Summary of Calcine Disposal Development Using Hot Isostatic Pressing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bateman, Ken; Wahlquist, Dennis; Hart, Edward
2015-03-01
Battelle Energy Alliance, LLC, has demonstrated the effectiveness of the hot isostatic press (HIP) process for treatment of hazardous high-level waste known as calcine that is stored at the Idaho Nuclear Technology and Engineering Center (INTEC) at Idaho National Laboratory. HIP trials performed with simulated calcines at Idaho National Laboratory’s Materials and Fuels Complex and an Australian Nuclear Science and Technology Organization facility from 2007 to 2010 produced a dense, monolithic waste form with increased chemical durability and effective (storage) volume reductions of ~10 to ~70% compared to granular calcine forms. In December 2009, the U.S. Department of Energy signedmore » an amended Record of Decision selecting HIP technology as the treatment method for the 4,400 m3 of granular zirconia and alumina calcine stored at INTEC. Testing showed that HIP treatment reduces the risks associated with radioactive and hazardous constituent release, post-production handling, and long-term (repository) storage of calcines and would result in estimated storage cost savings in the billions of dollars. Battelle Energy Alliance has the ability to complete pilot-scale HIP processing of INTEC calcine, which is the next necessary step in implementing HIP processing as a calcine treatment method.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. L. Abbott; K. N. Keck; R. E. Schindler
This screening level risk assessment evaluates potential adverse human health and ecological impacts resulting from continued operations of the calciner at the New Waste Calcining Facility (NWCF) at the Idaho Nuclear Technology and Engineering Center (INTEC), Idaho National Engineering and Environmental Laboratory (INEEL). The assessment was conducted in accordance with the Environmental Protection Agency (EPA) report, Guidance for Performing Screening Level Risk Analyses at Combustion Facilities Burning Hazardous Waste. This screening guidance is intended to give a conservative estimate of the potential risks to determine whether a more refined assessment is warranted. The NWCF uses a fluidized-bed combustor to solidifymore » (calcine) liquid radioactive mixed waste from the INTEC Tank Farm facility. Calciner off volatilized metal species, trace organic compounds, and low-levels of radionuclides. Conservative stack emission rates were calculated based on maximum waste solution feed samples, conservative assumptions for off gas partitioning of metals and organics, stack gas sampling for mercury, and conservative measurements of contaminant removal (decontamination factors) in the off gas treatment system. Stack emissions were modeled using the ISC3 air dispersion model to predict maximum particulate and vapor air concentrations and ground deposition rates. Results demonstrate that NWCF emissions calculated from best-available process knowledge would result in maximum onsite and offsite health and ecological impacts that are less then EPA-established criteria for operation of a combustion facility.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
N. R. Mann; T. A. Todd; K. N. Brewer
1999-04-01
Development of waste treatment processes for the remediation of radioactive wastes is currently underway. A number of experiments were performed at the Idaho Nuclear Technology and Environmental Center (INTEC) located at the Idaho National Engineering and Environmental Laboratory (INEEL) with the commercially available sorbent material, IONSIV IE-911, crystalline silicotitanate (CST), manufactured by UOP LLC. The purpose of this work was to evaluate the removal efficiency, sorbent capacity and selectivity of CST for removing Cs-137 from actual and simulated acidic tank waste in addition to dissolved pilot-plant calcine solutions. The scope of this work included batch contact tests performed with non-radioactivemore » dissolved Al and Run-64 pilot plant calcines in addition to simulants representing the average composition of tank waste. Small-scale column tests were performed with actual INEEL tank WM-183 waste, tank waste simulant, dissolved Al and Run-64 pilot plant calcine solutions. Small-scale column experiments using actual WM-183 tank waste resulted in fifty-percent Cs-137 breakthrough at approximately 589 bed volumes. Small-scale column experiments using the tank waste simulant displayed fifty-percent Cs-137 breakthrough at approximately 700 bed volumes. Small-scale column experiments using dissolved Al calcine simulant displayed fifty-percent Cs-137 breakthrough at approximately 795 bed volumes. Column experiments with dissolved Run-64, pilot plant calcine did not reach fifty-percent breakthrough throughout the test.« less
Sodium Bearing Waste Processing Alternatives Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, James Anthony; Palmer, Brent J; Perry, Keith Joseph
2003-12-01
A multidisciplinary team gathered to develop a BBWI recommendation to DOE-ID on the processing alternatives for the sodium bearing waste in the INTEC Tank Farm. Numerous alternatives were analyzed using a rigorous, systematic approach. The data gathered were evaluated through internal and external peer reviews for consistency and validity. Three alternatives were identified to be top performers: Risk-based Calcination, MACT to WIPP Calcination and Cesium Ion Exchange. A dual-path through early Conceptual design is recommended for MACT to WIPP Calcination and Cesium Ion Exchange since Risk-based Calcination does not require design. If calcination alternatives are not considered based on givingmore » Type of Processing criteria significantly greater weight, the CsIX/TRUEX alternative follows CsIX in ranking. However, since CsIX/TRUEX shares common uncertainties with CsIX, reasonable backups, which follow in ranking, are the TRUEX and UNEX alternatives. Key uncertainties must be evaluated by the decision-makers to choose one final alternative. Those key uncertainties and a path forward for the technology roadmapping of these alternatives is provided.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richard D. Boardman; B. H. O'Brien; N. R. Soelberg
About one million gallons of acidic, hazardous, and radioactive sodium-bearing waste are stored in stainless steel tanks at the Idaho Nuclear Technology and Engineering Center (INTEC), which is a major operating facility of the Idaho National Engineering and Environmental Laboratory. Calcination at high-temperature conditions (600 C, with alumina nitrate and calcium nitrate chemical addition to the feed) is one of four options currently being considered by the Department of Energy for treatment of the remaining tank wastes. If calcination is selected for future processing of the sodium-bearing waste, it will be necessary to install new off-gas control equipment in themore » New Waste Calcining Facility (NWCF) to comply with the Maximum Achievable Control Technology (MACT) standards for hazardous waste combustors and incinerators. This will require, as a minimum, installing a carbon bed to reduce mercury emissions from their current level of up to 7,500 to <45 {micro}g/dscm, and a staged combustor to reduce unburned kerosene fuel in the off-gas discharge to <100 ppm CO and <10 ppm hydrocarbons. The staged combustor will also reduce NOx concentrations of about 35,000 ppm by 90-95%. A pilot-plant calcination test was completed in a newly constructed 15-cm diameter calciner vessel. The pilot-plant facility was equipped with a prototype MACT off-gas control system, including a highly efficient cyclone separator and off-gas quench/venturi scrubber for particulate removal, a staged combustor for unburned hydrocarbon and NOx destruction, and a packed activated carbon bed for mercury removal and residual chloride capture. Pilot-plant testing was performed during a 50-hour system operability test January 14-16, followed by a 100-hour high-temperature calcination pilot-plant calcination run January 19-23. Two flowsheet blends were tested: a 50-hour test with an aluminum-to-alkali metal molar ratio (AAR) of 2.25, and a 50-hour test with an AAR of 1.75. Results of the testing indicate that sodium-bearing waste can be successfully calcined at 600 C with an AAR of 1.75. Unburned hydrocarbons are reduced to less than 10 ppm (7% O2, dry basis), with >90% reduction of NOx emissions. Mercury removal by the carbon bed reached 99.99%, surpassing the control efficiency needed to meet MACT emissions standards. No deleterious impacts on the carbon bed were observed during the tests. The test results imply that upgrading the NWCF calciner with a more efficient cyclone separator and the proposed MACT equipment can process the remaining tanks wastes in 3 years or less, and comply with the MACT standards.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herbst, A.K.; Rogers, A.Z.; McCray, J.A.
The Low-Activity Waste Process Technology Program at the Idaho Nuclear Technology and Engineering Center (INTEC) anticipates that large volumes of low-level/low-activity wastes will need to be grouted prior to near-surface disposal. During fiscal year 1998, three grout formulations were studied for low-activity wastes derived from INTEC liquid sodium-bearing waste. Compressive strength and leach results are presented for phosphate bonding cement, acidic grout, and alkaline grout formulations. In an additional study, grout formulations are recommended for stabilization of the INTEC underground storage tank residual heels.
CsIX/TRU Grout Feasibility Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
S. J. Losinski; C. M. Barnes; B. K. Grover
A settlement agreement between the Department of Energy (DOE) and the State of Idaho mandates that liquid waste now stored at the Idaho Nuclear Technology Engineering Center (INTEC - formerly the Idaho Chemical Processing Plant, ICPP) will be calcined by the end of year 2012. This study investigates an alternative treatment of the liquid waste that removes undissolved solids (UDS) by filtration and removes cesium by ion exchange followed by cement-based grouting of the remaining liquid into 55-gal drums. Operations are assumed to be from January 2008 through December 2012. The grouted waste will be contact-handled and will be shippedmore » to the Waste Isolation Pilot Plant (WIPP) in New Mexico for disposal. The small volume of secondary wastes such as the filtered solids and cesium sorbent (resin) would remain in storage at the Idaho National Engineering and Environmental Laboratory for treatment and disposal under another project, with an option to dispose of the filtered solids as a r emote-handled waste at WIPP.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ansley, Shannon Leigh
2002-02-01
The Idaho Nuclear Technology and Engineering Center (INTEC) Service Wastewater Discharge Facility replaces the existing percolation ponds as a disposal facility for the INTEC Service Waste Stream. A preferred alternative for helping decrease water content in the subsurface near INTEC, closure of the existing ponds is required by the INTEC Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Record of Decision (ROD) for Waste Area Group 3 Operable Unit 3-13 (DOE-ID 1999a). By August 2002, the replacement facility was constructed approximately 2 miles southwest of INTEC, near the Big Lost River channel. Because groundwater beneath the Idaho National Engineering andmore » Environmental Laboratory (INEEL) is protected under Federal and State of Idaho regulations from degradation due to INEEL activities, preoperational data required by U.S. Department of Energy (DOE) Order 5400.1 were collected. These data include preexisting physical, chemical, and biological conditions that could be affected by the discharge; background levels of radioactive and chemical components; pertinent environmental and ecological parameters; and potential pathways for human exposure or environmental impact. This document presents specific data collected in support of DOE Order 5400.1, including: four quarters of groundwater sampling and analysis of chemical and radiological parameters; general facility description; site specific geology, stratigraphy, soils, and hydrology; perched water discussions; and general regulatory requirements. However, in order to avoid duplication of previous information, the reader is directed to other referenced publications for more detailed information. Documents that are not readily available are compiled in this publication as appendices. These documents include well and borehole completion reports, a perched water evaluation letter report, the draft INEEL Wellhead Protection Program Plan, and the Environmental Checklist.« less
Method for calcining radioactive wastes
Bjorklund, William J.; McElroy, Jack L.; Mendel, John E.
1979-01-01
This invention relates to a method for the preparation of radioactive wastes in a low leachability form by calcining the radioactive waste on a fluidized bed of glass frit, removing the calcined waste to melter to form a homogeneous melt of the glass and the calcined waste, and then solidifying the melt to encapsulate the radioactive calcine in a glass matrix.
Calcine Waste Storage at the Idaho Nuclear Technology and Engineering Center
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staiger, Merle Daniel; M. C. Swenson
2005-01-01
This report documents an inventory of calcined waste produced at the Idaho Nuclear Technology and Engineering Center during the period from December 1963 to May 2000. The report was prepared based on calciner runs, operation of the calcined solids storage facilities, and miscellaneous operational information that establishes the range of chemical compositions of calcined waste stored at Idaho Nuclear Technology and Engineering Center. The report will be used to support obtaining permits for the calcined solids storage facilities, possible treatment of the calcined waste at the Idaho National Engineering and Environmental Laboratory, and to ship the waste to an off-sitemore » facility including a geologic repository. The information in this report was compiled from calciner operating data, waste solution analyses and volumes calcined, calciner operating schedules, calcine temperature monitoring records, and facility design of the calcined solids storage facilities. A compact disk copy of this report is provided to facilitate future data manipulations and analysis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jantzen, Carol M.; Missimer, David M.; Guenther, Chris P.
A full engineering scale Fluidized Bed Steam Reformer (FBSR) system is being used at the Idaho Nuclear Technology and Engineering Center (INTEC) to stabilize acidic Low Activity Waste (LAW) known as Sodium Bearing Waste (SBW). The INTEC facility, known as the Integrated Waste Treatment Unit (IWTU), underwent an Operational Readiness Review (ORR) and a Technology Readiness Assessment (TRA) in March 2014. The IWTU began non-radioactive simulant processing in late 2014 and by January, 2015 ; the IWTU had processed 62,000 gallons of simulant. The facility is currently in a planned outage for inspection of the equipment and will resume processingmore » simulated waste feed before commencing to process 900,000 gallons of radioactive SBW. The SBW acidic waste will be made into a granular FBSR product (carbonate based) for disposal in the Waste Isolation Pilot Plant (WIPP). In the FBSR process calcined coal is used to create a CO2 fugacity to force the waste species to convert to carbonate species. The quality of the coal, which is a feed input, is important because the reactivity, moisture, and volatiles (C,H,N,O, and S) in the coal impact the reactions and control of the mineralizing process in the primary steam reforming vessel, the Denitration and Mineralizing Reformer (DMR). Too much moisture in the coal can require that additional coal be used. However since moisture in the coal is only a small fraction of the moisture from the fluidizing steam this can be self-correcting. If the coal reactivity or heating value is too low then the coal feedrate needs to be adjusted to achieve the desired heat generation. Too little coal and autothermal heat generation in the DMR cannot be sustained and/or the carbon dioxide fugacity will be too low to create the desired carbonate mineral species. Too much coal and excess S and hydroxide species can form. Excess sulfur from coal that (1) is too rich in sulfur or (2) from overfeeding coal can promote wall scale and contribute to corrosion in process piping and materials, in excessive off-gas absorbent loading, and in undesired process emissions. The ash content of the coal is important as the ash adds to the DMR and other vessel products which affect the final waste product mass and composition. The amount and composition of the ash also affects the reaction kinetics. Thus ash content and composition contributes to the mass balance. In addition, sodium, potassium, calcium, sulfur, and maybe silica and alumina in the ash may contribute to wall-scale formation. Sodium, potassium, and alumina in the ash will be overwhelmed by the sodium, potassium, and alumina from the feed but the impact from the other ash components needs to be quantified. A maximum coal particle size is specified so the feed system does not plug and a minimum particle size is specified to prevent excess elutriation from the DMR to the Process Gas Filter (PGF). A vendor specification was used to procure the calcined coal for IWTU processing. While the vendor supplied a composite analysis for the 22 tons of coal (Appendix A), this study compares independent analyses of the coal performed at the Savannah River National Laboratory (SRNL) and at the National Energy Technology Laboratory (NETL). Three supersacks a were sampled at three different heights within the sack in order to determine within bag variability and between bag variability of the coal. These analyses were also compared to the vendor’s composite analyses and to the coal specification. These analyses were also compared to historic data on Bestac coal analyses that had been performed at Hazen Research Inc. (HRI) between 2004-2011.« less
The Preparation and Characterization of INTEC HAW Phase I Composition Variation Study Glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Musick, C. A.; Peeler, D. K.; Piepel, G. F.
1999-03-01
A glass composition variation study (CVS) is in progress to define formulations for the vitrification of high activity waste (HAW) proposed to be separated from dissolved calcine stored at the Idaho National Engineering and Environmental Laboratory (INEEL). Estimates of calcine and HAW compositions prepared in FY97 were used to define test matrix glasses. The HAW composition is of particular interest because high aluminum, zirconium, phosphorous and potassium, and low iron and sodium content places it outside the realm of vitrification experience in the Department of Energy (DOE) complex. Through application of statistical techniques, a test matrix was defined for Phasemore » 1 of the CVS. From this matrix, formulations were systematically selected for preparation and characterization with respect to homogeneity, viscosity, liquidus temperature (TL), and leaching response when subjected to the Product Consistency Test (PCT). Based on the properties determined, certain formulations appear suitable for further development including use in planning Phase 2 of the study. It is recommended that glasses to be investigated in Phase 2 be limited to 3-5 wt % phosphate. The results of characterizing the Phase 1 glasses are presented in this document. A full analysis of the composition-property relationships of glasses being developed for immobilizing HAWs will be performing at the completion of CVS phases. This analysis will be needed for the optimization of the glass formulations of vitrifying HAW. Contributions were made to this document by personnel working at the INEEL, Pacific Northwest National Laboratories (PNNL), and the Savannah River Technology Center (SRTC).« less
1. CONTEXTUAL VIEW OF WASTE CALCINING FACILITY. CAMERA FACING NORTHEAST. ...
1. CONTEXTUAL VIEW OF WASTE CALCINING FACILITY. CAMERA FACING NORTHEAST. ON RIGHT OF VIEW IS PART OF EARTH/GRAVEL SHIELDING FOR BIN SET. AERIAL STRUCTURE MOUNTED ON POLES IS PNEUMATIC TRANSFER SYSTEM FOR DELIVERY OF SAMPLES BEING SENT FROM NEW WASTE CALCINING FACILITY TO THE CPP REMOTE ANALYTICAL LABORATORY. INEEL PROOF NUMBER HD-17-1. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID
Review of FY 2001 Development Work for Vitrification of Sodium Bearing Waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Dean Dalton; Barnes, Charles Marshall
2002-09-01
Treatment of sodium-bearing waste (SBW) at the Idaho Nuclear Technology and Engineering Center (INTEC) within the Idaho National Engineering and Environmental Laboratory is mandated by the Settlement Agreement between the Department of Energy and the State of Idaho. This report discusses significant findings from vitrification technology development during 2001 and their impacts on the design basis for SBW vitrification.
25. CONSTRUCTION PROGRESS AERIAL VIEW OF WASTE CALCINING FACILITY TAKEN ...
25. CONSTRUCTION PROGRESS AERIAL VIEW OF WASTE CALCINING FACILITY TAKEN WHEN STRUCTURE WAS 99 PERCENT COMPLETE. INEEL PHOTO NUMBER NRTS-60-5409. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID
Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. D. Staiger
2007-06-01
This report provides a quantitative inventory and composition (chemical and radioactivity) of calcined waste stored at the Idaho Nuclear Technology and Engineering Center. From December 1963 through May 2000, liquid radioactive wastes generated by spent nuclear fuel reprocessing were converted into a solid, granular form called calcine. This report also contains a description of the calcine storage bins.
29. FLOOR PLAN OF WASTE CALCINATION FACILITY SHOWING MAIN ABOVEGRADE ...
29. FLOOR PLAN OF WASTE CALCINATION FACILITY SHOWING MAIN ABOVE-GRADE FLOOR LEVEL. INEEL DRAWING NUMBER 200-0633-00-287-106354. FLUOR NUMBER 5775-CPP-633-A-4. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID
3. CONTEXTUAL VIEW OF WASTE CALCINING FACILITY, CAMERA FACING NORTHEAST. ...
3. CONTEXTUAL VIEW OF WASTE CALCINING FACILITY, CAMERA FACING NORTHEAST. SHOWS RELATIONSHIP BETWEEN DECONTAMINATION ROOM, ADSORBER REMOVAL HATCHES (FLAT ON GRADE), AND BRIDGE CRANE. INEEL PROOF NUMBER HD-17-2. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID
31. FLOOR PLANS OF WASTE CALCINATION FACILITY. SHOWS ACCESS CORRIDOR ...
31. FLOOR PLANS OF WASTE CALCINATION FACILITY. SHOWS ACCESS CORRIDOR AT MEZZANINE AND LOWER LEVELS. INEEL DRAWING NUMBER 200-0633-00-287-106352. FLUOR NUMBER 5775-CPP-633-A-2. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID
Technical Review of Retrieval and Closure Plans for the INEEL INTEC Tank Farm Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bamberger, Judith A; Burks, Barry L; Quigley, Keith D
2001-09-28
The purpose of this report is to document the conclusions of a technical review of retrieval and closure plans for the Idaho National Energy and Environmental Laboratory (INEEL) Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility. In addition to reviewing retrieval and closure plans for these tanks, the review process served as an information exchange mechanism so that staff in the INEEL High Level Waste (HLW) Program could become more familiar with retrieval and closure approaches that have been completed or are planned for underground storage tanks at the Oak Ridge National Laboratory (ORNL) and Hanford sites. Thismore » review focused not only on evaluation of the technical feasibility and appropriateness of the approach selected by INEEL but also on technology gaps that could be addressed through utilization of technologies or performance data available at other DOE sites and in the private sector. The reviewers, Judith Bamberger of Pacific Northwest National Laboratory (PNNL) and Dr. Barry Burks of The Providence Group Applied Technology, have extensive experience in the development and application of tank waste retrieval technologies for nuclear waste remediation.« less
30. FLOOR PLANS OF WASTE CALCINATION FACILITY. SHOWS LEVELS ABOVE ...
30. FLOOR PLANS OF WASTE CALCINATION FACILITY. SHOWS LEVELS ABOVE GRADE AND AT LEVEL OF OPERATING CORRIDOR. INEEL DRAWING NUMBER 200-0633-00-287-106351. FLUOR NUMBER 5775-CPP-633-A-1. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID
32. SECTIONS AA, BB, CC, DD, AND EE WASTE CALCINATION ...
32. SECTIONS A-A, B-B, C-C, D-D, AND E-E WASTE CALCINATION FACILITY SHOWING RELATIONSHIPS OF DIFFERENT FLOOR LEVELS TO ONE ANOTHER. INEEL DRAWING NUMBER 200-0633-00-287-106353. FLUOR NUMBER 5775-CPP-633-A-3. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID
2010-01-01
In vitro bioaccessibility (IVBA) studies were carried out on samples of mercury (Hg) mine-waste calcine (roasted Hg ore) by leaching with simulated human body fluids. The objective was to estimate potential human exposure to Hg due to inhalation of airborne calcine particulates and hand-to-mouth ingestion of Hg-bearing calcines. Mine waste calcines collected from Hg mines at Almadén, Spain, and Terlingua, Texas, contain Hg sulfide, elemental Hg, and soluble Hg compounds, which constitute primary ore or compounds formed during Hg retorting. Elevated leachate Hg concentrations were found during calcine leaching using a simulated gastric fluid (as much as 6200 μg of Hg leached/g sample). Elevated Hg concentrations were also found in calcine leachates using a simulated lung fluid (as much as 9200 μg of Hg leached/g), serum-based fluid (as much as 1600 μg of Hg leached/g), and water of pH 5 (as much as 880 μg of Hg leached/g). The leaching capacity of Hg is controlled by calcine mineralogy; thus, calcines containing soluble Hg compounds contain higher leachate Hg concentrations. Results indicate that ingestion or inhalation of Hg mine-waste calcine may lead to increased Hg concentrations in the human body, especially through the ingestion pathway. PMID:20491469
Gray, John E; Plumlee, Geoffrey S; Morman, Suzette A; Higueras, Pablo L; Crock, James G; Lowers, Heather A; Witten, Mark L
2010-06-15
In vitro bioaccessibility (IVBA) studies were carried out on samples of mercury (Hg) mine-waste calcine (roasted Hg ore) by leaching with simulated human body fluids. The objective was to estimate potential human exposure to Hg due to inhalation of airborne calcine particulates and hand-to-mouth ingestion of Hg-bearing calcines. Mine waste calcines collected from Hg mines at Almaden, Spain, and Terlingua, Texas, contain Hg sulfide, elemental Hg, and soluble Hg compounds, which constitute primary ore or compounds formed during Hg retorting. Elevated leachate Hg concentrations were found during calcine leaching using a simulated gastric fluid (as much as 6200 microg of Hg leached/g sample). Elevated Hg concentrations were also found in calcine leachates using a simulated lung fluid (as much as 9200 microg of Hg leached/g), serum-based fluid (as much as 1600 microg of Hg leached/g), and water of pH 5 (as much as 880 microg of Hg leached/g). The leaching capacity of Hg is controlled by calcine mineralogy; thus, calcines containing soluble Hg compounds contain higher leachate Hg concentrations. Results indicate that ingestion or inhalation of Hg mine-waste calcine may lead to increased Hg concentrations in the human body, especially through the ingestion pathway.
Gray, John E.; Plumlee, Geoffrey S.; Morman, Suzette A.; Higueras, Pablo L.; Crock, James G.; Lowers, Heather A.; Witten, Mark L.
2010-01-01
In vitro bioaccessibility (IVBA) studies were carried out on samples of mercury (Hg) mine-waste calcine (roasted Hg ore) by leaching with simulated human body fluids. The objective was to estimate potential human exposure to Hg due to inhalation of airborne calcine particulates and hand-to-mouth ingestion of Hg-bearing calcines. Mine waste calcines collected from Hg mines at Almadén, Spain, and Terlingua, Texas, contain Hg sulfide, elemental Hg, and soluble Hg compounds, which constitute primary ore or compounds formed during Hg retorting. Elevated leachate Hg concentrations were found during calcine leaching using a simulated gastric fluid (as much as 6200 μg of Hg leached/g sample). Elevated Hg concentrations were also found in calcine leachates using a simulated lung fluid (as much as 9200 μg of Hg leached/g), serum-based fluid (as much as 1600 μg of Hg leached/g), and water of pH 5 (as much as 880 μg of Hg leached/g). The leaching capacity of Hg is controlled by calcine mineralogy; thus, calcines containing soluble Hg compounds contain higher leachate Hg concentrations. Results indicate that ingestion or inhalation of Hg mine-waste calcine may lead to increased Hg concentrations in the human body, especially through the ingestion pathway.
Cryolite process for the solidification of radioactive wastes
Wielang, Joseph A.; Taylor, Larry L.
1976-01-01
An improved method is provided for solidifying liquid wastes containing significant quantities of sodium or sodium compounds by calcining in a fluidized-bed calciner. The formation of sodium nitrate which will cause agglomeration of the fluidized-bed particles is retarded by adding aluminum and a fluoride to the waste in order to produce cryolite during calcination. The off-gas of the calciner is scrubbed with a solution containing aluminum in order to complex any fluoride which may be liberated by subsequent dissolution of cryolite and prevent corrosion in the off-gas cleanup system.
2009-01-01
The isotopic composition of mercury (Hg) was determined in cinnabar ore, mine-waste calcine (retorted ore), and leachates obtained from water leaching experiments of calcine from two large Hg mining districts in the U.S. This study is the first to report significant mass-dependent Hg isotopic fractionation between cinnabar ore and resultant calcine. Data indicate that δ202Hg values relative to NIST 3133 of calcine (up to 1.52‰) in the Terlingua district, Texas, are as much as 3.24‰ heavier than cinnabar (−1.72‰) prior to retorting. In addition, δ202Hg values obtained from leachates of Terlingua district calcines are isotopically similar to, or as much as 1.17‰ heavier than associated calcines, most likely due to leaching of soluble, byproduct Hg compounds formed during ore retorting that are a minor component in the calcines. As a result of the large fractionation found between cinnabar and calcine, and because calcine is the dominant source of Hg contamination from the mines studied, δ202Hg values of calcine may be more environmentally important in these mined areas than the primary cinnabar ore. Measurement of the Hg isotopic composition of calcine is necessary when using Hg isotopes for tracing Hg sources from areas mined for Hg, especially mine water runoff. PMID:19848142
Stetson, S.J.; Gray, J.E.; Wanty, R.B.; Macalady, D.L.
2009-01-01
The isotopic composition of mercury (Hg) was determined in cinnabar ore, mine-waste calcine (retorted ore), and leachates obtained from water leaching experiments of calcine from two large Hg mining districts in the U.S. This study is the first to report significant mass-dependent Hg isotopic fractionation between cinnabar ore and resultant calcine. Data indicate that ??202Hg values relative to NIST 3133 of calcine (up to 1.52???) in the Terlingua district, Texas, are as much as 3.24??? heavier than cinnabar (-1.72???) prior to retorting. In addition, ??202Hg values obtained from leachates of Terlingua district calcines are isotopically similar to, or as much as 1.17??? heavier than associated calcines, most likely due to leaching of soluble, byproduct Hg compounds formed during ore retorting that are a minor component in the calcines. As a result of the large fractionation found between cinnabar and calcine, and because calcine is the dominant source of Hg contamination from the mines studied, ??202Hg values of calcine may be more environmentally important in these mined areas than the primary cinnabar ore. Measurement of the Hg isotopic composition of calcine is necessary when using Hg isotopes for tracing Hg sources from areas mined for Hg, especially mine water runoff. ?? 2009 American Chemical Society.
7. WASTE CALCINING FACILITY, LOOKING AT NORTH END OF BUILDING. ...
7. WASTE CALCINING FACILITY, LOOKING AT NORTH END OF BUILDING. CAMERA FACING SOUTH. TENT-ROOFED COVER IN RIGHT OF VIEW IS A TEMPORARY WEATHER-PROOFING SHELTER OVER THE BLOWER PIT IN CONNECTION WITH DEMOLITION PROCEDURES. SMALL BUILDING CPP-667 IN CENTER OF VIEW WAS USED FOR SUPPLEMENTARY OFFICE SPACE BY HEALTH PHYSICISTS AND OTHERS. INEEL PROOF SHEET NOT NUMBERED. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID
Recycling Lithium Carbonate/Lithium Hydroxide Waste
NASA Technical Reports Server (NTRS)
Flowers, J.; Flowers, J.
1983-01-01
Hazardous waste disposal problem eliminated by regeneration. Li2CO3/ LiOH recycling process relies on low solubility of alkali carbonates in corresponding hydroxides. Li2CO3 precipitate calcined to LI2O, then rehydrated LiOH. Regeneration eliminates need to dispose caustic waste and uses less energy than simple calcination of entire waste mass.
Bjorklund, William J.
1977-01-01
High level liquid waste solidification is achieved on a continuous basis by atomizing the liquid waste and introducing the atomized liquid waste into a reaction chamber including a fluidized, heated inert bed to effect calcination of the atomized waste and removal of the calcined waste by overflow removal and by attrition and elutriation from the reaction chamber, and feeding additional inert bed particles to the fluidized bed to maintain the inert bed composition.
Retrieval System for Calcined Waste for the Idaho Cleanup Project - 12104
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eastman, Randy L.; Johnston, Beau A.; Lower, Danielle E.
This paper describes the conceptual approach to retrieve radioactive calcine waste, hereafter called calcine, from stainless steel storage bins contained within concrete vaults. The retrieval system will allow evacuation of the granular solids (calcine) from the storage bins through the use of stationary vacuum nozzles. The nozzles will use air jets for calcine fluidization and will be able to rotate and direct the fluidization or displacement of the calcine within the bin. Each bin will have a single retrieval system installed prior to operation to prevent worker exposure to the high radiation fields. The addition of an articulated camera armmore » will allow for operations monitoring and will be equipped with contingency tools to aid in calcine removal. Possible challenges (calcine bridging and rat-holing) associated with calcine retrieval and transport, including potential solutions for bin pressurization, calcine fluidization and waste confinement, are also addressed. The Calcine Disposition Project has the responsibility to retrieve, treat, and package HLW calcine. The calcine retrieval system has been designed to incorporate the functions and technical characteristics as established by the retrieval system functional analysis. By adequately implementing the highest ranking technical characteristics into the design of the retrieval system, the system will be able to satisfy the functional requirements. The retrieval system conceptual design provides the means for removing bulk calcine from the bins of the CSSF vaults. Top-down vacuum retrieval coupled with an articulating camera arm will allow for a robust, contained process capable of evacuating bulk calcine from bins and transporting it to the processing facility. The system is designed to fluidize, vacuum, transport and direct the calcine from its current location to the CSSF roof-top transport lines. An articulating camera arm, deployed through an adjacent access riser, will work in conjunction with the retrieval nozzle to aid in calcine fluidization, remote viewing, clumped calcine breaking and recovery from off-normal conditions. As the design of the retrieval system progresses from conceptual to preliminary, increasing attention will be directed toward detailed design and proof-of- concept testing. (authors)« less
Process and equipment development for hot isostatic pressing treatability study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bateman, Ken; Wahlquist, Dennis; Malewitz, Tim
2015-03-01
Battelle Energy Alliance (BEA), LLC, has developed processes and equipment for a pilot-scale hot isostatic pressing (HIP) treatability study to stabilize and volume reduce radioactive calcine stored at Idaho National Laboratory (INL). In 2009, the U. S. Department of Energy signed a Record of Decision with the state of Idaho selecting HIP technology as the method to treat 5,800 yd^3 (4,400 m^3) of granular zirconia and alumina calcine produced between 1953 and 1992 as a waste byproduct of spent nuclear fuel reprocessing. Since the 1990s, a variety of radioactive and hazardous waste forms have been remotely treated using HIP withinmore » INL hot cells. To execute the remote process at INL, waste is loaded into a stainless-steel or aluminum can, which is evacuated, sealed, and placed into a HIP furnace. The HIP simultaneously heats and pressurizes the waste, reducing its volume and increasing its durability. Two 1 gal cans of calcine waste currently stored in a shielded cask were identified as candidate materials for a treatability study involving the HIP process. Equipment and materials for cask-handling and calcine transfer into INL hot cells, as well as remotely operated equipment for waste can opening, particle sizing, material blending, and HIP can loading have been designed and successfully tested. These results demonstrate BEA’s readiness for treatment of INL calcine.« less
Method for calcining nuclear waste solutions containing zirconium and halides
Newby, Billie J.
1979-01-01
A reduction in the quantity of gelatinous solids which are formed in aqueous zirconium-fluoride nuclear reprocessing waste solutions by calcium nitrate added to suppress halide volatility during calcination of the solution while further suppressing chloride volatility is achieved by increasing the aluminum to fluoride mole ratio in the waste solution prior to adding the calcium nitrate.
21. CONSTRUCTION PROGRESS VIEW OF CALCINER VESSEL ON LOW BOY ...
21. CONSTRUCTION PROGRESS VIEW OF CALCINER VESSEL ON LOW BOY EN ROUTE TO FACILITY. INEEL PHOTO NUMBER NRTS-60-2487. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID
22. CONSTRUCTION PROGRESS PHOTO SHOWING WORKERS LOWERING CALCINER VESSEL INTO ...
22. CONSTRUCTION PROGRESS PHOTO SHOWING WORKERS LOWERING CALCINER VESSEL INTO CELL THROUGH THE HATCH. INEEL PHOTO NUMBER NRTS-60-2485. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID
12. PHOTOGRAPH OF A PHOTOGRAPH OF A SCALE MODEL OF ...
12. PHOTOGRAPH OF A PHOTOGRAPH OF A SCALE MODEL OF THE WASTE CALCINER FACILITY, SHOWING WEST ELEVATION. (THE ORIGINAL MODEL HAS BEEN LOST.) INEEL PHOTO NUMBER 95-903-1-3. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID
Direct cementitious waste option study report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dafoe, R.E.; Losinski, S.J.
A settlement agreement between the Department of Energy (DOE) and the State of Idaho mandates that all high-level radioactive waste (HLW) now stored at the Idaho Chemical Processing Plant (ICPP) will be treated so that it is ready to be moved out of Idaho for disposal by a target data of 2035. This study investigates the direct grouting of all ICPP calcine (including the HLW dry calcine and those resulting from calcining sodium-bearing liquid waste currently residing in the ICPP storage tanks) as the treatment method to comply with the settlement agreement. This method involves grouting the calcined waste andmore » casting the resulting hydroceramic grout into stainless steel canisters. These canisters will be stored at the Idaho National Engineering and Environmental Laboratory (INEEL) until they are sent to a national geologic repository. The operating period for grouting treatment will be from 2013 through 2032, and all the HLW will be treated and in interim storage by the end of 2032.« less
NASA Astrophysics Data System (ADS)
Idayanti, N.; Dedi; Kristiantoro, T.; Mulyadi, D.; Sudrajat, N.; Alam, G. F. N.
2018-03-01
The utilization of iron oxide waste of grinding process as raw materials for making barium hexaferrite has been completed by powder metallurgy method. The iron oxide waste was purified by roasting at 800 °C temperature for 3 hours. The method used varying calcination temperature at 1000, 1100, 1200, and 1250 °C for 3 hours. The starting iron oxide waste (Fe2O3) and barium carbonate (BaCO3) were prepared by mol ratio of Fe2O3:BaCO3 from the formula BaO3.98Fe2O3. Some additives such as calcium oxide (CaO), silicon dioxide (SiO2), and polyvinyl alcohol (PVA) were added after calcination process. The samples were formed at the pressure of 2 ton/cm2 and sintered at the temperature of 1250 °C for 1 hour. The formation of barium hexaferrite compounds after calcination is determined by X-Ray diffraction. The magnetic properties were observed by Permagraph-Magnet Physik with the optimum characteristic at calcination temperature of 1250 °C with the induction of remanence (Br) = 1.38 kG, coercivity (HcJ) = 4.533 kOe, product energy maximum (BHmax) = 1.086 MGOe, and density = 4.33 g/cm3.
Jo, Yong Beom; Park, Sung Hoon; Jeon, Jong-Ki; Ko, Chang Hyun; Ryu, Changkook; Park, Young-Kwon
2013-07-01
Calcined waste starfish was used as a base catalyst for the production of biodiesel from soybean oil for the first time. A batch reactor was used for the transesterification reaction. The thermal characteristics and crystal structures of the waste starfish were investigated by thermo-gravimetric analysis and X-ray diffraction. The biodiesel yield was determined by measuring the content of fatty acid methyl esters (FAME). The calcination temperature appeared to be a very important parameter affecting the catalytic activity. The starfish-derived catalyst calcined at 750 °C or higher exhibited high activity for the transesterification reaction. The FAME content increased with increasing catalyst dose and methanol-over-oil ratio.
Lowry, G.V.; Shaw, S.; Kim, C.S.; Rytuba, J.J.; Brown, Gordon E.
2004-01-01
Mercury (Hg) release from inoperative Hg mines in the California Coast Range has been documented, but little is known about the release and transport mechanisms. In this study, tailings from Hg mines located in different geologic settings-New Idria (NI), a Si-carbonate Hg deposit, and Sulphur Bank (SB), a hot-spring Hg deposit-were characterized, and particle release from these wastes was studied in column experiments to (1) investigate the mechanisms of Hg release from NI and SB mine wastes, (2) determine the speciation of particle-bound Hg released from the mine wastes, and (3) determine the effect of calcinations on Hg release processes. The physical and chemical properties of tailings and the colloids released from them were determined using chemical analyses, selective chemical extractions, XRD, SEM, TEM, and X-ray absorption spectroscopy techniques. The total Hg concentration in tailings increased with decreasing particle size in NI and SB calcines (roasted ore), but reached a maximum at an intermediate particle size in the SB waste rock (unroasted ore). Hg in the tailings exists predominantly as low-solubility HgS (cinnabar and metacinnabar), with NI calcines having >50% HgS, SB calcines having >89% HgS, and SB waste rock having ???100% HgS. Leaching experiments with a high-ionic-strength solution (0.1 M NaCl) resulted in a rapid but brief release of soluble and particulate Hg. Lowering the ionic strength of the leach solution (0.005 M NaCl) resulted in the release of colloidal Hg from two of the three mine wastes studied (NI calcines and SB waste rock). Colloid-associated Hg accounts for as much as 95% of the Hg released during episodic particle release. Colloids generated from the NI calcines are produced by a breakup and release mechanism and consist of hematite, jarosite/alunite, and Al-Si gel with particle sizes of 10-200 nm. ATEM and XAFS analyses indicate that the majority (???78%) of the mercury is present in the form of HgS. SB calcines also produced HgS colloids. The colloids generated from the SB waste rock were heterogeneous and varied in composition according to the column influent composition. ATEM and XAFS results indicate that Hg is entirely in the HgS form. Data from this study identify colloidal HgS as the dominant transported form of Hg from these mine waste materials.
ICPP tank farm closure study. Volume 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spaulding, B.C.; Gavalya, R.A.; Dahlmeir, M.M.
1998-02-01
The disposition of INEEL radioactive wastes is now under a Settlement Agreement between the DOE and the State of Idaho. The Settlement Agreement requires that existing liquid sodium bearing waste (SBW), and other liquid waste inventories be treated by December 31, 2012. This agreement also requires that all HLW, including calcined waste, be disposed or made road ready to ship from the INEEL by 2035. Sodium bearing waste (SBW) is produced from decontamination operations and HLW from reprocessing of SNF. SBW and HLW are radioactive and hazardous mixed waste; the radioactive constituents are regulated by DOE and the hazardous constituentsmore » are regulated by the Resource Conservation and Recovery Act (RCRA). Calcined waste, a dry granular material, is produced in the New Waste Calcining Facility (NWCF). Two primary waste tank storage locations exist at the ICPP: Tank Farm Facility (TFF) and the Calcined Solids Storage Facility (CSSF). The TFF has the following underground storage tanks: four 18,400-gallon tanks (WM 100-102, WL 101); four 30,000-gallon tanks (WM 103-106); and eleven 300,000+ gallon tanks. This includes nine 300,000-gallon tanks (WM 182-190) and two 318,000 gallon tanks (WM 180-181). This study analyzes the closure and subsequent use of the eleven 300,000+ gallon tanks. The 18,400 and 30,000-gallon tanks were not included in the work scope and will be closed as a separate activity. This study was conducted to support the HLW Environmental Impact Statement (EIS) waste separations options and addresses closure of the 300,000-gallon liquid waste storage tanks and subsequent tank void uses. A figure provides a diagram estimating how the TFF could be used as part of the separations options. Other possible TFF uses are also discussed in this study.« less
39. CALCINER CELL PLANS. TOGETHER WITH HAER ID33C37 ILLUSTRATES COMPLEXITY ...
39. CALCINER CELL PLANS. TOGETHER WITH HAER ID-33-C-37 ILLUSTRATES COMPLEXITY OF PIPING. INEEL DRAWING NUMBER 200-0633-00-287-106445. FLUOR NUMBER 5775-CPP-633-P-50 - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID
40. CALCINER CELL SECTIONS. TOGETHER WITH HAER ID33C37 ILLUSTRATES COMPLEXITY ...
40. CALCINER CELL SECTIONS. TOGETHER WITH HAER ID-33-C-37 ILLUSTRATES COMPLEXITY OF PIPING. INEEL DRAWING NUMBER 200-0633-00-287-106446. FLUOR NUMBER 5775-CPP-P-51. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bundy, R.D.; Alderfer, R.B.
Bench-scale tests of the direct calcination process for Portsmouth were conducted using batch pot calcination of simulated and actual raffinate wastes. These studies included investigation of the evaporation step needed to concentrate the raffinate before calcination. Tests were conducted at calcination temperatures of 600, 700, 1000, and 1200/sup 0/F with two levels of evaporative concentration before calcination at 1000/sup 0/F. Evaporation only tests were also made. Performance of the bench-scale system was excellent. A calcination temperature of 715/sup 0/F indicated that 80 to 100% of the Tc was retained in the calcined solids, while all of the nitrates were decomposedmore » to oxides. With calcination temperatures of greater than or equal to 1000/sup 0/F, part of the Tc escaped from the calcination pot to the scrubber. Below 700/sup 0/F, not all of the nitrates were decomposed to oxides. Most of the U remained in the calcined solids for calcination temperatures of less than or equal to 1000/sup 0/F. The mass of solids remaining after calcination was 4 to 5% of the original raffinate for calcination temperatures from 700 to 1000/sup 0/F. Flow rate through the off-gas treatment system was variable. The water scrubber had a good removal efficiency for nitrate and most metals, but not for uranium. The trapping efficiency of the limestone trap for nitrate was low. Flowsheet studies indicate that enough U would pass through the scrubber and chemical traps to cause an unacceptably high release of radioactivity if the assay of the uranium exceeded 33%. A small HEPA filter after the limestone chemical traps is recommended to reduce U emissions. A flowsheet was developed for a full-scale process for the direct calcination of raffinate waste.« less
Maimer, Neil V.; Bartholomay, Roy C.
2016-05-25
During 2015, the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, collected groundwater samples from 31 wells at or near the Idaho Nuclear Technology and Engineering Center (INTEC) at the Idaho National Laboratory for purgeable organic compounds (POCs). The samples were collected and analyzed for the purpose of evaluating whether purge water from wells located inside an areal polygon established downgradient of the INTEC must be treated as a Resource Conservation and Recovery Act listed waste.POC concentrations in water samples from 29 of 31 wells completed in the eastern Snake River Plain aquifer were greater than their detection limit, determined from detection and quantitation calculation software, for at least one to four POCs. Of the 29 wells with concentrations greater than their detection limits, only 20 had concentrations greater than the laboratory reporting limit as calculated with detection and quantitation calculation software. None of the concentrations exceeded any maximum contaminant levels established for public drinking water supplies. Most commonly detected compounds were 1,1,1-trichoroethane, 1,1-dichloroethene, and trichloroethene.
Calcination process for radioactive wastes
Kilian, Douglas C.
1976-05-04
The present invention provides a method for minimizing the volatilization of chlorides during solidification in a fluidized-bed calciner of liquids containing sodium, nitrate and chloride ions. Zirconium and fluoride are introduced into the liquid, and one-half mole of calcium nitrate is added per mole of fluoride present in the liquid mixture. The mixture is calcined in the fluidized-bed calciner at about 500.degree.C., producing a high bulk density calcine product containing the chloride, thus tying up the chloride in the solid product and minimizing chloride volatilization.
Vitrification of radioactive high-level waste by spray calcination and in-can melting
NASA Astrophysics Data System (ADS)
Hanson, M. S.; Bjorklund, W. J.
1980-07-01
After several nonradioactive test runs, radioactive waste from the processing of 1.5 t of spent, light water reactor fuel was successfully concentrated, dried and converted to a vitreous product. A total of 97 L of waste glass (in two stainless steel canisters) was produced. The spray calcination process coupled to the in-can melting process, as developed at Pacific Northwest Labortory, was used to vitrify the waste. An effluent system consisting of a variety of condensation of scrubbing steps more than adequately decontaminated the process off gas before it was released to the atmosphere.
Gray, J.E.; Greaves, I.A.; Bustos, D.M.; Krabbenhoft, D.P.
2003-01-01
The Palawan Quicksilver mine, Philippines, produced about 2,900 t of mercury during mining of cinnabar ore from 1953 to 1976. More than 2,000,000 t of mine-waste calcines (retorted ore) were produced during mining, much of which were used to construct a jetty in nearby Honda Bay. Since 1995, high Hg contents have been found in several people living near the mine, and 21 of these people were treated for mercury poisoning. Samples of mine-waste calcine contain high total Hg concentrations ranging from 43-660 ??g/g, whereas total Hg concentrations in sediment samples collected from a mine pit lake and local stream vary from 3.7-400 ??g/g. Mine water flowing through the calcines is acidic, pH 3.1-4.3, and total Hg concentrations ranging from 18-31 ??g/l in this water significantly exceed the 1.0-??g/l drinking water standard for Hg recommended by the World Health Organization (WHO). Total Hg contents are generally lower in water samples collected from surrounding domestic wells, the mine pit lake, Honda Bay, and the nearby stream, varying from 0.008-1.4 ??g/l. Methylmercury concentrations in water draining mine calcines range from <0.02-1.4 ng/l, but methylmercury is highest in the pit lake water, ranging from 1.7-3.1 ng/l. Mercury methylation at the Palawan mine is similar to or higher than that found in other mercury mines worldwide. Much of the methylmercury generated in Palawan mine-waste calcines and those in Honda Bay is transferred to water, and then to marine fish and seafood. A food source pathway of Hg to humans is most likely in this coastal, high fish-consuming population.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakel, Allen J.; Conner, Cliff; Quigley, Kevin
One of the missions of the Reduced Enrichment for Research and Test Reactors (RERTR) program (and now the National Nuclear Security Administrations Material Management and Minimization program) is to facilitate the use of low enriched uranium (LEU) targets for 99Mo production. The conversion from highly enriched uranium (HEU) to LEU targets will require five to six times more uranium to produce an equivalent amount of 99Mo. The work discussed here addresses the technical challenges encountered in the treatment of uranyl nitrate hexahydrate (UNH)/nitric acid solutions remaining after the dissolution of LEU targets. Specifically, the focus of this work is themore » calcination of the uranium waste from 99Mo production using LEU foil targets and the Modified Cintichem Process. Work with our calciner system showed that high furnace temperature, a large vent tube, and a mechanical shield are beneficial for calciner operation. One- and two-step direct calcination processes were evaluated. The high-temperature one-step process led to contamination of the calciner system. The two-step direct calcination process operated stably and resulted in a relatively large amount of material in the calciner cup. Chemically assisted calcination using peroxide was rejected for further work due to the difficulty in handling the products. Chemically assisted calcination using formic acid was rejected due to unstable operation. Chemically assisted calcination using oxalic acid was recommended, although a better understanding of its chemistry is needed. Overall, this work showed that the two-step direct calcination and the in-cup oxalic acid processes are the best approaches for the treatment of the UNH/nitric acid waste solutions remaining from dissolution of LEU targets for 99Mo production.« less
19. CONSTRUCTION PROGRESS PHOTO SHOWING (TYPICALLY COMPLEX) WASTE HOLDING CELL ...
19. CONSTRUCTION PROGRESS PHOTO SHOWING (TYPICALLY COMPLEX) WASTE HOLDING CELL PIPING. INEEL PHOTO NUMBER NRTS-59-3212. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID
Biodiesel production from waste frying oil using waste animal bone and solar heat.
Corro, Grisel; Sánchez, Nallely; Pal, Umapada; Bañuelos, Fortino
2016-01-01
A two-step catalytic process for the production of biodiesel from waste frying oil (WFO) at low cost, utilizing waste animal-bone as catalyst and solar radiation as heat source is reported in this work. In the first step, the free fatty acids (FFA) in WFO were esterified with methanol by a catalytic process using calcined waste animal-bone as catalyst, which remains active even after 10 esterification runs. The trans-esterification step was catalyzed by NaOH through thermal activation process. Produced biodiesel fulfills all the international requirements for its utilization as a fuel. A probable reaction mechanism for the esterification process is proposed considering the presence of hydroxyapatite at the surface of calcined animal bones. Copyright © 2015 Elsevier Ltd. All rights reserved.
Method for storage of solid waste
Mecham, William J.
1976-01-01
Metal canisters for long-term storage of calcined highlevel radioactive wastes can be made self-sealing against a breach in the canister wall by the addition of powdered cement to the canister with the calcine before it is sealed for storage. Any breach in the canister wall will permit entry of water which will mix with the cement and harden to form a concrete patch, thus sealing the opening in the wall of the canister and preventing the release of radioactive material to the cooling water or atmosphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1982-09-01
The U.S. Department of Energy (DOE) is considering the selection of a strategy for the long-term management of the defense high-level wastes at the Idaho Chemical Processing Plant (ICPP). This report describes the environmental impacts of alternative strategies. These alternative strategies include leaving the calcine in its present form at the Idaho National Engineering Laboratory (INEL), or retrieving and modifying the calcine to a more durable waste form and disposing of it either at the INEL or in an offsite repository. This report addresses only the alternatives for a program to manage the high-level waste generated at the ICPP. 24more » figures, 60 tables.« less
Ye, Mao; Sun, Mingming; Feng, Yanfang; Li, Xu; Schwab, Arthur P; Wan, Jinzhong; Liu, Manqiang; Tian, Da; Liu, Kuan; Wu, Jun; Jiang, Xin
2016-07-13
The combined accumulation of antibiotics, heavy metals, antibiotic-resistant bacteria (ARB)/antibiotic resistance genes (ARGs) in vegetables has become a new threat to human health. This is the first study to investigate the feasibility of calcined eggshells modified by aluminum sulfate as novel agricultural wastes to impede mixed contaminants from transferring to bell pepper (Capsicum annuum L.). In this work, calcined eggshell amendment mitigated mixed pollutant accumulation in bell pepper significantly, enhanced the dissipation of soil tetracycline, sulfadiazine, roxithromycin, and chloramphenicol, decreased the water-soluble fractions of antibiotics, and declined the diversity of ARB/ARGs inside the vegetable. Moreover, quantitative polymerase chain reaction analysis detected that ARG levels in the bell pepper fruits significantly decreased to 10(-10) copies/16S copies, indicating limited risk of ARGs transferring along the food chain. Furthermore, the restoration of soil microbial biological function suggests that calcined eggshell is an environmentally friendly amendment to control the dissemination of soil ARB/ARGs in the soil-vegetable system.
Perkins, Kim S.
2003-01-01
Disposal of wastewater to unlined infiltration ponds near the Idaho Nuclear Technology and Engineering Center (INTEC), formerly known as the Idaho Chemical Processing Plant, at the Idaho National Engineering and Environmental Laboratory (INEEL) has resulted in the formation of perched water bodies in the unsaturated zone (Cecil and others, 1991). The unsaturated zone at INEEL comprises numerous basalt flows interbedded with thinner layers of coarse- to fine-grained sediments and perched ground-water zones exist at various depths associated with massive basalts, basalt-flow contacts, sedimentary interbeds, and sediment-basalt contacts. Perched ground water is believed to result from large infiltration events such as seasonal flow in the Big Lost River and wastewater discharge to infiltration ponds. Evidence from a large-scale tracer experiment conducted in 1999 near the Radioactive Waste Management Complex (RWMC), approximately 13 km from the INTEC, indicates that rapid lateral flow of perched water in the unsaturated zone may be an important factor in contaminant transport at the INEEL (Nimmo and others, 2002b). Because sedimentary interbeds, and possibly baked-zone alterations at sediment-basalt contacts (Cecil and other, 1991) play an important role in the generation of perched water it is important to assess the hydraulic properties of these units.
Zhang, Na; Liu, Xiaoming; Sun, Henghu; Li, Longtu
2011-01-15
Red mud is generated from alumina production, and its disposal is currently a worldwide problem. In China, large quantities of red mud derived from bauxite calcination method are being discharged annually, and its utilization has been an urgent topic. This experimental research was to evaluate the feasibility of blends red mud derived from bauxite calcination method with other industrial wastes for use as a cementitious material. The developed cementitious material containing 30% of the bauxite-calcination-method red mud possessed compressive strength properties at a level similar to normal Portland cement, in the range of 45.3-49.5 MPa. Best compressive strength values were demonstrated by the specimen RSFC2 containing 30% bauxite-calcination-method red mud, 21% blast-furnace slag, 10% fly ash, 30% clinker, 8% gypsum and 1% compound agent. The mechanical and physical properties confirm the usefulness of RSFC2. The hydration characteristics of RSFC2 were characterized by XRD, FTIR, (27)Al MAS-NMR and SEM. As predominant hydration products, ettringite and amorphous C-S-H gel are principally responsible for the strength development of RSFC2. Comparing with the traditional production for ordinary Portland cement, this green technology is easier to be implemented and energy saving. This paper provides a key solution to effectively utilize bauxite-calcination-method red mud. Copyright © 2010 Elsevier B.V. All rights reserved.
Geremias, Reginaldo; Bortolotto, Tiago; Wilhelm-Filho, Danilo; Pedrosa, Rozangela Curi; de Fávere, Valfredo Tadeu
2012-05-01
The aim of this study was to evaluate the efficacy of the treatment of acid mine drainage (AMD) with calcinated coal mining waste using Allium cepa L. as a bioindicator. The pH values and the concentrations of aluminum, iron, manganese, zinc, copper, lead and sulfate were determined before and after the treatment of the AMD with calcinated coal mining waste. Allium cepa L. was exposed to untreated and treated AMD, as well as to mineral water as a negative control (NC). At the end of the exposure period, the inhibition of root growth was measured and the mean effective concentration (EC(50)) was determined. Oxidative stress biomarkers such as lipid peroxidation (TBARS), protein carbonyls (PC), catalase activity (CAT) and reduced glutathione levels (GSH) in the fleshy leaves of the bulb, as well as the DNA damage index (ID) in meristematic cells, were evaluated. The results indicated that the AMD treatment with calcinated coal mining waste resulted in an increase in the pH and an expressive removal of aluminum, iron, manganese and zinc. A high sub-chronic toxicity was observed when Allium cepa L. was exposed to the untreated AMD. However, after the treatment no toxicity was detected. Levels of TBARS and PC, CAT activity and the DNA damage index were significantly increased (P<0.05) in Allium cepa L. exposed to untreated AMD when compared to treated AMD and also to negative controls. No significant alteration in the GSH content was observed. In conclusion, the use of calcinated coal mining waste associated with toxicological tests on Allium cepa L. represents an alternative system for the treatment and biomonitoring of these types of environmental contaminants. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Marty, R. C.; Forman, A.; Crawford, R.; Tyler, T.
2001-12-01
The Idaho National Engineering and Environmental Laboratory is a (2300 square km) National Environmental Research Park that has been used for research and operational support of nuclear power. The Park includes scattered industrial operations and provides an ideal setting to study effects of industry on semi-arid environments. One of the facilities on the Research Park is the Idaho Nuclear Technology Center (INTEC). This facility reprocessed spent nuclear fuel from the US Navy, and its operations included heating acidic solutions to convert wastes to a solid form. The conversion released nitrogen oxides, low levels of other gases (including HF), and small amounts of solid particles through a facility stack. A fossil-fuel power plant also contributed airborne contaminants including sulfur dioxide. A 1985 study identified the effects of INTEC operations on the health of lichens Xanthoria polycarpa (quantified using electrolyte leakage), on levels of trace metals in the lichens X. polycarpa and Rhizoplaca melanophthalma, and on the levels of trace metals in higher plants and soils. The study concluded that operations impacted the physiological health of X. polycarpa southwest of the plant, and that lead was significantly higher downwind of the plant relative to other locations. Effects of the plant were re-examined in 1999 as part of an Environmental Impact Statement to evaluate the environmental effects of measures available to deal with radioactive waste at INTEC. Sulfur dioxide emissions from the facility decreased from approximately 375 tonsyear to approximately 10 tonsyear between the two studies. The re-examination of lichens showed that the measure of physiological health used in the previous study (conductivity of rinsates collected from lichen thalli) correlated well to the levels of potassium measured in rinsates collected from thalli. There, however, was no correlation between the levels of potassium/conductivity of such rinsates and the levels of total potassium in lichens or between levels of potassium/conductivity and macroscopic vigor of the lichens or between levels of potassium/conductivity in rinsates and chlorophyll ratios (another common indicator of the physiological health of lichens). This suggests that potassium levels in rinsates may not be a good indicator of physiological stress. X. polycarpa abundance varied with direction from the facility. The species was lacking from background locations at Craters of the Moon National monument. Cover on dead Artemisia tridentata twigs varied between 2 and 5% downwind and crosswind for the predominant wind direction, but approached 75% to the north and northeast (downwind) of the facility. This differential cover is striking but was not noted in the previous study and probably reflects increased abundance of the nitrogen loving X. polycarpa downwind from the facility between the two studies. Calcium levels in R. melanophthalma around INTEC were significantly higher than calcium levels in lichens from the background location at Craters of the Moon. This may reflect migration of the species to more buffered calcium carbonate substrates in response to acidified precipitation. Levels of calcium in R. melanophthalma fell between the two studies, possibly reflecting less substrate acidification during the later period. Lead was not significantly elevated during the second study, but mercury may be elevated downwind of the facility.
37. PLAN OF ACCESS CORRIDOR PIPING INCLUDES WASTE HOLD TANK ...
37. PLAN OF ACCESS CORRIDOR PIPING INCLUDES WASTE HOLD TANK CELL, OFFGAS CELL, ADSORBER CELL, AND OFFGAS FILTER CELL. INEEL DRAWING NUMBER 200-0633-00-287-106453. FLUOR NUMBER 5775-CPP-P-58. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID
NASA Astrophysics Data System (ADS)
Tiandho, Y.; Aldila, H.; Mustari; Megiyo; Afriani, F.
2018-05-01
Bangka Belitung Islands is the largest tin producer in Indonesia. The high activity of tin mining caused the environmental damage which had an impact on the emergence of clean water crisis in some areas in this province. In this paper, a simple water quality improvement method based on wasted cockle shell was developed. Based on x-ray diffraction analysis it is known that calcination of cockle shell powder at 700°C will decompose the powder into calcium oxide compound. The addition of calcined cockle shell powder into acidic water from Merawang Sub-district will increase the pH of water through the process of forming hydroxide groups in the water. The calcined cockle shell powder can also coagulate pollutants in some polluted water from Koba Sub-district. The coagulation results were analyzed using SEM/EDS.
Chen, Qixia; An, Jingna; Rao, Chenli; Wang, Tingting; Li, Dongdong; Feng, Shu; Tao, Chuanmin
2016-01-01
Syphilis is a major concern to global public health with increasing incidence. So its screening test should have sufficient sensitivity and specificity. We evaluated the performance of the Lumipulse G TP-N assay detection for syphilis screening and compared it with the InTec ELISA test kit for TP, which is widely used. Samples of several patient groups including 133 clinical and serologically characterized syphilitic sera, 175 samples containing potentially interfering agents, and 2290 unselected samples submitted for routine screening were detected by both the Lumipulse G TP-N assay and the InTec ELISA test kit for TP. Inconsistent samples were confirmed by RecomLine Treponema IgG, IgM immunoblot. Coefficient of variations of the Lumipulseo G TP-N assay at both levels were below 5% and of the InTec ELISA test kit for TP both over 5%. The sensitivity of the Lumipulse G TP-N assay and the InTec ELISA test kit for TP were 100% for all stages of syphilis. The two methods had consistent analytical specificity of 100% (95% CI: 97.21 - 100.00), while the clinical specificity was 100% (95% CI: 99.79 - 100.00) and 99.82% (95% CI: 99.51 - 99.94), respectively. Between them, Spearman's correlation coefficient was 0.455 and kappa value was 0.986. The overall sensitivity and specificity of the Lumipulse G TP-N assay was higher than the InTec ELISA test kit for TP (sensitivity: 100.0 versus 99.5, specificity: 100.0 versus 99.8). The automated Lumipulse G TP-N assay demonstrated excellent diagnostic sensitivity and specificity when evaluated as a screening test for syphilis. Thus, it can be an alternative to the treponemal screening test.
Gray, John E.; Stillings, Lisa L.
2003-01-01
Mercury and methylmercury concentrations were measured in mine wastes, stream sediments, and stream waters collected both proximal and distal from abandoned mercury mines to evaluate mercury contamination and mercury methylation in the Humboldt River system. The climate in the study area is arid, and due to the lack of mine-water runoff, water-leaching laboratory experiments were used to evaluate the potential of mine wastes to release mercury. Mine-waste calcine contains mercury concentrations as high as 14,000 ?g/g. Stream-sediment samples collected within 1 km of the mercury mines studied contain mercury concentrations as high as 170 ?g/g, but sediments collected from the Humboldt River and regional baseline sites have much lower mercury contents, less than 0.44 ?g/g. Similarly, methylmercury concentrations in mine-waste calcine are locally as high as 96 ng/g, but methylmercury contents in stream sediments collected down-stream from the mines and from the Humboldt River are lower (<0.05-0.95 ng/g). Stream-water samples collected below two mines studied contain mercury concentrations ranging from 6 to 2,000 ng/L, whereas mercury contents in Humboldt River and Rye Patch Reservoir water were generally lower, ranging from 2.1 to 9.0 ng/L. Methylmercury concentrations in Humboldt River system water were the lowest in this study (<0.02- 0.27 ng/L). Although mercury and methylmercury concentrations were elevated in some mine-waste calcine and mercury concentrations were locally high in mine-waste leachate samples, data show significant dilution of mercury and lower mercury methylation down gradient from the mines, especially in the sediments and water collected from the Humboldt River, which is more than 8 km from any mercury mines. Data show only minor, local transference of mercury and methylmercury from mine-waste calcine to stream sediment, and then onto the water column, and indicate little transference of mercury from the mine sites to the Humboldt River system.
Process for solidifying high-level nuclear waste
Ross, Wayne A.
1978-01-01
The addition of a small amount of reducing agent to a mixture of a high-level radioactive waste calcine and glass frit before the mixture is melted will produce a more homogeneous glass which is leach-resistant and suitable for long-term storage of high-level radioactive waste products.
Evaluation of Vitrification Processing Step for Rocky Flats Incinerator Ash
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wigent, W.L.; Luey, J.K.; Scheele, R.D.
In 1997, Pacific Northwest National Laboratory (PNNL) staff developed a processing option for incinerator ash at the Rocky Flats Environmental Technology Sites (RFETS). This work was performed with support from Los Alamos National Laboratory (LANL) and Safe Sites of Colorado (SSOC). A description of the remediation needs for the RFETS incinerator ash is provided in a report summarizing the recommended processing option for treatment of the ash (Lucy et al. 1998). The recommended process flowsheet involves a calcination pretreatment step to remove carbonaceous material followed by a vitrification processing step for a mixture of glass tit and calcined incinerator ash.more » Using the calcination pretreatment step to remove carbonaceous material reduced process upsets for the vitrification step, allowed for increased waste loading in the final product, and improved the quality of the final product. Figure 1.1 illustrates the flow sheet for the recommended processing option for treatment of RFETS incinerator ash. In 1998, work at PNNL further developed the recommended flow sheet through a series of studies to better define the vitrification operating parameters and to address secondary processing issues (such as characterizing the offgas species from the calcination process). Because a prototypical rotary calciner was not available for use, studies to evaluate the offgas from the calcination process were performed using a benchtop rotary calciner and laboratory-scale equipment (Lucy et al. 1998). This report focuses on the vitrification process step after ash has been calcined. Testing with full-scale containers was performed using ash surrogates and a muffle furnace similar to that planned for use at RFETS. Small-scale testing was performed using plutonium-bearing incinerator ash to verify performance of the waste form. Ash was not obtained from RFETS because of transportation requirements to calcine the incinerator ash prior to shipment of the material. Because part of PNNL's work was to characterize the ash prior to calcination and to investigate the effect of calcination on product quality, representative material was obtained from LANL. Ash obtained from LANL was selected based on its similarity to that currently stored at RFETS. The plutonium-bearing ashes obtained from LANL are likely from a RFETS incinerator, but the exact origin was not identified.« less
Mercury Methylation at Mercury Mines In The Humboldt River Basin, Nevada, USA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, John E.; Crock, James G.; Lasorsa, Brenda K.
2002-12-01
Total Hg and methylmercury concentrations were measured in mine-waste calcines (retorted ore), sediment, and water samples collected in and around abandoned mercury mines in western Nevada to evaluate Hg methylation at the mines and in the Humboldt River basin. Mine-waste calcines contain total Hg concentrations as high as 14 000?g/g. Stream-sediment samples collected within 1 km of the mercury mines contain total Hg concentrations as high as 170?g/g, whereas stream sediments collected>5 km from the mines, and those collected from the Humboldt River and regional baseline sites, contain total Hg concentrations<0.5?g/g. Similarly, methylmercury concentrations in mine-waste calcines are locally asmore » high as 96 ng/g, but methylmercury contents in stream-sediments collected downstream from the mines and from the Humboldt River are lower, ranging from<0.05 to 0.95 ng/g. Stream-water samples collected below two mines studied contain total Hg concentrations ranging from 6 to 2000 ng/L, whereas total Hg in Humboldt River water was generally lower ranging from 2.1 to 9.0 ng/L. Methylmercury concentrations in the Humboldt River water were the lowest in this study (<0.02-0.27 ng/L). Although total Hg and methylmercury concentrations are locally high in mine-waste calcines, there is significant dilution of Hg and lower Hg methylation down gradient from the mines, especially in the sediments and water collected from the Humboldt River, which is> 8 km from any mercury mines. Our data indicate little transference of Hg and methylmercury from the sediment to the water column due to the lack of mine runoff in this desert climate.« less
Behavior of radioactive iodine and technetium in the spray calcination of high-level waste
NASA Astrophysics Data System (ADS)
Knox, C. A.; Farnsworth, R. K.
1981-08-01
The Remote Laboratory-Scale Waste Treatment Facility (RLSWTF) was designed and built as a part of the High-Level Waste Immobilization Program (now the High-Level Waste Process Development Program) at the Pacific Northwest Laboratory. In facility, installed in a radiochemical cell, is described in which installed in a radiochemical cell is described in which small volumes of radioactive liquid wastes can be solidified, the process off gas can be analyzed, and the methods for decontaminating this off gas can be tested. During the spray calcination of commercial high-level liquid waste spiked with Tc-99 and I-131 and 31 wt% loss of I-131 past the sintered-metal filters. These filters and venturi scrubber were very efficient in removing particulates and Tc-99 from the the off-gas stream. Liquid scrubbers were not efficient in removing I-131 as 25% of the total lost went to the building off-gas system. Therefore, solid adsorbents are needed to remove iodine. For all future operations where iodine is present, a silver zeolite adsorber is to be used.
Bartholomay, Roy C.
2009-01-01
From 1953 to 1988, wastewater containing approximately 0.94 curies of iodine-129 (129I) was generated at the Idaho National Laboratory (INL) in southeastern Idaho. Almost all of this wastewater was discharged at or near the Idaho Nuclear Technology and Engineering Center (INTEC) on the INL site. Most of the wastewater was discharged directly into the eastern Snake River Plain aquifer through a deep disposal well until 1984; however, some wastewater also was discharged into unlined infiltration ponds or leaked from distribution systems below the INTEC. In 2003, the U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, collected samples for 129I from 36 wells used to monitor the Snake River Plain aquifer, and from one well used to monitor a perched zone at the INTEC. Concentrations of 129I in the aquifer ranged from 0.0000066 +- 0.0000002 to 0.72 +- 0.051 picocuries per liter (pCi/L). Many wells within a 3-mile radius of the INTEC showed decreases of as much as one order of magnitude in concentration from samples collected during 1990-91, and all of the samples had concentrations less than the Environmental Protection Agency's Maximum Contaminant Level (MCL) of 1 pCi/L. The average concentration of 129I in 19 wells sampled during both collection periods decreased from 0.975 pCi/L in 1990-91 to 0.249 pCi/L in 2003. These decreases are attributed to the discontinuation of disposal of 129I in wastewater after 1988 and to dilution and dispersion in the aquifer. Although water from wells sampled in 2003 near the INTEC showed decreases in concentrations of 129I compared with data collected in 1990-91, some wells south and east of the Central Facilities Area, near the site boundary, and south of the INL showed slight increases. These slight increases may be related to variable discharge rates of wastewater that eventually moved to these well locations as a mass of water from a particular disposal period. In 2007, the USGS collected samples for 129I from 36 wells that are used to monitor the aquifer south of INTEC and from 2 wells that are used to monitor perched zones at INTEC. Concentrations of 129I in the eastern Snake River Plain aquifer ranged from 0.000026 +- 0.000002 to 1.16 +- 0.04 pCi/L, and the concentration at one well exceeded the maximum contaminant level (1 pCi/L) for public drinking water supplies. The average concentration of 19 wells sampled in 2003 and 2007 did not differ; however, slight increases and decreases of concentrations in several areas around the INTEC were evident in the aquifer. The decreases are attributed to the discontinued disposal and to dilution and dispersion in the aquifer. The increases may be due to the movement into the aquifer of remnant perched water below the INTEC. In 2007, the USGS also collected samples from 31 zones in 6 wells equipped with multi-level WestbayTM packer sampling systems to help define the vertical distribution of 129I in the aquifer. Concentrations ranged from 0.000011 +- 0.0000005 to 0.0167 +- 0.0007 pCi/L. For three wells, concentrations of 129I between zones varied one to two orders of magnitude. For two wells, concentrations varied for one zone by more than an order of magnitude from the wells' other zones. Similar concentrations were measured from all five zones sampled in one well. All of the 31 zones had concentrations two or more magnitudes below the maximum contaminant level.
Method of preparing nuclear wastes for tansportation and interim storage
Bandyopadhyay, Gautam; Galvin, Thomas M.
1984-01-01
Nuclear waste is formed into a substantially water-insoluble solid for temporary storage and transportation by mixing the calcined waste with at least 10 weight percent powdered anhydrous sodium silicate to form a mixture and subjecting the mixture to a high humidity environment for a period of time sufficient to form cementitious bonds by chemical reaction. The method is suitable for preparing an interim waste form from dried high level radioactive wastes.
Bartholomay, Roy C.
