulated by a conformational change of such a small protein molecule.

  16. Key Amino Acid Residues Involved in the Transitions of L- to R-Type Protofilaments of the Salmonella Flagellar Filament

    PubMed Central

    Hayashi, Fumio; Tomaru, Hidetoshi; Furukawa, Eiji; Ikeda, Kanae; Fukano, Hiroko

    2013-01-01

    The flagellar filament enables bacteria to swim by functioning as a helical propeller. The filament is a supercoiled assembly of a single protein, flagellin, and is formed by 11 protofilaments arranged in a circle. Bacterial swimming and tumbling correlate with changes of the various helical structures, called polymorphic transformation, that are determined by the ratios of two distinct forms of protofilaments, the L and R types. The polymorphic transformation is caused by transition of the protofilament between L and R types. Elucidation of this transition mechanism has been addressed by comparing the atomic structures of L- and R-type straight filaments or using massive molecular dynamic simulation. Here, we found amino acid residues required for the transition of the protofilament using fliC-intragenic suppressor analysis. We isolated a number of revertants producing supercoiled filaments from mutants with straight filaments and identified the second-site mutations in all of the revertants. The results suggest that Asp107, Gly426, and Ser448 and Ser106, Ala416, Ala427, and Arg431 are the key residues involved in inducing supercoiled filaments from the R- and the L-type straight filaments, respectively. Considering the structures of the R- and L-type protofilaments and the relationship between the rotation of the flagellar motor and the polymorphic transformation, we propose that Gly426, Ala427, and Arg431 contribute to the first stage of the transition and that Ser106, Asp107, and Ala416 play a role in propagating the transitions along the flagellar filament. PMID:23729653

  17. By Staying Together, Two Genes Keep the Motor Running.

    PubMed

    Zhulin, Igor B

    2017-02-07

    In this issue of Structure, Lynch et al. (2017) reveal that the interaction between two key proteins in the bacterial flagellar motor results in a shared structural domain. This unusual arrangement keeps the corresponding genes together through the course of evolution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Coaxial atomizer liquid intact lengths

    NASA Technical Reports Server (NTRS)

    Eroglu, Hasan; Chigier, Norman; Farago, Zoltan

    1991-01-01

    Average intact lengths of round liquid jets generated by airblast coaxial atomizer were measured from over 1500 photographs. The intact lengths were studied over a jet Reynolds number range of 18,000 and Weber number range of 260. Results are presented for two different nozzle geometries. The intact lengths were found to be strongly dependent on Re and We numbers. An empirical equation was derived as a function of these parameters. A comparison of the intact lengths for round jets and flat sheets shows that round jets generate shorter intact lengths.

  19. bop5 mutations reveal new roles for the IC138 phosphoprotein in the regulation of flagellar motility and asymmetric waveforms

    PubMed Central

    VanderWaal, Kristyn E.; Yamamoto, Ryosuke; Wakabayashi, Ken-ichi; Fox, Laura; Kamiya, Ritsu; Dutcher, Susan K.; Bayly, Phillip V.; Sale, Winfield S.; Porter, Mary E.

    2011-01-01

    I1 dynein, or dynein f, is a highly conserved inner arm isoform that plays a key role in the regulation of flagellar motility. To understand how the IC138 IC/LC subcomplex modulates I1 activity, we characterized the molecular lesions and motility phenotypes of several bop5 alleles. bop5-3, bop5-4, and bop5-5 are null alleles, whereas bop5-6 is an intron mutation that reduces IC138 expression. I1 dynein assembles into the axoneme, but the IC138 IC/LC subcomplex is missing. bop5 strains, like other I1 mutants, swim forward with reduced swimming velocities and display an impaired reversal response during photoshock. Unlike mutants lacking the entire I1 dynein, however, bop5 strains exhibit normal phototaxis. bop5 defects are rescued by transformation with the wild-type IC138 gene. Analysis of flagellar waveforms reveals that loss of the IC138 subcomplex reduces shear amplitude, sliding velocities, and the speed of bend propagation in vivo, consistent with the reduction in microtubule sliding velocities observed in vitro. The results indicate that the IC138 IC/LC subcomplex is necessary to generate an efficient waveform for optimal motility, but it is not essential for phototaxis. These findings have significant implications for the mechanisms by which IC/LC complexes regulate dynein motor activity independent of effects on cargo binding or complex stability. PMID:21697502

  20. (Photosynthesis in intact plants)

    SciTech Connect

    Not Available

    1990-01-01

    Progress in the two years since the last renewal application has been excellent. We have made substantial contributions on both main fronts of the projects, and are particularly happy with the progress of our research on intact plants. The approach of basing our field work on a sound foundation of laboratory studies has enabled is to use methods which provide unambiguous assays of well characterized reactions. We have also made excellent progress in several laboratory studies which will have direct applications in future field work, and have introduced to the laboratory a range of molecular genetics techniques which will allow us to explore new options in the attempt to understand function at the level of molecular structure.

  1. In vitro characterization of FlgB, FlgC, FlgF, FlgG, and FliE, flagellar basal body proteins of Salmonella.

    PubMed

    Saijo-Hamano, Yumiko; Uchida, Naoko; Namba, Keiichi; Oosawa, Kenji

    2004-05-28

    The bacterial flagellar basal body is a rotary motor. It spans the cytoplasmic and outer membranes and drives rapid rotation of a long helical filament in the cell exterior. The flagellar rod at its central axis is a drive shaft that transmits torque through the hook to the filament to propel the bacterial locomotion. To study the structure of the rod in detail, we have established purification procedures for Salmonella rod proteins, FlgB, FlgC, FlgF, FlgG, and also for FliE, a rod adapter protein, from an Escherichia coli expression system. While FlgF was highly soluble, FlgB, FlgC, FlgG and FliE tended to self or cross-aggregate into fibrils in solutions at neutral pH or below, at high ionic strength, or at high protein concentration. These aggregates were characterized to be beta-amyloid fibrils, unrelated to the rod structure formed in vivo. Under non-aggregative conditions, no protein-protein interactions were detected between any pairs of these five proteins, suggesting that their spontaneous, template-free polymerization is strongly suppressed. Limited proteolyses showed that FlgF and FlgG have natively unfolded N and C-terminal regions of about 100 residues in total just as flagellin does, whereas FlgB, FlgC and FliE, which are little over 100 residues long, are unfolded in their entire peptide chains. These results together with other data indicate that all of the ten flagellar axial proteins share structural characteristics and folding dynamics in relation to the mechanism of their self-assembly into the flagellar axial structure.

  2. Individual Flagellar Waveform Affects Collective Behavior of Chlamydomonas reinhardtii.

    PubMed

    Kage, Azusa; Mogami, Yoshihiro

    2015-08-01

    Bioconvection is a form of collective motion that occurs spontaneously in the suspension of swimming microorganisms. In a previous study, we quantitatively described the "pattern transition," a phase transition phenomenon that so far has exclusively been observed in bioconvection of the unicellular green alga Chlamydomonas. We suggested that the transition could be induced by changes in the balance between the gravitational and shear-induced torques, both of which act to determine the orientation of the organism in the shear flow. As both of the torques should be affected by the geometry of the Chlamydomonas cell, alteration in the flagellar waveform might change the extent of torque generation by altering overall geometry of the cell. Based on this working hypothesis, we examined bioconvection behavior of two flagellar mutants of Chlamydomonas reinhardtii, ida1 and oda2, making reference to the wild type. Flagella of ida1 beat with an abnormal waveform, while flagella of oda2 show a normal waveform but lower beat frequency. As a result, both mutants had swimming speed of less than 50% of the wild type. ida1 formed bioconvection patterns with smaller spacing than those of wild type and oda2. Two-axis view revealed the periodic movement of the settling blobs of ida1, while oda2 showed qualitatively similar behavior to that of wild type. Unexpectedly, ida1 showed stronger negative gravitaxis than did wild type, while oda2 showed relatively weak gravitaxis. These findings suggest that flagellar waveform, not swimming speed or beat frequency, strongly affect bioconvection behavior in C. reinhardtii.

  3. The Deep-Sea Bacterium Photobacterium profundum SS9 Utilizes Separate Flagellar Systems for Swimming and Swarming under High-Pressure Conditions ▿ †

    PubMed Central

    Eloe, Emiley A.; Lauro, Federico M.; Vogel, Rudi F.; Bartlett, Douglas H.

    2008-01-01

    Motility is a critical function needed for nutrient acquisition, biofilm formation, and the avoidance of harmful chemicals and predators. Flagellar motility is one of the most pressure-sensitive cellular processes in mesophilic bacteria; therefore, it is ecologically relevant to determine how deep-sea microbes have adapted their motility systems for functionality at depth. In this study, the motility of the deep-sea piezophilic bacterium Photobacterium profundum SS9 was investigated and compared with that of the related shallow-water piezosensitive strain Photobacterium profundum 3TCK, as well as that of the well-studied piezosensitive bacterium Escherichia coli. The SS9 genome contains two flagellar gene clusters: a polar flagellum gene cluster (PF) and a putative lateral flagellum gene cluster (LF). In-frame deletions were constructed in the two flagellin genes located within the PF cluster (flaA and flaC), the one flagellin gene located within the LF cluster (flaB), a component of a putative sodium-driven flagellar motor (motA2), and a component of a putative proton-driven flagellar motor (motA1). SS9 PF flaA, flaC, and motA2 mutants were defective in motility under all conditions tested. In contrast, the flaB and motA1 mutants were defective only under conditions of high pressure and high viscosity. flaB and motA1 gene expression was strongly induced by elevated pressure plus increased viscosity. Direct swimming velocity measurements were obtained using a high-pressure microscopic chamber, where increases in pressure resulted in a striking decrease in swimming velocity for E. coli and a gradual reduction for 3TCK which proceeded up to 120 MPa, while SS9 increased swimming velocity at 30 MPa and maintained motility up to a maximum pressure of 150 MPa. Our results indicate that P. profundum SS9 possesses two distinct flagellar systems, both of which have acquired dramatic adaptations for optimal functionality under high-pressure conditions. PMID:18723648

  4. [Structure and function of the bacterial flagellar type III protein export system in Salmonella
].

    PubMed

    Minamino, Tohru

    2015-01-01

    The bacterial flagellum is a filamentous organelle that propels the bacterial cell body in liquid media. For construction of the bacterial flagellum beyond the cytoplasmic membrane, flagellar component proteins are transported by its specific protein export apparatus from the cytoplasm to the distal end of the growing flagellar structure. The flagellar export apparatus consists of a transmembrane export gate complex and a cytoplasmic ATPase ring complex. Flagellar substrate-specific chaperones bind to their cognate substrates in the cytoplasm and escort the substrates to the docking platform of the export gate. The export apparatus utilizes ATP and proton motive force across the cytoplasmic membrane as the energy sources to drive protein export and coordinates protein export with assembly by ordered export of substrates to parallel with their order of assembly. In this review, we summarize our current understanding of the structure and function of the flagellar protein export system in Salmonella enterica serovar Typhimurium.

  5. Involvement of the flagellar assembly pathway in Vibrio alginolyticus adhesion under environmental stresses

    PubMed Central

    Wang, Lu; Huang, Lixing; Su, Yongquan; Qin, Yingxue; Kong, Wendi; Ma, Ying; Xu, Xiaojin; Lin, Mao; Zheng, Jiang; Yan, Qingpi

    2015-01-01

    Adhesion is an important virulence factor of Vibrio alginolyticus. This factor may be affected by environmental conditions; however, its molecular mechanism remains unclear. In our previous research, adhesion deficient strains were obtained by culturing V. alginolyticus under stresses including Cu, Pb, Hg, and low pH. With RNA-seq and bioinformatics analysis, we found that all of these stress treatments significantly affected the flagellar assembly pathway, which may play an important role in V. alginolyticus adhesion. Therefore, we hypothesized that the environmental stresses of the flagellar assembly pathway may be one way in which environmental conditions affect adhesion. To verify our hypothesis, a bioinformatics analysis, QPCR, RNAi, in vitro adhesion assay and motility assay were performed. Our results indicated that (1) the flagellar assembly pathway was sensitive to environmental stresses, (2) the flagellar assembly pathway played an important role in V. alginolyticus adhesion, and (3) motility is not the only way in which the flagellar assembly pathway affects adhesion. PMID:26322276

  6. The Three-Dimensional Structure of the Flagellar Rotor from a Clockwise-Locked Mutant of Salmonella enterica Serovar Typhimurium

    PubMed Central

    Thomas, Dennis R.; Francis, Noreen R.; Xu, Chen; DeRosier, David J.

    2006-01-01

    Three-dimensional reconstructions from electron cryomicrographs of the rotor of the flagellar motor reveal that the symmetry of individual M rings varies from 24-fold to 26-fold while that of the C rings, containing the two motor/switch proteins FliM and FliN, varies from 32-fold to 36-fold, with no apparent correlation between the symmetries of the two rings. Results from other studies provided evidence that, in addition to the transmembrane protein FliF, at least some part of the third motor/switch protein, FliG, contributes to a thickening on the face of the M ring, but there was no evidence as to whether or not any portion of FliG also contributes to the C ring. Of the four morphological features in the cross section of the C ring, the feature closest to the M ring is not present with the rotational symmetry of the rest of the C ring, but instead it has the symmetry of the M ring. We suggest that this inner feature arises from a domain of FliG. We present a hypothetical docking in which the C-terminal motor domain of FliG lies in the C ring, where it can interact intimately with FliM. PMID:17015643

  7. MRI of intact plants.

    PubMed

    Van As, Henk; Scheenen, Tom; Vergeldt, Frank J

    2009-01-01

    Nuclear magnetic resonance imaging (MRI) is a non-destructive and non-invasive technique that can be used to acquire two- or even three-dimensional images of intact plants. The information within the images can be manipulated and used to study the dynamics of plant water relations and water transport in the stem, e.g., as a function of environmental (stress) conditions. Non-spatially resolved portable NMR is becoming available to study leaf water content and distribution of water in different (sub-cellular) compartments. These parameters directly relate to stomatal water conductance, CO(2) uptake, and photosynthesis. MRI applied on plants is not a straight forward extension of the methods discussed for (bio)medical MRI. This educational review explains the basic physical principles of plant MRI, with a focus on the spatial resolution, factors that determine the spatial resolution, and its unique information for applications in plant water relations that directly relate to plant photosynthetic activity. © Springer Science+Business Media B.V. 2009

  8. The physics of intact capture

    NASA Technical Reports Server (NTRS)

    Tsou, Peter; Griffiths, D. J.; Albee, A. L.

    1994-01-01

    The ability to capture projectiles intact at hypervelocities in underdense media open a new area of study in physics. Underdense material behaves markedly different than solid, liquid, or gas upon hypervelocity impact. This new phenomenon enables applications in science that would either not be possible or would be very costly by other means. This phenomenon has been fully demonstrated in the laboratory and validated in space. Even more interesting is the fact that this hypervelocity intact capture was accomplished passively. A better understanding of the physics of intact capture will lead to improvements in intact capture. A collection of physical observations of this phenomenon is presented here.

  9. The physics of intact capture

    NASA Technical Reports Server (NTRS)

    Tsou, Peter; Griffiths, D. J.; Albee, A. L.

    1994-01-01

    The ability to capture projectiles intact at hypervelocities in underdense media open a new area of study in physics. Underdense material behaves markedly different than solid, liquid, or gas upon hypervelocity impact. This new phenomenon enables applications in science that would either not be possible or would be very costly by other means. This phenomenon has been fully demonstrated in the laboratory and validated in space. Even more interesting is the fact that this hypervelocity intact capture was accomplished passively. A better understanding of the physics of intact capture will lead to improvements in intact capture. A collection of physical observations of this phenomenon is presented here.

  10. Gains of Bacterial Flagellar Motility in a Fungal World

    PubMed Central

    Pion, Martin; Bshary, Redouan; Bindschedler, Saskia; Filippidou, Sevasti; Wick, Lukas Y.; Job, Daniel

    2013-01-01

    The maintenance of energetically costly flagella by bacteria in non-water-saturated media, such as soil, still presents an evolutionary conundrum. Potential explanations have focused on rare flooding events allowing dispersal. Such scenarios, however, overlook bacterial dispersal along mycelia as a possible transport mechanism in soils. The hypothesis tested in this study is that dispersal along fungal hyphae may lead to an increase in the fitness of flagellated bacteria and thus offer an alternative explanation for the maintenance of flagella even in unsaturated soils. Dispersal along fungal hyphae was shown for a diverse array of motile bacteria. To measure the fitness effect of dispersal, additional experiments were conducted in a model system mimicking limited dispersal, using Pseudomonas putida KT2440 and its nonflagellated (ΔfliM) isogenic mutant in the absence or presence of Morchella crassipes mycelia. In the absence of the fungus, flagellar motility was beneficial solely under conditions of water saturation allowing dispersal, while under conditions limiting dispersal, the nonflagellated mutant exhibited a higher level of fitness than the wild-type strain. In contrast, in the presence of a mycelial network under conditions limiting dispersal, the flagellated strain was able to disperse using the mycelial network and had a higher level of fitness than the mutant. On the basis of these results, we propose that the benefit of mycelium-associated dispersal helps explain the persistence of flagellar motility in non-water-saturated environments. PMID:23995942

  11. Gains of bacterial flagellar motility in a fungal world.

    PubMed

    Pion, Martin; Bshary, Redouan; Bindschedler, Saskia; Filippidou, Sevasti; Wick, Lukas Y; Job, Daniel; Junier, Pilar

    2013-11-01

    The maintenance of energetically costly flagella by bacteria in non-water-saturated media, such as soil, still presents an evolutionary conundrum. Potential explanations have focused on rare flooding events allowing dispersal. Such scenarios, however, overlook bacterial dispersal along mycelia as a possible transport mechanism in soils. The hypothesis tested in this study is that dispersal along fungal hyphae may lead to an increase in the fitness of flagellated bacteria and thus offer an alternative explanation for the maintenance of flagella even in unsaturated soils. Dispersal along fungal hyphae was shown for a diverse array of motile bacteria. To measure the fitness effect of dispersal, additional experiments were conducted in a model system mimicking limited dispersal, using Pseudomonas putida KT2440 and its nonflagellated (ΔfliM) isogenic mutant in the absence or presence of Morchella crassipes mycelia. In the absence of the fungus, flagellar motility was beneficial solely under conditions of water saturation allowing dispersal, while under conditions limiting dispersal, the nonflagellated mutant exhibited a higher level of fitness than the wild-type strain. In contrast, in the presence of a mycelial network under conditions limiting dispersal, the flagellated strain was able to disperse using the mycelial network and had a higher level of fitness than the mutant. On the basis of these results, we propose that the benefit of mycelium-associated dispersal helps explain the persistence of flagellar motility in non-water-saturated environments.

  12. Surface organization and composition of Euglena. II. Flagellar mastigonemes

    PubMed Central

    1978-01-01

    The surface of the Euglena flagellum is coated with about 30,000 fine filaments of two distinct types. The longer of these nontubular mastigonemes (about 3 micron) appear to be attached to the paraflagellar rod whereas the shorter nontubular mastigonemes (about 1.5 micron) are the centrifugally arranged portions of a larger complex, which consists of an attached unit parallel to and outside of the flagellar membrane. Units are arranged laternally in near registration and longitudinally overlap by one-half of a unit length. Rows of mastigoneme units are firmly attached to the axoneme microtubules or to the paraflagellar rod as evidenced by their persistence after removal of the flagellar membrane with neutral detergents. SDS-acrylamide gels of whole flagella revealed about 30 polypeptides, of which two gave strong positive staining with the periodic acid-Schiff (PAS) procedure. At least one of these two bands (glycoproteins) has been equated with the surface mastigonemes by parallel analysis of isolated and purified mastigonemes, particularly after phenol extraction. The faster moving glycoprotein has been selectively removed from whole flagella and from the mastigoneme fraction with low concentrations of neutral detergents at neutral or high pH. The larger glycoprotein was found to be polydisperse when electrophoresed through 1% agarose/SDS gels. Thin-layer chromatography of hydrolysates of whole flagella or of isolated mastigonemes has indicated that the major carbohydrate moiety is the pentose sugar, xylose, with possibly a small amount of glucose and an unknown minor component. PMID:98532

  13. Bacterial flagellar capping proteins adopt diverse oligomeric states

    PubMed Central

    Postel, Sandra; Deredge, Daniel; Bonsor, Daniel A; Yu, Xiong; Diederichs, Kay; Helmsing, Saskia; Vromen, Aviv; Friedler, Assaf; Hust, Michael; Egelman, Edward H; Beckett, Dorothy; Wintrode, Patrick L; Sundberg, Eric J

    2016-01-01

    Flagella are crucial for bacterial motility and pathogenesis. The flagellar capping protein (FliD) regulates filament assembly by chaperoning and sorting flagellin (FliC) proteins after they traverse the hollow filament and exit the growing flagellum tip. In the absence of FliD, flagella are not formed, resulting in impaired motility and infectivity. Here, we report the 2.2 Å resolution X-ray crystal structure of FliD from Pseudomonas aeruginosa, the first high-resolution structure of any FliD protein from any bacterium. Using this evidence in combination with a multitude of biophysical and functional analyses, we find that Pseudomonas FliD exhibits unexpected structural similarity to other flagellar proteins at the domain level, adopts a unique hexameric oligomeric state, and depends on flexible determinants for oligomerization. Considering that the flagellin filaments on which FliD oligomers are affixed vary in protofilament number between bacteria, our results suggest that FliD oligomer stoichiometries vary across bacteria to complement their filament assemblies. DOI: http://dx.doi.org/10.7554/eLife.18857.001 PMID:27664419

  14. Bacterial flagellar capping proteins adopt diverse oligomeric states.

    PubMed

    Postel, Sandra; Deredge, Daniel; Bonsor, Daniel A; Yu, Xiong; Diederichs, Kay; Helmsing, Saskia; Vromen, Aviv; Friedler, Assaf; Hust, Michael; Egelman, Edward H; Beckett, Dorothy; Wintrode, Patrick L; Sundberg, Eric J

    2016-09-24

    Flagella are crucial for bacterial motility and pathogenesis. The flagellar capping protein (FliD) regulates filament assembly by chaperoning and sorting flagellin (FliC) proteins after they traverse the hollow filament and exit the growing flagellum tip. In the absence of FliD, flagella are not formed, resulting in impaired motility and infectivity. Here, we report the 2.2 Å resolution X-ray crystal structure of FliD from Pseudomonas aeruginosa, the first high-resolution structure of any FliD protein from any bacterium. Using this evidence in combination with a multitude of biophysical and functional analyses, we find that Pseudomonas FliD exhibits unexpected structural similarity to other flagellar proteins at the domain level, adopts a unique hexameric oligomeric state, and depends on flexible determinants for oligomerization. Considering that the flagellin filaments on which FliD oligomers are affixed vary in protofilament number between bacteria, our results suggest that FliD oligomer stoichiometries vary across bacteria to complement their filament assemblies.

  15. Modes of flagellar assembly in Chlamydomonas reinhardtii and Trypanosoma brucei

    PubMed Central

    Höög, Johanna L; Lacomble, Sylvain; O’Toole, Eileen T; Hoenger, Andreas; McIntosh, J Richard; Gull, Keith

    2014-01-01

    Defects in flagella growth are related to a number of human diseases. Central to flagellar growth is the organization of microtubules that polymerize from basal bodies to form the axoneme, which consists of hundreds of proteins. Flagella exist in all eukaryotic phyla, but neither the mechanism by which flagella grow nor the conservation of this process in evolution are known. Here, we study how protein complexes assemble onto the growing axoneme tip using (cryo) electron tomography. In Chlamydomonas reinhardtii microtubules and associated proteins are added simultaneously. However, in Trypanosoma brucei, disorganized arrays of microtubules are arranged into the axoneme structure by the later addition of preformed protein complexes. Post assembly, the T. brucei transition zone alters structure and its association with the central pair loosens. We conclude that there are multiple ways to form a flagellum and that species-specific structural knowledge is critical before evaluating flagellar defects. DOI: http://dx.doi.org/10.7554/eLife.01479.001 PMID:24448408

  16. Quorum sensing positively regulates flagellar motility in pathogenic Vibrio harveyi.

    PubMed

    Yang, Qian; Defoirdt, Tom

    2015-04-01

    Vibrios belonging to the Harveyi clade are among the major pathogens of aquatic organisms. Quorum sensing (QS) is essential for virulence of V. harveyi towards different hosts. However, most virulence factors reported to be controlled by QS to date are negatively regulated by QS, therefore suggesting that their impact on virulence is limited. In this study, we report that QS positively regulates flagellar motility. We found that autoinducer synthase mutants showed significantly lower swimming motility than the wild type, and the swimming motility could be restored by adding synthetic signal molecules. Further, motility of a luxO mutant with inactive QS (LuxO D47E) was significantly lower than that of the wild type and of a luxO mutant with constitutively maximal QS activity (LuxO D47A). Furthermore, we found that the expression of flagellar genes (both early, middle and late genes) was significantly lower in the luxO mutant with inactive QS when compared with wild type and the luxO mutant with maximal QS activity. Motility assays and gene expression also revealed the involvement of the quorum-sensing master regulator LuxR in the QS regulation of motility. Finally, the motility inhibitor phenamil significantly decreased the virulence of V. harveyi towards gnotobiotic brine shrimp larvae.

  17. Modulation of Chlamydomonas reinhardtii flagellar motility by redox poise

    PubMed Central

    Wakabayashi, Ken-ichi; King, Stephen M.

    2006-01-01

    Redox-based regulatory systems are essential for many cellular activities. Chlamydomonas reinhardtii exhibits alterations in motile behavior in response to different light conditions (photokinesis). We hypothesized that photokinesis is signaled by variations in cytoplasmic redox poise resulting from changes in chloroplast activity. We found that this effect requires photosystem I, which generates reduced NADPH. We also observed that photokinetic changes in beat frequency and duration of the photophobic response could be obtained by altering oxidative/reductive stress. Analysis of reactivated cell models revealed that this redox poise effect is mediated through the outer dynein arms (ODAs). Although the global redox state of the thioredoxin-related ODA light chains LC3 and LC5 and the redox-sensitive Ca2+-binding subunit of the docking complex DC3 did not change upon light/dark transitions, we did observe significant alterations in their interactions with other flagellar components via mixed disulfides. These data indicate that redox poise directly affects ODAs and suggest that it may act in the control of flagellar motility. PMID:16754958

  18. Bacterial flagellar capping proteins adopt diverse oligomeric states

    SciTech Connect

    Postel, Sandra; Deredge, Daniel; Bonsor, Daniel A.; Yu, Xiong; Diederichs, Kay; Helmsing, Saskia; Vromen, Aviv; Friedler, Assaf; Hust, Michael; Egelman, Edward H.; Beckett, Dorothy; Wintrode, Patrick L.; Sundberg, Eric J.

    2016-09-24

    Flagella are crucial for bacterial motility and pathogenesis. The flagellar capping protein (FliD) regulates filament assembly by chaperoning and sorting flagellin (FliC) proteins after they traverse the hollow filament and exit the growing flagellum tip. In the absence of FliD, flagella are not formed, resulting in impaired motility and infectivity. Here, we report the 2.2 Å resolution X-ray crystal structure of FliD fromPseudomonas aeruginosa, the first high-resolution structure of any FliD protein from any bacterium. Using this evidence in combination with a multitude of biophysical and functional analyses, we find thatPseudomonasFliD exhibits unexpected structural similarity to other flagellar proteins at the domain level, adopts a unique hexameric oligomeric state, and depends on flexible determinants for oligomerization. Considering that the flagellin filaments on which FliD oligomers are affixed vary in protofilament number between bacteria, our results suggest that FliD oligomer stoichiometries vary across bacteria to complement their filament assemblies.

  19. Sperm chemotaxis and regulation of flagellar movement by Ca2+.

    PubMed

    Yoshida, Manabu; Yoshida, Kaoru

    2011-08-01

    The chemotaxis of sperm towards eggs is a widespread phenomenon that occurs in most forms of life from lower plants to mammals and plays important roles in ensuring fertilization. In spermatozoa, the attractants act as beacons, indicating the path leading to the eggs from the same species. The existence of species-specific sperm chemotaxis has been demonstrated in marine invertebrates; thus, sperm chemotaxis may be involved in preventing crossbreeding, especially in marine invertebrates with external fertilization. However, the mechanisms of sperm chemotaxis in mammalian species differ from those of marine invertebrates. In mammals, the attractant source is not the egg, but follicular fluids or cumulus cells and chemotactic behaviour is shown only in small populations of sperm. Nevertheless, the fundamental mechanisms underlying sperm chemotaxis are likely to be common among all species. Among these mechanisms, intracellular Ca(2+) concentration ([Ca(2+)](i)) is an important factor for the regulation of chemotactic behaviour in spermatozoa. Sperm attractants induce the entry of extracellular Ca(2+), resulting in [Ca(2+)](i) increase in the sperm cells. Furthermore, [Ca(2+)](i) modulates sperm flagellar movement. However, the relationship between [Ca(2+)](i) and the chemotactic response of a sperm flagellum is not well known. Investigation of the dynamic responses of sperm cells to their attractants is important for our understanding of the regulation of fertilization. Here, we reviewed sperm chemotaxis focusing on the mechanisms that regulate sperm flagellar beating during the chemotactic response.

  20. Adenosine 3',5'-cyclic monophosphate in Chlamydomonas reinhardtii. Influence on flagellar function and regeneration.

    PubMed

    Rubin, R W; Filner, P

    1973-03-01

    Adenosine 3',5'-cyclic monophosphate (cAMP) influences both flagellar function and flagellar regeneration in Chlamydomonas reinhardtii. The methylxanthine, aminophylline, which can cause a tenfold increase in cAMP level in C. reinhardtii, inhibits flagellar movement and flagellar regeneration by wild-type cells, without inhibiting cell multiplication. Caffeine, a closely related inhibitor, also inhibits flagellar movement and regeneration, but it inhibits cell multiplication too. Regeneration by a mutant lacking the central pair of flagellar microtubules was found to be more sensitive than wild type to inhibition by caffeine and to be subject to synergistic inhibition by aminophylline plus dibutyryl cAMP. Regeneration by three out of seven mutants with different flagellar abnormalities was more sensitive than wild type to these inhibitors. We interpret these results to mean that cAMP affects a component of the flagellum directly or indirectly, and that the responsiveness of that component to cAMP is enhanced by mutations which affect the integrity of the flagellum. The component in question could be microtubule protein.

  1. Space research with intact organisms

    NASA Technical Reports Server (NTRS)

    Phillips, Robert W.; Haddy, Francis J.

    1992-01-01

    Effects of space exposure on intact organisms are briefly reviewed, and examples of future experiments that might provide new information on the role of gravity in the evolution of life are suggested. It is noted that long term experiments with intact plant and animals for studying gravitational thresholds will provide important new insights.

  2. Pausing of flagellar rotation is a component of bacterial motility and chemotaxis.

    PubMed Central

    Lapidus, I R; Welch, M; Eisenbach, M

    1988-01-01

    When bacterial cells are tethered to glass by their flagella, many of them spin. On the basis of experiments with tethered cells it has generally been thought that the motor which drives the flagellum is a two-state device, existing in either a counterclockwise or a clockwise state. Here we show that a third state of the motor is that of pausing, the duration and frequency of which are affected by chemotactic stimuli. We have recorded on video tape the rotation of tethered Escherichia coli and Salmonella typhimurium cells and analyzed the recordings frame by frame and in slow motion. Most wild-type cells paused intermittently. The addition of repellents caused an increase in the frequency and duration of the pauses. The addition of attractants sharply reduced the number of pauses. A chemotaxis mutant which lacks a large part of the chemotaxis machinery owing to a deletion of the genes from cheA to cheZ did not pause at all and did not respond to repellents by pausing. A tumbly mutant of S. typhimurium responded to repellents by smooth swimming and to attractants by tumbling. When tethered, these cells exhibited a normal rotational response but an inverse pausing response to chemotactic stimuli: the frequency of pauses decreased in response to repellents and increased in response to attractants. It is suggested that (i) pausing is an integral part of bacterial motility and chemotaxis, (ii) pausing is independent of the direction of flagellar rotation, and (iii) pausing may be one of the causes of tumbling. PMID:3042756

  3. Flagellar swimmers oscillate between pusher- and puller-type swimming

    NASA Astrophysics Data System (ADS)

    Klindt, Gary S.; Friedrich, Benjamin M.

    2015-12-01

    Self-propulsion of cellular microswimmers generates flow signatures, commonly classified as pusher and puller type, which characterize hydrodynamic interactions with other cells or boundaries. Using experimentally measured beat patterns, we compute that the flagellated green alga Chlamydomonas oscillates between pusher and puller, rendering it an approximately neutral swimmer, when averaging over its full beat cycle. Beyond a typical distance of 100 μ m from the cell, inertia attenuates oscillatory microflows. We show that hydrodynamic interactions between cells oscillate in time and are of similar magnitude as stochastic swimming fluctuations. From our analysis, we also find that the rate of hydrodynamic dissipation varies in time, which implies that flagellar beat patterns are not optimized with respect to this measure.

  4. Flagellar generated flow mediates attachment of Giardia lamblia

    NASA Astrophysics Data System (ADS)

    Urbach, Jeffrey; Luo, Haibei; Picou, Theodore; McAllister, Ryan; Elmendorf, Heidi

    2011-03-01

    Giardia lamblia is a protozoan parasite responsible for widespread diarrheal disease in humans and animals worldwide. Attachment to the host intestinal mucosa and resistance to peristalsis is necessary for establishing infection, but the physical basis for this attachment is poorly understood. We report results from TIRF and confocal fluorescence microscopy that demonstrate that the regular beating of the posterior flagella generate a flow through the ventral disk, a suction-cup shaped structure that is against the substrate during attachment. Finite element simulations are used to compare the negative pressure generated by the flow to the measured attachment force and the expected performance of the flagellar pump. NIH grant 1R21AI062934-0.

  5. Antiphase synchronization in a flagellar-dominance mutant of Chlamydomonas.

    PubMed

    Leptos, Kyriacos C; Wan, Kirsty Y; Polin, Marco; Tuval, Idan; Pesci, Adriana I; Goldstein, Raymond E

    2013-10-11

    Groups of beating flagella or cilia often synchronize so that neighboring filaments have identical frequencies and phases. A prime example is provided by the unicellular biflagellate Chlamydomonas reinhardtii, which typically displays synchronous in-phase beating in a low-Reynolds number version of breaststroke swimming. We report the discovery that ptx1, a flagellar-dominance mutant of C. reinhardtii, can exhibit synchronization in precise antiphase, as in the freestyle swimming stroke. High-speed imaging shows that ptx1 flagella switch stochastically between in-phase and antiphase states, and that the latter has a distinct waveform and significantly higher frequency, both of which are strikingly similar to those found during phase slips that stochastically interrupt in-phase beating of the wild-type. Possible mechanisms underlying these observations are discussed.

  6. Flagellar Kinematics and Swimming of Algal Cells in Viscoelastic Fluids

    PubMed Central

    Qin, B.; Gopinath, A.; Yang, J.; Gollub, J. P.; Arratia, P. E.

    2015-01-01

    The motility of microorganisms is influenced greatly by their hydrodynamic interactions with the fluidic environment they inhabit. We show by direct experimental observation of the bi-flagellated alga Chlamydomonas reinhardtii that fluid elasticity and viscosity strongly influence the beating pattern - the gait - and thereby control the propulsion speed. The beating frequency and the wave speed characterizing the cyclical bending are both enhanced by fluid elasticity. Despite these enhancements, the net swimming speed of the alga is hindered for fluids that are sufficiently elastic. The origin of this complex response lies in the interplay between the elasticity-induced changes in the spatial and temporal aspects of the flagellar cycle and the buildup and subsequent relaxation of elastic stresses during the power and recovery strokes. PMID:25778677

  7. Flagellar kinematics and swimming of algal cells in viscoelastic fluids.

    PubMed

    Qin, B; Gopinath, A; Yang, J; Gollub, J P; Arratia, P E

    2015-03-17

    The motility of microorganisms is influenced greatly by their hydrodynamic interactions with the fluidic environment they inhabit. We show by direct experimental observation of the bi-flagellated alga Chlamydomonas reinhardtii that fluid elasticity and viscosity strongly influence the beating pattern - the gait - and thereby control the propulsion speed. The beating frequency and the wave speed characterizing the cyclical bending are both enhanced by fluid elasticity. Despite these enhancements, the net swimming speed of the alga is hindered for fluids that are sufficiently elastic. The origin of this complex response lies in the interplay between the elasticity-induced changes in the spatial and temporal aspects of the flagellar cycle and the buildup and subsequent relaxation of elastic stresses during the power and recovery strokes.

  8. Effectiveness of intact capture media

    SciTech Connect

    Tsou, P.; Aubert, J.; Brownlee, D.; Hrubesh, L.; Williams, J.; Albee, A.

    1989-01-01

    The possibility of capturing cosmic dust at hypervelocity has been demonstrated in the laboratory and in the unintended Solar Max spacecraft. This technology will enable a comet coma sample return mission and be important for the earth orbital cosmic dust collection mission, i.e., the Space Station Cosmic Dust Collection Facility. Since the only controllable factor in an intact capture of cosmic dust is the capturing medium, characterizing the effectiveness and properties of available capture media would be very important in the development of the technique for capturing hypervelocity cosmic dust intact. We have evaluated various capture underdense media for the relative effectiveness for intact capture. 2 refs., 2 figs.

