Sample records for integer programming-based multi-category

  1. An Integer Programming Model for Multi-Echelon Supply Chain Decision Problem Considering Inventories

    NASA Astrophysics Data System (ADS)

    Harahap, Amin; Mawengkang, Herman; Siswadi; Effendi, Syahril

    2018-01-01

    In this paper we address a problem that is of significance to the industry, namely the optimal decision of a multi-echelon supply chain and the associated inventory systems. By using the guaranteed service approach to model the multi-echelon inventory system, we develop a mixed integer; programming model to simultaneously optimize the transportation, inventory and network structure of a multi-echelon supply chain. To solve the model we develop a direct search approach using a strategy of releasing nonbasic variables from their bounds, combined with the “active constraint” method. This strategy is used to force the appropriate non-integer basic variables to move to their neighbourhood integer points.

  2. Integer Linear Programming for Constrained Multi-Aspect Committee Review Assignment

    PubMed Central

    Karimzadehgan, Maryam; Zhai, ChengXiang

    2011-01-01

    Automatic review assignment can significantly improve the productivity of many people such as conference organizers, journal editors and grant administrators. A general setup of the review assignment problem involves assigning a set of reviewers on a committee to a set of documents to be reviewed under the constraint of review quota so that the reviewers assigned to a document can collectively cover multiple topic aspects of the document. No previous work has addressed such a setup of committee review assignments while also considering matching multiple aspects of topics and expertise. In this paper, we tackle the problem of committee review assignment with multi-aspect expertise matching by casting it as an integer linear programming problem. The proposed algorithm can naturally accommodate any probabilistic or deterministic method for modeling multiple aspects to automate committee review assignments. Evaluation using a multi-aspect review assignment test set constructed using ACM SIGIR publications shows that the proposed algorithm is effective and efficient for committee review assignments based on multi-aspect expertise matching. PMID:22711970

  3. Integer programming applications: Bond trading, mortgage backed security financing, and FASB 115 accounting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nauss, R.

    1994-12-31

    In this review we describe three integer programming applications involving fixed income securities. A bond trading model is presented that features a number of possible different objectives and collections of constraints including future interest rate scenarios. A mortgage backed security (MBS) financing model that accounts for potential defaults in the MBS is also presented. Finally we describe an approach to allocate collections of bank securities into three categories: hold to maturity, available for sale, or trading. Placement of securities in these categories affects the capital, net income, and liquidity of a bank according to new accounting rules promulgated by themore » Financial Accounting Standards Board.« less

  4. Mixed Integer Programming Model and Incremental Optimization for Delivery and Storage Planning Using Truck Terminals

    NASA Astrophysics Data System (ADS)

    Sakakibara, Kazutoshi; Tian, Yajie; Nishikawa, Ikuko

    We discuss the planning of transportation by trucks over a multi-day period. Each truck collects loads from suppliers and delivers them to assembly plants or a truck terminal. By exploiting the truck terminal as a temporal storage, we aim to increase the load ratio of each truck and to minimize the lead time for transportation. In this paper, we show a mixed integer programming model which represents each product explicitly, and discuss the decomposition of the problem into a problem of delivery and storage, and a problem of vehicle routing. Based on this model, we propose a relax-and-fix type heuristic in which decision variables are fixed one by one by mathematical programming techniques such as branch-and-bound methods.

  5. Multi-task feature selection in microarray data by binary integer programming.

    PubMed

    Lan, Liang; Vucetic, Slobodan

    2013-12-20

    A major challenge in microarray classification is that the number of features is typically orders of magnitude larger than the number of examples. In this paper, we propose a novel feature filter algorithm to select the feature subset with maximal discriminative power and minimal redundancy by solving a quadratic objective function with binary integer constraints. To improve the computational efficiency, the binary integer constraints are relaxed and a low-rank approximation to the quadratic term is applied. The proposed feature selection algorithm was extended to solve multi-task microarray classification problems. We compared the single-task version of the proposed feature selection algorithm with 9 existing feature selection methods on 4 benchmark microarray data sets. The empirical results show that the proposed method achieved the most accurate predictions overall. We also evaluated the multi-task version of the proposed algorithm on 8 multi-task microarray datasets. The multi-task feature selection algorithm resulted in significantly higher accuracy than when using the single-task feature selection methods.