2013-01-01
From 1953 to 1988, approximately 0.941 curies of iodine-129 (129I) were contained in wastewater generated at the Idaho National Laboratory (INL) with almost all of this wastewater discharged at or near the Idaho Nuclear Technology and Engineering Center (INTEC). Most of the wastewater containing 129I was discharged directly into the eastern Snake River Plain (ESRP) aquifer through a deep disposal well until 1984; lesser quantities also were discharged into unlined infiltration ponds or leaked from distribution systems below the INTEC. During 2010–12, the U.S. Geological Survey in cooperation with the U.S. Department of Energy collected groundwater samples for 129I from 62 wells in the ESRP aquifer to track concentration trends and changes for the carcinogenic radionuclide that has a 15.7 million-year half-life. Concentrations of 129I in the aquifer ranged from 0.0000013±0.0000005 to 1.02±0.04 picocuries per liter (pCi/L), and generally decreased in wells near the INTEC, relative to previous sampling events. The average concentration of 129I in groundwater from 15 wells sampled during four different sample periods decreased from 1.15 pCi/L in 1990–91 to 0.173 pCi/L in 2011–12. All but two wells within a 3-mile radius of the INTEC showed decreases in concentration, and all but one sample had concentrations less than the U.S. Environmental Protection Agency maximum contaminant level of 1 pCi/L. These decreases are attributed to the discontinuation of disposal of 129I in wastewater and to dilution and dispersion in the aquifer. The decreases in 129I concentrations, in areas around INTEC where concentrations increased between 2003 and 2007, were attributed to less recharge near INTEC either from less flow in the Big Lost River or from less local snowmelt and anthropogenic sources. Although wells near INTEC sampled in 2011–12 showed decreases in 129I concentrations compared with previously collected data, some wells south and east of the Central Facilities Area, near the site boundary, and south of the INL showed small increases. These slight increases are attributed to variable discharge rates of wastewater that eventually moved to these well locations as a pulse of water from a particular disposal period. Wells sampled for the first time around the Naval Reactors Facility had 129I concentrations slightly greater than background concentrations in the ESRP aquifer. These concentrations are attributed to possible leakage from landfills at the Naval Reactors Facility or seepage from air emission deposits from INTEC, or both. In 2012, the U.S. Geological Survey collected discrete groundwater samples from 25 zones in 11 wells equipped with multilevel monitoring systems to help define the vertical distribution of 129I in the aquifer. Concentrations ranged from 0.000006±0.000004 to 0.082±0.003 pCi/L. Two new wells completed in 2012 showed variability of up to one order of magnitude of concentrations of 129I among various zones. Two other wells showed similar concentrations of 129I in all three zones sampled. Concentrations were well less than the maximum contaminant level in all zones.
NRC Perspectives on Waste Incidental to Reprocessing Consultations and Monitoring - 13398
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKenney, Christepher A.; Suber, Gregory F.; Felsher, Harry D.
2013-07-01
Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 (NDAA) requires the U.S. Department of Energy (DOE) to consult with the U.S. Nuclear Regulatory Commission (NRC) for certain non-high level waste (HLW) determinations. The NDAA also requires NRC to monitor DOE's disposal actions related to those determinations to assess compliance with NRC regulations in 10 CFR Part 61, Subpart C. The NDAA applies to DOE activities that will remain within the States of South Carolina and Idaho. DOE has chosen to, under DOE Order 435.1, engage in consultation with NRC for similar activities inmore » the State of Washington and New York, however, the NRC has no monitoring responsibilities. In 2007, the NRC developed a draft Final Report for Interim Use entitled, NUREG-1854: NRC Staff Guidance for Activities Related to U.S. Department of Energy Waste Determinations. Since the law was enacted, the DOE and NRC have consulted on three waste determinations within the affected States: (1) the Saltstone Disposal Facility at the Savannah River Site (SRS) within the State of South Carolina in 2005, (2) the INTEC Tank Farm at the Idaho National Laboratory within the State of Idaho in 2006, and (3) the F Tank Farm at SRS in 2011. After the end of consultation and issuance by DOE of the final waste determination, monitoring began at each of these sites, including the development of monitoring plans. In addition to the NDAA sites, DOE has requested NRC consultation support on both individual tanks and the entire C Tank Farm at the Hanford Nuclear Reservation in the State of Washington. DOE also requested consultation of waste determinations performed on the melter and related feed tanks at the West Valley site in New York that would be disposed offsite. In the next few years, NRC and DOE will consult on the last of the NDAA waste determinations for a while, the H Tank Farm waste determination at SRS. DOE may identify other activities in the future but largely NRC's role will change from doing both consultation and monitoring to being focused on monitoring activities within NDAA. DOE has identified other activities at the Hanford Nuclear Reservation that would continue consultation activities but outside of the NDAA in the future. During the past seven years of consultations and monitoring a number of lessons learned about the process, communication issues, and technical guidance have been identified. With the change in focus from reviewing initial performance assessments and draft waste determinations to long-term monitoring (e.g., individual waste tank closure, at F Tank Farm or complete tank farm closure at INTEC expected in the near future), the NRC is going to revise and update its guidance over the next few years to reflect the lessons learned and the change in focus. In addition to the lessons learned, improvements in the guidance will have to account possible rule and guidance changes underway within Part 61. This paper will discuss the initial plans, approaches, and time lines to revise the guidance within NUREG-1854, including opportunities for public involvement. (authors)« less
Kim, C.S.; Rytuba, J.J.; Brown, Gordon E.
2004-01-01
The speciation of Hg is a critical determinant of its mobility, reactivity, and potential bioavailability in mine-impacted regions. Furthermore, Hg speciation in these complex natural systems is influenced by a number of physical, geological, and anthropogenic variables. In order to investigate the degree to which several of these variables may affect Hg speciation, extended X-ray absorption fine structure (EXAFS) spectroscopy was used to determine the Hg phases and relative proportions of these phases present in Hg-bearing wastes from selected mine-impacted regions in California and Nevada. The geological origin of Hg ore has a significant effect on Hg speciation in mine wastes. Specifically, samples collected from hot-spring Hg deposits were found to contain soluble Hg-chloride phases, while such phases were largely absent in samples from silica-carbonate Hg deposits; in both deposit types, however, Hg-sulfides in the form of cinnabar (HgS, hex.) and metacinnabar (HgS, cub.) dominate. Calcined wastes in which Hg ore was crushed and roasted in excess of 600??C, contain high proportions of metacinnabar while the main Hg-containing phase in unroasted waste rock samples from the same mines is cinnabar. The calcining process is thought to promote the reconstructive phase transformation of cinnabar to metacinnabar, which typically occurs at 345??C. The total Hg concentration in calcines is strongly correlated with particle size, with increases of nearly an order of magnitude in total Hg concentration between the 500-2000 ??m and <45 ??m size fractions (e.g., from 97-810 mg/kg Hg in calcines from the Sulphur Bank Mine, CA). The proportion of Hg-sulfides present also increased by 8-18% as particle size decreased over the same size range. This finding suggests that insoluble yet soft Hg-sulfides are subject to preferential mechanical weathering and become enriched in the fine-grained fraction, while soluble Hg phases are leached out more readily as particle size decreases. The speciation of Hg in mine wastes is similar to that in distributed sediments located downstream from the same waste piles, indicating that the transport of Hg from mine waste piles does not significantly impact Hg speciation. Hg LIII-EXAFS analysis of samples from Au mining regions, where elemental Hg(0) was introduced to aid in the Au recovery process, identified the presence of Hg-sulfides and schuetteite (Hg3O2SO4), which may have formed as a result of long-term Hg(0) burial in reducing high-sulfide sediments. ?? 2003 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rigali, Mark J.; Pye, Steven; Hardin, Ernest
This study considers the feasibility of large diameter deep boreholes for waste disposal. The conceptual approach considers examples of deep large diameter boreholes that have been successfully drilled, and also other deep borehole designs proposed in the literature. The objective for large diameter boreholes would be disposal of waste packages with diameters of 22 to 29 inches, which could enable disposal of waste forms such as existing vitrified high level waste. A large-diameter deep borehole design option would also be amenable to other waste forms including calcine waste, treated Na-bonded and Na-bearing waste, and Cs and Sr capsules.
NASA Astrophysics Data System (ADS)
Chen, J. M.; Wu, C.; Gonsamo, A.; Kurz, W.; Hember, R.; Price, D. T.; Boisvenue, C.; Zhang, F.; Chang, K.
2013-12-01
The forest carbon cycle is not only controlled by climate, tree species and site conditions, but also by disturbance affecting the biomass and age of forest stands. The Carbon Budget Model of the Canadian forest sector (CBM-CFS3) calculates the complete forest carbon cycle by combining forest inventory data on forest species, biomass and stand age with empirical yield information and statistics on forest disturbances, management and land-use change. It is used for national reporting and climate policy purposes. The Integrated Terrestrial Ecosystem Carbon model (InTEC) is driven by remotely-sensed vegetation parameters (forest type, leaf area index, clumping index) and fire scar, soil and climate data and simulates forest growth and the carbon cycle as a function of stand age using a process-based approach. Gridded forest biomass, stand age and disturbance data based on forest inventory are also used as inputs to InTEC. Efforts are being made to enhance the CBM-CFS3's capacity to assess the impacts of global change on the forest carbon budget by utilizing InTEC process modeling methodology. For this purpose, InTEC is first implemented on 3432 permanent sampling plots in coastal and interior BC, and it is found that climate warming explained 70% and 75% of forest growth enhancement over the period from 1956 to 2001 in coastal and interior BC, respectively, and the remainder is attributed to CO2 and nitrogen fertilization effects. The growth enhancement, in terms of the increase in the stemwood accumulation rate after adjusting for the stand age effect, is about 24% for both areas over the same period. To assess the impact of climate change on the forest carbon cycle across Canada, polygon-based CBM and gridded InTEC results are aggregated to 60 reconciliation units (RU), and their interannual variabilities over the period from 1990 to 2008 are compared in each RU. CBM results show interannual variability in response to forest disturbance, while InTEC results show larger interannual variability because it is affected by both disturbance and climate. The impact of climate at the RU level is generally positive (increased sink) due to warming, but sometimes negative due to water stress. Averaged over Canada, climate warming induced a longer growing season by about one week from 1901 to 2008, enhancing the annual forest carbon sink by about 42×30 TgC y-1 over the period from 1990 to 2008, while CO2 and nitrogen fertilization effects each also contributed about the same amount to Canada's forest carbon sink.
Research on the Treatment of Wastewater by Waste Ceramic Adsorption
NASA Astrophysics Data System (ADS)
He, Lingfeng; Zhang, Yongli; Shi, Liang
2018-03-01
The process of preparing porous ceramic with waste porcelain powder as aggregate was researched. The affect of assimilate time on cuprum removal efficiency in wastewater containing copper was investigated. The results show the water copper removal rate increased along with the augment of assimilate time, and the assimilate time is suitable for 35 min; XRD characterizations show the porous ceramic catalyst before and after calcination in active components of X ray diffraction peak position almost had no changes, and the diffraction intensity slightly changed with calcination and absorption, and diffraction peaks became sharper, and its crystallinity was improved. Baking leads to the growth of crystal particles, and the performance of porous ceramics is stable before and after adsorption.
Utilization of waste of coal-mining enterprise in production of building materials
NASA Astrophysics Data System (ADS)
Chugunov, A. D.; Filatova, E. G.; Yakovleva, A. A.
2018-03-01
Wastes of coal producers often include substances allowing treating such wastes as valuable feeds for metallurgy, chemical and construction processes. This study concerned elemental and phase composition of samples obtained by calcination of bottom sediments of the coal producer spoil bank. The research has shown that the samples contain significant amounts of carbon, iron, silicon, aluminum and other valuable components.
Characterization of Offgas Generated During Calcination of Incinerator Ash Surrogates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wigent, H.L.; Vienna, J.D.; Darab, J.G.
1999-01-28
The Pacific Northwest National Laboratory (PNNL), in cooperation with the Los Alamos National Laboratory (LANL) and Safe Sites of Colorado (SSOC), developed a recommended flowsheet for the processing of plutonium-bearing incinerator ash stored at the Rocky Flats Environmental Technology Site (RFETS) (Lucy et al. 1998). This flowsheet involves a calcination pretreatment step, the purpose of which is to remove carbonaceous material from the incinerator ash. Removal of this material reduced the probability of process upsets, improved product quality, and increases ash waste loading. As part of the continued development of the recommended flowsheet, PNNL performed a series of tests tomore » characterize the offgas generated during the calcination process.« less
Removal of acid blue 062 on aqueous solution using calcinated colemanite ore waste.
Atar, Necip; Olgun, Asim
2007-07-19
Colemanite ore waste (CW) has been employed as adsorbent for the removal of acid blue 062 anionic dye (AB 062) from aqueous solution. The adsorption of AB 062 onto CW was examined with respect to contact time, calcination temperature, particle size, pH, adsorbent dosage and temperature. The physical and chemical properties of the CW, such as particle sizes and calcinations temperature, play important roles in dye adsorption. The dye adsorption largely depends on the initial pH of the solution with maximum uptake occurring at pH 1. Three simplified kinetics models, namely, pseudo-first order, pseudo-second order, and intraparticle diffusion models were tested to investigate the adsorption mechanisms. The kinetic adsorption of AB 062 on CW follows a pseudo-second order equation. The adsorption data have been analyzed using Langmuir and Freundlich isotherms. The results indicate that the Langmuir model provides the best correlation of the experimental data. Isotherms have also been used to obtain the thermodynamic parameters such as free energy, enthalpy and entropy of the adsorption of dye onto CW.
Preparation of Heat Treated Titanium Dioxide (TiO2) Nanoparticles for Water Purification
NASA Astrophysics Data System (ADS)
Araoyinbo, A. O.; Abdullah, M. M. A. B.; Rahmat, A.; Azmi, A. I.; Vizureanu, P.; Rahim, W. M. F. Wan Abd
2018-06-01
Photocatalysis using the semiconductor titanium dioxide (TiO2) has proven to be a successful technology for waste water purification. The photocatalytic treatment is an alternative method for the removal of soluble organic compounds in waste water. In this research, titanium dioxide nanoparticles were synthesized by sol-gel method using titanium tetraisopropoxide (TTIP) as a precursor. The sol was dried in the oven at 120°C after aging for 24 hours. The dried powder was then calcined at 400°C and 700°C with a heating rate of 10°C/min. The phase transformation of the heat treated titanium dioxide nanoparticles were characterized by X-Ray Diffraction (XRD, and the surface morphology by Scanning Electron Microscopy (SEM). The photocatalytic activity of the heat treated titanium dioxide nanoparticles in the degradation of methyl orange (MO) dye under ultraviolet (UV) light irradiation has been studied. At calcination temperature of 400°C, only anatase phase was observed, as the calcination temperature increases to 700°C, the rutile phase was present. The SEM images show the irregular shape of titanium dioxide particles and the agglomeration which tends to be more significant at calcined temperature of 700°C. Degradation of methyl orange by 5 mg heat treated titanium dioxide nanoparticles gives the highest percentage of degradation after irradiation by UV lamp for 4 hours.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohamed, Khaled R., E-mail: Kh_rezk966@yahoo.com; Mousa, Sahar M.; Inorganic Chemistry Department, National Research Centre, Dokki, P.O. Box 12622, 11787 Cairo
2014-02-01
Graphical abstract: (a) Schema of the process, (b) TEM of nano particles of biphasic materials and (c) SEM of post-immersion. - Highlights: • Ratio of HA and β-TCP phases were controlled by thermal treatment. • HA partially decomposed into β-TCP with other bioactive phases. • Calcined HA at 900 °C is the best for the bioactivity behavior. - Abstract: In this study, a novel process of preparing biphasic calcium phosphate (BCP) is proposed. Also its bioactivity for the utilization of the prepared BCP as a biomaterial is studied. A mixture of calcium hydroxyapatite (HAP) and tricalcium phosphate (β-TCP) could bemore » obtained by thermal treatment of HAP which was previously prepared from phosphogypsum (PG) waste. The chemical and phase composition, morphology and particle size of prepared samples was characterized by X-ray diffraction (XRD), Infrared spectroscopy (IR), Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM). The bioactivity was investigated by soaking of the calcined samples in simulated body fluid (SBF). Results confirmed that the calcination temperatures played an important role in the formation of calcium phosphate (CP) materials. XRD results indicated that HAP was partially decomposed into β-TCP. The in vitro data confirmed that the calcined HAP forming BCP besides other phases such as pyrophosphate and silica are bioactive materials. Therefore, BCP will be used as good biomaterials for medical applications.« less
Davis, Linda C.; Bartholomay, Roy C.; Rattray, Gordon W.
2013-01-01
Since 1952, wastewater discharged to infiltration ponds (also called percolation ponds) and disposal wells at the Idaho National Laboratory (INL) has affected water quality in the eastern Snake River Plain (ESRP) aquifer and perched groundwater zones underlying the INL. The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, maintains groundwater monitoring networks at the INL to determine hydrologic trends, and to delineate the movement of radiochemical and chemical wastes in the aquifer and in perched groundwater zones. This report presents an analysis of water-level and water-quality data collected from aquifer, multilevel monitoring system (MLMS), and perched groundwater wells in the USGS groundwater monitoring networks during 2009–11. Water in the ESRP aquifer primarily moves through fractures and interflow zones in basalt, generally flows southwestward, and eventually discharges at springs along the Snake River. The aquifer primarily is recharged from infiltration of irrigation water, infiltration of streamflow, groundwater inflow from adjoining mountain drainage basins, and infiltration of precipitation. From March–May 2009 to March–May 2011, water levels in wells generally declined in the northern part of the INL. Water levels generally rose in the central and eastern parts of the INL. Detectable concentrations of radiochemical constituents in water samples from aquifer wells or MLMS equipped wells in the ESRP aquifer at the INL generally decreased or remained constant during 2009–11. Decreases in concentrations were attributed to radioactive decay, changes in waste-disposal methods, and dilution from recharge and underflow. In 2011, concentrations of tritium in groundwater from 50 of 127 aquifer wells were greater than or equal to the reporting level and ranged from 200±60 to 7,000±260 picocuries per liter. Tritium concentrations from one or more discrete zones from four wells equipped with MLMS were greater than or equal to reporting levels in water samples collected at various depths. Tritium concentrations in water from wells completed in shallow perched groundwater at the Advanced Test Reactor Complex (ATR Complex) were less than the reporting levels. Tritium concentrations in deep perched groundwater at the ATR Complex equaled or exceeded the reporting level in 12 wells during at least one sampling event during 2009–11 at the ATR Complex. Concentrations of strontium-90 in water from 20 of 76 aquifer wells sampled during April or October 2011 exceeded the reporting level. Strontium-90 was not detected within the ESRP aquifer beneath the ATR Complex. During at least one sampling event during 2009–11, concentrations of strontium-90 in water from 10 wells completed in deep perched groundwater at the ATR Complex equaled or exceeded the reporting levels. During 2009–11, concentrations of plutonium-238, and plutonium-239, -240 (undivided), and americium-241 were less than the reporting level in water samples from all aquifer wells and in all wells equipped with MLMS. Concentrations of cesium-137 were equal to or slightly above the reporting level in 8 aquifer wells and from 2 wells equipped with MLMS. The concentration of chromium in water from one well south of the ATR Complex was 97 micrograms per liter (μg/L) in April 2011, just less than the maximum contaminant level (MCL) of 100 μg/L. Concentrations of chromium in water samples from 69 other wells sampled ranged from 0.8 μg/L to 25 μg/L. During 2009–11, dissolved chromium was detected in water from 15 wells completed in perched groundwater at the ATR Complex. In 2011, concentrations of sodium in water from most wells in the southern part of the INL were greater than the background concentration of 10 milligrams per liter (mg/L); the highest concentrations were at or near the Idaho Nuclear Engineering and Technology Center (INTEC). After the newpercolation ponds were put into service in 2002 southwest of the INTEC, concentrations of sodium in water samples from the Rifle Range well rose steadily until 2008, when the concentrations generally began decreasing. The increases and decreases were attributed to disposal variability in the new percolation ponds. Concentrations of sodium in most wells equipped with MLMS generally were consistent with depth. During 2011, dissolved sodium concentrations in water from 17 wells completed in deep perched groundwater at the ATR Complex ranged from 6 to 146 mg/L. In 2011, concentrations of chloride in most water samples from aquifer wells south of the INTEC and at the Central Facilities Area exceeded the background concentrations of 15 mg/L, but were less than the secondary MCL of 250 mg/L. Chloride concentrations in water from wells south of the INTEC have generally increased because of increased chloride disposal to the old percolation ponds since 1984 when discharge of wastewater to the INTEC disposal well was discontinued. After the new percolation ponds were put into service in 2002 southwest of the INTEC, concentrations of chloride in water samples from one well rose steadily until 2008 then began decreasing. Chloride concentrations in water from all but one well completed in the ESRP aquifer at or near the ATR Complex were less than background and ranged between 10 and 14 mg/L during 2011, similar to concentrations detected during the 2006–08 reporting period. During 2011, chloride concentrations in water from two aquifer wells at the Radioactive Waste Management Complex (RWMC) were slightly greater than concentrations detected during the 2006–08 reporting period. The vertical distribution of chloride concentrations in wells equipped with MLMS were generally consistent within zones during 2009–11 and ranged from about 8 to 20 mg/L. During April 2011, dissolved chloride concentrations in shallow perched groundwater at the ATR Complex ranged from 7 to 13 mg/L in water from three wells. Dissolved chloride concentrations in deep perched groundwater at the ATR Complex during 2011 ranged from 4 to 54 mg/L. In 2011, sulfate concentrations in water samples from 11 aquifer wells in the south-central part of the INL equaled or exceeded the background concentration of sulfate and ranged from 40 to 167 mg/L. The greater-than-background concentrations in water from these wells probably resulted from sulfate disposal at the ATR Complex infiltration ponds or the old INTEC percolation ponds. In 2011, sulfate concentrations in water samples from two wells near the RWMC were greater than background levels and could have resulted from well construction techniques and (or) waste disposal at the RWMC. The vertical distribution of sulfate concentrations in three wells near the southern boundary of the INL was generally consistent with depth, and ranged between 19 and 25 mg/L. The maximum dissolved sulfate concentration in shallow perched groundwater near the ATR Complex was 400 mg/L in well CWP 1 in April 2011. During 2009–11, the maximum concentration of dissolved sulfate in deep perched groundwater at the ATR Complex was 1,550 mg/L in a well located west of the chemical-waste pond. In 2011, concentrations of nitrate in water from most wells at and near the INTEC exceeded the regional background concentrations of 1 mg/L and ranged from 1.6 to 5.95 mg/L. Concentrations of nitrate in wells south of INTEC and farther away from the influence of disposal areas and the Big Lost River show a general decrease in nitrate concentrations through time. During 2009–11, water samples from 30 wells were collected and analyzed for volatile organic compounds (VOCs). Six VOCs were detected. At least one and up to five VOCs were detected in water samples from 10 wells. The primary VOCs detected include carbon tetrachloride, chloroform, tetrachloroethylene, 1,1,1-trichloroethane, and trichloroethylene. In 2011, concentrations for all VOCs were less than their respective MCL for drinking water, except carbon tetrachloride in water from two wells. During 2009–11, variability and bias were evaluated from 56 replicate and 16 blank quality-assurance samples. Results from replicate analyses were investigated to evaluate sample variability. Constituents with acceptable reproducibility were stable isotope ratios, major ions, nutrients, and VOCs. All radiochemical constituents and trace metals had acceptable reproducibility except for gross beta-particle radioactivity, aluminum, antimony, and cobalt. Bias from sample contamination was evaluated from equipment, field, container, and source-solution blanks. No detectable constituent concentrations were reported for equipment blanks of the thief samplers and sampling pipes or for the source-solution and field blanks. Equipment blanks of bailers had detectable concentrations of strontium-90, sodium, chloride, and sulfate, and the container blank had a detectable concentration of dichloromethane.
9. DETAIL VIEW OF BRIDGE CRANE ON WEST SIDE OF ...
9. DETAIL VIEW OF BRIDGE CRANE ON WEST SIDE OF BUILDING. CAMERA FACING NORTHEAST. CONTAMINATED AIR FILTERS LOADED IN TRANSPORT CASKS WERE TRANSFERRED TO VEHICLES AND SENT TO RADIOACTIVE WASTE MANAGEMENT COMPLEX FOR STORAGE. INEEL PROOF NUMBER HD-17-1. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID
Hepa filter dissolution process
Brewer, Ken N.; Murphy, James A.
1994-01-01
A process for dissolution of spent high efficiency particulate air (HEPA) filters and then combining the complexed filter solution with other radioactive wastes prior to calcining the mixed and blended waste feed. The process is an alternate to a prior method of acid leaching the spent filters which is an inefficient method of treating spent HEPA filters for disposal.
Small-scale studies of roasted ore waste reveal extreme ranges of stable mercury isotope signatures
NASA Astrophysics Data System (ADS)
Smith, Robin S.; Wiederhold, Jan G.; Jew, Adam D.; Brown, Gordon E.; Bourdon, Bernard; Kretzschmar, Ruben
2014-07-01
Active and closed Hg mines are significant sources of Hg contamination to the environment, mainly due to large volumes of mine waste material disposed of on-site. The application of Hg isotopes as source tracer from such contaminated sites requires knowledge of the Hg isotope signatures of different materials potentially released to the environment. Previous work has shown that calcine, the waste residue of the on-site ore roasting process, can exhibit distinct Hg isotope signatures compared with the primary ore. Here, we report results from a detailed small-scale study of Hg isotope variations in calcine collected from the closed New Idria Hg mine, San Benito County, CA, USA. The calcine samples exhibited different internal layering features which were investigated using optical microscopy, micro X-ray fluorescence, micro X-ray absorption spectroscopy (μ-XAS), and stable Hg isotope analysis. Significant Fe, S, and Hg concentration gradients were found across the different internal layers. Isotopic analyses revealed an extreme variation with pronounced isotopic gradients across the internal layered features. Overall, δ202Hg (±0.10‰, 2 SD) describing mass-dependent fractionation (MDF) ranged from -5.96 to 14.49‰, which is by far the largest range of δ202Hg values reported for any environmental sample. In addition, Δ199Hg (±0.06‰, 2 SD) describing mass-independent fractionation (MIF) ranged from -0.17 to 0.21‰. The μ-XAS analyses suggested that cinnabar and metacinnabar are the dominant Hg-bearing phases in the calcine. Our results demonstrate that the incomplete roasting of HgS ores in Hg mines can cause extreme mass-dependent Hg isotope fractionations at the scale of individual calcine pieces with enrichments in both light and heavy Hg isotopes relative to the primary ore signatures. This finding has important implications for the application of Hg isotopes as potential source tracers for Hg released to the environment from closed Hg mines and highlights the need for detailed source signature identification.
Mirus, Benjamin B.; Perkins, Kim S.; Nimmo, John R.
2011-01-01
Waste byproducts associated with operations at the Idaho Nuclear Technology and Engineering Center (INTEC) have the potential to contaminate the eastern Snake River Plain (ESRP) aquifer. Recharge to the ESRP aquifer is controlled largely by the alternating stratigraphy of fractured volcanic rocks and sedimentary interbeds within the overlying vadose zone and by the availability of water at the surface. Beneath the INTEC facilities, localized zones of saturation perched on the sedimentary interbeds are of particular concern because they may facilitate accelerated transport of contaminants. The sources and timing of natural and anthropogenic recharge to the perched zones are poorly understood. Simple approaches for quantitative characterization of this complex, variably saturated flow system are needed to assess potential scenarios for contaminant transport under alternative remediation strategies. During 2009-2011, the U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, employed data analysis and numerical simulations with a recently developed model of preferential flow to evaluate the sources and quantity of recharge to the perched zones. Piezometer, tensiometer, temperature, precipitation, and stream-discharge data were analyzed, with particular focus on the possibility of contributions to the perched zones from snowmelt and flow in the neighboring Big Lost River (BLR). Analysis of the timing and magnitude of subsurface dynamics indicate that streamflow provides local recharge to the shallow, intermediate, and deep perched saturated zones within 150 m of the BLR; at greater distances from the BLR the influence of streamflow on recharge is unclear. Perched water-level dynamics in most wells analyzed are consistent with findings from previous geochemical analyses, which suggest that a combination of annual snowmelt and anthropogenic sources (for example, leaky pipes and drainage ditches) contribute to recharge of shallow and intermediate perched zones throughout much of INTEC. The source-responsive fluxes model was parameterized to simulate recharge via preferential flow associated with intermittent episodes of streamflow in the BLR. The simulations correspond reasonably well to the observed hydrologic response within the shallow perched zone. Good model performance indicates that source-responsive flow through a limited number of connected fractures contributes substantially to the perched-zone dynamics. The agreement between simulated and observed perched-zone dynamics suggest that the source-responsive fluxes model can provide a valuable tool for quantifying rapid preferential flow processes that may result from different land management scenarios.
24. CONSTRUCTION PROGRESS VIEW TO NORTHWEST, SHOWING BLOWER BUILDING. INEEL ...
24. CONSTRUCTION PROGRESS VIEW TO NORTHWEST, SHOWING BLOWER BUILDING. INEEL PHOTO NUMBER NRTS-60-4407. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID
HEPA filter dissolution process
Brewer, K.N.; Murphy, J.A.
1994-02-22
A process is described for dissolution of spent high efficiency particulate air (HEPA) filters and then combining the complexed filter solution with other radioactive wastes prior to calcining the mixed and blended waste feed. The process is an alternate to a prior method of acid leaching the spent filters which is an inefficient method of treating spent HEPA filters for disposal. 4 figures.
Yousuf, R; Abdul Ghani, S A; Abdul Khalid, N; Leong, C F
2018-04-01
'InTec Blood Grouping Test kit' using solid-phase technology is a new method which may be used at outdoor blood donation site or at bed side as an alternative to the conventional tile method in view of its stability at room temperature and fulfilled the criteria as point of care test. This study aimed to compare the efficiency of this solid phase method (InTec Blood Grouping Test Kit) with the conventional tile method in determining the ABO and RhD blood group of healthy donors. A total of 760 voluntary donors who attended the Blood Bank, Penang Hospital or offsite blood donation campaigns from April to May 2014 were recruited. The ABO and RhD blood groups were determined by the conventional tile method and the solid phase method, in which the tube method was used as the gold standard. For ABO blood grouping, the tile method has shown 100% concordance results with the gold standard tube method, whereas the solid-phase method only showed concordance result for 754/760 samples (99.2%). Therefore, for ABO grouping, tile method has 100% sensitivity and specificity while the solid phase method has slightly lower sensitivity of 97.7% but both with good specificity of 100%. For RhD grouping, both the tile and solid phase methods have grouped one RhD positive specimen as negative each, thus giving the sensitivity and specificity of 99.9% and 100% for both methods respectively. The 'InTec Blood Grouping Test Kit' is suitable for offsite usage because of its simplicity and user friendliness. However, further improvement in adding the internal quality control may increase the test sensitivity and validity of the test results.
Modification of waste coal gangue and its application in the removal of Mn(2+) from aqueous solution.
Qiu, Ruifang; Cheng, Fangqin
We developed a new calcination method to convert coal gangue (CG), a common waste generated from coal production process, into a modified form, which could be used as an adsorbent to remove Mn(2+) from aqueous solution. Sodium tetraborate (Na2B4O7·10H2O) was added into the CG calcination process as an additive, and the concentrations of Na2B4O7·10H2O were optimized along with the calcination temperature to obtain the best adsorbent capacity of modified coal gangue (MCG). We applied multiple analytical methods such as scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy and Brunauer-Emmett-Teller analysis to characterize the MCG. The results showed it had a smaller particle size and a larger specific surface area and pore volume after modification. It also indicated that the phase of CG transformed from kaolinite to metakaolinite after calcination. Moreover, a new substance was generated with two new peaks at 1,632 cm(-1) and 799 cm(-1). The Mn(2+) absorption capacity of MCG was evaluated using a series of experiments with different adsorbent doses, pH values and initial Mn(2+) concentrations during the adsorption process. We found that Mn(2+) adsorbent capacity of MCG increased by more than seven-fold compared to that of CG. The Langmuir isotherm model and the pseudo-second-order kinetic model provided the best fit to the adsorption processes.
Process for vitrification of contaminated sodium oxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blair, H.T.; Mellinger, G.B.
1983-03-01
A glass composition was developed to accommodate 30 wt % sodium oxide and resist devitrification and leaching. An in-can melting process that is compatible with a comtaminated sodium calciner developed by Argonne National Laboratory was tested both on a laboratory and on an engineering scale and found to be viable. The Liquid Metal Fast Breeder Reactor experimental program continues to produce elemental sodium contaminated with radionuclides. This material is presently in temporary storage facilities because the current criterion will not permit alkali metals to be disposed of in shallow land burials. As a first step in treatment, Argonne National Laboratorymore » (ANL) has developed a calciner that will convert the sodium metal to an oxide. In work supported by the U.S. Department of Energy, Pacific Northwest Laboratory (PNL) is developing and demonstrating a process that is compatible with the calciner and facilities at ANL-West for incorporating sodium oxide into a glass. Glass, which normally contains sodium oxide, was chosen as the waste form because it is chemically durable and nondispersible. It is simple to produce, and the technology for incorporating nuclear wastes into glass is well developed.« less
23. CONSTRUCTION PROGRESS VIEW LOOKING TOWARD EAST SHOWING CONCRETE BLOCK ...
23. CONSTRUCTION PROGRESS VIEW LOOKING TOWARD EAST SHOWING CONCRETE BLOCK CONSTRUCTION. INEEL PHOTO NUMBER NRTS-59-4305. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID
15. CONSTRUCTION PROGRESS PHOTO SHOWING FORMS GOING UP ON ACCESS ...
15. CONSTRUCTION PROGRESS PHOTO SHOWING FORMS GOING UP ON ACCESS CORRIDOR. INEEL PHOTO NUMBER NRTS-59-336. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID
20. CONSTRUCTION PROGRESS PHOTO OF INSTRUMENT PANEL IN PLACE IN ...
20. CONSTRUCTION PROGRESS PHOTO OF INSTRUMENT PANEL IN PLACE IN OPERATING CORRIDOR. INEEL PHOTO NUMBER NRTS-59-6091. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID
Method of repressing the precipitation of calcium fluozirconate
Newby, B.J.; Rhodes, D.W.
1973-12-25
Boric acid or a borate salt is added to aqueous solutions of fluoride containing radioactive wastes generated during the reprocessing of zirconium alloy nuclear fuels which are to be converted to solid form by calcining in a fluidized bed. The addition of calcium nitrate to the aqueous waste solutions to prevent fluoride volatility during calcination, causes the precipitation of calcium fluozirconate, which tends to form a gel at fluoride concentrations of 3.0 M or greater. The boron containing species introduced into the solution by the addition of the boric acid or borate salt retard the formation of the calcium fluozirconate precipitate and prevent formation of the gel. These boron containing species can be introduced into the solution by the addition of a borate salt but preferably are introduced by the addition of an aqueous solution of boric acid. (Official Gazette)
Mercury methylation at mercury mines in the Humboldt River Basin, Nevada, USA
Gray, J.E.; Crock, J.G.; Lasorsa, B.K.
2002-01-01
Total Hg and methylmercury concentrations were measured in mine-waste calcines (retorted ore), sediment, and water samples collected in and around abandoned mercury mines in western Nevada to evaluate Hg methylation at the mines and in the Humboldt River Basin. Mine-waste calcines contain total Hg concentrations as high as 14 000 ??g g-1. Stream-sediment samples collected within 1 km of the mercury mines contain total Hg concentrations as high as 170 ??g g-1, whereas stream sediments collected at a distance >5 km from the mines, and those collected from the Humboldt River and regional baseline sites, contain total Hg concentrations 8 km from the nearest mercury mines. Our data indicate little transference of Hg and methylmercury from the sediment to the water column due to the lack of mine runoff in this desert climate.
Davis, Linda C.
2008-01-01
Radiochemical and chemical wastewater discharged since 1952 to infiltration ponds, evaporation ponds, and disposal wells at the Idaho National Laboratory (INL) has affected water quality in the Snake River Plain aquifer and perched-water zones underlying the INL. The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, maintains ground-water monitoring networks at the INL to determine hydrologic trends, and to delineate the movement of radiochemical and chemical wastes in the aquifer and in perched-water zones. This report presents an analysis of water-level and water-quality data collected from aquifer and perched-water wells in the USGS ground-water monitoring networks during 2002-05. Water in the Snake River Plain aquifer primarily moves through fractures and interflow zones in basalt, generally flows southwestward, and eventually discharges at springs along the Snake River. The aquifer is recharged primarily from infiltration of irrigation water, infiltration of streamflow, ground-water inflow from adjoining mountain drainage basins, and infiltration of precipitation. From March-May 2001 to March-May 2005, water levels in wells declined throughout the INL area. The declines ranged from about 3 to 8 feet in the southwestern part of the INL, about 10 to 15 feet in the west central part of the INL, and about 6 to 11 feet in the northern part of the INL. Water levels in perched water wells declined also, with the water level dropping below the bottom of the pump in many wells during 2002-05. For radionuclides, concentrations that equal 3s, wheres s is the sample standard deviation, represent a measurement at the minimum detectable concentration, or 'reporting level'. Detectable concentrations of radiochemical constituents in water samples from wells in the Snake River Plain aquifer at the INL generally decreased or remained constant during 2002-05. Decreases in concentrations were attributed to decreased rates of radioactive-waste disposal, radioactive decay, changes in waste-disposal methods, and dilution from recharge and underflow. In October 2005, reportable concentrations of tritium in ground water ranged from 0.51+or-0.12 to 11.5+or-0.6 picocuries per milliliter and the tritium plume extended south-southwestward in the general direction of ground-water flow. Tritium concentrations in water from several wells southwest of the Idaho Nuclear Technology and Engineering Center (INTEC) decreased or remained constant as they had during 1998-2001, with the exception of well USGS 47, which increased a few picocuries per milliliter. Most wells completed in shallow perched water at the Reactor Technology Complex (RTC) were dry during 2002---05. Tritium concentrations in deep perched water exceeded the reporting level in nine wells at the RTC. The tritium concentration in water from one deep perched water well exceeded the reporting level at the INTEC. Concentrations of strontium-90 in water from 14 of 34 wells sampled during October 2005 exceeded the reporting level. Concentrations ranged from 2.2+or-0.7 to 33.1+or-1.2 picocuries per liter. However, concentrations from most wells remained relatively constant or decreased since 1989. Strontium-90 has not been detected within the eastern Snake River Plain aquifer beneath the RTC partly because of the exclusive use of waste-disposal ponds and lined evaporation ponds rather than the disposal well for radioactive-wastewater disposal at RTC. At the RTC, strontium-90 concentrations in water from six wells completed in deep perched ground water exceeded the reporting level during 2002-05. At the INTEC, the reporting level was exceeded in water from three wells completed in deep perched ground water. During 2002-05, concentrations of plutonium-238, and plutonium-239, -240 (undivided), and americium-241 were less than the reporting level in water samples from all wells sampled at the INL. During 2002-05, concentrations of cesium-137 in water from all wells sa
Phosphorous removal from aqueous solution can be enhanced through the calcination of lime sludge.
Bal Krishna, K C; Niaz, Mohamed R; Sarker, Dipok C; Jansen, Troy
2017-09-15
Water treatment plants generate an enormous amount of the sludge which is normally treated as waste. In the recent past, many investigations have been focused on developing an economical adsorbent using water treatment sludge to remove phosphorous (P) from aqueous solutions. However, the great extents of the studies have been limited in the use of alum- and iron-based sludges. This study, therefore, investigated the P removal performance of the calcined lime sludge. Calcined lime sludge at 700 °C significantly enhanced the P removal efficiency whereas marginal improvement was noted when the sludge calcined at 400 °C was tested. With increase P removal efficiency, final pH values of the solution also significantly increased. P removal efficiency of the calcined sludge decreased with increasing the initial P concentrations. However, the removal efficiency could be improved by increasing the weight of the sludge. Further analysis demonstrated that P removal trend followed both pseudo-second order and diffusion-chemisorption kinetics signifying the P removal is potentially due to a multi-mechanistic reaction in which, the process is controlled by intra-particle diffusion followed by chemisorptions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Seklaoui, M'hamed; Boutaleb, Abdelhak; Benali, Hanafi; Alligui, Fadila; Prochaska, Walter
2016-11-01
To date, there have been few detailed studies regarding the impact of mining and metallogenic activities on solid fractions in the Azzaba mercurial district (northeast Algeria) despite its importance and global similarity with large Hg mines. To assess the degree, distribution, and sources of pollution, a physical inventory of apparent pollution was developed, and several samples of mining waste, process waste, sediment, and soil were collected on regional and local scales to determine the concentration of Hg and other metals according to their existing mineralogical association. Several physico-chemical parameters that are known to influence the pollution distribution are realized. The extremely high concentrations of all metals exceed all norms and predominantly characterize the metallurgic and mining areas; the metal concentrations significantly decrease at significant low distances from these sources. The geo-accumulation index, which is the most realistic assessment method, demonstrates that soils and sediments near waste dumps and abandoned Hg mines are extremely polluted by all analyzed metals. The pollution by these metals decreases significantly with distance, which indicates a limited dispersion. The results of a clustering analysis and an integrated pollution index suggest that waste dumps, which are composed of calcine and condensation wastes, are the main source of pollution. Correlations and principal component analysis reveal the important role of hosting carbonate rocks in limiting pollution and differentiating calcine wastes from condensation waste, which has an extremely high Hg concentration (˃1 %).
35. MISCELLANEOUS ARCHITECTURAL AND STRUCTURAL DETAILS. INEEL DRAWING NUMBER 200063300287106359. ...
35. MISCELLANEOUS ARCHITECTURAL AND STRUCTURAL DETAILS. INEEL DRAWING NUMBER 200-0633-00-287-106359. FLUOR NUMBER 5775-CPP-633-A-9. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID
34. DOOR AND WINDOW DETAILS. INEEL DRAWING NUMBER 200063300287106358. FLUOR ...
34. DOOR AND WINDOW DETAILS. INEEL DRAWING NUMBER 200-0633-00-287-106358. FLUOR NUMBER 5775-CPP-633-A-8. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID
33. ROOF PLAN AND DETAILS. INEEL DRAWING NUMBER 200063300287106357. FLUOR ...
33. ROOF PLAN AND DETAILS. INEEL DRAWING NUMBER 200-0633-00-287-106357. FLUOR NUMBER 5775-CPP-633-A-7. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID
PROCESSING OF RADIOACTIVE WASTE
Johnson, B.M. Jr.; Barton, G.B.
1961-11-14
A process for treating radioactive waste solutions prior to disposal is described. A water-soluble phosphate, borate, and/or silicate is added. The solution is sprayed with steam into a space heated from 325 to 400 deg C whereby a powder is formed. The powder is melted and calcined at from 800 to 1000 deg C. Water vapor and gaseous products are separated from the glass formed. (AEC)
Pulsed atmospheric fluidized bed combustor apparatus and process
Mansour, Momtaz N.
1992-01-01
A pulsed atmospheric fluidized bed reactor system is disclosed and claimed along with a process for utilization of same for the combustion of, e.g. high sulfur content coal. The system affords a economical, ecologically acceptable alternative to oil and gas fired combustors. The apparatus may also be employed for endothermic reaction, combustion of waste products, e.g. organic and medical waste, drying, calcining and the like.
27. ELEVATIONS OF EAST AND WEST SIDES. INEEL DRAWING NUMBER ...
27. ELEVATIONS OF EAST AND WEST SIDES. INEEL DRAWING NUMBER 200-0633-00-287-106355. FLUOR NUMBER 5775-CPP-633-A-5. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID
28. NORTH AND SOUTH ELEVATIONS AND TWO SECTIONS. INEEL DRAWING ...
28. NORTH AND SOUTH ELEVATIONS AND TWO SECTIONS. INEEL DRAWING NUMBER 200-0633-00-287-106356. FLUOR NUMBER 5775-CPP-633-A-6. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID
16. CONSTRUCTION PROGRESS PHOTO SHOWING SURPLUS GUN BARREL BEING LOWERED ...
16. CONSTRUCTION PROGRESS PHOTO SHOWING SURPLUS GUN BARREL BEING LOWERED INTO PLACE FOR USE AS PIPE TUNNEL. INEEL PHOTO NUMBER NRTS-59-709. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID
18. CONSTRUCTION PROGRESS PHOTO SHOWING SURPLUS GUN BARRELS IN PLACE ...
18. CONSTRUCTION PROGRESS PHOTO SHOWING SURPLUS GUN BARRELS IN PLACE TO BE USED AS PIPE TUNNELS. INEEL PHOTO NUMBER NRTS-59-925. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID
Biodiesel production from palm oil using calcined waste animal bone as catalyst.
Obadiah, Asir; Swaroopa, Gnanadurai Ajji; Kumar, Samuel Vasanth; Jeganathan, Kenthorai Raman; Ramasubbu, Alagunambi
2012-07-01
Waste animal bones was employed as a cost effective catalyst for the transesterification of palm oil. The catalyst was calcined at different temperatures to transform the calcium phosphate in the bones to hydroxyapatite and 800 °C was found to give the best yield of biodiesel. The catalyst was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive spectrometry (EDS) and Fourier transform infrared spectrometry (FT-IR). Under the optimal reaction conditions of 20 wt.% of catalyst, 1:18 oil to methanol molar ratio, 200 rpm of stirring of reactants and at a temperature of 65 °C, the methyl ester conversion was 96.78% and it was achieved in 4h. The catalyst performed equally well as the laboratory-grade CaO. Animal bone is therefore a useful raw material for the production of a cheap catalyst for transesterification. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Fara, A. N. K. A.; Abdullah, H. Z.
2015-07-01
Hydroxyapatite, (HAp), Ca10(PO4)6(OH)2, is recognised as a biomaterial that is widely used for bone implant due to its chemical and structural similarity to the mineral components in human bone and enamel. The elements of HAp are primarily composed of calcium and phosphorus molar ratio of calcium to phosphorous is 1.67 capable to promote bone in-growth into prosthetic implant. Enormous amounts of by-product waste produced from fish factories generated an undesirable environmental impact. Thus, this study was conducted to obtain natural biological HAp from different types of tilapia fish bones and scales from fishery waste. Therefore, fish bones and scales can be as cheap source to produce biological HAp for medical applications. For this purpose, fish bones and scales of tilapia fish were boiled at 100°C to remove adhering meat and other impurities. Later, fish bones and scales were separated into several groups and subjected to different calcination temperatures of 800° C and 900° C for 3h respectively. Afterward, all calcined samples were crushed to form a fine powder. The XRD result revealed the presence of derived Hapfrom the samples powder and were identical with standard Hap. Thermo Gravimetric Analysis was carried out to show the thermal stability of the HAp powder from different types of fish bones and scales. SEM results show porous structure appeared in calcined samples compared to raw samples. The findings are the promising alternative to produce calcium and phosphorus from fishery wastes that beneficial to medical applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chudnovsky, Yaroslav; Kozlov, Aleksandr
Green petroleum coke (GPC) is an oil refining byproduct that can be used directly as a solid fuel or as a feedstock for the production of calcined petroleum coke. GPC contains a high amount of volatiles and sulfur. During the calcination process, the GPC is heated to remove the volatiles and sulfur to produce purified calcined coke, which is used in the production of graphite, electrodes, metal carburizers, and other carbon products. Currently, more than 80% of calcined coke is produced in rotary kilns or rotary hearth furnaces. These technologies provide partial heat utilization of the calcined coke to increasemore » efficiency of the calcination process, but they also share some operating disadvantages. However, coke calcination in an electrothermal fluidized bed (EFB) opens up a number of potential benefits for the production enhancement, while reducing the capital and operating costs. The increased usage of heavy crude oil in recent years has resulted in higher sulfur content in green coke produced by oil refinery process, which requires a significant increase in the calcinations temperature and in residence time. The calorific value of the process off-gas is quite substantial and can be effectively utilized as an “opportunity fuel” for combined heat and power (CHP) production to complement the energy demand. Heat recovered from the product cooling can also contribute to the overall economics of the calcination process. Preliminary estimates indicated the decrease in energy consumption by 35-50% as well as a proportional decrease in greenhouse gas emissions. As such, the efficiency improvement of the coke calcinations systems is attracting close attention of the researchers and engineers throughout the world. The developed technology is intended to accomplish the following objectives: - Reduce the energy and carbon intensity of the calcined coke production process. - Increase utilization of opportunity fuels such as industrial waste off-gas from the novel petroleum coke calcination process. - Increase the opportunity of heat (chemical and physical) utilization from process off-gases and solid product. - Develop a design of advanced CHP system utilizing off-gases as an “opportunity fuel” for petroleum coke calcinations and sensible heat of calcined coke. A successful accomplishment of the aforementioned objectives will contribute toward the following U.S. DOE programmatic goals: - Drive a 25% reduction in U. S. industrial energy intensity by 2017 in support of EPAct 2005; - Contribute to an 18% reduction in U.S. carbon intensity by 2012 as established by the Administration’s “National Goal to Reduce Emissions Intensity.” 8« less
41. OPERATING CORRIDOR PLAN AND SECTIONS, INCLUDING SOME ISOMETRIC DETAILS. ...
41. OPERATING CORRIDOR PLAN AND SECTIONS, INCLUDING SOME ISOMETRIC DETAILS. INEEL DRAWING NUMBER 200-0633-00-287-106455. FLUOR NUMBER 5775-CPP-633-P-60 - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID
40 CFR 98.194 - Monitoring and QA/QC requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... byproduct or waste generation rate. (c) You must determine the chemical composition (percent total CaO and percent total MgO) of each type of lime product that is produced and each type of calcined byproduct or...
Effect of fly ash calcination in geopolymer synthesis
NASA Astrophysics Data System (ADS)
Samadhi, Tjokorde Walmiki; Jatiningrum, Mirna; Arisiani, Gresia
2015-12-01
Geopolymer, a largely amorphous class of inorganic polymer consisting of aluminosilicate repeat units, is an environmentally attractive engineering material due to its ability to consume aluminosilicate waste as raw materials. This work studies the effect of the calcination temperature of a coal fly ash generated by a low-efficiency boiler on the mechanical strength of geopolymer mortar synthesized using a mixture of the fly ash, potassium hydroxide as the alkali activator, and locally available sand as the filler aggregate. The calcination temperature is varied between 500-700 °C, with a calcination period of 2 hours in an electric furnace. Two sand samples with different particle size distributions are used. The key response variable is the compressive strength at room temperature, measured after curing at 80 °C for 7 and 14 days. Uncalcined ash, with a carbon content of approximately 31.0%, is not amenable for geopolymer synthesis. Analysis of experimental data using the ANOVA method for general factorial design identifies significant main effects for all three experimental variables. Two-way interactions are significant, except that between sand type and curing period. Higher calcination temperature significantly improves the strength of the mortar. However, the strength of the obtained geopolymer mortars are still significantly lower than that of ordinary Portland cement mortar.
Pulsed atmospheric fluidized bed combustor apparatus
Mansour, Momtaz N.
1993-10-26
A pulsed atmospheric fluidized bed reactor system is disclosed and claimed along with a process for utilization of same for the combustion of, e.g. high sulfur content coal. The system affords a economical, ecologically acceptable alternative to oil and gas fired combustors. The apparatus may also be employed for endothermic reaction, combustion of waste products, e.g., organic and medical waste, drying materials, heating air, calcining and the like.
Wang, Tsinghai; Xiao, Da-Cheng; Huang, Chih-Hung; Hsieh, Yi-Kong; Tan, Chung-Sung; Wang, Chu-Fang
2014-04-15
In this paper, we demonstrate a means of simultaneously solving two serious environmental issues by reutilization of calcinated mixture of pulverized waste oyster shells blending with poly(methyl methacrylate) (PMMA) nanospheres to prepare CaO-based sorbents for CO2 capture. After 10 cycles of isothermal carbonation/calcination at 750°C, the greatest CO2 uptake (0.19 g CO2/g sorbent) was that for the sorbent featuring 70 wt% of PMMA, which was almost three times higher than that (0.07 g CO2/g sorbent) of untreated waste oyster shell. The greater CO2 uptake was likely a result of particle size reduction and afterwards surface basicity enhancement and an increase in the volume of mesopores and macropores. Following simplified life cycle assessment, whose all input values were collected from our experimental results, suggested that a significant CO2 emission reduction along with lesser human health and ecosystems impacts would be achieved immediately once waste is reutilized. Most importantly, the CO2 uptake efficiency must be greater than 20% or sorbents prepared from limestone mining would eventually produce a net positive CO2 emission. Copyright © 2014 Elsevier B.V. All rights reserved.
40 CFR 264.314 - Special requirements for bulk and containerized liquids.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., smectites, Fuller's earth, bentonite, calcium bentonite, montmorillonite, calcined montmorillonite.../hydroxides, alumina, lime, silica (sand), diatomaceous earth; perlite (volcanic glass); expanded volcanic... contain, hazardous waste; and (2) Placement in such owner or operator's landfill will not present a risk...
40 CFR 264.314 - Special requirements for bulk and containerized liquids.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., smectites, Fuller's earth, bentonite, calcium bentonite, montmorillonite, calcined montmorillonite.../hydroxides, alumina, lime, silica (sand), diatomaceous earth; perlite (volcanic glass); expanded volcanic... contain, hazardous waste; and (2) Placement in such owner or operator's landfill will not present a risk...
40 CFR 264.314 - Special requirements for bulk and containerized liquids.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., smectites, Fuller's earth, bentonite, calcium bentonite, montmorillonite, calcined montmorillonite.../hydroxides, alumina, lime, silica (sand), diatomaceous earth; perlite (volcanic glass); expanded volcanic... contain, hazardous waste; and (2) Placement in such owner or operator's landfill will not present a risk...
2005 Annual Operations Report for INTEC Operable Unit 3-13, Group 1, Tank Farm Interim Action
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. Shanklin
2006-07-19
This annual operations report describes the requirements followed and activities conducted to inspect, monitor, and maintain the items installed during performance of the Waste Area Group 3, Operable Unit 3-13, Group 1, Tank Farm Interim Action, at the Idaho Nuclear Technology and Engineering Center. This report describes inspection and monitoring activities fro the surface-sealed areas within the tank farm, concrete-lined ditches and culverts in and around the tank farm, the lift station, and the lined evaporation pond. These activities are intended to assure that the interim action is functioning adequately to meet the objectives stated in the Operable Unit 3-13,more » Record of Decision for the Group 1, Tank Farm Interim Action, (DOE/ID-10660) and as amended by the agreement to resolve dispute, which was effective in February 2003.« less
2006 Annual Operations Report for INTEC Operable Unit 3-13, Group 1, Tank Farm Interim Action
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. E. Shanklin
2007-02-14
This annual operations report describes the requirements followed and activities conducted to inspect, monitor, and maintain the items installed during performance of the Waste Area Group 3, Operable Unit 3-13, Group 1, Tank Farm Interim Action, at the Idaho Nuclear Technology and Engineering Center. This report covers the time period from January 1 through December 31, 2006, and describes inspection and monitoring activities for the surface-sealed areas within the tank farm, concrete-lined ditches and culverts in and around the tank farm, the lift station, and the lined evaporation pond. These activities are intended to assure that the interim action ismore » functioning adequately to meet the objectives stated in the Operable Unit 3-13, Record of Decision for the Group 1, Tank Farm Interim Action (DOE/ID-10660) as described in the Group 1 Remedial Design/Remedial Action Work Plan (DOE/ID-10772).« less
NASA Astrophysics Data System (ADS)
Wiederhold, J. G.; Jew, A. D.; Brown, G. E.; Bourdon, B.; Kretzschmar, R.
2010-12-01
The seven stable isotopes of Hg are fractionated in the environment as a result of mass-dependent (MDF) and mass-independent (MIF) fractionation processes that can be studied in parallel by analyzing the ratios of even and odd mass Hg isotopes. MDF and MIF Hg isotope signatures of natural samples may provide a new tool to trace sources and transformations in environmental Hg cycling. However, the mechanisms controlling the extent of kinetic and equilibrium Hg isotope fractionations are still only partially understood. Thus, development of this promising tracer requires experimental calibration of relevant fractionation factors as well as assessment of natural variations of Hg isotope ratios under different environmental conditions. The inoperative Hg mine in New Idria (California, USA) represents an ideal case study to explore Hg isotope fractionation during Hg transformation and transport processes. More than a century of Hg mining and on-site thermal refining to obtain elemental Hg until 1972 produced large volumes of contaminated mine wastes which now represent sources of Hg pollution for the surrounding ecosystems. Here, we present Hg isotope data from various materials collected at New Idria using Cold-Vapor-MC-ICPMS with a long-term δ202Hg reproducibility of ±0.1‰ (2SD). Uncalcined mine waste samples were isotopically similar to NIST-3133 and did not exhibit any MIF signatures. In contrast, calcine samples, which represent the residue of the thermal ore processing at 700°C, had significantly heavier δ202Hg values of up to +1.5‰. In addition, we observed small negative MIF anomalies of the odd-mass Hg isotopes in the calcine samples, which could be caused either by nuclear volume fractionation or a magnetic isotope effect during or after the roasting process. The mass-dependent enrichment of heavy Hg isotopes in the calcine materials indicates that light Hg isotopes were preferentially removed during the roasting process, in agreement with a previous study by Stetson et al. (ES&T, 2009, 43:7331-7336). In order to further elucidate the Hg isotope signatures of the New Idria samples, we performed a three-step sequential extraction procedure to separate different Hg pools. The calcine samples exhibited a higher proportion of leachable Hg phases compared with the unrefined ore waste samples. The most soluble Hg pool (HAc/HCl, pH 2) had a significantly heavier MDF and more negative MIF signature than the bulk calcine samples, suggesting that the dissolution of more soluble Hg phases from calcine materials results in an enhanced flux of leached Hg which is isotopically distinct from the original ore. Moreover, this finding demonstrates that the Hg isotope fractionation during the ore roasting cannot be solely explained by a kinetic Rayleigh-type process which removes light Hg isotopes, but must additionally involve the formation of isotopically heavy secondary Hg phases in the calcine. The analysis of additional samples will enable us to test this hypothesis and to gain further insights into the applicability of stable Hg isotope ratios as source and process tracers in Hg-contaminated environments.
38. SECTIONS OF ACCESS CORRIDOR, INCLUDES SECTION SHOWING ARRANGEMENT OF ...
38. SECTIONS OF ACCESS CORRIDOR, INCLUDES SECTION SHOWING ARRANGEMENT OF NAVY GUN BARRELS. INEEL DRAWING NUMBER 200-0633-00-287-106454. FLUOR NUMBER 5775-CPP-633-P-59. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID
Treatment options for low-level radiologically contaminated ORNL filtercake
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Hom-Ti; Bostick, W.D.
1996-04-01
Water softening sludge (>4000 stored low level contaminated drums; 600 drums per year) generated by the ORNL Process Waste Treatment Plant must be treated, stabilized, and placed in safe storage/disposal. The sludge is primarily CaCO{sub 3} and is contaminated by low levels of {sup 90}Sr and {sup 137}Cs. In this study, microwave sintering and calcination were evaluated for treating the sludge. The microwave melting experiments showed promise: volume reductions were significant (3-5X), and the waste form was durable with glass additives (LiOH, fly ash). A commercial vendor using surrogate has demonstrated a melt mineralization process that yields a dense monolithicmore » waste form with a volume reduction factor (VR) of 7.7. Calcination of the sludge at 850-900 C yielded a VR of 2.5. Compaction at 4500 psi increased the VR to 4.2, but the compressed form is not dimensionally stable. Addition of paraffin helped consolidate fines and yielded a VR of 3.5. In conclusion, microwave melting or another form of vitrification is likely to be the best method; however for immediate implementation, the calculation/compaction/waxing process is viable.« less
PCDD/PCDF reduction by the co-combustion process.
Lee, Vinci K C; Cheung, Wai-Hung; McKay, Gordon
2008-01-01
A novel process, termed the co-combustion process, has been developed and designed to utilise the thermal treatment of municipal solid waste (MSW) in cement clinker production and reduce PCDD/PCDF emissions. To test the conceptual design; detailed engineering design of the process and equipment was performed and a pilot plant was constructed to treat up to 40 tonnes MSW per day. The novel process features included several units external to the main traditional cement rotary kiln: an external calcinations unit in which the hot gas calcined the limestone thus making significant energy savings for this chemical reaction; the lime generated was used in a second chamber to act as a giant acid gas scrubber to remove SOx and particularly HCl (a source of chloride); an external rotary kiln and secondary combustion unit capable of producing a hot gas at 1200 degrees C; a gas cooler to simulate a boiler turbogenerator set for electricity generation; the incorporation of some of the bottom ash, calcined lime and dust collector solids into the cement clinker. A PCDD/PCDF inventory has been completed for the entire process and measured PCDD/PCDF emissions were 0.001 ng I-TEQ/Nm(3) on average which is 1% of the best practical means [Hong Kong Environmental Protection Department, 2001. A guidance note on the best practicable means for incinerators (municipal waste incineration), BPM12/1] MSW incineration emission limit values.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quigley, K.D.; Butterworth, St.W.; Lockie, K.A.
2008-07-01
Significant progress has been made at the U.S. Department of Energy (DOE) Idaho National Laboratory (INL) to empty, clean and close radioactive liquid waste storage tanks at the Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility (TFF). The TFF includes eleven 1,135.6-kL (300,000-gal) underground stainless steel storage tanks and four smaller, 113.5-kL (30,000-gal) stainless steel tanks, along with tank vaults, interconnecting piping, and ancillary equipment. The TFF tanks have historically been used to store a variety of radioactive liquid waste, including wastes associated with past spent nuclear fuel reprocessing. Although four of the large storage tanks remain inmore » use for waste storage, the other seven 1,135.6-kL (300,000-gal) tanks and the four 113.5-kL (30,000-gal) tanks have been emptied of waste, cleaned and filled with grout. A water spray cleaning system was developed and deployed to clean internal tank surfaces and remove remaining tank wastes. The cleaning system was effective in removing all but a very small volume of solid residual waste particles. Recent issuance of an Amended Record of Decision (ROD) in accordance with the National Environmental Policy Act, and a Waste Determination complying with Section 3116 of the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005, has allowed commencement of grouting activities on the cleaned tanks. The first three 113.5-kL (30,000-gal) tanks were grouted in the Fall of 2006 and the fourth tank and the seven 1,135.6-kL (300,000-gal) tanks were filled with grout in 2007 to provide long-term stability. It is currently planned that associated tank valve boxes and interconnecting piping, will be stabilized with grout as early as 2008. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lockie, K.A.; Suttora, L.C.; Quigley, K.D.
2007-07-01
Significant progress has been made at the U.S. Department of Energy (DOE) Idaho National Laboratory (INL) to clean and close emptied radioactive liquid waste storage tanks at the Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility (TFF). The TFF includes eleven 1,135.6-kL (300,000-gal) underground stainless steel storage tanks and four smaller, 113.5-kL (30,000-gal) stainless steel tanks, along with tank vaults, interconnecting piping, and ancillary equipment. The TFF tanks have historically been used to store a variety of radioactive liquid waste, including wastes associated with past spent nuclear fuel reprocessing. Although four of the large storage tanks remain inmore » use for waste storage, the other seven 1,135.6-kL (300,000-gal) tanks and the four 113.5-kL (30,000-gal) tanks have been emptied of waste and cleaned in preparation of final closure. A water spray cleaning system was developed and deployed to clean internal tank surfaces and remove remaining tank wastes. The cleaning system was effective in removing all but a very small volume of solid residual waste particles. Recent issuance of an Amended Record of Decision (ROD) in accordance with the National Environmental Policy Act, and a Waste Determination complying with Section 3116 of the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005, has allowed commencement of grouting activities on the cleaned tanks. In November 2006, three of the 113.5-kL (30,000-gal) tanks were filled with grout to provide long-term stability. It is currently planned that all seven cleaned 1,135.6-kL (300,000-gal) tanks, as well as the four 113.5-kL (30,000-gal) tanks and all associated tank vaults and interconnecting piping, will be stabilized with grout as early as 2008. (authors)« less
Emissions model of waste treatment operations at the Idaho Chemical Processing Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schindler, R.E.
1995-03-01
An integrated model of the waste treatment systems at the Idaho Chemical Processing Plant (ICPP) was developed using a commercially-available process simulation software (ASPEN Plus) to calculate atmospheric emissions of hazardous chemicals for use in an application for an environmental permit to operate (PTO). The processes covered by the model are the Process Equipment Waste evaporator, High Level Liquid Waste evaporator, New Waste Calcining Facility and Liquid Effluent Treatment and Disposal facility. The processes are described along with the model and its assumptions. The model calculates emissions of NO{sub x}, CO, volatile acids, hazardous metals, and organic chemicals. Some calculatedmore » relative emissions are summarized and insights on building simulations are discussed.« less
40 CFR 98.196 - Data reporting requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Data reporting requirements. 98.196... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Lime Manufacturing § 98.196 Data reporting requirements. In... type. (4) Beginning and end of year inventories for calcined lime byproducts/wastes sold, by type. (5...
Mercury isotope fractionation during ore retorting in the Almadén mining district, Spain
Gray, John E.; Pribil, Michael J.; Higueras, Pablo L.
2013-01-01
Almadén, Spain, is the world's largest mercury (Hg) mining district, which has produced over 250,000 metric tons of Hg representing about 30% of the historical Hg produced worldwide. The objective of this study was to measure Hg isotopic compositions of cinnabar ore, mine waste calcine (retorted ore), elemental Hg (Hg0(L)), and elemental Hg gas (Hg0(g)), to evaluate potential Hg isotopic fractionation. Almadén cinnabar ore δ202Hg varied from − 0.92 to 0.15‰ (mean of − 0.56‰, σ = 0.35‰, n = 7), whereas calcine was isotopically heavier and δ202Hg ranged from − 0.03‰ to 1.01‰ (mean of 0.43‰, σ = 0.44‰, n = 8). The average δ202Hg enrichment of 0.99‰ between cinnabar ore and calcines generated during ore retorting indicated Hg isotopic mass dependent fractionation (MDF). Mass independent fractionation (MIF) was not observed in any of the samples in this study. Laboratory retorting experiments of cinnabar also were carried out to evaluate Hg isotopic fractionation of products generated during retorting such as calcine, Hg0(L), and Hg0(g). Calcine and Hg0(L) generated during these retorting experiments showed an enrichment in δ202Hg of as much as 1.90‰ and 0.67‰, respectively, compared to the original cinnabar ore. The δ202Hg for Hg0(g) generated during the retorting experiments was as much as 1.16‰ isotopically lighter compared to cinnabar, thus, when cinnabar ore was roasted, the resultant calcines formed were isotopically heavier, whereas the Hg0(g) generated was isotopically lighter in Hg isotopes.
Ahmad, Mahtab; Hashimoto, Yohey; Moon, Deok Hyun; Lee, Sang Soo; Ok, Yong Sik
2012-03-30
This study evaluated the effectiveness of eggshell and calcined eggshell on lead (Pb) immobilization in a shooting range soil. Destructive and non-destructive analytical techniques were employed to determine the mechanism of Pb immobilization. The 5% additions of eggshell and calcined eggshell significantly decreased the TCLP-Pb concentration by 68.8% due mainly to increasing soil pH. Eggshell and calcined-eggshell amendments decreased the exchangeable Pb fraction to ≈ 1% of the total Pb in the soil, while the carbonate-associated Pb fraction was increased to 40.0-47.1% at >15% application rates. The thermodynamic modeling on Pb speciation in the soil solution predicted the precipitation of Pb-hydroxide [Pb(OH)(2)] in soils amended with eggshell and calcined eggshell. The SEM-EDS, XAFS and elemental dot mapping revealed that Pb in soil amended with calcined eggshell was associated with Si and Ca, and may be immobilized by entrapping into calcium-silicate-hydrate. Comparatively, in the soil amended with eggshell, Pb was immobilized via formation of Pb-hydroxide or lanarkite [Pb(2)O(SO(4))]. Applications of amendments increased activities of alkaline phosphatase up to 3.7 times greater than in the control soil. The use of eggshell amendments may have potential as an integrated remediation strategy that enables Pb immobilization and soil biological restoration in shooting range soils. Copyright © 2012 Elsevier B.V. All rights reserved.
The disposal of nuclear waste in space
NASA Technical Reports Server (NTRS)
Burns, R. E.
1978-01-01
The important problem of disposal of nuclear waste in space is addressed. A prior study proposed carrying only actinide wastes to space, but the present study assumes that all actinides and all fission products are to be carried to space. It is shown that nuclear waste in the calcine (oxide) form can be packaged in a container designed to provide thermal control, radiation shielding, mechanical containment, and an abort reentry thermal protection system. This package can be transported to orbit via the Space Shuttle. A second Space Shuttle delivers an oxygen-hydrogen orbit transfer vehicle to a rendezvous compatible orbit and the mated OTV and waste package are sent to the preferred destination. Preferred locations are either a lunar crater or a solar orbit. Shuttle traffic densities (which vary in time) are given and the safety of space disposal of wastes discussed.
36. ARCHITECTURAL AND STRUCTURAL DETAILS OF ELEVATOR HOUSING, NaK HEATER ...
36. ARCHITECTURAL AND STRUCTURAL DETAILS OF ELEVATOR HOUSING, NaK HEATER STACK ROOF FLASHING, HOOD ELEVATION DETAIL. INCLUDES PARTIAL 'BILL OF MATERIAL.' INEEL DRAWING NUMBER 200-0633-00-287-106361. FLUOR NUMBER 5775-CPP-633-A-11. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID
40 CFR 98.317 - Records that must be retained.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Sampling analysis results for the carbon content of carbon containing waste (percent by weight expressed as... paraghraph: (1) Records of all calcined petroleum coke purchases (tons). (2) Records of all analyses and calculations conducted for all reported data as listed in § 98.316(b). (3) Sampling analysis results for carbon...
[Preparation of porous ceramics based on waste ceramics and its Ni2+ adsorption characteristics].
Zhang, Yong-Li; Wang, Cheng-Zhi; Shi, Ce; Shang, Ling-Ling; Ma, Rui; Dong, Wan-Li
2013-07-01
The preparation conditions of porous ceramics were determined by SEM, XRD and FT-IR characterizations as well as the nickel removal ability of porous ceramics to be: the mass fraction w of sesbania powder doped was 4%, and the calcination temperature was 800 degrees C. SEM and pore structure characterization illustrated that calcination caused changes in the structure and morphology of waste ceramics. With the increase of calcination temperature, the specific surface area and pore volume decreased, while the aperture increased. EDS analyses showed that the main elements of both the original waste porcelain powder and the porous ceramics were Si, Al and O. The SEM, XRD and FT-IR characterization of porous ceramics illustrated that the structure of porous ceramics was stable before and after adsorption. The series of experiments of Ni2+ adsorption using these porous ceramics showed that when the dosage of porous ceramics was 10 g x L(-1), the adsorption time was 60 min, the pH value was 6.32, and the concentration of nickel-containing wastewater was below 100 mg x L(-1), the Ni2+ removal of wastewater reached 89.7%. Besides, the porous ceramics showed higher removal efficiency on nickel in the wastewater. The Ni(2+)-containing wastewater was processed by the porous ceramics prepared, and the adsorption dynamics and adsorption isotherms of Ni2+ in wastewater by porous ceramics were investigated. The research results showed that the Ni2+ adsorption process of porous ceramics was in accordance with the quasi second-order kinetic model (R2 = 0.999 9), with Q(e) of 9.09 mg x g(-1). The adsorption process can be described by the Freundlich equation and Langmuir equation, and when the temperature increased from 20 degrees C to 40 degrees C, the maximum adsorption capacity Q(m) increased from 14.49 mg x g(-1) to 15.38 mg x g(-1).