  9. Protein export through the bacterial flagellar type III export pathway.

    PubMed

    Minamino, Tohru

    2014-08-01

    For construction of the bacterial flagellum, which is responsible for bacterial motility, the flagellar type III export apparatus utilizes both ATP and proton motive force across the cytoplasmic membrane and exports flagellar proteins from the cytoplasm to the distal end of the nascent structure. The export apparatus consists of a membrane-embedded export gate made of FlhA, FlhB, FliO, FliP, FliQ, and FliR and a water-soluble ATPase ring complex consisting of FliH, FliI, and FliJ. FlgN, FliS, and FliT act as substrate-specific chaperones that do not only protect their cognate substrates from degradation and aggregation in the cytoplasm but also efficiently transfer the substrates to the export apparatus. The ATPase ring complex facilitates the initial entry of the substrates into the narrow pore of the export gate. The export gate by itself is a proton-protein antiporter that uses the two components of proton motive force, the electric potential difference and the proton concentration difference, for different steps of the export process. A specific interaction of FlhA with FliJ located in the center of the ATPase ring complex allows the export gate to efficiently use proton motive force to drive protein export. The ATPase ring complex couples ATP binding and hydrolysis to its assembly-disassembly cycle for rapid and efficient protein export cycle. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.

  10. ATP-Driven Remodeling of the Linker Domain in the Dynein Motor

    PubMed Central

    Roberts, Anthony J.; Malkova, Bara; Walker, Matt L.; Sakakibara, Hitoshi; Numata, Naoki; Kon, Takahide; Ohkura, Reiko; Edwards, Thomas A.; Knight, Peter J.; Sutoh, Kazuo; Oiwa, Kazuhiro; Burgess, Stan A.

    2012-01-01

    Summary Dynein ATPases are the largest known cytoskeletal motors and perform critical functions in cells: carrying cargo along microtubules in the cytoplasm and powering flagellar beating. Dyneins are members of the AAA+ superfamily of ring-shaped enzymes, but how they harness this architecture to produce movement is poorly understood. Here, we have used cryo-EM to determine 3D maps of native flagellar dynein-c and a cytoplasmic dynein motor domain in different nucleotide states. The structures show key sites of conformational change within the AAA+ ring and a large rearrangement of the “linker” domain, involving a hinge near its middle. Analysis of a mutant in which the linker “undocks” from the ring indicates that linker remodeling requires energy that is supplied by interactions with the AAA+ modules. Fitting the dynein-c structures into flagellar tomograms suggests how this mechanism could drive sliding between microtubules, and also has implications for cytoplasmic cargo transport. PMID:22863569

  11. Cloning, overexpression, purification, crystallization and preliminary X-ray analysis of CheY3, a response regulator that directly interacts with the flagellar 'switch complex' in Vibrio cholerae.

    PubMed

    Khamrui, Susmita; Biswas, Maitree; Sen, Udayaditya; Dasgupta, Jhimli

    2010-08-01

    Vibrio cholerae is the aetiological agent of the severe diarrhoeal disease cholera. This highly motile organism uses the processes of motility and chemotaxis to travel and colonize the intestinal epithelium. Chemotaxis in V. cholerae is far more complex than that in Escherichia coli or Salmonella typhimurium, with multiple paralogues of various chemotaxis genes. In contrast to the single copy of the chemotaxis response-regulator protein CheY in E. coli, V. cholerae contains four CheYs (CheY1-CheY4), of which CheY3 is primarily responsible for interacting with the flagellar motor protein FliM, which is one of the major constituents of the ;switch complex' in the flagellar motor. This interaction is the key step that controls flagellar rotation in response to environmental stimuli. CheY3 has been cloned, overexpressed and purified by Ni-NTA affinity chromatography followed by gel filtration. Crystals of CheY3 were grown in space group R3, with a calculated Matthews coefficient of 2.33 A3 Da(-1) (47% solvent content) assuming the presence of one molecule per asymmetric unit.

  12. Biochemical, immunological, metabolic, and molecular studies on flagellar development in Euglena gracilis

    SciTech Connect

    Levasseur, P.J.

    1989-01-01

    The emergent flagellum of Euglena gracilis arises from an anterior invagination of the organism and possesses, along with the typical eukaryotic axoneme, a glycoprotein surface layer, a complement of structurally complex mastigonemes and a paraxial rod. Nonionic detergent extraction of isolated flagella yielded a fraction containing 21% of the flagellar protein. This fraction contained at least 25 components. In vivo radiolabeling experiments indicated that Euglena possessed a pool of flagellar precursors. This was evidence by the observation that flagellar proteins radiolabeled during an initial regeneration could be mobilized to flagella of a subsequent regeneration. At least one component in the pool was present in sufficient quantity to support an entire regeneration. This protein was tentatively identified as a mastigonemal protein of M{sub r} {approximately} 220,000. A cDNA library was constructed to investigate flagellar gene expression in Euglena.

  13. Mutational analysis and overproduction effects of MotX, an essential component for motor function of Na+-driven polar flagella of Vibrio.

    PubMed

    Takekawa, Norihiro; Kojima, Seiji; Homma, Michio

    2016-10-25

    The bacterial flagellar motor is a rotary motor complex composed of various proteins. The motor contains a central rod, multiple ring-like structures and stators. The Na(+)-driven polar flagellar motor of the marine bacterium Vibrio alginolyticus has a specific ring, called the 'T-ring', which consists of two periplasmic proteins, MotX and MotY. The T-ring is essential for assembly of the torque-generating unit, the PomA/PomB stator complex, into the motor. To investigate the role of the T-ring for motor function, we performed random mutagenesis of the motX gene on a plasmid. The isolated MotX mutants showed nonmotile, slow-motile, and up-motile phenotypes by the expression from the plasmid. Deletion analysis indicated that the C-terminal region and the signal peptide in MotX are not always essential for flagellar motor function. We also found that overproduction of MotX caused the delay of growth and aberrant cell shape. MotX might have unexpected roles not only in flagellar motor function but also in cell morphology control.

  14. Intact capture of hypervelocity particles

    NASA Technical Reports Server (NTRS)

    Tsou, P.; Brownlee, D. E.; Albee, A. L.

    1986-01-01

    Knowledge of the phase, structure, and crystallography of cosmic particles, as well as their elemental and isotopic compositions, would be very valuable information toward understanding the nature of our solar system. This information can be obtained from the intact capture of large mineral grains of cosmic particles from hypervelocity impacts. Hypervelocity experiments of intact capture in underdense media have indicated realistic potential in this endeaver. The recovery of the thermal blankets and louvers from the Solar Max spacecraft have independently verified this potential in the unintended capture of cosmic materials from hypervelocity impacts. Passive underdense media will permit relatively simple and inexpensive missions to capture cosmic particles intact, either by going to a planetary body or by waiting for the particles to come to the Shuttle or the Space Station. Experiments to explore the potential of using various underdense media for an intact comet sample capture up to 6.7 km/s were performed at NASA Ames Research Center Vertical Gun Range. Explorative hypervelocity experiments up to 7.9 km/s were also made at the Ernst Mach Institute. These experiments have proven that capturing intact particles at hypervelocity impacts is definitely possible. Further research is being conducted to achieve higher capture ratios at even higher hypervelocities for even smaller projectiles.

  15. Intact capture of hypervelocity particles

    NASA Astrophysics Data System (ADS)

    Tsou, P.; Brownlee, D. E.; Albee, A. L.

    Knowledge of the phase, structure, and crystallography of cosmic particles, as well as their elemental and isotopic compositions, would be very valuable information toward understanding the nature of our solar system. This information can be obtained from the intact capture of large mineral grains of cosmic particles from hypervelocity impacts. Hypervelocity experiments of intact capture in underdense media have indicated realistic potential in this endeaver. The recovery of the thermal blankets and louvers from the Solar Max spacecraft have independently verified this potential in the unintended capture of cosmic materials from hypervelocity impacts. Passive underdense media will permit relatively simple and inexpensive missions to capture cosmic particles intact, either by going to a planetary body or by waiting for the particles to come to the Shuttle or the Space Station. Experiments to explore the potential of using various underdense media for an intact comet sample capture up to 6.7 km/s were performed at NASA Ames Research Center Vertical Gun Range. Explorative hypervelocity experiments up to 7.9 km/s were also made at the Ernst Mach Institute. These experiments have proven that capturing intact particles at hypervelocity impacts is definitely possible. Further research is being conducted to achieve higher capture ratios at even higher hypervelocities for even smaller projectiles.

  16. Early Caulobacter crescentus genes fliL and fliM are required for flagellar gene expression and normal cell division.

    PubMed Central

    Yu, J; Shapiro, L

    1992-01-01

    The biogenesis of the Caulobacter crescentus polar flagellum requires the expression of more than 48 genes, which are organized in a regulatory hierarchy. The flbO locus is near the top of the hierarchy, and consequently strains with mutations in this locus are nonmotile and lack the flagellar basal body complex. In addition to the motility phenotype, mutations in this locus also cause abnormal cell division. Complementing clones restore both motility and normal cell division. Sequence analysis of a complementing subclone revealed that this locus encodes at least two proteins that are homologs of the Salmonella typhimurium and Escherichia coli flagellar proteins FliL and FliM. FliM is thought to be a switch protein and to interface with the flagellum motor. The C. crescentus fliL and fliM genes form an operon that is expressed early in the cell cycle. Tn5 insertions in the fliM gene prevent the transcription of class II and class III flagellar genes, which are lower in the regulatory hierarchy. The start site of the fliLM operon lies 166 bp from the divergently transcribed flaCBD operon that encodes several basal body genes. Sequence comparison of the fliL transcription start site with those of other class I genes, flaS and flaO, revealed a highly conserved 29-bp sequence in a potential promoter region that differs from sigma 70, sigma 54, sigma 32, and sigma 28 promoter sequences, suggesting that at least three class I genes share a unique 5' regulatory region. Images PMID:1315735

  17. Intact capture of cosmic dust

    NASA Technical Reports Server (NTRS)

    Tsou, P.

    1991-01-01

    The focus of this development effort is to capture dust particles at hypervelocities intact and unmelted in order to preserve volatile organics. At the same time, the capture process must minimize any organic elemental or compound contamination to prevent any compromise of exobiological analyses. Inorganic silicate aerogel has been developed as a successful capture medium to satisfy both requirements of intact capture and minimal organic contamination. Up to 6 km/s, silicate projectiles from a few microns up to 100 microns have been captured intact without any melting and with minimal loss of mass. Carbon in silicate aerogel can be reduced to less than 1 part in 1000 and hydrogen 3 parts in 1000 when baked in air. Under controlled inert gas environments, additional hydrocarbon reduction can be achieved.

  18. Vanadate-sensitized cleavage of dynein heavy chains by 365-nm irradiation of demembranated sperm flagella and its effect on the flagellar motility

    SciTech Connect

    Gibbons, B.H.; Gibbons, I.R.

    1987-06-15

    Irradiation of demembranated flagella of sea urchin sperm at 365 nm in the presence of 0.05-1 mM MgATP and 5-10 microM vanadate (Vi) cleaves the alpha and beta heavy chains of the outer arm dynein at the same site and at about the same rate as reported previously for the solubilized dynein. The decrease in intact alpha and beta heavy chain material is biphasic, with about 80% being lost with a half-time of 8-10 min, and the remainder more slowly. Five other axonemal polypeptides of Mr greater than 350,000 are lost similarly, concomitant with the appearance of at least 9 new peptides of Mr 150,000-250,000. The motility of irradiated sperm flagella upon subsequent dilution into reactivation medium containing 1 mM ATP and 2.5 mM catechol shows a progressive decrease in flagellar beat frequency for irradiation times that produce up to about 50% cleavage of the dynein heavy chains; more prolonged irradiation causes irreversible loss of motility. Competition between photocleaved and intact outer arm dynein for rebinding to dynein-depleted sperm flagella shows that cleavage has little effect upon the ability for rebinding, although the cleaved dynein partially inhibits subsequent motility. Substitution of MnATP for the MgATP in the irradiation medium prevents the loss of all of the axonemal polypeptides during irradiation for up to 60 min and also protects the potential for subsequent flagellar motility.

  19. Flagellar region 3b supports strong expression of integrated DNA and the highest chromosomal integration efficiency of the Escherichia coli flagellar regions

    PubMed Central

    Juhas, Mario; Ajioka, James W

    2015-01-01

    The Gram-negative bacterium Escherichia coli is routinely used as the chassis for a variety of biotechnology and synthetic biology applications. Identification and analysis of reliable chromosomal integration and expression target loci is crucial for E. coli engineering. Chromosomal loci differ significantly in their ability to support integration and expression of the integrated genetic circuits. In this study, we investigate E. coli K12 MG1655 flagellar regions 2 and 3b. Integration of the genetic circuit into seven and nine highly conserved genes of the flagellar regions 2 (motA, motB, flhD, flhE, cheW, cheY and cheZ) and 3b (fliE, F, G, J, K, L, M, P, R), respectively, showed significant variation in their ability to support chromosomal integration and expression of the integrated genetic circuit. While not reducing the growth of the engineered strains, the integrations into all 16 target sites led to the loss of motility. In addition to high expression, the flagellar region 3b supports the highest efficiency of integration of all E. coli K12 MG1655 flagellar regions and is therefore potentially the most suitable for the integration of synthetic genetic circuits. PMID:26074421

  20. Locomotion in intact and in brain cortex-ablated cats.

    PubMed

    López Ruiz, José Roberto; Castillo Hernández, Luis; De la Torre Valdovinos, Braniff; Franco Rodríguez, Nancy Elizabeth; Dueñas Jiménez, Judith Marcela; Dueñas Jiménez, Alejandro; Rivas-Carrillo, Jorge David; Dueñas Jiménez, Sergio Horacio

    2017-09-01

    The current decerebration procedures discard the role of the thalamus in the motor control and decortication only rules out the brain cortex part, leaving a gap between the brain cortex and the subthalamic motor regions. In here we define a new preparation denominated Brain Cortex-Ablated Cat (BCAC), in which the frontal and parietal brain cortices as well as the central white matter beneath them were removed, this decerebration process may be considered as suprathalamic, since the thalamus remained intact. To characterize this preparation cat hindlimb electromyograms (EMG), kinematics and cutaneous reflexes (CR) produced by electrical stimulation of sural (SU) or saphenous (SAPH) nerves were analyzed during locomotion in intact and in BCAC. In cortex-ablated cats compared to intact cats, the hindlimb EMG amplitude was increased in the flexors, whereas in most extensors the amplitude was decreased. Bifunctional muscle EMGs presented complex and speed-dependent amplitude changes. In intact cats CR produced an inhibition of extensors, as well as excitation and inhibition of flexors, and a complex pattern of withdrawal responses in bifunctional muscles. The same stimuli applied to BCAC produced no detectable responses, but in some cats cutaneous reflexes produced by electrical stimulation of saphenous nerve reappeared when the locomotion speed increased. In BCAC, EMG and kinematic changes, as well as the absence of CR, imply that for this cat preparation there is a partial compensation due to the subcortical locomotor apparatus generating close to normal locomotion. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. [A new type of flagellar structure. Type 9+n

    PubMed Central

    1977-01-01

    The ultrastructural study of the Eoacanthocephala sperm cell shows a variation from 0 to 5 in the number of the axial fibers in the axoneme. All the species of the order Eoacanthocephala available to us show this variation; moreover, every individual possesses simultaneously several different structural types. So, we are dealing with a new flagellar organization: 9+n, with 0 less than or equal to n less than or equal to 5. In the Quadrigyridae and the Tenuisentidae families, n varies from 0 to 4, with a maximum of 2 for most individuals, exceptionally at 1 for some individuals. In the Neoechinorhynchidae family, n varies from 0 to 5 with a conspicuous prevalence of 3 (from 84 to 99%, according to the individual). These results prompted us to reexamine the two other orders of Acanthocephala in which the structural types 9+2 or 9+0 have been considered as fixed. Indeed, we have found a few flagella the structure of which is different from the prevalent one. It seems, therefore, that the number of the central fibers of the axoneme in the Acanthocephala sperm cell is never absolutely fixed. PMID:557042

  2. Structural insights into bacterial flagellar hooks similarities and specificities

    PubMed Central

    Yoon, Young-Ho; Barker, Clive S.; Bulieris, Paula V.; Matsunami, Hideyuki; Samatey, Fadel A.

    2016-01-01

    Across bacteria, the protein that makes the flagellar hook, FlgE, has a high variability in amino acid residue composition and sequence length. We hereby present the structure of two fragments of FlgE protein from Campylobacter jejuni and from Caulobacter crescentus, which were obtained by X-ray crystallography, and a high-resolution model of the hook from Caulobacter. By comparing these new structures of FlgE proteins, we show that bacterial hook can be divided in two distinct parts. The first part comprises domains that are found in all FlgE proteins and that will make the basic structure of the hook that is common to all flagellated bacteria. The second part, hyper-variable both in size and structure, will be bacteria dependent. To have a better understanding of the C. jejuni hook, we show that a special strain of Salmonella enterica, which was designed to encode a gene of flgE that has the extra domains found in FlgE from C. jejuni, is fully motile. It seems that no matter the size of the hook protein, the hook will always have a structure made of 11 protofilaments. PMID:27759043

  3. Real-Time Imaging of Fluorescent Flagellar Filaments

    PubMed Central

    Turner, Linda; Ryu, William S.; Berg, Howard C.

    2000-01-01

    Bacteria swim by rotating flagellar filaments that are several micrometers long, but only about 20 nm in diameter. The filaments can exist in different polymorphic forms, having distinct values of curvature and twist. Rotation rates are on the order of 100 Hz. In the past, the motion of individual filaments has been visualized by dark-field or differential-interference-contrast microscopy, methods hampered by intense scattering from the cell body or shallow depth of field, respectively. We have found a simple procedure for fluorescently labeling cells and filaments that allows recording their motion in real time with an inexpensive video camera and an ordinary fluorescence microscope with mercury-arc or strobed laser illumination. We report our initial findings with cells of Escherichia coli. Tumbles (events that enable swimming cells to alter course) are remarkably varied. Not every filament on a cell needs to change its direction of rotation: different filaments can change directions at different times, and a tumble can result from the change in direction of only one. Polymorphic transformations tend to occur in the sequence normal, semicoiled, curly 1, with changes in the direction of movement of the cell body correlated with transformations to the semicoiled form. PMID:10781548

  4. Bacteria can exploit a flagellar buckling instability to change direction

    NASA Astrophysics Data System (ADS)

    Son, Kwangmin; Guasto, Jeffrey S.; Stocker, Roman

    2013-08-01

    Bacteria swim by rotating rigid helical flagella and periodically reorienting to follow environmental cues. Despite the crucial role of reorientations, their underlying mechanism has remained unknown for most uni-flagellated bacteria. Here, we report that uni-flagellated bacteria turn by exploiting a finely tuned buckling instability of their hook, the 100-nm-long structure at the base of their flagellar filament. Combining high-speed video microscopy and mechanical stability theory, we demonstrate that reorientations occur 10ms after the onset of forward swimming, when the hook undergoes compression, and that the associated hydrodynamic load triggers the buckling of the hook. Reducing the load on the hook below the buckling threshold by decreasing the swimming speed results in the suppression of reorientations, consistent with the critical nature of buckling. The mechanism of turning by buckling represents one of the smallest examples in nature of a biological function stemming from controlled mechanical failure and reveals a new role for flexibility in biological materials, which may inspire new microrobotic solutions in medicine and engineering.

  5. Real-Time Imaging of Fluorescent Flagellar Filaments

    NASA Astrophysics Data System (ADS)

    Ryu, William

    2003-03-01

    Bacteria swim by rotating flagellar filaments that are several micrometers long, but only about 18 nm in diameter. The filaments can exist in different polymorphic forms, having distinct values of curvature and twist. Rotation rates are on the order of 100 Hz. In the past, the motion of individual filaments has been visualized by dark-field or differential-interference-contrast microscopy, methods hampered by intense scattering from the cell body or shallow depth of field, respectively. We have found a simple procedure for fluorescently labeling cells and filaments that allows recording their motion in real time with an inexpensive video camera and an ordinary fluorescence microscope with mercury-arc or strobed laser illumination. We report our initial findings with cells of Escherichia coli. Tumbles (events that enable swimming cells to alter course) are remarkably varied. Not every filament on a cell needs to change its direction of rotation: different filaments can change directions at different times, and a tumble can result from the change in direction of only one. Polymorphic transformations tend to occur in the sequence normal, semicoiled, curly 1, with changes in the direction of movement of the cell body correlated with transformations to the semicoiled form.

  6. Giardia Flagellar Motility Is Not Directly Required to Maintain Attachment to Surfaces

    PubMed Central

    House, Susan A.; Richter, David J.; Pham, Jonathan K.; Dawson, Scott C.

    2011-01-01

    Giardia trophozoites attach to the intestinal microvilli (or inert surfaces) using an undefined “suction-based” mechanism, and remain attached during cell division to avoid peristalsis. Flagellar motility is a key factor in Giardia's pathogenesis and colonization of the host small intestine. Specifically, the beating of the ventral flagella, one of four pairs of motile flagella, has been proposed to generate a hydrodynamic force that results in suction-based attachment via the adjacent ventral disc. We aimed to test this prevailing “hydrodynamic model” of attachment mediated by flagellar motility. We defined four distinct stages of attachment by assessing surface contacts of the trophozoite with the substrate during attachment using TIRF microscopy (TIRFM). The lateral crest of the ventral disc forms a continuous perimeter seal with the substrate, a cytological indication that trophozoites are fully attached. Using trophozoites with two types of molecularly engineered defects in flagellar beating, we determined that neither ventral flagellar beating, nor any flagellar beating, is necessary for the maintenance of attachment. Following a morpholino-based knockdown of PF16, a central pair protein, both the beating and morphology of flagella were defective, but trophozoites could still initiate proper surface contacts as seen using TIRFM and could maintain attachment in several biophysical assays. Trophozoites with impaired motility were able to attach as well as motile cells. We also generated a strain with defects in the ventral flagellar waveform by overexpressing a dominant negative form of alpha2-annexin::GFP (D122A, D275A). This dominant negative alpha2-annexin strain could initiate attachment and had only a slight decrease in the ability to withstand normal and shear forces. The time needed for attachment did increase in trophozoites with overall defective flagellar beating, however. Thus while not directly required for attachment, flagellar motility is

  7. Quantitative analysis and modeling of katanin function in flagellar length control

    PubMed Central

    Kannegaard, Elisa; Rego, E. Hesper; Schuck, Sebastian; Feldman, Jessica L.; Marshall, Wallace F.

    2014-01-01

    Flagellar length control in Chlamydomonas reinhardtii provides a simple model system in which to investigate the general question of how cells regulate organelle size. Previous work demonstrated that Chlamydomonas cytoplasm contains a pool of flagellar precursor proteins sufficient to assemble a half-length flagellum and that assembly of full-length flagella requires synthesis of additional precursors to augment the preexisting pool. The regulatory systems that control the synthesis and regeneration of this pool are not known, although transcriptional regulation clearly plays a role. We used quantitative analysis of length distributions to identify candidate genes controlling pool regeneration and found that a mutation in the p80 regulatory subunit of katanin, encoded by the PF15 gene in Chlamydomonas, alters flagellar length by changing the kinetics of precursor pool utilization. This finding suggests a model in which flagella compete with cytoplasmic microtubules for a fixed pool of tubulin, with katanin-mediated severing allowing easier access to this pool during flagellar assembly. We tested this model using a stochastic simulation that confirms that cytoplasmic microtubules can compete with flagella for a limited tubulin pool, showing that alteration of cytoplasmic microtubule severing could be sufficient to explain the effect of the pf15 mutations on flagellar length. PMID:25143397

  8. The Flagellar Protein FliL Is Essential for Swimming in Rhodobacter sphaeroides▿ †

    PubMed Central

    Suaste-Olmos, Fernando; Domenzain, Clelia; Mireles-Rodríguez, José Cruz; Poggio, Sebastian; Osorio, Aurora; Dreyfus, Georges; Camarena, Laura

    2010-01-01

    In this work we characterize the function of the flagellar protein FliL in Rhodobacter sphaeroides. Our results show that FliL is essential for motility in this bacterium and that in its absence flagellar rotation is highly impaired. A green fluorescent protein (GFP)-FliL fusion forms polar and lateral fluorescent foci that show different spatial dynamics. The presence of these foci is dependent on the expression of the flagellar genes controlled by the master regulator FleQ, suggesting that additional components of the flagellar regulon are required for the proper localization of GFP-FliL. Eight independent pseudorevertants were isolated from the fliL mutant strain. In each of these strains a single nucleotide change in motB was identified. The eight mutations affected only three residues located on the periplasmic side of MotB. Swimming of the suppressor mutants was not affected by the presence of the wild-type fliL allele. Pulldown and yeast two-hybrid assays showed that that the periplasmic domain of FliL is able to interact with itself but not with the periplasmic domain of MotB. From these results we propose that FliL could participate in the coupling of MotB with the flagellar rotor in an indirect fashion. PMID:20889747

  9. High-speed holographic microscopy of malaria parasites reveals ambidextrous flagellar waveforms

    PubMed Central

    Wilson, Laurence G.; Carter, Lucy M.; Reece, Sarah E.

    2013-01-01

    Axonemes form the core of eukaryotic flagella and cilia, performing tasks ranging from transporting fluid in developing embryos to the propulsion of sperm. Despite their abundance across the eukaryotic domain, the mechanisms that regulate the beating action of axonemes remain unknown. The flagellar waveforms are 3D in general, but current understanding of how axoneme components interact stems from 2D data; comprehensive measurements of flagellar shape are beyond conventional microscopy. Moreover, current flagellar model systems (e.g., sea urchin, human sperm) contain accessory structures that impose mechanical constraints on movement, obscuring the “native” axoneme behavior. We address both problems by developing a high-speed holographic imaging scheme and applying it to the (male) microgametes of malaria (Plasmodium) parasites. These isolated flagella are a unique, mathematically tractable model system for the physics of microswimmers. We reveal the 3D flagellar waveforms of these microorganisms and map the differential shear between microtubules in their axonemes. Furthermore, we overturn claims that chirality in the structure of the axoneme governs the beat pattern [Hirokawa N, et al. (2009) Ann Rev Fluid Mech 41:53–72], because microgametes display a left- or right-handed character on alternate beats. This breaks the link between structural chirality in the axoneme and larger scale symmetry breaking (e.g., in developing embryos), leading us to conclude that accessory structures play a critical role in shaping the flagellar beat. PMID:24194551

  10. Digital image analysis of flagellar beating and microtubule sliding of activated and hyperactivated sperm flagella.

    PubMed

    Ishijima, Sumio

    2007-01-01

    Flagellar beatings of Suncus, golden hamster, and monkey spermatozoa before and after hyperactivation were analysed using high-speed video microscopy and digital image processing in order to examine the sliding mechanism of the flagellar beating and the function of accessory fibres of the mammalian spermatozoa. Although these spermatozoa have different morphology and movement characteristics, the flagellar beatings of hyperactivated spermatozoa had a few common features; i.e., sharp bends at the base of the flagellum and a low beat frequency. While nonhyperactivated (activated) spermatozoa exhibited nearly constant-curvature beating, the hyperactivated spermatozoa displayed a constant-frequency beating. A detailed analysis of the microtubule sliding of the activated and hyperactivated sperm flagella revealed that the sharp bends at the base of the flagella were induced by an increase in the total length of the microtubule sliding at the base of the flagella and that the sliding velocity of the activated and hyperactivated sperm flagella was consistent within each species. A comparison of the sliding velocity of the flagellar beating of Suncus, golden hamster, and monkey spermatozoa with the moment of inertia of the cross section of the flagellar base suggests that the sliding velocity is involved in the hardness of a sperm flagellum.

  11. FlgM Is Secreted by the Flagellar Export Apparatus in Bacillus subtilis

    PubMed Central

    Calvo, Rebecca A.

    2014-01-01

    The bacterial flagellum is assembled from over 20 structural components, and flagellar gene regulation is morphogenetically coupled to the assembly state by control of the anti-sigma factor FlgM. In the Gram-negative bacterium Salmonella enterica, FlgM inhibits late-class flagellar gene expression until the hook-basal body structural intermediate is completed and FlgM is inhibited by secretion from the cytoplasm. Here we demonstrate that FlgM is also secreted in the Gram-positive bacterium Bacillus subtilis and is degraded extracellularly by the proteases Epr and WprA. We further demonstrate that, like in S. enterica, the structural genes required for the flagellar hook-basal body are required for robust activation of σD-dependent gene expression and efficient secretion of FlgM. Finally, we determine that FlgM secretion is strongly enhanced by, but does not strictly require, hook-basal body completion and instead demands a minimal subset of flagellar proteins that includes the FliF/FliG basal body proteins, the flagellar type III export apparatus components FliO, FliP, FliQ, FliR, FlhA, and FlhB, and the substrate specificity switch regulator FliK. PMID:25313396

  12. Entosiphon sulcatum (Euglenophyceae): flagellar roots of the basal body complex and reservoir region

    SciTech Connect

    Solomon, J.A.; Walne, P.L.; Kivic, P.A.

    1987-03-01

    The flagellar root system of Entosiphon sulcatum (Dujardin) Stein (Euglenophyceae) is described and compared with kinetoplastid and other euglenoid systems. An asymmetric pattern of three microtubular roots, one between the two flagellar basal bodies and one on either side (here called the intermediate, dorsal, and ventral roots), is consistent within the euglenoid flagellates studied thus far. The dorsal root is associated with the basal body of the anterior flagellum (F1) and lies on the left dorsal side of the basal body complex. Originating between the two flagellar basal bodies, and associated with the basal body of the trailing flagellum (F2), the intermediate root is morphologically distinguished by fibrils interconnecting the individual microtubules to one another and to the overlying reservoir membrane. The intermediate root is often borne on a ridge projecting into the reservoir. The ventral root originates near the F2 basal body and lies on the right ventral side of the cell. Fibrillar connections link the membrane of F2 with the reservoir membrane at the reservoir-canal transition level. A large cross-banded fiber joins the two flagellar basal bodies, and a series of smaller striated fibers links the anterior accessory and flagellar basal bodies. Large nonstriated fibers extend from the basal body complex posteriorly into the cytoplasm.

  13. Crystal Structure of the Flagellar Rotor Protein FliN from Thermotoga maritima†

    PubMed Central

    Brown, Perry N.; Mathews, Michael A. A.; Joss, Lisa A.; Hill, Christopher P.; Blair, David F.

    2005-01-01

    FliN is a component of the bacterial flagellum that is present at levels of more than 100 copies and forms the bulk of the C ring, a drum-shaped structure at the inner end of the basal body. FliN interacts with FliG and FliM to form the rotor-mounted switch complex that controls clockwise-counterclockwise switching of the motor. In addition to its functions in motor rotation and switching, FliN is thought to have a role in the export of proteins that form the exterior structures of the flagellum (the rod, hook, and filament). Here, we describe the crystal structure of most of the FliN protein of Thermotoga maritima. FliN is a tightly intertwined dimer composed mostly of β sheet. Several well-conserved hydrophobic residues form a nonpolar patch on the surface of the molecule. A mutation in the hydrophobic patch affected both flagellar assembly and switching, showing that this surface feature is important for FliN function. The association state of FliN in solution was studied by analytical ultracentrifugation, which provided clues to the higher-level organization of the protein. T. maritima FliN is primarily a dimer in solution, and T. maritima FliN and FliM together form a stable FliM1-FliN4 complex. Escherichia coli FliN forms a stable tetramer in solution. The arrangement of FliN subunits in the tetramer was modeled by reference to the crystal structure of tetrameric HrcQBC, a related protein that functions in virulence factor secretion in Pseudomonas syringae. The modeled tetramer is elongated, with approximate dimensions of 110 by 40 by 35Å, and it has a large hydrophobic cleft formed from the hydrophobic patches on the dimers. On the basis of the present data and available electron microscopic images, we propose a model for the organization of FliN subunits in the C ring. PMID:15805535

  14. Activation loop phosphorylation of a protein kinase is a molecular marker of organelle size that dynamically reports flagellar length

    PubMed Central

    Cao, Muqing; Meng, Dan; Wang, Liang; Bei, Shuqing; Snell, William J.; Pan, Junmin

    2013-01-01

    Specification of organelle size is crucial for cell function, yet we know little about the molecular mechanisms that report and regulate organelle growth and steady-state dimensions. The biflagellated green alga Chlamydomonas requires continuous-length feedback to integrate the multiple events that support flagellar assembly and disassembly and at the same time maintain the sensory and motility functions of the organelle. Although several length mutants have been characterized, the requisite molecular reporter of length has not been identified. Previously, we showed that depletion of Chlamydomonas aurora-like protein kinase CALK inhibited flagellar disassembly and that a gel-shift–associated phosphorylation of CALK marked half-length flagella during flagellar assembly. Here, we show that phosphorylation of CALK on T193, a consensus phosphorylation site on the activation loop required for kinase activity, is distinct from the gel-shift–associated phosphorylation and is triggered when flagellar shortening is induced, thereby implicating CALK protein kinase activity in the shortening arm of length control. Moreover, CALK phosphorylation on T193 is dynamically related to flagellar length. It is reduced in cells with short flagella, elevated in the long flagella mutant, lf4, and dynamically tracks length during both flagellar assembly and flagellar disassembly in WT, but not in lf4. Thus, phosphorylation of CALK in its activation loop is implicated in the disassembly arm of a length feedback mechanism and is a continuous and dynamic molecular marker of flagellar length during both assembly and disassembly. PMID:23836633

  15. Zipping and entanglement in flagellar bundle of E. coli: Role of motile cell body

    NASA Astrophysics Data System (ADS)

    Adhyapak, Tapan Chandra; Stark, Holger

    2015-11-01

    The course of a peritrichous bacterium, such as E. coli, crucially depends on the level of synchronization and self-organization of several rotating flagella. However, the rotation of each flagellum generates countermovements of the body which in turn affect the flagellar dynamics. Using a detailed numerical model of an E. coli, we demonstrate that flagellar entanglement, besides fluid flow relative to the moving body, dramatically changes the dynamics of flagella from that compared to anchored flagella. In particular, bundle formation occurs through a zipping motion in a remarkably rapid time, affected little by initial flagellar orientation. A simplified analytical model supports our observations. Finally, we illustrate how entanglement, hydrodynamic interactions, and body movement contribute to zipping and bundling.

  16. Role of calmodulin and calcineurin in regulating flagellar motility and wave polarity in Leishmania.

    PubMed

    Mukhopadhyay, Aakash Gautam; Dey, Chinmoy Sankar

    2017-09-07

    We have previously reported the involvement of cyclic AMP in regulating flagellar waveforms in Leishmania. Here, we investigated the roles of calcium, calmodulin, and calcineurin in flagellar motility regulation in L. donovani. Using high-speed videomicroscopy, we show that calcium-independent calmodulin and calcineurin activity is necessary for motility in Leishmania. Inhibition of calmodulin and calcineurin induced ciliary beats interrupting flagellar beating in both live (in vivo) and ATP-reactivated (in vitro) parasites. Our results indicate that signaling mediated by calmodulin and calcineurin operates antagonistically to cAMP signaling in regulating the waveforms of Leishmania flagellum. These two pathways are possibly involved in maintaining the balance between the two waveforms, essential for responding to environmental cues, survival, and infectivity.

  17. The p38 MAP kinase inhibitor, PD 169316, inhibits flagellar motility in Leishmania donovani.

    PubMed

    Reddy, G Srinivas; Mukhopadhyay, Aakash Gautam; Dey, Chinmoy Sankar

    2017-09-27

    Mitogen-activated protein kinases (MAPKs) have been demonstrated to regulate flagellar/ciliary motility of spermatozoa and miracidia of Schistosoma mansoni. However, the role of MAPKs in mediating flagella-driven motility of Leishmania donovani is unexplored. We investigated the function of MAPKs in motility regulation of L. donovani using pharmacological inhibitors and activators of various MAPKs and fast-capture videomicroscopy. Our studies have revealed that the inhibitor of p38 MAPK, PD 169316, significantly affected various motility parameters such as flagellar beat frequency, parasite swimming speed, waveform of the flagellum and resulted in reduced parasite motility. Together, our results suggest that a MAPK, similar to human p38 MAPK, is implicated in flagellar motility regulation of L. donovani. Copyright © 2017. Published by Elsevier Inc.

  18. Preparing well-oriented sols of straight bacterial flagellar filaments for X-ray fiber diffraction.

    PubMed

    Yamashita, I; Vonderviszt, F; Noguchi, T; Namba, K

    1991-01-20

    Well-oriented sols of straight bacterial flagellar filaments have been obtained by preparing reconstituted flagellar filaments with an appropriate length distribution and choosing appropriate solvent conditions. An average filament length of 300 to 500 nm and the use of solvents with very low concentrations of salt has allowed us to prepare highly fluid sols that make flow orientation possible. X-ray fiber diffraction from these sols has shown distinct layer-line reflections to 3.5 A resolution in the meridional direction. Layer-line intensities have been collected by the angular deconvolution method up to 5 A resolution. The possibility of using a magnetic field to further improve the orientation has been explored and a solvent condition that makes flagellar sols sensitive to the magnetic field has been found. General applicability of the method to other systems is also discussed.