  6. A robust multi-objective global supplier selection model under currency fluctuation and price discount

    NASA Astrophysics Data System (ADS)

    Zarindast, Atousa; Seyed Hosseini, Seyed Mohamad; Pishvaee, Mir Saman

    2017-06-01

    Robust supplier selection problem, in a scenario-based approach has been proposed, when the demand and exchange rates are subject to uncertainties. First, a deterministic multi-objective mixed integer linear programming is developed; then, the robust counterpart of the proposed mixed integer linear programming is presented using the recent extension in robust optimization theory. We discuss decision variables, respectively, by a two-stage stochastic planning model, a robust stochastic optimization planning model which integrates worst case scenario in modeling approach and finally by equivalent deterministic planning model. The experimental study is carried out to compare the performances of the three models. Robust model resulted in remarkable cost saving and it illustrated that to cope with such uncertainties, we should consider them in advance in our planning. In our case study different supplier were selected due to this uncertainties and since supplier selection is a strategic decision, it is crucial to consider these uncertainties in planning approach.

  7. Inexact fuzzy-stochastic mixed-integer programming approach for long-term planning of waste management--Part A: methodology.

    PubMed

    Guo, P; Huang, G H

    2009-01-01

    In this study, an inexact fuzzy chance-constrained two-stage mixed-integer linear programming (IFCTIP) approach is proposed for supporting long-term planning of waste-management systems under multiple uncertainties in the City of Regina, Canada. The method improves upon the existing inexact two-stage programming and mixed-integer linear programming techniques by incorporating uncertainties expressed as multiple uncertainties of intervals and dual probability distributions within a general optimization framework. The developed method can provide an effective linkage between the predefined environmental policies and the associated economic implications. Four special characteristics of the proposed method make it unique compared with other optimization techniques that deal with uncertainties. Firstly, it provides a linkage to predefined policies that have to be respected when a modeling effort is undertaken; secondly, it is useful for tackling uncertainties presented as intervals, probabilities, fuzzy sets and their incorporation; thirdly, it facilitates dynamic analysis for decisions of facility-expansion planning and waste-flow allocation within a multi-facility, multi-period, multi-level, and multi-option context; fourthly, the penalties are exercised with recourse against any infeasibility, which permits in-depth analyses of various policy scenarios that are associated with different levels of economic consequences when the promised solid waste-generation rates are violated. In a companion paper, the developed method is applied to a real case for the long-term planning of waste management in the City of Regina, Canada.

  8. A Mixed Integer Linear Programming Approach to Electrical Stimulation Optimization Problems.

    PubMed

    Abouelseoud, Gehan; Abouelseoud, Yasmine; Shoukry, Amin; Ismail, Nour; Mekky, Jaidaa

    2018-02-01

    Electrical stimulation optimization is a challenging problem. Even when a single region is targeted for excitation, the problem remains a constrained multi-objective optimization problem. The constrained nature of the problem results from safety concerns while its multi-objectives originate from the requirement that non-targeted regions should remain unaffected. In this paper, we propose a mixed integer linear programming formulation that can successfully address the challenges facing this problem. Moreover, the proposed framework can conclusively check the feasibility of the stimulation goals. This helps researchers to avoid wasting time trying to achieve goals that are impossible under a chosen stimulation setup. The superiority of the proposed framework over alternative methods is demonstrated through simulation examples.

  9. On unified modeling, theory, and method for solving multi-scale global optimization problems

    NASA Astrophysics Data System (ADS)

    Gao, David Yang

    2016-10-01

    A unified model is proposed for general optimization problems in multi-scale complex systems. Based on this model and necessary assumptions in physics, the canonical duality theory is presented in a precise way to include traditional duality theories and popular methods as special applications. Two conjectures on NP-hardness are proposed, which should play important roles for correctly understanding and efficiently solving challenging real-world problems. Applications are illustrated for both nonconvex continuous optimization and mixed integer nonlinear programming.