Tan, Xiaofei; Liu, Shaobo; Liu, Yunguo; Gu, Yanling; Zeng, Guangming; Cai, Xiaoxi; Yan, ZhiLi; Yang, Chunping; Hu, Xinjiang; Chen, Bo
2016-01-01
A biochar supported calcined-Mg/Al layered double hydroxides composite (CLDHs/BC) was synthesized by a one-pot slow pyrolysis of LDHs preloaded bagasse biomass. Multiple characterizations of the product illustrated that the calcined-Mg/Al layered double hydroxides (CLDHs) were successfully coated onto the biochar in slow pyrolysis of pre-treated biomass. The as-synthesized CLDHs/BC could efficiently remove antibiotic tetracycline from aqueous solutions. The coating of CLDHs significantly increased the adsorption ability of biochar, and CLDHs/BC exhibited more than 2 times higher adsorption capacity than that of the pristine biochar (BC) in the tested pH range. The maximum adsorption capacity of CLDHs/BC for tetracycline was 1118.12 mg/g at 318 K. The experimental results suggested that the interaction with LDHs on biochar played a dominant role in tetracycline adsorption, accompanied with π–π interaction and hydrogen bond. This study provides a feasible and simple approach for the preparation of high-performance material for antibiotics contaminated wastewater treatment in a cost-effective way. PMID:28000759
NASA Astrophysics Data System (ADS)
Tan, Xiaofei; Liu, Shaobo; Liu, Yunguo; Gu, Yanling; Zeng, Guangming; Cai, Xiaoxi; Yan, Zhili; Yang, Chunping; Hu, Xinjiang; Chen, Bo
2016-12-01
A biochar supported calcined-Mg/Al layered double hydroxides composite (CLDHs/BC) was synthesized by a one-pot slow pyrolysis of LDHs preloaded bagasse biomass. Multiple characterizations of the product illustrated that the calcined-Mg/Al layered double hydroxides (CLDHs) were successfully coated onto the biochar in slow pyrolysis of pre-treated biomass. The as-synthesized CLDHs/BC could efficiently remove antibiotic tetracycline from aqueous solutions. The coating of CLDHs significantly increased the adsorption ability of biochar, and CLDHs/BC exhibited more than 2 times higher adsorption capacity than that of the pristine biochar (BC) in the tested pH range. The maximum adsorption capacity of CLDHs/BC for tetracycline was 1118.12 mg/g at 318 K. The experimental results suggested that the interaction with LDHs on biochar played a dominant role in tetracycline adsorption, accompanied with π-π interaction and hydrogen bond. This study provides a feasible and simple approach for the preparation of high-performance material for antibiotics contaminated wastewater treatment in a cost-effective way.
Removing heavy metals from wastewaters with use of shales accompanying the coal beds.
Jabłońska, Beata; Siedlecka, Ewa
2015-05-15
A possibility of using clay waste rocks (shales) from coal mines in the removal of heavy metals from industrial wastewaters is considered in this paper. Raw and calcined (600 °C) shales accompanying the coal beds in two Polish coal mines were examined with respect to their adsorptive capabilities for Pb, Ni and Cu ions. The mineralogical composition of the shales was determined and the TG/DTG analysis was carried out. The granulometric compositions of raw and calcined shales were compared. Tests of adsorption for various Pb(II), Ni(II) and Cu(II) concentrations were conducted and the pH before and after adsorption was analyzed. The results indicate that the shales from both coal mines differ in adsorptive capabilities for particular metal ions. The calcination improved the adsorptive capabilities for lead, but worsened them for nickel. The examined shales have good adsorptive capabilities, and could be used as inexpensive adsorbents of heavy metal ions, especially in the regions where resources of shale are easy accessible in the form of spoil tips. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ogata, Fumihiko; Kawasaki, Naohito
2016-01-01
In this study, we prepared virgin (S, L) and calcined (S-380, S-1000, L-380, L-1000) magnesium hydroxide for regeneration of waste edible oil. Deterioration of soybean oil, rapeseed oil, and olive oil was achieved by heat and aeration treatment. The properties of the different adsorbents were investigated using specific surface area measurements, scanning electron microscopy, X-ray diffraction analysis, thermogravimetric-differential thermal analysis, and surface pH measurement. Moreover, the relationship between the changes in acid value (AV) and carbonyl value (CV) and the adsorbent properties were evaluated. The specific surface areas of S-380 and L-380 were greater than that of other adsorbents. In addition, the XRD results show that S-380 and L-380 contain both magnesium hydroxide and magnesium oxide structures. The decreases in AV and CV using S-380 and L-380 were greater than achieved using other adsorbents. The correlation coefficients between the decrease in AV and CV and specific surface area were 0.947 for soybean oil, 0.649 for rapeseed oil, and 0.773 for olive oil, respectively. The results obtained in this study suggest that a physical property of the adsorbent, namely specific surface area, was primarily responsible for the observed decreases in AV and CV. Overall, the results suggest that S-380 and L-380 are useful for the regeneration of waste edible oil.
Porous acicular mullite obtained by controlled oxidation of waste molybdenum disilicide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bučevac, Dušan, E-mail: bucevac@vinca.rs; Dapčević, Aleksandra; Maksimović, Vesna
2014-02-01
Highlights: • Waste MoSi{sub 2} heating elements were used as starting material for fabrication of porous acicular mullite. • Calcined MoSi{sub 2} powder was source of SiO{sub 2} and pore former at the same time. • Porous acicular mullite is promising material for filtration of diesel engine exhaust. • Samples with decent mechanical integrity and porosity of more than 60% were fabricated. - Abstract: Porous acicular mullite was fabricated by using waste MoSi{sub 2} heating element and Al{sub 2}O{sub 3}. Careful calcination of the pulverized heating element led to the formation of a mixture of MoO{sub 3} and amorphous SiO{submore » 2}. This mixture was employed as both SiO{sub 2} precursor and pore former. The oxidation of MoSi{sub 2} and mullite formation were studied. The effect of fabrication temperature on phase composition, porosity, grain morphology, and compressive strength of sintered mullite was examined. Pure mullite with porosity of more than 60% and compressive strength of ∼20 MPa was obtained at temperature as low as 1300 °C. The microstructure consisted of elongated, rectangular, prism-like grains which are known to be effective in filtration of diesel engine exhaust. The increase in sintering temperature caused the change of grain morphology and reduction in compressive strength.« less
Stabilization of As-, Pb-, and Cu-contaminated soil using calcined oyster shells and steel slag.
Moon, Deok Hyun; Wazne, Mahmoud; Cheong, Kyung Hoon; Chang, Yoon-Young; Baek, Kitae; Ok, Yong Sik; Park, Jeong-Hun
2015-07-01
In this study, As-, Pb-, and Cu-contaminated soil was stabilized using calcined oyster shells (COS) and steel slag (SS). The As-contaminated soil was obtained from a timber mill site where chromate copper arsenate (CCA) was used as a preservative. On the other hand, Pb- and Cu-contaminated soil was obtained from a firing range. These two soils were thoroughly mixed to represent As-, Pb-, and Cu-contaminated soil. Calcined oyster shells were obtained by treating waste oyster shells at a high temperature using the calcination process. The effectiveness of stabilization was evaluated by 1-N HCl extraction for As and 0.1-N HCl extraction for Pb and Cu. The treatment results showed that As, Pb, and Cu leachability were significantly reduced upon the combination treatment of COS and SS. The sole treatment of SS (10 wt%) did not show effective stabilization. However, the combination treatment of COS and SS showed a significant reduction in As, Pb, and Cu leachability. The best stabilization results were obtained from the combination treatment of 15 wt% COS and 10 wt% SS. The SEM-EDX results suggested that the effective stabilization of As was most probably achieved by the formation of Ca-As and Fe-As precipitates. In the case of Pb and Cu, stabilization was most probably associated with the formation of pozzolanic reaction products such as CSHs and CAHs.
Interlaboratory comparison program for nondestructive assay of prototype uranium reference materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trahey, N.M.; Smith, M.M.; Voeks, A.M.
The US Department of Energy (DOE), New Brunswick Laboratory (NBS), designed and administered an interlaboratory comparison program based on the measurement of NBL-produced prototype uranium nondestructive assay (NDA) reference materials for scrap and waste. The objectives of the program were to evaluate the reliability of NDA techniques as applied to nuclear safeguards materials control and accountability needs and to investigate the feasibility of providing practical NDA scrap and waste reference materials for use throughout the nuclear safeguards community. Fourteen facilities representing seven DOE contractors, four US Nuclear Regulatory Commission (NRC) licensees, one EURATOM Laboratory, and NBL, participated in this program.more » Three stable, well-characterized uranium reference materials were developed and certified for this program. Synthetic calcined ash, cellulose fiber, and ion-exchange resin simulate selected uranium scrap and waste forms which are often encountered in fabrication and recovery operations. The synthetic calcined ash represents an intermediate density inorganic matrix while the cellulose fiber and ion-exchange resin are representative of low-density organic matrices. The materials, containing from 0 to 13% uranium enriched at 93% /sup 235/U, were sealed in specially selected containers. Nineteen prototype reference samples, plus three empty containers, one to accompany each set, was circulated to the participants between August 1979 and May 1984. Triplicate measurements for /sup 235/U on each of the 19 filled containers were required. In addition, participants could opt to perform modular configuration measurements using containers from Sets IIA and IIB to simulate non-homogeneously dispersed uranium in waste containers. All data were reported to NBL for evaluation.« less
Ma, Ji; Sun, Shuangshuang; Chen, Kezheng
2017-06-01
In this study, apple, banana and orange peels were used as precursor compounds for the mass production of magnetite/carbon adsorbents. A so-called "soak-calcination" procedure was employed by firstly soaking these waste fruit peels in FeCl 3 aqueous solutions and secondly calcining these precursors in the nitrogen atmosphere to yield final magnetite/carbon composites. This approach is quite simple and effective to synthesize carbon-based adsorbents on an industrial scale. The as-produced adsorbents feature the merits of appropriate ferromagnetism (>4emug -1 ), high adsorption capacity (several hundreds of milligrams per gram for adsorption of methyl blue, Congo red, rhodamine B and Cr 6+ ions), and good regenerability (>85%). Copyright © 2017 Elsevier Ltd. All rights reserved.
Calcination/dissolution chemistry development Fiscal year 1995
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delegard, C.H.
1995-09-01
The task {open_quotes}IPC Liaison and Chemistry of Thermal Reconstitution{close_quotes} is a $300,000 program that was conducted in Fiscal Year (FY) 1995 with U.S. Department of Energy (DOE) Office of Research and Development (EM-53) Efficient Separations and Processing Crosscutting Program supported under technical task plan (TTP) RL4-3-20-04. The principal investigator was Cal Delegard of the Westinghouse Hanford Company (WHC). The task encompassed the following two subtasks related to the chemistry of alkaline Hanford Site tank waste: (1) Technical Liaison with the Institute of Physical Chemistry of the Russian Academy of Science (IPC/RAS) and its research into the chemistry of transuranic elementsmore » (TRU) and technetium (Tc) in alkaline media. (2) Laboratory investigation of the chemistry of calcination/dissolution (C/D) (or thermal reconstitution) as an alternative to the present reference Hanford Site tank waste pretreatment flowsheet, Enhanced Sludge Washing (ESW). This report fulfills the milestone for the C/D subtask to {open_quotes}Provide End-of-Year Report on C/D Laboratory Test Results{close_quotes} due 30 September 1995. A companion report, fulfilling the milestone to provide an end-of-year report on the IPC/RAS liaison, also has been prepared.« less
HIGH TEMPERATURE TREATMENT OF INTERMEDIATE-LEVEL RADIOACTIVE WASTES - SIA RADON EXPERIENCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sobolev, I.A.; Dmitriev, S.A.; Lifanov, F.A.
2003-02-27
This review describes high temperature methods of low- and intermediate-level radioactive waste (LILW) treatment currently used at SIA Radon. Solid and liquid organic and mixed organic and inorganic wastes are subjected to plasma heating in a shaft furnace with formation of stable leach resistant slag suitable for disposal in near-surface repositories. Liquid inorganic radioactive waste is vitrified in a cold crucible based plant with borosilicate glass productivity up to 75 kg/h. Radioactive silts from settlers are heat-treated at 500-700 0C in electric furnace forming cake following by cake crushing, charging into 200 L barrels and soaking with cement grout. Variousmore » thermochemical technologies for decontamination of metallic, asphalt, and concrete surfaces, treatment of organic wastes (spent ion-exchange resins, polymers, medical and biological wastes), batch vitrification of incinerator ashes, calcines, spent inorganic sorbents, contaminated soil, treatment of carbon containing 14C nuclide, reactor graphite, lubricants have been developed and implemented.« less
NASA Astrophysics Data System (ADS)
Sulaiman, Fatah; Sari, Denni Kartika; Kustiningsih, Indar
2017-05-01
Effect of ozone on the photocatalytic degradation of phenol using TiO2 photocatalyst which supported Bayah Natural Zeolite has been investigated. Phenol (merk Pro analys) was used as waste solution. TiO2 photocatalyst was obtained from Titanium isopropoxide using sol gel method which supported by Bayah Natural Zeolite. The influence of temperature of calcination and catalyst loading have been conducted. The calcination temperature of photocatalyst was 450°C, 500°C, 550°C dan 600°C while the catalyst loading of 0,1g/L; 0,3 g/L; 0,6 g/L; 1 g/L dan 1,2 g/L. Analysis of phenol concentration was used Hach Spechtrophotometer. To determine the effect of ozone on photocatalytic degradation during process ozone was flowed into reactor. The result showed the optimum calcination temperature was obtained at 500°C. The optimum catalyst loading to degrade the phenolic compounds was equal to 1g/L. In these optimum condition the conversion of phenol degradation was 87% after 5 hours. By adding ozone during the degradation process, the conversion reached 100% after 2 hours.
Park, Youn-Jong; Yang, Jae-Kyu; Choi, Sang-Il
2008-07-15
This study examined the potential reuse of powdered wastes (PW) generated during the sanding and sawing process in a local chemical company in Korea with the viewpoint of the recycling these wastes and minimizing the level of contamination. The PW contained 40-60% aluminum hydroxide and 30-45% matrix resin. As a potential adsorbent, the suitability of thermal treated PW to remove arsenic from synthetic and real wastewater was investigated. As a pretreatment process, the reused adsorbent from PW was calcined at 550 degrees C for 3 hrs in a furnace. The calcination characteristics of PW were examined both quantitatively and qualitatively by X-ray fluorescence (XRF), and qualitatively by X-ray diffraction (XRD). The major inorganic composition of the calcined PW (CPW) was aluminum oxide with poor crystallinity. The CPW contained well developed meso-pores (0.143 cm(3) g(-1)) and showed a specific surface area of 234 m(2) g(-1). The pH of the zero point charge (pH(pzc)) of the CPW was determined to be 7.8 by acid-base titration. From the batch adsorption tests, the complete removal of arsenic (up to 20 mg L(-1)) was observed with CPW (2 g) at pH ranging from 3.0 to 8.0. However, there was a significant decrease in arsenate adsorption at higher pH. A kinetics study indicated that the uptake of arsenate followed a second-order rate equation. In the presence of sulfate, the removal of arsenate was increasingly affected by the sulfate concentration. The application of CPW to the removal of 4 different real mine drainages was also carried out. Mine drainage contains a relatively high arsenate concentration as well as sulfate. Whilst the amount of arsenic removed from real mine drainage by CPW was slightly lower than that removed from synthetic wastewater due to competitive sorption by multiple ions, the adsorption of arsenate showed rapid removal within 10 min with good removal efficiency, which meets the national wastewater discharge limits. These results suggest that CPW is a good adsorbent for removing arsenic from synthetic and real mine drainage.
Cementitious waste option scoping study report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, A.E.; Taylor, D.D.
1998-02-01
A Settlement Agreement between the Department of Energy (DOE) and the State of Idaho mandates that all high-level radioactive waste (HLW) now stored at the Idaho Chemical Processing Plant (ICPP) on the Idaho National Engineering and Environmental Laboratory (INEEL) will be treated so that it is ready to be moved out of Idaho for disposal by a target date of 2035. This study investigates the nonseparations Cementitious Waste Option (CWO) as a means to achieve this goal. Under this option all liquid sodium-bearing waste (SBW) and existing HLW calcine would be recalcined with sucrose, grouted, canisterized, and interim stored asmore » a mixed-HLW for eventual preparation and shipment off-Site for disposal. The CWO waste would be transported to a Greater Confinement Disposal Facility (GCDF) located in the southwestern desert of the US on the Nevada Test Site (NTS). All transport preparation, shipment, and disposal facility activities are beyond the scope of this study. CWO waste processing, packaging, and interim storage would occur over a 5-year period between 2013 and 2017. Waste transport and disposal would occur during the same time period.« less
Long-term high-level waste technology. Composite report
NASA Astrophysics Data System (ADS)
Cornman, W. R.
1981-12-01
Research and development studies on the immobilization of high-level wastes from the chemical reprocessing of nuclear reactor fuels are summarized. The reports are grouped under the following tasks: (1) program management and support; (2) waste preparation; (3) waste fixation; and (4) final handling. Some of the highlights are: leaching properties were obtained for titanate and tailored ceramic materials being developed at ICPP to immobilize zirconia calcine; comparative leach tests, hot-cell tests, and process evaluations were conducted of waste form alternatives to borosilicate glass for the immobilization of SRP high-level wastes, experiments were run at ANL to qualify neutron activation analysis and radioactive tracers for measuring leach rates from simulated waste glasses; comparative leach test samples of SYNROC D were prepared, characterized, and tested at LLNL; encapsulation of glass marbles with lead or lead alloys was demonstrated on an engineering scale at PNL; a canister for reference Commercial HLW was designed at PNL; a study of the optimization of salt-crete was completed at SRL; a risk assessment showed that an investment for tornado dampers in the interim storage building of the DWPF is unjustified.
Chaiyut, Nattawut; Worawanitchaphong, Phatsakon
2013-01-01
The waste shell was utilized as a bioresource of calcium oxide (CaO) in catalyzing a transesterification to produce biodiesel (methyl ester). The economic and environmen-friendly catalysts were prepared by a calcination method at 700–1,000°C for 4 h. The heterogeneous catalysts were characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM), and the Brunauer-Emmett-Teller (BET) method. The effects of reaction variables such as reaction time, reaction temperature, methanol/oil molar ratio, and catalyst loading on the yield of biodiesel were investigated. Reusability of waste shell catalyst was also examined. The results indicated that the CaO catalysts derived from waste shell showed good reusability and had high potential to be used as biodiesel production catalysts in transesterification of palm oil with methanol. PMID:24453854
Short and Long Courses of Ofloxacin Therapy of Klebsiella Pneumoniae Sepsis Following Irradiation
1992-01-01
synthetic trehalose dicorynomy- isolated in 5 of 10 (50%) water-treated mice and in none of colate (IN). glucan (/ 7). and colony-stimulating factor (/,N... Trehalose dimvcolate 4. G. D. Maki; Nvovovnial bacteremia. An epidemiologic overview, enhances resistance to infection in neutropenic animals. Intec
Method and article for primary containment of cesium wastes. [DOE patent application
Angelini, P.; Lackey, W.J.; Stinton, D.P.; Blanco, R.E.; Bond, W.D.; Arnold, W.D. Jr.
1981-09-03
A method for producing a cesium-retentive waste form, characterized by a high degree of compositional stability and mechanical integrity, is provided by subjecting a cesium-loaded zeolite to heat under conditions suitable for stabilizing the zeolite and immobilizing the cesium, and coating said zeolite for sufficient duration within a suitable environment with at least one dense layer of pyrolytic carbon to seal therein said cesium to produce a final, cesium-bearing waste form. Typically, the zolite is stabilized and the cesium immobilized in less than four hours by confinement within an air environment maintained at about 600/sup 0/C. Coatings are thereafter applied by confining the calcined zeolite within a coating environment comprising inert fluidizing and carbon donor gases maintained at 1000/sup 0/C for a suitable duration.
Method for primary containment of cesium wastes
Angelini, Peter; Lackey, Walter J.; Stinton, David P.; Blanco, Raymond E.; Bond, Walter D.; Arnold, Jr., Wesley D.
1983-01-01
A method for producing a cesium-retentive waste form, characterized by a high degree of compositional stability and mechanical integrity, is provided by subjecting a cesium-loaded zeolite to heat under conditions suitable for stabilizing the zeolite and immobilizing the cesium, and coating said zeolite for sufficient duration within a suitable environment with at least one dense layer of pyrolytic carbon to seal therein said cesium to produce a final, cesium-bearing waste form. Typically, the zeolite is stabilized and the cesium immobilized in less than four hours by confinement within an air environment maintained at about 600.degree. C. Coatings are thereafter applied by confining the calcined zeolite within a coating environment comprising inert fluidizing and carbon donor gases maintained at 1,000.degree. C. for a suitable duration.
Method for solidification of radioactive and other hazardous waste
Anshits, Alexander G.; Vereshchagina, Tatiana A.; Voskresenskaya, Elena N.; Kostin, Eduard M.; Pavlov, Vyacheslav F.; Revenko, Yurii A.; Tretyakov, Alexander A.; Sharonova, Olga M.; Aloy, Albert S.; Sapozhnikova, Natalia V.; Knecht, Dieter A.; Tranter, Troy J.; Macheret, Yevgeny
2002-01-01
Solidification of liquid radioactive waste, and other hazardous wastes, is accomplished by the method of the invention by incorporating the waste into a porous glass crystalline molded block. The porous block is first loaded with the liquid waste and then dehydrated and exposed to thermal treatment at 50-1,000.degree. C. The porous glass crystalline molded block consists of glass crystalline hollow microspheres separated from fly ash (cenospheres), resulting from incineration of fossil plant coals. In a preferred embodiment, the porous glass crystalline blocks are formed from perforated cenospheres of grain size -400+50, wherein the selected cenospheres are consolidated into the porous molded block with a binder, such as liquid silicate glass. The porous blocks are then subjected to repeated cycles of saturating with liquid waste, and drying, and after the last cycle the blocks are subjected to calcination to transform the dried salts to more stable oxides. Radioactive liquid waste can be further stabilized in the porous blocks by coating the internal surface of the block with metal oxides prior to adding the liquid waste, and by coating the outside of the block with a low-melting glass or a ceramic after the waste is loaded into the block.
NASA Astrophysics Data System (ADS)
Dianda, P.; Mahidin; Munawar, E.
2018-03-01
Many cities in developing countries is facing a serious problems to dealing with huge municipal solid waste (MSW) generated. The main approach to manage MSW is causes environmental impact associated with the leachate and landfill gas emissions. On the other hand, the energy available also limited by rapid growth of population and economic development due to shortage of the natural resource. In this study, the potential utilized of MSW to produce refuse derived fuel (RDF) was investigate. The RDF was produced with various organic waste content. Then, the RDF was subjected to laboratory analysis to determine its characteristic including the calorific value. The results shows the moisture content was increased by increasing organic waste content, while the calorific value was found 17-36 MJ/kg. The highest calorific value was about 36 MJ/kg obtained at RDF with 40% organic waste content. This results indicated that the RDF can be use to substitute coal in main burning process and calcinations of cement industry.
Fabrication of hydroxyapatite from fish bones waste using reflux method
NASA Astrophysics Data System (ADS)
Cahyanto, A.; Kosasih, E.; Aripin, D.; Hasratiningsih, Z.
2017-02-01
The aim of this present study was to investigate the fabrication of hydroxyapatites, which were synthesized from fish bone wastes using reflux method. The fish bone wastes collected from the restaurant were brushed and boiled at 100°C for 10 minutes to remove debris and fat. After drying, the fish bones were crushed, and ball milled into a fine powder. The fish bone wastes were then processed by refluxing using KOH and H3PO4 solutions. The samples were calcined at 900°C and characterized by X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectrometry (FT-IR). The XRD pattern of samples after treatment revealed that the peak of hydroxyapatite was observed and the bands of OH- and PO4 3- were observed by FT-IR. The scanning electron microscope evaluation of sample showed the entangled crystal and porous structure of hydroxyapatite. In conclusion, the hydroxyapatite was successfully synthesized from fish bone wastes using reflux method.
Balakrishnan, K; Olutoye, M A; Hameed, B H
2013-01-01
The current research investigates synthesis of methyl esters by transesterification of waste cooking oil in a heterogeneous system, using barium meliorated construction site waste marble as solid base catalyst. The pretreated catalyst was calcined at 830 °C for 4h prior to its activity test to obtained solid oxide characterized by scanning electron microscopy/energy dispersive spectroscopy, BET surface area and pore size measurement. It was found that the as prepared catalyst has large pores which contributed to its high activity in transesterification reaction. The methyl ester yield of 88% was obtained when the methanol/oil molar ratio was 9:1, reaction temperature at 65 °C, reaction time 3h and catalyst/oil mass ratio of 3.0 wt.%. The catalyst can be reused over three cycles, offer low operating conditions, reduce energy consumption and waste generation in the production of biodiesel. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nardova, A.K.; Filippov, E.A.; Glagolenko, Y.B.
1996-05-01
This report presents the results of investigations of plutonium immobilization from solutions on inorganic matrices with the purpose of producing a solid waste form. High-temperature sorption is described which entails the adsorption of radionuclides from solutions on porous, inorganic matrices, as for example silica gel. The solution is brought to a boil with additional thermal process (calcination) of the saturated granules.
García, Rosario; Rubio, Virginia; Vegas, Iñigo; Frías, Moisés
2009-05-01
One of the problems to affect Portland cement matrices is low resistance to aggressive agents, due principally to the presence of a high content of portlandite in the hydrated cements. Pozzolanic materials have played an important role in the improving the durability of cement-based materials for decades. This work studies the behaviour of cement mortar matrices blended with 10% calcined paper sludge (source for metakaolinite) and exposed to different environmental conditions (saline and non-saline environments) after 6 and 12 months of exposure. Two cements were studied: an ordinary Portland cement (CEM 1, 42.5R), acting as reference cement, and a blended cement formulated by mixing 90% (by mass) of CEM 1, 42.5R with 10% (by mass) of paper sludge calcined at 700 degrees C for 2 h. The specimens were exposed 1 year to saline and non-saline environments. All the mineralogy samples were studied through X-ray diffraction and scanning electron microscopy (SEM) equipped with an energy dispersive X-ray analyser. The in-depth study on ionic mobility was performed on samples subjected to natural exposure (coast and tableland) for 6 and 12 months. Portland cement was composed of quartz, calcite, calcium hydroxide and tobermorite gels. The pozzolanic cement (10% calcined paper sludge) is of the same composition but a high calcite concentration and barium carbonate. SEM analysis from coastline show deposits of variable composition. The deposits are identified on the surface of different mineral components. The minerals from tableland are much fractured, i.e. calcite and feldspars. Inside the fractures, the deposits and the ions are located and trapped superficially. SEM analysis of control cement Portland and 10% calcined paper sludge shows deposits on quartz and calcite with a very high concentration of Pb, Zn, Cl and barium sulphate. A very porous aspect is due to the presence of the different aggregate types. This porous configuration permits retention of the ion environment. The pozzolanic cement in environments subject to the saline mist favours the retention and transport of ions observed. Something similar also happens with the increase in exposure to outdoor weather. Non-saline samples show temperature changes (ice or thaw cycles). Barium retention is kept on the surface in fracture lines by the gelification processes. In general, it may be inferred that an increase in exposure time increases the diffusion of ions towards test piece interiors. The chemical composition profiles show that the ions present different penetration speeds. The results indicate the better vulnerability of pozzolanic cements from calcined paper sludge in saline and non-saline environments. The cements with a 10% addition of calcined paper sludge favour retention and transport of ion has been observed. Today, projects are centred on a new recycling line for industrial waste of this kind, with special attention on its incorporation in cement manufacture as a pozzolanic material, setting the most appropriate activation conditions of the mineralogical compound in this waste (kaolinite and metakaolinite) and taking them as a starting point for this project. The use of pozzolanic cement with 10% addition of calcined paper sludge is a system which favours ionic retention.
Production of brown and black pigments by using flotation waste from copper slag.
Ozel, Emel; Turan, Servet; Coruh, Semra; Ergun, Osman Nuri
2006-04-01
One of the major problems in copper-producing countries is the treatment of the large amount of copper slag or copper flotation waste generated from copper slag which contains significant amounts of heavy metals such as Cu, Zn, Pb and Co. Dumping or disposal of such large quantities of flotation waste from copper slag causes environmental and space problems. In this study, the treatment of flotation waste from copper slag by a thermal method and its use as an iron source in the production of inorganic brown and black pigments that are used in the ceramic industry were investigated. The pigments were produced by calcining different amounts of flotation waste and chromite, Cr2O3, ZnO and CoO mixtures. The pigments obtained were added to transparent ceramic glazes and porcelainized tile bodies. Their colours were defined by L*a*b* measurements with a spectrophotometer. The results showed that flotation waste from copper slag could be used as an iron source to produce brown and black pigments in both ceramic body and glazes.
Effects of Coal Gangue on Cement Grouting Material Properties
NASA Astrophysics Data System (ADS)
Liu, J. Y.; Chen, H. X.
2018-05-01
The coal gangue is one of the most abundant industrial solid wastes and pollute source of air and water. The use of coal gangue in the production of cement grouting material comforms to the basic state policy of environment protection and the circular using of natural resources. Through coal gangue processing experiment, coal gangue cement grouting materials making test, properties detection of properties and theoretical analysis, the paper studied the effects of coal gangue on the properties of cement grouting materials. It is found that at the range of 600 to 700 °C, the fluidity and the compressive and flexural strengths of the cement grouting materials increase with the rising up of the calcination temperatures of coal gangue. The optimum calcination temperature is around 700 °C. The part substitution of cement by the calcined coal gangue in the cement grouting material will improve the mechanical properties of the cement grouting material, even thought it will decrease its fluidity. The best substitution amount of cement by coal gangue is about 30%. The fluidity and the long term strength of the ordinary silicate cement grouting material is obviously higher than that of the sulphoaluminate cement one as well as that of the silicate-sulphoaluminate complex cement one.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Revyakin, V.; Borisov, L.M.
1996-05-01
Radio-chemical production facilities are constantly accumulating liquid radioactive wastes (still residues as the result of evaporation of extraction and adsorption solutions etc.) which are a complex multicomponent mixtures. The wastes are frequently stored for extended periods of time while awaiting disposition and in some cases, and this is much worse, they are released into the environment. In this report, I would like to draw your attention to some results we have obtained from investigations aimed at simplifying handing of such wastes by the precipitation of hard to dissolve metal hydroxides, the flocculation of the above into granules with the helpmore » of surface-active agents (in this case a polyacrylamide - PAA), quickly precipitated and easily filtered. The precipitate may be quickly dried and calcinated, if necessary, and transformed into a dense oxide sinter. In other words it may be transformed into a material convenient for storage or burial.« less
Feasibility of disposing waste glyphosate neutralization liquor with cement rotary kiln.
Bai, Y; Bao, Y B; Cai, X L; Chen, C H; Ye, X C
2014-08-15
The waste neutralization liquor generated during the glyphosate production using glycine-dimethylphosphit process is a severe pollution problem due to its high salinity and organic components. The cement rotary kiln was proposed as a zero discharge strategy of disposal. In this work, the waste liquor was calcinated and the mineralogical phases of residue were characterized by scanning electron microscope (SEM) and X-ray diffraction (XRD). The mineralogical phases and the strength of cement clinker were characterized to evaluate the influence to the products. The burnability of cement raw meal added with waste liquor and the calorific value of waste liquor were tested to evaluate the influence to the thermal state of the kiln system. The results showed that after the addition of this liquor, the differences of the main phases and the strength of cement clinker were negligible, the burnability of raw meal was improved; and the calorific value of this liquor was 6140 J/g, which made it could be considered as an alternative fuel during the actual production. Copyright © 2014 Elsevier B.V. All rights reserved.
Moon, Deok Hyun; Cheong, Kyung Hoon; Khim, Jeehyeong; Wazne, Mahmoud; Hyun, Seunghun; Park, Jeong-Hun; Chang, Yoon-Young; Ok, Yong Sik
2013-05-01
Pb(2+) and Cu(2+) contamination at army firing ranges poses serious environmental and health risks to nearby communities necessitating an immediate and prompt remedial action. In this study, a novel mixture of calcined oyster shells (COSs) and waste cow bones (WCBs) was utilized to immobilize Pb(2+) and Cu(2+) in army firing range soils. The effectiveness of the treatment was evaluated based on the Korean Standard leaching test. The treatment results showed that Pb(2+) and Cu(2+) immobilization in the army firing range soil was effective in significantly reducing Pb(2+) and Cu(2+) leachability upon the combined treatment with COS and WCB. A drastic reduction in Pb(2+) (99%) and Cu(2+) leachability (95%) was obtained as compared to the control sample, upon treatment with 5 wt.% COS and 5 wt.% WCB. The combination treatment of COS and WCB was more effective for Pb immobilization, than the treatment with COS or WCB alone. The 5 wt.% COS alone treatment resulted in 95% reduction in Cu(2+) leachability. The SEM-EDX results suggested that Pb(2+) and Cu(2+) immobilization was most probably associated with the formation of ettringite, pozzolanic reaction products and pyromorphite-like phases at the same time. Copyright © 2013 Elsevier Ltd. All rights reserved.
Synthesis of nano-crystalline hydroxyapatite and ammonium sulfate from phosphogypsum waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mousa, Sahar, E-mail: dollyriri@yahoo.com; King Abdulaziz University, Science and Art College, Chemistry Department, Rabigh Campus, P.O. Box:344, Postal code: 21911 Rabigh; Hanna, Adly
2013-02-15
Graphical abstract: TEM micrograph of dried HAP at 800 °C. -- Abstract: Phosphogypsum (PG) waste which is derived from phosphoric acid manufacture by using wet method was converted into hydroxyapatite (HAP) and ammonium sulfate. Very simple method was applied by reacting PG with phosphoric acid in alkaline medium with adjusting pH using ammonia solution. The obtained nano-HAP was dried at 80 °C and calcined at 600 °C and 900 °C for 2 h. Both of HAP and ammonium sulfate were characterized by X-ray diffraction (XRD) and infrared spectroscopy (IR) to study the structural evolution. The thermal behavior of nano-HAP wasmore » studied; the particle size and morphology were estimated by using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). All the results showed that HAP nano-crystalline and ammonium sulfate can successfully be produced from phosphogypsum waste.« less
Utility of EXAFS in characterization and speciation of mercury-bearing mine wastes
Kim, C.S.; Rytuba, J.J.; Brown, Gordon E.
1999-01-01
Extensive mining of large mercury deposits located in the California Coast Range has resulted in mercury contamination of both the local environment and water supplies. The solubility, dispersal, and ultimate fate of mercury are all affected by its chemical speciation, which can be most readily determined in a direct fashion using EXAFS spectroscopy. EXAFS spectra of mine wastes collected from several mercury mines in the California Coast Range with mercury concentrations ranging from 230 to 1060 mg/kg (ppm) have been analyzed using a spectral database of mercury minerals and sorbed mercury complexes. While some calcines have been found to consist almost exclusively of mercuric sulfide, HgS, others contain additional, more soluble mercury phases, indicating a greater potential for the release of mercury into solution. This experimental approach can provide a quantitative measurement of the mercury compounds present and may serve as an indicator of the bioavailability and toxicity levels of mercury mine wastes.
1992-04-30
SILICON S.J.SFERCO-, M.C.G.PASSEGGI" and M.A.CARAVACA*" "INTEC, Casilla de Correo 91, 8000-Santa Fe, ARGENTINA. "Facultad e Ciencias Ezactas y... Naturales y Agrimenaura, 94,00- Corrientes, ARGENTINA. Electronic Structure and Electric Field Gradient (EFG) calculations for the single Cd impurity in
Champion, Duane E.; Davis, Linda C.; Hodges, Mary K.V.; Lanphere, Marvin A.
2013-01-01
* The Jaramillo (Matuyama) flow group is found in corehole NRF 15, which is the deepest NRF corehole, and shows that the basalt flow group is thick in the subsurface at NRF. This flow group is thickest between the RWMC and INTEC and thins towards the ATRC and NRF.
Yang, Zhenzhou; Zhang, Yingyi; Liu, Lili; Seetharaman, Seshadri; Wang, Xidong; Zhang, Zuotai
2016-01-01
The present study firstly proposed a method of integrated utilization of sewage sludge (SS) and coal gangue (CG), two waste products, for cement clinker products with the aim of heat recovery and environment protection. The results demonstrated that the incremental amounts of SS and CG addition was favorable for the formation of tricalcium silicate (C3S) during the calcinations, but excess amount of SS addition could cause the impediment effect on C3S formation. Furthermore, it was also observed that the C3S polymorphs showed the transition from rhombohedral to monoclinic structure as SS addition was increased to 15 wt %. During the calcinations, most of trace elements could be immobilized especially Zn and cannot be easily leached out. Given the encouraging results in the present study, the co-process of sewage sludge and coal gangue in the cement kiln can be expected with a higher quality of cement products and minimum pollution to the environment. PMID:28773400
NASA Astrophysics Data System (ADS)
Bao, Yun
During the production of nuclear weapon by the DOE, large amounts of liquid waste were generated and stored in millions of gallons of tanks at Savannah River, Hanford and INEEL sites. Typically, the waste contains large amounts of soluble NaOH, NaNO2 and NaNO3 and small amounts of soluble fission products, cladding materials and cleaning solution. Due to its high sodium content it has been called sodium bearing waste (SBW). We have formulated, tested and evaluated a new type of hydroceramic waste form specifically designed to solidify SBW. Hydroceramics can be made from an alumosilicate source such as metakaolin and NaOH solutions or the SBW itself. Under mild hydrothermal conditions, the mixture is transformed into a solid consisting of zeolites. This process leads to the incorporation of radionuclides into lattice sites and the cage structures of the zeolites. Hydroceramics have high strength and inherent stability in realistic geologic settings. The process of making hydroceramics from a series of SBWs was optimized. The results are reported in this thesis. Some SBWs containing relatively small amounts of NaNO3 and NaNO2 (SigmaNOx/Sigma Na<25 mol%) can be directly solidified with metakaolin. The remaining SBW having high concentrations of nitrate and nitrite (SigmaNOx/Sigma Na>25 mol%) require pretreatment since a zeolitic matrix such as cancrinite is unable to host more than 25 mol% nitrate/nitrite. Two procedures to denitrate/denitrite followed by solidification were developed. One is based on calcination in which a reducing agent such as sucrose and metakaolin have been chosen as a way of reducing nitrate and nitrite to an acceptable level. The resulting calcine can be solidified using additional metakaolin and NaOH to form a hydroceramic. As an alternate, a chemical denitration/denitrition process using Si and Al powders as the reducing agents, followed by adding metakaolin to the solution prepare a hydroceramic was also investigated. Si and Al not only are the reducing agents, but they also provide Si and Al species to make zeolites during the reducing process. Performance of the hydroceramics was documented using SEM microstructure and X-ray diffraction phase analysis, mechanical property and leaching tests (Product Consistency Test and ANSI/ANS-16.1 leaching test).
Hazardous Waste Minimization Initiation Decision Report. Volume 2. Appendixes.
1988-06-01
remove particulate matter. The scrubber also neutralizes acidic vapors in the flue gas . Finally, the flue gas is neutralized in a packed scrubbing tower. A...of the calciner with the flue gases. The reclaimed grit, free of paint and fines, will be properly sized by adjusting the gas velocity in the...TECH OLOG be closely controlled in the range of 1000°-2000°F. The gas distribution grid in the reactor is a flat plate instead of a conical grid typical
Novel Crystalline SiO2 Nanoparticles via Annelids Bioprocessing of Agro-Industrial Wastes
2010-01-01
The synthesis of nanoparticles silica oxide from rice husk, sugar cane bagasse and coffee husk, by employing vermicompost with annelids (Eisenia foetida) is reported. The product (humus) is calcinated and extracted to recover the crystalline nanoparticles. X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and dynamic light scattering (DLS) show that the biotransformation allows creating specific crystalline phases, since equivalent particles synthesized without biotransformation are bigger and with different crystalline structure. PMID:20802789
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeff Sondrup; Gail Heath; Trent Armstrong
2011-04-01
This report presents the seismic refraction results from the depth to bed rock surveys for two areas being considered for the Remote-Handled Low-Level Waste (RH-LLW) disposal facility at the Idaho National Laboratory. The first area (Site 5) surveyed is located southwest of the Advanced Test Reactor Complex and the second (Site 34) is located west of Lincoln Boulevard near the southwest corner of the Idaho Nuclear Technology and Engineering Center (INTEC). At Site 5, large area and smaller-scale detailed surveys were performed. At Site 34, a large area survey was performed. The purpose of the surveys was to define themore » topography of the interface between the surficial alluvium and underlying basalt. Seismic data were first collected and processed using seismic refraction tomographic inversion. Three-dimensional images for both sites were rendered from the data to image the depth and velocities of the subsurface layers. Based on the interpreted top of basalt data at Site 5, a more detailed survey was conducted to refine depth to basalt. This report briefly covers relevant issues in the collection, processing and inversion of the seismic refraction data and in the imaging process. Included are the parameters for inversion and result rendering and visualization such as the inclusion of physical features. Results from the processing effort presented in this report include fence diagrams of the earth model, for the large area surveys and iso-velocity surfaces and cross sections from the detailed survey.« less
Comparison of Forest Carbon Changes in China and the Continental U.S.
NASA Astrophysics Data System (ADS)
Ju, W.
2015-12-01
Weimin Ju1, Chunhua Zhang1, Jing M. Chen2, Fangmin Zhang3, Xiqun Wang4, 1International Institute for Earth System Science, Nanjing University, Nanjing, 210023, China 2 Department of Geography, University of Toronto, Toronto, Ontario, Canada 3Jiangsu Key Laboratory of Agricultural Meteorology, College of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China 4Planning and Design Institute of Forest Products Industry, State Forestry Administration of China, Beijing, 100010, China Carbon changes of forests in China and the continental U.S. were investigated using national forest inventory datasets and the InTEC model, which integrates the effects of forest age, atmospheric CO2concentration, nitrogen deposition, and climate. Pervious to simulations, the changes of net primary productivity (NPP) in the InTEC model was calibrated using field measured NPP and ages of forests. Both forest inventory and model simulations indicated that carbon sequestration by forests in China increased significantly in recent decades. The forest inventory based estimates indicated that biomass carbon sinks of forest stands were 86.0 Tg C yr-1 and 174.0 Tg C yr-1 in China and 132.5 Tg C yr-1and 147.0 Tg C yr-1 in the continental U.S. during the periods from 1989 to 2008 and from 1999 to 2008, respectively. The InTEC model simulations indicated that the total carbon sinks of forests were 170.4 Tg C yr-1, 200.2 Tg C yr-1, 217.7 Tg C yr-1 in China and 225.9 Tg C yr-1, 222.7 Tg C yr-1, and 230.5 Tg C yr-1 in the continental U.S. during the periods from 1981 to 2010, from 1991 to 2010, and from 2001 to 2010, respectively. Forest carbon sink density was higher in China than that in the continental U.S., mainly due to a larger fraction of young forests in China. Total carbon sequestration by forests in China was close to that in the continental U.S. during the recent decade.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kramer, D.P.; Lewis, E.L.; Armstrong, K.M.
1982-01-01
A commercially available joule-heated glass furnace system is currently being evaluated at Mound as a means of reducing the volume of low-level radioactive waste similar to that found in light water reactor facilities. The furnace utilizes molten soda-lime-silica to initiate and support combustion of the waste feed and to serve as an immobilization matrix. First, corrosion studies were performed to determine the result that various waste loadings of glass would have on the refractory lining the furnace. Second, the chemical durability of soda-lime-silica under various waste loadings was assessed to determine its resistance to leaching under conditions similar to thosemore » encountered at waste disposal sites. Results proved that, although corrosion was quite significant for pure soda-lime-silica and a 10% waste loading, by the time a waste loading of 40% was achieved, the effects of corrosion were virtually nil. The temperature dependence of the corrosion caused by a 0% waste loading of soda-lime-silica on the refractory was also investigated. With an increase in temperature to 2650/sup 0/F, corrosion more than tripled. As a result, incineration and idle temperature is being maintained at, or below, 2400/sup 0/F. In conclusion, from the fact that the higher waste loading of soda-lime glass produced both increased chemical durability and increased refractory life, waste loadings in excess of 40%, and as high as 80%, may be achieved without adverse effect to the glass furnace system or its effectiveness for immobilizing radioactive waste.« less
Solid recovered fuels in the cement industry with special respect to hazardous waste.
Thomanetz, Erwin
2012-04-01
Cements with good technical properties have been produced in Europe since the nineteenth century and are now worldwide standardized high-quality mass products with enormous production numbers. The basic component for cement is the so-called clinker which is produced mainly from raw meal (limestone plus clay plus sands) in a rotary kiln with preheater and progressively with integrated calciner, at temperatures up to 1450 °C. This process requires large amounts of fossil fuels and is CO₂-intensive. But most CO₂ is released by lime decomposition during the burning process. In the 1980s the use of alternative fuels began--firstly in the form of used oil and waste tyres and then increasingly by pre-conditioned materials from commercial waste and from high calorific industrial waste (i.e. solid recovered fuel (SRF))--as well as organic hazardous waste materials such as solvents, pre-conditioned with sawdust. Therefore the cement industry is more and more a competitor in the waste-to-energy market--be it for municipal waste or for hazardous waste, especially concerning waste incineration, but also for other co-incineration plants. There are still no binding EU rules identifying which types of SRF or hazardous waste could be incinerated in cement kilns, but there are some well-made country-specific 'positive lists', for example in Switzerland and Austria. Thus, for proper planning in the cement industry as well as in the waste management field, waste disposal routes should be considered properly, in order to avoid surplus capacities on one side and shortage on the other.
Acid-Alkali Resistance of New Reclaimed Tiles Containing Sewage Sludge Ash and Waste Glass
Lin, Deng-Fong; Lin, Kuo-Liang; Luo, Huan-Lin; Xu, Jia-Qin
2016-01-01
In this study, properties of newly developed reclaimed tiles in a harmful environment were investigated. A portion of clay used to manufacture tiles was replaced with sewage sludge ash (SSA) and waste glass to produce the new reclaimed tiles. To investigate the effects of SSA and waste glass on the properties of the tiles, different specimens were blended and placed in acid-alkali solutions. The reclaimed tile specimens were manufactured by clay, 10% SSA, and five different mixes of waste glass replacement, namely, 0%, 10%, 20%, 40%, and 60%. These specimens were calcined at 1000 °C and subsequently underwent a series of tests, including TGA/DTA (thermogravimetric analysis/differential thermal analysis), SEM (scanning electron microscopy), XRD (X-ray diffraction), bending strength, weight loss, and porosity. Test results show that shortcomings associated with the introduction of the sludge ash were improved by the admixture of waste glass, especially in the aspects of shrinkage and bending strength. The study showed that the new reclaimed tiles performed relatively well in acid-alkali resistance tests but appeared to have better alkali resistance than acid resistance. It was also found that the optimal mix of such reclaimed tiles was 10% SSA, 10% waste glass, and 80% clay. PMID:28773668
Alumina Calcination in the Fluid-Flash Calciner
NASA Astrophysics Data System (ADS)
Fish, William M.
In the mid 40's, Alcoa turned to fluidized solids techniques as a means of improving the efficiency of the alumina calcining process. This paper traces calciner development from the first pilot operation in 1946 through the first plant fluid-bed unit in 1952, the early "fluid-flash" calciner designs in 1960, the first 300 ton/day fluid-flash calciner at Alcoa's Bauxite, Arkansas plant in 1963, the 600 ton/day calciners installed in Suriname and Australia in 1965 and 1966, up to the 1500 ton/day Mark III calciners now operating in Jamaica, Australia and the United States. These Mark III fluid-flash calciners have provided a 30 to 40 percent fuel saving in addition to major savings in capital investment and maintenance costs.
Genesis of Cr(VI) in Sri Lankan soils and its adsorptive removal by calcined gibbsite
NASA Astrophysics Data System (ADS)
Rajapaksha, A. U.; Wijesundara, D. M.; Vithanage, M. S.; Ok, Y. S.
2012-12-01
Hexavalent chromium is highly toxic to biota and considered as a priority pollutant. Industrial sources of Cr(VI) include leather tanning, plating, electroplating, anodizing baths, rinse waters, etc. In addition, weathering of ultramafic rocks rich in chromium, such as serpentine, is known to Cr(VI) sources into natural water. The Cr(III) is the most stable in the environment, however, conversion of Cr(III) into Cr(VI) occurs in soil due to presence of naturally occurring minerals such as manganese dioxides. We investigated the amount of Cr(VI) recorded from the soils from anthropogenically and naturally contaminated soils (serpentine soils) in Sri Lanka and the removal efficacy of Cr(VI) by calcined gibbsite (Al oxides). The effect of pH on Cr(VI) adsorption was determined by adjusting the pH in the range of 4-10. In the experiments, the adsorbent concentration was kept at 1 g/l of solution containing 10 mg/l Cr(VI) at 25 0C. Total chromium recorded were around 11,000 mg kg-1 and 6,000 mg kg-1 for serpentine soil and tannery waste-contaminated soil, respectively. Although total Cr was high in the contaminated soils, Cr(VI) concentration was only about 28 mg kg-1 and 210 mg kg-1 in the serpentine and tannery soils, respectively. The calcined gibbsite has maximum adsorption of 85 % around pH 4 and adsorption generally decreased with increase of pH.
Sources of mercury to San Francisco Bay surface sediment as revealed by mercury stable isotopes
Gehrke, Gretchen E.; Blum, Joel D.; Marvin-DePasquale, Mark
2011-01-01
Mercury (Hg) concentrations and isotopic compositions were examined in shallow-water surface sediment (0–2 cm) from San Francisco (SF) Bay to determine the extent to which historic Hg mining contributes to current Hg contamination in SF Bay, and to assess the use of Hg isotopes to trace sources of contamination in estuaries. Inter-tidal and wetland sediment had total Hg (HgT) concentrations ranging from 161 to 1529 ng/g with no simple gradients of spatial variation. In contrast, inter-tidal and wetland sediment displayed a geographic gradient of δ202Hg values, ranging from -0.30% in the southern-most part of SF Bay (draining the New Almaden Hg District) to -0.99% in the northern-most part of SF Bay near the Sacramento–San Joaquin River Delta. Similar to SF Bay inter-tidal sediment, surface sediment from the Alviso Slough channel draining into South SF Bay had a δ202Hg value of -0.29%, while surface sediment from the Cosumnes River and Sacramento–San Joaquin River Delta draining into north SF Bay had lower average δ202Hg values of -0.90% and -0.75%, respectively. This isotopic trend suggests that Hg-contaminated sediment from the New Almaden Hg District mixes with Hg-contaminated sediment from a low δ202Hg source north of SF Bay. Tailings and thermally decomposed ore (calcine) from the New Idria Hg mine in the California Coast Range had average δ202Hg values of -0.37 and +0.03%, respectively, showing that Hg calcination fractionates Hg isotopes resulting in Hg contamination from Hg(II) mine waste products with higher δ202Hg values than metallic Hg(0) produced from Hg mines. Thus, there is evidence for at least two distinct isotopic signals for Hg contamination in SF Bay: Hg associated with calcine waste materials at Hg mines in the Coast Range, such as New Almaden and New Idria; and Hg(0) produced from these mines and used in placer gold mines and/or in other industrial processes in the Sierra Nevada region and SF Bay area.
The Leaching of Aluminium In Spanish Clays, Coal Mining Wastes and Coal Fly Ashes by Sulphuric Acid.
NASA Astrophysics Data System (ADS)
Fernández, A. M.; Ibáñez, J. L.; Llavona, M. A.; Zapico, R.
The acid leaching of aluminium from several non traditional ores, bayerite, kaolinite, different clays, coal mining wastes and coal fly ashes, and the kinetic of their dissolution are described. The effects of time, temperature, acid concentration, sample calcination, particle size were examined. The leaching of aluminium is dependent on acid concentration and strongly on temperature. Generally, the time to reach a fixed percentage of dissolution decreases with increasing acid concentration in the range 6% to 40% acid by weight. On clays and coal mining wastes a good relation between Al removal and ratio kaolinite/illite was also observed at all temperatures and acid concentration tested. Coal fly ashes are particles that were heated at very high temperatures in the power station and Al compounds were transformed into mullite and so Al recovery was minor. Several rate equations describing the kinetics of the leach reaction were discussed and Kinetic parameters and activation energy values of samples are presented.
YIELD STRESS REDUCTION OF DWPF MELTER FEED SLURRIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stone, M; Michael02 Smith, M
2006-12-28
The Defense Waste Processing Facility (DWPF) at the Savannah River Site vitrifies High Level Waste for repository internment. The process consists of three major steps: waste pretreatment, vitrification, and canister decontamination/sealing. The HLW consists of insoluble metal hydroxides (primarily iron, aluminum, magnesium, manganese, and uranium) and soluble sodium salts (carbonate, hydroxide, nitrite, nitrate, sulfate). The pretreatment process acidifies the sludge with nitric and formic acids, adds the glass formers as glass frit, then concentrates the resulting slurry to approximately 50 weight percent (wt%) total solids. This slurry is fed to the joule-heated melter where the remaining water is evaporated followedmore » by calcination of the solids and conversion to glass. The Savannah River National Laboratory (SRNL) is currently assisting DWPF efforts to increase throughput of the melter. As part of this effort, SRNL has investigated methods to increase the solids content of the melter feed to reduce the heat load required to complete the evaporation of water and allow more of the energy available to calcine and vitrify the waste. The process equipment in the facility is fixed and cannot process materials with high yield stresses, therefore increasing the solids content will require that the yield stress of the melter feed slurries be reduced. Changing the glass former added during pretreatment from an irregularly shaped glass frit to nearly spherical beads was evaluated. The evaluation required a systems approach which included evaluations of the effectiveness of beads in reducing the melter feed yield stress as well as evaluations of the processing impacts of changing the frit morphology. Processing impacts of beads include changing the settling rate of the glass former (which effects mixing and sampling of the melter feed slurry and the frit addition equipment) as well as impacts on the melt behavior due to decreased surface area of the beads versus frit. Beads were produced from the DWPF process frit by fire polishing. The frit was allowed to free fall through a flame, then quenched with a water spray. Approximately 90% of the frit was converted to beads by this process, as shown in Figure 1. Borosilicate beads of various diameters were also procured for initial testing.« less
NASA Astrophysics Data System (ADS)
Liou, Tzong-Horng
2012-07-01
The electronics industry is one of the world's fastest growing manufacturing industries. However, e-waste has become a serious pollution problem. This study reports the recovery of e-waste for preparing valuable MCM-48 and ordered mesoporous carbon for the first time. Specifically, this study adopts an alkali-extracted method to obtain sodium silicate precursors from electronic packaging resin ash. The influence of synthesis variables such as gelation pH, neutral/cationic surfactant ratio, hydrothermal treatment temperature, and calcination temperature on the mesophase of MCM-48 materials is investigated. Experimental results confirm that well-ordered cubic MCM-48 materials were synthesized in strongly acidic and strongly basic media. The resulting mesoporous silica had a high surface area of 1,317 m2/g, mean pore size of about 3.0 nm, and a high purity of 99.87 wt%. Ordered mesoporous carbon with high surface area (1,715 m2/g) and uniform pore size of CMK-1 type was successfully prepared by impregnating MCM-48 template using the resin waste. The carbon structure was sensitive to the sulfuric acid concentration and carbonization temperature. Converting e-waste into MCM-48 materials not only eliminates the disposal problem of e-waste, but also transforms industrial waste into a useful nanomaterial.
High-level waste program progress report, January 1, 1980-March 31, 1980
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-05-01
FUETAP concretes cured at 100/sup 0/C and 0.1 or 0.6 MPa had essentially the same physical properties as those cured at higher temperatures and pressures. Standard specimens containing high concentrations of /sup 244/Cm showed little gasification after 1 month. The large (23-cm ID) spray calciner has been completed and is operating satisfactorily. Construction was completed on a sphere-forming system capable of producing 100-g batches of Synroc spheres by internal gelation, and several runs were made. Preparations for the compatibilty tests are underway. (DLC)
40 CFR 98.86 - Data reporting requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) Monthly fraction of total CaO, total MgO, non-calcined CaO and non-calcined MgO in clinker for each kiln (as wt-fractions). (7) Method used to determine non-calcined CaO and non-calcined MgO in clinker. (8) Quarterly fraction of total CaO, total MgO, non-calcined CaO and non-calcined MgO in CKD not recycled to the...
Synthesis of adsorbent with zeolite structure from red mud and rice husk ash and its properties
NASA Astrophysics Data System (ADS)
Quyen, Dinh Thi Ngoc; Loc, Luu Cam; Ha, Huynh Ky Phuong; Nga, Dang Thi Hang; Tri, Nguyen; Van, Nguyen Thi Thuy
2017-09-01
There are many researches in the modification of red mud as adsorbent for treatment of wastewater or waste gases. Yet, most of them have to face up with a thorny problem caused by remaining alkali in red mud. In this study, the material with zeolite structure was synthesized by fusion method using red mud with the remaining alkali and rice husk ash as raw materials. It comprised alkaline fusion followed by hydrothermal treatment with step - change of synthesis temperature. The synthesized materials were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), BET and CO2 adsorption capacity. The influences on the quality of these materialswere investigated under various calcination temperatures, calcination times and the ratios of raw materials (based on SiO2/Al2O3 ratio). The optimum reaction parameters were determined. The results depicted that the sample treated at 600 °C for 2 hours with the ratio of SiO2/Al2O3 of 1.8 had the best adsorption capacity and total specific surface area compared with the others.
NASA Astrophysics Data System (ADS)
Liao, L. M.; Wang, Z. Q.; Liang, H.; Feng, J.; Zhang, D.
2016-08-01
Supported nano-TiO2photocatalysts play an important role in water environment restoration because of their potential application to photocatalytic degradation of organic contaminants in waste water. With sepiolite as the support, the nano-TiO2/sepiolite composite photocatalysts were synthesized by an easily operated and mild solid-state sintering process.The microstructureand photocatalytic property of the sepiolite supportednano-TiO2 composites were characterized and analyzed by X-ray diffraction spectroscopy, UV-Visible spectroscopy and fluorescence spectroscopy. In addition, the influences of calcination temperature and load ratios on the photocatalytic activity of sepiolite supported nano-TiO2 composites were studied.The results indicated that appropriate ratios of sepiolite supports to nano-TiO2contributed to uniform dispersion of nanoparticles, and enhanced the absorption ability within the UV-Vis range, and consequently increased the photocatalytic activity of the composites.Under the preparation conditions of 90 wt. % TiO2 loading and calcinated at 400 °C, a maximum in photocatalytic activity ofnano-TiO2 sepiolite composite was obtained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Law, Jack Douglas; Wood, David James; Todd, Terry Allen
1999-02-01
Laboratory experimentation has indicated that the SREX process is effective for partitioning 90 Sr from acidic radioactive waste solutions located at the Idaho Nuclear Technology and Engineering Center. These laboratory results were used to develop a flowsheet for countercurrent testing of the SREX process with dissolved pilot plant calcine. Testing was performed using 24 stages of 2-cm diameter centrifugal contactors which are installed in the Remote Analytical Laboratory hot cell. Dissolved Run #64 pilot plant calcine spiked with 85 Sr was used as feed solution for the testing. The flowsheet tested consisted of an extraction section (0.15 M 4',4'(5')-di-(tert-butylcyclohexo)-18-crown-6 andmore » 1.5 M TBP in Isopar-L.), a 1.0 M NaNO3 scrub section to remove extracted K from the SREX solvent, a 0.01 M HNO3 strip section for the removal of Sr from the SREX solvent, a 0.25 M Na2CO3 wash section to remove degradation products from the solvent, and a 0.1 M HNO3 rinse section. The behavior of 85 Sr, Na, K, Al, B, Ca, Cr, Fe, Ni, and Zr was evaluated. The described flowsheet successfully extracted 85 Sr from the dissolved pilot plant calcine with a removal efficiency of 99.6%. Distribution coefficients for 85 Sr ranged from 3.6 to 4.5 in the extraction section. With these distribution coefficients a removal efficiency of approximately >99.99% was expected. It was determined that the lower than expected removal efficiency can be attributed to a stage efficiency of only 60% in the extraction section. Extracted K was effectively scrubbed from the SREX solvent with the 1.0 M NaNO3 resulting in only 6.4% of the K in the HLW strip product. Sodium was not extracted from the dissolved calcine by the SREX solvent; however, the use of a 1.0 M NaNO3 scrub solution resulted in a Na concentration of 70 mg/L (12.3% of the feed concentration) in the HLW strip product. Al, B, Ca, Cr, Fe, Ni, and Zr were determined to be essentially inextractable.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Law, J.D.; Wood, D.J.; Todd, T.A.
1999-01-01
Laboratory experimentation has indicated that the SREX process is effective for partitioning {sup 90}Sr from acidic radioactive waste solutions located at the Idaho Nuclear Technology and Engineering Center. These laboratory results were used to develop a flowsheet for countercurrent testing of the SREX process with dissolved pilot plant calcine. Testing was performed using 24 stages of 2-cm diameter centrifugal contactors which are installed in the Remote Analytical Laboratory hot cell. Dissolved Run No.64 pilot plant calcine spiked with {sup 85}Sr was used as feed solution for the testing. The flowsheet tested consisted of an extraction section (0.15 M 4{prime},4{prime}(5{prime})-di-(tert-butylcyclohexo)-18-crown-6 andmore » 1.5 M TBP in Isopar-L.), a 1.0 M NaNO{sub 3} scrub section to remove extracted K from the SREX solvent, a 0.01 M HNO{sub 3} strip section for the removal of Sr from the SREX solvent, a 0.25 M Na2CO{sub 3} wash section to remove degradation products from the solvent, and a 0.1 M HNO{sub 3} rinse section. The behavior of {sup 85}Sr, Na, K, Al, B, Ca, Cr, Fe, Ni, and Zr was evaluated. The described flowsheet successfully extracted {sup 85}Sr from the dissolved pilot plant calcine with a removal efficiency of 99.6%. Distribution coefficients for {sup 85}Sr ranged from 3.6 to 4.5 in the extraction section. With these distribution coefficients a removal efficiency of approximately >99.99% was expected. It was determined that the lower than expected removal efficiency can be attributed to a stage efficiency of only 60% in the extraction section. Extracted K was effectively scrubbed from the SREX solvent with the 1.0 M NaNO{sub 3} resulting in only 6.4% of the K in the HLW strip product. Sodium was not extracted from the dissolved calcine by the SREX solvent; however, the use of a 1.0 M NaNO{sub 3} scrub solution resulted in a Na concentration of 70 mg/L (12.3% of the feed concentration) in the HLW strip product. Al, B, Ca, Cr, Fe, Ni, and Zr were determined to be essentially inextractable.« less
Airport Landside. Volume V. Appendix B. ALSIM Subroutines.
1982-06-01
CHKQS for the same reason as above. N is next set to 2 which is the process code for express check-in. ITEMPI is then set to CHEK2 . This variable is...RCARO.BAGCO.OPLCO, CHEK2 ,CHEK3,CGTRO.ERROR.SECUO.TRX99 00C23C00 IN7EGFR CTQL0.CTRLI 00024000 INTEC.EA.4 DPDPS.DPQCS.EPDPS,EPOCS C00250OO INTEGER-2 IDI’AI
Alizarin red S dye removal from contaminated water on calcined [Mg/Al, Zn/Al and MgZn/Al]-LDH
NASA Astrophysics Data System (ADS)
Aissat, Miloud; Hamouda, Sara; Benhadria, Naceur; Chellali, Rachid; Bettahar, Noureddine
2018-05-01
The waste water rejected by the textile industries is loaded with organic dyes, responsible for the high color present in the effluents. Some dyes and / or their degradation products could be carcinogenic and may have mutagenic properties. The rapid growth of the global economy has caused many environmental problems with a huge pollution problem. The abuse use of chemicals product is an environmental toxicological problem. The consequences can be serious for water resources. In this perspective, our study comes to participate with new means of depollution using new materials with interesting properties in the treatment of pollution. Among these materials, LDHs whose synthesis is easy and inexpensive can be a tool in the treatment of water Polluted [1]. Our contribution consists in using HDL as a means of sorption of dyes which are considered as polluting agents of waters especially for the industry textile. This study considers the removal of the Alizarine Red S (AR) from water on calcined MgAl,ZnAL and MgZnAL-layered double hydroxides. The different LDH was prepared by copreprecipation method. The materials was obtained for molar ratios R =2 for the different LDH. The carbonated layered Calcination of these solids leads to the formation of mixed oxides which have the property of being able to be regenerated by adsorbing new anionic entities. Adsorbents and adsorption products were characterized by physicochemical techniques. The structural characterization of the material was carried out by X-ray diffraction, infrared spectroscopy (FTIR). Dosages of the polluted solutions were monitored by UV-Visible spectrometry.
Mahto, Ashesh; Gupta, Rajeev; Ghara, Krishna Kanta; Srivastava, Divesh N; Maiti, Pratyush; D, Kalpana; Rivera, Paul-Zavala; Meena, R; Nataraj, S K
2017-10-15
This study aims at developing supercapacitor materials from sugar and distillery industry wastes, thereby mediating waste disposal problem through reuse. In a two-step process, biomethanated spent wash (BMSW) was acid treated to produce solid waste sludge and waste water with significantly reduced total organic carbon (TOC) and biological oxygen demand (BOD) content. Further, waste sludge was directly calcined in presence of activating agent ZnCl 2 in inert atmosphere resulting in high surface area (730-900m 2 g -1 ) carbon of unique hexagonal morphology. Present technique resulted in achieving two-faceted target of liquid-solid waste remediation and production of high-performance carbon material. The resulted high surface area carbon was tested in both three and two electrode systems. Electrochemical tests viz. cyclic voltammetry, galvanostatic charge-discharge and impedance measurement were carried out in aqueous KOH electrolyte yielding specific capacitance as high as 120Fg -1 , whereas all solid supercapacitor devised using PVA/H 3 PO 4 polyelectrolyte showed stable capacitance of 105Fg -1 at 0.2Ag -1 . The presence of transition metal particles and hetero-atoms on carbon surface were confirmed by XPS, EDX and TEM analysis which enhanced the conductivity and imparted pseudocapacitance to some extent into the working electrode. The present study successfully demonstrated production of high-performance electrode material from dirtiest wastewater making process green, sustainable and economically viable. Copyright © 2017. Published by Elsevier B.V.
Formal Verification at System Level
NASA Astrophysics Data System (ADS)
Mazzini, S.; Puri, S.; Mari, F.; Melatti, I.; Tronci, E.
2009-05-01
System Level Analysis calls for a language comprehensible to experts with different background and yet precise enough to support meaningful analyses. SysML is emerging as an effective balance between such conflicting goals. In this paper we outline some the results obtained as for SysML based system level functional formal verification by an ESA/ESTEC study, with a collaboration among INTECS and La Sapienza University of Roma. The study focuses on SysML based system level functional requirements techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Layne Pincock; Wendell Hintze; Dr. Koji Shirai
Following the massive earthquake and resulting tsunami damage in March of 2011 at the Fukushima Daiichi nuclear power plant in Japan, interest was amplified for what was done for recovery at the Three Mile Island Unit 2 (TMI-2) in the United States following its meltdown in 1979. Many parallels could be drawn between to two accidents. This paper presents the results of research done into the TMI-2 recovery effort and its applicability to the Fukushima Daiichi cleanup. This research focused on three topics: packaging, transportation, and disposition. This research work was performed as a collaboration between Japan’s Central Research Institutemore » of Electric Power Industry (CRIEPI) and the Idaho National Laboratory (INL). Hundreds of TMI-2 related documents were searched and pertinent information was gleaned from these documents. Other important information was also obtained by interviewing employees who were involved first hand in various aspects of the TMI-2 cleanup effort. This paper is organized into three main sections: (1) Transport from Three Mile Island to Central Facilities Area at INL, (2) Transport from INL Central Receiving Facility to INL Test Area North (TAN) and wet storage at TAN, and (3) Transport from TAN to INL Idaho Nuclear Technology and Engineering Center (INTEC) and Dry Storage at INTEC. Within each of these sections, lessons learned from performing recovery activities are presented and their applicability to the Fukushima Daiichi nuclear power plant cleanup are outlined.« less
NASA Astrophysics Data System (ADS)
Cassingham, N. J.; Corkhill, C. L.; Stennett, M. C.; Hand, R. J.; Hyatt, N. C.
2016-10-01
The UK high level nuclear waste glass modified with CaO/ZnO was investigated using the vapour phase hydration test, performed at 200 °C, with the aim of understanding the impact of the modification on the chemical composition and microstructure of the alteration layer. Experiments were undertaken on non-modified and CaO/ZnO-modified base glass, with or without 25 wt% of simulant Magnox waste calcine. The modification resulted in a dramatic reduction in gel layer thickness and also a reduction in the reaction rate, from 3.4 ± 0.3 g m-2 d-1 without CaO/ZnO modification to 0.9 ± 0.1 g m-2 d-1 with CaO/ZnO. The precipitated phase assemblage for the CaO/ZnO-modified compositions was identified as hydrated Ca- and Zn-bearing silicate phases, which were absent from the non-modified counterpart. These results are in agreement with other recent studies showing the beneficial effects of ZnO additions on glass durability.
Coconut coir as biosorbent for Cr(VI) removal from laboratory wastewater.
Gonzalez, Mário H; Araújo, Geórgia C L; Pelizaro, Claudia B; Menezes, Eveline A; Lemos, Sherlan G; de Sousa, Gilberto Batista; Nogueira, Ana Rita A
2008-11-30
A high cost-effective treatment of sulphochromic waste is proposed employing a raw coconut coir as biosorbent for Cr(VI) removal. The ideal pH and sorption kinetic, sorption capacities, and sorption sites were the studied biosorbent parameters. After testing five different isotherm models with standard solutions, Redlich-Peterson and Toth best fitted the experimental data, obtaining a theoretical Cr(VI) sorption capacity (SC) of 6.3 mg g(-1). Acid-base potentiometric titration indicated around of 73% of sorption sites were from phenolic compounds, probably lignin. Differences between sorption sites in the coconut coir before and after Cr adsorption identified from Fourier transform infrared spectra suggested a modification of sorption sites after sulphochromic waste treatment, indicating that the sorption mechanism involves organic matter oxidation and chromium uptake. For sulphocromic waste treatment, the SC was improved to 26.8+/-0.2 mg g(-1), and no adsorbed Cr(VI) was reduced, remaining only Cr(III) in the final solution. The adsorbed material was calcinated to obtain Cr(2)O(3,) with a reduction of more than 60% of the original mass.
NASA Astrophysics Data System (ADS)
Asri, N. P.; Podjojono, B.; Fujiani, R.; Nuraini
2017-05-01
A solid CaO-based catalyst of waste eggshell was developed for biodiesel production from used cooking oil. The waste eggshell powder was calcined in air at 90° C for 4 h to convert calcium species in the eggshells into active CaO catalysts. The characterization of CaO catalyst was done by XRD and BET analysis. The CaO catalyst was then introduced for transesterification of used cooking oil (UCO) for testing of its catalytic activity. The experiment was conducted in batch type reactor that consists of three-neck glass equipped by reflux condenser and magnetic stirrer. Before tranesterification process, the UCO was treated by coconut coir powder in order to reduce the free fatty acid content. The result showed that the catalyst was potentially use for transesterification of used cooking oil into biodiesel with relatively high yield of 75.92% was achieved at reaction temperature, reaction time, molar ratio UCO to methanol and catalyst amount of 65° C, 7 h, 1:15 and 6%, respectively.
Bacteria-assisted preparation of nano α-Fe2O3 red pigment powders from waste ferrous sulfate.
Li, Xiang; Wang, Chuankai; Zeng, Yu; Li, Panyu; Xie, Tonghui; Zhang, Yongkui
2016-11-05
Massive ferrous sulfate with excess sulfuric acid is produced in titanium dioxide industry each year, ending up stockpiled or in landfills as solid waste, which is hazardous to environment and in urgent demand to be recycled. In this study, waste ferrous sulfate was used as a second raw material to synthesize nano α-Fe2O3 red pigment powders with a bacteria-assisted oxidation process by Acidithiobacillus ferrooxidans. The synthesis route, mainly consisting of bio-oxidation, precipitation and calcination, was investigated by means of titration, thermogravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscope (SEM) and X-ray fluorescence (XRF) to obtain optimum conditions. Under the optimum conditions, nano α-Fe2O3 red pigment powders contained 98.24wt.% of Fe2O3 were successfully prepared, with a morphology of spheroidal and particle size ranged from 22nm to 86nm and averaged at 45nm. Moreover, the resulting product fulfilled ISO 1248-2006, the standards of iron oxide pigments. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Senthoorselvan, S.; Gleis, S.; Hartmut, S.
