Sample records for intact human gut

  1. The human gut resistome

    PubMed Central

    van Schaik, Willem

    2015-01-01

    In recent decades, the emergence and spread of antibiotic resistance among bacterial pathogens has become a major threat to public health. Bacteria can acquire antibiotic resistance genes by the mobilization and transfer of resistance genes from a donor strain. The human gut contains a densely populated microbial ecosystem, termed the gut microbiota, which offers ample opportunities for the horizontal transfer of genetic material, including antibiotic resistance genes. Recent technological advances allow microbiota-wide studies into the diversity and dynamics of the antibiotic resistance genes that are harboured by the gut microbiota (‘the gut resistome’). Genes conferring resistance to antibiotics are ubiquitously present among the gut microbiota of humans and most resistance genes are harboured by strictly anaerobic gut commensals. The horizontal transfer of genetic material, including antibiotic resistance genes, through conjugation and transduction is a frequent event in the gut microbiota, but mostly involves non-pathogenic gut commensals as these dominate the microbiota of healthy individuals. Resistance gene transfer from commensals to gut-dwelling opportunistic pathogens appears to be a relatively rare event but may contribute to the emergence of multi-drug resistant strains, as is illustrated by the vancomycin resistance determinants that are shared by anaerobic gut commensals and the nosocomial pathogen Enterococcus faecium. PMID:25918444

  2. The human gut resistome.

    PubMed

    van Schaik, Willem

    2015-06-05

    In recent decades, the emergence and spread of antibiotic resistance among bacterial pathogens has become a major threat to public health. Bacteria can acquire antibiotic resistance genes by the mobilization and transfer of resistance genes from a donor strain. The human gut contains a densely populated microbial ecosystem, termed the gut microbiota, which offers ample opportunities for the horizontal transfer of genetic material, including antibiotic resistance genes. Recent technological advances allow microbiota-wide studies into the diversity and dynamics of the antibiotic resistance genes that are harboured by the gut microbiota ('the gut resistome'). Genes conferring resistance to antibiotics are ubiquitously present among the gut microbiota of humans and most resistance genes are harboured by strictly anaerobic gut commensals. The horizontal transfer of genetic material, including antibiotic resistance genes, through conjugation and transduction is a frequent event in the gut microbiota, but mostly involves non-pathogenic gut commensals as these dominate the microbiota of healthy individuals. Resistance gene transfer from commensals to gut-dwelling opportunistic pathogens appears to be a relatively rare event but may contribute to the emergence of multi-drug resistant strains, as is illustrated by the vancomycin resistance determinants that are shared by anaerobic gut commensals and the nosocomial pathogen Enterococcus faecium.

  3. Healthy human gut phageome

    PubMed Central

    Manrique, Pilar; Bolduc, Benjamin; Walk, Seth T.; van der Oost, John; de Vos, Willem M.; Young, Mark J.

    2016-01-01

    The role of bacteriophages in influencing the structure and function of the healthy human gut microbiome is unknown. With few exceptions, previous studies have found a high level of heterogeneity in bacteriophages from healthy individuals. To better estimate and identify the shared phageome of humans, we analyzed a deep DNA sequence dataset of active bacteriophages and available metagenomic datasets of the gut bacteriophage community from healthy individuals. We found 23 shared bacteriophages in more than one-half of 64 healthy individuals from around the world. These shared bacteriophages were found in a significantly smaller percentage of individuals with gastrointestinal/irritable bowel disease. A network analysis identified 44 bacteriophage groups of which 9 (20%) were shared in more than one-half of all 64 individuals. These results provide strong evidence of a healthy gut phageome (HGP) in humans. The bacteriophage community in the human gut is a mixture of three classes: a set of core bacteriophages shared among more than one-half of all people, a common set of bacteriophages found in 20–50% of individuals, and a set of bacteriophages that are either rarely shared or unique to a person. We propose that the core and common bacteriophage communities are globally distributed and comprise the HGP, which plays an important role in maintaining gut microbiome structure/function and thereby contributes significantly to human health. PMID:27573828

  4. Healthy human gut phageome.

    PubMed

    Manrique, Pilar; Bolduc, Benjamin; Walk, Seth T; van der Oost, John; de Vos, Willem M; Young, Mark J

    2016-09-13

    The role of bacteriophages in influencing the structure and function of the healthy human gut microbiome is unknown. With few exceptions, previous studies have found a high level of heterogeneity in bacteriophages from healthy individuals. To better estimate and identify the shared phageome of humans, we analyzed a deep DNA sequence dataset of active bacteriophages and available metagenomic datasets of the gut bacteriophage community from healthy individuals. We found 23 shared bacteriophages in more than one-half of 64 healthy individuals from around the world. These shared bacteriophages were found in a significantly smaller percentage of individuals with gastrointestinal/irritable bowel disease. A network analysis identified 44 bacteriophage groups of which 9 (20%) were shared in more than one-half of all 64 individuals. These results provide strong evidence of a healthy gut phageome (HGP) in humans. The bacteriophage community in the human gut is a mixture of three classes: a set of core bacteriophages shared among more than one-half of all people, a common set of bacteriophages found in 20-50% of individuals, and a set of bacteriophages that are either rarely shared or unique to a person. We propose that the core and common bacteriophage communities are globally distributed and comprise the HGP, which plays an important role in maintaining gut microbiome structure/function and thereby contributes significantly to human health.

  5. Carbohydrates and the human gut microbiota.

    PubMed

    Chassard, Christophe; Lacroix, Christophe

    2013-07-01

    Due to its scale and its important role in maintaining health, the gut microbiota can be considered as a 'new organ' inside the human body. Many complex carbohydrates are degraded and fermented by the human gut microbiota in the large intestine to both yield basic energy salvage and impact gut health through produced metabolites. This review will focus on the gut microbes and microbial mechanisms responsible for polysaccharides degradation and fermentation in the large intestine. Gut microbes and bacterial metabolites impact the host at many levels, including modulation of inflammation, and glucose and lipid metabolisms. A complex relationship occurs in the intestine between the human gut microbiota, diet and the host. Research on carbohydrates and gut microbiota composition and functionality is fast developing and will open opportunities for prevention and treatment of obesity, diabetes and other related metabolic disorders through manipulation of the gut ecosystem.

  6. Human gut microbiome: the second genome of human body.

    PubMed

    Zhu, Baoli; Wang, Xin; Li, Lanjuan

    2010-08-01

    The human body is actually a super-organism that is composed of 10 times more microbial cells than our body cells. Metagenomic study of the human microbiome has demonstrated that there are 3.3 million unique genes in human gut, 150 times more genes than our own genome, and the bacterial diversity analysis showed that about 1000 bacterial species are living in our gut and a majority of them belongs to the divisions of Firmicutes and Bacteriodetes. In addition, most people share a core microbiota that comprises 50-100 bacterial species when the frequency of abundance at phylotype level is not considered, and a core microbiome harboring more than 6000 functional gene groups is present in the majority of human gut surveyed till now. Gut bacteria are not only critical for regulating gut metabolism, but also important for host immune system as revealed by animal studies.

  7. Gut Protozoa: Friends or Foes of the Human Gut Microbiota?

    PubMed

    Chabé, Magali; Lokmer, Ana; Ségurel, Laure

    2017-12-01

    The importance of the gut microbiota for human health has sparked a strong interest in the study of the factors that shape its composition and diversity. Despite the growing evidence suggesting that helminths and protozoa significantly interact with gut bacteria, gut microbiome studies remain mostly focused on prokaryotes and on populations living in industrialized countries that typically have a low parasite burden. We argue that protozoa, like helminths, represent an important factor to take into account when studying the gut microbiome, and that their presence - especially considering their long coevolutionary history with humans - may be beneficial. From this perspective, we examine the relationship between the protozoa and their hosts, as well as their relevance for public health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. The human gut microbiota and virome: Potential therapeutic implications.

    PubMed

    Scarpellini, Emidio; Ianiro, Gianluca; Attili, Fabia; Bassanelli, Chiara; De Santis, Adriano; Gasbarrini, Antonio

    2015-12-01

    Human gut microbiota is a complex ecosystem with several functions integrated in the host organism (metabolic, immune, nutrients absorption, etc.). Human microbiota is composed by bacteria, yeasts, fungi and, last but not least, viruses, whose composition has not been completely described. According to previous evidence on pathogenic viruses, the human gut harbours plant-derived viruses, giant viruses and, only recently, abundant bacteriophages. New metagenomic methods have allowed to reconstitute entire viral genomes from the genetic material spread in the human gut, opening new perspectives on the understanding of the gut virome composition, the importance of gut microbiome, and potential clinical applications. This review reports the latest evidence on human gut "virome" composition and its function, possible future therapeutic applications in human health in the context of the gut microbiota, and attempts to clarify the role of the gut "virome" in the larger microbial ecosystem. Copyright © 2015 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  9. A review of metabolic potential of human gut microbiome in human nutrition.

    PubMed

    Yadav, Monika; Verma, Manoj Kumar; Chauhan, Nar Singh

    2018-03-01

    The human gut contains a plethora of microbes, providing a platform for metabolic interaction between the host and microbiota. Metabolites produced by the gut microbiota act as a link between gut microbiota and its host. These metabolites act as messengers having the capacity to alter the gut microbiota. Recent advances in the characterization of the gut microbiota and its symbiotic relationship with the host have provided a platform to decode metabolic interactions. The human gut microbiota, a crucial component for dietary metabolism, is shaped by the genetic, epigenetic and dietary factors. The metabolic potential of gut microbiota explains its significance in host health and diseases. The knowledge of interactions between microbiota and host metabolism, as well as modification of microbial ecology, is really beneficial to have effective therapeutic treatments for many diet-related diseases in near future. This review cumulates the information to map the role of human gut microbiota in dietary component metabolism, the role of gut microbes derived metabolites in human health and host-microbe metabolic interactions in health and diseases.

  10. Apigenin impacts growth of the gut microbiota and alters gene expression of Enterococcus

    USDA-ARS?s Scientific Manuscript database

    Apigenin is a major dietary flavonoid widely distributed in plants with many bioactivities. Apigenin reaches the colon region intact and interacts with the human gut microbiota; however, there is little research on how apigenin affects gut bacteria. This study investigated the effect of pure apigeni...

  11. Introduction to the human gut microbiota.

    PubMed

    Thursby, Elizabeth; Juge, Nathalie

    2017-05-16

    The human gastrointestinal (GI) tract harbours a complex and dynamic population of microorganisms, the gut microbiota, which exert a marked influence on the host during homeostasis and disease. Multiple factors contribute to the establishment of the human gut microbiota during infancy. Diet is considered as one of the main drivers in shaping the gut microbiota across the life time. Intestinal bacteria play a crucial role in maintaining immune and metabolic homeostasis and protecting against pathogens. Altered gut bacterial composition (dysbiosis) has been associated with the pathogenesis of many inflammatory diseases and infections. The interpretation of these studies relies on a better understanding of inter-individual variations, heterogeneity of bacterial communities along and across the GI tract, functional redundancy and the need to distinguish cause from effect in states of dysbiosis. This review summarises our current understanding of the development and composition of the human GI microbiota, and its impact on gut integrity and host health, underlying the need for mechanistic studies focusing on host-microbe interactions. © 2017 The Author(s).

  12. Introduction to the human gut microbiota

    PubMed Central

    Thursby, Elizabeth

    2017-01-01

    The human gastrointestinal (GI) tract harbours a complex and dynamic population of microorganisms, the gut microbiota, which exert a marked influence on the host during homeostasis and disease. Multiple factors contribute to the establishment of the human gut microbiota during infancy. Diet is considered as one of the main drivers in shaping the gut microbiota across the life time. Intestinal bacteria play a crucial role in maintaining immune and metabolic homeostasis and protecting against pathogens. Altered gut bacterial composition (dysbiosis) has been associated with the pathogenesis of many inflammatory diseases and infections. The interpretation of these studies relies on a better understanding of inter-individual variations, heterogeneity of bacterial communities along and across the GI tract, functional redundancy and the need to distinguish cause from effect in states of dysbiosis. This review summarises our current understanding of the development and composition of the human GI microbiota, and its impact on gut integrity and host health, underlying the need for mechanistic studies focusing on host–microbe interactions. PMID:28512250

  13. A human gut phage catalog correlates the gut phageome with type 2 diabetes.

    PubMed

    Ma, Yingfei; You, Xiaoyan; Mai, Guoqin; Tokuyasu, Taku; Liu, Chenli

    2018-02-01

    Substantial efforts have been made to link the gut bacterial community to many complex human diseases. Nevertheless, the gut phages are often neglected. In this study, we used multiple bioinformatic methods to catalog gut phages from whole-community metagenomic sequencing data of fecal samples collected from both type II diabetes (T2D) patients (n = 71) and normal Chinese adults (n = 74). The definition of phage operational taxonomic units (pOTUs) and identification of large phage scaffolds (n = 2567, ≥ 10 k) revealed a comprehensive human gut phageome with a substantial number of novel sequences encoding genes that were unrelated to those in known phages. Interestingly, we observed a significant increase in the number of gut phages in the T2D group and, in particular, identified 7 pOTUs specific to T2D. This finding was further validated in an independent dataset of 116 T2D and 109 control samples. Co-occurrence/exclusion analysis of the bacterial genera and pOTUs identified a complex core interaction between bacteria and phages in the human gut ecosystem, suggesting that the significant alterations of the gut phageome cannot be explained simply by co-variation with the altered bacterial hosts. Alterations in the gut bacterial community have been linked to the chronic disease T2D, but the role of gut phages therein is not well understood. This is the first study to identify a T2D-specific gut phageome, indicating the existence of other mechanisms that might govern the gut phageome in T2D patients. These findings suggest the importance of the phageome in T2D risk, which warrants further investigation.

  14. Gut-Bioreactor and Human Health in Future.

    PubMed

    Purohit, Hemant J

    2018-03-01

    Gut-microbiome provides the complementary metabolic potential to the human system. To understand the active participation and the performance of the microbial community in human health, the concept of gut as a plug-flow reactor with the fed-batch mode of operation can provide better insight. The concept suggests the virtual compartmentalized gut with sequential stratification of the microbial community in response to a typical host genotype. It also provides the analysis plan for gut microbiome; and its relevance in developing health management options under the identified clinical conditions.

  15. Impacts of Gut Bacteria on Human Health and Diseases

    PubMed Central

    Zhang, Yu-Jie; Li, Sha; Gan, Ren-You; Zhou, Tong; Xu, Dong-Ping; Li, Hua-Bin

    2015-01-01

    Gut bacteria are an important component of the microbiota ecosystem in the human gut, which is colonized by 1014 microbes, ten times more than the human cells. Gut bacteria play an important role in human health, such as supplying essential nutrients, synthesizing vitamin K, aiding in the digestion of cellulose, and promoting angiogenesis and enteric nerve function. However, they can also be potentially harmful due to the change of their composition when the gut ecosystem undergoes abnormal changes in the light of the use of antibiotics, illness, stress, aging, bad dietary habits, and lifestyle. Dysbiosis of the gut bacteria communities can cause many chronic diseases, such as inflammatory bowel disease, obesity, cancer, and autism. This review summarizes and discusses the roles and potential mechanisms of gut bacteria in human health and diseases. PMID:25849657

  16. Impact of human milk bacteria and oligosaccharides on neonatal gut microbiota establishment and gut health.

    PubMed

    Jost, Ted; Lacroix, Christophe; Braegger, Christian; Chassard, Christophe

    2015-07-01

    Neonatal gut microbiota establishment represents a crucial stage for gut maturation, metabolic and immunologic programming, and consequently short- and long-term health status. Human milk beneficially influences this process due to its dynamic profile of age-adapted nutrients and bioactive components and by providing commensal maternal bacteria to the neonatal gut. These include Lactobacillus spp., as well as obligate anaerobes such as Bifidobacterium spp., which may originate from the maternal gut via an enteromammary pathway as a novel form of mother-neonate communication. Additionally, human milk harbors a broad range of oligosaccharides that promote the growth and activity of specific bacterial populations, in particular, Bifidobacterium and Bacteroides spp. This review focuses on the diversity and origin of human milk bacteria, as well as on milk oligosaccharides that influence neonatal gut microbiota establishment. This knowledge can be used to develop infant formulae that more closely mimic nature's model and sustain a healthy gut microbiota. © The Author(s) 2015. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Gut microbiomes and their metabolites shape human and animal health.

    PubMed

    Park, Woojun

    2018-03-01

    The host genetic background, complex surrounding environments, and gut microbiome are very closely linked to human and animal health and disease. Although significant correlations between gut microbiota and human and animal health have been revealed, the specific roles of each gut bacterium in shaping human and animal health and disease remain unclear. However, recent omics-based studies using experimental animals and surveys of gut microbiota from unhealthy humans have provided insights into the relationships among microbial community, their metabolites, and human and animal health. This editorial introduces six review papers that provide new discoveries of disease-associated microbiomes and suggest possible microbiome-based therapeutic approaches to human disease.

  18. Incorporating the gut microbiota into models of human and non-human primate ecology and evolution.

    PubMed

    Amato, Katherine R

    2016-01-01

    The mammalian gut is home to a diverse community of microbes. Advances in technology over the past two decades have allowed us to examine this community, the gut microbiota, in more detail, revealing a wide range of influences on host nutrition, health, and behavior. These host-gut microbe interactions appear to shape host plasticity and fitness in a variety of contexts, and therefore represent a key factor missing from existing models of human and non-human primate ecology and evolution. However, current studies of the gut microbiota tend to include limited contextual data or are clinical, making it difficult to directly test broad anthropological hypotheses. Here, I review what is known about the animal gut microbiota and provide examples of how gut microbiota research can be integrated into the study of human and non-human primate ecology and evolution with targeted data collection. Specifically, I examine how the gut microbiota may impact primate diet, energetics, disease resistance, and cognition. While gut microbiota research is proliferating rapidly, especially in the context of humans, there remain important gaps in our understanding of host-gut microbe interactions that will require an anthropological perspective to fill. Likewise, gut microbiota research will be an important tool for filling remaining gaps in anthropological research. © 2016 Wiley Periodicals, Inc.

  19. Advances and perspectives in in vitro human gut fermentation modeling.

    PubMed

    Payne, Amanda N; Zihler, Annina; Chassard, Christophe; Lacroix, Christophe

    2012-01-01

    The gut microbiota is a highly specialized organ containing host-specific assemblages of microbes whereby metabolic activity directly impacts human health and disease. In vitro gut fermentation models present an unmatched opportunity of performing studies frequently challenged in humans and animals owing to ethical concerns. Multidisciplinary systems biology analyses supported by '-omics' platforms remain widely neglected in the field of in vitro gut fermentation modeling but are key to advancing the significance of these models. Model-driven experimentation using a combination of in vitro gut fermentation and in vitro human cell models represent an advanced approach in identifying complex host-microbe interactions and niches central to gut fermentation processes. The aim of this review is to highlight the advances and challenges exhibited by in vitro human gut fermentation modeling. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Variable responses of human and non-human primate gut microbiomes to a Western diet.

    PubMed

    Amato, Katherine R; Yeoman, Carl J; Cerda, Gabriela; Schmitt, Christopher A; Cramer, Jennifer Danzy; Miller, Margret E Berg; Gomez, Andres; Turner, Trudy R; Wilson, Brenda A; Stumpf, Rebecca M; Nelson, Karen E; White, Bryan A; Knight, Rob; Leigh, Steven R

    2015-11-16

    The human gut microbiota interacts closely with human diet and physiology. To better understand the mechanisms behind this relationship, gut microbiome research relies on complementing human studies with manipulations of animal models, including non-human primates. However, due to unique aspects of human diet and physiology, it is likely that host-gut microbe interactions operate differently in humans and non-human primates. Here, we show that the human microbiome reacts differently to a high-protein, high-fat Western diet than that of a model primate, the African green monkey, or vervet (Chlorocebus aethiops sabaeus). Specifically, humans exhibit increased relative abundance of Firmicutes and reduced relative abundance of Prevotella on a Western diet while vervets show the opposite pattern. Predictive metagenomics demonstrate an increased relative abundance of genes associated with carbohydrate metabolism in the microbiome of only humans consuming a Western diet. These results suggest that the human gut microbiota has unique properties that are a result of changes in human diet and physiology across evolution or that may have contributed to the evolution of human physiology. Therefore, the role of animal models for understanding the relationship between the human gut microbiota and host metabolism must be re-focused.

  1. Human gut microbiome viewed across age and geography

    USDA-ARS?s Scientific Manuscript database

    Gut microbial communities represent one source of human genetic and metabolic diversity. To examine how gut microbiomes differ among human populations, we characterized bacterial species in fecal samples from 531 individuals, plus the gene content of 110 of them. The cohort encompassed healthy child...

  2. Challenges of metabolomics in human gut microbiota research.

    PubMed

    Smirnov, Kirill S; Maier, Tanja V; Walker, Alesia; Heinzmann, Silke S; Forcisi, Sara; Martinez, Inés; Walter, Jens; Schmitt-Kopplin, Philippe

    2016-08-01

    The review highlights the role of metabolomics in studying human gut microbial metabolism. Microbial communities in our gut exert a multitude of functions with huge impact on human health and disease. Within the meta-omics discipline, gut microbiome is studied by (meta)genomics, (meta)transcriptomics, (meta)proteomics and metabolomics. The goal of metabolomics research applied to fecal samples is to perform their metabolic profiling, to quantify compounds and classes of interest, to characterize small molecules produced by gut microbes. Nuclear magnetic resonance spectroscopy and mass spectrometry are main technologies that are applied in fecal metabolomics. Metabolomics studies have been increasingly used in gut microbiota related research regarding health and disease with main focus on understanding inflammatory bowel diseases. The elucidated metabolites in this field are summarized in this review. We also addressed the main challenges of metabolomics in current and future gut microbiota research. The first challenge reflects the need of adequate analytical tools and pipelines, including sample handling, selection of appropriate equipment, and statistical evaluation to enable meaningful biological interpretation. The second challenge is related to the choice of the right animal model for studies on gut microbiota. We exemplified this using NMR spectroscopy for the investigation of cross-species comparison of fecal metabolite profiles. Finally, we present the problem of variability of human gut microbiota and metabolome that has important consequences on the concepts of personalized nutrition and medicine. Copyright © 2016 Elsevier GmbH. All rights reserved.

  3. Human Gut Microbiome: Function Matters.

    PubMed

    Heintz-Buschart, Anna; Wilmes, Paul

    2017-11-22

    The human gut microbiome represents a complex ecosystem contributing essential functions to its host. Recent large-scale metagenomic studies have provided insights into its structure and functional potential. However, the functional repertoire which is actually contributed to human physiology remains largely unexplored. Here, by leveraging recent omics datasets, we challenge current assumptions regarding key attributes of the functional gut microbiome, in particular with respect to its variability. We further argue that the closing of existing gaps in functional knowledge should be addressed by a most-wanted gene list, the development and application of molecular and cellular high-throughput measurements, the development and sensible use of experimental models, as well as the direct study of observable molecular effects in the human host. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. The gut microbiota: A treasure for human health.

    PubMed

    Li, Daotong; Wang, Pan; Wang, Pengpu; Hu, Xiaosong; Chen, Fang

    2016-11-15

    The interplay between the host and host-associated gut microbiota is an area of increasing interest during the recent decade. From young infants to elderly people, from primitive tribes to modern societies, accumulating evidence has suggested the association of critical physiological roles of gut microbiota in the pathogenesis of a variety of human metabolic, immunological and neurological diseases. Importantly, it appears that the relationship between the gut microbiota and disease is bidirectional, instead of causal or consequential. Personalized nutritional and therapeutic strategies targeting the gut microbiota such as prebiotics, probiotics, drugs and fecal microbiota transplantation may create a new era in the human health. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Mining the Human Gut Microbiota for Immunomodulatory Organisms.

    PubMed

    Geva-Zatorsky, Naama; Sefik, Esen; Kua, Lindsay; Pasman, Lesley; Tan, Tze Guan; Ortiz-Lopez, Adriana; Yanortsang, Tsering Bakto; Yang, Liang; Jupp, Ray; Mathis, Diane; Benoist, Christophe; Kasper, Dennis L

    2017-02-23

    Within the human gut reside diverse microbes coexisting with the host in a mutually advantageous relationship. Evidence has revealed the pivotal role of the gut microbiota in shaping the immune system. To date, only a few of these microbes have been shown to modulate specific immune parameters. Herein, we broadly identify the immunomodulatory effects of phylogenetically diverse human gut microbes. We monocolonized mice with each of 53 individual bacterial species and systematically analyzed host immunologic adaptation to colonization. Most microbes exerted several specialized, complementary, and redundant transcriptional and immunomodulatory effects. Surprisingly, these were independent of microbial phylogeny. Microbial diversity in the gut ensures robustness of the microbiota's ability to generate a consistent immunomodulatory impact, serving as a highly important epigenetic system. This study provides a foundation for investigation of gut microbiota-host mutualism, highlighting key players that could identify important therapeutics. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Shotgun metaproteomics of the human distal gut microbiota

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    VerBerkmoes, N.C.; Russell, A.L.; Shah, M.

    2008-10-15

    The human gut contains a dense, complex and diverse microbial community, comprising the gut microbiome. Metagenomics has recently revealed the composition of genes in the gut microbiome, but provides no direct information about which genes are expressed or functioning. Therefore, our goal was to develop a novel approach to directly identify microbial proteins in fecal samples to gain information about the genes expressed and about key microbial functions in the human gut. We used a non-targeted, shotgun mass spectrometry-based whole community proteomics, or metaproteomics, approach for the first deep proteome measurements of thousands of proteins in human fecal samples, thusmore » demonstrating this approach on the most complex sample type to date. The resulting metaproteomes had a skewed distribution relative to the metagenome, with more proteins for translation, energy production and carbohydrate metabolism when compared to what was earlier predicted from metagenomics. Human proteins, including antimicrobial peptides, were also identified, providing a non-targeted glimpse of the host response to the microbiota. Several unknown proteins represented previously undescribed microbial pathways or host immune responses, revealing a novel complex interplay between the human host and its associated microbes.« less

  7. Human genetic variation and the gut microbiome in disease.

    PubMed

    Hall, Andrew Brantley; Tolonen, Andrew C; Xavier, Ramnik J

    2017-11-01

    Taxonomic and functional changes to the composition of the gut microbiome have been implicated in multiple human diseases. Recent microbiome genome-wide association studies reveal that variants in many human genes involved in immunity and gut architecture are associated with an altered composition of the gut microbiome. Although many factors can affect the microbial organisms residing in the gut, a number of recent findings support the hypothesis that certain host genetic variants predispose an individual towards microbiome dysbiosis. This condition, in which the normal microbiome population structure is disturbed, is a key feature in disorders of metabolism and immunity.

  8. The food-gut human axis: the effects of diet on gut microbiota and metabolome.

    PubMed

    De Angelis, Maria; Garruti, Gabriella; Minervini, Fabio; Bonfrate, Leonilde; Portincasa, Piero; Gobbetti, Marco

    2017-04-27

    Gut microbiota, the largest symbiont community hosted in human organism, is emerging as a pivotal player in the relationship between dietary habits and health. Oral and, especially, intestinal microbes metabolize dietary components, affecting human health by producing harmful or beneficial metabolites, which are involved in the incidence and progression of several intestinal related and non-related diseases. Habitual diet (Western, Agrarian and Mediterranean omnivore diets, vegetarian, vegan and gluten-free diets) drives the composition of the gut microbiota and metabolome. Within the dietary components, polymers (mainly fibers, proteins, fat and polyphenols) that are not hydrolyzed by human enzymes seem to be the main leads of the metabolic pathways of gut microbiota, which in turn directly influences the human metabolome. Specific relationships between diet and microbes, microbes and metabolites, microbes and immune functions and microbes and/or their metabolites and some human diseases are being established. Dietary treatments with fibers are the most effective to benefit the metabolome profile, by improving the synthesis of short chain fatty acids and decreasing the level of molecules, such as p-cresyl sulfate, indoxyl sulfate and trimethylamine N-oxide, involved in disease state. Based on the axis diet-microbiota-health, this review aims at describing the most recent knowledge oriented towards a profitable use of diet to provide benefits to human health, both directly and indirectly, through the activity of gut microbiota. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. How informative is the mouse for human gut microbiota research?

    PubMed Central

    Nguyen, Thi Loan Anh; Vieira-Silva, Sara; Liston, Adrian; Raes, Jeroen

    2015-01-01

    The microbiota of the human gut is gaining broad attention owing to its association with a wide range of diseases, ranging from metabolic disorders (e.g. obesity and type 2 diabetes) to autoimmune diseases (such as inflammatory bowel disease and type 1 diabetes), cancer and even neurodevelopmental disorders (e.g. autism). Having been increasingly used in biomedical research, mice have become the model of choice for most studies in this emerging field. Mouse models allow perturbations in gut microbiota to be studied in a controlled experimental setup, and thus help in assessing causality of the complex host-microbiota interactions and in developing mechanistic hypotheses. However, pitfalls should be considered when translating gut microbiome research results from mouse models to humans. In this Special Article, we discuss the intrinsic similarities and differences that exist between the two systems, and compare the human and murine core gut microbiota based on a meta-analysis of currently available datasets. Finally, we discuss the external factors that influence the capability of mouse models to recapitulate the gut microbiota shifts associated with human diseases, and investigate which alternative model systems exist for gut microbiota research. PMID:25561744

  10. How informative is the mouse for human gut microbiota research?

    PubMed

    Nguyen, Thi Loan Anh; Vieira-Silva, Sara; Liston, Adrian; Raes, Jeroen

    2015-01-01

    The microbiota of the human gut is gaining broad attention owing to its association with a wide range of diseases, ranging from metabolic disorders (e.g. obesity and type 2 diabetes) to autoimmune diseases (such as inflammatory bowel disease and type 1 diabetes), cancer and even neurodevelopmental disorders (e.g. autism). Having been increasingly used in biomedical research, mice have become the model of choice for most studies in this emerging field. Mouse models allow perturbations in gut microbiota to be studied in a controlled experimental setup, and thus help in assessing causality of the complex host-microbiota interactions and in developing mechanistic hypotheses. However, pitfalls should be considered when translating gut microbiome research results from mouse models to humans. In this Special Article, we discuss the intrinsic similarities and differences that exist between the two systems, and compare the human and murine core gut microbiota based on a meta-analysis of currently available datasets. Finally, we discuss the external factors that influence the capability of mouse models to recapitulate the gut microbiota shifts associated with human diseases, and investigate which alternative model systems exist for gut microbiota research. © 2015. Published by The Company of Biologists Ltd.

  11. Gut microbial succession follows acute secretory diarrhea in humans.

    PubMed

    David, Lawrence A; Weil, Ana; Ryan, Edward T; Calderwood, Stephen B; Harris, Jason B; Chowdhury, Fahima; Begum, Yasmin; Qadri, Firdausi; LaRocque, Regina C; Turnbaugh, Peter J

    2015-05-19

    Disability after childhood diarrhea is an important burden on global productivity. Recent studies suggest that gut bacterial communities influence how humans recover from infectious diarrhea, but we still lack extensive data and mechanistic hypotheses for how these bacterial communities respond to diarrheal disease and its treatment. Here, we report that after Vibrio cholerae infection, the human gut microbiota undergoes an orderly and reproducible succession that features transient reversals in relative levels of enteric Bacteroides and Prevotella. Elements of this succession may be a common feature in microbiota recovery from acute secretory diarrhea, as we observed similar successional dynamics after enterotoxigenic Escherichia coli (ETEC) infection. Our metagenomic analyses suggest that multiple mechanisms drive microbial succession after cholera, including bacterial dispersal properties, changing enteric oxygen and carbohydrate levels, and phage dynamics. Thus, gut microbiota recovery after cholera may be predictable at the level of community structure but is driven by a complex set of temporally varying ecological processes. Our findings suggest opportunities for diagnostics and therapies targeting the gut microbiota in humans recovering from infectious diarrhea. Disability after diarrhea is a major burden on public health in the developing world. Gut bacteria may affect this recovery, but it remains incompletely understood how resident microbes in the digestive tract respond to diarrheal illness. Here, we observed an orderly and reproducible succession of gut bacterial groups after cholera in humans. Genomic analyses associated the succession with bacterial dispersal in food, an altered microbial environment, and changing phage levels. Our findings suggest that it may one day be feasible to manage resident bacterial populations in the gut after infectious diarrhea. Copyright © 2015 David et al.

  12. Human gut microbiota and healthy aging: Recent developments and future prospective.

    PubMed

    Kumar, Manish; Babaei, Parizad; Ji, Boyang; Nielsen, Jens

    2016-10-27

    The human gut microbiota alters with the aging process. In the first 2-3 years of life, the gut microbiota varies extensively in composition and metabolic functions. After this period, the gut microbiota demonstrates adult-like more stable and diverse microbial species. However, at old age, deterioration of physiological functions of the human body enforces the decrement in count of beneficial species (e.g. Bifidobacteria ) in the gut microbiota, which promotes various gut-related diseases (e.g. inflammatory bowel disease). Use of plant-based diets and probiotics/prebiotics may elevate the abundance of beneficial species and prevent gut-related diseases. Still, the connections between diet, microbes, and host are only partially known. To this end, genome-scale metabolic modeling can help to explore these connections as well as to expand the understanding of the metabolic capability of each species in the gut microbiota. This systems biology approach can also predict metabolic variations in the gut microbiota during ageing, and hereby help to design more effective probiotics/prebiotics.

  13. Low calorie sweeteners: Evidence remains lacking for effects on human gut function.

    PubMed

    Bryant, Charlotte; Mclaughlin, John

    2016-10-01

    The importance of nutrient induced gut-brain signalling in the regulation of human food intake has become an increasing focus of research. Much of the caloric excess consumed comes from dietary sugars, but our knowledge about the mechanisms mediating the physiological and appetitive effects of sweet tastants in the human gut and gut-brain axis is far from complete. The comparative effects of natural sugars vs low calorie sweeteners are also poorly understood. Research in animal and cellular models has suggested a key functional role in gut endocrine cells for the sweet taste receptors previously well described in oral taste. However human studies to date have very consistently failed to show that activation of the sweet taste receptor by low calorie sweeteners placed in the human gut fails to replicate any of the effects on gastric motility, gut hormones or appetitive responses evoked by caloric sugars. Copyright © 2016. Published by Elsevier Inc.

  14. Metaproteomic analysis of human gut microbiota: where are we heading?

    PubMed

    Lee, Pey Yee; Chin, Siok-Fong; Neoh, Hui-Min; Jamal, Rahman

    2017-06-12

    The human gut is home to complex microbial populations that change dynamically in response to various internal and external stimuli. The gut microbiota provides numerous functional benefits that are crucial for human health but in the setting of a disturbed equilibrium, the microbial community can cause deleterious outcomes such as diseases and cancers. Characterization of the functional activities of human gut microbiota is fundamental to understand their roles in human health and disease. Metaproteomics, which refers to the study of the entire protein collection of the microbial community in a given sample is an emerging area of research that provides informative details concerning functional aspects of the microbiota. In this mini review, we present a summary of the progress of metaproteomic analysis for studying the functional role of gut microbiota. This is followed by an overview of the experimental approaches focusing on fecal specimen for metaproteomics and is concluded by a discussion on the challenges and future directions of metaproteomic research.

  15. The First Microbial Colonizers of the Human Gut: Composition, Activities, and Health Implications of the Infant Gut Microbiota.

    PubMed

    Milani, Christian; Duranti, Sabrina; Bottacini, Francesca; Casey, Eoghan; Turroni, Francesca; Mahony, Jennifer; Belzer, Clara; Delgado Palacio, Susana; Arboleya Montes, Silvia; Mancabelli, Leonardo; Lugli, Gabriele Andrea; Rodriguez, Juan Miguel; Bode, Lars; de Vos, Willem; Gueimonde, Miguel; Margolles, Abelardo; van Sinderen, Douwe; Ventura, Marco

    2017-12-01

    The human gut microbiota is engaged in multiple interactions affecting host health during the host's entire life span. Microbes colonize the neonatal gut immediately following birth. The establishment and interactive development of this early gut microbiota are believed to be (at least partially) driven and modulated by specific compounds present in human milk. It has been shown that certain genomes of infant gut commensals, in particular those of bifidobacterial species, are genetically adapted to utilize specific glycans of this human secretory fluid, thus representing a very intriguing example of host-microbe coevolution, where both partners are believed to benefit. In recent years, various metagenomic studies have tried to dissect the composition and functionality of the infant gut microbiome and to explore the distribution across the different ecological niches of the infant gut biogeography of the corresponding microbial consortia, including those corresponding to bacteria and viruses, in healthy and ill subjects. Such analyses have linked certain features of the microbiota/microbiome, such as reduced diversity or aberrant composition, to intestinal illnesses in infants or disease states that are manifested at later stages of life, including asthma, inflammatory bowel disease, and metabolic disorders. Thus, a growing number of studies have reported on how the early human gut microbiota composition/development may affect risk factors related to adult health conditions. This concept has fueled the development of strategies to shape the infant microbiota composition based on various functional food products. In this review, we describe the infant microbiota, the mechanisms that drive its establishment and composition, and how microbial consortia may be molded by natural or artificial interventions. Finally, we discuss the relevance of key microbial players of the infant gut microbiota, in particular bifidobacteria, with respect to their role in health and

  16. Functional Comparison of Bacteria from the Human Gut and Closely Related Non-Gut Bacteria Reveals the Importance of Conjugation and a Paucity of Motility and Chemotaxis Functions in the Gut Environment.

    PubMed

    Dobrijevic, Dragana; Abraham, Anne-Laure; Jamet, Alexandre; Maguin, Emmanuelle; van de Guchte, Maarten

    2016-01-01

    The human GI tract is a complex and still poorly understood environment, inhabited by one of the densest microbial communities on earth. The gut microbiota is shaped by millennia of evolution to co-exist with the host in commensal or symbiotic relationships. Members of the gut microbiota perform specific molecular functions important in the human gut environment. This can be illustrated by the presence of a highly expanded repertoire of proteins involved in carbohydrate metabolism, in phase with the large diversity of polysaccharides originating from the diet or from the host itself that can be encountered in this environment. In order to identify other bacterial functions that are important in the human gut environment, we investigated the distribution of functional groups of proteins in a group of human gut bacteria and their close non-gut relatives. Complementary to earlier global comparisons between different ecosystems, this approach should allow a closer focus on a group of functions directly related to the gut environment while avoiding functions related to taxonomically divergent microbiota composition, which may or may not be relevant for gut homeostasis. We identified several functions that are overrepresented in the human gut bacteria which had not been recognized in a global approach. The observed under-representation of certain other functions may be equally important for gut homeostasis. Together, these analyses provide us with new information about this environment so critical to our health and well-being.

  17. Functional Comparison of Bacteria from the Human Gut and Closely Related Non-Gut Bacteria Reveals the Importance of Conjugation and a Paucity of Motility and Chemotaxis Functions in the Gut Environment

    PubMed Central

    Dobrijevic, Dragana; Abraham, Anne-Laure; Jamet, Alexandre; Maguin, Emmanuelle; van de Guchte, Maarten

    2016-01-01

    The human GI tract is a complex and still poorly understood environment, inhabited by one of the densest microbial communities on earth. The gut microbiota is shaped by millennia of evolution to co-exist with the host in commensal or symbiotic relationships. Members of the gut microbiota perform specific molecular functions important in the human gut environment. This can be illustrated by the presence of a highly expanded repertoire of proteins involved in carbohydrate metabolism, in phase with the large diversity of polysaccharides originating from the diet or from the host itself that can be encountered in this environment. In order to identify other bacterial functions that are important in the human gut environment, we investigated the distribution of functional groups of proteins in a group of human gut bacteria and their close non-gut relatives. Complementary to earlier global comparisons between different ecosystems, this approach should allow a closer focus on a group of functions directly related to the gut environment while avoiding functions related to taxonomically divergent microbiota composition, which may or may not be relevant for gut homeostasis. We identified several functions that are overrepresented in the human gut bacteria which had not been recognized in a global approach. The observed under-representation of certain other functions may be equally important for gut homeostasis. Together, these analyses provide us with new information about this environment so critical to our health and well-being. PMID:27416027

  18. Prevalence of Antibiotic Resistance Genes among Human Gut-Derived Bifidobacteria.

    PubMed

    Duranti, Sabrina; Lugli, Gabriele Andrea; Mancabelli, Leonardo; Turroni, Francesca; Milani, Christian; Mangifesta, Marta; Ferrario, Chiara; Anzalone, Rosaria; Viappiani, Alice; van Sinderen, Douwe; Ventura, Marco

    2017-02-01

    The microbiota of the human gastrointestinal tract (GIT) may regularly be exposed to antibiotics, which are used to prevent and treat infectious diseases caused by bacteria and fungi. Bacterial communities of the gut retain a reservoir of antibiotic resistance (AR) genes, and antibiotic therapy thus positively selects for those microorganisms that harbor such genetic features, causing microbiota modulation. During the first months following birth, bifidobacteria represent some of the most dominant components of the human gut microbiota, although little is known about their AR gene complement (or resistome). In the current study, we assessed the resistome of the Bifidobacterium genus based on phenotypic and genotypic data of members that represent all currently recognized bifidobacterial (sub)species. Moreover, a comparison between the bifidobacterial resistome and gut metagenome data sets from adults and infants shows that the bifidobacterial community present at the first week following birth possesses a reduced AR arsenal compared to that present in the infant bifidobacterial population in subsequent weeks of the first year of life. Our findings reinforce the concept that the early infant gut microbiota is more susceptible to disturbances by antibiotic treatment than the gut microbiota developed at a later life stage. The spread of resistance to antibiotics among bacterial communities has represented a major concern since their discovery in the last century. The risk of genetic transfer of resistance genes between microorganisms has been extensively investigated due to its relevance to human health. In contrast, there is only limited information available on antibiotic resistance among human gut commensal microorganisms such as bifidobacteria, which are widely exploited by the food industry as health-promoting microorganisms or probiotic ingredients. In the current study, we explored the occurrence of antibiotic resistance genes in the genomes of bifidobacteria

  19. A psychology of the human brain-gut-microbiome axis.

    PubMed

    Allen, Andrew P; Dinan, Timothy G; Clarke, Gerard; Cryan, John F

    2017-04-01

    In recent years, we have seen increasing research within neuroscience and biopsychology on the interactions between the brain, the gastrointestinal tract, the bacteria within the gastrointestinal tract, and the bidirectional relationship between these systems: the brain-gut-microbiome axis. Although research has demonstrated that the gut microbiota can impact upon cognition and a variety of stress-related behaviours, including those relevant to anxiety and depression, we still do not know how this occurs. A deeper understanding of how psychological development as well as social and cultural factors impact upon the brain-gut-microbiome axis will contextualise the role of the axis in humans and inform psychological interventions that improve health within the brain-gut-microbiome axis. Interventions ostensibly aimed at ameliorating disorders in one part of the brain-gut-microbiome axis (e.g., psychotherapy for depression) may nonetheless impact upon other parts of the axis (e.g., microbiome composition and function), and functional gastrointestinal disorders such as irritable bowel syndrome represent a disorder of the axis, rather than an isolated problem either of psychology or of gastrointestinal function. The discipline of psychology needs to be cognisant of these interactions and can help to inform the future research agenda in this emerging field of research. In this review, we outline the role psychology has to play in understanding the brain-gut-microbiome axis, with a focus on human psychology and the use of research in laboratory animals to model human psychology.

  20. Toward Personalized Control of Human Gut Bacterial Communities.

    PubMed

    David, Lawrence A

    2018-01-01

    A key challenge in microbiology will be developing tools for manipulating human gut bacterial communities. Our ability to predict and control the dynamics of these communities is now in its infancy. To manage human gut microbiota, I am developing methods in three research domains. First, I am refining in vitro tools to experimentally study gut microbes at high throughput and in controlled settings. Second, I am adapting "big data" techniques to overcome statistical challenges confronting microbiota modeling. Third, I am testing study designs that can streamline human testing of microbiota manipulations. Assembling these methods creates new challenges, including training scientists who can work across disciplines such as engineering, ecology, and medicine. Nevertheless, I envision that overcoming these obstacles will enable my group to construct platforms that can personalize microbiota treatments, particularly ones based on diet. More broadly, I anticipate that such platforms will have applications across fields such as agriculture, biotechnology, and environmental management.

  1. Gut Microbial Succession Follows Acute Secretory Diarrhea in Humans

    PubMed Central

    David, Lawrence A.; Weil, Ana; Ryan, Edward T.; Calderwood, Stephen B.; Harris, Jason B.; Chowdhury, Fahima; Begum, Yasmin; Qadri, Firdausi

    2015-01-01

    ABSTRACT Disability after childhood diarrhea is an important burden on global productivity. Recent studies suggest that gut bacterial communities influence how humans recover from infectious diarrhea, but we still lack extensive data and mechanistic hypotheses for how these bacterial communities respond to diarrheal disease and its treatment. Here, we report that after Vibrio cholerae infection, the human gut microbiota undergoes an orderly and reproducible succession that features transient reversals in relative levels of enteric Bacteroides and Prevotella. Elements of this succession may be a common feature in microbiota recovery from acute secretory diarrhea, as we observed similar successional dynamics after enterotoxigenic Escherichia coli (ETEC) infection. Our metagenomic analyses suggest that multiple mechanisms drive microbial succession after cholera, including bacterial dispersal properties, changing enteric oxygen and carbohydrate levels, and phage dynamics. Thus, gut microbiota recovery after cholera may be predictable at the level of community structure but is driven by a complex set of temporally varying ecological processes. Our findings suggest opportunities for diagnostics and therapies targeting the gut microbiota in humans recovering from infectious diarrhea. PMID:25991682

  2. Human symbionts inject and neutralize antibacterial toxins to persist in the gut.

    PubMed

    Wexler, Aaron G; Bao, Yiqiao; Whitney, John C; Bobay, Louis-Marie; Xavier, Joao B; Schofield, Whitman B; Barry, Natasha A; Russell, Alistair B; Tran, Bao Q; Goo, Young Ah; Goodlett, David R; Ochman, Howard; Mougous, Joseph D; Goodman, Andrew L

    2016-03-29

    The human gut microbiome is a dynamic and densely populated microbial community that can provide important benefits to its host. Cooperation and competition for nutrients among its constituents only partially explain community composition and interpersonal variation. Notably, certain human-associated Bacteroidetes--one of two major phyla in the gut--also encode machinery for contact-dependent interbacterial antagonism, but its impact within gut microbial communities remains unknown. Here we report that prominent human gut symbionts persist in the gut through continuous attack on their immediate neighbors. Our analysis of just one of the hundreds of species in these communities reveals 12 candidate antibacterial effector loci that can exist in 32 combinations. Through the use of secretome studies, in vitro bacterial interaction assays and multiple mouse models, we uncover strain-specific effector/immunity repertoires that can predict interbacterial interactions in vitro and in vivo, and find that some of these strains avoid contact-dependent killing by accumulating immunity genes to effectors that they do not encode. Effector transmission rates in live animals can exceed 1 billion events per minute per gram of colonic contents, and multiphylum communities of human gut commensals can partially protect sensitive strains from these attacks. Together, these results suggest that gut microbes can determine their interactions through direct contact. An understanding of the strategies human gut symbionts have evolved to target other members of this community may provide new approaches for microbiome manipulation.

  3. Human gut microbiota and healthy aging: Recent developments and future prospective

    PubMed Central

    Kumar, Manish; Babaei, Parizad; Ji, Boyang; Nielsen, Jens

    2016-01-01

    The human gut microbiota alters with the aging process. In the first 2-3 years of life, the gut microbiota varies extensively in composition and metabolic functions. After this period, the gut microbiota demonstrates adult-like more stable and diverse microbial species. However, at old age, deterioration of physiological functions of the human body enforces the decrement in count of beneficial species (e.g. Bifidobacteria) in the gut microbiota, which promotes various gut-related diseases (e.g. inflammatory bowel disease). Use of plant-based diets and probiotics/prebiotics may elevate the abundance of beneficial species and prevent gut-related diseases. Still, the connections between diet, microbes, and host are only partially known. To this end, genome-scale metabolic modeling can help to explore these connections as well as to expand the understanding of the metabolic capability of each species in the gut microbiota. This systems biology approach can also predict metabolic variations in the gut microbiota during ageing, and hereby help to design more effective probiotics/prebiotics. PMID:28035338

  4. Human gut microbiota: does diet matter?

    PubMed

    Maukonen, Johanna; Saarela, Maria

    2015-02-01

    The human oro-gastrointestinal (GI) tract is a complex system, consisting of oral cavity, pharynx, oesophagus, stomach, small intestine, large intestine, rectum and anus, which all together with the accessory digestive organs constitute the digestive system. The function of the digestive system is to break down dietary constituents into small molecules and then absorb these for subsequent distribution throughout the body. Besides digestion and carbohydrate metabolism, the indigenous microbiota has an important influence on host physiological, nutritional and immunological processes, and commensal bacteria are able to modulate the expression of host genes that regulate diverse and fundamental physiological functions. The main external factors that can affect the composition of the microbial community in generally healthy adults include major dietary changes and antibiotic therapy. Changes in some selected bacterial groups have been observed due to controlled changes to the normal diet e.g. high-protein diet, high-fat diet, prebiotics, probiotics and polyphenols. More specifically, changes in the type and quantity of non-digestible carbohydrates in the human diet influence both the metabolic products formed in the lower regions of the GI tract and the bacterial populations detected in faeces. The interactions between dietary factors, gut microbiota and host metabolism are increasingly demonstrated to be important for maintaining homeostasis and health. Therefore the aim of this review is to summarise the effect of diet, and especially dietary interventions, on the human gut microbiota. Furthermore, the most important confounding factors (methodologies used and intrinsic human factors) in relation to gut microbiota analyses are elucidated.

  5. Human Gut-Derived Prevotella histicola Suppresses Inflammatory Arthritis in Humanized Mice

    PubMed Central

    Marietta, Eric V; Murray, Joseph A; Luckey, David H; Jeraldo, Patricio R.; Lamba, Abhinav; Patel, Robin; Luthra, Harvinder S; Mangalam, Ashutosh; Taneja, Veena

    2016-01-01

    Objective The gut microbiome regulates host immune homeostasis. Rheumatoid arthritis (RA) is associated with intestinal dysbiosis. In this study we used a human gut-derived commensal to modulate immune response and treat arthritis in a humanized mouse model. Methods We have isolated a commensal bacterium, Prevotella histicola, native to the human gut that has systemic immune effects when administered enterally. Arthritis-susceptible HLA-DQ8 mice were immunized with type II collagen and treated with P. histicola; disease incidence, onset and severity were monitored. Changes in the gut epithelial proteins and immune response as well as systemic cellular and humoral immune responses were studied in treated mice. Results DQ8 mice when treated with P. histicola in prophylactic or therapeutic protocols exhibited significantly decreased incidence and severity of arthritis as compared to controls. The microbial mucosal modulation of arthritis was dependent on the regulation by CD103+ dendritic cells and myeloid suppressors, CD11b+Gr-1, and by generation of T regulatory cells, CD4+CD25+FoxP3+, in the gut, resulting in suppression of antigen-specific Th17 response and increased transcription of IL-10. Treatment with P. histicola led to reduced intestinal permeability by increasing expression of enzymes that produce antimicrobial peptides as well as tight junction proteins, Zo-1 and Occludin. However, the innate immune response via TLR4 and TLR9 were not affected in treated mice. Discussion Our results demonstrate that enteral exposure to P. histicola suppresses arthritis via mucosal regulation. P. histicola is a unique commensal that can be explored as a novel therapy for RA and may have low/no side effects. PMID:27337150

  6. Soy and Gut Microbiota: Interaction and Implication for Human Health.

    PubMed

    Huang, Haiqiu; Krishnan, Hari B; Pham, Quynhchi; Yu, Liangli Lucy; Wang, Thomas T Y

    2016-11-23

    Soy (Glycine max) is a major commodity in the United States, and soy foods are gaining popularity due to their reported health-promoting effects. In the past two decades, soy and soy bioactive components have been studied for their health-promoting/disease-preventing activities and potential mechanisms of action. Recent studies have identified gut microbiota as an important component in the human body ecosystem and possibly a critical modulator of human health. Soy foods' interaction with the gut microbiota may critically influence many aspects of human development, physiology, immunity, and nutrition at different stages of life. This review summarizes current knowledge on the effects of soy foods and soy components on gut microbiota population and composition. It was found, although results vary in different studies, in general, both animal and human studies have shown that consumption of soy foods can increase the levels of bifidobacteria and lactobacilli and alter the ratio between Firmicutes and Bacteroidetes. These changes in microbiota are consistent with reported reductions in pathogenic bacteria populations in the gut, thereby lowering the risk of diseases and leading to beneficial effects on human health.

  7. Diet rapidly and reproducibly alters the human gut microbiome

    PubMed Central

    David, Lawrence A.; Maurice, Corinne F.; Carmody, Rachel N.; Gootenberg, David B.; Button, Julie E.; Wolfe, Benjamin E.; Ling, Alisha V.; Devlin, A. Sloan; Varma, Yug; Fischbach, Michael A.; Biddinger, Sudha B.; Dutton, Rachel J.; Turnbaugh, Peter J.

    2013-01-01

    Long-term diet influences the structure and activity of the trillions of microorganisms residing in the human gut1–5, but it remains unclear how rapidly and reproducibly the human gut microbiome responds to short-term macronutrient change. Here, we show that the short-term consumption of diets composed entirely of animal or plant products alters microbial community structure and overwhelms inter-individual differences in microbial gene expression. The animal-based diet increased the abundance of bile-tolerant microorganisms (Alistipes, Bilophila, and Bacteroides) and decreased the levels of Firmicutes that metabolize dietary plant polysaccharides (Roseburia, Eubacterium rectale, and Ruminococcus bromii). Microbial activity mirrored differences between herbivorous and carnivorous mammals2, reflecting trade-offs between carbohydrate and protein fermentation. Foodborne microbes from both diets transiently colonized the gut, including bacteria, fungi, and even viruses. Finally, increases in the abundance and activity of Bilophila wadsworthia on the animal-based diet support a link between dietary fat, bile acids, and the outgrowth of microorganisms capable of triggering inflammatory bowel disease6. In concert, these results demonstrate that the gut microbiome can rapidly respond to altered diet, potentially facilitating the diversity of human dietary lifestyles. PMID:24336217

  8. The human gut microbiome: current knowledge, challenges, and future directions.

    PubMed

    Dave, Maneesh; Higgins, Peter D; Middha, Sumit; Rioux, Kevin P

    2012-10-01

    The Human Genome Project was completed a decade ago, leaving a legacy of process, tools, and infrastructure now being turned to the study of the microbes that reside in and on the human body as determinants of health and disease, and has been branded "The Human Microbiome Project." Of the various niches under investigation, the human gut houses the most complex and abundant microbial community and is an arena for important host-microbial interactions that have both local and systemic impact. Initial studies of the human microbiome have been largely descriptive, a testing ground for innovative molecular techniques and new hypotheses. Methods for studying the microbiome have quickly evolved from low-resolution surveys of microbial community structure to high-definition description of composition, function, and ecology. Next-generation sequencing technologies combined with advanced bioinformatics place us at the doorstep of revolutionary insight into the composition, capability, and activity of the human intestinal microbiome. Renewed efforts to cultivate previously "uncultivable" microbes will be important to the overall understanding of gut ecology. There remain numerous methodological challenges to the effective study and understanding of the gut microbiome, largely relating to study design, sample collection, and the number of predictor variables. Strategic collaboration of clinicians, microbiologists, molecular biologists, computational scientists, and bioinformaticians is the ideal paradigm for success in this field. Meaningful interpretation of the gut microbiome requires that host genetic and environmental influences be controlled or accounted for. Understanding the gut microbiome in healthy humans is a foundation for discovering its influence in various important gastrointestinal and nutritional diseases (eg, inflammatory bowel disease, diabetes, and obesity), and for rational translation to human health gains. Copyright © 2012 Mosby, Inc. All rights

  9. Effects of moderate, voluntary ethanol consumption on the rat and human gut microbiome.

    PubMed

    Kosnicki, Kassi L; Penprase, Jerrold C; Cintora, Patricia; Torres, Pedro J; Harris, Greg L; Brasser, Susan M; Kelley, Scott T

    2018-05-11

    Many alcohol-induced health complications are directly attributable to the toxicity of alcohol or its metabolites, but another potential health impact of alcohol may be on the microbial communities of the human gut. Clear distinctions between healthy and diseased-state gut microbiota have been observed in subjects with metabolic diseases, and recent studies suggest that chronic alcoholism is linked to gut microbiome dysbiosis. Here, we investigated the effects of moderate levels of alcohol consumption on the gut microbiome in both rats and humans. The gut microbiota of rats voluntarily consuming a 20 percent ethanol solution, on alternate days, were compared with a non-exposed control group to identify differential taxonomic and functional profiles. Gut microbial diversity profiles were determined using culture-independent amplification, next-generation sequencing and bioinformatic analysis of bacterial 16S ribosomal RNA gene sequence libraries. Our results showed that, compared with controls, ethanol-consuming rats experienced a significant decline in the biodiversity of their gut microbiomes, a state generally associated with dysbiosis. We also observed significant shifts in the overall diversity of the gut microbial communities and a dramatic change in the relative abundance of particular microbes, such as the Lactobacilli. We also compared our results to human fecal microbiome data collected as part of the citizen science American Gut Project. In contrast to the rat data, human drinkers had significantly higher gut microbial biodiversity than non-drinkers. However, we also observed that microbes that differed among the human subjects displayed similar trends in the rat model, including bacteria implicated in metabolic disease. © 2018 Society for the Study of Addiction.

  10. Nitrogen fixation and nifH diversity in human gut microbiota

    PubMed Central

    Igai, Katsura; Itakura, Manabu; Nishijima, Suguru; Tsurumaru, Hirohito; Suda, Wataru; Tsutaya, Takumi; Tomitsuka, Eriko; Tadokoro, Kiyoshi; Baba, Jun; Odani, Shingo; Natsuhara, Kazumi; Morita, Ayako; Yoneda, Minoru; Greenhill, Andrew R.; Horwood, Paul F.; Inoue, Jun-ichi; Ohkuma, Moriya; Hongoh, Yuichi; Yamamoto, Taro; Siba, Peter M.; Hattori, Masahira; Minamisawa, Kiwamu; Umezaki, Masahiro

    2016-01-01

    It has been hypothesized that nitrogen fixation occurs in the human gut. However, whether the gut microbiota truly has this potential remains unclear. We investigated the nitrogen-fixing activity and diversity of the nitrogenase reductase (NifH) genes in the faecal microbiota of humans, focusing on Papua New Guinean and Japanese individuals with low to high habitual nitrogen intake. A 15N2 incorporation assay showed significant enrichment of 15N in all faecal samples, irrespective of the host nitrogen intake, which was also supported by an acetylene reduction assay. The fixed nitrogen corresponded to 0.01% of the standard nitrogen requirement for humans, although our data implied that the contribution in the gut in vivo might be higher than this value. The nifH genes recovered in cloning and metagenomic analyses were classified in two clusters: one comprising sequences almost identical to Klebsiella sequences and the other related to sequences of Clostridiales members. These results are consistent with an analysis of databases of faecal metagenomes from other human populations. Collectively, the human gut microbiota has a potential for nitrogen fixation, which may be attributable to Klebsiella and Clostridiales strains, although no evidence was found that the nitrogen-fixing activity substantially contributes to the host nitrogen balance. PMID:27554344

  11. Human Gut-Derived Commensal Bacteria Suppress CNS Inflammatory and Demyelinating Disease.

    PubMed

    Mangalam, Ashutosh; Shahi, Shailesh K; Luckey, David; Karau, Melissa; Marietta, Eric; Luo, Ningling; Choung, Rok Seon; Ju, Josephine; Sompallae, Ramakrishna; Gibson-Corley, Katherine; Patel, Robin; Rodriguez, Moses; David, Chella; Taneja, Veena; Murray, Joseph

    2017-08-08

    The human gut is colonized by a large number of microorganisms (∼10 13 bacteria) that support various physiologic functions. A perturbation in the healthy gut microbiome might lead to the development of inflammatory diseases, such as multiple sclerosis (MS). Therefore, gut commensals might provide promising therapeutic options for treating MS and other diseases. We report the identification of human gut-derived commensal bacteria, Prevotella histicola, which can suppress experimental autoimmune encephalomyelitis (EAE) in a human leukocyte antigen (HLA) class II transgenic mouse model. P. histicola suppresses disease through the modulation of systemic immune responses. P. histicola challenge led to a decrease in pro-inflammatory Th1 and Th17 cells and an increase in the frequencies of CD4 + FoxP3 + regulatory T cells, tolerogenic dendritic cells, and suppressive macrophages. Our study provides evidence that the administration of gut commensals may regulate a systemic immune response and may, therefore, have a possible role in treatment strategies for MS. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  12. Comparative Metagenomics Revealed Commonly Enriched Gene Sets in Human Gut Microbiomes

    PubMed Central

    Kurokawa, Ken; Itoh, Takehiko; Kuwahara, Tomomi; Oshima, Kenshiro; Toh, Hidehiro; Toyoda, Atsushi; Takami, Hideto; Morita, Hidetoshi; Sharma, Vineet K.; Srivastava, Tulika P.; Taylor, Todd D.; Noguchi, Hideki; Mori, Hiroshi; Ogura, Yoshitoshi; Ehrlich, Dusko S.; Itoh, Kikuji; Takagi, Toshihisa; Sakaki, Yoshiyuki; Hayashi, Tetsuya; Hattori, Masahira

    2007-01-01

    Numerous microbes inhabit the human intestine, many of which are uncharacterized or uncultivable. They form a complex microbial community that deeply affects human physiology. To identify the genomic features common to all human gut microbiomes as well as those variable among them, we performed a large-scale comparative metagenomic analysis of fecal samples from 13 healthy individuals of various ages, including unweaned infants. We found that, while the gut microbiota from unweaned infants were simple and showed a high inter-individual variation in taxonomic and gene composition, those from adults and weaned children were more complex but showed a high functional uniformity regardless of age or sex. In searching for the genes over-represented in gut microbiomes, we identified 237 gene families commonly enriched in adult-type and 136 families in infant-type microbiomes, with a small overlap. An analysis of their predicted functions revealed various strategies employed by each type of microbiota to adapt to its intestinal environment, suggesting that these gene sets encode the core functions of adult and infant-type gut microbiota. By analysing the orphan genes, 647 new gene families were identified to be exclusively present in human intestinal microbiomes. In addition, we discovered a conjugative transposon family explosively amplified in human gut microbiomes, which strongly suggests that the intestine is a ‘hot spot’ for horizontal gene transfer between microbes. PMID:17916580

  13. From Network Analysis to Functional Metabolic Modeling of the Human Gut Microbiota.

    PubMed

    Bauer, Eugen; Thiele, Ines

    2018-01-01

    An important hallmark of the human gut microbiota is its species diversity and complexity. Various diseases have been associated with a decreased diversity leading to reduced metabolic functionalities. Common approaches to investigate the human microbiota include high-throughput sequencing with subsequent correlative analyses. However, to understand the ecology of the human gut microbiota and consequently design novel treatments for diseases, it is important to represent the different interactions between microbes with their associated metabolites. Computational systems biology approaches can give further mechanistic insights by constructing data- or knowledge-driven networks that represent microbe interactions. In this minireview, we will discuss current approaches in systems biology to analyze the human gut microbiota, with a particular focus on constraint-based modeling. We will discuss various community modeling techniques with their advantages and differences, as well as their application to predict the metabolic mechanisms of intestinal microbial communities. Finally, we will discuss future perspectives and current challenges of simulating realistic and comprehensive models of the human gut microbiota.

  14. The role of gut microbiota in health and disease: In vitro modeling of host-microbe interactions at the aerobe-anaerobe interphase of the human gut.

    PubMed

    von Martels, Julius Z H; Sadaghian Sadabad, Mehdi; Bourgonje, Arno R; Blokzijl, Tjasso; Dijkstra, Gerard; Faber, Klaas Nico; Harmsen, Hermie J M

    2017-04-01

    The microbiota of the gut has many crucial functions in human health. Dysbiosis of the microbiota has been correlated to a large and still increasing number of diseases. Recent studies have mostly focused on analyzing the associations between disease and an aberrant microbiota composition. Functional studies using (in vitro) gut models are required to investigate the precise interactions that occur between specific bacteria (or bacterial mixtures) and gut epithelial cells. As most gut bacteria are obligate or facultative anaerobes, studying their effect on oxygen-requiring human gut epithelial cells is technically challenging. Still, several (anaerobic) bacterial-epithelial co-culture systems have recently been developed that mimic host-microbe interactions occurring in the human gut, including 1) the Transwell "apical anaerobic model of the intestinal epithelial barrier", 2) the Host-Microbiota Interaction (HMI) module, 3) the "Human oxygen-Bacteria anaerobic" (HoxBan) system, 4) the human gut-on-a-chip and 5) the HuMiX model. This review discusses the role of gut microbiota in health and disease and gives an overview of the characteristics and applications of these novel host-microbe co-culture systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Food additives, contaminants and other minor components: effects on human gut microbiota-a review.

    PubMed

    Roca-Saavedra, Paula; Mendez-Vilabrille, Veronica; Miranda, Jose Manuel; Nebot, Carolina; Cardelle-Cobas, Alejandra; Franco, Carlos M; Cepeda, Alberto

    2018-02-01

    Gut bacteria play an important role in several metabolic processes and human diseases, such as obesity and accompanying co-morbidities, such as fatty liver disease, insulin resistance/diabetes, and cardiovascular events. Among other factors, dietary patterns, probiotics, prebiotics, synbiotics, antibiotics, and non-dietary factors, such as stress, age, exercise, and climatic conditions, can dramatically impact the human gut microbiota equilibrium and diversity. However, the effect of minor food constituents, including food additives and trace contaminants, on human gut microbiota has received less attention. Consequently, the present review aimed to provide an objective perspective of the current knowledge regarding the impacts of minor food constituents on human gut microbiota and consequently, on human health.

  16. Mining the human gut microbiome for novel stress resistance genes

    PubMed Central

    Culligan, Eamonn P.; Marchesi, Julian R.; Hill, Colin; Sleator, Roy D.

    2012-01-01

    With the rapid advances in sequencing technologies in recent years, the human genome is now considered incomplete without the complementing microbiome, which outnumbers human genes by a factor of one hundred. The human microbiome, and more specifically the gut microbiome, has received considerable attention and research efforts over the past decade. Many studies have identified and quantified “who is there?,” while others have determined some of their functional capacity, or “what are they doing?” In a recent study, we identified novel salt-tolerance loci from the human gut microbiome using combined functional metagenomic and bioinformatics based approaches. Herein, we discuss the identified loci, their role in salt-tolerance and their importance in the context of the gut environment. We also consider the utility and power of functional metagenomics for mining such environments for novel genes and proteins, as well as the implications and possible applications for future research. PMID:22688726

  17. The human gut microbiota and its interactive connections to diet.

    PubMed

    Milani, C; Ferrario, C; Turroni, F; Duranti, S; Mangifesta, M; van Sinderen, D; Ventura, M

    2016-10-01

    The microbiota of the gastrointestinal tract plays an important role in human health. In addition to their metabolic interactions with dietary constituents, gut bacteria may also be involved in more complex host interactions, such as modulation of the immune system. Furthermore, the composition of the gut microbiota may be important in reducing the risk of contracting particular gut infections. Changes in the microbiota during an individual's lifespan are accompanied by modifications in multiple health parameters, and such observations have prompted intense scientific efforts aiming to understand the complex interactions between the microbiota and its human host, as well as how this may be influenced by diet. © 2016 The British Dietetic Association Ltd.

  18. Human Gut Microbiota: Toward an Ecology of Disease

    PubMed Central

    Selber-Hnatiw, Susannah; Rukundo, Belise; Ahmadi, Masoumeh; Akoubi, Hayfa; Al-Bizri, Hend; Aliu, Adelekan F.; Ambeaghen, Tanyi U.; Avetisyan, Lilit; Bahar, Irmak; Baird, Alexandra; Begum, Fatema; Ben Soussan, Hélène; Blondeau-Éthier, Virginie; Bordaries, Roxane; Bramwell, Helene; Briggs, Alicia; Bui, Richard; Carnevale, Matthew; Chancharoen, Marisa; Chevassus, Talia; Choi, Jin H.; Coulombe, Karyne; Couvrette, Florence; D'Abreau, Samantha; Davies, Meghan; Desbiens, Marie-Pier; Di Maulo, Tamara; Di Paolo, Sean-Anthony; Do Ponte, Sabrina; dos Santos Ribeiro, Priscyla; Dubuc-Kanary, Laure-Anne; Duncan, Paola K.; Dupuis, Frédérique; El-Nounou, Sara; Eyangos, Christina N.; Ferguson, Natasha K.; Flores-Chinchilla, Nancy R.; Fotakis, Tanya; Gado Oumarou H D, Mariam; Georgiev, Metodi; Ghiassy, Seyedehnazanin; Glibetic, Natalija; Grégoire Bouchard, Julien; Hassan, Tazkia; Huseen, Iman; Ibuna Quilatan, Marlon-Francis; Iozzo, Tania; Islam, Safina; Jaunky, Dilan B.; Jeyasegaram, Aniththa; Johnston, Marc-André; Kahler, Matthew R.; Kaler, Kiranpreet; Kamani, Cedric; Karimian Rad, Hessam; Konidis, Elisavet; Konieczny, Filip; Kurianowicz, Sandra; Lamothe, Philippe; Legros, Karina; Leroux, Sebastien; Li, Jun; Lozano Rodriguez, Monica E.; Luponio-Yoffe, Sean; Maalouf, Yara; Mantha, Jessica; McCormick, Melissa; Mondragon, Pamela; Narayana, Thivaedee; Neretin, Elizaveta; Nguyen, Thi T. T.; Niu, Ian; Nkemazem, Romeo B.; O'Donovan, Martin; Oueis, Matthew; Paquette, Stevens; Patel, Nehal; Pecsi, Emily; Peters, Jackie; Pettorelli, Annie; Poirier, Cassandra; Pompa, Victoria R.; Rajen, Harshvardhan; Ralph, Reginald-Olivier; Rosales-Vasquez, Josué; Rubinshtein, Daria; Sakr, Surya; Sebai, Mohammad S.; Serravalle, Lisa; Sidibe, Fily; Sinnathurai, Ahnjana; Soho, Dominique; Sundarakrishnan, Adithi; Svistkova, Veronika; Ugbeye, Tsolaye E.; Vasconcelos, Megan S.; Vincelli, Michael; Voitovich, Olga; Vrabel, Pamela; Wang, Lu; Wasfi, Maryse; Zha, Cong Y.; Gamberi, Chiara

    2017-01-01

    Composed of trillions of individual microbes, the human gut microbiota has adapted to the uniquely diverse environments found in the human intestine. Quickly responding to the variances in the ingested food, the microbiota interacts with the host via reciprocal biochemical signaling to coordinate the exchange of nutrients and proper immune function. Host and microbiota function as a unit which guards its balance against invasion by potential pathogens and which undergoes natural selection. Disturbance of the microbiota composition, or dysbiosis, is often associated with human disease, indicating that, while there seems to be no unique optimal composition of the gut microbiota, a balanced community is crucial for human health. Emerging knowledge of the ecology of the microbiota-host synergy will have an impact on how we implement antibiotic treatment in therapeutics and prophylaxis and how we will consider alternative strategies of global remodeling of the microbiota such as fecal transplants. Here we examine the microbiota-human host relationship from the perspective of the microbial community dynamics. PMID:28769880

  19. Human Gut Microbiota: Repertoire and Variations

    PubMed Central

    Lagier, Jean-Christophe; Million, Matthieu; Hugon, Perrine; Armougom, Fabrice; Raoult, Didier

    2012-01-01

    The composition of human gut microbiota and their relationship with the host and, consequently, with human health and disease, presents several challenges to microbiologists. Originally dominated by culture-dependent methods for exploring this ecosystem, the advent of molecular tools has revolutionized our ability to investigate these relationships. However, many biases that have led to contradictory results have been identified. Microbial culturomics, a recent concept based on a use of several culture conditions with identification by MALDI-TOF followed by the genome sequencing of the new species cultured had allowed a complementarity with metagenomics. Culturomics allowed to isolate 31 new bacterial species, the largest human virus, the largest bacteria, and the largest Archaea from human. Moreover, some members of this ecosystem, such as Eukaryotes, giant viruses, Archaea, and Planctomycetes, have been neglected by the majority of studies. In addition, numerous factors, such as age, geographic provenance, dietary habits, antibiotics, or probiotics, can influence the composition of the microbiota. Finally, in addition to the countless biases associated with the study techniques, a considerable limitation to the interpretation of studies of human gut microbiota is associated with funding sources and transparency disclosures. In the future, studies independent of food industry funding and using complementary methods from a broad range of both culture-based and molecular tools will increase our knowledge of the repertoire of this complex ecosystem and host-microbiota mutualism. PMID:23130351

  20. Interactions between parasites and microbial communities in the human gut.

    PubMed

    Berrilli, Federica; Di Cave, David; Cavallero, Serena; D'Amelio, Stefano

    2012-01-01

    The interactions between intestinal microbiota, immune system, and pathogens describe the human gut as a complex ecosystem, where all components play a relevant role in modulating each other and in the maintenance of homeostasis. The balance among the gut microbiota and the human body appear to be crucial for health maintenance. Intestinal parasites, both protozoans and helminths, interact with the microbial community modifying the balance between host and commensal microbiota. On the other hand, gut microbiota represents a relevant factor that may strongly interfere with the pathophysiology of the infections. In addition to the function that gut commensal microbiota may have in the processes that determine the survival and the outcome of many parasitic infections, including the production of nutritive macromolecules, also probiotics can play an important role in reducing the pathogenicity of many parasites. On these bases, there is a growing interest in explaining the rationale on the possible interactions between the microbiota, immune response, inflammatory processes, and intestinal parasites.

  1. Interactions between parasites and microbial communities in the human gut

    PubMed Central

    Berrilli, Federica; Di Cave, David; Cavallero, Serena; D'Amelio, Stefano

    2012-01-01

    The interactions between intestinal microbiota, immune system, and pathogens describe the human gut as a complex ecosystem, where all components play a relevant role in modulating each other and in the maintenance of homeostasis. The balance among the gut microbiota and the human body appear to be crucial for health maintenance. Intestinal parasites, both protozoans and helminths, interact with the microbial community modifying the balance between host and commensal microbiota. On the other hand, gut microbiota represents a relevant factor that may strongly interfere with the pathophysiology of the infections. In addition to the function that gut commensal microbiota may have in the processes that determine the survival and the outcome of many parasitic infections, including the production of nutritive macromolecules, also probiotics can play an important role in reducing the pathogenicity of many parasites. On these bases, there is a growing interest in explaining the rationale on the possible interactions between the microbiota, immune response, inflammatory processes, and intestinal parasites. PMID:23162802

  2. Survival of Yogurt Bacteria in the Human Gut

    PubMed Central

    Elli, Marina; Callegari, Maria Luisa; Ferrari, Susanna; Bessi, Elena; Cattivelli, Daniela; Soldi, Sara; Morelli, Lorenzo; Goupil Feuillerat, Nathalie; Antoine, Jean-Michel

    2006-01-01

    Whether Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus can be recovered after passage through the human gut was tested by feeding 20 healthy volunteers commercial yogurt. Yogurt bacteria were found in human feces, suggesting that they can survive transit in the gastrointestinal tract. PMID:16820518

  3. Changes in human gut flora with age: an Indian familial study.

    PubMed

    Marathe, Nachiket; Shetty, Sudarshan; Lanjekar, Vikram; Ranade, Dilip; Shouche, Yogesh

    2012-09-26

    The gut micro flora plays vital role in health status of the host. The majority of microbes residing in the gut have a profound influence on human physiology and nutrition. Different human ethnic groups vary in genetic makeup as well as the environmental conditions they live in. The gut flora changes with genetic makeup and environmental factors and hence it is necessary to understand the composition of gut flora of different ethnic groups. Indian population is different in physiology from western population (YY paradox) and thus the gut flora in Indian population is likely to differ from the extensively studied gut flora in western population. In this study we have investigated the gut flora of two Indian families, each with three individuals belonging to successive generations and living under the same roof. Denaturation gradient gel electrophoresis analysis showed age-dependant variation in gut microflora amongst the individuals within a family. Different bacterial genera were dominant in the individual of varying age in clone library analysis. Obligate anaerobes isolated from individuals within a family showed age related differences in isolation pattern, with 27% (6 out of 22) of the isolates being potential novel species based on 16S rRNA gene sequence. In qPCR a consistent decrease in Firmicutes number and increase in Bacteroidetes number with increasing age was observed in our subjects, this pattern of change in Firmicutes / Bacteroidetes ratio with age is different than previously reported in European population. There is change in gut flora with age amongst the individuals within a family. The isolation of high percent of novel bacterial species and the pattern of change in Firmicutes /Bacteroidetes ratio with age suggests that the composition of gut flora in Indian individuals may be different than the western population. Thus, further extensive study is needed to define the gut flora in Indian population.

  4. Quinones are growth factors for the human gut microbiota.

    PubMed

    Fenn, Kathrin; Strandwitz, Philip; Stewart, Eric J; Dimise, Eric; Rubin, Sarah; Gurubacharya, Shreya; Clardy, Jon; Lewis, Kim

    2017-12-20

    The human gut microbiome has been linked to numerous components of health and disease. However, approximately 25% of the bacterial species in the gut remain uncultured, which limits our ability to properly understand, and exploit, the human microbiome. Previously, we found that growing environmental bacteria in situ in a diffusion chamber enables growth of uncultured species, suggesting the existence of growth factors in the natural environment not found in traditional cultivation media. One source of growth factors proved to be neighboring bacteria, and by using co-culture, we isolated previously uncultured organisms from the marine environment and identified siderophores as a major class of bacterial growth factors. Here, we employ similar co-culture techniques to grow bacteria from the human gut microbiome and identify novel growth factors. By testing dependence of slow-growing colonies on faster-growing neighboring bacteria in a co-culture assay, eight taxonomically diverse pairs of bacteria were identified, in which an "induced" isolate formed a gradient of growth around a cultivatable "helper." This set included two novel species Faecalibacterium sp. KLE1255-belonging to the anti-inflammatory Faecalibacterium genus-and Sutterella sp. KLE1607. While multiple helper strains were identified, Escherichia coli was also capable of promoting growth of all induced isolates. Screening a knockout library of E. coli showed that a menaquinone biosynthesis pathway was required for growth induction of Faecalibacterium sp. KLE1255 and other induced isolates. Purified menaquinones induced growth of 7/8 of the isolated strains, quinone specificity profiles for individual bacteria were identified, and genome analysis suggests an incomplete menaquinone biosynthetic capability yet the presence of anaerobic terminal reductases in the induced strains, indicating an ability to respire anaerobically. Our data show that menaquinones are a major class of growth factors for bacteria

  5. Human gut microbiome viewed across age and geography

    PubMed Central

    Yatsunenko, Tanya; Rey, Federico E.; Manary, Mark J.; Trehan, Indi; Dominguez-Bello, Maria Gloria; Contreras, Monica; Magris, Magda; Hidalgo, Glida; Baldassano, Robert N.; Anokhin, Andrey P.; Heath, Andrew C.; Warner, Barbara; Reeder, Jens; Kuczynski, Justin; Caporaso, J. Gregory; Lozupone, Catherine A.; Lauber, Christian; Clemente, Jose Carlos; Knights, Dan; Knight, Rob; Gordon, Jeffrey I.

    2012-01-01

    Gut microbial communities represent one source of human genetic and metabolic diversity. To examine how gut microbiomes differ between human populations when viewed from the perspective of component microbial lineages, encoded metabolic functions, stage of postnatal development, and environmental exposures, we characterized bacterial species present in fecal samples obtained from 531 individuals representing healthy Amerindians from the Amazonas of Venezuela, residents of rural Malawian communities, and inhabitants of USA metropolitan areas, as well as the gene content of 110 of their microbiomes. This cohort encompassed infants, children, teenagers and adults, parents and offspring, and included mono- and dizygotic twins. Shared features of the functional maturation of the gut microbiome were identified during the first three years of life in all three populations, including age-associated changes in the representation of genes involved in vitamin biosynthesis and metabolism. Pronounced differences in bacterial species assemblages and functional gene repertoires were noted between individuals residing in the USA compared to the other two countries. These distinctive features are evident in early infancy as well as adulthood. In addition, the similarity of fecal microbiomes among family members extends across cultures. These findings underscore the need to consider the microbiome when evaluating human development, nutritional needs, physiological variations, and the impact of Westernization. PMID:22699611

  6. Sex, Body Mass Index, and Dietary Fiber Intake Influence the Human Gut Microbiome

    PubMed Central

    Dominianni, Christine; Sinha, Rashmi; Goedert, James J.; Pei, Zhiheng; Yang, Liying; Hayes, Richard B.; Ahn, Jiyoung

    2015-01-01

    Increasing evidence suggests that the composition of the human gut microbiome is important in the etiology of human diseases; however, the personal factors that influence the gut microbiome composition are poorly characterized. Animal models point to sex hormone-related differentials in microbiome composition. In this study, we investigated the relationship of sex, body mass index (BMI) and dietary fiber intake with the gut microbiome in 82 humans. We sequenced fecal 16S rRNA genes by 454 FLX technology, then clustered and classified the reads to microbial genomes using the QIIME pipeline. Relationships of sex, BMI, and fiber intake with overall gut microbiome composition and specific taxon abundances were assessed by permutational MANOVA and multivariate logistic regression, respectively. We found that sex was associated with the gut microbiome composition overall (p=0.001). The gut microbiome in women was characterized by a lower abundance of Bacteroidetes (p=0.03). BMI (>25 kg/m2 vs. <25 kg/m2) was associated with the gut microbiome composition overall (p=0.05), and this relationship was strong in women (p=0.03) but not in men (p=0.29). Fiber from beans and from fruits and vegetables were associated, respectively, with greater abundance of Actinobacteria (p=0.006 and false discovery rate adjusted q=0.05) and Clostridia (p=0.009 and false discovery rate adjusted q=0.09). Our findings suggest that sex, BMI, and dietary fiber contribute to shaping the gut microbiome in humans. Better understanding of these relationships may have significant implications for gastrointestinal health and disease prevention. PMID:25874569

  7. Rapid changes in the gut microbiome during human evolution

    PubMed Central

    Moeller, Andrew H.; Li, Yingying; Mpoudi Ngole, Eitel; Ahuka-Mundeke, Steve; Lonsdorf, Elizabeth V.; Pusey, Anne E.; Peeters, Martine; Hahn, Beatrice H.; Ochman, Howard

    2014-01-01

    Humans are ecosystems containing trillions of microorganisms, but the evolutionary history of this microbiome is obscured by a lack of knowledge about microbiomes of African apes. We sequenced the gut communities of hundreds of chimpanzees, bonobos, and gorillas and developed a phylogenetic approach to reconstruct how present-day human microbiomes have diverged from those of ancestral populations. Compositional change in the microbiome was slow and clock-like during African ape diversification, but human microbiomes have deviated from the ancestral state at an accelerated rate. Relative to the microbiomes of wild apes, human microbiomes have lost ancestral microbial diversity while becoming specialized for animal-based diets. Individual wild apes cultivate more phyla, classes, orders, families, genera, and species of bacteria than do individual humans across a range of societies. These results indicate that humanity has experienced a depletion of the gut flora since diverging from Pan. PMID:25368157

  8. Rapid changes in the gut microbiome during human evolution.

    PubMed

    Moeller, Andrew H; Li, Yingying; Mpoudi Ngole, Eitel; Ahuka-Mundeke, Steve; Lonsdorf, Elizabeth V; Pusey, Anne E; Peeters, Martine; Hahn, Beatrice H; Ochman, Howard

    2014-11-18

    Humans are ecosystems containing trillions of microorganisms, but the evolutionary history of this microbiome is obscured by a lack of knowledge about microbiomes of African apes. We sequenced the gut communities of hundreds of chimpanzees, bonobos, and gorillas and developed a phylogenetic approach to reconstruct how present-day human microbiomes have diverged from those of ancestral populations. Compositional change in the microbiome was slow and clock-like during African ape diversification, but human microbiomes have deviated from the ancestral state at an accelerated rate. Relative to the microbiomes of wild apes, human microbiomes have lost ancestral microbial diversity while becoming specialized for animal-based diets. Individual wild apes cultivate more phyla, classes, orders, families, genera, and species of bacteria than do individual humans across a range of societies. These results indicate that humanity has experienced a depletion of the gut flora since diverging from Pan.

  9. Degradation of Marine Algae-Derived Carbohydrates by Bacteroidetes Isolated from Human Gut Microbiota.

    PubMed

    Li, Miaomiao; Shang, Qingsen; Li, Guangsheng; Wang, Xin; Yu, Guangli

    2017-03-24

    Carrageenan, agarose, and alginate are algae-derived undigested polysaccharides that have been used as food additives for hundreds of years. Fermentation of dietary carbohydrates of our food in the lower gut of humans is a critical process for the function and integrity of both the bacterial community and host cells. However, little is known about the fermentation of these three kinds of seaweed carbohydrates by human gut microbiota. Here, the degradation characteristics of carrageenan, agarose, alginate, and their oligosaccharides, by Bacteroides xylanisolvens , Bacteroides ovatus , and Bacteroides uniforms , isolated from human gut microbiota, are studied.