  19. Biochemical characterization of tektins from sperm flagellar doublet microtubules

    PubMed Central

    1987-01-01

    Tektins, protein components of stable protofilaments from sea urchin sperm flagellar outer doublet microtubules (Linck, R. W., and G. L. Langevin, 1982, J. Cell Sci., 58:1-22), are separable by preparative SDS PAGE into 47-, 51-, and 55-kD equimolar components. High resolution two-dimensional tryptic peptide mapping reveals 63-67% coincidence among peptides of the 51-kD tektin chain and its 47- and 55-kD counterparts, greater than 70% coincidence between the 47- and 55-kD tektins, but little obvious similarity to either alpha- or beta- tubulin. With reverse-phase HPLC on a C18 column, using 6 M guanidine- HCl solubilization and a 0.1% trifluoroacetic acid/CH3CN gradient system (Stephens, R. E., 1984, J. Cell Biol. 90:37a [Abstr.]), the relatively less hydrophobic 51-kD tektin elutes at greater than 45% CH3CN, immediately followed by the 55-kD chain. The 47-kD tektin is substantially more hydrophobic, eluting between the two tubulins. The amino acid compositions of the tektins are very similar to each other but totally distinct from tubulin chains, being characterized by a greater than 50% higher arginine plus lysine content (in good agreement with the number of tryptic peptides) and about half the content of glycine, histidine, proline, and tyrosine. The proline content correlates well with the fact that tektin filaments have twice as much alpha-helical content as tubulin. Total hydrophobic amino acid content correlates with HPLC elution times for the tektins but not tubulins. The average amino acid composition of the tektins indicates that they resemble intermediate filament proteins, as originally postulated from structural, solubility, and electrophoretic properties. Tektins have higher cysteine and tryptophan contents than desmin and vimentin, which characteristically have only one residue of each, more closely resembling certain keratins in these amino acids. PMID:3558479

  20. Flagellar coordination in Chlamydomonas cells held on micropipettes.

    PubMed

    Rüffer, U; Nultsch, W

    1998-01-01

    The two flagella of Chlamydomonas are known to beat synchronously: During breaststroke beating they are generally coordinated in a bilateral way while in shock responses during undulatory beating coordination is mostly parallel [Rüffer and Nultsch, 1995: Botanica Acta 108:169-276]. Analysis of a great number of shock responses revealed that in undulatory beats also periods of bilateral coordination are found and that the coordination type may change several times during a shock response, without concomitant changes of the beat envelope and the beat period. In normal wt cells no coordination changes are found during breaststroke beating, but only short temporary asynchronies: During 2 or 3 normal beats of the cis flagellum, the trans flagellum performs 3 or 4 flat beats with a reduced beat envelope and a smaller beat period, resulting in one additional trans beat. Long periods with flat beats of the same shape and beat period are found in both flagella of the non-phototactic mutant ptx1 and in defective wt 622E cells. During these periods, the coordination is parallel, the two flagella beat alternately. A correlation between normal asynchronous trans beats and the parallel-coordinated beats in the presumably cis defective cells and also the undulatory beats is discussed. In the cis defective cells, a perpetual spontaneous change between parallel beats with small beat periods (higher beat frequency) and bilateral beats with greater beat periods (lower beat frequency) are observed and render questionable the existence of two different intrinsic beat frequencies of the two flagella cis and trans. Asynchronies occur spontaneously but may also be induced by light changes, either step-up or step-down, but not by both stimuli in turn as breaststroke flagellar photoresponses (BFPRs). Asynchronies are not involved in phototaxis. They are independent of the BFPRs, which are supposed to be the basis of phototaxis. Both types of coordination must be assumed to be regulated

  1. Biochemical characterization of tektins from sperm flagellar doublet microtubules.

    PubMed

    Linck, R W; Stephens, R E

    1987-04-01

    Tektins, protein components of stable protofilaments from sea urchin sperm flagellar outer doublet microtubules (Linck, R. W., and G. L. Langevin, 1982, J. Cell Sci., 58:1-22), are separable by preparative SDS PAGE into 47-, 51-, and 55-kD equimolar components. High resolution two-dimensional tryptic peptide mapping reveals 63-67% coincidence among peptides of the 51-kD tektin chain and its 47- and 55-kD counterparts, greater than 70% coincidence between the 47- and 55-kD tektins, but little obvious similarity to either alpha- or beta-tubulin. With reverse-phase HPLC on a C18 column, using 6 M guanidine-HCl solubilization and a 0.1% trifluoroacetic acid/CH3CN gradient system (Stephens, R. E., 1984, J. Cell Biol. 90:37a [Abstr.]), the relatively less hydrophobic 51-kD tektin elutes at greater than 45% CH3CN, immediately followed by the 55-kD chain. The 47-kD tektin is substantially more hydrophobic, eluting between the two tubulins. The amino acid compositions of the tektins are very similar to each other but totally distinct from tubulin chains, being characterized by a greater than 50% higher arginine plus lysine content (in good agreement with the number of tryptic peptides) and about half the content of glycine, histidine, proline, and tyrosine. The proline content correlates well with the fact that tektin filaments have twice as much alpha-helical content as tubulin. Total hydrophobic amino acid content correlates with HPLC elution times for the tektins but not tubulins. The average amino acid composition of the tektins indicates that they resemble intermediate filament proteins, as originally postulated from structural, solubility, and electrophoretic properties. Tektins have higher cysteine and tryptophan contents than desmin and vimentin, which characteristically have only one residue of each, more closely resembling certain keratins in these amino acids.

  2. A macroscopic scale model of bacterial flagellar bundling

    PubMed Central

    Kim, MunJu; Bird, James C.; Van Parys, Annemarie J.; Breuer, Kenneth S.; Powers, Thomas R.

    2003-01-01

    Escherichia coli and other bacteria use rotating helical filaments to swim. Each cell typically has about four filaments, which bundle or disperse depending on the sense of motor rotation. To study the bundling process, we built a macroscopic scale model consisting of stepper motor-driven polymer helices in a tank filled with a high-viscosity silicone oil. The Reynolds number, the ratio of viscous to elastic stresses, and the helix geometry of our experimental model approximately match the corresponding quantities of the full-scale E. coli cells. We analyze digital video images of the rotating helices to show that the initial rate of bundling is proportional to the motor frequency and is independent of the characteristic relaxation time of the filament. We also determine which combinations of helix handedness and sense of motor rotation lead to bundling. PMID:14671319

  3. Listeria monocytogenes DNA Glycosylase AdlP Affects Flagellar Motility, Biofilm Formation, Virulence, and Stress Responses

    PubMed Central

    Zhang, Ting; Bae, Dongryeoul

    2016-01-01

    ABSTRACT The temperature-dependent alteration of flagellar motility gene expression is critical for the foodborne pathogen Listeria monocytogenes to respond to a changing environment. In this study, a genetic determinant, L. monocytogenes f2365_0220 (lmof2365_0220), encoding a putative protein that is structurally similar to the Bacillus cereus alkyl base DNA glycosylase (AlkD), was identified. This determinant was involved in the transcriptional repression of flagellar motility genes and was named adlP (encoding an AlkD-like protein [AdlP]). Deletion of adlP activated the expression of flagellar motility genes at 37°C and disrupted the temperature-dependent inhibition of L. monocytogenes motility. The adlP null strains demonstrated decreased survival in murine macrophage-like RAW264.7 cells and less virulence in mice. Furthermore, the deletion of adlP significantly decreased biofilm formation and impaired the survival of bacteria under several stress conditions, including the presence of a DNA alkylation compound (methyl methanesulfonate), an oxidative agent (H2O2), and aminoglycoside antibiotics. Our findings strongly suggest that adlP may encode a bifunctional protein that transcriptionally represses the expression of flagellar motility genes and influences stress responses through its DNA glycosylase activity. IMPORTANCE We discovered a novel protein that we named AlkD-like protein (AdlP). This protein affected flagellar motility, biofilm formation, and virulence. Our data suggest that AdlP may be a bifunctional protein that represses flagellar motility genes and influences stress responses through its DNA glycosylase activity. PMID:27316964

  4. Intact procedural motor sequence learning in developmental coordination disorder.

    PubMed

    Lejeune, Caroline; Catale, Corinne; Willems, Sylvie; Meulemans, Thierry

    2013-06-01

    The purpose of the present study was to explore the possibility of a procedural learning deficit among children with developmental coordination disorder (DCD). We tested 34 children aged 6-12 years with and without DCD using the serial reaction time task, in which the standard keyboard was replaced by a touch screen in order to minimize the impact of perceptuomotor coordination difficulties that characterize this disorder. The results showed that children with DCD succeed as well as control children at the procedural sequence learning task. These findings challenge the hypothesis that a procedural learning impairment underlies the difficulties of DCD children in acquiring and automatizing daily activities. We suggest that the previously reported impairment of children with DCD on the serial reaction time task is not due to a sequence learning deficit per se, but rather due to methodological factors such as the response mode used in these studies.

  5. Intact Procedural Motor Sequence Learning in Developmental Coordination Disorder

    ERIC Educational Resources Information Center

    Lejeune, Caroline; Catale, Corinne; Willems, Sylvie; Meulemans, Thierry

    2013-01-01

    The purpose of the present study was to explore the possibility of a procedural learning deficit among children with developmental coordination disorder (DCD). We tested 34 children aged 6-12 years with and without DCD using the serial reaction time task, in which the standard keyboard was replaced by a touch screen in order to minimize the impact…

  6. Intact Procedural Motor Sequence Learning in Developmental Coordination Disorder

    ERIC Educational Resources Information Center

    Lejeune, Caroline; Catale, Corinne; Willems, Sylvie; Meulemans, Thierry

    2013-01-01

    The purpose of the present study was to explore the possibility of a procedural learning deficit among children with developmental coordination disorder (DCD). We tested 34 children aged 6-12 years with and without DCD using the serial reaction time task, in which the standard keyboard was replaced by a touch screen in order to minimize the impact…

  7. Monitoring Intact Viruses Using Aptamers.

    PubMed

    Kumar, Penmetcha K R

    2016-08-04

    Viral diagnosis and surveillance are necessary steps in containing the spread of viral diseases, and they help in the deployment of appropriate therapeutic interventions. In the past, the commonly employed viral detection methods were either cell-culture or molecule-level assays. Most of these assays are laborious and expensive, require special facilities, and provide a slow diagnosis. To circumvent these limitations, biosensor-based approaches are becoming attractive, especially after the successful commercialization of glucose and other biosensors. In the present article, I have reviewed the current progress using the biosensor approach for detecting intact viruses. At the time of writing this review, three types of bioreceptor surfaces (antibody-, glycan-, and aptamer-based) have been explored on different sensing platforms for detecting intact viruses. Among these bioreceptors, aptamer-based sensors have been increasingly explored for detecting intact viruses using surface plasmon resonance (SPR) and other platforms. Special emphasis is placed on the aptamer-based SPR platform in the present review.

  8. Monitoring Intact Viruses Using Aptamers

    PubMed Central

    Kumar, Penmetcha K. R.

    2016-01-01

    Viral diagnosis and surveillance are necessary steps in containing the spread of viral diseases, and they help in the deployment of appropriate therapeutic interventions. In the past, the commonly employed viral detection methods were either cell-culture or molecule-level assays. Most of these assays are laborious and expensive, require special facilities, and provide a slow diagnosis. To circumvent these limitations, biosensor-based approaches are becoming attractive, especially after the successful commercialization of glucose and other biosensors. In the present article, I have reviewed the current progress using the biosensor approach for detecting intact viruses. At the time of writing this review, three types of bioreceptor surfaces (antibody-, glycan-, and aptamer-based) have been explored on different sensing platforms for detecting intact viruses. Among these bioreceptors, aptamer-based sensors have been increasingly explored for detecting intact viruses using surface plasmon resonance (SPR) and other platforms. Special emphasis is placed on the aptamer-based SPR platform in the present review. PMID:27527230

  9. Transcriptional Control of the Lateral-Flagellar Genes of Bradyrhizobium diazoefficiens.

    PubMed

    Mongiardini, Elías J; Quelas, J Ignacio; Dardis, Carolina; Althabegoiti, M Julia; Lodeiro, Aníbal R

    2017-08-01

    Bradyrhizobium diazoefficiens, a soybean N2-fixing symbiont, possesses a dual flagellar system comprising a constitutive subpolar flagellum and inducible lateral flagella. Here, we analyzed the genomic organization and biosynthetic regulation of the lateral-flagellar genes. We found that these genes are located in a single genomic cluster, organized in two monocistronic transcriptional units and three operons, one possibly containing an internal transcription start site. Among the monocistronic units is blr6846, homologous to the class IB master regulators of flagellum synthesis in Brucella melitensis and Ensifer meliloti and required for the expression of all the lateral-flagellar genes except lafA2, whose locus encodes a single lateral flagellin. We therefore named blr6846 lafR (lateral-flagellar regulator). Despite its similarity to two-component response regulators and its possession of a phosphorylatable Asp residue, lafR behaved as an orphan response regulator by not requiring phosphorylation at this site. Among the genes induced by lafR is flbTL , a class III regulator. We observed different requirements for FlbTL in the synthesis of each flagellin subunit. Although the accumulation of lafA1, but not lafA2, transcripts required FlbTL, the production of both flagellin polypeptides required FlbTL Moreover, the regulation cascade of this lateral-flagellar regulon appeared to be not as strictly ordered as those found in other bacterial species.IMPORTANCE Bacterial motility seems essential for the free-living style in the environment, and therefore these microorganisms allocate a great deal of their energetic resources to the biosynthesis and functioning of flagella. Despite energetic costs, some bacterial species possess dual flagellar systems, one of which is a primary system normally polar or subpolar, and the other is a secondary, lateral system that is produced only under special circumstances. Bradyrhizobium diazoefficiens, an N2-fixing symbiont of soybean

  10. A Protein Thermometer Controls Temperature-Dependent Transcription of Flagellar Motility Genes in Listeria monocytogenes

    PubMed Central

    Kamp, Heather D.; Higgins, Darren E.

    2011-01-01

    Facultative bacterial pathogens must adapt to multiple stimuli to persist in the environment or establish infection within a host. Temperature is often utilized as a signal to control expression of virulence genes necessary for infection or genes required for persistence in the environment. However, very little is known about the molecular mechanisms that allow bacteria to adapt and respond to temperature fluctuations. Listeria monocytogenes (Lm) is a food-borne, facultative intracellular pathogen that uses flagellar motility to survive in the extracellular environment and to enhance initial invasion of host cells during infection. Upon entering the host, Lm represses transcription of flagellar motility genes in response to mammalian physiological temperature (37°C) with a concomitant temperature-dependent up-regulation of virulence genes. We previously determined that down-regulation of flagellar motility is required for virulence and is governed by the reciprocal activities of the MogR transcriptional repressor and the bifunctional flagellar anti-repressor/glycosyltransferase, GmaR. In this study, we determined that GmaR is also a protein thermometer that controls temperature-dependent transcription of flagellar motility genes. Two-hybrid and gel mobility shift analyses indicated that the interaction between MogR and GmaR is temperature sensitive. Using circular dichroism and limited proteolysis, we determined that GmaR undergoes a temperature-dependent conformational change as temperature is elevated. Quantitative analysis of GmaR in Lm revealed that GmaR is degraded in the absence of MogR and at 37°C (when the MogR:GmaR complex is less stable). Since MogR represses transcription of all flagellar motility genes, including transcription of gmaR, changes in the stability of the MogR:GmaR anti-repression complex, due to conformational changes in GmaR, mediates repression or de-repression of flagellar motility genes in Lm. Thus, GmaR functions as a thermo

  11. High-Pressure Microscopy for Studying Molecular Motors.

    PubMed

    Nishiyama, Masayoshi

    2015-01-01

    Movement is a fundamental characteristic of all living things. This biogenic function is carried out by various nanometer-sized molecular machines. Molecular motor is a typical molecular machinery in which the characteristic features of proteins are integrated; these include enzymatic activity, energy conversion, molecular recognition and self-assembly. These biologically important reactions occur with the association of water molecules that surround the motors. Applied pressures can alter the intermolecular interactions between the motors and water. In this chapter we describe the development of a high-pressure microscope and a new motility assay that enables the visualization of the motility of molecular motors under conditions of high-pressure. Our results demonstrate that applied pressure dynamically changes the motility of molecular motors such as kinesin, F1-ATPase and bacterial flagellar motors.

  12. The flagellar motility of Chlamydomonas pf25 mutant lacking an AKAP-binding protein is overtly sensitive to medium conditions.

    PubMed

    Yang, Chun; Yang, Pinfen

    2006-01-01

    Radial spokes are a conserved axonemal structural complex postulated to regulate the motility of 9 + 2 cilia and flagella via a network of phosphoenzymes and regulatory proteins. Consistently, a Chlamydomonas radial spoke protein, RSP3, has been identified by RII overlays as an A-kinase anchoring protein (AKAP) that localizes the cAMP-dependent protein kinase (PKA) holoenzyme by binding to the RIIa domain of PKA RII subunit. However, the highly conserved docking domain of PKA is also found in the N termini of several AKAP-binding proteins unrelated to PKA as well as a 24-kDa novel spoke protein, RSP11. Here, we report that RSP11 binds to RSP3 directly in vitro and colocalizes with RSP3 toward the spoke base near outer doublets and dynein motors in axonemes. Importantly, RSP11 mutant pf25 displays a spectrum of motility, from paralysis with flaccid or twitching flagella as other spoke mutants to wildtype-like swimming. The wide range of motility changes reversibly depending on the condition of liquid media without replacing defective proteins. We postulate that radial spokes use the RIIa/AKAP module to regulate ciliary and flagellar beating; absence of the spoke RIIa protein exposes a medium-sensitive regulatory mechanism that is not obvious in wild-type Chlamydomonas.

  13. Computer simulation of flagellar movement VIII: coordination of dynein by local curvature control can generate helical bending waves.

    PubMed

    Brokaw, Charles J

    2002-10-01

    Computer simulations have been carried out with a model flagellum that can bend in three dimensions. A pattern of dynein activation in which regions of dynein activity propagate along each doublet, with a phase shift of approximately 1/9 wavelength between adjacent doublets, will produce a helical bending wave. This pattern can be termed "doublet metachronism." The simulations show that doublet metachronism can arise spontaneously in a model axoneme in which activation of dyneins is controlled locally by the curvature of each outer doublet microtubule. In this model, dyneins operate both as sensors of curvature and as motors. Doublet metachronism and the chirality of the resulting helical bending pattern are regulated by the angular difference between the direction of the moment and sliding produced by dyneins on a doublet and the direction of the controlling curvature for that doublet. A flagellum that is generating a helical bending wave experiences twisting moments when it moves against external viscous resistance. At high viscosities, helical bending will be significantly modified by twist unless the twist resistance is greater than previously estimated. Spontaneous doublet metachronism must be modified or overridden in order for a flagellum to generate the planar bending waves that are required for efficient propulsion of spermatozoa. Planar bending can be achieved with the three-dimensional flagellar model by appropriate specification of the direction of the controlling curvature for each doublet. However, experimental observations indicate that this "hard-wired" solution is not appropriate for real flagella. Copyright 2002 Wiley-Liss, Inc.

  14. The Bacterial Flagellar Type III Export Gate Complex Is a Dual Fuel Engine That Can Use Both H+ and Na+ for Flagellar Protein Export

    PubMed Central

    Minamino, Tohru; Morimoto, Yusuke V.; Hara, Noritaka; Aldridge, Phillip D.; Namba, Keiichi

    2016-01-01

    The bacterial flagellar type III export apparatus utilizes ATP and proton motive force (PMF) to transport flagellar proteins to the distal end of the growing flagellar structure for self-assembly. The transmembrane export gate complex is a H+–protein antiporter, of which activity is greatly augmented by an associated cytoplasmic ATPase complex. Here, we report that the export gate complex can use sodium motive force (SMF) in addition to PMF across the cytoplasmic membrane to drive protein export. Protein export was considerably reduced in the absence of the ATPase complex and a pH gradient across the membrane, but Na+ increased it dramatically. Phenamil, a blocker of Na+ translocation, inhibited protein export. Overexpression of FlhA increased the intracellular Na+ concentration in the presence of 100 mM NaCl but not in its absence, suggesting that FlhA acts as a Na+ channel. In wild-type cells, however, neither Na+ nor phenamil affected protein export, indicating that the Na+ channel activity of FlhA is suppressed by the ATPase complex. We propose that the export gate by itself is a dual fuel engine that uses both PMF and SMF for protein export and that the ATPase complex switches this dual fuel engine into a PMF-driven export machinery to become much more robust against environmental changes in external pH and Na+ concentration. PMID:26943926

  15. The Bacterial Flagellar Type III Export Gate Complex Is a Dual Fuel Engine That Can Use Both H+ and Na+ for Flagellar Protein Export.

    PubMed

    Minamino, Tohru; Morimoto, Yusuke V; Hara, Noritaka; Aldridge, Phillip D; Namba, Keiichi

    2016-03-01

    The bacterial flagellar type III export apparatus utilizes ATP and proton motive force (PMF) to transport flagellar proteins to the distal end of the growing flagellar structure for self-assembly. The transmembrane export gate complex is a H+-protein antiporter, of which activity is greatly augmented by an associated cytoplasmic ATPase complex. Here, we report that the export gate complex can use sodium motive force (SMF) in addition to PMF across the cytoplasmic membrane to drive protein export. Protein export was considerably reduced in the absence of the ATPase complex and a pH gradient across the membrane, but Na+ increased it dramatically. Phenamil, a blocker of Na+ translocation, inhibited protein export. Overexpression of FlhA increased the intracellular Na+ concentration in the presence of 100 mM NaCl but not in its absence, suggesting that FlhA acts as a Na+ channel. In wild-type cells, however, neither Na+ nor phenamil affected protein export, indicating that the Na+ channel activity of FlhA is suppressed by the ATPase complex. We propose that the export gate by itself is a dual fuel engine that uses both PMF and SMF for protein export and that the ATPase complex switches this dual fuel engine into a PMF-driven export machinery to become much more robust against environmental changes in external pH and Na+ concentration.

  16. A Comparative Overview of the Flagellar Apparatus of Dinoflagellate, Perkinsids and Colpodellids

    PubMed Central

    Okamoto, Noriko; Keeling, Patrick J.

    2014-01-01

    Dinoflagellates are a member of the Alveolata, and elucidation of the early evolution of alveolates is important for our understanding of dinoflagellates, and vice versa. The ultrastructure of the flagellar apparatus has been described from several dinoflagellates in the last few decades, and the basic components appear to be well conserved. The typical dinoflagellate apparatus is composed of two basal bodies surrounded by striated collars attached to a connective fiber. The longitudinal basal body is connected to a longitudinal microtubular root (LMR; equivalent of R1) and single microtubular root (R2), whereas the transverse basal body is connected to a transverse microtubular root (TMR; R3) and transverse striated root (TSR) with a microtubule (R4). Some of these components, especially the connective fibers and collars, are dinoflagellate specific characteristics that make their flagellar apparatus relatively complex. We also compare these structures with the flagellar apparatus from a number of close relatives of dinoflagellates and their sister, the apicomplexans, including colpodellids, perkinsids, and Psammosa. Though the ultrastructural knowledge of these lineages is still relatively modest, it provides us with an interesting viewpoint of the character evolution of the flagellar apparatus among those lineages. PMID:27694777

  17. Listeria monocytogenes DNA glycosylase AdiP affects flagellar motility, biofilm formation, virulence, and stress responses

    USDA-ARS?s Scientific Manuscript database

    The temperature-dependent alteration of flagellar motility gene expression is critical for the foodborne pathogen Listeria monocytogenes to respond to a changing environment. In this study, a genetic determinant, L. monocytogenes f2365_0220 (lmof2365_0220), encoding a putative protein that is struct...

  18. Codon-based phylogenetics introduces novel flagellar gene markers to oomycete systematics.

    PubMed

    Robideau, Gregg P; Rodrigue, Nicolas; André Lévesque, C

    2014-10-01

    Oomycete systematics has traditionally been reliant on ribosomal RNA and mitochondrial cytochrome oxidase sequences. Here we report the use of two single-copy protein-coding flagellar genes, PF16 and OCM1, in oomycete systematics, showing their utility in phylogenetic reconstruction and species identification. Applying a recently proposed mutation-selection model of codon substitution, the phylogenetic relationships inferred by flagellar genes are largely in agreement with the current views of oomycete evolution, whereas nucleotide- and amino acid-level models produce biologically implausible reconstructions. Interesting parallels exist between the phylogeny inferred from the flagellar genes and zoospore ontology, providing external support for the tree obtained using the codon model. The resolution achieved for species identification is ample using PF16, and quite robust using OCM1, and the described PCR primers are able to amplify both genes for a range of oomycete genera. Altogether, when analyzed with a rich codon substitution model, these flagellar genes provide useful markers for the oomycete molecular toolbox.

  19. Swimming performance of Bradyrhizobium diazoefficiens is an emergent property of its two flagellar systems.

    PubMed

    Quelas, J Ignacio; Althabegoiti, M Julia; Jimenez-Sanchez, Celia; Melgarejo, Augusto A; Marconi, Verónica I; Mongiardini, Elías J; Trejo, Sebastián A; Mengucci, Florencia; Ortega-Calvo, José-Julio; Lodeiro, Aníbal R

    2016-04-07

    Many bacterial species use flagella for self-propulsion in aqueous media. In the soil, which is a complex and structured environment, water is found in microscopic channels where viscosity and water potential depend on the composition of the soil solution and the degree of soil water saturation. Therefore, the motility of soil bacteria might have special requirements. An important soil bacterial genus is Bradyrhizobium, with species that possess one flagellar system and others with two different flagellar systems. Among the latter is B. diazoefficiens, which may express its subpolar and lateral flagella simultaneously in liquid medium, although its swimming behaviour was not described yet. These two flagellar systems were observed here as functionally integrated in a swimming performance that emerged as an epistatic interaction between those appendages. In addition, each flagellum seemed engaged in a particular task that might be required for swimming oriented toward chemoattractants near the soil inner surfaces at viscosities that may occur after the loss of soil gravitational water. Because the possession of two flagellar systems is not general in Bradyrhizobium or in related genera that coexist in the same environment, there may be an adaptive tradeoff between energetic costs and ecological benefits among these different species.

  20. Swimming performance of Bradyrhizobium diazoefficiens is an emergent property of its two flagellar systems

    PubMed Central

    Quelas, J. Ignacio; Althabegoiti, M. Julia; Jimenez-Sanchez, Celia; Melgarejo, Augusto A.; Marconi, Verónica I.; Mongiardini, Elías J.; Trejo, Sebastián A.; Mengucci, Florencia; Ortega-Calvo, José-Julio; Lodeiro, Aníbal R.

    2016-01-01

    Many bacterial species use flagella for self-propulsion in aqueous media. In the soil, which is a complex and structured environment, water is found in microscopic channels where viscosity and water potential depend on the composition of the soil solution and the degree of soil water saturation. Therefore, the motility of soil bacteria might have special requirements. An important soil bacterial genus is Bradyrhizobium, with species that possess one flagellar system and others with two different flagellar systems. Among the latter is B. diazoefficiens, which may express its subpolar and lateral flagella simultaneously in liquid medium, although its swimming behaviour was not described yet. These two flagellar systems were observed here as functionally integrated in a swimming performance that emerged as an epistatic interaction between those appendages. In addition, each flagellum seemed engaged in a particular task that might be required for swimming oriented toward chemoattractants near the soil inner surfaces at viscosities that may occur after the loss of soil gravitational water. Because the possession of two flagellar systems is not general in Bradyrhizobium or in related genera that coexist in the same environment, there may be an adaptive tradeoff between energetic costs and ecological benefits among these different species. PMID:27053439

  1. Structural Changes of the Paraflagellar Rod during Flagellar Beating in Trypanosoma cruzi

    PubMed Central

    Rocha, Gustavo Miranda; Teixeira, Dirceu Esdras; Miranda, Kildare; Weissmüller, Gilberto; Bisch, Paulo Mascarello; de Souza, Wanderley

    2010-01-01

    Background Trypanosoma cruzi, the agent of Chagas disease, is a protozoan member of the Kinetoplastidae family characterized for the presence of specific and unique structures that are involved in different cell activities. One of them is the paraflagellar rod (PFR), a complex array of filaments connected to the flagellar axoneme. Although the function played by the PFR is not well established, it has been shown that silencing of the synthesis of its major proteins by either knockout of RNAi impairs and/or modifies the flagellar motility. Methodology/Principal Findings Here, we present results obtained by atomic force microscopy (AFM) and transmission electron microscopy (TEM) of replicas of quick-frozen, freeze-fractured, deep-etched and rotary-replicated cells to obtain detailed information of the PFR structures in regions of the flagellum in straight and in bent state. The images obtained show that the PFR is not a fixed and static structure. The pattern of organization of the PFR filament network differs between regions of the flagellum in a straight state and those in a bent state. Measurements of the distances between the PFR filaments and the filaments that connect the PFR to the axoneme as well as of the angles between the intercrossed filaments supported this idea. Conclusions/Significance Graphic computation based on the information obtained allowed the proposal of an animated model for the PFR structure during flagellar beating and provided a new way of observing PFR filaments during flagellar beating. PMID:20613980

  2. Modulation of Toxin Production by the Flagellar Regulon in Clostridium difficile

    PubMed Central

    Aubry, Annie; Hussack, Greg; Chen, Wangxue; KuoLee, Rhonda; Twine, Susan M.; Fulton, Kelly M.; Foote, Simon; Carrillo, Catherine D.; Tanha, Jamshid

    2012-01-01

    We show in this study that toxin production in Clostridium difficile is altered in cells which can no longer form flagellar filaments. The impact of inactivation of fliC, CD0240, fliF, fliG, fliM, and flhB-fliR flagellar genes upon toxin levels in culture supernatants was assessed using cell-based cytotoxicity assay, proteomics, immunoassay, and immunoblotting approaches. Each of these showed that toxin levels in supernatants were significantly increased in a fliC mutant compared to that in the C. difficile 630 parent strain. In contrast, the toxin levels in supernatants secreted from other flagellar mutants were significantly reduced compared with that in the parental C. difficile 630 strain. Transcriptional analysis of the pathogenicity locus genes (tcdR, tcdB, tcdE, and tcdA) revealed a significant increase of all four genes in the fliC mutant strain, while transcription of all four genes was significantly reduced in fliM, fliF, fliG, and flhB-fliR mutants. These results demonstrate that toxin transcription in C. difficile is modulated by the flagellar regulon. More significantly, mutant strains showed a corresponding change in virulence compared to the 630 parent strain when tested in a hamster model of C. difficile infection. This is the first demonstration of differential flagellum-related transcriptional regulation of toxin production in C. difficile and provides evidence for elaborate regulatory networks for virulence genes in C. difficile. PMID:22851750

  3. A rotary motor drives Flavobacterium gliding.

    PubMed

    Shrivastava, Abhishek; Lele, Pushkar P; Berg, Howard C

    2015-02-02

    Cells of Flavobacterium johnsoniae, a rod-shaped bacterium devoid of pili or flagella, glide over glass at speeds of 2-4 μm/s [1]. Gliding is powered by a protonmotive force [2], but the machinery required for this motion is not known. Usually, cells move along straight paths, but sometimes they exhibit a reciprocal motion, attach near one pole and flip end over end, or rotate. This behavior is similar to that of a Cytophaga species described earlier [3]. Development of genetic tools for F. johnsoniae led to discovery of proteins involved in gliding [4]. These include the surface adhesin SprB that forms filaments about 160 nm long by 6 nm in diameter, which, when labeled with a fluorescent antibody [2] or a latex bead [5], are seen to move longitudinally down the length of a cell, occasionally shifting positions to the right or the left. Evidently, interaction of these filaments with a surface produces gliding. To learn more about the gliding motor, we sheared cells to reduce the number and size of SprB filaments and tethered cells to glass by adding anti-SprB antibody. Cells spun about fixed points, mostly counterclockwise, rotating at speeds of 1 Hz or more. The torques required to sustain such speeds were large, comparable to those generated by the flagellar rotary motor. However, we found that a gliding motor runs at constant speed rather than at constant torque. Now, there are three rotary motors powered by protonmotive force: the bacterial flagellar motor, the Fo ATP synthase, and the gliding motor.

  4. A rotary motor drives Flavobacterium gliding

    PubMed Central

    Shrivastava, Abhishek; Lele, Pushkar P.; Berg, Howard C.

    2015-01-01

    Summary Cells of Flavobacterium johnsoniae, a rod-shaped bacterium devoid of pili or flagella, glide over glass at speeds of 2–4 μm/s [1]. Gliding is powered by a protonmotive force [2], but the machinery required for this motion is not known. Usually, cells move along straight paths, but sometimes they exhibit a reciprocal motion, attach near one pole and flip end-over-end, or rotate. This behavior is similar to that of a Cytophaga species described earlier [3]. Development of genetic tools for F. johnsoniae led to discovery of proteins involved in gliding [4]. These include the surface adhesin SprB that forms filaments about 160 nm long by 6 nm in diameter, which, when labeled with a fluorescent antibody [2] or a latex bead [5], are seen to move longitudinally down the length of a cell, occasionally shifting positions to the right or the left. Evidently, interaction of these filaments with a surface produces gliding. To learn more about the gliding motor, we sheared cells to reduce the number and size of SprB filaments and tethered cells to glass by adding anti-SprB antibody. Cells spun about fixed points, mostly counterclockwise, rotating at speeds of 1 Hz or more. The torques required to sustain such speeds were large, comparable to those generated by the flagellar rotary motor. However, we found that a gliding motor runs at constant speed rather than constant torque. Now there are three rotary motors powered by protonmotive force: the bacterial flagellar motor, the Fo ATP synthase, and the gliding motor. PMID:25619763

  5. Localization of EB1, IFT polypeptides, and kinesin-2 in Chlamydomonas flagellar axonemes via immunogold scanning electron microscopy.

    PubMed

    Sloboda, Roger D; Howard, Louisa

    2007-06-01

    Intraflagellar transport (IFT) refers to the bi-directional movement of particles and associated cargo along the axonemes of eukaryotic flagella and cilia. To provide a new perspective on the morphology of IFT particles, their association with the axoneme, and their composition, we have used immunogold localization coupled to detection via scanning electron microscopy. Here we co-localize in the Chlamydomonas flagellar axoneme polypeptides labeled with specific antibodies. Chlamydomonas EB1 localizes to the distal tip of the axoneme, as expected from previous immunofluorescent data (Pedersen et al. Curr Biol2003;13(22):1969-1974), thus demonstrating the utility of this approach. Using antibodies to IFT-related polypeptides, particles can be identified associated with the axoneme that fall into one of two classes: The first class is composed of IFT particles labeled with polyclonal antibodies to kinesin-2 and monoclonal antibodies to either IFT139 (an IFT complex A polypeptide) or IFT172 (a complex B polypeptide). The second class is comprised of particles that label with antibodies to IFT139 alone; thus, discrete particles are present associated with the axoneme that are composed only of complex A polypeptides. When IFT particles were purified by sucrose gradient ultracentrifugation, they appeared as more or less spherical aggregates of varying dimensions labeled with antibodies to IFT139 and to the motor protein kinesin-2. By contrast, isolated IFT particles that were labeled with IFT172 antibodies were not labeled with kinesin-2 antibodies. The data are discussed in terms of the total polypeptide composition of an IFT particle and the interaction of the particles with the motors that power IFT.

  6. A species-specific periplasmic flagellar protein of Serpulina (Treponema) hyodysenteriae.

    PubMed Central

    Li, Z; Dumas, F; Dubreuil, D; Jacques, M

    1993-01-01

    We have previously reported that a 46-kDa protein present in an outer membrane protein preparation seemed to be a species-specific antigen of Serpulina hyodysenteriae (Z. S. Li, N. S. Jensen, M. Bélanger, M.-C. L'Espérance, and M. Jacques, J. Clin. Microbiol. 30:2941-2947, 1992). The objective of this study was to further characterize this antigen. A Western blot (immunoblot) analysis and immunogold labeling with a monospecific antiserum against this protein confirmed that the protein was present in all S. hyodysenteriae reference strains but not in the nonpathogenic organism Serpulina innocens. The immunogold labeling results also indicated that the protein was associated with the periplasmic flagella of S. hyodysenteriae. N-terminal amino acid sequencing confirmed that the protein was in fact a periplasmic flagellar sheath protein. The molecular mass of this protein, first estimated to be 46 kDa by Western blotting, was determined to be 44 kDa when the protein was evaluated more precisely by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the protein was glycosylated, as determined by glycoprotein staining and also by N-glycosidase F treatment. Five other periplasmic flagellar proteins of S. hyodysenteriae, which may have been the core proteins and had molecular masses of 39, 35, 32, 30, and 29 kDa, were antigenically related and cross-reacted with the periplasmic flagellar proteins of S. innocens. Finally, serum from a pig experimentally infected with S. hyodysenteriae recognized the 44-kDa periplasmic flagellar sheath protein. Our results suggest that the 44-kDa periplasmic flagellar sheath protein of S. hyodysenteriae is a species-specific glycoprotein antigen. Images PMID:8253687

  7. Sequential development of flagellar defects in spermatids and epididymal spermatozoa of selenium-deficient rats.

    PubMed

    Olson, Gary E; Winfrey, Virginia P; Hill, Kristina E; Burk, Raymond F

    2004-03-01

    In this study cauda epididymal spermatozoa of rats maintained on a selenium-deficient diet for 5 and 7 months exhibited an array of flagellar defects. Spermatids and spermatozoa were analyzed by light and electron microscopy to define the appearance of flagellar abnormalities during spermiogenesis and post-testicular sperm development. Late spermatids of selenium-deficient rats displayed normal structural organization of the flagellar plasma membrane, axoneme, outer dense fibers, fibrous sheath and annulus, but they exhibited a premature termination of the mitochondrial sheath. A comparison of late spermatids and caput epididymal spermatozoa revealed that a late step in flagellar differentiation was the structural remodeling of the annulus and its accompanying fusion with both the fibrous sheath and the mitochondrial sheath. In selenium-deficient animals, however, the annulus failed to fuse with the mitochondrial sheath, generating an apparent weak point in the flagellum. After epididymal passage, cauda epididymal spermatozoa of selenium-deficient animals also exhibited extensive flagellar disorganization resulting from the apparent sliding and extrusion of specific outer dense fiber-doublet microtubule complexes from the proximal and the distal ends of the mitochondrial sheath and the accompanying loss of the midpiece plasma membrane. Only fiber complex number 4 was extruded proximally, whereas fibers 4, 5, 6 and 7 were extruded from the mitochondrial sheath-deficient posterior midpiece. Axonemal fibers 8, 9, 1, 2 and 3 retained their normal geometric relationships. These data suggest that the known loss of male fertility in selenium deficiency results from the sequential development of sperm defects expressed during both spermiogenesis and maturation in the epididymis.