  10. A multistage stochastic programming model for a multi-period strategic expansion of biofuel supply chain under evolving uncertainties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Fei; Huang, Yongxi

    Here, we develop a multistage, stochastic mixed-integer model to support biofuel supply chain expansion under evolving uncertainties. By utilizing the block-separable recourse property, we reformulate the multistage program in an equivalent two-stage program and solve it using an enhanced nested decomposition method with maximal non-dominated cuts. We conduct extensive numerical experiments and demonstrate the application of the model and algorithm in a case study based on the South Carolina settings. The value of multistage stochastic programming method is also explored by comparing the model solution with the counterparts of an expected value based deterministic model and a two-stage stochastic model.

  11. A multistage stochastic programming model for a multi-period strategic expansion of biofuel supply chain under evolving uncertainties

    DOE PAGES

    Xie, Fei; Huang, Yongxi

    2018-02-04

    Here, we develop a multistage, stochastic mixed-integer model to support biofuel supply chain expansion under evolving uncertainties. By utilizing the block-separable recourse property, we reformulate the multistage program in an equivalent two-stage program and solve it using an enhanced nested decomposition method with maximal non-dominated cuts. We conduct extensive numerical experiments and demonstrate the application of the model and algorithm in a case study based on the South Carolina settings. The value of multistage stochastic programming method is also explored by comparing the model solution with the counterparts of an expected value based deterministic model and a two-stage stochastic model.

  12. Multipoint to multipoint routing and wavelength assignment in multi-domain optical networks

    NASA Astrophysics Data System (ADS)

    Qin, Panke; Wu, Jingru; Li, Xudong; Tang, Yongli

    2018-01-01

    In multi-point to multi-point (MP2MP) routing and wavelength assignment (RWA) problems, researchers usually assume the optical networks to be a single domain. However, the optical networks develop toward to multi-domain and larger scale in practice. In this context, multi-core shared tree (MST)-based MP2MP RWA are introduced problems including optimal multicast domain sequence selection, core nodes belonging in which domains and so on. In this letter, we focus on MST-based MP2MP RWA problems in multi-domain optical networks, mixed integer linear programming (MILP) formulations to optimally construct MP2MP multicast trees is presented. A heuristic algorithm base on network virtualization and weighted clustering algorithm (NV-WCA) is proposed. Simulation results show that, under different traffic patterns, the proposed algorithm achieves significant improvement on network resources occupation and multicast trees setup latency in contrast with the conventional algorithms which were proposed base on a single domain network environment.

  13. BBPH: Using progressive hedging within branch and bound to solve multi-stage stochastic mixed integer programs

    DOE PAGES

    Barnett, Jason; Watson, Jean -Paul; Woodruff, David L.

    2016-11-27

    Progressive hedging, though an effective heuristic for solving stochastic mixed integer programs (SMIPs), is not guaranteed to converge in this case. Here, we describe BBPH, a branch and bound algorithm that uses PH at each node in the search tree such that, given sufficient time, it will always converge to a globally optimal solution. Additionally, to providing a theoretically convergent “wrapper” for PH applied to SMIPs, computational results demonstrate that for some difficult problem instances branch and bound can find improved solutions after exploring only a few nodes.

  14. IESIP - AN IMPROVED EXPLORATORY SEARCH TECHNIQUE FOR PURE INTEGER LINEAR PROGRAMMING PROBLEMS

    NASA Technical Reports Server (NTRS)

    Fogle, F. R.