  10. The human gut microbiome and its dysfunctions through the meta-omics prism.

    PubMed

    Mondot, Stanislas; Lepage, Patricia

    2016-05-01

    The microorganisms inhabiting the human gut are abundant (10(14) cells) and diverse (approximately 500 species per individual). It is now acknowledged that the microbiota has coevolved with its host to achieve a symbiotic relationship, leading to physiological homeostasis. The gut microbiota ensures vital functions, such as food digestibility, maturation of the host immune system, and protection against pathogens. Over the last few decades, the gut microbiota has also been associated with numerous diseases, such as inflammatory bowel disease, irritable bowel syndrome, obesity, and metabolic diseases. In most of these pathologies, a microbial dysbiosis has been found, indicating shifts in the taxonomic composition of the gut microbiota and changes in its functionality. Our understanding of the influence of the gut microbiota on human health is still growing. Working with microorganisms residing in the gut is challenging since most of them are anaerobic and a vast majority (approximately 75%) are uncultivable to date. Recently, a wide range of new approaches (meta-omics) has been developed to bypass the uncultivability and reveal the intricate mechanisms that sustain gut microbial homeostasis. After a brief description of these approaches (metagenomics, metatranscriptomics, metaproteomics, and metabolomics), this review will discuss the importance of considering the gut microbiome as a structured ecosystem and the use of meta-omics to decipher dysfunctions of the gut microbiome in diseases. © 2016 New York Academy of Sciences.

  11. Comparative Analysis of Korean Human Gut Microbiota by Barcoded Pyrosequencing

    PubMed Central

    Nam, Young-Do; Jung, Mi-Ja; Roh, Seong Woon; Kim, Min-Soo; Bae, Jin-Woo

    2011-01-01

    Human gut microbiota plays important roles in harvesting energy from the diet, stimulating the proliferation of the intestinal epithelium, developing the immune system, and regulating fat storage in the host. Characterization of gut microbiota, however, has been limited to western people and is not sufficiently extensive to fully describe microbial communities. In this study, we investigated the overall composition of the gut microbiota and its host specificity and temporal stability in 20 Koreans using 454-pyrosequencing with barcoded primers targeting the V1 to V3 region of the bacterial 16S rRNA gene. A total of 303,402 high quality reads covered each sample and 8,427 reads were analyzed on average. The results were compared with those of individuals from the USA, China and Japan. In general, microbial communities were dominated by five previously identified phyla: Actinobacteria, Firmicutes, Bacteroidetes, Fusobacteria, and Proteobacteria. UPGMA cluster analysis showed that the species composition of gut microbiota was host-specific and stable over the duration of the test period, but the relative abundance of each member fluctuated. 43 core Korean gut microbiota were identified by comparison of sequences from each individual, of which 15 species level phylotypes were related to previously-reported butyrate-producing bacteria. UniFrac analysis revealed that human gut microbiota differed between countries: Korea, USA, Japan and China, but tended to vary less between individual Koreans, suggesting that gut microbial composition is related to internal and external characteristics of each country member such as host genetics and diet styles. PMID:21829445

  12. Ménage à trois in the human gut: interactions between host, bacteria and phages.

    PubMed

    Mirzaei, Mohammadali Khan; Maurice, Corinne F

    2017-07-01

    The human gut is host to one of the densest microbial communities known, the gut microbiota, which contains bacteria, archaea, viruses, fungi and other microbial eukaryotes. Bacteriophages in the gut are largely unexplored, despite their potential to regulate bacterial communities and thus human health. In addition to helping us understand gut homeostasis, applying an ecological perspective to the study of bacterial and phage communities in the gut will help us to understand how this microbial system functions. For example, temporal studies of bacteria, phages and host immune cells in the gut during health and disease could provide key information about disease development and inform therapeutic treatments, whereas understanding the regulation of the replication cycles of phages could help harness the gut microbiota to improve disease outcomes. As the most abundant biological entities in our gut, we must consider bacteriophages in our pursuit of personalized medicine.

  13. Gene expression profiling gut microbiota in different races of humans

    PubMed Central

    Chen, Lei; Zhang, Yu-Hang; Huang, Tao; Cai, Yu-Dong

    2016-01-01

    The gut microbiome is shaped and modified by the polymorphisms of microorganisms in the intestinal tract. Its composition shows strong individual specificity and may play a crucial role in the human digestive system and metabolism. Several factors can affect the composition of the gut microbiome, such as eating habits, living environment, and antibiotic usage. Thus, various races are characterized by different gut microbiome characteristics. In this present study, we studied the gut microbiomes of three different races, including individuals of Asian, European and American races. The gut microbiome and the expression levels of gut microbiome genes were analyzed in these individuals. Advanced feature selection methods (minimum redundancy maximum relevance and incremental feature selection) and four machine-learning algorithms (random forest, nearest neighbor algorithm, sequential minimal optimization, Dagging) were employed to capture key differentially expressed genes. As a result, sequential minimal optimization was found to yield the best performance using the 454 genes, which could effectively distinguish the gut microbiomes of different races. Our analyses of extracted genes support the widely accepted hypotheses that eating habits, living environments and metabolic levels in different races can influence the characteristics of the gut microbiome. PMID:26975620

  14. Gene expression profiling gut microbiota in different races of humans

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Zhang, Yu-Hang; Huang, Tao; Cai, Yu-Dong

    2016-03-01

    The gut microbiome is shaped and modified by the polymorphisms of microorganisms in the intestinal tract. Its composition shows strong individual specificity and may play a crucial role in the human digestive system and metabolism. Several factors can affect the composition of the gut microbiome, such as eating habits, living environment, and antibiotic usage. Thus, various races are characterized by different gut microbiome characteristics. In this present study, we studied the gut microbiomes of three different races, including individuals of Asian, European and American races. The gut microbiome and the expression levels of gut microbiome genes were analyzed in these individuals. Advanced feature selection methods (minimum redundancy maximum relevance and incremental feature selection) and four machine-learning algorithms (random forest, nearest neighbor algorithm, sequential minimal optimization, Dagging) were employed to capture key differentially expressed genes. As a result, sequential minimal optimization was found to yield the best performance using the 454 genes, which could effectively distinguish the gut microbiomes of different races. Our analyses of extracted genes support the widely accepted hypotheses that eating habits, living environments and metabolic levels in different races can influence the characteristics of the gut microbiome.

  15. The Green Gut: Chlorophyll Degradation in the Gut of Spodoptera littoralis.

    PubMed

    Badgaa, Amarsanaa; Büchler, Rita; Wielsch, Natalie; Walde, Marie; Heintzmann, Rainer; Pauchet, Yannik; Svatos, Ales; Ploss, Kerstin; Boland, Wilhelm

    2015-11-01

    Chlorophylls, the most prominent natural pigments, are part of the daily diet of herbivorous insects. The spectrum of ingested and digested chlorophyll metabolites compares well to the pattern of early chlorophyll-degradation products in senescent plants. Intact chlorophyll is rapidly degraded by proteins in the front- and midgut. Unlike plants, insects convert both chlorophyll a and b into the corresponding catabolites. MALDI-TOF/MS imaging allowed monitoring the distribution of the chlorophyll catabolites along the gut of Spodoptera littoralis larvae. The chlorophyll degradation in the fore- and mid-gut is strongly pH dependent, and requires alkaline conditions. Using LC-MS/MS analysis we identified a lipocalin-type protein in the intestinal fluid of S. littoralis homolog to the chlorophyllide a binding protein from Bombyx mori. Widefield and high-resolution autofluorescence microscopy revealed that the brush border membranes are covered with the chlorophyllide binding protein tightly bound via its GPI-anchor to the gut membrane. A function in defense against gut microbes is discussed.

  16. Microbial metaproteomics for characterizing the range of metabolic functions and activities of human gut microbiota.

    PubMed

    Xiong, Weili; Abraham, Paul E; Li, Zhou; Pan, Chongle; Hettich, Robert L

    2015-10-01

    The human gastrointestinal tract is a complex, dynamic ecosystem that consists of a carefully tuned balance of human host and microbiota membership. The microbiome is not merely a collection of opportunistic parasites, but rather provides important functions to the host that are absolutely critical to many aspects of health, including nutrient transformation and absorption, drug metabolism, pathogen defense, and immune system development. Microbial metaproteomics provides the ability to characterize the human gut microbiota functions and metabolic activities at a remarkably deep level, revealing information about microbiome development and stability as well as their interactions with their human host. Generally, microbial and human proteins can be extracted and then measured by high performance MS-based proteomics technology. Here, we review the field of human gut microbiome metaproteomics, with a focus on the experimental and informatics considerations involved in characterizing systems ranging from low-complexity model gut microbiota in gnotobiotic mice, to the emerging gut microbiome in the GI tract of newborn human infants, and finally to an established gut microbiota in human adults. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Computational determination of the effects of virulent Escherichia coli and salmonella bacteriophages on human gut.

    PubMed

    Mostafa, Marwa Mostafa; Nassef, Mohammad; Badr, Amr

    2016-10-01

    Salmonella and Escherichia coli are different types of bacteria that cause food poisoning in humans. In the elderly, infants and people with chronic conditions, it is very dangerous if Salmonella or E. coli gets into the bloodstream and then they must be treated by phage therapy. Treating Salmonella and E. coli by phage therapy affects the gut flora. This research paper presents a system for detecting the effects of virulent E. coli and Salmonella bacteriophages on human gut. A method based on Domain-Domain Interactions (DDIs) model is implemented in the proposed system to determine the interactions between the proteins of human gut bacteria and the proteins of bacteriophages that infect virulent E. coli and Salmonella. The system helps gastroenterologists to realize the effect of injecting bacteriophages that infect virulent E. coli and Salmonella on the human gut. By testing the system over Enterobacteria phage 933W, Enterobacteria phage VT2-Sa and Enterobacteria phage P22, it resulted in four interactions between the proteins of the bacteriophages that infect E. coli O157:H7, E. coli O104:H4 and Salmonella typhimurium and the proteins of human gut bacterium strains. Several effects were detected such as: antibacterial activity against a number of bacterial species in human gut, regulation of cellular differentiation and organogenesis during gut, lung, and heart development, ammonia assimilation in bacteria, yeasts, and plants, energizing defense system and its function in the detoxification of lipopolysaccharide, and in the prevention of bacterial translocation in human gut. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota.

    PubMed

    Forslund, Kristoffer; Hildebrand, Falk; Nielsen, Trine; Falony, Gwen; Le Chatelier, Emmanuelle; Sunagawa, Shinichi; Prifti, Edi; Vieira-Silva, Sara; Gudmundsdottir, Valborg; Pedersen, Helle K; Arumugam, Manimozhiyan; Kristiansen, Karsten; Voigt, Anita Yvonne; Vestergaard, Henrik; Hercog, Rajna; Costea, Paul Igor; Kultima, Jens Roat; Li, Junhua; Jørgensen, Torben; Levenez, Florence; Dore, Joël; Nielsen, H Bjørn; Brunak, Søren; Raes, Jeroen; Hansen, Torben; Wang, Jun; Ehrlich, S Dusko; Bork, Peer; Pedersen, Oluf

    2015-12-10

    In recent years, several associations between common chronic human disorders and altered gut microbiome composition and function have been reported. In most of these reports, treatment regimens were not controlled for and conclusions could thus be confounded by the effects of various drugs on the microbiota, which may obscure microbial causes, protective factors or diagnostically relevant signals. Our study addresses disease and drug signatures in the human gut microbiome of type 2 diabetes mellitus (T2D). Two previous quantitative gut metagenomics studies of T2D patients that were unstratified for treatment yielded divergent conclusions regarding its associated gut microbial dysbiosis. Here we show, using 784 available human gut metagenomes, how antidiabetic medication confounds these results, and analyse in detail the effects of the most widely used antidiabetic drug metformin. We provide support for microbial mediation of the therapeutic effects of metformin through short-chain fatty acid production, as well as for potential microbiota-mediated mechanisms behind known intestinal adverse effects in the form of a relative increase in abundance of Escherichia species. Controlling for metformin treatment, we report a unified signature of gut microbiome shifts in T2D with a depletion of butyrate-producing taxa. These in turn cause functional microbiome shifts, in part alleviated by metformin-induced changes. Overall, the present study emphasizes the need to disentangle gut microbiota signatures of specific human diseases from those of medication.

  19. The human gut microbiome, a taxonomic conundrum.

    PubMed

    Sankar, Senthil Alias; Lagier, Jean-Christophe; Pontarotti, Pierre; Raoult, Didier; Fournier, Pierre-Edouard

    2015-06-01

    From culture to metagenomics, within only 130 years, our knowledge of the human microbiome has considerably improved. With >1000 microbial species identified to date, the gastro-intestinal microbiota is the most complex of human biotas. It is composed of a majority of Bacteroidetes and Firmicutes and, although exhibiting great inter-individual variations according to age, geographic origin, disease or antibiotic uptake, it is stable over time. Metagenomic studies have suggested associations between specific gut microbiota compositions and a variety of diseases, including irritable bowel syndrome, Crohn's disease, colon cancer, type 2 diabetes and obesity. However, these data remain method-dependent, as no consensus strategy has been defined to decipher the complexity of the gut microbiota. High-throughput culture-independent techniques have highlighted the limitations of culture by showing the importance of uncultured species, whereas modern culture methods have demonstrated that metagenomics underestimates the microbial diversity by ignoring minor populations. In this review, we highlight the progress and challenges that pave the way to a complete understanding of the human gastrointestinal microbiota and its influence on human health. Copyright © 2015 Elsevier GmbH. All rights reserved.

  20. Apigenin Impacts the Growth of the Gut Microbiota and Alters the Gene Expression of Enterococcus.

    PubMed

    Wang, Minqian; Firrman, Jenni; Zhang, Liqing; Arango-Argoty, Gustavo; Tomasula, Peggy; Liu, LinShu; Xiao, Weidong; Yam, Kit

    2017-08-03

    Apigenin is a major dietary flavonoid with many bioactivities, widely distributed in plants. Apigenin reaches the colon region intact and interacts there with the human gut microbiota, however there is little research on how apigenin affects the gut bacteria. This study investigated the effect of pure apigenin on human gut bacteria, at both the single strain and community levels. The effect of apigenin on the single gut bacteria strains Bacteroides galacturonicus , Bifidobacterium catenulatum , Lactobacillus rhamnosus GG, and Enterococcus caccae , was examined by measuring their anaerobic growth profiles. The effect of apigenin on a gut microbiota community was studied by culturing a fecal inoculum under in vitro conditions simulating the human ascending colon. 16S rRNA gene sequencing and GC-MS analysis quantified changes in the community structure. Single molecule RNA sequencing was used to reveal the response of Enterococcus caccae to apigenin. Enterococcus caccae was effectively inhibited by apigenin when cultured alone, however, the genus Enterococcus was enhanced when tested in a community setting. Single molecule RNA sequencing found that Enterococcus caccae responded to apigenin by up-regulating genes involved in DNA repair, stress response, cell wall synthesis, and protein folding. Taken together, these results demonstrate that apigenin affects both the growth and gene expression of Enterococcus caccae .

  1. A geographically-diverse collection of 418 human gut microbiome pathway genome databases

    PubMed Central

    Hahn, Aria S.; Altman, Tomer; Konwar, Kishori M.; Hanson, Niels W.; Kim, Dongjae; Relman, David A.; Dill, David L.; Hallam, Steven J.

    2017-01-01

    Advances in high-throughput sequencing are reshaping how we perceive microbial communities inhabiting the human body, with implications for therapeutic interventions. Several large-scale datasets derived from hundreds of human microbiome samples sourced from multiple studies are now publicly available. However, idiosyncratic data processing methods between studies introduce systematic differences that confound comparative analyses. To overcome these challenges, we developed GutCyc, a compendium of environmental pathway genome databases (ePGDBs) constructed from 418 assembled human microbiome datasets using MetaPathways, enabling reproducible functional metagenomic annotation. We also generated metabolic network reconstructions for each metagenome using the Pathway Tools software, empowering researchers and clinicians interested in visualizing and interpreting metabolic pathways encoded by the human gut microbiome. For the first time, GutCyc provides consistent annotations and metabolic pathway predictions, making possible comparative community analyses between health and disease states in inflammatory bowel disease, Crohn’s disease, and type 2 diabetes. GutCyc data products are searchable online, or may be downloaded and explored locally using MetaPathways and Pathway Tools. PMID:28398290

  2. Potential Effects of Horizontal Gene Exchange in the Human Gut

    PubMed Central

    Lerner, Aaron; Matthias, Torsten; Aminov, Rustam

    2017-01-01

    Many essential functions of the human body are dependent on the symbiotic microbiota, which is present at especially high numbers and diversity in the gut. This intricate host–microbe relationship is a result of the long-term coevolution between the two. While the inheritance of mutational changes in the host evolution is almost exclusively vertical, the main mechanism of bacterial evolution is horizontal gene exchange. The gut conditions, with stable temperature, continuous food supply, constant physicochemical conditions, extremely high concentration of microbial cells and phages, and plenty of opportunities for conjugation on the surfaces of food particles and host tissues, represent one of the most favorable ecological niches for horizontal gene exchange. Thus, the gut microbial system genetically is very dynamic and capable of rapid response, at the genetic level, to selection, for example, by antibiotics. There are many other factors to which the microbiota may dynamically respond including lifestyle, therapy, diet, refined food, food additives, consumption of pre- and probiotics, and many others. The impact of the changing selective pressures on gut microbiota, however, is poorly understood. Presumably, the gut microbiome responds to these changes by genetic restructuring of gut populations, driven mainly via horizontal gene exchange. Thus, our main goal is to reveal the role played by horizontal gene exchange in the changing landscape of the gastrointestinal microbiome and potential effect of these changes on human health in general and autoimmune diseases in particular. PMID:29230215

  3. Potential Effects of Horizontal Gene Exchange in the Human Gut.

    PubMed

    Lerner, Aaron; Matthias, Torsten; Aminov, Rustam

    2017-01-01

    Many essential functions of the human body are dependent on the symbiotic microbiota, which is present at especially high numbers and diversity in the gut. This intricate host-microbe relationship is a result of the long-term coevolution between the two. While the inheritance of mutational changes in the host evolution is almost exclusively vertical, the main mechanism of bacterial evolution is horizontal gene exchange. The gut conditions, with stable temperature, continuous food supply, constant physicochemical conditions, extremely high concentration of microbial cells and phages, and plenty of opportunities for conjugation on the surfaces of food particles and host tissues, represent one of the most favorable ecological niches for horizontal gene exchange. Thus, the gut microbial system genetically is very dynamic and capable of rapid response, at the genetic level, to selection, for example, by antibiotics. There are many other factors to which the microbiota may dynamically respond including lifestyle, therapy, diet, refined food, food additives, consumption of pre- and probiotics, and many others. The impact of the changing selective pressures on gut microbiota, however, is poorly understood. Presumably, the gut microbiome responds to these changes by genetic restructuring of gut populations, driven mainly via horizontal gene exchange. Thus, our main goal is to reveal the role played by horizontal gene exchange in the changing landscape of the gastrointestinal microbiome and potential effect of these changes on human health in general and autoimmune diseases in particular.

  4. Evolutionary, ecological and biotechnological perspectives on plasmids resident in the human gut mobile metagenome

    PubMed Central

    Ogilvie, Lesley A.; Firouzmand, Sepinoud; Jones, Brian V.

    2012-01-01

    Numerous mobile genetic elements (MGE) are associated with the human gut microbiota and collectively referred to as the gut mobile metagenome. The role of this flexible gene pool in development and functioning of the gut microbial community remains largely unexplored, yet recent evidence suggests that at least some MGE comprising this fraction of the gut microbiome reflect the co-evolution of host and microbe in the gastro-intestinal tract. In conjunction, the high level of novel gene content typical of MGE coupled with their predicted high diversity, suggests that the mobile metagenome constitutes an immense and largely unexplored gene-space likely to encode many novel activities with potential biotechnological or pharmaceutical value, as well as being important to the development and functioning of the gut microbiota. Of the various types of MGE that comprise the gut mobile metagenome, plasmids are of particular importance since these elements are often capable of autonomous transfer between disparate bacterial species, and are known to encode accessory functions that increase bacterial fitness in a given environment facilitating bacterial adaptation. In this article current knowledge regarding plasmids resident in the human gut mobile metagenome is reviewed, and available strategies to access and characterize this portion of the gut microbiome are described. The relative merits of these methods and their present as well as prospective impact on our understanding of the human gut microbiota is discussed. PMID:22126801

  5. Degradation of Marine Algae-Derived Carbohydrates by Bacteroidetes Isolated from Human Gut Microbiota

    PubMed Central

    Li, Miaomiao; Shang, Qingsen; Li, Guangsheng; Wang, Xin; Yu, Guangli

    2017-01-01

    Carrageenan, agarose, and alginate are algae-derived undigested polysaccharides that have been used as food additives for hundreds of years. Fermentation of dietary carbohydrates of our food in the lower gut of humans is a critical process for the function and integrity of both the bacterial community and host cells. However, little is known about the fermentation of these three kinds of seaweed carbohydrates by human gut microbiota. Here, the degradation characteristics of carrageenan, agarose, alginate, and their oligosaccharides, by Bacteroides xylanisolvens, Bacteroides ovatus, and Bacteroides uniforms, isolated from human gut microbiota, are studied. PMID:28338633

  6. Enterochromaffin cells of the human gut: sensors for spices and odorants.

    PubMed

    Braun, Thomas; Voland, Petra; Kunz, Lars; Prinz, Christian; Gratzl, Manfred

    2007-05-01

    Release of serotonin from mucosal enterochromaffin cells triggered by luminal substances is the key event in the regulation of gut motility and secretion. We were interested to know whether nasal olfactory receptors are also expressed in the human gut mucosa by enterochromaffin cells and whether their ligands and odorants present in spices, fragrances, detergents, and cosmetics cause serotonin release. Receptor expression was studied by the reverse-transcription polymerase chain reaction method in human mucosal enterochromaffin cells isolated by laser microdissection and in a cell line derived from human enterochromaffin cells. Activation of the cells by odorants was investigated by digital fluorescence imaging using the fluorescent Ca(2+) indicator Fluo-4. Serotonin release was measured in culture supernatants by a serotonin enzyme immunoassay and amperometry using carbon fiber microelectrodes placed on single cells. We found expression of 4 olfactory receptors in microdissected human mucosal enterochromaffin cells and in a cell line derived from human enterochromaffin cells. Ca(2+) imaging studies revealed that odorant ligands of the identified olfactory receptors cause Ca(2+) influx, elevation of intracellular free Ca(2+) levels, and, consequently, serotonin release. Our results show that odorants present in the luminal environment of the gut may stimulate serotonin release via olfactory receptors present in human enterochromaffin cells. Serotonin controls both gut motility and secretion and is implicated in pathologic conditions such as vomiting, diarrhea, and irritable bowel syndrome. Thus, olfactory receptors are potential novel targets for the treatment of gastrointestinal diseases and motility disorders.

  7. Comparative (Meta)genomic Analysis and Ecological Profiling of Human Gut-Specific Bacteriophage φB124-14

    PubMed Central

    Ogilvie, Lesley A.; Caplin, Jonathan; Dedi, Cinzia; Diston, David; Cheek, Elizabeth; Bowler, Lucas; Taylor, Huw; Ebdon, James; Jones, Brian V.

    2012-01-01

    Bacteriophage associated with the human gut microbiome are likely to have an important impact on community structure and function, and provide a wealth of biotechnological opportunities. Despite this, knowledge of the ecology and composition of bacteriophage in the gut bacterial community remains poor, with few well characterized gut-associated phage genomes currently available. Here we describe the identification and in-depth (meta)genomic, proteomic, and ecological analysis of a human gut-specific bacteriophage (designated φB124-14). In doing so we illuminate a fraction of the biological dark matter extant in this ecosystem and its surrounding eco-genomic landscape, identifying a novel and uncharted bacteriophage gene-space in this community. φB124-14 infects only a subset of closely related gut-associated Bacteroides fragilis strains, and the circular genome encodes functions previously found to be rare in viral genomes and human gut viral metagenome sequences, including those which potentially confer advantages upon phage and/or host bacteria. Comparative genomic analyses revealed φB124-14 is most closely related to φB40-8, the only other publically available Bacteroides sp. phage genome, whilst comparative metagenomic analysis of both phage failed to identify any homologous sequences in 136 non-human gut metagenomic datasets searched, supporting the human gut-specific nature of this phage. Moreover, a potential geographic variation in the carriage of these and related phage was revealed by analysis of their distribution and prevalence within 151 human gut microbiomes and viromes from Europe, America and Japan. Finally, ecological profiling of φB124-14 and φB40-8, using both gene-centric alignment-driven phylogenetic analyses, as well as alignment-free gene-independent approaches was undertaken. This not only verified the human gut-specific nature of both phage, but also indicated that these phage populate a distinct and unexplored ecological landscape

  8. Suppression of Inflammatory Arthritis by Human Gut-Derived Prevotella histicola in Humanized Mice.

    PubMed

    Marietta, Eric V; Murray, Joseph A; Luckey, David H; Jeraldo, Patricio R; Lamba, Abhinav; Patel, Robin; Luthra, Harvinder S; Mangalam, Ashutosh; Taneja, Veena

    2016-12-01

    The gut microbiome regulates host immune homeostasis. Rheumatoid arthritis (RA) is associated with intestinal dysbiosis. This study was undertaken to test the ability of a human gut-derived commensal to modulate immune response and treat arthritis in a humanized mouse model. We isolated a commensal bacterium, Prevotella histicola, that is native to the human gut and has systemic immune effects when administered enterally. Arthritis-susceptible HLA-DQ8 mice were immunized with type II collagen and treated with P histicola. Disease incidence, onset, and severity were monitored. Changes in gut epithelial proteins and immune response as well as systemic cellular and humoral immune responses were studied in treated mice. When treated with P histicola in prophylactic or therapeutic protocols, DQ8 mice exhibited significantly decreased incidence and severity of arthritis compared to controls. The microbial mucosal modulation of arthritis was dependent on regulation by CD103+ dendritic cells and myeloid suppressors (CD11b+Gr-1+ cells) and by generation of Treg cells (CD4+CD25+FoxP3+) in the gut, resulting in suppression of antigen-specific Th17 responses and increased transcription of interleukin-10. Treatment with P histicola led to reduced intestinal permeability by increasing expression of enzymes that produce antimicrobial peptides as well as tight junction proteins (zonula occludens 1 and occludin). However, the innate immune response via Toll-like receptor 4 (TLR-4) and TLR-9 was not affected in treated mice. Our results demonstrate that enteral exposure to P histicola suppresses arthritis via mucosal regulation. P histicola is a unique commensal that can be explored as a novel therapy for RA and may have few or no side effects. © 2016, American College of Rheumatology.

  9. Comparison of DNA extraction methods for human gut microbial community profiling.

    PubMed

    Lim, Mi Young; Song, Eun-Ji; Kim, Sang Ho; Lee, Jangwon; Nam, Young-Do

    2018-03-01

    The human gut harbors a vast range of microbes that have significant impact on health and disease. Therefore, gut microbiome profiling holds promise for use in early diagnosis and precision medicine development. Accurate profiling of the highly complex gut microbiome requires DNA extraction methods that provide sufficient coverage of the original community as well as adequate quality and quantity. We tested nine different DNA extraction methods using three commercial kits (TianLong Stool DNA/RNA Extraction Kit (TS), QIAamp DNA Stool Mini Kit (QS), and QIAamp PowerFecal DNA Kit (QP)) with or without additional bead-beating step using manual or automated methods and compared them in terms of DNA extraction ability from human fecal sample. All methods produced DNA in sufficient concentration and quality for use in sequencing, and the samples were clustered according to the DNA extraction method. Inclusion of bead-beating step especially resulted in higher degrees of microbial diversity and had the greatest effect on gut microbiome composition. Among the samples subjected to bead-beating method, TS kit samples were more similar to QP kit samples than QS kit samples. Our results emphasize the importance of mechanical disruption step for a more comprehensive profiling of the human gut microbiome. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  10. Human gut microbiota plays a role in the metabolism of drugs.

    PubMed

    Jourova, Lenka; Anzenbacher, Pavel; Anzenbacherova, Eva

    2016-09-01

    The gut microbiome, an aggregate genome of trillions of microorganisms residing in the human gastrointestinal tract, is now known to play a critical role in human health and predisposition to disease. It is also involved in the biotransformation of xenobiotics and several recent studies have shown that the gut microbiota can affect the pharmacokinetics of orally taken drugs with implications for their oral bioavailability. Review of Pubmed, Web of Science and Science Direct databases for the years 1957-2016. Recent studies make it clear that the human gut microbiota can play a major role in the metabolism of xenobiotics and, the stability and oral bioavailability of drugs. Over the past 50 years, more than 30 drugs have been identified as a substrate for intestinal bacteria. Questions concerning the impact of the gut microbiota on drug metabolism, remain unanswered or only partially answered, namely (i) what are the molecular mechanisms and which bacterial species are involved? (ii) What is the impact of host genotype and environmental factors on the composition and function of the gut microbiota, (iii) To what extent is the composition of the intestinal microbiome stable, transmissible, and resilient to perturbation? (iv) Has past exposure to a given drug any impact on future microbial response, and, if so, for how long? Answering such questions should be an integral part of pharmaceutical research and personalised health care.

  11. Colonizing the embryonic zebrafish gut with anaerobic bacteria derived from the human gastrointestinal tract.

    PubMed

    Toh, Michael C; Goodyear, Mara; Daigneault, Michelle; Allen-Vercoe, Emma; Van Raay, Terence J

    2013-06-01

    The zebrafish has become increasingly popular for microbiological research. It has been used as an infection model for a variety of pathogens, and is also emerging as a tool for studying interactions between a host and its resident microbial communities. The mouse microbiota has been transplanted into the zebrafish gut, but to our knowledge, there has been no attempt to introduce a bacterial community derived from the human gut. We explored two methods for colonizing the developing gut of 5-day-old germ-free zebrafish larvae with a defined anaerobic microbial community derived from a single human fecal sample. Both environmental exposure (static immersion) and direct microinjection into the gut resulted in the establishment of two species-Lactobacillus paracasei and Eubacterium limosum-from a community of 30 strains consisting of 22 anaerobic species. Of particular interest is E. limosum, which, as a strict anaerobe, represents a group of bacteria which until now have not been shown to colonize the developing zebrafish gut. Our success here indicates that further investigation of zebrafish as a tool for studying human gut microbial communities is warranted.

  12. Functional metagenomics to mine the human gut microbiome for dietary fiber catabolic enzymes.

    PubMed

    Tasse, Lena; Bercovici, Juliette; Pizzut-Serin, Sandra; Robe, Patrick; Tap, Julien; Klopp, Christophe; Cantarel, Brandi L; Coutinho, Pedro M; Henrissat, Bernard; Leclerc, Marion; Doré, Joël; Monsan, Pierre; Remaud-Simeon, Magali; Potocki-Veronese, Gabrielle

    2010-11-01

    The human gut microbiome is a complex ecosystem composed mainly of uncultured bacteria. It plays an essential role in the catabolism of dietary fibers, the part of plant material in our diet that is not metabolized in the upper digestive tract, because the human genome does not encode adequate carbohydrate active enzymes (CAZymes). We describe a multi-step functionally based approach to guide the in-depth pyrosequencing of specific regions of the human gut metagenome encoding the CAZymes involved in dietary fiber breakdown. High-throughput functional screens were first applied to a library covering 5.4 × 10(9) bp of metagenomic DNA, allowing the isolation of 310 clones showing beta-glucanase, hemicellulase, galactanase, amylase, or pectinase activities. Based on the results of refined secondary screens, sequencing efforts were reduced to 0.84 Mb of nonredundant metagenomic DNA, corresponding to 26 clones that were particularly efficient for the degradation of raw plant polysaccharides. Seventy-three CAZymes from 35 different families were discovered. This corresponds to a fivefold target-gene enrichment compared to random sequencing of the human gut metagenome. Thirty-three of these CAZy encoding genes are highly homologous to prevalent genes found in the gut microbiome of at least 20 individuals for whose metagenomic data are available. Moreover, 18 multigenic clusters encoding complementary enzyme activities for plant cell wall degradation were also identified. Gene taxonomic assignment is consistent with horizontal gene transfer events in dominant gut species and provides new insights into the human gut functional trophic chain.

  13. Characterization of the human gut microbiome during travelers' diarrhea

    PubMed Central

    Youmans, Bonnie P; Ajami, Nadim J; Jiang, Zhi-Dong; Campbell, Frederick; Wadsworth, W Duncan; Petrosino, Joseph F; DuPont, Herbert L; Highlander, Sarah K

    2015-01-01

    Alterations in the gut microbiota are correlated with ailments such as obesity, inflammatory bowel disease, and diarrhea. Up to 60% of individuals traveling from industrialized to developing countries acquire a form of secretory diarrhea known as travelers' diarrhea (TD), and enterotoxigenic Escherichia coli (ETEC) and norovirus (NoV) are the leading causative pathogens. Presumably, TD alters the gut microbiome, however the effect of TD on gut communities has not been studied. We report the first analysis of bacterial gut populations associated with TD. We examined and compared the gut microbiomes of individuals who developed TD associated with ETEC, NoV, or mixed pathogens, and TD with no pathogen identified, to healthy travelers. We observed a signature dysbiotic gut microbiome profile of high Firmicutes:Bacteroidetes ratios in the travelers who developed diarrhea, regardless of etiologic agent or presence of a pathogen. There was no significant difference in α-diversity among travelers. The bacterial composition of the microbiota of the healthy travelers was similar to the diarrheal groups, however the β-diversity of the healthy travelers was significantly different than any pathogen-associated TD group. Further comparison of the healthy traveler microbiota to those from healthy subjects who were part of the Human Microbiome Project also revealed a significantly higher Firmicutes:Bacteriodetes ratio in the healthy travelers and significantly different β-diversity. Thus, the composition of the gut microbiome in healthy, diarrhea-free travelers has characteristics of a dysbiotic gut, suggesting that these alterations could be associated with factors such as travel. PMID:25695334

  14. Characterization of the human gut microbiome during travelers' diarrhea.

    PubMed

    Youmans, Bonnie P; Ajami, Nadim J; Jiang, Zhi-Dong; Campbell, Frederick; Wadsworth, W Duncan; Petrosino, Joseph F; DuPont, Herbert L; Highlander, Sarah K

    2015-01-01

    Alterations in the gut microbiota are correlated with ailments such as obesity, inflammatory bowel disease, and diarrhea. Up to 60% of individuals traveling from industrialized to developing countries acquire a form of secretory diarrhea known as travelers' diarrhea (TD), and enterotoxigenic Escherichia coli (ETEC) and norovirus (NoV) are the leading causative pathogens. Presumably, TD alters the gut microbiome, however the effect of TD on gut communities has not been studied. We report the first analysis of bacterial gut populations associated with TD. We examined and compared the gut microbiomes of individuals who developed TD associated with ETEC, NoV, or mixed pathogens, and TD with no pathogen identified, to healthy travelers. We observed a signature dysbiotic gut microbiome profile of high Firmicutes:Bacteroidetes ratios in the travelers who developed diarrhea, regardless of etiologic agent or presence of a pathogen. There was no significant difference in α-diversity among travelers. The bacterial composition of the microbiota of the healthy travelers was similar to the diarrheal groups, however the β-diversity of the healthy travelers was significantly different than any pathogen-associated TD group. Further comparison of the healthy traveler microbiota to those from healthy subjects who were part of the Human Microbiome Project also revealed a significantly higher Firmicutes:Bacteriodetes ratio in the healthy travelers and significantly different β-diversity. Thus, the composition of the gut microbiome in healthy, diarrhea-free travelers has characteristics of a dysbiotic gut, suggesting that these alterations could be associated with factors such as travel.

  15. The Effect of Diet on the Human Gut Microbiome: A Metagenomic Analysis in Humanized Gnotobiotic Mice

    PubMed Central

    Turnbaugh, Peter J.; Ridaura, Vanessa K.; Faith, Jeremiah J.; Rey, Federico E.; Knight, Rob; Gordon, Jeffrey I.

    2010-01-01

    Diet and nutritional status are among the most important, modifiable determinants of human health. The nutritional value of food is influenced in part by a person’s gut microbial community (microbiota) and its component genes (microbiome). Unraveling the interrelationships between diet, the structure and operations of the gut microbiota, and nutrient and energy harvest is confounded by variations in human environmental exposures, microbial ecology and genotype. To help overcome these problems, we created a well-defined, representative animal model of the human gut ecosystem by transplanting fresh or frozen adult human fecal microbial communities into germ-free C57BL/6J mice. Culture-independent, metagenomic analysis of the temporal, spatial and intergenerational patterns of bacterial colonization showed that these humanized mice were stably and heritably colonized, and reproduced much of the bacterial diversity of the donor’s microbiota. Switching from a low-fat, plant polysaccharide-rich diet to a high-fat/high-sugar “Western” diet shifted the structure of the microbiota within a single day, changed the representation of metabolic pathways in the microbiome, and altered microbiome gene expression. Reciprocal transplants involving various combinations of donor and recipient diets revealed that colonization history influences the initial structure of the microbial community, but that these effects can be rapidly altered by diet. Humanized mice fed the Western diet have increased adiposity; this trait is transmissible via microbiota transplantation. Humanized gnotobiotic mice will be useful for conducting proof-of-principle “clinical trials” that test the effects of environmental and genetic factors on the gut microbiota and host physiology. PMID:20368178

  16. Interindividual variability of soil arsenic metabolism by human gut microbiota using SHIME model.

    PubMed

    Yin, Naiyi; Du, Huili; Wang, Pengfei; Cai, Xiaolin; Chen, Peng; Sun, Guoxin; Cui, Yanshan

    2017-10-01

    Arsenic (As) metabolism by human gut microbiota has been evidenced with in vitro experiments from contaminated soils. In this study, the variability in the metabolic potency toward As-contaminated soils and gut microbial diversity were investigated between healthy individuals (Adult versus Child). Arsenic bioaccessibility in the colon phase increased by 1.4-6.8 and 1.2-8.7 folds for adult and child, respectively. We found a high degree of As methylation for the colon digests of the adult (mean 2 μg methylarsenicals/hr/g biomass), 3-folds higher than that of the child. Besides, arsenite [As(III)] concentration (1.5-391.3 μg/L) for the child was 2-18 times for the adult. 16S rRNA gene sequencing revealed that human gut microbiota from 20 various genera potentially had resistance genes to reduce and methylate As under conservative statistics. Our results indicated that As metabolism by gut microbiota from adult and child was significantly different. The adult gut microbiota had a great ability of As methylation; the child gut microbiota exhibited high As(III) level, which could encounter high health risk. The identity and activity of arsenic-metabolizing bacteria isolated from human gut and its homologous role in As metabolism need be further explored. This study provides a better understanding of health risk assessment to adults and children upon soil As exposures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Metagenomic insights into the human gut resistome and the forces that shape it.

    PubMed

    Forslund, Kristoffer; Sunagawa, Shinichi; Coelho, Luis P; Bork, Peer

    2014-03-01

    We show how metagenomic analysis of the human gut antibiotic resistome, compared across large populations and against environmental or agricultural resistomes, suggests a strong anthropogenic cause behind increasing antibiotic resistance in bacteria. This area has been the subject of intense and polarized debate driven by economic and political concerns; therefore such recently available insights address an important need. We derive and compare antibiotic resistomes of human gut microbes from 832 individuals from ten different countries. We observe and describe significant differences between samples from these countries in the gut resistance potential, in line with expectations from antibiotic usage and exposure in medical and food production contexts. Our results imply roles for both of these sources in increased resistance among pathogens in recent history. In contrast, other available metadata such as age, body mass index, sex, or health status have little effect on the antibiotic resistance potential of human gut microbes. Also watch the Video Abstract. © 2014 WILEY Periodicals, Inc.

  18. Time for food: The impact of diet on gut microbiota and human health.

    PubMed

    Zhang, Na; Ju, Zhongjie; Zuo, Tao

    There is growing recognition of the role of diet on modulating the composition and metabolic activity of the human gut microbiota, which in turn influence health. Dietary ingredients and food additives have a substantial impact on the gut microbiota and hence affect human health. Updates on current understanding of the gut microbiota in diseases and metabolic disorders are addressed in this review, providing insights into how this can be transferred from bench to bench side as gut microbes are integrated with food. The potency of microbiota-targeted biomarkers as a state-of-art tool for diagnosis of diseases was also discussed, and it would instruct individuals with healthy dietary consumption. Herein, recent advances in understanding the effect of diet on gut microbiota from an ecological perspective, and how these insights might promote health by guiding development of prebiotic and probiotic strategies and functional foods, were explored. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. The gut mycobiome of the Human Microbiome Project healthy cohort.

    PubMed

    Nash, Andrea K; Auchtung, Thomas A; Wong, Matthew C; Smith, Daniel P; Gesell, Jonathan R; Ross, Matthew C; Stewart, Christopher J; Metcalf, Ginger A; Muzny, Donna M; Gibbs, Richard A; Ajami, Nadim J; Petrosino, Joseph F

    2017-11-25

    Most studies describing the human gut microbiome in healthy and diseased states have emphasized the bacterial component, but the fungal microbiome (i.e., the mycobiome) is beginning to gain recognition as a fundamental part of our microbiome. To date, human gut mycobiome studies have primarily been disease centric or in small cohorts of healthy individuals. To contribute to existing knowledge of the human mycobiome, we investigated the gut mycobiome of the Human Microbiome Project (HMP) cohort by sequencing the Internal Transcribed Spacer 2 (ITS2) region as well as the 18S rRNA gene. Three hundred seventeen HMP stool samples were analyzed by ITS2 sequencing. Fecal fungal diversity was significantly lower in comparison to bacterial diversity. Yeast dominated the samples, comprising eight of the top 15 most abundant genera. Specifically, fungal communities were characterized by a high prevalence of Saccharomyces, Malassezia, and Candida, with S. cerevisiae, M. restricta, and C. albicans operational taxonomic units (OTUs) present in 96.8, 88.3, and 80.8% of samples, respectively. There was a high degree of inter- and intra-volunteer variability in fungal communities. However, S. cerevisiae, M. restricta, and C. albicans OTUs were found in 92.2, 78.3, and 63.6% of volunteers, respectively, in all samples donated over an approximately 1-year period. Metagenomic and 18S rRNA gene sequencing data agreed with ITS2 results; however, ITS2 sequencing provided greater resolution of the relatively low abundance mycobiome constituents. Compared to bacterial communities, the human gut mycobiome is low in diversity and dominated by yeast including Saccharomyces, Malassezia, and Candida. Both inter- and intra-volunteer variability in the HMP cohort were high, revealing that unlike bacterial communities, an individual's mycobiome is no more similar to itself over time than to another person's. Nonetheless, several fungal species persisted across a majority of samples, evidence that

  20. A systems biology approach to predict and characterize human gut microbial metabolites in colorectal cancer.

    PubMed

    Wang, QuanQiu; Li, Li; Xu, Rong

    2018-04-18

    Colorectal cancer (CRC) is the second leading cause of cancer-related deaths. It is estimated that about half the cases of CRC occurring today are preventable. Recent studies showed that human gut microbiota and their collective metabolic outputs play important roles in CRC. However, the mechanisms by which human gut microbial metabolites interact with host genetics in contributing CRC remain largely unknown. We hypothesize that computational approaches that integrate and analyze vast amounts of publicly available biomedical data have great potential in better understanding how human gut microbial metabolites are mechanistically involved in CRC. Leveraging vast amount of publicly available data, we developed a computational algorithm to predict human gut microbial metabolites for CRC. We validated the prediction algorithm by showing that previously known CRC-associated gut microbial metabolites ranked highly (mean ranking: top 10.52%; median ranking: 6.29%; p-value: 3.85E-16). Moreover, we identified new gut microbial metabolites likely associated with CRC. Through computational analysis, we propose potential roles for tartaric acid, the top one ranked metabolite, in CRC etiology. In summary, our data-driven computation-based study generated a large amount of associations that could serve as a starting point for further experiments to refute or validate these microbial metabolite associations in CRC cancer.

  1. Postmortem succession of gut microbial communities in deceased human subjects

    PubMed Central

    Hauther, Kathleen A.

    2017-01-01

    The human microbiome has demonstrated an importance for the health and functioning in living individuals. However, the fate of the microbiome after death is less understood. In addition to a better understanding of microbe-mediated decomposition processes, postmortem succession of human-associated microbial communities has been suggested as a possible forensic tool for estimating time since death, or postmortem interval (PMI). The objective of our study was to document postmortem changes in human gut bacterial communities. Gut microflora were repeatedly sampled from the caeca of cadavers as they decayed under natural environmental conditions. 16S rRNA gene amplicon sequencing revealed that over time, bacterial richness significantly increased (rs = 0.449) while diversity decreased (rs =  − 0.701). The composition of gut bacterial communities changed in a similar manner over time towards a common decay community. OTUs belonging to Bacteroidales (Bacteroides, Parabacteroides) significantly declined while Clostridiales (Clostridium, Anaerosphaera) and the fly-associated Gammaproteobacteria Ignatzschineria and Wohlfahrtiimonas increased. Our examination of human caeca microflora in decomposing cadavers adds to the growing literature on postmortem microbial communities, which will ultimately contribute to a better understanding of decomposition processes. PMID:28626612

  2. Visualization of Microbiota in Tick Guts by Whole-mount In Situ Hybridization.

    PubMed

    Moss, Caitlin E; Robson, Andrew; Fikrig, Erol; Narasimhan, Sukanya

    2018-06-01

    Infectious diseases transmitted by arthropod vectors continue to pose a significant threat to human health worldwide. The pathogens causing these diseases, do not exist in isolation when they colonize the vector; rather, they likely engage in interactions with resident microorganisms in the gut lumen. The vector microbiota has been demonstrated to play an important role in pathogen transmission for several vector-borne diseases. Whether resident bacteria in the gut of the Ixodes scapularis tick, the vector of several human pathogens including Borrelia burgdorferi, influence tick transmission of pathogens is not determined. We require methods for characterizing the composition of the bacteria associated with the tick gut to facilitate a better understanding of potential interspecies interactions in the tick gut. Using whole-mount in situ hybridization to visualize RNA transcripts associated with particular bacterial species allows for the collection of qualitative data regarding the abundance and distribution of the microbiota in intact tissue. This technique can be used to examine changes in the gut microbiota milieu over the course of tick feeding and can also be applied to analyze expression of tick genes. Staining of whole tick guts yield information about the gross spatial distribution of target RNA in the tissue without the need for three-dimensional reconstruction and is less affected by environmental contamination, which often confounds the sequencing-based methods frequently used to study complex microbial communities. Overall, this technique is a valuable tool that can be used to better understand vector-pathogen-microbiota interactions and their role in disease transmission.

  3. Global metabolic interaction network of the human gut microbiota for context-specific community-scale analysis

    PubMed Central

    Sung, Jaeyun; Kim, Seunghyeon; Cabatbat, Josephine Jill T.; Jang, Sungho; Jin, Yong-Su; Jung, Gyoo Yeol; Chia, Nicholas; Kim, Pan-Jun

    2017-01-01

    A system-level framework of complex microbe–microbe and host–microbe chemical cross-talk would help elucidate the role of our gut microbiota in health and disease. Here we report a literature-curated interspecies network of the human gut microbiota, called NJS16. This is an extensive data resource composed of ∼570 microbial species and 3 human cell types metabolically interacting through >4,400 small-molecule transport and macromolecule degradation events. Based on the contents of our network, we develop a mathematical approach to elucidate representative microbial and metabolic features of the gut microbial community in a given population, such as a disease cohort. Applying this strategy to microbiome data from type 2 diabetes patients reveals a context-specific infrastructure of the gut microbial ecosystem, core microbial entities with large metabolic influence, and frequently produced metabolic compounds that might indicate relevant community metabolic processes. Our network presents a foundation towards integrative investigations of community-scale microbial activities within the human gut. PMID:28585563

  4. Global metabolic interaction network of the human gut microbiota for context-specific community-scale analysis.

    PubMed

    Sung, Jaeyun; Kim, Seunghyeon; Cabatbat, Josephine Jill T; Jang, Sungho; Jin, Yong-Su; Jung, Gyoo Yeol; Chia, Nicholas; Kim, Pan-Jun

    2017-06-06

    A system-level framework of complex microbe-microbe and host-microbe chemical cross-talk would help elucidate the role of our gut microbiota in health and disease. Here we report a literature-curated interspecies network of the human gut microbiota, called NJS16. This is an extensive data resource composed of ∼570 microbial species and 3 human cell types metabolically interacting through >4,400 small-molecule transport and macromolecule degradation events. Based on the contents of our network, we develop a mathematical approach to elucidate representative microbial and metabolic features of the gut microbial community in a given population, such as a disease cohort. Applying this strategy to microbiome data from type 2 diabetes patients reveals a context-specific infrastructure of the gut microbial ecosystem, core microbial entities with large metabolic influence, and frequently produced metabolic compounds that might indicate relevant community metabolic processes. Our network presents a foundation towards integrative investigations of community-scale microbial activities within the human gut.

  5. Gut Microbiota in Human Systemic Lupus Erythematosus and a Mouse Model of Lupus.

    PubMed

    Luo, Xin M; Edwards, Michael R; Mu, Qinghui; Yu, Yang; Vieson, Miranda D; Reilly, Christopher M; Ahmed, S Ansar; Bankole, Adegbenga A

    2018-02-15

    Gut microbiota dysbiosis has been observed in a number of autoimmune diseases. However, the role of the gut microbiota in systemic lupus erythematosus (SLE), a prototypical autoimmune disease characterized by persistent inflammation in multiple organs of the body, remains elusive. Here we report the dynamics of the gut microbiota in a murine lupus model, NZB/W F1, as well as intestinal dysbiosis in a small group of SLE patients with active disease. The composition of the gut microbiota changed markedly before and after the onset of lupus disease in NZB/W F1 mice, with greater diversity and increased representation of several bacterial species as lupus progressed from the predisease stage to the diseased stage. However, we did not control for age and the cage effect. Using dexamethasone as an intervention to treat SLE-like signs, we also found that a greater abundance of a group of lactobacilli (for which a species assignment could not be made) in the gut microbiota might be correlated with more severe disease in NZB/W F1 mice. Results of the human study suggest that, compared to control subjects without immune-mediated diseases, SLE patients with active lupus disease possessed an altered gut microbiota that differed in several particular bacterial species (within the genera Odoribacter and Blautia and an unnamed genus in the family Rikenellaceae ) and was less diverse, with increased representation of Gram-negative bacteria. The Firmicutes / Bacteroidetes ratios did not differ between the SLE microbiota and the non-SLE microbiota in our human cohort. IMPORTANCE SLE is a complex autoimmune disease with no known cure. Dysbiosis of the gut microbiota has been reported for both mice and humans with SLE. In this emerging field, however, more studies are required to delineate the roles of the gut microbiota in different lupus-prone mouse models and people with diverse manifestations of SLE. Here, we report changes in the gut microbiota in NZB/W F1 lupus-prone mice and a

  6. MetaPro-IQ: a universal metaproteomic approach to studying human and mouse gut microbiota.

    PubMed

    Zhang, Xu; Ning, Zhibin; Mayne, Janice; Moore, Jasmine I; Li, Jennifer; Butcher, James; Deeke, Shelley Ann; Chen, Rui; Chiang, Cheng-Kang; Wen, Ming; Mack, David; Stintzi, Alain; Figeys, Daniel

    2016-06-24

    The gut microbiota has been shown to be closely associated with human health and disease. While next-generation sequencing can be readily used to profile the microbiota taxonomy and metabolic potential, metaproteomics is better suited for deciphering microbial biological activities. However, the application of gut metaproteomics has largely been limited due to the low efficiency of protein identification. Thus, a high-performance and easy-to-implement gut metaproteomic approach is required. In this study, we developed a high-performance and universal workflow for gut metaproteome identification and quantification (named MetaPro-IQ) by using the close-to-complete human or mouse gut microbial gene catalog as database and an iterative database search strategy. An average of 38 and 33 % of the acquired tandem mass spectrometry (MS) spectra was confidently identified for the studied mouse stool and human mucosal-luminal interface samples, respectively. In total, we accurately quantified 30,749 protein groups for the mouse metaproteome and 19,011 protein groups for the human metaproteome. Moreover, the MetaPro-IQ approach enabled comparable identifications with the matched metagenome database search strategy that is widely used but needs prior metagenomic sequencing. The response of gut microbiota to high-fat diet in mice was then assessed, which showed distinct metaproteome patterns for high-fat-fed mice and identified 849 proteins as significant responders to high-fat feeding in comparison to low-fat feeding. We present MetaPro-IQ, a metaproteomic approach for highly efficient intestinal microbial protein identification and quantification, which functions as a universal workflow for metaproteomic studies, and will thus facilitate the application of metaproteomics for better understanding the functions of gut microbiota in health and disease.

  7. Ancient acquisition of "alginate utilization loci" by human gut microbiota.

    PubMed

    Mathieu, Sophie; Touvrey-Loiodice, Mélanie; Poulet, Laurent; Drouillard, Sophie; Vincentelli, Renaud; Henrissat, Bernard; Skjåk-Bræk, Gudmund; Helbert, William

    2018-05-23

    In bacteria from the phylum Bacteroidetes, the genes coding for enzymes involved in polysaccharide degradation are often colocalized and coregulated in so-called "polysaccharide utilization loci" (PULs). PULs dedicated to the degradation of marine polysaccharides (e.g. laminaran, ulvan, alginate and porphyran) have been characterized in marine bacteria. Interestingly, the gut microbiome of Japanese individuals acquired, by lateral transfer from marine bacteria, the genes involved in the breakdown of porphyran, the cell wall polysaccharide of the red seaweed used in maki. Sequence similarity analyses predict that the human gut microbiome also encodes enzymes for the degradation of alginate, the main cell wall polysaccharide of brown algae. We undertook the functional characterization of diverse polysaccharide lyases from family PL17, frequently found in marine bacteria as well as those of human gut bacteria. We demonstrate here that this family is polyspecific. Our phylogenetic analysis of family PL17 reveals that all alginate lyases, which have all the same specificity and mode of action, cluster together in a very distinct subfamily. The alginate lyases found in human gut bacteria group together in a single clade which is rooted deeply in the PL17 tree. These enzymes were found in PULs containing PL6 enzymes, which also clustered together in the phylogenetic tree of PL6. Together, biochemical and bioinformatics analyses suggest that acquisition of this system appears ancient and, because only traces of two successful transfers were detected upon inspection of PL6 and PL17 families, the pace of acquisition of marine polysaccharide degradation system is probably very slow.

  8. Characterization of the human DNA gut virome across populations with different subsistence strategies and geographical origin.

    PubMed

    Rampelli, Simone; Turroni, Silvia; Schnorr, Stephanie L; Soverini, Matteo; Quercia, Sara; Barone, Monica; Castagnetti, Andrea; Biagi, Elena; Gallinella, Giorgio; Brigidi, Patrizia; Candela, Marco

    2017-11-01

    It is a matter of fact that the human gut microbiome also includes a non-bacterial fraction represented by eukaryotic cells and viruses. To further explore the gut microbiome variation in human populations, here we characterized the human DNA viral community from publicly available gut metagenome data sets from human populations with different geographical origin and lifestyle. In particular, such data sets encompass microbiome information from two western urban societies (USA and Italy), as well as two traditional hunter-gatherer communities (the Hadza from Tanzania and Matses from Peru) and one pre-agricultural tribe (Tunapuco from Peru). Our results allowed for the first taxonomic reconstruction of the complex viral metacommunities within the human gut. The core virome structure included herpesviruses, papillomaviruses, polyomaviruses, adenoviruses and anelloviruses. Using Random Forests and a co-occurrence analysis approach, we identified the viruses that distinguished populations according to their geographical origin and/or lifestyle. This paves the way for new research aimed at investigating the biological role of the gut virome in human physiology, and the importance of our viral counterpart in the microbiome-host co-evolutionary process. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. No Gut No Gain! Enteral Bile Acid Treatment Preserves Gut Growth but Not Parenteral Nutrition-Associated Liver Injury in a Novel Extensive Short Bowel Animal Model.

    PubMed

    Villalona, Gustavo; Price, Amber; Blomenkamp, Keith; Manithody, Chandrashekhara; Saxena, Saurabh; Ratchford, Thomas; Westrich, Matthew; Kakarla, Vindhya; Pochampally, Shruthika; Phillips, William; Heafner, Nicole; Korremla, Niraja; Greenspon, Jose; Guzman, Miguel A; Kumar Jain, Ajay

    2018-04-27

    Parenteral nutrition (PN) provides nutrition intravenously; however, this life-saving therapy is associated with significant liver disease. Recent evidence indicates improvement in PN-associated injury in animals with intact gut treated with enteral bile acid (BA), chenodeoxycholic acid (CDCA), and a gut farnesoid X receptor (FXR) agonist, which drives the gut-liver cross talk (GLCT). We hypothesized that similar improvement could be translated in animals with short bowel syndrome (SBS). Using piglets, we developed a novel 90% gut-resected SBS model. Fifteen SBS piglets receiving PN were given CDCA or control (vehicle control) for 2 weeks. Tissue and serum were analyzed posteuthanasia. CDCA increased gut FXR (quantitative polymerase chain reaction; P = .008), but not downstream FXR targets. No difference in gut fibroblast growth factor 19 (FGF19; P = .28) or hepatic FXR (P = .75), FGF19 (P = .86), FGFR4 (P = .53), or Cholesterol 7 α-hydroxylase (P = .61) was noted. PN resulted in cholestasis; however, no improvement was noted with CDCA. Hepatic fibrosis or immunostaining for Ki67, CD3, or Cytokeratin 7 was not different with CDCA. PN resulted in gut atrophy. CDCA preserved (P = .04 vs control) gut mass and villous/crypt ratio. The median (interquartile range) for gut mass for control was 0.28 (0.17-0.34) and for CDCA was 0.33 (0.26-0.46). We note that, unlike in animals with intact gut, in an SBS animal model there is inadequate CDCA-induced activation of gut-derived signaling to cause liver improvement. Thus, it appears that activation of GLCT is critically dependent on the presence of adequate gut. This is clinically relevant because it suggests that BA therapy may not be as effective for patients with SBS. © 2018 American Society for Parenteral and Enteral Nutrition.

  10. A wide diversity of bacteria from the human gut produces and degrades biogenic amines.

    PubMed

    Pugin, Benoit; Barcik, Weronika; Westermann, Patrick; Heider, Anja; Wawrzyniak, Marcin; Hellings, Peter; Akdis, Cezmi A; O'Mahony, Liam

    2017-01-01

    Background : Biogenic amines (BAs) are metabolites produced by the decarboxylation of amino acids with significant physiological functions in eukaryotic and prokaryotic cells. BAs can be produced by bacteria in fermented foods, but little is known concerning the potential for microbes within the human gut microbiota to produce or degrade BAs. Objective : To isolate and identify BA-producing and BA-degrading microbes from the human gastrointestinal tract. Design : Fecal samples from human volunteers were screened on multiple growth media, under multiple growth conditions. Bacterial species were identified using 16S rRNA sequencing and BA production or degradation was assessed using ultra-performance liquid chromatography. Results : In total, 74 BA-producing or BA-degrading strains were isolated from the human gut. These isolates belong to the genera Bifidobacterium , Clostridium , Enterococcus , Lactobacillus , Pediococcus , Streptococcus , Enterobacter , Escherichia , Klebsiella , Morganella and Proteus . While differences in production or degradation of specific BAs were observed at the strain level, our results suggest that these metabolic activities are widely spread across different taxa present within the human gut microbiota. Conclusions : The isolation and identification of microbes from the human gut with BA-producing and BA-degrading metabolic activity is an important first step in developing a better understanding of how these metabolites influence health and disease.

  11. The role of gut microbiota in human obesity: recent findings and future perspectives.

    PubMed

    Tagliabue, A; Elli, M

    2013-03-01

    In recent years, gut microbiota have gained a growing interest as an environmental factor that may affect the predisposition toward adiposity. In this review, we describe and discuss the research that has focused on the involvement of gut microbiota in human obesity. We also summarize the current knowledge concerning the health effects of the composition of gut microbiota, acquired using the most recent methodological approaches, and the potential influence of gut microbiota on adiposity, as revealed by animal studies. Original research studies that were published in English or French until December 2011 were selected through a computer-assisted literature search. The studies conducted to date show that there are differences in the gut microbiota between obese and normal-weight experimental animals. There is also evidence that a high-fat diet may induce changes in gut microbiota in animal models regardless of the presence of obesity. In humans, obesity has been associated with reduced bacterial diversity and an altered representation of bacterial species, but the identified differences are not homogeneous among the studies. The question remains as to whether changes in the intestinal microbial community are one of the environmental causes of overweight and obesity or if they are a consequence of obesity, specifically of the unbalanced diet that often accompanies the development of excess weight gain. In the future, larger studies on the potential role of intestinal microbiota in human obesity should be conducted at the species level using standardized analytical techniques and taking all of the possible confounding variables into account. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Chemical reaction vector embeddings: towards predicting drug metabolism in the human gut microbiome.

    PubMed

    Mallory, Emily K; Acharya, Ambika; Rensi, Stefano E; Turnbaugh, Peter J; Bright, Roselie A; Altman, Russ B

    2018-01-01

    Bacteria in the human gut have the ability to activate, inactivate, and reactivate drugs with both intended and unintended effects. For example, the drug digoxin is reduced to the inactive metabolite dihydrodigoxin by the gut Actinobacterium E. lenta, and patients colonized with high levels of drug metabolizing strains may have limited response to the drug. Understanding the complete space of drugs that are metabolized by the human gut microbiome is critical for predicting bacteria-drug relationships and their effects on individual patient response. Discovery and validation of drug metabolism via bacterial enzymes has yielded >50 drugs after nearly a century of experimental research. However, there are limited computational tools for screening drugs for potential metabolism by the gut microbiome. We developed a pipeline for comparing and characterizing chemical transformations using continuous vector representations of molecular structure learned using unsupervised representation learning. We applied this pipeline to chemical reaction data from MetaCyc to characterize the utility of vector representations for chemical reaction transformations. After clustering molecular and reaction vectors, we performed enrichment analyses and queries to characterize the space. We detected enriched enzyme names, Gene Ontology terms, and Enzyme Consortium (EC) classes within reaction clusters. In addition, we queried reactions against drug-metabolite transformations known to be metabolized by the human gut microbiome. The top results for these known drug transformations contained similar substructure modifications to the original drug pair. This work enables high throughput screening of drugs and their resulting metabolites against chemical reactions common to gut bacteria.

  13. Control of lupus nephritis by changes of gut microbiota.

    PubMed

    Mu, Qinghui; Zhang, Husen; Liao, Xiaofeng; Lin, Kaisen; Liu, Hualan; Edwards, Michael R; Ahmed, S Ansar; Yuan, Ruoxi; Li, Liwu; Cecere, Thomas E; Branson, David B; Kirby, Jay L; Goswami, Poorna; Leeth, Caroline M; Read, Kaitlin A; Oestreich, Kenneth J; Vieson, Miranda D; Reilly, Christopher M; Luo, Xin M

    2017-07-11

    Systemic lupus erythematosus, characterized by persistent inflammation, is a complex autoimmune disorder with no known cure. Immunosuppressants used in treatment put patients at a higher risk of infections. New knowledge of disease modulators, such as symbiotic bacteria, can enable fine-tuning of parts of the immune system, rather than suppressing it altogether. Dysbiosis of gut microbiota promotes autoimmune disorders that damage extraintestinal organs. Here we report a role of gut microbiota in the pathogenesis of renal dysfunction in lupus. Using a classical model of lupus nephritis, MRL/lpr, we found a marked depletion of Lactobacillales in the gut microbiota. Increasing Lactobacillales in the gut improved renal function of these mice and prolonged their survival. We used a mixture of 5 Lactobacillus strains (Lactobacillus oris, Lactobacillus rhamnosus, Lactobacillus reuteri, Lactobacillus johnsonii, and Lactobacillus gasseri), but L. reuteri and an uncultured Lactobacillus sp. accounted for most of the observed effects. Further studies revealed that MRL/lpr mice possessed a "leaky" gut, which was reversed by increased Lactobacillus colonization. Lactobacillus treatment contributed to an anti-inflammatory environment by decreasing IL-6 and increasing IL-10 production in the gut. In the circulation, Lactobacillus treatment increased IL-10 and decreased IgG2a that is considered to be a major immune deposit in the kidney of MRL/lpr mice. Inside the kidney, Lactobacillus treatment also skewed the Treg-Th17 balance towards a Treg phenotype. These beneficial effects were present in female and castrated male mice, but not in intact males, suggesting that the gut microbiota controls lupus nephritis in a sex hormone-dependent manner. This work demonstrates essential mechanisms on how changes of the gut microbiota regulate lupus-associated immune responses in mice. Future studies are warranted to determine if these results can be replicated in human subjects.

  14. Convergence in probiotic Lactobacillus gut-adaptive responses in humans and mice.

    PubMed

    Marco, Maria L; de Vries, Maaike C; Wels, Michiel; Molenaar, Douwe; Mangell, Peter; Ahrne, Siv; de Vos, Willem M; Vaughan, Elaine E; Kleerebezem, Michiel

    2010-11-01

    Probiotic bacteria provide unique opportunities to study the global responses and molecular mechanisms underlying the effects of gut-associated microorganisms in the human digestive tract. In this study, we show by comparative transcriptome analysis using DNA microarrays that the established probiotic Lactobacillus plantarum 299v specifically adapts its metabolic capacity in the human intestine for carbohydrate acquisition and expression of exopolysaccharide and proteinaceous cell surface compounds. This report constitutes the first application of global gene expression profiling of a commensal microorganism in the human gut. A core L. plantarum transcriptome expressed in the mammalian intestine was also determined through comparisons of L. plantarum 299v activities in humans to those found for L. plantarum WCFS1 in germ-free mice. These results identify the niche-specific adaptations of a dietary microorganism to the intestinal ecosystem and provide novel targets for molecular analysis of microbial-host interactions which affect human health.

  15. Natural mummification of the human gut preserves bacteriophage DNA.

    PubMed

    Santiago-Rodriguez, Tasha M; Fornaciari, Gino; Luciani, Stefania; Dowd, Scot E; Toranzos, Gary A; Marota, Isolina; Cano, Raul J

    2016-01-01

    The natural mummification process of the human gut represents a unique opportunity to study the resulting microbial community structure and composition. While results are providing insights into the preservation of bacteria, fungi, pathogenic eukaryotes and eukaryotic viruses, no studies have demonstrated that the process of natural mummification also results in the preservation of bacteriophage DNA. We characterized the gut microbiome of three pre-Columbian Andean mummies, namely FI3, FI9 and FI12, and found sequences homologous to viruses. From the sequences attributable to viruses, 50.4% (mummy FI3), 1.0% (mummy FI9) and 84.4% (mummy FI12) were homologous to bacteriophages. Sequences corresponding to the Siphoviridae, Myoviridae, Podoviridae and Microviridae families were identified. Predicted putative bacterial hosts corresponded mainly to the Firmicutes and Proteobacteria, and included Bacillus, Staphylococcus, Clostridium, Escherichia, Vibrio, Klebsiella, Pseudomonas and Yersinia. Predicted functional categories associated with bacteriophages showed a representation of structural, replication, integration and entry and lysis genes. The present study suggests that the natural mummification of the human gut results in the preservation of bacteriophage DNA, representing an opportunity to elucidate the ancient phageome and to hypothesize possible mechanisms of preservation. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Role of intestinal microbiota and metabolites on gut homeostasis and human diseases.

    PubMed

    Lin, Lan; Zhang, Jianqiong

    2017-01-06

    A vast diversity of microbes colonizes in the human gastrointestinal tract, referred to intestinal microbiota. Microbiota and products thereof are indispensable for shaping the development and function of host innate immune system, thereby exerting multifaceted impacts in gut health. This paper reviews the effects on immunity of gut microbe-derived nucleic acids, and gut microbial metabolites, as well as the involvement of commensals in the gut homeostasis. We focus on the recent findings with an intention to illuminate the mechanisms by which the microbiota and products thereof are interacting with host immunity, as well as to scrutinize imbalanced gut microbiota (dysbiosis) which lead to autoimmune disorders including inflammatory bowel disease (IBD), Type 1 diabetes (T1D) and systemic immune syndromes such as rheumatoid arthritis (RA). In addition to their well-recognized benefits in the gut such as occupation of ecological niches and competition with pathogens, commensal bacteria have been shown to strengthen the gut barrier and to exert immunomodulatory actions within the gut and beyond. It has been realized that impaired intestinal microbiota not only contribute to gut diseases but also are inextricably linked to metabolic disorders and even brain dysfunction. A better understanding of the mutual interactions of the microbiota and host immune system, would shed light on our endeavors of disease prevention and broaden the path to our discovery of immune intervention targets for disease treatment.

  17. Gut microbiota and obesity.

    PubMed

    Gérard, Philippe

    2016-01-01

    The human intestine harbors a complex bacterial community called the gut microbiota. This microbiota is specific to each individual despite the existence of several bacterial species shared by the majority of adults. The influence of the gut microbiota in human health and disease has been revealed in the recent years. Particularly, the use of germ-free animals and microbiota transplant showed that the gut microbiota may play a causal role in the development of obesity and associated metabolic disorders, and lead to identification of several mechanisms. In humans, differences in microbiota composition, functional genes and metabolic activities are observed between obese and lean individuals suggesting a contribution of the gut microbiota to these phenotypes. Finally, the evidence linking gut bacteria to host metabolism could allow the development of new therapeutic strategies based on gut microbiota modulation to treat or prevent obesity.

  18. Quantitative Analysis of Human Salivary Gland-Derived Intact Proteome Using Top-Down Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Si; Brown, Joseph N.; Tolic, Nikola

    There are several notable challenges inherent to fully characterizing the entirety of the human saliva proteome using bottom-up approaches, including polymorphic isoforms, post-translational modifications, unique splice variants, deletions, and truncations. To address these challenges, we have developed a top-down based liquid chromatography-mass spectrometry (LC-MS) approach, which cataloged 20 major human salivary proteins with a total of 83 proteoforms, containing a broad range of post-translational modifications. Among these proteins, several previously reported disease biomarker proteins were identified at the intact protein level, such as beta-2 microglobulin (B2M). In addition, intact glycosylated proteoforms of several saliva proteins were also characterized, including intactmore » N-glycosylated protein prolactin inducible protein (PIP) and O-glycosylated acidic protein rich protein (aPRP). These characterized proteoforms constitute an intact saliva proteoform database, which was used for quantitative comparison of intact salivary proteoforms among six healthy individuals. Human parotid (PS) and submandibular/sublingual gland (SMSL) secretion samples (2 μg of protein each) from six healthy individuals were compared using RPLC coupled with the 12T FTICR mass spectrometer. Significantly different protein and PTM patterns were resolved with high reproducibility between PS and SMSL glands. The results from this study provide further insight into the potential mechanisms of PTM pathways in oral glandular secretion, expanding our knowledge of this complex yet easily accessible fluid. Intact protein LC-MS approach presented herein can potentially be applied for rapid and accurate identification of biomarkers from only a few microliters of human glandular saliva.« less

  19. Total Lipopolysaccharide from the Human Gut Microbiome Silences Toll-Like Receptor Signaling.

    PubMed

    d'Hennezel, Eva; Abubucker, Sahar; Murphy, Leon O; Cullen, Thomas W

    2017-01-01

    Cohabitation of microbial communities with the host enables the formation of a symbiotic relationship that maintains homeostasis in the gut and beyond. One prevailing model suggests that this relationship relies on the capacity of host cells and tissues to remain tolerant to the strong immune stimulation generated by the microbiota such as the activation of Toll-like receptor 4 (TLR4) pathways by lipopolysaccharide (LPS). Indeed, gut microbial LPS is thought to be one of the most potent activators of innate immune signaling and an important mediator of the microbiome's influence on host physiology. In this study, we performed computational and experimental analyses of healthy human fecal samples to examine the TLR4 signaling capacity of the gut microbiota. These analyses revealed that an immunoinhibitory activity of LPS, conserved across the members of the order Bacteroidales and derived from an underacylated structural feature, silences TLR4 signaling for the entire consortium of organisms inhabiting the human gut. Comparative analysis of metagenomic data from the Human Microbiome Project and healthy-donor samples indicates that immune silencing via LPS is a microbe-intrinsic feature in all healthy adults. These findings challenge the current belief that robust TLR4 signaling is a feature of the microbiome and demonstrate that microbiome-derived LPS has the ability to facilitate host tolerance of gut microbes. These findings have broad implications for how we model host-microbe interactions and for our understanding of microbiome-linked disease. IMPORTANCE While the ability for humans to host a complex microbial ecosystem is an essential property of life, the mechanisms allowing for immune tolerance of such a large microbial load are not completely understood and are currently the focus of intense research. This study shows that an important proinflammatory pathway that is commonly triggered by pathogenic bacteria upon interaction with the host is, in fact

  20. Genetic determinants of in vivo fitness and diet responsiveness in multiple human gut Bacteroides

    PubMed Central

    Wu, Meng; McNulty, Nathan P.; Rodionov, Dmitry A.; Khoroshkin, Matvei S.; Griffin, Nicholas W.; Cheng, Jiye; Latreille, Phil; Kerstetter, Randall A.; Terrapon, Nicolas; Henrissat, Bernard; Osterman, Andrei L.; Gordon, Jeffrey I.

    2015-01-01

    Libraries of tens of thousands of transposon mutants generated from each of four human gut Bacteroides strains, two representing the same species, were introduced simultaneously into gnotobiotic mice together with 11 other wild-type strains to generate a 15-member artificial human gut microbiota. Mice received one of two distinct diets monotonously, or both in ordered sequence. Quantifying the abundance of mutants in different diet contexts allowed gene-level characterization of fitness determinants, niche, stability and resilience, and yielded a prebiotic (arabinoxylan) that allowed targeted manipulation of the community. The approach described is generalizable and should be useful for defining mechanisms critical for sustaining and/or approaches for deliberately reconfiguring the highly adaptive and durable relationship between the human gut microbiota and host in ways that promote wellness. PMID:26430127

  1. Influence of food consumption patterns and Galician lifestyle on human gut microbiota.

    PubMed

    Castro-Penalonga, María; Roca-Saavedra, Paula; Miranda, Jose Manuel; Porto-Arias, Jose Julio; Nebot, Carolina; Cardelle-Cobas, Alejandra; Franco, Carlos Manuel; Cepeda, Alberto

    2018-02-01

    The proportion of different microbial populations in the human gut is an important factor that in recent years has been linked to obesity and numerous metabolic diseases. Because there are many factors that can affect the composition of human gut microbiota, it is of interest to have information about what is the composition of the gut microbiota in different populations in order to better understand the possibilities for improving nutritional management. A group of 31 volunteers were selected according to established inclusion and exclusion criteria and were asked about their diet history, lifestyle patterns, and adherence to the Southern European Atlantic Diet. Fecal samples were taken and subsequently analyzed by real-time PCR. The results indicated different dietary patterns for subjects who consumed a higher amount of fruits, vegetables, legumes, and fish and a lower amount of bakery foods and precooked foods and snacks compared to Spanish consumption data. Most participants showed intermediate or high adherence to Southern European Atlantic Diet, and an analysis of gut microbiota showed high numbers of total bacteria and Actinobacteria, as well as high amounts of bacteria belonging to the genera Lactobacillus spp. and Bifidobacterium spp. A subsequent statistical comparison also revealed differences in gut microbiota depending on the subject's body weight, age, or degree of adherence to the Southern European Atlantic Diet.

  2. "Omic" investigations of protozoa and worms for a deeper understanding of the human gut "parasitome".

    PubMed

    Marzano, Valeria; Mancinelli, Livia; Bracaglia, Giorgia; Del Chierico, Federica; Vernocchi, Pamela; Di Girolamo, Francesco; Garrone, Stefano; Tchidjou Kuekou, Hyppolite; D'Argenio, Patrizia; Dallapiccola, Bruno; Urbani, Andrea; Putignani, Lorenza

    2017-11-01

    The human gut has been continuously exposed to a broad spectrum of intestinal organisms, including viruses, bacteria, fungi, and parasites (protozoa and worms), over millions of years of coevolution, and plays a central role in human health. The modern lifestyles of Western countries, such as the adoption of highly hygienic habits, the extensive use of antimicrobial drugs, and increasing globalisation, have dramatically altered the composition of the gut milieu, especially in terms of its eukaryotic "citizens." In the past few decades, numerous studies have highlighted the composition and role of human intestinal bacteria in physiological and pathological conditions, while few investigations exist on gut parasites and particularly on their coexistence and interaction with the intestinal microbiota. Studies of the gut "parasitome" through "omic" technologies, such as (meta)genomics, transcriptomics, proteomics, and metabolomics, are herein reviewed to better understand their role in the relationships between intestinal parasites, host, and resident prokaryotes, whether pathogens or commensals. Systems biology-based profiles of the gut "parasitome" under physiological and severe disease conditions can indeed contribute to the control of infectious diseases and offer a new perspective of omics-assisted tropical medicine.

  3. The abundance of antibiotic resistance genes in human guts has correlation to the consumption of antibiotics in animal

    PubMed Central

    Hu, Yongfei; Yang, Xi; Lu, Na; Zhu, Baoli

    2014-01-01

    Increasing evidence has accumulated to support that the human gut is a reservoir for antibiotic resistance genes. We previously identified more than 1000 genes displaying high similarity with known antibiotic resistance genes in the human gut gene set generated from the Chinese, Danish, and Spanish populations. Here, first, we add our new understanding of antibiotic resistance genes in the US and the Japanese populations; next, we describe the structure of a vancomycin-resistant operon in a Danish sample; and finally, we provide discussions on the correlation of the abundance of resistance genes in human gut with the antibiotic consumption in human medicine and in animal husbandry. These results, combined with those we published previously, provide comprehensive insights into the antibiotic resistance genes in the human gut microbiota at a population level. PMID:24637798

  4. The abundance of antibiotic resistance genes in human guts has correlation to the consumption of antibiotics in animal.

    PubMed

    Hu, Yongfei; Yang, Xi; Lu, Na; Zhu, Baoli

    2014-01-01

    Increasing evidence has accumulated to support that the human gut is a reservoir for antibiotic resistance genes. We previously identified more than 1000 genes displaying high similarity with known antibiotic resistance genes in the human gut gene set generated from the Chinese, Danish, and Spanish populations. Here, first, we add our new understanding of antibiotic resistance genes in the US and the Japanese populations; next, we describe the structure of a vancomycin-resistant operon in a Danish sample; and finally, we provide discussions on the correlation of the abundance of resistance genes in human gut with the antibiotic consumption in human medicine and in animal husbandry. These results, combined with those we published previously, provide comprehensive insights into the antibiotic resistance genes in the human gut microbiota at a population level.

  5. Human gut microbiota community structures in urban and rural populations in Russia

    PubMed Central

    Tyakht, Alexander V.; Kostryukova, Elena S.; Popenko, Anna S.; Belenikin, Maxim S.; Pavlenko, Alexander V.; Larin, Andrey K.; Karpova, Irina Y.; Selezneva, Oksana V.; Semashko, Tatyana A.; Ospanova, Elena A.; Babenko, Vladislav V.; Maev, Igor V.; Cheremushkin, Sergey V.; Kucheryavyy, Yuriy A.; Shcherbakov, Petr L.; Grinevich, Vladimir B.; Efimov, Oleg I.; Sas, Evgenii I.; Abdulkhakov, Rustam A.; Abdulkhakov, Sayar R.; Lyalyukova, Elena A.; Livzan, Maria A.; Vlassov, Valentin V.; Sagdeev, Renad Z.; Tsukanov, Vladislav V.; Osipenko, Marina F.; Kozlova, Irina V.; Tkachev, Alexander V.; Sergienko, Valery I.; Alexeev, Dmitry G.; Govorun, Vadim M.

    2013-01-01

    The microbial community of the human gut has a crucial role in sustaining host homeostasis. High-throughput DNA sequencing has delineated the structural and functional configurations of gut metagenomes in world populations. The microbiota of the Russian population is of particular interest to researchers, because Russia encompasses a uniquely wide range of environmental conditions and ethnogeographical cohorts. Here we conduct a shotgun metagenomic analysis of gut microbiota samples from 96 healthy Russian adult subjects, which reveals novel microbial community structures. The communities from several rural regions display similarities within each region and are dominated by the bacterial taxa associated with the healthy gut. Functional analysis shows that the metabolic pathways exhibiting differential abundance in the novel types are primarily associated with the trade-off between the Bacteroidetes and Firmicutes phyla. The specific signatures of the Russian gut microbiota are likely linked to the host diet, cultural habits and socioeconomic status. PMID:24036685

  6. The Human Neonatal Gut Microbiome: A Brief Review

    PubMed Central

    Gritz, Emily C.; Bhandari, Vineet

    2015-01-01

    The field of genomics has expanded into subspecialties such as metagenomics over the course of the last decade and a half. The development of massively parallel sequencing capabilities has allowed for increasingly detailed study of the genome of the human microbiome, the microbial super organ that resides symbiotically within the mucosal tissues and integumentary system of the human host. The gut microbiome, and particularly the study of its origins in neonates, has become subtopics of great interest within the field of genomics. This brief review seeks to summarize recent literature regarding the origins and establishment of the neonatal gut microbiome, beginning in utero, and how it is affected by neonatal nutritional status (breastfed versus formula fed) and gestational age (term versus preterm). We also explore the role of dysbiosis, a perturbation within the fragile ecosystem of the microbiome, and its role in the origin of select pathologic states, specifically, obesity and necrotizing enterocolitis (NEC) in preterm infants. We discuss the evidence supporting enteral pre- and pro-biotic supplementation of commensal organisms such as Bifidobacterium and Lactobacillus in the neonatal period, and their role in the prevention and amelioration of NEC in premature infants. Finally, we review directions to consider for further research to promote human health within this field. PMID:25798435

  7. Sequence-based methods for detecting and evaluating the human gut mycobiome.

    PubMed

    Suhr, M J; Banjara, N; Hallen-Adams, H E

    2016-03-01

    We surveyed the fungal microbiota in 16 faecal samples from healthy humans with a vegetarian diet. Fungi were identified using molecular cloning, 454 pyrosequencing and a Luminex analyte-specific reagent (ASR) assay, all targeting the ITS region of the rRNA genes. Fungi were detected in each faecal sample and at least 46 distinct fungal operational taxonomic units (OTUs) were detected, from two phyla - Ascomycota and Basidiomycota. Fusarium was the most abundant genus, followed by Malassezia, Penicillium, Aspergillus and Candida. Commonly detected fungi such as Aspergillus and Penicillium, as well as known dietary fungi Agaricus bisporus and Ophiocordyceps sinensis, are presumed to be transient, allochthonous members due to their abundance in the environment or dietary associations. No single method identified the full diversity of fungi in all samples; pyrosequencing detected more distinct OTUs than the other methods, but failed to detect OTUs in some samples that were detected by cloning and/or ASR assays. ASRs were limited by the commercially available assays, but the potential to design new, optimized assays, coupled with speed and cost, makes the ASR method worthy of further study. Fungi play a role in human gut ecology and health. The field lags immensely behind bacterial gut microbiota research, and studies continue to identify new fungi in faecal samples from healthy humans. However, many of these 'new' species are incapable of growth in the human GI tract, let alone making a meaningful contribution to the gut microbial community. Fungi actually inhabiting and impacting the gut likely constitute a small set of species, and an optimized, targeted, probe-based assay may prove to be the most sensible way of quantifying their abundances. © 2015 The Society for Applied Microbiology.

  8. Two dynamic regimes in the human gut microbiome

    PubMed Central

    Smillie, Chris S.; Alm, Eric J.

    2017-01-01

    The gut microbiome is a dynamic system that changes with host development, health, behavior, diet, and microbe-microbe interactions. Prior work on gut microbial time series has largely focused on autoregressive models (e.g. Lotka-Volterra). However, we show that most of the variance in microbial time series is non-autoregressive. In addition, we show how community state-clustering is flawed when it comes to characterizing within-host dynamics and that more continuous methods are required. Most organisms exhibited stable, mean-reverting behavior suggestive of fixed carrying capacities and abundant taxa were largely shared across individuals. This mean-reverting behavior allowed us to apply sparse vector autoregression (sVAR)—a multivariate method developed for econometrics—to model the autoregressive component of gut community dynamics. We find a strong phylogenetic signal in the non-autoregressive co-variance from our sVAR model residuals, which suggests niche filtering. We show how changes in diet are also non-autoregressive and that Operational Taxonomic Units strongly correlated with dietary variables have much less of an autoregressive component to their variance, which suggests that diet is a major driver of microbial dynamics. Autoregressive variance appears to be driven by multi-day recovery from frequent facultative anaerobe blooms, which may be driven by fluctuations in luminal redox. Overall, we identify two dynamic regimes within the human gut microbiota: one likely driven by external environmental fluctuations, and the other by internal processes. PMID:28222117

  9. Two dynamic regimes in the human gut microbiome.

    PubMed

    Gibbons, Sean M; Kearney, Sean M; Smillie, Chris S; Alm, Eric J

    2017-02-01

    The gut microbiome is a dynamic system that changes with host development, health, behavior, diet, and microbe-microbe interactions. Prior work on gut microbial time series has largely focused on autoregressive models (e.g. Lotka-Volterra). However, we show that most of the variance in microbial time series is non-autoregressive. In addition, we show how community state-clustering is flawed when it comes to characterizing within-host dynamics and that more continuous methods are required. Most organisms exhibited stable, mean-reverting behavior suggestive of fixed carrying capacities and abundant taxa were largely shared across individuals. This mean-reverting behavior allowed us to apply sparse vector autoregression (sVAR)-a multivariate method developed for econometrics-to model the autoregressive component of gut community dynamics. We find a strong phylogenetic signal in the non-autoregressive co-variance from our sVAR model residuals, which suggests niche filtering. We show how changes in diet are also non-autoregressive and that Operational Taxonomic Units strongly correlated with dietary variables have much less of an autoregressive component to their variance, which suggests that diet is a major driver of microbial dynamics. Autoregressive variance appears to be driven by multi-day recovery from frequent facultative anaerobe blooms, which may be driven by fluctuations in luminal redox. Overall, we identify two dynamic regimes within the human gut microbiota: one likely driven by external environmental fluctuations, and the other by internal processes.