2009-01-15
Naturally occurring limestone and dolomite samples, originating from different geographical locations, were tested as potential sorbents for carbonation/calcination based CO{sub 2} capture from combustion flue gases. Samples have been studied in a thermogravimetric analyzer under simulated flue gas conditions at three calcination temperatures, viz., 750{sup o}C, 875{sup o}C, and 930{sup o}C for four carbonation calcination reaction (CCR) cycles. The dolomite sample exhibited the highest rate of carbonation than the tested limestones. At the third cycle, its CO{sub 2} capture capacity per kilogram of the sample was nearly equal to that of Gotland, the highest reacting limestone tested. At the fourthmore » cycle it surpassed Gotland, despite the fact that the CaCO{sub 3} content of the Sibbo dolomite was only 2/3 of that of the Gotland. Decay coefficients were calculated by a curve fitting exercise and its value is lowest for the Sibbo dolomite. That means, most probably its capture capacity per kilogram of the sample would remain higher well beyond the fourth cycle. There was a strong correlation between the calcination temperature, the specific surface area of the calcined samples, and the degree of carbonation. It was observed that the higher the calcination temperature, the lower the sorbent reactivity. For a given limestone/dolomite sample, sorbents CO{sub 2} capture capacity depended on the number of CCR cycles and the calcination temperature. According to the equilibrium thermodynamics, the CO{sub 2} partial pressure in the calciner should be lowered to lower the calcination temperature. This can be achieved by additional steam supply into the calciner. Steam could then be condensed in an external condenser to single out the CO{sub 2} stream from the exit gas mixture of the calciner. A calciner design based on this concept is illustrated.« less
Ceramic-like open-celled geopolymer foam as a porous substrate for water treatment catalyst
NASA Astrophysics Data System (ADS)
Kovářík, T.; Křenek, T.; Pola, M.; Rieger, D.; Kadlec, J.; Franče, P.
2017-02-01
This paper presents results from experimental study on microstructural and mechanical properties of geopolymer-based foam filters. The process for making porous ceramic-like geopolymer body was experimentally established, consists of (a) geopolymer paste synthesis, (b) ceramic filler incorporation, (c) coating of open-celled polyurethane foam with geopolymer mixture, (d) rapid setting procedure, (e) thermal treatment. Geopolymer paste was based on potassium silicate solution n(SiO2)/n(K2O)=1.6 and powder mixture of calcined kaolin and precipitated silica. Various types of ceramic granular filler (alumina, calcined schistous clay and cordierite) were tested in relation to aggregate gradation design and particle size distribution. The small amplitude oscillatory rheometry in strain controlled regime 0.01% with angular frequency 10 rad/s was applied for determination of rheology behavior of prepared mixtures. Thermal treatment conditions were applied in the temperature range 1100 - 1300 °C. The developed porous ceramic-like foam effectively served as a substrate for highly active nanoparticles of selected Fe+2 spinels. Such new-type of nanocomposite was tested as a heterogeneous catalyst for technological process of advanced oxidative degradation of resistive antibiotics occurring in waste waters.
Winfield, Kari A.
2003-01-01
The subsurface at the Idaho National Engineering and Environmental Laboratory (INEEL) is complex, comprised primarily of thick, fractured basalt flows interbedded with thinner sedimentary intervals. The unsaturated zone can be as thick as 200 m in the southwestern part of the INEEL. The Vadose Zone Research Park (VZRP), located approximately 10 km southwest of the Idaho Nuclear Technology and Engineering Center (INTEC), was established in 2001 to study the subsurface of a relatively undisturbed part of the INEEL. Waste percolation ponds for the INTEC were relocated to the VZRP due to concerns that perched water within the vadose zone under the original infiltration ponds (located immediately south of the INTEC) could contribute to migration of contaminants to the Snake River Plain aquifer. Knowledge of the spatial distribution of texture and hydraulic properties is important for developing a better understanding of subsurface flow processes within the interbeds, for example, by identifying low permeability layers that could lead to the formation of perched ground-water zones. Because particle-size distributions are easier to measure than hydraulic properties, particle size serves as an analog for determining how the unsaturated hydraulic properties vary both vertically within particular interbeds and laterally within the VZRP. As part of the characterization program for the subsurface at the VZRP, unsaturated and saturated hydraulic properties were measured on 10 core samples from six boreholes. Bulk properties, including particle size, bulk density, particle density, and specific surface area, were determined on material from the same depth intervals as the core samples, with an additional 66 particle- size distributions measured on bulk samples from the same boreholes. From lithologic logs of the 32 boreholes at the VZRP, three relatively thick interbeds (in places up to 10 m thick) were identified at depths of 35, 45, and 55 m below land surface. The 35-m interbed extends laterally over a distance of at least 900 m from the Big Lost River to the new percolation pond area of the VZRP. Most wells within the VZRP were drilled to depths less than 50 m, making it difficult to infer the lateral extent of the 45-m and 55-m interbeds. The 35-m interbed is uniform in texture both vertically and laterally; the 45-m interbed coarsens upward; and the 55-m interbed contains alternating coarse and fine layers. Seventy-one out of 90 samples were silt loams and 9 out of 90 samples were classified as either sandy loams, loamy sands, or sands. The coarsest samples were located within the 45-m and 55-m interbeds of borehole ICPP-SCI-V-215, located near the southeast corner of the new percolation pond area. At the tops of some interbeds, baked-zone intervals were identified by their oxidized color (yellowish red to red) compared to the color of the underlying non-baked material (pale yellow to brown). The average geometric mean particle diameter of baked-zone intervals was only slightly coarser, in some cases, than the underlying non-baked sediment. This is likely due to both depositional differences between the top and bottom of the interbeds and the presence of small basalt clasts in the sediment. Core sample hydraulic properties from baked zones within the different interbeds did not show effects from alteration caused during basalt deposition, but differed mainly by texture. Saturated hydraulic conductivities (Ksat) for the 10 core samples ranged from 10-7 to 10-4 cm/s. Low permeability layers, with Ksat values less than 10-7 cm/s, within the 35-m and 45-m interbeds may cause perched ground-water zones to form beneath the new percolation pond area, leading to the possible lateral movement of water away from the VZRP.
Shemwell, B; Levendis, Y A; Simons, G A
2001-01-01
This is a laboratory study on the reduction of combustion-generated hydrochloric acid (HCl) emissions by in-furnace dry-injection of calcium-based sorbents. HCl is a hazardous gaseous pollutant emitted in significant quantities by municipal and hazardous waste incinerators, coal-fired power plants, and other industrial furnaces. Experiments were conducted in a laboratory furnace at gas temperatures of 600-1000 degrees C. HCl gas diluted with N2, and sorbent powders fluidized in a stream of air were introduced into the furnace concurrently. Chlorination of the sorbents occurred in the hot zone of the furnace at gas residence times approximately 1 s. The sorbents chosen for these experiments were calcium formate (CF), calcium magnesium acetate (CMA), calcium propionate (CP), calcium oxide (CX), and calcium carbonate (CC). Upon release of organic volatiles, sorbents calcine to CaO at approximately 700 degrees C, and react with the HCl according to the reaction CaO + 2HCl <=> CaCl2 + H2O. At the lowest temperature case examined herein, 600 degrees C, direct reaction of HCl with CaCO3 may also be expected. The effectiveness of the sorbents to capture HCl was interpreted using the "pore tree" mathematical model for heterogeneous diffusion reactions. Results show that the thin-walled, highly porous cenospheres formed from the pyrolysis and calcination of CF, CMA, and CP exhibited high relative calcium utilization at the upper temperatures of this study. Relative utilizations under these conditions reached 80%. The less costly low-porosity sorbents, calcium carbonate and calcium oxide also performed well. Calcium carbonate reached a relative utilization of 54% in the mid-temperature range, while the calcium oxide reached an 80% relative utilization at the lowest temperature examined. The data matched theoretical predictions of sorbent utilization using the mathematical model, with activation energy and pre-exponential factors for the calcination reaction of 17,000 K and 300,000 (g gas/cm2/s/atm gas), respectively. Thus, the kinetics of the calcination reaction were found to be much faster (approximately 500 times) than those of the sulfation reaction examined previously in this laboratory.
10. VIEW OF CALCINER IN ROOM 146148. THE CALCINER HEATED ...
10. VIEW OF CALCINER IN ROOM 146-148. THE CALCINER HEATED PLUTONIUM PEROXIDE TO CONVERT IT TO PLUTONIUM OXIDE. THE PROCESS REMOVED RESIDUAL WATER AND NITRIC ACID LEAVING A DRY, POWDERED PRODUCT. (4/29/65) - Rocky Flats Plant, Plutonium Recovery & Fabrication Facility, North-central section of plant, Golden, Jefferson County, CO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Viayan, B.; Dimitrijevic, N. M.; Rajh, T.
Titania nanotubes having diameters 8 to 12 nm and lengths of 50-300 nm were prepared using a hydrothermal method. Further, the titania nanotubes were calcined over the temperature range 200-800 C in order to enhance their photocatalytic properties by altering their morphology. The calcined titania nanotubes were characterized by using X-ray diffraction and surface area analysis and their morphological features were studied by scanning and transmission electron microscopy. Nanotubes calcined at 400 C showed the maximum extent of photocatalyitc reduction of carbon dioxide to methane, whereas samples calcined at 600 C produced maximum photocatalytic oxidation of acetaldehyde. Electron paramagnetic resonancemore » (EPR) spectroscopy was used to interrogate the effects of nanotube structure on the charge separation and trapping as a function of calcination temperature. EPR results indicated that undercoordinated titania sites are associated with maximum CO{sub 2} reduction occurring in nanotubes calcined at 400 C. Despite the collapse of the nantube structure to form nanorods and the concomitant loss of surface area, the enhanced charge separation associated with increased crystallinity promoted high rates of oxidation of acetaldehyde in titania materials calcined at 600 C. These results illustrate that calcination temperature allows us to tune the morphological and surface features of the titania nanostructures for particular photocatalytic reactions.« less
Dadash, Mohammad Saleh; Karbasi, Saeed; Esfahani, Mojtaba Nasr; Ebrahimi, Mohammad Reza; Vali, Hojatollah
2011-04-01
Thick films of calcinated and non calcinated nanobioglass (NBG)-titania composite coatings were prepared on stainless steel substrates by alkoxide sol-gel process. Dip-coating method was used for the films preparation. The morphology, structure and composition of the nano composite films were evaluated using environmental scanning electron microscope, X-ray diffraction and Fourier transform infrared spectroscope. The SEM investigation results showed that prepared thick NBG-titania films are smooth and free of macrocracking, fracture or flaking. The grain size of these films was uniform and nano scale (50-60 nm) which confirmed with TEM. Also FTIR confirmed the presence of Si-O-Si bands on the calcinated NBG-titania films. The hardness of the prepared films (TiO(2)-calcinated NBG and TiO(2)-Non calcinated NBG) was compared by using micro hardness test method. The results verified that the presence of calcinated NBG particles in NBG-titania composite enhanced gradually the mechanical data of the prepared films. The in vitro bioactivity of these films was discussed based on the analysis of the variations of Ca and P concentrations in the simulated body fluid (SBF) and their surface morphologies against immersion time. Surface morphology and Si-O-Si bands were found to be of great importance with respect to the bioactivity of the studied films. The results showed that calcinated NBG-titania films have better bioactivity than non calcinated NBG-titania films.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rick Demmer; John Drake; Ryan James, PhD
Over the last 50 years, the study of radiological contamination and decontamination has expanded significantly. This paper addresses the mechanisms of radiological contamination that have been reported and then discusses which methods have recently been used during performance testing of several different decontamination technologies. About twenty years ago the Idaho Nuclear Technology Engineering Center (INTEC) at the INL began a search for decontamination processes which could minimize secondary waste. In order to test the effectiveness of these decontamination technologies, a new simulated contamination, termed SIMCON, was developed. SIMCON was designed to replicate the types of contamination found on stainless steel,more » spent fuel processing equipment. Ten years later, the INL began research into methods for simulating urban contamination resulting from a radiological dispersal device (RDD). This work was sponsored by the Defense Advanced Research Projects Agency (DARPA) and included the initial development an aqueous application of contaminant to substrate. Since 2007, research sponsored by the US Environmental Protection Agency (EPA) has advanced that effort and led to the development of a contamination method that simulates particulate fallout from an Improvised Nuclear Device (IND). The IND method diverges from previous efforts to create tenacious contamination by simulating a reproducible “loose” contamination. Examining these different types of contamination (and subsequent decontamination processes), which have included several different radionuclides and substrates, sheds light on contamination processes that occur throughout the nuclear industry and in the urban environment.« less
NASA Astrophysics Data System (ADS)
Bennett, Barbara Ellen
The effects of calcination heating rate and ultimate calcination temperature upon calcined coke and subsequent graphitic material microstructures were studied for materials prepared from three different precursors. The pitch precursors used were Mitsubishi AR pitch (a synthetic, 100% mesophase pitch), the NMP-extracted portion of a raw coal, and the NMP-extracted fraction of a coal liquefaction residue obtained from an HTI pilot plant. These materials were all green-coked under identical conditions. Optical microscopy confirmed that the Mitsubishi coke was very anisotropic and the HTI coke was nearly as anisotropic. The coke produced from the direct coal extract was very isotropic. Crystalline development during calcination heating was verified by high-temperature x-ray diffraction. Experiments were performed to ascertain the effects of varying calcination heating rate and ultimate temperature. It was determined that calcined coke crystallite size increased with increasing temperature for all three materials but was found to be independent of heating rate. The graphene interplanar spacing decreased with increasing temperature for the isotropic NMP-extract material but increased with increasing temperature for the anisotropic materials---Mitsubishi and HTI cokes. Graphene interplanar spacing was also found to be independent of heating rate. Calcined coke real densities were, likewise, found to be independent of heating rate. The anisotropic cokes (Mitsubishi and HTI) exhibited increasing real density with increasing calcination temperature. The NMP-extract coke increased in density up to 1050°C and then suffered a dramatic reduction in real density when heated to 1250°C. This is indicative of puffing. Since there was no corresponding disruption in the crystalline structure, the puffing phenomena was determined to be intercrystalline rather than intracrystalline. After the calcined cokes were graphitized (under identical conditions), the microstructures were re-evaluated. The crystalline properties of the graphitic materials appeared to be independent of calcination conditions---both heating rate and final temperature---for all samples prepared from any given precursor. The calcination step did not influence the microstructure or graphitizability of any of the three materials. The crystallinity of a graphitic material appears to be dictated by the properties of the green coke and cannot be altered by manipulating calcination conditions.
Valorization of Bone Waste of Saudi Arabia by Synthesizing Hydroxyapatite.
Amna, Touseef
2018-05-09
At present, hydroxyapatite is being frequently used for diverse biomedical applications as it possesses excellent biocompatibility, osteoconductivity, and non-immunogenic characteristics. The aim of the present work was to recycle bone waste for synthesis of hydroxyapatite nanoparticles to be used as bone extracellular matrix. For this reason, we for the first time utilized bio-waste of cow bones of Albaha city. The residual bones were utilized for the extraction of natural bone precursor hydroxyapatite. A facile scientific technique has been used to synthesize hydroxyapatite nanoparticles through calcinations of wasted cow bones without further supplementation of chemicals/compounds. The obtained hydroxyapatite powder was ascertained using physicochemical techniques such as XRD, SEM, FTIR, and EDX. These analyses clearly show that hydroxyapatite from native cow bone wastes is biologically and physicochemically comparable to standard hydroxyapatite, commonly used for biomedical functions. The cell viability and proliferation over the prepared hydroxyapatite was confirmed with CCk-8 colorimetric assay. The morphology of the cells growing over the nano-hydroxyapatite shows that natural hydroxyapatite promotes cellular attachment and proliferation. Hence, the as-prepared nano-hydroxyapatite can be considered as cost-effective source of bone precursor hydroxyapatite for bone tissue engineering. Taking into account the projected demand for reliable bone implants, the present research work suggested using environment friendly methods to convert waste of Albaha city into nano-hydroxyapatite scaffolds. Therefore, besides being an initial step towards accomplishment of projected demands of bone implants in Saudi Arabia, our study will also help in reducing the environmental burden by recycling of bone wastes of Albaha city.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpraditpan, Athapon; Wirunmongkol, Thanakorn; Pavasupree, Sorapong, E-mail: sorapongp@yahoo.com
2013-09-01
Graphical abstract: - Highlights: • Nanofibers were prepared from low-cost ilmenite mineral via simple hydrothermal. • High photocatalyst nanofibers were prepared via post heat treatment method. • The nanofibers calcined at 100–700 °C for 2 h maintained nanofiber structure. • The calcined nanofibers at 400 °C showed the highest photocatalytic activity. - Abstract: Titanate nanofibers were synthesized via the hydrothermal method (120 °C for 72 h) using natural ilmenite mineral (FeTiO{sub 3}) as the starting material. The samples were characterized by X-ray diffraction (XRD), X-ray fluorescent (XRF), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Brunauer–Emmett–Teller (BET) for specificmore » surface area. The nanofibers were 20–90 nm in diameter and 2–7 μm in length. The as-synthesized nanofibers calcined at 300–400 °C showed TiO{sub 2} (B) whereas the nanofibers calcined at 500 °C revealed a mixture of two phases of TiO{sub 2} (B) and anatase. The nanofibers calcined at high temperature of 600–1000 °C showed a mixture of tri-crystalline of anatase, rutile, and Fe{sub 2}O{sub 3}. The rutile phase increased with increasing calcination temperature. The nanofibers calcined at 300–700 °C maintained their structure while the morphology of the nanofibers calcined at 800–1000 °C transformed into submicron rod-like structure. This increase of calcination temperature led to the phase transformation from thermodynamically metastable anatase to the most stable form of rutile phase. The crystallite size of prepared samples increased with increasing calcination temperature. Interestingly, with increasing calcination temperature, the absorption edge of the prepared samples shows an obvious shift to visible light region due to the change of crystallite phase and increased crystallite size. Therefore, the band gap energy of the prepared samples became narrower with increasing calcination temperature. Furthermore, the photocatalytic activity of the nanofibers calcined at 400 °C for 2 h was found to be not merely higher than those of the commercially available TiO{sub 2} nanoparticles powders (P-25, JRC-01, and JRC-03) but also the highest of all the samples in this study.« less
Gallego, J R; Esquinas, N; Rodríguez-Valdés, E; Menéndez-Aguado, J M; Sierra, C
2015-12-30
The abandonment of Hg-As mining and metallurgy sites, together with long-term weathering, can dramatically degrade the environment. In this work it is exemplified the complex legacy of contamination that afflicts Hg-As brownfields through the detailed study of a paradigmatic site. Firstly, an in-depth study of the former industrial process was performed to identify sources of different types of waste. Subsequently, the composition and reactivity of As- and Hg-rich wastes (calcines, As-rich soot, stupp, and flue dust) was analyzed by means of multielemental analysis, mineralogical characterization (X-ray diffraction, electronic, and optical microscopy, microbrobe), chemical speciation, and sequential extractions. As-rich soot in the form of arsenolite, a relatively mobile by-product of the pyrometallurgical process, and stupp, a residue originated in the former condensing system, were determined to be the main risk at the site. In addition, the screening of organic pollution was also aimed, as shown by the outcome of benzo(a) pyrene and other PAHs, and by the identification of unexpected Hg organo-compounds (phenylmercury propionate). The approach followed unravels evidence from waste from the mining and metallurgy industry that may be present in other similar sites, and identifies unexpected contaminants overlooked by conventional analyses. Copyright © 2015 Elsevier B.V. All rights reserved.
Davis, Linda C.
2006-01-01
Radiochemical and chemical wastewater discharged since 1952 to infiltration ponds, evaporation ponds, and disposal wells at the Idaho National Laboratory (INL) has affected water quality in the Snake River Plain aquifer underlying the INL. The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, maintains ground-water monitoring networks at the INL to determine hydrologic trends, and to delineate the movement of radiochemical and chemical wastes in the aquifer. This report presents an analysis of water-level and water-quality data collected from wells in the USGS ground-water monitoring networks during 1999-2001. Water in the Snake River Plain aquifer moves principally through fractures and interflow zones in basalt, generally flows southwestward, and eventually discharges at springs along the Snake River. The aquifer is recharged principally from infiltration of irrigation water, infiltration of streamflow, ground-water inflow from adjoining mountain drainage basins, and infiltration of precipitation. Water levels in wells rose in the northern and west-central parts of the INL by 1 to 3 feet, and declined in the southwestern parts of the INL by up to 4 feet during 1999-2001. Detectable concentrations of radiochemical constituents in water samples from wells in the Snake River Plain aquifer at the INL generally decreased or remained constant during 1999-2001. Decreases in concentrations were attributed to decreased rates of radioactive-waste disposal, radioactive decay, changes in waste-disposal methods, and dilution from recharge. Tritium concentrations in water samples decreased as much as 8.3 picocuries per milliliter (pCi/mL) during 1999-2001, ranging from 0.43?0.14 to 13.6?0.6 pCi/mL in October 2001. Tritium concentrations in five wells near the Idaho Nuclear Technology and Engineering Center (INTEC) increased a few picocuries per milliliter from October 2000 to October 2001. Strontium-90 concentrations decreased or remained constant during 1999-2001, ranging from 2.1?0.6 to 42.4?1.4 pCi/L in October 2001. During 1999-2001, concentrations of cesium-137, plutonium-238, and plutonium-239, -240 (undivided) were less than the reporting level in water samples from all wells sampled at the INL. The concentration of americium-241 in one sample was 0.003?0.001 pCi/L, the reporting level for that constituent. Cobalt-60 was not detected in any samples collected during 1999-2001. Changes in detectable concentrations of nonradioactive chemical constituents in water from the Snake River Plain aquifer at the INL varied during 1999-2001. In October 2001, water from one well south of the Reactor Technology Complex (RTC) [known as the Test Reactor Area (TRA) until 2005] contained 139 micrograms per liter (?g/L) of chromium, a decrease from the concentration of 168 ?g/L detected in October 1998. Other water samples contained from less than 16.7 to 21.3 ?g/L of chromium. In October 2001, concentrations of sodium in water samples from most of the wells in the southern part of the INL were larger than the background concentration of 10 mg/L, but were similar to or slightly less than October 1998 concentrations. The largest sodium concentration was 75 milligrams per liter (mg/L) in water from well USGS 113. In 2001, chloride concentrations in most water samples from the INTEC and the Central Facilities Area (CFA) exceeded ambient concentrations of 10 and 20 mg/L, respectively. Chloride concentrations in water from wells near the RTC were less than 20 mg/L. At the Radioactive Waste Management Complex (RWMC), chloride concentrations in water from wells USGS 88, 89, and 120 were 81, 40, and 23 mg/L, respectively. Concentrations of chloride in all other wells near the RWMC were less than 19 mg/L. During 2001, concentrations of sulfate in water from two wells near the RTC, two wells near the RWMC, and one well near the CFA exceeded 40 mg/L, the estimated background concentration of sulfate in the Snake River
Calcination Conditions on the Properties of Porous TiO2 Film
NASA Astrophysics Data System (ADS)
Zhang, Wenjie; Pei, Xiaobei; Bai, Jiawei; He, Hongbo
2014-03-01
Porous TiO2 films were deposited on SiO2 precoated glass-slides by sol-gel method using PEG1000 as template. The strongest XRD diffraction peak at 2θ = 25.3° is attributed to [101] plane of anatase TiO2 in the film. The increases of calcination temperature and time lead to stronger diffraction peak intensity. High transmittance and blue shift of light absorption edge are the properties of the film prepared at high calcination temperature. The average pore size of the films increases with the increasing calcination temperature as the result of TiO2 crystalline particles growing up and aggregation, accompanied with higher specific surface area. Photocatalytic activity of porous TiO2 films increases with the increasing calcination temperature. The light absorption edge of the films slightly moves to longer wavelength region along with the increasing calcination time. The mesoporous film calcinated at 500 °C for 2 h has the highest transmittance, the maximum surface area, and the maximum total pore volume. Consequently, the optimum degradation activity is achieved on the porous TiO2 film calcinated at 500 °C for 2 h.
NASA Astrophysics Data System (ADS)
Majumder, Supriyo; Choudhary, R. J.; Tripathi, M.; Phase, D. M.
2018-05-01
We have investigated the phase formation and correlation between electronic and magnetic properties of oxygen deficient BaTiO3 ceramics, synthesized by solid state reaction method, following different calcination paths. The phase analysis divulge that a higher calcination temperature above 1000° C is favored for tetragonal phase formation than the cubic phase. The core level X-ray photo electron spectroscopy measurements confirm the presence of oxygen vacancies and oxygen vacancy mediated Ti3+ states. As the calcination temperature and calcination time increases these oxygen vacancies and hence Ti3+ concentrations reduce in the sample. The temperature dependent magnetization curves suggest unexpected magnetic ordering, which may be due to the presence of unpaired electron at the t2g state (d1) of nearest-neighbor Ti atoms. In magnetization vs magnetic field isotherms, the regular decrease of saturation moment value with increasing calcination temperature and calcination time, can be discussed considering the amount of oxygen deficiency induced Ti3+ concentrations, present in the sample.
Experimental study on the effect of calcination on the volcanic ash activity of diatomite
NASA Astrophysics Data System (ADS)
Xiao, Liguang; Pang, Bo
2017-09-01
The volcanic ash activity of diatomite was studied under the conditions of aerobic calcination and vacuum calcination by the combined water rate method, it was characterized by XRD, BET and SEM. The results showed that the volcanic ash activity of diatomite under vacuum conditions was higher than that of aerobic calcination, 600°C vacuum calcination 2h, the combined water rate of diatomite-Ca(OH)2-H2O system was increased from 6.24% to 71.43%, the volcanic ash activity reached the maximum value, the specific surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Rajesh, E-mail: rkkaushik06@gmail.com; Deptt. of Physics,Vaish College of Engineering, Rohtak-124001, Haryana; Praveen,
2016-05-06
In present work Magnesium oxide (MgO) samples were doped with different concentration of Transition metal Nickel Oxide(NiO) by using Chemical co-precipitation method. The doping levels were varied from NiO (5%, 10%, 15%) and all the samples were calcined at 600°C for 4hrs and 8hrs respectively. Structural analysis of these calcined materials is carried out by X-ray diffraction (XRD) techniques which reveals that average crystalline sizes are in nano region i.e. 21.77nm-31.13 nm and tabulated in table 1. The powder of calcined samples were also characterized by using various other techniques i.e. Scanning Electron Microscopy (SEM), Fourier Transformation Infrared Spectroscopy (FTIR), UV-Visiblemore » spectroscopy, Transmission Electron Microscopy (TEM) etc. The effects of dopant concentration, calcined temperature, calcinations duration on samples were studied and also investigate the effect of varying dopant concentration on morphology and optical properties of calcined nanomaterials. From results it was observed that the crystallite size of nanocomposites increases with increases dopant concentration or increases calcinations duration. The optical band gap decreases with increases sintering time and increase with increases dopant concentrations. TEM results coincide with XRD results and show that particles are polycrystalline in nature. FTIR spectra show that for all samples particles are pure in composition and transmission rate increases with calcinations duration.« less
Alhassan, Fatah H; Rashid, Umer; Taufiq-Yap, Yun Hin
2015-01-01
The utilization of ferric-manganese promoted molybdenum oxide/zirconia (Fe-Mn- MoO3/ZrO2) (FMMZ) solid acid catalyst for production of biodiesel was demonstrated. FMMZ is produced through impregnation reaction followed by calcination at 600°C for 3 h. The characterization of FMMZ had been done using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermal gravimetric analysis (TGA), temperature programmed desorption of NH3 (TPD-NH3), transmission electron microscopy(TEM) and Brunner-Emmett-Teller (BET) surface area measurement. The effect of waste cooking oil methyl esters (WCOME's) yield on the reactions variables such as reaction temperature, catalyst loading, molar ratio of methanol/oil and reusability were also assessed. The catalyst was used to convert the waste cooking oil into corresponding methyl esters (95.6%±0.15) within 5 h at 200℃ reaction temperature, 600 rpm stirring speed, 1:25 molar ratio of oil to alcohol and 4% w/w catalyst loading. The reported catalyst was successfully recycled in six connective experiments without loss in activity. Moreover, the fuel properties of WCOME's were also reported using ASTM D 6751 methods.
Alkali-Activated Aluminium-Silicate Composites as Insulation Materials for Industrial Application
NASA Astrophysics Data System (ADS)
Dembovska, L.; Bajare, D.; Pundiene, I.; Bumanis, G.
2015-11-01
The article reports on the study of thermal stability of alkali-activated aluminium- silicate composites (ASC) at temperature 800-1100°C. ASC were prepared by using calcined kaolinite clay, aluminium scrap recycling waste, lead-silicate glass waste and quartz sand. As alkali activator, commercial sodium silicate solution modified with an addition of sodium hydroxide was used. The obtained alkali activation solution had silica modulus Ms=1.67. Components of aluminium scrap recycling waste (aluminium nitride (AlN) and iron sulphite (FeSO3)) react in the alkali media and create gases - ammonia and sulphur dioxide, which provide the porous structure of the material [1]. Changes in the chemical composition of ASC during heating were identified and quantitatively analysed by using DTA/TG, dimension changes during the heating process were determined by using HTOM, pore microstructure was examined by SEM, and mineralogical composition of ASC was determined by XRD. The density of ASC was measured in accordance with EN 1097-7. ASC with density around 560 kg/m3 and heat resistance up to 1100°C with shrinkage less than 5% were obtained. The intended use of this material is the application as an insulation material for industrial purposes at elevated temperatures.
46 CFR 148.295 - Petroleum coke, calcined or uncalcined, at 55 °C (131 °F) or above.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Petroleum coke, calcined or uncalcined, at 55 °C (131 Â... Requirements for Certain Materials § 148.295 Petroleum coke, calcined or uncalcined, at 55 °C (131 °F) or above. (a) This part does not apply to shipments of petroleum coke, calcined or uncalcined, on any vessel...
46 CFR 148.295 - Petroleum coke, calcined or uncalcined, at 55 °C (131 °F) or above.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Petroleum coke, calcined or uncalcined, at 55 °C (131 Â... Requirements for Certain Materials § 148.295 Petroleum coke, calcined or uncalcined, at 55 °C (131 °F) or above. (a) This part does not apply to shipments of petroleum coke, calcined or uncalcined, on any vessel...
46 CFR 148.295 - Petroleum coke, calcined or uncalcined, at 55 °C (131 °F) or above.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Petroleum coke, calcined or uncalcined, at 55 °C (131 Â... Requirements for Certain Materials § 148.295 Petroleum coke, calcined or uncalcined, at 55 °C (131 °F) or above. (a) This part does not apply to shipments of petroleum coke, calcined or uncalcined, on any vessel...
46 CFR 148.295 - Petroleum coke, calcined or uncalcined, at 55 °C (131 °F) or above.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Petroleum coke, calcined or uncalcined, at 55 °C (131 Â... Requirements for Certain Materials § 148.295 Petroleum coke, calcined or uncalcined, at 55 °C (131 °F) or above. (a) This part does not apply to shipments of petroleum coke, calcined or uncalcined, on any vessel...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sha, Yunfei; Lou, Jiaying; Bai, Shizhe
2015-04-15
Highlights: • A pre-treatment process is used to prepared N-doped carbon from waste biomass. • Waste tobaccos, which are limited for the disposal, are used as the raw materials. • The product shows a specific surface area and nitrogen content. • Its electrochemical performance is better than commercial activated carbon. • Its CO{sub 2} sorption performance is also better than commercial activated carbon. - Abstract: Preparing nitrogen-doped porous carbons directly from waste biomass has received considerable interest for the purpose of realizing the atomic economy. In this study, N-doped porous carbons have been successfully prepared from waste tobaccos (WT) bymore » a simple pre-treatment process. The sample calcinated at 700 °C (WT-700) shows a micro/meso-porous structures with a BET surface area of 1104 m{sup 2} g{sup −1} and a nitrogen content of ca. 19.08 wt.% (EDS). Performance studies demonstrate that WT-700 displays 170 F g{sup −1} electrocapacitivity at a current density of 0.5 A g{sup −1} (in 6 M KOH), and a CO{sub 2} capacity of 3.6 mmol g{sup −1} at 0 °C and 1 bar, and a selectivity of ca. 32 for CO{sub 2} over N{sub 2} at 25 °C. Our studies indicate that it is feasible to prepare N-enriched porous carbons from waste natural crops by a pre-treatment process for potential industrial application.« less
Software and Hardware Description of the Helicopter Motion Equations for VAX Computers
1989-08-01
17. COSATI CODES 18 SUBJECT TERMS (Continue on reverse if r:".essary and identify by block number) FIELD GROUP SUB-GROUP human engineering flight eq...global section’s name is HACSEC. d. The name of the disk file opened to map the pages is HACSEC.DAT. VAX FORTRAN common statements are used in all...MOZ(1O) INTEGER*2 ATYPE(10) INTECER*2 AGAT( 10) INTEGER*2 AGRQUP(10) REAL*4 MOUC 10) REAL*4 MOHEAD(10) REAL*4 MOPHI(10) REAL*4 MOTHET(10) GOMMO4N
Data on PKO biodiesel production using CaO catalyst from Turkey bones.
Ayoola, A A; Fayomi, O S I; Usoro, I F
2018-08-01
In this research paper the production of biodiesel from palm kernel oil (PKO) using CaO obtained from waste turkey bones (WTB) and analytical grade calcium oxide was investigated. Treated WTB was reduced to fine particulate size of <150 µm and then calcinated at 800 °C for 3 h to increase its catalytic activity by its conversion from Calcium phosphate hydroxide (Ca 10 P 6 O 26 H 2 ) to CaO. X-ray diffraction (XRD) and X-ray fluorescent (XRF) analysis of the analytical grade CaO, uncalcined and calcined WTB were carried out to establish their elemental chemical composition. The transesterification reaction between the triglyceride of palm kernel oil (PKO) and methanol was carried out at a constant agitation speed of 600 rpm and temperature of 65 °C, with varied methanol to oil molar ratio (8-14), catalyst concentration (1-7 wt/wt%) and the reaction time (1-3 h). Minitab 17 software (using response surface method) was employed for the design of experiment and statistical analysis required in the transesterification process of biodiesel production. The qualities of the biodiesel produced were assessed and the results obtained showed conformity of the biodiesel produced to the ASTM standard for biodiesel.
Meguerdichian, Andrew G; Jafari, Tahereh; Shakil, Md R; Miao, Ran; Achola, Laura A; Macharia, John; Shirazi-Amin, Alireza; Suib, Steven L
2018-02-19
Electrocatalytic decomposition of urea for the production of hydrogen, H 2, for clean energy applications, such as in fuel cells, has several potential advantages such as reducing carbon emissions in the energy sector and environmental applications to remove urea from animal and human waste facilities. The study and development of new catalyst materials containing nickel metal, the active site for urea decomposition, is a critical aspect of research in inorganic and materials chemistry. We report the synthesis and application of [NH 4 ]NiPO 4 ·6H 2 O and β-Ni 2 P 2 O 7 using in situ prepared [NH 4 ] 2 HPO 4 . The [NH 4 ]NiPO 4 ·6H 2 O is calcined at varying temperatures and tested for electrocatalytic decomposition of urea. Our results indicate that [NH 4 ]NiPO 4 ·6H 2 O calcined at 300 °C with an amorphous crystal structure and, for the first time applied for urea electrocatalytic decomposition, had the greatest reported electroactive surface area (ESA) of 142 cm 2 /mg and an onset potential of 0.33 V (SCE) and was stable over a 24-h test period.
NASA Astrophysics Data System (ADS)
Ratnawulan, Fauzi, Ahmad; AE, Sukma Hayati
2017-08-01
Copper oxide powder was prepared from Copper iron from South Solok, Indonesia. The samples was dried and calcined for an hour at temperatures of 145°C, 300°C,850°C, 1000°C. Phase transformation and crystallite size of the calcined powders have been investigated as a function of calcination temperature by room-temperature X-ray diffraction (XRD). It was seen that the tenorite, CuO was successfully obtained. With increasing calcining temperature, CuO transformed from malachite Cu2(CO3)(OH)2 to tenorite phase (CuO) and crystallite size of prepared samples increased from 36 nm to 76 nm.
Conversion of Conventional Rotary Kiln Into Effective Sandy Alumina Calciner
NASA Astrophysics Data System (ADS)
Ishihara, M.; Hirano, T.; Yajima, H.
Using conventional rotary kiln for calcining sandy alumina in potlines, remakable heat-saving and capacity-improving can be achieved. 83 liters of oil per tonne of alumina (3200MJ/tonne) were required for calcining 800 m.t.p.d. of sandy alumina in the rotary kiln at Shimizu Works. The kiln is installed with two stages of flash dryers and planetary coolers, and was originally designed for calcining floury alumina at 550 m.t.p.d. This improvement in capacity and unit oil consumption was achieved mainly through shortening the flame by using a special burner and effective heat recovery. The quality of sandy alumina calcined by the kiln is good enough for potlines.
The effect of various pozzolanic additives on the concrete strength index
NASA Astrophysics Data System (ADS)
Vitola, L.; Sahmenko, G.; Erdmane, D.; Bumanis, G.; Bajare, D.
2017-10-01
The concrete industry is searching continuously for new effective mineral additives to improve the concrete properties. Replacing cement with the pozzolanic additives in most cases has resulted not only in positive impact on the environment but also has improved strength and durability of the concrete. Effective pozzolanic additives can be obtained from natural resources such as volcanic ashes, kaolin and other sediments as well as from different production industries that create various by-products with high pozzolanic reactivity. Current research deals with effectiveness evaluation of various mineral additives/wastes, such as coal combustion bottom ash, barley bottom ash, waste glass and metakaolin containing waste as well as calcined illite clays as supplementary cementitious materials, to be used in concrete production as partial cement replacement. Most of the examined materials are used as waste stream materials with potential reactive effect on the concrete. Milling time and fineness of the tested supplementary material has been evaluated and effectiveness was detected. Results indicate that fineness of the tested materials has crucial effect on the concrete compressive strength index. Not in all cases the prolonged milling time can increase fineness and reactivity of the supplementary materials; however the optimal milling time and fineness of the pozolanic additives increased the strength index of concrete up to 1.16 comparing to reference, even in cases when cement was substituted by 20 w%.
Dong, Zuo-chao; Xia, Jun-wu; Duan, Xiao-mu; Cao, Ji-chang
2016-03-01
By using X-ray diffraction (XRD) and environmental scanning electron microscope (SEM) analysis method, we stud- ied the activity of coal gangue fine aggregate under different calcination temperature. In view of the activity of the highest-700 degrees C high temperature calcined coal gangue fine aggregate mortar of hydration products, microstructure and strength were discussed in this paper, and the change laws of mortar strength with curing age (3, 7, 14, 28, 60 and 90 d) growth were analyzed. Test results showed that coal gangue fine aggregate with the increase of calcination temperature, the active gradually increases. When the calcination temperature reaches 700 degrees C, the activity of coal gangue fine aggregate is the highest. When calcining temperature continues to rise, activity falls. After 700 degrees C high temperature calcined coal gangue fine aggregate has obvious ash activity, the active components of SiO2 and Al2 O3 can be with cement hydration products in a certain degree of secondary hydration reaction. Through on the top of the activity of different curing age 700 degrees C high temperature calcined coal gangue fine aggregate mortar, XRD and SEM analysis showed that with the increase of curing age, secondary hydration reaction will be more fully, and the amount of hydration products also gradually increases. Compared with the early ages of the cement mortar, the products are more stable hydration products filling in mortar microscopic pore, which can further improve the microstructure of mortar, strengthen the interface performance of the mortar. The mortar internal structure is more uniform, calcined coal gangue fine aggregate and cement mortar are more of a strong continuous whole, which increase the later strength of hardened cement mortar, 700 degrees C high temperature calcined coal gangue fine aggregate pozzolanic effect is obvious.
Synthesis and physical characterization of γ-Fe2O3 and (α+γ)-Fe2O3 nanoparticles
NASA Astrophysics Data System (ADS)
Bhavani, P.; Reddy, N. Ramamanohar; Reddy, I. Venkata Subba
2017-01-01
Magnetic nanoparticles were synthesized at different hydrothermal temperatures (HT; 100, 130, 160 and 190 °C) by using a facile hydrothermal route combined with a subsequent calcination process. The calcined materials were analyzed for phase, microstructure, and magnetic and dielectric properties through different characterization techniques. The structural analyses revealed that the material prepared at a HT of 100 °C and sequentially calcined at 300 °C for 3 h showed a high degree of the maghemite structure. On the other hand calcined materials showed a small additional peak belonging to the hematite structure. FESEM micrographs of the materials calcined at HT, of 100 °C and 190 °C showed spherical-like nanoparticles with diameters in range 30 - 54 nm. Materials prepared at a HT of 160 °C followed by calcination at 300 °C for 3 h exhibited the highest saturation magnetization, Ms = 67 emu/g, with a lower coercivity; all materials were in a single domain state. A high dielectric constant (105.54) was observed for the calcined material that had been prepared at a HT of 130 °C. The dielectric properties of synthesized materials showed an almost frequency-independent behavior.
Li, Dongdong; An, Jingna; Wang, Tingting; Tao, Chuanmin; Wang, Lanlan
2016-11-01
The resurgence of syphilis in recent years has become a serious threat to the public health worldwide, and the serological detection of specific antibodies against Treponema pallidum (TP) remains the most reliable method for laboratory diagnosis of syphilis. The performance of the Elecsys ® Syphilis assay, a brand new electrochemiluminescene immunoassay (ECLIA), was assessed by large amounts of samples in this study. In comparison with InTec assay, the Elecsys ® Syphilis assay was evaluated in 146 preselected samples from patients with syphilis, 1803 clinical routine samples, and 175 preselected samples from specific populations with reportedly increased rates of false-positive syphilis test results. Discrepancy samples must be investigated by Mikrogen Syphilis recomline assay. There was an overall agreement of 99.58% between two assays (Kappa = 0.975). The sensitivity and specificity of the Elecsys ® Syphilis assay were 100.0% (95% CI, 96.8-100.0%) and 99.8% (95% CI, 99.5-100.0%), respectively. The Elecsys syphilis assay displays better sensitivity (100%), specificity (99.8%), PPV (98.7%), and NPV (100%) in 2124 samples enrolled, compared with the InTec assay. Considering the excellent ease of use and automation, high throughput, and its superior sensitivity, especially in primary syphilis, the Elecsys ® Syphilis assay could represent an outstanding choice for screening of syphilis in high-volume laboratories. However, more attention was still needed, or the results must be confirmed by other treponemal immunoassays. The new Elecsys ® Syphilis assay is applied to patients with malignant neoplasm or HIV infection. © 2016 Wiley Periodicals, Inc.
BLSSpeller: exhaustive comparative discovery of conserved cis-regulatory elements.
De Witte, Dieter; Van de Velde, Jan; Decap, Dries; Van Bel, Michiel; Audenaert, Pieter; Demeester, Piet; Dhoedt, Bart; Vandepoele, Klaas; Fostier, Jan
2015-12-01
The accurate discovery and annotation of regulatory elements remains a challenging problem. The growing number of sequenced genomes creates new opportunities for comparative approaches to motif discovery. Putative binding sites are then considered to be functional if they are conserved in orthologous promoter sequences of multiple related species. Existing methods for comparative motif discovery usually rely on pregenerated multiple sequence alignments, which are difficult to obtain for more diverged species such as plants. As a consequence, misaligned regulatory elements often remain undetected. We present a novel algorithm that supports both alignment-free and alignment-based motif discovery in the promoter sequences of related species. Putative motifs are exhaustively enumerated as words over the IUPAC alphabet and screened for conservation using the branch length score. Additionally, a confidence score is established in a genome-wide fashion. In order to take advantage of a cloud computing infrastructure, the MapReduce programming model is adopted. The method is applied to four monocotyledon plant species and it is shown that high-scoring motifs are significantly enriched for open chromatin regions in Oryza sativa and for transcription factor binding sites inferred through protein-binding microarrays in O.sativa and Zea mays. Furthermore, the method is shown to recover experimentally profiled ga2ox1-like KN1 binding sites in Z.mays. BLSSpeller was written in Java. Source code and manual are available at http://bioinformatics.intec.ugent.be/blsspeller Klaas.Vandepoele@psb.vib-ugent.be or jan.fostier@intec.ugent.be. Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.
BLSSpeller: exhaustive comparative discovery of conserved cis-regulatory elements
De Witte, Dieter; Van de Velde, Jan; Decap, Dries; Van Bel, Michiel; Audenaert, Pieter; Demeester, Piet; Dhoedt, Bart; Vandepoele, Klaas; Fostier, Jan
2015-01-01
Motivation: The accurate discovery and annotation of regulatory elements remains a challenging problem. The growing number of sequenced genomes creates new opportunities for comparative approaches to motif discovery. Putative binding sites are then considered to be functional if they are conserved in orthologous promoter sequences of multiple related species. Existing methods for comparative motif discovery usually rely on pregenerated multiple sequence alignments, which are difficult to obtain for more diverged species such as plants. As a consequence, misaligned regulatory elements often remain undetected. Results: We present a novel algorithm that supports both alignment-free and alignment-based motif discovery in the promoter sequences of related species. Putative motifs are exhaustively enumerated as words over the IUPAC alphabet and screened for conservation using the branch length score. Additionally, a confidence score is established in a genome-wide fashion. In order to take advantage of a cloud computing infrastructure, the MapReduce programming model is adopted. The method is applied to four monocotyledon plant species and it is shown that high-scoring motifs are significantly enriched for open chromatin regions in Oryza sativa and for transcription factor binding sites inferred through protein-binding microarrays in O.sativa and Zea mays. Furthermore, the method is shown to recover experimentally profiled ga2ox1-like KN1 binding sites in Z.mays. Availability and implementation: BLSSpeller was written in Java. Source code and manual are available at http://bioinformatics.intec.ugent.be/blsspeller Contact: Klaas.Vandepoele@psb.vib-ugent.be or jan.fostier@intec.ugent.be Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26254488
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Robert W.
2005-06-01
Radionuclide and metal contaminants such as strontium-90 are present beneath U.S. Department of Energy (DOE) lands in both the groundwater (e.g., 100-N area at Hanford, WA) and vadose zone (e.g., Idaho Nuclear Technology and Engineering Center [INTEC] at the Idaho National Laboratory [INL]). In situ containment and stabilization of these contaminants is a cost-effective treatment strategy. However, implementing in situ containment and stabilization approaches requires definition of the mechanisms that control contaminant sequestration. We are investigating the in situ immobilization of radionuclides or contaminant metals (e.g., strontium-90) by their facilitated co-precipitation with calcium carbonate (primarily calcite) in groundwater and vadosemore » zone systems. Our facilitated approach relies upon the hydrolysis of introduced urea to cause the acceleration of calcium carbonate precipitation (and trace metal co-precipitation) by (a) increasing pH and alkalinity and (b) liberating cations from the aquifer matrix by cation exchange reactions. Subsurface urea hydrolysis is catalyzed by the urease enzyme, which is produced in situ by native urea hydrolyzing microorganisms. Because the precipitation process tends to be irreversible and many western aquifers are saturated with respect to calcite, the co-precipitated metals and radionuclides will be effectively removed from the aqueous phase over the long term. We are currently conducting field based activities at both the INL Vadose Zone Research Park (VZRP), an uncontaminated surrogate site for the strontium-90 contaminated vadose zone at INTEC and at the strontium-90 contaminated aquifer of 100-N area of the Hanford site.« less
Carbon dioxide capture from a cement manufacturing process
Blount, Gerald C [North Augusta, SC; Falta, Ronald W [Seneca, SC; Siddall, Alvin A [Aiken, SC
2011-07-12
A process of manufacturing cement clinker is provided in which a clean supply of CO.sub.2 gas may be captured. The process also involves using an open loop conversion of CaO/MgO from a calciner to capture CO.sub.2 from combustion flue gases thereby forming CaCO.sub.3/CaMg(CO.sub.3).sub.2. The CaCO.sub.3/CaMg(CO.sub.3).sub.2 is then returned to the calciner where CO.sub.2 gas is evolved. The evolved CO.sub.2 gas, along with other evolved CO.sub.2 gases from the calciner are removed from the calciner. The reactants (CaO/MgO) are feed to a high temperature calciner for control of the clinker production composition.
Calcination does not remove all carbon from colloidal nanocrystal assemblies
Mohapatra, Pratyasha; Shaw, Santosh; Mendivelso-Perez, Deyny; ...
2017-12-11
Removing organics from hybrid nanostructures is a crucial step in many bottom-up materials fabrication approaches. It is usually assumed that calcination is an effective solution to this problem, especially for thin films. This assumption has led to its application in thousands of papers. Here in this paper, we show that this general assumption is incorrect by using a relevant and highly controlled model system consisting of thin films of ligand-capped ZrO 2 nanocrystals. After calcination at 800 °C for 12 h, while Raman spectroscopy fails to detect the ligands after calcination, elastic backscattering spectrometry characterization demonstrates that ~18% of themore » original carbon atoms are still present in the film. By comparison plasma processing successfully removes the ligands. Our growth kinetic analysis shows that the calcined materials have significantly different interfacial properties than the plasma-processed counterparts. Calcination is not a reliable strategy for the production of single-phase all-inorganic materials from colloidal nanoparticles.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
L. DeWayne; J. R. Green; S. Vogt, P. Sharma
1999-01-01
Measurements of chlorine-36 (36Cl) were made for 64 water, snow, and glacial-ice and -runoff samples to determine the meteoric and weapons-tests-produced concentrations and fluxes of this radionuclide at mid-latitudes in North America. The results will facilitate the use of 36Cl as a hydrogeologic tracer at the Idaho National Engineering and Environmental Laboratory (INEEL). This information was used to estimate meteoric and weapons-tests contributions of this nuclide to environmental inventories at and near the INEEL. The data presented in this report suggest a meteoric source 36Cl for environmental samples collected in southeastern Idaho and western Wyoming if the concentration is lessmore » than 1 x 10 7 atoms/L. Additionally, concentrations in water, snow, or glacial ice between 1 x 10 7 and 1 x 10 8 atoms/L may be indicative of a weapons-tests component from peak 36Cl production in the late 1950s. Chlorine-36 concentrations between 1 x 10 8 and 1 x 10 9 atoms/L may be representative of re-suspension of weapons-tests fallout airborne disposal of 36Cl from the INTEC, or evapotranspiration. It was concluded from the water, snow, and glacial data presented here that concentrations of 36Cl measured in environmental samples at the INEEL larger than 1 x 10 9 atoms/L can be attributed to waste-disposal practices.« less
CALCINATION AND SINTERING OF SORBENTS DURING BOILER INJECTION FOR DRY SULFUR DIOXIDE CONTROL
The paper discusses the calcination and sintering of sorbents during boiler injection for dry sulfur dioxide (S02) control, with emphasis on calcium hydroxide--Ca(OH)2--because of its superior reactivity with S02 and its wide commercial availability. Calcination and sintering are...
XANES analysis of dried and calcined bones.
Rajendran, Jayapradhi; Gialanella, Stefano; Aswath, Pranesh B
2013-10-01
The structure of dried and calcined bones from chicken, bovine, deer, pig, sheep and chamois was examined using X-ray Absorption Near Edge Structure (XANES) spectroscopy. The oxygen K-edge absorption edge indicates that the surface of dried bone has a larger proportion of carbonate than the interior that is made up of phosphates. The phosphorus L and K edge clearly indicate that pyrophosphates, α-tricalcium phosphate (α-TCP) and hydrogen phosphates of Ca do not exist in either the dried bone or calcined bone and phosphorus exists as either β-tricalcium phosphate (β-TCP) or hydroxyapatite, both in the dried and calcined conditions. The Ca K-edge analysis indicates that β-TCP is the likely form of phosphate in both the dried and calcined conditions. Copyright © 2013 Elsevier B.V. All rights reserved.
Alcoa Pressure Calcination Process for Alumina
NASA Astrophysics Data System (ADS)
Sucech, S. W.; Misra, C.
A new alumina calcination process developed at Alcoa Laboratories is described. Alumina is calcined in two stages. In the first stage, alumina hydrate is heated indirectly to 500°C in a decomposer vessel. Released water is recovered as process steam at 110 psig pressure. Partial transformation of gibbsite to boehmite occurs under hydrothermal conditions of the decomposer. The product from the decomposer containing about 5% LOI is then calcined by direct heating to 850°C to obtain smelting grade alumina. The final product is highly attrition resistant, has a surface area of 50-80 m2/g and a LOI of less than 1%. Accounting for the recovered steam, the effective fuel consumption for the new calcination process is only 1.6 GJ/t A12O3.
NASA Astrophysics Data System (ADS)
Indrayana, I. P. T.; Siregar, N.; Suharyadi, E.; Kato, T.; Iwata, S.
2016-11-01
Effect of calcination temperature on microstructural, vibrational, and magnetic properties of Mn0.5Zn0.5Fe2O4 nanoparticles have been successfully investigated. The nanoparticles were synthesized via coprecipitation method and calcined at different temperatures varying from 400, 600, 800, and 1000°C. The X-ray diffraction (XRD) pattern confirmed the formation of cubic spinel structure Mn0.5Zn0.5Fe2O4 with crystallite size ranging from 18.3 nm to 24.8 nm. The TEM micrograph showed the morphology of nanoparticles change from nearly spherical to cubic form after calcination. The FTIR spectra confirmed the existence of vibrations at 416.6 cm-1 - 455.2 cm-1 and 555.5 cm-1 -578.6 cm-1 which corresponds to the intrinsic stretching vibration of metal-oxygen at octahedral and tetrahedral sites, respectively. The maximum specific magnetization and coercivity increase with increasing calcination temperature. The maximum specific magnetization value of 54.7emu/gram was obtained for sample calcined at 1000°C. The results showed that calcination treatment will facilitate the tunability of microstructural and magnetic properties of nanoparticles for expanding the field of application.
Kim, Yongsung; Kang, Seunggu
2014-11-01
Enhancement of the mechanical strength of metakaolin-based geopolymers activated with NaOH was attempted by calcining metakaolin at a higher temperature than that commonly reported. Increasing the calcination temperature from 750 degrees C to 1150 degrees C promoted the recrystallization of mullite. Two type of zeolite of sodium aluminum silicate hydrates were found in the geopolymers made of metakaolin calcined at 750 degrees C-1050 degrees C. The h-zeolite [Na6(AlSiO4)6 x H2O] was not found in the geopolymer made of metakaolin calcined above 900 degrees C, while Z-zeolite [Na2O x Al2O3 x SiO2 x H2O] remained in specimens calcined at up to 1050 degrees C, All zeolite disappeared above 1150 degrees C. The pozzolanic reaction generates very small particles of 10-30 nm on the surface of metakaolin grains of 0.2-0.6 μm, rendering the matrix denser by binding the grains. The maximum compressive strength was revealed with the geopolymer made of metakaolin calcined at 1050 degrees C. The reason for the increased strength of the geopolymer obtained using higher calcination temperature is thought to be the combined effects of matrix hardening by geopolymeric reaction and reinforcement by mullite crystal phases.
Investigation of the processing conditions for the synthesis of rod-shaped LiCoO2
NASA Astrophysics Data System (ADS)
Kim, Taejoong; Kim, Yongseon
2018-07-01
We investigate the processing conditions for the synthesis of rod-shaped LiCoO2 (LCO) by a solid-state calcination of a precursor material which was prepared by a hydrothermal method. The rod-like morphology appeared to be easily broken due to the growth of primary crystals recrystallized during the calcination process. Therefore, it is crucial to maintain the temperature under a certain limit. However, the temperature must be high enough to obtain proper crystallinity of the LCO, ideally above 800 °C. Thus, we determined the optimal calcination temperature condition from the common range of temperatures that satisfies both these limiting conditions. The precursor with average diameter of 1 µm sustained the rod shape at calcination temperatures of up to 900 °C; therefore, the optimum calcination temperature could be determined between 800 and 900 °C. Whereas, a proper calcination temperature could not be found for the precursor with 500 nm of diameter because the rod shape did not maintain even at 700 °C. Thus, the maximum temperature at which the rod shape is retained decreases with smaller diameter of the precursor rods, indicating adjusting the diameter above a limiting value is necessary to prepare LCO rod by conventional solid state calcination.
NASA Astrophysics Data System (ADS)
Yan, H.; Shih, K.
2015-12-01
Phosphorus (P) recovery has been frequently discussed in recent decades due to the uncertain availability and uneven distribution of global phosphate rock reserves. Sorption technology is increasingly considered as a reliable, efficient and environmentally friendly P removal method from aqueous solution. In this study, a series of Mg-Al-based layered double hydroxide nanocomposites and their corresponding calcined products were fabricated and applied as phosphate adsorbents. The prepared samples were with average size at ~50 nm and self-assembled into larger particles in irregular shapes. The results of batch adsorption experiments demonstrated that calcination significantly enhanced the adsorption ability of LDHs for phosphorus, and the maximum adsorption capacity of calcined Mg-Al-LDH was as high as 100.7 mg-P/g. Furthermore, incorporation of Zr4+ and La3+ into LDH materials increases the sorption selectivity as well as sorption amount of phosphorus in LDHs, which was confirmed by experiments operated in synthetic human urine. For the first time ammonia (NH4OH) and potassium hydroxide (KOH) solutions were employed to desorb the P-loaded LDH. Identification of solids derived from two eluting solutions showed that struvite (MgNH4PO4•6H2O, MAP) was precipitated in ammonia solution while most phosphate was desorbed into liquid phase in KOH system without crystallization of potassium struvite (MgKPO4•6H2O) due to its higher solubility. Quantitative X-ray diffraction technique was used to determine struvite contents in obtained solids and the results revealed that ~ 30% of adsorbed P was transferred into struvite form in the sample extracted by 0.5M NH4OH. Leaching tests suggested that the phosphorus releasing kinetics of ammonia treated LDH was comparable to that of pure struvite product, indicating that postsorption Mg-Al-LDH desorbed with ammonia could serve as a slow-releasing fertilizer in agriculture (see Figure 1).
Characterization and speciation of mercury-bearing mine wastes using X-ray absorption spectroscopy
Kim, C.S.; Brown, Gordon E.; Rytuba, J.J.
2000-01-01
Mining of mercury deposits located in the California Coast Range has resulted in the release of mercury to the local environment and water supplies. The solubility, transport, and potential bioavailability of mercury are controlled by its chemical speciation, which can be directly determined for samples with total mercury concentrations greater than 100 mg kg-1 (ppm) using X-ray absorption spectroscopy (XAS). This technique has the additional benefits of being non-destructive to the sample, element-specific, relatively sensitive at low concentrations, and requiring minimal sample preparation. In this study, Hg L(III)-edge extended X-ray absorption fine structure (EXAFS) spectra were collected for several mercury mine tailings (calcines) in the California Coast Range. Total mercury concentrations of samples analyzed ranged from 230 to 1060 ppm. Speciation data (mercury phases present and relative abundances) were obtained by comparing the spectra from heterogeneous, roasted (calcined) mine tailings samples with a spectral database of mercury minerals and sorbed mercury complexes. Speciation analyses were also conducted on known mixtures of pure mercury minerals in order to assess the quantitative accuracy of the technique. While some calcine samples were found to consist exclusively of mercuric sulfide, others contain additional, more soluble mercury phases, indicating a greater potential for the release of mercury into solution. Also, a correlation was observed between samples from hot-spring mercury deposits, in which chloride levels are elevated, and the presence of mercury-chloride species as detected by the speciation analysis. The speciation results demonstrate the ability of XAS to identify multiple mercury phases in a heterogeneous sample, with a quantitative accuracy of ??25% for the mercury-containing phases considered. Use of this technique, in conjunction with standard microanalytical techniques such as X-ray diffraction and electron probe microanalysis, is beneficial in the prioritization and remediation of mercury-contaminated mine sites. (C) 2000 Elsevier Science B.V.
Wang, Shaoqiang; Zhou, Lei; Chen, Jingming; Ju, Weimin; Feng, Xianfeng; Wu, Weixing
2011-06-01
Affected by natural and anthropogenic disturbances such as forest fires, insect-induced mortality and harvesting, forest stand age plays an important role in determining the distribution of carbon pools and fluxes in a variety of forest ecosystems. An improved understanding of the relationship between net primary productivity (NPP) and stand age (i.e., age-related increase and decline in forest productivity) is essential for the simulation and prediction of the global carbon cycle at annual, decadal, centurial, or even longer temporal scales. In this paper, we developed functions describing the relationship between national mean NPP and stand age using stand age information derived from forest inventory data and NPP simulated by the BEPS (Boreal Ecosystem Productivity Simulator) model in 2001. Due to differences in ecobiophysical characteristics of different forest types, NPP-age equations were developed for five typical forest ecosystems in China (deciduous needleleaf forest (DNF), evergreen needleleaf forest in tropic and subtropical zones (ENF-S), deciduous broadleaf forest (DBF), evergreen broadleaf forest (EBF), and mixed broadleaf forest (MBF)). For DNF, ENF-S, EBF, and MBF, changes in NPP with age were well fitted with a common non-linear function, with R(2) values equal to 0.90, 0.75, 0.66, and 0.67, respectively. In contrast, a second order polynomial was best suitable for simulating the change of NPP for DBF, with an R(2) value of 0.79. The timing and magnitude of the maximum NPP varied with forest types. DNF, EBF, and MBF reached the peak NPP at the age of 54, 40, and 32 years, respectively, while the NPP of ENF-S maximizes at the age of 13 years. The highest NPP of DBF appeared at 122 years. NPP was generally lower in older stands with the exception of DBF, and this particular finding runs counter to the paradigm of age-related decline in forest growth. Evaluation based on measurements of NPP and stand age at the plot-level demonstrates the reliability and applicability of the fitted NPP-age relationships. These relationships were used to replace the normalized NPP-age relationship used in the original InTEC (Integrated Terrestrial Ecosystem Carbon) model, to improve the accuracy of estimated carbon balance for China's forest ecosystems. With the revised NPP-age relationship, the InTEC model simulated a larger carbon source from 1950-1980 and a larger carbon sink from 1985-2001 for China's forests than the original InTEC model did because of the modification to the age-related carbon dynamics in forests. This finding confirms the importance of considering the dynamics of NPP related to forest age in estimating regional and global terrestrial carbon budgets. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, D.Y.; Hughes, R.W.; Anthony, E.J.
Sintering during calcination/carbonation may introduce substantial economic penalties for a CO{sub 2} looping cycle using limestone/dolomite-derived sorbents. Cyclic carbonation and calcination reactions were investigated for CO{sub 2} capture under fluidized bed combustion (FBC) conditions. The cyclic carbonation characteristics of CaCO{sub 3}-derived sorbents were compared at various calcination temperatures (700-925{sup o} C) and different gas stream compositions: pure -2 and a realistic calciner environment where high concentrations of CO{sub 2}>80-90% are expected. The conditions during carbonation were 700 {sup o}C and 15% CO{sub 2} in N{sub 2} and 0.18% or 0.50% SO{sub 2} in selected tests. Up to 20 calcination/carbonation cyclesmore » were conducted using a thermogravimetric analyzer (TGA) apparatus. Three Canadian limestones were tested: Kelly Rock, Havelock, and Cadomin, using a prescreened particle size range of 400-650 {mu} m. Calcined Kelly Rock and Cadomin samples were hydrated by steam and examined. Sorbent reactivity was reduced whenever SO{sub 2} was introduced to either the calcining or carbonation streams. The multicyclic capture capacity of CaO for CO{sub 2} was substantially reduced at high concentrations of CO{sub 2} during the sorbent regeneration process and carbonation conversion of the Kelly Rock sample obtained after 20 cycles was only 10.5%. Hydrated sorbents performed better for CO{sub 2} capture but showed deterioration following calcination in high CO{sub 2} gas streams indicating that high CO{sub 2} and SO{sub 2} levels in the gas stream lead to lower CaO conversion because of enhanced sintering and irreversible formation of CaSO{sub 4}.« less
40 CFR 98.213 - Calculating GHG emissions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... calcination fractions with Equation U-1 of this section. ER30OC09.077 Where: ECO2 = Annual CO2 mass emissions... ton carbonate consumed. Fi = Fraction calcination achieved for each particular carbonate type i (decimal fraction). As an alternative to measuring the calcination fraction, a value of 1.0 can be used. n...
Yu, Jiaguo; Qi, Lifang; Cheng, Bei; Zhao, Xiufeng
2008-12-30
Tungsten trioxide hollow microspheres were prepared by immersing SrWO4 microspheres in a concentrated HNO3 solution, and then calcined at different temperatures. The prepared tungsten oxide samples were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectra, differential thermal analysis-thermogravimetry, UV-visible spectrophotometry, scanning electron microscopy, N2 adsorption/desorption measurements. The photocatalytic activity of the samples was evaluated by photocatalytic decolorization of rhodamine B aqueous solution under visible-light irradiation. It was found that with increasing calcination temperatures, the average crystallite size and average pore size increased, on the contrary, Brunauer-Emmett-Teller-specific surface areas decreased. However, pore volume and porosity increased firstly, and then decreased. Increasing calcination temperatures resulted in the changes of surface morphology of hollow microspheres. The un-calcined and 300 degrees C-calcined samples showed higher photocatalytic activity than other samples. At 400 degrees C, the photocatalytic activity decreased greatly due to the decrease of specific surface areas. At 500 degrees C, the photocatalytic activity of the samples increased again due to the junction effect of two phases.
Removal of Dissolved Silica using Calcinated Hydrotalcite in Real-life Applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sasan, Koroush; Brady, Patrick Vane.; Krumhansl, James L.
Water shortages are a growing global problem. Reclamation of industrial and municipal wastewater will be necessary in order to mitigate water scarcity. However, many operational challenges, such as silica scaling, prevent large scale water reuse. Previously, our team at Sandia has demonstrated the use of selective ion exchange materials, such as calcinated hydrotalcite (HTC, (Mg 6 Al 2 (OH) 16 (CO 3 )*4H 2 O)), for the low cost removal of silica from synthetic cooling tower water. However, it is not currently know if calcinated HTC has similar capabilities in realistic applications. The purpose of this study was to investigatemore » the ability of calcinated HTC to remove silica from real cooling tower water. This was investigated under both batch and continuous conditions, and in the presence of competing ions. It was determined that calcinated HTC behaved similarly in real and synthetic cooling tower water; the HTC is highly selective for the silica even in the presence of competing cations. Therefore, the data concludes that calcinated HTC is a viable anti-scaling pretreatment for the reuse of industrial wastewaters.« less
Calcinations effect on the grain size distributions Al2O3 powder
NASA Astrophysics Data System (ADS)
Issa, Tarik Talib; Mohammed, Awattif A.; Kamil, Dunia
2012-09-01
Fine of Al2O3 Powder was calcined at 200°C, 400°C, 600°C, and 800°C respectively for 2 hours under static air, x-ray diffraction, optical microscope and grain size distribution were done to analysis the resulting data after calcinations process. Batter particle size was achieved at 800°C of value (0.486) μm, while batter particles mean value of size 7.18 μm was found at 400°C. SEM micrographs shows that the agglomerate particles were vanished due to the calcinations process.
Passivation of pigment particles for thermal control coatings
NASA Technical Reports Server (NTRS)
Farley, E. P.; Sancier, K. M.; Morrison, S. R.
1973-01-01
Five powders were received for plasma calcining during this report period. The particle size using a fluid energy mill, and obtained pigments that could be plasma calcined. Optimum results are obtained in the plasma calcining of zinc orthotitanate when finely dispersed particles are subjected to a calculated plasma temperature of 1670 C. Increasing the plasma calcining time by using multiple passes through the plasma stabilized the pigment to vacuum UV irradiation was evidenced by the resulting ESR spectra but slightly decreased the whiteness of the pigment. The observed darkening is apparently associated with the formation of Ti(+3) color centers.
NASA Astrophysics Data System (ADS)
Bumanis, G.; Bajare, D.; Dembovska, L.
2015-11-01
Alkali activation technology can be applied for a wide range of alumo-silicates to produce innovative materials with various areas of application. Most researches focuse on the application of alumo-silicate materials in building industry as cement binder replacement to produce mortar and concrete [1]. However, alkali activation technology offers high potential also in biotechnologies [2]. In the processes where certain pH level, especially alkaline environment, must be ensured, alkali activated materials can be applied. One of such fields is water treatment systems where high level pH (up to pH 10.5) ensures efficient removal of water pollutants such as manganese [3]. Previous investigations had shown that alkali activation technology can be applied to calcined clay powder and aluminium scrap recycling waste as a foam forming agent to create porous alkali activated materials. This investigation focuses on the structural investigation of calcined kaolin and illite clay alkali activation processes. Chemical and mineralogical composition of both clays were determined and structural investigation of alkali activated materials was made by using XRD, DTA, FTIR analysis; the microstructure of hardened specimens was observed by SEM. Physical properties of the obtained material were determined. Investigation indicates the essential role of chemical composition of the clay used in the alkali activation process, and potential use of the obtained material in water treatment systems.
Rimondi, Valentina; Bardelli, Fabrizio; Benvenuti, Marco; Costagliola, Pilario; Gray, John E.; Lattanzi, Pierfranco
2014-01-01
A fundamental step to evaluate the biogeochemical and eco-toxicological significance of Hg dispersion in the environment is to determine speciation of Hg in solid matrices. In this study, several analytical techniques such as scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), sequential chemical extractions (SCEs), and X-ray absorption spectroscopy (XANES) were used to identify Hg compounds and Hg speciation in samples collected from the Mt. Amiata Hg mining district, southern Tuscany, Italy. Different geological materials, such as mine waste calcine (retorted ore), soil, stream sediment, and stream water suspended particulate matter were analyzed. Results show that the samples were generally composed of highly insoluble Hg compounds such as sulphides (HgS, cinnabar and metacinnabar), and more soluble Hg halides such as those associated with the mosesite group. Other moderately soluble Hg compounds, HgCl2, HgO and Hg0, were also identified in stream sediments draining the mining area. The presence of these minerals suggests active and continuous runoff of soluble Hg compounds from calcines, where such Hg compounds form during retorting, or later in secondary processes. Specifically, we suggest that, due to the proximity of Hg mines to the urban center of Abbadia San Salvatore, the influence of other anthropogenic activities was a key factor for Hg speciation, resulting in the formation of unusual Hg-minerals such as mosesite.
Calculating CO2 uptake for existing concrete structures during and after service life.
Andersson, Ronny; Fridh, Katja; Stripple, Håkan; Häglund, Martin
2013-10-15
This paper presents a model that can calculate the uptake of CO2 in all existing concrete structures, including its uptake after service life. This is important for the calculation of the total CO2 uptake in the society and its time dependence. The model uses the well-documented cement use and knowledge of how the investments are distributed throughout the building sector to estimate the stock of concrete applications in a country. The depth of carbonation of these applications is estimated using two models, one theoretical and one based on field measurements. The maximum theoretical uptake potential is defined as the amount of CO2 that is emitted during calcination at the production of Portland cement, but the model can also, with some adjustments, be used for the other cement types. The model has been applied on data from Sweden and the results show a CO2 uptake in 2011 in all existing structures of about 300,000 tonnes, which corresponds to about 17% of the total emissions (calcination and fuel) from the production of new cement for use in Sweden in the same year. The study also shows that in the years 2030 and 2050, an increase in the uptake in crushed concrete, from 12,000 tonnes today to 200,000 and 500,000 tonnes of CO2, respectively, could be possible if the waste handling is redesigned.
Effects of Coke Calcination Level on Pore Structure in Carbon Anodes
NASA Astrophysics Data System (ADS)
Fang, Ning; Xue, Jilai; Lang, Guanghui; Bao, Chongai; Gao, Shoulei
2016-02-01
Effects of coke calcination levels on pore structure of carbon anodes have been investigated. Bench anodes were prepared by 3 types of cokes with 4 calcination temperatures (800°C, 900°C, 1000°C and 1100°C). The cokes and anodes were characterized using hydrostatic method, air permeability determination, mercury porosimetry, image analysis and confocal microscopy (CSLM). The cokes with different calcination levels are almost the same in LC values (19-20 Å) and real density (1.967-1.985 g/cm3), while the anode containing coke calcined at 900°C has the lowest open porosity and air permeability. Pore size distribution (represented by Anode H sample) can be roughly divided into two ranges: small and medium pores in diameter of 10-400 μm and large pores of 400-580 μm. For the anode containing coke calcined at 800°C, a number of long, narrow pores in the pore size range of 400-580 μm are presented among cokes particles. Formation of these elongated pores may be attributed to coke shrinkages during the anode baking process, which may develop cracking in the anode under cell operations. More small or medium rounded pores with pore size range of 10-400 μm emerge in the anodes with coke calcination temperatures of 900°C, 1000°C and 1100°C, which may be generated due to release of volatiles from the carbon anode during baking. For the anode containing coke calcined at 1100°C, it is found that many rounded pores often closely surround large coke particles, which have potential to form elongated, narrow pores.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohapatra, Pratyasha; Shaw, Santosh; Mendivelso-Perez, Deyny
Removing organics from hybrid nanostructures is a crucial step in many bottom-up materials fabrication approaches. It is usually assumed that calcination is an effective solution to this problem, especially for thin films. This assumption has led to its application in thousands of papers. Here in this paper, we show that this general assumption is incorrect by using a relevant and highly controlled model system consisting of thin films of ligand-capped ZrO 2 nanocrystals. After calcination at 800 °C for 12 h, while Raman spectroscopy fails to detect the ligands after calcination, elastic backscattering spectrometry characterization demonstrates that ~18% of themore » original carbon atoms are still present in the film. By comparison plasma processing successfully removes the ligands. Our growth kinetic analysis shows that the calcined materials have significantly different interfacial properties than the plasma-processed counterparts. Calcination is not a reliable strategy for the production of single-phase all-inorganic materials from colloidal nanoparticles.« less
The effect of calcination temperature on the formation and magnetic properties of ZnMn2O4 spinel
NASA Astrophysics Data System (ADS)
Hermanto, B.; Ciswandi; Afriani, F.; Aryanto, D.; Sudiro, T.