    1994-01-01

    IESIP, an Improved Exploratory Search Technique for Pure Integer Linear Programming Problems, addresses the problem of optimizing an objective function of one or more variables subject to a set of confining functions or constraints by a method called discrete optimization or integer programming. Integer programming is based on a specific form of the general linear programming problem in which all variables in the objective function and all variables in the constraints are integers. While more difficult, integer programming is required for accuracy when modeling systems with small numbers of components such as the distribution of goods, machine scheduling, and production scheduling. IESIP establishes a new methodology for solving pure integer programming problems by utilizing a modified version of the univariate exploratory move developed by Robert Hooke and T.A. Jeeves. IESIP also takes some of its technique from the greedy procedure and the idea of unit neighborhoods. A rounding scheme uses the continuous solution found by traditional methods (simplex or other suitable technique) and creates a feasible integer starting point. The Hook and Jeeves exploratory search is modified to accommodate integers and constraints and is then employed to determine an optimal integer solution from the feasible starting solution. The user-friendly IESIP allows for rapid solution of problems up to 10 variables in size (limited by DOS allocation). Sample problems compare IESIP solutions with the traditional branch-and-bound approach. IESIP is written in Borland's TURBO Pascal for IBM PC series computers and compatibles running DOS. Source code and an executable are provided. The main memory requirement for execution is 25K. This program is available on a 5.25 inch 360K MS DOS format diskette. IESIP was developed in 1990. IBM is a trademark of International Business Machines. TURBO Pascal is registered by Borland International.

  15. Obtaining lower bounds from the progressive hedging algorithm for stochastic mixed-integer programs

    DOE PAGES

    Gade, Dinakar; Hackebeil, Gabriel; Ryan, Sarah M.; ...

    2016-04-02

    We present a method for computing lower bounds in the progressive hedging algorithm (PHA) for two-stage and multi-stage stochastic mixed-integer programs. Computing lower bounds in the PHA allows one to assess the quality of the solutions generated by the algorithm contemporaneously. The lower bounds can be computed in any iteration of the algorithm by using dual prices that are calculated during execution of the standard PHA. In conclusion, we report computational results on stochastic unit commitment and stochastic server location problem instances, and explore the relationship between key PHA parameters and the quality of the resulting lower bounds.

  16. A multi-objective optimization model for hub network design under uncertainty: An inexact rough-interval fuzzy approach

    NASA Astrophysics Data System (ADS)

    Niakan, F.; Vahdani, B.; Mohammadi, M.

    2015-12-01

    This article proposes a multi-objective mixed-integer model to optimize the location of hubs within a hub network design problem under uncertainty. The considered objectives include minimizing the maximum accumulated travel time, minimizing the total costs including transportation, fuel consumption and greenhouse emissions costs, and finally maximizing the minimum service reliability. In the proposed model, it is assumed that for connecting two nodes, there are several types of arc in which their capacity, transportation mode, travel time, and transportation and construction costs are different. Moreover, in this model, determining the capacity of the hubs is part of the decision-making procedure and balancing requirements are imposed on the network. To solve the model, a hybrid solution approach is utilized based on inexact programming, interval-valued fuzzy programming and rough interval programming. Furthermore, a hybrid multi-objective metaheuristic algorithm, namely multi-objective invasive weed optimization (MOIWO), is developed for the given problem. Finally, various computational experiments are carried out to assess the proposed model and solution approaches.

  17. Multi-Objective Programming for Lot-Sizing with Quantity Discount

    NASA Astrophysics Data System (ADS)

    Kang, He-Yau; Lee, Amy H. I.; Lai, Chun-Mei; Kang, Mei-Sung

    2011-11-01

    Multi-objective programming (MOP) is one of the popular methods for decision making in a complex environment. In a MOP, decision makers try to optimize two or more objectives simultaneously under various constraints. A complete optimal solution seldom exists, and a Pareto-optimal solution is usually used. Some methods, such as the weighting method which assigns priorities to the objectives and sets aspiration levels for the objectives, are used to derive a compromise solution. The ɛ-constraint method is a modified weight method. One of the objective functions is optimized while the other objective functions are treated as constraints and are incorporated in the constraint part of the model. This research considers a stochastic lot-sizing problem with multi-suppliers and quantity discounts. The model is transformed into a mixed integer programming (MIP) model next based on the ɛ-constraint method. An illustrative example is used to illustrate the practicality of the proposed model. The results demonstrate that the model is an effective and accurate tool for determining the replenishment of a manufacturer from multiple suppliers for multi-periods.