  10. Differential effects of antibiotic therapy on the structure and function of human gut microbiota.

    PubMed

    Pérez-Cobas, Ana Elena; Artacho, Alejandro; Knecht, Henrik; Ferrús, María Loreto; Friedrichs, Anette; Ott, Stephan J; Moya, Andrés; Latorre, Amparo; Gosalbes, María José

    2013-01-01

    The human intestinal microbiota performs many essential functions for the host. Antimicrobial agents, such as antibiotics (AB), are also known to disturb microbial community equilibrium, thereby having an impact on human physiology. While an increasing number of studies investigate the effects of AB usage on changes in human gut microbiota biodiversity, its functional effects are still poorly understood. We performed a follow-up study to explore the effect of ABs with different modes of action on human gut microbiota composition and function. Four individuals were treated with different antibiotics and samples were taken before, during and after the AB course for all of them. Changes in the total and in the active (growing) microbiota as well as the functional changes were addressed by 16S rRNA gene and metagenomic 454-based pyrosequencing approaches. We have found that the class of antibiotic, particularly its antimicrobial effect and mode of action, played an important role in modulating the gut microbiota composition and function. Furthermore, analysis of the resistome suggested that oscillatory dynamics are not only due to antibiotic-target resistance, but also to fluctuations in the surviving bacterial community. Our results indicated that the effect of AB on the human gut microbiota relates to the interaction of several factors, principally the properties of the antimicrobial agent, and the structure, functions and resistance genes of the microbial community.

  11. ResistoMap-online visualization of human gut microbiota antibiotic resistome.

    PubMed

    Yarygin, Konstantin S; Kovarsky, Boris A; Bibikova, Tatyana S; Melnikov, Damir S; Tyakht, Alexander V; Alexeev, Dmitry G

    2017-07-15

    We created ResistoMap—a Web-based interactive visualization of the presence of genetic determinants conferring resistance to antibiotics, biocides and heavy metals in human gut microbiota. ResistoMap displays the data on more than 1500 published gut metagenomes of world populations including both healthy subjects and patients. Multiparameter display filters allow visual assessment of the associations between the meta-data and proportions of resistome. The geographic map navigation layer allows to state hypotheses regarding the global trends of antibiotic resistance and correlates the gut resistome variations with the national clinical guidelines on antibiotics application. ResistoMap was implemented using AngularJS, CoffeeScript, D3.js and TopoJSON. The tool is publicly available at http://resistomap.rcpcm.org. yarygin@phystech.edu. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  12. Characterization and detection of a widely distributed gene cluster that predicts anaerobic choline utilization by human gut bacteria.

    PubMed

    Martínez-del Campo, Ana; Bodea, Smaranda; Hamer, Hilary A; Marks, Jonathan A; Haiser, Henry J; Turnbaugh, Peter J; Balskus, Emily P

    2015-04-14

    Elucidation of the molecular mechanisms underlying the human gut microbiota's effects on health and disease has been complicated by difficulties in linking metabolic functions associated with the gut community as a whole to individual microorganisms and activities. Anaerobic microbial choline metabolism, a disease-associated metabolic pathway, exemplifies this challenge, as the specific human gut microorganisms responsible for this transformation have not yet been clearly identified. In this study, we established the link between a bacterial gene cluster, the choline utilization (cut) cluster, and anaerobic choline metabolism in human gut isolates by combining transcriptional, biochemical, bioinformatic, and cultivation-based approaches. Quantitative reverse transcription-PCR analysis and in vitro biochemical characterization of two cut gene products linked the entire cluster to growth on choline and supported a model for this pathway. Analyses of sequenced bacterial genomes revealed that the cut cluster is present in many human gut bacteria, is predictive of choline utilization in sequenced isolates, and is widely but discontinuously distributed across multiple bacterial phyla. Given that bacterial phylogeny is a poor marker for choline utilization, we were prompted to develop a degenerate PCR-based method for detecting the key functional gene choline TMA-lyase (cutC) in genomic and metagenomic DNA. Using this tool, we found that new choline-metabolizing gut isolates universally possessed cutC. We also demonstrated that this gene is widespread in stool metagenomic data sets. Overall, this work represents a crucial step toward understanding anaerobic choline metabolism in the human gut microbiota and underscores the importance of examining this microbial community from a function-oriented perspective. Anaerobic choline utilization is a bacterial metabolic activity that occurs in the human gut and is linked to multiple diseases. While bacterial genes responsible for

  13. Apples and cardiovascular health--is the gut microbiota a core consideration?

    PubMed

    Koutsos, Athanasios; Tuohy, Kieran M; Lovegrove, Julie A

    2015-05-26

    There is now considerable scientific evidence that a diet rich in fruits and vegetables can improve human health and protect against chronic diseases. However, it is not clear whether different fruits and vegetables have distinct beneficial effects. Apples are among the most frequently consumed fruits and a rich source of polyphenols and fiber. A major proportion of the bioactive components in apples, including the high molecular weight polyphenols, escape absorption in the upper gastrointestinal tract and reach the large intestine relatively intact. There, they can be converted by the colonic microbiota to bioavailable and biologically active compounds with systemic effects, in addition to modulating microbial composition. Epidemiological studies have identified associations between frequent apple consumption and reduced risk of chronic diseases such as cardiovascular disease. Human and animal intervention studies demonstrate beneficial effects on lipid metabolism, vascular function and inflammation but only a few studies have attempted to link these mechanistically with the gut microbiota. This review will focus on the reciprocal interaction between apple components and the gut microbiota, the potential link to cardiovascular health and the possible mechanisms of action.

  14. Cospeciation of gut microbiota with hominids

    PubMed Central

    Moeller, Andrew H.; Caro-Quintero, Alejandro; Mjungu, Deus; Georgiev, Alexander V.; Lonsdorf, Elizabeth V.; Muller, Martin N.; Pusey, Anne E.; Peeters, Martine; Hahn, Beatrice H.; Ochman, Howard

    2016-01-01

    The evolutionary origins of the bacterial lineages that populate the human gut are unknown. Here we show that multiple lineages of the predominant bacterial taxa in the gut arose via cospeciation with humans, chimpanzees, bonobos, and gorillas over the past 15 million years. Analyses of strain-level bacterial diversity within hominid gut microbiomes revealed that clades of Bacteroidaceae and Bifidobacteriaceae have been maintained exclusively within host lineages across hundreds of thousands of host generations. Divergence times of these cospeciating gut bacteria are congruent with those of hominids, indicating that nuclear, mitochondrial, and gut bacterial genomes diversified in concert during hominid evolution. This study identifies human gut bacteria descended from ancient symbionts that speciated simultaneously with humans and the African apes. PMID:27463672

  15. Estrogen decreases tight junction protein ZO-1 expression in human primary gut tissues.

    PubMed

    Zhou, Zejun; Zhang, Lumin; Ding, Miao; Luo, Zhenwu; Yuan, Shao; Bansal, Meena B; Gilkeson, Gary; Lang, Ren; Jiang, Wei

    2017-10-01

    Females have a higher prevalence of most autoimmune diseases; however, the mechanism is unknown. In this study, we examined the expression of tight junction protein zonula occludens 1 (ZO-1) and estrogen receptor (ER)-α/β in human primary gut tissues by immunohistochemistry, immunofluorescence and qPCR. The expression of ZO-1 and ER-β but not ER-α was present in both male and female gut tissues. There was no sex difference in ER-β expression, but ZO-1 expression was decreased in females compared to males. In vitro, estrogen treatment decreased ZO-1 mRNA and protein expression, ZO-1 promoter activity, IL-6 production, and NF-κB activation in human primary gut tissues or the Caco-2 cells, but increased the ER-β expression in Caco-2 cells. Consistently, plasma IL-6 levels in females were reduced relative to males in vivo. Our finding indicates that estrogen may play a role in gut tight junction expression and permeability. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Implication of gut microbiota in human health.

    PubMed

    Khan, Imran; Yasir, Muhammad; Azhar, Esam I; Kumosani, Taha; Barbour, Elie K; Bibi, Fehmida; Kamal, Mohammad A

    2014-01-01

    Gut-microbiota (GM) is considered a hidden metabolic organ of the human body, providing biochemical pathways which are absent in the host. Balanced diet with calorie restriction (CR) promotes growth of healthy microbiota, leading to longevity by down-regulating inflammatory responses. While, dysbiosis leads to body dysfunction, inducing metabolic disorders, causing poor epithelial architecture, and impeding the development of mucosal-associated lymphoid tissue, resulting in with reduced T and B cell populations, rendering the body prone to infections, cancer and allergy. The GM enzymes activity is a new risk factor for cancer while gut-derived interleukin-6 is associated with hepatocellular carcinoma development. GM can also influence the brain biochemistry and emotional behavior. The altered GM affects the genes involved in second messenger pathway and long-term potentiation, leading to their differential expression in the hippocampus, cortex, striatum and cerebellum. In addition, the dysbiotic GM is associated with autistic disorder. Living with dysbiotic GM is possible with consequences of serious impairments.

  17. Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism

    USDA-ARS?s Scientific Manuscript database

    The architecture of the human distal gut microbiota (microbiota) is sculpted by the complex carbohydrates delivered in the diet. Yeasts, which are among the earliest domesticated microorganisms and have been a component of the human diet for at least 7000 years, possess an elaborate cell wall alpha-...

  18. Amoxapine Demonstrates Incomplete Inhibition of β-Glucuronidase Activity from Human Gut Microbiota.

    PubMed

    Yang, Wei; Wei, Bin; Yan, Ru

    2018-01-01

    Amoxapine has been demonstrated to be a potent inhibitor of Escherichia coli β-glucuronidase. This study aims to explore the factors causing unsatisfactory efficacy of amoxapine in alleviating CPT-11-induced gastrointestinal toxicity in mice and to predict the outcomes in humans. Amoxapine (100 µM) exhibited poor and varied inhibition on β-glucuronidase activity in gut microbiota from 10 healthy individuals and their pool (pool, 11.9%; individuals, 3.6%-54.4%) with IC 50 >100 µM and potent inhibition toward E. coli β-glucuronidase (IC 50 = 0.34 µM). p-Nitrophenol formation from p-nitrophenyl-β-D-glucuronide by pooled and individual gut microbiota fitted classical Michaelis-Menten kinetics, showing similar affinity (K m = 113-189 µM) but varied catalytic capability (V max = 53-556 nmol/h/mg). Interestingly, amoxapine showed distinct inhibitory effects (8.7%-100%) toward β-glucuronidases of 13 bacterial isolates (including four Enterococcus, three Streptococcus, two Escherichia, and two Staphylococcus strains; gus genes belonging to OTU1, 2 or 21) regardless of their genetic similarity or bacterial origin. In addition, amoxapine inhibited the growth of pooled and individual gut microbiota at a high concentration (6.3%-30.8%, 200 µM). Taken together, these findings partly explain the unsatisfactory efficacy of amoxapine in alleviating CPT-11-induced toxicity and predict a poor outcome of β-glucuronidase inhibition in humans, highlighting the necessity of using a human gut microbiota community for drug screening.

  19. The human gut microbiome of Latin America populations: a landscape to be discovered.

    PubMed

    Magne, Fabien; O'Ryan, Miguel L; Vidal, Roberto; Farfan, Mauricio

    2016-10-01

    The gut microbiome is critical for human health, and its alteration is associated with intestinal, autoimmune and metabolic diseases. Numerous studies have focused on prevention or treatment of dysbiotic microbiome to reduce the risk or effect of these diseases. A key issue is to define the microbiome associated with the state of good health. The purpose of this review is to describe factors influencing the gut microbiome with special emphasis on contributions from Latin America. In addition, we will highlight opportunities for future studies on gut microbiome in Latin America. A relevant factor influencing gut microbiome composition is geographical location associated with specific genetic, dietary and lifestyle factors. Geographical specificities suggest that a universal 'healthy microbiome' is unlikely. Several research programs, mostly from Europe and North America, are extensively sequencing gut microbiome of healthy people, whereas data from Latin America remain scarce yet slowly increasing. Few studies have shown difference in the composition of gut microbiome between their local populations with that of other industrialized countries (North American populations). Latin America is composed of countries with a myriad of lifestyles, traditions, genetic backgrounds and socioeconomic conditions, which may determine differences in gut microbiome of individuals from different countries. This represents an opportunity to better understand the relationship between these factors and gut microbiome.

  20. Deciphering microbial interactions in synthetic human gut microbiome communities.

    PubMed

    Venturelli, Ophelia S; Carr, Alex C; Fisher, Garth; Hsu, Ryan H; Lau, Rebecca; Bowen, Benjamin P; Hromada, Susan; Northen, Trent; Arkin, Adam P

    2018-06-21

    The ecological forces that govern the assembly and stability of the human gut microbiota remain unresolved. We developed a generalizable model-guided framework to predict higher-dimensional consortia from time-resolved measurements of lower-order assemblages. This method was employed to decipher microbial interactions in a diverse human gut microbiome synthetic community. We show that pairwise interactions are major drivers of multi-species community dynamics, as opposed to higher-order interactions. The inferred ecological network exhibits a high proportion of negative and frequent positive interactions. Ecological drivers and responsive recipient species were discovered in the network. Our model demonstrated that a prevalent positive and negative interaction topology enables robust coexistence by implementing a negative feedback loop that balances disparities in monospecies fitness levels. We show that negative interactions could generate history-dependent responses of initial species proportions that frequently do not originate from bistability. Measurements of extracellular metabolites illuminated the metabolic capabilities of monospecies and potential molecular basis of microbial interactions. In sum, these methods defined the ecological roles of major human-associated intestinal species and illuminated design principles of microbial communities. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.

  1. The Human Gut Phage Community and Its Implications for Health and Disease.

    PubMed

    Manrique, Pilar; Dills, Michael; Young, Mark J

    2017-06-08

    In this review, we assess our current understanding of the role of bacteriophages infecting the human gut bacterial community in health and disease. In general, bacteriophages contribute to the structure of their microbial communities by driving host and viral diversification, bacterial evolution, and by expanding the functional diversity of ecosystems. Gut bacteriophages are an ensemble of unique and shared phages in individuals, which encompass temperate phages found predominately as prophage in gut bacteria (prophage reservoir) and lytic phages. In healthy individuals, only a small fraction of the prophage reservoir is activated and found as extracellular phages. Phage community dysbiosis is characterized by a shift in the activated prophage community or an increase of lytic phages, and has been correlated with disease, suggesting that a proper balance between lysis and lysogeny is needed to maintain health. Consequently, the concept of microbial dysbiosis might be extended to the phage component of the microbiome as well. Understanding the dynamics and mechanisms to restore balance after dysbiosis is an active area of research. The use of phage transplants to re-establish health suggests that phages can be used as disease treatment. Such advances represent milestones in our understanding of gut phages in human health and should fuel research on their role in health and disease.

  2. Gut fermentation seems to promote decompression sickness in humans.

    PubMed

    de Maistre, Sébastien; Vallee, Nicolas; Gempp, Emmanuel; Louge, Pierre; Duchamp, Claude; Blatteau, Jean-Eric

    2016-10-01

    Massive bubble formation after diving can lead to decompression sickness (DCS) that can result in neurological disorders. In experimental dives using hydrogen as the diluent gas, decreasing the body's H 2 burden by inoculating hydrogen-metabolizing microbes into the gut reduces the risk of DCS. In contrast, we have shown that gut bacterial fermentation in rats on a standard diet promotes DCS through endogenous hydrogen production. Therefore, we set out to test these experimental results in humans. Thirty-nine divers admitted into our hyperbaric center with neurological DCS (Affected Divers) were compared with 39 healthy divers (Unaffected Divers). Their last meal time and composition were recorded. Gut fermentation rate was estimated by measuring breath hydrogen 1-4 h after the dive. Breath hydrogen concentrations were significantly higher in Affected Divers (15 ppm [6-23] vs. 7 ppm [3-12]; P = 0.0078). With the use of a threshold value of 16.5 ppm, specificity was 87% [95% confidence interval (CI) 73-95] for association with neurological DCS onset. We observed a strong association between hydrogen values above this threshold and an accident occurrence (odds ratio = 5.3, 95% CI 1.8-15.7, P = 0.0025). However, high fermentation potential foodstuffs consumption was not different between Affected and Unaffected Divers. Gut fermentation rate at dive time seemed to be higher in Affected Divers. Hydrogen generated by fermentation diffuses throughout the body and could increase DCS risk. Prevention could be helped by excluding divers who are showing a high fermentation rate, by eliminating gas produced in gut, or even by modifying intestinal microbiota to reduce fermentation rate during a dive. Copyright © 2016 the American Physiological Society.

  3. Linking the Human Gut Microbiome to Inflammatory Cytokine Production Capacity.

    PubMed

    Schirmer, Melanie; Smeekens, Sanne P; Vlamakis, Hera; Jaeger, Martin; Oosting, Marije; Franzosa, Eric A; Ter Horst, Rob; Jansen, Trees; Jacobs, Liesbeth; Bonder, Marc Jan; Kurilshikov, Alexander; Fu, Jingyuan; Joosten, Leo A B; Zhernakova, Alexandra; Huttenhower, Curtis; Wijmenga, Cisca; Netea, Mihai G; Xavier, Ramnik J

    2016-11-03

    Gut microbial dysbioses are linked to aberrant immune responses, which are often accompanied by abnormal production of inflammatory cytokines. As part of the Human Functional Genomics Project (HFGP), we investigate how differences in composition and function of gut microbial communities may contribute to inter-individual variation in cytokine responses to microbial stimulations in healthy humans. We observe microbiome-cytokine interaction patterns that are stimulus specific, cytokine specific, and cytokine and stimulus specific. Validation of two predicted host-microbial interactions reveal that TNFα and IFNγ production are associated with specific microbial metabolic pathways: palmitoleic acid metabolism and tryptophan degradation to tryptophol. Besides providing a resource of predicted microbially derived mediators that influence immune phenotypes in response to common microorganisms, these data can help to define principles for understanding disease susceptibility. The three HFGP studies presented in this issue lay the groundwork for further studies aimed at understanding the interplay between microbial, genetic, and environmental factors in the regulation of the immune response in humans. PAPERCLIP. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Country-specific antibiotic use practices impact the human gut resistome

    PubMed Central

    Forslund, Kristoffer; Sunagawa, Shinichi; Kultima, Jens Roat; Mende, Daniel R.; Arumugam, Manimozhiyan; Typas, Athanasios; Bork, Peer

    2013-01-01

    Despite increasing concerns over inappropriate use of antibiotics in medicine and food production, population-level resistance transfer into the human gut microbiota has not been demonstrated beyond individual case studies. To determine the “antibiotic resistance potential” for entire microbial communities, we employ metagenomic data and quantify the totality of known resistance genes in each community (its resistome) for 68 classes and subclasses of antibiotics. In 252 fecal metagenomes from three countries, we show that the most abundant resistance determinants are those for antibiotics also used in animals and for antibiotics that have been available longer. Resistance genes are also more abundant in samples from Spain, Italy, and France than from Denmark, the United States, or Japan. Where comparable country-level data on antibiotic use in both humans and animals are available, differences in these statistics match the observed resistance potential differences. The results are robust over time as the antibiotic resistance determinants of individuals persist in the human gut flora for at least a year. PMID:23568836

  5. Impact of human aging and modern lifestyle on gut microbiota.

    PubMed

    Valle Gottlieb, Maria Gabriela; Closs, Vera Elizabeth; Junges, Vilma Maria; Schwanke, Carla Helena Augustin

    2018-06-13

    Human evolution and lifestyle changes caused by the agricultural and industrial revolutions have led to great advances in medicine and increased life expectancy, whilst also profoundly altering the ecological relationships and disease patterns of populations. Studies involving populations that still enjoy a rural way of life and with traits similar to the Paleolithic period reveal them to present a more robust, resistant and diverse gut microbiota, in comparison to highly industrialized civilizations. The human diet has expanded and broadened to include the consumption of high-calorie foods, particularly from animal sources such as game meat and eggs. For some time, authors have been alert to the fact that a modern lifestyle leads to reduced intake of beneficial bacteria, suggesting that nonpathogenic bacteria are being eradicated. Furthermore, therapeutic procedures, including the use of probiotics and prebiotics, have been proposed to lead to recovery of this microbiota, which is altered due to both the ageing process and lifestyle related aspects. Accordingly, this article aims to review the impact of human aging and modern lifestyle on gut microbiota, within an evolutionary, ecological, epidemiological and therapeutic context.

  6. Exercise Alters Gut Microbiota Composition and Function in Lean and Obese Humans.

    PubMed

    Allen, Jacob M; Mailing, Lucy J; Niemiro, Grace M; Moore, Rachel; Cook, Marc D; White, Bryan A; Holscher, Hannah D; Woods, Jeffrey A

    2018-04-01

    Exercise is associated with altered gut microbial composition, but studies have not investigated whether the gut microbiota and associated metabolites are modulated by exercise training in humans. We explored the impact of 6 wk of endurance exercise on the composition, functional capacity, and metabolic output of the gut microbiota in lean and obese adults with multiple-day dietary controls before outcome variable collection. Thirty-two lean (n = 18 [9 female]) and obese (n = 14 [11 female]), previously sedentary subjects participated in 6 wk of supervised, endurance-based exercise training (3 d·wk) that progressed from 30 to 60 min·d and from moderate (60% of HR reserve) to vigorous intensity (75% HR reserve). Subsequently, participants returned to a sedentary lifestyle activity for a 6-wk washout period. Fecal samples were collected before and after 6 wk of exercise, as well as after the sedentary washout period, with 3-d dietary controls in place before each collection. β-diversity analysis revealed that exercise-induced alterations of the gut microbiota were dependent on obesity status. Exercise increased fecal concentrations of short-chain fatty acids in lean, but not obese, participants. Exercise-induced shifts in metabolic output of the microbiota paralleled changes in bacterial genes and taxa capable of short-chain fatty acid production. Lastly, exercise-induced changes in the microbiota were largely reversed once exercise training ceased. These findings suggest that exercise training induces compositional and functional changes in the human gut microbiota that are dependent on obesity status, independent of diet and contingent on the sustainment of exercise.

  7. A discrete genetic locus confers xyloglucan metabolism in select human gut Bacteroidetes.

    PubMed

    Larsbrink, Johan; Rogers, Theresa E; Hemsworth, Glyn R; McKee, Lauren S; Tauzin, Alexandra S; Spadiut, Oliver; Klinter, Stefan; Pudlo, Nicholas A; Urs, Karthik; Koropatkin, Nicole M; Creagh, A Louise; Haynes, Charles A; Kelly, Amelia G; Cederholm, Stefan Nilsson; Davies, Gideon J; Martens, Eric C; Brumer, Harry

    2014-02-27

    A well-balanced human diet includes a significant intake of non-starch polysaccharides, collectively termed 'dietary fibre', from the cell walls of diverse fruits and vegetables. Owing to the paucity of alimentary enzymes encoded by the human genome, our ability to derive energy from dietary fibre depends on the saccharification and fermentation of complex carbohydrates by the massive microbial community residing in our distal gut. The xyloglucans (XyGs) are a ubiquitous family of highly branched plant cell wall polysaccharides whose mechanism(s) of degradation in the human gut and consequent importance in nutrition have been unclear. Here we demonstrate that a single, complex gene locus in Bacteroides ovatus confers XyG catabolism in this common colonic symbiont. Through targeted gene disruption, biochemical analysis of all predicted glycoside hydrolases and carbohydrate-binding proteins, and three-dimensional structural determination of the vanguard endo-xyloglucanase, we reveal the molecular mechanisms through which XyGs are hydrolysed to component monosaccharides for further metabolism. We also observe that orthologous XyG utilization loci (XyGULs) serve as genetic markers of XyG catabolism in Bacteroidetes, that XyGULs are restricted to a limited number of phylogenetically diverse strains, and that XyGULs are ubiquitous in surveyed human metagenomes. Our findings reveal that the metabolism of even highly abundant components of dietary fibre may be mediated by niche species, which has immediate fundamental and practical implications for gut symbiont population ecology in the context of human diet, nutrition and health.

  8. Starch and starch hydrolysates are favorable carbon sources for bifidobacteria in the human gut.

    PubMed

    Liu, Songling; Ren, Fazheng; Zhao, Liang; Jiang, Lu; Hao, Yanling; Jin, Junhua; Zhang, Ming; Guo, Huiyuan; Lei, Xingen; Sun, Erna; Liu, Hongna

    2015-03-01

    Bifidobacteria are key commensals in human gut, and their abundance is associated with the health of their hosts. Although they are dominant in infant gut, their number becomes lower in adult gut. The changes of the diet are considered to be main reason for this difference. Large amounts of whole-genomic sequence data of bifidobacteria make it possible to elucidate the genetic interpretation of their adaptation to the nutrient environment. Among the nutrients in human gut, starch is a highly fermentable substrate and can exert beneficial effects by increasing bifidobacteria and/or being fermented to short chain fatty acids. In order to determine the potential substrate preference of bifidobacteria, we compared the glycoside hydrolase (GH) profiles of a pooled-bifidobacterial genome (PBG) with a representative microbiome (RM) of the human gut. In bifidobacterial genomes, only 15% of GHs contained signal peptides, suggesting their weakness in utilization of complex carbohydrate, such as plant cell wall polysaccharides. However, compared with other intestinal bacteria, bifidobacteiral genomes encoded more GH genes for degrading starch and starch hydrolysates, indicating that they have genetic advantages in utilizing these substrates. Bifidobacterium longum subsp. longum BBMN68 isolated from centenarian's faeces was used as a model strain to further investigate the carbohydrate utilization. The pathway for degrading starch and starch hydrolysates was the only complete pathway for complex carbohydrates in human gut. It is noteworthy that all of the GH genes for degrading starch and starch hydrolysates in the BBMN68 genome were conserved in all studied bifidobacterial strains. The in silico analyses of BBMN68 were further confirmed by growth experiments, proteomic and real-time quantitative PCR (RT-PCR) analyses. Our results demonstrated that starch and starch hydrolysates were the most universal and favorable carbon sources for bifidobacteria. The low amount of these

  9. Characterizing a model human gut microbiota composed of members of its two dominant bacterial phyla

    PubMed Central

    Mahowald, Michael A.; Rey, Federico E.; Seedorf, Henning; Turnbaugh, Peter J.; Fulton, Robert S.; Wollam, Aye; Shah, Neha; Wang, Chunyan; Magrini, Vincent; Wilson, Richard K.; Cantarel, Brandi L.; Coutinho, Pedro M.; Henrissat, Bernard; Crock, Lara W.; Russell, Alison; Verberkmoes, Nathan C.; Hettich, Robert L.; Gordon, Jeffrey I.

    2009-01-01

    The adult human distal gut microbial community is typically dominated by 2 bacterial phyla (divisions), the Firmicutes and the Bacteroidetes. Little is known about the factors that govern the interactions between their members. Here, we examine the niches of representatives of both phyla in vivo. Finished genome sequences were generated from Eubacterium rectale and E. eligens, which belong to Clostridium Cluster XIVa, one of the most common gut Firmicute clades. Comparison of these and 25 other gut Firmicutes and Bacteroidetes indicated that the Firmicutes possess smaller genomes and a disproportionately smaller number of glycan-degrading enzymes. Germ-free mice were then colonized with E. rectale and/or a prominent human gut Bacteroidetes, Bacteroides thetaiotaomicron, followed by whole-genome transcriptional profiling, high-resolution proteomic analysis, and biochemical assays of microbial–microbial and microbial–host interactions. B. thetaiotaomicron adapts to E. rectale by up-regulating expression of a variety of polysaccharide utilization loci encoding numerous glycoside hydrolases, and by signaling the host to produce mucosal glycans that it, but not E. rectale, can access. E. rectale adapts to B. thetaiotaomicron by decreasing production of its glycan-degrading enzymes, increasing expression of selected amino acid and sugar transporters, and facilitating glycolysis by reducing levels of NADH, in part via generation of butyrate from acetate, which in turn is used by the gut epithelium. This simplified model of the human gut microbiota illustrates niche specialization and functional redundancy within members of its major bacterial phyla, and the importance of host glycans as a nutrient foundation that ensures ecosystem stability. PMID:19321416

  10. Developing a Bacteroides System for Function-Based Screening of DNA from the Human Gut Microbiome.

    PubMed

    Lam, Kathy N; Martens, Eric C; Charles, Trevor C

    2018-01-01

    Functional metagenomics is a powerful method that allows the isolation of genes whose role may not have been predicted from DNA sequence. In this approach, first, environmental DNA is cloned to generate metagenomic libraries that are maintained in Escherichia coli, and second, the cloned DNA is screened for activities of interest. Typically, functional screens are carried out using E. coli as a surrogate host, although there likely exist barriers to gene expression, such as lack of recognition of native promoters. Here, we describe efforts to develop Bacteroides thetaiotaomicron as a surrogate host for screening metagenomic DNA from the human gut. We construct a B. thetaiotaomicron-compatible fosmid cloning vector, generate a fosmid clone library using DNA from the human gut, and show successful functional complementation of a B. thetaiotaomicron glycan utilization mutant. Though we were unable to retrieve the physical fosmid after complementation, we used genome sequencing to identify the complementing genes derived from the human gut microbiome. Our results demonstrate that the use of B. thetaiotaomicron to express metagenomic DNA is promising, but they also exemplify the challenges that can be encountered in the development of new surrogate hosts for functional screening. IMPORTANCE Human gut microbiome research has been supported by advances in DNA sequencing that make it possible to obtain gigabases of sequence data from metagenomes but is limited by a lack of knowledge of gene function that leads to incomplete annotation of these data sets. There is a need for the development of methods that can provide experimental data regarding microbial gene function. Functional metagenomics is one such method, but functional screens are often carried out using hosts that may not be able to express the bulk of the environmental DNA being screened. We expand the range of current screening hosts and demonstrate that human gut-derived metagenomic libraries can be

  11. Taxonomic and predicted metabolic profiles of the human gut microbiome in pre-Columbian mummies.

    PubMed

    Santiago-Rodriguez, Tasha M; Fornaciari, Gino; Luciani, Stefania; Dowd, Scot E; Toranzos, Gary A; Marota, Isolina; Cano, Raul J

    2016-11-01

    Characterization of naturally mummified human gut remains could potentially provide insights into the preservation and evolution of commensal and pathogenic microorganisms, and metabolic profiles. We characterized the gut microbiome of two pre-Columbian Andean mummies dating to the 10-15th centuries using 16S rRNA gene high-throughput sequencing and metagenomics, and compared them to a previously characterized gut microbiome of an 11th century AD pre-Columbian Andean mummy. Our previous study showed that the Clostridiales represented the majority of the bacterial communities in the mummified gut remains, but that other microbial communities were also preserved during the process of natural mummification, as shown with the metagenomics analyses. The gut microbiome of the other two mummies were mainly comprised by Clostridiales or Bacillales, as demonstrated with 16S rRNA gene amplicon sequencing, many of which are facultative anaerobes, possibly consistent with the process of natural mummification requiring low oxygen levels. Metagenome analyses showed the presence of other microbial groups that were positively or negatively correlated with specific metabolic profiles. The presence of sequences similar to both Trypanosoma cruzi and Leishmania donovani could suggest that these pathogens were prevalent in pre-Columbian individuals. Taxonomic and functional profiling of mummified human gut remains will aid in the understanding of the microbial ecology of the process of natural mummification. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. How mass spectrometric approaches applied to bacterial identification have revolutionized the study of human gut microbiota.

    PubMed

    Grégory, Dubourg; Chaudet, Hervé; Lagier, Jean-Christophe; Raoult, Didier

    2018-03-01

    Describing the human hut gut microbiota is one the most exciting challenges of the 21 st century. Currently, high-throughput sequencing methods are considered as the gold standard for this purpose, however, they suffer from several drawbacks, including their inability to detect minority populations. The advent of mass-spectrometric (MS) approaches to identify cultured bacteria in clinical microbiology enabled the creation of the culturomics approach, which aims to establish a comprehensive repertoire of cultured prokaryotes from human specimens using extensive culture conditions. Areas covered: This review first underlines how mass spectrometric approaches have revolutionized clinical microbiology. It then highlights the contribution of MS-based methods to culturomics studies, paying particular attention to the extension of the human gut microbiota repertoire through the discovery of new bacterial species. Expert commentary: MS-based approaches have enabled cultivation methods to be resuscitated to study the human gut microbiota and thus to fill in the blanks left by high-throughput sequencing methods in terms of culturing minority populations. Continued efforts to recover new taxa using culture methods, combined with their rapid implementation in genomic databases, would allow for an exhaustive analysis of the gut microbiota through the use of a comprehensive approach.

  13. Characterization and Detection of a Widely Distributed Gene Cluster That Predicts Anaerobic Choline Utilization by Human Gut Bacteria

    PubMed Central

    Martínez-del Campo, Ana; Bodea, Smaranda; Hamer, Hilary A.; Marks, Jonathan A.; Haiser, Henry J.; Turnbaugh, Peter J.

    2015-01-01

    ABSTRACT Elucidation of the molecular mechanisms underlying the human gut microbiota’s effects on health and disease has been complicated by difficulties in linking metabolic functions associated with the gut community as a whole to individual microorganisms and activities. Anaerobic microbial choline metabolism, a disease-associated metabolic pathway, exemplifies this challenge, as the specific human gut microorganisms responsible for this transformation have not yet been clearly identified. In this study, we established the link between a bacterial gene cluster, the choline utilization (cut) cluster, and anaerobic choline metabolism in human gut isolates by combining transcriptional, biochemical, bioinformatic, and cultivation-based approaches. Quantitative reverse transcription-PCR analysis and in vitro biochemical characterization of two cut gene products linked the entire cluster to growth on choline and supported a model for this pathway. Analyses of sequenced bacterial genomes revealed that the cut cluster is present in many human gut bacteria, is predictive of choline utilization in sequenced isolates, and is widely but discontinuously distributed across multiple bacterial phyla. Given that bacterial phylogeny is a poor marker for choline utilization, we were prompted to develop a degenerate PCR-based method for detecting the key functional gene choline TMA-lyase (cutC) in genomic and metagenomic DNA. Using this tool, we found that new choline-metabolizing gut isolates universally possessed cutC. We also demonstrated that this gene is widespread in stool metagenomic data sets. Overall, this work represents a crucial step toward understanding anaerobic choline metabolism in the human gut microbiota and underscores the importance of examining this microbial community from a function-oriented perspective. PMID:25873372

  14. Recognition and Degradation of Plant Cell Wall Polysaccharides by Two Human Gut Symbionts

    PubMed Central

    Chiang, Herbert; Pudlo, Nicholas A.; Wu, Meng; McNulty, Nathan P.; Abbott, D. Wade; Henrissat, Bernard; Gilbert, Harry J.; Bolam, David N.; Gordon, Jeffrey I.

    2011-01-01

    Symbiotic bacteria inhabiting the human gut have evolved under intense pressure to utilize complex carbohydrates, primarily plant cell wall glycans in our diets. These polysaccharides are not digested by human enzymes, but are processed to absorbable short chain fatty acids by gut bacteria. The Bacteroidetes, one of two dominant bacterial phyla in the adult gut, possess broad glycan-degrading abilities. These species use a series of membrane protein complexes, termed Sus-like systems, for catabolism of many complex carbohydrates. However, the role of these systems in degrading the chemically diverse repertoire of plant cell wall glycans remains unknown. Here we show that two closely related human gut Bacteroides, B. thetaiotaomicron and B. ovatus, are capable of utilizing nearly all of the major plant and host glycans, including rhamnogalacturonan II, a highly complex polymer thought to be recalcitrant to microbial degradation. Transcriptional profiling and gene inactivation experiments revealed the identity and specificity of the polysaccharide utilization loci (PULs) that encode individual Sus-like systems that target various plant polysaccharides. Comparative genomic analysis indicated that B. ovatus possesses several unique PULs that enable degradation of hemicellulosic polysaccharides, a phenotype absent from B. thetaiotaomicron. In contrast, the B. thetaiotaomicron genome has been shaped by increased numbers of PULs involved in metabolism of host mucin O-glycans, a phenotype that is undetectable in B. ovatus. Binding studies of the purified sensor domains of PUL-associated hybrid two-component systems in conjunction with transcriptional analyses demonstrate that complex oligosaccharides provide the regulatory cues that induce PUL activation and that each PUL is highly specific for a defined cell wall polymer. These results provide a view of how these species have diverged into different carbohydrate niches by evolving genes that target unique suites of

  15. Environment dominates over host genetics in shaping human gut microbiota.

    PubMed

    Rothschild, Daphna; Weissbrod, Omer; Barkan, Elad; Kurilshikov, Alexander; Korem, Tal; Zeevi, David; Costea, Paul I; Godneva, Anastasia; Kalka, Iris N; Bar, Noam; Shilo, Smadar; Lador, Dar; Vila, Arnau Vich; Zmora, Niv; Pevsner-Fischer, Meirav; Israeli, David; Kosower, Noa; Malka, Gal; Wolf, Bat Chen; Avnit-Sagi, Tali; Lotan-Pompan, Maya; Weinberger, Adina; Halpern, Zamir; Carmi, Shai; Fu, Jingyuan; Wijmenga, Cisca; Zhernakova, Alexandra; Elinav, Eran; Segal, Eran

    2018-03-08

    Human gut microbiome composition is shaped by multiple factors but the relative contribution of host genetics remains elusive. Here we examine genotype and microbiome data from 1,046 healthy individuals with several distinct ancestral origins who share a relatively common environment, and demonstrate that the gut microbiome is not significantly associated with genetic ancestry, and that host genetics have a minor role in determining microbiome composition. We show that, by contrast, there are significant similarities in the compositions of the microbiomes of genetically unrelated individuals who share a household, and that over 20% of the inter-person microbiome variability is associated with factors related to diet, drugs and anthropometric measurements. We further demonstrate that microbiome data significantly improve the prediction accuracy for many human traits, such as glucose and obesity measures, compared to models that use only host genetic and environmental data. These results suggest that microbiome alterations aimed at improving clinical outcomes may be carried out across diverse genetic backgrounds.

  16. Targeting the gut microbiota by dietary nutrients: A new avenue for human health.

    PubMed

    Li, Daotong; Wang, Pan; Wang, Pengpu; Hu, Xiaosong; Chen, Fang

    2017-08-28

    The gut microbiota is a complex ecosystem consisted of trillions of microbes that have co-evolved with their host for hundreds of millions of years. During the last decade, a growing body of knowledge has suggested that there is a compelling set of connections among diet, gut microbiota and human health. Various physiological functions of the host, ranging from metabolic and immune regulation to nerve and endocrine development, are possibly mediated by the structural components of microbial cell or the products of microbial metabolism, which are greatly influenced by dietary macronutrients and micronutrients. Thus, governing the production and activity of these microbial-associated small molecules and metabolites through dietary intervention may provide promising strategies for the improvement of human health and disease. In this review article, we first provide an overview of current findings about the intimate interrelationships between diet and gut microbiota. We also introduce the physiological effects of some microbial-associated small molecules and metabolites on the host as well as the detailed signaling mechanisms.

  17. “Omic” investigations of protozoa and worms for a deeper understanding of the human gut “parasitome”

    PubMed Central

    Marzano, Valeria; Mancinelli, Livia; Bracaglia, Giorgia; Del Chierico, Federica; Vernocchi, Pamela; Di Girolamo, Francesco; Garrone, Stefano; Tchidjou Kuekou, Hyppolite; D’Argenio, Patrizia; Dallapiccola, Bruno; Urbani, Andrea

    2017-01-01

    The human gut has been continuously exposed to a broad spectrum of intestinal organisms, including viruses, bacteria, fungi, and parasites (protozoa and worms), over millions of years of coevolution, and plays a central role in human health. The modern lifestyles of Western countries, such as the adoption of highly hygienic habits, the extensive use of antimicrobial drugs, and increasing globalisation, have dramatically altered the composition of the gut milieu, especially in terms of its eukaryotic “citizens.” In the past few decades, numerous studies have highlighted the composition and role of human intestinal bacteria in physiological and pathological conditions, while few investigations exist on gut parasites and particularly on their coexistence and interaction with the intestinal microbiota. Studies of the gut “parasitome” through “omic” technologies, such as (meta)genomics, transcriptomics, proteomics, and metabolomics, are herein reviewed to better understand their role in the relationships between intestinal parasites, host, and resident prokaryotes, whether pathogens or commensals. Systems biology–based profiles of the gut “parasitome” under physiological and severe disease conditions can indeed contribute to the control of infectious diseases and offer a new perspective of omics-assisted tropical medicine. PMID:29095820

  18. A discrete genetic locus confers xyloglucan metabolism in select human gut Bacteroidetes

    PubMed Central

    Larsbrink, Johan; Rogers, Theresa E.; Hemsworth, Glyn R.; McKee, Lauren S.; Tauzin, Alexandra S.; Spadiut, Oliver; Klinter, Stefan; Pudlo, Nicholas A.; Urs, Karthik; Koropatkin, Nicole M.; Creagh, A. Louise; Haynes, Charles A.; Kelly, Amelia G.; Cederholm, Stefan Nilsson; Davies, Gideon J.; Martens, Eric C.; Brumer, Harry

    2014-01-01

    A well-balanced human diet includes a significant intake of non-starch polysaccharides, collectively termed “dietary fibre,” from the cell walls of diverse fruits and vegetables.1 Due to a paucity of alimentary enzymes encoded by the human genome,2 our ability to derive energy from dietary fibre depends on saccharification and fermentation of complex carbohydrates by the massive microbial community residing in our distal gut.3,4 The xyloglucans (XyGs), in particular, are a ubiquitous family of highly branched plant cell wall polysaccharides5,6 whose mechanism(s) of degradation in the human gut and consequent importance in nutrition was heretofore unknown.1,7,8 Here, we demonstrate that a single, complex gene locus in Bacteroides ovatus confers xyloglucan catabolism in this common colonic symbiont. Through targeted gene disruption, biochemical analysis of all predicted glycoside hydrolases and carbohydrate-binding proteins, and three-dimensional structural determination of the vanguard endo-xyloglucanase, we reveal the molecular mechanisms through which XyGs are hydrolysed to component monosaccharides for further metabolism. We also observe that orthologous xyloglucan utilization loci (XyGULs) serve as genetic markers of xyloglucan catabolism in Bacteroidetes, that XyGULs are restricted to a limited number of phylogenetically diverse strains, and that XyGULs are ubiquitous in surveyed human metagenomes. Our findings reveal that the metabolism of even highly abundant components of dietary fibre may be mediated by niche species, which has immediate fundamental and practical implications for gut symbiont population ecology in the context of human diet, nutrition and health.9–12 PMID:24463512

  19. Apples and Cardiovascular Health—Is the Gut Microbiota a Core Consideration?

    PubMed Central

    Koutsos, Athanasios; Tuohy, Kieran M.; Lovegrove, Julie A.

    2015-01-01

    There is now considerable scientific evidence that a diet rich in fruits and vegetables can improve human health and protect against chronic diseases. However, it is not clear whether different fruits and vegetables have distinct beneficial effects. Apples are among the most frequently consumed fruits and a rich source of polyphenols and fiber. A major proportion of the bioactive components in apples, including the high molecular weight polyphenols, escape absorption in the upper gastrointestinal tract and reach the large intestine relatively intact. There, they can be converted by the colonic microbiota to bioavailable and biologically active compounds with systemic effects, in addition to modulating microbial composition. Epidemiological studies have identified associations between frequent apple consumption and reduced risk of chronic diseases such as cardiovascular disease. Human and animal intervention studies demonstrate beneficial effects on lipid metabolism, vascular function and inflammation but only a few studies have attempted to link these mechanistically with the gut microbiota. This review will focus on the reciprocal interaction between apple components and the gut microbiota, the potential link to cardiovascular health and the possible mechanisms of action. PMID:26016654

  20. Superresolution Imaging Captures Carbohydrate Utilization Dynamics in Human Gut Symbionts

    PubMed Central

    Karunatilaka, Krishanthi S.; Cameron, Elizabeth A.; Martens, Eric C.; Koropatkin, Nicole M.

    2014-01-01

    ABSTRACT Gut microbes play a key role in human health and nutrition by catabolizing a wide variety of glycans via enzymatic activities that are not encoded in the human genome. The ability to recognize and process carbohydrates strongly influences the structure of the gut microbial community. While the effects of diet on the microbiota are well documented, little is known about the molecular processes driving metabolism. To provide mechanistic insight into carbohydrate catabolism in gut symbionts, we studied starch processing in real time in the model Bacteroides thetaiotaomicron starch utilization system (Sus) by single-molecule fluorescence. Although previous studies have explored Sus protein structure and function, the transient interactions, assembly, and collaboration of these outer membrane proteins have not yet been elucidated in live cells. Our live-cell superresolution imaging reveals that the polymeric starch substrate dynamically recruits Sus proteins, serving as an external scaffold for bacterial membrane assembly of the Sus complex, which may promote efficient capturing and degradation of starch. Furthermore, by simultaneously localizing multiple Sus outer membrane proteins on the B. thetaiotaomicron cell surface, we have characterized the dynamics and stoichiometry of starch-induced Sus complex assembly on the molecular scale. Finally, based on Sus protein knockout strains, we have discerned the mechanism of starch-induced Sus complex assembly in live anaerobic cells with nanometer-scale resolution. Our insights into the starch-induced outer membrane protein assembly central to this conserved nutrient uptake mechanism pave the way for the development of dietary or pharmaceutical therapies to control Bacteroidetes in the intestinal tract to enhance human health and treat disease. PMID:25389179

  1. Molecular Mechanism by which Prominent Human Gut Bacteroidetes Utilize Mixed-Linkage Beta-Glucans, Major Health-Promoting Cereal Polysaccharides.

    PubMed

    Tamura, Kazune; Hemsworth, Glyn R; Déjean, Guillaume; Rogers, Theresa E; Pudlo, Nicholas A; Urs, Karthik; Jain, Namrata; Davies, Gideon J; Martens, Eric C; Brumer, Harry

    2017-10-10

    Microbial utilization of complex polysaccharides is a major driving force in shaping the composition of the human gut microbiota. There is a growing appreciation that finely tuned polysaccharide utilization loci enable ubiquitous gut Bacteroidetes to thrive on the plethora of complex polysaccharides that constitute "dietary fiber." Mixed-linkage β(1,3)/β(1,4)-glucans (MLGs) are a key family of plant cell wall polysaccharides with recognized health benefits but whose mechanism of utilization has remained unclear. Here, we provide molecular insight into the function of an archetypal MLG utilization locus (MLGUL) through a combination of biochemistry, enzymology, structural biology, and microbiology. Comparative genomics coupled with growth studies demonstrated further that syntenic MLGULs serve as genetic markers for MLG catabolism across commensal gut bacteria. In turn, we surveyed human gut metagenomes to reveal that MLGULs are ubiquitous in human populations globally, which underscores the importance of gut microbial metabolism of MLG as a common cereal polysaccharide. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Stable Engraftment of Bifidobacterium longum AH1206 in the Human Gut Depends on Individualized Features of the Resident Microbiome.

    PubMed

    Maldonado-Gómez, María X; Martínez, Inés; Bottacini, Francesca; O'Callaghan, Amy; Ventura, Marco; van Sinderen, Douwe; Hillmann, Benjamin; Vangay, Pajau; Knights, Dan; Hutkins, Robert W; Walter, Jens

    2016-10-12

    Live bacteria (such as probiotics) have long been used to modulate gut microbiota and human physiology, but their colonization is mostly transient. Conceptual understanding of the ecological principles as they apply to exogenously introduced microbes in gut ecosystems is lacking. We find that, when orally administered to humans, Bifidobacterium longum AH1206 stably persists in the gut of 30% of individuals for at least 6 months without causing gastrointestinal symptoms or impacting the composition of the resident gut microbiota. AH1206 engraftment was associated with low abundance of resident B. longum and underrepresentation of specific carbohydrate utilization genes in the pre-treatment microbiome. Thus, phylogenetic limiting and resource availability are two factors that control the niche opportunity for AH1206 colonization. These findings suggest that bacterial species and functional genes absent in the gut microbiome of individual humans can be reestablished, providing opportunities for precise and personalized microbiome reconstitution. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Application of a hierarchical enzyme classification method reveals the role of gut microbiome in human metabolism

    PubMed Central

    2015-01-01

    Background Enzymes are known as the molecular machines that drive the metabolism of an organism; hence identification of the full enzyme complement of an organism is essential to build the metabolic blueprint of that species as well as to understand the interplay of multiple species in an ecosystem. Experimental characterization of the enzymatic reactions of all enzymes in a genome is a tedious and expensive task. The problem is more pronounced in the metagenomic samples where even the species are not adequately cultured or characterized. Enzymes encoded by the gut microbiota play an essential role in the host metabolism; thus, warranting the need to accurately identify and annotate the full enzyme complements of species in the genomic and metagenomic projects. To fulfill this need, we develop and apply a method called ECemble, an ensemble approach to identify enzymes and enzyme classes and study the human gut metabolic pathways. Results ECemble method uses an ensemble of machine-learning methods to accurately model and predict enzymes from protein sequences and also identifies the enzyme classes and subclasses at the finest resolution. A tenfold cross-validation result shows accuracy between 97 and 99% at different levels in the hierarchy of enzyme classification, which is superior to comparable methods. We applied ECemble to predict the entire complements of enzymes from ten sequenced proteomes including the human proteome. We also applied this method to predict enzymes encoded by the human gut microbiome from gut metagenomic samples, and to study the role played by the microbe-derived enzymes in the human metabolism. After mapping the known and predicted enzymes to canonical human pathways, we identified 48 pathways that have at least one bacteria-encoded enzyme, which demonstrates the complementary role of gut microbiome in human gut metabolism. These pathways are primarily involved in metabolizing dietary nutrients such as carbohydrates, amino acids, lipids

  4. Application of a hierarchical enzyme classification method reveals the role of gut microbiome in human metabolism.

    PubMed

    Mohammed, Akram; Guda, Chittibabu

    2015-01-01

    Enzymes are known as the molecular machines that drive the metabolism of an organism; hence identification of the full enzyme complement of an organism is essential to build the metabolic blueprint of that species as well as to understand the interplay of multiple species in an ecosystem. Experimental characterization of the enzymatic reactions of all enzymes in a genome is a tedious and expensive task. The problem is more pronounced in the metagenomic samples where even the species are not adequately cultured or characterized. Enzymes encoded by the gut microbiota play an essential role in the host metabolism; thus, warranting the need to accurately identify and annotate the full enzyme complements of species in the genomic and metagenomic projects. To fulfill this need, we develop and apply a method called ECemble, an ensemble approach to identify enzymes and enzyme classes and study the human gut metabolic pathways. ECemble method uses an ensemble of machine-learning methods to accurately model and predict enzymes from protein sequences and also identifies the enzyme classes and subclasses at the finest resolution. A tenfold cross-validation result shows accuracy between 97 and 99% at different levels in the hierarchy of enzyme classification, which is superior to comparable methods. We applied ECemble to predict the entire complements of enzymes from ten sequenced proteomes including the human proteome. We also applied this method to predict enzymes encoded by the human gut microbiome from gut metagenomic samples, and to study the role played by the microbe-derived enzymes in the human metabolism. After mapping the known and predicted enzymes to canonical human pathways, we identified 48 pathways that have at least one bacteria-encoded enzyme, which demonstrates the complementary role of gut microbiome in human gut metabolism. These pathways are primarily involved in metabolizing dietary nutrients such as carbohydrates, amino acids, lipids, cofactors and

  5. Diet, gut microbiota and cognition.

    PubMed

    Proctor, Cicely; Thiennimitr, Parameth; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2017-02-01

    The consumption of a diet high in fat and sugar can lead to the development of obesity, type 2 diabetes mellitus (T2DM), cardiovascular disease and cognitive decline. In the human gut, the trillions of harmless microorganisms harboured in the host's gastrointestinal tract are called the 'gut microbiota'. Consumption of a diet high in fat and sugar changes the healthy microbiota composition which leads to an imbalanced microbial population in the gut, a phenomenon known as "gut dysbiosis". It has been shown that certain types of gut microbiota are linked to the pathogenesis of obesity. In addition, long-term consumption of a high fat diet is associated with cognitive decline. It has recently been proposed that the gut microbiota is part of a mechanistic link between the consumption of a high fat diet and the impaired cognition of an individual, termed "microbiota-gut-brain axis". In this complex relationship between the gut, the brain and the gut microbiota, there are several types of gut microbiota and host mechanisms involved. Most of these mechanisms are still poorly understood. Therefore, this review comprehensively summarizes the current evidence from mainly in vivo (rodent and human) studies of the relationship between diet, gut microbiota and cognition. The possible mechanisms that the diet and the gut microbiota have on cognition are also presented and discussed.

  6. Transfer of environmental plutonium and americium across the human gut.

    PubMed

    Hunt, G J; Leonard, D R; Lovett, M B

    1986-08-01

    Data on gut transfer factors for environmental forms of radionuclides are essential for estimates of public radiation exposures following ingestion, and thus in decisions on controlling waste discharges. Dose estimates for transuranic nuclides are particularly sensitive to uncertainties stemming from gut transfer data being related to non-environmental forms and/or derived from animal experiments. We have measured human gut transfer factors for plutonium and americium in two experiments using marine foods obtained near Sellafield, Cumbria. Firstly, the urine of volunteer members of the critical group of shellfish consumers was analysed for transuranics and the results related to their consumption rates. Secondly, remotely-based volunteers ate single quantities of shellfish obtained near Sellafield, and their urine was analysed. An overall result for the gut transfer factor for environmental plutonium of 0.8 X 10(-4) indicates no need to increase the value of 1 X 10(-4), currently used by the International Commission on Radiological Protection (ICRP) for soluble forms. Results for americium show that the ICRP value of 5 X 10(-4) is maximising, and that a value of 1 X 10(-4) would be supportable. The results from the study of critical group members provide confidence in our habits survey techniques and reassurance that there are no significant pathways for intake of transuranics by these people that have not been recognised.

  7. NIH mouse study finds gut microorganisms may determine cancer treatment outcome

    Cancer.gov

    An intact gut commensal microbiota, which is a population of microorganisms living in the intestine, is required for optimal response to cancer therapy, according to a mouse study by scientists at the National Cancer Institute (NCI)

  8. Effect of Antibiotics on Gut Microbiota, Gut Hormones and Glucose Metabolism

    PubMed Central

    Mikkelsen, Kristian H.; Frost, Morten; Bahl, Martin I.; Licht, Tine R.; Jensen, Ulrich S.; Rosenberg, Jacob; Pedersen, Oluf; Hansen, Torben; Rehfeld, Jens F.; Holst, Jens J.; Vilsbøll, Tina; Knop, Filip K.

    2015-01-01

    Objective The gut microbiota has been designated as an active regulator of glucose metabolism and metabolic phenotype in a number of animal and human observational studies. We evaluated the effect of removing as many bacteria as possible by antibiotics on postprandial physiology in healthy humans. Methods Meal tests with measurements of postprandial glucose tolerance and postprandial release of insulin and gut hormones were performed before, immediately after and 6 weeks after a 4-day, broad-spectrum, per oral antibiotic cocktail (vancomycin 500 mg, gentamycin 40 mg and meropenem 500 mg once-daily) in a group of 12 lean and glucose tolerant males. Faecal samples were collected for culture-based assessment of changes in gut microbiota composition. Results Acute and dramatic reductions in the abundance of a representative set of gut bacteria was seen immediately following the antibiotic course, but no changes in postprandial glucose tolerance, insulin secretion or plasma lipid concentrations were found. Apart from an acute and reversible increase in peptide YY secretion, no changes were observed in postprandial gut hormone release. Conclusion As evaluated by selective cultivation of gut bacteria, a broad-spectrum 4-day antibiotics course with vancomycin, gentamycin and meropenem induced shifts in gut microbiota composition that had no clinically relevant short or long-term effects on metabolic variables in healthy glucose-tolerant males. Trial Registration clinicaltrials.gov NCT01633762 PMID:26562532

  9. Antibiotic-induced gut microbiota disruption during human endotoxemia: a randomised controlled study.

    PubMed

    Lankelma, Jacqueline M; Cranendonk, Duncan R; Belzer, Clara; de Vos, Alex F; de Vos, Willem M; van der Poll, Tom; Wiersinga, W Joost

    2017-09-01

    The gut microbiota is essential for the development of the intestinal immune system. Animal models have suggested that the gut microbiota also acts as a major modulator of systemic innate immunity during sepsis. Microbiota disruption by broad-spectrum antibiotics could thus have adverse effects on cellular responsiveness towards invading pathogens. As such, the use of antibiotics may attribute to immunosuppression as seen in sepsis. We aimed to test whether disruption of the gut microbiota affects systemic innate immune responses during endotoxemia in healthy subjects. In this proof-of-principle intervention trial, 16 healthy young men received either no treatment or broad-spectrum antibiotics (ciprofloxacin, vancomycin and metronidazole) for 7 days, after which all were administered lipopolysaccharide intravenously to induce a transient sepsis-like syndrome. At various time points, blood and faeces were sampled. Gut microbiota diversity was significantly lowered by the antibiotic treatment in all subjects. Clinical parameters, neutrophil influx, cytokine production, coagulation activation and endothelial activation during endotoxemia were not different between antibiotic-pretreated and control individuals. Antibiotic treatment had no impact on blood leucocyte responsiveness to various Toll-like receptor ligands and clinically relevant causative agents of sepsis ( Streptococcus pneumoniae, Klebsiella pneumoniae, Escherichia coli ) during endotoxemia. These findings suggest that gut microbiota disruption by broad-spectrum antibiotics does not affect systemic innate immune responses in healthy subjects during endotoxemia in humans, disproving our hypothesis. Further research is needed to test this hypothesis in critically ill patients. These data underline the importance of translating findings in mice to humans. ClinicalTrials.gov (NCT02127749; Pre-results). Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a

  10. Human Milk Glycomics and Gut Microbial Genomics in Infant Feces Show a Correlation between Human Milk Oligosaccharides and Gut Microbiota: A Proof-of-Concept Study

    PubMed Central

    2015-01-01

    Human milk oligosaccharides (HMOs) play a key role in shaping and maintaining a healthy infant gut microbiota. This article demonstrates the potential of combining recent advances in glycomics and genomics to correlate abundances of fecal microbes and fecal HMOs. Serial fecal specimens from two healthy breast-fed infants were analyzed by bacterial DNA sequencing to characterize the microbiota and by mass spectrometry to determine abundances of specific HMOs that passed through the intestinal tract without being consumed by the luminal bacteria. In both infants, the fecal bacterial population shifted from non-HMO-consuming microbes to HMO-consuming bacteria during the first few weeks of life. An initial rise in fecal HMOs corresponded with bacterial populations composed primarily of non-HMO-consuming Enterobacteriaceae and Staphylococcaeae. This was followed by decreases in fecal HMOs as the proportion of HMO-consuming Bacteroidaceae and Bifidobacteriaceae increased. Analysis of HMO structures with isomer differentiation revealed that HMO consumption is highly structure-specific, with unique isomers being consumed and others passing through the gut unaltered. These results represent a proof-of-concept and are consistent with the highly selective, prebiotic effect of HMOs in shaping the gut microbiota in the first weeks of life. The analysis of selective fecal bacterial substrates as a measure of alterations in the gut microbiota may be a potential marker of dysbiosis. PMID:25300177

  11. Gut microbiota modulate T cell trafficking into human colorectal cancer.

    PubMed

    Cremonesi, Eleonora; Governa, Valeria; Garzon, Jesus Francisco Glaus; Mele, Valentina; Amicarella, Francesca; Muraro, Manuele Giuseppe; Trella, Emanuele; Galati-Fournier, Virginie; Oertli, Daniel; Däster, Silvio Raffael; Droeser, Raoul A; Weixler, Benjamin; Bolli, Martin; Rosso, Raffaele; Nitsche, Ulrich; Khanna, Nina; Egli, Adrian; Keck, Simone; Slotta-Huspenina, Julia; Terracciano, Luigi M; Zajac, Paul; Spagnoli, Giulio Cesare; Eppenberger-Castori, Serenella; Janssen, Klaus-Peter; Borsig, Lubor; Iezzi, Giandomenica

    2018-02-06

    Tumour-infiltrating lymphocytes (TILs) favour survival in human colorectal cancer (CRC). Chemotactic factors underlying their recruitment remain undefined. We investigated chemokines attracting T cells into human CRCs, their cellular sources and microenvironmental triggers. Expression of genes encoding immune cell markers, chemokines and bacterial 16S ribosomal RNA (16SrRNA) was assessed by quantitative reverse transcription-PCR in fresh CRC samples and corresponding tumour-free tissues. Chemokine receptor expression on TILs was evaluated by flow cytometry on cell suspensions from digested tissues. Chemokine production by CRC cells was evaluated in vitro and in vivo, on generation of intraperitoneal or intracecal tumour xenografts in immune-deficient mice. T cell trafficking was assessed on adoptive transfer of human TILs into tumour-bearing mice. Gut flora composition was analysed by 16SrRNA sequencing. CRC infiltration by distinct T cell subsets was associated with defined chemokine gene signatures, including CCL5, CXCL9 and CXCL10 for cytotoxic T lymphocytes and T-helper (Th)1 cells; CCL17, CCL22 and CXCL12 for Th1 and regulatory T cells; CXCL13 for follicular Th cells; and CCL20 and CCL17 for interleukin (IL)-17-producing Th cells. These chemokines were expressed by tumour cells on exposure to gut bacteria in vitro and in vivo. Their expression was significantly higher in intracecal than in intraperitoneal xenografts and was dramatically reduced by antibiotic treatment of tumour-bearing mice. In clinical samples, abundance of defined bacteria correlated with high chemokine expression, enhanced T cell infiltration and improved survival. Gut microbiota stimulate chemokine production by CRC cells, thus favouring recruitment of beneficial T cells into tumour tissues. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  12. Gut Microbiota Diversity and Human Diseases: Should We Reintroduce Key Predators in Our Ecosystem?

    PubMed Central

    Mosca, Alexis; Leclerc, Marion; Hugot, Jean P.

    2016-01-01

    Most of the Human diseases affecting westernized countries are associated with dysbiosis and loss of microbial diversity in the gut microbiota. The Western way of life, with a wide use of antibiotics and other environmental triggers, may reduce the number of bacterial predators leading to a decrease in microbial diversity of the Human gut. We argue that this phenomenon is similar to the process of ecosystem impoverishment in macro ecology where human activity decreases ecological niches, the size of predator populations, and finally the biodiversity. Such pauperization is fundamental since it reverses the evolution processes, drives life backward into diminished complexity, stability, and adaptability. A simple therapeutic approach could thus be to reintroduce bacterial predators and restore a bacterial diversity of the host microbiota. PMID:27065999

  13. The abundance and variety of carbohydrate-active enzymes in the human gut microbiota.

    PubMed

    El Kaoutari, Abdessamad; Armougom, Fabrice; Gordon, Jeffrey I; Raoult, Didier; Henrissat, Bernard

    2013-07-01

    Descriptions of the microbial communities that live on and in the human body have progressed at a spectacular rate over the past 5 years, fuelled primarily by highly parallel DNA-sequencing technologies and associated advances in bioinformatics, and by the expectation that understanding how to manipulate the structure and functions of our microbiota will allow us to affect health and prevent or treat diseases. Among the myriad of genes that have been identified in the human gut microbiome, those that encode carbohydrate-active enzymes (CAZymes) are of particular interest, as these enzymes are required to digest most of our complex repertoire of dietary polysaccharides. In this Analysis article, we examine the carbohydrate-digestive capacity of a simplified but representative mini-microbiome in order to highlight the abundance and variety of bacterial CAZymes that are represented in the human gut microbiota.

  14. Influence of functional food components on gut health.

    PubMed

    Wan, Murphy L Y; Ling, K H; El-Nezami, Hani; Wang, M F

    2018-01-30

    Intestinal epithelial cells (IECs) lining the gastrointestinal tract establish a barrier between external environments and the internal milieu. An intact intestinal barrier maintains gut health and overall good health of the body by preventing from tissue injury, pathogen infection and disease development. When the intestinal barrier function is compromised, bacterial translocation can occur. Our gut microbiota also plays a fundamentally important role in health, for example, by maintaining intestinal barrier integrity, metabolism and modulating the immune system, etc. Any disruption of gut microbiota composition (also termed dysbiosis) can lead to various pathological conditions. In short, intestinal barrier and gut microbiota are two crucial factors affecting gut health. The gastrointestinal tract is a complex environment exposed to many dietary components and commensal bacteria. Dietary components are increasingly recognized to play various beneficial roles beyond basic nutrition, resulting in the development of the functional food concepts. Various dietary modifiers, including the consumption of live bacteria (probiotics) and ingestible food constituents such as prebiotics, as well as polyphenols or synbiotics (combinations of probiotics and prebiotics) are the most well characterized dietary bioactive compounds and have been demonstrated to beneficially impact the gut health and the overall well-being of the host. In this review we depict the roles of intestinal epithelium and gut microbiota in mucosal defence responses and the influence of certain functional food components on the modulation of gut health, with a particular focus on probiotics, prebiotics and polyphenols.

  15. Impact of Dietary Resistant Starch on the Human Gut Microbiome, Metaproteome, and Metabolome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maier, Tanja V.; Lucio, Marianna; Lee, Lang Ho

    ABSTRACT Diet can influence the composition of the human microbiome, and yet relatively few dietary ingredients have been systematically investigated with respect to their impact on the functional potential of the microbiome. Dietary resistant starch (RS) has been shown to have health benefits, but we lack a mechanistic understanding of the metabolic processes that occur in the gut during digestion of RS. Here, we collected samples during a dietary crossover study with diets containing large or small amounts of RS. We determined the impact of RS on the gut microbiome and metabolic pathways in the gut, using a combination ofmore » “omics” approaches, including 16S rRNA gene sequencing, metaproteomics, and metabolomics. This multiomics approach captured changes in the abundance of specific bacterial species, proteins, and metabolites after a diet high in resistant starch (HRS), providing key insights into the influence of dietary interventions on the gut microbiome. The combined data showed that a high-RS diet caused an increase in the ratio ofFirmicutestoBacteroidetes, including increases in relative abundances of some specific members of theFirmicutesand concurrent increases in enzymatic pathways and metabolites involved in lipid metabolism in the gut. IMPORTANCEThis work was undertaken to obtain a mechanistic understanding of the complex interplay between diet and the microorganisms residing in the intestine. Although it is known that gut microbes play a key role in digestion of the food that we consume, the specific contributions of different microorganisms are not well understood. In addition, the metabolic pathways and resultant products of metabolism during digestion are highly complex. To address these knowledge gaps, we used a combination of molecular approaches to determine the identities of the microorganisms in the gut during digestion of dietary starch as well as the metabolic pathways that they carry out. Together, these data provide a more

  16. Characterization of the SOS meta-regulon in the human gut microbiome.

    PubMed

    Cornish, Joseph P; Sanchez-Alberola, Neus; O'Neill, Patrick K; O'Keefe, Ronald; Gheba, Jameel; Erill, Ivan

    2014-05-01

    Data from metagenomics projects remain largely untapped for the analysis of transcriptional regulatory networks. Here, we provide proof-of-concept that metagenomic data can be effectively leveraged to analyze regulatory networks by characterizing the SOS meta-regulon in the human gut microbiome. We combine well-established in silico and in vitro techniques to mine the human gut microbiome data and determine the relative composition of the SOS network in a natural setting. Our analysis highlights the importance of translesion synthesis as a primary function of the SOS response. We predict the association of this network with three novel protein clusters involved in cell wall biogenesis, chromosome partitioning and restriction modification, and we confirm binding of the SOS response transcriptional repressor to sites in the promoter of a cell wall biogenesis enzyme, a phage integrase and a death-on-curing protein. We discuss the implications of these findings and the potential for this approach for metagenome analysis.

  17. Gut Pharmacomicrobiomics: the tip of an iceberg of complex interactions between drugs and gut-associated microbes.

    PubMed

    Saad, Rama; Rizkallah, Mariam R; Aziz, Ramy K

    2012-11-30

    The influence of resident gut microbes on xenobiotic metabolism has been investigated at different levels throughout the past five decades. However, with the advance in sequencing and pyrotagging technologies, addressing the influence of microbes on xenobiotics had to evolve from assessing direct metabolic effects on toxins and botanicals by conventional culture-based techniques to elucidating the role of community composition on drugs metabolic profiles through DNA sequence-based phylogeny and metagenomics. Following the completion of the Human Genome Project, the rapid, substantial growth of the Human Microbiome Project (HMP) opens new horizons for studying how microbiome compositional and functional variations affect drug action, fate, and toxicity (pharmacomicrobiomics), notably in the human gut. The HMP continues to characterize the microbial communities associated with the human gut, determine whether there is a common gut microbiome profile shared among healthy humans, and investigate the effect of its alterations on health. Here, we offer a glimpse into the known effects of the gut microbiota on xenobiotic metabolism, with emphasis on cases where microbiome variations lead to different therapeutic outcomes. We discuss a few examples representing how the microbiome interacts with human metabolic enzymes in the liver and intestine. In addition, we attempt to envisage a roadmap for the future implications of the HMP on therapeutics and personalized medicine.

  18. A novel transcriptional regulator of L-arabinose utilization in human gut bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Changsoo; Tesar, Christine; Li, Xiaoqing

    2015-10-04

    Carbohydrate metabolism plays a crucial role in the ecophysiology of human gut microbiota. Mechanisms of transcriptional regulation of sugar catabolism in commensal and prevalent human gut bacteria such as Bacteroides thetaiotaomicron remain mostly unknown. By a combination of bioinformatics and experimental approaches, we have identified an NrtR family transcription factor (BT0354 in B. thetaiotaomicron, BtAraR) as a novel regulator controlling the arabinose utilization genes. L-arabinose was confirmed to be a negative effector of BtAraR. We have solved the crystal structures of the apo and L-arabinose-bound BtAraR proteins, as well as the complex of apo-protein with a specific DNA operator. BtAraRmore » forms a homodimer with each subunit comprised of the ligand-binding Nudix hydrolase-like domain and the DNA-binding winged-helix-turn-helix (wHTH) domain. We have identified the residues involved in binding of L-arabinose and recognition of DNA. The majority of these residues are well conserved in the AraR orthologs in Bacteroidetes. In the structure of the BtAraR-DNA complex, we found the unique interaction of arginine intercalating its guanidinum moiety into the base pair stacking of B-DNA. L-arabinose binding induces movement of wHTH domains, resulting in a conformation unsuitable for DNA binding. Our analysis facilitates reconstruction of the metabolic and regulatory networks involved in carbohydrate utilization in human gut Bacteroides.« less

  19. A novel transcriptional regulator of L-arabinose utilization in human gut bacteria

    DOE PAGES

    Chang, Changsoo; Tesar, Christine; Li, Xiaoqing; ...

    2015-10-04

    We report that carbohydrate metabolism plays a crucial role in the ecophysiology of human gut microbiota. Mechanisms of transcriptional regulation of sugar catabolism in commensal and prevalent human gut bacteria such as Bacteroides thetaiotaomicron remain mostly unknown. By a combination of bioinformatics and experimental approaches, we have identified an NrtR family transcription factor (BT0354 in B. thetaiotaomicron, BtAraR) as a novel regulator controlling the arabinose utilization genes. L-arabinose was confirmed to be a negative effector of BtAraR. We have solved the crystal structures of the apo and L-arabinose-bound BtAraR proteins, as well as the complex of apo-protein with a specificmore » DNA operator. BtAraR forms a homodimer with each subunit comprised of the ligand-binding Nudix hydrolase-like domain and the DNA-binding winged-helix-turn-helix (wHTH) domain. We have identified the residues involved in binding of L-arabinose and recognition of DNA. The majority of these residues are well conserved in the AraR orthologs in Bacteroidetes. In the structure of the BtAraR–DNA complex, we found the unique interaction of arginine intercalating its guanidinum moiety into the base pair stacking of B-DNA. L-arabinose binding induces movement of wHTH domains, resulting in a conformation unsuitable for DNA binding. Furthermore, our analysis facilitates reconstruction of the metabolic and regulatory networks involved in carbohydrate utilization in human gut Bacteroides.« less

  20. Palladium nanoparticles exposure: Evaluation of permeation through damaged and intact human skin.

    PubMed

    Larese Filon, Francesca; Crosera, Matteo; Mauro, Marcella; Baracchini, Elena; Bovenzi, Massimo; Montini, Tiziano; Fornasiero, Paolo; Adami, Gianpiero

    2016-07-01

    The intensified use of palladium nanoparticles (PdNPs) in many chemical reactions, jewellery, electronic devices, in car catalytic converters and in biomedical applications lead to a significant increase in palladium exposure. Pd can cause allergic contact dermatitis when in contact with the skin. However, there is still a lack of toxicological data related to nano-structured palladium and information on human cutaneous absorption. In fact, PdNPs, can be absorbed through the skin in higher amounts than bulk Pd because NPs can release more ions. In our study, we evaluated the absorption of PdNPs, with a size of 10.7 ± 2.8 nm, using intact and damaged human skin in Franz cells. 0.60 mg cm(-2) of PdNPs were applied on skin surface for 24 h. Pd concentrations in the receiving solutions at the end of experiments were 0.098 ± 0.067 μg cm(-2) and 1.06 ± 0.44 μg cm(-2) in intact skin and damaged skin, respectively. Pd flux permeation after 24 h was 0.005 ± 0.003 μg cm(-2) h(-1) and 0.057 ± 0.030 μg cm(-2) h(-1) and lag time 4.8 ± 1.7 and 4.2 ± 3.6 h, for intact and damaged skin respectively. This study indicates that Pd can penetrate human skin. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Gut microbiota and allogeneic transplantation.

    PubMed

    Wang, Weilin; Xu, Shaoyan; Ren, Zhigang; Jiang, Jianwen; Zheng, Shusen

    2015-08-23

    The latest high-throughput sequencing technologies show that there are more than 1000 types of microbiota in the human gut. These microbes are not only important to maintain human health, but also closely related to the occurrence and development of various diseases. With the development of transplantation technologies, allogeneic transplantation has become an effective therapy for a variety of end-stage diseases. However, complications after transplantation still restrict its further development. Post-transplantation complications are closely associated with a host's immune system. There is also an interaction between a person's gut microbiota and immune system. Recently, animal and human studies have shown that gut microbial populations and diversity are altered after allogeneic transplantations, such as liver transplantation (LT), small bowel transplantation (SBT), kidney transplantation (KT) and hematopoietic stem cell transplantation (HTCT). Moreover, when complications, such as infection, rejection and graft versus host disease (GVHD) occur, gut microbial populations and diversity present a significant dysbiosis. Several animal and clinical studies have demonstrated that taking probiotics and prebiotics can effectively regulate gut microbiota and reduce the incidence of complications after transplantation. However, the role of intestinal decontamination in allogeneic transplantation is controversial. This paper reviews gut microbial status after transplantation and its relationship with complications. The role of intervention methods, including antibiotics, probiotics and prebiotics, in complications after transplantation are also discussed. Further research in this new field needs to determine the definite relationship between gut microbial dysbiosis and complications after transplantation. Additionally, further research examining gut microbial intervention methods to ameliorate complications after transplantation is warranted. A better understanding of the

  2. The Effect of Pomegranate (Punica granatum L.) Byproducts and Ellagitannins on the Growth of Human Gut Bacteria

    USDA-ARS?s Scientific Manuscript database

    The consumption of pomegranate products leads to a significant accumulation of ellagitannins in the large intestines, where they interact with complex gut microflora. This study investigated the effect of pomegranate tannin constituents on the growth of various species of human gut bacteria. Our r...

  3. Comprehensive analysis of polyamine transport and biosynthesis in the dominant human gut bacteria: Potential presence of novel polyamine metabolism and transport genes.

    PubMed

    Sugiyama, Yuta; Nara, Misaki; Sakanaka, Mikiyasu; Gotoh, Aina; Kitakata, Aya; Okuda, Shujiro; Kurihara, Shin

    2017-12-01

    Recent studies have reported that polyamines in the colonic lumen might affect animal health and these polyamines are thought to be produced by gut bacteria. In the present study, we measured the concentrations of three polyamines (putrescine, spermidine, and spermine) in cells and culture supernatants of 32 dominant human gut bacterial species in their growing and stationary phases. Combining polyamine concentration analysis in culture supernatant and cells with available genomic information showed that novel polyamine biosynthetic proteins and transporters were present in dominant human gut bacteria. Based on these findings, we suggested strategies for optimizing polyamine concentrations in the human colonic lumen via regulation of genes responsible for polyamine biosynthesis and transport in the dominant human gut bacteria. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Evolutionary and ecological forces that shape the bacterial communities of the human gut

    PubMed Central

    Messer, Jeannette S.; Liechty, Emma R; Vogel, Olivia A.; Chang, Eugene B.

    2017-01-01

    Since microbes were first described in the mid-1600's, we have come to appreciate that they live all around and within us with both beneficial and detrimental effects on nearly every aspect of our lives. The human gastrointestinal tract is inhabited by a dynamic community of trillions of bacteria that constantly interact with each other and their human host. The acquisition of these bacteria is not stochastic, but determined by circumstance (environment), host rules (genetics, immune state, mucus, etc), and dynamic self-selection among microbes to form stable, resilient communities that are in balance with the host. In this review, we will discuss how these factors lead to formation of the gut bacterial community and influence its interactions with the host. We will also address how gut bacteria contribute to disease and how they could potentially be targeted to prevent and treat a variety of human ailments. PMID:28145439

  5. The Fungal Frontier: A Comparative Analysis of Methods Used in the Study of the Human Gut Mycobiome

    PubMed Central

    Huseyin, Chloe E.; Rubio, Raul Cabrera; O’Sullivan, Orla; Cotter, Paul D.; Scanlan, Pauline D.

    2017-01-01

    The human gut is host to a diverse range of fungal species, collectively referred to as the gut “mycobiome”. The gut mycobiome is emerging as an area of considerable research interest due to the potential roles of these fungi in human health and disease. However, there is no consensus as to what the best or most suitable methodologies available are with respect to characterizing the human gut mycobiome. The aim of this study is to provide a comparative analysis of several previously published mycobiome-specific culture-dependent and -independent methodologies, including choice of culture media, incubation conditions (aerobic versus anaerobic), DNA extraction method, primer set and freezing of fecal samples to assess their relative merits and suitability for gut mycobiome analysis. There was no significant effect of media type or aeration on culture-dependent results. However, freezing was found to have a significant effect on fungal viability, with significantly lower fungal numbers recovered from frozen samples. DNA extraction method had a significant effect on DNA yield and quality. However, freezing and extraction method did not have any impact on either α or β diversity. There was also considerable variation in the ability of different fungal-specific primer sets to generate PCR products for subsequent sequence analysis. Through this investigation two DNA extraction methods and one primer set was identified which facilitated the analysis of the mycobiome for all samples in this study. Ultimately, a diverse range of fungal species were recovered using both approaches, with Candida and Saccharomyces identified as the most common fungal species recovered using culture-dependent and culture-independent methods, respectively. As has been apparent from ecological surveys of the bacterial fraction of the gut microbiota, the use of different methodologies can also impact on our understanding of gut mycobiome composition and therefore requires careful

  6. The Fungal Frontier: A Comparative Analysis of Methods Used in the Study of the Human Gut Mycobiome.

    PubMed

    Huseyin, Chloe E; Rubio, Raul Cabrera; O'Sullivan, Orla; Cotter, Paul D; Scanlan, Pauline D

    2017-01-01

    The human gut is host to a diverse range of fungal species, collectively referred to as the gut "mycobiome". The gut mycobiome is emerging as an area of considerable research interest due to the potential roles of these fungi in human health and disease. However, there is no consensus as to what the best or most suitable methodologies available are with respect to characterizing the human gut mycobiome. The aim of this study is to provide a comparative analysis of several previously published mycobiome-specific culture-dependent and -independent methodologies, including choice of culture media, incubation conditions (aerobic versus anaerobic), DNA extraction method, primer set and freezing of fecal samples to assess their relative merits and suitability for gut mycobiome analysis. There was no significant effect of media type or aeration on culture-dependent results. However, freezing was found to have a significant effect on fungal viability, with significantly lower fungal numbers recovered from frozen samples. DNA extraction method had a significant effect on DNA yield and quality. However, freezing and extraction method did not have any impact on either α or β diversity. There was also considerable variation in the ability of different fungal-specific primer sets to generate PCR products for subsequent sequence analysis. Through this investigation two DNA extraction methods and one primer set was identified which facilitated the analysis of the mycobiome for all samples in this study. Ultimately, a diverse range of fungal species were recovered using both approaches, with Candida and Saccharomyces identified as the most common fungal species recovered using culture-dependent and culture-independent methods, respectively. As has been apparent from ecological surveys of the bacterial fraction of the gut microbiota, the use of different methodologies can also impact on our understanding of gut mycobiome composition and therefore requires careful consideration

  7. In vitro fermentation patterns of rice bran components by human gut microbiota

    USDA-ARS?s Scientific Manuscript database

    Rice bran is a rich source of bioactive components that can promote gastrointestinal health. However, bran is removed during polishing. Among those, feruloylated arabinoxylan oligosaccharides (FAXO) and rice bran polyphenolics (RBPP) are hypothesized to have positive impacts on human gut microbiota ...

  8. The chemical interactome space between the human host and the genetically defined gut metabotypes.

    PubMed

    Jacobsen, Ulrik Plesner; Nielsen, Henrik Bjørn; Hildebrand, Falk; Raes, Jeroen; Sicheritz-Ponten, Thomas; Kouskoumvekaki, Irene; Panagiotou, Gianni

    2013-04-01

    The bacteria that colonize the gastrointestinal tracts of mammals represent a highly selected microbiome that has a profound influence on human physiology by shaping the host's metabolic and immune system activity. Despite the recent advances on the biological principles that underlie microbial symbiosis in the gut of mammals, mechanistic understanding of the contributions of the gut microbiome and how variations in the metabotypes are linked to the host health are obscure. Here, we mapped the entire metabolic potential of the gut microbiome based solely on metagenomics sequencing data derived from fecal samples of 124 Europeans (healthy, obese and with inflammatory bowel disease). Interestingly, three distinct clusters of individuals with high, medium and low metabolic potential were observed. By illustrating these results in the context of bacterial population, we concluded that the abundance of the Prevotella genera is a key factor indicating a low metabolic potential. These metagenome-based metabolic signatures were used to study the interaction networks between bacteria-specific metabolites and human proteins. We found that thirty-three such metabolites interact with disease-relevant protein complexes several of which are highly expressed in cells and tissues involved in the signaling and shaping of the adaptive immune system and associated with squamous cell carcinoma and bladder cancer. From this set of metabolites, eighteen are present in DrugBank providing evidence that we carry a natural pharmacy in our guts. Furthermore, we established connections between the systemic effects of non-antibiotic drugs and the gut microbiome of relevance to drug side effects and health-care solutions.

  9. IL-2 Enhances Gut Homing Potential of Human Naive Regulatory T Cells Early in Life.

    PubMed

    Hsu, Peter S; Lai, Catherine L; Hu, Mingjing; Santner-Nanan, Brigitte; Dahlstrom, Jane E; Lee, Cheng Hiang; Ajmal, Ayesha; Bullman, Amanda; Arbuckle, Susan; Al Saedi, Ahmed; Gacis, Lou; Nambiar, Reta; Williams, Andrew; Wong, Melanie; Campbell, Dianne E; Nanan, Ralph

    2018-06-15

    Recent evidence suggests early environmental factors are important for gut immune tolerance. Although the role of regulatory T (Treg) cells for gut immune homeostasis is well established, the development and tissue homing characteristics of Treg cells in children have not been studied in detail. In this article, we studied the development and homing characteristics of human peripheral blood Treg cell subsets and potential mechanisms inducing homing molecule expression in healthy children. We found contrasting patterns of circulating Treg cell gut and skin tropism, with abundant β7 integrin + Treg cells at birth and increasing cutaneous lymphocyte Ag (CLA + ) Treg cells later in life. β7 integrin + Treg cells were predominantly naive, suggesting acquisition of Treg cell gut tropism early in development. In vitro, IL-7 enhanced gut homing but reduced skin homing molecule expression in conventional T cells, whereas IL-2 induced a similar effect only in Treg cells. This effect was more pronounced in cord compared with adult blood. Our results suggest that early in life, naive Treg cells may be driven for gut tropism by their increased sensitivity to IL-2-induced β7 integrin upregulation, implicating a potential role of IL-2 in gut immune tolerance during this critical period of development. Copyright © 2018 by The American Association of Immunologists, Inc.