2018-03-01
The spinel based on transition-metal oxides has a typical composition of AB2O4. In this study, the ZnMn2O4 spinel was synthesized using a powder metallurgy technique. The Zn and Mn metallic powders with an atomic ratio of 1:2 were mechanically alloyed for 3 hours in aqueous solution. The mixed powder was then calcined in a muffle furnace at elevated temperature of 400, 500 and 600 °C. The X-ray Diffractometer (XRD) was used to evaluate the formation of a ZnMn2O4 spinel structure. The magnetic properties of the sample at varying calcination temperatures were characterized by a Vibrating Sample Magnetometer (VSM). The results show that the fraction of ZnMn2O4 spinel formation increases with the increase of calcination temperature. The calcination temperature also affects the magnetic properties of the samples.
NASA Astrophysics Data System (ADS)
Sathiskumar, Swamiappan; Vanaraj, Sekar; Sabarinathan, Devaraj; Preethi, Kathirvel
2018-02-01
Materials based on hydroxyapatite (HAp) Synthesized from bio-wastes have been regarded as useful, novel, eco-friendly medical applications that are targeted primarily for their antibacterial nature. In the present study, HAp was Synthesized from the fish scales of Labeo rohita using alkaline heat treatment and subsequently mixed with 1, 2 and 3 wt% of zinc (Zn) at 800 °C using calcination method to yield Zn-HAp composites. A detailed characterization of the generated composites was analysed by XRD, FT-IR, SEM, EDX and DLS methods. Further, antibacterial and biofilm inhibitory activity of the generated composites was determined using strains of Staphylococcus aureus and Escherichia coli. The confirmation of the presence of zinc, confirmed by EDAX spectra, XRD, FT-IR, SEM and DLS observations, established that HAp and Zn-HAp composites were without impurities, irregular in shape and were 848 nm sized particles. Although 1-3 wt% Zn-HAp composites showed antibacterial activity, the 3 wt% Zn-HAp composite was found suitable to kill the surrounding bacterial growth and showed potent inhibitory activity against biofilm formation.
López-Sabirón, Ana M; Fleiger, Kristina; Schäfer, Stefan; Antoñanzas, Javier; Irazustabarrena, Ane; Aranda-Usón, Alfonso; Ferreira, Germán A
2015-08-01
Plasma torch gasification (PTG) is currently researched as a technology for solid waste recovery. However, scientific studies based on evaluating its environmental implications considering the life cycle assessment (LCA) methodology are lacking. Therefore, this work is focused on comparing the environmental effect of the emissions of syngas combustion produced by refuse derived fuel (RDF) and PTG as alternative fuels, with that related to fossil fuel combustion in the cement industry. To obtain real data, a semi-industrial scale pilot plant was used to perform experimental trials on RDF-PTG.The results highlight that PTG for waste to energy recovery in the cement industry is environmentally feasible considering its current state of development. A reduction in every impact category was found when a total or partial substitution of alternative fuel for conventional fuel in the calciner firing (60 % of total thermal energy input) was performed. Furthermore, the results revealed that electrical energy consumption in PTG is also an important parameter from the LCA approach. © The Author(s) 2015.
Calcium phosphate stabilization of fly ash with chloride extraction.
Nzihou, Ange; Sharrock, Patrick
2002-01-01
Municipal solid waste incinerator by products include fly ash and air pollution control residues. In order to transform these incinerator wastes into reusable mineral species, soluble alkali chlorides must be separated and toxic trace elements must be stabilized in insoluble form. We show that alkali chlorides can be extracted efficiently in an aqueous extraction step combining a calcium phosphate gel precipitation. In such a process, sodium and potassium chlorides are obtained free from calcium salts, and the trace metal ions are immobilized in the calcium phosphate matrix. Moderate calcination of the chemically treated fly ash leads to the formation of cristalline hydroxylapatite. Fly ash spiked with copper ions and treated by this process shows improved stability of metal ions. Leaching tests with water or EDTA reveal a significant drop in metal ion dissolution. Hydroxylapatite may trap toxic metals and also prevent their evaporation during thermal treatments. Incinerator fly ash together with air pollution control residues, treated by the combined chloride extraction and hydroxylapatite formation process may be considered safe to use as a mineral filler in value added products such as road base or cement blocks.
NASA Astrophysics Data System (ADS)
Sun, Ya-Ping; Sun, Bao-Min; Zhai, Gang; Guo, Yong-Hong; Jia, Xiao-Wei; Kang, Zhi-Zhong
2018-05-01
Carbon nanotubes (CNTs) were synthesized via carbon monoxide decomposition with aid of various Fe/Mo-Al2O3 catalysts by V-type flame method. The influences of support calcination and competitive adsorbates on the morphology and properties of CNTs were studied. SEM, HRTEM, TPO and Raman spectroscopy were applied to investigate the morphology and microstructure of CNT products. XRD, H2-TPR were employed to characterize catalysts. The obtained results indicate that calcinated support can increase production and promote the formation of CNTs with small diameter. Utilizing citric acid as a competitive adsorbate is successful in improving the quality of CNTs. Besides, the addition of citric acid and calcinated support in catalyst enhances the catalytic growth activity. The obtained CNTs have a diameter around 4–6 nm within a narrow diameter distribution range. Raman spectrum analysis also illustrates that highly graphitized CNTs are produced on the catalyst with calcinated support and citric acid. These results suggest that support calcination and competitive adsorbate have pronounced effect on the average diameter, diameter distribution, and graphitization of CNTs, which provides a simple and effective way to tune the properties of CNTs.
Secondary Waste Form Down Selection Data Package – Ceramicrete
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cantrell, Kirk J.; Westsik, Joseph H.
2011-08-31
As part of high-level waste pretreatment and immobilized low activity waste processing, liquid secondary wastes will be generated that will be transferred to the Effluent Treatment Facility on the Hanford Site for further treatment. These liquid secondary wastes will be converted to stable solid waste forms that will be disposed in the Integrated Disposal Facility. Currently, four waste forms are being considered for stabilization and solidification of the liquid secondary wastes. These waste forms are Cast Stone, Ceramicrete, DuraLith, and Fluidized Bed Steam Reformer. The preferred alternative will be down selected from these four waste forms. Pacific Northwest National Laboratorymore » is developing data packages to support the down selection process. The objective of the data packages is to identify, evaluate, and summarize the existing information on the four waste forms being considered for stabilization and solidification of the liquid secondary wastes. The information included will be based on information available in the open literature and from data obtained from testing currently underway. This data package is for the Ceramicrete waste form. Ceramicrete is a relatively new engineering material developed at Argonne National Laboratory to treat radioactive and hazardous waste streams (e.g., Wagh 2004; Wagh et al. 1999a, 2003; Singh et al. 2000). This cement-like waste form can be used to treat solids, liquids, and sludges by chemical immobilization, microencapsulation, and/or macroencapsulation. The Ceramicrete technology is based on chemical reaction between phosphate anions and metal cations to form a strong, dense, durable, low porosity matrix that immobilizes hazardous and radioactive contaminants as insoluble phosphates and microencapsulates insoluble radioactive components and other constituents that do not form phosphates. Ceramicrete is a type of phosphate-bonded ceramic, which are also known as chemically bonded phosphate ceramics. The Ceramicrete binder is formed through an acid-base reaction between calcined magnesium oxide (MgO; a base) and potassium hydrogen phosphate (KH{sub 2}PO{sub 4}; an acid) in aqueous solution. The reaction product sets at room temperature to form a highly crystalline material. During the reaction, the hazardous and radioactive contaminants also react with KH{sub 2}PO{sub 4} to form highly insoluble phosphates. In this data package, physical property and waste acceptance data for Ceramicrete waste forms fabricated with wastes having compositions that were similar to those expected for secondary waste effluents, as well as secondary waste effluent simulants from the Hanford Tank Waste Treatment and Immobilization Plant were reviewed. With the exception of one secondary waste form formulation (25FA+25 W+1B.A. fabricated with the mixed simulant did not meet the compressive strength requirement), all the Ceramicrete waste forms that were reviewed met or exceeded Integrated Disposal Facility waste acceptance criteria.« less
Valverde, Jose Manuel; Medina, Santiago
2017-03-15
This work reports an in situ XRD analysis of whether the calcination/carbonation behavior of natural limestone (CaCO 3 ) is affected by the addition of H 2 O to the calciner at a very low concentration under relevant Calcium-Looping (CaL) conditions for CO 2 capture in coal fired power plants (CFPP) and Thermochemical Energy Storage (TCES) in Concentrated Solar Power plants (CSP). Previous studies have demonstrated that the presence of steam in the calciner at a high concentration yields a significant increase in the reaction rate. However, a further undesired consequence is the serious deterioration of the CaO mechanical strength, which would lead to particle attrition and mass loss in any CaL process based on the use of circulating fluidized beds. The results presented in this manuscript on the time evolution of the wt% and crystallite size of the phases involved in the calcination/carbonation reactions indicate that the calcination rate is still notably increased by the presence of H 2 O at very low concentrations whereas the reactivity toward carbonation and crystal structure of the formed CaO are not essentially affected, which suggests that the CaO mechanical strength is not impaired. Thus, the benefit of using steam for calcination in the CaL process could be still retained while at the same time particle attrition would not be promoted.
Bartholomay, Roy C.; Hodges, Mary K. V.; Champion, Duane E.
2017-12-21
Wastewater discharged to wells and ponds and wastes buried in shallow pits and trenches at facilities at the Idaho National Laboratory (INL) have contributed contaminants to the eastern Snake River Plain (ESRP) aquifer in the southwestern part of the INL. This report describes the correlation between subsurface stratigraphy in the southwestern part of the INL with information on the presence or absence of wastewater constituents to better understand how flow pathways in the aquifer control the movement of wastewater discharged at INL facilities. Paleomagnetic inclination was used to identify subsurface basalt flows based on similar inclination measurements, polarity, and stratigraphic position. Tritium concentrations, along with other chemical information for wells where tritium concentrations were lacking, were used as an indicator of which wells were influenced by wastewater disposal.The basalt lava flows in the upper 150 feet of the ESRP aquifer where wastewater was discharged at the Idaho Nuclear Technology and Engineering Center (INTEC) consisted of the Central Facilities Area (CFA) Buried Vent flow and the AEC Butte flow. At the Advanced Test Reactor (ATR) Complex, where wastewater would presumably pond on the surface of the water table, the CFA Buried Vent flow probably occurs as the primary stratigraphic unit present; however, AEC Butte flow also could be present at some of the locations. At the Radioactive Waste Management Complex (RWMC), where contamination from buried wastes would presumably move down through the unsaturated zone and pond on the surface of the water table, the CFA Buried Vent; Late Basal Brunhes; or Early Basal Brunhes basalt flows are the flow unit at or near the water table in different cores.In the wells closer to where wastewater disposal occurred at INTEC and the ATR-Complex, almost all the wells show wastewater influence in the upper part of the ESRP aquifer and wastewater is present in both the CFA Buried Vent flow and AEC Butte flow. The CFA Buried Vent flow and AEC Butte flow are also present in wells at and north of CFA and are all influenced by wastewater contamination. All wells with the AEC Butte flow present have wastewater influence and 83 percent of the wells with the more prevalent CFA Buried Vent flow have wastewater influence. South and southeast of CFA, most wells are not influenced by wastewater disposal and are completed in the Big Lost Flow and the CFA Buried Vent flow. Wells southwest of CFA are influenced by wastewater disposal and are completed in the Big Lost flow and CFA Buried Vent flow at the top of the aquifer. Basalt stratigraphy indicates that the CFA Buried Vent flow is the predominant flow in the upper part of the ESRP aquifer at and near the RWMC as it is present in all the wells in this area. The Late Basal Brunhes flow, Middle Basal Brunhes flow, Early Basal Brunhes flow, South Late Matuyama flow, and Matuyama flow are also present in various wells influenced by waste disposal.Some wells south of RWMC do not show wastewater influence, and the lack of wastewater influence could be due to low hydraulic conductivities. Several wells south and southeast of CFA also do not show wastewater influence. Low hydraulic conductivities or ESRP subsidence are possible causes for lack of wastewater south of CFA.Multilevel monitoring wells completed much deeper in the aquifer show influence of wastewater in numerous basalt flows. Well Middle 2051 (northwest of RWMC) does not show wastewater influence in its upper three basalt flows (CFA Buried Vent, Late Basal Brunhes, and Middle Basal Brunhes); however, wastewater is present in two deeper flows (the Matuyama and Jaramillo flows). Well USGS 131A (southwest of CFA) and USGS132 (south of RWMC) both show wastewater influence in all the basalt flows sampled in the upper 600 feet of the aquifer. Wells USGS 137A, 105, 108, and 103 completed along the southern boundary of the INL all show wastewater influence in several basalt flows including the G flow, Middle and Early Basal Brunhes flows, the South Late Matuyama flow and the Matuyama flow; however, the strongest wastewater influence appears to be in the South Late Matuyama flow. The concentrations of wastewater constituents in deeper parts of these wells support the concept of groundwater flow deepening in the southwestern part of the INL.
NASA Astrophysics Data System (ADS)
Wang, X. W.; Zheng, D. L.; Yang, P. Z.; Wang, X. E.; Zhu, Q. Q.; Ma, P. F.; Sun, L. Y.
2017-01-01
The precursor of NiO-Co3O4 composites was synthesized via a simple hydrothermal process. After that, the precursor was calcined at 300 °C for 3 h to obtain the composite powders. The powders calcined at 300 °C showed amorphous, and the powders calcined at 400 °C and 500 °C for comparison showed the composite phase of NiO and Co3O4. The composite products showed a microstructure of micro-spheres. For the samples calcined at 300 °C for 3 h, the specific capacitance reached 801 F g-1 at a current density of 1 A g-1.
SysML: A Language for Space System Engineering
NASA Astrophysics Data System (ADS)
Mazzini, S.; Strangapede, A.
2008-08-01
This paper presents the results of an ESA/ESTEC internal study, performed with the support of INTECS, about modeling languages to support Space System Engineering activities and processes, with special emphasis on system requirements identification and analysis. The study was focused on the assessment of dedicated UML profiles, their positioning alongside the system and software life cycles and associated methodologies. Requirements for a Space System Requirements Language were identified considering the ECSS-E-10 and ECSS-E_40 processes. The study has identified SysML as a very promising language, having as theoretical background the reference system processes defined by the ISO15288, as well as industrial practices.
NASA Astrophysics Data System (ADS)
Takano, Hiroyuki; Izumiya, Koichi; Kumagai, Naokazu; Hashimoto, Koji
2011-07-01
The active catalysts for methane formation from the gas mixture of CO 2 + 4H 2 with almost 100% methane selectivity were prepared by reduction of the oxide mixture of NiO and ZrO 2 prepared by calcination of aqueous ZrO 2 sol with Sm(NO 3) 3 and Ni(NO 3) 2. The 50 at%Ni-50 at%(Zr-Sm oxide) catalyst consisting of 50 at%Ni-50 at%(Zr + Sm) with Zr/Sm = 5 calcined at 650 or 800 °C showed the highest activity for methanation. The active catalysts were Ni supported on tetragonal ZrO 2, and the activity for methanation increased by an increase in inclusion of Sm 3+ ions substituting Zr 4+ ions in the tetragonal ZrO 2 lattice as a result of an increase in calcination temperature. However, the increase in calcination temperature decreased BET surface area, metal dispersion and hydrogen uptake due to grain growth. Thus, the optimum calcination temperature existed.
Moisan, Stéphanie; Rucay, Pierre; Ghali, Alaa; Penneau-Fontbonne, Dominique; Lavigne, Christian
2010-10-01
Silica-associated systemic sclerosis can occur in persons using calcined diatomaceous earth for filtration purpose. A limited systemic sclerosis was diagnosed in a 52-year-old male winegrower who had a combination of Raynaud's phenomenon, oesophageal dysfunction, sclerodactyly and telangectasia. The anti-centromere antibodies titre was 1/5000. The patient was frequently exposed to high atmospheric concentrations of calcined diatomaceous earth when performing the filtration of wines. Calcined diatomaceous earth is almost pure crystalline silica under the cristobalite form. The diagnosis of silica-associated limited systemic sclerosis after exposure to calcined diatomaceous earth was made. The patient's disease met the medical, administrative and occupational criteria given in the occupational diseases list 22 bis of the agriculture Social Security scheme and thence was presumed to be occupational in origin, without need to be proved. The diagnosis of occupational disease had been recognized by the compensation system of the agricultural health insurance. Copyright © 2010 Société française de rhumatologie. Published by Elsevier SAS. All rights reserved.
The effect of precipitation and calcination parameters on oxalate derived ThO2 pellets
NASA Astrophysics Data System (ADS)
Wangle, Tadeas; Tyrpekl, Vaclav; Cagno, Simone; Delloye, Thierry; Larcher, Olivier; Cardinaels, Thomas; Vleugels, Jozef; Verwerft, Marc
2017-11-01
Thorium oxalate is easy to prepare, but the derived oxide powders retain the platelet morphology of the primary oxalate. This negatively impacts packing and sintering. If powder milling is to be avoided, powder synthesis needs to be optimized. That is the goal of this paper, where different precipitation strategies were used and their effect on powder characteristics and pellet synthesis was investigated. Oxalates prepared by adding a thorium nitrate solution to an oxalic acid solution proved most promising. Further optimizing of the calcination temperature revealed that with increasing calcination temperature the packing density improved significantly. This came at the cost of decreased early stage sintering and a higher frequency of end-capping during compaction. The calcination temperature at which the highest final density can be reached was dependent on the sintering cycle. Furthermore, the ThO2 powders had less surface area and thus adsorbed less gases during storage when calcined at higher temperatures.
The effect of heat treatment on superhydrophilicity of TiO2 nano thin films
NASA Astrophysics Data System (ADS)
Ashkarran, A. A.; Mohammadizadeh, M. R.
2007-11-01
TiO2 thin films were synthesized by the sol-gel method and spin coating process. The calcination temperature was changed from 100 to 550°C. XRD patterns show increasing the content of polycrystalline anatase phase with increasing the calcination temperature. The AFM results indicate granular morphology of the films, which particle size changes from 22 to 166nm by increasing the calcination temperature. The RBS, EDX and Raman spectroscopy of the films show the ratio of Ti:O ~0.5, and diffusion of sodium ions from substrate into the layer, by increasing the calcination temperature. The UV-vis spectroscopy of the films indicates a red shift by increasing the calcination temperature. The contact angle meter experiment shows that superhydrophilicity of the films depends on the formation of anatase crystal structure and diffused sodium content from substrate to the layer. The best hydrophilicity property was observed at 450°C calcination temperature, where the film is converted to a superhydrophilic surface after 10min under 2mW/cm2 UV irradiation. Water droplet on TiO2 thin film on Si(111), Si(100), and quartz substrates is spread to smaller angles rather than glass and polycrystalline Si substrates under UV irradiation.
Guo, Wen chao; Luo, Hui juan; Gong, Zhi jun; Li, Bao wei; Wu, Wen fei
2017-01-01
Biomass was used as reducing agent to roast the Baotou low-grade limonite in a high temperature vacuum atmosphere furnace. The effect of calcination temperature, time and ratio of reducing agent on the magnetic properties of calcined ore was studied by VSM. The phase and microstructure changes of limonite before and after calcination were analyzed by XRD and SEM. The results show that in the roasting process the phase transition process of the ferrous material in limonite is first dehydrated at high temperature to formα-Fe2O3, and then it is converted into Fe3O4 by the reduction of biomass. With the increase of calcination temperature, the magnetic properties of the calcined ore first increase and then decrease. When the temperature is higher than 650°C, Fe3O4 will become Fe2SiO4, resulting in reduced the magnetic material in calcined ore and the magnetic weakened. The best magnetization effect was obtained when the roasting temperature is 550°C, the percentage of biomass was 15% and the roasting time was 30min. The saturation magnetization can reach 60.13emu·g-1, the recovery of iron was 72% and the grade of iron was 58%. PMID:29040307
Zhang, Kai; Chen, Xiu Li; Guo, Wen Chao; Luo, Hui Juan; Gong, Zhi Jun; Li, Bao Wei; Wu, Wen Fei
2017-01-01
Biomass was used as reducing agent to roast the Baotou low-grade limonite in a high temperature vacuum atmosphere furnace. The effect of calcination temperature, time and ratio of reducing agent on the magnetic properties of calcined ore was studied by VSM. The phase and microstructure changes of limonite before and after calcination were analyzed by XRD and SEM. The results show that in the roasting process the phase transition process of the ferrous material in limonite is first dehydrated at high temperature to formα-Fe2O3, and then it is converted into Fe3O4 by the reduction of biomass. With the increase of calcination temperature, the magnetic properties of the calcined ore first increase and then decrease. When the temperature is higher than 650°C, Fe3O4 will become Fe2SiO4, resulting in reduced the magnetic material in calcined ore and the magnetic weakened. The best magnetization effect was obtained when the roasting temperature is 550°C, the percentage of biomass was 15% and the roasting time was 30min. The saturation magnetization can reach 60.13emu·g-1, the recovery of iron was 72% and the grade of iron was 58%.
Human health risk characterization of petroleum coke calcining facility emissions.
Singh, Davinderjit; Johnson, Giffe T; Harbison, Raymond D
2015-12-01
Calcining processes including handling and storage of raw petroleum coke may result in Particulate Matter (PM) and gaseous emissions. Concerns have been raised over the potential association between particulate and aerosol pollution and adverse respiratory health effects including decrements in lung function. This risk characterization evaluated the exposure concentrations of ambient air pollutants including PM10 and gaseous pollutants from a petroleum coke calciner facility. The ambient air pollutant levels were collected through monitors installed at multiple locations in the vicinity of the facility. The measured and modeled particulate levels in ambient air from the calciner facility were compared to standards protective of public health. The results indicated that exposure levels were, on occasions at sites farther from the facility, higher than the public health limit of 150 μg/m(3) 24-h average for PM10. However, the carbon fraction demonstrated that the contribution from the calciner facility was de minimis. Exposure levels of the modeled SO2, CO, NOx and PM10 concentrations were also below public health air quality standards. These results demonstrate that emissions from calcining processes involving petroleum coke, at facilities that are well controlled, are below regulatory standards and are not expected to produce a public health risk. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Cui, Yuanyuan; Wang, Ying; Fan, Kangnian; Dai, Wei-Lin
2013-08-01
A series of AuAg/TiO2 catalysts calcined at different temperatures were used for single-pot, solvent-free synthesis of sodium benzoate and benzoic acid through the green oxidation of benzyl alcohol. The best catalytic performance, which produced a sodium benzoate yield of up to 85%, was obtained over the AuAg/TiO2 catalyst calcined at 623 K. Systematic characterizations including BET, XRD, TEM, XPS, and UV-vis DRS and ICP were carried out to investigate the influence of calcined temperature on the structural evolution of the bimetallic AuAg/TiO2 catalysts. TEM images showed that both low (473 K) and high calcinations temperatures (973 K) resulted in larger particles. The smallest particles (8.2 nm) were obtained at 623 K. This decrease in particle size may have been induced by the re-dispersion and interaction of the bimetallic species. XRD and XPS results showed that proper calcination temperature (623 K) could promote interactions between the bimetallic particles and the TiO2 support as well as the dispersion of active bimetallic species. The higher catalytic performance of the 623 K calcined catalyst could be attributed to the smaller particle size and the synergetic interaction between nano-bimetallic gold and silver species.
NASA Astrophysics Data System (ADS)
Fan, Jiajie; Zhao, Li; Yu, Jiaguo; Liu, Gang
2012-09-01
TiO2-based composite nanotubes, based on an in situ template dissolution method, were one-step fabricated in a mixed aqueous solution of ammonium hexafluorotitanate and boric acid using ZnO nanorods as templates, and then the samples were calcined at different temperatures. The photocatalytic activity of the samples was evaluated by photocatalytic decoloration of Methyl Orange (MO) aqueous solution at ambient temperature under UV light. The results showed that the prepared sample possessed nanoscale tubular morphology with a wall thickness of ca. 30-50 nm, inner diameters of ca. 50-150 nm and lengths of ca. 400-2000 nm. The calcined samples exhibited excellent stabilization of the anatase phase in a wide temperature range of 300-800 °C. The un-calcined and calcined samples possessed hierarchically macro-mesoporous structures. The sample calcined at 600 °C exhibited the highest photocatalytic activity, corresponding to the maximal formation rate of \\z.rad OH on the photocatalyst. This is attributed to the improvement of anatase TiO2 crystallization, the formation of multi-phase structures including anatase, cubic Zn2TiO4, hexagonal ZnTiO3 and cubic ZnTiO3, and the presence of hierarchically macro-mesoporous structures.
Guo, Qinghai; Zhang, Yin; Cao, Yaowu; Wang, Yanxin; Yan, Weide
2013-11-01
Hydrotalcite and its calcination product were used to treat pure water spiked with various concentrations of boron and geothermal water containing boron as a major undesirable element. The kinetics process of boron sorption by uncalcined hydrotalcite is controlled by the diffusion of boron from bulk solution to sorbent-solution boundary film and its exchange with interlayer chloride of hydrotalcite, whereas the removal rate of boron by calcined hydrotalcite rests with the restoration process of its layered structure. The results of isotherm sorption experiments reveal that calcined hydrotalcite generally has much stronger ability to lower solution boron concentration than uncalcined hydrotalcite. The combination of adsorption of boron on the residue of MgO-Al2O3 solid solution and intercalation of boron into the reconstructed hydrotalcite structure due to "structural memory effect" is the basic mechanism based on which the greater boron removal by calcined hydrotalcite was achieved. As 15 geothermal water samples were used to test the deboronation ability of calcined hydrotalcite at 65 °C, much lower boron removal efficiencies were observed. The competitive sorption of the other anions in geothermal water, such as HCO3-, SO4(2-), and F-, is the reason why calcined hydrotalcite could not remove boron from geothermal water as effectively as from pure boron solution. However, boron removal percents ranging from 89.3 to 99.0% could be obtained if 50 times of sorbent were added to the geothermal water samples. Calcined hydrotalcite is a good candidate for deboronation of geothermal water.
Phase transformations of α-alumina made from waste aluminum via a precipitation technique.
Matori, Khamirul Amin; Wah, Loy Chee; Hashim, Mansor; Ismail, Ismayadi; Zaid, Mohd Hafiz Mohd
2012-12-07
We report on a recycling project in which α-Al(2)O(3) was produced from aluminum cans because no such work has been reported in literature. Heated aluminum cans were mixed with 8.0 M of H(2)SO(4) solution to form an Al(2)(SO(4))(3) solution. The Al(2)(SO(4))(3) salt was contained in a white semi-liquid solution with excess H(2)SO(4); some unreacted aluminum pieces were also present. The solution was filtered and mixed with ethanol in a ratio of 2:3, to form a white solid of Al(2)(SO(4))(3)·18H(2)O. The Al(2)(SO(4))(3)·18H(2)O was calcined in an electrical furnace for 3 h at temperatures of 400-1400 °C. The heating and cooling rates were 10 °C /min. XRD was used to investigate the phase changes at different temperatures and XRF was used to determine the elemental composition in the alumina produced. A series of different alumina compositions, made by repeated dehydration and desulfonation of the Al(2)(SO(4))(3)·18H(2)O, is reported. All transitional alumina phases produced at low temperatures were converted to α-Al(2)O(3) at high temperatures. The X-ray diffraction results indicated that the α-Al(2)O(3) phase was realized when the calcination temperature was at 1200 °C or higher.
Phase Transformations of α-Alumina Made from Waste Aluminum via a Precipitation Technique
Matori, Khamirul Amin; Wah, Loy Chee; Hashim, Mansor; Ismail, Ismayadi; Zaid, Mohd Hafiz Mohd
2012-01-01
We report on a recycling project in which α-Al2O3 was produced from aluminum cans because no such work has been reported in literature. Heated aluminum cans were mixed with 8.0 M of H2SO4 solution to form an Al2(SO4)3 solution. The Al2(SO4)3 salt was contained in a white semi-liquid solution with excess H2SO4; some unreacted aluminum pieces were also present. The solution was filtered and mixed with ethanol in a ratio of 2:3, to form a white solid of Al2(SO4)3·18H2O. The Al2(SO4)3·18H2O was calcined in an electrical furnace for 3 h at temperatures of 400–1400 °C. The heating and cooling rates were 10 °C/min. XRD was used to investigate the phase changes at different temperatures and XRF was used to determine the elemental composition in the alumina produced. A series of different alumina compositions, made by repeated dehydration and desulfonation of the Al2(SO4)3·18H2O, is reported. All transitional alumina phases produced at low temperatures were converted to α-Al2O3 at high temperatures. The X-ray diffraction results indicated that the α-Al2O3 phase was realized when the calcination temperature was at 1200 °C or higher. PMID:23222685
Study of variation grain size in desulfurization process of calcined petroleum coke
NASA Astrophysics Data System (ADS)
Pintowantoro, Sungging; Setiawan, Muhammad Arif; Abdul, Fakhreza
2018-04-01
Indonesia is a country with abundant natural resources, such as mineral mining and petroleum. In petroleum processing, crude oil can be processed into a source of fuel energy such as gasoline, diesel, oil, petroleum coke, and others. One of crude oil potentials in Indonesia is petroleum coke. Petroleum coke is a product from oil refining process. Sulfur reducing process in calcined petroleum cokes can be done by desulfurization process. The industries which have potential to become petroleum coke processing consumers are industries of aluminum smelting (anode, graphite block, carbon mortar), iron riser, calcined coke, foundry coke, etc. Sulfur reducing process in calcined petroleum coke can be done by thermal desulfurization process with alkaline substance NaOH. Desulfurization of petroleum coke process can be done in two ways, which are thermal desulfurization and hydrodesulphurization. This study aims to determine the effect of various grain size on sulfur, carbon, and chemical bond which contained by calcined petroleum coke. The raw material use calcined petroleum coke with 0.653% sulfur content. The grain size that used in this research is 50 mesh, then varied to 20 mesh and 100 mesh for each desulfurization process. Desulfurization are tested by ICP, UV-VIS, and FTIR to determine levels of sulfur, carbon, chemical bonding and sulfur dissolved water which contained in the residual washing of calcined petroleum coke. From various grain size that mentioned before, the optimal value is on 100 mesh grain size, where the sulfur content in petroleum coke is 0.24% and carbon content reaches the highest level of 97.8%. Meanwhile for grain size 100 mesh in the desulfurization process is enough to break the chemical bonds of organic sulfur in petroleum coke.
NASA Astrophysics Data System (ADS)
Menon, N. Gayathri; Tatiparti, Sankara Sarma V.; Mukherji, Suparna
2018-04-01
TiO2-ZnO nanocomposites with a constant Ti:Zn molar ratio of 1:0.1 were prepared via sol-gel process followed by calcination at 300, 400, 500, 600, and 700 °C. The structural and compositional characterizations of these nanocomposites were performed through XRD, FTIR, SEM, and EDAX. Bandgap was measured using DRS. Photocatalytic performance of the nanocomposites was evaluated by decolorization of methyl orange dye under UV and visible irradiation with and without aeration. The results showed that increase in calcination temperature resulted in nanocomposites with well-defined morphology. Although the particle size increased with increase in calcination temperature, the crystallinity of the particles also increased, resulting in enhanced photocatalytic activity. A temperature-dependent anatase-to-rutile phase transformation was observed in TiO2-ZnO nanocomposite beyond 600 °C. The calcination temperature influenced both dye adsorption on the nanocomposites and also dye decolorization by photocatalysis. Even when present at low molar concentration, ZnO in the nanocomposite caused sufficient decrease in bandgap (2.6 eV) at temperatures as low as 400 °C, such that visible irradiation could cause dye decolorization. However, the best decolorization performance was observed in the presence of the nanocomposite calcined at 600 °C. Aerated systems showed better performance in all cases. Desorption of the dye remaining adsorbed on the nanocomposite at the end of the photocatalytic reaction, confirmed that adsorption accounted for only 6.6 and 3% of dye removal in the nanocomposites calcined at 600 °C with UV and visible irradiation, respectively. However, in other systems, ignoring adsorption may cause significant overestimation in photocatalytic loss of dye from the system.
Shi, Ting; Duan, Youyu; Lv, Kangle; Hu, Zhao; Li, Qin; Li, Mei; Li, Xiaofang
2018-01-01
Anatase TiO 2 (A-TiO 2 ) usually exhibits superior photocatalytic activity than rutile TiO 2 (R-TiO 2 ). However, the phase transformation from A-TiO 2 to R-TiO 2 will inevitably happens when the calcination temperature is up to 600°C, which hampers the practical applications of TiO 2 photocatalysis in hyperthermal situations. In this paper, high energy faceted TiO 2 nanosheets (TiO 2 -NSs) with super thermal stability was prepared by calcination of TiOF 2 cubes. With increase in the calcination temperature from 300 to 600°C, TiOF 2 transforms into TiO 2 hollow nanoboxes (TiO 2 -HNBs) assembly from TiO 2 -NSs via Ostwald Rippening process. Almost all of the TiO 2 -HNBs are disassembled into discrete TiO 2 -NSs when calcination temperature is higher than 700°C. Phase transformation from A-TiO 2 to R-TiO 2 begins at 1000°C. Only when the calcination temperature is higher than 1200°C can all the TiO 2 -NSs transforms into R-TiO 2 . The 500°C-calcined sample (T500) exhibits the highest photoreactivity toward acetone oxidation possibly because of the production of high energy TiO 2 -NSs with exposed high energy (001) facets and the surface adsorbed fluorine. Surface oxygen vacancy, due to the heat-induced removal of surface adsorbed fluoride ions, is responsible for the high thermal stability of TiO 2 -NSs which are prepared by calcination of TiOF 2 cubes.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Kraft Lime Kiln and Calciner Emissions Factors for Fossil Fuel-Based CH4 and N2O AA Table AA-2 to Subpart AA of Part 98 Protection of Environment... and Calciner Emissions Factors for Fossil Fuel-Based CH4 and N2O Fuel Fossil fuel-based emissions...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Kraft Lime Kiln and Calciner Emissions Factors for Fossil Fuel-Based CH4 and N2O AA Table AA-2 to Subpart AA of Part 98 Protection of Environment... and Calciner Emissions Factors for Fossil Fuel-Based CH4 and N2O Fuel Fossil fuel-based emissions...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Kraft Lime Kiln and Calciner Emissions Factors for Fossil Fuel-Based CH4 and N2O AA Table AA-2 to Subpart AA of Part 98 Protection of Environment... and Calciner Emissions Factors for Fossil Fuel-Based CH4 and N2O Fuel Fossil fuel-based emissions...
NASA Astrophysics Data System (ADS)
Zaid, Hayyiratul Fatimah Mohd; Kait, Chong Fai; Mutalib, Mohamed Ibrahim Abdul
2014-10-01
Photocatalyts TiO2 doped with Cu, Fe and Cu-Fe metal at different calcination temperature and duration were successfully prepared and characterized. Photocatalytic oxidative desulfurization of model oil containing dibenzothiophene as the sulfur compound (100 ppm) using the prepared photocatalyst was investigated. The photocatalyst calcined at 500°C and duration of 1 h showed the best performance.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Kraft Lime Kiln and Calciner Emissions Factors for CH4 and N2O AA Table AA-2 to Subpart AA of Part 98 Protection of Environment ENVIRONMENTAL... Manufacturing Pt. 98, Subpt. AA, Table AA -2 Table AA-2 to Subpart AA of Part 98—Kraft Lime Kiln and Calciner...
Wet calcining of trona (sodium sesquicarbonate) and bicarbonate in a mixed solvent
NASA Astrophysics Data System (ADS)
Gärtner, R. S.; Witkamp, G. J.
2002-04-01
Trona ore is used in large amounts for the production of soda ash. A key step in this process is the conversion of trona (sodium sesquicarbonate: Na 2CO 3·NaHCO 3·2H 2O) into soda (sodium carbonate anhydrate: Na 2CO 3). Currently, this conversion is done industrially by calcining of the raw ore in rotary calciners at ca. 120°C or higher (Natural Soda Ash—Occurrences, Processing, and Use, Van Nostrand Reinhold, New York, 1991, p. 267). Trona can however be converted at lower temperatures by using a "wet calcining" technique. In this technique, trona is contacted with an organic or mixed organic-aqueous solvent at a conversion temperature that depends on the water activity of the used solvent. In pure ethylene glycol this temperature can be as low as 55°C. The conversion by "wet calcining" occurs very similar to that in the regular dry calcining process via a solid phase conversion. The anhydrate crystals form directly from the solid trona. This produces pseudomorphs (J. Chem. Eng. Data 8(3) (1963) 301), i.e. agglomerates of fine anhydrate crystals (1-10 μm). At high temperatures, dense, finely pored agglomerates are formed, while the outer shape of the agglomerate retains the prism shape of the trona crystal. At low conversion temperatures, loosely packed or even unstable agglomerates are found.
Yaakob, Zahira; Bshish, Ahmed; Ebshish, Ali; Tasirin, Siti Masrinda; Alhasan, Fatah H.
2013-01-01
Selecting a proper support in the catalyst system plays an important role in hydrogen production via ethanol steam reforming. In this study, sol gel made alumina supports prepared for nickel (Ni) catalysts were calcined at different temperatures. A series of (Ni/AlS.G.) catalysts were synthesized by an impregnation procedure. The influence of varying the calcination temperature of the sol gel made supports on catalyst activity was tested in ethanol reforming reaction. The characteristics of the sol gel alumina supports and Ni catalysts were affected by the calcination temperature of the supports. The structure of the sol gel made alumina supports was transformed in the order of γ → (γ + θ) → θ-alumina as the calcination temperature of the supports increased from 600 °C to 1000 °C. Both hydrogen yield and ethanol conversion presented a volcano-shaped behavior with maximum values of 4.3 mol/mol ethanol fed and 99.5%, respectively. The optimum values were exhibited over Ni/AlS.G800 (Ni catalyst supported on sol gel made alumina calcined at 800 °C). The high performance of the Ni/AlS.G800 catalyst may be attributed to the strong interaction of Ni species and sol gel made alumina which lead to high nickel dispersion and small particle size. PMID:28809270
Yaakob, Zahira; Bshish, Ahmed; Ebshish, Ali; Tasirin, Siti Masrinda; Alhasan, Fatah H
2013-05-30
Selecting a proper support in the catalyst system plays an important role in hydrogen production via ethanol steam reforming. In this study, sol gel made alumina supports prepared for nickel (Ni) catalysts were calcined at different temperatures. A series of (Ni/Al S.G. ) catalysts were synthesized by an impregnation procedure. The influence of varying the calcination temperature of the sol gel made supports on catalyst activity was tested in ethanol reforming reaction. The characteristics of the sol gel alumina supports and Ni catalysts were affected by the calcination temperature of the supports. The structure of the sol gel made alumina supports was transformed in the order of γ → (γ + θ) → θ-alumina as the calcination temperature of the supports increased from 600 °C to 1000 °C. Both hydrogen yield and ethanol conversion presented a volcano-shaped behavior with maximum values of 4.3 mol/mol ethanol fed and 99.5%, respectively. The optimum values were exhibited over Ni/Al S.G800 (Ni catalyst supported on sol gel made alumina calcined at 800 °C). The high performance of the Ni/Al S.G800 catalyst may be attributed to the strong interaction of Ni species and sol gel made alumina which lead to high nickel dispersion and small particle size.
Barney, Gary S.; Brownell, Lloyd E.
1977-01-01
A method for converting sodium nitrate-containing, caustic, radioactive wastes to a solid, relatively insoluble, thermally stable form is provided and comprises the steps of reacting powdered aluminum silicate clay, e.g., kaolin, bentonite, dickite, halloysite, pyrophyllite, etc., with the sodium nitrate-containing radioactive wastes which have a caustic concentration of about 3 to 7 M at a temperature of 30.degree. C to 100.degree. C to thereby entrap the dissolved radioactive salts in the aluminosilicate matrix. In one embodiment the sodium nitrate-containing, caustic, radioactive liquid waste, such as neutralized Purex-type waste, or salts or oxide produced by evaporation or calcination of these liquid wastes (e.g., anhydrous salt cake) is converted at a temperature within the range of 30.degree. C to 100.degree. C to the solid mineral form-cancrinite having an approximate chemical formula 2(NaAlSiO.sub.4) .sup.. xSalt.sup.. y H.sub.2 O with x = 0.52 and y = 0.68 when the entrapped salt is NaNO.sub.3. In another embodiment the sodium nitrate-containing, caustic, radioactive liquid is reacted with the powdered aluminum silicate clay at a temperature within the range of 30.degree. C to 100.degree. C, the resulting reaction product is air dried eitheras loose powder or molded shapes (e.g., bricks) and then fired at a temperature of at least 600.degree. C to form the solid mineral form-nepheline which has the approximate chemical formula of NaAlSiO.sub.4. The leach rate of the entrapped radioactive salts with distilled water is reduced essentially to that of the aluminosilicate lattice which is very low, e.g., in the range of 10.sup.-.sup.2 to 10.sup.-.sup.4 g/cm.sup.2 -- day for cancrinite and 10.sup.-.sup.3 to 10.sup.-.sup.5 g/cm.sup.2 -- day for nepheline.
Compositional inhomogeneityand segregation in (K 0.5Na 0.5)NbO 3 ceramics
Chen, Kepi; Tang, Jing; Chen, Yan
2016-03-11
The effects of the calcination temperature of (K 0.5Na 0.5)NbO 3 (KNN) powder on the sintering and piezoelectric properties of KNN ceramics have been investigated in this report. KNN powders are synthesized via the solid-state approach. Scanning electron microscopy and X-ray diffraction characterizations indicate that the incomplete reaction at 700 °C and 750 °C calcination results in the compositional inhomogeneity of the K-rich and Na-rich phases while the orthorhombic single phase is obtained after calcination at 900 °C. During the sintering, the presence of the liquid K-rich phase due to the lower melting point has a significant impact on themore » densification, the abnormal grain growth and the deteriorated piezoelectric properties. From the standpoint of piezoelectric properties, the optimal calcination temperature obtained for KNN ceramics calcined at this temperature is determined to be 800 °C, with piezoelectric constant d 33=128.3 pC/N, planar electromechanical coupling coefficient k p=32.2%, mechanical quality factor Q m=88, and dielectric loss tan δ=2.1%.« less
NASA Astrophysics Data System (ADS)
Qing, Rui; Liu, Li; Bohling, Christian; Sigmund, Wolfgang
2015-01-01
TiO2 is one of the most exciting anode candidates for safe application in lithium ion batteries. However, its low intrinsic electronic conductivity limits application. In this paper, a simple sol-gel based route is presented to produce nanosize TiO2 fibers with 119 ± 27 nm diameters via electrospinning. Subsequent calcination in various atmospheres was applied to achieve anatase and anatase-rutile mixed phase crystallites with and without carbon coating. The crystallite size was 5 nm for argon calcined fibers and 13-20 nm for air calcined fibers. Argon calcined TiO2 nanofibers exhibited electronic conductivity orders of magnitude higher than those of air-calcined samples. Lithium diffusivity was increased by one time and specific capacity by 26.9% due to the enhanced conductivity. It also had a different intercalation mechanism of lithium. Hydrogen post heat-treatment was found to benefit electronic conductivity (by 3-4.5 times), lithium diffusivity (1.5-2 times) and consequently the high rate performance of the TiO2 nanofibers (over 80%). The inner mechanism and structure-property relations among these parameters were also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Kepi; Tang, Jing; Chen, Yan
The effects of the calcination temperature of (K 0.5Na 0.5)NbO 3 (KNN) powder on the sintering and piezoelectric properties of KNN ceramics have been investigated in this report. KNN powders are synthesized via the solid-state approach. Scanning electron microscopy and X-ray diffraction characterizations indicate that the incomplete reaction at 700 °C and 750 °C calcination results in the compositional inhomogeneity of the K-rich and Na-rich phases while the orthorhombic single phase is obtained after calcination at 900 °C. During the sintering, the presence of the liquid K-rich phase due to the lower melting point has a significant impact on themore » densification, the abnormal grain growth and the deteriorated piezoelectric properties. From the standpoint of piezoelectric properties, the optimal calcination temperature obtained for KNN ceramics calcined at this temperature is determined to be 800 °C, with piezoelectric constant d 33=128.3 pC/N, planar electromechanical coupling coefficient k p=32.2%, mechanical quality factor Q m=88, and dielectric loss tan δ=2.1%.« less
Calcinated tea and cellulose composite films and its dielectric and lead adsorption properties.
Jayaramudu, Tippabattini; Varaprasad, Kokkarachedu; Kim, Hyun Chan; Kafy, Abdullahil; Kim, Jung Woong; Kim, Jaehwan
2017-09-01
In this paper, calcinated tea and cellulose composite (CTCC) films were fabricated via solution casting method. Chemical structure, morphology, crystallinity and thermal stability of the fabricated films were characterized by using Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction and thermogravimetric analysis. The effect of calcinated tea loading on the properties of the prepared CTCC films was studied. The results suggest that the prepared CTCC films show higher mechanical properties, thermal stability and dielectric constant than the neat cellulose film. In addition, the CTCC films adsorb Pb 2+ ions and its adsorption performance depends on the calcinated tea content and pH level. The CTCC films are useful for sensors, flexible capacitor as well as lead adsorption applications. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rimondi, V.; Gray, J.E.; Costagliola, P.; Vaselli, O.; Lattanzi, P.
2012-01-01
The distribution and translocation of mercury (Hg) was studied in the Paglia River ecosystem, located downstream from the inactive Abbadia San Salvatore mine (ASSM). The ASSM is part of the Monte Amiata Hg district, Southern Tuscany, Italy, which was one of the world’s largest Hg districts. Concentrations of Hg and methyl-Hg were determined in mine-waste calcine (retorted ore), sediment, water, soil, and freshwater fish collected from the ASSM and the downstream Paglia River. Concentrations of Hg in calcine samples ranged from 25 to 1500 μg/g, all of which exceeded the industrial soil contamination level for Hg of 5 μg/g used in Italy. Stream and lake sediment samples collected downstream from the ASSM ranged in Hg concentration from 0.26 to 15 μg/g, of which more than 50% exceeded the probable effect concentration for Hg of 1.06 μg/g, the concentration above which harmful effects are likely to be observed in sediment-dwelling organisms. Stream and lake sediment methyl-Hg concentrations showed a significant correlation with TOC indicating considerable methylation and potential bioavailability of Hg. Stream water contained Hg as high as 1400 ng/L, but only one water sample exceeded the 1000 ng/L drinking water Hg standard used in Italy. Concentrations of Hg were elevated in freshwater fish muscle samples and ranged from 0.16 to 1.2 μg/g (wet weight), averaged 0.84 μg/g, and 96% of these exceeded the 0.3 μg/g (methyl-Hg, wet weight) USEPA fish muscle standard recommended to protect human health. Analysis of fish muscle for methyl-Hg confirmed that > 90% of the Hg in these fish is methyl-Hg. Such highly elevated Hg concentrations in fish indicated active methylation, significant bioavailability, and uptake of Hg by fish in the Paglia River ecosystem. Methyl-Hg is highly toxic and the high Hg concentrations in these fish represent a potential pathway of Hg to the human food chain.
Evaluation of metal-ions containing sludges in the preparation of black inorganic pigments.
Hajjaji, W; Seabra, M P; Labrincha, J A
2011-01-30
Inorganic pigments were prepared from industrial wastes: galvanizing sludges resulting from Cr/Ni plating processes (S, G, and T) and a sludge generated from steel wiredraw process that is Fe-rich (F). These industrial wastes were characterized in order to determine the main compositional variations and discover their influence on the colour characteristics of pigments for glazes and ceramics. The toxic character was also investigated and established. Attempting to form the black spinel structure, several combinations of sludges were prepared and then calcined at 1000 °C. XRD and microscopy analysis confirmed the presence of nichromite for compositions with higher Ni amounts, while trevorite was detected in iron-rich formulations. The combination of S and F sludges (SF compositions) generates pigments with higher black colorimetric quality, which is similar to, and sometimes better than, a commercial black pigment. Pigments containing GF and TF sludges develop brown hues on glazes and on porcelain stoneware bodies, being this effect more evident upon industrial firing trials. The addition of minor amounts of cobalt or manganese enhances the black coloration, and might adjust some formulation deviations. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Amirsalari, A.; Farjami Shayesteh, S.
2015-06-01
In this study, we describe the synthesis of alumina nanoparticles using a chemical wet method in at varying pH. The optimized prepared particles with pH equals to 9 were calcined at various temperatures. For characterization of structural and optical properties of nanoparticles had been used X-ray diffraction, Infrared Fourier transform spectroscopy, field effect-scanning electron microscopy, photoluminescence and ultraviolet-visible spectroscopy. The results revealed that the nanoparticles calcined at 500 °C consist of an Al2O3 tetragonal structure and tetragonal distortion decreases with increasing calcination temperature up to 750 °C then increased with increasing temperature. Another phase similar to γ-Al2O3 was formed instead of δ-Al2O3 in the transition sequence from the γ to θ phase. FT-IR analysis; suggests that there are a few different types of functional groups on the surface of the alumina nanoparticles such as hydroxy groups and oxy groups. The transmittance spectra showed that the absorption bands in the UV region strongly depend on the calcination temperature. Moreover, the results showed that alumina has an optical direct band gap and that the energy gap decreases with increasing the calcination temperature and pH of the reaction. Luminescence spectra showed that some luminescent centers such as OH-related radiative centers and oxygen vacancies (F, F22+ and F2 centers) centers exist in the nanoparticles.
Busto, Raquel Vieira; Gonçalves, Maraisa; Coelho, Lúcia Helena Gomes
2016-09-01
This study aimed to investigate the use of red mud (RM) - a byproduct of aluminum production, as a photocatalyst, which was characterized physical-chemically and used in the photodegradation of the target compound bisphenol A (BPA). Chemical processing was performed in the RM (acid treatment, chemical reduction and calcination) to verify the most active catalyst. From the results obtained, a complete degradation kinetics of BPA was carried out using a synthetic matrix (BPA in deionized water) and a real matrix (BPA in wastewater) using natural RM/calcined and TiO 2 for comparison. The results indicated the potential use of the RM/calcined, which was able to degrade between 88 and 100% of the pollutant in a synthetic sample. Tests on a real effluent sample resulted in degradation rates that ranged from 59 to 100% with chemical oxygen demand reductions of up to 23% using natural RM/calcined in comparison to TiO 2 . The blank system (irradiation of the solution without the use of a photocatalyst) and the natural RM/calcined one, resulted in reductions of the toxicity in the effluent sample (measured by EC 20 using the marine bacteria Vibrio fischeri) of about 12 times, whereas the same treatment using TiO 2 resulted in a toxicity reduction of only seven times. Within these results, the RM/calcined showed potential to be used in wastewater treatment in polishing processes.
Catalytic dehydration of fructose to 5-hydroxymethylfurfural over Nb2O5 catalyst in organic solvent.
Wang, Fenfen; Wu, Hai-Zhen; Liu, Chun-Ling; Yang, Rong-Zhen; Dong, Wen-Sheng
2013-03-07
The catalytic dehydration of fructose to 5-hydroxymethylfurfural (HMF) in DMSO was performed over Nb2O5 derived from calcination of niobic acid at various temperatures (300-700 °C). The catalysts were characterized by powder X-ray diffraction, N2 physical adsorption, temperature-programed desorption of NH3, n-butylamine titration using Hammett indicators, infrared spectroscopy of adsorbed pyridine, and X-ray photoelectron spectroscopy. It was found that both catalytic activity and surface acid sites decrease with increasing calcination temperatures. The Nb2O5 derived from calcination of niobic acid at 400 °C reveals the maximum yield of HMF among all the catalysts, although the amount of acid sites on the catalyst is lower than that on the sample calcined at 300 °C. The results suggest that the presence of larger amounts of strong acid sites on the surface of the Nb2O5 calcined at 300 °C may promote side reactions. The Nb2O5 prepared at 400 °C shows 100% fructose conversion with 86.2% HMF yield in DMSO at 120 °C after 2 h. The activity of the catalyst decreases gradually during recycle because of coke deposition; however, it can be fully recovered by calcination at 400 °C for 2 h, suggesting that this catalyst is of significance for practical applications. Copyright © 2012 Elsevier Ltd. All rights reserved.
Recovery of SO2 and MgO from By-Products of MgO Wet Flue Gas Desulfurization.
Yan, Liyun; Lu, Xiaofeng; Wang, Quanhai; Guo, Qiang
2014-11-01
An industrial demonstration unit using natural gas as a heat source was built to calcine the by-products of MgO wet flue gas desulfurization from power plants; influencing factors on the SO 2 content in calciner gas were comprehensively analyzed; and an advantageous recycling condition of MgO and SO 2 from by-products was summarized. Results showed that the SO 2 content in the calciner gas was increased by more than 10 times under a lower excess air coefficient, a higher feed rate, a lower crystal water in by-products, and a higher feed port position. For the tests conducted under the excess air coefficient above and below one, the effect of the furnace temperature on the SO 2 content in the calciner gas was reversed. Results of activity analysis indicate that particles of MgO generated under the calcination temperature of 900-1,000°C had a high activity. In contrast, due to the slight sintering, MgO generated under the calcination temperature of 1,100°C had a low activity. To recycle SO 2 as well as MgO, a temperature range of 900-927°C for TE103 is proposed. These studies will prompt the desulfurization market diversification, reduce the sulfur's dependence on imports for making sulfuric acid, be meaningful to balance the usage of the natural resource in China, and be regarded as a reference for the development of this technology for other similar developing countries.
Le, Nhung Thi Tuyet; Nagata, Hirofumi; Aihara, Mutsumi; Takahashi, Akira; Okamoto, Toshihiro; Shimohata, Takaaki; Mawatari, Kazuaki; Kinouchi, Yhosuke; Akutagawa, Masatake; Haraguchi, Masanobu
2011-01-01
There is an increasing interest in the application of photocatalytic properties for disinfection of surfaces, air, and water. Titanium dioxide is widely used as a photocatalyst, and the addition of silver reportedly enhances its bactericidal action. However, the synergy of silver nanoparticles and TiO2 is not well understood. The photocatalytic elimination of Bacillus atrophaeus was examined under different calcination temperatures, dip-coating speeds, and ratios of TiO2, SiO2, and Ag to identify optimal production conditions for the production of TiO2- and/or TiO2/Ag-coated glass for surface disinfection. Photocatalytic disinfection of pure TiO2 or TiO2 plus Ag nanoparticles was dependent primarily on the calcination temperature. The antibacterial activity of TiO2 films was optimal with a high dip-coating speed and high calcination temperature (600°C). Maximal bacterial inactivation using TiO2/Ag-coated glass was also observed following high-speed dip coating but with a low calcination temperature (250°C). Scanning electron microscopy (SEM) showed that the Ag nanoparticles combined together at a high calcination temperature, leading to decreased antibacterial activity of TiO2/Ag films due to a smaller surface area of Ag nanoparticles. The presence of Ag enhanced the photocatalytic inactivation rate of TiO2, producing a more pronounced effect with increasing levels of catalyst loading. PMID:21724887
Screen-printed SnO2/CNT quasi-solid-state gel-electrolyte supercapacitor
NASA Astrophysics Data System (ADS)
Kuok, Fei-Hong; Liao, Chen-Yu; Chen, Chieh-Wen; Hao, Yu-Chuan; Yu, Ing-Song; Chen, Jian-Zhang
2017-11-01
This study investigates a quasi-solid-state gel-electrolyte supercapacitor fabricated with nanoporous SnO2/CNT nanocomposite electrodes and a polyvinyl alcohol/sulfuric acid (PVA/H2SO4) gel electrolyte. First, pastes containing SnO2 nanoparticles, CNTs, ethyl cellulose, and terpineol are screen-printed onto carbon cloth. A tube furnace is then used for calcining the SnO2/CNT electrodes on carbon cloth. After furnace-calcination, the wettability of SnO2/CNT significantly improved; furthermore, the XPS analysis shows that number of C-O bond and oxygen content significantly decrease after furnace-calcination owing to the burnout of the ethyl cellulose by the furnace calcination processes. The furnace-calcined SnO2/CNT electrodes sandwich the PVA/H2SO4 gel electrolyte to form a supercapacitor. The fabricated supercapacitor exhibits an areal capacitance of 5.61 mF cm-2 when flat and 5.68 mF cm-2 under bending with a bending radius (R) of 1.0 cm. After a 1000 cycle stability test, the capacitance retention rates of the supercapacitor are 96% and 97% when flat and under bending (R = 1.0 cm), respectively.
Joshi, C; Dwivedi, A; Rai, S B
2014-08-14
Infrared-to-visible upconverting rare earths Er(3+)/Yb(3+) co-doped Y2O3 nano-crystalline phosphor samples have been prepared by solution combustion method followed by post-heat treatment at higher temperatures. A slight increase in average crystallite size has been found on calcinations verified by X-ray analysis. Transmission electron microscopy (TEM) confirms the nano-crystalline nature of the as-prepared and calcinated samples. Fourier transform infrared (FTIR) analysis shows the structural changes in as-prepared and calcinated samples. Upconversion and downconversion emission recorded using 976 and 532 nm laser sources clearly demonstrates a better luminescence properties in the calcinated samples as compared to as-prepared sample. Upconversion emission has been quantified in terms of standard chromaticity diagram (CIE) showing a shift in overall upconversion emission of as-prepared and calcinated samples. Temperature sensing behaviour of this material has also been investigated by measurement of fluorescence intensity ratio (FIR) of various signals in green emission in the temperature range of 315 to 555 K under 976 nm laser excitation. Copyright © 2014 Elsevier B.V. All rights reserved.
Crystallite Size-Lattice Strain Estimation and Optical Properties of Mn0.5Zn0.5Fe2O4 Nanoparticles
NASA Astrophysics Data System (ADS)
Indrayana, I. P. T.; Suharyadi, E.
2018-04-01
In the present work, we performed William-Hall plot using uniform deformation model (UDM) to estimate the crystallite size and lattice strain of Mn0.5Zn0.5Fe2O4 with various calcination temperature. The calculated crystallite sizes are 25.86 nm, 29.55 nm and 24.97 nm for nanoparticles which were calcined at a temperature of 600°C, 800°C and 1000°C, consecutively. The strain of nanoparticles has value in the order of 10-3. Controlling the calcination temperature will facilitate a change in crystallinity of nanoparticles and influence their crystallite size and strain of the crystal lattice. The optical band gap energy of samples nanoparticles is in a range of 1.09 eV – 3.30 eV. Increasing calcination temperature increased the direct and indirect band gap energy. The Urbach energy was found to increase with increased of gap energy. These results demonstrated that higher structural and optical properties of Mn0.5Zn0.5Fe2O4 can be obtained from a higher calcination temperature.
NASA Astrophysics Data System (ADS)
Cao, Ensi; Yang, Yuqing; Cui, Tingting; Zhang, Yongjia; Hao, Wentao; Sun, Li; Peng, Hua; Deng, Xiao
2017-01-01
LaFeO3-δ nanoparticles were prepared by citric sol-gel method with different raw material choosing and calcination process. The choosing of polyethylene glycol instead of ethylene glycol as raw material and additional pre-calcination at 400 °C rather than direct calcination at 600 °C could result in the decrease of resistance due to the reduction of activation energy Ea. Meanwhile, the choosing of ethylene glycol as raw material and additional pre-calcination leads to the enhancement of sensitivity to ethanol. Comprehensive analysis on the sensitivity and XRD, SEM, TEM, XPS results indicates that the sensing performance of LaFeO3-δ should be mainly determined by the adsorbed oxygen species on Fe ions, with certain contribution from native active oxygen. The best sensitivity of 46.1-200 ppm ethanol at prime working temperature of 112 °C is obtained by the sample using ethylene glycol as raw material with additional pre-calcination, which originates from its uniformly-sized and well-dispersed particles as well as high atomic ratio of Fe/La at surface region.
Jin, Mingjie; Long, Mingce; Su, Hanrui; Pan, Yue; Zhang, Qiuzhuo; Wang, Juan; Zhou, Baoxue; Zhang, Yanwu
2017-01-01
To develop highly efficient and conveniently separable iron containing catalysts is crucial to remove recalcitrant organic pollutants in wastewater through a heterogeneous Fenton-like reaction. A maghemite/montmorillonite composite was synthesized by a coprecipitation and calcination method. The physiochemical properties of catalysts were characterized by XRD, TEM, nitrogen physisorption, thermogravimetric analysis/differential scanning calorimetry (TG/DSC), zeta potential, and magnetite susceptibility measurements. The influence of calcination temperatures and reaction parameters was investigated. The calcined composites retain magnetism because the presence of montmorillonite inhibited the growth of γ-Fe 2 O 3 nanoparticles, as well as their phase transition. The catalytic activities for phenol degradation were significantly enhanced by calcinations, which strengthen the interaction between iron oxides and aluminosilicate framework and result in more negatively charged surface. The composite (73 m 2 /g) calcined at 350 °C had the highest catalytic activities, with more than 99 % phenol reduction after only 35 min reaction at pH 3.6. Simultaneously, this catalyst exhibited high stability, low iron leaching, and magnetically separable ability for consecutive usage, making it promising for the removal of recalcitrant organic pollutants in wastewater.
Schwerdt, Ian J; Olsen, Adam; Lusk, Robert; Heffernan, Sean; Klosterman, Michael; Collins, Bryce; Martinson, Sean; Kirkham, Trenton; McDonald, Luther W
2018-01-01
The analytical techniques typically utilized in a nuclear forensic investigation often provide limited information regarding the process history and production conditions of interdicted nuclear material. In this study, scanning electron microscopy (SEM) analysis of the surface morphology of amorphous-UO 3 samples calcined at 250, 300, 350, 400, and 450°C from uranyl peroxide was performed to determine if the morphology was indicative of the synthesis route and thermal history for the samples. Thermogravimetic analysis-mass spectrometry (TGA-MS) and differential scanning calorimetry (DSC) were used to correlate transitions in the calcined material to morphological transformations. The high-resolution SEM images were processed using the Morphological Analysis for Material Attribution (MAMA) software. Morphological attributes, particle area and circularity, indicated significant trends as a result of calcination temperature. The quantitative morphological analysis was able to track the process of particle fragmentation and subsequent sintering as calcination temperature was increased. At the 90% confidence interval, with 1000 segmented particles, the use of Kolmogorov-Smirnov statistical comparisons allowed discernment between all calcination temperatures for the uranyl peroxide route. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Fitriana, N.; Husin, H.; Yanti, D.; Pontas, K.; Alam, P. N.; Ridho, M.; Iskandar
2018-03-01
K2O/Zeolite compounds were successfully synthesized using KOH as starting material and natural zeolite as support. The catalysts were calcined at 500°C for 3 h and then characterized by X-Ray Diffractometer (XRD) and Scanning Electron Microscopy (SEM). The SEM images reveal that the zeolite and K2O/zeolite particles are irregular in shape (100 to 400 nm). The independent variables were impregnated amounts of KOH (15 - 25%), catalyst to oil ratios of 1.0 - 6.0 wt.%, and reaction time of 2 h. The highest biodiesel yield of 95% was produced from the reaction with 2.1 wt.% catalyst of 25% KOH impregnated. The properties of produced biodiesel complied with SNI. The catalytic stability test showed that the 25% KOH impregnated catalyst was stable.
As(V) and P Competitive Sorption on Soils, By-Products and Waste Materials
Rivas-Pérez, Ivana María; Paradelo-Núñez, Remigio; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel; Fernández-Sanjurjo, María José; Álvarez-Rodríguez, Esperanza; Núñez-Delgado, Avelino
2015-01-01
Batch-type experiments were used to study competitive As(V) and P sorption on various soils and sorbent materials. The materials assayed were a forest soil, a vineyard soil, pyritic material, granitic material, coarsely and finely ground mussel shell, calcinated mussel shell ash, pine sawdust and slate processing fines. Competition between As(V) and P was pronounced in the case of both soils, granitic material, slate fines, both shells and pine sawdust, showing more affinity for P. Contrary, the pyritic material and mussel shell ash showed high and similar affinity for As(V) and P. These results could be useful to make a correct use of the soils and materials assayed when focusing on As and P removal in solid or liquid media, in circumstances where both pollutants may compete for sorption sites. PMID:26690456
40 CFR 60.734 - Monitoring of emissions and operations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... fuller's earth rotary dryer, a gypsum rotary dryer, a gypsum flash calciner, gypsum kettle calciner, an... water column gauge pressure at the level of operation. The liquid flow rate monitoring device must be...
40 CFR 60.734 - Monitoring of emissions and operations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... fuller's earth rotary dryer, a gypsum rotary dryer, a gypsum flash calciner, gypsum kettle calciner, an... water column gauge pressure at the level of operation. The liquid flow rate monitoring device must be...
40 CFR 60.734 - Monitoring of emissions and operations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... fuller's earth rotary dryer, a gypsum rotary dryer, a gypsum flash calciner, gypsum kettle calciner, an... water column gauge pressure at the level of operation. The liquid flow rate monitoring device must be...
40 CFR 60.734 - Monitoring of emissions and operations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... fuller's earth rotary dryer, a gypsum rotary dryer, a gypsum flash calciner, gypsum kettle calciner, an... water column gauge pressure at the level of operation. The liquid flow rate monitoring device must be...
Thermostable photocatalytically active TiO2 anatase nanoparticles
NASA Astrophysics Data System (ADS)
Qi, Fei; Moiseev, Anna; Deubener, Joachim; Weber, Alfred
2011-03-01
Anatase is the low-temperature (300-550 °C) crystalline polymorph of TiO2 and it transforms to rutile upon heating. For applications utilizing the photocatalytic properties of nanoscale anatase at elevated temperatures (over 600 °C) the issue of phase stabilisation is of major interest. In this study, binary TiO2/SiO2 particles were synthesized by a flame aerosol process with TiCl4 and SiCl4 as precursors. The theoretical Si/Ti ratio was varied in the range of 0.7-1.3 mol/mol. The synthesized TiO2/SiO2 samples were heat treated at 900 and 1,000 °C for 3 h to determine the thermostability of anatase. Pyrogenic TiO2 P25 (from Evonik/Degussa, Germany) widely applied as photocatalyst was used as non-thermostabilized reference material for comparison of photocatalytic activity of powders. Both the non-calcinated and calcinated powders were characterized by means of XRD, TEM and BET. Photocatalytic activity was examined with dichloroacetic acid (DCA) chosen as a model compound. It was found that SiO2 stabilized the material retarding the collapse of catalyst surface area during calcination. The weighted anatase content of 85% remains completely unchanged even after calcination at 1,000 °C. The presence of SiO2 layer/bridge as spacer between TiO2 particles freezes the grain growth: the average crystallite size increased negligibly from 17 to 18 nm even during the calcination at 1,000 °C. Due to the stabilizing effect of SiO2 the titania nanoparticles calcinated at 900 and 1,000 °C show significant photocatalytic activity. Furthermore, the increase in photocatalytic activity with calcination temperature indicates that the titania surface becomes more accessible either due to intensified cracking of the SiO2 layer or due to enhanced transport of SiO2 into the necks thus releasing additional titania surface.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-01
... Coke Calcining Operations-- 01/18/11 06/20/11 Oxides of Sulfur. SJVUAPCD Synthesized Pharmaceutical.... (a) * * * (6) * * * (ix) Petroleum Coke Calcining Operations--Oxides of Sulfur submitted on June 20...
The alcohol-sensing behaviour of SnO2 nanorods prepared by a facile solid state reaction
NASA Astrophysics Data System (ADS)
Gao, F.; Ren, X. P.; Wan, W. J.; Zhao, Y. P.; Li, Y. H.; Zhao, H. Y.
2017-02-01
SnO2 nanorods with the range of 12-85 nm in diameter were fabricated by a facile solid state reaction in the medium of NaCl-KCl mixture at room temperature and calcined at 600, 680, 760 and 840 oC, respectively. The XRD, TEM and XPS were employed to characterize the structure and morphology of the SnO2 nanorods. The influence of the calcination temperature on the gas sensing behaviour of the SnO2 nanorods with different diameter was investigated. The result showed that all the sensors had good response to alcohol. The response of the gracile nanorods prepared at a low calcined temperature demonstrated significantly better than the thick nanorods prepared at a high calcined temperature. The mechanism was attributed to the nonstoichiometric ratio of Sn/O and larger surface area of the gracile nanorods to enhance the oxygen surface adsorption.
Preparation of ZrO II/nano-TiO II composite powder by sol-gel method
NASA Astrophysics Data System (ADS)
Baharvandi, H. R.; Mohammadi, E.; Abdizadeh, H.; Hadian, A. M.; Ehsani, N.
2007-07-01
The effects of concentration of TTIP, amount of distilled water, and calcination temperature on morphology and particle size distribution of ZrO II/nano-TiO II catalysts were investigated. Mixed ZrO II/nano-TiO II powders were prepared by a modified sol-gel method by varying the mole fraction of TTIP from 0.002 to 0.01, H IIO/TTIP fraction from 2 to 8, and various stirring time (2, 4, and 10 h). The prepared ZrO II/nano-TiO II powders have been characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and TG/DTA. Each oxide was calcined at the temperature between 110 and 1000°C. The results showed that the calcinations temperature has a pronounced effect on the phase formation and particle size of the calcined zirconium titanate (ZT) powders.
Photooxidative desulfurization for diesel using Fe / N - TiO2 photocatalyst
NASA Astrophysics Data System (ADS)
Khan, Muhammad Saqib; Kait, Chong Fai; Mutalib, Mohd Ibrahim Abdul
2014-10-01
A series of N - TiO2 with different mol% N was synthesized via sol-gel method and characterized using thermal gravimetric analyzer and raman spectroscopy. 0.2 wt% Fe was incorporated onto the calcined (200°C) N - TiO2 followed by calcination at 200°C, 250°C and 300°C. Photooxidative desulfurization was conducted in the presence of 0.2wt% Fe / N - TiO2 with different mol% N with and without oxidant (H2O2). Oxidative desulfurization was only achieved when H2O2 was used while without H2O2 no major effect on the sulfur removal. 0.2Fe -30N - H2O2 photocatalysts showed best performance at all calcination temperatures as compared to other mol% N - H2O2 photocatalysts. 16.45% sulfur removal was achieved using photocatalysts calcined at 300 °C.
Mahato, T H; Singh, Beer; Srivastava, A K; Prasad, G K; Srivastava, A R; Ganesan, K; Vijayaraghavan, R
2011-09-15
Present study investigates the potential of CuO nanoparticles calcined at different temperature for the decontamination of persistent chemical warfare agent sulphur mustard (HD) at room temperature (30 ± 2 °C). Nanoparticles were synthesized by precipitation method and characterized by using SEM, EDAX, XRD, and Raman Spectroscopy. Synthesized nanoparticles were tested as destructive adsorbents for the degradation of HD. Reactions were monitored by GC-FID technique and the reaction products characterized by GC-MS. It was observed that the rate of degradation of HD decreases with the increase in calcination temperature and there is a change in the percentage of product of HD degradation. GC-MS data indicated that the elimination product increases with increase in calcination temperature whereas the hydrolysis product decreases. Copyright © 2011 Elsevier B.V. All rights reserved.