  18. A mixed integer bi-level DEA model for bank branch performance evaluation by Stackelberg approach

    NASA Astrophysics Data System (ADS)

    Shafiee, Morteza; Lotfi, Farhad Hosseinzadeh; Saleh, Hilda; Ghaderi, Mehdi

    2016-03-01

    One of the most complicated decision making problems for managers is the evaluation of bank performance, which involves various criteria. There are many studies about bank efficiency evaluation by network DEA in the literature review. These studies do not focus on multi-level network. Wu (Eur J Oper Res 207:856-864, 2010) proposed a bi-level structure for cost efficiency at the first time. In this model, multi-level programming and cost efficiency were used. He used a nonlinear programming to solve the model. In this paper, we have focused on multi-level structure and proposed a bi-level DEA model. We then used a liner programming to solve our model. In other hand, we significantly improved the way to achieve the optimum solution in comparison with the work by Wu (2010) by converting the NP-hard nonlinear programing into a mixed integer linear programming. This study uses a bi-level programming data envelopment analysis model that embodies internal structure with Stackelberg-game relationships to evaluate the performance of banking chain. The perspective of decentralized decisions is taken in this paper to cope with complex interactions in banking chain. The results derived from bi-level programming DEA can provide valuable insights and detailed information for managers to help them evaluate the performance of the banking chain as a whole using Stackelberg-game relationships. Finally, this model was applied in the Iranian bank to evaluate cost efficiency.

  19. A logic-based method for integer programming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hooker, J.; Natraj, N.R.

    1994-12-31

    We propose a logic-based approach to integer programming that replaces traditional branch-and-cut techniques with logical analogs. Integer variables are regarded as atomic propositions. The constraints give rise to logical formulas that are analogous to separating cuts. No continuous relaxation is used. Rather, the cuts are selected so that they can be easily solved as a discrete relaxation. (In fact, defining a relaxation and generating cuts are best seen as the same problem.) We experiment with relaxations that have a k-tree structure and can be solved by nonserial dynamic programming. We also present logic-based analogs of facet-defining cuts, Chv{acute a}tal rank,more » etc. We conclude with some preliminary computational results.« less

  20. Pricing and location decisions in multi-objective facility location problem with M/M/m/k queuing systems

    NASA Astrophysics Data System (ADS)

    Tavakkoli-Moghaddam, Reza; Vazifeh-Noshafagh, Samira; Taleizadeh, Ata Allah; Hajipour, Vahid; Mahmoudi, Amin

    2017-01-01

    This article presents a new multi-objective model for a facility location problem with congestion and pricing policies. This model considers situations in which immobile service facilities are congested by a stochastic demand following M/M/m/k queues. The presented model belongs to the class of mixed-integer nonlinear programming models and NP-hard problems. To solve such a hard model, a new multi-objective optimization algorithm based on a vibration theory, namely multi-objective vibration damping optimization (MOVDO), is developed. In order to tune the algorithms parameters, the Taguchi approach using a response metric is implemented. The computational results are compared with those of the non-dominated ranking genetic algorithm and non-dominated sorting genetic algorithm. The outputs demonstrate the robustness of the proposed MOVDO in large-sized problems.