  8. Somatosensory responses in a human motor cortex

    PubMed Central

    Donoghue, John P.; Hochberg, Leigh R.

    2013-01-01

    Somatic sensory signals provide a major source of feedback to motor cortex. Changes in somatosensory systems after stroke or injury could profoundly influence brain computer interfaces (BCI) being developed to create new output signals from motor cortex activity patterns. We had the unique opportunity to study the responses of hand/arm area neurons in primary motor cortex to passive joint manipulation in a person with a long-standing brain stem stroke but intact sensory pathways. Neurons responded to passive manipulation of the contralateral shoulder, elbow, or wrist as predicted from prior studies of intact primates. Thus fundamental properties and organization were preserved despite arm/hand paralysis and damage to cortical outputs. The same neurons were engaged by attempted arm actions. These results indicate that intact sensory pathways retain the potential to influence primary motor cortex firing rates years after cortical outputs are interrupted and may contribute to online decoding of motor intentions for BCI applications. PMID:23343902

  9. Intact capture of hypervelocity projectiles

    NASA Technical Reports Server (NTRS)

    Tsou, P.

    1990-01-01

    The ability to capture projectiles intact at hypervelocities opens new applications in science and technology that would either not be possible or would be very costly by other means. This capability has been demonstrated in the laboratory for aluminum projectiles of 1.6 mm diameter, captured at 6 km/s, in one unmelted piece, and retaining up to 95% of the original mass. Furthermore, capture was accomplished passively using microcellular underdense polymer foam. Another advantage of capturing projectiles in an underdense medium is the ability of such a medium to preserve a record of the projectile's original velocity components of speed and direction. A survey of these experimental results is described in terms of a dozen parameters which characterize the amount of capture and the effect on the projectile due to different capture media.

  10. Intact capture of hypervelocity projectiles

    NASA Technical Reports Server (NTRS)

    Tsou, P.

    1990-01-01

    The ability to capture projectiles intact at hypervelocities opens new applications in science and technology that would either not be possible or would be very costly by other means. This capability has been demonstrated in the laboratory for aluminum projectiles of 1.6 mm diameter, captured at 6 km/s, in one unmelted piece, and retaining up to 95% of the original mass. Furthermore, capture was accomplished passively using microcellular underdense polymer foam. Another advantage of capturing projectiles in an underdense medium is the ability of such a medium to preserve a record of the projectile's original velocity components of speed and direction. A survey of these experimental results is described in terms of a dozen parameters which characterize the amount of capture and the effect on the projectile due to different capture media.

  11. Intact capture of hypervelocity projectiles.

    PubMed

    Tsou, P

    1990-01-01

    The ability to capture projectiles intact at hypervelocities opens new applications in science and technology that would either not be possible or would be very costly by other means. This capability has been demonstrated in the laboratory for aluminum projectiles of 1.6 mm diameter, captured at 6 km/s, in one unmelted piece, and retaining up to 95% of the original mass. Furthermore, capture was accomplished passively using microcellular underdense polymer foam. Another advantage of capturing projectiles in an underdense medium is the ability of such a medium to preserve a record of the projectile's original velocity components of speed and direction. A survey of these experimental results is described in terms of a dozen parameters which characterize the amount of capture and the effect on the projectile due to different capture media.

  12. Periplasmic flagellar export apparatus protein, FliH, is involved in post-transcriptional regulation of FlaB, motility and virulence of the relapsing fever spirochete Borrelia hermsii.

    PubMed

    Guyard, Cyril; Raffel, Sandra J; Schrumpf, Merry E; Dahlstrom, Eric; Sturdevant, Daniel; Ricklefs, Stacy M; Martens, Craig; Hayes, Stanley F; Fischer, Elizabeth R; Hansen, Bryan T; Porcella, Stephen F; Schwan, Tom G

    2013-01-01

    Spirochetes are bacteria characterized in part by rotating periplasmic flagella that impart their helical or flat-wave morphology and motility. While most other bacteria rely on a transcriptional cascade to regulate the expression of motility genes, spirochetes employ post-transcriptional mechanism(s) that are only partially known. In the present study, we characterize a spontaneous non-motile mutant of the relapsing fever spirochete Borrelia hermsii that was straight, non-motile and deficient in periplasmic flagella. We used next generation DNA sequencing of the mutant's genome, which when compared to the wild-type genome identified a 142 bp deletion in the chromosomal gene encoding the flagellar export apparatus protein FliH. Immunoblot and transcription analyses showed that the mutant phenotype was linked to the posttranscriptional deficiency in the synthesis of the major periplasmic flagellar filament core protein FlaB. Despite the lack of FlaB, the amount of FlaA produced by the fliH mutant was similar to the wild-type level. The turnover of the residual pool of FlaB produced by the fliH mutant was comparable to the wild-type spirochete. The non-motile mutant was not infectious in mice and its inoculation did not induce an antibody response. Trans-complementation of the mutant with an intact fliH gene restored the synthesis of FlaB, a normal morphology, motility and infectivity in mice. Therefore, we propose that the flagellar export apparatus protein regulates motility of B. hermsii at the post-transcriptional level by influencing the synthesis of FlaB.

  13. Calaxin drives sperm chemotaxis by Ca²⁺-mediated direct modulation of a dynein motor.

    PubMed

    Mizuno, Katsutoshi; Shiba, Kogiku; Okai, Masahiko; Takahashi, Yusuke; Shitaka, Yuji; Oiwa, Kazuhiro; Tanokura, Masaru; Inaba, Kazuo

    2012-12-11

    Sperm chemotaxis occurs widely in animals and plants and plays an important role in the success of fertilization. Several studies have recently demonstrated that Ca(2+) influx through specific Ca(2+) channels is a prerequisite for sperm chemotactic movement. However, the regulator that modulates flagellar movement in response to Ca(2+) is unknown. Here we show that a neuronal calcium sensor, calaxin, directly acts on outer-arm dynein and regulates specific flagellar movement during sperm chemotaxis. Calaxin inhibition resulted in significant loss of sperm chemotactic movement, despite normal increases in intracellular calcium concentration. Using a demembranated sperm model, we demonstrate that calaxin is essential for generation and propagation of Ca(2+)-induced asymmetric flagellar bending. An in vitro motility assay revealed that calaxin directly suppressed the velocity of microtubule sliding by outer-arm dynein at high Ca(2+) concentrations. This study describes the missing link between chemoattractant-mediated Ca(2+) signaling and motor-driven microtubule sliding during sperm chemotaxis.

  14. Identification of Multicomponent Histidine-Aspartate Phosphorelay System Controlling Flagellar and Motility Gene Expression in Geobacter Species*

    PubMed Central

    Ueki, Toshiyuki; Leang, Ching; Inoue, Kengo; Lovley, Derek R.

    2012-01-01

    Geobacter species play an important role in the natural biogeochemical cycles of aquatic sediments and subsurface environments as well as in subsurface bioremediation by oxidizing organic compounds with the reduction of insoluble Fe(III) oxides. Flagellum-based motility is considered to be critical for Geobacter species to locate fresh sources of Fe(III) oxides. Functional and comparative genomic approaches, coupled with genetic and biochemical methods, identified key regulators for flagellar gene expression in Geobacter species. A master transcriptional regulator, designated FgrM, is a member of the enhancer-binding protein family. The fgrM gene in the most studied strain of Geobacter species, Geobacter sulfurreducens strain DL-1, is truncated by a transposase gene, preventing flagellar biosynthesis. Integrating a functional FgrM homolog restored flagellar biosynthesis and motility in G. sulfurreducens DL-1 and enhanced the ability to reduce insoluble Fe(III) oxide. Interrupting the fgrM gene in G. sulfurreducens strain KN400, which is motile, removed the capacity for flagellar production and inhibited Fe(III) oxide reduction. FgrM, which is also a response regulator of the two-component His-Asp phosphorelay system, was phosphorylated by histidine kinase GHK4, which was essential for flagellar production and motility. GHK4, which is a hybrid kinase with a receiver domain at the N terminus, was phosphorylated by another histidine kinase, GHK3. Therefore, the multicomponent His-Asp phosphorelay system appears to control flagellar gene expression in Geobacter species. PMID:22362768

  15. Transcriptional regulation of coordinate changes in flagellar mRNAs during differentiation of Naegleria gruberi amoebae into flagellates

    SciTech Connect

    Lee, J.H.; Walsh, C.J.

    1988-06-01

    The nuclear run-on technique was used to measure the rate of transcription of flagellar genes during the differentiation of Naegleria gruberi amebae into flagellates. Synthesis of mRNAs for the axonemal proteins ..cap alpha..- and BETA-tubulin and flagellar calmodulin, as well as a coordinately regulated poly(A)/sup +/ RNA that codes for an unidentified protein, showed transient increases averaging 22-fold. The rate of synthesis of two poly(A)/sup +/ RNAs common to ameobae and flagellates was low until the transcription of the flagellar genes began to decline, at which time synthesis of the RNAs found in ameobae increased 3- to 10-fold. The observed changes in the rate of transcription can account quantitatively for the 20-fold increase in flagellar mRNA concentration during the differentiation. The data for the flagellar calmodulin gene demonstrate transcriptional regulation for a nontubulin axonemal protein. The data also demonstrate at least two programs of transcriptional regulation during the differentiation and raise the intriguing possibility that some significant fraction of the nearly 200 different proteins of the flagellar axoneme is transcriptionally regulated during the 1 h it takes N. gruberi amebae to form visible flagella.

  16. Identification of multicomponent histidine-aspartate phosphorelay system controlling flagellar and motility gene expression in Geobacter species.

    PubMed

    Ueki, Toshiyuki; Leang, Ching; Inoue, Kengo; Lovley, Derek R

    2012-03-30

    Geobacter species play an important role in the natural biogeochemical cycles of aquatic sediments and subsurface environments as well as in subsurface bioremediation by oxidizing organic compounds with the reduction of insoluble Fe(III) oxides. Flagellum-based motility is considered to be critical for Geobacter species to locate fresh sources of Fe(III) oxides. Functional and comparative genomic approaches, coupled with genetic and biochemical methods, identified key regulators for flagellar gene expression in Geobacter species. A master transcriptional regulator, designated FgrM, is a member of the enhancer-binding protein family. The fgrM gene in the most studied strain of Geobacter species, Geobacter sulfurreducens strain DL-1, is truncated by a transposase gene, preventing flagellar biosynthesis. Integrating a functional FgrM homolog restored flagellar biosynthesis and motility in G. sulfurreducens DL-1 and enhanced the ability to reduce insoluble Fe(III) oxide. Interrupting the fgrM gene in G. sulfurreducens strain KN400, which is motile, removed the capacity for flagellar production and inhibited Fe(III) oxide reduction. FgrM, which is also a response regulator of the two-component His-Asp phosphorelay system, was phosphorylated by histidine kinase GHK4, which was essential for flagellar production and motility. GHK4, which is a hybrid kinase with a receiver domain at the N terminus, was phosphorylated by another histidine kinase, GHK3. Therefore, the multicomponent His-Asp phosphorelay system appears to control flagellar gene expression in Geobacter species.

  17. Tubulin-dynein system in flagellar and ciliary movement

    PubMed Central

    MOHRI, Hideo; INABA, Kazuo; ISHIJIMA, Sumio; BABA, Shoji A.

    2012-01-01

    Eukaryotic flagella and cilia have attracted the attention of many researchers over the last century, since they are highly arranged organelles and show sophisticated bending movements. Two important cytoskeletal and motor proteins, tubulin and dynein, were first found and described in flagella and cilia. Half a century has passed since the discovery of these two proteins, and much information has been accumulated on their molecular structures and their roles in the mechanism of microtubule sliding, as well as on the architecture, the mechanism of bending movement and the regulation and signal transduction in flagella and cilia. Historical background and the recent advance in this field are described. PMID:23060230

  18. Triton shells of intact erythrocytes.

    PubMed

    Sheetz, M P; Sawyer, D

    1978-01-01

    About 40% of human erythrocyte membrane protein is resistant to solubilization in 0.5% Triton X-114. These components comprise a structure called a Triton shell roughly similar in size and shape to the original erythrocyte and thus constitute a cytoskeleton. With increasing concentrations of Triton the lipid content of the Triton shell decreases dramatically, whereas the majority of the protein components remain constant. Exceptions to this rule include proteins contained in band 3, the presumed anion channel, and in band 4 which decrease with increasing Triton concentration. The Triton-insoluble complex includes spectrin (bands 1 and 2), actin (band 5), and bands 3' and 7. Component 3' has an apparent molecular weight of 88,000 daltons as does 3; but unlike 3, it is insensitive to protease treatment of the intact cell, has a low extinction coefficient at 280 nm, and is solubilized from the shells in alkaline water solutions. Component 7 also has a low extinction coefficient at 280 nm. Spectrin alone is solubilized from the Triton shells in isotonic media. The solubilized spectrin contains no bound Triton and coelectrophoreses with spectrin eluted in hypotonic solutions from ghosts. Electron micrographs of fixed Triton shells stained with uranyl acetate show the presence of numerous filaments which appear beaded and are 80--120 A in diameter. The filaments cannot be composed mainly af actin, but enough spectrin is present to form the filaments. Triton shells may provide an excellent source of material useful in the investigation of the erythrocyte cytoskeleton.

  19. Intact Transition Epitope Mapping (ITEM)

    NASA Astrophysics Data System (ADS)

    Yefremova, Yelena; Opuni, Kwabena F. M.; Danquah, Bright D.; Thiesen, Hans-Juergen; Glocker, Michael O.

    2017-08-01

    Intact transition epitope mapping (ITEM) enables rapid and accurate determination of protein antigen-derived epitopes by either epitope extraction or epitope excision. Upon formation of the antigen peptide-containing immune complex in solution, the entire mixture is electrosprayed to translate all constituents as protonated ions into the gas phase. There, ions from antibody-peptide complexes are separated from unbound peptide ions according to their masses, charges, and shapes either by ion mobility drift or by quadrupole ion filtering. Subsequently, immune complexes are dissociated by collision induced fragmentation and the ion signals of the "complex-released peptides," which in effect are the epitope peptides, are recorded in the time-of-flight analyzer of the mass spectrometer. Mixing of an antibody solution with a solution in which antigens or antigen-derived peptides are dissolved is, together with antigen proteolysis, the only required in-solution handling step. Simplicity of sample handling and speed of analysis together with very low sample consumption makes ITEM faster and easier to perform than other experimental epitope mapping methods.

  20. Flagellar filament bio-templated inorganic oxide materials - towards an efficient lithium battery anode

    NASA Astrophysics Data System (ADS)

    Beznosov, Sergei N.; Veluri, Pavan S.; Pyatibratov, Mikhail G.; Chatterjee, Abhijit; Macfarlane, Douglas R.; Fedorov, Oleg V.; Mitra, Sagar

    2015-01-01

    Designing a new generation of energy-intensive and sustainable electrode materials for batteries to power a variety of applications is an imperative task. The use of biomaterials as a nanosized structural template for these materials has the potential to produce hitherto unachievable structures. In this report, we have used genetically modified flagellar filaments of the extremely halophilic archaea species Halobacterium salinarum to synthesize nanostructured iron oxide composites for use as a lithium-ion battery anode. The electrode demonstrated a superior electrochemical performance compared to existing literature results, with good capacity retention of 1032 mAh g-1 after 50 cycles and with high rate capability, delivering 770 mAh g-1 at 5 A g-1 (~5 C) discharge rate. This unique flagellar filament based template has the potential to provide access to other highly structured advanced energy materials in the future.

  1. The phylogeny of swimming kinematics: The environment controls flagellar waveforms in sperm motility

    NASA Astrophysics Data System (ADS)

    Guasto, Jeffrey; Burton, Lisa; Zimmer, Richard; Hosoi, Anette; Stocker, Roman

    2013-11-01

    In recent years, phylogenetic and molecular analyses have dominated the study of ecology and evolution. However, physical interactions between organisms and their environment, a fundamental determinant of organism ecology and evolution, are mediated by organism form and function, highlighting the need to understand the mechanics of basic survival strategies, including locomotion. Focusing on spermatozoa, we combined high-speed video microscopy and singular value decomposition analysis to quantitatively compare the flagellar waveforms of eight species, ranging from marine invertebrates to humans. We found striking similarities in sperm swimming kinematics between genetically dissimilar organisms, which could not be uncovered by phylogenetic analysis. The emergence of dominant waveform patterns across species are suggestive of biological optimization for flagellar locomotion and point toward environmental cues as drivers of this convergence. These results reinforce the power of quantitative kinematic analysis to understand the physical drivers of evolution and as an approach to uncover new solutions for engineering applications, such as micro-robotics.

  2. Cell-body rocking is a dominant mechanism for flagellar synchronization in a swimming alga.

    PubMed

    Geyer, Veikko F; Jülicher, Frank; Howard, Jonathon; Friedrich, Benjamin M

    2013-11-05

    The unicellular green alga Chlamydomonas swims with two flagella that can synchronize their beat. Synchronized beating is required to swim both fast and straight. A long-standing hypothesis proposes that synchronization of flagella results from hydrodynamic coupling, but the details are not understood. Here, we present realistic hydrodynamic computations and high-speed tracking experiments of swimming cells that show how a perturbation from the synchronized state causes rotational motion of the cell body. This rotation feeds back on the flagellar dynamics via hydrodynamic friction forces and rapidly restores the synchronized state in our theory. We calculate that this "cell-body rocking" provides the dominant contribution to synchronization in swimming cells, whereas direct hydrodynamic interactions between the flagella contribute negligibly. We experimentally confirmed the two-way coupling between flagellar beating and cell-body rocking predicted by our theory.

  3. Flagellar filament bio-templated inorganic oxide materials - towards an efficient lithium battery anode.

    PubMed

    Beznosov, Sergei N; Veluri, Pavan S; Pyatibratov, Mikhail G; Chatterjee, Abhijit; MacFarlane, Douglas R; Fedorov, Oleg V; Mitra, Sagar

    2015-01-13

    Designing a new generation of energy-intensive and sustainable electrode materials for batteries to power a variety of applications is an imperative task. The use of biomaterials as a nanosized structural template for these materials has the potential to produce hitherto unachievable structures. In this report, we have used genetically modified flagellar filaments of the extremely halophilic archaea species Halobacterium salinarum to synthesize nanostructured iron oxide composites for use as a lithium-ion battery anode. The electrode demonstrated a superior electrochemical performance compared to existing literature results, with good capacity retention of 1032 mAh g(-1) after 50 cycles and with high rate capability, delivering 770 mAh g(-1) at 5 A g(-1) (~5 C) discharge rate. This unique flagellar filament based template has the potential to provide access to other highly structured advanced energy materials in the future.

  4. Amphipathic helical ordering of the flagellar secretion signal of Salmonella flagellin.

    PubMed

    Tőke, Orsolya; Vonderviszt, Ferenc

    2016-08-05

    Export of external flagellar proteins requires a signal located within their N-terminal disordered part, however, these regions do not share any significant sequence similarity suggesting that the secondary/tertiary structure might be important for recognition by the export gate. NMR experiments were performed to reveal the conformational properties of the flagellin signal sequence in vitro. It assumed a largely disordered fluctuating structure in aqueous environment, but acquired a folded structure containing an amphipathic helical portion in 50% MeOH or upon addition of SDS micelles which are known to promote hydrophobic interactions. Our observations raise the possibility that the signal sequence may partially undergo amphipathic helical ordering upon interaction with the recognition unit of the flagellar export machinery in a similar way as revealed for protein import into intracellular eukaryotic organelles mediated by targeting signals of high diversity. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Cell-body rocking is a dominant mechanism for flagellar synchronization in a swimming alga

    PubMed Central

    Geyer, Veikko F.; Jülicher, Frank; Howard, Jonathon; Friedrich, Benjamin M.

    2013-01-01

    The unicellular green alga Chlamydomonas swims with two flagella that can synchronize their beat. Synchronized beating is required to swim both fast and straight. A long-standing hypothesis proposes that synchronization of flagella results from hydrodynamic coupling, but the details are not understood. Here, we present realistic hydrodynamic computations and high-speed tracking experiments of swimming cells that show how a perturbation from the synchronized state causes rotational motion of the cell body. This rotation feeds back on the flagellar dynamics via hydrodynamic friction forces and rapidly restores the synchronized state in our theory. We calculate that this “cell-body rocking” provides the dominant contribution to synchronization in swimming cells, whereas direct hydrodynamic interactions between the flagella contribute negligibly. We experimentally confirmed the two-way coupling between flagellar beating and cell-body rocking predicted by our theory. PMID:24145440

  6. Flagellar filament bio-templated inorganic oxide materials – towards an efficient lithium battery anode

    PubMed Central

    Beznosov, Sergei N.; Veluri, Pavan S.; Pyatibratov, Mikhail G.; Chatterjee, Abhijit; MacFarlane, Douglas R.; Fedorov, Oleg V.; Mitra, Sagar

    2015-01-01

    Designing a new generation of energy-intensive and sustainable electrode materials for batteries to power a variety of applications is an imperative task. The use of biomaterials as a nanosized structural template for these materials has the potential to produce hitherto unachievable structures. In this report, we have used genetically modified flagellar filaments of the extremely halophilic archaea species Halobacterium salinarum to synthesize nanostructured iron oxide composites for use as a lithium-ion battery anode. The electrode demonstrated a superior electrochemical performance compared to existing literature results, with good capacity retention of 1032 mAh g−1 after 50 cycles and with high rate capability, delivering 770 mAh g−1 at 5 A g−1 (~5 C) discharge rate. This unique flagellar filament based template has the potential to provide access to other highly structured advanced energy materials in the future. PMID:25583370

  7. Integrated Control of Axonemal Dynein AAA+ Motors

    PubMed Central

    King, Stephen M.

    2012-01-01

    Axonemal dyneins are AAA+ enzymes that convert ATP hydrolysis to mechanical work. This leads to the sliding of doublet microtubules with respect to each other and ultimately the generation of ciliary/flagellar beating. However, in order for useful work to be generated, the action of individual dynein motors must be precisely controlled. In addition, cells modulate the motility of these organelles through a variety of second messenger systems and these signals too must be integrated by the dynein motors to yield an appropriate output. This review describes the current status of efforts to understand dynein control mechanisms and their connectivity focusing mainly on studies of the outer dynein arm from axonemes of the unicellular biflagellate green alga Chlamydomonas. PMID:22406539

  8. Integrated control of axonemal dynein AAA(+) motors.

    PubMed

    King, Stephen M

    2012-08-01

    Axonemal dyneins are AAA(+) enzymes that convert ATP hydrolysis to mechanical work. This leads to the sliding of doublet microtubules with respect to each other and ultimately the generation of ciliary/flagellar beating. However, in order for useful work to be generated, the action of individual dynein motors must be precisely controlled. In addition, cells modulate the motility of these organelles through a variety of second messenger systems and these signals too must be integrated by the dynein motors to yield an appropriate output. This review describes the current status of efforts to understand dynein control mechanisms and their connectivity focusing mainly on studies of the outer dynein arm from axonemes of the unicellular biflagellate green alga Chlamydomonas.

  9. Analysis of flagellar bending in hamster spermatozoa: characterization of an effective stroke.

    PubMed

    Kinukawa, Masashi; Ohmuro, Junko; Baba, Shoji A; Murashige, Sunao; Okuno, Makoto; Nagata, Masao; Aoki, Fugaku

    2005-12-01

    The mechanism by which flagella generate the propulsive force for movement of hamster spermatozoa was analyzed quantitatively. Tracing points positioned 30, 60, 90, and 120 microm from the head-midpiece junction on the flagellum revealed that they all had zigzag trajectories. These points departed from and returned to the line that crossed the direction of progression. They moved along the concave side (but not the convex side) of the flagellar envelope that was drawn by tracing the trajectory of the entire flagellum. To clarify this asymmetry, the bending rate was analyzed by measuring the curvatures of points 30, 60, 90, and 120 microm from the head-midpiece junction. The bending rate was not constant through the cycle of flagellar bending. The rate was higher when bending was in the direction described by the curve of the hook-shaped head (defined as a principal bend [P-bend]) to the opposite side (R-bend). We measured a lower bending rate in the principal direction (R-bend to P-bend). To identify the point at which the propulsive force is generated efficiently within the cycle of flagellar bending, we calculated the propulsive force generated at each point on the flagellum. The value of the propulsive force was positive whenever the flagellum bent from an R-bend to a P-bend (when the bending rate was lowest). By contrast, the propulsive force value was zero or negative when the flagellum bent in the other direction (when the bending rate was higher). These results indicate that flagellar bending in hamster spermatozoa produces alternate effective and ineffective strokes during propulsion.

  10. Temporal regulation of genes encoding the flagellar proximal rod in Caulobacter crescentus.

    PubMed

    Boyd, C H; Gober, J W

    2001-01-01

    The gram-negative bacterium Caulobacter crescentus has a life cycle that includes two distinct and separable developmental stages, a motile swarmer phase and a sessile stalked phase. The cell cycle-controlled biogenesis of the single polar flagellum of the swarmer cell is the best-studied aspect of this developmental program. The flagellar regulon is arranged into a rigid trans-acting hierarchy of gene expression in which successful expression of early genes is required for the expression of genes that are later in the hierarchy and in which the order of gene expression mirrors the order of assembly of gene products into the completed flagellum. The flgBC-fliE genes were identified as a result of the C. crescentus genome sequencing project and encode the homologues of two flagellar proximal rod proteins, FlgB and FlgC, and one conserved protein, FliE, that is of unknown function. Footprint assays on a DNA fragment containing the operon promoter as well as in vivo mutant suppressor analysis of promoter mutations indicate that this operon is controlled by the cell cycle response regulator CtrA, which with sigma(70) is responsible for regulating transcription of other early flagellar genes in C. crescentus. Promoter analysis, timing of expression, and epistasis experiments place these genes outside of the flagellar regulatory hierarchy; they are expressed in class II mutants, and flgB deletions do not prevent class III gene expression. This operon is also unusual in that it is expressed from a promoter that is divergent from the class II operon containing fliP, which encodes a member of the flagellum-specific protein export apparatus.

  11. Ovarian fluid impacts flagellar beating and biomechanical metrics of sperm between alternative reproductive tactics.

    PubMed

    Butts, Ian A E; Prokopchuk, Galina; Kašpar, Vojtěch; Cosson, Jacky; Pitcher, Trevor E

    2017-06-15

    Alternative reproductive tactics (ARTs) are prevalent in nature, where smaller parasitic males typically have better sperm quality than larger territorial guard males. At present, it is unclear what is causing this phenomenon. Our objective was to gain insights into sperm form and function by examining flagellar beating patterns (beat frequency, wave amplitude, bend length, bend angle, wave velocity) and biomechanical sperm metrics (velocity, hydrodynamic power output, propulsive efficiency) of wild spawning Chinook salmon ARTs. Ovarian fluid and milt were collected to form a series of eight experimental blocks, each composed of ovarian fluid from a unique female and sperm from a unique pair of parasitic jack and guard hooknose males. Sperm from each ART were activated in river water and ovarian fluid. Flagellar parameters were evaluated from recordings using high-speed video microscopy and biomechanical metrics were quantified. We show that ART has an impact on flagellar beating, where jacks had a higher bend length and bend angle than hooknoses. Activation media also impacted the pattern of flagellar parameters, such that beat frequency, wave velocity and bend angle declined, while wave amplitude of flagella increased when ovarian fluid was incorporated into activation media. Furthermore, we found that sperm from jacks swam faster than those from hooknoses and required less hydrodynamic power output to propel themselves in river water and ovarian fluid. Jack sperm were also more efficient at swimming than hooknose sperm, and propulsive efficiency increased when cells were activated in ovarian fluid. The results demonstrate that sperm biomechanics may be driving divergence in competitive reproductive success between ARTs. © 2017. Published by The Company of Biologists Ltd.

  12. Variation in motor output and motor performance in a centrally generated motor pattern.

    PubMed

    Wenning, Angela; Norris, Brian J; Doloc-Mihu, Anca; Calabrese, Ronald L

    2014-07-01

    Central pattern generators (CPGs) produce motor patterns that ultimately drive motor outputs. We studied how functional motor performance is achieved, specifically, whether the variation seen in motor patterns is reflected in motor performance and whether fictive motor patterns differ from those in vivo. We used the leech heartbeat system in which a bilaterally symmetrical CPG coordinates segmental heart motor neurons and two segmented heart tubes into two mutually exclusive coordination modes: rear-to-front peristaltic on one side and nearly synchronous on the other, with regular side-to-side switches. We assessed individual variability of the motor pattern and the beat pattern in vivo. To quantify the beat pattern we imaged intact adults. To quantify the phase relations between motor neurons and heart constrictions we recorded extracellularly from two heart motor neurons and movement from the corresponding heart segments in minimally dissected leeches. Variation in the motor pattern was reflected in motor performance only in the peristaltic mode, where larger intersegmental phase differences in the motor neurons resulted in larger phase differences between heart constrictions. Fictive motor patterns differed from those in vivo only in the synchronous mode, where intersegmental phase differences in vivo had a larger front-to-rear bias and were more constrained. Additionally, load-influenced constriction timing might explain the amplification of the phase differences between heart segments in the peristaltic mode and the higher variability in motor output due to body shape assumed in this soft-bodied animal. The motor pattern determines the beat pattern, peristaltic or synchronous, but heart mechanics influence the phase relations achieved.

  13. Variation in motor output and motor performance in a centrally generated motor pattern

    PubMed Central

    Norris, Brian J.; Doloc-Mihu, Anca; Calabrese, Ronald L.

    2014-01-01

    Central pattern generators (CPGs) produce motor patterns that ultimately drive motor outputs. We studied how functional motor performance is achieved, specifically, whether the variation seen in motor patterns is reflected in motor performance and whether fictive motor patterns differ from those in vivo. We used the leech heartbeat system in which a bilaterally symmetrical CPG coordinates segmental heart motor neurons and two segmented heart tubes into two mutually exclusive coordination modes: rear-to-front peristaltic on one side and nearly synchronous on the other, with regular side-to-side switches. We assessed individual variability of the motor pattern and the beat pattern in vivo. To quantify the beat pattern we imaged intact adults. To quantify the phase relations between motor neurons and heart constrictions we recorded extracellularly from two heart motor neurons and movement from the corresponding heart segments in minimally dissected leeches. Variation in the motor pattern was reflected in motor performance only in the peristaltic mode, where larger intersegmental phase differences in the motor neurons resulted in larger phase differences between heart constrictions. Fictive motor patterns differed from those in vivo only in the synchronous mode, where intersegmental phase differences in vivo had a larger front-to-rear bias and were more constrained. Additionally, load-influenced constriction timing might explain the amplification of the phase differences between heart segments in the peristaltic mode and the higher variability in motor output due to body shape assumed in this soft-bodied animal. The motor pattern determines the beat pattern, peristaltic or synchronous, but heart mechanics influence the phase relations achieved. PMID:24717348

  14. Flagellar phenotypic plasticity in volvocalean algae correlates with Péclet number

    PubMed Central

    Solari, Cristian A.; Drescher, Knut; Ganguly, Sujoy; Kessler, John O.; Michod, Richard E.; Goldstein, Raymond E.

    2011-01-01

    Flagella-generated fluid stirring has been suggested to enhance nutrient uptake for sufficiently large micro-organisms, and to have played a role in evolutionary transitions to multicellularity. A corollary to this predicted size-dependent benefit is a propensity for phenotypic plasticity in the flow-generating mechanism to appear in large species under nutrient deprivation. We examined four species of volvocalean algae whose radii and flow speeds differ greatly, with Péclet numbers (Pe) separated by several orders of magnitude. Populations of unicellular Chlamydomonas reinhardtii and one- to eight-celled Gonium pectorale (Pe ∼ 0.1–1) and multicellular Volvox carteri and Volvox barberi (Pe ∼ 100) were grown in diluted and undiluted media. For C. reinhardtii and G. pectorale, decreasing the nutrient concentration resulted in smaller cells, but had no effect on flagellar length and propulsion force. In contrast, these conditions induced Volvox colonies to grow larger and increase their flagellar length, separating the somatic cells further. Detailed studies on V. carteri found that the opposing effects of increasing beating force and flagellar spacing balance, so the fluid speed across the colony surface remains unchanged between nutrient conditions. These results lend further support to the hypothesized link between the Péclet number, nutrient uptake and the evolution of biological complexity in the Volvocales. PMID:21367778

  15. Flagellar phenotypic plasticity in volvocalean algae correlates with Péclet number.

    PubMed

    Solari, Cristian A; Drescher, Knut; Ganguly, Sujoy; Kessler, John O; Michod, Richard E; Goldstein, Raymond E

    2011-10-07

    Flagella-generated fluid stirring has been suggested to enhance nutrient uptake for sufficiently large micro-organisms, and to have played a role in evolutionary transitions to multicellularity. A corollary to this predicted size-dependent benefit is a propensity for phenotypic plasticity in the flow-generating mechanism to appear in large species under nutrient deprivation. We examined four species of volvocalean algae whose radii and flow speeds differ greatly, with Péclet numbers (Pe) separated by several orders of magnitude. Populations of unicellular Chlamydomonas reinhardtii and one- to eight-celled Gonium pectorale (Pe ∼ 0.1-1) and multicellular Volvox carteri and Volvox barberi (Pe ∼ 100) were grown in diluted and undiluted media. For C. reinhardtii and G. pectorale, decreasing the nutrient concentration resulted in smaller cells, but had no effect on flagellar length and propulsion force. In contrast, these conditions induced Volvox colonies to grow larger and increase their flagellar length, separating the somatic cells further. Detailed studies on V. carteri found that the opposing effects of increasing beating force and flagellar spacing balance, so the fluid speed across the colony surface remains unchanged between nutrient conditions. These results lend further support to the hypothesized link between the Péclet number, nutrient uptake and the evolution of biological complexity in the Volvocales.

  16. Structure of Salmonella FlhE, conserved member of a flagellar Type III secretion operon

    DOE PAGES

    Lee, Jaemin; Monzingo, Arthur F.; Keatinge-Clay, Adrian T.; ...

    2014-12-26

    In this paper, the bacterial flagellum is assembled by a multicomponent transport apparatus categorized as a type III secretion system. The secretion of proteins that assemble into the flagellum is driven by the proton motive force. The periplasmic protein FlhE is a member of the flhBAE operon in the majority of bacteria where FlhE is found. FlhA and FlhB are established components of the flagellar type III secretion system. The absence of FlhE results in a proton leak through the flagellar system, inappropriate secretion patterns, and cell death, indicating that FlhE regulates an important aspect of proper flagellar biosynthesis. Wemore » isolated FlhE from the periplasm of Salmonella and solved its structure to 1.5 Å resolution. The structure reveals a β-sandwich fold, with no close structural homologs. Finally, possible roles of FlhE, including that of a chaperone, are discussed.« less

  17. Complex spatial organization and flagellin composition of flagellar propeller from marine magnetotactic ovoid strain MO-1.

    PubMed

    Zhang, Wei-Jia; Santini, Claire-Lise; Bernadac, Alain; Ruan, Juanfang; Zhang, Sheng-Da; Kato, Takayuki; Li, Ying; Namba, Keiichi; Wu, Long-Fei

    2012-03-02

    Marine magnetotactic ovoid bacterium MO-1 is capable of swimming along the geomagnetic field lines by means of its two sheathed flagellar bundles at a speed up to 300 μm/s. In this study, by using electron microscopy, we showed that, in each bundle, six individual flagella were organized in hexagon with a seventh in the middle. We identified 12 flagellin paralogs and 2 putative flagellins in the genome of MO-1. Among them, 13 were tandemly located on an ~ 17-kb segment while the 14th was on a separated locus. Using reverse transcription PCR and quantitative PCR, we found that all the 14 flagellin or putative flagellin genes were transcribed and that 2 of them were more abundantly expressed than others. A nLC (nanoliquid chromatography)-ESI (electrospray ionization)-MS/MS (mass spectrometry/mass spectrometry) mass spectrometry analysis identified all the 12 flagellin proteins in three glycosylated polypeptide bands resolved by one-dimensional denaturing polyacrylamide gel electrophoresis and 10 of them in 21 spots obtained by means of two-dimensional electrophoresis of flagellar extracts. Most spots contained more than one flagellin, and eight of the ten identified flagellins existed in multiple isoforms. Taken together, these results show unprecedented complexity in the spatial organization and flagellin composition of the flagellar propeller. Such architecture is observed only for ovoid-coccoid, bilophotrichously flagellated magnetotactic bacteria living in marine sediments, suggesting a species and environmental specificity.

  18. Two flagellar BAR domain proteins in Trypanosoma brucei with stage-specific regulation

    PubMed Central

    Cicova, Zdenka; Dejung, Mario; Skalicky, Tomas; Eisenhuth, Nicole; Hanselmann, Steffen; Morriswood, Brooke; Figueiredo, Luisa M.; Butter, Falk; Janzen, Christian J.