Synthesis of Hydroxyapatite through Ultrasound and Calcination Techniques
NASA Astrophysics Data System (ADS)
Akindoyo, John O.; Beg, M. D. H.; Ghazali, Suriati; Akindoyo, Edward O.; Jeyaratnam, Nitthiyah
2017-05-01
There is a growing demand for hydroxyapatite (HA) especially in medical applications, production of HA which is totally green is however a challenge. In this research, HA was produced from biowaste through ultrasound followed by calcination techniques. Pre-treatment of the biowaste was effectively achieved through the help of ultrasound. After calcination at 950°C, the obtained HA was characterized through Thermogravimetric (TGA) analysis, X-ray diffraction analysis (XRD) and Fourier transform infrared spectroscopy (FTIR). Spectrum of the produced HA was compared with standard HA index. The spectrum is in agreement with the standard HA as confirmed through FTIR, XRD and TGA result. Furthermore, morphological study of the HA through Field emission scanning electron microscope (FESEM) shows almost uniform spherical shape for the HA as expected. Based on the results obtained herein, combining ultrasound with calcination can help to produce pure HA with potential medical applications without the use of any organic solvent.
Toward Understanding the Effect of Low-Activity Waste Glass Composition on Sulfur Solubility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vienna, John D.; Kim, Dong-Sang; Muller, Isabelle S.
The concentration of sulfur in nuclear waste glass melter feed must be maintained below the point where salt accumulates on the melt surface. The allowable concentrations may range from 0.37 to over 2.05 weight percent (of SO3 on a calcined oxide basis). If the amount of sulfur exceeds its tolerance level a molten salt will accumulate and upset melter operations and potentially shorten melter useful life. Therefore relatively conservative limits have been placed on sulfur loading in melter feed which in-turn significantly impacts the amount of glass that will be produced, in particular at the Hanford site. Crucible-scale sulfur solubilitymore » data and scaled melter sulfur tolerance data have been collected on simulated Hanford waste glasses over the last 15 years. These data were compiled and analyzed. A model was developed to predict the solubility of SO3 in glass based on 312 individual glass compositions. This model was shown to well represent the data, accounting for over 80% of the variation in data and was well validated. The model was also found to accurately predict the tolerance for sulfur in melter feed based on 19 scaled melter tests. The model is appropriate for control of waste glass processing which includes uncertainty quantification. The model also gives quantitative estimates of component concentration effects on sulfur solubility. The components that most increase sulfur solubility are Li2O > V2O5 ≈ TiO2 < CaO < P2O5 ≈ ZnO. The components that most decrease sulfur solubility are Cl > Cr2O3 > SiO2 ≈ ZrO2 > Al2O3.« less
NASA Astrophysics Data System (ADS)
Lamborg, Carl H.; Swarr, Gretchen; Hughen, Konrad; Jones, Ross J.; Birdwhistell, Scot; Furby, Kathryn; Murty, Sujata A.; Prouty, Nancy; Tseng, Chun-Mao
2013-05-01
We have developed a technique that combines a high temperature quartz furnace with inductively coupled plasma-mass spectrometry for the determination of Hg stored in the annual CaCO3 bands found in coral skeletons. Substantial matrix effects, presumably due to the discontinuous introduction of CO2 to the gas stream, were corrected for by simultaneously supplying a stream of argon containing highly enriched elemental 202Hgo and observing peaks in the 200Hg/202Hg signal as the sample was decomposed. Primary signal calibration for Hg was achieved using gas injections from a saturated vapor standard. The absolute instrument detection limit was low (about 0.2 fmol), with a practical limit of detection (3σ of blanks) of 2 fmol. Reproducibility of samples was (RSD) 15-27%. We applied this method to the determination of Hg concentrations in two colonies of Diploria labyrinthiformis collected from Castle Harbour, Bermuda, at a site about to be buried under the municipal waste landfill. The temporal reconstructions of Castle Harbour seawater Hg concentrations implied by the coral record show a decline throughout the period of record (1949-2008). The coral archived no apparent signal associated with waste disposal practices in the Harbour (bulk waste land-filling or, since 1994, disposal of waste incinerator ash), and mercury concentrations in the coral did not correlate to growth rate as assessed by linear extension. There was, however, a large and nearly exponential decrease in apparent Hg concentration in the Harbour which circumstantially implicates the dredging and/or landfilling operations associated with the construction of the airport on St. David's Island.
Using vacuum pyrolysis and mechanical processing for recycling waste printed circuit boards.
Long, Laishou; Sun, Shuiyu; Zhong, Sheng; Dai, Wencan; Liu, Jingyong; Song, Weifeng
2010-05-15
The constant growth in generation of waste printed circuit boards (WPCB) poses a huge disposal problem because they consist of a heterogeneous mixture of organic and metallic chemicals as well as glass fiber. Also the presence of heavy metals, such as Pb and Cd turns this scrap into hazardous waste. Therefore, recycling of WPCB is an important subject not only from the recovery of valuable materials but also from the treatment of waste. The aim of this study was to present a recycling process without negative impact to the environment as an alternative for recycling WPCB. In this work, a process technology containing vacuum pyrolysis and mechanical processing was employed to recycle WPCB. At the first stage of this work, the WPCB was pyrolyzed under vacuum in a self-made batch pilot-scale fixed bed reactor to recycle organic resins contained in the WPCB. By vacuum pyrolysis the organic matter was decomposed to gases and liquids which could be used as fuels or chemical material resources, however, the inorganic WPCB matter was left unaltered as solid residues. At the second stage, the residues obtained at the first stage were investigated to separate and recover the copper through mechanical processing such as crushing, screening, and gravity separation. The copper grade of 99.50% with recovery of 99.86% based on the whole WPCB was obtained. And the glass fiber could be obtained by calcinations in a muffle furnace at 600 degrees C for 10 min. This study had demonstrated the feasibility of vacuum pyrolysis and mechanical processing for recycling WPCB. Copyright (c) 2009 Elsevier B.V. All rights reserved.
Idaho National Engineering Laboratory High-Level Waste Roadmap. Revision 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-08-01
The Idaho National Engineering Laboratory (INEL) High-Level Waste (HLW) Roadmap takes a strategic look at the entire HLW life-cycle starting with generation, through interim storage, treatment and processing, transportation, and on to final disposal. The roadmap is an issue-based planning approach that compares ``where we are now`` to ``where we want and need to be.`` The INEL has been effectively managing HLW for the last 30 years. Calcining operations are continuing to turn liquid HLW into a more manageable form. Although this document recognizes problems concerning HLW at the INEL, there is no imminent risk to the public or environment.more » By analyzing the INEL current business operations, pertinent laws and regulations, and committed milestones, the INEL HLW Roadmap has identified eight key issues existing at the INEL that must be resolved in order to reach long-term objectives. These issues are as follows: A. The US Department of Energy (DOE) needs a consistent policy for HLW generation, handling, treatment, storage, and disposal. B. The capability for final disposal of HLW does not exist. C. Adequate processes have not been developed or implemented for immobilization and disposal of INEL HLW. D. HLW storage at the INEL is not adequate in terms of capacity and regulatory requirements. E. Waste streams are generated with limited consideration for waste minimization. F. HLW is not adequately characterized for disposal nor, in some cases, for storage. G. Research and development of all process options for INEL HLW treatment and disposal are not being adequately pursued due to resource limitations. H. HLW transportation methods are not selected or implemented. A root-cause analysis uncovered the underlying causes of each of these issues.« less
Synthesis of High-Quality Biodiesel Using Feedstock and Catalyst Derived from Fish Wastes.
Madhu, Devarapaga; Arora, Rajan; Sahani, Shalini; Singh, Veena; Sharma, Yogesh Chandra
2017-03-15
A low-cost and high-purity calcium oxide (CaO) was prepared from waste crab shells, which were extracted from the dead crabs, was used as an efficient solid base catalyst in the synthesis of biodiesel. Raw fish oil was extracted from waste parts of fish through mechanical expeller followed by solvent extraction. Physical as well as chemical properties of raw fish oil were studied, and its free fatty acid composition was analyzed with GC-MS. Stable and high-purity CaO was obtained when the material was calcined at 800 °C for 4 h. Prepared catalyst was characterized by XRD, FT-IR, and TGA/DTA. The surface structure of the catalyst was analyzed with SEM, and elemental composition was determined by EDX spectra. Esterification followed by transesterification reactions were conducted for the synthesis of biodiesel. The effect of cosolvent on biodiesel yield was studied in each experiment using different solvents such as toluene, diethyl ether, hexane, tetrahydrofuran, and acetone. High-quality and pure biodiesel was synthesized and characterized by 1 H NMR and FT-IR. Biodiesel yield was affected by parameters such as reaction temperature, reaction time, molar ratio (methanol:oil), and catalyst loading. Properties of synthesized biodiesel such as density, kinematic viscosity, and cloud point were determined according to ASTM standards. Reusability of prepared CaO catalyst was checked, and the catalyst was found to be stable up to five runs without significant loss of catalytic activity.
Recovery of SO2 and MgO from By-Products of MgO Wet Flue Gas Desulfurization
Yan, Liyun; Lu, Xiaofeng; Wang, Quanhai; Guo, Qiang
2014-01-01
Abstract An industrial demonstration unit using natural gas as a heat source was built to calcine the by-products of MgO wet flue gas desulfurization from power plants; influencing factors on the SO2 content in calciner gas were comprehensively analyzed; and an advantageous recycling condition of MgO and SO2 from by-products was summarized. Results showed that the SO2 content in the calciner gas was increased by more than 10 times under a lower excess air coefficient, a higher feed rate, a lower crystal water in by-products, and a higher feed port position. For the tests conducted under the excess air coefficient above and below one, the effect of the furnace temperature on the SO2 content in the calciner gas was reversed. Results of activity analysis indicate that particles of MgO generated under the calcination temperature of 900–1,000°C had a high activity. In contrast, due to the slight sintering, MgO generated under the calcination temperature of 1,100°C had a low activity. To recycle SO2 as well as MgO, a temperature range of 900–927°C for TE103 is proposed. These studies will prompt the desulfurization market diversification, reduce the sulfur's dependence on imports for making sulfuric acid, be meaningful to balance the usage of the natural resource in China, and be regarded as a reference for the development of this technology for other similar developing countries. PMID:25371652
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kordouli, Eleana; Dracopoulos, Vassileios; Vaimakis, Tiverios
2015-12-15
The effect of calcination temperature and time on structural and textural changes of two commercial TiO{sub 2} samples (pure anatase and a mixture of anatase and rutile) has been investigated using N{sub 2} physisorption, ex-situ and in-situ X-ray powder diffraction, differential scanning calorimetry and UV–vis diffuse reflectance spectroscopy. The increase of the calcination temperature (up to 700 °C) and time (up to 8 h) causes only textural changes in the pure anatase, whereas a transformation of the anatase to rutile takes place, in addition, in the mixed titania (containing anatase and rutile). The textural changes observed in pure anatase samplemore » were attributed to solid state diffusion leading to an increase in the size of anatase nanocrystals, through sintering. Thus, the mean pore diameter shifts to higher values and the pore volume and specific surface area decrease. The successful application of the Johnson–Mehl–Avrami–Kolmogorov model in the kinetic data concerning the pure anatase indicates a mass transfer control of sintering process. Similar textural changes were also observed upon calcination of the sample containing anatase and rutile. In this case not only sintering but the anatase to rutile transformation contributes also to the textural changes. Kinetic analysis showed that the rutile nanocrystals in the mixed titania served as seed for by-passing the high energy barrier nucleation step allowing/facilitating thus the anatase to rutile transformation. A fine control of the anatase to rutile ratio and thus of energy-gap and the population of hetero-junctions may be obtained by adjusting the calcination temperature and time. - Graphical Abstract: Dependence of anatase content of P25 on the calcination temperature (600 °C (■), 650 °C (●), 700 °C (▲)) and time. - Highlights: • Increase of calcination temperature up to 800 °C and time up to 8 h causes only textural changes in pure anatase • Progressive transformation of anatase to rutile with time takes place in the mixed titania above 600 °C • A high activation energy barrier inhibits the solid state transformation in pure anatase • Rutile nanocrystals in mixed titania serve as seeding for favouring transformation • Calcination temperature and time allow a fine control of E{sub g} and heterojunctions population in mixed titania.« less
Ahmad, Munir; Ahmad, Mahtab; Usman, Adel R A; Al-Faraj, Abdullah S; Ok, Yong Sik; Hussain, Qaiser; Abduljabbar, Adel S; Al-Wabel, Mohammad I
2018-07-01
Bio-calcite (BC) derived from waste hen eggshell was subjected to thermal treatments (calcined bio-calcite (CBC)). The BC and CBC were further modified via magnesiothermal treatments to produce modified bio-calcite (MBC) and modified calcined bio-calcite (MCBC), respectively, and evaluated as a novel green sorbent for P removal from aqueous solutions in the batch experiments. Modified BC exhibited improved structural and chemical properties, such as porosity, surface area, thermal stability, mineralogy and functional groups, than pristine material. Langmuir and Freundlich models well described the P sorption onto both thermally and magnesiothermally sorbents, respectively, suggesting mono- and multi-layer sorption. Langmuir predicted highest P sorption capacities were in the order of: MCBC (43.33 mg g -1 ) > MBC (35.63 mg g- 1 ) > CBC (34.38 mg g -1 ) > BC (30.68 mg g -1 ). The MBC and MCBC removed 100% P up to 50 mg P L -1 , which reduced to 35.43 and 39.96%, respectively, when P concentration was increased up to 1000 mg L -1 . Dynamics of P sorption was well explained by the pseudo-second-order rate equation, with the highest sorption rate of 4.32 mg g -1 min -1 for the MCBC. Hydroxylapatite [Ca 10 (PO 4 ) 6 (OH) 2 ] and brushite [CaH(PO 4 )·2H 2 O] were detected after P sorption onto the modified sorbents by X-ray diffraction analysis, suggesting chemisorption as the operating sorption mechanism.
Preparation and properties of calcium oxide from eggshells via calcination
NASA Astrophysics Data System (ADS)
Tangboriboon, N.; Kunanuruksapong, R.; Sirivat, A.
2012-12-01
Duck eggs are one of the most versatile cooking ingredients in which residue eggshells are discarded. Raw duck eggshells were calcined at temperatures between 300 to 900 °C, for 1, 3, and 5 h. Both the raw and calcined duck eggshells were characterized by FTIR, STA, XRD, XRF, TEM, BET, a particle size analyzer, and an impedance analyzer. The proper calcination conditions are: 900 °C and 1 h, yielding calcium oxide with a purity of 99.06 % w/w. The calcium carbonate of the rhombohedral form (CaCO3) transforms completely into the calcium oxide or lime of the face centered cubic form (CaO) at 900 °C, as shown by XRD diffraction patterns. The transmission electron microscopy (TEM) images of the calcium oxide reveal a moderately good dispersion of nearly uniform particles. The calcium oxide has a white color, a spherical shape, high porosity, and narrow particles size distribution. The percentage of ceramic yield of the calcium oxide is 53.53, as measured by STA (TG-DTA-DTG). The calcium oxide has a N2 adsorption-desorption isotherm indicating the meso-porosity range. The dielectric constant and the electrical conductivity of the calcined calcium oxide are 35 and 1:0×10-6(Ω·m)-1, respectively, at the frequency of 500 Hz.
Effect of sulfuric acid concentration of bentonite and calcination time of pillared bentonite
NASA Astrophysics Data System (ADS)
Mara, Ady; Wijaya, Karna; Trisunaryati, Wega; Mudasir
2016-04-01
An activation of natural clay has been developed. Activation was applied by refluxing the natural bentonite in variation of the sulfuric acid concentration and calcination time of pillared bentonite (PLC). Calcination was applied using oven in microwave 2,45 GHz. Determination of acidity was applied by measuring the amount of adsorbed ammonia and pyridine. Morphological, functional groups and chrystanility characterizations were analyzed using SEM, TEM, FTIR and XRD. Porosity was analyzed using SSA. The results showed that the greater of the concentration of sulfuric acid and calcination time was, the greater the acidity of bentonite as well as the pore diameter were. FTIR spectra showed no fundamental changes in the structure of the natural bentonite, SEM, and TEM images were showing an increase in space or field due to pillarization while the XRD patterns showed a shift to a lower peak. Optimization was obtained at a concentration of 2 M of sulfuric acid and calcination time of 20 minutes, keggin ion of 2.2 and suspension of 10 mmol, respectively each amounted to 11.7490 mmol/gram of ammonia and 2.4437 mmol/gram of pyridine with 154.6391 m2/gram for surface area, 0.130470 m3/gram of pore volume and 3.37484 nm of pore diameter.
Constantino, Leonel Vinicius; Quirino, Juliana Nunes; Abrão, Taufik; Parreira, Paulo Sérgio; Urbano, Alexandre; Santos, Maria Josefa
2018-02-15
Calcined hydrotalcite can be applied to remove anionic contaminants from aqueous systems such as antimony species due to its great anion exchange capacity and high surface area. Hence, this study evaluated antimonite and antimonate sorption-desorption processes onto calcined hydrotalcite in the presence of nitrate, sulfate and phosphate. Sorption and desorption experiments of antimonite and antimonate were carried out in batch equilibrium and the post-sorption solids were analyzed by X-ray fluorescence (EDXRF). Sorption data were better fitted by dual-mode Langmuir-Freundlich model (R 2 >0.99) and desorption data by Langmuir model. High maximum sorption capacities were found for the calcined hydrotalcite, ranging from 617 to 790meqkg -1 . The competing anions strongly affected the antimony sorption. EDXRF analysis and mathematical modelling showed that sulfate and phosphate presented higher effect on antimonite and antimonate sorption, respectively. High values for sorption efficiency (SE=99%) and sorption capacity were attributed to the sorbent small particles and the large surface area. Positive hysteresis indexes and low mobilization factors (MF>3%) suggest very low desorption capacity to antimony species from LDH. These calcined hydrotalcite characteristics are desirable for sorption of antimony species from aqueous solutions. Copyright © 2017. Published by Elsevier B.V.
Wang, Cheng-Li; Hwang, Weng-Sing; Chang, Kuo-Ming; Ko, Horng-Huey; Hsi, Chi-Shiung; Huang, Hong-Hsin; Wang, Moo-Chin
2011-01-28
Synthesis of Zn(2)Ti(3)O(8) powders for attenuating UVA using TiCl(4), Zn(NO(3))(2)·6H(2)O and NH(4)OH as precursor materials by hydrothermal process has been investigated. The X-ray diffractometry (XRD) results show the phases of ZnO, anatase TiO(2) and Zn(2)Ti(3)O(8) coexisted when the zinc titanate powders were calcined at 600 °C for 1 h. When calcined at 900 °C for 1 h, the XRD results reveal the existence of ZnO, Zn(2)TiO(4), rutile TiO(2) and ZnTiO(3). Scanning electron microscope (SEM) observations show extensive large agglomeration in the samples. Transmission electron microscope (TEM) and electron diffraction (ED) examination results indicate that ZnTiO(3) crystallites formed with a size of about 5 nm on the matrix of plate-like ZnO when calcined at 700 °C for 1 h. The calcination samples have acceptable absorbance at a wavelength of 400 nm, indicating that the zinc titanate precursor powders calcined at 700 °C for 1 h can be used as an UVA-attenuating agent.
Wang, Cheng-Li; Hwang, Weng-Sing; Chang, Kuo-Ming; Ko, Horng-Huey; Hsi, Chi-Shiung; Huang, Hong-Hsin; Wang, Moo-Chin
2011-01-01
Synthesis of Zn2Ti3O8 powders for attenuating UVA using TiCl4, Zn(NO3)2·6H2O and NH4OH as precursor materials by hydrothermal process has been investigated. The X-ray diffractometry (XRD) results show the phases of ZnO, anatase TiO2 and Zn2Ti3O8 coexisted when the zinc titanate powders were calcined at 600 °C for 1 h. When calcined at 900 °C for 1 h, the XRD results reveal the existence of ZnO, Zn2TiO4, rutile TiO2 and ZnTiO3. Scanning electron microscope (SEM) observations show extensive large agglomeration in the samples. Transmission electron microscope (TEM) and electron diffraction (ED) examination results indicate that ZnTiO3 crystallites formed with a size of about 5 nm on the matrix of plate-like ZnO when calcined at 700 °C for 1 h. The calcination samples have acceptable absorbance at a wavelength of 400 nm, indicating that the zinc titanate precursor powders calcined at 700 °C for 1 h can be used as an UVA-attenuating agent. PMID:21541035
Beikman, Helen M.
1962-01-01
The Powder River Basin is a structural and topographic basin occupying an area of about 20,000 square miles in northeastern Wyoming arid southeastern Montana. The Basin is about 230 miles long in a northwest-southeast direction and is about 100 miles wide. It is bounded on three sides by mountains in which rocks of Precambrian age are exposed. The Basin is asymmetrical with a steep west limb adjacent to the Bighorn Mountains and a gentle east limb adjacent to the Black Hills. Sedimentary rocks within the Basin have a maximum thickness of about 18,000 feet and rocks of every geologic period are represented. Paleozoic rocks are about 2,500 feet thick and consist of marine bonate rocks and sandstone; Mesozoic rocks are about 9,500 feet thick and consist of both marine and nonmarine siltstone and sandstone; and Cenozoic rocks are from 4,000 to 6,000 feet thick and consist of coal-bearing sandstone and shale. Radioactive waste could be stored in the pore space of permeable sandstone or in shale where space could be developed. Many such rock units that could be used for storing radioactive wastes are present within the Powder River Basin. Permeable sandstone beds that may be possible reservoirs for storage of radioactive waste are present throughout the Powder River Basin. These include sandstone beds in the Flathead Sandstone and equivalent strata in the Deadwood Formation, the Tensleep Sandstone and equivalent strata in the Minnelusa Formation and the Sundance Formation in rocks of pre-Cretaceous age. However, most of the possible sandstone reservoirs are in rocks of Cretaceous age and include sandstone beds in the Fall River, Lakota, Newcastle, Frontier, Cody, and Mesaverde Formations. Problems of containment of waste such as clogging of pore space and chemical incompatibility would have to be solved before a particular sandstone unit could be selected for waste disposal. Several thick sequences of impermeable shale such as those in the Skull Creek, Mowry, Frontier, Belle Fourche, Cody, Lewis, and Pierre Formations, occur in rocks of Cretaceous age in the Basin. Limited storage space for liquid waste might be developed in impermeable shale by fracturing the shale and space for calcined or fused waste could be developed by mining cavities.
Groundwork for Universal Canister System Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, Laura L.; Gross, Mike; Prouty, Jeralyn L.
2015-09-01
The mission of the United States Department of Energy's Office of Environmental Management is to complete the safe cleanup of the environmental legacy brought about from five decades of nuclear weapons development and go vernment - sponsored nuclear energy re search. S ome of the waste s that that must be managed have be en identified as good candidates for disposal in a deep borehole in crystalline rock (SNL 2014 a). In particular, wastes that can be disposed of in a small package are good candidates for this disposal concept. A canister - based system that can be used formore » handling these wastes during the disposition process (i.e., storage, transfers, transportation, and disposal) could facilitate the eventual disposal of these wastes. This report provides information for a program plan for developing specifications regarding a canister - based system that facilitates small waste form packaging and disposal and that is integrated with the overall efforts of the DOE's Office of Nuclear Energy Used Fuel Dis position Camp aign's Deep Borehole Field Test . Groundwork for Universal Ca nister System Development September 2015 ii W astes to be considered as candidates for the universal canister system include capsules containing cesium and strontium currently stored in pools at the Hanford Site, cesium to be processed using elutable or nonelutable resins at the Hanford Site, and calcine waste from Idaho National Laboratory. The initial emphasis will be on disposal of the cesium and strontium capsules in a deep borehole that has been drilled into crystalline rock. Specifications for a universal canister system are derived from operational, performance, and regulatory requirements for storage, transfers, transportation, and disposal of radioactive waste. Agreements between the Department of Energy and the States of Washington and Idaho, as well as the Deep Borehole Field Test plan provide schedule requirements for development of the universal canister system . Future work includes collaboration with the Hanford Site to move the cesium and strontium capsules into dry storage, collaboration with the Deep Borehole Field Tes t to develop surface handling and emplacement techniques and to develop the waste package design requirements, developing universal canister system design options and concepts of operations, and developing system analysis tools. Areas in which f urther research and development are needed include material properties and structural integrity, in - package sorbents and fillers, waste form tolerance to heat and postweld stress relief, waste package impact limiters, sensors, cesium mobility under downhol e conditions, and the impact of high pressure and high temperature environment on seals design.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xia; Liang, Pan; Huang, Hong-Sheng
2014-04-01
Graphical abstract: LaB{sub 3}O{sub 6}:Eu{sup 3+} phosphor was obtained by calcining the precursor which was synthesized by boric acid melting method. It (a) exhibits much stronger PL intensity than that (b) prepared by conventional solid state reaction method. - Highlights: • A calcining precursor method was used for preparation of LaB{sub 3}O{sub 6}:Eu{sup 3+} phosphor. • Precursor was prepared by boric acid melting method. • The luminescence intensity of LaB{sub 3}O{sub 6}:Eu{sup 3+} was enhanced by the present method. - Abstract: The LaB{sub 3}O{sub 6}:Eu{sup 3+} phosphors were prepared by calcining the precursors which were synthesized by boric acid meltingmore » method using rare earth oxide and boric acid as raw materials, and they were characterized by EDS, XRD, IR, SEM and PL. The influences of reaction temperature for the preparation of precursor and subsequent calcination temperature and time of precursor on the luminescence properties of LaB{sub 3}O{sub 6}:Eu{sup 3+} phosphor were investigated. The results showed that the LaB{sub 3}O{sub 6}:Eu{sup 3+} phosphors with maximum luminescent intensity were obtained by calcining precursor at 1000 °C for 6 h, in which the precursor was prepared at 200 °C for 72 h. Compared with the conventional high temperature solid-state reaction method, the pure LaB{sub 3}O{sub 6}:Eu{sup 3+} phosphor can be obtained at relatively lower calcination temperature by the precursor method and exhibits much stronger emission intensity.« less
Londoño-Restrepo, S M; Jeronimo-Cruz, R; Rubio-Rosas, E; Rodriguez-García, M E
2018-05-02
This paper focus on physicochemical changes in bio-hydroxyapatite (BIO-HAp) from bovine femur obtained by calcination at high temperatures: 520-620 (each 20 °C) at 7.4 °C/min and from 700 to 1100 °C (each 100 °C) at three heating rates: 7.4, 9.9, and 11.1 °C/min. BIO-HAp samples were obtained using a multi-step process: cleaning, milling, hydrothermal process, calcination in an air atmosphere, and cooling in furnace air. Inductively Couple Plasma (ICP) showed that the presence of Mg, K, S, Ba, Zn, and Na, is not affected by the annealing temperature and heating rate. While Scanning Electron Microscopy (SEM) images showed the continuous growth of the HAp crystals during the calcination process due to the coalescence phenomenon, and the Full Width at the Half Maximum for the X-ray patterns for temperatures up to 700 is affected by the annealing temperature and the heating rate. Through X-ray diffraction, thermal, and calorimetric analysis (TGA-DSC), a partial dehydroxylation of hydroxyapatite was found in samples calcined up to 900 °C for the three heating rates. Also, Ca/P molar ratio decreased for samples calcined up to 900 °C as a result of the dehydroxylation process. NaCaPO 4 , CaCO 3 , Ca 3 (PO 4 ) 2 , MgO, and Ca(H 2 PO 4 ) 2 are some phases identified by X-ray diffraction; some of them are part of the bone and others were formed during the calcination process as a function of annealing temperature and heating rate, as it is the case for MgO.
Effect of TiO2 calcination temperature on the photocatalytic oxidation of gaseous NH3.
Wu, Hongmin; Ma, Jinzhu; Zhang, Changbin; He, Hong
2014-03-01
Carbon-modified titanium dioxide (TiO2) was prepared by a sol-gel method using tetrabutyl titanate as precursor, with calcination at various temperatures, and tested for the photocatalytic oxidation (PCO) of gaseous NH3 under visible and UV light. The test results showed that no samples had visible light activity, while the TiO2 calcined at 400°C had the best UV light activity among the series of catalysts, and was even much better than the commercial catalyst P25. The catalysts were then characterized by X-ray diffractometry, Brunauer-Emmett-Teller adsorption analysis, Raman spectroscopy, thermogravimetry/differential scanning calorimetry coupled with mass spectrometry, ultraviolet-visible diffuse reflectance spectra, photoluminescence spectroscopy and in situ diffuse reflectance infrared Fourier transform spectroscopy. It was shown that the carbon species residuals on the catalyst surfaces induced the visible light adsorption of the samples calcined in the low temperature range (< 300°C). However, the surface acid sites played a determining role in the PCO of NH3 under visible and UV light over the series of catalysts. Although the samples calcined at low temperatures had very high SSA, good crystallinity, strong visible light absorption and also low PL emission intensity, they showed very low PCO activity due to their very low number of acid sites for NH3 adsorption and activation. The TiO2 sample calcined at 400°C contained the highest number of acid sites among the series of catalysts, therefore showing the highest performance for the PCO of NH3 under UV light. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
The effect of calcination on multi-walled carbon nanotubes produced by dc-arc discharge.
Pillai, Sreejarani K; Augustyn, Willem G; Rossouw, Margaretha H; McCrindle, Robert I
2008-07-01
Multi-walled carbon nanotubes were synthesized by dc-arc discharge in helium atmosphere and the effect of calcination at different temperatures ranging from 300-600 degrees C was studied in detail. The degree of degradation to the structural integrity of the multi-walled carbon nanotubes during the thermal process was studied by Raman spectroscopy, Scanning electron microscopy and High resolution transmission electron microscopy. The thermal behaviour of the as prepared and calcined samples was investigated by thermogravimetric analysis. Calcination in air at 400 degrees C for 2 hours was found to be an efficient and simple method to eliminate carbonaceous impurities from the nanotube bundles with minimal damage to the tube walls and length. The impurities were oxidized at a faster rate when compared to the nanotubes and gave good yield of about 50%. The nanotubes were observed to be damaged at temperature higher than 450 degrees C. The results show that this method is less destructive when compared liquid phase oxidation with 5 M HNO3.
Calcined polyaniline-iron composite as a high efficient cathodic catalyst in microbial fuel cells.
Lai, Bin; Wang, Peng; Li, Haoran; Du, Zhuwei; Wang, Lijuan; Bi, Sichao
2013-03-01
A new type of carbon-nitrogen-metal catalyst, PANI-Fe-C, was synthesized by calcination process. According to the results of FT-IR and XPS analysis, polyaniline chain was broken by calcination. Small nitrogen-contained molecular fragments were gasified during calcination process, while the remaining nitrogen atoms were enchased in the new produced multiple carbon rings by C-N and CN bonds and performed as the catalytic active sites and the covalent centers for soluble iron components. Calculated from the polarization curves, a maximum power density of 10.17W/m(3) for the MFC with the synthetic catalyst was obtained, which was slightly higher than the MFC with Pt/C catalyst of 9.56W/m(3). All the results obtained in this paper proved that the newly synthetic nitrogen-carbon-metal catalyst would be a potential alternative to the expensive Pt/C catalyst in the field of MFC. Copyright © 2012 Elsevier Ltd. All rights reserved.
Biodiesel synthesis using calcined layered double hydroxide catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schumaker, J. Link; Crofcheck, Czarena; TAckett, S. Adam
2008-01-01
The catalytic properties of calcined Li-Al, Mg-Al and Mg-Fe layered double hydroxides (LDHs) were examined in two transesterification reactions, namely, the reaction of glyceryl tributyrate with methanol, and the reaction of soybean oil with methanol. While the Li-Al catalysts showed high activity in these reactions at the reflux temperature of methanol, the Mg-Fe and Mg-Al catalysts exhibited much lower methyl ester yields. CO2 TPD measurements revealed the presence of sites of weak, medium and strong basicity on both Mg-Al and Li-Al catalysts, the latter showing higher concentrations of medium and strong base sites; by implication, these are the main sitesmore » active in transesterification catalyzed by calcined Li-Al LDHs. Maximum activity was observed for the Li-Al catalysts when a calcination temperature of 450-500 aC was applied, corresponding to decomposition of the layered double hydroxide to the mixed oxide without formation of crystalline lithium aluminate phases.« less
In-situ XAFS study for calcination process of Cr catalyst supported on γ-Al2O3 and SiO2
NASA Astrophysics Data System (ADS)
Watanabe, T.; Ikeda, K.; Katayama, M.; Inada, Y.
2016-05-01
The catalytic performance is largely affected by the oxidation state of supported Cr species, and its control changes the activity of Cr catalysts and the selectivity of products. In this study, the calcination process of the supported Cr catalysts on γ-Al2O3 and SiO2 was investigated by in-situ XAFS spectroscopy. The hydrate species was first supported by the impregnation method and was converted to CrO3 via Cr2O3 during the calcination process on both supporting materials. It was found that the temperature to complete the oxidation from Cr2O3 to CrO3 on SiO2 was higher than that on γ-Al2O3. The similarity of the interatomic distance between the surface oxygen atoms of the intermediate Cr2O3 species to that of SiO2 contributes to the stabilization of Cr2O3 on SiO2 during the calcination process.
Bismuth doping effect on crystal structure and photodegradation activity of Bi-TiO2 nanoparticles
NASA Astrophysics Data System (ADS)
Wu, Ming-Chung; Chang, Yin-Hsuan; Lin, Ting-Han
2017-04-01
The bismuth precursor is adopted as dopant to synthesize bismuth doped titanium dioxide nanoparticles (Bi-TiO2 NPs) with sol-gel method following by the thermal annealing treatment. We systematically developed a series of Bi-TiO2 NPs at several calcination temperatures and discovered the corresponding crystal structure by varying the bismuth doping concentration. At a certain 650 °C calcination temperature, the crystal structure of bismuth titanate (Bi2Ti2O7) is formed when the bismuth doping concentration is as high as 10.0 mol %. The photocatalytic activity of Bi-TiO2 NPs is increased by varying the doping concentration at the particular calcination temperature. By the definition X-ray diffraction (XRD) structural identification, a phase diagram of Bi-TiO2 NPs in doping concentration versus calcination temperature is provided. It can be useful for further study in the crystal structure engineering and the development of photocatalyst.
Phase analysis of ZrO2-SiO2 systems synthesized through Ball milling mechanical activations
NASA Astrophysics Data System (ADS)
Nurlaila, Rizka; Musyarofah, Muwwaqor, Nibras Fuadi; Triwikantoro, Kuswoyo, Anton; Pratapa, Suminar
2017-01-01
Zircon powders have been produced from raw materials of amorphous zirconia and amorphous silica powders obtained from natural zircon sand of Kalimantan Tengah, Indonesia. Synthesis process was started with the extraction of zircon powder to produce sodium silicate solution and pure zircon powder. The amorphous zirconia and silica powders were prepared by alkali fusion and co-precipitation techniques. The powders were mixed using a planetary ball mill, followed by a calcination of various holding time of 3, 10, and 15 h. Phase characterization was done using X-Ray Diffraction (XRD) technique and analysis of the diffraction data was carried out using Rietica and MAUD software. The identified phases after the calcination were zircon, tetragonal zirconia, and cristobalite. The highest zircon content was obtained in the sample calcinated for15 hours - reaching 99.66 %wt. Crystallite size analysis revealed that the samples calcinated for 3, 10, and 15 h exhibited zircon crystal size of 176 (1) nm, 191 (1) nm and 233 (1) nm respectively.
Chen, N.; Goretta, K.C.; Lanagan, M.T.
1998-10-13
A (BiPb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub x}(Bi223) superconductor with high J{sub c}, phase purity, density and mechanical strength is formed from Bi2223 powder which is synthesized from a mixture of Bi{sub 2}O{sub 3}, PbO, SrCO{sub 3}, CaCo{sub 3} and CuO. The mixture is milled, then dried and calcined to synthesize the Bi2223 powder with the desired phase purity. The calcination is performed by heating the dried mixture for 50 hours at 840 C. The partially synthesized powder is then milled for 1--4 hours before calcining further for another 50 hours at 855 C to complete the synthesis. After calcination, the Bi2223 powder is cold pressed to a predetermined density and sinter forged under controlled temperature and time to form a Bi2223 superconductor with the desired superconducting properties. 5 figs.
Chen, Nan; Goretta, Kenneth C.; Lanagan, Michael T.
1998-01-01
A (BiPb).sub.2 Sr.sub.2 Ca.sub.2 Cu.sub.3 O.sub.x (Bi223) superconductor with high J.sub.c, phase purity, density and mechanical strength is formed from Bi2223 powder which is synthesized from a mixture of Bi.sub.2 O.sub.3, PbO, SrCO.sub.3, CaCo.sub.3 and CuO. The mixture is milled, then dried and calcined to synthesize the Bi2223 powder with the desired phase purity. The calcination is performed by heating the dried mixture for 50 hours at 840.degree. C. The partially synthesized powder is then milled for 1-4 hours before calcining further for another 50 hours at 855.degree. C. to complete the synthesis. After calcination, the Bi2223 powder is cold pressed to a predetermined density and sinter forged under controlled temperature and time to form a Bi2223 superconductor with the desired superconducting properties.
NASA Astrophysics Data System (ADS)
Noerochim, Lukman; Ginanjar, Edith Setia; Susanti, Diah; Prihandoko, Bambang
2018-04-01
Lithium vanadium oxide (LiV3O8) has been successfully synthesized by hydrothermal method followed by calcination via the reaction of Lithium hydroxide (LiOH) and ammonium metavanade (NH4VO3). The precursors were heated at hydrothermal at 200 °C and then calcined at different calcination temperature in 400, 450, and 500 °C. The characterization by X-ray diffraction (XRD) and scanning electron microscope (SEM) is indicated that LiV3O8 micro-rod have been obtained by this method. The cyclic voltammetry (CV) result showed that redox reaction occur in potential range between 2.42 - 3.57 V for the reduction reaction and oxidation reaction in potential range between 2.01 V-3.69 V. The highest result was obtained for sample 450 °C with specific discharge capacity of 138 mA/g. The result showed that LiV3O8 has a promising candidate as a cathode material for lithium ion batteries.
Olutoye, M A; Lee, S C; Hameed, B H
2011-12-01
Fatty acid methyl esters (FAME) were produced from palm oil using eggshell modified with magnesium and potassium nitrates to form a composite, low-cost heterogeneous catalyst for transesterification. The catalyst, prepared by the combination of impregnation/co-precipitation was calcined at 830 °C for 4 h. Transesterification was conducted at a constant temperature of 65 °C in a batch reactor. Design of experiment (DOE) was used to optimize the reaction parameters, and the conditions that gave highest yield of FAME (85.8%) was 5.35 wt.% catalyst loading at 4.5 h with 16:1 methanol/oil molar ratio. The results revealed that eggshell, a solid waste, can be utilized as low-cost catalyst after modification with magnesium and potassium nitrates for biodiesel production. Copyright © 2011 Elsevier Ltd. All rights reserved.
Waste cockle shell as natural catalyst for biodiesel production from jatropha oil
NASA Astrophysics Data System (ADS)
Hadi, Norulakmal Nor; Idrus, Nur Afini; Ghafar, Faridah; Salleh, Marmy Roshaidah Mohd
2017-12-01
Due to the increasing of industrialization and modernization of the world, the demand of petroleum has risen rapidly. The increasing demand for energy and environmental awareness has prompted many researches to embark on alternative fuel platforms that are environmentally acceptable. In this study, jatropha oil was used to produce biodiesel by a new transesterification routine in which cockle shell was used as source of heterogeneous catalyst. The investigation showed the catalyst that was calcined at temperature of 800 °C has the optimum capability to produce high yield. The highest yield of biodiesel production of 93.20 % were obtained by using 1.5 wt% of catalyst. The reaction was conducted at a temperature of 65 °C with the optimum methanol to oil ratio of 6:1. It was found that the physical properties of the biodiesel produced were significant to ASTM standard of fatty acid methyl ester (FAME).
UNIT OPERATIONS SECTION MONTHLY PROGRESS REPORT, OCTOBER 1961
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whatley, M.E.; Haas, P.A.; Horton, R.W.
1962-04-01
Additional runs were made in the 6-in.-dia. separation column. The kinetics of the methane --copper oxide reaction was investigated in deep bed tests. The work on the development of the shear included a satisfactory method of ng, preliminary test of an outer gag faced with rubber, and a metallic inner gsg contoured to the shape of a sheared assembly. The mechanical dejacketing of the SRE Core I fuel, NaK-bonded, stainless steel-clad uranium slugs, was successfully completed. The effective therrnal conductivity of a packed bed of 0.023-in. steel shot was approximately 0.33 Btu/hr- deg Fft at 200 deg F. Flow capacitymore » for the compound extraction scrub column equipped with sieve plates (0.125-in.-dia. was determined. Average waste calcination rates for Purex were higher by a factor of 1.5 to 2.0 than rates for TBP-25. (auth)« less
The Ca-looping process for CO2 capture and energy storage: role of nanoparticle technology
NASA Astrophysics Data System (ADS)
Valverde, Jose Manuel
2018-02-01
The calcium looping (CaL) process, based on the cyclic carbonation/calcination of CaO, has come into scene in the last years with a high potential to be used in large-scale technologies aimed at mitigating global warming. In the CaL process for CO2 capture, the CO2-loaded flue gas is used to fluidize a bed of CaO particles at temperatures around 650 °C. The carbonated particles are then circulated into a calciner reactor wherein the CaO solids are regenerated at temperatures near 950 °C under high CO2 concentration. Calcination at such harsh conditions causes a marked sintering and loss of reactivity of the regenerated CaO. This main drawback could be however compensated from the very low cost of natural CaO precursors such as limestone or dolomite. Another emerging application of the CaL process is thermochemical energy storage (TCES) in concentrated solar power (CSP) plants. Importantly, carbonation/calcination conditions to maximize the global CaL-CSP plant efficiency could differ radically from those used for CO2 capture. Thus, carbonation could be carried out at high temperatures under high CO2 partial pressure for maximum efficiency, whereas the solids could be calcined at relatively low temperatures in the absence of CO2 to promote calcination. Our work highlights the critical role of carbonation/calcination conditions on the performance of CaO derived from natural precursors. While conditions in the CaL process for CO2 capture lead to a severe CaO deactivation with the number of cycles, the same material may exhibit a high and stable conversion at optimum CaL-CSP conditions. Moreover, the type of CaL conditions influences critically the reaction kinetics, which plays a main role on the optimization of relevant operation parameters such as the residence time in the reactors. This paper is devoted to a brief review on the latest research activity in our group concerning these issues as well as the possible role of nanoparticle technology to enhance the activity of Ca-based materials at CaL conditions for CO2 capture and energy storage.
NASA Astrophysics Data System (ADS)
Badr, A. M.; El-Anssary, E. H.; Elshaikh, H. A.; Afify, H. H.
2017-12-01
In the current study, α-MoO3 nanocrystals were successfully synthesized from ammonium heptamolybdate tetrahydrate using a simple hydrothermal route. The influence of calcination temperature on the structural, optical and electrical properties was systematically investigated for the MoO3 powder products. The XRD results were analyzed for these powders, revealing the formation of a mixed phase (β- and α-MoO3) at calcination temperatures ranging from 350 °C-450 °C, and hence a residual monoclinic phase still exists in the samples at the calcination temperature of 450 °C. Subsequently, the mixed phase was completely converted to a pure single phase of α-MoO3 at a calcination temperature of 500 °C. The optical properties of the MoO3 powders were investigated using the transformed diffuse reflectance technique according to Kubelka-Munk theory. For such a powder product, the results of the optical measurements demonstrated the realization of indirect and direct allowed transitions at the spectral ranges 3.31-3.91 eV and 3.66-4.27 eV, respectively. The indirect- and direct-allowed band-gaps of the MoO3 products were found to increase from 2.69-3.12 eV and from 3.43-3.64 eV, respectively, by increasing the calcination temperature from 350 °C-600 °C. The MoO3 powders calcined at different temperatures were converted into five dense tablets for performing the electrical measurements. These measurements were carried out at different working temperatures using a system operating under high vacuum conditions. The results revealed that the dc-conductivity of such a tablet typically increases by more than five orders of magnitude with an increase in the working temperature from 77-300 K. These results also demonstrated a high dependence of dc-conductivity on the calcination temperature for the MoO3 products. The dc-conductivity as a function of the operating temperature revealed the presence of at least three different electrical conduction mechanisms for the same MoO3 tablet.
In vitro cytotoxicity and quantitative silica analysis of diatomaceous earth products.
Bye, E; Davies, R; Griffiths, D M; Gylseth, B; Moncrieff, C B
1984-05-01
Mouse peritoneal macrophages were used to evaluate the relative cytotoxicity of a series of diatomaceous earth products in vitro. The amorphous and crystalline silica content of the products was determined by a combination of infrared spectroscopy and x ray powder diffraction techniques. The cytotoxicities of the high cristobalite content flux calcined materials were similar to that of the standard cristobalite ; both the natural and straight calcined materials had significantly greater activities than the flux calcined materials. Thus within the limitations of the macrophage cytotoxicity test the hypothesis that crystalline content is the only determinant of fibrogenicity of diatomaceous earth is not supported.
In vitro cytotoxicity and quantitative silica analysis of diatomaceous earth products.
Bye, E; Davies, R; Griffiths, D M; Gylseth, B; Moncrieff, C B
1984-01-01
Mouse peritoneal macrophages were used to evaluate the relative cytotoxicity of a series of diatomaceous earth products in vitro. The amorphous and crystalline silica content of the products was determined by a combination of infrared spectroscopy and x ray powder diffraction techniques. The cytotoxicities of the high cristobalite content flux calcined materials were similar to that of the standard cristobalite ; both the natural and straight calcined materials had significantly greater activities than the flux calcined materials. Thus within the limitations of the macrophage cytotoxicity test the hypothesis that crystalline content is the only determinant of fibrogenicity of diatomaceous earth is not supported. Images PMID:6326795
NASA Astrophysics Data System (ADS)
Bahar, Mahmoud; Mozaffari, Masoud; Esmaeili, Sahar
2017-03-01
In this work, nanoparticles of titanium dioxide (TiO2) were synthesized by means of TiCl4 as precursor. Effects of alcohol type, calcination, gelatinizing time and microwave exposure on the particle size, morphology, crystallinity and particle phase are studied using XRD patterns and SEM images. Results showed that alcohols such as ethanol increased the particle size; calcination increased the particle size and improved the crystallinity of particles. Microwave exposure of particles resulted in smaller particles; adding water increased the impact of microwave. Effect of microwave exposure in rutile phase formation is also observed during this study.
40 CFR 98.314 - Monitoring and QA/QC requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... requirements. (a) You must measure your consumption of calcined petroleum coke using plant instruments used for accounting purposes including direct measurement weighing the petroleum coke fed into your process (by belt... used to ensure the accuracy of monthly calcined petroleum coke consumption measurements. (c) You must...
40 CFR 98.314 - Monitoring and QA/QC requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... requirements. (a) You must measure your consumption of calcined petroleum coke using plant instruments used for accounting purposes including direct measurement weighing the petroleum coke fed into your process (by belt... used to ensure the accuracy of monthly calcined petroleum coke consumption measurements. (c) You must...
40 CFR 98.314 - Monitoring and QA/QC requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... requirements. (a) You must measure your consumption of calcined petroleum coke using plant instruments used for accounting purposes including direct measurement weighing the petroleum coke fed into your process (by belt... used to ensure the accuracy of monthly calcined petroleum coke consumption measurements. (c) You must...
40 CFR 98.314 - Monitoring and QA/QC requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... requirements. (a) You must measure your consumption of calcined petroleum coke using plant instruments used for accounting purposes including direct measurement weighing the petroleum coke fed into your process (by belt... used to ensure the accuracy of monthly calcined petroleum coke consumption measurements. (c) You must...
Cements for Structural Concrete in Cold Regions.
1977-10-01
ability to reduce the early evolu- tion of heat: slag and obsidian, pumicite and calcined shale, fly-ash , tuff and calcined diatomite , natural cement...and uncalcined diatomite . Variations in initial set times of cements can be controlled ‘cy varying the percentages of different cement mixtures . Wh it
UV-vis-DR study of VO x/SiO 2 catalysts prepared by sol-gel method
NASA Astrophysics Data System (ADS)
Moussa, N.; Ghorbel, A.
2008-12-01
Vanadia-silica catalysts with different vanadium loadings were prepared by sol-gel process. UV-vis diffuse-reflectance spectroscopy was used to elucidate the effect of drying mode (i.e., xerogel vs. aerogel), vanadium loading and calcination on the molecular structure of supported vanadium species. The results indicate that for vanadium loading ranging from 2.8 to 11.2 wt.%, the band-gap energies of all catalysts varying from 2.28 to 2.68 eV which demonstrate that vanadium oxides are predominantly in octahedral structure with the presence of tetrahedral species. The discrimination of different surface VO x species has been based on their characteristic Ligand to Metal Charge Transfer (LMCT) O → V(V) and d-d transition. It was found that the LMCT band position of V dbnd O bond is not affected by calcination either in xerogels or in aerogels but the position and the shape of bands relative to bridging V sbnd O sbnd V bonds are affected by vanadium loading, calcination and drying mode. For the same V/Si ratio, band-gap energy of xerogel is lower than that of aerogel which indicate that vanadium species are more dispersed in aerogels than in xerogels. Drying and calcination led to rearrangement, dehydration, cleavage and crystallization of vanadium species which explain the presence of some amount of crystalline V 2O 5 in calcined samples.
Yan, Junqing; Wu, Guangjun; Guan, Naijia; Li, Landong; Li, Zhuoxin; Cao, Xingzhong
2013-07-14
The sole effect of surface/bulk defects of TiO2 samples on their photocatalytic activity was investigated. Nano-sized anatase and rutile TiO2 were prepared by hydrothermal method and their surface/bulk defects were adjusted simply by calcination at different temperatures, i.e. 400-700 °C. High temperature calcinations induced the growth of crystalline sizes and a decrease in the surface areas, while the crystalline phase and the exposed facets were kept unchanged during calcination, as indicated by the characterization results from XRD, Raman, nitrogen adsorption-desorption, TEM and UV-Vis spectra. The existence of surface/bulk defects in calcined TiO2 samples was confirmed by photoluminescence and XPS spectra, and the surface/bulk defect ratio was quantitatively analyzed according to positron annihilation results. The photocatalytic activity of calcined TiO2 samples was evaluated in the photocatalytic reforming of methanol and the photocatalytic oxidation of α-phenethyl alcohol. Based on the characterization and catalytic results, a direct correlation between the surface specific photocatalytic activity and the surface/bulk defect density ratio could be drawn for both anatase TiO2 and rutile TiO2. The surface defects of TiO2, i.e. oxygen vacancy clusters, could promote the separation of electron-hole pairs under irradiation, and therefore, enhance the activity during photocatalytic reaction.
Ko, Horng-Huey; Chen, Hui-Ting; Yen, Feng-Ling; Lu, Wan-Chen; Kuo, Chih-Wei; Wang, Moo-Chin
2012-01-01
The preparation of TiO(2) nanocrystallite powders coated with and without 9 mol% ZnO has been studied for cosmetic applications in sunscreens by a co-precipitation process using TiCl(4) and Zn(NO(3))(2)·6H(2)O as starting materials. XRD results show that the phases of anatase TiO(2) and rutile TiO(2) coexist for precursor powders without added ZnO (T-0Z) and calcined at 523 to 973 K for 2 h. When the T-0Z precursor powders are calcined at 1273 K for 2 h, only the rutile TiO(2) appears. In addition, when the TiO(2) precursor powders contain 9 mol% ZnO (T-9Z) are calcined at 873 to 973 K for 2 h, the crystallized samples are composed of the major phase of rutile TiO(2) and the minor phases of anatase TiO(2) and Zn(2)Ti(3)O(8). The analyses of UV/VIS/NIR spectra reveal that the absorption of the T-9Z precursor powders after being calcined has a red-shift effect in the UV range with increasing calcination temperature. Therefore, the TiO(2) nanocrystallite powders coated with 9 mol% ZnO can be used as the attenuate agent in the UV-A region for cosmetic applications in sunscreens.
Ko, Horng-Huey; Chen, Hui-Ting; Yen, Feng-Ling; Lu, Wan-Chen; Kuo, Chih-Wei; Wang, Moo-Chin
2012-01-01
The preparation of TiO2 nanocrystallite powders coated with and without 9 mol% ZnO has been studied for cosmetic applications in sunscreens by a co-precipitation process using TiCl4 and Zn(NO3)2·6H2O as starting materials. XRD results show that the phases of anatase TiO2 and rutile TiO2 coexist for precursor powders without added ZnO (T-0Z) and calcined at 523 to 973 K for 2 h. When the T-0Z precursor powders are calcined at 1273 K for 2 h, only the rutile TiO2 appears. In addition, when the TiO2 precursor powders contain 9 mol% ZnO (T-9Z) are calcined at 873 to 973 K for 2 h, the crystallized samples are composed of the major phase of rutile TiO2 and the minor phases of anatase TiO2 and Zn2Ti3O8. The analyses of UV/VIS/NIR spectra reveal that the absorption of the T-9Z precursor powders after being calcined has a red-shift effect in the UV range with increasing calcination temperature. Therefore, the TiO2 nanocrystallite powders coated with 9 mol% ZnO can be used as the attenuate agent in the UV-A region for cosmetic applications in sunscreens. PMID:22408415
NASA Astrophysics Data System (ADS)
Hwang, Hojin; Shin, Haeun; Lee, Wan-Jin
2017-04-01
Triple-shelled ZnFe2O4 hollow microspheres (ZFO) as anode materials for lithium ion battery are prepared through a one-pot hydrothermal reaction using the composite solution consisting of sucrose in water and metal ions in ethylene glycol (EG), followed by different calcination processes. The architectures of ZFO micro spheres are differently synthesized through a mutual cooperation of inward and outward ripening with three different calcination temperatures. Thin triple-shelled ZnFe2O4 hollow microspheres calcined at 450 °C (ZFO-450) delivers a high reversible capacity of 932 mA h g-1 at a current density of 2 A g-1 even at the 200th cycle without obvious decay. Furthermore, ZFO-450 delivers 1235, 1005, 865, 834, and 845 mA h g-1 at high current densities of 0.5, 2, 5, 10, and 20 A g-1 after 100 cycles. Thin triple-shelled hollow microsphere prepared at an optimum calcination temperature provides exceptional rate capability and outstanding rate retention due to (i) the formation of nanoparticles leading to thin shell with morphological integrity, (ii) the facile mass transfer by thin shell with mesoporous structure, and (iii) the void space with macroporous structure alleviating volume change occurring during cycling.
Hwang, Hojin; Shin, Haeun; Lee, Wan-Jin
2017-01-01
Triple-shelled ZnFe2O4 hollow microspheres (ZFO) as anode materials for lithium ion battery are prepared through a one-pot hydrothermal reaction using the composite solution consisting of sucrose in water and metal ions in ethylene glycol (EG), followed by different calcination processes. The architectures of ZFO micro spheres are differently synthesized through a mutual cooperation of inward and outward ripening with three different calcination temperatures. Thin triple-shelled ZnFe2O4 hollow microspheres calcined at 450 °C (ZFO-450) delivers a high reversible capacity of 932 mA h g−1 at a current density of 2 A g−1 even at the 200th cycle without obvious decay. Furthermore, ZFO-450 delivers 1235, 1005, 865, 834, and 845 mA h g−1 at high current densities of 0.5, 2, 5, 10, and 20 A g−1 after 100 cycles. Thin triple-shelled hollow microsphere prepared at an optimum calcination temperature provides exceptional rate capability and outstanding rate retention due to (i) the formation of nanoparticles leading to thin shell with morphological integrity, (ii) the facile mass transfer by thin shell with mesoporous structure, and (iii) the void space with macroporous structure alleviating volume change occurring during cycling. PMID:28418001
NASA Astrophysics Data System (ADS)
Kafle, Madhav; Kapadi, Ramesh K.; Joshi, Leela Pradhan; Rajbhandari, Armila; Subedi, Deepak P.; Gyawali, Gobinda; Lee, Soo W.; Adhikari, Rajendra; Kafle, Bhim P.
2017-07-01
The dependence of the structural, optical and electrical properties of the FTO thin films on the film thickness (276 nm - 546 nm), calcination environment, and low temperature plasma treatment were examined. The FTO thin films, prepared by spray pyrolysis, were calcinated under air followed by either further heat treatment under N2 gas or treatment in low temperature atmospheric plasma. The samples before and after calcination under N2, and plasma treatment will be represented by Sair, SN2 and SPl, respectively, hereafter. The thin films were characterized by measuring the XRD spectra, SEM images, optical transmittance and reflectance, and sheet resistance of the films before and after calcination in N2 environment or plasma treatment. The presence of sharp and narrow multiple peaks in XRD spectra hint us that the films were highly crystalline (polycrystalline). The samples Sair with the thickness of 471 nm showed as high as 92 % transmittance in the visible range. Moreover, from the tauc plot, the optical bandgap Eg values of the Sair found to be noticeably lower than that of the samples SN2. Very surprisingly, the electrical sheet resistance (Rsh) found to decrease following the trend as Rshair > RshN2 > RshPl. The samples exposed to plasma found to possess the lowest RshPl (for film with thickness 546 nm, the RshPl was 17 Ω /sq.).
40 CFR 98.317 - Records that must be retained.
Code of Federal Regulations, 2012 CFR
2012-07-01
... coke purchases. (2) Annual operating hours for each titanium dioxide process line. (b) If a CEMS is not... paraghraph: (1) Records of all calcined petroleum coke purchases (tons). (2) Records of all analyses and... content of consumed calcined petroleum coke (percent by weight expressed as a decimal fraction). (4...
40 CFR 98.317 - Records that must be retained.
Code of Federal Regulations, 2011 CFR
2011-07-01
... coke purchases. (2) Annual operating hours for each titanium dioxide process line. (b) If a CEMS is not... paraghraph: (1) Records of all calcined petroleum coke purchases (tons). (2) Records of all analyses and... content of consumed calcined petroleum coke (percent by weight expressed as a decimal fraction). (4...
40 CFR 98.317 - Records that must be retained.
Code of Federal Regulations, 2014 CFR
2014-07-01
... coke purchases. (2) Annual operating hours for each titanium dioxide process line. (b) If a CEMS is not... paraghraph: (1) Records of all calcined petroleum coke purchases (tons). (2) Records of all analyses and... content of consumed calcined petroleum coke (percent by weight expressed as a decimal fraction). (4...
40 CFR 98.317 - Records that must be retained.
Code of Federal Regulations, 2013 CFR
2013-07-01
... coke purchases. (2) Annual operating hours for each titanium dioxide process line. (b) If a CEMS is not... paraghraph: (1) Records of all calcined petroleum coke purchases (tons). (2) Records of all analyses and... content of consumed calcined petroleum coke (percent by weight expressed as a decimal fraction). (4...
IDAHO CHEMICAL PROCESSING PLANT TECHNICAL PROGRESS REPORT FOR APRIL THROUGH JUNE 1958
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stevenson, C.E.
1958-11-01
Processing of uranium -aluminum alloy was continued with slight process modifications. Means for recovering rare gases from dissolver off-gas are described. Results of extensive decontamination procedures required to enable entrance to the continuous dissolver cell are also indicated. Pilot plant studies of dissolving aluminum continuously showed that rates of dissolution were decreased by factors of 2 to 4 as the concentration of nitric acid fed was increased from 5.4 to 11N. The rate of aluminum dissolution was found to be proportional to initial area exposed for pieces of different shape. It was found possible to produce a highly basic aluminummore » nitrate solution at a reasonable rate by dissolving to low concentration in dilute acid, followed by evaporation to the desired level. Uranium exchange rate measurements for the TBP extraction process are described. A canned rotor pump under test with graphite bearings operated 6000 hours with nominal wear. Difficulties were experienced in testing a nutating disc pump. Measurements of the potential of zirconium in hydrofluoric acid as a function of pH confirmed the predicted equation. In teflon vessels, zirconium dissolves a little more rapidly in nitric-hydrofluoric acid mixtures than in glass vessels, presumably due to reaction of fluoride with silica. Titunium alloy Types 55A and 75A were found to resist corrosion by certain boiling nitric-hydrochloric acid mixtures. Initial tests have commenced with a NaK-heated 100 liter/hour pilot plant aluminum nitrate calciner to continue process demonstration. In tests in the smaller pilot plant unit, increasing feed spray air ratio was found to increase particle loading in the cyclone effluent. Laboratory studies indicated that a venturi scrubber using dilute nitric acid at 80 C should remove ruthenium effectively from calciner off-gas. In a pilot plant test in which a significant fraction of ruthenium feed was retained by the alumina, substantial absorption of volatilized ruthenium was obtained. Thermal conductivity of alumina near 3000 F was about 0.26 Btu/hr)(ft)( F). In leaching studies, very little strontium or plutonium was removed by water from alumina calcined at 550 C. Dilute nitric acid, however, extracted strontium from this material to the same degree (~ 50 percent) as from material calcined at 400 C. Concentrated basic aluminum nitrate was produced from simulated aluminum nitrate waste by slow hydrolysis with urea followed by evaporation. Aluminum was efficiently extracted from buffered aluminum nitrate solution by acetylacetone and was stripped back into nitric acid. A filterable aluminum phosphate was precipituted from aluminum nitrate solution by urea hydrolysis; the phosphate effectively carried fission products, however. Spectrophotometric methods were developed for macro and micro quantities of uranium, in the presence of high concentrations of other ions, based on tetrapropylammonium nitrate extraction. (For preceding period see ID0-14443.) (auth)« less
Energy Efficient Microwave Hybrid Processing of Lime for Cement, Steel, and Glass Industries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fall, Morgana L; Yakovlev, Vadim; Sahi, Catherine
2012-02-10
In this study, the microwave materials interactions were studied through dielectric property measurements, process modeling, and lab scale microwave hybrid calcination tests. Characterization and analysis were performed to evaluate material reactions and energy usage. Processing parameters for laboratory scale and larger scale calcining experiments were developed for MAT limestone calcination. Early stage equipment design concepts were developed, with a focus on microwave post heating treatment. The retrofitting of existing rotary calcine equipment in the lime industry was assessed and found to be feasible. Ceralink sought to address some of the major barriers to the uptake of MAT identified as themore » need for (1) team approach with end users, technology partners, and equipment manufacturers, (2) modeling that incorporates kiln materials and variations to the design of industrial microwave equipment. This project has furthered the commercialization effort of MAT by working closely with an industrial lime manufacturer to educate them regarding MAT, identifying equipment manufacturer to supply microwave equipment, and developing a sophisticated MAT modeling with WPI, the university partner. MAT was shown to enhance calcining through lower energy consumption and faster reaction rates compared to conventional processing. Laboratory testing concluded that a 23% reduction in energy was possible for calcining small batches (5kg). Scale-up testing indicated that the energy savings increased as a function of load size and 36% energy savings was demonstrated (22 kg). A sophisticated model was developed which combines simultaneous microwave and conventional heating. Continued development of this modeling software could be used for larger scale calcining simulations, which would be a beneficial low-cost tool for exploring equipment design prior to actual building. Based on these findings, estimates for production scale MAT calcining benefits were calculated, assuming uptake of MAT in the US lime industry. This estimate showed that 7.3 TBTU/year could be saved, with reduction of 270 MMlbs of CO2 emissions, and $29 MM/year in economic savings. Taking into account estimates for MAT implementation in the US cement industry, an additional 39 TBTU/year, 3 Blbs of CO2 and $155 MM/year could be saved. One of the main remaining barriers to commercialization of MAT for the lime and cement industries is the sheer size of production. Through this project, it was realized that a production size MAT rotary calciner was not feasible, and a different approach was adapted. The concept of a microwave post heat section located in the upper portion of the cooler was devised and appears to be a more realistic approach for MAT implementation. Commercialization of this technology will require (1) continued pilot scale calcining demonstrations, (2) involvement of lime kiln companies, and (3) involvement of an industrial microwave equipment provider. An initial design concept for a MAT post-heat treatment section was conceived as a retrofit into the cooler sections of existing lime rotary calciners with a 1.4 year payback. Retrofitting will help spur implementation of this technology, as the capital investment will be minimal for enhancing the efficiency of current rotary lime kilns. Retrofits would likely be attractive to lime manufacturers, as the purchase of a new lime kiln is on the order of a $30 million dollar investment, where as a MAT retrofit is estimated on the order of $1 million. The path for commercialization lies in partnering with existing lime kiln companies, who will be able to implement the microwave post heat sections in existing and new build kilns. A microwave equipment provider has been identified, who would make up part of the continued development and commercialization team.« less
Moon, Deok Hyun; Cheong, Kyung Hoon; Koutsospyros, Agamemnon; Chang, Yoon-Young; Hyun, Seunghun; Ok, Yong Sik; Park, Jeong-Hun
2016-02-01
A novel treatment mix was designed for the simultaneous immobilization of As, Cu, and Pb in contaminated soils using natural (waste oyster shells (WOS)) and industrial (coal mine drainage sludge (CMDS)) waste materials. The treatments were conducted using the standard U.S. sieve size no. 20 (0.85 mm) calcined oyster shells (COS) and CMDS materials with a curing time of 1 and 28 days. The As immobilization treatments were evaluated using the 1-N HCl extraction fluid, whereas the Pb and Cu immobilization treatments were evaluated using the 0.1-N HCl extraction fluid based on the Korean leaching standards. The treatment results showed that the immobilization of As, Cu, and Pb was best achieved using a combination mix of 10 wt% COS and 10 wt% CMDS. This treatment mix was highly effective leading to superior leachability reductions for all three target contaminants (>93 % for As and >99 % for Cu and Pb) for a curing period of 28 days. The X-ray absorption near-edge structure (XANES) results showed that As was present in the form of As(V) in the control sample and that no changes in As speciation were observed following the COS-CMDS treatments. The scanning electron microscopy (SEM)-energy dispersive X-ray spectroscopy (EDX) sample treated with 10 wt% COS and 10 wt% CMDS indicated that As immobilization may be associated with the formation of Ca-As and Fe-As precipitates while Pb and Cu immobilization was most probably linked to calcium silicate hydrates (CSHs) and calcium aluminum hydrates (CAHs).
NASA Astrophysics Data System (ADS)
Seo, Min-Su; Lee, Hyukjae
2012-06-01
Carbon-coated titania nanotubes are synthesized via anodization in perchlorate containing electrolyte and subsequent hydrothermal reaction with glucose. Carbon coating improves the lithiation capacity of the titania nanotubes only when calcined at temperatures above 600°C, and the maximum capacity is ˜162 mAhg-1 at the 50th cycle from the titania nanotubes calcined at 700°C. The improved capacity of carbon-coated titania nanotubes is caused by the enhanced conductivity from the carbon. This is different from the role of the carbon coating in the hydrothermally prepared carbon-coated titania nanotubes, in which the coated carbon limits severe agglomeration.
NASA Astrophysics Data System (ADS)
Zhang, Guangshan; Hu, Limin; Wang, Peng; Yuan, Yixing
2017-11-01
In this work, a time-saving microwave-assisted method for synthesis of Co3O4-Bi2O3 was reported. The synthesized Co3O4-Bi2O3 samples were characterized with different techniques to probe their crystalline structures and morphologies. The catalytic performances of synthesized Co3O4-Bi2O3 as peroxymonosulfate activator were evaluated by the degradation of bisphenol A. The effect of calcination temperature on Co3O4-Bi2O3 products was explored and the result showed that the sample calcined at 400 °C possessing superior catalytic activity.
Lim, Jung Eun; Sung, Jwa Kyung; Sarkar, Binoy; Wang, Hailong; Hashimoto, Yohey; Tsang, Daniel C W; Ok, Yong Sik
2017-04-01
Metal stabilization using soil amendments is an extensively applied, economically viable and environmentally friendly remediation technique. The stabilization of Pb, Zn and As in contaminated soils was evaluated using natural starfish (NSF) and calcined starfish (CSF) wastes at different application rates (0, 2.5, 5.0 and 10.0 wt%). An incubation study was conducted over 14 months, and the efficiency of stabilization for Pb, Zn and As in soil was evaluated by the toxicity characteristic leaching procedure (TCLP) test. The TCLP-extractable Pb was reduced by 76.3-100 and 91.2-100 % in soil treated with NSF and CSF, respectively. The TCLP-extractable Zn was also reduced by 89.8-100 and 93.2-100 % in soil treated with NSF and CSF, respectively. These reductions could be associated with the increased metal adsorption and the formation of insoluble metal precipitates due to increased soil pH following application of the amendments. However, the TCLP-extractable As was increased in the soil treated with NSF, possibly due to the competitive adsorption of phosphorous. In contrast, the TCLP-extractable As in the 10 % CSF treatment was not detectable because insoluble Ca-As compounds might be formed at high pH values. Thermodynamic modeling by visual MINTEQ predicted the formation of ettringite (Ca 6 Al 2 (SO 4 ) 3 (OH) 12 ·26H 2 O) and portlandite (Ca(OH) 2 ) in the 10 % CSF-treated soil, while SEM-EDS analysis confirmed the needle-like structure of ettringite in which Pb was incorporated and stabilized in the 10 % CSF treatment.
46 CFR 148.04-15 - Petroleum coke, uncalcined; petroleum coke, uncalcined and calcined (mixture).
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Petroleum coke, uncalcined; petroleum coke, uncalcined and calcined (mixture). 148.04-15 Section 148.04-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND... Requirements for Certain Material § 148.04-15 Petroleum coke, uncalcined; petroleum coke, uncalcined and...
Attrition resistant Fischer-Tropsch catalyst and support
Singleton, Alan H.; Oukaci, Rachid; Goodwin, James G.
2004-05-25
A catalyst support having improved attrition resistance and a catalyst produced therefrom. The catalyst support is produced by a method comprising the step of treating calcined .gamma.-alumina having no catalytic material added thereto with an acidic aqueous solution having an acidity level effective for increasing the attrition resistance of the calcined .gamma.-alumina.
NASA Astrophysics Data System (ADS)
Kato, Zenta; Kashima, Ryo; Tatsumi, Kohei; Fukuyama, Shinnosuke; Izumiya, Koichi; Kumagai, Naokazu; Hashimoto, Koji
2016-12-01
For oxygen formation without forming chlorine in seawater electrolysis for hydrogen production we have been using the anode consisting of three layers of MnO2-type multiple oxide catalyst, intermediate layer and titanium substrate. The intermediate layer was used for prevention of oxidation of the titanium substrate during anodic polarization for oxygen evolution and was prepared by calcination of butanol solutions of H2IrCl6 and SnCl4 coated on titanium. The protectiveness of Ir1-xSnxO2 layer formed was directly examined using Ir1-xSnxO2/Ti anodes in H2SO4 solution changing the preparation conditions of the layer. When the sum of Ir4+ and Sn4+ was 0.1 M, the highest protectiveness was observed at 0.06 M Sn4+. Although an increase in calcination temperature led to the formation of Ir1-x-ySnxTiyO2 triple oxide with a slightly lower catalytic activity for oxygen evolution, the anode calcined at 450 °C showed the highest protectiveness.
NASA Astrophysics Data System (ADS)
Mohammed, J.; Sharma, Jyoti; Kumar, Sachin; Trudel, T. T. Carol; Srivastava, A. K.
2017-07-01
M-type hexagonal ferrites have found wide application in electronics industry due to the possibility of tuning properties such as dielectric properties. An improved dielectric property is useful in high frequency application. In this paper, we studied the effect of calcination temperature on structural and dielectric properties of Al-Mn substituted M-type strontium hexagonal ferrites with chemical composition Sr1-xAlxFe12-yMnyO19 (x=0.3 and y=0.6) synthesized by sol-gel auto-combustion method. The prepared sample was sintered at four different temperatures (T=750°C, 850°C, 950°C and 1050°C) for 5 hours. Characterisations of the synthesized samples were carried out using X-ray diffraction (XRD), impedance analyser, field emission electron microscope (FE-SEM) and energy dispersive X-ray (EDX) spectroscopy. The dielectric properties were explained on the basis of Koop's phenomenological theory and Maxwell Wagner theory. The sample calcinated at 750°C shows the highest value of dielectric constant and AC conductivity whereas that calcinated at 1050°C exhibit the lowest dielectric losses.