  1. A hybrid solution approach for a multi-objective closed-loop logistics network under uncertainty

    NASA Astrophysics Data System (ADS)

    Mehrbod, Mehrdad; Tu, Nan; Miao, Lixin

    2015-06-01

    The design of closed-loop logistics (forward and reverse logistics) has attracted growing attention with the stringent pressures of customer expectations, environmental concerns and economic factors. This paper considers a multi-product, multi-period and multi-objective closed-loop logistics network model with regard to facility expansion as a facility location-allocation problem, which more closely approximates real-world conditions. A multi-objective mixed integer nonlinear programming formulation is linearized by defining new variables and adding new constraints to the model. By considering the aforementioned model under uncertainty, this paper develops a hybrid solution approach by combining an interactive fuzzy goal programming approach and robust counterpart optimization based on three well-known robust counterpart optimization formulations. Finally, this paper compares the results of the three formulations using different test scenarios and parameter-sensitive analysis in terms of the quality of the final solution, CPU time, the level of conservatism, the degree of closeness to the ideal solution, the degree of balance involved in developing a compromise solution, and satisfaction degree.

  2. Performance Analysis of Stop-Skipping Scheduling Plans in Rail Transit under Time-Dependent Demand

    PubMed Central

    Cao, Zhichao; Yuan, Zhenzhou; Zhang, Silin

    2016-01-01

    Stop-skipping is a key method for alleviating congestion in rail transit, where schedules are sometimes difficult to implement. Several mechanisms have been proposed and analyzed in the literature, but very few performance comparisons are available. This study formulated train choice behavior estimation into the model considering passengers’ perception. If a passenger’s train path can be identified, this information would be useful for improving the stop-skipping schedule service. Multi-performance is a key characteristic of our proposed five stop-skipping schedules, but quantified analysis can be used to illustrate the different effects of well-known deterministic and stochastic forms. Problems in the novel category of forms were justified in the context of a single line rather than transit network. We analyzed four deterministic forms based on the well-known A/B stop-skipping operating strategy. A stochastic form was innovatively modeled as a binary integer programming problem. We present a performance analysis of our proposed model to demonstrate that stop-skipping can feasibly be used to improve the service of passengers and enhance the elasticity of train operations under demand variations along with an explicit parametric discussion. PMID:27420087

  3. Performance Analysis of Stop-Skipping Scheduling Plans in Rail Transit under Time-Dependent Demand.

    PubMed

    Cao, Zhichao; Yuan, Zhenzhou; Zhang, Silin

    2016-07-13

    Stop-skipping is a key method for alleviating congestion in rail transit, where schedules are sometimes difficult to implement. Several mechanisms have been proposed and analyzed in the literature, but very few performance comparisons are available. This study formulated train choice behavior estimation into the model considering passengers' perception. If a passenger's train path can be identified, this information would be useful for improving the stop-skipping schedule service. Multi-performance is a key characteristic of our proposed five stop-skipping schedules, but quantified analysis can be used to illustrate the different effects of well-known deterministic and stochastic forms. Problems in the novel category of forms were justified in the context of a single line rather than transit network. We analyzed four deterministic forms based on the well-known A/B stop-skipping operating strategy. A stochastic form was innovatively modeled as a binary integer programming problem. We present a performance analysis of our proposed model to demonstrate that stop-skipping can feasibly be used to improve the service of passengers and enhance the elasticity of train operations under demand variations along with an explicit parametric discussion.

  4. A Mixed Integer Linear Program for Solving a Multiple Route Taxi Scheduling Problem

    NASA Technical Reports Server (NTRS)

    Montoya, Justin Vincent; Wood, Zachary Paul; Rathinam, Sivakumar; Malik, Waqar Ahmad

    2010-01-01

    Aircraft movements on taxiways at busy airports often create bottlenecks. This paper introduces a mixed integer linear program to solve a Multiple Route Aircraft Taxi Scheduling Problem. The outputs of the model are in the form of optimal taxi schedules, which include routing decisions for taxiing aircraft. The model extends an existing single route formulation to include routing decisions. An efficient comparison framework compares the multi-route formulation and the single route formulation. The multi-route model is exercised for east side airport surface traffic at Dallas/Fort Worth International Airport to determine if any arrival taxi time savings can be achieved by allowing arrivals to have two taxi routes: a route that crosses an active departure runway and a perimeter route that avoids the crossing. Results indicate that the multi-route formulation yields reduced arrival taxi times over the single route formulation only when a perimeter taxiway is used. In conditions where the departure aircraft are given an optimal and fixed takeoff sequence, accumulative arrival taxi time savings in the multi-route formulation can be as high as 3.6 hours more than the single route formulation. If the departure sequence is not optimal, the multi-route formulation results in less taxi time savings made over the single route formulation, but the average arrival taxi time is significantly decreased.