  10. Innate T cell responses in human gut.

    PubMed

    Meresse, Bertrand; Cerf-Bensussan, Nadine

    2009-06-01

    One arm of the gut-associated immune system is represented by a vast collection of T lymphocytes which participate in the subtle interplay between innate and adaptive immune mechanisms and maintain homeostasis at the main body external surface. Mounting data are providing exciting new insight into the innate-like mechanisms which enable intestinal T cells to rapidly sense local conditions and which broaden the spectrum of their functions and regulation at this strategic location. Herein we discuss how innate-like T cell recognition by unconventional T cell subsets and expression of innate NK receptors might modulate immune T cell responses in the human normal or diseased intestine.

  11. Gut Pharmacomicrobiomics: the tip of an iceberg of complex interactions between drugs and gut-associated microbes

    PubMed Central

    2012-01-01

    The influence of resident gut microbes on xenobiotic metabolism has been investigated at different levels throughout the past five decades. However, with the advance in sequencing and pyrotagging technologies, addressing the influence of microbes on xenobiotics had to evolve from assessing direct metabolic effects on toxins and botanicals by conventional culture-based techniques to elucidating the role of community composition on drugs metabolic profiles through DNA sequence-based phylogeny and metagenomics. Following the completion of the Human Genome Project, the rapid, substantial growth of the Human Microbiome Project (HMP) opens new horizons for studying how microbiome compositional and functional variations affect drug action, fate, and toxicity (pharmacomicrobiomics), notably in the human gut. The HMP continues to characterize the microbial communities associated with the human gut, determine whether there is a common gut microbiome profile shared among healthy humans, and investigate the effect of its alterations on health. Here, we offer a glimpse into the known effects of the gut microbiota on xenobiotic metabolism, with emphasis on cases where microbiome variations lead to different therapeutic outcomes. We discuss a few examples representing how the microbiome interacts with human metabolic enzymes in the liver and intestine. In addition, we attempt to envisage a roadmap for the future implications of the HMP on therapeutics and personalized medicine. PMID:23194438

  12. Ecophysiological consequences of alcoholism on human gut microbiota: implications for ethanol-related pathogenesis of colon cancer.

    PubMed

    Tsuruya, Atsuki; Kuwahara, Akika; Saito, Yuta; Yamaguchi, Haruhiko; Tsubo, Takahisa; Suga, Shogo; Inai, Makoto; Aoki, Yuichi; Takahashi, Seiji; Tsutsumi, Eri; Suwa, Yoshihide; Morita, Hidetoshi; Kinoshita, Kenji; Totsuka, Yukari; Suda, Wataru; Oshima, Kenshiro; Hattori, Masahira; Mizukami, Takeshi; Yokoyama, Akira; Shimoyama, Takefumi; Nakayama, Toru

    2016-06-13

    Chronic consumption of excess ethanol increases the risk of colorectal cancer. The pathogenesis of ethanol-related colorectal cancer (ER-CRC) is thought to be partly mediated by gut microbes. Specifically, bacteria in the colon and rectum convert ethanol to acetaldehyde (AcH), which is carcinogenic. However, the effects of chronic ethanol consumption on the human gut microbiome are poorly understood, and the role of gut microbes in the proposed AcH-mediated pathogenesis of ER-CRC remains to be elaborated. Here we analyse and compare the gut microbiota structures of non-alcoholics and alcoholics. The gut microbiotas of alcoholics were diminished in dominant obligate anaerobes (e.g., Bacteroides and Ruminococcus) and enriched in Streptococcus and other minor species. This alteration might be exacerbated by habitual smoking. These observations could at least partly be explained by the susceptibility of obligate anaerobes to reactive oxygen species, which are increased by chronic exposure of the gut mucosa to ethanol. The AcH productivity from ethanol was much lower in the faeces of alcoholic patients than in faeces of non-alcoholic subjects. The faecal phenotype of the alcoholics could be rationalised based on their gut microbiota structures and the ability of gut bacteria to accumulate AcH from ethanol.

  13. Molecular details of a starch utilization pathway in the human gut symbiont Eubacterium rectale

    PubMed Central

    Cockburn, Darrell W.; Orlovsky, Nicole I.; Foley, Matthew H.; Kwiatkowski, Kurt J.; Bahr, Constance M.; Maynard, Mallory; Demeler, Borries; Koropatkin, Nicole M.

    2015-01-01

    Summary Eubacterium rectale is a prominent human gut symbiont yet little is known about the molecular strategies this bacterium has developed to acquire nutrients within the competitive gut ecosystem. Starch is one of the most abundant glycans in the human diet, and E. rectale increases in vivo when the host consumes a diet rich in resistant starch, although it is not a primary degrader of this glycan. Here we present the results of a quantitative proteomics study in which we identify two glycoside hydrolase 13 family enzymes, and three ABC transporter solute-binding proteins that are abundant during growth on starch and, we hypothesize, work together at the cell surface to degrade starch and capture the released maltooligosaccharides. EUR_21100 is a multidomain cell wall anchored amylase that preferentially targets starch polysaccharides, liberating maltotetraose, while the membrane associated maltogenic amylase EUR_01860 breaks down maltooligosaccharides longer than maltotriose. The three solute-binding proteins display a range of glycan-binding specificities that ensure the capture of glucose through maltoheptaose and some α1,6-branched glycans. Taken together, we describe a pathway for starch utilization by E. rectale DSM 17629 that may be conserved among other starch-degrading Clostridium cluster XIVa organisms in the human gut. PMID:25388295

  14. Impact of Dietary Resistant Starch on the Human Gut Microbiome, Metaproteome, and Metabolome.

    PubMed

    Maier, Tanja V; Lucio, Marianna; Lee, Lang Ho; VerBerkmoes, Nathan C; Brislawn, Colin J; Bernhardt, Jörg; Lamendella, Regina; McDermott, Jason E; Bergeron, Nathalie; Heinzmann, Silke S; Morton, James T; González, Antonio; Ackermann, Gail; Knight, Rob; Riedel, Katharina; Krauss, Ronald M; Schmitt-Kopplin, Philippe; Jansson, Janet K

    2017-10-17

    Diet can influence the composition of the human microbiome, and yet relatively few dietary ingredients have been systematically investigated with respect to their impact on the functional potential of the microbiome. Dietary resistant starch (RS) has been shown to have health benefits, but we lack a mechanistic understanding of the metabolic processes that occur in the gut during digestion of RS. Here, we collected samples during a dietary crossover study with diets containing large or small amounts of RS. We determined the impact of RS on the gut microbiome and metabolic pathways in the gut, using a combination of "omics" approaches, including 16S rRNA gene sequencing, metaproteomics, and metabolomics. This multiomics approach captured changes in the abundance of specific bacterial species, proteins, and metabolites after a diet high in resistant starch (HRS), providing key insights into the influence of dietary interventions on the gut microbiome. The combined data showed that a high-RS diet caused an increase in the ratio of Firmicutes to Bacteroidetes , including increases in relative abundances of some specific members of the Firmicutes and concurrent increases in enzymatic pathways and metabolites involved in lipid metabolism in the gut. IMPORTANCE This work was undertaken to obtain a mechanistic understanding of the complex interplay between diet and the microorganisms residing in the intestine. Although it is known that gut microbes play a key role in digestion of the food that we consume, the specific contributions of different microorganisms are not well understood. In addition, the metabolic pathways and resultant products of metabolism during digestion are highly complex. To address these knowledge gaps, we used a combination of molecular approaches to determine the identities of the microorganisms in the gut during digestion of dietary starch as well as the metabolic pathways that they carry out. Together, these data provide a more complete picture of

  15. Challenges in simulating the human gut for understanding the role of the microbiota in obesity.

    PubMed

    Aguirre, M; Venema, K

    2017-02-07

    There is an elevated incidence of cases of obesity worldwide. Therefore, the development of strategies to tackle this condition is of vital importance. This review focuses on the necessity of optimising in vitro systems to model human colonic fermentation in obese subjects. This may allow to increase the resolution and the physiological relevance of the information obtained from this type of studies when evaluating the potential role that the human gut microbiota plays in obesity. In light of the parameters that are currently used for the in vitro simulation of the human gut (which are mostly based on information derived from healthy subjects) and the possible difference with an obese condition, we propose to revise and improve specific standard operating procedures.

  16. In vitro fermentation of alginate and its derivatives by human gut microbiota.

    PubMed

    Li, Miaomiao; Li, Guangsheng; Shang, Qingsen; Chen, Xiuxia; Liu, Wei; Pi, Xiong'e; Zhu, Liying; Yin, Yeshi; Yu, Guangli; Wang, Xin

    2016-06-01

    Alginate (Alg) has a long history as a food ingredient in East Asia. However, the human gut microbes responsible for the degradation of alginate and its derivatives have not been fully understood yet. Here, we report that alginate and the low molecular polymer derivatives of mannuronic acid oligosaccharides (MO) and guluronic acid oligosaccharides (GO) can be completely degraded and utilized at various rates by fecal microbiota obtained from six Chinese individuals. However, the derivative of propylene glycol alginate sodium sulfate (PSS) was not hydrolyzed. The bacteria having a pronounced ability to degrade Alg, MO and GO were isolated from human fecal samples and were identified as Bacteroides ovatus, Bacteroides xylanisolvens, and Bacteroides thetaiotaomicron. Alg, MO and GO can increase the production level of short chain fatty acids (SCFA), but GO generates the highest level of SCFA. Our data suggest that alginate and its derivatives could be degraded by specific bacteria in the human gut, providing the basis for the impacts of alginate and its derivates as special food additives on human health. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Metabolic niche of a prominent sulfate-reducing human gut bacterium

    PubMed Central

    Rey, Federico E.; Gonzalez, Mark D.; Cheng, Jiye; Ahern, Philip P.; Gordon, Jeffrey I.

    2013-01-01

    Sulfate-reducing bacteria (SRB) colonize the guts of ∼50% of humans. We used genome-wide transposon mutagenesis and insertion-site sequencing, RNA-Seq, plus mass spectrometry to characterize genetic and environmental factors that impact the niche of Desulfovibrio piger, the most common SRB in a surveyed cohort of healthy US adults. Gnotobiotic mice were colonized with an assemblage of sequenced human gut bacterial species with or without D. piger and fed diets with different levels and types of carbohydrates and sulfur sources. Diet was a major determinant of functions expressed by this artificial nine-member community and of the genes that impact D. piger fitness; the latter includes high- and low-affinity systems for using ammonia, a limiting resource for D. piger in mice consuming a polysaccharide-rich diet. Although genes involved in hydrogen consumption and sulfate reduction are necessary for its colonization, varying dietary-free sulfate levels did not significantly alter levels of D. piger, which can obtain sulfate from the host in part via cross-feeding mediated by Bacteroides-encoded sulfatases. Chondroitin sulfate, a common dietary supplement, increased D. piger and H2S levels without compromising gut barrier integrity. A chondroitin sulfate-supplemented diet together with D. piger impacted the assemblage’s substrate utilization preferences, allowing consumption of more reduced carbon sources and increasing the abundance of the H2-producing Actinobacterium, Collinsella aerofaciens. Our findings provide genetic and metabolic details of how this H2-consuming SRB shapes the responses of a microbiota to diet ingredients and a framework for examining how individuals lacking D. piger differ from those who harbor it. PMID:23898195

  18. Metabolic niche of a prominent sulfate-reducing human gut bacterium.

    PubMed

    Rey, Federico E; Gonzalez, Mark D; Cheng, Jiye; Wu, Meng; Ahern, Philip P; Gordon, Jeffrey I

    2013-08-13

    Sulfate-reducing bacteria (SRB) colonize the guts of ∼50% of humans. We used genome-wide transposon mutagenesis and insertion-site sequencing, RNA-Seq, plus mass spectrometry to characterize genetic and environmental factors that impact the niche of Desulfovibrio piger, the most common SRB in a surveyed cohort of healthy US adults. Gnotobiotic mice were colonized with an assemblage of sequenced human gut bacterial species with or without D. piger and fed diets with different levels and types of carbohydrates and sulfur sources. Diet was a major determinant of functions expressed by this artificial nine-member community and of the genes that impact D. piger fitness; the latter includes high- and low-affinity systems for using ammonia, a limiting resource for D. piger in mice consuming a polysaccharide-rich diet. Although genes involved in hydrogen consumption and sulfate reduction are necessary for its colonization, varying dietary-free sulfate levels did not significantly alter levels of D. piger, which can obtain sulfate from the host in part via cross-feeding mediated by Bacteroides-encoded sulfatases. Chondroitin sulfate, a common dietary supplement, increased D. piger and H2S levels without compromising gut barrier integrity. A chondroitin sulfate-supplemented diet together with D. piger impacted the assemblage's substrate utilization preferences, allowing consumption of more reduced carbon sources and increasing the abundance of the H2-producing Actinobacterium, Collinsella aerofaciens. Our findings provide genetic and metabolic details of how this H2-consuming SRB shapes the responses of a microbiota to diet ingredients and a framework for examining how individuals lacking D. piger differ from those who harbor it.

  19. Biotransformation of aesculin by human gut bacteria and identification of its metabolites in rat urine.

    PubMed

    Ding, Wei-Jun; Deng, Yun; Feng, Hao; Liu, Wei-Wei; Hu, Rong; Li, Xiang; Gu, Zhe-Ming; Dong, Xiao-Ping

    2009-03-28

    To observe the biotransformation process of a Chinese compound, aesculin, by human gut bacteria, and to identify its metabolites in rat urine. Representative human gut bacteria were collected from 20 healthy volunteers, and then utilized in vitro to biotransform aesculin under anaerobic conditions. At 0, 2, 4, 8, 12, 16, 24, 48 and 72 h post-incubation, 10 mL of culture medium was collected. Metabolites of aesculin were extracted 3 x from rat urine with methanol and analyzed by HPLC. For in vivo metabolite analysis, aesculetin (100 mg/kg) was administered to rats via stomach gavage, rat urine was collected from 6 to 48 h post-administration, and metabolite analysis was performed by LC/ESI-MS and MS/MS in the positive and negative modes. Human gut bacteria could completely convert aesculin into aesculetin in vitro. The biotransformation process occurred from 8 to 24 h post-incubation, with its highest activity was seen from 8 to 12 h. The in vitro process was much slower than the in vivo process. In contrast to the in vitro model, six aesculetin metabolites were identified in rat urine, including 6-hydroxy-7-gluco-coumarin (M1), 6-hydroxy-7-sulf-coumarin (M2), 6, 7-di-gluco-coumarin (M3), 6-glc-7-gluco-coumarin (M4), 6-O-methyl-7-gluco-coumarin (M5) and 6-O-methyl-7-sulf-coumarin (M6). Of which, M2 and M6 were novel metabolites. Aesculin can be transferred into aesculetin by human gut bacteria and is further modified by the host in vivo. The diverse metabolites of aesculin may explain its pleiotropic pharmaceutical effects.

  20. Connections between the human gut microbiome and gestational diabetes mellitus.

    PubMed

    Kuang, Ya-Shu; Lu, Jin-Hua; Li, Sheng-Hui; Li, Jun-Hua; Yuan, Ming-Yang; He, Jian-Rong; Chen, Nian-Nian; Xiao, Wan-Qing; Shen, Song-Ying; Qiu, Lan; Wu, Ying-Fang; Hu, Cui-Yue; Wu, Yan-Yan; Li, Wei-Dong; Chen, Qiao-Zhu; Deng, Hong-Wen; Papasian, Christopher J; Xia, Hui-Min; Qiu, Xiu

    2017-08-01

    The human gut microbiome can modulate metabolic health and affect insulin resistance, and it may play an important role in the etiology of gestational diabetes mellitus (GDM). Here, we compared the gut microbial composition of 43 GDM patients and 81 healthy pregnant women via whole-metagenome shotgun sequencing of their fecal samples, collected at 21-29 weeks, to explore associations between GDM and the composition of microbial taxonomic units and functional genes. A metagenome-wide association study identified 154 837 genes, which clustered into 129 metagenome linkage groups (MLGs) for species description, with significant relative abundance differences between the 2 cohorts. Parabacteroides distasonis, Klebsiella variicola, etc., were enriched in GDM patients, whereas Methanobrevibacter smithii, Alistipes spp., Bifidobacterium spp., and Eubacterium spp. were enriched in controls. The ratios of the gross abundances of GDM-enriched MLGs to control-enriched MLGs were positively correlated with blood glucose levels. A random forest model shows that fecal MLGs have excellent discriminatory power to predict GDM status. Our study discovered novel relationships between the gut microbiome and GDM status and suggests that changes in microbial composition may potentially be used to identify individuals at risk for GDM. © The Author 2017. Published by Oxford University Press.

  1. Gut microbiota of humans, dogs and cats: current knowledge and future opportunities and challenges.

    PubMed

    Deng, Ping; Swanson, Kelly S

    2015-01-01

    High-throughput DNA sequencing techniques allow for the identification and characterisation of microbes and their genes (microbiome). Using these new techniques, microbial populations in several niches of the human body, including the oral and nasal cavities, skin, urogenital tract and gastrointestinal tract, have been described recently. Very little data on the microbiome of companion animals exist, and most of the data have been derived from the analysis of the faeces of healthy laboratory animals. High-throughput assays provide opportunities to study the complex and dense populations of the gut microbiota, including bacteria, archaea, fungi, protozoa and viruses. Our laboratory and others have recently described the predominant microbial taxa and genes of healthy dogs and cats and how these respond to dietary interventions. In general, faecal microbial phylogeny (e.g. predominance of Firmicutes, Bacteroidetes, Proteobacteria and Actinobacteria) and functional capacity (e.g. major functional groups related to carbohydrate, protein, DNA and vitamin metabolism; virulence factors; and cell wall and capsule) of the canine and feline gut are similar to those of the human gut. Initial sequencing projects have provided a glimpse of the microbial super-organism that exists within the canine and feline gut, but leaves much to be explored and discovered. As DNA provides information only about potential functions, studies that focus on the microbial transcriptome, metabolite profiles, and how microbiome changes affect host physiology and health are clearly required. Future studies must determine how diet composition, antibiotics and other drug therapies, breed and disease affect or are affected by the gut microbiome and how this information may be used to improve diets, identify disease biomarkers and develop targeted disease therapies.

  2. Human and rat gut microbiome composition is maintained following sleep restriction.

    PubMed

    Zhang, Shirley L; Bai, Lei; Goel, Namni; Bailey, Aubrey; Jang, Christopher J; Bushman, Frederic D; Meerlo, Peter; Dinges, David F; Sehgal, Amita

    2017-02-21

    Insufficient sleep increasingly characterizes modern society, contributing to a host of serious medical problems. Loss of sleep is associated with metabolic diseases such as obesity and diabetes, cardiovascular disorders, and neurological and cognitive impairments. Shifts in gut microbiome composition have also been associated with the same pathologies; therefore, we hypothesized that sleep restriction may perturb the gut microbiome to contribute to a disease state. In this study, we examined the fecal microbiome by using a cross-species approach in both rat and human studies of sleep restriction. We used DNA from hypervariable regions (V1-V2) of 16S bacteria rRNA to define operational taxonomic units (OTUs) of the microbiome. Although the OTU richness of the microbiome is decreased by sleep restriction in rats, major microbial populations are not altered. Only a single OTU, TM7-3a, was found to increase with sleep restriction of rats. In the human microbiome, we find no overt changes in the richness or composition induced by sleep restriction. Together, these results suggest that the microbiome is largely resistant to changes during sleep restriction.

  3. Metaproteomics Reveals Functional Shifts in Microbial and Human Proteins During Infant Gut Colonization Case

    DOE PAGES

    Young, Jacque C.; Pan, Chongle; Adams, Rachel M.; ...

    2015-01-01

    The microbial colonization of the human gastrointestinal tract plays an important role in establishing health and homeostasis. However, the time-dependent functional signatures of microbial and human proteins during early colonization of the gut have yet to be determined. Thus, we employed shotgun proteomics to simultaneously monitor microbial and human proteins in fecal samples from a preterm infant during the first month of life. Microbial community complexity and functions increased over time, with compositional changes that were consistent with previous metagenomic and rRNA gene data indicating three distinct colonization phases. Overall microbial community functions were established relatively early in development andmore » remained stable. Human proteins detected included those responsible for epithelial barrier function and antimicrobial activity. Some neutrophil-derived proteins increased in abundance early in the study period, suggesting activation of the innate immune system. Moreover, abundances of cytoskeletal and mucin proteins increased later in the time course, suggestive of subsequent adjustment to the increased microbial load. Our study provides the first snapshot of coordinated human and microbial protein expression in the infant gut during early development.« less

  4. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis.

    PubMed

    O'Mahony, S M; Clarke, G; Borre, Y E; Dinan, T G; Cryan, J F

    2015-01-15

    The brain-gut axis is a bidirectional communication system between the central nervous system and the gastrointestinal tract. Serotonin functions as a key neurotransmitter at both terminals of this network. Accumulating evidence points to a critical role for the gut microbiome in regulating normal functioning of this axis. In particular, it is becoming clear that the microbial influence on tryptophan metabolism and the serotonergic system may be an important node in such regulation. There is also substantial overlap between behaviours influenced by the gut microbiota and those which rely on intact serotonergic neurotransmission. The developing serotonergic system may be vulnerable to differential microbial colonisation patterns prior to the emergence of a stable adult-like gut microbiota. At the other extreme of life, the decreased diversity and stability of the gut microbiota may dictate serotonin-related health problems in the elderly. The mechanisms underpinning this crosstalk require further elaboration but may be related to the ability of the gut microbiota to control host tryptophan metabolism along the kynurenine pathway, thereby simultaneously reducing the fraction available for serotonin synthesis and increasing the production of neuroactive metabolites. The enzymes of this pathway are immune and stress-responsive, both systems which buttress the brain-gut axis. In addition, there are neural processes in the gastrointestinal tract which can be influenced by local alterations in serotonin concentrations with subsequent relay of signals along the scaffolding of the brain-gut axis to influence CNS neurotransmission. Therapeutic targeting of the gut microbiota might be a viable treatment strategy for serotonin-related brain-gut axis disorders. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Bacterial growth, flow, and mixing shape human gut microbiota density and composition.

    PubMed

    Arnoldini, Markus; Cremer, Jonas; Hwa, Terence

    2018-03-13

    The human gut microbiota is highly dynamic, and host physiology and diet exert major influences on its composition. In our recent study, we integrated new quantitative measurements on bacterial growth physiology with a reanalysis of published data on human physiology to build a comprehensive modeling framework. This can generate predictions of how changes in different host factors influence microbiota composition. For instance, hydrodynamic forces in the colon, along with colonic water absorption that manifests as transit time, exert a major impact on microbiota density and composition. This can be mechanistically explained by their effect on colonic pH which directly affects microbiota competition for food. In this addendum, we describe the underlying analysis in more detail. In particular, we discuss the mixing dynamics of luminal content by wall contractions and its implications for bacterial growth and density, as well as the broader implications of our insights for the field of gut microbiota research.

  6. Effect of dextransucrase cellobiose acceptor products on the growth of human gut bacteria

    USDA-ARS?s Scientific Manuscript database

    The selective fermentation by human gut bacteria of gluco-oligosaccharides obtained from the reaction between the glucosyl group of sucrose and cellobiose, catalyzed by dextransucrases from Leuconostoc mesenteroides, has been evaluated. Oligosaccharides were fractionated according to their molecula...

  7. The gut microbiome as a target for prevention and treatment of hyperglycaemia in type 2 diabetes: from current human evidence to future possibilities.

    PubMed

    Brunkwall, Louise; Orho-Melander, Marju

    2017-06-01

    The totality of microbial genomes in the gut exceeds the size of the human genome, having around 500-fold more genes that importantly complement our coding potential. Microbial genes are essential for key metabolic processes, such as the breakdown of indigestible dietary fibres to short-chain fatty acids, biosynthesis of amino acids and vitamins, and production of neurotransmitters and hormones. During the last decade, evidence has accumulated to support a role for gut microbiota (analysed from faecal samples) in glycaemic control and type 2 diabetes. Mechanistic studies in mice support a causal role for gut microbiota in metabolic diseases, although human data favouring causality is insufficient. As it may be challenging to sort the human evidence from the large number of animal studies in the field, there is a need to provide a review of human studies. Thus, the aim of this review is to cover the current and future possibilities and challenges of using the gut microbiota, with its capacity to be modified, in the development of preventive and treatment strategies for hyperglycaemia and type 2 diabetes in humans. We discuss what is known about the composition and functionality of human gut microbiota in type 2 diabetes and summarise recent evidence of current treatment strategies that involve, or are based on, modification of gut microbiota (diet, probiotics, metformin and bariatric surgery). We go on to review some potential future gut-based glucose-lowering approaches involving microbiota, including the development of personalised nutrition and probiotic approaches, identification of therapeutic components of probiotics, targeted delivery of propionate in the proximal colon, targeted delivery of metformin in the lower gut, faecal microbiota transplantation, and the incorporation of genetically modified bacteria that express therapeutic factors into microbiota. Finally, future avenues and challenges for understanding the interplay between human nutrition, genetics

  8. Meta genome-wide network from functional linkages of genes in human gut microbial ecosystems.

    PubMed

    Ji, Yan; Shi, Yixiang; Wang, Chuan; Dai, Jianliang; Li, Yixue

    2013-03-01

    The human gut microbial ecosystem (HGME) exerts an important influence on the human health. In recent researches, meta-genomics provided deep insights into the HGME in terms of gene contents, metabolic processes and genome constitutions of meta-genome. Here we present a novel methodology to investigate the HGME on the basis of a set of functionally coupled genes regardless of their genome origins when considering the co-evolution properties of genes. By analyzing these coupled genes, we showed some basic properties of HGME significantly associated with each other, and further constructed a protein interaction map of human gut meta-genome to discover some functional modules that may relate with essential metabolic processes. Compared with other studies, our method provides a new idea to extract basic function elements from meta-genome systems and investigate complex microbial environment by associating its biological traits with co-evolutionary fingerprints encoded in it.

  9. Discovery and characterization of a prevalent human gut bacterial enzyme sufficient for the inactivation of a family of plant toxins

    PubMed Central

    Koppel, Nitzan; Bisanz, Jordan E; Pandelia, Maria-Eirini

    2018-01-01

    Although the human gut microbiome plays a prominent role in xenobiotic transformation, most of the genes and enzymes responsible for this metabolism are unknown. Recently, we linked the two-gene ‘cardiac glycoside reductase’ (cgr) operon encoded by the gut Actinobacterium Eggerthella lenta to inactivation of the cardiac medication and plant natural product digoxin. Here, we compared the genomes of 25 E. lenta strains and close relatives, revealing an expanded 8-gene cgr-associated gene cluster present in all digoxin metabolizers and absent in non-metabolizers. Using heterologous expression and in vitro biochemical characterization, we discovered that a single flavin- and [4Fe-4S] cluster-dependent reductase, Cgr2, is sufficient for digoxin inactivation. Unexpectedly, Cgr2 displayed strict specificity for digoxin and other cardenolides. Quantification of cgr2 in gut microbiomes revealed that this gene is widespread and conserved in the human population. Together, these results demonstrate that human-associated gut bacteria maintain specialized enzymes that protect against ingested plant toxins. PMID:29761785

  10. MALINA: a web service for visual analytics of human gut microbiota whole-genome metagenomic reads.

    PubMed

    Tyakht, Alexander V; Popenko, Anna S; Belenikin, Maxim S; Altukhov, Ilya A; Pavlenko, Alexander V; Kostryukova, Elena S; Selezneva, Oksana V; Larin, Andrei K; Karpova, Irina Y; Alexeev, Dmitry G

    2012-12-07

    MALINA is a web service for bioinformatic analysis of whole-genome metagenomic data obtained from human gut microbiota sequencing. As input data, it accepts metagenomic reads of various sequencing technologies, including long reads (such as Sanger and 454 sequencing) and next-generation (including SOLiD and Illumina). It is the first metagenomic web service that is capable of processing SOLiD color-space reads, to authors' knowledge. The web service allows phylogenetic and functional profiling of metagenomic samples using coverage depth resulting from the alignment of the reads to the catalogue of reference sequences which are built into the pipeline and contain prevalent microbial genomes and genes of human gut microbiota. The obtained metagenomic composition vectors are processed by the statistical analysis and visualization module containing methods for clustering, dimension reduction and group comparison. Additionally, the MALINA database includes vectors of bacterial and functional composition for human gut microbiota samples from a large number of existing studies allowing their comparative analysis together with user samples, namely datasets from Russian Metagenome project, MetaHIT and Human Microbiome Project (downloaded from http://hmpdacc.org). MALINA is made freely available on the web at http://malina.metagenome.ru. The website is implemented in JavaScript (using Ext JS), Microsoft .NET Framework, MS SQL, Python, with all major browsers supported.

  11. Gut Microbiota: Impact of probiotics, prebiotics, synbiotics, pharmabiotics and postbiotics on human health

    USDA-ARS?s Scientific Manuscript database

    Multidisciplinary approaches enabled a better understanding of the connection between human gut microbes and health. This knowledge is rapidly changing how we think about probiotics and related –biotics (prebiotics, synbiotics, pharmabiotics and postbiotics). Functional –omics approaches are very im...

  12. An Extracellular Cell-Attached Pullulanase Confers Branched α-Glucan Utilization in Human Gut Lactobacillus acidophilus

    PubMed Central

    Møller, Marie S.; Rasmussen, Kasper Bøwig; Cypryk, Wojciech; Celebioglu, Hasan Ufuk; Klaenhammer, Todd R.; Svensson, Birte

    2017-01-01

    ABSTRACT Of the few predicted extracellular glycan-active enzymes, glycoside hydrolase family 13 subfamily 14 (GH13_14) pullulanases are the most common in human gut lactobacilli. These enzymes share a unique modular organization, not observed in other bacteria, featuring a catalytic module, two starch binding modules, a domain of unknown function, and a C-terminal surface layer association protein (SLAP) domain. Here, we explore the specificity of a representative of this group of pullulanases, Lactobacillus acidophilus Pul13_14 (LaPul13_14), and its role in branched α-glucan metabolism in the well-characterized Lactobacillus acidophilus NCFM, which is widely used as a probiotic. Growth experiments with L. acidophilus NCFM on starch-derived branched substrates revealed a preference for α-glucans with short branches of about two to three glucosyl moieties over amylopectin with longer branches. Cell-attached debranching activity was measurable in the presence of α-glucans but was repressed by glucose. The debranching activity is conferred exclusively by LaPul13_14 and is abolished in a mutant strain lacking a functional LaPul13_14 gene. Hydrolysis kinetics of recombinant LaPul13_14 confirmed the preference for short-branched α-glucan oligomers consistent with the growth data. Curiously, this enzyme displayed the highest catalytic efficiency and the lowest Km reported for a pullulanase. Inhibition kinetics revealed mixed inhibition by β-cyclodextrin, suggesting the presence of additional glucan binding sites besides the active site of the enzyme, which may contribute to the unprecedented substrate affinity. The enzyme also displays high thermostability and higher activity in the acidic pH range, reflecting adaptation to the physiologically challenging conditions in the human gut. IMPORTANCE Starch is one of the most abundant glycans in the human diet. Branched α-1,6-glucans in dietary starch and glycogen are nondegradable by human enzymes and constitute a

  13. Comparison of the Distal Gut Microbiota from People and Animals in Africa

    PubMed Central

    Ellis, Richard J.; Bruce, Kenneth D.; Jenkins, Claire; Stothard, J. Russell; Ajarova, Lilly; Mugisha, Lawrence; Viney, Mark E.

    2013-01-01

    The gut microbiota plays a key role in the maintenance of healthy gut function as well as many other aspects of health. High-throughput sequence analyses have revealed the composition of the gut microbiota, showing that there is a core signature to the human gut microbiota, as well as variation in its composition between people. The gut microbiota of animals is also being investigated. We are interested in the relationship between bacterial taxa of the human gut microbiota and those in the gut microbiota of domestic and semi-wild animals. While it is clear that some human gut bacterial pathogens come from animals (showing that human – animal transmission occurs), the extent to which the usually non-pathogenic commensal taxa are shared between humans and animals has not been explored. To investigate this we compared the distal gut microbiota of humans, cattle and semi-captive chimpanzees in communities that are geographically sympatric in Uganda. The gut microbiotas of these three host species could be distinguished by the different proportions of bacterial taxa present. We defined multiple operational taxonomic units (OTUs) by sequence similarity and found evidence that some OTUs were common between human, cattle and chimpanzees, with the largest number of shared OTUs occurring between chimpanzees and humans, as might be expected with their close physiological similarity. These results show the potential for the sharing of usually commensal bacterial taxa between humans and other animals. This suggests that further investigation of this phenomenon is needed to fully understand how it drives the composition of human and animal gut microbiotas. PMID:23355898

  14. Bacteria of the human gut microbiome catabolize red seaweed glycans with carbohydrate-active enzyme updates from extrinsic microbes.

    PubMed

    Hehemann, Jan-Hendrik; Kelly, Amelia G; Pudlo, Nicholas A; Martens, Eric C; Boraston, Alisdair B

    2012-11-27

    Humans host an intestinal population of microbes--collectively referred to as the gut microbiome--which encode the carbohydrate active enzymes, or CAZymes, that are absent from the human genome. These CAZymes help to extract energy from recalcitrant polysaccharides. The question then arises as to if and how the microbiome adapts to new carbohydrate sources when modern humans change eating habits. Recent metagenome analysis of microbiomes from healthy American, Japanese, and Spanish populations identified putative CAZymes obtained by horizontal gene transfer from marine bacteria, which suggested that human gut bacteria evolved to degrade algal carbohydrates-for example, consumed in form of sushi. We approached this hypothesis by studying such a polysaccharide utilization locus (PUL) obtained by horizontal gene transfer by the gut bacterium Bacteroides plebeius. Transcriptomic and growth experiments revealed that the PUL responds to the polysaccharide porphyran from red algae, enabling growth on this carbohydrate but not related substrates like agarose and carrageenan. The X-ray crystallographic and biochemical analysis of two proteins encoded by this PUL, BACPLE_01689 and BACPLE_01693, showed that they are β-porphyranases belonging to glycoside hydrolase families 16 and 86, respectively. The product complex of the GH86 at 1.3 Å resolution highlights the molecular details of porphyran hydrolysis by this new porphyranase. Combined, these data establish experimental support for the argument that CAZymes and associated genes obtained from extrinsic microbes add new catabolic functions to the human gut microbiome.

  15. Food Design To Feed the Human Gut Microbiota.

    PubMed

    Ercolini, Danilo; Fogliano, Vincenzo

    2018-04-18

    The gut microbiome has an enormous impact on the life of the host, and the diet plays a fundamental role in shaping microbiome composition and function. The way food is processed is a key factor determining the amount and type of material reaching the gut bacteria and influencing their growth and the production of microbiota metabolites. In this perspective, the current possibilities to address food design toward a better feeding of gut microbiota are highlighted, together with a summary of the most interesting microbial metabolites that can be made from dietary precursors.

  16. Food Design To Feed the Human Gut Microbiota

    PubMed Central

    2018-01-01

    The gut microbiome has an enormous impact on the life of the host, and the diet plays a fundamental role in shaping microbiome composition and function. The way food is processed is a key factor determining the amount and type of material reaching the gut bacteria and influencing their growth and the production of microbiota metabolites. In this perspective, the current possibilities to address food design toward a better feeding of gut microbiota are highlighted, together with a summary of the most interesting microbial metabolites that can be made from dietary precursors. PMID:29565591

  17. Differential human gut microbiome assemblages during soil-transmitted helminth infections in Indonesia and Liberia.

    PubMed

    Rosa, Bruce A; Supali, Taniawati; Gankpala, Lincoln; Djuardi, Yenny; Sartono, Erliyani; Zhou, Yanjiao; Fischer, Kerstin; Martin, John; Tyagi, Rahul; Bolay, Fatorma K; Fischer, Peter U; Yazdanbakhsh, Maria; Mitreva, Makedonka

    2018-02-28

    The human intestine and its microbiota is the most common infection site for soil-transmitted helminths (STHs), which affect the well-being of ~ 1.5 billion people worldwide. The complex cross-kingdom interactions are not well understood. A cross-sectional analysis identified conserved microbial signatures positively or negatively associated with STH infections across Liberia and Indonesia, and longitudinal samples analysis from a double-blind randomized trial showed that the gut microbiota responds to deworming but does not transition closer to the uninfected state. The microbiomes of individuals able to self-clear the infection had more alike microbiome assemblages compared to individuals who remained infected. One bacterial taxon (Lachnospiracae) was negatively associated with infection in both countries, and 12 bacterial taxa were significantly associated with STH infection in both countries, including Olsenella (associated with reduced gut inflammation), which also significantly reduced in abundance following clearance of infection. Microbial community gene abundances were also affected by deworming. Functional categories identified as associated with STH infection included arachidonic acid metabolism; arachidonic acid is the precursor for pro-inflammatory leukotrienes that threaten helminth survival, and our findings suggest that some modulation of arachidonic acid activity in the STH-infected gut may occur through the increase of arachidonic acid metabolizing bacteria. For the first time, we identify specific members of the gut microbiome that discriminate between moderately/heavily STH-infected and non-infected states across very diverse geographical regions using two different statistical methods. We also identify microbiome-encoded biological functions associated with the STH infections, which are associated potentially with STH survival strategies, and changes in the host environment. These results provide a novel insight of the cross

  18. Gut microbes in correlation with mood: case study in a closed experimental human life support system.

    PubMed

    Li, L; Su, Q; Xie, B; Duan, L; Zhao, W; Hu, D; Wu, R; Liu, H

    2016-08-01

    Gut microbial community, which may influence our mood, can be shaped by modulating the gut ecosystem through dietary strategies. Understanding the gut-brain correlationship in healthy people is important for maintenance of mental health and prevention of mental illnesses. A case study on the correlation between gut microbial alternation and mood swing of healthy adults was conducted in a closed human life support system during a 105-day experiment. Gut microbial community structures were analyzed using high-throughput sequencing every 2 weeks. A profile of mood states questionnaire was used to record the mood swings. Correlation between gut microbes and mood were identified with partial least squares discrimination analysis. Microbial community structures in the three healthy adults were strongly correlated with mood states. Bacterial genera Roseburia, Phascolarctobacterium, Lachnospira, and Prevotella had potential positive correlation with positive mood, while genera Faecalibacterium, Bifidobacterium, Bacteroides, Parabacteroides, and Anaerostipes were correlated with negative mood. Among which, Faecalibacterium spp. had the highest abundance, and showed a significant negative correlation with mood. Our results indicated that the composition of microbial community could play a role in emotional change in mentally physically healthy adults. © 2016 John Wiley & Sons Ltd.

  19. [Fungi in the gut - the gut mycobiome].

    PubMed

    Hof, Herbert

    2017-08-01

    Many different fungi, including yeasts and molds, can be found in the intestinal tract of humans constituting the gut mycobiome. In case the bacterial flora is altered, the fungal flora may react inversely. By a so-called fungal diet, however, the composition of the mycobiome can hardly be influenced. Whereas some fungi are only transiently present in the gut after oral uptake, others, such as Candida, Saccharomyces, Rhodotorula, Trichosporon, Geotrichum, amongst others, are members of the residential, autochthonous gut flora. Some of these fungi exert beneficial effects, for example by synthesizing useful materials. Rhodotorula can produce fatty acids and carotenoids. Others are able to metabolize toxic compounds, for example mycotoxins as well as procarcinogenic items in food. Toxins, as well as pathogenic bacteria, can be bound to mannans on the surface of fungi und can consequently be exported. Some fungi are said to exert probiotic activities. Certain fungal constituents, such as glucans, may even stimulate the immune system. On the other hand, some fungi cannot only colonize the gut asymptomatically but can also be noxious under certain conditions when, for example, the bacterial flora is disturbed. By means of their virulence factors, they can damage the gut epithelium and even penetrate into the Mukosa inducing inflammation, They can also aggravate chronic inflammatory processes. Fungi play a role in the development of obesity. Lastly, fungi in the gut represent a reservoir from which they may spread to other sites when the conditions are favorable. © Georg Thieme Verlag KG Stuttgart · New York.

  20. Market Integration Predicts Human Gut Microbiome Attributes across a Gradient of Economic Development

    PubMed Central

    Cepon-Robins, Tara J.; Liebert, Melissa A.; Gildner, Theresa E.; Urlacher, Samuel S.; Madimenos, Felicia C.; Guillemin, Karen; Snodgrass, J. Josh; Sugiyama, Lawrence S.; Bohannan, Brendan J. M.

    2018-01-01

    ABSTRACT Economic development is marked by dramatic increases in the incidence of microbiome-associated diseases, such as autoimmune diseases and metabolic syndromes, but the lifestyle changes that drive alterations in the human microbiome are not known. We measured market integration as a proxy for economically related lifestyle attributes, such as ownership of specific market goods that index degree of market integration and components of traditional and nontraditional (more modern) house structure and infrastructure, and profiled the fecal microbiomes of 213 participants from a contiguous, indigenous Ecuadorian population. Despite relatively modest differences in lifestyle across the population, greater economic development correlated with significantly lower within-host diversity, higher between-host dissimilarity, and a decrease in the relative abundance of the bacterium Prevotella. These microbiome shifts were most strongly associated with more modern housing, followed by reduced ownership of traditional subsistence lifestyle-associated items. IMPORTANCE Previous research has reported differences in the gut microbiome between populations residing in wealthy versus poorer countries, leading to the assertion that lifestyle changes associated with economic development promote changes in the gut microbiome that promote the proliferation of microbiome-associated diseases. However, a direct relationship between economic development and the gut microbiome has not previously been shown. We surveyed the gut microbiomes of a single indigenous population undergoing economic development and found significant associations between features of the gut microbiome and lifestyle changes associated with economic development. These findings suggest that even the earliest stages of economic development can drive changes in the gut microbiome, which may provide a warning sign for the development of microbiome-associated diseases. PMID:29507896

  1. Faecalibacterium prausnitzii subspecies-level dysbiosis in the human gut microbiome underlying atopic dermatitis.

    PubMed

    Song, Han; Yoo, Young; Hwang, Junghyun; Na, Yun-Cheol; Kim, Heenam Stanley

    2016-03-01

    Atopic dermatitis (AD) is a serious global epidemic associated with a modern lifestyle. Although aberrant interactions between gut microbes and the intestinal immune system have been implicated in this skin disease, the nature of the microbiome dysfunction underlying the disease remains unclear. The gut microbiome from 132 subjects, including 90 patients with AD, was analyzed by using 16S rRNA gene and metagenome sequence analyses. Reference genomes from the Human Microbiome Project and the KEGG Orthology database were used for metagenome analyses. Short-chain fatty acids in fecal samples were compared by using gas chromatographic-mass spectrometric analyses. We show that enrichment of a subspecies of the major gut species Faecalibacterium prausnitzii is strongly associated with AD. In addition, the AD microbiome was enriched in genes encoding the use of various nutrients that could be released from damaged gut epithelium, reflecting a bloom of auxotrophic bacteria. Fecal samples from patients with AD showed decreased levels of butyrate and propionate, which have anti-inflammatory effects. This is likely a consequence of an intraspecies compositional change in F prausnitzii that reduces the number of high butyrate and propionate producers, including those related to the strain A2-165, a lack of which has been implicated in patients with Crohn disease. The data suggest that feedback interactions between dysbiosis in F prausnitzii and dysregulation of gut epithelial inflammation might underlie the chronic progression of AD by resulting in impairment of the gut epithelial barrier, which ultimately leads to aberrant TH2-type immune responses to allergens in the skin. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  2. Gut Microbiota Profiling: Metabolomics Based Approach to Unravel Compounds Affecting Human Health

    PubMed Central

    Vernocchi, Pamela; Del Chierico, Federica; Putignani, Lorenza

    2016-01-01

    The gut microbiota is composed of a huge number of different bacteria, that produce a large amount of compounds playing a key role in microbe selection and in the construction of a metabolic signaling network. The microbial activities are affected by environmental stimuli leading to the generation of a wide number of compounds, that influence the host metabolome and human health. Indeed, metabolite profiles related to the gut microbiota can offer deep insights on the impact of lifestyle and dietary factors on chronic and acute diseases. Metagenomics, metaproteomics and metabolomics are some of the meta-omics approaches to study the modulation of the gut microbiota. Metabolomic research applied to biofluids allows to: define the metabolic profile; identify and quantify classes and compounds of interest; characterize small molecules produced by intestinal microbes; and define the biochemical pathways of metabolites. Mass spectrometry and nuclear magnetic resonance spectroscopy are the principal technologies applied to metabolomics in terms of coverage, sensitivity and quantification. Moreover, the use of biostatistics and mathematical approaches coupled with metabolomics play a key role in the extraction of biologically meaningful information from wide datasets. Metabolomic studies in gut microbiota-related research have increased, focusing on the generation of novel biomarkers, which could lead to the development of mechanistic hypotheses potentially applicable to the development of nutritional and personalized therapies. PMID:27507964

  3. Starch Catabolism by a Prominent Human Gut Symbiont Is Directed by the Recognition of Amylose Helices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koropatkin, Nicole M.; Martens, Eric C.; Gordon, Jeffrey I.

    2009-01-12

    The human gut microbiota performs functions that are not encoded in our Homo sapiens genome, including the processing of otherwise undigestible dietary polysaccharides. Defining the structures of proteins involved in the import and degradation of specific glycans by saccharolytic bacteria complements genomic analysis of the nutrient-processing capabilities of gut communities. Here, we describe the atomic structure of one such protein, SusD, required for starch binding and utilization by Bacteroides thetaiotaomicron, a prominent adaptive forager of glycans in the distal human gut microbiota. The binding pocket of this unique {alpha}-helical protein contains an arc of aromatic residues that complements the naturalmore » helical structure of starch and imposes this conformation on bound maltoheptaose. Furthermore, SusD binds cyclic oligosaccharides with higher affinity than linear forms. The structures of several SusD/oligosaccharide complexes reveal an inherent ligand recognition plasticity dominated by the three-dimensional conformation of the oligosaccharides rather than specific interactions with the composite sugars.« less

  4. The gut microbiota and inflammatory noncommunicable diseases: associations and potentials for gut microbiota therapies.

    PubMed

    West, Christina E; Renz, Harald; Jenmalm, Maria C; Kozyrskyj, Anita L; Allen, Katrina J; Vuillermin, Peter; Prescott, Susan L

    2015-01-01

    Rapid environmental transition and modern lifestyles are likely driving changes in the biodiversity of the human gut microbiota. With clear effects on physiologic, immunologic, and metabolic processes in human health, aberrations in the gut microbiome and intestinal homeostasis have the capacity for multisystem effects. Changes in microbial composition are implicated in the increasing propensity for a broad range of inflammatory diseases, such as allergic disease, asthma, inflammatory bowel disease (IBD), obesity, and associated noncommunicable diseases (NCDs). There are also suggestive implications for neurodevelopment and mental health. These diverse multisystem influences have sparked interest in strategies that might favorably modulate the gut microbiota to reduce the risk of many NCDs. For example, specific prebiotics promote favorable intestinal colonization, and their fermented products have anti-inflammatory properties. Specific probiotics also have immunomodulatory and metabolic effects. However, when evaluated in clinical trials, the effects are variable, preliminary, or limited in magnitude. Fecal microbiota transplantation is another emerging therapy that regulates inflammation in experimental models. In human subjects it has been successfully used in cases of Clostridium difficile infection and IBD, although controlled trials are lacking for IBD. Here we discuss relationships between gut colonization and inflammatory NCDs and gut microbiota modulation strategies for their treatment and prevention. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  5. The gut microbiota, obesity and insulin resistance

    USDA-ARS?s Scientific Manuscript database

    The human gut is densely populated by commensal and symbiotic microbes (the "gut microbiota"), with the majority of the constituent microorganisms being bacteria. Accumulating evidence indicates that the gut microbiota plays a significant role in the development of obesity, obesity-associated inflam...

  6. Development of an Enhanced Metaproteomic Approach for Deepening the Microbiome Characterization of the Human Infant Gut

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Weili; Richard J. Giannone; Morowitz, Michael J.

    The early-life microbiota establishment in the human infant gut is highly variable and plays a crucial role in host nutrients and immunity maturation. While high-performance mass spectrometry (MS)-based metaproteomics is a powerful method for the functional characterization of complex microbial communities, the construction of comprehensive metaproteomic information in human fecal samples is inhibited by the presence of abundant human proteins. To alleviate this restriction, we have designed a novel metaproteomic strategy based on Double Filtering (DF) to enhance microbial protein characterization in complex fecal samples from healthy premature infants. We improved the overall depth of infant gut proteome measurement, withmore » an increase in the number of identified low abundance proteins, and observed greater than twofold improvement in metrics for microbial protein identifications and quantifications with a relatively high rank correlation to control. We further showed the substantial enhancement of this approach for extensively interpreting microbial functional categories between infants by affording more detailed and confident identified categories. This approach provided an avenue for in-depth measurement in the microbial component of infant fecal samples and thus comprehensive characterization of infant gut microbiome functionality.« less

  7. Development of an Enhanced Metaproteomic Approach for Deepening the Microbiome Characterization of the Human Infant Gut

    DOE PAGES

    Xiong, Weili; Richard J. Giannone; Morowitz, Michael J.; ...

    2014-10-28

    The early-life microbiota establishment in the human infant gut is highly variable and plays a crucial role in host nutrients and immunity maturation. While high-performance mass spectrometry (MS)-based metaproteomics is a powerful method for the functional characterization of complex microbial communities, the construction of comprehensive metaproteomic information in human fecal samples is inhibited by the presence of abundant human proteins. To alleviate this restriction, we have designed a novel metaproteomic strategy based on Double Filtering (DF) to enhance microbial protein characterization in complex fecal samples from healthy premature infants. We improved the overall depth of infant gut proteome measurement, withmore » an increase in the number of identified low abundance proteins, and observed greater than twofold improvement in metrics for microbial protein identifications and quantifications with a relatively high rank correlation to control. We further showed the substantial enhancement of this approach for extensively interpreting microbial functional categories between infants by affording more detailed and confident identified categories. This approach provided an avenue for in-depth measurement in the microbial component of infant fecal samples and thus comprehensive characterization of infant gut microbiome functionality.« less

  8. Bacteriophages in the human gut: Our fellow travelers throughout life and potential biomarkers of heath or disease.

    PubMed

    Bakhshinejad, Babak; Ghiasvand, Saeedeh

    2017-08-15

    The gastrointestinal (GI) tract is populated by a huge variety of viruses. Bacterial viruses (bacteriophages) constitute the largest and the most unrecognized part of virome. The total bacteriophage community of the human gut is called phageome. Phages colonize the gut from the earliest moments of life and become our fellow travelers throughout life. Phageome seems to be unique to each individual and shows a high degree of interpersonal variation. In the healthy gut, a vast majority of phages have a lysogenic lifestyle. These prophages serve as a major respository of mobile genetic elements in the gut and play key roles in the exchange of genetic material between bacterial species via horizontal gene transfer (HGT). But, imbalance in the gut microbial community during dysbiosis, caused by diseases or environmental stresses such as antibiotics, is accompanied by induction of prophages leading to a decreased ratio of symbionts to pathobionts. Based on this, a diseased gut is transformed from an environment predominantly occupied by prophages to an ecosystem mostly inhabited by lytic phages. A growing body of evidence has provided support for the notion that phageome structure and composition change dependent on the physiological or pathological status of the body. This has been demonstrated by pronounced quantitative and qualitative differences between the phageome of healthy individuals and patients. Although many aspects of the contribution made by phages to human biology remain to be understood, recent findings favor the suggestion that phageome might represent potential to serve as a biomarker of health or disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Alteration in the Gut Microbiota Provokes Susceptibility to Tuberculosis.

    PubMed

    Khan, Nargis; Vidyarthi, Aurobind; Nadeem, Sajid; Negi, Shikha; Nair, Girish; Agrewala, Javed N

    2016-01-01

    The microbiota that resides in the gastrointestinal tract provides essential health benefits to the host. In particular, they regulate immune homeostasis. Recently, several evidences indicate that alteration in the gut microbial community can cause infectious and non-infectious diseases. Tuberculosis (TB) is the most devastating disease, inflicting mortality and morbidity. It remains unexplored, whether changes in the gut microbiota can provoke or prevent TB. In the current study, we have demonstrated the antibiotics driven changes in the gut microbial composition and their impact on the survival of Mycobacterium tuberculosis ( Mtb ) in the lungs, liver, and spleen of infected mice, compared to those with intact microbiota. Interestingly, dysbiosis of microbes showed significant increase in the bacterial burden in lungs and dissemination of Mtb to spleen and liver. Furthermore, elevation in the number of Tregs and decline in the pool of IFN-γ- and TNF-α-releasing CD4 T cells was noticed. Interestingly, fecal transplantation in the gut microbiota disrupted animals exhibited improved Th1 immunity and lesser Tregs population. Importantly, these animals displayed reduced severity to Mtb infection. This study for the first time demonstrated the novel role of gut microbes in the susceptibility to TB and its prevention by microbial implants. In future, microbial therapies may help in treating patients suffering from TB.

  10. Bioengineered human IAS reconstructs with functional and molecular properties similar to intact IAS

    PubMed Central

    Singh, Jagmohan

    2012-01-01

    Because of its critical importance in rectoanal incontinence, we determined the feasibility to reconstruct internal anal sphincter (IAS) from human IAS smooth muscle cells (SMCs) with functional and molecular attributes similar to the intact sphincter. The reconstructs were developed using SMCs from the circular smooth muscle layer of the human IAS, grown in smooth muscle differentiation media under sterile conditions in Sylgard-coated tissue culture plates with central Sylgard posts. The basal tone in the reconstructs and its changes were recorded following 0 Ca2+, KCl, bethanechol, isoproterenol, protein kinase C (PKC) activator phorbol 12,13-dibutyrate, and Rho kinase (ROCK) and PKC inhibitors Y-27632 and Gö-6850, respectively. Western blot (WB), immunofluorescence (IF), and immunocytochemical (IC) analyses were also performed. The reconstructs developed spontaneous tone (0.68 ± 0.26 mN). Bethanechol (a muscarinic agonist) and K+ depolarization produced contraction, whereas isoproterenol (β-adrenoceptor agonist) and Y-27632 produced a concentration-dependent decrease in the tone. Maximal decrease in basal tone with Y-27632 and Gö-6850 (each 10−5 M) was 80.45 ± 3.29 and 17.76 ± 3.50%, respectively. WB data with the IAS constructs′ SMCs revealed higher levels of RhoA/ROCK, protein kinase C-potentiated inhibitor or inhibitory phosphoprotein for myosin phosphatase (CPI-17), phospho-CPI-17, MYPT1, and 20-kDa myosin light chain vs. rectal smooth muscle. WB, IF, and IC studies of original SMCs and redispersed from the reconstructs for the relative distribution of different signal transduction proteins confirmed the feasibility of reconstruction of IAS with functional properties similar to intact IAS and demonstrated the development of myogenic tone with critical dependence on RhoA/ROCK. We conclude that it is feasible to bioengineer IAS constructs using human IAS SMCs that behave like intact IAS. PMID:22790596

  11. Human and rat gut microbiome composition is maintained following sleep restriction

    PubMed Central

    Zhang, Shirley L.; Bai, Lei; Goel, Namni; Bailey, Aubrey; Jang, Christopher J.; Bushman, Frederic D.; Meerlo, Peter; Dinges, David F.; Sehgal, Amita

    2017-01-01

    Insufficient sleep increasingly characterizes modern society, contributing to a host of serious medical problems. Loss of sleep is associated with metabolic diseases such as obesity and diabetes, cardiovascular disorders, and neurological and cognitive impairments. Shifts in gut microbiome composition have also been associated with the same pathologies; therefore, we hypothesized that sleep restriction may perturb the gut microbiome to contribute to a disease state. In this study, we examined the fecal microbiome by using a cross-species approach in both rat and human studies of sleep restriction. We used DNA from hypervariable regions (V1-V2) of 16S bacteria rRNA to define operational taxonomic units (OTUs) of the microbiome. Although the OTU richness of the microbiome is decreased by sleep restriction in rats, major microbial populations are not altered. Only a single OTU, TM7-3a, was found to increase with sleep restriction of rats. In the human microbiome, we find no overt changes in the richness or composition induced by sleep restriction. Together, these results suggest that the microbiome is largely resistant to changes during sleep restriction. PMID:28179566

  12. Effect of cryopreservation and lyophilization on viability and growth of strict anaerobic human gut microbes.

    PubMed

    Bircher, Lea; Geirnaert, Annelies; Hammes, Frederik; Lacroix, Christophe; Schwab, Clarissa

    2018-04-17

    Strict anaerobic gut microbes have been suggested as 'next-generation probiotics' for treating several intestinal disorders. The development of preservation techniques is of major importance for therapeutic application. This study investigated cryopreservation (-80°C) and lyophilization survival and storage stability (4°C for 3 months) of the strict anaerobic gut microbes Bacteroides thetaiotaomicron, Faecalibacterium prausnitzii, Roseburia intestinalis, Anaerostipes caccae, Eubacterium hallii and Blautia obeum. To improve preservation survival, protectants sucrose and inulin (both 5% w/v) were added for lyophilization and were also combined with glycerol (15% v/v) for cryopreservation. Bacterial fitness, evaluated by maximum growth rate and lag phase, viability and membrane integrity were determined using a standardized growth assay and by flow cytometry as markers for preservation resistance. Lyophilization was more detrimental to viability and fitness than cryopreservation, but led to better storage stability. Adding sucrose and inulin enhanced viability and the proportion of intact cells during lyophilization of all strains. Viability of protectant-free B. thetaiotaomicron, A. caccae and F. prausnitzii was above 50% after cryopreservation and storage and increased to above 80% if protectants were present. The addition of glycerol, sucrose and inulin strongly enhanced the viability of B. obeum, E. hallii and R. intestinalis from 0.03-2% in protectant-free cultures to 11-37%. This is the first study that quantitatively compared the effect of cryopreservation and lyophilization and the addition of selected protectants on viability and fitness of six strict anaerobic gut microbes. Our results suggest that efficiency of protectants is process- and species-specific. © 2018 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  13. [Gut microbiota: Description, role and pathophysiologic implications].

    PubMed

    Landman, C; Quévrain, E

    2016-06-01

    The human gut contains 10(14) bacteria and many other micro-organisms such as Archaea, viruses and fungi. Studying the gut microbiota showed how this entity participates to gut physiology and beyond this to human health, as a real "hidden organ". In this review, we aimed to bring information about gut microbiota, its structure, its roles and its implication in human pathology. After bacterial colonization in infant, intestinal microbial composition is unique for each individual although more than 95% can be assigned to four major phyla. The use of culture independent methods and more recently the development of high throughput sequencing allowed to depict precisely gut microbiota structure and diversity as well as its alteration in diseases. Gut microbiota is implicated in the maturation of the host immune system and in many fundamental metabolic pathways including sugars and proteins fermentation and metabolism of bile acids and xenobiotics. Imbalance of gut microbial populations or dysbiosis has important functional consequences and is implicated in many digestive diseases (inflammatory bowel diseases, colorectal cancer, etc.) but also in obesity and autism. These observations have led to a surge of studies exploring therapeutics which aims to restore gut microbiota equilibrium such as probiotics or fecal microbiota transplantation. But recent research also investigates biological activity of microbial products which could lead to interesting therapeutics leads. Copyright © 2015 Société Nationale Française de Médecine Interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  14. Role of the normal gut microbiota.

    PubMed

    Jandhyala, Sai Manasa; Talukdar, Rupjyoti; Subramanyam, Chivkula; Vuyyuru, Harish; Sasikala, Mitnala; Nageshwar Reddy, D

    2015-08-07

    Relation between the gut microbiota and human health is being increasingly recognised. It is now well established that a healthy gut flora is largely responsible for overall health of the host. The normal human gut microbiota comprises of two major phyla, namely Bacteroidetes and Firmicutes. Though the gut microbiota in an infant appears haphazard, it starts resembling the adult flora by the age of 3 years. Nevertheless, there exist temporal and spatial variations in the microbial distribution from esophagus to the rectum all along the individual's life span. Developments in genome sequencing technologies and bioinformatics have now enabled scientists to study these microorganisms and their function and microbe-host interactions in an elaborate manner both in health and disease. The normal gut microbiota imparts specific function in host nutrient metabolism, xenobiotic and drug metabolism, maintenance of structural integrity of the gut mucosal barrier, immunomodulation, and protection against pathogens. Several factors play a role in shaping the normal gut microbiota. They include (1) the mode of delivery (vaginal or caesarean); (2) diet during infancy (breast milk or formula feeds) and adulthood (vegan based or meat based); and (3) use of antibiotics or antibiotic like molecules that are derived from the environment or the gut commensal community. A major concern of antibiotic use is the long-term alteration of the normal healthy gut microbiota and horizontal transfer of resistance genes that could result in reservoir of organisms with a multidrug resistant gene pool.

  15. Use of dietary indices to control for diet in human gut microbiota studies.

    PubMed

    Bowyer, Ruth C E; Jackson, Matthew A; Pallister, Tess; Skinner, Jane; Spector, Tim D; Welch, Ailsa A; Steves, Claire J

    2018-04-25

    Environmental factors have a large influence on the composition of the human gut microbiota. One of the most influential and well-studied is host diet. To assess and interpret the impact of non-dietary factors on the gut microbiota, we endeavoured to determine the most appropriate method to summarise community variation attributable to dietary effects. Dietary habits are multidimensional with internal correlations. This complexity can be simplified by using dietary indices that quantify dietary variance in a single measure and offer a means of controlling for diet in microbiota studies. However, to date, the applicability of different dietary indices to gut microbiota studies has not been assessed. Here, we use food frequency questionnaire (FFQ) data from members of the TwinsUK cohort to create three different dietary measures applicable in western-diet populations: The Healthy Eating Index (HEI), the Mediterranean Diet Score (MDS) and the Healthy Food Diversity index (HFD-Index). We validate and compare these three indices to determine which best summarises dietary influences on gut microbiota composition. All three indices were independently validated using established measures of health, and all were significantly associated with microbiota measures; the HEI had the highest t values in models of alpha diversity measures, and had the highest number of associations with microbial taxa. Beta diversity analyses showed the HEI explained the greatest variance of microbiota composition. In paired tests between twins discordant for dietary index score, the HEI was associated with the greatest variation of taxa and twin dissimilarity. We find that the HEI explains the most variance in, and has the strongest association with, gut microbiota composition in a western (UK) population, suggesting that it may be the best summary measure to capture gut microbiota variance attributable to habitual diet in comparable populations.

  16. Gut microbiota and metabolic syndrome.

    PubMed

    Festi, Davide; Schiumerini, Ramona; Eusebi, Leonardo Henry; Marasco, Giovanni; Taddia, Martina; Colecchia, Antonio

    2014-11-21

    Gut microbiota exerts a significant role in the pathogenesis of the metabolic syndrome, as confirmed by studies conducted both on humans and animal models. Gut microbial composition and functions are strongly influenced by diet. This complex intestinal "superorganism" seems to affect host metabolic balance modulating energy absorption, gut motility, appetite, glucose and lipid metabolism, as well as hepatic fatty storage. An impairment of the fine balance between gut microbes and host's immune system could culminate in the intestinal translocation of bacterial fragments and the development of "metabolic endotoxemia", leading to systemic inflammation and insulin resistance. Diet induced weight-loss and bariatric surgery promote significant changes of gut microbial composition, that seem to affect the success, or the inefficacy, of treatment strategies. Manipulation of gut microbiota through the administration of prebiotics or probiotics could reduce intestinal low grade inflammation and improve gut barrier integrity, thus, ameliorating metabolic balance and promoting weight loss. However, further evidence is needed to better understand their clinical impact and therapeutic use.

  17. The Gut Microbiome and the Brain

    PubMed Central

    Galland, Leo

    2014-01-01

    Abstract The human gut microbiome impacts human brain health in numerous ways: (1) Structural bacterial components such as lipopolysaccharides provide low-grade tonic stimulation of the innate immune system. Excessive stimulation due to bacterial dysbiosis, small intestinal bacterial overgrowth, or increased intestinal permeability may produce systemic and/or central nervous system inflammation. (2) Bacterial proteins may cross-react with human antigens to stimulate dysfunctional responses of the adaptive immune system. (3) Bacterial enzymes may produce neurotoxic metabolites such as D-lactic acid and ammonia. Even beneficial metabolites such as short-chain fatty acids may exert neurotoxicity. (4) Gut microbes can produce hormones and neurotransmitters that are identical to those produced by humans. Bacterial receptors for these hormones influence microbial growth and virulence. (5) Gut bacteria directly stimulate afferent neurons of the enteric nervous system to send signals to the brain via the vagus nerve. Through these varied mechanisms, gut microbes shape the architecture of sleep and stress reactivity of the hypothalamic-pituitary-adrenal axis. They influence memory, mood, and cognition and are clinically and therapeutically relevant to a range of disorders, including alcoholism, chronic fatigue syndrome, fibromyalgia, and restless legs syndrome. Their role in multiple sclerosis and the neurologic manifestations of celiac disease is being studied. Nutritional tools for altering the gut microbiome therapeutically include changes in diet, probiotics, and prebiotics. PMID:25402818

  18. Gut microbiota and liver diseases

    PubMed Central

    Minemura, Masami; Shimizu, Yukihiro

    2015-01-01

    Several studies revealed that gut microbiota are associated with various human diseases, e.g., metabolic diseases, allergies, gastroenterological diseases, and liver diseases. The liver can be greatly affected by changes in gut microbiota due to the entry of gut bacteria or their metabolites into the liver through the portal vein, and the liver-gut axis is important to understand the pathophysiology of several liver diseases, especially non-alcoholic fatty liver disease and hepatic encephalopathy. Moreover, gut microbiota play a significant role in the development of alcoholic liver disease and hepatocarcinogenesis. Based on these previous findings, trials using probiotics have been performed for the prevention or treatment of liver diseases. In this review, we summarize the current understanding of the changes in gut microbiota associated with various liver diseases, and we describe the therapeutic trials of probiotics for those diseases. PMID:25684933

  19. An Extracellular Cell-Attached Pullulanase Confers Branched α-Glucan Utilization in Human Gut Lactobacillus acidophilus.

    PubMed

    Møller, Marie S; Goh, Yong Jun; Rasmussen, Kasper Bøwig; Cypryk, Wojciech; Celebioglu, Hasan Ufuk; Klaenhammer, Todd R; Svensson, Birte; Abou Hachem, Maher

    2017-06-15

    Of the few predicted extracellular glycan-active enzymes, glycoside hydrolase family 13 subfamily 14 (GH13_14) pullulanases are the most common in human gut lactobacilli. These enzymes share a unique modular organization, not observed in other bacteria, featuring a catalytic module, two starch binding modules, a domain of unknown function, and a C-terminal surface layer association protein (SLAP) domain. Here, we explore the specificity of a representative of this group of pullulanases, Lactobacillus acidophilus Pul13_14 ( La Pul13_14), and its role in branched α-glucan metabolism in the well-characterized Lactobacillus acidophilus NCFM, which is widely used as a probiotic. Growth experiments with L. acidophilus NCFM on starch-derived branched substrates revealed a preference for α-glucans with short branches of about two to three glucosyl moieties over amylopectin with longer branches. Cell-attached debranching activity was measurable in the presence of α-glucans but was repressed by glucose. The debranching activity is conferred exclusively by La Pul13_14 and is abolished in a mutant strain lacking a functional La Pul13_14 gene. Hydrolysis kinetics of recombinant La Pul13_14 confirmed the preference for short-branched α-glucan oligomers consistent with the growth data. Curiously, this enzyme displayed the highest catalytic efficiency and the lowest K m reported for a pullulanase. Inhibition kinetics revealed mixed inhibition by β-cyclodextrin, suggesting the presence of additional glucan binding sites besides the active site of the enzyme, which may contribute to the unprecedented substrate affinity. The enzyme also displays high thermostability and higher activity in the acidic pH range, reflecting adaptation to the physiologically challenging conditions in the human gut. IMPORTANCE Starch is one of the most abundant glycans in the human diet. Branched α-1,6-glucans in dietary starch and glycogen are nondegradable by human enzymes and constitute a

  20. The gut in trauma.

    PubMed

    Patel, Jayshil J; Rosenthal, Martin D; Miller, Keith R; Martindale, Robert G

    2016-08-01

    The purpose of this review is to describe established and emerging mechanisms of gut injury and dysfunction in trauma, describe emerging strategies to improve gut dysfunction, detail the effect of trauma on the gut microbiome, and describe the gut-brain connection in traumatic brain injury. Newer data suggest intraluminal contents, pancreatic enzymes, and hepatobiliary factors disrupt the intestinal mucosal layer. These mechanisms serve to perpetuate the inflammatory response leading to multiple organ dysfunction syndrome (MODS). To date, therapies to mitigate acute gut dysfunction have included enteral nutrition and immunonutrition; emerging therapies aimed to intestinal mucosal layer disruption, however, include protease inhibitors such as tranexamic acid, parenteral nutrition-supplemented bombesin, and hypothermia. Clinical trials to demonstrate benefit in humans are needed before widespread applications can be recommended. Despite resuscitation, gut dysfunction promotes distant organ injury. In addition, postresuscitation nosocomial and iatrogenic 'hits' exaggerate the immune response, contributing to MODS. This was a provocative concept, suggesting infectious and noninfectious causes of inflammation may trigger, heighten, and perpetuate an inflammatory response culminating in MODS and death. Emerging evidence suggests posttraumatic injury mechanisms, such as intestinal mucosal disruption and shifting of the gut microbiome to a pathobiome. In addition, traumatic brain injury activates the gut-brain axis and increases intestinal permeability.

  1. Xenobiotic Metabolism and Gut Microbiomes

    PubMed Central

    Das, Anubhav; Srinivasan, Meenakshi; Ghosh, Tarini Shankar; Mande, Sharmila S.

    2016-01-01

    Humans are exposed to numerous xenobiotics, a majority of which are in the form of pharmaceuticals. Apart from human enzymes, recent studies have indicated the role of the gut bacterial community (microbiome) in metabolizing xenobiotics. However, little is known about the contribution of the plethora of gut microbiome in xenobiotic metabolism. The present study reports the results of analyses on xenobiotic metabolizing enzymes in various human gut microbiomes. A total of 397 available gut metagenomes from individuals of varying age groups from 8 nationalities were analyzed. Based on the diversities and abundances of the xenobiotic metabolizing enzymes, various bacterial taxa were classified into three groups, namely, least versatile, intermediately versatile and highly versatile xenobiotic metabolizers. Most interestingly, specific relationships were observed between the overall drug consumption profile and the abundance and diversity of the xenobiotic metabolizing repertoire in various geographies. The obtained differential abundance patterns of xenobiotic metabolizing enzymes and bacterial genera harboring them, suggest their links to pharmacokinetic variations among individuals. Additional analyses of a few well studied classes of drug modifying enzymes (DMEs) also indicate geographic as well as age specific trends. PMID:27695034

  2. Human Gut Microbiota Predicts Susceptibility to Vibrio cholerae Infection.

    PubMed

    Midani, Firas S; Weil, Ana A; Chowdhury, Fahima; Begum, Yasmin A; Khan, Ashraful I; Debela, Meti D; Durand, Heather K; Reese, Aspen T; Nimmagadda, Sai N; Silverman, Justin D; Ellis, Crystal N; Ryan, Edward T; Calderwood, Stephen B; Harris, Jason B; Qadri, Firdausi; David, Lawrence A; LaRocque, Regina C

    2018-04-12

    Cholera is a public health problem worldwide and the risk factors for infection are only partially understood. We prospectively studied household contacts of cholera patients to compare those who were infected with those who were not. We constructed predictive machine learning models of susceptibility using baseline gut microbiota data. We identified bacterial taxa associated with susceptibility to Vibrio cholerae infection and tested these taxa for interactions with V. cholerae in vitro. We found that machine learning models based on gut microbiota predicted V. cholerae infection as well as models based on known clinical and epidemiological risk factors. A 'predictive gut microbiota' of roughly 100 bacterial taxa discriminated between contacts who developed infection and those who did not. Susceptibility to cholera was associated with depleted levels of microbes from the phylum Bacteroidetes. By contrast, a microbe associated with cholera by our modeling framework, Paracoccus aminovorans, promoted the in vitro growth of V. cholerae. Gut microbiota structure, clinical outcome, and age were also linked. These findings support the hypothesis that abnormal gut microbial communities are a host factor related to V. cholerae susceptibility.

  3. Short-term effect of antibiotics on human gut microbiota.

    PubMed

    Panda, Suchita; El khader, Ismail; Casellas, Francesc; López Vivancos, Josefa; García Cors, Montserrat; Santiago, Alba; Cuenca, Silvia; Guarner, Francisco; Manichanh, Chaysavanh

    2014-01-01

    From birth onwards, the human gut microbiota rapidly increases in diversity and reaches an adult-like stage at three years of age. After this age, the composition may fluctuate in response to external factors such as antibiotics. Previous studies have shown that resilience is not complete months after cessation of the antibiotic intake. However, little is known about the short-term effects of antibiotic intake on the gut microbial community. Here we examined the load and composition of the fecal microbiota immediately after treatment in 21 patients, who received broad-spectrum antibiotics such as fluoroquinolones and β-lactams. A fecal sample was collected from all participants before treatment and one week after for microbial load and community composition analyses by quantitative PCR and pyrosequencing of the 16S rRNA gene, respectively. Fluoroquinolones and β-lactams significantly decreased microbial diversity by 25% and reduced the core phylogenetic microbiota from 29 to 12 taxa. However, at the phylum level, these antibiotics increased the Bacteroidetes/Firmicutes ratio (p = 0.0007, FDR = 0.002). At the species level, our findings unexpectedly revealed that both antibiotic types increased the proportion of several unknown taxa belonging to the Bacteroides genus, a Gram-negative group of bacteria (p = 0.0003, FDR<0.016). Furthermore, the average microbial load was affected by the treatment. Indeed, the β-lactams increased it significantly by two-fold (p = 0.04). The maintenance of or possible increase detected in microbial load and the selection of Gram-negative over Gram-positive bacteria breaks the idea generally held about the effect of broad-spectrum antibiotics on gut microbiota.

  4. Evaluation of an intact, an ACL-deficient, and a reconstructed human knee joint finite element model.

    PubMed

    Vairis, Achilles; Stefanoudakis, George; Petousis, Markos; Vidakis, Nectarios; Tsainis, Andreas-Marios; Kandyla, Betina

    2016-02-01

    The human knee joint has a three-dimensional geometry with multiple body articulations that produce complex mechanical responses under loads that occur in everyday life and sports activities. Understanding the complex mechanical interactions of these load-bearing structures is of use when the treatment of relevant diseases is evaluated and assisting devices are designed. The anterior cruciate ligament (ACL) in the knee is one of four main ligaments that connects the femur to the tibia and is often torn during sudden twisting motions, resulting in knee instability. The objective of this work is to study the mechanical behavior of the human knee joint and evaluate the differences in its response for three different states, i.e., intact, ACL-deficient, and surgically treated (reconstructed) knee. The finite element models corresponding to these states were developed. For the reconstructed model, a novel repair device was developed and patented by the author in previous work. Static load cases were applied, as have already been presented in a previous work, in order to compare the calculated results produced by the two models the ACL-deficient and the surgically reconstructed knee joint, under the exact same loading conditions. Displacements were calculated in different directions for the load cases studied and were found to be very close to those from previous modeling work and were in good agreement with experimental data presented in literature. The developed finite element model for both the intact and the ACL-deficient human knee joint is a reliable tool to study the kinematics of the human knee, as results of this study show. In addition, the reconstructed human knee joint model had kinematic behavior similar to the intact knee joint, showing that such reconstruction devices can restore human knee stability to an adequate extent.

  5. Anaerobic 4-hydroxyproline utilization: Discovery of a new glycyl radical enzyme in the human gut microbiome uncovers a widespread microbial metabolic activity.

    PubMed

    Huang, Yolanda Y; Martínez-Del Campo, Ana; Balskus, Emily P

    2018-02-06

    The discovery of enzymes responsible for previously unappreciated microbial metabolic pathways furthers our understanding of host-microbe and microbe-microbe interactions. We recently identified and characterized a new gut microbial glycyl radical enzyme (GRE) responsible for anaerobic metabolism of trans-4-hydroxy-l-proline (Hyp). Hyp dehydratase (HypD) catalyzes the removal of water from Hyp to generate Δ 1 -pyrroline-5-carboxylate (P5C). This enzyme is encoded in the genomes of a diverse set of gut anaerobes and is prevalent and abundant in healthy human stool metagenomes. Here, we discuss the roles HypD may play in different microbial metabolic pathways as well as the potential implications of this activity for colonization resistance and pathogenesis within the human gut. Finally, we present evidence of anaerobic Hyp metabolism in sediments through enrichment culturing of Hyp-degrading bacteria, highlighting the wide distribution of this pathway in anoxic environments beyond the human gut.

  6. The influence of a short-term gluten-free diet on the human gut microbiome.

    PubMed

    Bonder, Marc Jan; Tigchelaar, Ettje F; Cai, Xianghang; Trynka, Gosia; Cenit, Maria C; Hrdlickova, Barbara; Zhong, Huanzi; Vatanen, Tommi; Gevers, Dirk; Wijmenga, Cisca; Wang, Yang; Zhernakova, Alexandra

    2016-04-21

    A gluten-free diet (GFD) is the most commonly adopted special diet worldwide. It is an effective treatment for coeliac disease and is also often followed by individuals to alleviate gastrointestinal complaints. It is known there is an important link between diet and the gut microbiome, but it is largely unknown how a switch to a GFD affects the human gut microbiome. We studied changes in the gut microbiomes of 21 healthy volunteers who followed a GFD for four weeks. We collected nine stool samples from each participant: one at baseline, four during the GFD period, and four when they returned to their habitual diet (HD), making a total of 189 samples. We determined microbiome profiles using 16S rRNA sequencing and then processed the samples for taxonomic and imputed functional composition. Additionally, in all 189 samples, six gut health-related biomarkers were measured. Inter-individual variation in the gut microbiota remained stable during this short-term GFD intervention. A number of taxon-specific differences were seen during the GFD: the most striking shift was seen for the family Veillonellaceae (class Clostridia), which was significantly reduced during the intervention (p = 2.81 × 10(-05)). Seven other taxa also showed significant changes; the majority of them are known to play a role in starch metabolism. We saw stronger differences in pathway activities: 21 predicted pathway activity scores showed significant association to the change in diet. We observed strong relations between the predicted activity of pathways and biomarker measurements. A GFD changes the gut microbiome composition and alters the activity of microbial pathways.

  7. Modulation of the human gut microbiota by dietary fibres occurs at the species level.

    PubMed

    Chung, Wing Sun Faith; Walker, Alan W; Louis, Petra; Parkhill, Julian; Vermeiren, Joan; Bosscher, Douwina; Duncan, Sylvia H; Flint, Harry J

    2016-01-11

    Dietary intake of specific non-digestible carbohydrates (including prebiotics) is increasingly seen as a highly effective approach for manipulating the composition and activities of the human gut microbiota to benefit health. Nevertheless, surprisingly little is known about the global response of the microbial community to particular carbohydrates. Recent in vivo dietary studies have demonstrated that the species composition of the human faecal microbiota is influenced by dietary intake. There is now potential to gain insights into the mechanisms involved by using in vitro systems that produce highly controlled conditions of pH and substrate supply. We supplied two alternative non-digestible polysaccharides as energy sources to three different human gut microbial communities in anaerobic, pH-controlled continuous-flow fermentors. Community analysis showed that supply of apple pectin or inulin resulted in the highly specific enrichment of particular bacterial operational taxonomic units (OTUs; based on 16S rRNA gene sequences). Of the eight most abundant Bacteroides OTUs detected, two were promoted specifically by inulin and six by pectin. Among the Firmicutes, Eubacterium eligens in particular was strongly promoted by pectin, while several species were stimulated by inulin. Responses were influenced by pH, which was stepped up, and down, between 5.5, 6.0, 6.4 and 6.9 in parallel vessels within each experiment. In particular, several experiments involving downshifts to pH 5.5 resulted in Faecalibacterium prausnitzii replacing Bacteroides spp. as the dominant sequences observed. Community diversity was greater in the pectin-fed than in the inulin-fed fermentors, presumably reflecting the differing complexity of the two substrates. We have shown that particular non-digestible dietary carbohydrates have enormous potential for modifying the gut microbiota, but these modifications occur at the level of individual strains and species and are not easily predicted a priori

  8. Relationship between Human Gut Microbiota and Interleukin 6 Levels in Overweight and Obese Adults

    USDA-ARS?s Scientific Manuscript database

    Background: Gut microbial diversity and abundance can profoundly impact human health. Research has shown that obese individuals are likely to have altered microbiota compared to lean individuals. Obesity is often considered a pro-inflammatory state, however the relationship between microbiota and i...

  9. Obesity changes the human gut mycobiome

    PubMed Central

    Mar Rodríguez, M.; Pérez, Daniel; Javier Chaves, Felipe; Esteve, Eduardo; Marin-Garcia, Pablo; Xifra, Gemma; Vendrell, Joan; Jové, Mariona; Pamplona, Reinald; Ricart, Wifredo; Portero-Otin, Manuel; Chacón, Matilde R.; Fernández Real, José Manuel

    2015-01-01

    The human intestine is home to a diverse range of bacterial and fungal species, forming an ecological community that contributes to normal physiology and disease susceptibility. Here, the fungal microbiota (mycobiome) in obese and non-obese subjects was characterized using Internal Transcribed Spacer (ITS)-based sequencing. The results demonstrate that obese patients could be discriminated by their specific fungal composition, which also distinguished metabolically “healthy” from “unhealthy” obesity. Clusters according to genus abundance co-segregated with body fatness, fasting triglycerides and HDL-cholesterol. A preliminary link to metabolites such as hexadecanedioic acid, caproic acid and N-acetyl-L-glutamic acid was also found. Mucor racemosus and M. fuscus were the species more represented in non-obese subjects compared to obese counterparts. Interestingly, the decreased relative abundance of the Mucor genus in obese subjects was reversible upon weight loss. Collectively, these findings suggest that manipulation of gut mycobiome communities might be a novel target in the treatment of obesity. PMID:26455903

  10. Screening assays of termite gut microbes that potentially as probiotic for human to digest cellulose as new food source

    NASA Astrophysics Data System (ADS)

    Abdullah, R.; Ananda, K. R. T.; Wijanarka

    2018-05-01

    According to UN, earth population will increase approximately 7.3 billion people up to 11.2 billion from 2015 until 2100. On the other side, food needs are not balance with the availability of food on earth. People of the world need solution for a new food source. By cellulose digesting ability, people analyzed can consume cellulose as the new food source to get glucose. The aims of research is obtaining termite gut cellulase bacteria selected which is potential as probiotic to split cellulose. Method used was as follows; isolation of termite gut microbes, microbial cellulase purification by screening method and probiotic test includes microbial pathogenicity test and human stomach acid and salt osmotic concentration resistance test. The result shows, 3 pure isolates of termite gut microbes can break down cellulose in the medium 1% CMC and 0.1% congo red (indicator of cellulose degradation activity) and life at pH 2- 2.5 and osmotic salt condition. Two isolates show the activity of gamma hemolysis (non-pathogenic in terms of pathogenicity on human blood). In conclusion, there are isolated termite gut microbes can be used as probiotic candidate for human to digest cellulose of the new food source for global food scarcity era.

  11. SadA-Expressing Staphylococci in the Human Gut Show Increased Cell Adherence and Internalization.

    PubMed

    Luqman, Arif; Nega, Mulugeta; Nguyen, Minh-Thu; Ebner, Patrick; Götz, Friedrich

    2018-01-09

    A subgroup of biogenic amines, the so-called trace amines (TAs), are produced by mammals and bacteria and can act as neuromodulators. In the genus Staphylococcus, certain species are capable of producing TAs through the activity of staphylococcal aromatic amino acid decarboxylase (SadA). SadA decarboxylates aromatic amino acids to produce TAs, as well as dihydroxy phenylalanine and 5-hydroxytryptophan to thus produce the neurotransmitters dopamine and serotonin. SadA-expressing staphylococci were prevalent in the gut of most probands, where they are part of the human intestinal microflora. Furthermore, sadA-expressing staphylococci showed increased adherence to HT-29 cells and 2- to 3-fold increased internalization. Internalization and adherence was also increased in a sadA mutant in the presence of tryptamine. The α2-adrenergic receptor is required for enhanced adherence and internalization. Thus, staphylococci in the gut might contribute to gut activity and intestinal colonization. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  12. Targeting the ecology within: The role of the gut-brain axis and human microbiota in drug addiction.

    PubMed

    Skosnik, Patrick D; Cortes-Briones, Jose A

    2016-08-01

    Despite major advances in our understanding of the brain using traditional neuroscience, reliable and efficacious treatments for drug addiction have remained elusive. Hence, the time has come to utilize novel approaches, particularly those drawing upon contemporary advances in fields outside of established neuroscience and psychiatry. Put another way, the time has come for a paradigm shift in the addiction sciences. Apropos, a revolution in the area of human health is underway, which is occurring at the nexus between enteric microbiology and neuroscience. It has become increasingly clear that the human microbiota (the vast ecology of bacteria residing within the human organism), plays an important role in health and disease. This is not surprising, as it has been estimated that bacteria living in the human body (approximately 1kg of mass, roughly equivalent to that of the human brain) outnumber human cells 10 to 1. While advances in the understanding of the role of microbiota in other areas of human health have yielded intriguing results (e.g., Clostridium difficile, irritable bowel syndrome, autism, etc.), to date, no systematic programs of research have examined the role of microbiota in drug addiction. The current hypothesis, therefore, is that gut dysbiosis plays a key role in addictive disorders. In the context of this hypothesis, this paper provides a rationale for future research to target the "gut-brain axis" in addiction. A brief background of the gut-brain axis is provided, along with a series of hypothesis-driven ideas outlining potential treatments for addiction via manipulations of the "ecology within." Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Digestibility of sulfated polysaccharide from the brown seaweed Ascophyllum nodosum and its effect on the human gut microbiota in vitro.