    2016-01-01

    Trypanosomes are masters of adaptation to different host environments during their complex life cycle. Large-scale proteomic approaches provide information on changes at the cellular level, and in a systematic way. However, detailed work on single components is necessary to understand the adaptation mechanisms on a molecular level. Here, we have performed a detailed characterization of a bloodstream form (BSF) stage-specific putative flagellar host adaptation factor Tb927.11.2400, identified previously in a SILAC-based comparative proteome study. Tb927.11.2400 shares 38% amino acid identity with TbFlabarin (Tb927.11.2410), a procyclic form (PCF) stage-specific flagellar BAR domain protein. We named Tb927.11.2400 TbFlabarin-like (TbFlabarinL), and demonstrate that it originates from a gene duplication event, which occurred in the African trypanosomes. TbFlabarinL is not essential for the growth of the parasites under cell culture conditions and it is dispensable for developmental differentiation from BSF to the PCF in vitro. We generated TbFlabarinL-specific antibodies, and showed that it localizes in the flagellum. Co-immunoprecipitation experiments together with a biochemical cell fractionation suggest a dual association of TbFlabarinL with the flagellar membrane and the components of the paraflagellar rod. PMID:27779220

  19. Secondary bacterial flagellar system improves bacterial spreading by increasing the directional persistence of swimming

    PubMed Central

    Bubendorfer, Sebastian; Koltai, Mihaly; Rossmann, Florian; Sourjik, Victor; Thormann, Kai M.

    2014-01-01

    As numerous bacterial species, Shewanella putrefaciens CN-32 possesses a complete secondary flagellar system. A significant subpopulation of CN-32 cells induces expression of the secondary system under planktonic conditions, resulting in formation of one, sometimes two, filaments at lateral positions in addition to the primary polar flagellum. Mutant analysis revealed that the single chemotaxis system primarily or even exclusively addresses the main polar flagellar system. Cells with secondary filaments outperformed their monopolarly flagellated counterparts in spreading on soft-agar plates and through medium-filled channels despite having lower swimming speed. While mutant cells with only polar flagella navigate by a “run-reverse-flick” mechanism resulting in effective cell realignments of about 90°, wild-type cells with secondary filaments exhibited a range of realignment angles with an average value of smaller than 90°. Mathematical modeling and computer simulations demonstrated that the smaller realignment angle of wild-type cells results in the higher directional persistence, increasing spreading efficiency both with and without a chemical gradient. Taken together, we propose that in S. putrefaciens CN-32, cell propulsion and directional switches are mainly mediated by the polar flagellar system, while the secondary filament increases the directional persistence of swimming and thus of spreading in the environment. PMID:25049414

  20. Bimodal rheotactic behavior reflects flagellar beat asymmetry in human sperm cells

    PubMed Central

    Bukatin, Anton; Kukhtevich, Igor; Stoop, Norbert; Dunkel, Jörn; Kantsler, Vasily

    2015-01-01

    Rheotaxis, the directed response to fluid velocity gradients, has been shown to facilitate stable upstream swimming of mammalian sperm cells along solid surfaces, suggesting a robust physical mechanism for long-distance navigation during fertilization. However, the dynamics by which a human sperm orients itself relative to an ambient flow is poorly understood. Here, we combine microfluidic experiments with mathematical modeling and 3D flagellar beat reconstruction to quantify the response of individual sperm cells in time-varying flow fields. Single-cell tracking reveals two kinematically distinct swimming states that entail opposite turning behaviors under flow reversal. We constrain an effective 2D model for the turning dynamics through systematic large-scale parameter scans, and find good quantitative agreement with experiments at different shear rates and viscosities. Using a 3D reconstruction algorithm to identify the flagellar beat patterns causing left or right turning, we present comprehensive 3D data demonstrating the rolling dynamics of freely swimming sperm cells around their longitudinal axis. Contrary to current beliefs, this 3D analysis uncovers ambidextrous flagellar waveforms and shows that the cell’s turning direction is not defined by the rolling direction. Instead, the different rheotactic turning behaviors are linked to a broken mirror symmetry in the midpiece section, likely arising from a buckling instability. These results challenge current theoretical models of sperm locomotion. PMID:26655343

  1. Flagellar biosynthesis exerts temporal regulation of secretion of specific Campylobacter jejuni colonization and virulence determinants.

    PubMed

    Barrero-Tobon, Angelica M; Hendrixson, David R

    2014-09-01

    The Campylobacter jejuni flagellum exports both proteins that form the flagellar organelle for swimming motility and colonization and virulence factors that promote commensal colonization of the avian intestinal tract or invasion of human intestinal cells respectively. We explored how the C. jejuni flagellum is a versatile secretory organelle by examining molecular determinants that allow colonization and virulence factors to exploit the flagellum for their own secretion. Flagellar biogenesis was observed to exert temporal control of secretion of these proteins, indicating that a bolus of secretion of colonization and virulence factors occurs during hook biogenesis with filament polymerization itself reducing secretion of these factors. Furthermore, we found that intramolecular and intermolecular requirements for flagellar-dependent secretion of these proteins were most reminiscent to those for flagellin secretion. Importantly, we discovered that secretion of one colonization and virulence factor, CiaI, was not required for invasion of human colonic cells, which counters previous hypotheses for how this protein functions during invasion. Instead, secretion of CiaI was essential for C. jejuni to facilitate commensal colonization of the natural avian host. Our work provides insight into the versatility of the bacterial flagellum as a secretory machine that can export proteins promoting diverse biological processes.

  2. Identification and Validation of Novel Chromosomal Integration and Expression Loci in Escherichia coli Flagellar Region 1

    PubMed Central

    Juhas, Mario; Ajioka, James W.

    2015-01-01

    Escherichia coli is used as a chassis for a number of Synthetic Biology applications. The lack of suitable chromosomal integration and expression loci is among the main hurdles of the E. coli engineering efforts. We identified and validated chromosomal integration and expression target sites within E. coli K12 MG1655 flagellar region 1. We analyzed five open reading frames of the flagellar region 1, flgA, flgF, flgG, flgI, and flgJ, that are well-conserved among commonly-used E. coli strains, such as MG1655, W3110, DH10B and BL21-DE3. The efficiency of the integration into the E. coli chromosome and the expression of the introduced genetic circuit at the investigated loci varied significantly. The integrations did not have a negative impact on growth; however, they completely abolished motility. From the investigated E. coli K12 MG1655 flagellar region 1, flgA and flgG are the most suitable chromosomal integration and expression loci. PMID:25816013

  3. Flagellar cells and ciliary cells in the renal tubule of elasmobranchs.

    PubMed

    Lacy, E R; Luciano, L; Reale, E

    1989-01-01

    Flagella or cilia are present on most epithelial cells in the renal tubule of elasmobranch fishes (little skate, spiny dogfish, smooth dogfish, Atlantic sharpnose, scalloped hammerhead, cow-nosed ray). Flagellar cells, those with numerous flagella ordered in one, two, or more rows on the luminal surface, are shown here for the first time in a vertebrate. The flagellar cells are intercalated among other epithelial cells, each bearing a single cilium, from Bowman's capsule to the third subdivision of the intermediate segment of the nephron. The flagella form undulated ribbons up to 55 microns long. In every ribbon the axis of the central pair of microtubules in the axoneme is oriented parallel to the long axis of the flagellar row. This suggests a beat perpendicular to these two axes. The arrangement of the flagella in ribbons most likely promotes movement of glomerular filtrate down the renal tubule. Cells bearing numerous cilia occur in the large collecting ducts of spiny dogfish but without apparent preferential orientation of the cilia.

  4. Correlation between supercoiling and conformational motions of the bacterial flagellar filament.

    PubMed

    Stadler, Andreas M; Unruh, Tobias; Namba, Keiichi; Samatey, Fadel; Zaccai, Giuseppe

    2013-11-05

    The bacterial flagellar filament is a very large macromolecular assembly of a single protein, flagellin. Various supercoiled states of the filament exist, which are formed by two structurally different conformations of flagellin in different ratios. We investigated the correlation between supercoiling of the protofilaments and molecular dynamics in the flagellar filament using quasielastic and elastic incoherent neutron scattering on the picosecond and nanosecond timescales. Thermal fluctuations in the straight L- and R-type filaments were measured and compared to the resting state of the wild-type filament. Amplitudes of motion on the picosecond timescale were found to be similar in the different conformational states. Mean-square displacements and protein resilience on the 0.1 ns timescale demonstrate that the L-type state is more flexible and less resilient than the R-type, whereas the wild-type state lies in between. Our results provide strong support that supercoiling of the protofilaments in the flagellar filament is determined by the strength of molecular forces in and between the flagellin subunits.

  5. Characterization of ciliobrevin A mediated dynein ATPase inhibition on flagellar motility of Leishmania donovani.

    PubMed

    Reddy, G Srinivas; Mukhopadhyay, Aakash Gautam; Dey, Chinmoy Sankar

    2017-04-05

    Axonemal dyneins are members of AAA+ proteins involved in force generation and are responsible for flagellar motility in eukaryotes. In this study, we characterized the effects of ciliobrevin A (CbA), a dynein ATPase inhibitor, on flagella driven motility of the protozoan parasite Leishmania donovani. Using fast-capture video microscopy, we observed that CbA decreased flagellar beat frequency of swimming parasites in a concentration-dependent manner. Beat frequency of live and reactivated L. donovani decreased by approximately 89% and 41% respectively in the presence of 250μM CbA. This inhibition was lost when CbA was removed, suggesting its effects were reversible. CbA also altered wavelength and amplitude of the flagellum of live parasites. Waveform analysis of live and reactivated L. donovani revealed that CbA significantly affected flagellar waveform by inducing non-uniform bends with the flagellum beating away from the cell axis. These results suggest that CbA sensitive dynein ATPases possibly are responsible for power generation and waveform maintenance of the flagellum of L. donovani. This ability to inhibit axonemal dyneins also emphasizes the use of dynein inhibitors as valuable tools in studying functional roles of axonemal dyneins of flagellated eukaryotes.

  6. Selective Purification of Recombinant Neuroactive Peptides Using the Flagellar Type III Secretion System

    PubMed Central

    Singer, Hanna M.; Erhardt, Marc; Steiner, Andrew M.; Zhang, Min-Min; Yoshikami, Doju; Bulaj, Grzegorz; Olivera, Baldomero M.; Hughes, Kelly T.

    2012-01-01

    ABSTRACT The structure, assembly, and function of the bacterial flagellum involves about 60 different proteins, many of which are selectively secreted via a specific type III secretion system (T3SS) (J. Frye et al., J. Bacteriol. 188:2233–2243, 2006). The T3SS is reported to secrete proteins at rates of up to 10,000 amino acid residues per second. In this work, we showed that the flagellar T3SS of Salmonella enterica serovar Typhimurium could be manipulated to export recombinant nonflagellar proteins through the flagellum and into the surrounding medium. We translationally fused various neuroactive peptides and proteins from snails, spiders, snakes, sea anemone, and bacteria to the flagellar secretion substrate FlgM. We found that all tested peptides of various sizes were secreted via the bacterial flagellar T3SS. We subsequently purified the recombinant μ-conotoxin SIIIA (rSIIIA) from Conus striatus by affinity chromatography and confirmed that T3SS-derived rSIIIA inhibited mammalian voltage-gated sodium channel NaV1.2 comparably to chemically synthesized SIIIA. PMID:22647788

  7. FlhG employs diverse intrinsic domains and influences FlhF GTPase activity to numerically regulate polar flagellar biogenesis in Campylobacter jejuni.

    PubMed

    Gulbronson, Connor J; Ribardo, Deborah A; Balaban, Murat; Knauer, Carina; Bange, Gert; Hendrixson, David R

    2016-01-01

    Flagellation in polar flagellates is one of the rare biosynthetic processes known to be numerically regulated in bacteria. Polar flagellates must spatially and numerically regulate flagellar biogenesis to create flagellation patterns for each species that are ideal for motility. FlhG ATPases numerically regulate polar flagellar biogenesis, yet FlhG orthologs are diverse in motif composition. We discovered that Campylobacter jejuni FlhG is at the center of a multipartite mechanism that likely influences a flagellar biosynthetic step to control flagellar number for amphitrichous flagellation, rather than suppressing activators of flagellar gene transcription as in Vibrio and Pseudomonas species. Unlike other FlhG orthologs, the FlhG ATPase domain was not required to regulate flagellar number in C. jejuni. Instead, two regions of C. jejuni FlhG that are absent or significantly altered in FlhG orthologs are involved in numerical regulation of flagellar biogenesis. Additionally, we found that C. jejuni FlhG influences FlhF GTPase activity, which may mechanistically contribute to flagellar number regulation. Our work suggests that FlhG ATPases divergently evolved in each polarly flagellated species to employ different intrinsic domains and extrinsic effectors to ultimately mediate a common output - precise numerical control of polar flagellar biogenesis required to create species-specific flagellation patterns optimal for motility.

  8. 46 CFR 174.185 - Intact stability.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Intact stability. 174.185 Section 174.185 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY SPECIAL RULES PERTAINING TO SPECIFIC VESSEL TYPES Special Rules Pertaining to Offshore Supply Vessels § 174.185 Intact stability. (a...

  9. 46 CFR 172.070 - Intact stability.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Intact stability. 172.070 Section 172.070 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY SPECIAL RULES PERTAINING TO... § 172.070 Intact stability. All tank vessels of 5,000 DWT and above contracted after the effective date...

  10. 46 CFR 172.070 - Intact stability.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Intact stability. 172.070 Section 172.070 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY SPECIAL RULES PERTAINING TO... § 172.070 Intact stability. All tank vessels of 5,000 deadweight tons (DWT) and above, contracted after...

  11. 46 CFR 174.015 - Intact stability.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Intact stability. 174.015 Section 174.015 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY SPECIAL RULES PERTAINING TO SPECIFIC VESSEL TYPES Special Rules Pertaining to Deck Cargo Barges § 174.015 Intact stability. (a) Except...

  12. 46 CFR 174.015 - Intact stability.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Intact stability. 174.015 Section 174.015 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY SPECIAL RULES PERTAINING TO SPECIFIC VESSEL TYPES Special Rules Pertaining to Deck Cargo Barges § 174.015 Intact stability. (a) Except...

  13. 46 CFR 172.070 - Intact stability.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Intact stability. 172.070 Section 172.070 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY SPECIAL RULES PERTAINING TO... § 172.070 Intact stability. All tank vessels of 5,000 deadweight tons (DWT) and above, contracted after...

  14. 46 CFR 172.070 - Intact stability.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Intact stability. 172.070 Section 172.070 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY SPECIAL RULES PERTAINING TO... § 172.070 Intact stability. All tank vessels of 5,000 deadweight tons (DWT) and above, contracted after...

  15. 46 CFR 174.185 - Intact stability.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Intact stability. 174.185 Section 174.185 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY SPECIAL RULES PERTAINING TO SPECIFIC VESSEL TYPES Special Rules Pertaining to Offshore Supply Vessels § 174.185 Intact stability. (a...

  16. 46 CFR 172.070 - Intact stability.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Intact stability. 172.070 Section 172.070 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY SPECIAL RULES PERTAINING TO... § 172.070 Intact stability. All tank vessels of 5,000 deadweight tons (DWT) and above, contracted after...

  17. Evolved to fail: Bacteria induce flagellar buckling to reorient

    NASA Astrophysics Data System (ADS)

    Son, Kwangmin; Guasto, Jeffrey S.; Stocker, Roman

    2012-11-01

    Many marine bacteria swim with a single helical flagellum connected to a rotary motor via a 100 nm long universal joint called the ``hook.'' While these bacteria have seemingly just one degree of freedom, allowing them to swim only back and forth, they in fact exhibit large angular reorientations mediated by off-axis ``flicks'' of their flagellum. High-speed video microscopy revealed the mechanism underpinning this turning behavior: the buckling of the hook during the exceedingly brief (10 ms) forward run that follows a reversal. Direct measurements of the hook's mechanical properties corroborated this result, as the hook's structural stability is governed by the Sperm number, which compares the compressive load from propulsion to the elastic restoring force of the hook. Upon decreasing the Sperm number below a critical value by reducing the swimming speed, the frequency of flicks diminishes sharply, consistent with the criticality of buckling. This elegant, under-actuated turning mechanism appears widespread among marine bacteria and may provide a novel design concept in micro-robotics.

  18. Redistribution and shedding of flagellar membrane glycoproteins visualized using an anti-carbohydrate monoclonal antibody and concanavalin A

    PubMed Central

    1986-01-01

    Two carbohydrate-binding probes, the lectin concanavalin A and an anti- carbohydrate monoclonal antibody designated FMG-1, have been used to study the distribution of their respective epitopes on the surface of Chlamydomonas reinhardtii, strain pf-18. Both of these ligands bind uniformly to the external surface of the flagellar membrane and the general cell body plasma membrane, although the labeling is more intense on the flagellar membrane. In addition, both ligands cross- react with cell wall glycoproteins. With respect to the flagellar membrane, both concanavalin A and the FMG-1 monoclonal antibody bind preferentially to the principal high molecular weight glycoproteins migrating with an apparent molecular weight of 350,000 although there is, in addition, cross-reactivity with a number of minor glycoproteins. Western blots of V-8 protease digests of the high molecular weight flagellar glycoproteins indicate that the epitopes recognized by the lectin and the antibody are both repeated multiple times within the glycoproteins and occur together, although the lectin and the antibody do not compete for the same binding sites. Incubation of live cells with the monoclonal antibody or lectin at 4 degrees C results in a uniform labeling of the flagellar surface; upon warming of the cells, these ligands are redistributed along the flagellar surface in a characteristic manner. All of the flagellar surface-bound antibody or lectin collects into a single aggregate at the tip of each flagellum; this aggregate subsequently migrates to the base of the flagellum, where it is shed into the medium. The rate of redistribution is temperature dependent and the glycoproteins recognized by these ligands co-redistribute with the lectin or monoclonal antibody. This dynamic flagellar surface phenomenon bears a striking resemblance to the capping phenomenon that has been described in numerous mammalian cell types. However, it occurs on a structure (the flagellum) that lacks most of the

  19. KHARON Is an Essential Cytoskeletal Protein Involved in the Trafficking of Flagellar Membrane Proteins and Cell Division in African Trypanosomes*

    PubMed Central

    Sanchez, Marco A.; Tran, Khoa D.; Valli, Jessica; Hobbs, Sam; Johnson, Errin; Gluenz, Eva; Landfear, Scott M.

    2016-01-01

    African trypanosomes and related kinetoplastid parasites selectively traffic specific membrane proteins to the flagellar membrane, but the mechanisms for this trafficking are poorly understood. We show here that KHARON, a protein originally identified in Leishmania parasites, interacts with a putative trypanosome calcium channel and is required for its targeting to the flagellar membrane. KHARON is located at the base of the flagellar axoneme, where it likely mediates targeting of flagellar membrane proteins, but is also on the subpellicular microtubules and the mitotic spindle. Hence, KHARON is probably a multifunctional protein that associates with several components of the trypanosome cytoskeleton. RNA interference-mediated knockdown of KHARON mRNA results in failure of the calcium channel to enter the flagellar membrane, detachment of the flagellum from the cell body, and disruption of mitotic spindles. Furthermore, knockdown of KHARON mRNA induces a lethal failure of cytokinesis in both bloodstream (mammalian host) and procyclic (insect vector) life cycle stages, and KHARON is thus critical for parasite viability. PMID:27489106

  20. Singly Flagellated Pseudomonas aeruginosa Chemotaxes Efficiently by Unbiased Motor Regulation

    PubMed Central

    Cai, Qiuxian; Li, Zhaojun; Ouyang, Qi

    2016-01-01

    ABSTRACT Pseudomonas aeruginosa is an opportunistic human pathogen that has long been known to chemotax. More recently, it has been established that chemotaxis is an important factor in the ability of P. aeruginosa to make biofilms. Genes that allow P. aeruginosa to chemotax are homologous with genes in the paradigmatic model organism for chemotaxis, Escherichia coli. However, P. aeruginosa is singly flagellated and E. coli has multiple flagella. Therefore, the regulation of counterclockwise/clockwise flagellar motor bias that allows E. coli to efficiently chemotax by runs and tumbles would lead to inefficient chemotaxis by P. aeruginosa, as half of a randomly oriented population would respond to a chemoattractant gradient in the wrong sense. How P. aeruginosa regulates flagellar rotation to achieve chemotaxis is not known. Here, we analyze the swimming trajectories of single cells in microfluidic channels and the rotations of cells tethered by their flagella to the surface of a variable-environment flow cell. We show that P. aeruginosa chemotaxes by symmetrically increasing the durations of both counterclockwise and clockwise flagellar rotations when swimming up the chemoattractant gradient and symmetrically decreasing rotation durations when swimming down the chemoattractant gradient. Unlike the case for E. coli, the counterclockwise/clockwise bias stays constant for P. aeruginosa. We describe P. aeruginosa’s chemotaxis using an analytical model for symmetric motor regulation. We use this model to do simulations that show that, given P. aeruginosa’s physiological constraints on motility, its distinct, symmetric regulation of motor switching optimizes chemotaxis. PMID:27048795

  1. Conditional Granger Causality Analysis of Effective Connectivity during Motor Imagery and Motor Execution in Stroke Patients.

    PubMed

    Wang, Li; Zhang, Jingna; Zhang, Ye; Yan, Rubing; Liu, Hongliang; Qiu, Mingguo

    2016-01-01

    Aims. Motor imagery has emerged as a promising technique for the improvement of motor function following stroke, but the mechanism of functional network reorganization in patients during this process remains unclear. The aim of this study is to evaluate the cortical motor network patterns of effective connectivity in stroke patients. Methods. Ten stroke patients with right hand hemiplegia and ten normal control subjects were recruited. We applied conditional Granger causality analysis (CGCA) to explore and compare the functional connectivity between motor execution and motor imagery. Results. Compared with the normal controls, the patient group showed lower effective connectivity to the primary motor cortex (M1), the premotor cortex (PMC), and the supplementary motor area (SMA) in the damaged hemisphere but stronger effective connectivity to the ipsilesional PMC and M1 in the intact hemisphere during motor execution. There were tighter connections in the cortical motor network in the patients than in the controls during motor imagery, and the patients showed more effective connectivity in the intact hemisphere. Conclusions. The increase in effective connectivity suggests that motor imagery enhances core corticocortical interactions, promotes internal interaction in damaged hemispheres in stroke patients, and may facilitate recovery of motor function.

  2. Conditional Granger Causality Analysis of Effective Connectivity during Motor Imagery and Motor Execution in Stroke Patients

    PubMed Central

    Wang, Li; Zhang, Jingna; Zhang, Ye; Yan, Rubing; Liu, Hongliang; Qiu, Mingguo

    2016-01-01

    Aims. Motor imagery has emerged as a promising technique for the improvement of motor function following stroke, but the mechanism of functional network reorganization in patients during this process remains unclear. The aim of this study is to evaluate the cortical motor network patterns of effective connectivity in stroke patients. Methods. Ten stroke patients with right hand hemiplegia and ten normal control subjects were recruited. We applied conditional Granger causality analysis (CGCA) to explore and compare the functional connectivity between motor execution and motor imagery. Results. Compared with the normal controls, the patient group showed lower effective connectivity to the primary motor cortex (M1), the premotor cortex (PMC), and the supplementary motor area (SMA) in the damaged hemisphere but stronger effective connectivity to the ipsilesional PMC and M1 in the intact hemisphere during motor execution. There were tighter connections in the cortical motor network in the patients than in the controls during motor imagery, and the patients showed more effective connectivity in the intact hemisphere. Conclusions. The increase in effective connectivity suggests that motor imagery enhances core corticocortical interactions, promotes internal interaction in damaged hemispheres in stroke patients, and may facilitate recovery of motor function. PMID:27200373

  3. Purification, crystallization and preliminary X-ray analysis of FliT, a bacterial flagellar substrate-specific export chaperone

    PubMed Central

    Kinoshita, Miki; Yamane, Midori; Matsunami, Hideyuki; Minamino, Tohru; Namba, Keiichi; Imada, Katsumi

    2009-01-01

    The assembly process of the bacterial flagellum is coupled to flagellar gene expression. FliT acts not only as a flagellar type III substrate-specific export chaperone for the filament-capping protein FliD but also as a negative regulator that suppresses flagellar gene expression through its specific interaction with the master regulator FlhD4C2 complex. In this study, FliT of Salmonella enterica serovar Typhimurium was expressed, purified and crystallized. Crystals of SeMet FliT were obtained by the sitting-drop vapour-diffusion technique with potassium/sodium tartrate as the precipitant. The crystals grew in the trigonal space group P3121 or P3221 and diffracted to 3.2 Å resolution. The anomalous difference Patterson map of the SeMet FliT crystal showed significant peaks in its Harker sections, indicating the usefulness of the derivative data for structure determination. PMID:19652350

  4. Computer simulation of flagellar movement. VI. Simple curvature-controlled models are incompletely specified.

    PubMed Central

    Brokaw, C J

    1985-01-01

    Computer simulation is used to examine a simple flagellar model that will initiate and propagate bending waves in the absence of viscous resistances. The model contains only an elastic bending resistance and an active sliding mechanism that generates reduced active shear moment with increasing sliding velocity. Oscillation results from a distributed control mechanism that reverses the direction of operation of the active sliding mechanism when the curvature reaches critical magnitudes in either direction. Bend propagation by curvature-controlled flagellar models therefore does not require interaction with the viscous resistance of an external fluid. An analytical examination of moment balance during bend propagation by this model yields a solution curve giving values of frequency and wavelength that satisfy the moment balance equation and give uniform bend propagation, suggesting that the model is underdetermined. At 0 viscosity, the boundary condition of 0 shear rate at the basal end of the flagellum during the development of new bends selects the particular solution that is obtained by computer simulations. Therefore, the details of the pattern of bend initiation at the basal end of a flagellum can be of major significance in determining the properties of propagated bending waves in the distal portion of a flagellum. At high values of external viscosity, the model oscillates at frequencies and wavelengths that give approximately integral numbers of waves on the flagellum. These operating points are selected because they facilitate the balance of bending moments at the ends of the model, where the external viscous moment approaches 0. These mode preferences can be overridden by forcing the model to operate at a predetermined frequency. The strong mode preferences shown by curvature-controlled flagellar models, in contrast to the weak or absent mode preferences shown by real flagella, therefore do not demonstrate the inapplicability of the moment-balance approach

  5. Flagellar apparatus of south-seeking many-celled magnetotactic prokaryotes.

    PubMed

    Silva, Karen Tavares; Abreu, Fernanda; Almeida, Fernando P; Keim, Carolina Neumann; Farina, Marcos; Lins, Ulysses

    2007-01-01

    Magnetotactic bacteria orient and migrate along geomagnetic field lines. Each cell contains membrane-enclosed, nano-scale, iron-mineral particles called magnetosomes that cause alignment of the cell in the geomagnetic field as the bacteria swim propelled by flagella. In this work we studied the ultrastructure of the flagellar apparatus in many-celled magnetotactic prokaryotes (MMP) that consist of several Gram-negative cells arranged radially around an acellular compartment. Flagella covered the organism surface, and were observed exclusively at the portion of each cell that faced the environment. The flagella were helical tubes never as long as a complete turn of the helix. Flagellar filaments varied in length from 0.9 to 3.8 micro m (average 2.4 +/- 0.5 micro m, n = 150) and in width from 12.0 to 19.5 nm (average 15.9 +/- 1.4 nm, n = 52), which is different from previous reports for similar microorganisms. At the base of the flagella, a curved hook structure slightly thicker than the flagellar filaments was observed. In freeze-fractured samples, macromolecular complexes about 50 nm in diameter, which possibly corresponded to part of the flagella basal body, were observed in both the P-face of the cytoplasmic membrane and the E-face of the outer membrane. Transmission electron microscopy showed that magnetosomes occurred in planar groups in the cytoplasm close and parallel to the organism surface. A striated structure, which could be involved in maintaining magnetosomes fixed in the cell, was usually observed running along magnetosome chains. The coordinated movement of the MMP depends on the interaction between the flagella of each cell with the flagella of adjacent cells of the microorganism.

  6. Two Distinct Ca2+ Signaling Pathways Modulate Sperm Flagellar Beating Patterns in Mice1

    PubMed Central

    Chang, Haixin; Suarez, Susan S.

    2011-01-01

    Hyperactivation, a swimming pattern of mammalian sperm in the oviduct, is essential for fertilization. It is characterized by asymmetrical flagellar beating and an increase of cytoplasmic Ca2+. We observed that some mouse sperm swimming in the oviduct produce high-amplitude pro-hook bends (bends in the direction of the hook on the head), whereas other sperm produce high-amplitude anti-hook bends. Switching direction of the major bends could serve to redirect sperm toward oocytes. We hypothesized that different Ca2+ signaling pathways produce high-amplitude pro-hook and anti-hook bends. In vitro, sperm that hyperactivated during capacitation (because of activation of CATSPER plasma membrane Ca2+ channels) developed high-amplitude pro-hook bends. The CATSPER activators procaine and 4-aminopyridine (4-AP) also induced high-amplitude pro-hook bends. Thimerosal, which triggers a Ca2+ release from internal stores, induced high-amplitude anti-hook bends. Activation of CATSPER channels is facilitated by a pH rise, so both Ca2+ and pH responses to treatments with 4-AP and thimerosal were monitored. Thimerosal triggered a Ca2+ increase that initiated at the base of the flagellum, whereas 4-AP initiated a rise in the proximal principal piece. Only 4-AP triggered a flagellar pH rise. Proteins were extracted from sperm for examination of phosphorylation patterns induced by Ca2+ signaling. Procaine and 4-AP induced phosphorylation of proteins on threonine and serine, whereas thimerosal primarily induced dephosphorylation of proteins. Tyrosine phosphorylation was unaffected. We concluded that hyperactivation, which is associated with capacitation, can be modulated by release of Ca2+ from intracellular stores to reverse the direction of the dominant flagellar bend and, thus, redirect sperm. PMID:21389347

  7. Flagellar mutants of Chlamydomonas: Studies of radial spoke-defective strains by dikaryon and revertant analysis

    PubMed Central

    Luck, David; Piperno, Gianni; Ramanis, Zenta; Huang, B.

    1977-01-01

    The motility mutant of Chlamydomonas reinhardtii pf14 lacks radial spoke structures in its flagellar axonemes, and 12 proteins present in wild type are missing from a two-dimensional map (isoelectrofocusing/sodium dodecyl sulfate electrophoresis) of its 35S-labeled flagellar proteins. Six of these same proteins are missing in pf1, which lacks spoke-heads. To determine whether any of the missing proteins represent the mutant gene product two experimental approaches have been applied. The first makes use of the fact that gametes of either mutant strain when fused with wild-type gametes to form quadriflagellate dikaryons undergo recovery of flagellar function. Recovery at the molecular level was monitored by prelabeling the mutant proteins with 35S and allowing recovery to occur in the absence of protein synthesis. It is to be expected that the mutant gene product would not be restored as a radioactive protein and that recovery would depend on the assembly of the wild-type counterpart that is not labeled. The second technique makes use of revertants induced by UV irradiation. Dikaryon rescue in the case of pf14 leads to restoration of 11 radioactive components; only protein 3 fails to appear as a radioactive spot. For pf1 only two radioactive proteins are restored; proteins 4, 6, 9, and 10 were not radioactive. Analysis of revertants of pf1 gave evidence (altered map positions) that protein 4 is the mutant gene product. In the case of pf14, analysis of 22 revertants has not provided similar positive evidence that protein 3 is the gene product. Images PMID:269405

  8. Flagellar Cap Protein FliD Mediates Adherence of Atypical Enteropathogenic Escherichia coli to Enterocyte Microvilli

    PubMed Central

    Sampaio, Suely C. F.; Luiz, Wilson B.; Vieira, Mônica A. M.; Ferreira, Rita C. C.; Garcia, Bruna G.; Sinigaglia-Coimbra, Rita; Sampaio, Jorge L. M.; Ferreira, Luís C. S.

    2016-01-01

    The expression of flagella correlates with different aspects of bacterial pathogenicity, ranging from adherence to host cells to activation of inflammatory responses by the innate immune system. In the present study, we investigated the role of flagella in the adherence of an atypical enteropathogenic Escherichia coli (aEPEC) strain (serotype O51:H40) to human enterocytes. Accordingly, isogenic mutants deficient in flagellin (FliC), the flagellar structural subunit; the flagellar cap protein (FliD); or the MotAB proteins, involved in the control of flagellar motion, were generated and tested for binding to differentiated Caco-2 cells. Binding of the aEPEC strain to enterocytes was significantly impaired in strains with the fliC and fliD genes deleted, both of which could not form flagella on the bacterial surface. A nonmotile but flagellated MotAB mutant also showed impaired adhesion to Caco-2 cells. In accordance with these observations, adhesion of aEPEC strain 1711-4 to Caco-2 cells was drastically reduced after the treatment of Caco-2 cells with purified FliD. In addition, incubation of aEPEC bacteria with specific anti-FliD serum impaired binding to Caco-2 cells. Finally, incubation of Caco-2 cells with purified FliD, followed by immunolabeling, showed that the protein was specifically bound to the microvillus tips of differentiated Caco-2 cells. The aEPEC FliD or anti-FliD serum also reduced the adherence of prototype typical enteropathogenic, enterohemorrhagic, and enterotoxigenic E. coli strains to Caco-2 cells. In conclusion, our findings further strengthened the role of flagella in the adherence of aEPEC to human enterocytes and disclosed the relevant structural and functional involvement of FliD in the adhesion process. PMID:26831466

  9. Chemotaxis signaling protein CheY binds to the rotor protein FliN to control the direction of flagellar rotation in Escherichia coli

    PubMed Central

    Sarkar, Mayukh K.; Paul, Koushik; Blair, David

    2010-01-01

    The direction of rotation of the Escherichia coli flagellum is controlled by an assembly called the switch complex formed from multiple subunits of the proteins FliG, FliM, and FliN. Structurally, the switch complex corresponds to a drum-shaped feature at the bottom of the basal body, termed the C-ring. Stimulus-regulated reversals in flagellar motor rotation are the basis for directed movement such as chemotaxis. In E. coli, the motors turn counterclockwise (CCW) in their default state, allowing the several filaments on a cell to join together in a bundle and propel the cell smoothly forward. In response to the chemotaxis signaling molecule phospho-CheY (CheYP), the motors can switch to clockwise (CW) rotation, causing dissociation of the filament bundle and reorientation of the cell. CheYP has previously been shown to bind to a conserved segment near the N terminus of FliM. Here, we show that this interaction serves to capture CheYP and that the switch to CW rotation involves the subsequent interaction of CheYP with FliN. FliN is located at the bottom of the C-ring, in close association with the C-terminal domain of FliM (FliMC), and the switch to CW rotation has been shown to involve relative movement of FliN and FliMC. Using a recently developed structural model for the FliN/FliMC array, and the CheYP-binding site here identified on FliN, we propose a mechanism by which CheYP binding could induce the conformational switch to CW rotation. PMID:20439729

  10. Identification of Intrinsic Axon Growth Modulators for Intact CNS Neurons after Injury.

    PubMed

    Fink, Kathren L; López-Giráldez, Francesc; Kim, In-Jung; Strittmatter, Stephen M; Cafferty, William B J

    2017-03-14

    Functional deficits persist after spinal cord injury (SCI) because axons in the adult mammalian central nervous system (CNS) fail to regenerate. However, modest levels of spontaneous functional recovery are typically observed after trauma and are thought to be mediated by the plasticity of intact circuitry. The mechanisms underlying intact circuit plasticity are not delineated. Here, we characterize the in vivo transcriptome of sprouting intact neurons from Ngr1 null mice after partial SCI. We identify the lysophosphatidic acid signaling modulators LPPR1 and LPAR1 as intrinsic axon growth modulators for intact corticospinal motor neurons after adjacent injury. Furthermore, in vivo LPAR1 inhibition or LPPR1 overexpression enhances sprouting of intact corticospinal tract axons and yields greater functional recovery after unilateral brainstem lesion in wild-type mice. Thus, the transcriptional profile of injury-induced sprouting of intact neurons reveals targets for therapeutic enhancement of axon growth initiation and new synapse formation. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Neural activation differences in amputees during imitation of intact versus amputee movements

    PubMed Central

    Cusack, William F.; Cope, Michael; Nathanson, Sheryl; Pirouz, Nikta; Kistenberg, Robert; Wheaton, Lewis A.