NASA Astrophysics Data System (ADS)
Wannapop, Surangkana; Thongtem, Titipun; Thongtem, Somchai
2012-03-01
Mixtures of magnesium acetate tetrahydrate ((CH3COO)2Mg·4H2O), ammonium tungstate tetrahydrate ((NH4)6W7O24·4H2O), and poly(vinyl alcohol) with the molecular weight of 72,000 were electrospun through a +15 kV direct voltage to form fibers on ground flat aluminum foils. The electrospun fibers of 1.5, 3.0, and 4.5 mmol of each starting material containing 1.3 g poly(vinyl alcohol) were further calcined at 500-700 °C for 3 h constant length of time. At 500 and 600 °C calcination, both monoclinic and anorthic phases of MgWO4 particles with different sizes connecting as fibrous assemblies were detected. Upon increasing the calcination temperature to 700 °C, only monoclinic phase of facet nanoparticles interconnecting along the fibrous axes with 4.19 eV indirect band gap and 461 nm photoemission was synthesized. In the present research, formation of MgWO4 molecules as well as nucleation and growth of nanoparticles was also proposed.
NASA Astrophysics Data System (ADS)
Shah, Shreya; Marin-Flores, Oscar G.; Norton, M. Grant; Ha, Su
2015-10-01
In this study, NiMo alloys supported on Mo2C are synthesized by wet impregnation for partial oxidation of methyl oleate, a surrogate biodiesel, to produce syngas. When compared to single phase Mo2C, the H2 yield increases from 70% up to >95% at the carbon conversion of ∼100% for NiMo alloy nanoparticles that are dispersed over the Mo2C surface. Supported NiMo alloy samples are prepared at two different calcination temperatures in order to determine its effect on particle dispersion, crystalline phase and catalytic properties. The reforming test data indicate that catalyst prepared at lower calcination temperature shows better nanoparticle dispersion over the Mo2C surface, which leads to higher initial performance when compared to catalysts synthesized at higher calcination temperature. Activity tests using the supported NiMo alloy on Mo2C that are calcined at the lower temperature of 400 °C shows 100% carbon conversion with 90% H2 yield without deactivation due to coking over 24 h time-on-stream.
Development of a low-pressure materials pre-treatment process for improved energy efficiency
NASA Astrophysics Data System (ADS)
Lee, Kwanghee; You, Byung Don
2017-09-01
Low pressure materials pre-treatment process has been developed as an alternative to the existing high-temperature sludge drying, limestone calcination, and limonite dehydroxylation. Using the thermodynamic equilibrium relationship between temperature and pressure represented by the Clausius-Clapeyron equation, the operational temperature of these reactions could be lowered at reduced pressure for increased energy efficiency. For industrial sludge drying, the evaporation rate was controlled by interfacial kinetics showing a constant rate with time and significant acceleration in the reaction could be observed with reduced pressure. At this modified reaction rate under low pressure, the rate was also partially controlled by mass transfer. Temperature of limestone calcination was lowered, but the reaction was limited at the calculated equilibrium temperature of the Clausius-Clapeyron equation and slightly higher temperatures were required. The energy consumption during limestone calcination and limonite dehydroxylation were evaluated, where lower processing pressures could enhance the energy efficiency for limestone calcination, but limonite dehydroxylation could not achieve energy-savings due to the greater power consumption of the vacuum pump under lower pressure and reduced temperatures.
NASA Astrophysics Data System (ADS)
Loganathan, A.; Kumar, K.
2016-06-01
In the present work, pure and Sr2+ ions substituted Mg ferrite nanoparticles (NPs) had been prepared by co-precipitation method and their structural, optical, and magnetic properties at different calcination temperatures were studied. On this purpose, thermo gravimetric and differential thermal analysis (TG-DTA), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy, UV-Visible diffused reflectance spectroscopy, impedance spectroscopy, and vibrating sample magnetometer were carried out. The exo- and endothermic processes of synthesized precursors were investigated by TG-DTA measurements. The structural properties of the obtained products were examined by XRD analysis and show that the synthesized NPs are in the cubic spinel structure. The existence of two bands around 578-583 and 430-436 cm-1 in FT-IR spectrum also confirmed the formation of spinel-structured ferrite NPs. The lattice constants and particle size are estimated using XRD data and found to be strongly dependent on calcination temperatures. The optical, electrical, and magnetic properties of ferrite compositions also investigated and found to be strongly dependant on calcination temperatures.
Hasan, Zubair; Cho, Dong-Wan; Nam, In-Hyun; Chon, Chul-Min; Song, Hocheol
2016-01-01
Zirconia-carbon (ZC) composites were prepared via calcination of Zr-based metal organic frameworks, UiO-66 and amino-functionalized UiO-66, under N2 atmosphere. The prepared composites were characterized using a series of instrumental analyses. The surface area of the ZC composites increased with the increase of calcination temperature, with the formation of a graphite oxide phase observed at 900 °C. The composites were used for adsorptive removal of a dye (crystal violet, CV) and a pharmaceutical and personal care product (salicylic acid, SA). The increase of the calcination temperature resulted in enhanced adsorption capability of the composites toward CV. The composite calcined at 900 °C exhibited a maximum uptake of 243 mg·g−1, which was much greater than that by a commercial activated carbon. The composite was also effective in SA adsorption (102 mg·g−1), and N-functionalization of the composite further enhanced its adsorption capability (109 mg·g−1). CV adsorption was weakly influenced by solution pH, but was more dependent on the surface area and pore volume of the ZC composite. Meanwhile, SA adsorption showed strong pH dependence, which implies an active role of electrostatic interactions in the adsorption process. Base-base repulsion and hydrogen bonding are also suggested to influence the adsorption of CV and SA, especially for the N-functionalized composite. PMID:28773387
Schwerdt, Ian J; Brenkmann, Alexandria; Martinson, Sean; Albrecht, Brent D; Heffernan, Sean; Klosterman, Michael R; Kirkham, Trenton; Tasdizen, Tolga; McDonald Iv, Luther W
2018-08-15
The use of a limited set of signatures in nuclear forensics and nuclear safeguards may reduce the discriminating power for identifying unknown nuclear materials, or for verifying processing at existing facilities. Nuclear proliferomics is a proposed new field of study that advocates for the acquisition of large databases of nuclear material properties from a variety of analytical techniques. As demonstrated on a common uranium trioxide polymorph, α-UO 3 , in this paper, nuclear proliferomics increases the ability to improve confidence in identifying the processing history of nuclear materials. Specifically, α-UO 3 was investigated from the calcination of unwashed uranyl peroxide at 350, 400, 450, 500, and 550 °C in air. Scanning electron microscopy (SEM) images were acquired of the surface morphology, and distinct qualitative differences are presented between unwashed and washed uranyl peroxide, as well as the calcination products from the unwashed uranyl peroxide at the investigated temperatures. Differential scanning calorimetry (DSC), UV-Vis spectrophotometry, powder X-ray diffraction (p-XRD), and thermogravimetric analysis-mass spectrometry (TGA-MS) were used to understand the source of these morphological differences as a function of calcination temperature. Additionally, the SEM images were manually segmented using Morphological Analysis for MAterials (MAMA) software to identify quantifiable differences in morphology for three different surface features present on the unwashed uranyl peroxide calcination products. No single quantifiable signature was sufficient to discern all calcination temperatures with a high degree of confidence; therefore, advanced statistical analysis was performed to allow the combination of a number of quantitative signatures, with their associated uncertainties, to allow for complete discernment by calcination history. Furthermore, machine learning was applied to the acquired SEM images to demonstrate automated discernment with at least 89% accuracy. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Shin, Hyeon Ung
The nanoscale of the supporting fibers may provide enhancements such as restricting the migration of metal catalyst particles. In this work, palladium nanoparticle doped alumina fibers were electrospun into template submicron fibers. These fibers were calcined at temperatures between 650°C and 1150°C to vary the crystal structures of the calcined fibers with the Pd particle size. Higher calcination temperatures led to higher reaction temperatures from 250 to about 450°C for total conversion, indicating the effective reactivity of the fiber-supported catalysts decreased with increase in calcination temperature. Pd-Au alloy nanoparticle doped titania fibers were also fabricated using an electrospinning method and assembled into a fibrous porous medium structure by a vacuum molding process. In reactor tests, the fiber media with Pd-Au alloy nanoparticle catalyst had greater reactivity in conversion of NO and CO gases than that of fiber media with Pd monometallic catalyst alone, attributed to a lower activation energy of the Pd-Au catalyst particles. In carbon monoxide oxidation reaction tests, the results showed that the performance was optimal for a catalyst of composition Pd2Au1 molar ratio that was active at 125°C, which had higher dispersion of active components and better catalytic performance compared to monometallic particle Au/TiO 2 and Pd/TiO2 fiber media. Moreover, the improved reaction activity of Pd2Au1/TiO2 fiber medium was attributed to a decreased in the activation energy. Further experiments were conducted using the electrospun ceramic fibers biodurability study. The properties of nano-sized fiber structures have attracted the attention of recent research on ceramic nanostructures as nonwoven media for applications in hazardous chemical and high temperature environments. However, health and safety concerns of micro and nano scale ceramic materials have not been fully investigated. Little is known about the physicochemical effects of the properties of small alumina fibers, including fiber sizes, surface morphologies, crystalline, phases, and surface areas with respect to submicron sized alumina fibers formed by calcination of electrospun polymeric fibers. Therefore, in this work, sub-micron sized alumina fibers were fabricated by electrospinning and calcination of a polymer template fiber. In the calcination step, different controlled temperature heating cycles were conducted to obtain fibers of different crystalline structures. Their biodurabilities were evaluated in two types of artificial lung fluids (i.e., mimicking the airway and alveolar macrophages). Though the variation in the soak temperature, their dissolution half times were not significantly affected. The solubility half-times of the alumina fibers were shortest for fibers calcined at the fastest temperature ramp rate (though soak temperature did not have an effect).
Cryochemical method for forming spherical metal oxide particles from metal salt solutions
Tinkle, M.C.
1973-12-01
A method is described of preparing small metal oxide spheres cryochemically utilizing metal salts (e.g., nitrates) that cannot readily be dried and calcined without loss of sphericity of the particles. Such metal salts are cryochemically formed into small spheres, partially or completely converted to an insoluble salt, and dried and calcined. (Official Gazette)
To simulate the staged availability of transient high surface area CaO observed in high-temperature flow-reactor data, the rate of calcination of CaCO3 or Ca(OH)2 is described by an empirical modification of the shrinking-core model. The physical model depicts particle decomposi...
Characterization and morphology of prepared titanium dioxide nanofibers by electrospinning.
Park, Ju-Young; Lee, In-Hwa
2010-05-01
Dispersed titanium dioxide in polymer nanofibers were prepared by sol-gel processing and electrospinning techniques using titanium isopropoxide (TiP)/polyvinylpyrrolidone (PVP) solution. The prepared titanium dioxide nanofibers were characterized by FE-SEM, TEM, XRD, and FT-IR. Pure titanium dioxide nanofibers were obtained from calcination of inorganic-organic composite fiber. The diameter of titanium oxide nanofibers were in the range of 70 nm to 150 nm. Prepared titanium dioxide nanofibers show rough surface and rather small diameter compare with TiP/PVP composite nanofibers. After calcined at 500 degrees C, TiO2 nanofibers convert into anatase and rutile mixed phased from amorphous structure. Calcination of these composite fibers above 600 degrees C resulted in pure rutile TiO2 nanofibers.
Calcination of calcium carbonate and blend therefor
Mallow, William A.; Dziuk, Jr., Jerome J.
1989-01-01
A method for calcination of a calcium carbonate material comprising heating the calcium carbonate material to a temperature and for a time sufficient to calcine the material to the degree desired while in the presence of a catalyst; said catalyst comprising at least one fused salt having the formula MCO.sub.3.CaCO.sub.3.CaO.H.sub.2 O.sub.x, wherein M is an alkali metal and x is 0 to 1 and formed by fusing MCO.sub.3 and CaCO.sub.3 in a molar ratio of about 1:2 to 2:1, and a blend adapted to be heated to CaO comprising a calcium carbonate material and at least one such fused salt.
Synthesis and characterization of Ni doped ZnO nanoparticles
NASA Astrophysics Data System (ADS)
Tamgadge, Y. S.; Gedam, P. P.; Ganorkar, R. P.; Mahure, M. A.; Pahurkar, V. G.; Muley, G. G.
2018-05-01
In this paper, we present synthesis of L-valine assisted surface modification of Ni doped ZnO nanoparticles (NPs) using chemical precipitation method. Samples were calcined at 500oC for 2h. Uncalcined and calcined samples were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM) and ultraviolet-visible (UV-vis) spectroscopy. Ni doped ZnO NPs with average particle size of 8 nm have been successfully obtained using L-valine as surface modifying agent. Increase in the particle size was observed after the calcination. XRD and TEM studies confirmed the purity, surface morphology and hexagonal wurtzite crystal structure of ZnO NPs. UV-vis spectroscopy indicated the blue shift of excitons absorption wavelength and surface modification by L-valine.
Method of preparing porous, rigid ceramic separators for an electrochemical cell
Bandyopadhyay, Gautam; Dusek, Joseph T.
1981-01-01
Porous, rigid separators for electrochemical cells are prepared by first calcining particles of ceramic material at temperatures above about 1200.degree. C. for a sufficient period of time to reduce the sinterability of the particles. A ceramic powder that has not been calcined is blended with the original powder to control the porosity of the completed separator. The ceramic blend is then pressed into a sheet of the desired shape and sintered at a temperature somewhat lower than the calcination temperature. Separator sheets of about 1 to 2.5 mm thickness and 30 to 70% porosity can be prepared by this technique. Ceramics such as yttria, magnesium oxide and magnesium-aluminum oxide have advantageously been used to form separators by this method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivan R. Thomas
INMM Abstract 51st Annual Meeting Decommissioning the Fuel Process Building, a Shift in Paradigm for Terminating Safeguards on Process Holdup The Fuel Process Building at the Idaho Nuclear Technology and Engineering Center (INTEC) is being decommissioned after nearly four decades of recovering high enriched uranium from various government owned spent nuclear fuels. The separations process began with fuel dissolution in one of multiple head-ends, followed by three cycles of uranium solvent extraction, and ending with denitration of uranyl nitrate product. The entire process was very complex, and the associated equipment formed an extensive maze of vessels, pumps, piping, and instrumentationmore » within several layers of operating corridors and process cells. Despite formal flushing and cleanout procedures, an accurate accounting for the residual uranium held up in process equipment over extended years of operation, presented a daunting safeguards challenge. Upon cessation of domestic reprocessing, the holdup remained inaccessible and was exempt from measurement during ensuing physical inventories. In decommissioning the Fuel Process Building, the Idaho Cleanup Project, which operates the INTEC, deviated from the established requirements that all nuclear material holdup be measured and credited to the accountability books and that all nuclear materials, except attractiveness level E residual holdup, be transferred to another facility. Instead, the decommissioning involved grouting the process equipment in place, rather than measuring and removing the contained holdup for subsequent transfer. The grouting made the potentially attractiveness level C and D holdup even more inaccessible, thereby effectually converting the holdup to attractiveness level E and allowing for termination of safeguards controls. Prior to grouting the facility, the residual holdup was estimated by limited sampling and destructive analysis of solutions in process lines and by acceptable knowledge based upon the separations process, plant layout, and operating history. The use of engineering estimates, in lieu of approved measurement methods, was justified by the estimated small quantity of holdup remaining, the infeasibility of measuring the holdup in a highly radioactive background, and the perceived hazards to personnel. The alternate approach to quantifying and terminating safeguards on process holdup was approved by deviation.« less
Environmentally-Friendly Geopolymeric Binders Made with Silica
NASA Astrophysics Data System (ADS)
Erdogan, S. T.
2013-12-01
Portland cement (PC) is the ubiquitous binding material for constructions works. It is a big contributor to global warming and climate change since its production is responsible for 5-10 % of all anthropogenic CO2 emissions. Half of this emission arises from the calcination of calcareous raw materials and half from kiln fuel burning and cement clinker grinding. Recently there have been efforts to develop alternative binders with lower greenhouse gas emissions. One such class of binders is geopolymers, formed by activating natural or waste materials with suitable alkaline or acidic solutions. These binders use natural or industrial waste raw materials with a very low CO2 footprint from grinding of the starting materials, and some from the production of the activating chemicals. The total CO2 emissions from carefully formulated mixtures can be as low as 1/10th - 1/5th of those of PC concrete mixtures with comparable properties. While use of industrial wastes as raw materials is environmentally preferable, the variability of their chemical compositions over time renders their use difficult. Use of natural materials depletes resources but can have more consistent properties and can be more easily accepted. Silica sand is a natural material containing very high amounts of quartz. Silica fume is a very fine waste from silicon metal production that is mostly non-crystalline silica. This study describes the use of sodium hydroxide and sodium silicate solutions to yield mortars with mechanical properties comparable to those of portland cement mortars and with better chemical and thermal durability. Strength gain is slower than with PC mixtures at room temperature but adequate ultimate strength can be achieved with curing at slightly elevated temperatures in less than 24 h. The consistency of the chemical compositions of these materials and their abundance in several large, developing countries makes silica attractive for producing sustainable concretes with reduced carbon footprints.
Toward understanding the effect of low-activity waste glass composition on sulfur solubility
Vienna, John D.; Kim, Dong -Sang; Muller, Isabelle S.; ...
2014-07-24
The concentration of sulfur in nuclear waste glass melter feed must be maintained below the point where salt accumulates on the melt surface. The allowable concentrations may range from 0.37 to over 2.05 weight percent (of SO 3 on a calcined oxide basis) depending on the composition of the melter feed and processing conditions. If the amount of sulfur exceeds the melt tolerance level, a molten salt will accumulate, which may upset melter operations and potentially shorten the useful life of the melter. At the Hanford site, relatively conservative limits have been placed on sulfur loading in melter feed, whichmore » in turn significantly increases the amount of glass that will be produced. Crucible-scale sulfur solubility data and scaled melter sulfur tolerance data have been collected on simulated Hanford waste glasses over the last 15 years. These data were compiled and analyzed. A model was developed to predict the solubility of SO 3 in glass based on 252 simulated Hanford low-activity waste (LAW) glass compositions. This model represents the data well, accounting for over 85% of the variation in data, and was well validated. The model was also found to accurately predict the tolerance for sulfur in melter feed for 13 scaled melter tests of simulated LAW glasses. The model can be used to help estimate glass volumes and make informed decisions on process options. The model also gives quantitative estimates of component concentration effects on sulfur solubility. The components that most increase sulfur solubility are Li 2O > V 2O 5> CaO ≈ P 2O 5 > Na 2O ≈ B 2O 3 > K 2O. The components that most decrease sulfur solubility are Cl > Cr 2O 3 > Al 2O 3 > ZrO 2 ≈ SnO 2 > Others ≈ SiO 2. As a result, the order of component effects is similar to previous literature data, in most cases.« less
Yang, Liusai; Li, Liping; Zhao, Minglei; Fu, Chaochao; Li, Guangshe
2013-08-02
Metal oxide nanomaterials have been found to have great potential for diverse applications due to their unique relationships between structure and properties. Lattice expansion as particle size reduces was previously considered to be general for metal oxide nanomaterials. It is now a great challenge to see if lattice contraction could be induced by the size effect for metal oxide nanomaterials. ABO4 metal oxides (e.g., CaWO4, GdVO4, and CdWO4) are some of the most important functional materials with many applications, while such oxides at the nanoscale are never reported to show a lattice contraction. This work presents a first report on the variation from lattice expansion to lattice contraction by tuning the microstructures of GdVO4:Eu(3+) nanocrystals. A hydrothermal method was adopted to synthesize GdVO4:Eu(3+) nanocrystals, and then these nanoparticles were calcined at 600 ° C in air. It is found that particle size reduction led to a lattice contraction for the calcined samples, which is in contrast to the lattice expansion observed for the hydrothermally synthesized counterparts or many other metal oxide nanomaterials. In addition, the lattice symmetry of the calcined samples remained almost a constant. The results indicate that the negative surface stress was eliminated by calcination treatment, leading to a homogeneous compression process in the lattice structure of the calcined GdVO4:Eu(3+) nanocrystals. Furthermore, Eu(3+) was taken as a structural probe and a luminescence center to study the local environments pertinent to these structural changes and to optimize the photoluminescence performance.
NASA Astrophysics Data System (ADS)
Hassan, Mohamed Elfatih; Cong, Longchao; Liu, Guanglong; Zhu, Duanwei; Cai, Jianbo
2014-03-01
C-TiO2 thin films were synthesized by a modified sol-gel route based on the self-assembly technique exploiting Tween80 (T80) as a pore directing agent and carbon source. The effect of calcination time on the photocatalytic activity of C-doped TiO2 catalyst was studied. The samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transforms infrared (FTIR), UV-vis diffuse reflectance spectroscopy, and photoluminescence spectra (PL). The XRD results showed that C-TiO2 sample calcined at 400 °C for various times exhibited anatase phase and no other crystal phase was identified. C-TiO2 exhibited a shift in an absorption edge of samples in the visible region than that of conventional or reference TiO2. The XPS results showed an existence of C in the TiO2 catalysts and C might be existed as Csbnd Osbnd Ti group. Moreover, the C-TiO2 thin film calcined at 400 °C for 30 min showed the lowest PL intensity due to a decrease in the recombination rate of photogenerated electrons and holes under UV light irradiation. Also the photocatalytic activity of synthesized catalyst was evaluated by decomposition of methyl orange (MO) under visible light irradiation. The results showed that the optimum preparations of C-TiO2 thin films were found to be under calcination temperature of 400, calcination time of 30 min, and with preparation 9 layers film.
Khalil, Kamal M S
2007-03-01
Mesoporous ceria/alumina, CeO(2)/Al(2)O(3), composites containing 10, 20 and 30% (w/w) ceria were prepared by a novel gel mixing method. In the method, ceria gel (formed via hydrolysis of ammonium cerium(IV) nitrate by aqueous ammonium carbonate solution) and alumina gel (formed via controlled hydrolysis of aluminum tri-isopropoxide) were mixed together. The mixed gel was subjected to subsequent drying and calcination for 3 h at 400, 600, 800 and 1000 degrees C. The uncalcined (dried at 110 degrees C) and the calcined composites were investigated by different techniques including TGA, DSC, FTIR, XRD, SEM and nitrogen adsorption/desorption isotherms. Results indicated that composites calcined for 3 h at 800 degrees C mainly kept amorphous alumina structure and gamma-alumina formed only upon calcinations at 1000 degrees C. On the other hand, CeO(2) was found to crystallize in the common ceria, cerinite, phase and it kept this structure over the entire calcination range (400-1000 degrees C). Therefore, high surface areas, stable surface textures, and non-aggregated nano-sized ceria dispersions were obtained. A systematic texture change based on ceria ratio was observed, however in all cases mesoporous composite materials exposing thermally stable texture and structure were obtained. The presented method produces composite ceria/alumina materials that suit different applications in the field of catalysis and membranes technology, and throw some light on physicochemical factors that determine textural morphology and thermal stability of such important composite.
Zheng, Jianming; Yan, Pengfei; Estevez, Luis; ...
2018-05-01
High energy density, nickel (Ni)-rich, layered LiNi xMn yCo zO 2 (NMC, x ≥ 0.6) materials are promising cathodes for lithium-ion batteries. However, several technical challenges, such as fast capacity fading and high voltage instability, hinder their large-scale application. Herein, we identified an optimum calcining temperature range for the Ni-rich cathode LiNi 0.76Mn 0.14Co 0.10O 2 (NMC76). NMC76 calcined at 750–775 °C exhibits a high discharge capacity (~215 mAh g –1 when charged to 4.5 V) and retains ca. 79% of its initial capacity after 200 cycles. It also exhibits an excellent high-rate capability, delivering a capacity of more thanmore » 160 mAh g –1 even at a 10 C rate. The high performance of NMC76 is directly related to the optimized size of its primary particles (100–300 nm) (which onstitute the spherical secondary particles of >10 µm) and cation mixing. Higher calcination temperature (≥800 °C) leads to rapid increase of primary particle size, poor cycling stability, and inferior rate capability of NMC76 due to severe micro-strain and -crack formation upon repeated lithium-ion de/intercalations. Furthermore, NMC76 calcined at 750–775 °C is a very good candidate for the next generation of Li ion batteries.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Jianming; Yan, Pengfei; Estevez, Luis
High energy density, nickel (Ni)-rich, layered LiNi xMn yCo zO 2 (NMC, x ≥ 0.6) materials are promising cathodes for lithium-ion batteries. However, several technical challenges, such as fast capacity fading and high voltage instability, hinder their large-scale application. Herein, we identified an optimum calcining temperature range for the Ni-rich cathode LiNi 0.76Mn 0.14Co 0.10O 2 (NMC76). NMC76 calcined at 750–775 °C exhibits a high discharge capacity (~215 mAh g –1 when charged to 4.5 V) and retains ca. 79% of its initial capacity after 200 cycles. It also exhibits an excellent high-rate capability, delivering a capacity of more thanmore » 160 mAh g –1 even at a 10 C rate. The high performance of NMC76 is directly related to the optimized size of its primary particles (100–300 nm) (which onstitute the spherical secondary particles of >10 µm) and cation mixing. Higher calcination temperature (≥800 °C) leads to rapid increase of primary particle size, poor cycling stability, and inferior rate capability of NMC76 due to severe micro-strain and -crack formation upon repeated lithium-ion de/intercalations. Furthermore, NMC76 calcined at 750–775 °C is a very good candidate for the next generation of Li ion batteries.« less
Wang, Ai-Qin; Chang, Chun-Ming; Mou, Chung-Yuan
2005-10-13
We report a novel Au-Ag alloy catalyst supported on mesoporous aluminosilicate Au-Ag@MCM prepared by a one-pot synthesis procedure, which is very active for low-temperature CO oxidation. The activity was highly dependent on the hydrogen pretreatment conditions. Reduction at 550-650 degrees C led to high activity at room temperature, whereas as-synthesized or calcined samples did not show any activity at the same temperature. Using various characterization techniques, such as XRD, UV-vis, XPS, and EXAFS, we elucidated the structure and surface composition change during calcination and the reduction process. The XRD patterns show that particle size increased only during the calcination process on those Ag-containing samples. XPS and EXAFS data demonstrate that calcination led to complete phase segregation of the Au-Ag alloy and the catalyst surface is greatly enriched with AgBr after the calcination process. However, subsequent reduction treatment removed Br- completely and the Au-Ag alloy was formed again. The surface composition of the reduced Au-Ag@MCM (nominal Au/Ag = 3/1) was more enriched with Ag, with the surface Au/Ag ratio being 0.75. ESR spectra show that superoxides are formed on the surface of the catalyst and its intensity change correlates well with the trend of catalytic activity. A DFT calculation shows that CO and O2 coadsorption on neighboring sites on the Au-Ag alloy was stronger than that on either Au or Ag. The strong synergism in the coadsorption of CO and O2 on the Au-Ag nanoparticle can thus explain the observed synergetic effect in catalysis.
NASA Astrophysics Data System (ADS)
Yang, Yiqiong; Dong, Han; Wang, Yin; He, Chi; Wang, Yuxin; Zhang, Xiaodong
2018-02-01
A series of octahedral structure Cu-BTC derivatives were successfully achieved through direct calcination of copper based metal organic framework Cu-BTC under different atmosphere (CO reaction gas, oxidizing gas O2, reducing gas H2, inert gas Ar). The Cu-BTC derivatives were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), laser Raman spectroscopy (LRS), N2 adsorption-desorption isotherm, element analysis, H2-temperature program reduction (H2-TPR) and X-ray photoelectron spectroscopic (XPS). It is found that Cu-BTC derivative derived from MOF calcined under reaction gas/O2 (Cu-BTC-CO/Cu-BTC-O) only retain Cu2O and CuO species. In addition, a weak Cu-BTC structure and Cu particles were observed on Cu-BTC derivative derived from MOF calcined under H2 (Cu-BTC-H). Obviously differently, Cu-BTC derivative derived from MOF calcined under Ar (Cu-BTC-Ar) still retains good MOF structure. The catalytic performance for CO oxidation over Cu-BTC derivatives was studied. It was found that Cu-BTC-CO showed a smaller specific surface area (8.0 m2/g), but presented an excellent catalytic performance, long-term stability and cycling stability with a complete CO conversion temperature (T100) of 140 °C, which was ascribed to the higher Cu2O/CuO ratio, good low temperature reduction behavior and a high quantity of surface active oxygen species.
Iron oxide particles in large pore zeolites
NASA Astrophysics Data System (ADS)
García, J. L.; López, A.; Lázaro, F. J.; Martínez, C.; Corma, A.
1996-05-01
The magnetic properties of iron-containing ETS-10 zeolite and its calcined variety have been studied by magnetic measurements. The results are consistent with the presence of paramagnetic ions and superparamagnetic clusters. Calcination results in a shift of the blocking temperatures, although their frequency dependence cannot be ascribed to non-interacting clusters. The hypothesis of cluster-glass like behaviour is discussed.
Structural and Optical Properties of Ag Nanoparticles Synthesized by Thermal Treatment Method.
Gharibshahi, Leila; Saion, Elias; Gharibshahi, Elham; Shaari, Abdul Halim; Matori, Khamirul Amin
2017-04-12
The modified thermal treatment method via alternate oxygen and nitrogen flow was successfully employed to synthesize very narrow and pure Ag nanoparticles. The structural and optical properties of the obtained metal nanoparticles at different calcination temperatures between 400 and 800 °C were studied using various techniques. The FTIR and EDX confirmed the formation of Ag nanoparticles without a trace of impurities. The XRD spectra revealed that the amorphous sample at 30 °C had transformed into the cubic crystalline nanostructures at the calcination temperature of 400 °C and higher. The TEM images showed the formation of spherical Ag nanoparticles in which the average particle size decreased with increasing calcination temperature from 7.88 nm at 400 °C to 3.29 nm at 800 °C. The optical properties were determined by UV-vis absorption spectrophotometer, which showed an increase in the conduction band of Ag nanoparticles with increasing calcination temperature from 2.75 eV at 400 °C to 3.04 eV at 800 °C. This was due to less attraction between conduction electrons and metal ions as the particle size decreases in corresponding to fewer numbers of atoms that made up the metal nanoparticles.
Structural and Optical Properties of Ag Nanoparticles Synthesized by Thermal Treatment Method
Gharibshahi, Leila; Saion, Elias; Gharibshahi, Elham; Shaari, Abdul Halim; Matori, Khamirul Amin
2017-01-01
The modified thermal treatment method via alternate oxygen and nitrogen flow was successfully employed to synthesize very narrow and pure Ag nanoparticles. The structural and optical properties of the obtained metal nanoparticles at different calcination temperatures between 400 and 800 °C were studied using various techniques. The FTIR and EDX confirmed the formation of Ag nanoparticles without a trace of impurities. The XRD spectra revealed that the amorphous sample at 30 °C had transformed into the cubic crystalline nanostructures at the calcination temperature of 400 °C and higher. The TEM images showed the formation of spherical Ag nanoparticles in which the average particle size decreased with increasing calcination temperature from 7.88 nm at 400 °C to 3.29 nm at 800 °C. The optical properties were determined by UV-vis absorption spectrophotometer, which showed an increase in the conduction band of Ag nanoparticles with increasing calcination temperature from 2.75 eV at 400 °C to 3.04 eV at 800 °C. This was due to less attraction between conduction electrons and metal ions as the particle size decreases in corresponding to fewer numbers of atoms that made up the metal nanoparticles. PMID:28772762
Thermal and structural characterization of synthetic and natural nanocrystalline hydroxyapatite.
Sofronia, Ancuta M; Baies, Radu; Anghel, Elena M; Marinescu, Cornelia A; Tanasescu, Speranta
2014-10-01
The aim of this work was to study the thermal stability on heating and to obtain the processing parameters of synthetic and bone-derived hydroxyapatite over temperatures between room temperature and 1400°C by thermal analysis (thermogravimetry (TG)/differential scanning calorimetry (DSC) and thermo-mechanical analysis-TMA). Structural and surface modifications related to samples origin and calcination temperature were investigated by Fourier transformed infrared (FTIR) and Raman spectroscopy, X-ray diffraction (XRD) and BET method. FTIR spectra indicated that the organic constituents and carbonate are no longer present in the natural sample calcined at 800°C. Raman spectra highlighted the decomposition products of the hydroxyapatite. The calcination treatment modifies the processes kinetics of the synthetic samples, being able to isolate lattice water desorption processes of decarbonization and the dehydroxylation processes. Shrinkage of calcined synthetic sample increases by 10% compared to uncalcined synthetic powder. From the TMA correlated with TG analysis and heat capacity data it can be concluded that sintering temperature of the synthetic samples should be chosen in the temperature range of the onset of dehydroxylation and the temperature at which oxyapatite decomposition begins. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhao, Guoqing; Li, Caifeng; Wu, Xia; Yu, Jingang; Jiang, Xinyu; Hu, Wenjihao; Jiao, Feipeng
2018-03-01
Calcined layered double hydroxides (CLDH) are one of the remarkable photocatalysts passionately studied for photodecolorization of organic dyes. NiFe-CLDH was successfully modified by reduced graphene oxide (RGO) through a facile in situ crystallization technique. The obtained RGO/NiFe-CLDH composites were fully characterized by powder X-ray diffraction (XRD), Scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), Fourier transform infrared (FT-IR), and UV-vis diffuse reflectance spectroscopy (DRS). The results analysis indicated that RGO sheets could work as base course to prompt the growth of LDH crystallites and NiFe-LDH lamellar crystal promiscuously distributed on the sheets with a strong interplay between each other. The photocatalytic performance of RGO/NiFe-CLDH composites toward decolorization of methylene blue tightly depended on the mass fraction of RGO and calcinated temperature. At the RGO weight loading of 1%, calcination temperature of 500 °C, the photocatalytic degradation efficiency of RGO/NiFe-CLDH composites reached 93.0% within 5.0 h. The enhanced activity of RGO/NiFe-CLDH composites may be due to the concerted catalysis effect between two constituents of as-prepared composites.
NASA Astrophysics Data System (ADS)
Zandi, Pegah; Hosseini, Elham; Rashchi, Fereshteh
2018-01-01
Titanium dioxide Nano powder has been synthesized from titanium isopropoxide (TTIP) in chloride media by sol-gel method. In this research, the effect of the drying environment, from air to oven drying at 100 °C, calcination time and temperature on nano TiO2 grain size was investigated. The synthesized powder was analyzed by x-ray diffraction and scanning electron microscope. Based on the results, the powder has been crystallized in anatase and rutile phases, due to different calcination temperatures. At temperatures above 600 °C, the Titanium dioxide nano powder has been crystallized as rutile. The crystalline structure of titanium dioxide nano powder changed because of the different calcination temperatures and time applied. The average particle size of the powder dried in air was larger than the powder dried in oven. The minimum particle size of the powder dried in air was 50 nm and in the oven was 9 nm, observed and calculated Williamson-Hall equation. All in all, with overall increasing of calcination time and temperature the grain size increased. Moreover, in the case of temperature, after a certain temperature, the grain size became constant and didn't change significantly.
Study on Al2O3 extraction from activated coal gangue under different calcination atmospheres
NASA Astrophysics Data System (ADS)
Dong, Ling; Liang, Xinxing; Song, Qiang; Gao, Gewu; Song, Lihua; Shu, Yuanfeng; Shu, Xinqian
2017-12-01
Coal gangue was calcinated under air, nitrogen, carbon dioxide, air-hydrogen, and hydrogen atmospheres. The effects of different calcination temperatures and atmospheres on the mineral composition of activated coal gangue were investigated by X-ray diffraction. Moreover, the acid leaching kinetics of aluminum oxide from coal gangue was investigated with sulfuric acid. It showed that the air atmosphere promoted kaolinite decomposition during coal gangue calcination. The hydrogen atmosphere promoted the activation and decomposition of kaolinite at reaction temperatures exceeding 650°C. The carbon dioxide atmosphere eliminated the influence of residual carbon on coal gangue. When the ratio of acid/coal gangue was 1.5 and reaction temperature was 650°C, the sulfuric acid leaching rate under air, air-hydrogen, carbon dioxide, hydrogen and nitrogen atmospheres were 93.66%, 90.90%, 84.06%, 81.91% and 77.54% respectively. The acid leaching reaction process conformed to unreacted shrinking core model of particle unchanged, and was controlled by the interfacial chemical reaction. The reaction kinetic equation for the leaching process was 1-(1-x)1/3=kt with an apparent activation energy of 48.97 kJ/mol.
Ho, Wilson Wei Sheng; Ng, Hoon Kiat; Gan, Suyin
2012-12-01
Novel heterogeneous catalysts from calcium oxide (CaO)/calcined calcium carbonate (CaCO(3)) loaded onto different palm oil mill boiler ashes were synthesised and used in the transesterification of crude palm oil (CPO) with methanol to yield biodiesel. Catalyst preparation parameters including the type of ash support, the weight percentage of CaO and calcined CaCO(3) loadings, as well as the calcination temperature of CaCO(3) were optimised. The catalyst prepared by loading of 15 wt% calcined CaCO(3) at a fixed temperature of 800°C on fly ash exhibited a maximum oil conversion of 94.48%. Thermogravimetric analysis (TGA) revealed that the CaCO(3) was transformed into CaO at 770°C and interacted well with the ash support, whereas rich CaO, Al(2)O(3) and SiO(2) were identified in the composition using X-ray diffraction (XRD). The fine morphology size (<5 μm) and high surface area (1.719 m(2)/g) of the fly ash-based catalyst rendered it the highest catalytic activity. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Meng, Xie; Han, Da; Wu, Hao; Li, Junliang; Zhan, Zhongliang
2014-01-01
This paper describes the structure and electrochemical properties of composite cathodes for solid oxide fuel cells fabricated by infiltration of aqueous solutions corresponding to SrFe0.75Mo0.25O3-δ (SFMO) into porous La0.9Sr0.1Ga0.8Mg0.2O3-δ (LSGM) backbones. XRD measurement confirms the predominance of the perovskite SFMO oxides in the infiltrates together with some minor impurities of SrMoO4 after calcinations at 850-1100 °C. The cathode polarization resistance as obtained from impedance measurement on symmetric cathode fuel cells exhibits a pronounced increase as a function of calcinations temperature due to increased SFMO particle sizes, e.g., 0.04 Ω cm2 for 70 nm-sized catalysts calcinated at 850 °C versus 0.11 Ω cm2 for 400 nm-sized catalysts calcinated at 1100 °C. Oxygen partial pressure and temperature dependence of impedance data shows that oxygen reduction kinetics is largely determined by ionization of adsorbed oxygen atoms on the SFMO catalysts.
Preparation, characterizations and photocatalytic activity of a ZnO/TiO2 nanocomposite
NASA Astrophysics Data System (ADS)
Lachom, Vichuda; Poolcharuansin, Phitsanu; Laokul, Paveena
2017-03-01
Nanoparticles of TiO2, ZnO and nanocomposite ZnO/TiO2 were prepared via a co-precipitation method. The precursor powders were calcined in air at 400 and 500 °C for 2 h. Crystallite sizes of the calcined samples ranged from 11-43 nm. The XRD patterns of ZnO/TiO2 powder showed two phases of anatase and wurtzite, with no ZnTiO3 impurity phase. TEM images showed three types of particles in the ZnO/TiO2 samples: a fine particle type of TiO2 and submicron ellipsoidal and rod-like particles of ZnO. The energy gap (E g) of the calcined powders was evaluated using UV-vis absorption spectra and found to be in the range of 3.15-3.60 eV. Photodegradation efficiencies of the prepared samples in methyl orange aqueous solution were investigated under UVA irradiation. The results showed that nanocomposite ZnO/TiO2 calcined at 400 °C exhibited the highest apparent rate constant (k), and a higher capacity for methyl orange removal than TiO2 and ZnO nanoparticles.
NASA Astrophysics Data System (ADS)
Geng, Qin; Tong, Xin; Wenya, Gideon Evans; Yang, Chao; Wang, Jide; Maloletnev, A. S.; Wang, Zhiming M.; Su, Xintai
2018-04-01
A facile, cost-effective, non-toxic, and surfactant-free route has been developed to synthesize MoS2/carbon (MoS2/C) nanocomposites. Potassium humate consists of a wide variety of oxygen-containing functional groups, which is considered as promising candidates for functionalization of graphene. Using potassium humate as carbon source, two-dimensional MoS2/C nanosheets with irregular shape were synthesized via a stabilized co-precipitation/calcination process. Electrochemical performance of the samples as an anode of lithium ion battery was measured, demonstrating that the MoS2/C nanocomposite calcinated at 700 °C (MoS2/C-700) electrode showed outstanding performance with a high discharge capacity of 554.9 mAh g- 1 at a current density of 100 mA g- 1 and the Coulomb efficiency of the sample maintained a high level of approximately 100% after the first 3 cycles. Simultaneously, the MoS2/C-700 electrode exhibited good cycling stability and rate performance. The success in synthesizing MoS2/C nanocomposites via co-precipitation/calcination route may pave a new way to realize promising anode materials for high-performance lithium ion batteries.
Liu, Sibao; Simonetti, Trent; Zheng, Weiqing; Saha, Basudeb
2018-05-09
High yields of diesel-range alkanes are prepared by hydrodeoxygenation of vegetable oils and waste cooking oils over ReO x -modified Ir/SiO 2 catalysts under mild reaction conditions. The catalyst containing a Re/Ir molar ratio of 3 exhibits the best performance, achieving 79-85 wt % yield of diesel-range alkanes at 453 K and 2 MPa H 2 . The yield is nearly quantitative for the theoretical possible long-chain alkanes on the basis of weight of the converted oils. The catalyst retains comparable activity upon regeneration through calcination. Control experiments using probe molecules as model substrates suggest that C=C bonds of unsaturated triglycerides and free fatty acids are first hydrogenated to their corresponding saturated intermediates, which are then converted to aldehyde intermediates through hydrogenolysis of acyl C-O bonds and subsequently hydrogenated to fatty alcohols. Finally, long-chain alkanes without any carbon loss are formed by direct hydrogenolysis of the fatty alcohols. Small amounts of alkanes with one carbon fewer are also formed by decarbonylation of the aldehyde intermediates. A synergy between Ir and partially reduced ReO x sites is discussed to elucidate the high activity of Ir-ReO x /SiO 2. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rare earth element recycling from waste nickel-metal hydride batteries.
Yang, Xiuli; Zhang, Junwei; Fang, Xihui
2014-08-30
With an increase in number of waste nickel-metal hydride batteries, and because of the importance of rare earth elements, the recycling of rare earth elements is becoming increasingly important. In this paper, we investigate the effects of temperature, hydrochloric acid concentration, and leaching time to optimize leaching conditions and determine leach kinetics. The results indicate that an increase in temperature, hydrochloric acid concentration, and leaching time enhance the leaching rate of rare earth elements. A maximum rare earth elements recovery of 95.16% was achieved at optimal leaching conditions of 70°C, solid/liquid ratio of 1:10, 20% hydrochloric acid concentration, -74μm particle size, and 100min leaching time. The experimental data were best fitted by a chemical reaction-controlled model. The activation energy was 43.98kJ/mol and the reaction order for hydrochloric acid concentration was 0.64. The kinetic equation for the leaching process was found to be: 1-(1-x)(1/3)=A/ρr0[HCl](0.64)exp-439,8008.314Tt. After leaching and filtration, by adding saturated oxalic solution to the filtrate, rare earth element oxalates were obtained. After removing impurities by adding ammonia, filtering, washing with dilute hydrochloric acid, and calcining at 810°C, a final product of 99% pure rare earth oxides was obtained. Copyright © 2014 Elsevier B.V. All rights reserved.
Davis, Linda C.
2006-01-01
Radiochemical and chemical wastes generated at facilities at the Idaho National Laboratory (INL) were discharged since 1952 to infiltration ponds at the Reactor Technology Complex (RTC) (known as the Test Reactor Area [TRA] until 2005), and the Idaho Nuclear Technology and Engineering Center (INTEC) and buried at the Radioactive Waste Management Complex (RWMC). Disposal of wastewater to infiltration ponds and infiltration of surface water at waste burial sites resulted in formation of perched ground water in basalts and in sedimentary interbeds above the Snake River Plain aquifer. Perched ground water is an integral part of the pathway for waste-constituent migration to the aquifer. The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, maintains ground-water monitoring networks at the INL to determine hydrologic trends, and to monitor the movement of radiochemical and chemical constituents in wastewater discharged from facilities to both perched ground water and the aquifer. This report presents an analysis of water-quality and water-level data collected from wells completed in perched ground water at the INL during 1999-2001, and summarizes historical disposal data and water-level-and water-quality trends. At the RTC, tritium, strontium-90, cesium-137, dissolved chromium, chloride, sodium, and sulfate were monitored in shallow and deep perched ground water. In shallow perched ground water, no tritium was detected above the reporting level. In deep perched ground water, tritium concentrations generally decreased or varied randomly during 1999-2001. During October 2001, tritium concentrations ranged from less than the reporting level to 39.4?1.4 picocuries per milliliter (pCi/mL). Reportable concentrations of tritium during July-October 2001 were smaller than the reported concentrations measured during July-December 1998. Tritium concentrations in water from wells at the RTC were likely affected by: well's distance from the radioactive-waste infiltration ponds (commonly referred to as the warm-waste ponds); water depth below the ponds; the amount of tritium discharged to radioactive-waste infiltration ponds in the past; discontinued use of radioactive-waste infiltration ponds; radioactive decay; and dilution from disposal of nonradioactive water. During 1999-2001, the strontium-90 concentrations in two wells completed in shallow perched water near the RTC exceeded the reporting level. Strontium-90 concentrations in water from wells completed in deep perched ground water at the RTC varied randomly with time. During October 2001, concentrations in water from five wells exceeded the reporting level and ranged from 2.8?0.7 picocuries per liter (pCi/L) in well USGS 63 to 83.8?2.1 pCi/L in well USGS 54. No reportable concentrations of cesium-137, chromium-51, or cobalt-60 were present in water samples from any of the shallow or deep wells at the RTC during 1999-2001. Dissolved chromium was not detected in shallow perched ground water at the RTC during 1999-2001. Concentrations of dissolved chromium during July-October 2001 in deep perched ground water near the RTC ranged from 10 micrograms per liter (?g/L) in well USGS 61 to 82 ?g/L in well USGS 55. The largest concentrations were in water from wells north and west of the radioactive-waste infiltration ponds. During July-October 2001, dissolved sodium concentrations ranged from 7 milligrams per liter (mg/L) in well USGS 78 to 20 mg/L in all wells except well USGS 68 (413 mg/L). Dissolved chloride concentrations in shallow perched ground water ranged from 10 mg/L in wells CWP 1, 3, and 4 to 53 mg/L in well TRA A 13 during 1999-2001. Dissolved chloride concentrations in deep perched ground water ranged from 5 mg/L in well USGS 78 to 91 mg/L in well USGS 73. The maximum dissolved sulfate concentration in shallow perched ground water was 419 mg/L in well CWP 1 during July 2000. Concentrations of dissolved sulfate in water from wells USGS 54, 60
NASA Astrophysics Data System (ADS)
Shanaghi, A.
2012-02-01
Strontium hexaferrite was widely used in the fabrication of commercial permanent magnets and certain microwave devices. In this study, the strontium hexaferrite nanoparticle coatings were prepared by sol-gel method and using spin coating process on silicon substrate, then the effect of pH value, such as 5, 7 and 9, and calcination temperatures, such as 600°C, 800°C, and 1000°C, on structural and magnetic properties of strontium hexaferrite thin films were investigated by XRD, SEM and VSM measurements. The maximum saturation magnetization value of 57.43 emu/g and coercivity value of 3908 Oe were achieved for the thin film with crystallite size approximately 41 nm, prepared at pH value of 7 and calcinations temperature of 800°C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Rajesh, E-mail: rkkaushik06@gmail.com; Dept. of Physics, Vaish College of Engineering, Rohtak-124001, Haryana; Sharma, Ashwani
The present work deals with study of structural and optical properties of Silver (Ag) doped Cadmium oxide (CdO) nanostructured synthesized by Chemical Co-precipitation Techniques followed by calcinations at small temperature. The doping concentrations were changing from 0.1 to 10 at% respectively. Structural analysis study of these calcined materials is carried out by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The optical properties of calcined samples were investigating by Fourier transformation infrared (FTIR)spectroscopy, UV-Visible Spectroscopy (UV-Vis). The structural properties analysis results revels that crystallite size are in the range of nano region and TEM results aremore » quite in accordance with XRD results.« less
Bandyopadhyay, G.; Dusek, J.T.
Porous, rigid separators for electrochemical cells are prepared by first calcining particles of ceramic material at temperatures above about 1200/sup 0/C for a sufficient period of time to reduce the sinterability of the particles. A ceramic powder that has not been calcined is blended with the original powder to control the porosity of the completed separator. The ceramic blend is then pressed into a sheet of the desired shape and sintered at a temperature somewhat lower than the calcination temperature. Separator sheets of about 1 to 2.5 mm thickness and 30 to 70% porosity can be prepared by this technique. Ceramics such as yttria, magnesium oxide, and magnesium-aluminium oxide have advantageously been used to form separators by this method.
Preparation of Self-assembly Mesoporous TiO2 Using Block Copolymer Pluronic PE6200 Template
NASA Astrophysics Data System (ADS)
Septina, W.; Yuliarto, B.; Nugraha
2008-03-01
In this research, nanocrystal mesoporous TiO2 powders were synthesized by sol-gel method, with TiCl4 as a precursor in methanol solution. Block copolymer Pluronic PE 6200 was used as pores template. It was found that from the XRD measurements, both at 400 °C and 450 °C calcination temperatures, resulted in nanocrystal TiO2 with anatase phase. Based on N2 adsorption characterization (BET method), TiO2 samples have surface area 108 m2/g and 88 m2/g for 400 °C and 450 °C calcination temperatures respectively. From Small-angle Neutron Scattering (SANS) patterns, it is investigated that TiO2 samples have mesoporous structure where the pore order degree depend on the calcination temperature.
[Spectrum studies on titania photocatalysts].
Su, W; Fu, X; Wei, K; Zhang, H; Lin, H; Wang, X; Li, D
2001-02-01
The nano-sized TiO2 photocatalysts were prepared by sol-gel method and characterized by FTIR spectroscopy, FT-Raman spectroscopy and diffuse reflectance spectroscopy(DRS). Photocatalytic degradation of oleic acid over the TiO2 catalysts was investigated. The result showed that calcination temperature has strong effect on crystal structure, energy band structure, optical adsorption and photocatalytic activity of the TiO2 catalysts. It was found that the TiO2 photocatalyst calcined at 400 degrees C has the best apparent optical adsorption, the biggest band edge position and the highest photoactivity. The effect of calcination temperature on photocatalytic activity of TiO2 catalysts has been ascribed to the changes in structure and optical property of catalyst such as crystal size, content of rutile, residual NO3-, and band-edge position of light adsorption.
Pandit, Priti R; Fulekar, M H
2017-08-01
Worldwide consumption of hen eggs results in availability of large amount of discarded egg waste particularly egg shells. In the present study, the waste shells were utilized for the synthesis of highly active heterogeneous calcium oxide (CaO) nanocatalyst to transesterify dry biomass into methyl esters (biodiesel). The CaO nanocatalyst was synthesied by calcination-hydration-dehydration technique and fully characterized by infrared spectroscopy, X-ray powder diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), brunauer-emmett-teller (BET) elemental and thermogravimetric analysis. TEM image showed that the nano catalyst had spherical shape with average particle size of 75 nm. BET analysis indicated that the catalyst specific surface area was 16.4 m 2 g -1 with average pore diameter of 5.07 nm. The effect of nano CaO catalyst was investigated by direct transesterification of dry biomass into biodiesel along with other reaction parameters such as catalyst ratio, reaction time and stirring rate. The impact of the transesterification reaction parameters and microalgal biodiesel yield were analyzed by response surface methodology based on a full factorial, central composite design. The significance of the predicted mode was verified and 86.41% microalgal biodiesel yield was reported at optimal parameter conditions 1.7% (w/w), catalyst ratio, 3.6 h reaction time and stirring rate of 140.6 rpm. The biodiesel conversion was determined by 1 H nuclear magnetic resonance spectroscopy (NMR). The fuel properties of prepared biodiesel were found to be highly comply with the biodiesel standard ASTMD6751 and EN14214. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crowder, M.; Pierce, R.
2012-08-22
H-Canyon and HB-Line are tasked with the production of PuO{sub 2} from a feed of plutonium metal. The PuO{sub 2} will provide feed material for the MOX Fuel Fabrication Facility. After dissolution of the Pu metal in H-Canyon, the solution will be transferred to HB-Line for purification by anion exchange. Subsequent unit operations include Pu(IV) oxalate precipitation, filtration and calcination to form PuO{sub 2}. This report details the results from SRNL anion exchange, precipitation, filtration, calcination, and characterization tests, as requested by HB-Line1 and described in the task plan. This study involved an 80-g batch of Pu and employed testmore » conditions prototypical of HB-Line conditions, wherever feasible. In addition, this study integrated lessons learned from earlier anion exchange and precipitation and calcination studies. H-Area Engineering selected direct strike Pu(IV) oxalate precipitation to produce a more dense PuO{sub 2} product than expected from Pu(III) oxalate precipitation. One benefit of the Pu(IV) approach is that it eliminates the need for reduction by ascorbic acid. The proposed HB-Line precipitation process involves a digestion time of 5 minutes after the time (44 min) required for oxalic acid addition. These were the conditions during HB-line production of neptunium oxide (NpO{sub 2}). In addition, a series of small Pu(IV) oxalate precipitation tests with different digestion times were conducted to better understand the effect of digestion time on particle size, filtration efficiency and other factors. To test the recommended process conditions, researchers performed two nearly-identical larger-scale precipitation and calcination tests. The calcined batches of PuO{sub 2} were characterized for density, specific surface area (SSA), particle size, moisture content, and impurities. Because the 3013 Standard requires that the calcination (or stabilization) process eliminate organics, characterization of PuO{sub 2} batches monitored the presence of oxalate by thermogravimetric analysis-mass spectrometry (TGA-MS). To use the TGA-MS for carbon or oxalate content, some method development will be required. However, the TGA-MS is already used for moisture measurements. Therefore, SRNL initiated method development for the TGA-MS to allow quantification of oxalate or total carbon. That work continues at this time and is not yet ready for use in this study. However, the collected test data can be reviewed later as those analysis tools are available.« less
Infrared detection of the mineralogical aspects that influence the processing of calcined kaolin
NASA Astrophysics Data System (ADS)
Groenheide, Stefan; Guatame-Garcia, Adriana; Buxton, Mike; van der Werff, Harald
2017-04-01
Calcined kaolin is an industrial minerals product used in the production of paper, paint, rubber and other specialty applications. It is produced from kaolinite through a series of refinement steps and final calcination at temperatures of above 900°C, with the aim of generating a whiter and more abrasive material. The raw kaolin ore is a mixture of clay minerals, quartz and feldspars, where kaolinite is the main constituent. The optimal kaolin ores to feed the processing plant should ideally have high kaolinite abundance, be free in Fe-bearing mineralogy (to avoid influence in the colour of the product), and the kaolinite itself should be of high crystallinity (to ensure the correct abrasiveness after calcination). This work presents a case study from the kaolin deposits in the St. Austell Granite (South-West England), which are known for their high quality and world-class size. In this area, the kaolin is of primary-hydrothermal origin, with mineral associations that are related to the genetic history. The eventual depletion of the high-quality reserves is bringing now the attention to the lower grade zones, where the amount of impurities increases. As a consequence, it is critical to developing strategies that ensure the supply of high-quality ore to the processing plant. For this, it is necessary to acquire a thorough knowledge of the ore, including relative abundance of the minerals and their textural relationships. Hyperspectral images in the visible-near infrared (VNIR) and short-wave infrared (SWIR) ranges were collected from drill cores and run-off-mine (ROM) samples, obtained from one of the kaolin pits in the St. Austell area, where the kaolin quality is known to be lower than in the rest of the deposit. A series of mineral maps were generated to assess the distribution, texture and abundance of the Fe-bearing mineralogy and the other kaolin-associated minerals, as well as the variations in the crystallinity of kaolinite. The mineral maps enabled the identification of tourmaline, biotite and hematite as the Fe-bearing mineralogy. Tourmaline was found mainly in veins and sometimes as phenocrysts; biotite was rather scarce, which suggest the advanced alteration degree of the deposit; hematite was present as coating and concentrated along quartz veins. Most of the mineral associations were represented by kaolinite, halloysite, muscovite, illite and montmorillonite. The ground mass was mostly kaolinite, although transition zones from kaolinite to halloysite and kaolinite to mica and montmorillonite were detected. Regarding the kaolinite crystallinity, the pure kaolinite graded from high to very high crystallinity. For the mineral mixtures of kaolinite with montmorillonite or halloysite, the crystallinity could not be determined with confidence. These findings raise the possibility of using hyperspectral imaging as a tool for assisting selective mining, by identifying the areas in the deposit with the highest kaolin quality, thus reducing the amount of waste. In scenarios where selective mining is not possible, the spectral characterisation might provide robust mineralogical information about the content of the ore that can support the decision-making process in higher levels of the kaolin value chain.
NASA Astrophysics Data System (ADS)
Saidi, Raja; Tlili, Ali; Jamoussi, Fakher
2016-12-01
The porcelanite rock of Ypresian phosphatic series of the Gafsa-Metlaoui basin (south-western Tunisia), is composed mainly of opal CT, and presents a variable percentage of carbonates and fibrous clays. This rock is treated with flux calcination at different temperatures in order to prepare a specific filter aid for cleaning melting sulfur which can be used for the production of sulfuric acid. This work presents the effect of heating on the mineralogy and grain size distribution of carbonate-rich porcelanite (Tm1) and clay-rich porcelanite (Gh) compared to flux calcined silica-rich porcelanite (CHM3) and diatomaceous filtration aids. The porcelanite samples used in this work come from three localities of the Gafsa-Metlaoui basin: Kef El Ghis (Gh), Tamarza (Tm1) and Mides (CHM3). Flux calcination at 1000 °C provokes a mineralogical transformation on carbonate-rich porcelanite samples. The opal CT transforms to opal C and becomes neater and more stable. The Thermal treatment of porcelanite (Tm1) incites also the apparition of new peaks of wollastonite. However, the structural change of opal CT to opal C by heat treatment is blocked for flux calcination of clay-rich porcelanite. The opal CT of fluxing clay-rich porcelanite becomes more ordered without significant change to opal C. The difference between fluxing carbonate-rich porcelanite (Tm1) and fluxing clay-rich porcelanite (Gh) appears also with granulometric distribution histogram of the tow heated samples. All raw samples have unimodal granulometric distribution (1-100 μm). After calcination with alkaline flux at 1000 °C fluxing carbonate-rich porcelanite displays bimodal granulometric distribution and a new mode appears systematically, between 0.1 μm and 1 μm. This occurs for fluxing silica-riche porcelanite and diatomaceous filtration aids as well and corresponds to the opal C formed after heat treatment. Whereas fluxing clay-rich porcelanite present trimodal granulometric distribution and a third mode appears (100-300 μm), which due to silica glass phase. Since, the granulometric rearrangement of porcelanite during thermal treatment may due to mineralogical transformation of opal CT to opal C and crystal grow.
NASA Astrophysics Data System (ADS)
Chen, Wen; Wu, Wenwei; Zhou, Chong; Zhou, Shifang; Li, Miaoyu; Ning, Yu
2018-03-01
M-type hexagonal Sr1- x Co x Nd x Fe12- x O19 ( x = 0, 0.08, 0.16, and 0.24) has been synthesized by ball milling, followed by calcination in air. The calcined products have been characterized by x-ray powder diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectra, and vibrating sample magnetometry. XRD and SEM analyses confirm the formation of M-type Sr hexaferrite with platelet-like morphology when Sr1- x Co x Nd x Fe12- x O19 ( x = 0, 0.08, 0.16, and 0.24) precursors are calcined at 950°C in air for 2.5 h. Lattice parameters " a" and " c" values of Sr1- x Co x Nd x Fe12- x O19 reflect a very small variation after doping of Nd3+ and Co2+ ions. Average crystallite size of Sr1- x Co x Nd x Fe12- x O19 sample, calcined at 1150°C, decreased obviously after doping of Co2+ and Nd3+ ions. This is because the bond energy of Nd3+-O2- is much larger than that of Sr2+-O2-. Magnetic characterization indicates that all the samples exhibit good magnetic properties. Substitution of Sr2+ and Fe3+ ions by Nd3+ and Co2+ ions can improve the specific saturation magnetizations and remanence of Sr1- x Co x Nd x Fe12- x O19. Sr0.84Co0.16Nd0.16Fe11.84O19, calcined at 1050°C, has the highest specific saturation magnetization value (74.75 ± 0.60 emu/g), remanence (45.15 ± 0.32 emu/g), and magnetic moment (14.34 ± 0.11 μ B); SrFe12O19, calcined at 1150°C, has the highest coercivity value (4037.01 ± 42.39 Oe). These magnetic parameters make this material a promising candidate for applications such as high-density magnetic recording and microwave absorbing materials.
CuBi2O4 Prepared by the Polymerized Complex Method for Gas-Sensing Applications.
Choi, Yun-Hyuk; Kim, Dai-Hong; Hong, Seong-Hyeon
2018-05-02
Multicomponent oxides can be extensively explored as alternative gas-sensing materials to binary oxides with their structural and compositional versatilities. In this work, the gas-sensing properties of CuBi 2 O 4 have been investigated toward various reducing gases (C 2 H 5 OH, NH 3 , H 2 , CO, and H 2 S) and oxidizing gas (NO 2 ) for the first time. For this, the powder synthesis has been developed using the polymerized complex method (Pechini method) to obtain a single-phase polycrystalline CuBi 2 O 4 . The defect, optical, and electronic properties in the prepared CuBi 2 O 4 powder were modulated by varying the calcination temperature from 500 to 700 °C. Noticeably, a high concentration of Cu + -oxygen vacancy ([Formula: see text]) defect complexes and isolated Cu 2+ ion clusters was found in the 500 °C-calcined CuBi 2 O 4 , where they were removed through air calcination at higher temperatures (up to 700 °C) while making the compound more stoichiometric. The change in the intrinsic defect concentration with the calcination temperature led to the variation of the electronic band gap energy and hole concentration in CuBi 2 O 4 with the polaronic hopping conduction (activation energy = 0.43 eV). The CuBi 2 O 4 sensor with 500 °C-calcined powder showed the highest gas responses (specifically, 10.4 toward 1000 ppm C 2 H 5 OH at the operating temperature of 400 °C) with the highest defect concentration. As a result, the gas-sensing characteristics of CuBi 2 O 4 are found to be dominantly affected by the intrinsic defect concentration, which is controlled by the calcination temperature. Toward reducing H 2 S and oxidizing NO 2 gases, the multiple reactions arising simultaneously on the surface of the CuBi 2 O 4 sensor govern its response behavior, depending on the gas concentration and the operating temperature. We believe that this work can be a cornerstone for understanding the effect of chemical defect on the gas-sensing characteristics in multicomponent oxides.
NASA Astrophysics Data System (ADS)
Charerntanom, Wissanu; Pecharapa, Wisanu; Pavasupree, Suttipan; Pavasupree, Sorapong
2017-07-01
This research has experimentally synthesized the nanosheets from the naturally-mineral magnetic leucoxene under the hydrothermal synthesis condition of 105 °C for 24 h. Magnetic leucoxene was utilized as the starting material due to its high TiO2 content (70-80%) and inexpensiveness. The characterization of the synthesized nanosheets was subsequently carried out: the crystalline structure, the chemical composition, the shape, the size and the specific surface area, by the X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET) specific surface area analysis. The analysis results indicated that the starting magnetic leucoxene is of rutile phase while the synthesized nanosheets are of titanate structure (H2TixO2x + 1). After calcination at the temperature range of 300 and 400 °C, the calcined samples demonstrated TiO2 (B). At 500 and 600 °C, the calcined nanosheets revealed a bi-crystalline mixture consisting of TiO2 (B) and anatase TiO2. At 700-1000 °C, the crystalline structure shows anatase and rutile phase. At 1100 °C, the prepared samples consisted of a mixture of anatase, rutile phase of TiO2, and Fe2O3 phase. The synthesized product also exhibited the flower-like morphology with 2-5 μm in diameter, and the nanosheets structure was slightly curved, with 100 nm to 2 μm in width and 1-3 nm in thickness. At 100-200 °C showed sheets-like structure. At 300-1100 °C, the calcined nanosheets became unstable and began to decompose and transform into nanoparticles. The increasing size of nanoparticle decreased the specific surface area of the nanosheets, caused by increasing calcination temperature. Furthermore, the BET specific surface area of the nanosheets was approximately 279.8 m2/g. More importantly, the synthesized nanosheets achieved the higher photocatalytic activity under UV and visible light than did the commercial TiO2 nanoparticles (JRC-01, JRC-03, ST-01 and P-25).
Effects of chlorine on the volatilization of heavy metals during the co-combustion of sewage sludge.
Yu, Shengrong; Zhang, Bin; Wei, Jiangxiong; Zhang, Tongsheng; Yu, Qijun; Zhang, Wensheng
2017-04-01
To clarify the volatilization of heavy metals (Cu, Ni, Pb, and Zn) in sewage sludge during co-combustion in cement kiln, effects of addition and types of four chlorides and temperature on the volatilization of heavy metals in raw meal with 25wt.% sewage sludge were investigated. The results showed that the volatilization of Cu, Ni, and Pb increased significantly with increase of chlorides addition, while no obvious change in the volatilization of Zn was observed. The effectiveness of chlorides on the volatilization of heavy metals depended on their release capacity of chlorine radicals and the chlorine combined capacity of heavy metals. Higher calcination temperature resulted in dramatically increase in the volatilization of heavy metals due to easier formation of volatile heavy metal chlorides. The results will provide a guideline for co-combusting heavy metals contained solid wastes in cement kiln on the basis of security. Copyright © 2017 Elsevier Ltd. All rights reserved.
Photocatalytic degradation of textile dye using TiO2-activated carbon nanocomposite
NASA Astrophysics Data System (ADS)
Ghosh, Gourab; Basu, Sankhadeep; Saha, Sudeshna
2018-05-01
Rapid industrialisation has extended the use of dyes in various industrial applications in order to meet the escalating demands on consumer products. The toxicity level of a particular dye is very important due to its diverse effects on the environment and living organisms. Among all the techniques for dye removal, adsorption and photocatalysis are two important processes which are gaining much attention in recent years. In the present study activated carbon (adsorbent), TiO2 nanoparticles (photocatalyst) and their composite were used for dye removal. Prepared samples were characterized using standard characterization techniques such as XRD and SEM. Activated carbon was prepared from waste shells of Sterculia foetida. Mixture of activated carbon (activation temperature 600°C) and titania (calcined at 500°C) in the ratio 1:1 displayed greater dye removal efficiency than its individual components. Reusability study indicated that the mixture could effectively be used without further regeneration as very little loss in efficiency was observed after single cycle use.
Madhu, Devarapaga; Chavan, Supriya B; Singh, Veena; Singh, Bhaskar; Sharma, Yogesh C
2016-08-01
Biodiesel has emerged as a prominent source to replace petroleum diesel. The cost incurred in the production of biodiesel is higher than that for refining of crude oil to obtain mineral diesel. The heterogeneous catalyst was prepared from crab shells by calcining the crushed mass at 800°C. The solid waste catalyst was characterized with XRD, XPS, BET, SEM-EDS, and FT-IR. Millettia pinnata (karanja) oil extracted from its seeds was used as a feedstock for the synthesis of biodiesel. Biodiesel was synthesized through esterification followed by transesterification in a two-step process. Characterization of biodiesel was done using proton NMR spectroscopy. Reaction parameters such as reaction time, reaction temperature, concentration of catalyst and stirrer speed were optimized. Reusability of catalyst was checked and found that there was no loss of catalytic activity up to five times. Copyright © 2016. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Fajri Alif, Matlal; Aprillia, Wandha; Arief, Syukri
2018-01-01
Hydroxyapatite (HAP) were synthesized from Pensi (Corbicula moltkiana) sheels by hydrothermal method and used as adsorbent for peat water purification. Batch adsorption experiments were performed to investigate the effects of various factors such as contact time, adsorbent dosage, and pH. The obtained materials were characterized by powder X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and scanning electron microscope (SEM). Results showed that HAP calcined at 900°C (HAP900) and 1000°C (HAP1000) have a poorly crystalline shape. HAP900 also contain Tetracalsium Phosphate (TTCP) with a Ca/P molar ratio 2.18, while HAP 1000 contain HAp with a Ca/P molar ratio 1.67. Optimum condition for peat water purification with HAP900 and HAP1000 were both achieved at 1 hours, 1 grams adsorben mass at pH 2. SEM micrographs show that after purification, the surface of HAP were covered by organic compounds from peat water.
Is there lattice contraction in multicomponent metal oxides? Case study for GdVO4:Eu3+ nanoparticles
NASA Astrophysics Data System (ADS)
Yang, Liusai; Li, Liping; Zhao, Minglei; Fu, Chaochao; Li, Guangshe
2013-08-01
Metal oxide nanomaterials have been found to have great potential for diverse applications due to their unique relationships between structure and properties. Lattice expansion as particle size reduces was previously considered to be general for metal oxide nanomaterials. It is now a great challenge to see if lattice contraction could be induced by the size effect for metal oxide nanomaterials. ABO4 metal oxides (e.g., CaWO4, GdVO4, and CdWO4) are some of the most important functional materials with many applications, while such oxides at the nanoscale are never reported to show a lattice contraction. This work presents a first report on the variation from lattice expansion to lattice contraction by tuning the microstructures of GdVO4:Eu3+ nanocrystals. A hydrothermal method was adopted to synthesize GdVO4:Eu3+ nanocrystals, and then these nanoparticles were calcined at 600 ° C in air. It is found that particle size reduction led to a lattice contraction for the calcined samples, which is in contrast to the lattice expansion observed for the hydrothermally synthesized counterparts or many other metal oxide nanomaterials. In addition, the lattice symmetry of the calcined samples remained almost a constant. The results indicate that the negative surface stress was eliminated by calcination treatment, leading to a homogeneous compression process in the lattice structure of the calcined GdVO4:Eu3+ nanocrystals. Furthermore, Eu3+ was taken as a structural probe and a luminescence center to study the local environments pertinent to these structural changes and to optimize the photoluminescence performance.
Wilson, Clayton E; Kruyt, Moyo C; de Bruijn, Joost D; van Blitterswijk, Clemens A; Oner, F Cumhur; Verbout, Abraham J; Dhert, Wouter J A
2006-01-01
This study presents a new screening model for evaluating the influence of multiple conditions on the initial process of bone formation in the posterior lumbar spine of a large animal. This model uses cages designed for placement on the decorticated transverse process of the goat lumbar spine. Five conduction channels per cage, each be defined by a different material treatment, are open to both the underlying bone and overlying soft tissue. The model was validated in ten adult Dutch milk goats, with each animal implanted with two cages containing a total of ten calcium phosphate material treatments according to a randomized complete block design. The ten calcium phosphate ceramic materials were created through a combination of material chemistry (BCP, TCP, HA), sintering temperature (low, medium, high), calcination and surface roughness treatments. To monitor the bone formation over time, fluorochrome markers were administered at 3, 5 and 7 weeks and the animals were sacrificed at 9 weeks after implantation. Bone formation in the conduction channels was investigated by histology and histomorphometry of non-decalcified sections using traditional light and epifluorescent microscopy. According to both observed and measured bone formation parameters, materials were ranked in order of increasing magnitude as follows: low sintering temperature BCP (rough and smooth) approximately medium sintering temperature BCP approximately = TCP > calcined low sintering temperature HA > non-calcined low sintering temperature HA > high sintering temperature BCP (rough and smooth) > high sintering temperature HA (calcined and non-calcined). These results agree closely with those obtained in previous studies of osteoconduction and bioactivity of ceramics thereby validating the screening model presented in this study.
The Influence of Alumina Properties on its Dissolution in Smelting Electrolyte
NASA Astrophysics Data System (ADS)
Bagshaw, A. N.; Welch, B. J.
The dissolution of a wide range of commercially produced aluminas in modified cryolite bath was studied on a laboratory scale. Most of the aluminas were products of conventional refineries and smelter dry scrubbing systems; a few were produced in laboratory and pilot calciners, enabling greater flexibility in the calcination process and the final properties. The mode of alumina feeding and the size of addition approximated to the point feeder situation. Alpha-alumina content, B.E.T. surface area and median particle size had little impact on dissolution behaviour. The volatiles content, expressed as L.O.I., the morphology of the original hydrate and the mode of calcination had the most influence. Discrete intermediate oxide phases were identified in all samples; delta-alumina content impacted most on dissolution. The flow properties of an alumina affected its overall dissolution.