    PubMed

    Chen, Ligen; Xu, Wei; Chen, Dan; Chen, Guijie; Liu, Junwei; Zeng, Xiaoxiong; Shao, Rong; Zhu, Hongjun

    2018-06-01

    Sulfated polysaccharides from marine algae exhibit various bioactivities with potential benefits for human health and well-being. In this study, the in vitro digestibility and fermentability of polysaccharides from the brown seaweed Ascophyllum nodosum (AnPs) were examined, and the effects of AnPs on gut microbiota were determined using high-throughput sequencing technology. Salivary amylase, artificial gastric juice, and intestinal juice had no effect on AnPs, but the molecular weight of AnPs and reducing sugar decreased significantly after fermentation by gut microbiota. AnPs significantly modulated the composition of the gut microbiota; in particular, they increased the relative abundance of Bacteroidetes and Firmicutes, suggesting the potential for AnPs to decrease the risk of obesity. Furthermore, the total SCFA content after fermentation increased significantly. These results suggest that AnPs have potential uses as functional food components to improve human gut health. Copyright © 2018. Published by Elsevier B.V.

  14. Gut microbiota and metabolic syndrome

    PubMed Central

    Festi, Davide; Schiumerini, Ramona; Eusebi, Leonardo Henry; Marasco, Giovanni; Taddia, Martina; Colecchia, Antonio

    2014-01-01

    Gut microbiota exerts a significant role in the pathogenesis of the metabolic syndrome, as confirmed by studies conducted both on humans and animal models. Gut microbial composition and functions are strongly influenced by diet. This complex intestinal “superorganism” seems to affect host metabolic balance modulating energy absorption, gut motility, appetite, glucose and lipid metabolism, as well as hepatic fatty storage. An impairment of the fine balance between gut microbes and host’s immune system could culminate in the intestinal translocation of bacterial fragments and the development of “metabolic endotoxemia”, leading to systemic inflammation and insulin resistance. Diet induced weight-loss and bariatric surgery promote significant changes of gut microbial composition, that seem to affect the success, or the inefficacy, of treatment strategies. Manipulation of gut microbiota through the administration of prebiotics or probiotics could reduce intestinal low grade inflammation and improve gut barrier integrity, thus, ameliorating metabolic balance and promoting weight loss. However, further evidence is needed to better understand their clinical impact and therapeutic use. PMID:25473159

  15. Chemical Probes for Visualizing Intact Animal and Human Brain Tissue.

    PubMed

    Lai, Hei Ming; Ng, Wai-Lung; Gentleman, Steve M; Wu, Wutian

    2017-06-22

    Newly developed tissue clearing techniques can be used to render intact tissues transparent. When combined with fluorescent labeling technologies and optical sectioning microscopy, this allows visualization of fine structure in three dimensions. Gene-transfection techniques have proved very useful in visualizing cellular structures in animal models, but they are not applicable to human brain tissue. Here, we discuss the characteristics of an ideal chemical fluorescent probe for use in brain and other cleared tissues, and offer a comprehensive overview of currently available chemical probes. We describe their working principles and compare their performance with the goal of simplifying probe selection for neuropathologists and stimulating probe development by chemists. We propose several approaches for the development of innovative chemical labeling methods which, when combined with tissue clearing, have the potential to revolutionize how we study the structure and function of the human brain. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Gut Microbiome and Infant Health: Brain-Gut-Microbiota Axis and Host Genetic Factors.

    PubMed

    Cong, Xiaomei; Xu, Wanli; Romisher, Rachael; Poveda, Samantha; Forte, Shaina; Starkweather, Angela; Henderson, Wendy A

    2016-09-01

    The development of the neonatal gut microbiome is influenced by multiple factors, such as delivery mode, feeding, medication use, hospital environment, early life stress, and genetics. The dysbiosis of gut microbiota persists during infancy, especially in high-risk preterm infants who experience lengthy stays in the Neonatal intensive care unit (NICU). Infant microbiome evolutionary trajectory is essentially parallel with the host (infant) neurodevelopmental process and growth. The role of the gut microbiome, the brain-gut signaling system, and its interaction with the host genetics have been shown to be related to both short and long term infant health and bio-behavioral development. The investigation of potential dysbiosis patterns in early childhood is still lacking and few studies have addressed this host-microbiome co-developmental process. Further research spanning a variety of fields of study is needed to focus on the mechanisms of brain-gut-microbiota signaling system and the dynamic host-microbial interaction in the regulation of health, stress and development in human newborns.

  17. Antimicrobial Use, Human Gut Microbiota and Clostridium difficile Colonization and Infection

    PubMed Central

    Vincent, Caroline; Manges, Amee R.

    2015-01-01

    Clostridium difficile infection (CDI) is the most important cause of nosocomial diarrhea. Broad-spectrum antimicrobials have profound detrimental effects on the structure and diversity of the indigenous intestinal microbiota. These alterations often impair colonization resistance, allowing the establishment and proliferation of C. difficile in the gut. Studies involving animal models have begun to decipher the precise mechanisms by which the intestinal microbiota mediates colonization resistance against C. difficile and numerous investigations have described gut microbiota alterations associated with C. difficile colonization or infection in human subjects. Fecal microbiota transplantation (FMT) is a highly effective approach for the treatment of recurrent CDI that allows the restoration of a healthy intestinal ecosystem via infusion of fecal material from a healthy donor. The recovery of the intestinal microbiota after FMT has been examined in a few reports and work is being done to develop custom bacterial community preparations that could be used as a replacement for fecal material. PMID:27025623

  18. Handling stress may confound murine gut microbiota studies.

    PubMed

    Allen-Blevins, Cary R; You, Xiaomeng; Hinde, Katie; Sela, David A

    2017-01-01

    Accumulating evidence indicates interactions between human milk composition, particularly sugars (human milk oligosaccharides or HMO), the gut microbiota of human infants, and behavioral effects. Some HMO secreted in human milk are unable to be endogenously digested by the human infant but are able to be metabolized by certain species of gut microbiota, including Bifidobacterium longum subsp. infantis (B. infantis) , a species sensitive to host stress (Bailey & Coe, 2004). Exposure to gut bacteria like B. infantis during critical neurodevelopment windows in early life appears to have behavioral consequences; however, environmental, physical, and social stress during this period can also have behavioral and microbial consequences. While rodent models are a useful method for determining causal relationships between HMO, gut microbiota, and behavior, murine studies of gut microbiota usually employ oral gavage, a technique stressful to the mouse. Our aim was to develop a less-invasive technique for HMO administration to remove the potential confound of gavage stress. Under the hypothesis that stress affects gut microbiota, particularly B. infantis , we predicted the pups receiving a prebiotic solution in a less-invasive manner would have the highest amount of Bifidobacteria in their gut. This study was designed to test two methods, active and passive, of solution administration to mice and the effects on their gut microbiome. Neonatal C57BL/6J mice housed in a specific-pathogen free facility received increasing doses of fructooligosaccharide (FOS) solution or deionized, distilled water. Gastrointestinal (GI) tracts were collected from five dams, six sires, and 41 pups over four time points. Seven fecal pellets from unhandled pups and two pellets from unhandled dams were also collected. Qualitative real-time polymerase chain reaction (qRT-PCR) was used to quantify and compare the amount of Bifidobacterium , Bacteroides , Bacteroidetes, and Firmicutes. Our results

  19. Impact of the gut microbiota on inflammation, obesity, and metabolic disease.

    PubMed

    Boulangé, Claire L; Neves, Ana Luisa; Chilloux, Julien; Nicholson, Jeremy K; Dumas, Marc-Emmanuel

    2016-04-20

    The human gut harbors more than 100 trillion microbial cells, which have an essential role in human metabolic regulation via their symbiotic interactions with the host. Altered gut microbial ecosystems have been associated with increased metabolic and immune disorders in animals and humans. Molecular interactions linking the gut microbiota with host energy metabolism, lipid accumulation, and immunity have also been identified. However, the exact mechanisms that link specific variations in the composition of the gut microbiota with the development of obesity and metabolic diseases in humans remain obscure owing to the complex etiology of these pathologies. In this review, we discuss current knowledge about the mechanistic interactions between the gut microbiota, host energy metabolism, and the host immune system in the context of obesity and metabolic disease, with a focus on the importance of the axis that links gut microbes and host metabolic inflammation. Finally, we discuss therapeutic approaches aimed at reshaping the gut microbial ecosystem to regulate obesity and related pathologies, as well as the challenges that remain in this area.

  20. Human distribution and release of a putative new gut hormone, peptide YY.

    PubMed

    Adrian, T E; Ferri, G L; Bacarese-Hamilton, A J; Fuessl, H S; Polak, J M; Bloom, S R

    1985-11-01

    A radioimmunoassay has been developed for the new intestinal hormonal peptide tyrosine tyrosine [peptide YY (PYY)]. Peptide YY concentrations were measured in separated layers of the human gastrointestinal tract, where PYY was found exclusively in the mucosal epithelium which contained the endocrine cells. Peptide YY was found throughout the small intestine, in very low concentrations (5 pmol/g) in duodenum (6 pmol/g) and jejunum (5 pmol/g), but in higher concentrations in the terminal ileum (84 pmol/g). High concentrations were found throughout the colon (ascending 82 pmol/g, sigmoid 196 pmol/g), being maximum in the rectum (480 pmol/g). The major molecular form of PYY-like immunoreactivity in human intestine appeared to be identical to pure porcine hormone, both as judged by gel permeation chromatography and by reverse-phase high-pressure liquid chromatography. Basal plasma concentrations of PYY were low but rose in response to food, remaining elevated for several hours postprandially. The known potent biologic actions of PYY, its high concentrations in gut endocrine cells, and its release into the circulation after a normal meal suggest that this peptide may function physiologically as a circulating gut hormone.

  1. In vitro permeation of palladium powders through intact and damaged human skin.

    PubMed

    Crosera, Matteo; Mauro, Marcella; Bovenzi, Massimo; Adami, Gianpiero; Baracchini, Elena; Maina, Giovanni; Larese Filon, Francesca

    2018-05-01

    The use of palladium (Pd) has grown in the last decades, commonly used in automotive catalytic converters, jewellery and dental restorations sectors. Both general and working population can be exposed to this metal, which may act as skin sensitizer. This study investigated in vitro palladium powders permeation through excised intact and damaged human skin using the Franz diffusion cell method and the effect of rapid skin decontamination using sodium laureth-sulphate. 1 mL of a 10 min sonicated suspension made of 2.5 g of Pd powder in 50 mL synthetic sweat at pH 4.5 and room temperature was applied to the outer surface of the skin membranes for 24 h. Pd permeation, assessed by ICP-MS, was higher when damaged skin was used (p = 0.03). Final flux permeation values and lag times were 0.02 ± 0.01 μg cm -2  h -1 and 6.00 ± 3.95 h for intact, and 0.10 ± 0.02 μg cm -2  h -1 and 2.05 ± 1.49 h for damaged skin samples, respectively. Damaged skin protocol enhances Pd skin penetration inside dermal layer (p = 0.04), thus making the metal available for systemic uptake. Pd penetration (p = 0.02) and permeation (p = 0.012) through intact skin decreased significantly when a cleaning procedure was applied. This study demonstrates that after skin exposure to Pd powders a small permeation of the metal happen both through intact and damaged skin and that an early decontamination with a common cleanser can significantly decrease the final amount of metal available forsystemic uptake. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Utilisation of mucin glycans by the human gut symbiont Ruminococcus gnavus is strain-dependent.

    PubMed

    Crost, Emmanuelle H; Tailford, Louise E; Le Gall, Gwenaelle; Fons, Michel; Henrissat, Bernard; Juge, Nathalie

    2013-01-01

    Commensal bacteria often have an especially rich source of glycan-degrading enzymes which allow them to utilize undigested carbohydrates from the food or the host. The species Ruminococcus gnavus is present in the digestive tract of ≥90% of humans and has been implicated in gut-related diseases such as inflammatory bowel diseases (IBD). Here we analysed the ability of two R. gnavus human strains, E1 and ATCC 29149, to utilize host glycans. We showed that although both strains could assimilate mucin monosaccharides, only R. gnavus ATCC 29149 was able to grow on mucin as a sole carbon source. Comparative genomic analysis of the two R. gnavus strains highlighted potential clusters and glycoside hydrolases (GHs) responsible for the breakdown and utilization of mucin-derived glycans. Transcriptomic and functional activity assays confirmed the importance of specific GH33 sialidase, and GH29 and GH95 fucosidases in the mucin utilisation pathway. Notably, we uncovered a novel pathway by which R. gnavus ATCC 29149 utilises sialic acid from sialylated substrates. Our results also demonstrated the ability of R. gnavus ATCC 29149 to produce propanol and propionate as the end products of metabolism when grown on mucin and fucosylated glycans. These new findings provide molecular insights into the strain-specificity of R. gnavus adaptation to the gut environment advancing our understanding of the role of gut commensals in health and disease.

  3. Susceptibility and tolerance of human gut culturable aerobic microbiota to wine polyphenols.

    PubMed

    Cueva, Carolina; Bartolomé, Begoña; Moreno-Arribas, M Victoria; Bustos, Irene; Requena, Teresa; González-Manzano, Susana; Santos-Buelga, Celestino; Turrientes, María-Carmen; del Campo, Rosa

    2015-02-01

    Diet is one of the main factors that could affect quantitatively and qualitatively the stability of the gut microbiota. Polyphenols are abundantly present in the human diet and have an antimicrobial effect inducing selective changes in the microbiota composition, with potential beneficial effects for the human health. Our aim was to determine the human gut microbiota susceptibility toward wine polyphenols. Susceptibility to two commercial wine phenolic extracts (Vitaflavan(®) and Provinols™) was determined in isolates from fecal samples from 36 gastrointestinal healthy volunteers. To select the polyphenol-resistant isolates, feces were seeded in plates containing 1 mg/ml of phenolic extract. The minimal inhibitory concentration to polyphenols in the collected isolates was assessed by the agar dilution method. Overall results showed that Gram-negative isolates are most tolerant to the presence of both grape seed and red wine extracts. Furthermore, we purified to homogeneity the phenolic fractions by high-performance liquid chromatography (HPLC) to determine their antimicrobial effect and their influence on bacterial growth in four selected ATCC strains using the BioScreen apparatus. Results showed that the antimicrobial activity of the wine polyphenols is the result of the interaction of both the flavan-3-ol type and the bacteria. Bacterial Intraspecies differences in the phenolic susceptibility suggest the existence of polyphenol-resistant mechanisms that are uncharacterized as yet.

  4. Identification of Oligosaccharides in Feces of Breast-fed Infants and Their Correlation with the Gut Microbial Community *

    PubMed Central

    Davis, Jasmine C. C.; Totten, Sarah M.; Huang, Julie O.; Nagshbandi, Sadaf; Kirmiz, Nina; Garrido, Daniel A.; Lewis, Zachery T.; Wu, Lauren D.; Smilowitz, Jennifer T.; German, J. Bruce; Mills, David A.; Lebrilla, Carlito B.

    2016-01-01

    Glycans in breast milk are abundant and found as either free oligosaccharides or conjugated to proteins and lipids. Free human milk oligosaccharides (HMOs) function as prebiotics by stimulating the growth of beneficial bacteria while preventing the binding of harmful bacteria to intestinal epithelial cells. Bacteria have adapted to the glycan-rich environment of the gut by developing enzymes that catabolize glycans. The decrease in HMOs and the increase in glycan digestion products give indications of the active enzymes in the microbial population. In this study, we quantitated the disappearance of intact HMOs and characterized the glycan digestion products in the gut that are produced by the action of microbial enzymes on HMOs and glycoconjugates from breast milk. Oligosaccharides from fecal samples of exclusively breast-fed infants were extracted and profiled using nanoLC-MS. Intact HMOs were found in the fecal samples, additionally, other oligosaccharides were found corresponding to degraded HMOs and non-HMO based compounds. The latter compounds were fragments of N-glycans released through the cleavage of the linkage to the asparagine residue and through cleavage of the chitobiose core of the N-glycan. Marker gene sequencing of the fecal samples revealed bifidobacteria as the dominant inhabitants of the infant gastrointestinal tracts. A glycosidase from Bifidobacterium longum subsp. longum was then expressed to digest HMOs in vitro, which showed that the digested oligosaccharides in feces corresponded to the action of glycosidases on HMOs. Similar expression of endoglycosidases also showed that N-glycans were released by bacterial enzymes. Although bifidobacteria may dominate the gut, it is possible that specific minority species are also responsible for the major products observed in feces. Nonetheless, the enzymatic activity correlated well with the known glycosidases in the respective bacteria, suggesting a direct relationship between microbial abundances and

  5. Identification of Oligosaccharides in Feces of Breast-fed Infants and Their Correlation with the Gut Microbial Community.

    PubMed

    Davis, Jasmine C C; Totten, Sarah M; Huang, Julie O; Nagshbandi, Sadaf; Kirmiz, Nina; Garrido, Daniel A; Lewis, Zachery T; Wu, Lauren D; Smilowitz, Jennifer T; German, J Bruce; Mills, David A; Lebrilla, Carlito B

    2016-09-01

    Glycans in breast milk are abundant and found as either free oligosaccharides or conjugated to proteins and lipids. Free human milk oligosaccharides (HMOs) function as prebiotics by stimulating the growth of beneficial bacteria while preventing the binding of harmful bacteria to intestinal epithelial cells. Bacteria have adapted to the glycan-rich environment of the gut by developing enzymes that catabolize glycans. The decrease in HMOs and the increase in glycan digestion products give indications of the active enzymes in the microbial population. In this study, we quantitated the disappearance of intact HMOs and characterized the glycan digestion products in the gut that are produced by the action of microbial enzymes on HMOs and glycoconjugates from breast milk. Oligosaccharides from fecal samples of exclusively breast-fed infants were extracted and profiled using nanoLC-MS. Intact HMOs were found in the fecal samples, additionally, other oligosaccharides were found corresponding to degraded HMOs and non-HMO based compounds. The latter compounds were fragments of N-glycans released through the cleavage of the linkage to the asparagine residue and through cleavage of the chitobiose core of the N-glycan. Marker gene sequencing of the fecal samples revealed bifidobacteria as the dominant inhabitants of the infant gastrointestinal tracts. A glycosidase from Bifidobacterium longum subsp. longum was then expressed to digest HMOs in vitro, which showed that the digested oligosaccharides in feces corresponded to the action of glycosidases on HMOs. Similar expression of endoglycosidases also showed that N-glycans were released by bacterial enzymes. Although bifidobacteria may dominate the gut, it is possible that specific minority species are also responsible for the major products observed in feces. Nonetheless, the enzymatic activity correlated well with the known glycosidases in the respective bacteria, suggesting a direct relationship between microbial abundances and

  6. Gut microbiome and bone.

    PubMed

    Ibáñez, Lidia; Rouleau, Matthieu; Wakkach, Abdelilah; Blin-Wakkach, Claudine

    2018-04-11

    The gut microbiome is now viewed as a tissue that interacts bidirectionally with the gastrointestinal, immune, endocrine and nervous systems, affecting the cellular responses in numerous organs. Evidence is accumulating of gut microbiome involvement in a growing number of pathophysiological processes, many of which are linked to inflammatory responses. More specifically, data acquired over the last decade point to effects of the gut microbiome on bone mass regulation and on the development of bone diseases (such as osteoporosis) and of inflammatory joint diseases characterized by bone loss. Mice lacking a gut microbiome have bone mass alteration that can be reversed by gut recolonization. Changes in the gut microbiome composition have been reported in mice with estrogen-deficiency osteoporosis and have also been found in a few studies in humans. Probiotic therapy decreases bone loss in estrogen-deficient animals. The effect of the gut microbiome on bone tissue involves complex mechanisms including modulation of CD4 + T cell activation, control of osteoclastogenic cytokine production and modifications in hormone levels. This complexity may contribute to explain the discrepancies observed betwwen some studies whose results vary depending on the age, gender, genetic background and treatment duration. Further elucidation of the mechanisms involved is needed. However, the available data hold promise that gut microbiome manipulation may prove of interest in the management of bone diseases. Copyright © 2018 Société française de rhumatologie. Published by Elsevier SAS. All rights reserved.

  7. The Dynamics of the Human Infant Gut Microbiome in Development and in Progression towards Type 1 Diabetes

    PubMed Central

    Kostic, Aleksandar D.; Gevers, Dirk; Siljander, Heli; Vatanen, Tommi; Hyötyläinen, Tuulia; Hämäläinen, Anu-Maaria; Peet, Aleksandr; Tillmann, Vallo; Pöhö, Päivi; Mattila, Ismo; Lähdesmäki, Harri; Franzosa, Eric A.; Vaarala, Outi; de Goffau, Marcus; Harmsen, Hermie; Ilonen, Jorma; Virtanen, Suvi M.; Clish, Clary B.; Orešič, Matej; Huttenhower, Curtis; Knip, Mikael

    2015-01-01

    SUMMARY Colonization of the fetal and infant gut microbiome results in dynamic changes in diversity, which can impact disease susceptibility. To examine the relationship between human gut microbiome dynamics throughout infancy and type 1 diabetes (T1D), we examined a cohort of 33 infants genetically predisposed to T1D. Modeling trajectories of microbial abundances through infancy revealed a subset of microbial relationships shared across most subjects. Although strain composition of a given species was highly variable between individuals, it was stable within individuals throughout infancy. Metabolic composition and metabolic pathway abundance remained constant across time. A marked drop in alpha-diversity was observed in T1D progressors in the time-window between seroconversion and T1D diagnosis, accompanied by spikes in inflammation-favoring organisms, gene functions, and serum and stool metabolites. This work identifies trends in the development of the human infant gut microbiome along with specific alterations that precede T1D onset and distinguish T1D progressors from non-progressors. PMID:25662751

  8. 21 CFR 878.4830 - Absorbable surgical gut suture.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Absorbable surgical gut suture. 878.4830 Section 878.4830 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... surgical gut suture. (a) Identification. An absorbable surgical gut suture, both plain and chromic, is an...

  9. Gut-Brain Axis and Behavior.

    PubMed

    Martin, Clair R; Mayer, Emeran A

    2017-01-01

    In the last 5 years, interest in the interactions among the gut microbiome, brain, and behavior has exploded. Preclinical evidence supports a role of the gut microbiome in behavioral responses associated with pain, emotion, social interactions, and food intake. Limited, but growing, clinical evidence comes primarily from associations of gut microbial composition and function to behavioral and clinical features and brain structure and function. Converging evidence suggests that the brain and the gut microbiota are in bidirectional communication. Observed dysbiotic states in depression, chronic stress, and autism may reflect altered brain signaling to the gut, while altered gut microbial signaling to the brain may play a role in reinforcing brain alterations. On the other hand, primary dysbiotic states due to Western diets may signal to the brain, altering ingestive behavior. While studies performed in patients with depression and rodent models generated by fecal microbial transfer from such patients suggest causation, evidence for an influence of acute gut microbial alterations on human behavioral and clinical parameters is lacking. Only recently has an open-label microbial transfer therapy in children with autism tentatively validated the gut microbiota as a therapeutic target. The translational potential of preclinical findings remains unclear without further clinical investigation. © 2017 Nestec Ltd., Vevey/S. Karger AG, Basel.

  10. Development of an Enhanced Metaproteomic Approach for Deepening the Microbiome Characterization of the Human Infant Gut

    PubMed Central

    2015-01-01

    The establishment of early life microbiota in the human infant gut is highly variable and plays a crucial role in host nutrient availability/uptake and maturation of immunity. Although high-performance mass spectrometry (MS)-based metaproteomics is a powerful method for the functional characterization of complex microbial communities, the acquisition of comprehensive metaproteomic information in human fecal samples is inhibited by the presence of abundant human proteins. To alleviate this restriction, we have designed a novel metaproteomic strategy based on double filtering (DF) the raw samples, a method that fractionates microbial from human cells to enhance microbial protein identification and characterization in complex fecal samples from healthy premature infants. This method dramatically improved the overall depth of infant gut proteome measurement, with an increase in the number of identified low-abundance proteins and a greater than 2-fold improvement in microbial protein identification and quantification. This enhancement of proteome measurement depth enabled a more extensive microbiome comparison between infants by not only increasing the confidence of identified microbial functional categories but also revealing previously undetected categories. PMID:25350865

  11. Long-Term Green Tea Supplementation Does Not Change the Human Gut Microbiota

    PubMed Central

    Janssens, Pilou L. H. R.; Penders, John; Hursel, Rick; Budding, Andries E.; Savelkoul, Paul H. M.; Westerterp-Plantenga, Margriet S.

    2016-01-01

    Background Green tea catechins may play a role in body weight regulation through interactions with the gut microbiota. Aim We examined whether green tea supplementation for 12 weeks induces changes in composition of the human gut microbiota. Methods 58 Caucasian men and women were included in a randomized, placebo-controlled design. For 12 weeks, subjects consumed either green tea (>0.56 g/d epigallocatechin-gallate + 0.28 ∼ 0.45 g/d caffeine) or placebo capsules. Fecal samples were collected twice (baseline, vs. week 12) for analyses of total bacterial profiles by means of IS-profiling, a 16S-23S interspacer region-based profiling method. Results No significant changes between baseline and week 12 in subjects receiving green tea or placebo capsules, and no significant interactions between treatment (green tea or placebo) and time (baseline and week 12) were observed for body composition. Analysis of the fecal samples in subjects receiving green tea and placebo showed similar bacterial diversity and community structures, indicating there were no significant changes in bacterial diversity between baseline and week 12 in subjects receiving green tea capsules or in subjects receiving placebo capsules. No significant interactions were observed between treatment (green tea or placebo) and time (baseline and week 12) for the gut microbial diversity. Although, there were no significant differences between normal weight and overweight subjects in response to green tea, we did observe a reduced bacterial alpha diversity in overweight as compared to normal weight subjects (p = 0.002). Conclusion Green tea supplementation for 12 weeks did not have a significant effect on composition of the gut microbiota. Trial Registration ClinicalTrials.gov NCT01556321 PMID:27054321

  12. Structural and molecular interrogation of intact biological systems

    PubMed Central

    Chung, Kwanghun; Wallace, Jenelle; Kim, Sung-Yon; Kalyanasundaram, Sandhiya; Andalman, Aaron S.; Davidson, Thomas J.; Mirzabekov, Julie J.; Zalocusky, Kelly A.; Mattis, Joanna; Denisin, Aleksandra K.; Pak, Sally; Bernstein, Hannah; Ramakrishnan, Charu; Grosenick, Logan; Gradinaru, Viviana; Deisseroth, Karl

    2014-01-01

    Obtaining high-resolution information from a complex system, while maintaining the global perspective needed to understand system function, represents a key challenge in biology. Here we address this challenge with a method (termed CLARITY) for the transformation of intact tissue into a nanoporous hydrogel-hybridized form (crosslinked to a three-dimensional network of hydrophilic polymers) that is fully assembled but optically transparent and macromolecule-permeable. Using mouse brains, we show intact-tissue imaging of long-range projections, local circuit wiring, cellular relationships, subcellular structures, protein complexes, nucleic acids and neurotransmitters. CLARITY also enables intact-tissue in situ hybridization, immunohistochemistry with multiple rounds of staining and de-staining in non-sectioned tissue, and antibody labelling throughout the intact adult mouse brain. Finally, we show that CLARITY enables fine structural analysis of clinical samples, including non-sectioned human tissue from a neuropsychiatric-disease setting, establishing a path for the transmutation of human tissue into a stable, intact and accessible form suitable for probing structural and molecular underpinnings of physiological function and disease. PMID:23575631

  13. Transferred-NOE NMR experiments on intact human platelets: receptor-bound conformation of RGD-peptide mimics.

    PubMed

    Potenza, Donatella; Belvisi, Laura

    2008-01-21

    The aim of this work is to show that transferred-NOE provides useful and detailed information on membrane-bound receptor-ligand interactions in living cells. Here, we study the interaction between intact human platelets and some ligands containing the RGD sequence. Conformational properties of the free and bound pentapeptides are reported.

  14. Human-derived gut microbiota modulates colonic secretion in mice by regulating 5-HT3 receptor expression via acetate production.

    PubMed

    Bhattarai, Yogesh; Schmidt, Bradley A; Linden, David R; Larson, Eric D; Grover, Madhusudan; Beyder, Arthur; Farrugia, Gianrico; Kashyap, Purna C

    2017-07-01

    Serotonin [5-hydroxytryptamine (5-HT)], an important neurotransmitter and a paracrine messenger in the gastrointestinal tract, regulates intestinal secretion by its action primarily on 5-HT 3 and 5-HT 4 receptors. Recent studies highlight the role of gut microbiota in 5-HT biosynthesis. In this study, we determine whether human-derived gut microbiota affects host secretory response to 5-HT and 5-HT receptor expression. We used proximal colonic mucosa-submucosa preparation from age-matched Swiss Webster germ-free (GF) and humanized (HM; ex-GF colonized with human gut microbiota) mice. 5-HT evoked a significantly greater increase in short-circuit current (Δ I sc ) in GF compared with HM mice. Additionally, 5-HT 3 receptor mRNA and protein expression was significantly higher in GF compared with HM mice. Ondansetron, a 5-HT 3 receptor antagonist, inhibited 5-HT-evoked Δ I sc in GF mice but not in HM mice. Furthermore, a 5-HT 3 receptor-selective agonist, 2-methyl-5-hydroxytryptamine hydrochloride, evoked a significantly higher Δ I sc in GF compared with HM mice. Immunohistochemistry in 5-HT 3A -green fluorescent protein mice localized 5-HT 3 receptor expression to enterochromaffin cells in addition to nerve fibers. The significant difference in 5-HT-evoked Δ I sc between GF and HM mice persisted in the presence of tetrodotoxin (TTX) but was lost after ondansetron application in the presence of TTX. Application of acetate (10 mM) significantly lowered 5-HT 3 receptor mRNA in GF mouse colonoids. We conclude that host secretory response to 5-HT may be modulated by gut microbiota regulation of 5-HT 3 receptor expression via acetate production. Epithelial 5-HT 3 receptor may function as a mediator of gut microbiota-driven change in intestinal secretion. NEW & NOTEWORTHY We found that gut microbiota alters serotonin (5-HT)-evoked intestinal secretion in a 5-HT 3 receptor-dependent mechanism and gut microbiota metabolite acetate alters 5-HT 3 receptor expression in

  15. In vitro fermentation behaviors of fucosylated chondroitin sulfate from Pearsonothuria graeffei by human gut microflora.

    PubMed

    Wei, Chao-Yang; Liao, Ning-Bo; Zhang, Yu; Ye, Xing-Qian; Li, Shan; Hu, Ya-Qin; Liu, Dong-Hong; Linhardt, Robert J; Wang, Xin; Chen, Shi-Guo

    2017-09-01

    A fucosylated chondroitin sulfate (FCS-pg) with highly repeated structure from Pearsonothuria graeffei was subjected to a in vitro fermentation model to investigate its fermentability and effects on human gut microflora. High performance liquid chromatography (HPLC) measurement found FCS-pg can be fermented to short chain fatty acids (SCFAs) by gut microflora from partial human fecal samples. 16S rRNA gene-based polymerase chain reaction-based denaturing gradient gel electrophoresis (PCR-DGGE) profiling and real-time quantitative PCR analysis showed that FCS-pg mainly increased the proportions of Clostridium cluster XI, Bacteriodes prevotella group, Bifidobacterium genus, Clostridium cluster I and Clostridium cluster XIVab, whereas the numbers of the Enterobacteriaceae and Lactobacillus decreased. These results indicated that FCS-pg was mainly fermented by Bacteroides, Bifidobacterium and Clostridium. It increased the content of probiotics bacteria in achieving health-enhancing effect, was slightly different than most sulfated polysaccharides from marine animals. The current study provides useful new information on the mechanism of absorption and functional activity on FCS-pg within the gastrointestinal tract of the human body. Copyright © 2017. Published by Elsevier B.V.

  16. Gut Dysbiosis in Animals Due to Environmental Chemical Exposures

    PubMed Central

    Rosenfeld, Cheryl S.

    2017-01-01

    The gut microbiome consists of over 103–104 microorganism inhabitants that together possess 150 times more genes that the human genome and thus should be considered an “organ” in of itself. Such communities of bacteria are in dynamic flux and susceptible to changes in host environment and body condition. In turn, gut microbiome disturbances can affect health status of the host. Gut dysbiosis might result in obesity, diabetes, gastrointestinal, immunological, and neurobehavioral disorders. Such host diseases can originate due to shifts in microbiota favoring more pathogenic species that produce various virulence factors, such as lipopolysaccharide. Bacterial virulence factors and metabolites may be transmitted to distal target sites, including the brain. Other potential mechanisms by which gut dysbiosis can affect the host include bacterial-produced metabolites, production of hormones and factors that mimic those produced by the host, and epimutations. All animals, including humans, are exposed daily to various environmental chemicals that can influence the gut microbiome. Exposure to such chemicals might lead to downstream systemic effects that occur secondary to gut microbiome disturbances. Increasing reports have shown that environmental chemical exposures can target both host and the resident gut microbiome. In this review, we will first consider the current knowledge of how endocrine disrupting chemicals (EDCs), heavy metals, air pollution, and nanoparticles can influence the gut microbiome. The second part of the review will consider how potential environmental chemical-induced gut microbiome changes might subsequently induce pathophysiological responses in the host, although definitive evidence for such effects is still lacking. By understanding how these chemicals result in gut dysbiosis, it may open up new remediation strategies in animals, including humans, exposed to such chemicals. PMID:28936425

  17. GUT MICROBIOTA DYSBIOSIS IS LINKED TO HYPERTENSION

    PubMed Central

    Yang, Tao; Santisteban, Monica M.; Rodriguez, Vermali; Li, Eric; Ahmari, Niousha; Carvajal, Jessica Marulanda; Zadeh, Mojgan; Gong, Minghao; Qi, Yanfei; Zubcevic, Jasenka; Sahay, Bikash; Pepine, Carl J.; Raizada, Mohan K.; Mohamadzadeh, Mansour

    2015-01-01

    Emerging evidence suggests that gut microbiota is critical in the maintenance of physiological homeostasis. The present study was designed to test the hypothesis that dysbiosis in gut microbiota is associated with hypertension since genetic, environmental, and dietary factors profoundly influence both gut microbiota and blood pressure. Bacterial DNA from fecal samples of two rat models of hypertension and a small cohort of patients was used for bacterial genomic analysis. We observed a significant decrease in microbial richness, diversity, and evenness in the spontaneously hypertensive rat, in addition to an increased Firmicutes to Bacteroidetes ratio. These changes were accompanied with decreases in acetate- and butyrate-producing bacteria. Additionally, the microbiota of a small cohort of human hypertension patients was found to follow a similar dysbiotic pattern, as it was less rich and diverse than that of control subjects. Similar changes in gut microbiota were observed in the chronic angiotensin II infusion rat model, most notably decreased microbial richness and an increased Firmicutes to Bacteroidetes ratio. In this model, we evaluated the efficacy of oral minocycline in restoring gut microbiota. In addition to attenuating high blood pressure, minocycline was able to rebalance the dysbiotic hypertension gut microbiota by reducing the Firmicutes to Bacteroidetes ratio. These observations demonstrate that high BP is associated with gut microbiota dysbiosis, both in animal and human hypertension. They suggest that dietary intervention to correct gut microbiota could be an innovative nutritional therapeutic strategy for hypertension. PMID:25870193

  18. Probiotics, gut microbiota and health.

    PubMed

    Butel, M-J

    2014-01-01

    The human gut is a huge complex ecosystem where microbiota, nutrients, and host cells interact extensively, a process crucial for the gut homeostasis and host development with a real partnership. The various bacterial communities that make up the gut microbiota have many functions including metabolic, barrier effect, and trophic functions. Hence, any dysbiosis could have negative consequences in terms of health and many diseases have been associated to impairment of the gut microbiota. These close relationships between gut microbiota, health, and disease, have led to great interest in using probiotics (i.e. live micro-organisms), or prebiotics (i.e. non-digestible substrates) to positively modulate the gut microbiota to prevent or treat some diseases. This review focuses on probiotics, their mechanisms of action, safety, and major health benefits. Health benefits remain to be proven in some indications, and further studies on the best strain(s), dose, and algorithm of administration to be used are needed. Nevertheless, probiotic administration seems to have a great potential in terms of health that justifies more research. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  19. Compositional and Functional Differences in the Human Gut Microbiome Correlate with Clinical Outcome following Infection with Wild-Type Salmonella enterica Serovar Typhi.

    PubMed

    Zhang, Yan; Brady, Arthur; Jones, Cheron; Song, Yang; Darton, Thomas C; Jones, Claire; Blohmke, Christoph J; Pollard, Andrew J; Magder, Laurence S; Fasano, Alessio; Sztein, Marcelo B; Fraser, Claire M

    2018-05-08

    Insights into disease susceptibility as well as the efficacy of vaccines against typhoid and other enteric pathogens may be informed by better understanding the relationship between the effector immune response and the gut microbiota. In the present study, we characterized the composition (16S rRNA gene profiling) and function (RNA sequencing [RNA-seq]) of the gut microbiota following immunization and subsequent exposure to wild-type Salmonella enterica serovar Typhi in a human challenge model to further investigate the central hypothesis that clinical outcomes may be linked to the gut microbiota. Metatranscriptome analysis of longitudinal stool samples collected from study subjects revealed two stable patterns of gene expression for the human gut microbiota, dominated by transcripts from either Methanobrevibacter or a diverse representation of genera in the Firmicutes phylum. Immunization with one of two live oral attenuated vaccines against S.  Typhi had minimal effects on the composition or function of the gut microbiota. It was observed that subjects harboring the methanogen-dominated transcriptome community at baseline displayed a lower risk of developing symptoms of typhoid following challenge with wild-type S.  Typhi. Furthermore, genes encoding antioxidant proteins, metal homeostasis and transport proteins, and heat shock proteins were expressed at a higher level at baseline or after challenge with S.  Typhi in subjects who did not develop symptoms of typhoid. These data suggest that functional differences relating to redox potential and ion homeostasis in the gut microbiota may impact clinical outcomes following exposure to wild-type S.  Typhi. IMPORTANCE S.  Typhi is a significant cause of systemic febrile morbidity in settings with poor sanitation and limited access to clean water. It has been demonstrated that the human gut microbiota can influence mucosal immune responses, but there is little information available on the impact of the human gut

  20. Evaluating variation in human gut microbiota profiles due to DNA extraction method and inter-subject differences.

    PubMed

    Wagner Mackenzie, Brett; Waite, David W; Taylor, Michael W

    2015-01-01

    The human gut contains dense and diverse microbial communities which have profound influences on human health. Gaining meaningful insights into these communities requires provision of high quality microbial nucleic acids from human fecal samples, as well as an understanding of the sources of variation and their impacts on the experimental model. We present here a systematic analysis of commonly used microbial DNA extraction methods, and identify significant sources of variation. Five extraction methods (Human Microbiome Project protocol, MoBio PowerSoil DNA Isolation Kit, QIAamp DNA Stool Mini Kit, ZR Fecal DNA MiniPrep, phenol:chloroform-based DNA isolation) were evaluated based on the following criteria: DNA yield, quality and integrity, and microbial community structure based on Illumina amplicon sequencing of the V4 region of bacterial and archaeal 16S rRNA genes. Our results indicate that the largest portion of variation within the model was attributed to differences between subjects (biological variation), with a smaller proportion of variation associated with DNA extraction method (technical variation) and intra-subject variation. A comprehensive understanding of the potential impact of technical variation on the human gut microbiota will help limit preventable bias, enabling more accurate diversity estimates.

  1. The Influence of Social Conditions Across the Life Course on the Human Gut Microbiota: A Pilot Project With the Wisconsin Longitudinal Study.

    PubMed

    Herd, Pamela; Schaeffer, Nora Cate; DiLoreto, Kerryann; Jacques, Karen; Stevenson, John; Rey, Federico; Roan, Carol

    2017-12-15

    To test the feasibility of collecting and integrating data on the gut microbiome into one of the most comprehensive longitudinal studies of aging and health, the Wisconsin Longitudinal Study (WLS). The long-term goal of this integration is to clarify the contribution of social conditions in shaping the composition of the gut microbiota late in life. Research on the microbiome, which is considered to be of parallel importance to human health as the human genome, has been hindered by human studies with nonrandomly selected samples and with limited data on social conditions over the life course. No existing population-based longitudinal study had collected fecal specimens. Consequently, we created an in-person protocol to collect stool specimens from a subgroup of WLS participants. We collected 429 stool specimens, yielding a 74% response rate and one of the largest human samples to date. The addition of data on the gut microbiome to the WLS-and to other population based longitudinal studies of aging-is feasible, under the right conditions, and can generate innovative research on the relationship between social conditions and the gut microbiome. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Phylogenetic distribution of three pathways for propionate production within the human gut microbiota

    PubMed Central

    Reichardt, Nicole; Duncan, Sylvia H; Young, Pauline; Belenguer, Alvaro; McWilliam Leitch, Carol; Scott, Karen P; Flint, Harry J; Louis, Petra

    2014-01-01

    Propionate is produced in the human large intestine by microbial fermentation and may help maintain human health. We have examined the distribution of three different pathways used by bacteria for propionate formation using genomic and metagenomic analysis of the human gut microbiota and by designing degenerate primer sets for the detection of diagnostic genes for these pathways. Degenerate primers for the acrylate pathway (detecting the lcdA gene, encoding lactoyl-CoA dehydratase) together with metagenomic mining revealed that this pathway is restricted to only a few human colonic species within the Lachnospiraceae and Negativicutes. The operation of this pathway for lactate utilisation in Coprococcus catus (Lachnospiraceae) was confirmed using stable isotope labelling. The propanediol pathway that processes deoxy sugars such as fucose and rhamnose was more abundant within the Lachnospiraceae (based on the pduP gene, which encodes propionaldehyde dehydrogenase), occurring in relatives of Ruminococcus obeum and in Roseburia inulinivorans. The dominant source of propionate from hexose sugars, however, was concluded to be the succinate pathway, as indicated by the widespread distribution of the mmdA gene that encodes methylmalonyl-CoA decarboxylase in the Bacteroidetes and in many Negativicutes. In general, the capacity to produce propionate or butyrate from hexose sugars resided in different species, although two species of Lachnospiraceae (C. catus and R. inulinivorans) are now known to be able to switch from butyrate to propionate production on different substrates. A better understanding of the microbial ecology of short-chain fatty acid formation may allow modulation of propionate formation by the human gut microbiota. PMID:24553467

  3. Dietary Fiber and the Human Gut Microbiota: Application of Evidence Mapping Methodology.

    PubMed

    Sawicki, Caleigh M; Livingston, Kara A; Obin, Martin; Roberts, Susan B; Chung, Mei; McKeown, Nicola M

    2017-02-10

    Interest is rapidly growing around the role of the human gut microbiota in facilitating beneficial health effects associated with consumption of dietary fiber. An evidence map of current research activity in this area was created using a newly developed database of dietary fiber intervention studies in humans to identify studies with the following broad outcomes: (1) modulation of colonic microflora; and/or (2) colonic fermentation/short-chain fatty acid concentration. Study design characteristics, fiber exposures, and outcome categories were summarized. A sub-analysis described oligosaccharides and bacterial composition in greater detail. One hundred eighty-eight relevant studies were identified. The fiber categories represented by the most studies were oligosaccharides (20%), resistant starch (16%), and chemically synthesized fibers (15%). Short-chain fatty acid concentration (47%) and bacterial composition (88%) were the most frequently studied outcomes. Whole-diet interventions, measures of bacterial activity, and studies in metabolically at-risk subjects were identified as potential gaps in the evidence. This evidence map efficiently captured the variability in characteristics of expanding research on dietary fiber, gut microbiota, and physiological health benefits, and identified areas that may benefit from further research. We hope that this evidence map will provide a resource for researchers to direct new intervention studies and meta-analyses.

  4. Dietary Fiber and the Human Gut Microbiota: Application of Evidence Mapping Methodology

    PubMed Central

    Sawicki, Caleigh M.; Livingston, Kara A.; Obin, Martin; Roberts, Susan B.; Chung, Mei; McKeown, Nicola M.

    2017-01-01

    Interest is rapidly growing around the role of the human gut microbiota in facilitating beneficial health effects associated with consumption of dietary fiber. An evidence map of current research activity in this area was created using a newly developed database of dietary fiber intervention studies in humans to identify studies with the following broad outcomes: (1) modulation of colonic microflora; and/or (2) colonic fermentation/short-chain fatty acid concentration. Study design characteristics, fiber exposures, and outcome categories were summarized. A sub-analysis described oligosaccharides and bacterial composition in greater detail. One hundred eighty-eight relevant studies were identified. The fiber categories represented by the most studies were oligosaccharides (20%), resistant starch (16%), and chemically synthesized fibers (15%). Short-chain fatty acid concentration (47%) and bacterial composition (88%) were the most frequently studied outcomes. Whole-diet interventions, measures of bacterial activity, and studies in metabolically at-risk subjects were identified as potential gaps in the evidence. This evidence map efficiently captured the variability in characteristics of expanding research on dietary fiber, gut microbiota, and physiological health benefits, and identified areas that may benefit from further research. We hope that this evidence map will provide a resource for researchers to direct new intervention studies and meta-analyses. PMID:28208609

  5. The use of injection-corrosive method in the study of extraorganic bloodstream of human intact stomach.

    PubMed

    Hryn, V H; Svintsytska, N L; Piliuhin, V; Ustenko, R L; Katsenko, A L

    Functional and morphological state of the organs and tissues mainly depends on the adequate blood supply and lymph movement, function of which is integrated by the nervous system. A crucial link in the morphogenesis of the gastric lesions is the intensity of vascularization, as well as the fact that in its venous part the gastric bloodstream is almost entirely included into the portal vein system. Knowledge of the anatomy of the normal human stomach conditions is of indispensable practical value, since they are required for the proper interpretation of the pathological changes occurred in it. To obtain the spatial visual information about the angioarchitecture of the extraorganic bloodstream of human intact stomach deep in the gastric wall. 10 post-autopsy adult total stomach specimens of patients, died for the reasons not associated with manifested gastrointestinal diseases have been analyzed. The specimens were extracted during the dissection together with portions of lesser and greater omentum, and segment of aorta with celiac trunk. To neutralize the acidic contents of the stomach, its cavity was washed by 4% sodium bicarbonate solution with subsequent wash in warm running water. The vascular injection method with subsequent corrosion of soft tissues was used in investigation of gastric bloodstream. On the basis of the investigations the advantages of the countercurrent-crossing method of injection of extraorganic vessels to fill the bloodstream of human stomach have been discussed. Positive results of the suggested technique for morphological study of blood vessels have been noted. The three-dimensional spatial organization of the extraorganic bloodstream of the intact stomach can be studied on the basis of the injection-corrosive casts. Thus, the use of the suggested method enables to obtain the fine three-dimensional reproduction of extraorganic bloodstream of the human stomach. The obtained high-quality casts, in turn, are used for the subsequent

  6. Systematic genome assessment of B-vitamin biosynthesis suggests co-operation among gut microbes

    PubMed Central

    Magnúsdóttir, Stefanía; Ravcheev, Dmitry; de Crécy-Lagard, Valérie; Thiele, Ines

    2015-01-01

    The human gut microbiota supplies its host with essential nutrients, including B-vitamins. Using the PubSEED platform, we systematically assessed the genomes of 256 common human gut bacteria for the presence of biosynthesis pathways for eight B-vitamins: biotin, cobalamin, folate, niacin, pantothenate, pyridoxine, riboflavin, and thiamin. On the basis of the presence and absence of genome annotations, we predicted that each of the eight vitamins was produced by 40–65% of the 256 human gut microbes. The distribution of synthesis pathways was diverse; some genomes had all eight biosynthesis pathways, whereas others contained no de novo synthesis pathways. We compared our predictions to experimental data from 16 organisms and found 88% of our predictions to be in agreement with published data. In addition, we identified several pairs of organisms whose vitamin synthesis pathway pattern complemented those of other organisms. This analysis suggests that human gut bacteria actively exchange B-vitamins among each other, thereby enabling the survival of organisms that do not synthesize any of these essential cofactors. This result indicates the co-evolution of the gut microbes in the human gut environment. Our work presents the first comprehensive assessment of the B-vitamin synthesis capabilities of the human gut microbiota. We propose that in addition to diet, the gut microbiota is an important source of B-vitamins, and that changes in the gut microbiota composition can severely affect our dietary B-vitamin requirements. PMID:25941533

  7. Human Catestatin Alters Gut Microbiota Composition in Mice

    PubMed Central

    Rabbi, Mohammad F.; Munyaka, Peris M.; Eissa, Nour; Metz-Boutigue, Marie-Hélène; Khafipour, Ehsan; Ghia, Jean Eric

    2017-01-01

    The mammalian intestinal tract is heavily colonized with a dense, complex, and diversified microbial populations. In healthy individuals, an array of epithelial antimicrobial agents is secreted in the gut to aid intestinal homeostasis. Enterochromaffin cells (EC) in the intestinal epithelium are a major source of chromogranin A (CgA), which is a pro-hormone and can be cleaved into many bioactive peptides that include catestatin (CST). This study was carried out to evaluate the possible impact of CST on gut microbiota in vivo using a mouse model. The CST (Human CgA352−372) or normal saline was intrarectally administered in C57BL/6 male mice for 6 days and then sacrificed. Feces and colonic mucosa tissue samples were collected, DNA was extracted, the V4 region of bacterial 16S rRNA gene was amplified and subjected to MiSeq Illumina sequencing. The α-diversity was calculated using Chao 1 and β-diversity was determined using QIIME. Differences at the genus level were determined using partial least square discriminant analysis (PLS-DA). Phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) was used to predict functional capacity of bacterial community. CST treatment did not modify bacterial richness in fecal and colonic mucosa-associated microbiota; however, treatment significantly modified bacterial community composition between the groups. Also, CST-treated mice had a significantly lower relative abundance of Firmicutes and higher abundance of Bacteroidetes, observed only in fecal samples. However, at lower phylogenetic levels, PLS-DA analysis revealed that some bacterial taxa were significantly associated with the CST-treated mice in both fecal and colonic mucosa samples. In addition, differences in predicted microbial functional pathways in both fecal and colonic mucosa samples were detected. The results support the hypothesis that CST treatment modulates gut microbiota composition under non-pathophysiological conditions

  8. Bacteria from diverse habitats colonize and compete in the mouse gut.

    PubMed

    Seedorf, Henning; Griffin, Nicholas W; Ridaura, Vanessa K; Reyes, Alejandro; Cheng, Jiye; Rey, Federico E; Smith, Michelle I; Simon, Gabriel M; Scheffrahn, Rudolf H; Woebken, Dagmar; Spormann, Alfred M; Van Treuren, William; Ursell, Luke K; Pirrung, Megan; Robbins-Pianka, Adam; Cantarel, Brandi L; Lombard, Vincent; Henrissat, Bernard; Knight, Rob; Gordon, Jeffrey I

    2014-10-09

    To study how microbes establish themselves in a mammalian gut environment, we colonized germ-free mice with microbial communities from human, zebrafish, and termite guts, human skin and tongue, soil, and estuarine microbial mats. Bacteria from these foreign environments colonized and persisted in the mouse gut; their capacity to metabolize dietary and host carbohydrates and bile acids correlated with colonization success. Cohousing mice harboring these xenomicrobiota or a mouse cecal microbiota, along with germ-free "bystanders," revealed the success of particular bacterial taxa in invading guts with established communities and empty gut habitats. Unanticipated patterns of ecological succession were observed; for example, a soil-derived bacterium dominated even in the presence of bacteria from other gut communities (zebrafish and termite), and human-derived bacteria colonized germ-free bystander mice before mouse-derived organisms. This approach can be generalized to address a variety of mechanistic questions about succession, including succession in the context of microbiota-directed therapeutics. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Human gut endogenous proteins as a potential source of angiotensin-I-converting enzyme (ACE-I)-, renin inhibitory and antioxidant peptides.

    PubMed

    Dave, Lakshmi A; Hayes, Maria; Montoya, Carlos A; Rutherfurd, Shane M; Moughan, Paul J

    2016-02-01

    It is well known that endogenous bioactive proteins and peptides play a substantial role in the body's first line of immunological defence, immune-regulation and normal body functioning. Further, the peptides derived from the luminal digestion of proteins are also important for body function. For example, within the peptide database BIOPEP (http://www.uwm.edu.pl/biochemia/index.php/en/biopep) 12 endogenous antimicrobial and 64 angiotensin-I-converting enzyme (ACE-I) inhibitory peptides derived from human milk and plasma proteins are listed. The antimicrobial peptide database (http://aps.unmc.edu/AP/main.php) lists over 111 human host-defence peptides. Several endogenous proteins are secreted in the gut and are subject to the same gastrointestinal digestion processes as food proteins derived from the diet. The human gut endogenous proteins (GEP) include mucins, serum albumin, digestive enzymes, hormones, and proteins from sloughed off epithelial cells and gut microbiota, and numerous other secreted proteins. To date, much work has been carried out regarding the health altering effects of food-derived bioactive peptides but little attention has been paid to the possibility that GEP may also be a source of bioactive peptides. In this review, we discuss the potential of GEP to constitute a gut cryptome from which bioactive peptides such as ACE-I inhibitory, renin inhibitory and antioxidant peptides may be derived. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Discovery of intramolecular trans-sialidases in human gut microbiota suggests novel mechanisms of mucosal adaptation

    NASA Astrophysics Data System (ADS)

    Tailford, Louise E.; Owen, C. David; Walshaw, John; Crost, Emmanuelle H.; Hardy-Goddard, Jemma; Le Gall, Gwenaelle; de Vos, Willem M.; Taylor, Garry L.; Juge, Nathalie

    2015-07-01

    The gastrointestinal mucus layer is colonized by a dense community of microbes catabolizing dietary and host carbohydrates during their expansion in the gut. Alterations in mucosal carbohydrate availability impact on the composition of microbial species. Ruminococcus gnavus is a commensal anaerobe present in the gastrointestinal tract of >90% of humans and overrepresented in inflammatory bowel diseases (IBD). Using a combination of genomics, enzymology and crystallography, we show that the mucin-degrader R. gnavus ATCC 29149 strain produces an intramolecular trans-sialidase (IT-sialidase) that cleaves off terminal α2-3-linked sialic acid from glycoproteins, releasing 2,7-anhydro-Neu5Ac instead of sialic acid. Evidence of IT-sialidases in human metagenomes indicates that this enzyme occurs in healthy subjects but is more prevalent in IBD metagenomes. Our results uncover a previously unrecognized enzymatic activity in the gut microbiota, which may contribute to the adaptation of intestinal bacteria to the mucosal environment in health and disease.

  11. Mucin glycan foraging in the human gut microbiome

    PubMed Central

    Tailford, Louise E.; Crost, Emmanuelle H.; Kavanaugh, Devon; Juge, Nathalie

    2015-01-01

    The availability of host and dietary carbohydrates in the gastrointestinal (GI) tract plays a key role in shaping the structure-function of the microbiota. In particular, some gut bacteria have the ability to forage on glycans provided by the mucus layer covering the GI tract. The O-glycan structures present in mucin are diverse and complex, consisting predominantly of core 1-4 mucin-type O-glycans containing α- and β- linked N-acetyl-galactosamine, galactose and N-acetyl-glucosamine. These core structures are further elongated and frequently modified by fucose and sialic acid sugar residues via α1,2/3/4 and α2,3/6 linkages, respectively. The ability to metabolize these mucin O-linked oligosaccharides is likely to be a key factor in determining which bacterial species colonize the mucosal surface. Due to their proximity to the immune system, mucin-degrading bacteria are in a prime location to influence the host response. However, despite the growing number of bacterial genome sequences available from mucin degraders, our knowledge on the structural requirements for mucin degradation by gut bacteria remains fragmented. This is largely due to the limited number of functionally characterized enzymes and the lack of studies correlating the specificity of these enzymes with the ability of the strain to degrade and utilize mucin and mucin glycans. This review focuses on recent findings unraveling the molecular strategies used by mucin-degrading bacteria to utilize host glycans, adapt to the mucosal environment, and influence human health. PMID:25852737

  12. Gut Microbiome and Putative Resistome of Inca and Italian Nobility Mummies

    PubMed Central

    Santiago-Rodriguez, Tasha M.; Luciani, Stefania; Toranzos, Gary A.; Marota, Isolina; Giuffra, Valentina; Cano, Raul J.

    2017-01-01

    Little is still known about the microbiome resulting from the process of mummification of the human gut. In the present study, the gut microbiota, genes associated with metabolism, and putative resistome of Inca and Italian nobility mummies were characterized by using high-throughput sequencing. The Italian nobility mummies exhibited a higher bacterial diversity as compared to the Inca mummies when using 16S ribosomal (rRNA) gene amplicon sequencing, but both groups showed bacterial and fungal taxa when using shotgun metagenomic sequencing that may resemble both the thanatomicrobiome and extant human gut microbiomes. Identification of sequences associated with plants, animals, and carbohydrate-active enzymes (CAZymes) may provide further insights into the dietary habits of Inca and Italian nobility mummies. Putative antibiotic-resistance genes in the Inca and Italian nobility mummies support a human gut resistome prior to the antibiotic therapy era. The higher proportion of putative antibiotic-resistance genes in the Inca compared to Italian nobility mummies may support the hypotheses that a greater exposure to the environment may result in a greater acquisition of antibiotic-resistance genes. The present study adds knowledge of the microbiome resulting from the process of mummification of the human gut, insights of ancient dietary habits, and the preserved putative human gut resistome prior the antibiotic therapy era. PMID:29112136

  13. Gut Microbiome and Putative Resistome of Inca and Italian Nobility Mummies.

    PubMed

    Santiago-Rodriguez, Tasha M; Fornaciari, Gino; Luciani, Stefania; Toranzos, Gary A; Marota, Isolina; Giuffra, Valentina; Cano, Raul J

    2017-11-07

    Little is still known about the microbiome resulting from the process of mummification of the human gut. In the present study, the gut microbiota, genes associated with metabolism, and putative resistome of Inca and Italian nobility mummies were characterized by using high-throughput sequencing. The Italian nobility mummies exhibited a higher bacterial diversity as compared to the Inca mummies when using 16S ribosomal (rRNA) gene amplicon sequencing, but both groups showed bacterial and fungal taxa when using shotgun metagenomic sequencing that may resemble both the thanatomicrobiome and extant human gut microbiomes. Identification of sequences associated with plants, animals, and carbohydrate-active enzymes (CAZymes) may provide further insights into the dietary habits of Inca and Italian nobility mummies. Putative antibiotic-resistance genes in the Inca and Italian nobility mummies support a human gut resistome prior to the antibiotic therapy era. The higher proportion of putative antibiotic-resistance genes in the Inca compared to Italian nobility mummies may support the hypotheses that a greater exposure to the environment may result in a greater acquisition of antibiotic-resistance genes. The present study adds knowledge of the microbiome resulting from the process of mummification of the human gut, insights of ancient dietary habits, and the preserved putative human gut resistome prior the antibiotic therapy era.

  14. Development of Human Breast Milk Microbiota-Associated Mice as a Method to Identify Breast Milk Bacteria Capable of Colonizing Gut.

    PubMed

    Wang, Xiaoxin; Lu, Huifang; Feng, Zhou; Cao, Jie; Fang, Chao; Xu, Xianming; Zhao, Liping; Shen, Jian

    2017-01-01

    Human breast milk is recognized as one of multiple important sources of commensal bacteria for infant gut. Previous studies searched for the bacterial strains shared between breast milk and infant feces by isolating bacteria and performing strain-level bacterial genotyping, but only limited number of milk bacteria were identified to colonize infant gut, including bacteria from Bifidobacterium , Staphylococcus , Lactobacillus , and Escherichia / Shigella . Here, to identify the breast milk bacteria capable of colonizing gut without the interference of bacteria of origins other than the milk or the necessity to analyze infant feces, normal chow-fed germ-free mice were orally inoculated with the breast milk collected from a mother 2 days after vaginal delivery. According to 16S rRNA gene-based denaturant gradient gel electrophoresis and Illumina sequencing, bacteria at >1% abundance in the milk inoculum were only Streptococcus (56.0%) and Staphylococcus (37.4%), but in the feces of recipient mice were Streptococcus (80.3 ± 2.3%), Corynebacterium (10.0 ± 2.6 %), Staphylococcus (7.6 ± 1.6%), and Propionibacterium (2.1 ± 0.5%) that were previously shown as dominant bacterial genera in the meconium of C-section-delivered human babies; the abundance of anaerobic gut-associated bacteria, Faecalibacterium , Prevotella , Roseburia , Ruminococcus , and Bacteroides , was 0.01-1% in the milk inoculum and 0.003-0.01% in mouse feces; the abundance of Bifidobacterium spp. was below the detection limit of Illumina sequencing in the milk but at 0.003-0.01% in mouse feces. The human breast milk microbiota-associated mouse model may be used to identify additional breast milk bacteria that potentially colonize infant gut.

  15. Simple blood-feeding method for live imaging of gut tube remodeling in regenerating planarians.

    PubMed

    Hosoda, Kazutaka; Morimoto, Mizuki; Motoishi, Minako; Nishimura, Osamu; Agata, Kiyokazu; Umesono, Yoshihiko

    2016-04-01

    Live cell imaging is a powerful technique to study cellular dynamics in vivo during animal development and regeneration. However, few live imaging methods have been reported for studying planarian regeneration. Here, we developed a simple method for steady visualization of gut tube remodeling during regeneration of a living freshwater planarian, Dugesia japonica. When planarians were fed blood several times, gut branches were well-visualized in living intact animals under normal bright-field illumination. Interestingly, tail fragments derived from these colored planarians enabled successive observation of the processes of the formation of a single anterior gut branch in the prepharyngeal region from the preexisting two posterior gut branches in the same living animals during head regeneration. Furthermore, we combined this method and RNA interference (RNAi) and thereby showed that a D. japonica raf-related gene (DjrafA) and mek-related gene (DjmekA) we identified both play a major role in the activation of extracellular signal-regulated kinase (ERK) signaling during planarian regeneration, as indicated by their RNAi-induced defects on gut tube remodeling in a time-saving initial screening using blood-feeding without immunohistochemical detection of the gut. Thus, this blood-feeding method is useful for live imaging of gut tube remodeling, and provides an advance for the field of regeneration study in planarians. © 2016 Japanese Society of Developmental Biologists.

  16. Fractography of human intact long bone by bending.

    PubMed

    Kimura, T; Ogawa, K; Kamiya, M

    1977-05-27

    Human intact tibiae were tested using the static bending method to learn about the relationship between the fracture surface and the failure mode. The bending test was applied to test pieces and to whole bones. The fracture surface was observed by scanning electron microscopy. The bone fracture is closely related to the architecture of the bone substance, especially to the direction of the Haversian canals and the lamellae. The failure mode and the sequence of the break line of the bone can be found out by the observation on the fracture surface. Hardly any crushing effects caused by the compressive force is seen. The mechanical properties of the fractured bone can be estimated to some extend by considering the direction of the break line and the failure mode. The strength calculated by the simple beam formula for elastic materials can not be obtained directly because of the plastic deformation of the bone. The results of the tensile test may be applied to the fracture using the static bending moment.

  17. Minerals in the gut: scoping a Cambrian digestive system

    NASA Astrophysics Data System (ADS)

    Strang, K. M.; Armstrong, H. A.; Harper, D. A. T.

    2016-11-01

    The Sirius Passet Lagerstätte of North Greenland contains the first exceptionally preserved mat-ground community of the Cambrian, dominated, in terms of abundance, by trilobites but particularly characterized by iconic arthropods and lobopods, some also occurring in the Burgess shale. High-resolution photography, scanning electron imaging and elemental mapping have been carried out on a variety of specimens of the non-mineralized arthropod Campanamuta mantonae (Budd 2011 J. Syst. Palaeontol. 9, 217-260 (doi:10.1080/14772019.2010.492644)) which has three-dimensional gut and muscle preservation. Results show that the guts contain a high concentration of calcium phosphate (approximating to the mineral francolite), whereas the adjacent muscles are silicified. This indicates a unique, tissue-specific taphonomy for this Cambrian taxon. We hypothesize that the precipitation of calcium phosphate in the guts occurs rapidly after death by `crystal seed' processes in suboxic, slightly acidic conditions; critically, the gut wall remained intact during precipitation. We postulate that the calcium phosphate was derived from ingested cellular material. Silicification of the muscles followed as the localized water chemistry became saturated in silica, high in Fe2+, and low in oxygen and sulfate. We document here the unique occurrence of two distinct but mechanistically similar taphonomic pathways within a diverse suite of possibilities in an Early Cambrian Lagerstätte.

  18. Metabolome of human gut microbiome is predictive of host dysbiosis.

    PubMed

    Larsen, Peter E; Dai, Yang

    2015-01-01

    Humans live in constant and vital symbiosis with a closely linked bacterial ecosystem called the microbiome, which influences many aspects of human health. When this microbial ecosystem becomes disrupted, the health of the human host can suffer; a condition called dysbiosis. However, the community compositions of human microbiomes also vary dramatically from individual to individual, and over time, making it difficult to uncover the underlying mechanisms linking the microbiome to human health. We propose that a microbiome's interaction with its human host is not necessarily dependent upon the presence or absence of particular bacterial species, but instead is dependent on its community metabolome; an emergent property of the microbiome. Using data from a previously published, longitudinal study of microbiome populations of the human gut, we extrapolated information about microbiome community enzyme profiles and metabolome models. Using machine learning techniques, we demonstrated that the aggregate predicted community enzyme function profiles and modeled metabolomes of a microbiome are more predictive of dysbiosis than either observed microbiome community composition or predicted enzyme function profiles. Specific enzyme functions and metabolites predictive of dysbiosis provide insights into the molecular mechanisms of microbiome-host interactions. The ability to use machine learning to predict dysbiosis from microbiome community interaction data provides a potentially powerful tool for understanding the links between the human microbiome and human health, pointing to potential microbiome-based diagnostics and therapeutic interventions.

  19. Gut Microbiota as a Therapeutic Target for Metabolic Disorders.

    PubMed

    Okubo, Hirofumi; Nakatsu, Yusuke; Kushiyama, Akifumi; Yamamotoya, Takeshi; Matsunaga, Yasuka; Inoue, Masa-Ki; Fujishiro, Midori; Sakoda, Hideaki; Ohno, Haruya; Yoneda, Masayasu; Ono, Hiraku; Asano, Tomoichiro

    2018-01-01

    Gut microbiota play a vital role not only in the digestion and absorption of nutrients, but also in homeostatic maintenance of host immunity, metabolism and the gut barrier. Recent evidence suggests that gut microbiota alterations contribute to the pathogenesis of metabolic disorders. In this review, we discuss the association between the gut microbiota and metabolic disorders, such as obesity, type 2 diabetes mellitus and non-alcoholic fatty liver disease, and the contribution of relevant modulating interventions, focusing on recent human studies. Several studies have identified potential causal associations between gut microbiota and metabolic disorders, as well as the underlying mechanisms. The effects of modulating interventions, such as prebiotics, probiotics, fecal microbiota transplantation, and other new treatment possibilities on these metabolic disorders have also been reported. A growing body of evidence highlights the role of gut microbiota in the development of dysbiosis, which in turn influences host metabolism and disease phenotypes. Further studies are required to elucidate the precise mechanisms by which gut microbiota-derived mediators induce metabolic disorders and modulating interventions exert their beneficial effects in humans. The gut microbiota represents a novel potential therapeutic target for a range of metabolic disorders. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Gut microbiota, epigenetic modification and colorectal cancer

    PubMed Central

    Rezasoltani, Sama; Asadzadeh-Aghdaei, Hamid; Nazemalhosseini-Mojarad, Ehsan; Dabiri, Hossein; Ghanbari, Reza; Zali, Mohammad Reza

    2017-01-01

    Micro-organisms contain 90% of cells in human body and trillions foreign genes versus less than 30 thousand of their own. The human colon host various species of microorganisms, appraised at more than 1014 microbiota and contained of over a thousand species. Although each one’s profile is separable, the relative abundance and distribution of bacterial species is the same between healthy ones, causing conservation of each person’s overall health. Germline DNA mutations have been attributed to the less than 5% of CRC occurrence while more than 90% is associated with the epigenetic regulation. The most ubiquitous environmental factor in epigenetic modification is gut microbiota. Disruptive changes in the gut microbiome strongly contributed to the improvement of colorectal cancer. Gut microbiota may play critical role in progression of CRC via their metabolite or their structural component interacting with host intestinal epithelial cell (IEC). Herein we discuss the mechanism of epigenetic modification and its implication in CRC development, progression even metastasis by gut microbiota induction. PMID:29213996

  1. Does the Gut Microbiota Contribute to Obesity? Going beyond the Gut Feeling

    PubMed Central

    Aguirre, Marisol; Venema, Koen

    2015-01-01

    Increasing evidence suggests that gut microbiota is an environmental factor that plays a crucial role in obesity. However, the aetiology of obesity is rather complex and depends on different factors. Furthermore, there is a lack of consensus about the exact role that this microbial community plays in the host. The aim of this review is to present evidence about what has been characterized, compositionally and functionally, as obese gut microbiota. In addition, the different reasons explaining the so-far unclear role are discussed considering evidence from in vitro, animal and human studies. PMID:27682087

  2. The gut microbiota, environment and diseases of modern society.

    PubMed

    Kelsen, Judith R; Wu, Gary D

    2012-01-01

    The human gut microbiota is a complex community that provides important metabolic functions to the host. Consequently, alterations in the gut microbiota have been associated with the pathogenesis of several human diseases associated with a disturbance in metabolism, particularly those that have been increasing in incidence over the last several decades including obesity, diabetes and atherosclerosis. In this review, we explore how advances in deep DNA sequencing technology have provided us a greater understanding of the factors that influence that composition of the gut microbiota and its possible links to the pathogenesis of these diseases.

  3. Functional metagenomics reveals novel salt tolerance loci from the human gut microbiome

    PubMed Central

    Culligan, Eamonn P; Sleator, Roy D; Marchesi, Julian R; Hill, Colin

    2012-01-01

    Metagenomics is a powerful tool that allows for the culture-independent analysis of complex microbial communities. One of the most complex and dense microbial ecosystems known is that of the human distal colon, with cell densities reaching up to 1012 per gram of faeces. With the majority of species as yet uncultured, there are an enormous number of novel genes awaiting discovery. In the current study, we conducted a functional screen of a metagenomic library of the human gut microbiota for potential salt-tolerant clones. Using transposon mutagenesis, three genes were identified from a single clone exhibiting high levels of identity to a species from the genus Collinsella (closest relative being Collinsella aerofaciens) (COLAER_01955, COLAER_01957 and COLAER_01981), a high G+C, Gram-positive member of the Actinobacteria commonly found in the human gut. The encoded proteins exhibit a strong similarity to GalE, MurB and MazG. Furthermore, pyrosequencing and bioinformatic analysis of two additional fosmid clones revealed the presence of an additional galE and mazG gene, with the highest level of genetic identity to Akkermansia muciniphila and Eggerthella sp. YY7918, respectively. Cloning and heterologous expression of the genes in the osmosensitive strain, Escherichia coli MKH13, resulted in increased salt tolerance of the transformed cells. It is hoped that the identification of atypical salt tolerance genes will help to further elucidate novel salt tolerance mechanisms, and will assist our increased understanding how resident bacteria cope with the osmolarity of the gastrointestinal tract. PMID:22534607

  4. Non-celiac gluten sensitivity triggers gut dysbiosis, neuroinflammation, gut-brain axis dysfunction, and vulnerability for dementia.

    PubMed

    Daulatzai, Mak Adam

    2015-01-01

    The non-celiac gluten sensitivity (NCGS) is a chronic functional gastrointestinal disorder which is very common world wide. The human gut harbors microbiota which has a wide variety of microbial organisms; they are mainly symbiotic and important for well being. However, "dysbiosis" - i.e. an alteration in normal commensal gut microbiome with an increase in pathogenic microbes, impacts homeostasis/health. Dysbiosis in NCGS causes gut inflammation, diarrhea, constipation, visceral hypersensitivity, abdominal pain, dysfunctional metabolic state, and peripheral immune and neuro-immune communication. Thus, immune-mediated gut and extra-gut dysfunctions, due to gluten sensitivity with comorbid diarrhea, may last for decades. A significant proportion of NCGS patients may chronically consume alcohol, non-steroidal anti-inflammatory drugs, and fatty diet, as well as suffer from various comorbid disorders. The above pathophysiological substrate and dysbiosis are underpinned by dysfunctional bidirectional "Gut-Brain Axis" pathway. Pathogenic gut microbiota is known to upregulate gut- and systemic inflammation (due to lipopolysaccharide from pathogenic bacteria and synthesis of pro-inflammatory cytokines); they enhance energy harvest, cause obesity, insulin resistance, and dysfunctional vago-vagal gut-brain axis. Conceivably, the above cascade of pathology may promote various pathophysiological mechanisms, neuroinflammation, and cognitive dysfunction. Hence, dysbiosis, gut inflammation, and chronic dyshomeostasis are of great clinical relevance. It is argued here that we need to be aware of NCGS and its chronic pathophysiological impact. Therapeutic measures including probiotics, vagus nerve stimulation, antioxidants, alpha 7 nicotinic receptor agonists, and corticotropin-releasing factor receptor 1 antagonist may ameliorate neuroinflammation and oxidative stress in NCGS; they may therefore, prevent cognitive dysfunction and vulnerability to Alzheimer's disease.

  5. Gut Microbes and the Brain: Paradigm Shift in Neuroscience

    PubMed Central

    Knight, Rob; Mazmanian, Sarkis K.; Cryan, John F.; Tillisch, Kirsten

    2014-01-01

    The discovery of the size and complexity of the human microbiome has resulted in an ongoing reevaluation of many concepts of health and disease, including diseases affecting the CNS. A growing body of preclinical literature has demonstrated bidirectional signaling between the brain and the gut microbiome, involving multiple neurocrine and endocrine signaling mechanisms. While psychological and physical stressors can affect the composition and metabolic activity of the gut microbiota, experimental changes to the gut microbiome can affect emotional behavior and related brain systems. These findings have resulted in speculation that alterations in the gut microbiome may play a pathophysiological role in human brain diseases, including autism spectrum disorder, anxiety, depression, and chronic pain. Ongoing large-scale population-based studies of the gut microbiome and brain imaging studies looking at the effect of gut microbiome modulation on brain responses to emotion-related stimuli are seeking to validate these speculations. This article is a summary of emerging topics covered in a symposium and is not meant to be a comprehensive review of the subject. PMID:25392516

  6. Gut microbiome of the Hadza hunter-gatherers.

    PubMed

    Schnorr, Stephanie L; Candela, Marco; Rampelli, Simone; Centanni, Manuela; Consolandi, Clarissa; Basaglia, Giulia; Turroni, Silvia; Biagi, Elena; Peano, Clelia; Severgnini, Marco; Fiori, Jessica; Gotti, Roberto; De Bellis, Gianluca; Luiselli, Donata; Brigidi, Patrizia; Mabulla, Audax; Marlowe, Frank; Henry, Amanda G; Crittenden, Alyssa N

    2014-04-15

    Human gut microbiota directly influences health and provides an extra means of adaptive potential to different lifestyles. To explore variation in gut microbiota and to understand how these bacteria may have co-evolved with humans, here we investigate the phylogenetic diversity and metabolite production of the gut microbiota from a community of human hunter-gatherers, the Hadza of Tanzania. We show that the Hadza have higher levels of microbial richness and biodiversity than Italian urban controls. Further comparisons with two rural farming African groups illustrate other features unique to Hadza that can be linked to a foraging lifestyle. These include absence of Bifidobacterium and differences in microbial composition between the sexes that probably reflect sexual division of labour. Furthermore, enrichment in Prevotella, Treponema and unclassified Bacteroidetes, as well as a peculiar arrangement of Clostridiales taxa, may enhance the Hadza's ability to digest and extract valuable nutrition from fibrous plant foods.

  7. The Gut Microbiota of Marine Fish.

    PubMed

    Egerton, Sian; Culloty, Sarah; Whooley, Jason; Stanton, Catherine; Ross, R Paul

    2018-01-01

    The body of work relating to the gut microbiota of fish is dwarfed by that on humans and mammals. However, it is a field that has had historical interest and has grown significantly along with the expansion of the aquaculture industry and developments in microbiome research. Research is now moving quickly in this field. Much recent focus has been on nutritional manipulation and modification of the gut microbiota to meet the needs of fish farming, while trying to maintain host health and welfare. However, the diversity amongst fish means that baseline data from wild fish and a clear understanding of the role that specific gut microbiota play is still lacking. We review here the factors shaping marine fish gut microbiota and highlight gaps in the research.

  8. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota.

    PubMed

    Hehemann, Jan-Hendrik; Correc, Gaëlle; Barbeyron, Tristan; Helbert, William; Czjzek, Mirjam; Michel, Gurvan

    2010-04-08

    Gut microbes supply the human body with energy from dietary polysaccharides through carbohydrate active enzymes, or CAZymes, which are absent in the human genome. These enzymes target polysaccharides from terrestrial plants that dominated diet throughout human evolution. The array of CAZymes in gut microbes is highly diverse, exemplified by the human gut symbiont Bacteroides thetaiotaomicron, which contains 261 glycoside hydrolases and polysaccharide lyases, as well as 208 homologues of susC and susD-genes coding for two outer membrane proteins involved in starch utilization. A fundamental question that, to our knowledge, has yet to be addressed is how this diversity evolved by acquiring new genes from microbes living outside the gut. Here we characterize the first porphyranases from a member of the marine Bacteroidetes, Zobellia galactanivorans, active on the sulphated polysaccharide porphyran from marine red algae of the genus Porphyra. Furthermore, we show that genes coding for these porphyranases, agarases and associated proteins have been transferred to the gut bacterium Bacteroides plebeius isolated from Japanese individuals. Our comparative gut metagenome analyses show that porphyranases and agarases are frequent in the Japanese population and that they are absent in metagenome data from North American individuals. Seaweeds make an important contribution to the daily diet in Japan (14.2 g per person per day), and Porphyra spp. (nori) is the most important nutritional seaweed, traditionally used to prepare sushi. This indicates that seaweeds with associated marine bacteria may have been the route by which these novel CAZymes were acquired in human gut bacteria, and that contact with non-sterile food may be a general factor in CAZyme diversity in human gut microbes.

  9. The human gut microbiome as a screening tool for colorectal cancer.

    PubMed

    Zackular, Joseph P; Rogers, Mary A M; Ruffin, Mack T; Schloss, Patrick D

    2014-11-01

    Recent studies have suggested that the gut microbiome may be an important factor in the development of colorectal cancer. Abnormalities in the gut microbiome have been reported in patients with colorectal cancer; however, this microbial community has not been explored as a potential screen for early-stage disease. We characterized the gut microbiome in patients from three clinical groups representing the stages of colorectal cancer development: healthy, adenoma, and carcinoma. Analysis of the gut microbiome from stool samples revealed both an enrichment and depletion of several bacterial populations associated with adenomas and carcinomas. Combined with known clinical risk factors of colorectal cancer (e.g., BMI, age, race), data from the gut microbiome significantly improved the ability to differentiate between healthy, adenoma, and carcinoma clinical groups relative to risk factors alone. Using Bayesian methods, we determined that using gut microbiome data as a screening tool improved the pretest to posttest probability of adenoma more than 50-fold. For example, the pretest probability in a 65-year-old was 0.17% and, after using the microbiome data, this increased to 10.67% (1 in 9 chance of having an adenoma). Taken together, the results of our study demonstrate the feasibility of using the composition of the gut microbiome to detect the presence of precancerous and cancerous lesions. Furthermore, these results support the need for more cross-sectional studies with diverse populations and linkage to other stool markers, dietary data, and personal health information. ©2014 American Association for Cancer Research.

  10. In Silico Screening of the Human Gut Metaproteome Identifies Th17-Promoting Peptides Encrypted in Proteins of Commensal Bacteria

    PubMed Central

    Hidalgo-Cantabrana, Claudio; Moro-García, Marco A.; Blanco-Míguez, Aitor; Fdez-Riverola, Florentino; Lourenço, Anália; Alonso-Arias, Rebeca; Sánchez, Borja

    2017-01-01

    Scientific studies focused on the role of the human microbiome over human health have generated billions of gigabits of genetic information during the last decade. Nowadays integration of all this information in public databases and development of pipelines allowing us to biotechnologically exploit this information are urgently needed. Prediction of the potential bioactivity of the products encoded by the human gut microbiome, or metaproteome, is the first step for identifying proteins responsible for the molecular interaction between microorganisms and the immune system. We have recently published the Mechanism of Action of the Human Microbiome (MAHMI) database (http://www.mahmi.org), conceived as a resource compiling peptide sequences with a potential immunomodulatory activity. Fifteen out of the 300 hundred million peptides contained in the MAHMI database were synthesized. These peptides were identified as being encrypted in proteins produced by gut microbiota members, they do not contain cleavage points for the major intestinal endoproteases and displayed high probability to have immunomodulatory bioactivity. The bacterial peptides FR-16 and LR-17 encrypted in proteins from Bifidobacterium longum DJ010A and Bifidobacterium fragilis YCH46 respectively, showed the higher immune modulation capability over human peripheral blood mononuclear cells. Both peptides modulated the immune response toward increases in the Th17 and decreases in the Th1 cell response, together with an induction of IL-22 production. These results strongly suggest the combined use of bioinformatics and in vitro tools as a first stage in the screening of bioactive peptides encrypted in the human gut metaproteome. PMID:28943872

  11. Villification of the gut

    NASA Astrophysics Data System (ADS)

    Tallinen, Tuomas; Shyer, Amy E.; Tabin, Clifford J.; Mahadevan, L.

    2014-03-01

    The villi of the human and chick gut are formed in similar stepwise progressions, wherein the mesenchyme and attached epithelium first fold into longitudinal ridges, then a zigzag pattern, and lastly individual villi. We combine biological manipulations and quantitative modeling to show that these steps of villification depend on the sequential differentiation of the distinct smooth muscle layers of the gut, which restrict the expansion of the growing endoderm and mesenchyme, generating compressive stresses that lead to their buckling and folding. Our computational model incorporates measured elastic properties and growth rates in the developing gut, recapitulating the morphological patterns seen during villification in a variety of species. Our study provides a mechanical basis for the genesis of these epithelial protrusions that are essential for providing sufficient surface area for nutrient absorption.

  12. Influence of gut microbiota on neuropsychiatric disorders.

    PubMed

    Cenit, María Carmen; Sanz, Yolanda; Codoñer-Franch, Pilar

    2017-08-14

    The last decade has witnessed a growing appreciation of the fundamental role played by an early assembly of a diverse and balanced gut microbiota and its subsequent maintenance for future health of the host. Gut microbiota is currently viewed as a key regulator of a fluent bidirectional dialogue between the gut and the brain (gut-brain axis). A number of preclinical studies have suggested that the microbiota and its genome (microbiome) may play a key role in neurodevelopmental and neurodegenerative disorders. Furthermore, alterations in the gut microbiota composition in humans have also been linked to a variety of neuropsychiatric conditions, including depression, autism and Parkinson's disease. However, it is not yet clear whether these changes in the microbiome are causally related to such diseases or are secondary effects thereof. In this respect, recent studies in animals have indicated that gut microbiota transplantation can transfer a behavioral phenotype, suggesting that the gut microbiota may be a modifiable factor modulating the development or pathogenesis of neuropsychiatric conditions. Further studies are warranted to establish whether or not the findings of preclinical animal experiments can be generalized to humans. Moreover, although different communication routes between the microbiota and brain have been identified, further studies must elucidate all the underlying mechanisms involved. Such research is expected to contribute to the design of strategies to modulate the gut microbiota and its functions with a view to improving mental health, and thus provide opportunities to improve the management of psychiatric diseases. Here, we review the evidence supporting a role of the gut microbiota in neuropsychiatric disorders and the state of the art regarding the mechanisms underlying its contribution to mental illness and health. We also consider the stages of life where the gut microbiota is more susceptible to the effects of environmental stressors, and

  13. Influence of gut microbiota on neuropsychiatric disorders

    PubMed Central

    Cenit, María Carmen; Sanz, Yolanda; Codoñer-Franch, Pilar

    2017-01-01

    The last decade has witnessed a growing appreciation of the fundamental role played by an early assembly of a diverse and balanced gut microbiota and its subsequent maintenance for future health of the host. Gut microbiota is currently viewed as a key regulator of a fluent bidirectional dialogue between the gut and the brain (gut-brain axis). A number of preclinical studies have suggested that the microbiota and its genome (microbiome) may play a key role in neurodevelopmental and neurodegenerative disorders. Furthermore, alterations in the gut microbiota composition in humans have also been linked to a variety of neuropsychiatric conditions, including depression, autism and Parkinson’s disease. However, it is not yet clear whether these changes in the microbiome are causally related to such diseases or are secondary effects thereof. In this respect, recent studies in animals have indicated that gut microbiota transplantation can transfer a behavioral phenotype, suggesting that the gut microbiota may be a modifiable factor modulating the development or pathogenesis of neuropsychiatric conditions. Further studies are warranted to establish whether or not the findings of preclinical animal experiments can be generalized to humans. Moreover, although different communication routes between the microbiota and brain have been identified, further studies must elucidate all the underlying mechanisms involved. Such research is expected to contribute to the design of strategies to modulate the gut microbiota and its functions with a view to improving mental health, and thus provide opportunities to improve the management of psychiatric diseases. Here, we review the evidence supporting a role of the gut microbiota in neuropsychiatric disorders and the state of the art regarding the mechanisms underlying its contribution to mental illness and health. We also consider the stages of life where the gut microbiota is more susceptible to the effects of environmental stressors

  14. Genome-Wide Association Studies of the Human Gut Microbiota.

    PubMed

    Davenport, Emily R; Cusanovich, Darren A; Michelini, Katelyn; Barreiro, Luis B; Ober, Carole; Gilad, Yoav

    2015-01-01

    The bacterial composition of the human fecal microbiome is influenced by many lifestyle factors, notably diet. It is less clear, however, what role host genetics plays in dictating the composition of bacteria living in the gut. In this study, we examined the association of ~200K host genotypes with the relative abundance of fecal bacterial taxa in a founder population, the Hutterites, during two seasons (n = 91 summer, n = 93 winter, n = 57 individuals collected in both). These individuals live and eat communally, minimizing variation due to environmental exposures, including diet, which could potentially mask small genetic effects. Using a GWAS approach that takes into account the relatedness between subjects, we identified at least 8 bacterial taxa whose abundances were associated with single nucleotide polymorphisms in the host genome in each season (at genome-wide FDR of 20%). For example, we identified an association between a taxon known to affect obesity (genus Akkermansia) and a variant near PLD1, a gene previously associated with body mass index. Moreover, we replicate a previously reported association from a quantitative trait locus (QTL) mapping study of fecal microbiome abundance in mice (genus Lactococcus, rs3747113, P = 3.13 x 10-7). Finally, based on the significance distribution of the associated microbiome QTLs in our study with respect to chromatin accessibility profiles, we identified tissues in which host genetic variation may be acting to influence bacterial abundance in the gut.