    2012-01-01

    The mirror neuron system (MNS) has been attributed with increased activation in motor-related cortical areas upon viewing of another's actions. Recent work suggests that limb movements that are similar and dissimilar in appearance to that of the viewer equivalently activate the MNS. It is unclear if this result can be observed in the action encoding areas in amputees who use prosthetic devices. Intact subjects and upper extremity amputee prosthesis users were recruited to view video demonstrations of tools being used by an intact actor and a prosthetic device user. All subjects pantomimed the movements seen in the video while recording electroencephalography (EEG). Intact subjects showed equivalent left parietofrontal activity during imitation planning after watching the intact or prosthetic arm. Likewise, when prosthesis users imitated prosthesis demonstrations, typical left parietofrontal activation was observed. When prosthesis users imitated intact actors, an additional pattern was revealed which showed greater activity in right parietal and occipital regions that are associated with the mentalizing system. This change may be required for prosthesis users to plan imitation movements in which the limb states between the observed and the observer do not match. The finding that prosthesis users imitating other prosthesis users showed typical left parietofrontal activation suggests that these subjects engage normal planning related activity when they are able to imitate a limb matching their own. This result has significant implications on rehabilitation, as standard therapy involves training with an intact occupational therapist, which could necessitate atypical planning mechanisms in amputees when learning to use their prosthesis. PMID:22754516

  12. Porters versus rowers: a unified stochastic model of motor proteins

    PubMed Central

    1993-01-01

    We present a general phenomenological theory for chemical to mechanical energy transduction by motor enzymes which is based on the classical "tight-coupling" mechanism. The associated minimal stochastic model takes explicitly into account both ATP hydrolysis and thermal noise effects. It provides expressions for the hydrolysis rate and the sliding velocity, as functions of the ATP concentration and the number of motor enzymes. It explains in a unified way many results of recent in vitro motility assays. More importantly, the theory provides a natural classification scheme for the motors: it correlates the biochemical and mechanical differences between "porters" such as cellular kinesins or dyneins, and "rowers" such as muscular myosins or flagellar dyneins. PMID:8509455

  13. A case of mixed transcortical aphasia with intact naming.

    PubMed

    Heilman, K M; Tucker, D M; Valenstein, E

    1976-09-01

    Altholgh Lichtheim recognized that Wernicke's 'reflex arch' (primary auditory area, to Wernicke's area, to Broca's area, to primary motor area) was important for repetition, he recognized that other areas of the brain (for example, area of concepts or semantic area) must be important in comprehension and voluntary speech. He suggested that Wernicke's area (phonemic area) not only projected to Broca's area (as Wernicke suggested) but that it also projected to the area of concepts. A lesion of this latter pathway or in the area of concepts would produce a syndrome where repetition was intact but comprehension was impaired (e.g. transcortical sensory aphasia). Lichtheim also thought that the area of concepts projected directly to Broca's area and that voluntary speech was mediated by this pathway. Although Lichtheim's model could explain the mechanism underlying transcortical aphasia, his schema could not explain anomic aphasia. Unlike Lichtheim's schema, Kussmaul's schema suggested that the area of concepts projects back to Wernicke's area before projecting to Broca's area. With this schema, a patient with a hypothetical lesion which interrupted the pathway from the area of concepts to Wernicke's area (but did not interrupt the pathway from Wernicke's area to the area of concepts) should be anomic, with normal comprehension and repetition. In order for this latter schema to be plausible there should also be a lesion which interrupts the pathway from Wernicke's area to the area of concepts but does not interrupt the pathway which goes from the area of concepts to Wernicke's area. A patient with this hypothetical lesion should comprehend poorly; however, in spite of poor comprehension, naming and repetition should be intact. We report a patient who demonstrates poor comprehension with intact naming and repetition. This patient could also read aloud but could not comprehend written language. Not only could this patient name objects but he could demonstrate their use

  14. A numerical study of the effects of fluid rheology and stroke kinematics on flagellar swimming in complex fluids

    NASA Astrophysics Data System (ADS)

    Li, Chuanbin; Guy, Robert; Thomases, Becca

    2016-11-01

    It is observed in experiments that as the fluid rheology is changed, Chlamydomonas reinhardtii exhibits changes in both flagellar kinematics and the swimming speed. To understand this phenomenon, we develop a computational model of the swimmer, using flagellar strokes fit from experimental data. We conduct numerical simulations by changing strokes and fluid rheology independently to dissect the effects of these two factors. We discover that stroke patterns extracted from viscoelastic fluids generate much lower stress and have higher efficiency at the cost of lower swimming speed. We also discover that higher fluid elasticity hinders swimming for a fixed stroke pattern.

  15. The Trypanosome Flagellar Pocket Collar and Its Ring Forming Protein—TbBILBO1

    PubMed Central

    Perdomo, Doranda; Bonhivers, Mélanie; Robinson, Derrick R.

    2016-01-01

    Sub-species of Trypanosoma brucei are the causal agents of human African sleeping sickness and Nagana in domesticated livestock. These pathogens have developed an organelle-like compartment called the flagellar pocket (FP). The FP carries out endo- and exocytosis and is the only structure this parasite has evolved to do so. The FP is essential for parasite viability, making it an interesting structure to evaluate as a drug target, especially since it has an indispensible cytoskeleton component called the flagellar pocket collar (FPC). The FPC is located at the neck of the FP where the flagellum exits the cell. The FPC has a complex architecture and division cycle, but little is known concerning its organization. Recent work has focused on understanding how the FP and the FPC are formed and as a result of these studies an important calcium-binding, polymer-forming protein named TbBILBO1 was identified. Cellular biology analysis of TbBILBO1 has demonstrated its uniqueness as a FPC component and until recently, it was unknown what structural role it played in forming the FPC. This review summarizes the recent data on the polymer forming properties of TbBILBO1 and how these are correlated to the FP cytoskeleton. PMID:26950156

  16. Escherichia coli flagellar genes as target sites for integration and expression of genetic circuits.

    PubMed

    Juhas, Mario; Evans, Lewis D B; Frost, Joe; Davenport, Peter W; Yarkoni, Orr; Fraser, Gillian M; Ajioka, James W

    2014-01-01

    E. coli is a model platform for engineering microbes, so genetic circuit design and analysis will be greatly facilitated by simple and effective approaches to introduce genetic constructs into the E. coli chromosome at well-characterised loci. We combined the Red recombinase system of bacteriophage λ and Isothermal Gibson Assembly for rapid integration of novel DNA constructs into the E. coli chromosome. We identified the flagellar region as a promising region for integration and expression of genetic circuits. We characterised integration and expression at four candidate loci, fliD, fliS, fliT, and fliY, of the E. coli flagellar region 3a. The integration efficiency and expression from the four integrations varied considerably. Integration into fliD and fliS significantly decreased motility, while integration into fliT and fliY had only a minor effect on the motility. None of the integrations had negative effects on the growth of the bacteria. Overall, we found that fliT was the most suitable integration site.

  17. Cloning of Flagellar Genes in Chlamydomonas Reinhardtii by DNA Insertional Mutagenesis

    PubMed Central

    Tam, L. W.; Lefebvre, P. A.

    1993-01-01

    Chlamydomonas is a popular genetic model system for studying many cellular processes. In this report, we describe a new approach to isolate Chlamydomonas genes using the cloned nitrate reductase gene (NIT1) as an insertional mutagen. A linearized plasmid containing the NIT1 gene was introduced into nit1 mutant cells by glass-bead transformation. Of 3000 Nit(+) transformants examined, 74 showed motility defects of a wide range of phenotypes, suggesting that DNA transformation is an effective method for mutagenizing cells. For 13 of 15 such motility mutants backcrossed to nit(-) mutant strains, the motility phenotype cosegregated with the Nit(+) phenotype, indicating that the motility defects of these 13 mutants may be caused by integration of the plasmid. Further genetic analysis indicated that three of these mutants contained alleles of previously identified loci: mbo2 (move backward only), pf13 (paralyzed flagella) and vfl1 (variable flagellar number). Three other abnormal-flagellar-number mutants did not map to any previously described loci at which mutations produce similar phenotypes. Genomic sequences flanking the integrated plasmid in the mbo2 and vfl1 mutants were isolated and used as probes to obtain wild-type genomic clones, which complemented the motility defects upon transformation into cells. Our results demonstrate the potential of this new approach for cloning genes identified by mutation in Chlamydomonas. PMID:8244002

  18. Complete structure of the bacterial flagellar hook reveals extensive set of stabilizing interactions

    PubMed Central

    Matsunami, Hideyuki; Barker, Clive S.; Yoon, Young-Ho; Wolf, Matthias; Samatey, Fadel A.

    2016-01-01

    The bacterial flagellar hook is a tubular helical structure made by the polymerization of multiple copies of a protein, FlgE. Here we report the structure of the hook from Campylobacter jejuni by cryo-electron microscopy at a resolution of 3.5 Å. On the basis of this structure, we show that the hook is stabilized by intricate inter-molecular interactions between FlgE molecules. Extra domains in FlgE, found only in Campylobacter and in related bacteria, bring more stability and robustness to the hook. Functional experiments suggest that Campylobacter requires an unusually strong hook to swim without its flagella being torn off. This structure reveals details of the quaternary organization of the hook that consists of 11 protofilaments. Previous study of the flagellar filament of Campylobacter by electron microscopy showed its quaternary structure made of seven protofilaments. Therefore, this study puts in evidence the difference between the quaternary structures of a bacterial filament and its hook. PMID:27811912

  19. Brucella melitensis cyclic di-GMP phosphodiesterase BpdA controls expression of flagellar genes.

    PubMed

    Petersen, Erik; Chaudhuri, Pallab; Gourley, Chris; Harms, Jerome; Splitter, Gary

    2011-10-01

    Brucella melitensis encounters a variety of conditions and stimuli during its life cycle--including environmental growth, intracellular infection, and extracellular dissemination--which necessitates flexibility of bacterial signaling to promote virulence. Cyclic-di-GMP is a bacterial secondary signaling molecule that plays an important role in adaptation to changing environments and altering virulence in a number of bacteria. To investigate the role of cyclic-di-GMP in B. melitensis, all 11 predicted cyclic-di-GMP-metabolizing proteins were separately deleted and the effect on virulence was determined. Three of these cyclic-di-GMP-metabolizing proteins were found to alter virulence. Deletion of the bpdA and bpdB genes resulted in attenuation of virulence of the bacterium, while deletion of the cgsB gene produced a hypervirulent strain. In a Vibrio reporter system to monitor apparent alteration in levels of cyclic-di-GMP, both BpdA and BpdB displayed a phenotype consistent with cyclic-di-GMP-specific phosphodiesterases, while CgsB displayed a cyclic-di-GMP synthase phenotype. Further analysis found that deletion of bpdA resulted in a dramatic decrease in flagellar promoter activities, and a flagellar mutant showed similar phenotypes to the bpdA and bpdB mutant strains in mouse models of infection. These data indicate a potential role for regulation of flagella in Brucella melitensis via cyclic-di-GMP.

  20. Autonomously responsive pumping by a bacterial flagellar forest: A mean-field approach

    NASA Astrophysics Data System (ADS)

    Martindale, James D.; Fu, Henry C.

    2017-09-01

    This study is motivated by a microfluidic device that imparts a magnetic torque on an array of bacterial flagella. Bacterial flagella can transform their helical geometry autonomously in response to properties of the background fluid, which provides an intriguing mechanism allowing their use as an engineered element for the regulation or transport of chemicals in microscale applications. The synchronization of flagellar phase has been widely studied in biological contexts, but here we examine the synchronization of flagellar tilt, which is necessary for effective pumping. We first examine the effects of helical geometry and tilt on the pumping flows generated by a single rotating flagellum. Next, we explore a mean-field model for an array of helical flagella to understand how collective tilt arises and influences pumping. The mean-field methodology allows us to take into account possible phase differences through a time-averaging procedure and to model an infinite array of flagella. We find array separation distances, magnetic field strengths, and rotation frequencies that produce nontrivial self-consistent pumping solutions. For individual flagella, pumping is reversed when helicity or rotation is reversed; in contrast, when collective effects are included, self-consistent tilted pumping solutions become untilted nonpumping solutions when helicity or rotation is reversed.

  1. Expression of flagellin and key regulatory flagellar genes in the non-motile bacterium Piscirickettsia salmonis.

    PubMed

    Carril, Gabriela P; Gómez, Fernando A; Marshall, Sergio H

    2017-02-08

    The Piscirickettsia salmonis genome was screened to evaluate potential flagella-related open reading frames, as well as their genomic organization and eventual expression. A complete and organized set of flagellar genes was found for P. salmonis, although no structural flagellum has ever been reported for this bacterium. To gain further understanding, the hierarchical flagellar cascade described for Legionella pneumophila was used as a reference model for putative analysis in P. salmonis. Specifically, 5 of the most relevant genes from this cascade were chosen, including 3 regulatory genes (fleQ, triggers the cascade; fliA, regulates the σ28-coding gene; and rpoN, an RNA polymerase-dependent gene) and 2 terminal structural genes (flaA and flaB, flagellin and a flagellin-like protein, respectively). Kinetic experiments evaluated gene expressions over time, with P. salmonis assessed in 2 liquid, cell-free media and during infection of the SHK-1 fish cell line. Under all conditions, the 5 target genes were primarily expressed during early growth/infection and were differentially expressed when bacteria encountered environmental stress (i.e. a high-salt concentration). Intriguingly, the flagellin monomer was fully expressed under all growth conditions and was located near the bacterial membrane. While no structural flagellum was detected under any condition, the recombinant flagellin monomer induced a proinflammatory response in SHK-1 cells, suggesting a possible immunomodulatory function. The potential implications of these observations are discussed in the context of P. salmonis biology and pathogenic potential.

  2. Metachronal waves in the flagellar beating of Volvox and their hydrodynamic origin

    PubMed Central

    Brumley, Douglas R.; Polin, Marco; Pedley, Timothy J.; Goldstein, Raymond E.

    2015-01-01

    Groups of eukaryotic cilia and flagella are capable of coordinating their beating over large scales, routinely exhibiting collective dynamics in the form of metachronal waves. The origin of this behaviour—possibly influenced by both mechanical interactions and direct biological regulation—is poorly understood, in large part due to a lack of quantitative experimental studies. Here we characterize in detail flagellar coordination on the surface of the multicellular alga Volvox carteri, an emerging model organism for flagellar dynamics. Our studies reveal for the first time that the average metachronal coordination observed is punctuated by periodic phase defects during which synchrony is partial and limited to specific groups of cells. A minimal model of hydrodynamically coupled oscillators can reproduce semi-quantitatively the characteristics of the average metachronal dynamics, and the emergence of defects. We systematically study the model's behaviour by assessing the effect of changing intrinsic rotor characteristics, including oscillator stiffness and the nature of their internal driving force, as well as their geometric properties and spatial arrangement. Our results suggest that metachronal coordination follows from deformations in the oscillators' limit cycles induced by hydrodynamic stresses, and that defects result from sufficiently steep local biases in the oscillators' intrinsic frequencies. Additionally, we find that random variations in the intrinsic rotor frequencies increase the robustness of the average properties of the emergent metachronal waves. PMID:26040592

  3. The N Terminus of FliM Is Essential To Promote Flagellar Rotation in Rhodobacter sphaeroides

    PubMed Central

    Poggio, Sebastian; Osorio, Aurora; Corkidi, Gabriel; Dreyfus, Georges; Camarena, Laura

    2001-01-01

    FliM is part of the flagellar switch complex. Interaction of this protein with phospho-CheY (CheY-P) through its N terminus constitutes the main information relay point between the chemotactic system and the flagellum. In this work, we evaluated the role of the N terminus of FliM in the swimming behavior of Rhodobacter sphaeroides. Strains expressing the FliM protein with substitutions in residues previously reported in Escherichia coli as being important for interaction with CheY showed an increased stop frequency compared with wild-type cells. In accordance, we observed that R. sphaeroides cells expressing FliM lacking either the first 13 or 20 amino acids from the N terminus showed a stopped phenotype. We show evidence that FliMΔ13 and FliMΔ20 are stable proteins and that cells expressing them allow flagellin export at levels indistinguishable from those detected for the wild-type strain. These results suggest that the N-terminal region of FliM is required to promote swimming in this bacterium. The role of CheY in controlling flagellar rotation in this organism is discussed. PMID:11325943

  4. Metachronal waves in the flagellar beating of Volvox and their hydrodynamic origin.

    PubMed

    Brumley, Douglas R; Polin, Marco; Pedley, Timothy J; Goldstein, Raymond E

    2015-07-06

    Groups of eukaryotic cilia and flagella are capable of coordinating their beating over large scales, routinely exhibiting collective dynamics in the form of metachronal waves. The origin of this behavior--possibly influenced by both mechanical interactions and direct biological regulation--is poorly understood, in large part due to a lack of quantitative experimental studies. Here we characterize in detail flagellar coordination on the surface of the multicellular alga Volvox carteri, an emerging model organism for flagellar dynamics. Our studies reveal for the first time that the average metachronal coordination observed is punctuated by periodic phase defects during which synchrony is partial and limited to specific groups of cells. A minimal model of hydrodynamically coupled oscillators can reproduce semi-quantitatively the characteristics of the average metachronal dynamics, and the emergence of defects. We systematically study the model's behaviour by assessing the effect of changing intrinsic rotor characteristics, including oscillator stiffness and the nature of their internal driving force, as well as their geometric properties and spatial arrangement. Our results suggest that metachronal coordination follows from deformations in the oscillators' limit cycles induced by hydrodynamic stresses, and that defects result from sufficiently steep local biases in the oscillators' intrinsic frequencies. Additionally, we find that random variations in the intrinsic rotor frequencies increase the robustness of the average properties of the emergent metachronal waves.

  5. Flagellar expression in clinical isolates of non-typeable Haemophilus influenzae.

    PubMed

    Carabarin-Lima, Alejandro; Lozano-Zarain, Patricia; Castañeda-Lucio, Miguel; Martínez de la Peña, Claudia Fabiola; Martinez-Garcia, Julieta; Flores, Norarizbeth Lara; Cruz, Elías Campos de la; González-Posos, Sirenia; Rocha-Gracia, Rosa Del Carmen

    2017-05-01

    Haemophilus influenzae is a commensal organism found in the upper respiratory tract of humans. When H. influenzae becomes a pathogen, these bacteria can move out of their commensal niche and cause multiple respiratory tract diseases such as otitis media, sinusitis, conjunctivitis and bronchitis in children, and chronic obstructive pulmonary disease in adults. However, H. influenzae is currently considered a non-flagellate bacterium. In this study, 90 clinical isolates of H. influenzae strains (typeable and non-typeable) showed different degrees of the swarm-motility phenotype in vitro.Keys findings. One of these strains, NTHi BUAP96, showed the highest motility rate and its flagella were revealed using transmission electron microscopy and Ryu staining. Moreover, the flagellar genes fliC and flgH exhibited high homology with those of Actinobacillus pleuropneumoniae, Escherichia coli and Shigella flexneri. Furthermore, Western blot analysis, using anti-flagellin heterologous antibodies from E. coli, demonstrated cross-reaction with a protein present in NTHi BUAP96. This study provides, for the first time, information on flagellar expression in H. influenzae, representing an important finding related to its evolution and pathogenic potential.

  6. Salmonella Enteritidis flagellar mutants have a colonization benefit in the chicken oviduct.

    PubMed

    Kilroy, Sofie; Raspoet, Ruth; Martel, An; Bosseler, Leslie; Appia-Ayme, Corinne; Thompson, Arthur; Haesebrouck, Freddy; Ducatelle, Richard; Van Immerseel, Filip

    2017-02-01

    Egg borne Salmonella Enteritidis is still a major cause of human food poisoning. Eggs can become internally contaminated following colonization of the hen's oviduct. In this paper we aimed to analyze the role of flagella of Salmonella Enteritidis in colonization of the hen's oviduct. Using a transposon library screen we showed that mutants lacking functional flagella are significantly more efficient in colonizing the hen's oviduct in vivo. A micro-array analysis proved that transcription of a number of flagellar genes is down-regulated inside chicken oviduct cells. Flagella contain flagellin, a pathogen associated molecular pattern known to bind to Toll-like receptor 5, activating a pro-inflammatory cascade. In vitro tests using primary oviduct cells showed that flagellin is not involved in invasion. Using a ligated loop model, a diminished inflammatory reaction was seen in the oviduct resulting from injection of an aflagellated mutant compared to the wild-type. It is hypothesized that Salmonella Enteritidis downregulates flagellar gene expression in the oviduct and consequently prevents a flagellin-induced inflammatory response, thereby increasing its oviduct colonization efficiency.

  7. A “Mechanistic” Explanation of the Multiple Helical Forms Adopted by Bacterial Flagellar Filaments

    PubMed Central

    Calladine, C.R.; Luisi, B.F.; Pratap, J.V.

    2013-01-01

    The corkscrew-like flagellar filaments emerging from the surface of bacteria such as Salmonella typhimurium propel the cells toward nutrient and away from repellents. This kind of motility depends upon the ability of the flagellar filaments to adopt a range of distinct helical forms. A filament is typically constructed from ~ 30,000 identical flagellin molecules, which self-assemble into a tubular structure containing 11 near-longitudinal protofilaments. A “mechanical” model, in which the flagellin building block has the capacity to switch between two principal interfacial states, predicts that the filament can assemble into a “canonical” family of 12 distinct helical forms, each having unique curvature and twist: these include two “extreme” straight forms having left- and right-handed twists, respectively, and 10 intermediate helical forms. Measured shapes of the filaments correspond well with predictions of the model. This report is concerned with two unanswered questions. First, what properties of the flagellin determine which of the 12 discrete forms is preferred? Second, how does the interfacial “switch” work, at a molecular level? Our proposed solution of these problems is based mainly on a detailed examination of differences between the available electron cryo-microscopy structures of the straight L and R filaments, respectively. PMID:23274110

  8. Escherichia coli Flagellar Genes as Target Sites for Integration and Expression of Genetic Circuits

    PubMed Central

    Juhas, Mario; Evans, Lewis D. B.; Frost, Joe; Davenport, Peter W.; Yarkoni, Orr; Fraser, Gillian M.; Ajioka, James W.

    2014-01-01

    E. coli is a model platform for engineering microbes, so genetic circuit design and analysis will be greatly facilitated by simple and effective approaches to introduce genetic constructs into the E. coli chromosome at well-characterised loci. We combined the Red recombinase system of bacteriophage λ and Isothermal Gibson Assembly for rapid integration of novel DNA constructs into the E. coli chromosome. We identified the flagellar region as a promising region for integration and expression of genetic circuits. We characterised integration and expression at four candidate loci, fliD, fliS, fliT, and fliY, of the E. coli flagellar region 3a. The integration efficiency and expression from the four integrations varied considerably. Integration into fliD and fliS significantly decreased motility, while integration into fliT and fliY had only a minor effect on the motility. None of the integrations had negative effects on the growth of the bacteria. Overall, we found that fliT was the most suitable integration site. PMID:25350000

  9. Role of flgA for Flagellar Biosynthesis and Biofilm Formation of Campylobacter jejuni NCTC11168.

    PubMed

    Kim, Joo-Sung; Park, Changwon; Kim, Yun-Ji

    2015-11-01

    The complex roles of flagella in the pathogenesis of Campylobacter jejuni, a major cause of worldwide foodborne diarrheal disease, are important. Compared with the wild-type, an insertional mutation of the flgA gene (cj0769c) demonstrated significant decrease in the biofilm formation of C. jejuni NCTC11168 on major food contact surfaces, such as polystyrene, stainless steel, and borosilicate glass. The flgA mutant was completely devoid of flagella and non-motile whereas the wild-type displayed the full-length flagella and motility. In addition, the biofilm formation of the wild-type was inversely dependent on the viscosity of the media. These results support that flagellar-mediated motility plays a significant role in the biofilm formation of C. jejuni NCTC11168. Moreover, our adhesion assay suggests that it plays an important role during biofilm maturation after initial attachment. Furthermore, C. jejuni NCTC11168 wild-type formed biofilm with a net-like structure of extracellular fiber-like material, but such a structure was significantly reduced in the biofilm of the flgA mutant. It supports that the extracellular fiber-like material may play a significant role in the biofilm formation of C. jejuni. This study demonstrated that flgA is essential for flagellar biosynthesis and motility, and plays a significant role in the biofilm formation of C. jejuni NCTC11168.

  10. Calorie restriction and susceptibility to intact pathogens

    PubMed Central

    2008-01-01

    Long-term calorie restriction (CR) causes numerous physiological changes that ultimately increase mean and maximum lifespan of most species examined to date. One physiological change that occurs with CR is enhanced immune function, as tested using antigens and mitogens to stimulate an immune response. Fewer studies have used intact pathogen exposure to test whether the enhanced capacity of the immune response during CR actually decreases susceptibility of hosts to their pathogens. So far, studies using intact bacteria, virus, and helminth worm exposure indicate that, despite similar or enhanced immune system function, CR hosts are more susceptible to infection by intact pathogens than their fully fed counterparts. Long-term CR studies that examine susceptibility to a variety of parasite taxa will help determine if direct CR or CR mimetics will be beneficial to people living in pathogen-rich environments. PMID:19424864

  11. Chlamydomonas IFT70/CrDYF-1 is a core component of IFT particle complex B and is required for flagellar assembly.

    PubMed

    Fan, Zhen-Chuan; Behal, Robert H; Geimer, Stefan; Wang, Zhaohui; Williamson, Shana M; Zhang, Haili; Cole, Douglas G; Qin, Hongmin

    2010-08-01

    DYF-1 is a highly conserved protein essential for ciliogenesis in several model organisms. In Caenorhabditis elegans, DYF-1 serves as an essential activator for an anterograde motor OSM-3 of intraflagellar transport (IFT), the ciliogenesis-required motility that mediates the transport of flagellar precursors and removal of turnover products. In zebrafish and Tetrahymena DYF-1 influences the cilia tubulin posttranslational modification and may have more ubiquitous function in ciliogenesis than OSM-3. Here we address how DYF-1 biochemically interacts with the IFT machinery by using the model organism Chlamydomonas reinhardtii, in which the anterograde IFT does not depend on OSM-3. Our results show that this protein is a stoichiometric component of the IFT particle complex B and interacts directly with complex B subunit IFT46. In concurrence with the established IFT protein nomenclature, DYF-1 is also named IFT70 after the apparent size of the protein. IFT70/CrDYF-1 is essential for the function of IFT in building the flagellum because the flagella of IFT70/CrDYF-1-depleted cells were greatly shortened. Together, these results demonstrate that IFT70/CrDYF-1 is a canonical subunit of IFT particle complex B and strongly support the hypothesis that the IFT machinery has species- and tissue-specific variations with functional ramifications.

  12. How molecular motors work - insights from the molecular machinist's toolbox: the Nobel prize in Chemistry 2016.

    PubMed

    Astumian, R D

    2017-02-01

    The Nobel prize in Chemistry for 2016 was awarded to Jean Pierre Sauvage, Sir James Fraser Stoddart, and Bernard (Ben) Feringa for their contributions to the design and synthesis of molecular machines. While this field is still in its infancy, and at present there are no commercial applications, many observers have stressed the tremendous potential of molecular machines to revolutionize technology. However, perhaps the most important result so far accruing from the synthesis of molecular machines is the insight provided into the fundamental mechanisms by which molecular motors, including biological motors such as kinesin, myosin, FoF1 ATPase, and the flagellar motor, function. The ability to "tinker" with separate components of molecular motors allows asking, and answering, specific questions about mechanism, particularly with regard to light driven vs. chemistry driven molecular motors.

  13. Heterogeneity of dynein structure implies coordinated suppression of dynein motor activity in the axoneme.

    PubMed

    Maheshwari, Aditi; Ishikawa, Takashi

    2012-08-01

    Axonemal dyneins provide the driving force for flagellar/ciliary bending. Nucleotide-induced conformational changes of flagellar dynein have been found both in vitro and in situ by electron microscopy, and in situ studies demonstrated the coexistence of at least two conformations in axonemes in the presence of nucleotides (the apo and the nucleotide-bound forms). The distribution of the two forms suggested cooperativity between adjacent dyneins on axonemal microtubule doublets. Although the mechanism of such cooperativity is unknown it might be related to the mechanism of bending. To explore the mechanism by which structural heterogeneity of axonemal dyneins is induced by nucleotides, we used cilia from Tetrahymena thermophila to examine the structure of dyneins in a) the intact axoneme and b) microtubule doublets separated from the axoneme, both with and without additional pure microtubules. We also employed an ATPase assay on these specimens to investigate dynein activity functionally. Dyneins on separated doublets show more activation by nucleotides than those in the intact axoneme, both structurally and in the ATPase assay, and this is especially pronounced when the doublets are coupled with added microtubules, as expected. Paralleling the reduced ATPase activity in the intact axonemes, a lower proportion of these dyneins are in the nucleotide-bound form. This indicates a coordinated suppression of dynein activity in the axoneme, which could be the key for understanding the bending mechanism.

  14. Autism Spectrum Disorder and intact executive functioning.

    PubMed

    Ferrara, R; Ansermet, F; Massoni, F; Petrone, L; Onofri, E; Ricci, P; Archer, T; Ricci, S

    2016-01-01

    Earliest notions concerning autism (Autism Spectrum Disorders, ASD) describe the disturbance in executive functioning. Despite altered definition, executive functioning, expressed as higher cognitive skills required complex behaviors linked to the prefrontal cortex, are defective in autism. Specific difficulties in children presenting autism or verbal disabilities at executive functioning levels have been identified. Nevertheless, the developmental deficit of executive functioning in autism is highly diversified with huge individual variation and may even be absent. The aim of the present study to examine the current standing of intact executive functioning intact in ASD.

  15. Basic Timing Abilities Stay Intact in Patients with Musician's Dystonia

    PubMed Central

    van der Steen, M. C.; van Vugt, Floris T.; Keller, Peter E.; Altenmüller, Eckart

    2014-01-01

    Task-specific focal dystonia is a movement disorder that is characterized by the loss of voluntary motor control in extensively trained movements. Musician's dystonia is a type of task-specific dystonia that is elicited in professional musicians during instrumental playing. The disorder has been associated with deficits in timing. In order to test the hypothesis that basic timing abilities are affected by musician's dystonia, we investigated a group of patients (N = 15) and a matched control group (N = 15) on a battery of sensory and sensorimotor synchronization tasks. Results did not show any deficits in auditory-motor processing for patients relative to controls. Both groups benefited from a pacing sequence that adapted to their timing (in a sensorimotor synchronization task at a stable tempo). In a purely perceptual task, both groups were able to detect a misaligned metronome when it was late rather than early relative to a musical beat. Overall, the results suggest that basic timing abilities stay intact in patients with musician's dystonia. This supports the idea that musician's dystonia is a highly task-specific movement disorder in which patients are mostly impaired in tasks closely related to the demands of actually playing their instrument. PMID:24667273

  16. Basic timing abilities stay intact in patients with musician's dystonia.

    PubMed

    van der Steen, M C; van Vugt, Floris T; Keller, Peter E; Altenmüller, Eckart

    2014-01-01

    Task-specific focal dystonia is a movement disorder that is characterized by the loss of voluntary motor control in extensively trained movements. Musician's dystonia is a type of task-specific dystonia that is elicited in professional musicians during instrumental playing. The disorder has been associated with deficits in timing. In order to test the hypothesis that basic timing abilities are affected by musician's dystonia, we investigated a group of patients (N = 15) and a matched control group (N = 15) on a battery of sensory and sensorimotor synchronization tasks. Results did not show any deficits in auditory-motor processing for patients relative to controls. Both groups benefited from a pacing sequence that adapted to their timing (in a sensorimotor synchronization task at a stable tempo). In a purely perceptual task, both groups were able to detect a misaligned metronome when it was late rather than early relative to a musical beat. Overall, the results suggest that basic timing abilities stay intact in patients with musician's dystonia. This supports the idea that musician's dystonia is a highly task-specific movement disorder in which patients are mostly impaired in tasks closely related to the demands of actually playing their instrument.

  17. MotD of Sinorhizobium meliloti and Related α-Proteobacteria Is the Flagellar-Hook-Length Regulator and Therefore Reassigned as FliK

    PubMed Central

    Eggenhofer, Elke; Rachel, Reinhard; Haslbeck, Martin; Scharf, Birgit

    2006-01-01

    The flagella of the soil bacterium Sinorhizobium meliloti differ from the enterobacterial paradigm in the complex filament structure and modulation of the flagellar rotary speed. The mode of motility control in S. meliloti has a molecular corollary in two novel periplasmic motility proteins, MotC and MotE, that are present in addition to the ubiquitous MotA/MotB energizing proton channel. A fifth motility gene is located in the mot operon downstream of the motB and motC genes. Its gene product was originally designated MotD, a cytoplasmic motility protein having an unknown function. We report here reassignment of MotD as FliK, the regulator of flagellar hook length. The FliK gene is one of the few flagellar genes not annotated in the contiguous flagellar regulon of S. meliloti. Characteristic for its class, the 475-residue FliK protein contains a conserved, compactly folded Flg hook domain in its carboxy-terminal region. Deletion of fliK leads to formation of prolonged flagellar hooks (polyhooks) with missing filament structures. Extragenic suppressor mutations all mapped in the cytoplasmic region of the transmembrane export protein FlhB and restored assembly of a flagellar filament, and thus motility, in the presence of polyhooks. The structural properties of FliK are consistent with its function as a substrate specificity switch of the flagellar export apparatus for switching from rod/hook-type substrates to filament-type substrates. PMID:16513744

  18. The Salmonella Spi1 virulence regulatory protein HilD directly activates transcription of the flagellar master operon flhDC.

    PubMed

    Singer, Hanna M; Kühne, Caroline; Deditius, Julia A; Hughes, Kelly T; Erhardt, Marc

    2014-04-01

    Infection of intestinal epithelial cells is dependent on the Salmonella enterica serovar Typhimurium pathogenicity island 1 (Spi1)-encoded type III injectisome system and flagellar motility. Thus, the expression of virulence and flagellar genes is subject to tight regulatory control mechanisms in order to ensure the correct spatiotemporal production of the respective gene products. In this work, we reveal a new level of cross-regulation between the Spi1 and flagellar regulatory systems. Transposon mutagenesis identified a class of mutants that prevented flhDC autorepression by overexpressing HilD. HilD, HilC, RtsA, and HilA comprise a positive regulatory circuit for the expression of the Spi1 genes. Here, we report a novel transcriptional cross talk between the Spi1 and flagellar regulons where HilD transcriptionally activates flhDC gene expression by binding to nucleotides -68 to -24 upstream from the P5 transcriptional start site. We additionally show that, in contrast to the results of a previous report, HilA does not affect flagellar gene expression. Finally, we discuss a model of the cross-regulation network between Spi1 and the flagellar system and propose a regulatory mechanism via the Spi1 master regulator HilD that would prime flagellar genes for rapid reactivation during host infection.

  19. Molecular Cloning and Characterization of the Helicobacter pylori fliD Gene, an Essential Factor in Flagellar Structure and Motility

    PubMed Central

    Seong Kim, Jang; Hoon Chang, Ji; Il Chung, Soo; Sun Yum, Jung

    1999-01-01

    Helicobacter pylori colonizes the human stomach and can cause gastroduodenal disease. Flagellar motility is regarded as a major factor in the colonizing ability of H. pylori. The functional roles of flagellar structural proteins other than FlaA, FlaB, and FlgE are not well understood. The fliD operon of H. pylori consists of flaG, fliD, and fliS genes, in the order stated, under the control of a ς28-dependent promoter. In an effort to elucidate the function of the FliD protein, a hook-associated protein 2 homologue, in flagellar morphogenesis and motility, the fliD gene (2,058 bp) was cloned and isogenic mutants were constructed by disruption of the fliD gene with a kanamycin resistance cassette and electroporation-mediated allelic-exchange mutagenesis. In the fliD mutant, morphologically abnormal flagellar appendages in which very little filament elongation was apparent were observed. The fliD mutant strain was completely nonmotile, indicating that these abnormal flagella were functionally defective. Furthermore, the isogenic fliD mutant of H. pylori SS1, a mouse-adapted strain, was not able to colonize the gastric mucosae of host mice. These results suggest that H. pylori FliD is an essential element in the assembly of the functional flagella that are required for colonization of the gastric mucosa. PMID:10559162

  20. Genome-wide transcriptional analysis of flagellar regeneration in Chlamydomonas reinhardtii identifies orthologs of ciliary disease genes

    PubMed Central

    Stolc, Viktor; Samanta, Manoj Pratim; Tongprasit, Waraporn; Marshall, Wallace F.

    2005-01-01

    The important role that cilia and flagella play in human disease creates an urgent need to identify genes involved in ciliary assembly and function. The strong and specific induction of flagellar-coding genes during flagellar regeneration in Chlamydomonas reinhardtii suggests that transcriptional profiling of such cells would reveal new flagella-related genes. We have conducted a genome-wide analysis of RNA transcript levels during flagellar regeneration in Chlamydomonas by using maskless photolithography method-produced DNA oligonucleotide microarrays with unique probe sequences for all exons of the 19,803 predicted genes. This analysis represents previously uncharacterized whole-genome transcriptional activity profiling study in this important model organism. Analysis of strongly induced genes reveals a large set of known flagellar components and also identifies a number of important disease-related proteins as being involved with cilia and flagella, including the zebrafish polycystic kidney genes Qilin, Reptin, and Pontin, as well as the testis-expressed tubby-like protein TULP2. PMID:15738400

  1. Seroprevalence in chickens against campylobacter jejuni flagellar capping protein (FliD) in selected areas of the U.S

    USDA-ARS?s Scientific Manuscript database

    Campylobacter jejuni, a Gram-negative rod, is a zoonotic pathogen associated with human acute bacterial gastroenteritis. Poultry products are regarded as a major source for human infection with this microorganism. We have demonstrated that the flagellar capping protein (FliD) of C. jejuni is highl...

  2. Genome-wide transcriptional analysis of flagellar regeneration in Chlamydomonas reinhardtii identifies orthologs of ciliary disease genes

    NASA Technical Reports Server (NTRS)

    Stolc, Viktor; Samanta, Manoj Pratim; Tongprasit, Waraporn; Marshall, Wallace F.

    2005-01-01

    The important role that cilia and flagella play in human disease creates an urgent need to identify genes involved in ciliary assembly and function. The strong and specific induction of flagellar-coding genes during flagellar regeneration in Chlamydomonas reinhardtii suggests that transcriptional profiling of such cells would reveal new flagella-related genes. We have conducted a genome-wide analysis of RNA transcript levels during flagellar regeneration in Chlamydomonas by using maskless photolithography method-produced DNA oligonucleotide microarrays with unique probe sequences for all exons of the 19,803 predicted genes. This analysis represents previously uncharacterized whole-genome transcriptional activity profiling study in this important model organism. Analysis of strongly induced genes reveals a large set of known flagellar components and also identifies a number of important disease-related proteins as being involved with cilia and flagella, including the zebrafish polycystic kidney genes Qilin, Reptin, and Pontin, as well as the testis-expressed tubby-like protein TULP2.