Comparison of the biological H2S removal characteristics among four inorganic packing materials.
Hirai, M; Kamamoto, M; Yani, M; Shoda, M
2001-01-01
Four inorganic packing materials were evaluated in terms of their availability as packing materials of a packed tower deodorization apparatus (biofilter) from the viewpoints of biological H2S removal characteristics and some physical properties. Among porous ceramics (A), calcinated cristobalite (B), calcinated and formed obsidian (C), granulated and calcinated soil (D), the superiority of these packing materials determined based on the values of non-biological removal per unit weight or unit volume of packing material, complete removal capacity of H2S per unit weight of packing material per day or unit volume of packing material per day and pressure drop of the packed bed was in the order of A approximately equal to C > D approximately equal to B, which is correlated with the maximum water content, porosity, and mean pore diameter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng Jun; Liu Jing; Lv Dongping
The porous hierarchical spherical Co{sub 3}O{sub 4} assembled by nanosheets have been successfully fabricated. The porosity and the particle size of the product can be controlled by simply altering calcination temperature. SEM, TEM and SAED were performed to confirm that mesoporous Co{sub 3}O{sub 4} nanostructures are built-up by numerous nanoparticles with random attachment. The BET specific surface area and pore size of the product calcined at 280 deg. C are 72.5 m{sup 2} g{sup -1} and 4.6 nm, respectively. Our experiments further demonstrated that electrochemical performances of the synthesized products working as an anode material of lithium-ion battery are stronglymore » dependent on the porosity. - Graphical abstract: The flower-like Co{sub 3}O{sub 4} porous spheres with hierarchical structure have been successfully prepared via a simple calcination process using cobalt hydroxide as precursor.« less
Al3+ environments in nanostructured ZnAl2O4 and their effects on the luminescence properties.
da Silva, Alison A; Gonçalves, Agnaldo S; Davolos, Marian R; Santagneli, Silvia H
2008-11-01
Single-phase zinc aluminate (ZnAl2O4) with the spinel structure was successfully obtained by the Pechini method at different calcining temperatures for 4 hours. The nanoparticles are highly crystalline with no impurities related to ZnO or Al2O3 residues. The microstructural environment of aluminium ions changes with heat treatment temperature, as observed by Fourier transform infrared spectroscopy. The spinel structure might present two different AlO6 sites as evidenced by 27Al solid-state magic-angle-spinning nuclear magnetic resonance spectra. Some AlO4 sites were also detected for samples calcined at a temperature lower than 900 degrees C. The photoluminescence spectra show that the emission can be tuned depending on the calcining temperature. This effect was discussed on the basis of symmetry and oxygen vacancies.
NASA Astrophysics Data System (ADS)
Ji, Juejin; Zhang, Zhenqian; Fang, Bijun; Ding, Jianning
2017-11-01
The well dispersed CZF/PAM nanoparticles were prepared by the inverse miniemulsion method, which present high calcining and sintering activity for preparing Co0.875Zn0.125Fe2O4 (CZF) films, powders and ceramics at rather low temperatures. The prepared CZF/PAM inverse miniemulsion exhibits excellent film-formation performance, which is feasible for coating CZF films. XRD and FT-IR measurements confirmed that phase pure spinel structure and well crystalline CZF powders can be prepared calcined at the least temperature of 400 °C. The 450 °C-calcined CZF powders exhibit nearly spherical shape grains with average particle size 20-30 nm accompanied by apparent conglomeration. Improved external magnetic performance and electrical properties are obtained in the synthesized CZF powders and ceramics, which provide versatile promising applications.
NASA Astrophysics Data System (ADS)
Sharma, Ravi Kant; Ghose, Ranjana
2015-04-01
Porous nanocrystalline NiO has been synthesized by a simple homogeneous precipitation method in short time at low calcination temperature without using any surfactant, chelating or gelating agents. The porous nanocrystalline NiO with a hexagonal sheet-like morphology were obtained by calcination of Ni(OH)2 nanoflakes at 500 °C. The calcination temperature strongly influences the morphology, crystallite size, specific surface area, pore volume and optical band gap of the samples. The samples were characterized using powder X-ray diffraction, thermal gravimetric analysis, FT-IR spectroscopy, UV-Visible diffuse reflectance spectroscopy, surface area measurements, field emission scanning electron microscopy coupled with energy dispersive X-ray analysis and transmission electron microscopy. The chemical activity of the samples was tested by catalytic reduction of 4-nitrophenol with NaBH4.
Masolo, Elisabetta; Meloni, Manuela; Garroni, Sebastiano; Mulas, Gabriele; Enzo, Stefano; Baró, Maria Dolors; Rossinyol, Emma; Rzeszutek, Agnieszka; Herrmann-Geppert, Iris; Pilo, Maria
2014-01-01
We evaluate the influence of the use of different titania precursors, calcination rate, and ligand addition on the morphology, texture and phase content of synthesized mesoporous titania samples, parameters which, in turn, can play a key role in titania photocatalytic performances. The powders, obtained through the evaporation-induced self-assembly method, are characterized by means of ex situ X-Ray Powder Diffraction (XRPD) measurements, N2 physisorption isotherms and transmission electron microscopy. The precursors are selected basing on two different approaches: the acid-base pair, using TiCl4 and Ti(OBu)4, and a more classic route with Ti(OiPr)4 and HCl. For both precursors, different specimens were prepared by resorting to different calcination rates and with and without the addition of acetylacetone, that creates coordinated species with lower hydrolysis rates, and with different calcination rates. Each sample was employed as photoanode and tested in the water splitting reaction by recording I-V curves and comparing the results with commercial P25 powders. The complex data framework suggests that a narrow pore size distribution, due to the use of acetylacetone, plays a major role in the photoactivity, leading to a current density value higher than that of P25. PMID:28344237
High speed production of YBCO precursor films by advanced TFA-MOD process
NASA Astrophysics Data System (ADS)
Ichikawa, H.; Nakaoka, K.; Miura, M.; Sutoh, Y.; Nakanishi, T.; Nakai, A.; Yoshizumi, M.; Izumi, T.; Shiohara, Y.
2009-10-01
YBa 2Cu 3O 7-y (YBCO) long tapes derived from the metal-organic deposition (MOD) method using the starting solution containing trifluoroacetate (TFA) have been developed with high critical currents ( I c) over 200 A/cm-width. However, high speed production of YBCO films is simultaneously necessary to satisfy the requirements of electric power device applications in terms of cost and the amounts of the tapes. In this work, we developed a new TFA-MOD starting solution using F-free salt of Y, TFA salt of Ba and Cu-Octylate for application to the coating/calcination process and discussed several issues by using the Multi-turn (MT) Reel-to-Reel (RTR) system calcination furnace for the purpose of high throughput without degradation of the properties. The coating system was improved for uniform deposition qualities in both longitudinal and transversal directions. YBCO films using the new starting solution at the traveling rate of 10 m/h in coating/calcination by the MT-RTR calcination furnace showed the values of the critical current density of 1.6 MA/cm 2 as thick as 1.5 μm at 77 K under the self fields after firing at the high heating rate in the crystallization.
Co-production of hydrogen and carbon nanotubes on nickel foam via methane catalytic decomposition
NASA Astrophysics Data System (ADS)
Ping, Dan; Wang, Chaoxian; Dong, Xinfa; Dong, Yingchao
2016-04-01
The co-production of COx-free hydrogen and carbon nanotubes (CNTs) was achieved on 3-dimensional (3D) macroporous nickel foam (NF) via methane catalytic decomposition (MCD) over nano-Ni catalysts using chemical vapor deposition (CVD) technique. By a simple coating of a NiO-Al2O3 binary mixture sol followed by a drying-calcination-reduction treatment, NF supported composite catalysts (denoted as NiyAlOx/NF) with Al2O3 transition-layer incorporated with well-dispersed nano-Ni catalysts were successfully prepared. The effects of Ni loading, calcination temperature and reaction temperature on the performance for simultaneous production of COx-free hydrogen and CNTs were investigated in detail. Catalysts before and after MCD were characterized by XRD, TPR, SEM, TEM, TG and Raman spectroscopy technology. Results show that increasing Ni loading, lowering calcination temperature and optimizing MCD reaction temperature resulted in high production efficiency of COx-free H2 and carbon, but broader diameter distribution of CNTs. Through detailed parameter optimization, the catalyst with a Ni/Al molar ratio of 0.1, calcination temperature of 550 °C and MCD temperature of 650 °C was favorable to simultaneously produce COx-free hydrogen with a growth rate as high as 10.3% and CNTs with uniform size on NF.
Study on the mechanism of a manganese-based catalyst for catalytic NOX flue gas denitration
NASA Astrophysics Data System (ADS)
Zhang, Lei; Wen, Xin; Lei, Zhang; Gao, Long; Sha, Xiangling; Ma, Zhenhua; He, Huibin; Wang, Yusu; Jia, Yang; Li, Yonghui
2018-04-01
Manganese-based bimetallic catalysts were prepared with self-made pyrolysis coke as carrier and its denitration performance of low-temperature SCR (selective catalyst reduction) was studied. The effects of different metal species, calcination temperature, calcination time and the metal load quantity on the denitration performance of the catalyst were studied by orthogonal test. The denitration mechanism of the catalyst was analyzed by XRD (X-ray diffraction), SEM (scanning electron microscope), BET test and transient test. The experiments show that: * The denitration efficiency of Mn-based bimetallic catalysts mainly relates to the metal type, the metal load quantity and the catalyst adjuvant type. * The optimal catalyst preparation conditions are as follows: the load quantity of monometallic MnO2 is 10%, calcined at 300°C for 4h, and then loaded with 8% CeO2, calcined at 350°Cfor 3h. * The denitration mechanism of manganese-based bimetallic oxide catalysts is stated as: NH3 is firstly adsorbed by B acid center Mn-OH which nears Mn4+==O to form NH4+, NH4+ was then attacked by the gas phase NO to form N2, H2O and Mn3+-OH. Finally, Mn3+-OH was oxidized by O2 to regenerate Mn4+.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pransisco, Prengki, E-mail: prengkipransisco@gmail.com, E-mail: afza@petronas.com.my; Shafie, Afza, E-mail: prengkipransisco@gmail.com, E-mail: afza@petronas.com.my; Guan, Beh Hoe, E-mail: beh.hoeguan@petronas.com.my
2014-10-24
This paper examines the effect of calcination process on the structural and magnetic properties material nanostructure composite of Ni{sub 0Ð}œ‡{sub 5}Zn{sub 0Ð}œ‡{sub 25}Cu{sub 0.25} Fe{sub 2}O{sub 4} ferrites. The samples were successfully prepared by sol-gel method at different calcination temperature, which are 600°C, 700°C, 800°C and 900°C. Morphological investigation, average crystallite size and microstructure of the material were examined by using X-ray diffraction (XRD) and confirmed by high resolution transmission electron microscope (HRTEM) and field emission scanning electron microscope (FESEM). The effects of calcination temperature on the magnetic properties were calculated by using vibrating sample magnetometer (VSM). The XRD resultmore » shows single-phase cubic spinel structure with interval average size 5.9-38 nm, and grain size microstructure of the material was increasing with temperature increases. The highest magnetization saturation was reached at a temperature 800°C with value 53.89 emu/g, and the value coercive force (Hc) was inversely with the grain size.« less
Synthesis and Electrochemical Analyses of Manganese Oxides for Super-Capacitors.
Kim, Taewoo; Hwang, Hyein; Jang, Jaeyong; Park, Inyeong; Shim, Sang Eun; Baeck, Sung-Hyeon
2015-11-01
δ-Phase and α-phase manganese oxides were prepared using a hydrothermal method and their electrochemical properties were characterized. The influence of calcination temperature on the properties of manganese oxides was studied. Crystallinities were studied by X-ray diffraction, and scanning and transmission electron microscopy were utilized to examine morphologies. Average pore sizes and specific surface areas of samples were analyzed using the Barret-Joyner-Halenda and Brunauer-Emmett-Teller methods, respectively. After calcination in the range 300 degrees C to 600 degrees C, changes in morphology and crystallinity were observed. The flower-like shape of as synthesized samples became nanorod-like and the δ-phase changed to the α-phase. These changes may have been due to the removal of water during calcination. Furthermore, a transition stage in which the two phases coexisted was observed. Synthesized manganese oxides were mixed with carbon by sonification, to increase electric conductivity and to induce a synergistic effect between pseudo-capacitor and electric double layer capacitor (EDLC). Specific capacitances and rate durability of each composite were investigated by cyclic voltammetry in 1 M Na2SO4 electrolyte at different scan rates. MnO2 calcined at 400 degrees C exhibited the highest capacitance, probably due to its high surface area and more porous structure.
NASA Astrophysics Data System (ADS)
Veluri, P. S.; Shaligram, A.; Mitra, S.
2015-10-01
A two step approach for synthesis of porous α-Fe2O3 nanostructures has been realized via polyol method by complexing iron oxalate with ethylene glycol. Crystalline Fe2O3 samples with different porosities are obtained by calcination of Fe-Ethylene glycol complex at various temperatures. The as-prepared porous Fe2O3 structures exhibit promising lithium storage performance at high current rates. It is observed that the calcination temperature and the resultant porosity have a significant effect on capacity and cycling stability. Samples calcined at high temperature (600 °C) demonstrates stable cycle life with capacity retention of 1077 mAh g-1 at 500 mA g-1 current rate after 50 charge-discharge cycles. Samples calcined at temperatures of 500 and 600 °C display stable cycle life and high rate capability with reversible capacity of 930 mAh g-1 and 688 mAh g-1 at 5 A g-1, respectively. Impregnation of electrodes with electrolyte before cell fabrication shows enhanced electrochemical performance. The viability of Fe2O3 porous nanostructures as prospective anode material examined against commercial LiFePO4 cathode shows promising electrochemical performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oliveira, P.G. Pries de; Eon, J.G.; Volta, J.C.
1992-09-01
Vanadium oxides were immobilized by grafting VOCl{sub 3} on AlNbO oxides calcined between 500 and 750 C. Chemical analysis, XPS, and STEM measurements suggest an incomplete but homogeneous stoichiometric reaction between superficial hydroxyl groups and vanadyl oxychloride. By FTIR studies, it is observed that the interaction involves preferentially basic hydroxyl groups bonded to aluminium cations. UV-visible spectra show that mainly V{sup 5+} is present at the solid surface. Corresponding spectra are compatible with tetrahedral symmetry, in agreement with a previous {sup 51}V NMR investigation. The acido-basic properties of the catalyst were tested by isopropanol decomposition and compared with the correspondingmore » supports. It has been observed that basicity is higher for VO{sub x} grafted on AlBnO oxide calcined at high temperature and corresponding to the AlNbO{sub 4} structure. VO{sub x} grafted on AlNbO oxides calcined at intermediate temperatures and corresponding to a AlNbO disorganized structure present a good selectivity for the oxidative dehydrogenation of propane into propene. It has been observed that, for both reactions, the turnover number increases with the temperature of calcination of the catalysts. The reactivity of the aluminium niobiate support.« less
NASA Astrophysics Data System (ADS)
Cui, Lu; Wang, Hong; Xin, Baifu; Mao, Guijie
2017-10-01
Ultrafine nanocrystals of γ-gallium oxide (γ-Ga2O3) were rapidly synthesized via microwave hydrothermal method at 140 °C, in which Ga(NO3)3 was used as the gallium source and urea was the precipitant. The samples were characterized by X-ray diffraction (XRD), ultraviolet-visible absorption spectroscopy (UV-Vis), transmission electron microscopy (TEM), nitrogen physisorption and photoluminescence spectroscopy (PL). The crystallite size of ultrafine spinel γ-Ga2O3 was in the range from 4 to 5 nm and the optical bandgap was 4.61 eV. To improve the crystallinity, the ultrafine γ-Ga2O3 nanocrystals were calcined at 300-700 °C further. The ultrafine γ-Ga2O3 calcined at 500 °C (calcined-γ-Ga2O3) still remained the metastable γ-phase with relatively high crystallinity and the crystallite size around 5-7 nm. Photocatalytic performances of the synthesized samples were also evaluated by the degradation of rhodamine B (RhB). Results revealed that the ultrafine γ-Ga2O3 and the calcined-γ-Ga2O3 samples exhibited high photocatalytic efficiencies of 68.2 and 90.7%, respectively.
Bray, E. Lee
2013-01-01
The United States is reliant upon imports for nearly all of the bauxite that it consumes. Small amounts of bauxite and bauxitic clays are produced in Alabama, Arkansas and Georgia for nonmetallurgical uses. Metallurgical-grade bauxite (crude dry) imports in 2012 totaled 10.3 Mt (11.3 million st), 8 percent more than the quantity imported in 2011. Jamaica (46 percent), Guinea (27 percent) and Brazil (25 percent) were the leading suppliers to the United States in 2012. In 2012, 84 kt (92,600 st) of refractory-grade calcined bauxite was imported, an 8-percent decrease compared with imports in 2011. Although domestic steel production increased by about 3 percent in 2012, compared with production in 2011, increased use of magnesia for refractory products may account for the decrease in refractory-grade calcined bauxite imports. Guyana (55 percent) and China (45 percent) were the sources of U.S. refractory-grade calcined bauxite imports. Imports of nonrefractory-grade calcined bauxite in 2012 totaled 323 kt (356,000 st), 24 percent more than the quantity imported in 2011. This increase was attributed to increased use of bauxite in cement, as proppants for hydraulic fracturing by the petroleum industry and by steel makers. Guyana (32 percent), Australia (29 percent) and Greece (25 percent) were the leading sources.
Green synthesis and characterization of ANbO3 (A = Na, K) nanopowders fabricated using a biopolymer
NASA Astrophysics Data System (ADS)
Khorrami, Gh. H.; Mousavi, M.; Khayatian, S. A.; Kompany, A.; Khorsand Zak, A.
2017-10-01
Lead-free sodium niobate (NaNbO3, NN) and potassium niobate (KNbO3, KN) nanopowders were successfully synthesized by a simple and green synthesis process in gelatin media. Gelatin, which is a biopolymer, was used as stabilizer. In order to determine the lowest calcination temperature needed to obtain pure NN and KN nanopowders, the produced gels were analyzed by thermogravometric analyzer (TGA). The produced gels were calcined at 500∘C and 600∘C. The structural and optical properties of the prepared powders were examined using X-ray diffraction (XRD) technique, transmission electron microscopy (TEM), and UV-Vis spectroscopy. The XRD results revealed that pure phase NN and KN nanopowders were formed at low temperature calcination of 500∘C and 600∘C, respectively. The Scherrer formula and size-strain plot (SSP) method were employed to estimate crystallite size and lattice strain of the samples. The TEM images show that the NN and KN samples calcined at 600∘C have cubic shape with an average particle size of 60.95 and 39.29 nm, respectively. The optical bandgap energy of the samples was calculated using UV-Vis diffused reflectance spectra of the samples and Kubelka-Munck relation.
de Luna, Mark Daniel G; Laciste, Maricris T; Tolosa, Nolan C; Lu, Ming-Chun
2018-03-20
The present study investigates the influence of calcination temperature on the properties and photoactivity of multi-element doped TiO 2 . The photocatalysts were prepared by incorporating silver (Ag), fluorine (F), nitrogen (N), and tungsten (W) into the TiO 2 structure via the sol-gel method. Spectroscopic techniques were used to elucidate the correlation between the structural and optical properties of the doped photocatalyst and its photoactivity. XRD results showed that the mean crystallite size increased for undoped photocatalysts and decreased for the doped photocatalysts when calcination was done at higher temperatures. UV-Vis spectra showed that the absorption cut-off wavelength shifted towards the visible light region for the as-synthesized photocatalysts and band gap narrowing was attributed to multi-element doping and calcination. FTIR spectra results showed the shifting of OH-bending absorption bands towards increasing wave numbers. The activity of the photocatalysts was evaluated in terms of gaseous formaldehyde removal under visible light irradiation. The highest photocatalytic removal of gaseous formaldehyde was found at 88%. The study confirms the effectiveness of multi-element doped TiO 2 to remove gaseous formaldehyde in air by visible light photocatalysis and the results have a lot of potential to extend the application to other organic air contaminants.
Jayabalan, M; Shalumon, K T; Mitha, M K; Ganesan, K; Epple, M
2010-03-01
The effect of hydroxyapatite (HAP) on the performance of nanocomposites of an unsaturated polyester, i.e., hydroxy-terminated high molecular weight poly(proplyene fumarate) (HT-PPFhm), was investigated. A thermoset nanocomposite was prepared with nanoparticles of calcined HAP (<100 nm, rod-like shape, filler content 30 wt.%), HT-PPFhm and N-vinyl pyrrolidone, dibenzoyl peroxide and N,N-dimethyl aniline. Two more nanocomposites were prepared with precipitated HAP nanoparticles (<100 nm rod-like shape) and commercially available HAP nanoparticles (<200 nm spherical shape), respectively. Calcined HAP nanoparticles resulted in very good crosslinking in the resin matrix with high crosslinking density and interfacial bonding with the polymer, owing to the rod-like shape of the nanoparticles; this gave improved biomechanical strength and modulus and also controlled degradation of the nanocomposite for scaffold formation. The tissue compatibility and osteocompatibility of the nanocomposite containing calcined HAP nanoparticles was evaluated. The tissue compatibility was studied by intramuscular implantation in a rabbit animal model for 3 months as per ISO standard 10993/6. The in vivo femoral bone repair was also carried out in the rabbit animal model as per ISO standard 10993/6. The nanocomposite containing calcined HAP nanoparticles is both biocompatible and osteocompatible. Copyright 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Aqueous Chloride Operations Overview: Plutonium and Americium Purification/Recovery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardner, Kyle Shelton; Kimball, David Bryan; Skidmore, Bradley Evan
These are a set of slides intended for an information session as part of recruiting activities at Brigham Young University. It gives an overview of aqueous chloride operations, specifically on plutonium and americium purification/recovery. This presentation details the steps taken perform these processes, from plutonium size reduction, dissolution, solvent extraction, oxalate precipitation, to calcination. For americium recovery, it details the CLEAR (chloride extraction and actinide recovery) Line, oxalate precipitation and calcination.
NASA Astrophysics Data System (ADS)
Trujillano, Raquel; Holgado, María Jesús; Rives, Vicente
2009-03-01
A series of hydrotalcite-type compounds containing Cu(II) and Al(III) in the layers, and carbonate or different alkylsulfonates in the interlayer, have been prepared and studied. Calcination of these solids gives rise to formation of metallic copper and Cu 2+ and Cu + oxides or sulfates, depending on the calcination temperature and on the precise nature of the interlayer alkylsulfonate.
Dilithium dialuminium trisilicate Crystalline Phase Prepared from Coal Fly Ash
NASA Astrophysics Data System (ADS)
Yao, Zhitong; Xia, Meisheng; Ye, Ying
2012-06-01
The dilithium dialuminium trisilicate phase Li2Al2Si3O10 was prepared using coal fly ash and lithium hydroxide monohydrate LiOH·H2O as precursors. The influences of various preparation conditions on Li2Al2Si3O10 forming were investigated. The results showed that the optimum additive amount of LiOH·H2O was about 20%. The onset of calcining temperature and time was identified as 980 °C and 1 h, respectively. XRD analysis indicated that the content of Li2Al2Si3O10 phase increased at the expense of quartz and mullite, with calcining temperatures increasing and time extending. SEM observation revealed that the calcined samples were drastically interlocked together with the prolonging of time. The obtained Li2Al2Si3O10 phase was well crystallized and with small grain size.
NASA Astrophysics Data System (ADS)
Wang, Pengcheng; Zhou, Yingke; Hu, Min; Chen, Jian
2017-01-01
Nitrogen-doped carbon nanotube supporting NiO nanoparticles were synthesized by a chemical precipitation process coupled with subsequent calcination. The morphology and structure of the composites were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), and the electrochemical performance was evaluated using cyclic voltammetry and chronoamperometric technique. The effects of nitrogen doping, calcination temperature and content of NiO nanoparticles on the electrocatalytic activity toward methanol oxidation were systematically studied. The results show that the uniformly dispersed ultrafine NiO nanoparticles supported on nitrogen-doped carbon nanotube are obtained after calcination at 400 °C. The optimized composite catalysts present high electrocatalytic activity, fast charge-transfer process, excellent accessibility and stability for methanol oxidation reaction, which are promising for application in the alkaline direct methanol fuel cells.
Ogata, Fumihiko; Nagai, Noriaki; Ueta, Erimi; Nakamura, Takehiro; Kawasaki, Naohito
2018-01-01
In this study, we prepared novel adsorbents containing virgin and calcined tapioca products for removing strontium (Sr(II)) and cesium (Cs(I)) from aqueous solutions. The characteristics of tapioca, along with its capacity to adsorb Sr(II) and Cs(I), were evaluated. Multiple tapioca products were prepared and tested. The adsorbent prepared by boiling the tapioca followed by calcination at 300°C (BTP300) was the most effective. In addition, adsorption was affected by the adsorbent's surface properties. The Sr(II) and Cs(I) adsorbed onto BTP300 could be recovered through desorption by hydrochloric acid at different concentrations, which indicates that BTP300 can be used several times for adsorption/desorption. The results of this study suggest that BTP300, which was produced from tapioca biomass, can remove Sr(II) and Cs(I) from aqueous solutions.
Oil shale retorting and combustion system
Pitrolo, Augustine A.; Mei, Joseph S.; Shang, Jerry Y.
1983-01-01
The present invention is directed to the extraction of energy values from l shale containing considerable concentrations of calcium carbonate in an efficient manner. The volatiles are separated from the oil shale in a retorting zone of a fluidized bed where the temperature and the concentration of oxygen are maintained at sufficiently low levels so that the volatiles are extracted from the oil shale with minimal combustion of the volatiles and with minimal calcination of the calcium carbonate. These gaseous volatiles and the calcium carbonate flow from the retorting zone into a freeboard combustion zone where the volatiles are burned in the presence of excess air. In this zone the calcination of the calcium carbonate occurs but at the expense of less BTU's than would be required by the calcination reaction in the event both the retorting and combustion steps took place simultaneously. The heat values in the products of combustion are satisfactorily recovered in a suitable heat exchange system.
Effect of K3PO4 addition as sintering inhibitor during calcination of Y2O3 nanoparticles
NASA Astrophysics Data System (ADS)
Soga, K.; Okumura, Y.; Tsuji, K.; Venkatachalam, N.
2009-11-01
Erbium-doped yttrium oxide nanoparticle is one of the most important for fluorescence bioimaging under near infrared excitation. Particle size of it below 100 nm is an important requirement for a cellular bioimaging. However, the synthesis with such small particles is difficult at the calcination temperature above 1200 °C due to the sintering and crystal growth of the particles. In this study, yttrium oxide nanoparticles with average size of 30 nm were successfully synthesized by using K3PO4 as a sintering inhibitor during the calcination. A single phase of cubic Y2O3 as the resultant material was confirmed by XRD, which was also confirmed to emit a bright upconversion emission under 980-nm excitation. Improvement of chemical durability due to the introduction of phosphate group on the surface of the Y2O3 particles is also reported.
Prasad, Krishnamurthy; Pinjari, D V; Pandit, A B; Mhaske, S T
2011-09-01
Nanostructured zirconium dioxide was synthesized from zirconyl nitrate using both conventional and ultrasound assisted precipitation in alkaline medium. The synthesized samples were calcinated at temperatures ranging from 400°C to 900°C in steps of 100°C. The ZrO(2) specimens were characterized using X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). The thermal characteristics of the samples were studied via Differential Scanning Calorimetry-Thermo-Gravimetry Analysis (DSC-TGA). The influence of the calcination temperature on the phase transformation process from monoclinic to tetragonal to cubic zirconia and its consequent effect on the crystallite size and % crystallinity of the synthesized ZrO(2) was studied and interpreted. It was observed that the ultrasound assisted technique helped to hasten to the phase transformation and also at some point resulted in phase stabilization of the synthesized zirconia. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wijayaratne, Hasini; McIntosh, Grant; Hyland, Margaret; Perander, Linus; Metson, James
2017-06-01
The mechanical strength of smelter grade alumina (SGA) is of considerable practical significance for the aluminum reduction process. Attrition of alumina during transportation and handling generates an increased level of fines. This results in generation of dust, poor flow properties, and silo segregation that interfere with alumina feeding systems. These lead to process instabilities which in turn result in current efficiency losses that are costly. Here we are concerned with developing a fundamental understanding of SGA strength in terms of its microstructure. Nanoindentation and ultrasound-mediated particle breakage tests have been conducted to study the strength. Strength of SGA samples both industry calcined and laboratory prepared, decrease with increasing α-alumina (corundum) content contrary to expectation. The reducing strength of alumina with increasing degree of calcination is attributed to the development of a macroporous and abrasion-prone microstructure resulting from the `pseudomorphic' transformation of precursor gibbsite during the calcination process.
Fabrication of photonic band gap materials
Constant, Kristen; Subramania, Ganapathi S.; Biswas, Rana; Ho, Kai-Ming
2002-01-15
A method for forming a periodic dielectric structure exhibiting photonic band gap effects includes forming a slurry of a nano-crystalline ceramic dielectric or semiconductor material and monodisperse polymer microspheres, depositing a film of the slurry on a substrate, drying the film, and calcining the film to remove the polymer microspheres therefrom. The film may be cold-pressed after drying and prior to calcining. The ceramic dielectric or semiconductor material may be titania, and the polymer microspheres may be polystyrene microspheres.
Nanograin Ceramic Optical Composite Window
2005-07-15
parts are sintered in air at 1100 C̊. Table 1: Carbon content of the calcined Alumina- Zirconia powders analyzed by LECO Calcination Temperature Carbon...estimated particle size of the Alumina and Zirconia powders Material name Surface area (m2/g) Estimated particle size (nm) Alumina 315.7 4.7 Zirconia...200 300 400 500 600 700 800 900 1000 2-Theta - Scale 20 30 40 50 60 70 80 Figure 3: XRD patterns of zirconia powder prepared by sonochemical method
NASA Astrophysics Data System (ADS)
Chuklina, S. G.; Maslenkova, S. A.; Pylinina, A. I.; Podzorova, L. I.; Ilyicheva, A. A.
2017-02-01
In the present study, we investigated the effect of preparation method, phase composition and calcination temperature of the (Ce-TZP) - Al2O3 mixed oxides on their structural features and catalytic performance in ethanol conversion. Ceria-zirconia-alumina mixed oxides with different (Ce+Zr)/Al atomic ratios were prepared via sol-gel method. Catalytic activity and selectivity were investigated for ethanol conversion to acetaldehyde, ethylene and diethyl ether.
NASA Astrophysics Data System (ADS)
Huo, Zhen-Qing; Cui, Yu-Ting; Wang, Dan; Dong, Yue; Chen, Li
2014-01-01
The extremely low electronic conductivity, slow ion diffusion kinetics, and the Jahn-Teller effect of LiMnPO4 limit its electrochemical performance. In this work, a nutty-cake structural C-LiMn1-xFexPO4-LiFePO4 cathode material is synthesized by hydrothermal method and further calcined at different temperatures. The influence of calcination temperature on the electrochemical behavior is investigated by X-ray diffractometer, scanning electron microscope, field-emission high-resolution transmission electron microscope, energy-dispersive X-ray spectroscopy, electrochemical impedance spectroscopy and charge-discharge tests. And the performance of C-LiMn1-xFexPO4-LiFePO4 materials has a relationship with its crystal structure. The well-crystallized Sample-600 calcined at 600 °C shows the smallest charge transfer resistance, the largest lithium ion diffusion coefficient (DLi) and the best cycling stability. The discharge capacity of Sample-600 holds around 112 mAh g-1 after the 3rd cycle at 0.1 C rate. The performances improvement of C-LiMn1-xFexPO4-LiFePO4 material can be mainly attributed to the iron diffusion from the LiFePO4 core to the outer LiMnPO4 layer under appropriate calcination temperature.
Fluidized bed calciner apparatus
Owen, Thomas J.; Klem, Jr., Michael J.; Cash, Robert J.
1988-01-01
An apparatus for remotely calcining a slurry or solution feed stream of toxic or hazardous material, such as ammonium diurante slurry or uranyl nitrate solution, is disclosed. The calcining apparatus includes a vertical substantially cylindrical inner shell disposed in a vertical substantially cylindrical outer shell, in which inner shell is disposed a fluidized bed comprising the feed stream material to be calcined and spherical beads to aid in heat transfer. Extending through the outer and inner shells is a feed nozzle for delivering feed material or a cleaning chemical to the beads. Disposed in and extending across the lower portion of the inner shell and upstream of the fluidized bed is a support member for supporting the fluidized bed, the support member having uniform slots for directing uniform gas flow to the fluidized bed from a fluidizing gas orifice disposed upstream of the support member. Disposed in the lower portion of the inner shell are a plurality of internal electric resistance heaters for heating the fluidized bed. Disposed circumferentially about the outside length of the inner shell are a plurality of external heaters for heating the inner shell thereby heating the fluidized bed. Further, connected to the internal and external heaters is a means for maintaining the fluidized bed temperature to within plus or minus approximately 25.degree. C. of a predetermined bed temperature. Disposed about the external heaters is the outer shell for providing radiative heat reflection back to the inner shell.
Bray, E.L.
2012-01-01
The United States is import-reliant for nearly all of the bauxite that it consumes. Small amounts of bauxite and bauxitic clays are produced in Alabama, Arkansas and Georgia for nonmetallurgical uses. Metallurgical-grade bauxite (crude dry) imports in 2011 totaled 9.54 Mt (10.5 million st), 18 percent more than the quantity imported in 2010. Jamaica (54 percent). Guinea (25 percent) and Brazil (18 percent) were the leading suppliers to the United States in 2011. In 2011,117 kt (129,000 st) of refractory-grade calcined bauxite was imported, a 69-percent decrease compared with imports in 2010. This decrease was partly attributed to an increase in net imports of refractory products such as bricks and crucibles, which were 39 percent higher than in the prior year. Imports of refractory-grade calcined bauxite from Brazil declined by 99 percent and by 75 percent from Greece. Restrictions on exports of raw materials from China also might have contributed a small amount to the decrease in imports. Imports from China declined by 45 percent. Guyana (42 percent), China (35 percent) and Greece (22 percent) were the leading sources of U.S. refractory-grade calcined bauxite imports. Imports of nonrefractory-grade calcined bauxite in 2011 totaled 236 kt (260,000 st), 23 percent less than the quantity imported in 2010. Guyana (51 percent), Australia (37 percent) and China (7 percent) were the leading sources
López-Ramón, María V; Álvarez, Miguel A; Moreno-Castilla, Carlos; Fontecha-Cámara, María A; Yebra-Rodríguez, África; Bailón-García, Esther
2018-02-01
A copper ferrite synthesized by a sol-gel combustion method was calcined at different temperatures up to 800°C, determining changes in its structural characteristics and magnetic measurements and studying its catalytic performance in gallic acid removal by Fenton reaction. The main objective was to study the effect of the calcination temperature of copper ferrite on its crystalline phase formation and transformation, activity and metal ion leaching. The cubic-to-tetragonal transformation of the spinel occurred via its reaction with the CuO phase, displacing Fe 3+ ions in B (octahedral) sites out of the spinel structure by the following reaction: 2Fe 3+ B +3CuO→Fe 2 O 3 +3Cu 2+ B . The catalysts showed superparamagnetic or substantial superparamagnetic behaviour. At higher calcination temperatures, catalyst activity was lower, and Cu ion leaching was markedly decreased. There was no Fe ion leaching with any catalyst. The as-prepared catalyst showed better catalytic performance than a commercial copper ferrite. Leached Cu ions acted as homogeneous catalysts, and their contribution to the overall removal mechanism was examined. Cu 2 O present in the as-prepared catalysts made only a small contribution to their activity. Finally, the reutilization of various catalysts was studied by performing different catalytic cycles. Copyright © 2017 Elsevier Inc. All rights reserved.
Ahmad, A L; Mustafa, N N N
2006-09-15
The alumina ceramic membrane has been modified by the addition of palladium in order to improve the H(2) permeability and selectivity. Palladium-alumina ceramic membrane was prepared via a sol-gel method and subjected to thermal treatment in the temperature range 500-1100 degrees C. Fractal analysis from nitrogen adsorption isotherm is used to study the pore surface roughness of palladium-alumina ceramic membrane with different chemical composition (nitric acid, PVA and palladium) and calcinations process in terms of surface fractal dimension, D. Frenkel-Halsey-Hill (FHH) model was used to determine the D value of palladium-alumina membrane. Following FHH model, the D value of palladium-alumina membrane increased as the calcinations temperature increased from 500 to 700 degrees C but decreased after calcined at 900 and 1100 degrees C. With increasing palladium concentration from 0.5 g Pd/100 ml H(2)O to 2 g Pd/100 ml H(2)O, D value of membrane decreased, indicating to the smoother surface. Addition of higher amount of PVA and palladium reduced the surface fractal of the membrane due to the heterogeneous distribution of pores. However, the D value increased when nitric acid concentration was increased from 1 to 15 M. The effect of calcinations temperature, PVA ratio, palladium and acid concentration on membrane surface area, pore size and pore distribution also studied.
Potential use of chicken egg shells and cacao pod husk as catalyst for biodiesel production
NASA Astrophysics Data System (ADS)
Andherson, T.; Rachmat, D.; Risanti, Doty D.
2018-04-01
Chicken eggshells and cacao pod husk are known as waste materials that can be used to produce catalyst of CaO and K2CO3, respectively. Waste cooking oil (WCO) is an alternative raw material to produce economical and cheaper biodiesel. WCO first undergoes a pre-treatment process that aims to remove free fatty acid (FFA). Biodiesel was produced by transesterification between triglyceride and alcohol with the presence of a catalyst. To obtain the catalyst, eggshell was calcined in a furnace at temperatures of 600 °C, 700 °C, 800 °C, and 900 °C for 6 hours. On the other hand, K2CO3 catalyst synthesis was carried out by carbonization cacao pod husk at temperature of 650°C and subsequently extracted using aquadest solvent. Catalysts were then characterized by XRD and FTIR. The biodiesel synthesis in this research was conducted at 65°C with molar ratio of 1: 6 WCO to methanol, reaction time for 1 and 2 hours, for K2CO3 and CaO, respectively. The optimum condition for the reaction using CaO was obtained for CaO that carbonized at 900°C. It produced 81.43% conversion of biodiesel. On the other hand, reaction using K2CO3 could reach a higher conversion of 85%. From the results it was clear that the biodiesel fuel production was within the recommended SNI 7182: 2015 standard.
Reuse of aluminosilicate waste materials to synthesize geopolymer
NASA Astrophysics Data System (ADS)
Walmiki Samadhi, Tjokorde; Wibowo, Nanda Tri; Athaya, Hana
2017-08-01
Geopolymer, a solid alkali-aluminosilicate bonding phase produced by reactions between aluminosilicate solids and concentrated alkali solution, is a potential substitute for ordinary Portland cement (OPC). Geopolymer offers environmental advantages since it can be prepared from various inorganic waste materials, and that its synthesis may be undertaken in mild conditions. This research studies the mechanical and physical characteristics of three-component geopolymer mortars prepared from coal fly ash (FA), rice husk ash (RHA), and metakaolin or calcined kaolin (MK). The ternary aluminosilicate blend formulations are varied according to an extreme vertices mixture experimental design with the RHA content limited to 15% mass. Temperature for initial heat curing of the mortars is combined into the experimental design as a 2-level process variable (30 °C and 60 °C). Compressive strengths of the mortars are measured after setting periods of 7 and 14 d. Higher heat curing temperature increases the strength of the mortar. Compositional shift towards RHA from either MK or FA reduces the strength. The highest strength is exhibited by FA-dominated composition (15.1 MPa), surpassing that of OPC mortar. The compressive strengths at 7 and 14 d are represented by a linear mixture model with a synergistic interaction between FA content and heat curing temperature. Geopolymer with the highest strength contains only FA heat-cured at 60 °C. Further studies are needed to be undertaken to confirm the relationship between biomass ash amorphosity and oxide composition to its geopolymerization reactivity, and to optimize the curing conditions.
Johnson, B.M.
1963-08-20
A spray calcination reactor for calcining reprocessin- g waste solutions is described. Coaxial within the outer shell of the reactor is a shorter inner shell having heated walls and with open regions above and below. When the solution is sprayed into the irner shell droplets are entrained by a current of gas that moves downwardly within the inner shell and upwardly between it and the outer shell, and while thus being circulated the droplets are calcined to solids, whlch drop to the bottom without being deposited on the walls. (AEC) H03 H0233412 The average molecular weights of four diallyl phthalate polymer samples extruded from the experimental rheometer were redetermined using the vapor phase osmometer. An amine curing agent is required for obtaining suitable silver- filled epoxy-bonded conductive adhesives. When the curing agent was modified with a 47% polyurethane resin, its effectiveness was hampered. Neither silver nor nickel filler impart a high electrical conductivity to Adiprenebased adhesives. Silver filler was found to perform well in Dow-Corning A-4000 adhesive. Two cascaded hot-wire columns are being used to remove heavy gaseous impurities from methane. This purified gas is being enriched in the concentric tube unit to approximately 20% carbon-13. Studies to count low-level krypton-85 in xenon are continuing. The parameters of the counting technique are being determined. The bismuth isotopes produced in bismuth irradiated for polonium production are being determined. Preliminary data indicate the presence of bismuth207 and bismuth-210m. The light bismuth isotopes are probably produced by (n,xn) reactions bismuth-209. The separation of uranium-234 from plutonium-238 solutions was demonstrated. The bulk of the plutonium is removed by anion exchange, and the remainder is extracted from the uranium by solvent extraction techniques. About 99% of the plutonium can be removed in each thenoyltrifluoroacetone extraction. The viscosity, liquid density, and selfdiffusion coefficient for lanthanum, cerium, and praseodymium were determined. The investigation of phase relationships in the plutonium-cerium-copper ternary system was continued on samples containing a high concentration of copper. These analyses indicate that complete solid solution exists between the binary compounds CeCu/sub 2/ and PuCu/sub 2/, thus forming a quasi-binary system. The study of high temperature ceramic fuel materials has continued with the homogenization and microspheroidization of binary mixtures of plutonium dioxide and zirconium dioxide. Sintering a die-pressed pellet of the mixed powders for one hour at 1450 deg C was not sufficient to completely react the constituents. Complete homogenization was obtained when the pellet was melted in the plasma flame. In addition to the plutonium dioxide-zirconium dioxide microspheres, pure beryllium oxide microspheres were produced in the plasma torch. The electronic distribution functions for the 10% by weight PuO/sub 2/ dissolved in a silicate glass were determined. The plutonium-oxygen interaction at about 2.2A is less than the plutonium-oxygen distance for the 5% PuO/sub 2/. The decrease in the interionic distance is indicative of a stronger plutonium-oxygen association for the more concentrated composition. Potassium plutonium sulfate is being evaluated as a reagent to quantitatively separate plutonium from aqueous solutions. The compound containing two waters of hydration was prepared for thermogravimetric studies using analytically pure plutonium-239. Because of the stability of this compound, it is being evaluated as a calorimetric standard for plutonium-238. (auth)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yongchao; Wang, Shengping, E-mail: spwang@cug.edu.cn; Tao, Du
2015-09-15
Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}/C (LVP/C) composite materials were synthesized via a sol–gel method with oxalic acid as the chelating agent and polyethylene glycol (PEG) as the supplementary carbon source. The oxalic acid and PEG serve as double carbon sources. This study focused on the effect of different calcination temperatures on the electrochemical properties of Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}. The diffraction peaks for all of the samples are well indexed to monoclinic Li{sub 3}V{sub 2}(PO{sub 4}){sub 3} with a P2{sub 1}/n space group. The TGA data indicate that the residual carbon content of LVP/C-700 is the highest (i.e., 2.31more » wt.%), and as the calcination temperature increased, the residual carbon content of the material gradually decreased. SEM and TEM analyses indicated that the LVP particles that were calcined at 700 °C exhibit a uniform particle size distribution and the carbon coating exhibited a complete and orderly moderate thickness. The LVP/C-700 material exhibits the best electrochemical performance in the voltage range of 3.0 to 4.3 V and 0.1 C where the initial discharge capacity can reach 128.98 mAh g{sup −} {sup 1}. Even after 200 cycles, the discharge capacity was 119.31 mAh g{sup −} {sup 1}, and the capacity retention rate was 92.49%. - Highlights: • Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}/C composite materials have been synthesized via a sol–gel method with double carbon sources. • The different calcination temperatures affect the grain growth and crystallinity of the Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}/C materials. • The LVP/C-700 material exhibites the largest lithium ion diffusivity and electronic conductivity.« less
NASA Astrophysics Data System (ADS)
Mukhopadhyay, S. M.; Su, J.; Chintamaneni, V.
2007-10-01
Detailed investigation of superconducting films of YBa2Cu3O7-δ (YBCO) prepared from solution-based precursors have been performed. Two precursors have been compared in this study: the presently used trifluoroacetate (TFA) solution and a recently developed colloidal suspension containing nanoparticles of mixed oxide. Detailed analyses of the evolution of microstructure and chemistry of the films have been performed, and process parameters have been correlated with final superconducting properties. Both films need two heating steps: a low temperature calcination and a higher temperature crystallization step. For TFA films, it was seen that the heating rate during calcination needs to be carefully optimized and is expected to be slow. For the alternate process using a nanoparticle precursor, a significantly faster calcination rate is possible. In the TFA process, the Ba ion remains as fluoride and the Y remains as oxyfluoride after calcination. This implies that, during the final crystallization stage to form YBCO, fluorine-containing gases will evolve, resulting in residual porosity. On the other hand, the film from the nanoparticle process is almost fully oxidized after calcination. Therefore, no gases evolve at the final firing (crystallization) stage, and the film has much lower porosity. The superconducting properties of both types of films are adequate, but the nanoparticle films appear to have persistently higher J c values. Moreover, they show improved flux pinning in higher magnetic fields, probably due to nanoscale precipitates of a Cu-rich phase. In addition, the nanocolloid films seem to show additionally enhanced flux pinning when doped with minute amounts of second phase precipitates. It therefore appears that, whereas the TFA process is already quite successful, the newly developed nanoparticle process has significant scope for additional improvement. It can be scaled-up with ease, and can be easily adapted to incorporate nanoscale flux pinning defects for in-field performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu Shanshan; Jing Xiaoyan; Liu Jingyuan
2013-01-15
Porous sheet-like cobalt oxide (Co{sub 3}O{sub 4}) were successfully synthesized by precipitation method combined with calcination of cobalt hydroxide precursors. The structure, morphology and porosity properties of the products were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nitrogen adsorption-desorption measurement. The as-prepared sheet-like microstructures were approximately 2-3 {mu}m in average diameter, and the morphology of the cobalt hydroxide precursors was retained after the calcination process. However, it appeared a large number of uniform pores in the sheets after calcination. In order to calculate the potential catalytic activity, the thermal decomposition of ammoniummore » perchlorate (AP) has been analyzed, in which cobalt oxide played a role of an additive and the porous sheet-like Co{sub 3}O{sub 4} microstructures exhibited high catalytic performance and considerable decrease in the thermal decomposition temperature of AP. Moreover, a formation mechanism for the sheet-like microstructures has been discussed. - Graphical abstract: Porous sheet-like Co{sub 3}O{sub 4} were synthesized by facile precipitation method combined with calcination of {beta}-Co(OH){sub 2} precursors. Thermogravimetric-differential scanning calorimetric analysis indicates potential catalytic activity in the thermal decomposition of ammonium perchlorate. Highlights: Black-Right-Pointing-Pointer Synthesis of sheet-like {beta}-Co(OH){sub 2} precursors by precipitation method. Black-Right-Pointing-Pointer Porous sheet-like Co{sub 3}O{sub 4} were obtained by calcining {beta}-Co(OH){sub 2} precursors. Black-Right-Pointing-Pointer The possible formation mechanism of porous sheet-like Co{sub 3}O{sub 4} has been discussed. Black-Right-Pointing-Pointer Porous sheet-like Co{sub 3}O{sub 4} decrease the thermal decomposition temperature of ammonium perchlorate.« less
Agarose encapsulated mesoporous carbonated hydroxyapatite nanocomposites powder for drug delivery.
Kolanthai, Elayaraja; Abinaya Sindu, P; Thanigai Arul, K; Sarath Chandra, V; Manikandan, E; Narayana Kalkura, S
2017-01-01
The powder composites are predominantly used for filling of voids in bone and as drug delivery carrier to prevent the infection or inflammatory reaction in the damaged tissues. The objective of this work was to study the synthesis of agarose encapsulation on carbonated hydroxyapatite powder and their biological and drug delivery properties. Mesoporous, nanosized carbonated hydroxyapatite/agarose (CHAp/agarose) powder composites were prepared by solvothermal method and subsequently calcined to study the physico-chemical changes, if it subjected to thermal exposure. The phase of the as-synthesized powder was CHAp/agarose whereas the calcinated samples were non-stoichiometric HAp. The CHAp/agarose nanorods were of length 10-80nm and width 40-190nm for the samples synthesized at temperatures 120°C (ST120) and 150°C (ST150). The calcination process produced spheres (10-50nm) and rods with reduced size (40-120nm length and 20-30nm width). Composites were partially dissolved in SBF solution followed by exhibited better bioactivity than non-stoichiometric HAp confirmed by gravimetric method. Hemo and biocompatibility remained unaffected by presence of agarose or carbonate in the HAp. Specific surface area of the composites was high and exhibited an enhanced amoxicillin and 5-fluorouracil release than the calcined samples. The composites demonstrated a strong antimicrobial activity against E. coli, S. aureus and S. epidermidis. The ST120 showed prolonged drug (AMX and 5-Fcil) release and antimicrobial efficacy than ST150 and calcined samples. This technique would be simple and rapid for composites preparation, to produce high quality crystalline, resorbable, mesoporous and bioactive nanocomposite (CHAp/agarose) powders. This work provides new insight into the role of agarose coated on bioceramics by solvothermal technique and suggests that CHAp/agarose composites powders are promising materials for filling of void in bone and drug delivery applications. Copyright © 2016 Elsevier B.V. All rights reserved.
Trivedi, Suverna; Prasad, Ram
2018-03-01
Compressed natural gas (CNG) is most appropriate an alternative of conventional fuel for automobiles. However, emissions of carbon-monoxide and methane from such vehicles adversely affect human health and environment. Consequently, to abate emissions from CNG vehicles, development of highly efficient and inexpensive catalysts is necessary. Thus, the present work attempts to scan the effects of precipitants (Na 2 CO 3 , KOH and urea) for nickel cobaltite (NiCo 2 O 4 ) catalysts prepared by co-precipitation from nitrate solutions and calcined in a lean CO-air mixture at 400°C. The catalysts were used for oxidation of a mixture of CO and CH 4 (1:1). The catalysts were characterized by X-ray diffractometer, Brunauer-Emmett-Teller surface-area, X-ray photoelectron spectroscopy; temperature programmed reduction and Scanning electron microscopy coupled with Energy-Dispersive X-Ray Spectroscopy. The Na 2 CO 3 was adjudged as the best precipitant for production of catalyst, which completely oxidized CO-CH 4 mixture at the lowest temperature (T 100 =350°C). Whereas, for catalyst prepared using urea, T 100 =362°C. On the other hand the conversion of CO-CH 4 mixture over the catalyst synthesized by KOH limited to 97% even beyond 400°C. Further, the effect of higher calcination temperatures of 500 and 600°C was examined for the best catalyst. The total oxidation of the mixture was attained at higher temperatures of 375 and 410°C over catalysts calcined at 500 and 600°C respectively. Thus, the best precipitant established was Na 2 CO 3 and the optimum calcination temperature of 400°C was found to synthesize the NiCo 2 O 4 catalyst for the best performance in CO-CH 4 oxidation. Copyright © 2017. Published by Elsevier B.V.
Process for preparing fine grain silicon carbide powder
Wei, G.C.
Finely divided silicon carbide powder is obtained by mixing colloidal silica and unreacted phenolic resin in either acetone or methanol, evaporating solvent from the obtained solution to form a gel, drying and calcining the gel to polymerize the phenolic resin therein, pyrolyzing the dried and calcined gel at a temperature in the range of 500 to 1000/sup 0/C, and reacting silicon and carbon in the pyrolyzed gel at a temperature in the range of 1550 to 1700/sup 0/C to form the powder.
Processing Studies for Optically Transparent La(2)O(3)-Doped Y(2)O(3).
1986-07-31
sintering. EXPERIMENTAL PROCEDURE ’ "’ The control powder (A) used in this investigation was prepared by a standard oxalate coprecip- itation procedure...Possible sources of CO2 are the decomposition of any oxalate remaining after calcination and/or formation of ’.’ carbonates during exposure to air. The...all the volatiles are removed from oxalate -derived powders during calcining or prefiring to 15000C. C02 is the major species present and probably
Magnetic Carbon Microspheres as a Reusable Adsorbent for Sulfonamide Removal from Water
NASA Astrophysics Data System (ADS)
Dai, Kewei; Wang, Fenghe; Jiang, Wei; Chen, Yajun; Mao, Jing; Bao, Jian
2017-09-01
Novel reusable magnetic carbon microspheres (MCMs) were prepared by hydrothermal method with glucose as carbon source and Fe3O4 nanoparticles as magnetic raw materials. And adsorption performance of MCMs for sulfonamide removal from water was investigated in detail. The results indicated that the calcination temperature and calcination time had significant effects on the surface area and its volume porous of MCMs. When MCMs were calcined in 600 °C for 1 h, the surface area and volume porous of MCMs were 1228 m2/g and 0.448 m3/g, respectively. The adsorption results showed that the adsorption data fitted well with the Langmuir isotherm model and followed pseudo-second-order kinetics. When the pH value was changed from 4.0 to 10.0, the adsorption capacity of MCMs for sulfonamide was decreased from 24.6 to 19.2 mg/g. The adsorption capacity of as-synthesized MCMs achieved 18.31 mg/g after it was reused four times, which exhibited a desirable adsorption capacity and reusability.
Saravanan, Thulasingam; Raj, Srinivasan Gokul; Chandar, Nagamuthu Raja Krishna; Jayavel, Ramasamy
2015-06-01
Y2O3 nanoparticles were synthesized by co-precipitation route using yttrium nitrate hexahydrate and ammonium hydroxide as precursors. The prepared sample was calcined at 500 degrees C and subjected to various characterization studies like thermal analysis (TG/DTA), X-ray diffraction (XRD), transmission electron microscope (TEM), UV-visible (UV-Vis) and photoluminescence (PL) spectroscopy. The XRD pattern showed the cubic fluorite structure of Y2O3 without any impurity peaks, revealing high purity of the prepared sample. TEM images revealed that the calcined Y2O3 nanoparticles consist of spherical-like morphology with an average particle size of 12 nm. The absorption spectrum of calcined samples shows blue-shift compared to the as-prepared sample, which was further confirmed by PL studies. The possible formation mechanism of Y2O3 nanoparticles has been discussed based on the experimental results. Electrochemical behavior of Y2O3 nanoparticles was studied by cyclic voltammetry to assess their suitability for supercapacitor applications.
Effect of phase transformation on optical and dielectric properties of zirconium oxide nanoparticles
NASA Astrophysics Data System (ADS)
Chintaparty, Rajababu; Palagiri, Bhavani; Reddy Nagireddy, Ramamanohar; subbha Reddy Imma Reddy, Venkata
2015-09-01
Zirconium oxide nanoparticle (ZrO2) is synthesized by the hydrothermal method at different calcination temperatures. The structural analysis is carried out by X-ray diffraction and Raman spectra. The sample prepared at 400 °C and 1100 °C showed the cubic and monoclinic phase, respectively, and the sample calcined at 600 °C and 800 °C showed the mixed phase with co-existence of cubic and monoclinic phases. Furthermore, the morphology and particle size of these samples were investigated by scanning electron microscope (SEM) and transmission electron microscope (TEM) analysis. The band gap estimated from UV-Vis spectra of ZrO2 (zirconia) nanocrystalline materials calcined at different temperatures from 400 °C to 1100 °C was in the range of 2.6-4.2 eV. The frequency dependence of dielectric constant and dielectric loss was investigated at room temperature. The low frequency region of dielectric constant is attributed to space charge effects.
Biosynthesis of amorphous mesoporous aluminophosphates using yeast cells as templates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sifontes, Ángela B., E-mail: asifonte@ivic.gob.ve; González, Gema; Tovar, Leidy M.
2013-02-15
Graphical abstract: Display Omitted Highlights: ► Amorphous aluminophosphates can take place using yeast as template. ► A mesoporous material was obtained. ► The specific surface area after calcinations ranged between 176 and 214 m{sup 2} g{sup −1}. -- Abstract: In this study aluminophosphates have been synthesized from aluminum isopropoxide and phosphoric acid solutions using yeast cells as template. The physicochemical characterization was carried out by thermogravimetric analysis; X-ray diffraction; Fourier transform infrared; N{sub 2} adsorption–desorption isotherms; scanning electron microscopy; transmission electron microscopy and potentiometric titration with N-butylamine for determination of: thermal stability; crystalline structure; textural properties; morphology and surface acidity,more » respectively. The calcined powders consisted of an intimate mixture of amorphous and crystallized AlPO particles with sizes between 23 and 30 nm. The average pore size observed is 13–16 nm and the specific surface area after calcinations (at 650 °C) ranged between 176 and 214 m{sup 2} g{sup −1}.« less
NASA Astrophysics Data System (ADS)
Wu, Ming-Chung; Hsiao, Kai-Chi; Chang, Yin-Hsuan; Chan, Shun-Hsiang
2018-02-01
Black TiO2 nanoparticles (BTN) was prepared by sol-gel derived precursor calcined in an argon atmosphere. The synthesized BTN with trivalent titanium ion, structural defect, and oxygen vacancy shows a remarkably high absorbance in the visible light spectrum. BTN thus behaves a higher visible-active nanoreactor than white TiO2 nanoparticles (WTN) in the aqueous solution for organic pollutant degradation. Moreover, palladium decoration on the BTN surface (Pd-BTN) demonstrates a fascinating clean energy application. The obtained Pd-BTN fulfills a satisfied green material demand in the photocatalytic hydrogen production application. Pd-BTN calcined at 400 °C (Pd-BTN-400) shows the high photocatalytic hydrogen generation rate of 5200 μmol/g h under UV-A irradiation and 9300 μmol/g h under UV-B irradiation, respectively. The well-developed material, Pd-BTN-400, could be one of the best solutions in the concern of clean energy and water-purification with regard to the continuous environmental issue.
NASA Astrophysics Data System (ADS)
Cosano, Daniel; Esquinas, Carlos; Jiménez-Sanchidrián, César; Ruiz, José Rafael
2016-02-01
Calcining magnesium/aluminium layered double hydroxides (Mg/Al LDHs) at 450 °C provides excellent sorbents for removing cyanide from aqueous solutions. The process is based on the "memory effect" of LDHs; thus, rehydrating a calcined LDH in an aqueous solution restores its initial structure. The process, which conforms to a first-order kinetics, was examined by Raman spectroscopy. The metal ratio of the LDH was found to have a crucial influence on the adsorption capacity of the resulting mixed oxide. In this work, Raman spectroscopy was for the first time use to monitor the adsorption process. Based on the results, this technique is an effective, expeditious choice for the intended purpose and affords in situ monitoring of the adsorption process. The target solids were characterized by using various instrumental techniques including X-ray diffraction spectroscopy, which confirmed the layered structure of the LDHs and the periclase-like structure of the mixed oxides obtained by calcination.
Morphology and crystalline phase study of electrospun TiO2 SiO2 nanofibres
NASA Astrophysics Data System (ADS)
Ding, Bin; Kim, Hakyong; Kim, Chulki; Khil, Myungseob; Park, Soojin
2003-05-01
Nanofibres of TiO2-SiO2 (Ti:Si = 50: 50 mol%) with diameters of 50-400 nm were prepared by calcining electrospun nanofibres of polyvinyl acetate (PVac)/titania-silica composite as precursor. These PVac/titania-silica hybrid nanofibres were obtained from a homogenous solution of PVac with a sol-gel of titanium isopropoxide (TiP) and tetraethoxysilane by using the electrospinning technique. The nanofibres were characterized by scanning electron microscopy (SEM), wide-angle x-ray diffraction (WAXD), Fourier transform infrared (FTIR) spectroscopy and Brunauer-Emmett-Teller (BET) surface area. SEM, WAXD and FTIR results indicated that the morphology and crystalline phase of TiO2-SiO2 nanofibres were strongly influenced by the calcination temperature and the content of titania and silica in the nanofibres. Additionally, the BET results showed that the surface area of TiO2-SiO2 nanofibres was decreased with increasing calcination temperature and the content of titania and silica in nanofibres.
Calcined Mg-Fe layered double hydroxide as an absorber for the removal of methyl orange
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Chao; State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070; Dai, Jing
2015-05-15
In this work, methyl orange (MO) was effectively removed from aqueous solution with the calcined product of hydrothermal synthesized Mg/Fe layered double hydroxide (Mg/Fe-LDH). The structure, composition, morphology and textural properties of the Mg/Fe-LDH before and after adsorption were characterized by X-ray diffraction, Fourier transformation infrared spectroscopy, transmission electron microscopy, nitrogen adsorption apparatus and X-ray photoelectron spectroscopy. It was confirmed that MO had been absorbed by calcined Mg/Fe-LDH which had strong interactions with MO. The adsorption of MO onto the Mg/Fe-LDH was systematically investigated by batch tests. The adsorption capacity of the Mg/Fe-LDH toward MO was found to be 194.9more » mg • g{sup −1}. Adsorption kinetics and isotherm studies revealed that the adsorption of MO onto Mg/Fe-LDH was a spontaneous and endothermic process. These results indicate that Mg/Fe-LDH is a promising material for the removal of MO.« less
NASA Astrophysics Data System (ADS)
Ouyang, Xin; Huang, Saifang; Zhang, Weijun; Cao, Peng; Huang, Zhaohui; Gao, Wei
2014-03-01
In situ synchrotron X-ray powder diffraction was used to study the high-temperature phase evolution of CaCu3Ti4O12 (CCTO) precursors prepared via solid-state and sol-gel methods. After the precursors are heated to 1225 °C, the CCTO phase is the main phase observed in the calcined powder, with the presence of some minor impurities. Comparing the two precursors, we found that the onset temperature for the CCTO phase formation is 800 °C in the sol-gel precursor, lower than that in the solid-state precursor (875 °C). Intermediate phases were only observed in the sol-gel precursor. Both precursors are able to be calcined to sub-micrometric sized powders. Based on the synchrotron data along with differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA), the phase formation sequence and mechanism during calcination are proposed in this study.
Evaluation of calcination temperature and phase composition ratio for new hyroxyapatite
NASA Astrophysics Data System (ADS)
Salimi, M. N. Ahmad; Chin, H. S.
2017-10-01
The demand of production of hydroxyapatite (HA) has been increasing for the purpose of medical and dental application. HA possesses the excellent properties leads to the priority choice for ceramic bone replacement. Synthesis route by wet chemical precipitation is commonly practised in industrial scale. Calcium hydroxide and Orthophosphoric acid are the precursors for production scale. The synthesis of HA is conducted by varying the synthetic condition: stirring rate, calcium-phosphate and calcination temperature. This paper is focused on the properties of HA produced by regulating the synthetic condition so that the qualities of HA can be well performed. Characterization studies were also carried out by Fourier Transform Infrared Spectroscopy (FT-IR) for functional group identification, Scanning Electron Microscope (SEM) for surface morphology analysis and X-Ray Diffraction (XRD) for phase composition and crystallinity respectively. Narrow particle size distribution contributed to better quality of hydroxyapatite for bone replacement. Both calcium-phosphate ratio and calcination temperature would affect the phase composition of calcium phosphate.
Synthesis of CaCu3Ti4O12 by modified Sol-gel method with Hydrothermal process
NASA Astrophysics Data System (ADS)
Masingboon, C.; Rungruang, S.
2017-09-01
CaCu3Ti4O12 powders were synthesized by modified Sol-gel method with Hydrothermal process using Ca(NO3)2· 4H2O, Cu(NO3)2·3H2O, Ti(OC3H7)4 and freshly extracted egg white (ovalbumin) in aqueous medium. The precursor was calcined at 800, 900 and 1000 °C in air for 8 h to obtain nanocrystalline powders of CaCu3Ti4O12. The calcined CaCu3Ti4O12 powders were characterized by XRD, TEM and EDX. The XRD results indicated that all calcined samples have a typical perovskite CaCu3Ti4O12 structure and a small amount of CaTiO3, CuO and TiO2. TEM micrographs showed particle size 100 - 500 nm and EDX results showed elements of CaCu3Ti4O12 powders have calcium, copper, titanium and oxygen.
Park, Geon Woo; Jeon, Sang Kwon; Yang, Jin Yong; Choi, Sung Dae; Kim, Geon Joong
2016-05-01
RGO/Resol carbon composites were prepared from a mixture of reduced GO and a low-molecular-weight phenolic resin (Resol) solution. The effects of the calcination temperature, amount of Resol added and KOH treatment on the electrochemical performance of the RGO/Resol composites were investigated. The physical and electrochemical properties of the composite materials were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Brunauer, Emmett and Teller (BET) surface areas measurements, and cyclic voltammetry (CV). The relationships between their physical properties and their electrochemical performance were examined for use as super-capacitors (SCs). The RGO/Resol composite calcined at 400 degrees C after the KOH loading showed dramatically improved electrochemical properties, showing a high BET surface and capacitance of 2190 m2/g and 220 F/g, respectively. The RGO/Resol composites calcined after the KOH treatment showed much better capacitor performance than those treated only thermally at the same temperature without KOH impregnation. The fabrication of high surface electrodes was essential for improving the SCs properties.
NASA Astrophysics Data System (ADS)
Serletis, C.; Litsardakis, G.; Pavlidou, E.; Efthimiadis, K. G.
2017-11-01
In this work, using the chemical coprecipitation method, Sr1-xSmxFe12-xCoxO19 (x = 0, 0.1, 0.2) hexaferrite powders were prepared. Major magnetization loops were recorded at room temperature in order to determine the correct calcination temperature for optimum hard magnetic properties. It is found that a small degree of substitution increases substantially the coercive field. Also, the use of the molten flux calcination method increases the remanent magnetization. SEM/EDXS and XRD measurements were performed at the calcined powders: the results show that a single hexaferrite phase is formed and that the substituted powders consist of an assembly of grains with a mean diameter of 40 nm. Measurements of minor magnetization loops and of the temperature and time dependence of the magnetization confirm that the powders consist of a non-oriented single domain magnetic particles assembly. The results indicate that Sm could be a viable replacement for La in the manufacturing of hexaferrites with a high-energy product.
Synthesis and Study of Gel Calcined Cd-Sn Oxide Nanocomposites
NASA Astrophysics Data System (ADS)
De, Arijit; Kundu, Susmita
2016-07-01
Cd-Sn oxide nanocomposites were synthesized by sol-gel method from precursor sol containing Cd:Sn = 2:1 and 1:1 mol ratio. Instead of coprecipitation, a simple novel gel calcination route was followed. Cd (NO3)2. 4H2O and SnCl4. 5H2O were used as starting materials. Gel was calcined at 1050 °C for 2 h to obtain nanocomposites. XRD analysis reveals the presence of orthorhombic, cubic Cd2SnO4 along with orthorhombic, hexagonal CdSnO3 phases in both the composites. SEM and TEM studies indicate the development of nanocomposites of different shapes suggesting different degrees of polymerization in precursor sol of different composition. UV-Vis absorption spectra show a blue shift for both the composites compared to bulk values. Decrease of polarization with frequency, dipole contribution to the polarization, and more sensitivity to ethanol vapor were observed for the nanocomposite derived from precursor sol containing Cd:Sn = 2:1 mol ratio.
Synthesis of alumina ceramic encapsulation for self-healing materials on thermal barrier coating
NASA Astrophysics Data System (ADS)
Golim, O. P.; Prastomo, N.; Izzudin, H.; Hastuty, S.; Sundawa, R.; Sugiarti, E.; Thosin, K. A. Z.
2018-03-01
Durability of Thermal Barrier Coating or TBC can be optimized by inducing Self-Healing capabilities with intermetallic materials MoSi2. Nevertheless, high temperature operation causes the self-healing materials to become oxidized and lose its healing capabilities. Therefore, a method to introduce ceramic encapsulation for MoSi2 is needed to protect it from early oxidation. The encapsulation process is synthesized through a simple precipitation method with colloidal aluminum hydroxide as precursor and variations on calcination process. Semi-quantitative analysis on the synthesized sample is done by using X-ray diffraction (XRD) method. Meanwhile, qualitative analysis on the morphology of the encapsulation was carried out by using Scanning Electron Microscope (SEM) and Field Emission Scanning Electron Microscope (FESEM) equipped with dual Focus Ion Beam (FIB). The result of the experiment shows that calcination process significantly affects the final characteristic of encapsulation. The optimum encapsulation process was synthesized by colloidal aluminum hydroxide as a precursor, with a double step calcination process in low pressure until 900 °C.
Sankaranarayanan, Sivashunmugam; Antonyraj, Churchil A; Kannan, S
2012-04-01
Fatty acid methyl esters (FAME) were produced from edible, non-edible and used cooking oils with different fatty acid contents by transesterification with methanol using calcined layered double hydroxides (LDHs) as solid base catalysts. Among the catalysts, calcined CaAl2-LDH (hydrocalumite) showed the highest activity with >90% yield of FAME using low methanol:oil molar ratio (<6:1) at 65 °C in 5 h. The activity of the catalyst was attributed to its high basicity as supported by Hammett studies and CO(2)-TPD measurements. The catalyst was successfully reused in up to four cycles. Some of the properties such as density, viscosity, neutralization number and glycerol content of the obtained biodiesel matched well with the standard DIN values. It is concluded that a scalable heterogeneously catalyzed process for production of biodiesel in high yields from a wide variety of triglyceride oils including used oils is possible using optimized conditions. Copyright © 2012 Elsevier Ltd. All rights reserved.
Environmental geochemistry of abandoned mercury mines in West-Central Nevada, USA
Gray, J.E.; Crock, J.G.; Fey, D.L.
2002-01-01
The Humboldt River is a closed basin and is the longest river in Nevada. Numerous abandoned Hg mines are located within the basin, and because Hg is a toxic heavy metal, the potential transport of Hg from these mines into surrounding ecosystems, including the Humboldt River, is of environmental concern Samples of ore, sediment, water, calcines (roasted ore), and leachates of the calcines were analyzed for Hg and other heavy metals to evaluate geochemical dispersion from the mines. Cinnabar-bearing ore samples collected from the mines contain highly elevated Hg concentrations, up to 6.9 %, whereas calcines collected from the mines contain up to 2000 mg Hg/kg. Stream-sediment samples collected within 1 km of the mines contain as much as 170 mg Hg/kg, but those collected distal from the mines (> 5 km) contain 8 km from the Humboldt River, and Hg is transported and diluted through a large volume of pediment before it reaches the Humboldt River. ?? 2002 Elsevier Science Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Xu, Feiyan; Le, Yao; Cheng, Bei; Jiang, Chuanjia
2017-12-01
Catalytic oxidation at room temperature over well-designed catalysts is an environmentally friendly method for the abatement of indoor formaldehyde (HCHO) pollution. Herein, nanocomposites of platinum (Pt) and titanium dioxide (TiO2) nanofibers with various phase compositions were prepared by calcining the electrospun TiO2 precursors at different temperatures and subsequently depositing Pt nanoparticles (NPs) on the TiO2 through a NaBH4-reduction process. The phase compositions and structures of Pt/TiO2 can be easily controlled by varying the calcination temperature. The Pt/TiO2 nanocomposites showed a phase-dependent activity towards the catalytic HCHO oxidation. Pt/TiO2 containing pure rutile phase showed enhanced activity with a turnover frequency (TOF) of 16.6 min-1 (for a calcination temperature of 800 °C) as compared to those containing the anatase phase or mixed phases. Density functional theory calculation shows that TiO2 nanofibers with pure rutile phase have stronger adsorption ability to Pt atoms than anatase phase, which favors the reduction of Pt over rutile phase TiO2, leading to higher contents of metallic Pt in the nanocomposite. In addition, the Pt/TiO2 with rutile phase possesses more abundant oxygen vacancies, which is conducive to the activation of adsorbed oxygen. Consequently, the Pt/rutile-TiO2 nanocomposite exhibited better catalytic activity towards HCHO oxidation at room temperature.