  15. The influence of Staphylococcus aureus on gut microbial ecology in an in vitro continuous culture human colonic model system.

    PubMed

    Sannasiddappa, Thippeswamy H; Costabile, Adele; Gibson, Glenn R; Clarke, Simon R

    2011-01-01

    An anaerobic three-stage continuous culture model of the human colon (gut model), which represent different anatomical areas of the large intestine, was used to study the effect of S. aureus infection of the gut on the resident faecal microbiota. Studies on the development of the microbiota in the three vessels were performed and bacteria identified by culture independent fluorescence in situ hybridization (FISH). Furthermore, short chain fatty acids (SCFA), as principal end products of gut bacterial metabolism, were measured along with a quantitative assessment of the predominant microbiota. During steady state conditions, numbers of S. aureus cells stabilised until they were washed out, but populations of indigenous bacteria were transiently altered; thus S. aureus was able to compromise colonisation resistance by the colonic microbiota. Furthermore, the concentration of butyric acid in the vessel representing the proximal colon was significantly decreased by infection. Thus infection by S. aureus appears to be able to alter the overall structure of the human colonic microbiota and the microbial metabolic profiles. This work provides an initial in vitro model to analyse interactions with pathogens.

  16. Comparative study on the in vitro effects of Pseudomonas aeruginosa and seaweed alginates on human gut microbiota

    PubMed Central

    Bai, Shaofeng; Chen, Huahai; Zhu, Liying; Liu, Wei; Yu, Hongwei D.; Wang, Xin; Yin, Yeshi

    2017-01-01

    Alginates pertain to organic polysaccharides that have been extensively used in food- and medicine-related industries. The present study obtained alginates from an alginate overproducing Pseudomonas aeruginosa PAO1 mutant by screening transposon mutagenesis libraries. The interaction between bacterial and seaweed alginates and gut microbiota were further studied by using an in vitro batch fermentation system. Thin-layer chromatography (TLC) analysis indicated that both bacterial and seaweed alginates can be completely degraded by fecal bacteria isolated from study volunteers, indicating that a minor structural difference between bacterial and seaweed alginates (O-acetylation and lack of G-G blocks) didn’t affect the digestion of alginates by human microbiota. Although, the digestion of bacterial and seaweed alginates was attributed to different Bacteroides xylanisolvens strains, they harbored similar alginate lyase genes. Genus Bacteroides with alginate-degrading capability were enriched in growth medium containing bacterial or seaweed alginates after in vitro fermentation. Short-chain fatty acid (SCFA) production in both bacterial and seaweed alginates was also comparable, but was significantly higher than the same medium using starch. In summary, the present study has isolated an alginate-overproducing P. aeruginosa mutant strain. Both seaweed and bacterial alginates were degraded by human gut microbiota, and their regulatory function on gut microbiota was similar. PMID:28170428

  17. Comparative study on the in vitro effects of Pseudomonas aeruginosa and seaweed alginates on human gut microbiota.

    PubMed

    Bai, Shaofeng; Chen, Huahai; Zhu, Liying; Liu, Wei; Yu, Hongwei D; Wang, Xin; Yin, Yeshi

    2017-01-01

    Alginates pertain to organic polysaccharides that have been extensively used in food- and medicine-related industries. The present study obtained alginates from an alginate overproducing Pseudomonas aeruginosa PAO1 mutant by screening transposon mutagenesis libraries. The interaction between bacterial and seaweed alginates and gut microbiota were further studied by using an in vitro batch fermentation system. Thin-layer chromatography (TLC) analysis indicated that both bacterial and seaweed alginates can be completely degraded by fecal bacteria isolated from study volunteers, indicating that a minor structural difference between bacterial and seaweed alginates (O-acetylation and lack of G-G blocks) didn't affect the digestion of alginates by human microbiota. Although, the digestion of bacterial and seaweed alginates was attributed to different Bacteroides xylanisolvens strains, they harbored similar alginate lyase genes. Genus Bacteroides with alginate-degrading capability were enriched in growth medium containing bacterial or seaweed alginates after in vitro fermentation. Short-chain fatty acid (SCFA) production in both bacterial and seaweed alginates was also comparable, but was significantly higher than the same medium using starch. In summary, the present study has isolated an alginate-overproducing P. aeruginosa mutant strain. Both seaweed and bacterial alginates were degraded by human gut microbiota, and their regulatory function on gut microbiota was similar.

  18. Structure and function of the healthy pre-adolescent pediatric gut microbiome

    USDA-ARS?s Scientific Manuscript database

    The gut microbiome influences myriad host functions, including nutrient acquisition, immune modulation, brain development, and behavior. Although human gut microbiota are recognized to change as we age, information regarding the structure and function of the gut microbiome during childhood is limite...

  19. Type VI secretion systems of human gut Bacteroidales segregate into three genetic architectures, two of which are contained on mobile genetic elements.

    PubMed

    Coyne, Michael J; Roelofs, Kevin G; Comstock, Laurie E

    2016-01-15

    Type VI secretion systems (T6SSs) are contact-dependent antagonistic systems employed by Gram negative bacteria to intoxicate other bacteria or eukaryotic cells. T6SSs were recently discovered in a few Bacteroidetes strains, thereby extending the presence of these systems beyond Proteobacteria. The present study was designed to analyze in a global nature the diversity, abundance, and properties of T6SSs in the Bacteroidales, the most predominant Gram negative bacterial order of the human gut. By performing extensive bioinformatics analyses and creating hidden Markov models for Bacteroidales Tss proteins, we identified 130 T6SS loci in 205 human gut Bacteroidales genomes. Of the 13 core T6SS proteins of Proteobacteria, human gut Bacteroidales T6SS loci encode orthologs of nine, and an additional five other core proteins not present in Proteobacterial T6SSs. The Bacteroidales T6SS loci segregate into three distinct genetic architectures with extensive DNA identity between loci of a given genetic architecture. We found that divergent DNA regions of a genetic architecture encode numerous types of effector and immunity proteins and likely include new classes of these proteins. TheT6SS loci of genetic architecture 1 are contained on highly similar integrative conjugative elements (ICEs), as are the T6SS loci of genetic architecture 2, whereas the T6SS loci of genetic architecture 3 are not and are confined to Bacteroides fragilis. Using collections of co-resident Bacteroidales strains from human subjects, we provide evidence for the transfer of genetic architecture 1 T6SS loci among co-resident Bacteroidales species in the human gut. However, we also found that established ecosystems can harbor strains with distinct T6SS of all genetic architectures. This is the first study to comprehensively analyze of the presence and diversity of T6SS loci within an order of bacteria and to analyze T6SSs of bacteria from a natural community. These studies demonstrate that more than

  20. Effects of almond and pistachio consumption on gut microbiota composition in a randomised cross-over human feeding study.

    PubMed

    Ukhanova, Maria; Wang, Xiaoyu; Baer, David J; Novotny, Janet A; Fredborg, Marlene; Mai, Volker

    2014-06-28

    The modification of microbiota composition to a 'beneficial' one is a promising approach for improving intestinal as well as overall health. Natural fibres and phytochemicals that reach the proximal colon, such as those present in various nuts, provide substrates for the maintenance of healthy and diverse microbiota. The effects of increased consumption of specific nuts, which are rich in fibre as well as various phytonutrients, on human gut microbiota composition have not been investigated to date. The objective of the present study was to determine the effects of almond and pistachio consumption on human gut microbiota composition. We characterised microbiota in faecal samples collected from volunteers in two separate randomised, controlled, cross-over feeding studies (n 18 for the almond feeding study and n 16 for the pistachio feeding study) with 0, 1·5 or 3 servings/d of the respective nuts for 18 d. Gut microbiota composition was analysed using a 16S rRNA-based approach for bacteria and an internal transcribed spacer region sequencing approach for fungi. The 16S rRNA sequence analysis of 528 028 sequence reads, retained after removing low-quality and short-length reads, revealed various operational taxonomic units that appeared to be affected by nut consumption. The effect of pistachio consumption on gut microbiota composition was much stronger than that of almond consumption and included an increase in the number of potentially beneficial butyrate-producing bacteria. Although the numbers of bifidobacteria were not affected by the consumption of either nut, pistachio consumption appeared to decrease the number of lactic acid bacteria (P< 0·05). Increasing the consumption of almonds or pistachios appears to be an effective means of modifying gut microbiota composition.

  1. Multi-antioxidant supplementation does not prevent an increase in gut permeability after lower torso ischemia and reperfusion in humans.

    PubMed

    Wijnen, M H W A; Vader, H L; Roumen, R M H

    2002-01-01

    An increase in gut permeability can have serious consequences leading to sepsis and multiple organ failure. After lower torso ischemia an increase in gut permeability is seen in both animals and humans. There is proof that this can be modified by antioxidant supplementation. In this prospective, randomized study we have looked at the influence of a multiantioxidant supplementation regime, using allopurinol, vitamins E and C, mannitol and N-acetylcysteine, perioperatively. Twenty-two patients received standard treatment and 20 patients received supplementation. Gut permeability was determined using a double sugar test with lactulose and rhamnose. A significant increase in gut permeability was found neither in the non-treatment group (p = 0.012) nor in the treatment group (p = 0.006) after 6 and 24 h. No difference was found between the group receiving antioxidants and the standard treatment group. p = 0.93 6 h post clamp; p = 0.97 24 h post clamp. In this study we have not found an influence of multiantioxidant supplementation on gut permeability after lower torso ischemia. Possible explanations for this negative result are being discussed. Copyright 2002 S. Karger AG, Basel

  2. Metabolome of human gut microbiome is predictive of host dysbiosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, Peter E.; Dai, Yang

    Background: Humans live in constant and vital symbiosis with a closely linked bacterial ecosystem called the microbiome, which influences many aspects of human health. When this microbial ecosystem becomes disrupted, the health of the human host can suffer; a condition called dysbiosis. The community compositions of human microbiomes also vary dramatically from individual to individual, and over time, making it difficult to uncover the underlying mechanisms linking the microbiome to human health. We propose that a microbiome’s interaction with its human host is not necessarily dependent upon the presence or absence of particular bacterial species, but instead is dependent onmore » its community metabolome; an emergent property of the microbiome. Results: Using data from a previously published, longitudinal study of microbiome populations of the human gut, we extrapolated information about microbiome community enzyme profiles and metabolome models. Using machine learning techniques, we demonstrated that the aggregate predicted community enzyme function profiles and modeled metabolomes of a microbiome are more predictive of dysbiosis than either observed microbiome community composition or predicted enzyme function profiles. Conclusions: Specific enzyme functions and metabolites predictive of dysbiosis provide insights into the molecular mechanisms of microbiome–host interactions. The ability to use machine learning to predict dysbiosis from microbiome community interaction data provides a potentially powerful tool for understanding the links between the human microbiome and human health, pointing to potential microbiome-based diagnostics and therapeutic interventions.« less

  3. Metabolome of human gut microbiome is predictive of host dysbiosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, Peter E.; Dai, Yang

    Background: Humans live in constant and vital symbiosis with a closely linked bacterial ecosystem called the microbiome, which influences many aspects of human health. When this microbial ecosystem becomes disrupted, the health of the human host can suffer; a condition called dysbiosis. However, the community compositions of human microbiomes also vary dramatically from individual to individual, and over time, making it difficult to uncover the underlying mechanisms linking the microbiome to human health. We propose that a microbiome’s interaction with its human host is not necessarily dependent upon the presence or absence of particular bacterial species, but instead is dependentmore » on its community metabolome; an emergent property of the microbiome. Results: Using data from a previously published, longitudinal study of microbiome populations of the human gut, we extrapolated information about microbiome community enzyme profiles and metabolome models. Using machine learning techniques, we demonstrated that the aggregate predicted community enzyme function profiles and modeled metabolomes of a microbiome are more predictive of dysbiosis than either observed microbiome community composition or predicted enzyme function profiles. Conclusions: Specific enzyme functions and metabolites predictive of dysbiosis provide insights into the molecular mechanisms of microbiome–host interactions. The ability to use machine learning to predict dysbiosis from microbiome community interaction data provides a potentially powerful tool for understanding the links between the human microbiome and human health, pointing to potential microbiome-based diagnostics and therapeutic interventions.« less

  4. Metabolome of human gut microbiome is predictive of host dysbiosis

    DOE PAGES

    Larsen, Peter E.; Dai, Yang

    2015-09-14

    Background: Humans live in constant and vital symbiosis with a closely linked bacterial ecosystem called the microbiome, which influences many aspects of human health. When this microbial ecosystem becomes disrupted, the health of the human host can suffer; a condition called dysbiosis. The community compositions of human microbiomes also vary dramatically from individual to individual, and over time, making it difficult to uncover the underlying mechanisms linking the microbiome to human health. We propose that a microbiome’s interaction with its human host is not necessarily dependent upon the presence or absence of particular bacterial species, but instead is dependent onmore » its community metabolome; an emergent property of the microbiome. Results: Using data from a previously published, longitudinal study of microbiome populations of the human gut, we extrapolated information about microbiome community enzyme profiles and metabolome models. Using machine learning techniques, we demonstrated that the aggregate predicted community enzyme function profiles and modeled metabolomes of a microbiome are more predictive of dysbiosis than either observed microbiome community composition or predicted enzyme function profiles. Conclusions: Specific enzyme functions and metabolites predictive of dysbiosis provide insights into the molecular mechanisms of microbiome–host interactions. The ability to use machine learning to predict dysbiosis from microbiome community interaction data provides a potentially powerful tool for understanding the links between the human microbiome and human health, pointing to potential microbiome-based diagnostics and therapeutic interventions.« less

  5. The gut microbiota, environment and diseases of modern society

    PubMed Central

    Kelsen, Judith R.; Wu, Gary D.

    2012-01-01

    The human gut microbiota is a complex community that provides important metabolic functions to the host. Consequently, alterations in the gut microbiota have been associated with the pathogenesis of several human diseases associated with a disturbance in metabolism, particularly those that have been increasing in incidence over the last several decades including obesity, diabetes and atherosclerosis. In this review, we explore how advances in deep DNA sequencing technology have provided us a greater understanding of the factors that influence that composition of the gut microbiota and its possible links to the pathogenesis of these diseases. PMID:22825455

  6. The obese gut microbiome across the epidemiologic transition.

    PubMed

    Dugas, Lara R; Fuller, Miles; Gilbert, Jack; Layden, Brian T

    2016-01-01

    The obesity epidemic has emerged over the past few decades and is thought to be a result of both genetic and environmental factors. A newly identified factor, the gut microbiota, which is a bacterial ecosystem residing within the gastrointestinal tract of humans, has now been implicated in the obesity epidemic. Importantly, this bacterial community is impacted by external environmental factors through a variety of undefined mechanisms. We focus this review on how the external environment may impact the gut microbiota by considering, the host's geographic location 'human geography', and behavioral factors (diet and physical activity). Moreover, we explore the relationship between the gut microbiota and obesity with these external factors. And finally, we highlight here how an epidemiologic model can be utilized to elucidate causal relationships between the gut microbiota and external environment independently and collectively, and how this will help further define this important new factor in the obesity epidemic.

  7. Gut microbiota in autoimmunity: potential for clinical applications.

    PubMed

    Kim, Donghyun; Yoo, Seung-Ah; Kim, Wan-Uk

    2016-11-01

    Microbial habitation in the human body begins immediately after birth, and adults are colonized by microbes outnumbering human cells by a factor of ten. Especially, intestinal track is a living space for diverse microbial species that have coevolved symbiotically. A principal function of the gut microbiota is to protect the host from harmful bacteria and to provide benefits for the host through several mechanisms, including direct competition for limited nutrients, training of host immune systems to recognize specifically foreign materials and conversion of otherwise indigestible food into energy and absorbable nutrients. Therefore, gut dysbiosis, a bacterial imbalance state, is related with the pathogenesis of various host diseases including autoimmune diseases. In the current review, we highlight the importance of gut microbiota in the normal health and autoimmune diseases. We also discuss regulation of gut dysbiosis and future direction for potential clinical applications, including treatment and diagnostics of autoimmune diseases.

  8. Microbiota-Brain-Gut Axis and Neurodegenerative Diseases.

    PubMed

    Quigley, Eamonn M M

    2017-10-17

    The purposes of this review were as follows: first, to provide an overview of the gut microbiota and its interactions with the gut and the central nervous system (the microbiota-gut-brain axis) in health, second, to review the relevance of this axis to the pathogenesis of neurodegenerative diseases, such as Parkinson's disease, and, finally, to assess the potential for microbiota-targeted therapies. Work on animal models has established the microbiota-gut-brain axis as a real phenomenon; to date, the evidence for its operation in man has been limited and has been confronted by considerable logistical challenges. Animal and translational models have incriminated a disturbed gut microbiota in a number of CNS disorders, including Parkinson's disease; data from human studies is scanty. While a theoretical basis can be developed for the use of microbiota-directed therapies in neurodegenerative disorders, support is yet to come from high-quality clinical trials. In theory, a role for the microbiota-gut-brain axis is highly plausible; clinical confirmation is awaited.

  9. Identifying Keystone Species in the Human Gut Microbiome from Metagenomic Timeseries Using Sparse Linear Regression

    PubMed Central

    Fisher, Charles K.; Mehta, Pankaj

    2014-01-01

    Human associated microbial communities exert tremendous influence over human health and disease. With modern metagenomic sequencing methods it is now possible to follow the relative abundance of microbes in a community over time. These microbial communities exhibit rich ecological dynamics and an important goal of microbial ecology is to infer the ecological interactions between species directly from sequence data. Any algorithm for inferring ecological interactions must overcome three major obstacles: 1) a correlation between the abundances of two species does not imply that those species are interacting, 2) the sum constraint on the relative abundances obtained from metagenomic studies makes it difficult to infer the parameters in timeseries models, and 3) errors due to experimental uncertainty, or mis-assignment of sequencing reads into operational taxonomic units, bias inferences of species interactions due to a statistical problem called “errors-in-variables”. Here we introduce an approach, Learning Interactions from MIcrobial Time Series (LIMITS), that overcomes these obstacles. LIMITS uses sparse linear regression with boostrap aggregation to infer a discrete-time Lotka-Volterra model for microbial dynamics. We tested LIMITS on synthetic data and showed that it could reliably infer the topology of the inter-species ecological interactions. We then used LIMITS to characterize the species interactions in the gut microbiomes of two individuals and found that the interaction networks varied significantly between individuals. Furthermore, we found that the interaction networks of the two individuals are dominated by distinct “keystone species”, Bacteroides fragilis and Bacteroided stercosis, that have a disproportionate influence on the structure of the gut microbiome even though they are only found in moderate abundance. Based on our results, we hypothesize that the abundances of certain keystone species may be responsible for individuality in the human

  10. Strategies for Characterization of Low-Abundant Intact or Truncated Low-Molecular-Weight Proteins From Human Plasma.

    PubMed

    Cai, Tanxi; Yang, Fuquan

    2017-01-01

    Low-molecular-weight region (LMW, MW≤30kDa) of human serum/plasma proteins, including small intact proteins, truncated fragments of larger proteins, along with some other small components, has been associated with the ongoing physiological and pathological events, and thereby represent a treasure trove of diagnostic molecules. Great progress in the mining of novel biomarkers from this diagnostic treasure trove for disease diagnosis and health monitoring has been achieved based on serum samples from healthy individuals and patients and powerful new approaches in biochemistry and systems biology. However, cumulative evidence indicates that many potential LMW protein biomarkers might still have escaped from detection due to their low abundance, the dynamic complexity of serum/plasma, and the limited efficiency of characterization approaches. Here, we provide an overview of the current state of knowledge with respect to strategies for the characterization of low-abundant LMW proteins (small intact or truncated proteins) from human serum/plasma, involving prefractionation or enrichment methods to reduce dynamic range and mass spectrometry-based characterization of low-abundant LMW proteins. © 2017 Elsevier Inc. All rights reserved.

  11. The Gut Microbiota in Immune-Mediated Inflammatory Diseases

    PubMed Central

    Forbes, Jessica D.; Van Domselaar, Gary; Bernstein, Charles N.

    2016-01-01

    The collection of microbes and their genes that exist within and on the human body, collectively known as the microbiome has emerged as a principal factor in human health and disease. Humans and microbes have established a symbiotic association over time, and perturbations in this association have been linked to several immune-mediated inflammatory diseases (IMID) including inflammatory bowel disease, rheumatoid arthritis, and multiple sclerosis. IMID is a term used to describe a group of chronic, highly disabling diseases that affect different organ systems. Though a cornerstone commonality between IMID is the idiopathic nature of disease, a considerable portion of their pathobiology overlaps including epidemiological co-occurrence, genetic susceptibility loci and environmental risk factors. At present, it is clear that persons with an IMID are at an increased risk for developing comorbidities, including additional IMID. Advancements in sequencing technologies and a parallel explosion of 16S rDNA and metagenomics community profiling studies have allowed for the characterization of microbiomes throughout the human body including the gut, in a myriad of human diseases and in health. The main challenge now is to determine if alterations of gut flora are common between IMID or, if particular changes in the gut community are in fact specific to a single disease. Herein, we review and discuss the relationships between the gut microbiota and IMID. PMID:27462309

  12. The Gut Microbiome: A New Frontier in Autism Research

    PubMed Central

    Mulle, Jennifer G.; Sharp, William G.; Cubells, Joseph F.

    2013-01-01

    The human gut harbors a complex community of microbes that profoundly influence many aspects of growth and development, including development of the nervous system. Advances in high-throughput DNA sequencing methods have led to rapidly expanding knowledge about this gut microbiome. Here, we review fundamental emerging data on the human gut microbiome, with a focus on potential interactions between the microbiome and autism spectrum disorders (ASD) and consider research on atypical patterns of feeding and nutrition in ASD and how they might interact with the microbiome. Finally we selectively survey results from studies in rodents on the impact of the microbiome on neurobehavioral development. The evidence reviewed here suggests that a deeper understanding of the gut microbiome could open up new avenues of research on ASD, including potential novel treatment strategies. PMID:23307560

  13. Gut microbiome and its role in cardiovascular diseases.

    PubMed

    Ahmadmehrabi, Shadi; Tang, W H Wilson

    2017-11-01

    In recent years, an interest in intestinal microbiota-host interactions has increased due to many findings about the impact of gut bacteria on human health and disease. Dysbiosis, a change in the composition of the gut microbiota, has been associated with much pathology, including cardiovascular diseases (CVD). This article will review normal functions of the gut microbiome, its link to CVD, and potential therapeutic interventions. The recently discovered contribution of gut microbiota-derived molecules in the development of heart disease and its risk factors has significantly increased attention towards the connection between our gut and heart. The gut microbiome is virtually an endocrine organ, arguably the largest, capable of contributing to and reacting to circulating signaling molecules within the host. Gut microbiota-host interactions occur through many pathways, including trimethylamine-N-oxide and short-chain fatty acids. These molecules and others have been linked to much pathology including chronic kidney disease, atherosclerosis, and hypertension. Although our understanding of gut microbiota-host interactions has increased recently; many questions remain about the mechanistic links between the gut microbiome and CVD. With further research, we may one day be able to add gut microbiota profiles as an assessable risk factor for CVD and target therapies towards the gut microbiota.

  14. The Gut Microbiota of Marine Fish

    PubMed Central

    Egerton, Sian; Culloty, Sarah; Whooley, Jason; Stanton, Catherine; Ross, R. Paul

    2018-01-01

    The body of work relating to the gut microbiota of fish is dwarfed by that on humans and mammals. However, it is a field that has had historical interest and has grown significantly along with the expansion of the aquaculture industry and developments in microbiome research. Research is now moving quickly in this field. Much recent focus has been on nutritional manipulation and modification of the gut microbiota to meet the needs of fish farming, while trying to maintain host health and welfare. However, the diversity amongst fish means that baseline data from wild fish and a clear understanding of the role that specific gut microbiota play is still lacking. We review here the factors shaping marine fish gut microbiota and highlight gaps in the research. PMID:29780377

  15. Dysbiosis gut microbiota associated with inflammation and impaired mucosal immune function in intestine of humans with non-alcoholic fatty liver disease

    PubMed Central

    Jiang, Weiwei; Wu, Na; Wang, Xuemei; Chi, Yujing; Zhang, Yuanyuan; Qiu, Xinyun; Hu, Ying; Li, Jing; Liu, Yulan

    2015-01-01

    Non-alcoholic fatty liver disease (NAFLD) has recently been considered to be under the influence of the gut microbiota, which might exert toxic effects on the human host after intestinal absorption and delivery to the liver via the portal vein. In this study, the composition of the gut microbiota in NAFLD patients and healthy subjects was determined via 16S ribosomal RNA Illumina next-generation sequencing. Among those taxa displaying greater than 0.1% average abundance in all samples, five genera, including Alistipes and Prevotella, were significantly more abundant in the gut microbiota of healthy subjects compared to NAFLD patients. Alternatively, Escherichia, Anaerobacter, Lactobacillus and Streptococcus were increased in the gut microbiota of NAFLD patients compared to healthy subjects. In addition, decreased numbers of CD4+ and CD8+ T lymphocytes and increased levels of TNF-α, IL-6 and IFN-γ were detected in the NAFLD group compared to the healthy group. Furthermore, irregularly arranged microvilli and widened tight junctions were observed in the gut mucosa of the NAFLD patients via transmission electron microscopy. We postulate that aside from dysbiosis of the gut microbiota, gut microbiota-mediated inflammation of the intestinal mucosa and the related impairment in mucosal immune function play an important role in the pathogenesis of NAFLD. PMID:25644696

  16. Lactobacillus rhamnosus GG and its SpaC pilus adhesin modulate inflammatory responsiveness and TLR-related gene expression in the fetal human gut

    PubMed Central

    Ganguli, Kriston; Collado, Maria Carmen; Rautava, Jaana; Lu, Lei; Satokari, Reetta; von Ossowski, Ingemar; Reunanen, Justus; de Vos, Willem M.; Palva, Airi; Isolauri, Erika; Salminen, Seppo; Walker, W. Allan; Rautava, Samuli

    2015-01-01

    Background Bacterial contact in utero modulates fetal and neonatal immune responses. Maternal probiotic supplementation reduces the risk of immune-mediated disease in the infant. We investigated the immunomodulatory properties of live Lactobacillus rhamnosus GG and its SpaC pilus adhesin in human fetal intestinal models. Methods TNF-α mRNA expression was measured by qPCR in a human fetal intestinal organ culture model exposed to live L. rhamnosus GG and proinflammatory stimuli. Binding of recombinant SpaC pilus protein to intestinal epithelial cells was assessed in human fetal intestinal organ culture and the human fetal intestinal epithelial cell line H4 by immunohistochemistry and immunofluorescence, respectively. TLR-related gene expression in fetal ileal organ culture after exposure to recombinant SpaC was assessed by qPCR. Results Live L. rhamnosus GG significantly attenuates pathogen-induced TNF-α mRNA expression in the human fetal gut. Recombinant SpaC protein was found to adhere to the fetal gut and to modulate varying levels of TLR-related gene expression. Conclusion The human fetal gut is responsive to luminal microbes. L. rhamnosus GG significantly attenuates fetal intestinal inflammatory responses to pathogenic bacteria. The L. rhamnosus GG pilus adhesin SpaC binds to immature human intestinal epithelial cells and directly modulates intestinal epithelial cell innate immune gene expression. PMID:25580735

  17. The gut microbiota and its relationship to diet and obesity

    PubMed Central

    Clarke, Siobhan F.; Murphy, Eileen F.; Nilaweera, Kanishka; Ross, Paul R.; Shanahan, Fergus; O’Toole, Paul W.; Cotter, Paul D.

    2012-01-01

    Obesity develops from a prolonged imbalance of energy intake and energy expenditure. However, the relatively recent discovery that the composition and function of the gut microbiota impacts on obesity has lead to an explosion of interest in what is now a distinct research field. Here, research relating to the links between the gut microbiota, diet and obesity will be reviewed under five major headings: (1) the gut microbiota of lean and obese animals, (2) the composition of the gut microbiota of lean and obese humans, (3) the impact of diet on the gut microbiota, (4) manipulating the gut microbiota and (5) the mechanisms by which the gut microbiota can impact on weight gain. PMID:22572830

  18. Large-scale comparative metagenomics of Blastocystis, a common member of the human gut microbiome

    PubMed Central

    Beghini, Francesco; Pasolli, Edoardo; Truong, Tin Duy; Putignani, Lorenza; Cacciò, Simone M; Segata, Nicola

    2017-01-01

    The influence of unicellular eukaryotic microorganisms on human gut health and disease is still largely unexplored. Blastocystis spp. commonly colonize the gut, but its clinical significance and ecological role are currently unsettled. We have developed a high-sensitivity bioinformatic pipeline to detect Blastocystis subtypes (STs) from shotgun metagenomics, and applied it to 12 large data sets, comprising 1689 subjects of different geographic origin, disease status and lifestyle. We confirmed and extended previous observations on the high prevalence the microrganism in the population (14.9%), its non-random and ST-specific distribution, and its ability to cause persistent (asymptomatic) colonization. These findings, along with the higher prevalence observed in non-westernized individuals, the lack of positive association with any of the disease considered, and decreased presence in individuals with dysbiosis associated with colorectal cancer and Crohn’s disease, strongly suggest that Blastocystis is a component of the healthy gut microbiome. Further, we found an inverse association between body mass index and Blastocystis, and strong co-occurrence with archaeal organisms (Methanobrevibacter smithii) and several bacterial species. The association of specific microbial community structures with Blastocystis was confirmed by the high predictability (up to 0.91 area under the curve) of the microorganism colonization based on the species-level composition of the microbiome. Finally, we reconstructed and functionally profiled 43 new draft Blastocystis genomes and discovered a higher intra subtype variability of ST1 and ST2 compared with ST3 and ST4. Altogether, we provide an in-depth epidemiologic, ecological, and genomic analysis of Blastocystis, and show how metagenomics can be crucial to advance population genomics of human parasites. PMID:28837129

  19. Use of Gifu Anaerobic Medium for culturing 32 dominant species of human gut microbes and its evaluation based on short-chain fatty acids fermentation profiles.

    PubMed

    Gotoh, Aina; Nara, Misaki; Sugiyama, Yuta; Sakanaka, Mikiyasu; Yachi, Hiroyuki; Kitakata, Aya; Nakagawa, Akira; Minami, Hiromichi; Okuda, Shujiro; Katoh, Toshihiko; Katayama, Takane; Kurihara, Shin

    2017-10-01

    Recently, a "human gut microbial gene catalogue," which ranks the dominance of microbe genus/species in human fecal samples, was published. Most of the bacteria ranked in the catalog are currently publicly available; however, the growth media recommended by the distributors vary among species, hampering physiological comparisons among the bacteria. To address this problem, we evaluated Gifu anaerobic medium (GAM) as a standard medium. Forty-four publicly available species of the top 56 species listed in the "human gut microbial gene catalogue" were cultured in GAM, and out of these, 32 (72%) were successfully cultured. Short-chain fatty acids from the bacterial culture supernatants were then quantified, and bacterial metabolic pathways were predicted based on in silico genomic sequence analysis. Our system provides a useful platform for assessing growth properties and analyzing metabolites of dominant human gut bacteria grown in GAM and supplemented with compounds of interest.

  20. Human gut bacterial communities are altered by addition of cruciferous vegetables to a controlled fruit- and vegetable-free diet.

    PubMed

    Li, Fei; Hullar, Meredith A J; Schwarz, Yvonne; Lampe, Johanna W

    2009-09-01

    In the human gut, commensal bacteria metabolize food components that typically serve as energy sources. These components have the potential to influence gut bacterial community composition. Cruciferous vegetables, such as broccoli and cabbage, contain distinctive compounds that can be utilized by gut bacteria. For example, glucosinolates can be hydrolyzed by certain bacteria, and dietary fibers can be fermented by a range of species. We hypothesized that cruciferous vegetable consumption would alter growth of certain bacteria, thereby altering bacterial community composition. We tested this hypothesis in a randomized, crossover, controlled feeding study. Fecal samples were collected from 17 participants at the end of 2 14-d intake periods: a low-phytochemical, low-fiber basal diet (i.e. refined grains without fruits or vegetables) and a high ("double") cruciferous vegetable diet [basal diet + 14 g cruciferous vegetables/(kg body weightd)]. Fecal bacterial composition was analyzed by the terminal restriction fragment length polymorphism (tRFLP) method using the bacterial 16S ribosomal RNA gene and nucleotide sequencing. Using blocked multi-response permutation procedures analysis, we found that overall bacterial community composition differed between the 2 consumption periods (delta = 0.603; P = 0.011). The bacterial community response to cruciferous vegetables was individual-specific, as revealed by nonmetric multidimensional scaling ordination analysis. Specific tRFLP fragments that characterized each of the diets were identified using indicator species analysis. Putative species corresponding to these fragments were identified through gene sequencing as Eubacterium hallii, Phascolarctobacterium faecium, Burkholderiales spp., Alistipes putredinis, and Eggerthella spp. In conclusion, human gut bacterial community composition was altered by cruciferous vegetable consumption, which could ultimately influence gut metabolism of bioactive food components and host

  1. Human Gut-On-A-Chip Supports Polarized Infection of Coxsackie B1 Virus In Vitro

    PubMed Central

    Papafragkou, Efstathia; Weaver, James C.; Ferrante, Thomas C.; Bahinski, Anthony; Elkins, Christopher A.; Kulka, Michael; Ingber, Donald E.

    2017-01-01

    Analysis of enterovirus infection is difficult in animals because they express different virus receptors than humans, and static cell culture systems do not reproduce the physical complexity of the human intestinal epithelium. Here, using coxsackievirus B1 (CVB1) as a prototype enterovirus strain, we demonstrate that human enterovirus infection, replication and infectious virus production can be analyzed in vitro in a human Gut-on-a-Chip microfluidic device that supports culture of highly differentiated human villus intestinal epithelium under conditions of fluid flow and peristalsis-like motions. When CVB1 was introduced into the epithelium-lined intestinal lumen of the device, virions entered the epithelium, replicated inside the cells producing detectable cytopathic effects (CPEs), and both infectious virions and inflammatory cytokines were released in a polarized manner from the cell apex, as they could be detected in the effluent from the epithelial microchannel. When the virus was introduced via a basal route of infection (by inoculating virus into fluid flowing through a parallel lower ‘vascular’ channel separated from the epithelial channel by a porous membrane), significantly lower viral titers, decreased CPEs, and delayed caspase-3 activation were observed; however, cytokines continued to be secreted apically. The presence of continuous fluid flow through the epithelial lumen also resulted in production of a gradient of CPEs consistent with the flow direction. Thus, the human Gut-on-a-Chip may provide a suitable in vitro model for enteric virus infection and for investigating mechanisms of enterovirus pathogenesis. PMID:28146569

  2. In Vitro Fermentation Patterns of Rice Bran Components by Human Gut Microbiota.

    PubMed

    Pham, Tung; Teoh, Keat Thomas; Savary, Brett J; Chen, Ming-Hsuan; McClung, Anna; Lee, Sun-Ok

    2017-11-12

    Whole grain rice is a rich source of fiber, nutrients, and phytochemicals that may promote gastrointestinal health, but such beneficial components are typically removed with the bran during polishing. Soluble feruloylated arabinoxylan oligosaccharides (FAXO) and polyphenols (RBPP) isolated from rice bran are hypothesized to have positive impacts on human gut microbiota through a prebiotic function. Using an in vitro human fecal fermentation bioassay, FAXO and RBPP treatments were assessed for short-chain fatty acids (SCFA) production patterns and by evaluating their impacts on the phylogentic composition of human gut microbiota by 16S rRNA gene sequencing. Fresh fecal samples collected from healthy adults ( n = 10, 5 males, 5 females) were diluted with anaerobic medium. Each sample received five treatments: CTRL (no substrates), FOS (fructooligosaccharides), FAXO, RBPP, and MIX (FAXO with RBPP). Samples were incubated at 37 °C and an aliquot was withdrawn at 0, 4, 8, 12, and 24 h Results showed that SCFA production was significantly increased with FAXO and was comparable to fermentation with FOS, a well-established prebiotic. RBPP did not increase SCFA productions, and no significant differences in total SCFA production were observed between FAXO and MIX, indicating that RBPP does not modify FAXO fermentation. Changes in microbiota population were found in FAXO treatment, especially in Bacteroides , Prevotella , and Dorea populations, indicating that FAXO might modulate microbiota profiles. RBPP and MIX increased Faecalibacterium , specifically F. prausnitzii . Combined FAXO and RBPP fermentation increased abundance of butyrogenic bacteria, Coprococcus and Roseburia , suggesting some interactive activity. Results from this study support the potential for FAXO and RBPP from rice bran to promote colon health through a prebiotic function.

  3. In Vitro Fermentation Patterns of Rice Bran Components by Human Gut Microbiota

    PubMed Central

    Pham, Tung; Savary, Brett J.; Teoh, Keat (Thomas); Chen, Ming-Hsuan; McClung, Anna; Lee, Sun-Ok

    2017-01-01

    Whole grain rice is a rich source of fiber, nutrients, and phytochemicals that may promote gastrointestinal health, but such beneficial components are typically removed with the bran during polishing. Soluble feruloylated arabinoxylan oligosaccharides (FAXO) and polyphenols (RBPP) isolated from rice bran are hypothesized to have positive impacts on human gut microbiota through a prebiotic function. Using an in vitro human fecal fermentation bioassay, FAXO and RBPP treatments were assessed for short-chain fatty acids (SCFA) production patterns and by evaluating their impacts on the phylogentic composition of human gut microbiota by 16S rRNA gene sequencing. Fresh fecal samples collected from healthy adults (n = 10, 5 males, 5 females) were diluted with anaerobic medium. Each sample received five treatments: CTRL (no substrates), FOS (fructooligosaccharides), FAXO, RBPP, and MIX (FAXO with RBPP). Samples were incubated at 37 °C and an aliquot was withdrawn at 0, 4, 8, 12, and 24 h Results showed that SCFA production was significantly increased with FAXO and was comparable to fermentation with FOS, a well-established prebiotic. RBPP did not increase SCFA productions, and no significant differences in total SCFA production were observed between FAXO and MIX, indicating that RBPP does not modify FAXO fermentation. Changes in microbiota population were found in FAXO treatment, especially in Bacteroides, Prevotella, and Dorea populations, indicating that FAXO might modulate microbiota profiles. RBPP and MIX increased Faecalibacterium, specifically F. prausnitzii. Combined FAXO and RBPP fermentation increased abundance of butyrogenic bacteria, Coprococcus and Roseburia, suggesting some interactive activity. Results from this study support the potential for FAXO and RBPP from rice bran to promote colon health through a prebiotic function. PMID:29137150

  4. Gut microbes and the brain: paradigm shift in neuroscience.

    PubMed

    Mayer, Emeran A; Knight, Rob; Mazmanian, Sarkis K; Cryan, John F; Tillisch, Kirsten

    2014-11-12

    The discovery of the size and complexity of the human microbiome has resulted in an ongoing reevaluation of many concepts of health and disease, including diseases affecting the CNS. A growing body of preclinical literature has demonstrated bidirectional signaling between the brain and the gut microbiome, involving multiple neurocrine and endocrine signaling mechanisms. While psychological and physical stressors can affect the composition and metabolic activity of the gut microbiota, experimental changes to the gut microbiome can affect emotional behavior and related brain systems. These findings have resulted in speculation that alterations in the gut microbiome may play a pathophysiological role in human brain diseases, including autism spectrum disorder, anxiety, depression, and chronic pain. Ongoing large-scale population-based studies of the gut microbiome and brain imaging studies looking at the effect of gut microbiome modulation on brain responses to emotion-related stimuli are seeking to validate these speculations. This article is a summary of emerging topics covered in a symposium and is not meant to be a comprehensive review of the subject. Copyright © 2014 the authors 0270-6474/14/3415490-07$15.00/0.

  5. Prebiotic Potential of a Maize-Based Soluble Fibre and Impact of Dose on the Human Gut Microbiota.

    PubMed

    Costabile, Adele; Deaville, Eddie R; Morales, Agustin Martin; Gibson, Glenn R

    2016-01-01

    Dietary management of the human gut microbiota towards a more beneficial composition is one approach that may improve host health. To date, a large number of human intervention studies have demonstrated that dietary consumption of certain food products can result in significant changes in the composition of the gut microbiota i.e. the prebiotic concept. Thus the prebiotic effect is now established as a dietary approach to increase beneficial gut bacteria and it has been associated with modulation of health biomarkers and modulation of the immune system. Promitor™ Soluble Corn Fibre (SCF) is a well-known maize-derived source of dietary fibre with potential selective fermentation properties. Our aim was to determine the optimum prebiotic dose of tolerance, desired changes to microbiota and fermentation of SCF in healthy adult subjects. A double-blind, randomised, parallel study was completed where volunteers (n = 8/treatment group) consumed 8, 14 or 21 g from SCF (6, 12 and 18 g/fibre delivered respectively) over 14-d. Over the range of doses studied, SCF was well tolerated Numbers of bifidobacteria were significantly higher for the 6 g/fibre/day compared to 12 g and 18 g/fibre delivered/day (mean 9.25 and 9.73 Log10 cells/g fresh faeces in the pre-treatment and treatment periods respectively). Such a numerical change of 0.5 Log10 bifidobacteria/g fresh faeces is consistent with those changes observed for inulin-type fructans, which are recognised prebiotics. A possible prebiotic effect of SCF was therefore demonstrated by its stimulation of bifidobacteria numbers in the overall gut microbiota during a short-term intervention.

  6. Can We Prevent Obesity-Related Metabolic Diseases by Dietary Modulation of the Gut Microbiota?1

    PubMed Central

    2016-01-01

    Obesity increases the risk of type 2 diabetes, cardiovascular diseases, and certain cancers, which are among the leading causes of death worldwide. Obesity and obesity-related metabolic diseases are characterized by specific alterations in the human gut microbiota. Experimental studies with gut microbiota transplantations in mice and in humans indicate that a specific gut microbiota composition can be the cause and not just the consequence of the obese state and metabolic disease, which suggests a potential for gut microbiota modulation in prevention and treatment of obesity-related metabolic diseases. In addition, dietary intervention studies have suggested that modulation of the gut microbiota can improve metabolic risk markers in humans, but a causal role of the gut microbiota in such studies has not yet been established. Here, we review and discuss the role of the gut microbiota in obesity-related metabolic diseases and the potential of dietary modulation of the gut microbiota in metabolic disease prevention and treatment. PMID:26773017

  7. Dietary Fiber Gap and Host Gut Microbiota.

    PubMed

    Han, Meng; Wang, Congmin; Liu, Ping; Li, Defa; Li, Yuan; Ma, Xi

    2017-05-10

    Accumulating evidence is dramatically increasing the access to the facts that the gut microbiota plays a pivotal role in host metabolism and health, which revealed the possibility of a plethora of associations between gut bacteria and human diseases. Several functional roles are carried out by a major class of the host's diet, such as fiber. Fiber is the main source of microbiota-accessible carbohydrate in the diet of humans. In the modern diet, it is difficult to intake sufficient dietary fiber as recommended. The low-fiber diet in the modern life, known as fiber gap, can trigger a substantial depletion of the human gut microbiota diversity and beneficial metabolites. The short-chain fatty acids are regarded as one of the major microbial metabolites of dietary fibers, which can improve intestinal mucosal immunity, as well as to be a source of energy for the liver. Thus, the loss of microbiota diversity has a potential negative function to various aspects of host health. Actually, the real "fiber gap" for ideal health and maintaining microbial diversity might be even more serious than currently appreciated. Herein, we briefly discuss the interactions between gut microbiota and the host diet, focusing specifically on the low-fiber diet. Gut bacteria in the context of the development of host low-fiber diets, which may lead to health and disorders, particularly include metabolic syndrome and obesity-related disease, IBD liver, disease, and colorectal cancer. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Compositional and Functional Differences in the Human Gut Microbiome Correlate with Clinical Outcome following Infection with Wild-Type Salmonella enterica Serovar Typhi

    PubMed Central

    Zhang, Yan; Brady, Arthur; Jones, Cheron; Song, Yang; Darton, Thomas C.; Jones, Claire; Blohmke, Christoph J.; Pollard, Andrew J.; Magder, Laurence S.; Fasano, Alessio; Sztein, Marcelo B.

    2018-01-01

    ABSTRACT Insights into disease susceptibility as well as the efficacy of vaccines against typhoid and other enteric pathogens may be informed by better understanding the relationship between the effector immune response and the gut microbiota. In the present study, we characterized the composition (16S rRNA gene profiling) and function (RNA sequencing [RNA-seq]) of the gut microbiota following immunization and subsequent exposure to wild-type Salmonella enterica serovar Typhi in a human challenge model to further investigate the central hypothesis that clinical outcomes may be linked to the gut microbiota. Metatranscriptome analysis of longitudinal stool samples collected from study subjects revealed two stable patterns of gene expression for the human gut microbiota, dominated by transcripts from either Methanobrevibacter or a diverse representation of genera in the Firmicutes phylum. Immunization with one of two live oral attenuated vaccines against S. Typhi had minimal effects on the composition or function of the gut microbiota. It was observed that subjects harboring the methanogen-dominated transcriptome community at baseline displayed a lower risk of developing symptoms of typhoid following challenge with wild-type S. Typhi. Furthermore, genes encoding antioxidant proteins, metal homeostasis and transport proteins, and heat shock proteins were expressed at a higher level at baseline or after challenge with S. Typhi in subjects who did not develop symptoms of typhoid. These data suggest that functional differences relating to redox potential and ion homeostasis in the gut microbiota may impact clinical outcomes following exposure to wild-type S. Typhi. PMID:29739901

  9. Designing medical foods for inherited metabolic disorders: why intact protein is superior to amino acids.

    PubMed

    Ney, Denise Marie; Etzel, Mark Raymond

    2017-04-01

    Phenylketonuria and tyrosinemia are inherited metabolic disorders characterized by high blood levels of phenylalanine (Phe) or tyrosine (Tyr), due to mutations in genes affecting Phe and Tyr metabolism, respectively. The primary management is a lifelong diet restricted in protein from natural foods in combination with medical foods comprised mixtures of synthetic amino acids. Compliance is often poor after childhood leading to neuropsychological sequela. Glycomacropeptide, an intact 64 amino acid glycophosphopeptide isolated from cheese whey, provides a new paradigm for the management of phenylketonuria and tyrosinemia because glycomacropeptide contains no Phe and Tyr in its pure form, and is also a prebiotic. Medical foods made from glycomacropeptide have been used successfully for the management of phenylketonuria and tyrosinemia. Preclinical and clinical studies demonstrate that intact protein from glycomacropeptide provides a more acceptable and physiologic source of defined protein compared to amino acids in medical foods. For example, harmful gut bacteria were reduced, beneficial short chain fatty acids increased, renal workload decreased, protein utilization increased, and bone fragility decreased using intact protein versus amino acids. Advances in biotechnology will propel the transition from synthetic amino acids to intact proteins for the management of inherited metabolic disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Gut symbiotic microbes imprint intestinal immune cells with the innate receptor SLAMF4 which contributes to gut immune protection against enteric pathogens

    PubMed Central

    Cabinian, Allison; Sinsimer, Daniel; Tang, May; Jang, Youngsoon; Choi, Bongkum; Laouar, Yasmina; Laouar, Amale

    2018-01-01

    Background Interactions between host immune cells and gut microbiota are crucial for the integrity and function of the intestine. How these interactions regulate immune cell responses in the intestine remains a major gap in the field. Aim We have identified the signalling lymphocyte activation molecule family member 4 (SLAMF4) as an immunomodulator of the intestinal immunity. The aim is to determine how SLAMF4 is acquired in the gut and what its contribution to intestinal immunity is. Methods Expression of SLAMF4 was assessed in mice and humans. The mechanism of induction was studied using GFPtg bone marrow chimaera mice, lymphotoxin α and TNLG8A-deficient mice, as well as gnotobiotic mice. Role in immune protection was revealed using oral infection with Listeria monocytogenes and Cytobacter rodentium. Results SLAMF4 is a selective marker of intestinal immune cells of mice and humans. SLAMF4 induction occurs directly in the intestinal mucosa without the involvement of the gut-associated lymphoid tissue. Gut bacterial products, particularly those of gut anaerobes, and gut-resident antigen-presenting cell (APC)TNLG8A are key contributors of SLAMF4 induction in the intestine. Importantly, lack of SLAMF4 expression leads the increased susceptibility of mice to infection by oral pathogens culminating in their premature death. Conclusions SLAMF4 is a marker of intestinal immune cells which contributes to the protection against enteric pathogens and whose expression is dependent on the presence of the gut microbiota. This discovery provides a possible mechanism for answering the long-standing question of how the intertwining of the host and gut microbial biology regulates immune cell responses in the gut. PMID:28341747

  11. Role of Sphingolipids in Infant Gut Health and Immunity.

    PubMed

    Nilsson, Åke

    2016-06-01

    Sphingomyelin (SM), glycosphingolipids, and gangliosides are important polar lipids in the milk fat globule membrane but are not found in standard milk replacement formulas. Because digestion and absorption of SM and glycosphingolipids generate the bioactive metabolites ceramide, sphingosine, and sphingosine-1-phosphate (S1P), and because intact gangliosides may have beneficial effects in the gut, this may be important for gut integrity and immune maturation in the neonate. The brush border enzymes that hydrolyze milk SM, alkaline sphingomyelinase (nucleotide phosphodiesterase pyrophosphatase 7), and neutral ceramidase are expressed at birth in both term and preterm infants. Released sphingosine is absorbed, phosphorylated to S1P, and converted to palmitic acid via S1P-lyase in the gut mucosa. Hypothetically, S1P also may be released from absorptive cells and exert important paracrine actions favoring epithelial integrity and renewal, as well as immune function, including secretory IgA production and migration of T lymphocyte subpopulations. Gluco-, galacto-, and lactosylceramide are hydrolyzed to ceramide by lactase-phlorizin hydrolase, which also hydrolyzes lactose. Gangliosides may adhere to the brush border and is internalized, modified, and possibly transported into blood, and may exert protective functions by their interactions with bacteria, bacterial toxins, and the brush border. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Type I and Type III Interferons Display Different Dependency on Mitogen-Activated Protein Kinases to Mount an Antiviral State in the Human Gut.

    PubMed

    Pervolaraki, Kalliopi; Stanifer, Megan L; Münchau, Stephanie; Renn, Lynnsey A; Albrecht, Dorothee; Kurzhals, Stefan; Senís, Elena; Grimm, Dirk; Schröder-Braunstein, Jutta; Rabin, Ronald L; Boulant, Steeve

    2017-01-01

    Intestinal epithelial cells (IECs) are constantly exposed to commensal flora and pathogen challenges. How IECs regulate their innate immune response to maintain gut homeostasis remains unclear. Interferons (IFNs) are cytokines produced during infections. While type I IFN receptors are ubiquitously expressed, type III IFN receptors are expressed only on epithelial cells. This epithelium specificity strongly suggests exclusive functions at epithelial surfaces, but the relative roles of type I and III IFNs in the establishment of an antiviral innate immune response in human IECs are not clearly defined. Here, we used mini-gut organoids to define the functions of types I and III IFNs to protect the human gut against viral infection. We show that primary non-transformed human IECs, upon viral challenge, upregulate the expression of both type I and type III IFNs at the transcriptional level but only secrete type III IFN in the supernatant. However, human IECs respond to both type I and type III IFNs by producing IFN-stimulated genes that in turn induce an antiviral state. Using genetic ablation of either type I or type III IFN receptors, we show that either IFN can independently restrict virus infection in human IECs. Importantly, we report, for the first time, differences in the mechanisms by which each IFN establishes the antiviral state. Contrary to type I IFN, the antiviral activity induced by type III IFN is strongly dependent on the mitogen-activated protein kinases signaling pathway, suggesting a pathway used by type III IFNs that non-redundantly contributes to the antiviral state. In conclusion, we demonstrate that human intestinal epithelial cells specifically regulate their innate immune response favoring type III IFN-mediated signaling, which allows for efficient protection against pathogens without producing excessive inflammation. Our results strongly suggest that type III IFN constitutes the frontline of antiviral response in the human gut. We propose that

  13. Development and validation of a microarray for the investigation of the CAZymes encoded by the human gut microbiome.

    PubMed

    El Kaoutari, Abdessamad; Armougom, Fabrice; Leroy, Quentin; Vialettes, Bernard; Million, Matthieu; Raoult, Didier; Henrissat, Bernard

    2013-01-01

    Distal gut bacteria play a pivotal role in the digestion of dietary polysaccharides by producing a large number of carbohydrate-active enzymes (CAZymes) that the host otherwise does not produce. We report here the design of a custom microarray that we used to spot non-redundant DNA probes for more than 6,500 genes encoding glycoside hydrolases and lyases selected from 174 reference genomes from distal gut bacteria. The custom microarray was tested and validated by the hybridization of bacterial DNA extracted from the stool samples of lean, obese and anorexic individuals. Our results suggest that a microarray-based study can detect genes from low-abundance bacteria better than metagenomic-based studies. A striking example was the finding that a gene encoding a GH6-family cellulase was present in all subjects examined, whereas metagenomic studies have consistently failed to detect this gene in both human and animal gut microbiomes. In addition, an examination of eight stool samples allowed the identification of a corresponding CAZome core containing 46 families of glycoside hydrolases and polysaccharide lyases, which suggests the functional stability of the gut microbiota despite large taxonomical variations between individuals.

  14. Methodology challenges in studying human gut microbiota - effects of collection, storage, DNA extraction and next generation sequencing technologies.

    PubMed

    Panek, Marina; Čipčić Paljetak, Hana; Barešić, Anja; Perić, Mihaela; Matijašić, Mario; Lojkić, Ivana; Vranešić Bender, Darija; Krznarić, Željko; Verbanac, Donatella

    2018-03-23

    The information on microbiota composition in the human gastrointestinal tract predominantly originates from the analyses of human faeces by application of next generation sequencing (NGS). However, the detected composition of the faecal bacterial community can be affected by various factors including experimental design and procedures. This study evaluated the performance of different protocols for collection and storage of faecal samples (native and OMNIgene.GUT system) and bacterial DNA extraction (MP Biomedicals, QIAGEN and MO BIO kits), using two NGS platforms for 16S rRNA gene sequencing (Ilumina MiSeq and Ion Torrent PGM). OMNIgene.GUT proved as a reliable and convenient system for collection and storage of faecal samples although favouring Sutterella genus. MP provided superior DNA yield and quality, MO BIO depleted Gram positive organisms while using QIAGEN with OMNIgene.GUT resulted in greatest variability compared to other two kits. MiSeq and IT platforms in their supplier recommended setups provided comparable reproducibility of donor faecal microbiota. The differences included higher diversity observed with MiSeq and increased capacity of MiSeq to detect Akkermansia muciniphila, [Odoribacteraceae], Erysipelotrichaceae and Ruminococcaceae (primarily Faecalibacterium prausnitzii). The results of our study could assist the investigators using NGS technologies to make informed decisions on appropriate tools for their experimental pipelines.

  15. Gut health immunomodulatory and anti-inflammatory functions of gut enzyme digested high protein micro-nutrient dietary supplement-Enprocal.

    PubMed

    Kanwar, Jagat R; Kanwar, Rupinder K

    2009-01-31

    Enprocal is a high-protein micro-nutrient rich formulated supplementary food designed to meet the nutritional needs of the frail elderly and be delivered to them in every day foods. We studied the potential of Enprocal to improve gut and immune health using simple and robust bioassays for gut cell proliferation, intestinal integrity/permeability, immunomodulatory, anti-inflammatory and anti-oxidative activities. Effects of Enprocal were compared with whey protein concentrate 80 (WPC), heat treated skim milk powder, and other commercially available milk derived products. Enprocal (undigested) and digested (Enprocal D) selectively enhanced cell proliferation in normal human intestinal epithelial cells (FHs74-Int) and showed no cytotoxicity. In a dose dependent manner Enprocal induced cell death in Caco-2 cells (human colon adencarcinoma epithelial cells). Digested Enprocal (Enprocal D: gut enzyme cocktail treated) maintained the intestinal integrity in transepithelial resistance (TEER) assay, increased the permeability of horseradish peroxidase (HRP) and did not induce oxidative stress to the gut epithelial cells. Enprocal D upregulated the surface expression of co-stimulatory (CD40, CD86, CD80), MHC I and MHC II molecules on PMA differentiated THP-1 macrophages in coculture transwell model, and inhibited the monocyte/lymphocyte (THP-1/Jurkat E6-1 cells)-epithelial cell adhesion. In cytokine secretion analyses, Enprocal D down-regulated the secretion of proinflammatory cytokines (IL-1beta and TNF-alpha) and up-regulated IFN-gamma, IL-2 and IL-10. Our results indicate that Enprocal creates neither oxidative injury nor cytotoxicity, stimulates normal gut cell proliferation, up regulates immune cell activation markers and may aid in the production of antibodies. Furthermore, through downregulation of proinflammatory cytokines, Enprocal appears to be beneficial in reducing the effects of chronic gut inflammatory diseases such as inflammatory bowel disease (IBD

  16. Human, donkey and cow milk differently affects energy efficiency and inflammatory state by modulating mitochondrial function and gut microbiota.

    PubMed

    Trinchese, Giovanna; Cavaliere, Gina; Canani, Roberto Berni; Matamoros, Sebastien; Bergamo, Paolo; De Filippo, Chiara; Aceto, Serena; Gaita, Marcello; Cerino, Pellegrino; Negri, Rossella; Greco, Luigi; Cani, Patrice D; Mollica, Maria Pina

    2015-11-01

    Different nutritional components are able, by modulating mitochondrial function and gut microbiota composition, to influence body composition, metabolic homeostasis and inflammatory state. In this study, we aimed to evaluate the effects produced by the supplementation of different milks on energy balance, inflammatory state, oxidative stress and antioxidant/detoxifying enzyme activities and to investigate the role of the mitochondrial efficiency and the gut microbiota in the regulation of metabolic functions in an animal model. We compared the intake of human milk, gold standard for infant nutrition, with equicaloric supplementation of donkey milk, the best substitute for newborns due to its nutritional properties, and cow milk, the primary marketed product. The results showed a hypolipidemic effect produced by donkey and human milk intake in parallel with enhanced mitochondrial activity/proton leakage. Reduced mitochondrial energy efficiency and proinflammatory signals (tumor necrosis factor α, interleukin-1 and lipopolysaccharide levels) were associated with a significant increase of antioxidants (total thiols) and detoxifying enzyme activities (glutathione-S-transferase, NADH quinone oxidoreductase) in donkey- and human milk-treated animals. The beneficial effects were attributable, at least in part, to the activation of the nuclear factor erythroid-2-related factor-2 pathway. Moreover, the metabolic benefits induced by human and donkey milk may be related to the modulation of gut microbiota. In fact, milk treatments uniquely affected the proportions of bacterial phyla and genera, and we hypothesized that the increased concentration of fecal butyrate in human and donkey milk-treated rats was related to the improved lipid and glucose metabolism and detoxifying activities. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Linking the Gut Microbial Ecosystem with the Environment: Does Gut Health Depend on Where We Live?

    PubMed Central

    Tasnim, Nishat; Abulizi, Nijiati; Pither, Jason; Hart, Miranda M.; Gibson, Deanna L.

    2017-01-01

    Global comparisons reveal a decrease in gut microbiota diversity attributed to Western diets, lifestyle practices such as caesarian section, antibiotic use and formula-feeding of infants, and sanitation of the living environment. While gut microbial diversity is decreasing, the prevalence of chronic inflammatory diseases such as inflammatory bowel disease, diabetes, obesity, allergies and asthma is on the rise in Westernized societies. Since the immune system development is influenced by microbial components, early microbial colonization may be a key factor in determining disease susceptibility patterns later in life. Evidence indicates that the gut microbiota is vertically transmitted from the mother and this affects offspring immunity. However, the role of the external environment in gut microbiome and immune development is poorly understood. Studies show that growing up in microbe-rich environments, such as traditional farms, can have protective health effects on children. These health-effects may be ablated due to changes in the human lifestyle, diet, living environment and environmental biodiversity as a result of urbanization. Importantly, if early-life exposure to environmental microbes increases gut microbiota diversity by influencing patterns of gut microbial assembly, then soil biodiversity loss due to land-use changes such as urbanization could be a public health threat. Here, we summarize key questions in environmental health research and discuss some of the challenges that have hindered progress toward a better understanding of the role of the environment on gut microbiome development. PMID:29056933

  18. Altered gut microbiota in Rett syndrome.

    PubMed

    Strati, Francesco; Cavalieri, Duccio; Albanese, Davide; De Felice, Claudio; Donati, Claudio; Hayek, Joussef; Jousson, Olivier; Leoncini, Silvia; Pindo, Massimo; Renzi, Daniela; Rizzetto, Lisa; Stefanini, Irene; Calabrò, Antonio; De Filippo, Carlotta

    2016-07-30

    The human gut microbiota directly affects human health, and its alteration can lead to gastrointestinal abnormalities and inflammation. Rett syndrome (RTT), a progressive neurological disorder mainly caused by mutations in MeCP2 gene, is commonly associated with gastrointestinal dysfunctions and constipation, suggesting a link between RTT's gastrointestinal abnormalities and the gut microbiota. The aim of this study was to evaluate the bacterial and fungal gut microbiota in a cohort of RTT subjects integrating clinical, metabolomics and metagenomics data to understand if changes in the gut microbiota of RTT subjects could be associated with gastrointestinal abnormalities and inflammatory status. Our findings revealed the occurrence of an intestinal sub-inflammatory status in RTT subjects as measured by the elevated values of faecal calprotectin and erythrocyte sedimentation rate. We showed that, overall, RTT subjects harbour bacterial and fungal microbiota altered in terms of relative abundances from those of healthy controls, with a reduced microbial richness and dominated by microbial taxa belonging to Bifidobacterium, several Clostridia (among which Anaerostipes, Clostridium XIVa, Clostridium XIVb) as well as Erysipelotrichaceae, Actinomyces, Lactobacillus, Enterococcus, Eggerthella, Escherichia/Shigella and the fungal genus Candida. We further observed that alterations of the gut microbiota do not depend on the constipation status of RTT subjects and that this dysbiotic microbiota produced altered short chain fatty acids profiles. We demonstrated for the first time that RTT is associated with a dysbiosis of both the bacterial and fungal component of the gut microbiota, suggesting that impairments of MeCP2 functioning favour the establishment of a microbial community adapted to the costive gastrointestinal niche of RTT subjects. The altered production of short chain fatty acids associated with this microbiota might reinforce the constipation status of RTT

  19. Gut symbiotic microbes imprint intestinal immune cells with the innate receptor SLAMF4 which contributes to gut immune protection against enteric pathogens.

    PubMed

    Cabinian, Allison; Sinsimer, Daniel; Tang, May; Jang, Youngsoon; Choi, Bongkum; Laouar, Yasmina; Laouar, Amale

    2018-05-01

    Interactions between host immune cells and gut microbiota are crucial for the integrity and function of the intestine. How these interactions regulate immune cell responses in the intestine remains a major gap in the field. We have identified the signalling lymphocyte activation molecule family member 4 (SLAMF4) as an immunomodulator of the intestinal immunity. The aim is to determine how SLAMF4 is acquired in the gut and what its contribution to intestinal immunity is. Expression of SLAMF4 was assessed in mice and humans. The mechanism of induction was studied using GFP tg bone marrow chimaera mice, lymphotoxin α and TNLG8A-deficient mice, as well as gnotobiotic mice. Role in immune protection was revealed using oral infection with Listeria monocytogenes and Cytobacter rodentium . SLAMF4 is a selective marker of intestinal immune cells of mice and humans. SLAMF4 induction occurs directly in the intestinal mucosa without the involvement of the gut-associated lymphoid tissue. Gut bacterial products, particularly those of gut anaerobes, and gut-resident antigen-presenting cell (APC) TNLG8A are key contributors of SLAMF4 induction in the intestine. Importantly, lack of SLAMF4 expression leads the increased susceptibility of mice to infection by oral pathogens culminating in their premature death. SLAMF4 is a marker of intestinal immune cells which contributes to the protection against enteric pathogens and whose expression is dependent on the presence of the gut microbiota. This discovery provides a possible mechanism for answering the long-standing question of how the intertwining of the host and gut microbial biology regulates immune cell responses in the gut. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  20. Food: a new form of personalised (gut microbiome) medicine for chronic diseases?

    PubMed

    Pallister, Tess; Spector, Tim D

    2016-09-01

    Filling in the knowledge gaps between what we eat and the diseases we develop may lie in our guts, literally. The human large intestine houses the largest reservoir of microorganisms in or on the human body. With a 100-fold greater gene count than humans, the gut microbiome has huge potential to place a large metabolic burden (or advantage) on its host. The number of diverse gut microbial species is diminished in nearly all modern chronic conditions studied. The 'Western diet', rich in animal protein, fats and artificial additives, and lacking in fibre, beneficial microbes, plant phytochemicals, vitamins and minerals, is thought to drive these conditions by encouraging gut dysbiosis. Evidence from recent dietary intervention studies suggest adopting a plant-based, minimally processed high-fibre diet may rapidly reverse the effects of meat-based diets on the gut microbiome. However, recent work has shown that individual diet responses may be complicated by host genetics and the wide variation in the gut microbiome. Now that we measure genes and microbes more accurately, we are embarking on an exciting era of using both food and microbes as potential therapies. © The Royal Society of Medicine.

  1. Omics for Understanding the Gut-Liver-Microbiome Axis and Precision Medicine.

    PubMed

    Khalsa, Jag; Duffy, Linda C; Riscuta, Gabriela; Starke-Reed, Pamela; Hubbard, Van S

    2017-03-01

    Human metabolic disease opens a new view to understanding the contribution of the intestinal microbiome to drug metabolism and drug-induced toxicity in gut-liver function. The gut microbiome, a key determinant of intestinal inflammation, also plays a direct role in chronic inflammation and liver disease. Gut bacterial communities directly metabolize certain drugs, reducing their bioavailability and influencing individual variation in drug response. In addition, some microbiome-produced compounds may affect drug pharmacokinetics and pharmacodynamics via altered expression of metabolizing enzymes and drug transporters or genes coding for drug target proteins, drug response phenotypes, and disease states. Molecular-based high-throughput technologies are providing novel insight about host-gut microbiome interactions, homeostasis, and xenobiotic effects associated with wide variation in efficacy or toxicity in humans. It is envisioned that future approaches to treating and preventing liver disease will benefit from in-depth studies of the liver-microbiome axis. Thus, the microbiome shares a fundamental role in human physiology with various organ systems, and its importance must be considered in the rapid evolution of precision medicine. A new emerging perspective of understanding the effect of the gut microbiome on human response to drugs would be indispensable for developing efficacious, safe, and cost-effective precision therapies. © 2017, The American College of Clinical Pharmacology.

  2. Noninvasive photoacoustic identification and imaging of gut microbes.

    PubMed

    Huang, Xiaoxiao; Shi, Ying; Liu, Yajing; Xu, Hongzhi; Liu, Yu; Xiao, Chuanxing; Ren, Jianlin; Nie, Liming

    2017-08-01

    Homeostasis of the gut microbiota is indispensable for various physiological functions. Its composition and activity co-develop with the host, and especially associate with human colorectal cancer. However, current composition identification methods are complicated and not timely without spatial distribution information. In this Letter, we explored the photoacoustic imaging (PAI) technique to characterize the composition and quantify the proportions of the gut microbes after optical probe labeling. Our experimental results demonstrated that PAI has the potential to identify different gut bacterial species on the spot.

  3. Bifidobacteria exhibit social behavior through carbohydrate resource sharing in the gut

    PubMed Central

    Milani, Christian; Andrea Lugli, Gabriele; Duranti, Sabrina; Turroni, Francesca; Mancabelli, Leonardo; Ferrario, Chiara; Mangifesta, Marta; Hevia, Arancha; Viappiani, Alice; Scholz, Matthias; Arioli, Stefania; Sanchez, Borja; Lane, Jonathan; Ward, Doyle V.; Hickey, Rita; Mora, Diego; Segata, Nicola; Margolles, Abelardo; van Sinderen, Douwe; Ventura, Marco

    2015-01-01

    Bifidobacteria are common and frequently dominant members of the gut microbiota of many animals, including mammals and insects. Carbohydrates are considered key carbon sources for the gut microbiota, imposing strong selective pressure on the complex microbial consortium of the gut. Despite its importance, the genetic traits that facilitate carbohydrate utilization by gut microbiota members are still poorly characterized. Here, genome analyses of 47 representative Bifidobacterium (sub)species revealed the genes predicted to be required for the degradation and internalization of a wide range of carbohydrates, outnumbering those found in many other gut microbiota members. The glycan-degrading abilities of bifidobacteria are believed to reflect available carbon sources in the mammalian gut. Furthermore, transcriptome profiling of bifidobacterial genomes supported the involvement of various chromosomal loci in glycan metabolism. The widespread occurrence of bifidobacterial saccharolytic features is in line with metagenomic and metatranscriptomic datasets obtained from human adult/infant faecal samples, thereby supporting the notion that bifidobacteria expand the human glycobiome. This study also underscores the hypothesis of saccharidic resource sharing among bifidobacteria through species-specific metabolic specialization and cross feeding, thereby forging trophic relationships between members of the gut microbiota. PMID:26506949

  4. Brain-gut-microbiota axis in Parkinson's disease.

    PubMed

    Mulak, Agata; Bonaz, Bruno

    2015-10-07

    Parkinson's disease (PD) is characterized by alpha-synucleinopathy that affects all levels of the brain-gut axis including the central, autonomic, and enteric nervous systems. Recently, it has been recognized that the brain-gut axis interactions are significantly modulated by the gut microbiota via immunological, neuroendocrine, and direct neural mechanisms. Dysregulation of the brain-gut-microbiota axis in PD may be associated with gastrointestinal manifestations frequently preceding motor symptoms, as well as with the pathogenesis of PD itself, supporting the hypothesis that the pathological process is spread from the gut to the brain. Excessive stimulation of the innate immune system resulting from gut dysbiosis and/or small intestinal bacterial overgrowth and increased intestinal permeability may induce systemic inflammation, while activation of enteric neurons and enteric glial cells may contribute to the initiation of alpha-synuclein misfolding. Additionally, the adaptive immune system may be disturbed by bacterial proteins cross-reacting with human antigens. A better understanding of the brain-gut-microbiota axis interactions should bring a new insight in the pathophysiology of PD and permit an earlier diagnosis with a focus on peripheral biomarkers within the enteric nervous system. Novel therapeutic options aimed at modifying the gut microbiota composition and enhancing the intestinal epithelial barrier integrity in PD patients could influence the initial step of the following cascade of neurodegeneration in PD.

  5. Dynamics of the human gut microbiome in inflammatory bowel disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halfvarson, Jonas; Brislawn, Colin J.; Lamendella, Regina

    Inflammatory bowel disease (IBD) is characterized by flares of inflammation with periodic need for increased medication and sometimes even surgery. IBD etiology is partly attributed to a deregulated immune response to gut microbiome dysbiosis. Cross-sectional studies have revealed microbial signatures for different IBD diseases, including ulcerative colitis (UC), colonic Crohn’s Disease (CCD), and ileal CD (ICD). Although IBD is dynamic, microbiome studies have primarily focused on single timepoints or few individuals. Here we dissect the long-term dynamic behavior of the gut microbiome in IBD and differentiate this from normal variation. Microbiomes of IBD subjects fluctuate more than healthy individuals, basedmore » on deviation from a newly-defined healthy plane (HP). ICD subjects deviated most from the HP, especially subjects with surgical resection. Intriguingly, the microbiomes of some IBD subjects periodically visited the HP then deviated away from it. Inflammation was not directly correlated with distance to the healthy plane, but there was some correlation between observed dramatic fluctuations in the gut microbiome and intensified medication due to a flare of the disease. These results help guide therapies that will re-direct the gut microbiome towards a healthy state and maintain remission in IBD.« less

  6. Gut microbiota functions: metabolism of nutrients and other food components.

    PubMed

    Rowland, Ian; Gibson, Glenn; Heinken, Almut; Scott, Karen; Swann, Jonathan; Thiele, Ines; Tuohy, Kieran

    2018-02-01

    The diverse microbial community that inhabits the human gut has an extensive metabolic repertoire that is distinct from, but complements the activity of mammalian enzymes in the liver and gut mucosa and includes functions essential for host digestion. As such, the gut microbiota is a key factor in shaping the biochemical profile of the diet and, therefore, its impact on host health and disease. The important role that the gut microbiota appears to play in human metabolism and health has stimulated research into the identification of specific microorganisms involved in different processes, and the elucidation of metabolic pathways, particularly those associated with metabolism of dietary components and some host-generated substances. In the first part of the review, we discuss the main gut microorganisms, particularly bacteria, and microbial pathways associated with the metabolism of dietary carbohydrates (to short chain fatty acids and gases), proteins, plant polyphenols, bile acids, and vitamins. The second part of the review focuses on the methodologies, existing and novel, that can be employed to explore gut microbial pathways of metabolism. These include mathematical models, omics techniques, isolated microbes, and enzyme assays.

  7. Feeding the microbiota-gut-brain axis: diet, microbiome, and neuropsychiatry.

    PubMed

    Sandhu, Kiran V; Sherwin, Eoin; Schellekens, Harriët; Stanton, Catherine; Dinan, Timothy G; Cryan, John F

    2017-01-01

    The microbial population residing within the human gut represents one of the most densely populated microbial niche in the human body with growing evidence showing it playing a key role in the regulation of behavior and brain function. The bidirectional communication between the gut microbiota and the brain, the microbiota-gut-brain axis, occurs through various pathways including the vagus nerve, the immune system, neuroendocrine pathways, and bacteria-derived metabolites. This axis has been shown to influence neurotransmission and the behavior that are often associated with neuropsychiatric conditions. Therefore, research targeting the modulation of this gut microbiota as a novel therapy for the treatment of various neuropsychiatric conditions is gaining interest. Numerous factors have been highlighted to influence gut microbiota composition, including genetics, health status, mode of birth, and environment. However, it is diet composition and nutritional status that has repeatedly been shown to be one of the most critical modifiable factors regulating the gut microbiota at different time points across the lifespan and under various health conditions. Thus the microbiota is poised to play a key role in nutritional interventions for maintaining brain health. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Environmental Pollutant Benzo[a]Pyrene Impacts the Volatile Metabolome and Transcriptome of the Human Gut Microbiota.

    PubMed

    Defois, Clémence; Ratel, Jérémy; Denis, Sylvain; Batut, Bérénice; Beugnot, Réjane; Peyretaillade, Eric; Engel, Erwan; Peyret, Pierre

    2017-01-01

    Benzo[ a ]pyrene (B[ a ]P) is a ubiquitous, persistent, and carcinogenic pollutant that belongs to the large family of polycyclic aromatic hydrocarbons. Population exposure primarily occurs via contaminated food products, which introduces the pollutant to the digestive tract. Although the metabolism of B[ a ]P by host cells is well known, its impacts on the human gut microbiota, which plays a key role in health and disease, remain unexplored. We performed an in vitro assay using 16S barcoding, metatranscriptomics and volatile metabolomics to study the impact of B[ a ]P on two distinct human fecal microbiota. B[ a ]P exposure did not induce a significant change in the microbial structure; however, it altered the microbial volatolome in a dose-dependent manner. The transcript levels related to several metabolic pathways, such as vitamin and cofactor metabolism, cell wall compound metabolism, DNA repair and replication systems, and aromatic compound metabolism, were upregulated, whereas the transcript levels related to the glycolysis-gluconeogenesis pathway and bacterial chemotaxis toward simple carbohydrates were downregulated. These primary findings show that food pollutants, such as B[ a ]P, alter human gut microbiota activity. The observed shift in the volatolome demonstrates that B[ a ]P induces a specific deviation in the microbial metabolism.

  9. Environmental Pollutant Benzo[a]Pyrene Impacts the Volatile Metabolome and Transcriptome of the Human Gut Microbiota

    PubMed Central

    Defois, Clémence; Ratel, Jérémy; Denis, Sylvain; Batut, Bérénice; Beugnot, Réjane; Peyretaillade, Eric; Engel, Erwan; Peyret, Pierre

    2017-01-01

    Benzo[a]pyrene (B[a]P) is a ubiquitous, persistent, and carcinogenic pollutant that belongs to the large family of polycyclic aromatic hydrocarbons. Population exposure primarily occurs via contaminated food products, which introduces the pollutant to the digestive tract. Although the metabolism of B[a]P by host cells is well known, its impacts on the human gut microbiota, which plays a key role in health and disease, remain unexplored. We performed an in vitro assay using 16S barcoding, metatranscriptomics and volatile metabolomics to study the impact of B[a]P on two distinct human fecal microbiota. B[a]P exposure did not induce a significant change in the microbial structure; however, it altered the microbial volatolome in a dose-dependent manner. The transcript levels related to several metabolic pathways, such as vitamin and cofactor metabolism, cell wall compound metabolism, DNA repair and replication systems, and aromatic compound metabolism, were upregulated, whereas the transcript levels related to the glycolysis-gluconeogenesis pathway and bacterial chemotaxis toward simple carbohydrates were downregulated. These primary findings show that food pollutants, such as B[a]P, alter human gut microbiota activity. The observed shift in the volatolome demonstrates that B[a]P induces a specific deviation in the microbial metabolism. PMID:28861070

  10. Introduction to the special focus issue on the impact of diet on gut microbiota composition and function and future opportunities for nutritional modulation of the gut microbiome to improve human health.

    PubMed

    Donovan, Sharon M

    2017-03-04

    Over the past decade, application of culture-independent, next generation DNA sequencing has dramatically enhanced our understanding of the composition of the gut microbiome and its association with human states of health and disease. Host genetics, age, and environmental factors such as where and who you live with, use of pre-, pro- and antibiotics, exercise and diet influence the short- and long-term composition of the microbiome. Dietary intake is a key determinant of microbiome composition and diversity and studies to date have linked long-term dietary patterns as well as short-term dietary interventions to the composition and diversity of the gut microbiome. The goal of this special focus issue was to review the role of diet in regulating the composition and function of the gut microbiota across the lifespan, from pregnancy to old age. Overall dietary patterns, as well as perturbations such as undernutrition and obesity, as well as the effects of dietary fiber/prebiotics and fat composition are explored.

  11. Gut microbiota modify risk for dietary glycemia-induced age-related macular degeneration.

    PubMed

    Rowan, Sheldon; Taylor, Allen

    2018-03-21

    Age-related macular degeneration (AMD) is a leading cause of blindness world-wide. Although the etiology of AMD is multifactorial, diet and nutrition have strong epidemiologic associations with disease onset and progression. Recent studies indicate a role for gut microbiota in development of AMD in mouse models and in some forms of human AMD. We previously found that consuming lower glycemia diets is associated with protection against AMD in humans and switching from higher to lower glycemia diets arrests AMD phenotypes in mice. Gut microbiota populations and circulating microbial cometabolites were altered in response to dietary carbohydrates, indicating a gut-retina axis. Here we explore additional gut microbiota-AMD interactions that point toward pathogenic roles for some gut microbiota families, including Ruminococcaceae and Lachnospiraceae, and individual members of Turicibacteraceae, Clostridiaceae, and Mogibacteriaceae. We also speculate on potential mechanisms by which gut microbiota influence AMD, with the objective of devising new AMD diagnoses and treatments.

  12. Developmental biology of gut-probiotic interaction

    PubMed Central

    Patel, Ravi Mangal

    2010-01-01

    While our current knowledge of probiotic interaction in the developing gut remains poorly understood, emerging science is providing greater biological insight into their mechanism of action and therapeutic potential for human disease. Given their beneficial effects, probiotics remain promising agents in neonatal gastrointestinal disorders. Probiotics may restore or supply essential bacterial strains needed for gut maturation and homeostasis, particularly in hosts where this process has been disrupted. Here we highlight the unique characteristics of developing intestinal epithelia with a focus on gut development and colonization as well as the inflammatory propensity of immature epithelia. Additionally, we review potential mechanisms of beneficial probiotic interaction with immature intestinal epithelia including immunomodulation, upregulation of cytoprotective genes, prevention and regulation of apoptosis and maintenance of barrier function. Improved knowledge of gut-probiotic interaction in developing epithelia will allow for a better understanding of how probiotics exert their beneficial effects and help guide their therapeutic use. PMID:21327024

  13. The optical diagnostics of parameters of biological tissues of human intact skin in near-infrared range

    NASA Astrophysics Data System (ADS)

    Petruk, Vasyl; Kvaternyuk, Sergii; Bolyuh, Boris; Bolyuh, Dmitry; Dronenko, Vladimir; Harasim, Damian; Annabayev, Azamat

    2016-09-01

    Melanoma skin is difficult to diagnose in the early stages of development despite its location outside. Melanoma is difficult to visually differentiate from benign melanocytic nevi. In the work we investigated parameters of human intact skin in near-infrared range for different racial and gender groups. This allows to analyze statistical differences in the coefficient of diffuse reflection and use them in the differential diagnosis of cancer by optical methods subject.

  14. Probiotic Species in the Modulation of Gut Microbiota: An Overview

    PubMed Central

    Sarker, Manobendro

    2018-01-01

    Probiotics are microbial strains that are beneficial to health, and their potential has recently led to a significant increase in research interest in their use to modulate the gut microbiota. The animal gut is a complex ecosystem of host cells, microbiota, and available nutrients, and the microbiota prevents several degenerative diseases in humans and animals via immunomodulation. The gut microbiota and its influence on human nutrition, metabolism, physiology, and immunity are addressed, and several probiotic species and strains are discussed to improve the understanding of modulation of gut microbiota. This paper provides a broad review of several Lactobacillus spp., Bifidobacterium spp., and other coliform bacteria as the most promising probiotic species and their role in the prevention of degenerative diseases, such as obesity, diabetes, cancer, cardiovascular diseases, malignancy, liver disease, and inflammatory bowel disease. This review also discusses a recent study of Saccharomyces spp. in which inflammation was prevented by promotion of proinflammatory immune function via the production of short-chain fatty acids. A summary of gut microbiota alteration with future perspectives is also provided. PMID:29854813

  15. Probiotic Species in the Modulation of Gut Microbiota: An Overview.

    PubMed

    Azad, Md Abul Kalam; Sarker, Manobendro; Li, Tiejun; Yin, Jie

    2018-01-01

    Probiotics are microbial strains that are beneficial to health, and their potential has recently led to a significant increase in research interest in their use to modulate the gut microbiota. The animal gut is a complex ecosystem of host cells, microbiota, and available nutrients, and the microbiota prevents several degenerative diseases in humans and animals via immunomodulation. The gut microbiota and its influence on human nutrition, metabolism, physiology, and immunity are addressed, and several probiotic species and strains are discussed to improve the understanding of modulation of gut microbiota. This paper provides a broad review of several Lactobacillus spp., Bifidobacterium spp., and other coliform bacteria as the most promising probiotic species and their role in the prevention of degenerative diseases, such as obesity, diabetes, cancer, cardiovascular diseases, malignancy, liver disease, and inflammatory bowel disease. This review also discusses a recent study of Saccharomyces spp. in which inflammation was prevented by promotion of proinflammatory immune function via the production of short-chain fatty acids. A summary of gut microbiota alteration with future perspectives is also provided.