  3. Genome-wide transcriptional analysis of flagellar regeneration in Chlamydomonas reinhardtii identifies orthologs of ciliary disease genes

    NASA Technical Reports Server (NTRS)

    Stolc, Viktor; Samanta, Manoj Pratim; Tongprasit, Waraporn; Marshall, Wallace F.

    2005-01-01

    The important role that cilia and flagella play in human disease creates an urgent need to identify genes involved in ciliary assembly and function. The strong and specific induction of flagellar-coding genes during flagellar regeneration in Chlamydomonas reinhardtii suggests that transcriptional profiling of such cells would reveal new flagella-related genes. We have conducted a genome-wide analysis of RNA transcript levels during flagellar regeneration in Chlamydomonas by using maskless photolithography method-produced DNA oligonucleotide microarrays with unique probe sequences for all exons of the 19,803 predicted genes. This analysis represents previously uncharacterized whole-genome transcriptional activity profiling study in this important model organism. Analysis of strongly induced genes reveals a large set of known flagellar components and also identifies a number of important disease-related proteins as being involved with cilia and flagella, including the zebrafish polycystic kidney genes Qilin, Reptin, and Pontin, as well as the testis-expressed tubby-like protein TULP2.

  4. HYDROCARBON VAPOR DIFFUSION IN INTACT CORE SLEEVES

    EPA Science Inventory

    The diffusion of 2,2,4-trimethylpentane (TMP) and 2,2,5-trimethylhexane (TMH) vapors put of residually contaminated sandy soil from the U.S. Environmental Protection Agency (EPA) field research site at Traverse City, Michigan, was measured and modeled. The headspace of an intact ...

  5. HYDROCARBON VAPOR DIFFUSION IN INTACT CORE SLEEVES

    EPA Science Inventory

    The diffusion of 2,2,4-trimethylpentane (TMP) and 2,2,5-trimethylhexane (TMH) vapors put of residually contaminated sandy soil from the U.S. Environmental Protection Agency (EPA) field research site at Traverse City, Michigan, was measured and modeled. The headspace of an intact ...

  6. FliH and FliI ensure efficient energy coupling of flagellar type III protein export in Salmonella.

    PubMed

    Minamino, Tohru; Kinoshita, Miki; Inoue, Yumi; Morimoto, Yusuke V; Ihara, Kunio; Koya, Satomi; Hara, Noritaka; Nishioka, Noriko; Kojima, Seiji; Homma, Michio; Namba, Keiichi

    2016-06-01

    For construction of the bacterial flagellum, flagellar proteins are exported via its specific export apparatus from the cytoplasm to the distal end of the growing flagellar structure. The flagellar export apparatus consists of a transmembrane (TM) export gate complex and a cytoplasmic ATPase complex consisting of FliH, FliI, and FliJ. FlhA is a TM export gate protein and plays important roles in energy coupling of protein translocation. However, the energy coupling mechanism remains unknown. Here, we performed a cross-complementation assay to measure robustness of the energy transduction system of the export apparatus against genetic perturbations. Vibrio FlhA restored motility of a Salmonella ΔflhA mutant but not that of a ΔfliH-fliI flhB(P28T) ΔflhA mutant. The flgM mutations significantly increased flagellar gene expression levels, allowing Vibrio FlhA to exert its export activity in the ΔfliH-fliI flhB(P28T) ΔflhA mutant. Pull-down assays revealed that the binding affinities of Vibrio FlhA for FliJ and the FlgN-FlgK chaperone-substrate complex were much lower than those of Salmonella FlhA. These suggest that Vibrio FlhA requires the support of FliH and FliI to efficiently and properly interact with FliJ and the FlgN-FlgK complex. We propose that FliH and FliI ensure robust and efficient energy coupling of protein export during flagellar assembly. © 2016 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  7. Small Particles Intact Capture Experiment (SPICE)

    NASA Technical Reports Server (NTRS)

    Nishioka, Ken-Ji; Carle, G. C.; Bunch, T. E.; Mendez, David J.; Ryder, J. T.

    1994-01-01

    The Small Particles Intact Capture Experiment (SPICE) will develop technologies and engineering techniques necessary to capture nearly intact, uncontaminated cosmic and interplanetary dust particles (IDP's). Successful capture of such particles will benefit the exobiology and planetary science communities by providing particulate samples that may have survived unaltered since the formation of the solar system. Characterization of these particles may contribute fundamental data to our knowledge of how these particles could have formed into our planet Earth and, perhaps, contributed to the beginnings of life. The term 'uncontaminated' means that captured cosmic and IDP particles are free of organic contamination from the capture process and the term 'nearly intact capture' means that their chemical and elemental components are not materially altered during capture. The key to capturing cosmic and IDP particles that are organic-contamination free and nearly intact is the capture medium. Initial screening of capture media included organic foams, multiple thin foil layers, and aerogel (a silica gel); but, with the exception of aerogel, the requirements of no contamination or nearly intact capture were not met. To ensure no contamination of particles in the capture process, high-purity aerogel was chosen. High-purity aerogel results in high clarity (visual clearness), a useful quality in detection and recovery of embedded captured particles from the aerogel. P. Tsou at the Jet Propulsion Laboratory (JPL) originally described the use of aerogel for this purpose and reported laboratory test results. He has flown aerogel as a 'GAS-can Lid' payload on STS-47 and is evaluating the results. The Timeband Capture Cell Experiment (TICCE), a Eureca 1 experiment, is also flying aerogel and is scheduled for recovery in late April.

  8. Small Particles Intact Capture Experiment (SPICE)

    NASA Technical Reports Server (NTRS)

    Nishioka, Ken-Ji; Carle, G. C.; Bunch, T. E.; Mendez, David J.; Ryder, J. T.

    1994-01-01

    The Small Particles Intact Capture Experiment (SPICE) will develop technologies and engineering techniques necessary to capture nearly intact, uncontaminated cosmic and interplanetary dust particles (IDP's). Successful capture of such particles will benefit the exobiology and planetary science communities by providing particulate samples that may have survived unaltered since the formation of the solar system. Characterization of these particles may contribute fundamental data to our knowledge of how these particles could have formed into our planet Earth and, perhaps, contributed to the beginnings of life. The term 'uncontaminated' means that captured cosmic and IDP particles are free of organic contamination from the capture process and the term 'nearly intact capture' means that their chemical and elemental components are not materially altered during capture. The key to capturing cosmic and IDP particles that are organic-contamination free and nearly intact is the capture medium. Initial screening of capture media included organic foams, multiple thin foil layers, and aerogel (a silica gel); but, with the exception of aerogel, the requirements of no contamination or nearly intact capture were not met. To ensure no contamination of particles in the capture process, high-purity aerogel was chosen. High-purity aerogel results in high clarity (visual clearness), a useful quality in detection and recovery of embedded captured particles from the aerogel. P. Tsou at the Jet Propulsion Laboratory (JPL) originally described the use of aerogel for this purpose and reported laboratory test results. He has flown aerogel as a 'GAS-can Lid' payload on STS-47 and is evaluating the results. The Timeband Capture Cell Experiment (TICCE), a Eureca 1 experiment, is also flying aerogel and is scheduled for recovery in late April.

  9. Assembly and stoichiometry of the core structure of the bacterial flagellar type III export gate complex.

    PubMed

    Fukumura, Takuma; Makino, Fumiaki; Dietsche, Tobias; Kinoshita, Miki; Kato, Takayuki; Wagner, Samuel; Namba, Keiichi; Imada, Katsumi; Minamino, Tohru

    2017-08-01

    The bacterial flagellar type III export apparatus, which is required for flagellar assembly beyond the cell membranes, consists of a transmembrane export gate complex and a cytoplasmic ATPase complex. FlhA, FlhB, FliP, FliQ, and FliR form the gate complex inside the basal body MS ring, although FliO is required for efficient export gate formation in Salmonella enterica. However, it remains unknown how they form the gate complex. Here we report that FliP forms a homohexameric ring with a diameter of 10 nm. Alanine substitutions of conserved Phe-137, Phe-150, and Glu-178 residues in the periplasmic domain of FliP (FliPP) inhibited FliP6 ring formation, suppressing flagellar protein export. FliO formed a 5-nm ring structure with 3 clamp-like structures that bind to the FliP6 ring. The crystal structure of FliPP derived from Thermotoga maritia, and structure-based photo-crosslinking experiments revealed that Phe-150 and Ser-156 of FliPP are involved in the FliP-FliP interactions and that Phe-150, Arg-152, Ser-156, and Pro-158 are responsible for the FliP-FliO interactions. Overexpression of FliP restored motility of a ∆fliO mutant to the wild-type level, suggesting that the FliP6 ring is a functional unit in the export gate complex and that FliO is not part of the final gate structure. Copurification assays revealed that FlhA, FlhB, FliQ, and FliR are associated with the FliO/FliP complex. We propose that the assembly of the export gate complex begins with FliP6 ring formation with the help of the FliO scaffold, followed by FliQ, FliR, and FlhB and finally FlhA during MS ring formation.

  10. A common assembly module in injectisome and flagellar type III secretion sorting platforms.

    PubMed

    Notti, Ryan Q; Bhattacharya, Shibani; Lilic, Mirjana; Stebbins, C Erec

    2015-05-21

    Translocating proteins across the double membrane of Gram-negative bacteria, type III secretion systems (T3SS) occur in two evolutionarily related forms: injectisomes, delivering virulence factors into host cells, and the flagellar system, secreting the polymeric filament used for motility. While both systems share related elements of a cytoplasmic sorting platform that facilitates the hierarchical secretion of protein substrates, its assembly and regulation remain unclear. Here we describe a module mediating the assembly of the sorting platform in both secretion systems, and elucidate the structural basis for segregation of homologous components among these divergent T3SS subtypes sharing a common cytoplasmic milieu. These results provide a foundation for the subtype-specific assembly of T3SS sorting platforms and will support further mechanistic analysis and anti-virulence drug design.

  11. Anatomical and Molecular Design of the Drosophila Antenna as a Flagellar Auditory Organ

    PubMed Central

    TODI, SOKOL V.; SHARMA, YASHODA; EBERL, DANIEL F.

    2007-01-01

    The molecular basis of hearing is less well understood than many other senses. However, recent studies in Drosophila have provided some important steps towards a molecular understanding of hearing. In this report, we summarize these findings and their implications on the relationship between hearing and touch. In Drosophila, hearing is accomplished by Johnston’s Organ, a chordotonal organ containing over 150 scolopidia within the second antennal segment. We will discuss anatomical features of the antenna and how they contribute to the function of this flagellar auditory receptor. The effects of several mutants, identified through mutagenesis screens or as homologues of vertebrate auditory genes, will be summarized. Based on evidence gathered from these studies, we propose a speculative model for how the chordotonal organ might function. PMID:15252880

  12. Common and distinct structural features of Salmonella injectisome and flagellar basal body.

    PubMed

    Kawamoto, Akihiro; Morimoto, Yusuke V; Miyata, Tomoko; Minamino, Tohru; Hughes, Kelly T; Kato, Takayuki; Namba, Keiichi

    2013-11-28

    Bacterial pathogens use an injectisome to deliver virulence proteins into eukaryotic host cells. The bacterial flagellum and injectisome export their component proteins for self-assembly. These two systems show high structural similarities and are classified as the type III secretion system, but it remains elusive how similar they are in situ because the structures of these complexes isolated from cells and visualized by electron cryomicroscopy have shown only the export channel and housing for the export apparatus. Here we report in situ structures of Salmonella injectisome and flagellum by electron cryotomography. The injectisome lacks the flagellar basal body C-ring, but a wing-like disc and a globular density corresponding to the export gate platform and ATPase hexamer ring, respectively, are stably attached through thin connectors, revealing yet unidentified common architectures of the two systems. The ATPase ring is far from the disc, suggesting that both apparatuses are observed in an export-off state.

  13. Evolution. Evolutionary resurrection of flagellar motility via rewiring of the nitrogen regulation system.

    PubMed

    Taylor, Tiffany B; Mulley, Geraldine; Dills, Alexander H; Alsohim, Abdullah S; McGuffin, Liam J; Studholme, David J; Silby, Mark W; Brockhurst, Michael A; Johnson, Louise J; Jackson, Robert W

    2015-02-27

    A central process in evolution is the recruitment of genes to regulatory networks. We engineered immotile strains of the bacterium Pseudomonas fluorescens that lack flagella due to deletion of the regulatory gene fleQ. Under strong selection for motility, these bacteria consistently regained flagella within 96 hours via a two-step evolutionary pathway. Step 1 mutations increase intracellular levels of phosphorylated NtrC, a distant homolog of FleQ, which begins to commandeer control of the fleQ regulon at the cost of disrupting nitrogen uptake and assimilation. Step 2 is a switch-of-function mutation that redirects NtrC away from nitrogen uptake and toward its novel function as a flagellar regulator. Our results demonstrate that natural selection can rapidly rewire regulatory networks in very few, repeatable mutational steps.

  14. From organelle to protein gel: a 6-wk laboratory project on flagellar proteins.

    PubMed

    Mitchell, Beth Ferro; Graziano, Mary R

    2006-01-01

    Research suggests that undergraduate students learn more from lab experiences that involve longer-term projects. We have developed a one-semester laboratory sequence aimed at sophomore-level undergraduates. In designing this curriculum, we focused on several educational objectives: 1) giving students a feel for the scientific research process, 2) introducing them to commonly used lab techniques, and 3) building skills in both data analysis and scientific writing. Over the course of the semester, students carry out two project-based lab experiences and write two substantial lab reports modeled on primary literature. Student assessment data indicate that this lab curriculum achieved these objectives. This article describes the first of these projects, which uses the biflagellate alga Chlamydomonas reinhardtii to introduce students to the study of flagellar motility, protein synthesis, microtubule polymerization, organelle assembly, and protein isolation and characterization.

  15. A common assembly module in injectisome and flagellar type III secretion sorting platforms

    NASA Astrophysics Data System (ADS)

    Notti, Ryan Q.; Bhattacharya, Shibani; Lilic, Mirjana; Stebbins, C. Erec

    2015-05-01

    Translocating proteins across the double membrane of Gram-negative bacteria, type III secretion systems (T3SS) occur in two evolutionarily related forms: injectisomes, delivering virulence factors into host cells, and the flagellar system, secreting the polymeric filament used for motility. While both systems share related elements of a cytoplasmic sorting platform that facilitates the hierarchical secretion of protein substrates, its assembly and regulation remain unclear. Here we describe a module mediating the assembly of the sorting platform in both secretion systems, and elucidate the structural basis for segregation of homologous components among these divergent T3SS subtypes sharing a common cytoplasmic milieu. These results provide a foundation for the subtype-specific assembly of T3SS sorting platforms and will support further mechanistic analysis and anti-virulence drug design.

  16. A common assembly module in injectisome and flagellar type III secretion sorting platforms

    PubMed Central

    Notti, Ryan Q.; Bhattacharya, Shibani; Lilic, Mirjana; Stebbins, C. Erec

    2015-01-01

    Translocating proteins across the double membrane of Gram-negative bacteria, type III secretion systems (T3SS) occur in two evolutionarily related forms: injectisomes, delivering virulence factors into host cells, and the flagellar system, secreting the polymeric filament used for motility. While both systems share related elements of a cytoplasmic sorting platform that facilitates the hierarchical secretion of protein substrates, its assembly and regulation remain unclear. Here we describe a module mediating the assembly of the sorting platform in both secretion systems, and elucidate the structural basis for segregation of homologous components among these divergent T3SS subtypes sharing a common cytoplasmic milieu. These results provide a foundation for the subtype-specific assembly of T3SS sorting platforms and will support further mechanistic analysis and anti-virulence drug design. PMID:25994170

  17. Acid extrusion from human spermatozoa is mediated by flagellar voltage-gated proton channel.

    PubMed

    Lishko, Polina V; Botchkina, Inna L; Fedorenko, Andriy; Kirichok, Yuriy

    2010-02-05

    Human spermatozoa are quiescent in the male reproductive system and must undergo activation once introduced into the female reproductive tract. This process is known to require alkalinization of sperm cytoplasm, but the mechanism responsible for transmembrane proton extrusion has remained unknown because of the inability to measure membrane conductance in human sperm. Here, by successfully patch clamping human spermatozoa, we show that proton channel Hv1 is their dominant proton conductance. Hv1 is confined to the principal piece of the sperm flagellum, where it is expressed at unusually high density. Robust flagellar Hv1-dependent proton conductance is activated by membrane depolarization, an alkaline extracellular environment, endocannabinoid anandamide, and removal of extracellular zinc, a potent Hv1 blocker. Hv1 allows only outward transport of protons and is therefore dedicated to inducing intracellular alkalinization and activating spermatozoa. The importance of Hv1 for sperm activation makes it an attractive target for controlling male fertility.

  18. Evidence for Loss of a Partial Flagellar Glycolytic Pathway during Trypanosomatid Evolution

    PubMed Central

    Brown, Robert W. B.; Collingridge, Peter W.; Gull, Keith; Rigden, Daniel J.; Ginger, Michael L.

    2014-01-01

    Classically viewed as a cytosolic pathway, glycolysis is increasingly recognized as a metabolic pathway exhibiting surprisingly wide-ranging variations in compartmentalization within eukaryotic cells. Trypanosomatid parasites provide an extreme view of glycolytic enzyme compartmentalization as several glycolytic enzymes are found exclusively in peroxisomes. Here, we characterize Trypanosoma brucei flagellar proteins resembling glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoglycerate kinase (PGK): we show the latter associates with the axoneme and the former is a novel paraflagellar rod component. The paraflagellar rod is an essential extra-axonemal structure in trypanosomes and related protists, providing a platform into which metabolic activities can be built. Yet, bioinformatics interrogation and structural modelling indicate neither the trypanosome PGK-like nor the GAPDH-like protein is catalytically active. Orthologs are present in a free-living ancestor of the trypanosomatids, Bodo saltans: the PGK-like protein from B. saltans also lacks key catalytic residues, but its GAPDH-like protein is predicted to be catalytically competent. We discuss the likelihood that the trypanosome GAPDH-like and PGK-like proteins constitute molecular evidence for evolutionary loss of a flagellar glycolytic pathway, either as a consequence of niche adaptation or the re-localization of glycolytic enzymes to peroxisomes and the extensive changes to glycolytic flux regulation that accompanied this re-localization. Evidence indicating loss of localized ATP provision via glycolytic enzymes therefore provides a novel contribution to an emerging theme of hidden diversity with respect to compartmentalization of the ubiquitous glycolytic pathway in eukaryotes. A possibility that trypanosome GAPDH-like protein additionally represents a degenerate example of a moonlighting protein is also discussed. PMID:25050549

  19. Identification of a gene cluster involved in flagellar basal body biogenesis in Caulobacter crescentus.

    PubMed

    Hahnenberger, K M; Shapiro, L

    1987-03-05

    The bacterial flagellum is a complex structure composed of a transmembrane basal body, a hook, and a filament. In Caulobacter crescentus the biosynthesis and assembly of this structure is under temporal and spatial control. To help to define the order of assembly of the flagellar components and to identify the genes involved in the early steps of basal body construction, mutants defective in basal body formation have been analyzed. Mutants in the flaD flaB flaC gene cluster were found to be unable to assemble a complete basal body. The flaD BC motC region was cloned and the genes were localized by subcloning and complementation analysis. A series of Tn5 insertion mutations in the flaD BC region were mapped. Complementation analysis of the Tn5 insertion mutants indicated the existence of at least four transcriptional units in the region and identified the presence of two new genes designated flbN and flbO. Mutants in flbN, flaB, flaC and flbO were unable to assemble any basal body structure and are likely to be involved in the early steps of basal body formation. The flaD mutant, however, was found to contain a partially assembled basal body consisting of the rod and three hook-distal rings. All of the mutants in this cluster exhibited pleiotropic effects on the expression of other flagellar and chemotaxis functions, including the level of synthesis of flagellins, the hook protein and hook protein precursor, and the level of chemotaxis methylation.

  20. Flagellar membrane fusion and protein exchange in trypanosomes; a new form of cell-cell communication?

    PubMed Central

    Imhof, Simon; Fragoso, Cristina; Hemphill, Andrew; von Schubert, Conrad; Li, Dong; Legant, Wesley; Betzig, Eric; Roditi, Isabel

    2016-01-01

    Diverse structures facilitate direct exchange of proteins between cells, including plasmadesmata in plants and tunnelling nanotubes in bacteria and higher eukaryotes.  Here we describe a new mechanism of protein transfer, flagellar membrane fusion, in the unicellular parasite Trypanosoma brucei. When fluorescently tagged trypanosomes were co-cultured, a small proportion of double-positive cells were observed. The formation of double-positive cells was dependent on the presence of extracellular calcium and was enhanced by placing cells in medium supplemented with fresh bovine serum. Time-lapse microscopy revealed that double-positive cells arose by bidirectional protein exchange in the absence of nuclear transfer.  Furthermore, super-resolution microscopy showed that this process occurred in ≤1 minute, the limit of temporal resolution in these experiments. Both cytoplasmic and membrane proteins could be transferred provided they gained access to the flagellum. Intriguingly, a component of the RNAi machinery (Argonaute) was able to move between cells, raising the possibility that small interfering RNAs are transported as cargo. Transmission electron microscopy showed that shared flagella contained two axonemes and two paraflagellar rods bounded by a single membrane. In some cases flagellar fusion was partial and interactions between cells were transient. In other cases fusion occurred along the entire length of the flagellum, was stable for several hours and might be irreversible. Fusion did not appear to be deleterious for cell function: paired cells were motile and could give rise to progeny while fused. The motile flagella of unicellular organisms are related to the sensory cilia of higher eukaryotes, raising the possibility that protein transfer between cells via cilia or flagella occurs more widely in nature. PMID:27239276

  1. Unexpected Flagellar Movement Patterns and Epithelial Binding Behavior of Mouse Sperm in the Oviduct1

    PubMed Central

    Chang, Haixin; Suarez, Susan S.

    2012-01-01

    ABSTRACT In order to better understand how sperm movement is regulated in the oviduct, we mated wild-type female mice with Acr-EGFP males that produce sperm with fluorescent acrosomes. The fluorescence improved our ability to detect sperm within the oviduct. Oviducts were removed shortly before or after ovulation and placed in chambers on a warm microscope stage for video recording. Hyperactivated sperm in the isthmic reservoir detached frequently from the epithelium and then reattached. Unexpectedly, most sperm found in the ampulla remained bound to epithelium throughout the observation period of several minutes. In both regions, most sperm produced deep flagellar bends in the direction opposite the hook of the sperm head. This was unexpected, because mouse sperm incubated under capacitating conditions in vitro primarily hyperactivate by producing deep flagellar bends in the same direction as the hook of the head. In vitro, sperm that are treated with thimerosal to release Ca2+ from internal stores produce deep anti-hook bends; however, physical factors such as viscous oviduct fluid could also have influenced bending in oviductal sperm. Some sperm detached from epithelium in both the ampulla and isthmus during strong contractions of the oviduct. Blockage of oviduct contractions with nicardipine, however, did not stop sperm from forming a storage reservoir in the isthmus or prevent sperm from reaching the ampulla. These observations indicate that sperm continue to bind to oviductal epithelium after they leave the isthmic reservoir and that sperm motility is crucial in the transport of sperm to the fertilization site. PMID:22337334

  2. Nucleotide sequence and characterization of a Bacillus subtilis gene encoding a flagellar switch protein.

    PubMed Central

    Zuberi, A R; Bischoff, D S; Ordal, G W

    1991-01-01

    The nucleotide sequence of the Bacillus subtilis fliM gene has been determined. This gene encodes a 38-kDa protein that is homologous to the FliM flagellar switch proteins of Escherichia coli and Salmonella typhimurium. Expression of this gene in Che+ cells of E. coli and B. subtilis interferes with normal chemotaxis. The nature of the chemotaxis defect is dependent upon the host used. In B. subtilis, overproduction of FliM generates mostly nonmotile cells. Those cells that are motile switch less frequently. Expression of B. subtilis FliM in E. coli also generates nonmotile cells. However, those cells that are motile have a tumble bias. The B. subtilis fliM gene cannot complement an E. coli fliM mutant. A frameshift mutation was constructed in the fliM gene, and the mutation was transferred onto the B. subtilis chromosome. The mutant has a Fla- phenotype. This phenotype is consistent with the hypothesis that the FliM protein encodes a component of the flagellar switch in B. subtilis. Additional characterization of the fliM mutant suggests that the hag and mot loci are not expressed. These loci are regulated by the SigD form of RNA polymerase. We also did not observe any methyl-accepting chemotaxis proteins in an in vivo methylation experiment. The expression of these proteins is also dependent upon SigD. It is possible that a functional basal body-hook complex may be required for the expression of SigD-regulated chemotaxis and motility genes. Images PMID:1898932

  3. Flagellar membrane fusion and protein exchange in trypanosomes; a new form of cell-cell communication?

    PubMed

    Imhof, Simon; Fragoso, Cristina; Hemphill, Andrew; von Schubert, Conrad; Li, Dong; Legant, Wesley; Betzig, Eric; Roditi, Isabel

    2016-01-01

    Diverse structures facilitate direct exchange of proteins between cells, including plasmadesmata in plants and tunnelling nanotubes in bacteria and higher eukaryotes.  Here we describe a new mechanism of protein transfer, flagellar membrane fusion, in the unicellular parasite Trypanosoma brucei. When fluorescently tagged trypanosomes were co-cultured, a small proportion of double-positive cells were observed. The formation of double-positive cells was dependent on the presence of extracellular calcium and was enhanced by placing cells in medium supplemented with fresh bovine serum. Time-lapse microscopy revealed that double-positive cells arose by bidirectional protein exchange in the absence of nuclear transfer.  Furthermore, super-resolution microscopy showed that this process occurred in ≤1 minute, the limit of temporal resolution in these experiments. Both cytoplasmic and membrane proteins could be transferred provided they gained access to the flagellum. Intriguingly, a component of the RNAi machinery (Argonaute) was able to move between cells, raising the possibility that small interfering RNAs are transported as cargo. Transmission electron microscopy showed that shared flagella contained two axonemes and two paraflagellar rods bounded by a single membrane. In some cases flagellar fusion was partial and interactions between cells were transient. In other cases fusion occurred along the entire length of the flagellum, was stable for several hours and might be irreversible. Fusion did not appear to be deleterious for cell function: paired cells were motile and could give rise to progeny while fused. The motile flagella of unicellular organisms are related to the sensory cilia of higher eukaryotes, raising the possibility that protein transfer between cells via cilia or flagella occurs more widely in nature.

  4. Xenopus egg cytoplasm with intact actin.

    PubMed

    Field, Christine M; Nguyen, Phuong A; Ishihara, Keisuke; Groen, Aaron C; Mitchison, Timothy J

    2014-01-01

    We report optimized methods for preparing Xenopus egg extracts without cytochalasin D, that we term "actin-intact egg extract." These are undiluted egg cytoplasm that contains abundant organelles, and glycogen which supplies energy, and represents the least perturbed cell-free cytoplasm preparation we know of. We used this system to probe cell cycle regulation of actin and myosin-II dynamics (Field et al., 2011), and to reconstitute the large, interphase asters that organize early Xenopus embryos (Mitchison et al., 2012; Wühr, Tan, Parker, Detrich, & Mitchison, 2010). Actin-intact Xenopus egg extracts are useful for analysis of actin dynamics, and interaction of actin with other cytoplasmic systems, in a cell-free system that closely mimics egg physiology, and more generally for probing the biochemistry and biophysics of the egg, zygote, and early embryo. Detailed protocols are provided along with assays used to check cell cycle state and tips for handling and storing undiluted egg extracts.

  5. Silica Aerogel Captures Cosmic Dust Intact

    NASA Technical Reports Server (NTRS)

    Tsou, P.

    1994-01-01

    The mesostructure of silica aerogel resembles stings of grapes, ranging in size from 10 to 100 angstrom. This fine mesostructure transmits nearly 90 percent of incident light in the visible, while providing sufficiently gentle dissipation of the kinetric energy of hypervelocity cosmic dust particles to permit their intact capture. We introduced silica aerogel in 1987 as capture medium to take advantage of its low density, fine mesostruicture and most importantly, its transparency, allowing optical location of captured micron sized particles.

  6. Silica Aerogel Captures Cosmic Dust Intact

    NASA Technical Reports Server (NTRS)

    Tsou, P.

    1994-01-01

    The mesostructure of silica aerogel resembles stings of grapes, ranging in size from 10 to 100 angstrom. This fine mesostructure transmits nearly 90 percent of incident light in the visible, while providing sufficiently gentle dissipation of the kinetric energy of hypervelocity cosmic dust particles to permit their intact capture. We introduced silica aerogel in 1987 as capture medium to take advantage of its low density, fine mesostruicture and most importantly, its transparency, allowing optical location of captured micron sized particles.

  7. Motor syndromes.

    PubMed

    Corea, Francesco; Micheli, Sara

    2012-01-01

    Motor disturbances alone or associated with other focal deficits are the most common symptoms suggesting a neurovascular event. An appropriate clinical assessment of these signs and symptoms may help physicians to better diagnose and to both better treat and predict outcome. In this paper the main clinical features of motor deficit are described together with other motor-related events such as ataxia and movement disturbances.

  8. Vaccination with recombinant flagellar proteins FlgJ and FliN induce protection against Brucella abortus 544 infection in BALB/c mice.

    PubMed

    Li, Xianbo; Xu, Jie; Xie, Yongfei; Qiu, Yefeng; Fu, Simei; Yuan, Xitong; Ke, Yuehua; Yu, Shuang; Du, Xinying; Cui, Mingquan; Chen, Yanfen; Wang, Tongkun; Wang, Zhoujia; Yu, Yaqing; Huang, Kehe; Huang, Liuyu; Peng, Guangneng; Chen, Zeliang; Wang, Yufei

    2012-12-28

    Brucella has been considered as a non-motile, facultative intracellular pathogenic bacterium. However, the genome sequences of different Brucella species reveal the presence of the flagellar genes needed for the construction of a functional flagellum. Due to its roles in the interaction between pathogen and host, we hypothesized that some of the flagellar proteins might induce protective immune responses and these proteins will be good subunit vaccine candidates. This study was conducted to screening of protective antigens among these flagellar proteins. Firstly, according to the putative functional roles, a total of 30 flagellar genes of Brucella abortus were selected for in vitro expression. 15 of these flagellar genes were successfully expressed as his-tagged recombinant proteins in Escherichia coli ER2566. Then, these proteins were purified and used to analyze their T cell immunity induction activity by an in vitro gamma interferon (IFN-γ) assay. Five of the flagellar proteins could stimulate significantly higher levels of IFN-γ secretion in splenocytes from S19 immunized mice, indicating their T cell induction activity. Finally, immunogenicity and protection activity of these 5 flagellar proteins were evaluated in BALB/c mice. Results showed that immunization with FlgJ (BAB1_0260) or FliN (BAB2_0122) plus adjuvant could provide protection against B. abortus 544 infection. Furthermore, mice immunized with FlgJ and FliN developed a vigorous immunoglobulin G response, and in vitro stimulation of their splenocytes with immunizing proteins induced the secretion of IFN-γ. Altogether, these data suggest that flagellar proteins FlgJ and FliN are protective antigens that could produce humoral and cell-mediated responses in mice and candidates for use in future studies of vaccination against brucellosis.

  9. Lower Motor Neuron Findings after Upper Motor Neuron Injury: Insights from Postoperative Supplementary Motor Area Syndrome

    PubMed Central

    Florman, Jeffrey E.; Duffau, Hugues; Rughani, Anand I.

    2013-01-01

    Hypertonia and hyperreflexia are classically described responses to upper motor neuron injury. However, acute hypotonia and areflexia with motor deficit are hallmark findings after many central nervous system insults such as acute stroke and spinal shock. Historic theories to explain these contradictory findings have implicated a number of potential mechanisms mostly relying on the loss of descending corticospinal input as the underlying etiology. Unfortunately, these simple descriptions consistently fail to adequately explain the pathophysiology and connectivity leading to acute hyporeflexia and delayed hyperreflexia that result from such insult. This article highlights the common observation of acute hyporeflexia after central nervous system insults and explores the underlying anatomy and physiology. Further, evidence for the underlying connectivity is presented and implicates the dominant role of supraspinal inhibitory influence originating in the supplementary motor area descending through the corticospinal tracts. Unlike traditional explanations, this theory more adequately explains the findings of postoperative supplementary motor area syndrome in which hyporeflexia motor deficit is observed acutely in the face of intact primary motor cortex connections to the spinal cord. Further, the proposed connectivity can be generalized to help explain other insults including stroke, atonic seizures, and spinal shock. PMID:23508473

  10. How molecular motors work – insights from the molecular machinist's toolbox: the Nobel prize in Chemistry 2016

    PubMed Central

    Astumian, R. D.

    2017-01-01

    The Nobel prize in Chemistry for 2016 was awarded to Jean Pierre Sauvage, Sir James Fraser Stoddart, and Bernard (Ben) Feringa for their contributions to the design and synthesis of molecular machines. While this field is still in its infancy, and at present there are no commercial applications, many observers have stressed the tremendous potential of molecular machines to revolutionize technology. However, perhaps the most important result so far accruing from the synthesis of molecular machines is the insight provided into the fundamental mechanisms by which molecular motors, including biological motors such as kinesin, myosin, FoF1 ATPase, and the flagellar motor, function. The ability to “tinker” with separate components of molecular motors allows asking, and answering, specific questions about mechanism, particularly with regard to light driven vs. chemistry driven molecular motors. PMID:28572896

  11. CRIS—A Novel cAMP-Binding Protein Controlling Spermiogenesis and the Development of Flagellar Bending

    PubMed Central

    Krähling, Anke Miriam; Alvarez, Luis; Debowski, Katharina; Van, Qui; Gunkel, Monika; Irsen, Stephan; Al-Amoudi, Ashraf; Strünker, Timo; Kremmer, Elisabeth; Krause, Eberhard; Voigt, Ingo; Wörtge, Simone; Waisman, Ari; Weyand, Ingo; Seifert, Reinhard; Kaupp, Ulrich Benjamin; Wachten, Dagmar

    2013-01-01

    The second messengers cAMP and cGMP activate their target proteins by binding to a conserved cyclic nucleotide-binding domain (CNBD). Here, we identify and characterize an entirely novel CNBD-containing protein called CRIS (cyclic nucleotide receptor involved in sperm function) that is unrelated to any of the other members of this protein family. CRIS is exclusively expressed in sperm precursor cells. Cris-deficient male mice are either infertile due to a lack of sperm resulting from spermatogenic arrest, or subfertile due to impaired sperm motility. The motility defect is caused by altered Ca2+ regulation of flagellar beat asymmetry, leading to a beating pattern that is reminiscent of sperm hyperactivation. Our results suggest that CRIS interacts during spermiogenesis with Ca2+-regulated proteins that—in mature sperm—are involved in flagellar bending. PMID:24339785

  12. Two-dimensional analysis of flagellar proteins from wild-type and paralyzed mutants of Chlamydomonas reinhardtii.

    PubMed Central

    Piperno, G; Huang, B; Luck, D J

    1977-01-01

    Flagellar polypeptides of Chlamydomonas reinhardtii were analyzed in two-dimensions by isoelectric focusing and electrophoresis in the presence of sodium dodecyl sulfate. In addition to flagellar tubulin, over 130 polypeptides were resolved and 100 of these were identified as axonemal components in wild-type organisms. Flagella of two nonconditional paralyzed mutants, pf 14 and pf 1, were also analyzed and, at the same time, electron microscopic studies were carried out. pf 14 flagella, which completely lack radial spokes and associated spokeheads, are missing 12 polypeptides. Six of these polypeptides are also missing from pf 1 flagella in which spokes are clearly present but spoke heads appear to be absent. Images PMID:266200

  13. Molecular motors

    NASA Astrophysics Data System (ADS)

    Allemand, Jean François Desbiolles, Pierre

    2015-10-01

    How do we move? More precisely, what are the molecular mechanisms that can explain that our muscles, made of very small components can move at a osopic scale? To answer these questions we must introduce molecular motors. Those motors are proteins, or small protein assemblies that, in our cells, transform chemical energy into mechanical work. Then, like we could do for a oscopic motor, used in a car or in a fan, we are going to study the basic behavior of these molecular machines, present what are their energy sources, calculate their power, their yield. If molecular motors are crucial for our oscopic movements, we are going to see that they are also essential to cellular transport and that considering the activity of some enzymes as molecular motors bring some interesting new insights on their activity.

  14. The physiology of motor delusions in anosognosia for hemiplegia: implications for current models of motor awareness.

    PubMed

    Gandola, Martina; Bottini, Gabriella; Zapparoli, Laura; Invernizzi, Paola; Verardi, Margherita; Sterzi, Roberto; Santilli, Ignazio; Sberna, Maurizio; Paulesu, Eraldo

    2014-02-01

    Right brain damaged patients sometimes deny that their left arm is paralysed or even claim to have just moved it. This condition is known as anosognosia for hemiplegia (AHP). Here, we used fMRI to study patients with and without AHP during the execution of a motor task. We found that the delusional belief of having moved was preceded by brain activation of the cortical regions that are implicated in motor control in the left intact hemisphere and in the spared motor regions of the right hemisphere; patients without anosognosia did not present with the same degree of activation. We conclude that the false belief of movement is associated with a combination of strategically placed brain lesions and the preceding residual neural activity of the fronto-parietal motor network. These findings provide evidence that the activity of motor cortices contributes to our beliefs about the state of our motor system.

  15. 50 CFR 622.493 - Landing Caribbean queen conch intact.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... conch intact. (a) A Caribbean queen conch in or from the Caribbean EEZ must be maintained with meat and shell intact. (b) The operator of a vessel that fishes in the EEZ is responsible for ensuring...