  16. The gut microbiome of nonhuman primates: Lessons in ecology and evolution.

    PubMed

    Clayton, Jonathan B; Gomez, Andres; Amato, Katherine; Knights, Dan; Travis, Dominic A; Blekhman, Ran; Knight, Rob; Leigh, Steven; Stumpf, Rebecca; Wolf, Tiffany; Glander, Kenneth E; Cabana, Francis; Johnson, Timothy J

    2018-06-01

    The mammalian gastrointestinal (GI) tract is home to trillions of bacteria that play a substantial role in host metabolism and immunity. While progress has been made in understanding the role that microbial communities play in human health and disease, much less attention has been given to host-associated microbiomes in nonhuman primates (NHPs). Here we review past and current research exploring the gut microbiome of NHPs. First, we summarize methods for characterization of the NHP gut microbiome. Then we discuss variation in gut microbiome composition and function across different NHP taxa. Finally, we highlight how studying the gut microbiome offers new insights into primate nutrition, physiology, and immune system function, as well as enhances our understanding of primate ecology and evolution. Microbiome approaches are useful tools for studying relevant issues in primate ecology. Further study of the gut microbiome of NHPs will offer new insight into primate ecology and evolution as well as human health. © 2018 Wiley Periodicals, Inc.

  17. Emerging Technologies for Gut Microbiome Research

    PubMed Central

    Arnold, Jason W.; Roach, Jeffrey; Azcarate-Peril, M. Andrea

    2016-01-01

    Understanding the importance of the gut microbiome on modulation of host health has become a subject of great interest for researchers across disciplines. As an intrinsically multidisciplinary field, microbiome research has been able to reap the benefits of technological advancements in systems and synthetic biology, biomaterials engineering, and traditional microbiology. Gut microbiome research has been revolutionized by high-throughput sequencing technology, permitting compositional and functional analyses that were previously an unrealistic undertaking. Emerging technologies including engineered organoids derived from human stem cells, high-throughput culturing, and microfluidics assays allowing for the introduction of novel approaches will improve the efficiency and quality of microbiome research. Here, we will discuss emerging technologies and their potential impact on gut microbiome studies. PMID:27426971

  18. Assessing the Influence of Vegan, Vegetarian and Omnivore Oriented Westernized Dietary Styles on Human Gut Microbiota: A Cross Sectional Study.

    PubMed

    Losasso, Carmen; Eckert, Ester M; Mastrorilli, Eleonora; Villiger, Jorg; Mancin, Marzia; Patuzzi, Ilaria; Di Cesare, Andrea; Cibin, Veronica; Barrucci, Federica; Pernthaler, Jakob; Corno, Gianluca; Ricci, Antonia

    2018-01-01

    Diet and lifestyle have a strong influence on gut microbiota, which in turn has important implications on a variety of health-related aspects. Despite great advances in the field, it remains unclear to which extent the composition of the gut microbiota is modulated by the intake of animal derived products, compared to a vegetable based diet. Here the specific impact of vegan, vegetarian, and omnivore feeding type on the composition of gut microbiota of 101 adults was investigated among groups homogeneous for variables known to have a role in modulating gut microbial composition such as age, anthropometric variables, ethnicity, and geographic area. The results displayed a picture where the three different dietetic profiles could be well distinguished on the basis of participant's dietetic regimen. Regarding the gut microbiota; vegetarians had a significantly greater richness compared to omnivorous. Moreover, counts of Bacteroidetes related operational taxonomic units (OTUs) were greater in vegans and vegetarians compared to omnivores. Interestingly considering the whole bacterial community composition the three cohorts were unexpectedly similar, which is probably due to their common intake in terms of nutrients rather than food, e.g., high fat content and reduced protein and carbohydrate intake. This finding suggests that fundamental nutritional choices such as vegan, vegetarian, or omnivore do influence the microbiota but do not allow to infer conclusions on gut microbial composition, and suggested the possibility for a preferential impact of other variables, probably related to the general life style on shaping human gut microbial community in spite of dietary influence. Consequently, research were individuals are categorized on the basis of their claimed feeding types is of limited use for scientific studies, since it appears to be oversimplified.

  19. Antivirulence Activity of the Human Gut Metabolome

    PubMed Central

    Antunes, L. Caetano M.; McDonald, Julie A. K.; Schroeter, Kathleen; Carlucci, Christian; Ferreira, Rosana B. R.; Wang, Melody; Yurist-Doutsch, Sophie; Hira, Gill; Jacobson, Kevan; Davies, Julian; Allen-Vercoe, Emma

    2014-01-01

    ABSTRACT The mammalian gut contains a complex assembly of commensal microbes termed microbiota. Although much has been learned about the role of these microbes in health, the mechanisms underlying these functions are ill defined. We have recently shown that the mammalian gut contains thousands of small molecules, most of which are currently unidentified. Therefore, we hypothesized that these molecules function as chemical cues used by hosts and microbes during their interactions in health and disease. Thus, a search was initiated to identify molecules produced by the microbiota that are sensed by pathogens. We found that a secreted molecule produced by clostridia acts as a strong repressor of Salmonella virulence, obliterating expression of the Salmonella pathogenicity island 1 as well as host cell invasion. It has been known for decades that the microbiota protects its hosts from invading pathogens, and these data suggest that chemical sensing may be involved in this phenomenon. Further investigations should reveal the exact biological role of this molecule as well as its therapeutic potential. PMID:25073640

  20. Antibiotics and the developing infant gut microbiota and resistome.

    PubMed

    Gibson, Molly K; Crofts, Terence S; Dantas, Gautam

    2015-10-01

    The microbial communities colonizing the human gut are tremendously diverse and highly personal. The composition and function of the microbiota play important roles in human health and disease, and considerable research has focused on understanding the ecological forces shaping these communities. While it is clear that factors such as diet, genotype of the host, and environment influence the adult gut microbiota community composition, recent work has emphasized the importance of early-life assembly dynamics in both the immediate and long-term personalized nature of the gut microbiota. While the mature adult gut microbiota is believed to be relatively stable, the developing infant gut microbiota (IGM) is highly dynamic and prone to disruption by external factors, including antibiotic exposure. Studies have revealed both transient and persistent alterations to the adult gut microbiota community resulting from antibiotic treatment later in life. As antibiotics are routinely prescribed at a greater rate in the first years of life, the impact of these interventions on the developing IGM is emerging as a key research priority. In addition to understanding the impact of these disruptions on the infant gut microbial architecture and related host diseases, we need to understand the contribution of early life antibiotics to the selection of antibiotic resistance gene reservoirs in the microbiota, and their threat to successful treatment of infectious disease. Here we review the current understanding of the developmental progression of the IGM and the impact of antibiotic therapies on its composition and encoded reservoir of antibiotic resistance genes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Evaluation of NVB302 versus vancomycin activity in an in vitro human gut model of Clostridium difficile infection.

    PubMed

    Crowther, Grace S; Baines, Simon D; Todhunter, Sharie L; Freeman, Jane; Chilton, Caroline H; Wilcox, Mark H

    2013-01-01

    First-line treatment options for Clostridium difficile infection (CDI) are limited. NVB302 is a novel type B lantibiotic under evaluation for the treatment of CDI. We compared the responses to NVB302 and vancomycin when used to treat simulated CDI in an in vitro gut model. We used ceftriaxone to elicit simulated CDI in an in vitro gut model primed with human faeces. Vancomycin and NVB302 were instilled into separate gut models and the indigenous gut microbiota and C. difficile total viable counts, spores and toxin levels were monitored throughout. Ceftriaxone instillation promoted C. difficile germination and high-level toxin production. Commencement of NVB302 and vancomycin instillation reduced C. difficile total viable counts rapidly with only C. difficile spores remaining within 3 and 4 days, respectively. Cytotoxin was reduced to undetectable levels 5 and 7 days after vancomycin and NVB302 instillation commenced in vessel 2 and 3, respectively, and remained undetectable for the remainder of the experiments. C. difficile spores were unaffected by the presence of vancomycin or NVB302. NVB302 treatment was associated with faster resolution of Bacteroides fragilis group. Both NVB302 and vancomycin were effective in treating simulated CDI in an in vitro gut model. C. difficile spore recrudescence was not observed following successful treatment with either NVB302 or vancomycin. NVB302 displayed non-inferiority to vancomycin in the treatment of simulated CDI, and had less deleterious effects against B. fragilis group. NVB302 warrants further clinical investigation as a potentially novel antimicrobial agent for the treatment of CDI.

  2. The Microbiome-Gut-Behavior Axis: Crosstalk Between the Gut Microbiome and Oligodendrocytes Modulates Behavioral Responses.

    PubMed

    Ntranos, Achilles; Casaccia, Patrizia

    2018-01-01

    Environmental and dietary stimuli have always been implicated in brain development and behavioral responses. The gut, being the major portal of communication with the external environment, has recently been brought to the forefront of this interaction with the establishment of a gut-brain axis in health and disease. Moreover, recent breakthroughs in germ-free and antibiotic-treated mice have demonstrated the significant impact of the microbiome in modulating behavioral responses in mice and have established a more specific microbiome-gut-behavior axis. One of the mechanisms by which this axis affects social behavior is by regulating myelination at the prefrontal cortex, an important site for complex cognitive behavior planning and decision-making. The prefrontal cortex exhibits late myelination of its axonal projections that could extend into the third decade of life in humans, which make it susceptible to external influences, such as microbial metabolites. Changes in the gut microbiome were shown to alter the composition of the microbial metabolome affecting highly permeable bioactive compounds, such as p-cresol, which could impair oligodendrocyte differentiation. Dysregulated myelination in the prefrontal cortex is then able to affect behavioral responses in mice, shifting them towards social isolation. The reduced social interactions could then limit microbial exchange, which could otherwise pose a threat to the survival of the existing microbial community in the host and, thus, provide an evolutionary advantage to the specific microbial community. In this review, we will analyze the microbiome-gut-behavior axis, describe the interactions between the gut microbiome and oligodendrocytes and highlight their role in the modulation of social behavior.

  3. Homeostasis of the gut barrier and potential biomarkers

    PubMed Central

    Brummer, Robert J.; Derrien, Muriel; MacDonald, Thomas T.; Troost, Freddy; Cani, Patrice D.; Theodorou, Vassilia; Dekker, Jan; Méheust, Agnes; de Vos, Willem M.; Mercenier, Annick; Nauta, Arjen; Garcia-Rodenas, Clara L.

    2017-01-01

    The gut barrier plays a crucial role by spatially compartmentalizing bacteria to the lumen through the production of secreted mucus and is fortified by the production of secretory IgA (sIgA) and antimicrobial peptides and proteins. With the exception of sIgA, expression of these protective barrier factors is largely controlled by innate immune recognition of microbial molecular ligands. Several specialized adaptations and checkpoints are operating in the mucosa to scale the immune response according to the threat and prevent overreaction to the trillions of symbionts inhabiting the human intestine. A healthy microbiota plays a key role influencing epithelial barrier functions through the production of short-chain fatty acids (SCFAs) and interactions with innate pattern recognition receptors in the mucosa, driving the steady-state expression of mucus and antimicrobial factors. However, perturbation of gut barrier homeostasis can lead to increased inflammatory signaling, increased epithelial permeability, and dysbiosis of the microbiota, which are recognized to play a role in the pathophysiology of a variety of gastrointestinal disorders. Additionally, gut-brain signaling may be affected by prolonged mucosal immune activation, leading to increased afferent sensory signaling and abdominal symptoms. In turn, neuronal mechanisms can affect the intestinal barrier partly by activation of the hypothalamus-pituitary-adrenal axis and both mast cell-dependent and mast cell-independent mechanisms. The modulation of gut barrier function through nutritional interventions, including strategies to manipulate the microbiota, is considered a relevant target for novel therapeutic and preventive treatments against a range of diseases. Several biomarkers have been used to measure gut permeability and loss of barrier integrity in intestinal diseases, but there remains a need to explore their use in assessing the effect of nutritional factors on gut barrier function. Future studies

  4. Cardiovascular and Antiobesity Effects of Resveratrol Mediated through the Gut Microbiota.

    PubMed

    Bird, Julia K; Raederstorff, Daniel; Weber, Peter; Steinert, Robert E

    2017-11-01

    Encouraging scientific research into the health effects of dietary bioactive resveratrol has been confounded by its rapid first-pass metabolism, which leads to low in vivo bioavailability. Preliminary studies have shown that resveratrol can modulate gut microbiota composition, undergo biotransformation to active metabolites via the intestinal microbiota, or affect gut barrier function. In rodents, resveratrol can modify the relative Bacteroidetes:Firmicutes ratio and reverse the gut microbial dysbiosis caused by a high-fat diet. By upregulating the expression of genes involved in maintaining tight junctions between intestinal cells, resveratrol contributes to gut barrier integrity. The composition of the gut microbiome and rapid metabolism of resveratrol determines the production of resveratrol metabolites, which are found at greater concentrations in humans after ingestion than their parent molecule and can have similar biological effects. Resveratrol may affect cardiovascular risk factors such as elevated blood cholesterol or trimethylamine N -oxide concentrations. Modulating the composition of the gut microbiota by resveratrol may affect central energy metabolism and modify concentrations of satiety hormones to produce antiobesity effects. Encouraging research from animal models could be tested in humans. © 2017 American Society for Nutrition.

  5. The gut microbiota, obesity and insulin resistance.

    PubMed

    Shen, Jian; Obin, Martin S; Zhao, Liping

    2013-02-01

    The human gut is densely populated by commensal and symbiotic microbes (the "gut microbiota"), with the majority of the constituent microorganisms being bacteria. Accumulating evidence indicates that the gut microbiota plays a significant role in the development of obesity, obesity-associated inflammation and insulin resistance. In this review we discuss molecular and cell biological mechanisms by which the microbiota participate in host functions that impact the development and maintenance of the obese state, including host ingestive behavior, energy harvest, energy expenditure and fat storage. We additionally explore the diverse signaling pathways that regulate gut permeability and bacterial translocation to the host and how these are altered in the obese state to promote the systemic inflammation ("metabolic endotoxemia") that is a hallmark of obesity and its complications. Fundamental to our discussions is the concept of "crosstalk", i.e., the biochemical exchange between host and microbiota that maintains the metabolic health of the superorganism and whose dysregulation is a hallmark of the obese state. Differences in community composition, functional genes and metabolic activities of the gut microbiota appear to distinguish lean vs obese individuals, suggesting that gut 'dysbiosis' contributes to the development of obesity and/or its complications. The current challenge is to determine the relative importance of obesity-associated compositional and functional changes in the microbiota and to identify the relevant taxa and functional gene modules that promote leanness and metabolic health. As diet appears to play a predominant role in shaping the microbiota and promoting obesity-associated dysbiosis, parallel initiatives are required to elucidate dietary patterns and diet components (e.g., prebiotics, probiotics) that promote healthy gut microbiota. How the microbiota promotes human health and disease is a rich area of investigation that is likely to generate

  6. Crystal Structures of Apparent Saccharide Sensors from Histidine Kinase Receptors Prevalent in a Human Gut Symbiont

    PubMed Central

    Zhang, Zhen; Liu, Qun; Hendrickson, Wayne A.

    2014-01-01

    The adult human gut presents a complicated ecosystem where host-bacterium symbiosis plays an important role. Bacteroides thetaiotaomicron is a predominant member of the gut microflora, providing the human digestive tract with a large number of glycolytic enzymes. Expression of many of these enzymes appears to be controlled by histidine kinase receptors that are fused into unusual hybrid two-component systems that share homologous periplasmic sensor domains. These sensor domains belong to the third most populated (HK3) family based on a previous bioinformatics analysis of predicted histidine kinase sensors. Here, we present crystal structures of two sensor domains representative of the HK3 family. Each sensor is folded into three domains: two seven-bladed β-propeller domains and one β-sandwich domain. Both sensors form dimers in crystals and one sensor appears to be physiologically relevant. The folding characteristics in the individual domains, the domain organization, and the oligomeric architecture are all unique to the HK3 sensors. The sequence analysis of the HK3 sensors indicates that these sensors are shared among other signaling molecules, implying a combinatorial molecular evolution. PMID:24995510

  7. Structure and function of the healthy pre-adolescent pediatric gut microbiome.

    PubMed

    Hollister, Emily B; Riehle, Kevin; Luna, Ruth Ann; Weidler, Erica M; Rubio-Gonzales, Michelle; Mistretta, Toni-Ann; Raza, Sabeen; Doddapaneni, Harsha V; Metcalf, Ginger A; Muzny, Donna M; Gibbs, Richard A; Petrosino, Joseph F; Shulman, Robert J; Versalovic, James

    2015-08-26

    The gut microbiome influences myriad host functions, including nutrient acquisition, immune modulation, brain development, and behavior. Although human gut microbiota are recognized to change as we age, information regarding the structure and function of the gut microbiome during childhood is limited. Using 16S rRNA gene and shotgun metagenomic sequencing, we characterized the structure, function, and variation of the healthy pediatric gut microbiome in a cohort of school-aged, pre-adolescent children (ages 7-12 years). We compared the healthy pediatric gut microbiome with that of healthy adults previously recruited from the same region (Houston, TX, USA). Although healthy children and adults harbored similar numbers of taxa and functional genes, their composition and functional potential differed significantly. Children were enriched in Bifidobacterium spp., Faecalibacterium spp., and members of the Lachnospiraceae, while adults harbored greater abundances of Bacteroides spp. From a functional perspective, significant differences were detected with respect to the relative abundances of genes involved in vitamin synthesis, amino acid degradation, oxidative phosphorylation, and triggering mucosal inflammation. Children's gut communities were enriched in functions which may support ongoing development, while adult communities were enriched in functions associated with inflammation, obesity, and increased risk of adiposity. Previous studies suggest that the human gut microbiome is relatively stable and adult-like after the first 1 to 3 years of life. Our results suggest that the healthy pediatric gut microbiome harbors compositional and functional qualities that differ from those of healthy adults and that the gut microbiome may undergo a more prolonged development than previously suspected.

  8. Mycotoxin: Its Impact on Gut Health and Microbiota

    PubMed Central

    Liew, Winnie-Pui-Pui; Mohd-Redzwan, Sabran

    2018-01-01

    The secondary metabolites produced by fungi known as mycotoxins, are capable of causing mycotoxicosis (diseases and death) in human and animals. Contamination of feedstuffs as well as food commodities by fungi occurs frequently in a natural manner and is accompanied by the presence of mycotoxins. The occurrence of mycotoxins' contamination is further stimulated by the on-going global warming as reflected in some findings. This review comprehensively discussed the role of mycotoxins (trichothecenes, zearalenone, fumonisins, ochratoxins, and aflatoxins) toward gut health and gut microbiota. Certainly, mycotoxins cause perturbation in the gut, particularly in the intestinal epithelial. Recent insights have generated an entirely new perspective where there is a bi-directional relationship exists between mycotoxins and gut microbiota, thus suggesting that our gut microbiota might be involved in the development of mycotoxicosis. The bacteria–xenobiotic interplay for the host is highlighted in this review article. It is now well established that a healthy gut microbiota is largely responsible for the overall health of the host. Findings revealed that the gut microbiota is capable of eliminating mycotoxin from the host naturally, provided that the host is healthy with a balance gut microbiota. Moreover, mycotoxins have been demonstrated for modulation of gut microbiota composition, and such alteration in gut microbiota can be observed up to species level in some of the studies. Most, if not all, of the reported effects of mycotoxins, are negative in terms of intestinal health, where beneficial bacteria are eliminated accompanied by an increase of the gut pathogen. The interactions between gut microbiota and mycotoxins have a significant role in the development of mycotoxicosis, particularly hepatocellular carcinoma. Such knowledge potentially drives the development of novel and innovative strategies for the prevention and therapy of mycotoxin contamination and

  9. The Potential Link between Gut Microbiota and IgE-Mediated Food Allergy in Early Life

    PubMed Central

    Molloy, John; Allen, Katrina; Collier, Fiona; Tang, Mimi L. K.; Ward, Alister C.; Vuillermin, Peter

    2013-01-01

    There has been a dramatic rise in the prevalence of IgE-mediated food allergy over recent decades, particularly among infants and young children. The cause of this increase is unknown but one putative factor is a change in the composition, richness and balance of the microbiota that colonize the human gut during early infancy. The coevolution of the human gastrointestinal tract and commensal microbiota has resulted in a symbiotic relationship in which gut microbiota play a vital role in early life immune development and function, as well as maintenance of gut wall epithelial integrity. Since IgE mediated food allergy is associated with immune dysregulation and impaired gut epithelial integrity there is substantial interest in the potential link between gut microbiota and food allergy. Although the exact link between gut microbiota and food allergy is yet to be established in humans, recent experimental evidence suggests that specific patterns of gut microbiota colonization may influence the risk and manifestations of food allergy. An understanding of the relationship between gut microbiota and food allergy has the potential to inform both the prevention and treatment of food allergy. In this paper we review the theory and evidence linking gut microbiota and IgE-mediated food allergy in early life. We then consider the implications and challenges for future research, including the techniques of measuring and analyzing gut microbiota, and the types of studies required to advance knowledge in the field. PMID:24351744

  10. Gut microbiota and obesity: lessons from the microbiome.

    PubMed

    Cani, Patrice D

    2013-07-01

    The distal gut harbours microbial communities that outnumber our own eukaryotic cells. The contribution of the gut microbiota to the development of several diseases (e.g. obesity, type 2 diabetes, steatosis, cardiovascular diseases and inflammatory bowel diseases) is becoming clear, although the causality remains to be proven in humans. Global changes in the gut microbiota have been observed by a number of culture-dependent and culture-independent methods, and while the latter have mostly included 16S ribosomal RNA gene analyses, more recent studies have utilized DNA sequencing of whole-microbial communities. Altogether, these high-throughput methods have facilitated the identification of novel candidate bacteria and, most importantly, metabolic functions that might be associated with obesity and type 2 diabetes. This review discusses the association between specific taxa and obesity, together with the techniques that are used to characterize the gut microbiota in the context of obesity and type 2 diabetes. Recent results are discussed in the framework of the interactions between gut microbiota and host metabolism.

  11. The Role of Microbiota on the Gut Immunology.

    PubMed

    Min, Yang Won; Rhee, Poong-Lyul

    2015-05-01

    The human gut contains >100 trillion microbes. This microbiota plays a crucial role in the gut homeostasis. Importantly, the microbiota contributes to the development and regulation of the gut immune system. Dysbiosis of the gut microbiota could also cause several intestinal and extraintestinal diseases. Many experimental studies help us to understand the complex interplay between the host and microbiota. This review presents our current understanding of the mucosal immune system and the role of gut microbiota for the development and functionality of the mucosal immunity, with a particular focus on gut-associated lymphoid tissues, mucosal barrier, TH17 cells, regulatory T cells, innate lymphoid cells, dendritic cells, and IgA-producing B cells and plasma cells. Comparative studies using germ-free and conventionally-raised animals reveal that the presence of microbiota is important for the development and regulation of innate and adaptive immune systems. The host-microbial symbiosis seems necessary for gut homeostasis. However, the precise mechanisms by which microbiota contributes to development and functionality of the immune system remain to be elucidated. Understanding the complex interplay between the host and microbiota and further investigation of the host-microbiota relationship could provide us the insight into the therapeutic and/or preventive strategy for the disorders related to dysbiosis of the gut microbiota. Copyright © 2015 Elsevier HS Journals, Inc. All rights reserved.

  12. Nuclear microprobe investigation of the penetration of ultrafine zinc oxide into intact and tape-stripped human skin

    NASA Astrophysics Data System (ADS)

    Szikszai, Z.; Kertész, Zs.; Bodnár, E.; Major, I.; Borbíró, I.; Kiss, Á. Z.; Hunyadi, J.

    2010-06-01

    Ultrafine metal oxides, such as titanium dioxide and zinc oxide are widely used in cosmetic and health products like sunscreens. These oxides are potent UV filters and the small particle size makes the product more transparent compared to formulations containing coarser particles. In the present work the penetration of ultrafine zinc oxide into intact and tape-stripped human skin was investigated using nuclear microprobe techniques, such as proton induced X-ray spectroscopy and scanning transmission ion microscopy. Our results indicate that the penetration of ultrafine zinc oxide, in a hydrophobic basis gel with 48 h application time, is limited to the stratum corneum layer of the intact skin. Removing the stratum corneum partially or entirely by tape-stripping did not cause the penetration of the particles into the deeper dermal layers; the zinc particles remained on the surface of the skin.

  13. In vitro comparison of human fibroblasts from intact and ruptured ACL for use in tissue engineering.

    PubMed

    Brune, T; Borel, A; Gilbert, T W; Franceschi, J P; Badylak, S F; Sommer, P

    2007-12-17

    The present study compares fibroblasts extracted from intact and ruptured human anterior cruciate ligaments (ACL) for creation of a tissue engineered ACL-construct, made of porcine small intestinal submucosal extracellular matrix (SIS-ECM) seeded with these ACL cells. The comparison is based on histological, immunohistochemical and RT-PCR analyses. Differences were observed between cells in a ruptured ACL (rACL) and cells in an intact ACL (iACL), particularly with regard to the expression of integrin subunits and smooth muscle actin (SMA). Despite these differences in the cell source, both cell populations behaved similarly when seeded on an SIS-ECM scaffold, with similar cell morphology, connective tissue organization and composition, SMA and integrin expression. This study shows the usefulness of naturally occurring scaffolds such as SIS-ECM for the study of cell behaviour in vitro, and illustrates the possibility to use autologous cells extracted from ruptured ACL biopsies as a source for tissue engineered ACL constructs.

  14. Assessing the Influence of Vegan, Vegetarian and Omnivore Oriented Westernized Dietary Styles on Human Gut Microbiota: A Cross Sectional Study

    PubMed Central

    Losasso, Carmen; Eckert, Ester M.; Mastrorilli, Eleonora; Villiger, Jorg; Mancin, Marzia; Patuzzi, Ilaria; Di Cesare, Andrea; Cibin, Veronica; Barrucci, Federica; Pernthaler, Jakob; Corno, Gianluca; Ricci, Antonia

    2018-01-01

    Diet and lifestyle have a strong influence on gut microbiota, which in turn has important implications on a variety of health-related aspects. Despite great advances in the field, it remains unclear to which extent the composition of the gut microbiota is modulated by the intake of animal derived products, compared to a vegetable based diet. Here the specific impact of vegan, vegetarian, and omnivore feeding type on the composition of gut microbiota of 101 adults was investigated among groups homogeneous for variables known to have a role in modulating gut microbial composition such as age, anthropometric variables, ethnicity, and geographic area. The results displayed a picture where the three different dietetic profiles could be well distinguished on the basis of participant’s dietetic regimen. Regarding the gut microbiota; vegetarians had a significantly greater richness compared to omnivorous. Moreover, counts of Bacteroidetes related operational taxonomic units (OTUs) were greater in vegans and vegetarians compared to omnivores. Interestingly considering the whole bacterial community composition the three cohorts were unexpectedly similar, which is probably due to their common intake in terms of nutrients rather than food, e.g., high fat content and reduced protein and carbohydrate intake. This finding suggests that fundamental nutritional choices such as vegan, vegetarian, or omnivore do influence the microbiota but do not allow to infer conclusions on gut microbial composition, and suggested the possibility for a preferential impact of other variables, probably related to the general life style on shaping human gut microbial community in spite of dietary influence. Consequently, research were individuals are categorized on the basis of their claimed feeding types is of limited use for scientific studies, since it appears to be oversimplified. PMID:29556222

  15. Early Development of the Gut Microbiota and Immune Health

    PubMed Central

    Francino, M. Pilar

    2014-01-01

    In recent years, the increase in human microbiome research brought about by the rapidly evolving “omic” technologies has established that the balance among the microbial groups present in the human gut, and their multipronged interactions with the host, are crucial for health. On the other hand, epidemiological and experimental support has also grown for the ‘early programming hypothesis’, according to which factors that act in utero and early in life program the risks for adverse health outcomes later on. The microbiota of the gut develops during infancy, in close interaction with immune development, and with extensive variability across individuals. It follows that the specific process of gut colonization and the microbe-host interactions established in an individual during this period have the potential to represent main determinants of life-long propensity to immune disease. Although much remains to be learnt on the progression of events by which the gut microbiota becomes established and initiates its intimate relationships with the host, and on the long-term repercussions of this process, recent works have advanced significatively in this direction. PMID:25438024

  16. The influence of gut microbiota on drug metabolism and toxicity

    PubMed Central

    Li, Houkai; He, Jiaojiao; Jia, Wei

    2017-01-01

    Introduction Gut microbiota plays critical roles in drug metabolism. The individual variation of gut microbiota contributes to the interindividual differences towards drug therapy including drug-induced toxicity and efficacy. Accordingly, the investigation and elucidation of gut microbial impacts on drug metabolism and toxicity will not only facilitate the way of personalized medicine, but also improve the rational drug design. Areas covered This review provide an overview on the microbiota-host cometabolism on drug metabolism and summarize 30 clinical drugs which are co-metabolized by host and gut microbiota. Moreover, this review is specifically focused on elucidating the gut microbial modulation on some clinical drugs, in which the gut microbial influences on drug metabolism, drug-induced toxicity and efficacy are intensively discussed. Expert opinion The gut microbial contribution to drug metabolism and toxicity is increasingly recognized, but remains largely unexplored due to the extremely complex relationship between gut microbiota and host. The mechanistic elucidation of gut microbiota in drug metabolism is critical before any practical progress in drug design or personalized medicine could be made by modulating human gut microbiota, which is predominantly relied on the technical innovations such as metagenomics and metabolomics, as well as the integration of multi-disciplinary knowledge. PMID:26569070

  17. [Diet and gut microbiota: two sides of the same coin?

    PubMed

    Schiumerini, Ramona; Pasqui, Francesca; Festi, Davide

    2018-01-01

    Gut microbiota is a complex ecosystem, resident in the digestive tract, exerting multiple functions that can have a significant impact on the pathophysiology of the host organism. The composition and functions of this "superorganism" are influenced by many factors, and among them, the host's dietary habits seem to have a significant effect. Dietary changes in the evolution of human history and in the different stages of life of the human subjects are responsible for qualitative and functional modification of gut microbiota. At the same time, the different dietary models adopted in worldwide geographic areas take into account the inter-individual differences concerning composition and microbial function. This close relationship between diet, gut microbiota and host seems, in fact, to be responsible for the protection or predisposition to develop several metabolic, immunological, neoplastic and functional diseases. Thus, several studies have evaluated the impact of diet and lifestyle modification strategies on gut microbiota composition and functions which, in turn, seems to affect the effectiveness of such therapeutic measures. Gut microbiota manipulation strategies, as complementary to dietary modifications, represent a fascinating field of research, even if consolidated data are still lacking.

  18. Influence of Altered Gut Microbiota Composition on Aging and Aging-Related Diseases

    PubMed Central

    Choi, Jeonghyun; Hur, Tai-Young; Hong, Yonggeun

    2018-01-01

    The gut microbiota forms a large community that coexists with all species, including humans and rodents. Genome projects have been conducted by many researchers in nearly every country to better understand and treat diseases that lead to death in humans. However, the gut microbiota is known as a “second genome” because it includes microbes, genomic DNA, proteins, and metabolites. A large number of studies have revealed the importance of the gut microbiota. In elderly people, the diversity of the gut microbiota is reduced and there is an increased incidence of degenerative diseases, including Alzheimer’s and Parkinson’s, and decreased cognitive and memory functions. However, the administration of pre/probiotics can help to improve the symptoms of these diseases. Therefore, we believe that the gut microbiota is important for maintaining homeostasis and diversity, as well as for avoiding gastrointestinal tract-derived diseases and improving health in the elderly population. PMID:29581954

  19. The gut microbiota and obesity: from correlation to causality.

    PubMed

    Zhao, Liping

    2013-09-01

    The gut microbiota has been linked with chronic diseases such as obesity in humans. However, the demonstration of causality between constituents of the microbiota and specific diseases remains an important challenge in the field. In this Opinion article, using Koch's postulates as a conceptual framework, I explore the chain of causation from alterations in the gut microbiota, particularly of the endotoxin-producing members, to the development of obesity in both rodents and humans. I then propose a strategy for identifying the causative agents of obesity in the human microbiota through a combination of microbiome-wide association studies, mechanistic analysis of host responses and the reproduction of diseases in gnotobiotic animals.

  20. Impact of the gut microbiota on rodent models of human disease.

    PubMed

    Hansen, Axel Kornerup; Hansen, Camilla Hartmann Friis; Krych, Lukasz; Nielsen, Dennis Sandris

    2014-12-21

    Traditionally bacteria have been considered as either pathogens, commensals or symbionts. The mammal gut harbors 10(14) organisms dispersed on approximately 1000 different species. Today, diagnostics, in contrast to previous cultivation techniques, allow the identification of close to 100% of bacterial species. This has revealed that a range of animal models within different research areas, such as diabetes, obesity, cancer, allergy, behavior and colitis, are affected by their gut microbiota. Correlation studies may for some diseases show correlation between gut microbiota composition and disease parameters higher than 70%. Some disease phenotypes may be transferred when recolonizing germ free mice. The mechanistic aspects are not clear, but some examples on how gut bacteria stimulate receptors, metabolism, and immune responses are discussed. A more deeper understanding of the impact of microbiota has its origin in the overall composition of the microbiota and in some newly recognized species, such as Akkermansia muciniphila, Segmented filamentous bacteria and Faecalibacterium prausnitzii, which seem to have an impact on more or less severe disease in specific models. Thus, the impact of the microbiota on animal models is of a magnitude that cannot be ignored in future research. Therefore, either models with specific microbiota must be developed, or the microbiota must be characterized in individual studies and incorporated into data evaluation.

  1. The effects of micronutrient deficiencies on bacterial species from the human gut microbiota

    PubMed Central

    Hibberd, Matthew C.; Wu, Meng; Rodionov, Dmitry A.; Li, Xiaoqing; Cheng, Jiye; Griffin, Nicholas W.; Barratt, Michael J.; Giannone, Richard J.; Hettich, Robert L.; Osterman, Andrei L.; Gordon, Jeffrey I.

    2017-01-01

    Vitamin and mineral (micronutrient) deficiencies afflict two billion people. While the impact of these imbalances on host biology has been studied extensively, much less is known about their effects on the gut microbiota of developing or adult humans. Therefore, we established a community of cultured, sequenced human gut-derived bacterial species in gnotobiotic mice and fed the animals a defined micronutrient-sufficient diet, followed by a derivative diet devoid of vitamin A, folate, iron or zinc, followed by return to the sufficient diet. Acute vitamin A deficiency had the largest effect on bacterial community structure and meta-transcriptome, with Bacteroides vulgatus, a prominent responder, increasing its abundance in the absence of vitamin A. Applying retinol selection to a library of 30,300 B. vulgatus transposon mutants revealed that disruption of acrR abrogated retinol sensitivity. Genetic complementation studies, microbial RNA-Seq, and transcription factor binding assays disclosed that AcrR is a repressor of an adjacent AcrAB-TolC efflux system. Retinol efflux measurements in wildtype and acrR-mutant strains plus treatment with a pharmacologic inhibitor of the efflux system, revealed that AcrAB-TolC is a determinant of retinol and bile acid sensitivity in B. vulgatus. Acute vitamin A deficiency was associated with altered bile acid metabolism in vivo, raising the possibility that retinol, bile acid metabolites, and AcrAB-TolC interact to influence the fitness of B. vulgatus and perhaps other microbiota members. This type of preclinical model can help to develop mechanistic insights about and more effective treatment strategies for micronutrient deficiencies. PMID:28515336

  2. Gut Microbiota-brain Axis

    PubMed Central

    Wang, Hong-Xing; Wang, Yu-Ping

    2016-01-01

    Objective: To systematically review the updated information about the gut microbiota-brain axis. Data Sources: All articles about gut microbiota-brain axis published up to July 18, 2016, were identified through a literature search on PubMed, ScienceDirect, and Web of Science, with the keywords of “gut microbiota”, “gut-brain axis”, and “neuroscience”. Study Selection: All relevant articles on gut microbiota and gut-brain axis were included and carefully reviewed, with no limitation of study design. Results: It is well-recognized that gut microbiota affects the brain's physiological, behavioral, and cognitive functions although its precise mechanism has not yet been fully understood. Gut microbiota-brain axis may include gut microbiota and their metabolic products, enteric nervous system, sympathetic and parasympathetic branches within the autonomic nervous system, neural-immune system, neuroendocrine system, and central nervous system. Moreover, there may be five communication routes between gut microbiota and brain, including the gut-brain's neural network, neuroendocrine-hypothalamic-pituitary-adrenal axis, gut immune system, some neurotransmitters and neural regulators synthesized by gut bacteria, and barrier paths including intestinal mucosal barrier and blood-brain barrier. The microbiome is used to define the composition and functional characteristics of gut microbiota, and metagenomics is an appropriate technique to characterize gut microbiota. Conclusions: Gut microbiota-brain axis refers to a bidirectional information network between the gut microbiota and the brain, which may provide a new way to protect the brain in the near future. PMID:27647198

  3. Dengue virus infection induces broadly cross-reactive human IgM antibodies that recognize intact virions in humanized BLT-NSG mice

    PubMed Central

    Jaiswal, Smita; Smith, Kenneth; Ramirez, Alejandro; Woda, Marcia; Pazoles, Pamela; Shultz, Leonard D; Greiner, Dale L; Brehm, Michael A

    2015-01-01

    The development of small animal models that elicit human immune responses to dengue virus (DENV) is important since prior immunity is a major risk factor for developing severe dengue disease. This study evaluated anti-DENV human antibody (hAb) responses generated from immortalized B cells after DENV-2 infection in NOD-scid IL2rγnull mice that were co-transplanted with human fetal thymus and liver tissues (BLT-NSG mice). DENV-specific human antibodies predominantly of the IgM isotype were isolated during acute infection and in convalescence. We found that while a few hAbs recognized the envelope protein produced as a soluble recombinant, a number of hAbs only recognized epitopes on intact virions. The majority of the hAbs isolated during acute infection and in immune mice were serotype-cross-reactive and poorly neutralizing. Viral titers in immune BLT-NSG mice were significantly decreased after challenge with a clinical strain of dengue. DENV-specific hAbs generated in BLT-NSG mice share some of the characteristics of Abs isolated in humans with natural infection. Humanized BLT-NSG mice provide an attractive preclinical platform to assess the immunogenicity of candidate dengue vaccines. PMID:25125497

  4. “I Am I and My Bacterial Circumstances”: Linking Gut Microbiome, Neurodevelopment, and Depression

    PubMed Central

    Lima-Ojeda, Juan M.; Rupprecht, Rainer; Baghai, Thomas C.

    2017-01-01

    Recently, there has been renewed interest in the role played by microbiome in both human health and human disease. A correct equilibrium between the human host and their microorganisms is important for an appropriate physiological function. Extensive research has shown that microbes that inhabit the gastrointestinal tract—or gut microbiota—are involved not only in both nutritive and digestive activities but also in immunological processes. Moreover, the gut microbiome influences both central nervous system and energy homeostasis. An altered gut microbiome has been associated with the pathophysiology of different diseases, including neuropsychiatric disorders. Apparently, both environmental—diet, exposition to antibiotics, and infections—and host-genetic factors have a strong influence on gut microbiome, modulating the risk for neuropsychiatric illness. Also, early life disruption of the microbiome–gut–brain (MGB) axis has been associated with an increased risk of developing depression later in life, suggesting a link between gut microbiome, neurodevelopment, and depression. This review aims to contribute to this growing area of research by exploring the role played by the gut microbiome in neurodevelopment and in the etiology of the depressive syndrome, including nutritional, immunological, and energy homeostasis approaches. PMID:28878696

  5. Complex pectin metabolism by gut bacteria reveals novel catalytic functions

    PubMed Central

    Baslé, Arnaud; Gray, Joseph; Venditto, Immacolata; Briggs, Jonathon; Zhang, Xiaoyang; Labourel, Aurore; Terrapon, Nicolas; Buffetto, Fanny; Nepogodiev, Sergey; Xiao, Yao; Field, Robert A.; Zhu, Yanping; O’Neil, Malcolm A.; Urbanowicz, Breeana R.; York, William S.; Davies, Gideon J.; Abbott, D. Wade; Ralet, Marie-Christine; Martens, Eric C.; Henrissat, Bernard; Gilbert, Harry J.

    2017-01-01

    Carbohydrate polymers drive microbial diversity in the human gut microbiota. It is unclear, however, whether bacterial consortia or single organisms are required to depolymerize highly complex glycans. Here we show that the gut bacterium Bacteroides thetaiotaomicron utilizes the most structurally complex glycan known; the plant pectic polysaccharide rhamnogalacturonan-II, cleaving all but one of its 21 distinct glycosidic linkages. We show that rhamnogalacturonan-II side-chain and backbone deconstruction are coordinated, to overcome steric constraints, and that degradation reveals previously undiscovered enzyme families and novel catalytic activities. The degradome informs revision of the current structural model of RG-II and highlights how individual gut bacteria orchestrate manifold enzymes to metabolize the most challenging glycans in the human diet. PMID:28329766

  6. CoMiniGut-a small volume in vitro colon model for the screening of gut microbial fermentation processes.

    PubMed

    Wiese, Maria; Khakimov, Bekzod; Nielsen, Sebastian; Sørensen, Helena; van den Berg, Frans; Nielsen, Dennis Sandris

    2018-01-01

    Driven by the growing recognition of the influence of the gut microbiota (GM) on human health and disease, there is a rapidly increasing interest in understanding how dietary components, pharmaceuticals and pre- and probiotics influence GM. In vitro colon models represent an attractive tool for this purpose. With the dual objective of facilitating the investigation of rare and expensive compounds, as well as an increased throughput, we have developed a prototype in vitro parallel gut microbial fermentation screening tool with a working volume of only 5 ml consisting of five parallel reactor units that can be expanded with multiples of five to increase throughput. This allows e.g., the investigation of interpersonal variations in gut microbial dynamics and the acquisition of larger data sets with enhanced statistical inference. The functionality of the in vitro colon model, Copenhagen MiniGut (CoMiniGut) was first demonstrated in experiments with two common prebiotics using the oligosaccharide inulin and the disaccharide lactulose at 1% (w/v). We then investigated fermentation of the scarce and expensive human milk oligosaccharides (HMOs) 3-Fucosyllactose, 3-Sialyllactose, 6-Sialyllactose and the more common Fructooligosaccharide in fermentations with infant gut microbial communities. Investigations of microbial community composition dynamics in the CoMiniGut reactors by MiSeq-based 16S rRNA gene amplicon high throughput sequencing showed excellent experimental reproducibility and allowed us to extract significant differences in gut microbial composition after 24 h of fermentation for all investigated substrates and fecal donors. Furthermore, short chain fatty acids (SCFAs) were quantified for all treatments and donors. Fermentations with inulin and lactulose showed that inulin leads to a microbiota dominated by obligate anaerobes, with high relative abundance of Bacteroidetes, while the more easily fermented lactulose leads to higher relative abundance of

  7. Spatial organization of a model 15-member human gut microbiota established in gnotobiotic mice

    PubMed Central

    Mark Welch, Jessica L.; Hasegawa, Yuko; McNulty, Nathan P.; Gordon, Jeffrey I.; Borisy, Gary G.

    2017-01-01

    Knowledge of the spatial organization of the gut microbiota is important for understanding the physical and molecular interactions among its members. These interactions are thought to influence microbial succession, community stability, syntrophic relationships, and resiliency in the face of perturbations. The complexity and dynamism of the gut microbiota pose considerable challenges for quantitative analysis of its spatial organization. Here, we illustrate an approach for addressing this challenge, using (i) a model, defined 15-member consortium of phylogenetically diverse, sequenced human gut bacterial strains introduced into adult gnotobiotic mice fed a polysaccharide-rich diet, and (ii) in situ hybridization and spectral imaging analysis methods that allow simultaneous detection of multiple bacterial strains at multiple spatial scales. Differences in the binding affinities of strains for substrates such as mucus or food particles, combined with more rapid replication in a preferred microhabitat, could, in principle, lead to localized clonally expanded aggregates composed of one or a few taxa. However, our results reveal a colonic community that is mixed at micrometer scales, with distinct spatial distributions of some taxa relative to one another, notably at the border between the mucosa and the lumen. Our data suggest that lumen and mucosa in the proximal colon should be conceptualized not as stratified compartments but as components of an incompletely mixed bioreactor. Employing the experimental approaches described should allow direct tests of whether and how specified host and microbial factors influence the nature and functional contributions of “microscale” mixing to the dynamic operations of the microbiota in health and disease. PMID:29073107

  8. Gut DNA viromes of Malawian twins discordant for severe acute malnutrition

    USDA-ARS?s Scientific Manuscript database

    The bacterial component of the human gut microbiota undergoes a definable program of postnatal development. Evidence is accumulating that this program is disrupted in children with severe acute malnutrition (SAM) and that their persistent gut microbiota immaturity, which is not durably repaired with...

  9. Gut microbiota derived metabolites in cardiovascular health and disease.

    PubMed

    Wang, Zeneng; Zhao, Yongzhong

    2018-05-03

    Trillions of microbes inhabit the human gut, not only providing nutrients and energy to the host from the ingested food, but also producing metabolic bioactive signaling molecules to maintain health and elicit disease, such as cardiovascular disease (CVD). CVD is the leading cause of mortality worldwide. In this review, we presented gut microbiota derived metabolites involved in cardiovascular health and disease, including trimethylamine-N-oxide (TMAO), uremic toxins, short chain fatty acids (SCFAs), phytoestrogens, anthocyanins, bile acids and lipopolysaccharide. These gut microbiota derived metabolites play critical roles in maintaining a healthy cardiovascular function, and if dysregulated, potentially causally linked to CVD. A better understanding of the function and dynamics of gut microbiota derived metabolites holds great promise toward mechanistic predicative CVD biomarker discoveries and precise interventions.

  10. Intact Pneumococci Trigger Transcription of Interferon-Related Genes in Human Monocytes, while Fragmented, Autolyzed Bacteria Subvert This Response

    PubMed Central

    Nordén, Rickard; Martner, Anna; Samuelsson, Ebba; Hynsjö, Lars; Wold, Agnes E.

    2017-01-01

    ABSTRACT A peculiar trait of pneumococci (Streptococcus pneumoniae) is their propensity to undergo spontaneous lysis during stationary growth due to activation of the enzyme autolysin (LytA), which fragments the peptidoglycan cell wall. The fragments that are generated upon autolysis impair phagocytosis and reduce production of interleukin-12 (IL-12) and gamma interferon (IFN-γ) by human leukocytes in response to intact pneumococci, thereby impeding crucial host defenses. The objective was to identify additional monocyte genes whose transcription is induced by intact pneumococci and subverted by autolyzed bacteria. Monocytes were isolated from healthy blood donors and stimulated for 3 h with UV-inactivated S. pneumoniae (Rx1PLY− LytA+ strain), which is capable of autolyzing, its LytA− isogenic autolysin-deficient mutant, or a mixture of the two (containing twice the initial bacterial concentration). Gene expression was assessed by Illumina microarray, and selected findings were confirmed by reverse transcription-quantitative real-time PCR (RT-qPCR), enzyme-linked immunosorbent assay (ELISA), and flow cytometry. In all, we identified 121 genes that were upregulated to a significantly higher degree by intact than autolyzed pneumococci. These included IFNB1 and a large set of interferon-induced genes, such as IFIT3, RSAD2, CFCL1, and CXCL10 genes, as well as IL12B and CD40 genes. RT-qPCR revealed that transcription of these genes in response to intact pneumococci diminished when autolyzed pneumococci were admixed and that this pattern was independent of pneumolysin. Thus, transcription of interferon-related genes is triggered by intact pneumococci and subverted by fragments generated by spontaneous bacterial autolysis. We suggest that interferon-related pathways are important for elimination of pneumococci and that autolysis contributes to virulence by extinguishing these pathways. PMID:28223347

  11. Commensal Homeostasis of Gut Microbiota-Host for the Impact of Obesity

    PubMed Central

    Zhang, Pengyi; Meng, Xiangjing; Li, Dongmei; Calderone, Richard; Mao, Dewei; Sui, Bo

    2018-01-01

    Gut microbiota and their metabolites have been linked to a series of chronic diseases such as obesity and other metabolic dysfunctions. Obesity is an increasingly serious international health issue that may lead to a risk of insulin resistance and other metabolic diseases. The relationship between gut microbiota and the host is both interdependent and relatively independent. In this review, the causality of gut microbiota and its role in the pathogenesis and intervention of obesity is comprehensively presented to include human genotype, enterotypes, interactions of gut microbiota with the host, microbial metabolites, and energy homeostasis all of which may be influenced by dietary nutrition. Diet can enhance, inhibit, or even change the composition and functions of the gut microbiota. The metabolites they produce depend upon the dietary substrates provided, some of which have indispensable functions for the host. Therefore, diet is a key factor that maintains or not a healthy commensal relationship. In addition, the specific genotype of the host may impact the phylogenetic compositions of gut microbiota through the production of host metabolites. The commensal homeostasis of gut microbiota is favored by a balance of microbial composition, metabolites, and energy. Ultimately the desired commensal relationship is one of mutual support. This article analyzes the clues that result in patterns of commensal homeostasis. A deeper understanding of these interactions is beneficial for developing effective prevention, diagnosis, and personalized therapeutic strategies to combat obesity and other metabolic diseases. The idea we discuss is meant to improve human health by shaping or modulating the beneficial gut microbiota. PMID:29358923

  12. Covert spatial attention is functionally intact in amblyopic human adults.

    PubMed

    Roberts, Mariel; Cymerman, Rachel; Smith, R Theodore; Kiorpes, Lynne; Carrasco, Marisa

    2016-12-01

    Certain abnormalities in behavioral performance and neural signaling have been attributed to a deficit of visual attention in amblyopia, a neurodevelopmental disorder characterized by a diverse array of visual deficits following abnormal binocular childhood experience. Critically, most have inferred attention's role in their task without explicitly manipulating and measuring its effects against a baseline condition. Here, we directly investigate whether human amblyopic adults benefit from covert spatial attention-the selective processing of visual information in the absence of eye movements-to the same degree as neurotypical observers. We manipulated both involuntary (Experiment 1) and voluntary (Experiment 2) attention during an orientation discrimination task for which the effects of covert spatial attention have been well established in neurotypical and special populations. In both experiments, attention significantly improved accuracy and decreased reaction times to a similar extent (a) between the eyes of the amblyopic adults and (b) between the amblyopes and their age- and gender-matched controls. Moreover, deployment of voluntary attention away from the target location significantly impaired task performance (Experiment 2). The magnitudes of the involuntary and voluntary attention benefits did not correlate with amblyopic depth or severity. Both groups of observers showed canonical performance fields (better performance along the horizontal than vertical meridian and at the lower than upper vertical meridian) and similar effects of attention across locations. Despite their characteristic low-level vision impairments, covert spatial attention remains functionally intact in human amblyopic adults.

  13. Covert spatial attention is functionally intact in amblyopic human adults

    PubMed Central

    Roberts, Mariel; Cymerman, Rachel; Smith, R. Theodore; Kiorpes, Lynne; Carrasco, Marisa

    2016-01-01

    Certain abnormalities in behavioral performance and neural signaling have been attributed to a deficit of visual attention in amblyopia, a neurodevelopmental disorder characterized by a diverse array of visual deficits following abnormal binocular childhood experience. Critically, most have inferred attention's role in their task without explicitly manipulating and measuring its effects against a baseline condition. Here, we directly investigate whether human amblyopic adults benefit from covert spatial attention—the selective processing of visual information in the absence of eye movements—to the same degree as neurotypical observers. We manipulated both involuntary (Experiment 1) and voluntary (Experiment 2) attention during an orientation discrimination task for which the effects of covert spatial attention have been well established in neurotypical and special populations. In both experiments, attention significantly improved accuracy and decreased reaction times to a similar extent (a) between the eyes of the amblyopic adults and (b) between the amblyopes and their age- and gender-matched controls. Moreover, deployment of voluntary attention away from the target location significantly impaired task performance (Experiment 2). The magnitudes of the involuntary and voluntary attention benefits did not correlate with amblyopic depth or severity. Both groups of observers showed canonical performance fields (better performance along the horizontal than vertical meridian and at the lower than upper vertical meridian) and similar effects of attention across locations. Despite their characteristic low-level vision impairments, covert spatial attention remains functionally intact in human amblyopic adults. PMID:28033433

  14. Role of human gut microbiota metabolism in the anti-inflammatory effect of traditionally used ellagitannin-rich plant materials.

    PubMed

    Piwowarski, Jakub P; Granica, Sebastian; Zwierzyńska, Marta; Stefańska, Joanna; Schopohl, Patrick; Melzig, Matthias F; Kiss, Anna K

    2014-08-08

    Ellagitannin-rich plant materials are widely used in traditional medicine as effective, internally used anti-inflammatory agents. Due to the not well-established bioavailability of ellagitannins, the mechanisms of observed therapeutic effects following oral administration still remain unclear. The aim of the study was to evaluate if selected ellagitannin-rich plant materials could be the source of bioavailable gut microbiota metabolites, i.e. urolithins, together with determination of the anti-inflammatory activity of the metabolites produced on the THP-1 cell line derived macrophages model. The formation of urolithins was determined by ex vivo incubation of human fecal samples with aqueous extracts from selected plant materials. The anti-inflammatory activity study of metabolites was determined on PMA differentiated, IFN-γ and LPS stimulated, human THP-1 cell line-derived macrophages. The formation of urolithin A, B and C by human gut microbiota was established for aqueous extracts from Filipendula ulmaria (L.) Maxim. herb (Ph. Eur.), Geranium pratense L. herb, Geranium robertianum L. herb, Geum urbanum L. root and rhizome, Lythrum salicaria L. herb (Ph. Eur.), Potentilla anserina L. herb, Potentilla erecta (L.) Raeusch rhizome (Ph. Eur.), Quercus robur L. bark (Ph. Eur.), Rubus idaeus L. leaf, Rubus fruticosus L. and pure ellagitannin vescalagin. Significant inhibition of TNF-α production was determined for all urolithins, while for the most potent urolithin A inhibition was observed at nanomolar concentrations (at 0.625 μM 29.2±6.4% of inhibition). Urolithin C was the only compound inhibiting IL-6 production (at 0.625 μM 13.9±2.2% of inhibition). The data obtained clearly indicate that in the case of peroral use of the examined ellagitannin-rich plant materials the bioactivity of gut microbiota metabolites, i.e. urolithins, has to be taken under consideration. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. Targeting gut microbiome: A novel and potential therapy for autism.

    PubMed

    Yang, Yongshou; Tian, Jinhu; Yang, Bo

    2018-02-01

    Autism spectrum disorder (ASD) is a severely neurodevelopmental disorder that impairs a child's ability to communicate and interact with others. Children with neurodevelopmental disorder, including ASD, are regularly affected by gastrointestinal problems and dysbiosis of gut microbiota. On the other hand, humans live in a co-evolutionary association with plenty of microorganisms that resident on the exposed and internal surfaces of our bodies. The microbiome, refers to the collection of microbes and their genetic material, confers a variety of physiologic benefits to the host in many key aspects of life as well as being responsible for some diseases. A large body of preclinical literature indicates that gut microbiome plays an important role in the bidirectional gut-brain axis that communicates between the gut and central nervous system. Moreover, accumulating evidences suggest that the gut microbiome is involved in the pathogenesis of ASD. The present review introduces the increasing evidence suggesting the reciprocal interaction network among microbiome, gut and brain. It also discusses the possible mechanisms by which gut microbiome influences the etiology of ASD via altering gut-brain axis. Most importantly, it highlights the new findings of targeting gut microbiome, including probiotic treatment and fecal microbiota transplant, as novel and potential therapeutics for ASD diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. [Current view on gut microbiota].

    PubMed

    Bourlioux, P

    2014-01-01

    Gut microbiota is more and more important since metagenomic research have brought new knowledge on this topic especially for human health. Firstly, gut microbiota is a key element for our organism he lives in symbiosis with. Secondly, it interacts favorably with many physiological functions of our organism. Thirdly, at the opposite, it can be an active participant in intestinal pathologies linked to a dysbiosis mainly in chronic inflammatory bowel diseases like Crohn disease or ulcerative colitis but also in obesity, metabolic syndrome, and more prudently in autism and behavioral disorders. In order to keep a good health, it is essential to protect our gut microbiota as soon as our young age and maintain it healthy. Face to a more and more important number of publications for treating certain digestive diseases with fecal microbial transplantation, it needs to be very careful and recommend further studies in order to assess risks and define standardized protocols. Gut microbiota metabolic capacities towards xenobiotics need to be developed, and we must take an interest in the modifications they induce on medicinal molecules. On the other hand, it is essential to study the potent effects of pesticides and other pollutants on microbiota functions. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  17. Omics for Understanding the Gut-Liver-Microbiome Axis and Precision Medicine

    USDA-ARS?s Scientific Manuscript database

    Human metabolic disease opens a new view to understanding the contribution of the intestinal microbiome to drug metabolism and drug-induced toxicity in gut-liver function. Gut microbiota, a key determinant of intestinal inflammation, also plays a direct role in chronic inflammation and liver disease...

  18. The Reciprocal Interactions between Polyphenols and Gut Microbiota and Effects on Bioaccessibility

    PubMed Central

    Ozdal, Tugba; Sela, David A.; Xiao, Jianbo; Boyacioglu, Dilek; Chen, Fang; Capanoglu, Esra

    2016-01-01

    As of late, polyphenols have increasingly interested the scientific community due to their proposed health benefits. Much of this attention has focused on their bioavailability. Polyphenol–gut microbiota interactions should be considered to understand their biological functions. The dichotomy between the biotransformation of polyphenols into their metabolites by gut microbiota and the modulation of gut microbiota composition by polyphenols contributes to positive health outcomes. Although there are many studies on the in vivo bioavailability of polyphenols, the mutual relationship between polyphenols and gut microbiota is not fully understood. This review focuses on the biotransformation of polyphenols by gut microbiota, modulation of gut microbiota by polyphenols, and the effects of these two-way mutual interactions on polyphenol bioavailability, and ultimately, human health. PMID:26861391

  19. HLA-B27 and Human β2-Microglobulin Affect the Gut Microbiota of Transgenic Rats

    PubMed Central

    Lin, Phoebe; Bach, Mary; Asquith, Mark; Lee, Aaron Y.; Akileswaran, Lakshmi; Stauffer, Patrick; Davin, Sean; Pan, Yuzhen; Cambronne, Eric D.; Dorris, Martha; Debelius, Justine W.; Lauber, Christian L.; Ackermann, Gail; Baeza, Yoshiki V.; Gill, Tejpal; Knight, Rob; Colbert, Robert A.; Taurog, Joel D.; Van Gelder, Russell N.; Rosenbaum, James T.

    2014-01-01

    The HLA-B27 gene is a major risk factor for clinical diseases including ankylosing spondylitis, acute anterior uveitis, reactive arthritis, and psoriatic arthritis, but its mechanism of risk enhancement is not completely understood. The gut microbiome has recently been shown to influence several HLA-linked diseases. However, the role of HLA-B27 in shaping the gut microbiome has not been previously investigated. In this study, we characterize the differences in the gut microbiota mediated by the presence of the HLA-B27 gene. We identified differences in the cecal microbiota of Lewis rats transgenic for HLA-B27 and human β2-microglobulin (hβ2m), compared with wild-type Lewis rats, using biome representational in situ karyotyping (BRISK) and 16S rRNA gene sequencing. 16S sequencing revealed significant differences between transgenic animals and wild type animals by principal coordinates analysis. Further analysis of the data set revealed an increase in Prevotella spp. and a decrease in Rikenellaceae relative abundance in the transgenic animals compared to the wild type animals. By BRISK analysis, species-specific differences included an increase in Bacteroides vulgatus abundance in HLA-B27/hβ2m and hβ2m compared to wild type rats. The finding that HLA-B27 is associated with altered cecal microbiota has not been shown before and can potentially provide a better understanding of the clinical diseases associated with this gene. PMID:25140823

  20. HLA-B27 and human β2-microglobulin affect the gut microbiota of transgenic rats.

    PubMed

    Lin, Phoebe; Bach, Mary; Asquith, Mark; Lee, Aaron Y; Akileswaran, Lakshmi; Stauffer, Patrick; Davin, Sean; Pan, Yuzhen; Cambronne, Eric D; Dorris, Martha; Debelius, Justine W; Lauber, Christian L; Ackermann, Gail; Baeza, Yoshiki V; Gill, Tejpal; Knight, Rob; Colbert, Robert A; Taurog, Joel D; Van Gelder, Russell N; Rosenbaum, James T

    2014-01-01

    The HLA-B27 gene is a major risk factor for clinical diseases including ankylosing spondylitis, acute anterior uveitis, reactive arthritis, and psoriatic arthritis, but its mechanism of risk enhancement is not completely understood. The gut microbiome has recently been shown to influence several HLA-linked diseases. However, the role of HLA-B27 in shaping the gut microbiome has not been previously investigated. In this study, we characterize the differences in the gut microbiota mediated by the presence of the HLA-B27 gene. We identified differences in the cecal microbiota of Lewis rats transgenic for HLA-B27 and human β2-microglobulin (hβ2m), compared with wild-type Lewis rats, using biome representational in situ karyotyping (BRISK) and 16S rRNA gene sequencing. 16S sequencing revealed significant differences between transgenic animals and wild type animals by principal coordinates analysis. Further analysis of the data set revealed an increase in Prevotella spp. and a decrease in Rikenellaceae relative abundance in the transgenic animals compared to the wild type animals. By BRISK analysis, species-specific differences included an increase in Bacteroides vulgatus abundance in HLA-B27/hβ2m and hβ2m compared to wild type rats. The finding that HLA-B27 is associated with altered cecal microbiota has not been shown before and can potentially provide a better understanding of the clinical diseases associated with this gene.

  1. Probiotics drive gut microbiome triggering emotional brain signatures.

    PubMed

    Bagga, Deepika; Reichert, Johanna Louise; Koschutnig, Karl; Aigner, Christoph Stefan; Holzer, Peter; Koskinen, Kaisa; Eichinger, Christine Moissl; Schöpf, Veronika

    2018-05-03

    Experimental manipulation of the gut microbiome was found to modify emotional and cognitive behavior, neurotransmitter expression and brain function in rodents, but corresponding human data remain scarce. The present double-blind, placebo-controlled randomised study aimed at investigating the effects of 4 weeks' probiotic administration on behavior, brain function and gut microbial composition in healthy volunteers. Forty-five healthy participants divided equally into three groups (probiotic, placebo and no intervention) underwent functional MRI (emotional decision-making and emotional recognition memory tasks). In addition, stool samples were collected to investigate the gut microbial composition. Probiotic administration for 4 weeks was associated with changes in brain activation patterns in response to emotional memory and emotional decision-making tasks, which were also accompanied by subtle shifts in gut microbiome profile. Microbiome composition mirrored self-reported behavioral measures and memory performance. This is the first study reporting a distinct influence of probiotic administration at behavioral, neural, and microbiome levels at the same time in healthy volunteers. The findings provide a basis for future investigations into the role of the gut microbiota and potential therapeutic application of probiotics.

  2. A core gut microbiome in obese and lean twins.

    PubMed

    Turnbaugh, Peter J; Hamady, Micah; Yatsunenko, Tanya; Cantarel, Brandi L; Duncan, Alexis; Ley, Ruth E; Sogin, Mitchell L; Jones, William J; Roe, Bruce A; Affourtit, Jason P; Egholm, Michael; Henrissat, Bernard; Heath, Andrew C; Knight, Rob; Gordon, Jeffrey I

    2009-01-22

    The human distal gut harbours a vast ensemble of microbes (the microbiota) that provide important metabolic capabilities, including the ability to extract energy from otherwise indigestible dietary polysaccharides. Studies of a few unrelated, healthy adults have revealed substantial diversity in their gut communities, as measured by sequencing 16S rRNA genes, yet how this diversity relates to function and to the rest of the genes in the collective genomes of the microbiota (the gut microbiome) remains obscure. Studies of lean and obese mice suggest that the gut microbiota affects energy balance by influencing the efficiency of calorie harvest from the diet, and how this harvested energy is used and stored. Here we characterize the faecal microbial communities of adult female monozygotic and dizygotic twin pairs concordant for leanness or obesity, and their mothers, to address how host genotype, environmental exposure and host adiposity influence the gut microbiome. Analysis of 154 individuals yielded 9,920 near full-length and 1,937,461 partial bacterial 16S rRNA sequences, plus 2.14 gigabases from their microbiomes. The results reveal that the human gut microbiome is shared among family members, but that each person's gut microbial community varies in the specific bacterial lineages present, with a comparable degree of co-variation between adult monozygotic and dizygotic twin pairs. However, there was a wide array of shared microbial genes among sampled individuals, comprising an extensive, identifiable 'core microbiome' at the gene, rather than at the organismal lineage, level. Obesity is associated with phylum-level changes in the microbiota, reduced bacterial diversity and altered representation of bacterial genes and metabolic pathways. These results demonstrate that a diversity of organismal assemblages can nonetheless yield a core microbiome at a functional level, and that deviations from this core are associated with different physiological states (obese

  3. Homeostasis of the gut barrier and potential biomarkers.

    PubMed

    Wells, Jerry M; Brummer, Robert J; Derrien, Muriel; MacDonald, Thomas T; Troost, Freddy; Cani, Patrice D; Theodorou, Vassilia; Dekker, Jan; Méheust, Agnes; de Vos, Willem M; Mercenier, Annick; Nauta, Arjen; Garcia-Rodenas, Clara L

    2017-03-01

    The gut barrier plays a crucial role by spatially compartmentalizing bacteria to the lumen through the production of secreted mucus and is fortified by the production of secretory IgA (sIgA) and antimicrobial peptides and proteins. With the exception of sIgA, expression of these protective barrier factors is largely controlled by innate immune recognition of microbial molecular ligands. Several specialized adaptations and checkpoints are operating in the mucosa to scale the immune response according to the threat and prevent overreaction to the trillions of symbionts inhabiting the human intestine. A healthy microbiota plays a key role influencing epithelial barrier functions through the production of short-chain fatty acids (SCFAs) and interactions with innate pattern recognition receptors in the mucosa, driving the steady-state expression of mucus and antimicrobial factors. However, perturbation of gut barrier homeostasis can lead to increased inflammatory signaling, increased epithelial permeability, and dysbiosis of the microbiota, which are recognized to play a role in the pathophysiology of a variety of gastrointestinal disorders. Additionally, gut-brain signaling may be affected by prolonged mucosal immune activation, leading to increased afferent sensory signaling and abdominal symptoms. In turn, neuronal mechanisms can affect the intestinal barrier partly by activation of the hypothalamus-pituitary-adrenal axis and both mast cell-dependent and mast cell-independent mechanisms. The modulation of gut barrier function through nutritional interventions, including strategies to manipulate the microbiota, is considered a relevant target for novel therapeutic and preventive treatments against a range of diseases. Several biomarkers have been used to measure gut permeability and loss of barrier integrity in intestinal diseases, but there remains a need to explore their use in assessing the effect of nutritional factors on gut barrier function. Future studies

  4. Impact of Omega-3 Fatty Acids on the Gut Microbiota

    PubMed Central

    Farinon, Barbara

    2017-01-01

    Long-term dietary habits play a crucial role in creating a host-specific gut microbiota community in humans. Despite the many publications about the effects of carbohydrates (prebiotic fibers), the impact of dietary fats, such as omega-3 polyunsaturated fatty acids (PUFAs), on the gut microbiota is less well defined. The few studies completed in adults showed some common changes in the gut microbiota after omega-3 PUFA supplementation. In particular, a decrease in Faecalibacterium, often associated with an increase in the Bacteroidetes and butyrate-producing bacteria belonging to the Lachnospiraceae family, has been observed. Coincidentally, a dysbiosis of these taxa is found in patients with inflammatory bowel disease. Omega-3 PUFAs can exert a positive action by reverting the microbiota composition in these diseases, and increase the production of anti-inflammatory compounds, like short-chain fatty acids. In addition, accumulating evidence in animal model studies indicates that the interplay between gut microbiota, omega-3 fatty acids, and immunity helps to maintain the intestinal wall integrity and interacts with host immune cells. Finally, human and animal studies have highlighted the ability of omega-3 PUFAs to influence the gut–brain axis, acting through gut microbiota composition. From these findings, the importance of the omega-3 connection to the microbiota emerges, encouraging further studies. PMID:29215589

  5. Impact of whole grains on the gut microbiota: the next frontier for oats?

    PubMed

    Rose, Devin J

    2014-10-01

    The gut microbiota plays important roles in proper gut function and can contribute to or help prevent disease. Whole grains, including oats, constitute important sources of nutrients for the gut microbiota and contribute to a healthy gut microbiome. In particular, whole grains provide NSP and resistant starch, unsaturated TAG and complex lipids, and phenolics. The composition of these constituents is unique in oats compared with other whole grains. Therefore, oats may contribute distinctive effects on gut health relative to other grains. Studies designed to determine these effects may uncover new human-health benefits of oat consumption.

  6. The Gut Microbiome Alterations and Inflammation-Driven Pathogenesis of Alzheimer's Disease-a Critical Review.

    PubMed

    Sochocka, Marta; Donskow-Łysoniewska, Katarzyna; Diniz, Breno Satler; Kurpas, Donata; Brzozowska, Ewa; Leszek, Jerzy

    2018-06-23

    One of the most important scientific discoveries of recent years was the disclosure that the intestinal microflora takes part in bidirectional communication between the gut and the brain. Scientists suggest that human gut microflora may even act as the "second brain" and be responsible for neurodegenerative disorders like Alzheimer's disease (AD). Although human-associated microbial communities are generally stable, they can be altered by common human actions and experiences. Enteric bacteria, commensal, and pathogenic microorganisms, may have a major impact on immune system, brain development, and behavior, as they are able to produce several neurotransmitters and neuromodulators like serotonin, kynurenine, catecholamine, etc., as well as amyloids. However, brain destructive mechanisms, that can lead to dementia and AD, start with the intestinal microbiome dysbiosis, development of local and systemic inflammation, and dysregulation of the gut-brain axis. Increased permeability of the gut epithelial barrier results in invasion of different bacteria, viruses, and their neuroactive products that support neuroinflammatory reactions in the brain. It seems that, inflammatory-infectious hypothesis of AD, with the great role of the gut microbiome, starts to gently push into the shadow the amyloid cascade hypothesis that has dominated for decades. It is strongly postulated that AD may begin in the gut, and is closely related to the imbalance of gut microbiota. This is promising area for therapeutic intervention. Modulation of gut microbiota through personalized diet or beneficial microbiota intervention, alter microbial partners and their products including amyloid protein, will probably become a new treatment for AD.

  7. The severity of NAFLD is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota

    PubMed Central

    Boursier, Jérôme; Mueller, Olaf; Barret, Matthieu; Machado, Mariana; Fizanne, Lionel; Araujo-Perez, Felix; Guy, Cynthia D.; Seed, Patrick C.; Rawls, John F.; David, Lawrence A.; Hunault, Gilles; Oberti, Frédéric; Calès, Paul; Diehl, Anna Mae

    2016-01-01

    Background & aims Several animal studies have emphasized the role of gut microbiota in non-alcoholic fatty liver disease (NAFLD). However, data about gut dysbiosis in human NAFLD remains scarce in the literature, especially studies including the whole spectrum of NAFLD lesions. We aimed to evaluate the association between gut dysbiosis and severe NAFLD lesions, i.e. non-alcoholic steatohepatitis (NASH) and fibrosis, in a well-characterized population of adult NAFLD. Methods 57 patients with biopsy-proven NAFLD were enrolled. The taxonomic composition of gut microbiota was determined using 16S ribosomal RNA gene sequencing of stool samples. Results 30 patients had F0/1 fibrosis stage at liver biopsy (10 with NASH), and 27 patients had significant F≥2 fibrosis (25 with NASH). Bacteroides abundance was significantly increased in NASH and F≥2 patients, whereas Prevotella abundance was decreased. Ruminococcus abundance was significantly higher in F≥2 patients. By multivariate analysis, Bacteroides abundance was independently associated with NASH and Ruminococcus with F≥2 fibrosis. Stratification according to the abundance of these 2 bacteria generated 3 patient subgroups with increasing severity of NAFLD lesions. Based on imputed metagenomic profiles, KEGG pathways significantly related to NASH and fibrosis F≥2 were mostly related to carbohydrate, lipid, and amino acid metabolism. Conclusion NAFLD severity associates with gut dysbiosis and a shift in metabolic function of the gut microbiota. We identified Bacteroides as independently associated with NASH and Ruminococcus with significant fibrosis. Thus, gut microbiota analysis adds information to classical predictors of NAFLD severity and suggests novel metabolic targets for pre/probiotics therapies. PMID:26600078

  8. The effects of micronutrient deficiencies on bacterial species from the human gut microbiota.

    PubMed

    Hibberd, Matthew C; Wu, Meng; Rodionov, Dmitry A; Li, Xiaoqing; Cheng, Jiye; Griffin, Nicholas W; Barratt, Michael J; Giannone, Richard J; Hettich, Robert L; Osterman, Andrei L; Gordon, Jeffrey I

    2017-05-17

    Vitamin and mineral (micronutrient) deficiencies afflict 2 billion people. Although the impact of these imbalances on host biology has been studied extensively, much less is known about their effects on the gut microbiota of developing or adult humans. Therefore, we established a community of cultured, sequenced human gut-derived bacterial species in gnotobiotic mice and fed the animals a defined micronutrient-sufficient diet, followed by a derivative diet devoid of vitamin A, folate, iron, or zinc, followed by return to the sufficient diet. Acute vitamin A deficiency had the largest effect on bacterial community structure and metatranscriptome, with Bacteroides vulgatus, a prominent responder, increasing its abundance in the absence of vitamin A. Applying retinol selection to a library of 30,300 B. vulgatus transposon mutants revealed that disruption of acrR abrogated retinol sensitivity. Genetic complementation studies, microbial RNA sequencing, and transcription factor-binding assays disclosed that AcrR is a repressor of an adjacent AcrAB-TolC efflux system. Retinol efflux measurements in wild-type and acrR -mutant strains plus treatment with a pharmacologic inhibitor of the efflux system revealed that AcrAB-TolC is a determinant of retinol and bile acid sensitivity in B. vulgatus Acute vitamin A deficiency was associated with altered bile acid metabolism in vivo, raising the possibility that retinol, bile acid metabolites, and AcrAB-TolC interact to influence the fitness of B. vulgatus and perhaps other microbiota members. This type of preclinical model can help to develop mechanistic insights about the effects of, and more effective treatment strategies for micronutrient deficiencies. Copyright © 2017, American Association for the Advancement of Science.

  9. Gut Microbiome and Obesity: A Plausible Explanation for Obesity.

    PubMed

    Sanmiguel, Claudia; Gupta, Arpana; Mayer, Emeran A

    2015-06-01

    Obesity is a multifactorial disorder that results in excessive accumulation of adipose tissue. Although obesity is caused by alterations in the energy consumption/expenditure balance, the factors promoting this disequilibrium are incompletely understood. The rapid development of new technologies and analysis strategies to decode the gut microbiota composition and metabolic pathways has opened a door into the complexity of the guest-host interactions between the gut microbiota and its human host in health and in disease. Pivotal studies have demonstrated that manipulation of the gut microbiota and its metabolic pathways can affect host's adiposity and metabolism. These observations have paved the way for further assessment of the mechanisms underlying these changes. In this review we summarize the current evidence for possible mechanisms underlying gut microbiota induced obesity. The review addresses some well-known effects of the gut microbiota on energy harvesting and changes in metabolic machinery, on metabolic and immune interactions and on possible changes in brain function and behavior. Although there is limited understanding on the symbiotic relationship between us and our gut microbiome, and how disturbances of this relationship affects our health, there is compelling evidence for an important role of the gut microbiota in the development and perpetuation of obesity.

  10. Gut Microbiome and Obesity: A Plausible Explanation for Obesity

    PubMed Central

    Sanmiguel, Claudia; Gupta, Arpana; Mayer, Emeran A.

    2015-01-01

    Obesity is a multifactorial disorder that results in excessive accumulation of adipose tissue. Although obesity is caused by alterations in the energy consumption/expenditure balance, the factors promoting this disequilibrium are incompletely understood. The rapid development of new technologies and analysis strategies to decode the gut microbiota composition and metabolic pathways has opened a door into the complexity of the guest-host interactions between the gut microbiota and its human host in health and in disease. Pivotal studies have demonstrated that manipulation of the gut microbiota and its metabolic pathways can affect host’s adiposity and metabolism. These observations have paved the way for further assessment of the mechanisms underlying these changes. In this review we summarize the current evidence for possible mechanisms underlying gut microbiota induced obesity. The review addresses some well-known effects of the gut microbiota on energy harvesting and changes in metabolic machinery, on metabolic and immune interactions and on possible changes in brain function and behavior. Although there is limited understanding on the symbiotic relationship between us and our gut microbiome, and how disturbances of this relationship affects our health, there is compelling evidence for an important role of the gut microbiota in the development and perpetuation of obesity. PMID:26029487

  11. Dengue virus infection induces broadly cross-reactive human IgM antibodies that recognize intact virions in humanized BLT-NSG mice.

    PubMed

    Jaiswal, Smita; Smith, Kenneth; Ramirez, Alejandro; Woda, Marcia; Pazoles, Pamela; Shultz, Leonard D; Greiner, Dale L; Brehm, Michael A; Mathew, Anuja

    2015-01-01

    The development of small animal models that elicit human immune responses to dengue virus (DENV) is important since prior immunity is a major risk factor for developing severe dengue disease. This study evaluated anti-DENV human antibody (hAb) responses generated from immortalized B cells after DENV-2 infection in NOD-scid IL2rγ(null) mice that were co-transplanted with human fetal thymus and liver tissues (BLT-NSG mice). DENV-specific human antibodies predominantly of the IgM isotype were isolated during acute infection and in convalescence. We found that while a few hAbs recognized the envelope protein produced as a soluble recombinant, a number of hAbs only recognized epitopes on intact virions. The majority of the hAbs isolated during acute infection and in immune mice were serotype-cross-reactive and poorly neutralizing. Viral titers in immune BLT-NSG mice were significantly decreased after challenge with a clinical strain of dengue. DENV-specific hAbs generated in BLT-NSG mice share some of the characteristics of Abs isolated in humans with natural infection. Humanized BLT-NSG mice provide an attractive preclinical platform to assess the immunogenicity of candidate dengue vaccines. © 2014 by the Society for Experimental Biology and Medicine.

  12. Comparison of Gut Microbiota between Sasang Constitutions

    PubMed Central

    Bae, Hyo Sang; Lim, Chi-yeon; Kim, Mi Jeong; Seo, Jae-gu; Kim, Jong Yeol; Kim, Jai-eun

    2013-01-01

    The Sasang constitutional medicine has long been applied to diagnose and treat patients with various diseases. Studies have been conducted for establishment of scientific evidence supporting Sasang Constitutional (SC) diagnosis. Recent human microbiome studies have demonstrated individual variations of gut microbiota which can be dependent on lifestyle and health conditions. We hypothesized that gut microbial similarities and discrepancies may exist across SC types. We compared the difference of gut microbiota among three constitutions (So-Yang, So-Eum, and Tae-Eum), along with the investigation of anthropometric and biochemical parameters. Firmicutes and Bacteroidetes were predominant phyla in all SC types. The median plot analysis suggested that Firmicutes and Bacteroidetes appeared more abundant in SE and TE, respectively, in the male subjects of 20–29 years old. At the genus level, Bifidobacterium and Bacteroides manifested the difference between SE and TE types. For anthropometry, body weight, body mass index, and waist circumference of the TE type were significantly higher than those of the other types. Overall, findings indicated a possible link between SC types and gut microbiota within a narrow age range. Further investigations are deemed necessary to elucidate the influences of age, gender, and other factors in the context of SC types and gut microbiota. PMID:24454486

  13. Changes seen in gut bacteria content and distribution with obesity: causation or association?

    PubMed

    Bell, David S H

    2015-01-01

    In the microbiota of both obese animals and humans there is an increased ratio of the gram positive Firmicutes to the gram negative Bacteroidetes (the obesity pattern). To assess if altering this ratio in animals and humans would prevent obesity or reduce body weight in the obese subject this review was preformed. A survey of all the available English language literature utilizing Medline on this topic was obtained and critically reviewed. The key words that were utilized were gut microbiota, diet and obesity. In both humans and animals changes in diet, particularly the utilization of the high fat, high calorie Western diet, utilization of artificial sweeteners and disruption of the diurnal rhythm will quickly change the microbiota from a thin to an obese pattern. In animals, the transfer of an obese microbiota to germ free animals and thin animals results in obesity and the introduction of a lean microbiota will result in weight loss in obese animals. However, in humans similar changes in the gut microbiota induced with probiotics and prebiotics have not been shown to result in weight loss. In both animals and humans the most dramatic changes in the gut microbiota occur following weight loss resulting from a gastric bypass where there is a restoration to a normal Firmicutes to Bacteroidetes ratio. These changes could either be due to the dramatic change in the composition of the diet which occurs following this surgery or due to down-regulation of the Farnesoid X Receptor which causes a decrease in bile acid production and an elevation of the gut pH which in turn allows the regrowth of bacteria associated with weight loss which were previously unable to grow in the acidic intestinal environment caused by excess production of bile acids. In both humans and animals there are characteristic changes in the gut microbiota associated with obesity. In animals but not in humans altering the microbiota can result in weight loss and weight gain which does not occur in

  14. The Role of the Gut Microbiota in Childhood Obesity.

    PubMed

    Pihl, Andreas Friis; Fonvig, Cilius Esmann; Stjernholm, Theresa; Hansen, Torben; Pedersen, Oluf; Holm, Jens-Christian

    2016-08-01

    Childhood and adolescent obesity has reached epidemic proportions worldwide. The pathogenesis of obesity is complex and multifactorial, in which genetic and environmental contributions seem important. The gut microbiota is increasingly documented to be involved in the dysmetabolism associated with obesity. We conducted a systematic search for literature available before October 2015 in the PubMed and Scopus databases, focusing on the interplay between the gut microbiota, childhood obesity, and metabolism. The review discusses the potential role of the bacterial component of the human gut microbiota in childhood and adolescent-onset obesity, with a special focus on the factors involved in the early development of the gut bacterial ecosystem, and how modulation of this microbial community might serve as a basis for new therapeutic strategies in combating childhood obesity. A vast number of variables are influencing the gut microbial ecology (e.g., the host genetics, delivery method, diet, age, environment, and the use of pre-, pro-, and antibiotics); but the exact physiological processes behind these relationships need to be clarified. Exploring the role of the gut microbiota in the development of childhood obesity may potentially reveal new strategies for obesity prevention and treatment.

  15. The gut microbiota and metabolic disease: current understanding and future perspectives.

    PubMed

    Arora, T; Bäckhed, F

    2016-10-01

    The human gut microbiota has been studied for more than a century. However, of nonculture-based techniques exploiting next-generation sequencing for analysing the microbiota, development has renewed research within the field during the past decade. The observation that the gut microbiota, as an environmental factor, contributes to adiposity has further increased interest in the field. The human microbiota is affected by the diet, and macronutrients serve as substrates for many microbially produced metabolites, such as short-chain fatty acids and bile acids, that may modulate host metabolism. Obesity predisposes towards type 2 diabetes and cardiovascular disease. Recently, it has been established that levels of butyrate-producing bacteria are reduced in patients with type 2 diabetes, whereas levels of Lactobacillus sp. are increased. Recent data suggest that the reduced levels of butyrate-producing bacteria might be causally linked to type 2 diabetes. Bariatric surgery, which promotes long-term weight loss and diabetes remission, alters the gut microbiota in both mice and humans. Furthermore, by transferring the microbiota from postbariatric surgery patients to mice, it has been demonstrated that an altered microbiota may contribute to the improved metabolic phenotype following this intervention. Thus, greater understanding of alterations of the gut microbiota, in combination with dietary patterns, may provide insights into how the gut microbiota contributes to disease progression and whether it can be exploited as a novel diagnostic, prognostic and therapeutic target. © 2016 The Association for the Publication of the Journal of Internal Medicine.

  16. Early gut mycobiota and mother-offspring transfer.

    PubMed

    Schei, Kasper; Avershina, Ekaterina; Øien, Torbjørn; Rudi, Knut; Follestad, Turid; Salamati, Saideh; Ødegård, Rønnaug Astri

    2017-08-24

    The fungi in the gastrointestinal tract, the gut mycobiota, are now recognised as a significant part of the gut microbiota, and they may be important to human health. In contrast to the adult gut mycobiota, the establishment of the early gut mycobiota has never been described, and there is little knowledge about the fungal transfer from mother to offspring. In a prospective cohort, we followed 298 pairs of healthy mothers and offspring from 36 weeks of gestation until 2 years of age (1516 samples) and explored the gut mycobiota in maternal and offspring samples. Half of the pregnant mothers were randomised into drinking probiotic milk during and after pregnancy. The probiotic bacteria included Lactobacillus rhamnosus GG (LGG), Bifidobacterium animalis subsp. lactis Bb-12 and Lactobacillus acidophilus La-5. We quantified the fungal abundance of all the samples using qPCR of the fungal internal transcribed spacer (ITS)1 segment, and we sequenced the 18S rRNA gene ITS1 region of 90 high-quantity samples using the MiSeq platform (Illumina). The gut mycobiota was detected in most of the mothers and the majority of the offspring. The offspring showed increased odds of having detectable faecal fungal DNA if the mother had detectable fungal DNA as well (OR = 1.54, p = 0.04). The fungal alpha diversity in the offspring gut increased from its lowest at 10 days after birth, which was the earliest sampling point. The fungal diversity and fungal species showed a succession towards the maternal mycobiota as the child aged, with Debaryomyces hansenii being the most abundant species during breast-feeding and Saccharomyces cerevisiae as the most abundant after weaning. Probiotic consumption increased the gut mycobiota abundance in pregnant mothers (p = 0.01). This study provides the first insight into the early fungal establishment and the succession of fungal species in the gut mycobiota. The results support the idea that the fungal host phenotype is transferred from

  17. Cobalt Oxide Nanoparticles: Behavior towards Intact and Impaired Human Skin and Keratinocytes Toxicity

    PubMed Central

    Mauro, Marcella; Crosera, Matteo; Pelin, Marco; Florio, Chiara; Bellomo, Francesca; Adami, Gianpiero; Apostoli, Piero; De Palma, Giuseppe; Bovenzi, Massimo; Campanini, Marco; Larese Filon, Francesca

    2015-01-01

    Skin absorption and toxicity on keratinocytes of cobalt oxide nanoparticles (Co3O4NPs) have been investigated. Co3O4NPs are commonly used in industrial products and biomedicine. There is evidence that these nanoparticles can cause membrane damage and genotoxicity in vitro, but no data are available on their skin absorption and cytotoxicity on keratinocytes. Two independent 24 h in vitro experiments were performed using Franz diffusion cells, using intact (experiment 1) and needle-abraded human skin (experiment 2). Co3O4NPs at a concentration of 1000 mg/L in physiological solution were used as donor phase. Cobalt content was evaluated by Inductively Coupled–Mass Spectroscopy. Co permeation through the skin was demonstrated after 24 h only when damaged skin protocol was used (57 ± 38 ng·cm−2), while no significant differences were shown between blank cells (0.92 ± 0.03 ng cm−2) and those with intact skin (1.08 ± 0.20 ng·cm−2). To further investigate Co3O4NPs toxicity, human-derived HaCaT keratinocytes were exposed to Co3O4NPs and cytotoxicity evaluated by MTT, Alamarblue® and propidium iodide (PI) uptake assays. The results indicate that a long exposure time (i.e., seven days) was necessary to induce a concentration-dependent cell viability reduction (EC50 values: 1.3 × 10−4 M, 95% CL = 0.8–1.9 × 10−4 M, MTT essay; 3.7 × 10−5 M, 95% CI = 2.2–6.1 × 10−5 M, AlamarBlue® assay) that seems to be associated to necrotic events (EC50 value: 1.3 × 10−4 M, 95% CL = 0.9–1.9 × 10−4 M, PI assay). This study demonstrated that Co3O4NPs can penetrate only damaged skin and is cytotoxic for HaCat cells after long term exposure. PMID:26193294

  18. Microbial Eukaryotes: a Missing Link in Gut Microbiome Studies.

    PubMed

    Laforest-Lapointe, Isabelle; Arrieta, Marie-Claire

    2018-01-01

    Human-associated microbial communities include prokaryotic and eukaryotic organisms across high-level clades of the tree of life. While advances in high-throughput sequencing technology allow for the study of diverse lineages, the vast majority of studies are limited to bacteria, and very little is known on how eukaryote microbes fit in the overall microbial ecology of the human gut. As recent studies consider eukaryotes in their surveys, it is becoming increasingly clear that eukaryotes play important ecological roles in the microbiome as well as in host health. In this perspective, we discuss new evidence on eukaryotes as fundamental species of the human gut and emphasize that future microbiome studies should characterize the multitrophic interactions between microeukaryotes, other microorganisms, and the host.

  19. Microbial Eukaryotes: a Missing Link in Gut Microbiome Studies

    PubMed Central

    2018-01-01

    ABSTRACT Human-associated microbial communities include prokaryotic and eukaryotic organisms across high-level clades of the tree of life. While advances in high-throughput sequencing technology allow for the study of diverse lineages, the vast majority of studies are limited to bacteria, and very little is known on how eukaryote microbes fit in the overall microbial ecology of the human gut. As recent studies consider eukaryotes in their surveys, it is becoming increasingly clear that eukaryotes play important ecological roles in the microbiome as well as in host health. In this perspective, we discuss new evidence on eukaryotes as fundamental species of the human gut and emphasize that future microbiome studies should characterize the multitrophic interactions between microeukaryotes, other microorganisms, and the host. PMID:29556538

  20. Bacterial species involved in the conversion of dietary flavonoids in the human gut.

    PubMed

    Braune, Annett; Blaut, Michael

    2016-05-03

    The gut microbiota plays a crucial role in the conversion of dietary flavonoids and thereby affects their health-promoting effects in the human host. The identification of the bacteria involved in intestinal flavonoid conversion has gained increasing interest. This review summarizes available information on the so far identified human intestinal flavonoid-converting bacterial species and strains as well as their enzymes catalyzing the underlying reactions. The majority of described species involved in flavonoid transformation are capable of carrying out the O-deglycosylation of flavonoids. Other bacteria cleave the less common flavonoid-C-glucosides and/or further degrade the aglycones of flavonols, flavanonols, flavones, flavanones, dihydrochalcones, isoflavones and monomeric flavan-3-ols. To increase the currently limited knowledge in this field, identification of flavonoid-converting bacteria should be continued using culture-dependent screening or isolation procedures and molecular approaches based on sequence information of the involved enzymes.

  1. Gut microbiome and dietary patterns in different Saudi populations and monkeys.

    PubMed

    Angelakis, Emmanouil; Yasir, Muhammad; Bachar, Dipankar; Azhar, Esam I; Lagier, Jean-Christophe; Bibi, Fehmida; Jiman-Fatani, Asif A; Alawi, Maha; Bakarman, Marwan A; Robert, Catherine; Raoult, Didier

    2016-08-31

    Host genetics, environment, lifestyle and proximity between hosts strongly influence the composition of the gut microbiome. To investigate the association of dietary variables with the gut microbiota, we used 16S rDNA sequencing to test the fecal microbiome of Bedouins and urban Saudis and we compared it to the gut microbiome of baboons living in close contact with Bedouins and eating their leftovers. We also analyzed fermented dairy products commonly consumed by Bedouins in order to investigate their impact on the gut microbiome of this population. We found that the gut microbiomes of westernized urban Saudis had significantly lower richness and biodiversity than the traditional Bedouin population. The gut microbiomes of baboons were more similar to that of Bedouins compared to urban Saudis, probably due the dietary overlap between baboons and Bedouins. Moreover, we found clusters that were compositionally similar to clusters identified in humans and baboons, characterized by differences in Acinetobacter, Turicibacter and Collinsella. The fermented food presented significantly more bacteria genera common to the gut microbiome of Bedouins compared to urban Saudis. These results support the hypothesis that dietary habits influence the composition of the gut microbiome.

  2. Subsistence strategies in traditional societies distinguish gut microbiomes

    PubMed Central

    Obregon-Tito, Alexandra J.; Tito, Raul Y.; Metcalf, Jessica; Sankaranarayanan, Krithivasan; Clemente, Jose C.; Ursell, Luke K.; Zech Xu, Zhenjiang; Van Treuren, Will; Knight, Rob; Gaffney, Patrick M.; Spicer, Paul; Lawson, Paul; Marin-Reyes, Luis; Trujillo-Villarroel, Omar; Foster, Morris; Guija-Poma, Emilio; Troncoso-Corzo, Luzmila; Warinner, Christina; Ozga, Andrew T.; Lewis, Cecil M.

    2015-01-01

    Recent studies suggest that gut microbiomes of urban-industrialized societies are different from those of traditional peoples. Here we examine the relationship between lifeways and gut microbiota through taxonomic and functional potential characterization of faecal samples from hunter-gatherer and traditional agriculturalist communities in Peru and an urban-industrialized community from the US. We find that in addition to taxonomic and metabolic differences between urban and traditional lifestyles, hunter-gatherers form a distinct sub-group among traditional peoples. As observed in previous studies, we find that Treponema are characteristic of traditional gut microbiomes. Moreover, through genome reconstruction (2.2–2.5 MB, coverage depth × 26–513) and functional potential characterization, we discover these Treponema are diverse, fall outside of pathogenic clades and are similar to Treponema succinifaciens, a known carbohydrate metabolizer in swine. Gut Treponema are found in non-human primates and all traditional peoples studied to date, suggesting they are symbionts lost in urban-industrialized societies. PMID:25807110

  3. Gut Microbiota in Cardiovascular Health and Disease.

    PubMed

    Tang, W H Wilson; Kitai, Takeshi; Hazen, Stanley L

    2017-03-31

    Significant interest in recent years has focused on gut microbiota-host interaction because accumulating evidence has revealed that intestinal microbiota play an important role in human health and disease, including cardiovascular diseases. Changes in the composition of gut microbiota associated with disease, referred to as dysbiosis, have been linked to pathologies such as atherosclerosis, hypertension, heart failure, chronic kidney disease, obesity, and type 2 diabetes mellitus. In addition to alterations in gut microbiota composition, the metabolic potential of gut microbiota has been identified as a contributing factor in the development of diseases. Recent studies revealed that gut microbiota can elicit a variety of effects on the host. Indeed, the gut microbiome functions like an endocrine organ, generating bioactive metabolites, that can impact host physiology. Microbiota interact with the host through many pathways, including the trimethylamine/trimethylamine N -oxide pathway, short-chain fatty acids pathway, and primary and secondary bile acids pathways. In addition to these metabolism-dependent pathways, metabolism-independent processes are suggested to also potentially contribute to cardiovascular disease pathogenesis. For example, heart failure-associated splanchnic circulation congestion, bowel wall edema, and impaired intestinal barrier function are thought to result in bacterial translocation, the presence of bacterial products in the systemic circulation and heightened inflammatory state. These are thought to also contribute to further progression of heart failure and atherosclerosis. The purpose of the current review is to highlight the complex interplay between microbiota, their metabolites, and the development and progression of cardiovascular diseases. We will also discuss the roles of gut microbiota in normal physiology and the potential of modulating intestinal microbial inhabitants as novel therapeutic targets. © 2017 American Heart

  4. Gut Microbiota in Cardiovascular Health and Disease

    PubMed Central

    Tang, W.H. Wilson; Kitai, Takeshi; Hazen, Stanley L

    2017-01-01

    Significant interest in recent years has focused on gut microbiota-host interaction because accumulating evidence has revealed that intestinal microbiota play an important role in human health and disease, including cardiovascular diseases. Changes in the composition of gut microbiota associated with disease, referred to as dysbiosis, have been linked to pathologies such as atherosclerosis, hypertension, heart failure, chronic kidney disease, obesity and type 2 diabetes mellitus. In addition to alterations in gut microbiota composition, the metabolic potential of gut microbiota has been identified as a contributing factor in the development of diseases. Recent studies revealed that gut microbiota can elicit a variety of effects on the host. Indeed, the gut microbiome functions like an endocrine organ, generating bioactive metabolites, that can impact host physiology. Microbiota interact with the host through a number of pathways, including the trimethylamine (TMA)/ trimethylamine N-oxide (TMAO) pathway, short-chain fatty acids pathway, and primary and secondary bile acids pathways. In addition to these “metabolism dependent” pathways, metabolism independent processes are suggested to also potentially contribute to CVD pathogenesis. For example, heart failure associated splanchnic circulation congestion, bowel wall edema and impaired intestinal barrier function are thought to result in bacterial translocation, the presence of bacterial products in the systemic circulation and heightened inflammatory state. These are believed to also contribute to further progression of heart failure and atherosclerosis. The purpose of the current review is to highlight the complex interplay between microbiota, their metabolites and the development and progression of cardiovascular diseases. We will also discuss the roles of gut microbiota in normal physiology and the potential of modulating intestinal microbial inhabitants as novel therapeutic targets. PMID:28360349

  5. Nonalcoholic fatty liver disease: for better or worse, blame the gut microbiota?

    PubMed

    Li, Ding-You; Yang, Min; Edwards, Sarah; Ye, Shui-Qing

    2013-11-01

    Nonalcoholic fatty liver disease (NAFLD) is a major clinical consequence for people with obesity and metabolic syndrome and is also associated with enteral and parenteral nutrition. Early studies suggested that altered gut microbiota might contribute to obesity by affecting energy harvest from the diet and energy storage in the host. Recent evidence in humans as well as in animal models has linked gut microbiota to the development of NAFLD through the gut-liver axis. With bacterial overgrowth and increased intestinal permeability observed in patients with NAFLD and in animal models, gut-derived bacterial products such as endotoxin (lipopolysaccharide) and bacterial DNA are being delivered to the liver through the portal vein and then activate Toll-like receptors (TLRs), mainly TLR4 and TLR9, and their downstream cytokines and chemokines, leading to the development and progression of NAFLD. Given the limited data in humans, the role of gut microbiota in the pathogenesis of NAFLD is still open to discussion. Prebiotics and probiotics have been attempted to modify the microbiota as preventive or therapeutic strategies on this pathological condition. Their beneficial effects on NALFD have been demonstrated in animal models and limited human studies. However, prospective, appropriately powered, randomized, controlled clinical trials are needed to determine whether prebiotics and probiotics and other integrated strategies to modify intestinal microbiota are efficacious therapeutic modalities to treat NALFD.

  6. Links between Dietary Protein Sources, the Gut Microbiota, and Obesity.

    PubMed

    Madsen, Lise; Myrmel, Lene S; Fjære, Even; Liaset, Bjørn; Kristiansen, Karsten

    2017-01-01

    The association between the gut microbiota and obesity is well documented in both humans and in animal models. It is also demonstrated that dietary factors can change the gut microbiota composition and obesity development. However, knowledge of how diet, metabolism and gut microbiota mutually interact and modulate energy metabolism and obesity development is still limited. Epidemiological studies indicate an association between intake of certain dietary protein sources and obesity. Animal studies confirm that different protein sources vary in their ability to either prevent or induce obesity. Different sources of protein such as beans, vegetables, dairy, seafood, and meat differ in amino acid composition. Further, the type and level of other factors, such as fatty acids and persistent organic pollutants (POPs) vary between dietary protein sources. All these factors can modulate the composition of the gut microbiota and may thereby influence their obesogenic properties. This review summarizes evidence of how different protein sources affect energy efficiency, obesity development, and the gut microbiota, linking protein-dependent changes in the gut microbiota with obesity.

  7. Links between Dietary Protein Sources, the Gut Microbiota, and Obesity

    PubMed Central

    Madsen, Lise; Myrmel, Lene S.; Fjære, Even; Liaset, Bjørn; Kristiansen, Karsten

    2017-01-01

    The association between the gut microbiota and obesity is well documented in both humans and in animal models. It is also demonstrated that dietary factors can change the gut microbiota composition and obesity development. However, knowledge of how diet, metabolism and gut microbiota mutually interact and modulate energy metabolism and obesity development is still limited. Epidemiological studies indicate an association between intake of certain dietary protein sources and obesity. Animal studies confirm that different protein sources vary in their ability to either prevent or induce obesity. Different sources of protein such as beans, vegetables, dairy, seafood, and meat differ in amino acid composition. Further, the type and level of other factors, such as fatty acids and persistent organic pollutants (POPs) vary between dietary protein sources. All these factors can modulate the composition of the gut microbiota and may thereby influence their obesogenic properties. This review summarizes evidence of how different protein sources affect energy efficiency, obesity development, and the gut microbiota, linking protein-dependent changes in the gut microbiota with obesity. PMID:29311977

  8. Relationship between diet, the gut microbiota, and brain function.

    PubMed

    Tengeler, Anouk C; Kozicz, Tamas; Kiliaan, Amanda J

    2018-04-28

    The human intestinal microbiota, comprising trillions of microorganisms, exerts a substantial effect on the host. The microbiota plays essential roles in the function and development of several physiological processes, including those in the brain. A disruption in the microbial composition of the gut has been associated with many metabolic, inflammatory, neurodevelopmental, and neurodegenerative disorders. Nutrition is one of several key factors that shape the microbial composition during infancy and throughout life, thereby affecting brain structure and function. This review examines the effect of the gut microbiota on brain function. The ability of external factors, such as diet, to influence the microbial composition implies a certain vulnerability of the gut microbiota. However, it also offers a potential therapeutic strategy for ameliorating symptoms of mental and physical disorders. Therefore, this review examines the potential effect of nutritional components on gut microbial composition and brain function.

  9. Beyond gut microbiota: understanding obesity and type 2 diabetes.

    PubMed

    Lau, Eva; Carvalho, Davide; Pina-Vaz, Cidália; Barbosa, José-Adelino; Freitas, Paula

    2015-01-01

    Obesity and type 2 diabetes are metabolic diseases that have reached epidemic proportions worldwide. Although their etiology is complex, both result from interplay between behaviour, environment and genetic factors. Within ambient determinants, human overall gut bacteria have been identified as a crucial mediator of obesity and its consequences. Gut microbiota plays a crucial role in gastro-intestinal mucosa permeability and regulates the fermentation and absorption of dietary polyssacharides, which may explain its importance in the regulation of fat accumulation and the resultant development of obesity-related diseases. The main objective of this review is to address the pathogenic association between gut microbiota and obesity and to explore related innovative therapeutic targets. New insights into the role of the small bowel and gut microbiota in diabetes and obesity may make possible the development of integrated strategies to prevent and treat these metabolic disorders.

  10. A novel approach to maintain gut mucosal integrity using an oral enzyme supplement.

    PubMed

    Hamarneh, Sulaiman R; Mohamed, Mussa M Rafat; Economopoulos, Konstantinos P; Morrison, Sara A; Phupitakphol, Tanit; Tantillo, Tyler J; Gul, Sarah S; Gharedaghi, Mohammad Hadi; Tao, Qingsong; Kaliannan, Kanakaraju; Narisawa, Sonoko; Millán, José L; van der Wilden, Gwendolyn M; Fagenholz, Peter J; Malo, Madhu S; Hodin, Richard A

    2014-10-01

    To determine the role of intestinal alkaline phosphatase (IAP) in enteral starvation-induced gut barrier dysfunction and to study its therapeutic effect as a supplement to prevent gut-derived sepsis. Critically ill patients are at increased risk for systemic sepsis and, in some cases, multiorgan failure leading to death. Years ago, the gut was identified as a major source for this systemic sepsis syndrome. Previously, we have shown that IAP detoxifies bacterial toxins, prevents endotoxemia, and preserves intestinal microbiotal homeostasis. WT and IAP-KO mice were used to examine gut barrier function and tight junction protein levels during 48-hour starvation and fed states. Human ileal fluid samples were collected from 20 patients postileostomy and IAP levels were compared between fasted and fed states. To study the effect of IAP supplementation on starvation-induced gut barrier dysfunction, WT mice were fasted for 48 hours +/- IAP supplementation in the drinking water. The loss of IAP expression is associated with decreased expression of intestinal junctional proteins and impaired barrier function. For the first time, we demonstrate that IAP expression is also decreased in humans who are deprived of enteral feeding. Finally, our data demonstrate that IAP supplementation reverses the gut barrier dysfunction and tight junction protein losses due to a lack of enteral feeding. IAP is a major regulator of gut mucosal permeability and is able to ameliorate starvation-induced gut barrier dysfunction. Enteral IAP supplementation may represent a novel approach to maintain bowel integrity in critically ill patients.

  11. Gut microbiota modulation of chemotherapy efficacy and toxicity.

    PubMed

    Alexander, James L; Wilson, Ian D; Teare, Julian; Marchesi, Julian R; Nicholson, Jeremy K; Kinross, James M

    2017-06-01

    Evidence is growing that the gut microbiota modulates the host response to chemotherapeutic drugs, with three main clinical outcomes: facilitation of drug efficacy; abrogation and compromise of anticancer effects; and mediation of toxicity. The implication is that gut microbiota are critical to the development of personalized cancer treatment strategies and, therefore, a greater insight into prokaryotic co-metabolism of chemotherapeutic drugs is now required. This thinking is based on evidence from human, animal and in vitro studies that gut bacteria are intimately linked to the pharmacological effects of chemotherapies (5-fluorouracil, cyclophosphamide, irinotecan, oxaliplatin, gemcitabine, methotrexate) and novel targeted immunotherapies such as anti-PD-L1 and anti-CLTA-4 therapies. The gut microbiota modulate these agents through key mechanisms, structured as the 'TIMER' mechanistic framework: Translocation, Immunomodulation, Metabolism, Enzymatic degradation, and Reduced diversity and ecological variation. The gut microbiota can now, therefore, be targeted to improve efficacy and reduce the toxicity of current chemotherapy agents. In this Review, we outline the implications of pharmacomicrobiomics in cancer therapeutics and define how the microbiota might be modified in clinical practice to improve efficacy and reduce the toxic burden of these compounds.

  12. Antibiotic-induced changes in the microbiota disrupt redox dynamics in the gut

    PubMed Central

    Reese, Aspen T; Cho, Eugenia H; Klitzman, Bruce; Nichols, Scott P; Wisniewski, Natalie A; Villa, Max M; Durand, Heather K; Jiang, Sharon; Midani, Firas S; Nimmagadda, Sai N; O'Connell, Thomas M; Wright, Justin P; Deshusses, Marc A

    2018-01-01

    How host and microbial factors combine to structure gut microbial communities remains incompletely understood. Redox potential is an important environmental feature affected by both host and microbial actions. We assessed how antibiotics, which can impact host and microbial function, change redox state and how this contributes to post-antibiotic succession. We showed gut redox potential increased within hours of an antibiotic dose in mice. Host and microbial functioning changed under treatment, but shifts in redox potentials could be attributed specifically to bacterial suppression in a host-free ex vivo human gut microbiota model. Redox dynamics were linked to blooms of the bacterial family Enterobacteriaceae. Ecological succession to pre-treatment composition was associated with recovery of gut redox, but also required dispersal from unaffected gut communities. As bacterial competition for electron acceptors can be a key ecological factor structuring gut communities, these results support the potential for manipulating gut microbiota through managing bacterial respiration. PMID:29916366

  13. Interindividual Variability in Metabolism of [6]-Shogaol by Gut Microbiota.

    PubMed

    Wang, Pei; Wang, Ronghui; Zhu, Yingdong; Sang, Shengmin

    2017-11-08

    [6]-Shogaol (6S), one of the major bioactive components in dry ginger, is attracting considerable attention because of its wide spectrum of biological activities, but its metabolic fate is still not fully understood. In the present study, the microbial metabolism of 6S was examined for the first time in in vitro batch fecal fermentation system and in mice. Two major microbial metabolites were detected and identified as 1-(4'-hydroxy-3'-methoxyphenyl)-decan-3-ol (M9) and 1-(4'-hydroxy-3'-methoxyphenyl)-decan-3-one (M11). Our results indicated that reductions of the double bond and the ketone group are the major metabolic pathways of 6S by the human gut microbiota. We also observed the interindividual variability in the metabolism of M11 to M9 by human gut microbiota. In addition, we demonstrated that the glucuronidated form of 6S and its metabolites could be rapidly deconjugated by human gut microbiota and in mice, which can be regarded as a reactive process taking place in the intestinal tract. To our knowledge, this is the first report involving the identification of the microbial metabolites of 6S in an in vitro fermentation system, and the first demonstration of the critical role of gut microbiota in producing the bioactive free form of 6S and its metabolites in the intestinal tract in mice.

  14. ILSI Southeast Asia Region conference proceedings: The gut, its microbes and health: relevance for Asia.

    PubMed

    Lee, Yuan Kun; Conway, Patricia; Pettersson, Sven; Nair, G Balakrish; Surono, Ingrid; Egayanti, Yusra; Amarra, Maria Sofia

    2017-01-01

    The human being is a complex entity, involving interaction between microbes and the human host. Evidence shows that the nutritional value of food is influenced in part by the structure and operations of an individual's gut microbial community, and food in turn shapes the individual's microbiome. A conference was held to promote understanding of the intestinal microbiome and its implications for health and disease, particularly among Asian populations. Papers describing 1) the intestinal ecosystem in Asian populations, 2) changes in intestinal microbiota through life and its effects, 3) the Asian gut microbiota in disease conditions, 4) indigenous probiotics to maintain a healthy gut microbiota, 5) probiotic regulation in an Asian country, and 6) the results of a panel discussion are included in this report. The gut microbial inhabitants of Asian people differ from those of Europe and North America. Geographic location, diet, and ethnic background influence intestinal microbial composition. Urbanization and economic development have brought changes in traditional Asian diets, which in turn affected the gut microbiome, contributing to a shift in the region's health burden from infectious diseases to non-communicable chronic diseases. Novel probiotic strains of Indonesian origin demonstrated significant enhancement of humoral immune response in human studies. Knowledge gaps and implications for research to further understand the Asian gut microbiome were discussed.

  15. Context-Dependent Requirements for FimH and Other Canonical Virulence Factors in Gut Colonization by Extraintestinal Pathogenic Escherichia coli

    PubMed Central

    Russell, Colin W.; Fleming, Brittany A.; Jost, Courtney A.; Tran, Alexander; Stenquist, Alan T.; Wambaugh, Morgan A.; Bronner, Mary P.

    2018-01-01

    ABSTRACT Extraintestinal pathogenic Escherichia coli (ExPEC) acts as a commensal within the mammalian gut but can induce pathology upon dissemination to other host environments such as the urinary tract and bloodstream. ExPEC genomes are likely shaped by evolutionary forces encountered within the gut, where the bacteria spend much of their time, provoking the question of how their extraintestinal virulence traits arose. The principle of coincidental evolution, in which a gene that evolved in one niche happens to be advantageous in another, has been used to argue that ExPEC virulence factors originated in response to selective pressures within the gut ecosystem. As a test of this hypothesis, the fitness of ExPEC mutants lacking canonical virulence factors was assessed within the intact murine gut in the absence of antibiotic treatment. We found that most of the tested factors, including cytotoxic necrotizing factor type 1 (CNF1), Usp, colibactin, flagella, and plasmid pUTI89, were dispensable for gut colonization. The deletion of genes encoding the adhesin PapG or the toxin HlyA had transient effects but did not interfere with longer-term persistence. In contrast, a mutant missing the type 1 pilus-associated adhesin FimH displayed somewhat reduced persistence within the gut. However, this phenotype varied dependent on the presence of specific competing strains and was partially attributable to aberrant flagellin expression in the absence of fimH. These data indicate that FimH and other key ExPEC-associated factors are not strictly required for gut colonization, suggesting that the development of extraintestinal virulence traits is not driven solely by selective pressures within the gut. PMID:29311232

  16. Gut microbiome in type 1 diabetes: A comprehensive review.

    PubMed

    Zheng, Peilin; Li, Zhixia; Zhou, Zhiguang

    2018-06-21

    Type 1 diabetes (T1D) is an autoimmune disease, which is characterized by the destruction of islet β cells in the pancreas triggered by genetic and environmental factors. In past decades, extensive familial and genome-wide association studies have revealed more than 50 risk loci in the genome. However, genetic susceptibility cannot explain the increased incidence of T1D worldwide, which is very likely attributed by the growing impact of environmental factors, especially gut microbiome. Recently, the role of gut microbiome in the pathogenesis of T1D have been uncovered by the increasing evidence from both human subjects and animal models, strongly indicating that gut microbiome might be a pivotal hub of T1D-triggering factors, especially environmental factors. In this review, we summarize the current etiological and mechanism studies of gut microbiome in T1D. A better understanding of the role of gut microbiome in T1D may provide us with powerful prognostic and therapeutic tools in the near future. This article is protected by copyright. All rights reserved.

  17. Detection of stable community structures within gut microbiota co-occurrence networks from different human populations.

    PubMed

    Jackson, Matthew A; Bonder, Marc Jan; Kuncheva, Zhana; Zierer, Jonas; Fu, Jingyuan; Kurilshikov, Alexander; Wijmenga, Cisca; Zhernakova, Alexandra; Bell, Jordana T; Spector, Tim D; Steves, Claire J

    2018-01-01

    Microbes in the gut microbiome form sub-communities based on shared niche specialisations and specific interactions between individual taxa. The inter-microbial relationships that define these communities can be inferred from the co-occurrence of taxa across multiple samples. Here, we present an approach to identify comparable communities within different gut microbiota co-occurrence networks, and demonstrate its use by comparing the gut microbiota community structures of three geographically diverse populations. We combine gut microbiota profiles from 2,764 British, 1,023 Dutch, and 639 Israeli individuals, derive co-occurrence networks between their operational taxonomic units, and detect comparable communities within them. Comparing populations we find that community structure is significantly more similar between datasets than expected by chance. Mapping communities across the datasets, we also show that communities can have similar associations to host phenotypes in different populations. This study shows that the community structure within the gut microbiota is stable across populations, and describes a novel approach that facilitates comparative community-centric microbiome analyses.

  18. Edible Plants and Their Influence on the Gut Microbiome and Acne

    PubMed Central

    Clark, Ashley K.; Haas, Kelly N.; Sivamani, Raja K.

    2017-01-01

    Acne vulgaris affects most people at some point in their lives. Due to unclear etiology, likely with multiple factors, targeted and low-risk treatments have yet to be developed. In this review, we explore the multiple causes of acne and how plant-based foods and supplements can control these. The proposed causative factors include insulin resistance, sex hormone imbalances, inflammation and microbial dysbiosis. There is an emerging body of work on the human gut microbiome and how it mediates feedback between the foods we eat and our bodies. The gut microbiome is also an important mediator of inflammation in the gut and systemically. A low-glycemic load diet, one rich in plant fibers and low in processed foods, has been linked to an improvement in acne, possibly through gut changes or attenuation of insulin levels. Though there is much interest in the human microbiome, there is much more unknown, especially along the gut-skin axis. Collectively, the evidence suggests that approaches such as plant-based foods and supplements may be a viable alternative to the current first line standard of care for moderate acne, which typically includes antibiotics. Though patient compliance with major dietary changes is likely much lower than with medications, it is a treatment avenue that warrants further study and development. PMID:28513546

  19. Mind-altering with the gut: Modulation of the gut-brain axis with probiotics.

    PubMed

    Kim, Namhee; Yun, Misun; Oh, Young Joon; Choi, Hak-Jong

    2018-03-01

    It is increasingly evident that bidirectional interactions exist among the gastrointestinal tract, the enteric nervous system, and the central nervous system. Recent preclinical and clinical trials have shown that gut microbiota plays an important role in these gut-brain interactions. Furthermore, alterations in gut microbiota composition may be associated with pathogenesis of various neurological disorders, including stress, autism, depression, Parkinson's disease, and Alzheimer's disease. Therefore, the concepts of the microbiota-gut-brain axis is emerging. Here, we review the role of gut microbiota in bidirectional interactions between the gut and the brain, including neural, immune-mediated, and metabolic mechanisms. We highlight recent advances in the understanding of probiotic modulation of neurological and neuropsychiatric disorders via the gut-brain axis.

  20. Genome-resolved metaproteomic characterization of preterm infant gut microbiota development reveals species-specific metabolic shifts and variabilities during early life.

    PubMed

    Xiong, Weili; Brown, Christopher T; Morowitz, Michael J; Banfield, Jillian F; Hettich, Robert L

    2017-07-10

    Establishment of the human gut microbiota begins at birth. This early-life microbiota development can impact host physiology during infancy and even across an entire life span. However, the functional stability and population structure of the gut microbiota during initial colonization remain poorly understood. Metaproteomics is an emerging technology for the large-scale characterization of metabolic functions in complex microbial communities (gut microbiota). We applied a metagenome-informed metaproteomic approach to study the temporal and inter-individual differences of metabolic functions during microbial colonization of preterm human infants' gut. By analyzing 30 individual fecal samples, we identified up to 12,568 protein groups for each of four infants, including both human and microbial proteins. With genome-resolved matched metagenomics, proteins were confidently identified at the species/strain level. The maximum percentage of the proteome detected for the abundant organisms was ~45%. A time-dependent increase in the relative abundance of microbial versus human proteins suggested increasing microbial colonization during the first few weeks of early life. We observed remarkable variations and temporal shifts in the relative protein abundances of each organism in these preterm gut communities. Given the dissimilarity of the communities, only 81 microbial EggNOG orthologous groups and 57 human proteins were observed across all samples. These conserved microbial proteins were involved in carbohydrate, energy, amino acid and nucleotide metabolism while conserved human proteins were related to immune response and mucosal maturation. We identified seven proteome clusters for the communities and showed infant gut proteome profiles were unstable across time and not individual-specific. Applying a gut-specific metabolic module (GMM) analysis, we found that gut communities varied primarily in the contribution of nutrient (carbohydrates, lipids, and amino acids

  1. Salt-responsive gut commensal modulates TH17 axis and disease.

    PubMed

    Wilck, Nicola; Matus, Mariana G; Kearney, Sean M; Olesen, Scott W; Forslund, Kristoffer; Bartolomaeus, Hendrik; Haase, Stefanie; Mähler, Anja; Balogh, András; Markó, Lajos; Vvedenskaya, Olga; Kleiner, Friedrich H; Tsvetkov, Dmitry; Klug, Lars; Costea, Paul I; Sunagawa, Shinichi; Maier, Lisa; Rakova, Natalia; Schatz, Valentin; Neubert, Patrick; Frätzer, Christian; Krannich, Alexander; Gollasch, Maik; Grohme, Diana A; Côrte-Real, Beatriz F; Gerlach, Roman G; Basic, Marijana; Typas, Athanasios; Wu, Chuan; Titze, Jens M; Jantsch, Jonathan; Boschmann, Michael; Dechend, Ralf; Kleinewietfeld, Markus; Kempa, Stefan; Bork, Peer; Linker, Ralf A; Alm, Eric J; Müller, Dominik N

    2017-11-30

    A Western lifestyle with high salt consumption can lead to hypertension and cardiovascular disease. High salt may additionally drive autoimmunity by inducing T helper 17 (T H 17) cells, which can also contribute to hypertension. Induction of T H 17 cells depends on gut microbiota; however, the effect of salt on the gut microbiome is unknown. Here we show that high salt intake affects the gut microbiome in mice, particularly by depleting Lactobacillus murinus. Consequently, treatment of mice with L. murinus prevented salt-induced aggravation of actively induced experimental autoimmune encephalomyelitis and salt-sensitive hypertension by modulating T H 17 cells. In line with these findings, a moderate high-salt challenge in a pilot study in humans reduced intestinal survival of Lactobacillus spp., increased T H 17 cells and increased blood pressure. Our results connect high salt intake to the gut-immune axis and highlight the gut microbiome as a potential therapeutic target to counteract salt-sensitive conditions.

  2. Distribution, function and physiological role of melatonin in the lower gut

    PubMed Central

    Chen, Chun-Qiu; Fichna, Jakub; Bashashati, Mohammad; Li, Yong-Yu; Storr, Martin

    2011-01-01

    Melatonin is a hormone with endocrine, paracrine and autocrine actions. It is involved in the regulation of multiple functions, including the control of the gastrointestinal (GI) system under physiological and pathophysiological conditions. Since the gut contains at least 400 times more melatonin than the pineal gland, a review of the functional importance of melatonin in the gut seems useful, especially in the context of recent clinical trials. Melatonin exerts its physiological effects through specific membrane receptors, named melatonin-1 receptor (MT1), MT2 and MT3. These receptors can be found in the gut and their involvement in the regulation of GI motility, inflammation and pain has been reported in numerous basic and clinical studies. Stable levels of melatonin in the lower gut that are unchanged following a pinealectomy suggest local synthesis and, furthermore, implicate physiological importance of endogenous melatonin in the GI tract. Presently, only a small number of human studies report possible beneficial and also possible harmful effects of melatonin in case reports and clinical trials. These human studies include patients with lower GI diseases, especially patients with irritable bowel syndrome, inflammatory bowel disease and colorectal cancer. In this review, we summarize the presently available information on melatonin effects in the lower gut and discuss available in vitro and in vivo data. We furthermore aim to evaluate whether melatonin may be useful in future treatment of symptoms or diseases involving the lower gut. PMID:22025877

  3. Development of the preterm infant gut microbiome: A research priority

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groer, Maureen W.; Luciano, Angel A.; Dishaw, Larry J.

    The very low birth weight (VLBW) infant is at great risk for marked dysbiosis of the gut microbiome due to multiple factors, including physiological immaturity and prenatal/postnatal influences that disrupt the development of a normal gut flora. However, little is known about the developmental succession of the microbiota in preterm infants as they grow and mature. This review provides a synthesis of our understanding of the normal development of the infant gut microbiome and contrasts this with dysbiotic development in the VLBW infant. The role of human milk in normal gut microbial development is emphasized, along with the role ofmore » the gut microbiome in immune development and gastroenteric health. Current research provides evidence that the gut microbiome interacts extensively with many physiological systems and metabolic processes in the developing infant. However, to the best of our knowledge, there are currently no studies prospectively mapping the gut microbiome of VLBW infants through early childhood. This knowledge gap must be filled to inform a healthcare system that can provide for the growth, health, and development of VLBW infants. In conclusion, the study speculates about how the VLBW infants’ gut microbiome might function through host-microbe interactions to contribute to the sequelae of preterm birth, including its influence on growth, development, and general health of the infant host.« less

  4. Development of the preterm infant gut microbiome: A research priority

    DOE PAGES

    Groer, Maureen W.; Luciano, Angel A.; Dishaw, Larry J.; ...

    2014-10-13

    The very low birth weight (VLBW) infant is at great risk for marked dysbiosis of the gut microbiome due to multiple factors, including physiological immaturity and prenatal/postnatal influences that disrupt the development of a normal gut flora. However, little is known about the developmental succession of the microbiota in preterm infants as they grow and mature. This review provides a synthesis of our understanding of the normal development of the infant gut microbiome and contrasts this with dysbiotic development in the VLBW infant. The role of human milk in normal gut microbial development is emphasized, along with the role ofmore » the gut microbiome in immune development and gastroenteric health. Current research provides evidence that the gut microbiome interacts extensively with many physiological systems and metabolic processes in the developing infant. However, to the best of our knowledge, there are currently no studies prospectively mapping the gut microbiome of VLBW infants through early childhood. This knowledge gap must be filled to inform a healthcare system that can provide for the growth, health, and development of VLBW infants. In conclusion, the study speculates about how the VLBW infants’ gut microbiome might function through host-microbe interactions to contribute to the sequelae of preterm birth, including its influence on growth, development, and general health of the infant host.« less

  5. Beneficial Effects of a Dietary Weight Loss Intervention on Human Gut Microbiome Diversity and Metabolism Are Not Sustained during Weight Maintenance.

    PubMed

    Heinsen, Femke-Anouska; Fangmann, Daniela; Müller, Nike; Schulte, Dominik M; Rühlemann, Malte C; Türk, Kathrin; Settgast, Ute; Lieb, Wolfgang; Baines, John F; Schreiber, Stefan; Franke, Andre; Laudes, Matthias

    2016-01-01

    In the present study, we examined the effect of a very low-calorie diet(VLCD)-based obesity program on human gut microbiome diversity and metabolism during weight loss and weight maintenance. Obese subjects underwent 3 months of VLCD followed by 3 months of weight maintenance. A lean and an obese control group were included. The microbiome was characterized by performing high-throughput dual-indexed 16S rDNA amplicon sequencing. At baseline, a significant difference in the Firmicutes/Bacteroidetes ratio between the lean and obese individuals was observed (p = 0.047). The VLCD resulted in significant alterations in gut microbiome diversity from baseline to 3 months (p = 0.0053). Acinetobacter represented an indicator species for the observed effect (indicator value = 0.998, p = 0.006). Metabolic analyses revealed alterations of the bacterial riboflavin pathway from baseline to 3 months (pnom = 0.0078). These changes in diversity and bacterial metabolism induced by VLCD diminished during the weight maintenance phase, despite sustained reductions in body weight and sustained improvements of insulin sensitivity. The present data show that a VLCD is able to beneficially alter both gut microbiome diversity and metabolism in obese humans, but that these changes are not sustained during weight maintenance. This finding might suggest that the microbiome should be targeted during obesity programs. © 2016 The Author(s) Published by S. Karger GmbH, Freiburg.

  6. Individual diet has sex-dependent effects on vertebrate gut microbiota.

    PubMed

    Bolnick, Daniel I; Snowberg, Lisa K; Hirsch, Philipp E; Lauber, Christian L; Org, Elin; Parks, Brian; Lusis, Aldons J; Knight, Rob; Caporaso, J Gregory; Svanbäck, Richard

    2014-07-29

    Vertebrates harbour diverse communities of symbiotic gut microbes. Host diet is known to alter microbiota composition, implying that dietary treatments might alleviate diseases arising from altered microbial composition ('dysbiosis'). However, it remains unclear whether diet effects are general or depend on host genotype. Here we show that gut microbiota composition depends on interactions between host diet and sex within populations of wild and laboratory fish, laboratory mice and humans. Within each of two natural fish populations (threespine stickleback and Eurasian perch), among-individual diet variation is correlated with individual differences in gut microbiota. However, these diet-microbiota associations are sex dependent. We document similar sex-specific diet-microbiota correlations in humans. Experimental diet manipulations in laboratory stickleback and mice confirmed that diet affects microbiota differently in males versus females. The prevalence of such genotype by environment (sex by diet) interactions implies that therapies to treat dysbiosis might have sex-specific effects.

  7. Communities of microbial eukaryotes in the mammalian gut within the context of environmental eukaryotic diversity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parfrey, Laura Wegener; Walters, William A.; Lauber, Christian L.

    2014-06-19

    Eukaryotic microbes (protists) residing in the vertebrate gut influence host health and disease, but their diversity and distribution in healthy hosts is poorly understood. Protists found in the gut are typically considered parasites, but many are commensal and some are beneficial. Further, the hygiene hypothesis predicts that association with our co-evolved microbial symbionts may be important to overall health. It is therefore imperative that we understand the normal diversity of our eukaryotic gut microbiota to test for such effects and avoid eliminating commensal organisms. We assembled a dataset of healthy individuals from two populations, one with traditional, agrarian lifestyles andmore » a second with modern, westernized lifestyles, and characterized the human eukaryotic microbiota via high-throughput sequencing. To place the human gut microbiota within a broader context our dataset also includes gut samples from diverse mammals and samples from other aquatic and terrestrial environments. We curated the SILVA ribosomal database to reflect current knowledge of eukaryotic taxonomy and employ it as a phylogenetic framework to compare eukaryotic diversity across environment. We show that adults from the non-western population harbor a diverse community of protists, and diversity in the human gut is comparable to that in other mammals. However, the eukaryotic microbiota of the western population appears depauperate. The distribution of symbionts found in mammals reflects both host phylogeny and diet. Eukaryotic microbiota in the gut are less diverse and more patchily distributed than bacteria. More broadly, we show that eukaryotic communities in the gut are less diverse than in aquatic and terrestrial habitats, and few taxa are shared across habitat types, and diversity patterns of eukaryotes are correlated with those observed for bacteria. These results outline the distribution and diversity of microbial eukaryotic communities in the mammalian gut and across

  8. Role of gut microbiota in obesity, type 2 diabetes and Alzheimer's disease.

    PubMed

    Naseer, Muhammad I; Bibi, Fehmida; Alqahtani, Mohammed H; Chaudhary, Adeel G; Azhar, Esam I; Kamal, Mohammad A; Yasir, Muhammad

    2014-03-01

    In recent years, there is a growing interest in research to investigate the importance of gut microbiome in health and diseases. This opens a new area of research for the role of microbial flora of the human gut in inflammation, energy homeostasis, pathogenesis of obesity and other associated disorders. Recent studies propose association of the gut microbiome with development of obesity and metabolic syndromes, such as type 2 diabetes mellitus (T2DM). The T2DM is a metabolic disease that is mainly caused by obesity-linked insulin resistance. The vascular effects of obesity appears to play a role in the development of Alzheimer's disease (AD) that is one of the rapidly growing diseases of a late stage of life all over the world. Studies from both humans and mice models have been demonstrated the engagement of gut microbial flora in the pathogenesis of obesity and host metabolism. The aim of this review is to discuss the current findings that may explain the cascade of gut microbial flora participation in the development of obesity, T2DM and further initiation of AD. In addition, the available data regarding the mechanisms that have been proposed to elucidate the role of gut microbiota in weight gain and possible cause of T2DM and AD have been examined.

  9. Dynamic In Vitro Models of the Human Gastrointestinal Tract as Relevant Tools to Assess the Survival of Probiotic Strains and Their Interactions with Gut Microbiota

    PubMed Central

    Cordonnier, Charlotte; Thévenot, Jonathan; Etienne-Mesmin, Lucie; Denis, Sylvain; Alric, Monique; Livrelli, Valérie; Blanquet-Diot, Stéphanie

    2015-01-01

    The beneficial effects of probiotics are conditioned by their survival during passage through the human gastrointestinal tract and their ability to favorably influence gut microbiota. The main objective of this study was to use dynamic in vitro models of the human digestive tract to investigate the effect of fasted or fed state on the survival kinetics of the new probiotic Saccharomyces cerevisiae strain CNCM I-3856 and to assess its influence on intestinal microbiota composition and activity. The probiotic yeast showed a high survival rate in the upper gastrointestinal tract whatever the route of admistration, i.e., within a glass of water or a Western-type meal. S. cerevisiae CNCM I-3856 was more sensitive to colonic conditions, as the strain was not able to colonize within the bioreactor despite a twice daily administration. The main bacterial populations of the gut microbiota, as well as the production of short chain fatty acids were not influenced by the probiotic treatment. However, the effect of the probiotic on the gut microbiota was found to be individual dependent. This study shows that dynamic in vitro models can be advantageously used to provide useful insight into the behavior of probiotic strains in the human digestive environment. PMID:27682114

  10. The Infant Gut Microbiome: Evidence for Obesity Risk and Dietary Intervention

    PubMed Central

    Koleva, Petya T.; Bridgman, Sarah L.; Kozyrskyj, Anita L.

    2015-01-01

    Increasing globally, particularly in children, obesity is a serious public health issue and risk factor for overweight and metabolic disease in later life. Both in experimental animal and human studies, advances in gene sequencing technologies have yielded intriguing possibilities for the role of the gut microbiome in later development of overweight status. Before translating study findings into practice, we must first reconcile inconsistencies between animal experimentation, and human adult and infant studies. Recent evidence for associations with gut microbiota and infant weight gain or child weight status, implicate Bacteroides and Lactobacillus species. Dietary manipulation with human milk and pre/probiotic formulations holds promise for preventing obesity. PMID:25835047

  11. Urea and impairment of the Gut-Kidney axis in Chronic Kidney Disease.

    PubMed

    Di Iorio, Biagio Raffaele; Marzocco, Stefania; Nardone, Luca; Sirico, Marilisa; De Simone, Emanuele; Di Natale, Gabriella; Di Micco, Lucia

    2017-12-05

    Gut microbiota can be considered a real organ coordinating health and wellness of our body. It is made of more than 100 trillions of microorganisms, thus about 3 times higher than the number of human body cells and more than 150 times than human genes containing 1000 different microbe species. It has been described a symbiotic relationship between gut and kidney, confirmed by several observations. This is a bi-directional relation with a mutual influence, even when kidney disease occurs, and consequent alterations of intestinal microbiota and production of uremic toxins, that in turn worsens kidney disease and its progression. Our review analyzes the components of gut-kidney axis and relative clinical consequences. Copyright by Società Italiana di Nefrologia SIN, Rome, Italy.

  12. Gut microbiota and the development of obesity.

    PubMed

    Boroni Moreira, A P; Fiche Salles Teixeira, T; do C Gouveia Peluzio, M; de Cássia Gonçalves Alfenas, R

    2012-01-01

    Advances in tools for molecular investigations have allowed deeper understanding of how microbes can influence host physiology. A very interesting field of research that has gained attention recently is the possible role of gut microbiota in the development of obesity and metabolic disorders. The aim of this review is to discuss mechanisms that explain the influence of gut microbiota on host metabolism. The gut microbiota is important for normal physiology of the host. However, differences in their composition may have different impacts on host metabolism. It has been shown that obese and lean subjects present different microbiota composition profile. These differences in microbiota composition may contribute to weight imbalance and impaired metabolism. The evidences from animal models suggest that it is possible that the microbiota of obese subjects has higher capacity to harvest energy from the diet providing substrates that can activate lipogenic pathways. In addition, microorganisms can also influence the activity of lipoprotein lipase interfering in the accumulation of triglycerides in the adipose tissue. The interaction of gut microbiota with the endocannabinoid system provides a route through which intestinal permeability can be altered. Increased intestinal permeability allows the entrance of endotoxins to the circulation, which are related to the induction of inflammation and insulin resistance in mice. The impact of the proposed mechanisms for humans still needs further investigations. However, the fact that gut microbiota can be modulated through dietary components highlights the importance to study how fatty acids, carbohydrates, micronutrients, prebiotics, and probiotics can influence gut microbiota composition and the management of obesity. Gut microbiota seems to be an important and promising target in the prevention and treatment of obesity and its related metabolic disturbances in future studies and in clinical practice.

  13. Metabolic fate of polyphenols in the human superorganism

    PubMed Central

    van Duynhoven, John; Vaughan, Elaine E.; Jacobs, Doris M.; Kemperman, Robèr A.; van Velzen, Ewoud J. J.; Gross, Gabriele; Roger, Laure C.; Possemiers, Sam; Smilde, Age K.; Doré, Joël; Westerhuis, Johan A.; Van de Wiele, Tom

    2011-01-01

    Dietary polyphenols are components of many foods such as tea, fruit, and vegetables and are associated with several beneficial health effects although, so far, largely based on epidemiological studies. The intact forms of complex dietary polyphenols have limited bioavailability, with low circulating levels in plasma. A major part of the polyphenols persists in the colon, where the resident microbiota produce metabolites that can undergo further metabolism upon entering systemic circulation. Unraveling the complex metabolic fate of polyphenols in this human superorganism requires joint deployment of in vitro and humanized mouse models and human intervention trials. Within these systems, the variation in diversity and functionality of the colonic microbiota can increasingly be captured by rapidly developing microbiomics and metabolomics technologies. Furthermore, metabolomics is coming to grips with the large biological variation superimposed on relatively subtle effects of dietary interventions. In particular when metabolomics is deployed in conjunction with a longitudinal study design, quantitative nutrikinetic signatures can be obtained. These signatures can be used to define nutritional phenotypes with different kinetic characteristics for the bioconversion capacity for polyphenols. Bottom-up as well as top-down approaches need to be pursued to link gut microbial diversity to functionality in nutritional phenotypes and, ultimately, to bioactivity of polyphenols. This approach will pave the way for personalization of nutrition based on gut microbial functionality of individuals or populations. PMID:20615997

  14. Sex-Specific Effects of Organophosphate Diazinon on the Gut Microbiome and Its Metabolic Functions.

    PubMed

    Gao, Bei; Bian, Xiaoming; Mahbub, Ridwan; Lu, Kun

    2017-02-01

    There is growing recognition of the significance of the gut microbiome to human health, and the association between a perturbed gut microbiome with human diseases has been established. Previous studies also show the role of environmental toxicants in perturbing the gut microbiome and its metabolic functions. The wide agricultural use of diazinon, an organophosphate insecticide, has raised serious environmental health concerns since it is a potent neurotoxicant. With studies demonstrating the presence of a microbiome-gut-brain axis, it is possible that gut microbiome perturbation may also contribute to diazinon toxicity. We investigated the impact of diazinon exposure on the gut microbiome composition and its metabolic functions in C57BL/6 mice. We used a combination of 16S rRNA gene sequencing, metagenomics sequencing, and mass spectrometry-based metabolomics profiling in a mouse model to examine the functional impact of diazinon on the gut microbiome. 16S rRNA gene sequencing revealed that diazinon exposure significantly perturbed the gut microbiome, and metagenomic sequencing found that diazinon exposure altered the functional metagenome. Moreover, metabolomics profiling revealed an altered metabolic profile arising from exposure. Of particular significance, these changes were more pronounced for male mice than for female mice. Diazinon exposure perturbed the gut microbiome community structure, functional metagenome, and associated metabolic profiles in a sex-specific manner. These findings may provide novel insights regarding perturbations of the gut microbiome and its functions as a potential new mechanism contributing to diazinon neurotoxicity and, in particular, its sex-selective effects. Citation: Gao B, Bian X, Mahbub R, Lu K. 2017. Sex-specific effects of organophosphate diazinon on the gut microbiome and its metabolic functions. Environ Health Perspect 125:198-206; http://dx.doi.org/10.1289/EHP202.

  15. [Gut microbiota in health and disease].

    PubMed

    Icaza-Chávez, M E

    2013-01-01

    Gut microbiota is the community of live microorganisms residing in the digestive tract. There are many groups of researchers worldwide that are working at deciphering the collective genome of the human microbiota. Modern techniques for studying the microbiota have made us aware of an important number of nonculturable bacteria and of the relation between the microorganisms that live inside us and our homeostasis. The microbiota is essential for correct body growth, the development of immunity, and nutrition. Certain epidemics affecting humanity such as asthma and obesity may possibly be explained, at least partially, by alterations in the microbiota. Dysbiosis has been associated with a series of gastrointestinal disorders that include non-alcoholic fatty liver disease, celiac disease, and irritable bowel syndrome. The present article deals with the nomenclature, modern study techniques, and functions of gut microbiota, and its relation to health and disease. Copyright © 2013 Asociación Mexicana de Gastroenterología. Published by Masson Doyma México S.A. All rights reserved.

  16. Lubiprostone improves intestinal permeability in humans, a novel therapy for the leaky gut: A prospective randomized pilot study in healthy volunteers.

    PubMed

    Kato, Takayuki; Honda, Yasushi; Kurita, Yusuke; Iwasaki, Akito; Sato, Takamitsu; Kessoku, Takaomi; Uchiyama, Shiori; Ogawa, Yuji; Ohkubo, Hidenori; Higurashi, Takuma; Yamanaka, Takeharu; Usuda, Haruki; Wada, Koichiro; Nakajima, Atsushi

    2017-01-01

    The barrier function of the small intestinal mucosa prevents the introduction of undesired pathogens into the body. Breakdown of this barrier function increases intestinal permeability. This has been proposed to induce not only gastrointestinal diseases, including inflammatory bowel disease and irritable bowel syndrome, but also various other diseases, including allergies, diabetes mellitus, liver diseases, and collagen diseases, which are associated with this so called "leaky gut syndrome." As such, a method to prevent leaky gut syndrome would have substantial clinical value. However, no drugs have been demonstrated to improve disturbed intestinal permeability in humans to date. Therefore, we investigated whether a drug used to treat chronic constipation, lubiprostone, was effective for this purpose. Healthy male volunteers were treated with lubiprostone (24 μg/day) for 28 days. Intestinal permeability was evaluated by measuring the lactulose-mannitol ratio (LMR) after administration of diclofenac and compared with an untreated group. The examination was conducted three times in total, i.e., at baseline before diclofenac administration and after 14 and 28 days of lubiprostone treatment. Blood endotoxin activity was also evaluated at the same time points. The final analysis was conducted on 28 subjects (14 in the lubiprostone group and 14 in the untreated group). The LMR after 28 days of treatment was significantly lower in the lubiprostone group than that in the untreated group (0.017 vs. 0.028, respectively; 95% confidence interval, -0.022--0.0001; p = 0.049). Blood endotoxin activity exhibited almost no change over time in the lubiprostone and untreated groups and displayed no significant differences at any time point of examination. This study is the first to report an improvement in leaky gut using an available drug in humans. The result suggests that lubiprostone may prevent and ameliorate "leaky gut syndrome". However, a pivotal trial is needed to confirm

  17. The networks of human gut microbe–metabolite associations are different between health and irritable bowel syndrome

    PubMed Central

    Shankar, Vijay; Homer, Daniel; Rigsbee, Laura; Khamis, Harry J; Michail, Sonia; Raymer, Michael; Reo, Nicholas V; Paliy, Oleg

    2015-01-01

    The goal of this study was to determine if fecal metabolite and microbiota profiles can serve as biomarkers of human intestinal diseases, and to uncover possible gut microbe–metabolite associations. We employed proton nuclear magnetic resonance to measure fecal metabolites of healthy children and those diagnosed with diarrhea-predominant irritable bowel syndrome (IBS-D). Metabolite levels were associated with fecal microbial abundances. Using several ordination techniques, healthy and irritable bowel syndrome (IBS) samples could be distinguished based on the metabolite profiles of fecal samples, and such partitioning was congruent with the microbiota-based sample separation. Measurements of individual metabolites indicated that the intestinal environment in IBS-D was characterized by increased proteolysis, incomplete anaerobic fermentation and possible change in methane production. By correlating metabolite levels with abundances of microbial genera, a number of statistically significant metabolite–genus associations were detected in stools of healthy children. No such associations were evident for IBS children. This finding complemented the previously observed reduction in the number of microbe–microbe associations in the distal gut of the same cohort of IBS-D children. PMID:25635640

  18. The networks of human gut microbe-metabolite associations are different between health and irritable bowel syndrome.

    PubMed

    Shankar, Vijay; Homer, Daniel; Rigsbee, Laura; Khamis, Harry J; Michail, Sonia; Raymer, Michael; Reo, Nicholas V; Paliy, Oleg

    2015-08-01

    The goal of this study was to determine if fecal metabolite and microbiota profiles can serve as biomarkers of human intestinal diseases, and to uncover possible gut microbe-metabolite associations. We employed proton nuclear magnetic resonance to measure fecal metabolites of healthy children and those diagnosed with diarrhea-predominant irritable bowel syndrome (IBS-D). Metabolite levels were associated with fecal microbial abundances. Using several ordination techniques, healthy and irritable bowel syndrome (IBS) samples could be distinguished based on the metabolite profiles of fecal samples, and such partitioning was congruent with the microbiota-based sample separation. Measurements of individual metabolites indicated that the intestinal environment in IBS-D was characterized by increased proteolysis, incomplete anaerobic fermentation and possible change in methane production. By correlating metabolite levels with abundances of microbial genera, a number of statistically significant metabolite-genus associations were detected in stools of healthy children. No such associations were evident for IBS children. This finding complemented the previously observed reduction in the number of microbe-microbe associations in the distal gut of the same cohort of IBS-D children.

  19. Gut Microbiota and Lifestyle Interventions in NAFLD

    PubMed Central

    Houghton, David; Stewart, Christopher J.; Day, Christopher P.; Trenell, Michael

    2016-01-01

    The human digestive system harbors a diverse and complex community of microorganisms that work in a symbiotic fashion with the host, contributing to metabolism, immune response and intestinal architecture. However, disruption of a stable and diverse community, termed “dysbiosis”, has been shown to have a profound impact upon health and disease. Emerging data demonstrate dysbiosis of the gut microbiota to be linked with non-alcoholic fatty liver disease (NAFLD). Although the exact mechanism(s) remain unknown, inflammation, damage to the intestinal membrane, and translocation of bacteria have all been suggested. Lifestyle intervention is undoubtedly effective at improving NAFLD, however, not all patients respond to these in the same manner. Furthermore, studies investigating the effects of lifestyle interventions on the gut microbiota in NAFLD patients are lacking. A deeper understanding of how different aspects of lifestyle (diet/nutrition/exercise) affect the host–microbiome interaction may allow for a more tailored approach to lifestyle intervention. With gut microbiota representing a key element of personalized medicine and nutrition, we review the effects of lifestyle interventions (diet and physical activity/exercise) on gut microbiota and how this impacts upon NAFLD prognosis. PMID:27023533

  20. Diets Alter the Gut Microbiome of Crocodile Lizards

    PubMed Central

    Jiang, Hai-Ying; Ma, Jing-E; Li, Juan; Zhang, Xiu-Juan; Li, Lin-Miao; He, Nan; Liu, Hai-Yang; Luo, Shu-Yi; Wu, Zheng-Jun; Han, Ri-Chou; Chen, Jin-Ping

    2017-01-01

    The crocodile lizard is a critically endangered reptile, and serious diseases have been found in this species in recent years, especially in captive lizards. Whether these diseases are caused by changes in the gut microbiota and the effect of captivity on disease remains to be determined. Here, we examined the relationship between the gut microbiota and diet and disease by comparing the fecal microbiota of wild lizards with those of sick and healthy lizards in captivity. The gut microbiota in wild crocodile lizards was consistently dominated by Proteobacteria (∼56.4%) and Bacteroidetes (∼19.1%). However, the abundance of Firmicutes (∼2.6%) in the intestine of the wild crocodile lizards was distinctly lower than that in other vertebrates. In addition, the wild samples from Guangdong Luokeng Shinisaurus crocodilurus National Nature Reserve also had a high abundance of Deinococcus–Thermus while the wild samples from Guangxi Daguishan Crocodile Lizard National Nature Reserve had a high abundance of Tenericutes. The gut microbial community in loach-fed crocodile lizards was significantly different from the gut microbial community in the earthworm-fed and wild lizards. In addition, significant differences in specific bacteria were detected among groups. Notably, in the gut microbiota, the captive lizards fed earthworms resulted in enrichment of Fusobacterium, and the captive lizards fed loaches had higher abundances of Elizabethkingia, Halomonas, Morganella, and Salmonella, all of which are pathogens or opportunistic pathogens in human or other animals. However, there is no sufficient evidence that the gut microbiota contributes to either disease A or disease B. These results provide a reference for the conservation of endangered crocodile lizards and the first insight into the relationship between disease and the gut microbiota in lizards. PMID:29118742

  1. Tail gut cyst.

    PubMed

    Rao, G Mallikarjuna; Haricharan, P; Ramanujacharyulu, S; Reddy, K Lakshmi

    2002-01-01

    The tail gut is a blind extension of the hindgut into the tail fold just distal to the cloacal membrane. Remnants of this structure may form tail gut cyst. We report a 14-year-old girl with tail gut cyst that presented as acute abdomen. The patient recovered after cyst excision.

  2. The Gut Microbiota: Ecology and Function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willing, B.P.; Jansson, J.K.

    The gastrointestinal (GI) tract is teeming with an extremely abundant and diverse microbial community. The members of this community have coevolved along with their hosts over millennia. Until recently, the gut ecosystem was viewed as black box with little knowledge of who or what was there or their specific functions. Over the past decade, however, this ecosystem has become one of fastest growing research areas of focus in microbial ecology and human and animal physiology. This increased interest is largely in response to studies tying microbes in the gut to important diseases afflicting modern society, including obesity, allergies, inflammatory bowelmore » diseases, and diabetes. Although the importance of a resident community of microorganisms in health was first hypothesized by Pasteur over a century ago (Sears, 2005), the multiplicity of physiological changes induced by commensal bacteria has only recently been recognized (Hooper et al., 2001). The term 'ecological development' was recently coined to support the idea that development of the GI tract is a product of the genetics of the host and the host's interactions with resident microbes (Hooper, 2004). The search for new therapeutic targets and disease biomarkers has escalated the need to understand the identities and functions of the microorganisms inhabiting the gut. Recent studies have revealed new insights into the membership of the gut microbial community, interactions within that community, as well as mechanisms of interaction with the host. This chapter focuses on the microbial ecology of the gut, with an emphasis on information gleaned from recent molecular studies.« less

  3. Composition of the gut microbiota modulates the severity of malaria

    PubMed Central

    Villarino, Nicolas F.; LeCleir, Gary R.; Denny, Joshua E.; Dearth, Stephen P.; Harding, Christopher L.; Sloan, Sarah S.; Gribble, Jennifer L.; Campagna, Shawn R.; Wilhelm, Steven W.; Schmidt, Nathan W.

    2016-01-01

    Plasmodium infections result in clinical presentations that range from asymptomatic to severe malaria, resulting in ∼1 million deaths annually. Despite this toll on humanity, the factors that determine disease severity remain poorly understood. Here, we show that the gut microbiota of mice influences the pathogenesis of malaria. Genetically similar mice from different commercial vendors, which exhibited differences in their gut bacterial community, had significant differences in parasite burden and mortality after infection with multiple Plasmodium species. Germfree mice that received cecal content transplants from “resistant” or “susceptible” mice had low and high parasite burdens, respectively, demonstrating the gut microbiota shaped the severity of malaria. Among differences in the gut flora were increased abundances of Lactobacillus and Bifidobacterium in resistant mice. Susceptible mice treated with antibiotics followed by yogurt made from these bacterial genera displayed a decreased parasite burden. Consistent with differences in parasite burden, resistant mice exhibited an elevated humoral immune response compared with susceptible mice. Collectively, these results identify the composition of the gut microbiota as a previously unidentified risk factor for severe malaria and modulation of the gut microbiota (e.g., probiotics) as a potential treatment to decrease parasite burden. PMID:26858424

  4. The Impact of the Milk Glycobiome on the Neonate Gut Microbiota

    PubMed Central

    Pacheco, Alline R.; Barile, Daniela; Underwood, Mark A.; Mills, David A.

    2015-01-01

    Human milk is a complete source of nourishment for the infant. Exclusive breastfeeding not only sustains the infant’s development but also guides the proliferation of a protective intestinal microbiota. Among the many components of milk that modulate the infant gut microbiota, the milk glycans, which comprise free oligosaccharides, glycoproteins, and glycolipids, are increasingly recognized as drivers of microbiota development and overall gut health. These glycans may display pleiotropic functions, conferring protection against infectious diseases and also acting as prebiotics, selecting for the growth of beneficial intestinal bacteria. The prebiotic effect of milk glycans has direct application to prevention of diseases such as necrotizing enterocolitis, a common and devastating disease of preterm infants. In this article, we review the impact of the human (and bovine) milk glycome on gut health through establishment of a milk-oriented microbiota in the neonate. PMID:25387230

  5. The crosstalk between gut microbiota and obesity and related metabolic disorders.

    PubMed

    Xu, Wen-Ting; Nie, Yong-Zhan; Yang, Zhen; Lu, Nong-Hua

    2016-06-01

    Obesity and related metabolic diseases are currently a threat to global public health. The occurrence and development of these conditions result from the combined effects of multiple factors. The human gut is a diverse and vibrant microecosystem, and its composition and function are a focus of research in the fields of life science and medicine. An increasing amount of evidence indicates that interactions between the gut microbiota and their genetic predispositions or dietary changes may be key factors that contribute to obesity and other metabolic diseases. Defining the mechanisms by which the gut microbiota influence obesity and related chronic metabolic diseases will bring about revolutionary changes that will enable practitioners to prevent and control metabolic diseases by targeting the gut microbiota.

  6. Beyond gut feelings: how the gut microbiota regulates blood pressure.

    PubMed

    Marques, Francine Z; Mackay, Charles R; Kaye, David M

    2018-01-01

    Hypertension is the leading risk factor for heart disease and stroke, and is estimated to cause 9.4 million deaths globally every year. The pathogenesis of hypertension is complex, but lifestyle factors such as diet are important contributors to the disease. High dietary intake of fruit and vegetables is associated with reduced blood pressure and lower cardiovascular mortality. A critical relationship between dietary intake and the composition of the gut microbiota has been described in the literature, and a growing body of evidence supports the role of the gut microbiota in the regulation of blood pressure. In this Review, we describe the mechanisms by which the gut microbiota and its metabolites, including short-chain fatty acids, trimethylamine N-oxide, and lipopolysaccharides, act on downstream cellular targets to prevent or contribute to the pathogenesis of hypertension. These effects have a direct influence on tissues such as the kidney, the endothelium, and the heart. Finally, we consider the role of the gut microbiota in resistant hypertension, the possible intergenerational effect of the gut microbiota on blood pressure regulation, and the promising therapeutic potential of gut microbiota modification to improve health and prevent disease.

  7. Gut epithelial inducible heat-shock proteins and their modulation by diet and the microbiota

    PubMed Central

    Arnal, Marie-Edith

    2016-01-01

    The epidemic of metabolic diseases has raised questions about the interplay between the human diet and the gut and its microbiota. The gut has two vital roles: nutrient absorption and intestinal barrier function. Gut barrier defects are involved in many diseases. Excess energy intake disturbs the gut microbiota and favors body entry of microbial compounds that stimulate chronic metabolic inflammation. In this context, the natural defense mechanisms of gut epithelial cells and the potential to boost them nutritionally warrant further study. One such important defense system is the activation of inducible heat-shock proteins (iHSPs) which protect the gut epithelium against oxidative stress and inflammation. Importantly, various microbial components can induce the expression of iHSPs. This review examines gut epithelial iHSPs as the main targets of microbial signals and nutrients and presents data on diseases involving disturbances of gut epithelial iHSPs. In addition, a broad literature analysis of dietary modulation of gut epithelial iHSPs is provided. Future research aims should include the identification of gut microbes that can optimize gut-protective iHSPs and the evaluation of iHSP-mediated health benefits of nutrients and food components. PMID:26883882

  8. Bidirectional interactions between dietary curcumin and gut microbiota.

    PubMed

    Shen, Liang; Ji, Hong-Fang

    2018-05-21

    Curcumin is a polyphenolic compound with a long history of use as an herbal remedy, dietary spice and food-coloring agent. Despite curcumin possesses a wide range of biological and pharmacological activities, it exhibits extremely poor bioavailability, which makes its pharmacology intriguing and also hinders its clinical application. In recent years, there is ample evidence supporting the associations between the alteration of gut microbiota and many diseases. Interestingly, after oral administration, curcumin shows its preferential distribution and accumulation in the intestine. In view of the above aspects, we reviewed the updated knowledge regarding the bidirectional interactions between curcumin and gut microbiota from two perspectives: i) gut microbiota regulation by curcumin and ii) curcumin biotransformation by digestive microbiota. Besides the study deals with 3 potential pharmacological implications: i) identification of metabolites being more active and bioavaliable than parent curcumin; ii) assessment of contribution of gut microbiota regulation of curcumin to its pharmacological effects and iii) development of gut microbiota regulation-based disease prevention/treatment strategy for curcumin in view of its clinical safety. This review is important to deepen our understanding of the mechanisms of action of curcumin and to provide future directions about how to use this natural compound to combat human diseases.

  9. Gut microbiota composition modifies fecal metabolic profiles in mice.

    PubMed

    Zhao, Ying; Wu, Junfang; Li, Jia V; Zhou, Ning-Yi; Tang, Huiru; Wang, Yulan

    2013-06-07

    The gut microbiome is known to be extensively involved in human health and disease. In order to reveal the metabolic relationship between host and microbiome, we monitored recovery of the gut microbiota composition and fecal profiles of mice after gentamicin and/or ceftriaxone treatments. This was performed by employing (1)H nuclear magnetic resonance (NMR)-based metabonomics and denaturing gradient gel electrophoresis (DGGE) fingerprint of gut microbiota. The common features of fecal metabolites postantibiotic treatment include decreased levels of short chain fatty acids (SCFAs), amino acids and primary bile acids and increased oligosaccharides, d-pinitol, choline and secondary bile acids (deoxycholic acid). This suggests suppressed bacterial fermentation, protein degradation and enhanced gut microbial modification of bile acids. Barnesiella, Prevotella, and Alistipes levels were shown to decrease as a result of the antibiotic treatment, whereas levels of Bacteroides, Enterococcus and Erysipelotrichaceae incertae sedis, and Mycoplasma increased after gentamicin and ceftriaxone treatment. In addition, there was a strong correlation between fecal profiles and levels of Bacteroides, Barnesiella, Alistipes and Prevotella. The integration of metabonomics and gut microbiota profiling provides important information on the changes of gut microbiota and their impact on fecal profiles during the recovery after antibiotic treatment. The correlation between gut microbiota and fecal metabolites provides important information on the function of bacteria, which in turn could be important in optimizing therapeutic strategies, and developing potential microbiota-based disease preventions and therapeutic interventions.

  10. Bifidobacteria and Butyrate-Producing Colon Bacteria: Importance and Strategies for Their Stimulation in the Human Gut

    PubMed Central

    Rivière, Audrey; Selak, Marija; Lantin, David; Leroy, Frédéric; De Vuyst, Luc

    2016-01-01

    With the increasing amount of evidence linking certain disorders of the human body to a disturbed gut microbiota, there is a growing interest for compounds that positively influence its composition and activity through diet. Besides the consumption of probiotics to stimulate favorable bacterial communities in the human gastrointestinal tract, prebiotics such as inulin-type fructans (ITF) and arabinoxylan-oligosaccharides (AXOS) can be consumed to increase the number of bifidobacteria in the colon. Several functions have been attributed to bifidobacteria, encompassing degradation of non-digestible carbohydrates, protection against pathogens, production of vitamin B, antioxidants, and conjugated linoleic acids, and stimulation of the immune system. During life, the numbers of bifidobacteria decrease from up to 90% of the total colon microbiota in vaginally delivered breast-fed infants to <5% in the colon of adults and they decrease even more in that of elderly as well as in patients with certain disorders such as antibiotic-associated diarrhea, inflammatory bowel disease, irritable bowel syndrome, obesity, allergies, and regressive autism. It has been suggested that the bifidogenic effects of ITF and AXOS are the result of strain-specific yet complementary carbohydrate degradation mechanisms within cooperating bifidobacterial consortia. Except for a bifidogenic effect, ITF and AXOS also have shown to cause a butyrogenic effect in the human colon, i.e., an enhancement of colon butyrate production. Butyrate is an essential metabolite in the human colon, as it is the preferred energy source for the colon epithelial cells, contributes to the maintenance of the gut barrier functions, and has immunomodulatory and anti-inflammatory properties. It has been shown that the butyrogenic effects of ITF and AXOS are the result of cross-feeding interactions between bifidobacteria and butyrate-producing colon bacteria, such as Faecalibacterium prausnitzii (clostridial cluster IV

  11. Geomorphic Unit Tool (GUT): Applications of Fluvial Mapping

    NASA Astrophysics Data System (ADS)

    Kramer, N.; Bangen, S. G.; Wheaton, J. M.; Bouwes, N.; Wall, E.; Saunders, C.; Bennett, S.; Fortney, S.

    2017-12-01

    Geomorphic units are the building blocks of rivers and represent distinct habitat patches for many fluvial organisms. We present the Geomorphic Unit Toolkit (GUT), a flexible GIS geomorphic unit mapping tool, to generate maps of fluvial landforms from topography. GUT applies attributes to landforms based on flow stage (Tier 1), topographic signatures (Tier 2), geomorphic characteristics (Tier 3) and patch characteristics (Tier 4) to derive attributed maps at the level of detail required by analysts. We hypothesize that if more rigorous and consistent geomorphic mapping is conducted, better correlations between physical habitat units and ecohydraulic model results will be obtained compared to past work. Using output from GUT for coarse bed tributary streams in the Columbia River Basin, we explore relationships between salmonid habitat and geomorphic spatial metrics. We also highlight case studies of how GUT can be used to showcase geomorphic impact from large wood restoration efforts. Provided high resolution topography exists, this tool can be used to quickly assess changes in fluvial geomorphology in watersheds impacted by human activities.

  12. Anti-obesity effects of gut microbiota are associated with lactic acid bacteria.

    PubMed

    Tsai, Yueh-Ting; Cheng, Po-Ching; Pan, Tzu-Ming

    2014-01-01

    The prevalence of obesity is rapidly becoming endemic in industrialized countries and continues to increase in developing countries worldwide. Obesity predisposes people to an increased risk of developing metabolic syndrome. Recent studies have described an association between obesity and certain gut microbiota, suggesting that gut microbiota might play a critical role in the development of obesity. Although probiotics have many beneficial health effects in humans and animals, attention has only recently been drawn to manipulating the gut microbiota, such as lactic acid bacteria (LAB), to influence the development of obesity. In this review, we first describe the causes of obesity, including the genetic and environmental factors. We then describe the relationship between the gut microbiota and obesity, and the mechanisms by which the gut microbiota influence energy metabolism and inflammation in obesity. Lastly, we focus on the potential role of LAB in mediating the effects of the gut microbiota in the development of obesity.

  13. Human blindsight is mediated by an intact geniculo-extrastriate pathway

    PubMed Central

    Ajina, Sara; Pestilli, Franco; Rokem, Ariel; Kennard, Christopher; Bridge, Holly

    2015-01-01

    Although damage to the primary visual cortex (V1) causes hemianopia, many patients retain some residual vision; known as blindsight. We show that blindsight may be facilitated by an intact white-matter pathway between the lateral geniculate nucleus and motion area hMT+. Visual psychophysics, diffusion-weighted magnetic resonance imaging and fibre tractography were applied in 17 patients with V1 damage acquired during adulthood and 9 age-matched controls. Individuals with V1 damage were subdivided into blindsight positive (preserved residual vision) and negative (no residual vision) according to psychophysical performance. All blindsight positive individuals showed intact geniculo-hMT+ pathways, while this pathway was significantly impaired or not measurable in blindsight negative individuals. Two white matter pathways previously implicated in blindsight: (i) superior colliculus to hMT+ and (ii) between hMT+ in each hemisphere were not consistently present in blindsight positive cases. Understanding the visual pathways crucial for residual vision may direct future rehabilitation strategies for hemianopia patients. DOI: http://dx.doi.org/10.7554/eLife.08935.001 PMID:26485034

  14. Characterization of functional properties of Enterococcus faecium strains isolated from human gut.

    PubMed

    İspirli, Hümeyra; Demirbaş, Fatmanur; Dertli, Enes

    2015-11-01

    The aim of this work was to characterize the functional properties of Enterococcus faecium strains identified after isolation from human faeces. Of these isolates, strain R13 showed the best resistance to low pH, bile salts, and survival in the simulated in vitro digestion assay, and demonstrated an important level of adhesion to hexadecane as a potential probiotic candidate. Analysis of the antibiotic resistance of E. faecium strains indicated that in general these isolates were sensitive to the tested antibiotics and no strain appeared to be resistant to vancomycin. Examination of the virulence determinants for E. faecium strains demonstrated that all strains contained the virulence genes common in gut- and food-originated enterococci, and strain R13 harboured the lowest number of virulence genes. Additionally, no strain contained the genes related to cytolysin metabolism and showed hemolytic activity. The antimicrobial role of E. faecium strains was tested against several pathogens, in which different levels of inhibitory effects were observed, and strain R13 was inhibitory to all tested pathogens. PCR screening of genes encoding enterocin A and B indicated the presence of these genes in E. faecium strains. Preliminary characterization of bacteriocins revealed that their activity was lost after proteolytic enzyme treatments, but no alteration in antimicrobial activity was observed at different pHs (3.5 to 9.5) and after heat treatments. In conclusion, this study revealed the functional characteristics of E. faecium R13 as a gut isolate, and this strain could be developed as a new probiotic after further tests.

  15. Individual diet has sex-dependent effects on vertebrate gut microbiota

    PubMed Central

    Bolnick, Daniel I.; Snowberg, Lisa K.; Hirsch, Philipp E.; Lauber, Christian L.; Org, Elin; Parks, Brian; Lusis, Aldons J.; Knight, Rob; Caporaso, J. Gregory; Svanbäck, Richard

    2014-01-01

    Vertebrates harbour diverse communities of symbiotic gut microbes. Host diet is known to alter microbiota composition, implying that dietary treatments might alleviate diseases arising from altered microbial composition (‘dysbiosis’). However, it remains unclear whether diet effects are general or depend on host genotype. Here we show that gut microbiota composition depends on interactions between host diet and sex within populations of wild and laboratory fish, laboratory mice and humans. Within each of two natural fish populations (threespine stickleback and Eurasian perch), among-individual diet variation is correlated with individual differences in gut microbiota. However, these diet–microbiota associations are sex dependent. We document similar sex-specific diet–microbiota correlations in humans. Experimental diet manipulations in laboratory stickleback and mice confirmed that diet affects microbiota differently in males versus females. The prevalence of such genotype by environment (sex by diet) interactions implies that therapies to treat dysbiosis might have sex-specific effects. PMID:25072318

  16. Resistant Starch Regulates Gut Microbiota: Structure, Biochemistry and Cell Signalling.

    PubMed

    Yang, Xiaoping; Darko, Kwame Oteng; Huang, Yanjun; He, Caimei; Yang, Huansheng; He, Shanping; Li, Jianzhong; Li, Jian; Hocher, Berthold; Yin, Yulong

    2017-01-01

    Starch is one of the most popular nutritional sources for both human and animals. Due to the variation of its nutritional traits and biochemical specificities, starch has been classified into rapidly digestible, slowly digestible and resistant starch. Resistant starch has its own unique chemical structure, and various forms of resistant starch are commercially available. It has been found being a multiple-functional regulator for treating metabolic dysfunction. Different functions of resistant starch such as modulation of the gut microbiota, gut peptides, circulating growth factors, circulating inflammatory mediators have been characterized by animal studies and clinical trials. In this mini-review, recent remarkable progress in resistant starch on gut microbiota, particularly the effect of structure, biochemistry and cell signaling on nutrition has been summarized, with highlights on its regulatory effect on gut microbiota. © 2017 The Author(s). Published by S. Karger AG, Basel.

  17. Gut microbiota in toxicological risk assessment of drugs and chemicals: The need of hour.

    PubMed

    Velmurugan, Ganesan

    2018-03-06

    The advent of industrial revolution caused a large inflow of synthetic chemicals for medical, agricultural, industrial and other purposes in the world. In general, these chemicals were subjected to toxicological risk assessment for human health and ecology before release for public use. But today we are witnessing a negative impact of some of these chemicals on human health and environment indicating an underestimation of toxic effects by current risk assessment protocol. Recent studies established gut microbiota as one of the key player in intercession of toxicity of drugs and synthetic chemicals. Hence, the need of the hour is to include the assessment for microbiota specifically gut microbiota in human toxicological risk assessment protocol. Herewith we are proposing a framework for assessment of gut microbiota upon exposure to drugs or chemicals.

  18. Therapeutic modulation of gut microbiota: current clinical applications and future perspectives.

    PubMed

    Ianiro, Gianluca; Bibbò, Stefano; Gasbarrini, Antonio; Cammarota, Giovanni

    2014-01-01

    Human beings and gut microbiota are in a symbiotic relationship, and the hypothesis of a "super organism" composed of the human organism and microbes has been recently proposed. The gut microbiota fulfills important metabolic and immunological tasks, and the impairment of its composition might alter homeostasis and lead to the development of microbiota-related diseases. The most common illnesses associated with alterations of the gut microbiota include inflammatory bowel disease, gastroenteric infections, irritable bowel syndrome and other gastrointestinal functional diseases, colorectal cancer, metabolic syndrome and obesity, liver diseases, allergic diseases, and neurological diseases such as autism. In theory, every disease associated with the impairment of intestinal microflora might benefit from the therapeutic modulation of the gut microbiota. A number of attempts to manipulate the microbiota have not produced identical results for every disease. Although antibiotics and probiotics have been available for a long time, the so-called fecal microbiota transplantation, which is a very old remedy, was only recently re-evaluated as a promising therapeutic approach for microbiota impairment. A comprehensive understanding of the gut microbiota composition, in states of both health and various diseases, is needed for the development of future approaches for microbiota modulation and for developing targeted therapies. In this review, we describe the role of the microbiota in several diseases and the related treatment options that are currently available.

  19. Intraneural stimulation elicits discrimination of textural features by artificial fingertip in intact and amputee humans.

    PubMed

    Oddo, Calogero Maria; Raspopovic, Stanisa; Artoni, Fiorenzo; Mazzoni, Alberto; Spigler, Giacomo; Petrini, Francesco; Giambattistelli, Federica; Vecchio, Fabrizio; Miraglia, Francesca; Zollo, Loredana; Di Pino, Giovanni; Camboni, Domenico; Carrozza, Maria Chiara; Guglielmelli, Eugenio; Rossini, Paolo Maria; Faraguna, Ugo; Micera, Silvestro

    2016-03-08

    Restoration of touch after hand amputation is a desirable feature of ideal prostheses. Here, we show that texture discrimination can be artificially provided in human subjects by implementing a neuromorphic real-time mechano-neuro-transduction (MNT), which emulates to some extent the firing dynamics of SA1 cutaneous afferents. The MNT process was used to modulate the temporal pattern of electrical spikes delivered to the human median nerve via percutaneous microstimulation in four intact subjects and via implanted intrafascicular stimulation in one transradial amputee. Both approaches allowed the subjects to reliably discriminate spatial coarseness of surfaces as confirmed also by a hybrid neural model of the median nerve. Moreover, MNT-evoked EEG activity showed physiologically plausible responses that were superimposable in time and topography to the ones elicited by a natural mechanical tactile stimulation. These findings can open up novel opportunities for sensory restoration in the next generation of neuro-prosthetic hands.

  20. Genome-resolved metaproteomic characterization of preterm infant gut microbiota development reveals species-specific metabolic shifts and variabilities during early life

    DOE PAGES

    Xiong, Weili; Brown, Christopher T.; Morowitz, Michael J.; ...

    2017-07-10

    Establishment of the human gut microbiota begins at birth. This early-life microbiota development can impact host physiology during infancy and even across an entire life span. But, the functional stability and population structure of the gut microbiota during initial colonization remain poorly understood. Metaproteomics is an emerging technology for the large-scale characterization of metabolic functions in complex microbial communities (gut microbiota). We applied a metagenome-informed metaproteomic approach to study the temporal and inter-individual differences of metabolic functions during microbial colonization of preterm human infants’ gut. By analyzing 30 individual fecal samples, we identified up to 12,568 protein groups for eachmore » of four infants, including both human and microbial proteins. With genome-resolved matched metagenomics, proteins were confidently identified at the species/strain level. The maximum percentage of the proteome detected for the abundant organisms was ~45%. A time-dependent increase in the relative abundance of microbial versus human proteins suggested increasing microbial colonization during the first few weeks of early life. We observed remarkable variations and temporal shifts in the relative protein abundances of each organism in these preterm gut communities. Given the dissimilarity of the communities, only 81 microbial EggNOG orthologous groups and 57 human proteins were observed across all samples. These conserved microbial proteins were involved in carbohydrate, energy, amino acid and nucleotide metabolism while conserved human proteins were related to immune response and mucosal maturation. We also identified seven proteome clusters for the communities and showed infant gut proteome profiles were unstable across time and not individual-specific. By applying a gut-specific metabolic module (GMM) analysis, we found that gut communities varied primarily in the contribution of nutrient (carbohydrates, lipids, and amino