  16. 50 CFR 622.493 - Landing Caribbean queen conch intact.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... conch intact. (a) A Caribbean queen conch in or from the Caribbean EEZ must be maintained with meat and shell intact. (b) The operator of a vessel that fishes in the EEZ is responsible for ensuring...

  17. Refining the structure of the Halobacterium salinarum flagellar filament using the iterative helical real space reconstruction method: insights into polymorphism.

    PubMed

    Trachtenberg, Shlomo; Galkin, Vitold E; Egelman, Edward H

    2005-02-25

    The eubacterial flagellar filament is an external, self-assembling, helical polymer approximately 220 A in diameter constructed from a highly conserved monomer, flagellin, which polymerizes externally at the distal end. The archaeal filament is only approximately 100 A in diameter, assembles at the proximal end and is constructed from different, glycosylated flagellins. Although the phenomenology of swimming is similar to that of eubacteria, the symmetry of the archebacterial filament is entirely different. Here, we extend our previous study on the flagellar coiled filament structure of strain R1M1 of Halobacterium salinarum. We use strain M175 of H.salinarum, which forms poly-flagellar bundles at high yield which, under conditions of relatively low ionic-strength (0.8 M versus 5 M) and low pH ( approximately 2.5 versus approximately 6.8), form straight filaments. We demonstrated previously that a single-particle approach to helical reconstruction has many advantages over conventional Fourier-Bessel methods when dealing with variable helical symmetry and heterogeneity. We show here that when this method is applied to the ordered helical structure of the archebacterial uncoiled flagellar filament, significant extensions in resolution can be obtained readily when compared to applying traditional helical techniques. The filament population can be separated into classes of different morphologies, which may represent polymorphic states. Using cryo-negatively stained images, a resolution of approximately 10-15 A has been achieved. Single alpha-helices can be fit into the reconstruction, supporting the proposed similarity of the structure to that of type IV bacterial pili.

  18. How can we conserve intact tropical peatlands?

    NASA Astrophysics Data System (ADS)

    Lawson, Ian; Roucoux, Katherine

    2017-04-01

    The scientific community has, for more than three decades, been expressing increasing alarm about the fate of peatlands in parts of Indonesia and Malaysia, where extensive land-use conversion and drainage for rice and oil palm have greatly compromised peatland hydrology, ecology, biological richness, and carbon storage. The discourse in the literature on these peatlands is now moving on from attempts to preserve the last remaining fragments of peat-swamp forest, towards discussion of how best to restore damaged ecosystems, and whether it is possible to manage plantations more 'sustainably'. It is becoming increasingly clear, however, that peatlands occur quite widely in other parts of the lowland tropics, including parts of Amazonia and the Congo Basin, and many of these peatlands can reasonably be described as 'intact': although few if any parts of the tropics are totally unaffected by human actions, the hydrology and functional ecology of these systems appear to be close to a 'natural' state. The question then arises as to what should be done with the knowledge of their existence. Here we analyse the arguments in favour of protecting intact peatlands, and the potential conflicts with other priorities such as economic development and social justice. We evaluate alternative mechanisms for protecting intact peatlands, focusing on the particular issues raised by peatlands as opposed to other kinds of tropical ecosystem. We identify ways in which natural science agendas can help to inform these arguments, using our own contributions in palaeoecology and carbon mapping as examples. Finally, we argue for a radical reconsideration of research agendas in tropical peatlands, highlighting the potential contribution of methodologies borrowed from the social sciences and humanities.

  19. Calcium Signaling in Intact Dorsal Root Ganglia

    PubMed Central

    Gemes, Geza; Rigaud, Marcel; Koopmeiners, Andrew S.; Poroli, Mark J.; Zoga, Vasiliki; Hogan, Quinn H.

    2013-01-01

    Background Ca2+ is the dominant second messenger in primary sensory neurons. In addition, disrupted Ca2+ signaling is a prominent feature in pain models involving peripheral nerve injury. Standard cytoplasmic Ca2+ recording techniques use high K+ or field stimulation and dissociated neurons. To compare findings in intact dorsal root ganglia, we used a method of simultaneous electrophysiologic and microfluorimetric recording. Methods Dissociated neurons were loaded by bath-applied Fura-2-AM and subjected to field stimulation. Alternatively, we adapted a technique in which neuronal somata of intact ganglia were loaded with Fura-2 through an intracellular microelectrode that provided simultaneous membrane potential recording during activation by action potentials (APs) conducted from attached dorsal roots. Results Field stimulation at levels necessary to activate neurons generated bath pH changes through electrolysis and failed to predictably drive neurons with AP trains. In the intact ganglion technique, single APs produced measurable Ca2+ transients that were fourfold larger in presumed nociceptive C-type neurons than in nonnociceptive Aβ-type neurons. Unitary Ca2+ transients summated during AP trains, forming transients with amplitudes that were highly dependent on stimulation frequency. Each neuron was tuned to a preferred frequency at which transient amplitude was maximal. Transients predominantly exhibited monoexponential recovery and had sustained plateaus during recovery only with trains of more than 100 APs. Nerve injury decreased Ca2+ transients in C-type neurons, but increased transients in Aβ-type neurons. Conclusions Refined observation of Ca2+ signaling is possible through natural activation by conducted APs in undissociated sensory neurons and reveals features distinct to neuronal types and injury state. PMID:20526180

  20. Sodium Absorption by Intact Sugar Beet Plants

    PubMed Central

    El-Sheikh, Adel M; Ulrich, Albert

    1971-01-01

    Sodium absorption by intact sugar beet plants (Beta vulgaris) was found to be mediated by at least two distinct mechanisms when uptake was studied over a wide range of Na and K concentrations. The first mechanism operates at low Na concentrations (<1 milliequivalent per liter); presence of K completely blocks this mechanism for Na. The second mechanism operates at high Na concentrations (>1 milliequivalent per liter), transporting Na as well as K; but apparently this mechanism is not active for Na absorption in young sugar beet plants up to the 10-leaf stage. PMID:16657872

  1. Structure of Salmonella FlhE, conserved member of a flagellar Type III secretion operon

    SciTech Connect

    Lee, Jaemin; Monzingo, Arthur F.; Keatinge-Clay, Adrian T.; Harshey, Rasika M.

    2014-12-26

    In this paper, the bacterial flagellum is assembled by a multicomponent transport apparatus categorized as a type III secretion system. The secretion of proteins that assemble into the flagellum is driven by the proton motive force. The periplasmic protein FlhE is a member of the flhBAE operon in the majority of bacteria where FlhE is found. FlhA and FlhB are established components of the flagellar type III secretion system. The absence of FlhE results in a proton leak through the flagellar system, inappropriate secretion patterns, and cell death, indicating that FlhE regulates an important aspect of proper flagellar biosynthesis. We isolated FlhE from the periplasm of Salmonella and solved its structure to 1.5 Å resolution. The structure reveals a β-sandwich fold, with no close structural homologs. Finally, possible roles of FlhE, including that of a chaperone, are discussed.

  2. Estimation of the adhesive force distribution for the flagellar adhesion of Escherichia coli on a glass surface.

    PubMed

    Yoshihara, Akinori; Nobuhira, Noritaka; Narahara, Hisaya; Toyoda, Syunsuke; Tokumoto, Hayato; Konishi, Yasuhiro; Nomura, Toshiyuki

    2015-07-01

    The effects of the presence or absence of microbial flagella and the microbial motility on the colloidal behaviors of microbial cells were quantitatively evaluated. The microbial cell attachment and detachment processes on a glass surface were observed directly using a parallel-plate flow chamber. Wild-type, flagellar paralyzed, and nonflagellated Escherichia coli strains were used as model microbial cells. In the cell attachment tests, the microbial adhesion rate in a 160mM NaCl solution was approximately 10 times higher than that in a 10mM solution, for all E. coli strains. The colloidal behavior of the microbial cells agreed well with the predictions of the DLVO theory. In addition, the microbial flagella and motility did not significantly affect the cell attachment, regardless of the existence of a potential barrier between the cell and the glass substratum. In the cell detachment tests, the cumulative number of microbial cells detached from the glass substratum with increasing flow rate was fit well with the Weibull distribution function. The list of strains arranged in order of increasing median drag force required to remove them was nonflagellated strain, flagellar paralyzed strain, and wild-type strain. These results indicated that the flagella and the flagellar motility inhibited the cell detachment from the glass substratum. Furthermore, a large external force would likely be required to inhibit the microbial adhesion in the early stage of the biofilm formation.

  3. Association of Lis1 with outer arm dynein is modulated in response to alterations in flagellar motility

    PubMed Central

    Rompolas, Panteleimon; Patel-King, Ramila S.; King, Stephen M.

    2012-01-01

    The cytoplasmic dynein regulatory factor Lis1, which induces a persistent tight binding to microtubules and allows for transport of cargoes under high-load conditions, is also present in motile cilia/flagella. We observed that Lis1 levels in flagella of Chlamydomonas strains that exhibit defective motility due to mutation of various axonemal substructures were greatly enhanced compared with wild type; this increase was absolutely dependent on the presence within the flagellum of the outer arm dynein α heavy chain/light chain 5 thioredoxin unit. To assess whether cells might interpret defective motility as a “high-load environment,” we reduced the flagellar beat frequency of wild-type cells through enhanced viscous load and by reductive stress; both treatments resulted in increased levels of flagellar Lis1, which altered the intrinsic beat frequency of the trans flagellum. Differential extraction of Lis1 from wild-type and mutant axonemes suggests that the affinity of outer arm dynein for Lis1 is directly modulated. In cytoplasm, Lis1 localized to two punctate structures, one of which was located near the base of the flagella. These data reveal that the cell actively monitors motility and dynamically modulates flagellar levels of the dynein regulatory factor Lis1 in response to imposed alterations in beat parameters. PMID:22855525

  4. IFT57 stabilizes the assembled intraflagellar transport complex and mediates transport of motility-related flagellar cargo.

    PubMed

    Jiang, Xue; Hernandez, Daniel; Hernandez, Catherine; Ding, Zhaolan; Nan, Beiyan; Aufderheide, Karl; Qin, Hongmin

    2017-03-01

    Intraflagellar transport (IFT) is essential for the assembly and maintenance of flagella and cilia. Recent biochemical studies have shown that IFT complex B (IFT-B) is comprised of two subcomplexes, IFT-B1 and IFT-B2. The IFT-B2 subunit IFT57 lies at the interface between IFT-B1 and IFT-B2. Here, using a Chlamydomonasreinhardtii mutant for IFT57, we tested whether IFT57 is required for IFT-B complex assembly by bridging IFT-B1 and IFT-B2 together. In the ift57-1 mutant, levels of IFT57 and other IFT-B proteins were greatly reduced at the whole-cell level. However, strikingly, in the protease-free flagellar compartment, while the level of IFT57 was reduced, the levels of other IFT particle proteins were not concomitantly reduced but were present at the wild-type level. The IFT movement of the IFT57-deficient IFT particles was also unchanged. Moreover, IFT57 depletion disrupted the flagellar waveform, leading to cell swimming defects. Analysis of the mutant flagellar protein composition showed that certain axonemal proteins were altered. Taken together, these findings suggest that IFT57 does not play an essential structural role in the IFT particle complex but rather functions to prevent it from degradation. Additionally, IFT57 is involved in transporting specific motility-related proteins.

  5. Deduction of upstream sequences of Xanthomonas campestris flagellar genes responding to transcription activation by FleQ

    SciTech Connect

    Hu, R.-M.; Yang, T.-C.; Yang, S.-H.; Tseng, Y.-H. . E-mail: yhtseng@chtai.ctc.edu.tw

    2005-10-07

    Xanthomonas campestris pv. campestris (Xcc), a close relative to Pseudomonas aeruginosa, is the pathogen causing black rot in cruciferous plants. In P. aeruginosa, FleQ serves as a cognate activator of {sigma}{sup 54} in transcription from several {sigma}{sup 54}-dependent promoters of flagellar genes. These P. aeruginosa promoters have been analyzed for FleQ-binding sequences; however, no consensus was deduced. Xcc, although lacks fleSR, has a fleQ homologue residing among over 40 contiguously clustered flagellar genes. A fleQ mutant, Xc17fleQ, constructed by insertional mutation is deficient in FleQ protein, non-flagellated, and immobile. Transcriptional fusion assays on six putative {sigma}{sup 54}-dependent promoters of the flagellar genes, fliE, fliQ, fliL, flgG, flgB, and flhF, indicated that each of them is also FleQ dependent. Each of these promoters has a sequence with weak consensus to 5'-gaaacCCgccgCcgctTt-3', immediately upstream of the predicted {sigma}{sup 54}-binding site, with an imperfect inverted repeat containing a GC-rich center flanked by several A and T at 5'- and 3'-ends, respectively. Replacing this region in fliE promoter with a HindIII recognition sequence abolished the transcription, indicating that this region responds to transcription activation by FleQ.

  6. Loss of the lac operon contributes to Salmonella invasion of epithelial cells through derepression of flagellar synthesis.

    PubMed

    Jiang, Lingyan; Ni, Zhiwei; Wang, Lei; Feng, Lu; Liu, Bin

    2015-03-01

    Salmonella, a genus that is closely related to Escherichia coli, includes many pathogens of humans and other animals. A notable feature that distinguishes Salmonella from E. coli is lactose negativity, because the lac operon is lost in most Salmonella genomes. Here, we expressed the lac operon in Salmonella enterica serovar Typhimurium and compared the virulence of the Lac(+) strain to that of the wild-type strain in a murine model, invasion assays, and macrophage replication assays. We showed that the Lac(+) strain is attenuated in vivo and the attenuation of virulence is caused by its defect in epithelial cell invasion. However, the invasion-defective phenotype is unrelated to lactose utilization. Through sequencing and the comparison of the transcriptome profile between the Lac(+) and wild-type strains during invasion, we found that most flagellar genes were markedly downregulated in the Lac(+) strain, while other genes associated with invasion, such as the majority of genes encoded in Salmonella pathogenicity island 1, were not differentially expressed. Moreover, we discovered that lacA is the major repressor of flagellar gene expression in the lac operon. In conclusion, these data demonstrate that the lac operon decreases Salmonella invasion of epithelial cells through repression of flagellar biosynthesis. As the ability to invade epithelial cells is a critical virulence determinant of Salmonella, our results provide important evidence that the loss of the lac operon contributes to the evolution of Salmonella pathogenicity.

  7. 33 CFR 157.22 - Intact stability requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Intact stability requirements... OIL IN BULK Design, Equipment, and Installation § 157.22 Intact stability requirements. All tank ships of 5,000 DWT and above contracted after December 3, 2001 must comply with the intact stability...

  8. 33 CFR 157.22 - Intact stability requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Intact stability requirements... OIL IN BULK Design, Equipment, and Installation § 157.22 Intact stability requirements. All tank ships of 5,000 DWT and above contracted after December 3, 2001 must comply with the intact stability...

  9. 33 CFR 157.22 - Intact stability requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Intact stability requirements... OIL IN BULK Design, Equipment, and Installation § 157.22 Intact stability requirements. All tank ships of 5,000 DWT and above contracted after December 3, 2001 must comply with the intact stability...

  10. 33 CFR 157.22 - Intact stability requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Intact stability requirements... OIL IN BULK Design, Equipment, and Installation § 157.22 Intact stability requirements. All tank ships of 5,000 DWT and above contracted after December 3, 2001 must comply with the intact stability...

  11. 33 CFR 157.22 - Intact stability requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Intact stability requirements... OIL IN BULK Design, Equipment, and Installation § 157.22 Intact stability requirements. All tank ships of 5,000 DWT and above contracted after December 3, 2001 must comply with the intact stability...

  12. Rapid isolation of intact chloroplasts from spinach leaves.

    PubMed

    Joly, David; Carpentier, Robert

    2011-01-01

    In this chapter, a rapid method to isolate intact chloroplasts from spinach leaves is described. Intact chloroplasts are isolated using two short centrifugation steps and avoiding the use of percoll gradient. Intactness of chloroplast is evaluated by the inability of potassium ferricyanide to enter inside the chloroplasts and to act as an electron acceptor for photosystem II.

  13. RNA aptamer delivery through intact human skin.

    PubMed

    Lenn, Jon D; Neil, Jessica; Donahue, Christine; Demock, Kellie; Tibbetts, Caitlin Vestal; Cote-Sierra, Javier; Smith, Susan H; Rubenstein, David; Therrien, Jean-Philippe; Pendergrast, P Shannon; Killough, Jason; Brown, Marc B; Williams, Adrian C

    2017-09-20

    It is generally recognised that only relatively small molecular weight (typically < ∼500 Da) drugs can effectively permeate through intact stratum corneum. Here, we challenge this orthodoxy using a 62-nucleotide (MW=20,395) RNA-based aptamer, highly specific to the human IL-23 cytokine, with picomolar activity. Results demonstrate penetration of the aptamer into freshly excised human skin using two different fluorescent labels. A dual hybridisation assay quantified aptamer from the epidermis and dermis giving levels far exceeding the cellular IC50 values (> 100,000-fold) and aptamer integrity was confirmed using an oligonucleotide precipitation assay. A Th17 response was stimulated in freshly excised human skin resulting in significantly upregulated IL-17f, and 22; topical application of the IL-23 aptamer decreased both IL-17f and IL-22 by approximately 45% but did not result in significant changes to IL-23 mRNA levels, confirming that the aptamer did not globally suppress mRNA levels. This study demonstrates that very large molecular weight RNA aptamers can permeate across the intact human skin barrier to therapeutically relevant levels into both the epidermis and dermis and that the skin penetrating aptamer retains its biologically active conformational structure capable of binding to endogenous IL-23. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Stepper motor

    NASA Technical Reports Server (NTRS)

    Dekramer, Cornelis

    1994-01-01

    The purpose of this document is to describe the more commonly used permanent magnet stepper motors for spaceflight. It will discuss the mechanical and electrical aspects of the devices, their torque behavior, those parameters which need to be controlled and measured, and test methods to be employed. It will also discuss torque margins, compare these to the existing margin requirements, and determine the applicability of these requirements. Finally it will attempt to generate a set of requirements which will be used in any stepper motor procurement and will fully characterize the stepper motor behavior in a consistent and repeatable fashion.

  15. Recollections of Parent Characteristics and Attachment Patterns for College Women of Intact vs. Non-Intact Families

    ERIC Educational Resources Information Center

    Kilmann, Peter R.; Carranza, Laura V.; Vendemia, Jennifer M. C.

    2006-01-01

    This study contrasted offsprings' attachment patterns and recollections of parent characteristics in two college samples: 147 females from intact biological parents and 157 females of parental divorce. Secure females from intact or non-intact families rated parents positively, while insecure females rated parents as absent, distant, and demanding.…

  16. Recollections of Parent Characteristics and Attachment Patterns for College Women of Intact vs. Non-Intact Families

    ERIC Educational Resources Information Center

    Kilmann, Peter R.; Carranza, Laura V.; Vendemia, Jennifer M. C.

    2006-01-01

    This study contrasted offsprings' attachment patterns and recollections of parent characteristics in two college samples: 147 females from intact biological parents and 157 females of parental divorce. Secure females from intact or non-intact families rated parents positively, while insecure females rated parents as absent, distant, and demanding.…

  17. The Helicobacter pylori Anti-Sigma Factor FlgM Is Predominantly Cytoplasmic and Cooperates with the Flagellar Basal Body Protein FlhA ▿ †

    PubMed Central

    Rust, Melanie; Borchert, Sophie; Niehus, Eike; Kuehne, Sarah A.; Gripp, Eugenia; Bajceta, Afrodita; McMurry, Jonathan L.; Suerbaum, Sebastian; Hughes, Kelly T.; Josenhans, Christine

    2009-01-01

    Helicobacter pylori requires flagellar motility and orientation to persist actively in its habitat. A particular feature of flagella in most Helicobacter species including H. pylori is a membraneous flagellar sheath. The anti-sigma factor FlgM of H. pylori is unusual, since it lacks an N-terminal domain present in other FlgM homologs, e.g., FlgM of Salmonella spp., whose regulatory function is intimately coupled to its secretion through the flagellar type III secretion system. The aim of the present study was to characterize the localization and secretion of the short H. pylori FlgM in the presence of a flagellar sheath and to elucidate its interaction with other flagellar proteins, such as the basal body protein FlhA, which was previously shown to cooperate with FlgM for regulation. H. pylori FlgM was only released into the medium in minor amounts in wild-type bacteria, where the bulk amount of the protein was retained in the cytoplasm. Some FlgM was detected in the flagellar fraction. FlgM was expressed in flhA mutants and was less soluble and differentially localized in bacterial fractions of the flhA mutant in comparison to wild-type bacteria. FlgM-green fluorescent protein and FlgM-V5 translational fusions were generated and expressed in H. pylori. FlgM displayed a predominantly polar distribution and interacted with the C-terminal domain of FlhA (FlhAC). We suggest that, in H. pylori, FlgM secretion may not be paramount for its regulatory function and that protein interactions at the flagellar basal body may determine the turnover and localization of functional FlgM. PMID:19465658

  18. Ultrasonic Motors

    DTIC Science & Technology

    2003-06-01

    Nakamura, M. K. Kurosawa , and S. Ueha, "Characteristics of a Hybrid Transducer-Type Ultrasonic Motor," IEEE Trans. Ultrason.Ferroelec. Freq., vol. 44...pp. 823-828, 1997. [12] M. K. Kurosawa , T. Morita, and T. Higuchi, "A Cylindrical Ultrasonic Micromotor Based on PZT Thin Film," IEEE Ultrasonics...Symposium, vol. 1, pp. 549-552, 1994. [13] T. Morita, M. K. Kurosawa , and T. Higuchi, "A Cylindrical Micro Ultrasonic Motor Using PZT Thin Film

  19. Oligodeoxynucleotide Probes for Detecting Intact Cells

    NASA Technical Reports Server (NTRS)

    Rosson, Reinhardt A.; Maurina-Brunker, Julie; Langley, Kim; Pynnonen, Christine M.

    2004-01-01

    A rapid, sensitive test using chemiluminescent oligodeoxynucleotide probes has been developed for detecting, identifying, and enumerating intact cells. The test is intended especially for use in detecting and enumerating bacteria and yeasts in potable water. As in related tests that have been developed recently for similar purposes, the oligodeoxynucleotide probes used in this test are typically targeted at either singlecopy deoxyribonucleic acid (DNA) genes (such as virulence genes) or the multiple copies (10,000 to 50,000 copies per cell) of 16S ribosomal ribonucleic acids (rRNAs). Some of those tests involve radioisotope or fluorescent labeling of the probes for reporting hybridization of probes to target nucleic acids. Others of those tests involve labeling with enzymes plus the use of chemiluminescent or chromogenic substrates to report hybridization via color or the emission of light, respectively. The present test is of the last-mentioned type. The chemiluminescence in the present test can be detected easily with relatively simple instrumentation. In developing the present test, the hybridization approach was chosen because hybridization techniques are very specific. Hybridization detects stable, inheritable genetic targets within microorganisms. These targets are not dependent on products of gene expression that can vary with growth conditions or physiological states of organisms in test samples. Therefore, unique probes can be designed to detect and identify specific genera or species of bacteria or yeast (in terms of rRNA target sequences) or can be designed to detect and identify virulence genes (genomic target sequences). Because of the inherent specificity of this system, there are few problems of cross-reactivity. Hybridization tests are rapid, but hybridization tests now available commercially lack sensitivity; typically, between 10(exp 6) and 10(exp 7) cells of the target organism are needed to ensure a reliable test. Consequently, the numbers of

  20. The IntAct molecular interaction database in 2012

    PubMed Central

    Kerrien, Samuel; Aranda, Bruno; Breuza, Lionel; Bridge, Alan; Broackes-Carter, Fiona; Chen, Carol; Duesbury, Margaret; Dumousseau, Marine; Feuermann, Marc; Hinz, Ursula; Jandrasits, Christine; Jimenez, Rafael C.; Khadake, Jyoti; Mahadevan, Usha; Masson, Patrick; Pedruzzi, Ivo; Pfeiffenberger, Eric; Porras, Pablo; Raghunath, Arathi; Roechert, Bernd; Orchard, Sandra; Hermjakob, Henning

    2012-01-01

    IntAct is an open-source, open data molecular interaction database populated by data either curated from the literature or from direct data depositions. Two levels of curation are now available within the database, with both IMEx-level annotation and less detailed MIMIx-compatible entries currently supported. As from September 2011, IntAct contains approximately 275 000 curated binary interaction evidences from over 5000 publications. The IntAct website has been improved to enhance the search process and in particular the graphical display of the results. New data download formats are also available, which will facilitate the inclusion of IntAct's data in the Semantic Web. IntAct is an active contributor to the IMEx consortium (http://www.imexconsortium.org). IntAct source code and data are freely available at http://www.ebi.ac.uk/intact. PMID:22121220

  1. A conserved CaM- and radial spoke associated complex mediates regulation of flagellar dynein activity.

    PubMed

    Dymek, Erin E; Smith, Elizabeth F

    2007-11-05

    For virtually all cilia and eukaryotic flagella, the second messengers calcium and cyclic adenosine monophosphate are implicated in modulating dynein- driven microtubule sliding to regulate beating. Calmodulin (CaM) localizes to the axoneme and is a key calcium sensor involved in regulating motility. Using immunoprecipitation and mass spectrometry, we identify members of a CaM-containing complex that are involved in regulating dynein activity. This complex includes flagellar-associated protein 91 (FAP91), which shares considerable sequence similarity to AAT-1, a protein originally identified in testis as an A-kinase anchor protein (AKAP)- binding protein. FAP91 directly interacts with radial spoke protein 3 (an AKAP), which is located at the base of the spoke. In a microtubule sliding assay, the addition of antibodies generated against FAP91 to mutant axonemes with reduced dynein activity restores dynein activity to wild-type levels. These combined results indicate that the CaM- and spoke-associated complex mediates regulatory signals between the radial spokes and dynein arms.

  2. Independent Control of the Static and Dynamic Components of the Chlamydomonas Flagellar Beat.

    PubMed

    Geyer, Veikko F; Sartori, Pablo; Friedrich, Benjamin M; Jülicher, Frank; Howard, Jonathon

    2016-04-25

    When the green alga Chlamydomonas reinhardtii swims, it uses the breaststroke beat of its two flagella to pull itself forward [1]. The flagellar waveform can be decomposed into a static component, corresponding to an asymmetric time-averaged shape, and a dynamic component, corresponding to the time-varying wave [2]. Extreme lightening conditions photoshock the cell, converting the breaststroke beat into a symmetric sperm-like beat, which causes a reversal of the direction of swimming [3]. Waveform conversion is achieved by a reduction in magnitude of the static component, whereas the dynamic component remains unchanged [2]. The coupling between static and dynamic components, however, is poorly understood, and it is not known whether the static component requires the dynamic component or whether it can exist independently. We used isolated and reactivated axonemes [4] to investigate the relation between the two beat components. We discovered that, when reactivated in the presence of low ATP concentrations, axonemes displayed the static beat component in absence of the dynamic component. Furthermore, we found that the amplitudes of the two components depend on ATP in qualitatively different ways. These results show that the decomposition into static and dynamic components is not just a mathematical concept but that the two components can independently control different aspects of cell motility: the static component controls swimming direction, whereas the dynamic component provides propulsion.

  3. Crystallization of FcpA from Leptospira, a novel flagellar protein that is essential for pathogenesis.

    PubMed

    San Martin, Fabiana; Mechaly, Ariel E; Larrieux, Nicole; Wunder, Elsio A; Ko, Albert I; Picardeau, Mathieu; Trajtenberg, Felipe; Buschiazzo, Alejandro

    2017-03-01

    The protein FcpA is a unique component of the flagellar filament of spirochete bacteria belonging to the genus Leptospira. Although it plays an essential role in translational motility and pathogenicity, no structures of FcpA homologues are currently available in the PDB. Its three-dimensional structure will unveil the novel motility mechanisms that render pathogenic Leptospira particularly efficient at invading and disseminating within their hosts, causing leptospirosis in humans and animals. FcpA from L. interrogans was purified and crystallized, but despite laborious attempts no useful X ray diffraction data could be obtained. This challenge was solved by expressing a close orthologue from the related saprophytic species L. biflexa. Three different crystal forms were obtained: a primitive and a centred monoclinic form, as well as a hexagonal variant. All forms diffracted X-rays to suitable resolutions for crystallographic analyses, with the hexagonal type typically reaching the highest limits of 2.0 Å and better. A variation of the quick-soaking procedure resulted in an iodide derivative that was instrumental for single-wavelength anomalous diffraction methods.

  4. Characterization of the ATP-phosphohydrolase activity of bovine spermatozoa flagellar extracts.

    PubMed

    Young, L G; Smithwick, E B

    1975-02-01

    The ATP-phosphohydrolase activity of extracts prepared from bovine spermatozoa flagella (BSFE), was characterized with respect to enzyme, substrate, activator ion and salt concentration, temperature dependence and time stability. BSFE required the presence of a divalent cation for activity: Mg++ or Ca++ could function as activator; Mn++, Zn++ and Cd++ could not. EDTA, but not EGTA, was inhibitory to enzymatic activity. Ca++ inhibited the Mg++ stimulated activity. ATP was dephosphorylated more rapidly than GTP greater than CTP greater than ITP, and ADP was dephosphorylated at 40% of the rate of ATP. The magnesium activated ATPase was stimulated by potassium and inhibited by sodium ions. Activation of BSFE ATP-phosphohydrolase was maximal in the presence of Mg++ and ATP in equimolar concentrations and K+ (0.05-0.3 M) at 30 degrees C. Although the enzymatic activity of the extract was found to decrease rapidly with time, it could be maintained for up to three days by the addition of 2-beta-mercaptoethanol to the bovine spermatozoa flagellar extracts.

  5. Immunomagnetic Separation and Coagglutination of Vibrio parahaemolyticus with Anti-Flagellar Protein Monoclonal Antibody▿

    PubMed Central

    Datta, S.; Janes, M. E.; Simonson, J. G.

    2008-01-01

    Mice were immunized by injection of Vibrio parahaemolyticus ATCC 17802 polar flagellin in order to produce monoclonal antibodies (mAbs). mAbs were analyzed by anti-H enzyme-linked immunosorbent assay using V. parahaemolyticus polar flagellar cores. The mAb exhibiting the highest anti-H titer was coated onto Cowan I Staphylococcus aureus cells at a concentration of 75 μg/ml cell suspension and used for slide coagglutination. Of 41 isolates identified genetically as V. parahaemolyticus, 100% coagglutinated with the anti-H mAb within 30 s, and the mAb did not react with 30 isolates identified as Vibrio vulnificus. A strong coagglutination reaction with V. parahaemolyticus ATCC 17802 was still observed when the S. aureus cells were armed with as little as 15 μg of mAb/ml S. aureus cell suspension. At this concentration, the mAb cross-reacted with three other Vibrio species, suggesting that they share an identical H antigen or antigens. The anti-H mAb was then used to optimize an immunomagnetic separation protocol which exhibited from 35% to about 45% binding of 102 to 103 V. parahaemolyticus cells in phosphate-buffered saline. The mAb would be useful for the rapid and selective isolation, concentration, and detection of V. parahaemolyticus cells from environmental sources. PMID:18753337

  6. Utility of recombinant flagellar calcium-binding protein for serodiagnosis of Trypanosoma cruzi infection.

    PubMed Central

    Godsel, L M; Tibbetts, R S; Olson, C L; Chaudoir, B M; Engman, D M

    1995-01-01

    The protozoan Trypanosoma cruzi is the causative agent of Chagas' disease, a major public health problem in Latin America and of growing concern in the United States as the number of infected immigrants increases. There is currently no testing of U.S. blood products for T. cruzi infection, and the best tests available, although highly sensitive, are not of high enough specificity to be useful for widespread screening of the blood supply in this country. Among the parasite antigens detected by sera of infected humans and mice, those in the range of 24 to 26 kDa are particularly reactive. With an aim of developing a sensitive, specific, recombinant antigen-based serologic test for T. cruzi infection, we used two antibody reagents specific for these 24- to 26-kDa antigens to isolate cDNA clones from a T. cruzi expression library. One clone was found to encode a previously characterized T. cruzi antigen, a 24-kDa flagellar calcium-binding protein (FCaBP). Recombinant FCaBP was found to be a sensitive, specific reagent for distinguishing T. cruzi-infected individuals from uninfected persons, and it therefore could potentially be used for screening purposes, especially if combined with other recombinant T. cruzi antigens that have similarly high degrees of diagnostic sensitivity and specificity. PMID:7559952

  7. CDKL5 regulates flagellar length and localizes to the base of the flagella in Chlamydomonas.

    PubMed

    Tam, Lai-Wa; Ranum, Paul T; Lefebvre, Paul A

    2013-03-01

    The length of Chlamydomonas flagella is tightly regulated. Mutations in four genes-LF1, LF2, LF3, and LF4-cause cells to assemble flagella up to three times wild-type length. LF2 and LF4 encode protein kinases. Here we describe a new gene, LF5, in which null mutations cause cells to assemble flagella of excess length. The LF5 gene encodes a protein kinase very similar in sequence to the protein kinase CDKL5. In humans, mutations in this kinase cause a severe form of juvenile epilepsy. The LF5 protein localizes to a unique location: the proximal 1 μm of the flagella. The proximal localization of the LF5 protein is lost when genes that make up the proteins in the cytoplasmic length regulatory complex (LRC)-LF1, LF2, and LF3-are mutated. In these mutants LF5p becomes localized either at the distal tip of the flagella or along the flagellar length, indicating that length regulation involves, at least in part, control of LF5p localization by the LRC.

  8. Flagellar mitochondrial association of the male-specific Don Juan protein in Drosophila spermatozoa.

    PubMed

    Santel, A; Blümer, N; Kämpfer, M; Renkawitz-Pohl, R

    1998-11-01

    The Drosophila don juan gene encodes a basic protein (Don Juan protein), which is solely expressed postmeiotically during spermiogenesis in elongated spermatids and in mature sperm. Transgenic expression of a GFP-tagged Don Juan protein (DJ-GFP) in the male germ line showed an association of the fusion protein with the sperm tail. Detailed examination of DJ-GFP localization revealed novel insights into its distinct temporal and spatial distribution along the sperm tail during the last phase of spermatid maturation. Co-localization of DJ-GFP with actin-labeled cysts demonstrated its emergence in elongated spermatids during individualization. Additionally, the endogenous Don Juan protein was detected with epitope-specific antibodies in finally elongated nuclei of spermatids. After completion of nuclear shaping Don Juan is no longer detectable in the sperm heads with the onset of individualization. Mislocalization of the DJ-GFP protein in flagella of a mutant with defective mitochondrial differentiation provides evidence of mitochondrial association of the fusion protein with flagellar mitochondrial arrays. Ectopically expressed DJ-GFP in premeiotic germ cells as well as salivary gland cells confirmed the capability of the fusion protein to associate with mitochondria. Therefore we suppose that Don Juan is a nuclear-encoded, germ-cell specifically expressed mitochondrial protein, which might be involved in the final steps of mitochondrial differentiation within the flagellum.

  9. Identification of α-11 giardin as a flagellar and surface component of Giardia lamblia.

    PubMed

    Kim, Juri; Lee, Hye Yeon; Lee, Mi-Ae; Yong, Tai-Soon; Lee, Kyu-Ho; Park, Soon-Jung

    2013-10-01

    Giardia lamblia is a protozoan pathogen with distinct cytoskeletal structures, including median bodies and eight flagella. In this study, we examined components comprising G. lamblia flagella. Crude flagellar extracts were prepared from G. lamblia trophozoites, and analyzed by two-dimensional (2-D) gel electrophoresis. The 19 protein spots were analyzed by MALDI-TOF mass spectrometry, identifying ten metabolic enzymes, six distinct giardins, Giardia trophozoite antigen 1, translational initiation factor eIF-4A, and an extracellular signal-regulated kinase 2. Among the identified proteins, we studied α-11 giardin which belongs to a group of cytoskeletal proteins specific to Giardia. Western blot analysis and real-time PCR indicated that expression of α-11 giardin is not significantly increased during encystation of G. lamblia. Immunofluorescence assays using anti-α-11 giardin antibodies revealed that α-11 giardin protein mainly localized to the plasma membranes and basal bodies of the anterior flagella of G. lamblia trophozoites, suggesting that α-11 giardin is a genuine component of the G. lamblia cytoskeleton. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Antiprotozoal glutathione derivatives with flagellar membrane binding activity against T. brucei rhodesiense.

    PubMed

    Daunes, Sylvie; Yardley, Vanessa; Croft, Simon L; D'Silva, Claudius

    2017-02-15

    A new series of N-substituted S-(2,4-dinitrophenyl)glutathione dibutyl diesters were synthesized to improve in vitro anti-protozoal activity against the pathogenic parasites Trypanosoma brucei rhodesiense, Trypanosoma cruzi and Leishmania donovani. The results obtained indicate that N-substituents enhance the inhibitory properties of glutathione diesters whilst showing reduced toxicity against KB cells as in the cases of compounds 5, 9, 10, 16, 18 and 19. We suggest that the interaction of N-substituted S-(2,4-dinitrophenyl) glutathione dibutyl diesters with T. b. brucei occurs mainly by weak hydrophobic interactions such as London and van der Waals forces. A QSAR study indicated that the inhibitory activity of the peptide is associated negatively with the average number of C atoms, NC and positively to SZX, the ZX shadow a geometric descriptor related to molecular size and orientation of the compound. HPLC-UV studies in conjunction with optical microscopy indicate that the observed selectivity of inhibition of these compounds against bloodstream form T. b. brucei parasites in comparison to L. donovani under the same conditions is due to intracellular