  5. Multi-vehicle mobility allowance shuttle transit (MAST) system : an analytical model to select the fleet size and a scheduling heuristic.

    DOT National Transportation Integrated Search

    2012-06-01

    The mobility allowance shuttle transit (MAST) system is a hybrid transit system in which vehicles are : allowed to deviate from a fixed route to serve flexible demand. A mixed integer programming (MIP) : formulation for the static scheduling problem ...

  6. Optimizing Multi-Product Multi-Constraint Inventory Control Systems with Stochastic Replenishments

    NASA Astrophysics Data System (ADS)

    Allah Taleizadeh, Ata; Aryanezhad, Mir-Bahador; Niaki, Seyed Taghi Akhavan

    Multi-periodic inventory control problems are mainly studied employing two assumptions. The first is the continuous review, where depending on the inventory level orders can happen at any time and the other is the periodic review, where orders can only happen at the beginning of each period. In this study, we relax these assumptions and assume that the periodic replenishments are stochastic in nature. Furthermore, we assume that the periods between two replenishments are independent and identically random variables. For the problem at hand, the decision variables are of integer-type and there are two kinds of space and service level constraints for each product. We develop a model of the problem in which a combination of back-order and lost-sales are considered for the shortages. Then, we show that the model is of an integer-nonlinear-programming type and in order to solve it, a search algorithm can be utilized. We employ a simulated annealing approach and provide a numerical example to demonstrate the applicability of the proposed methodology.

  7. Conjunctive management of multi-reservoir network system and groundwater system

    NASA Astrophysics Data System (ADS)

    Mani, A.; Tsai, F. T. C.

    2015-12-01

    This study develops a successive mixed-integer linear fractional programming (successive MILFP) method to conjunctively manage water resources provided by a multi-reservoir network system and a groundwater system. The conjunctive management objectives are to maximize groundwater withdrawals and maximize reservoir storages while satisfying water demands and raising groundwater level to a target level. The decision variables in the management problem are reservoir releases and spills, network flows and groundwater pumping rates. Using the fractional programming approach, the objective function is defined as a ratio of total groundwater withdraws to total reservoir storage deficits from the maximum storages. Maximizing this ratio function tends to maximizing groundwater use and minimizing surface water use. This study introduces a conditional constraint on groundwater head in order to sustain aquifers from overpumping: if current groundwater level is less than a target level, groundwater head at the next time period has to be raised; otherwise, it is allowed to decrease up to a certain extent. This conditional constraint is formulated into a set of mixed binary nonlinear constraints and results in a mixed-integer nonlinear fractional programming (MINLFP) problem. To solve the MINLFP problem, we first use the response matrix approach to linearize groundwater head with respect to pumping rate and reduce the problem to an MILFP problem. Using the Charnes-Cooper transformation, the MILFP is transformed to an equivalent mixed-integer linear programming (MILP). The solution of the MILP is successively updated by updating the response matrix in every iteration. The study uses IBM CPLEX to solve the MILP problem. The methodology is applied to water resources management in northern Louisiana. This conjunctive management approach aims to recover the declining groundwater level of the stressed Sparta aquifer by using surface water from a network of four reservoirs as an alternative source of supply.

  8. Solving Integer Programs from Dependence and Synchronization Problems

    DTIC Science & Technology

    1993-03-01

    DEFF.NSNE Solving Integer Programs from Dependence and Synchronization Problems Jaspal Subhlok March 1993 CMU-CS-93-130 School of Computer ScienceT IC...method Is an exact and efficient way of solving integer programming problems arising in dependence and synchronization analysis of parallel programs...7/;- p Keywords: Exact dependence tesing, integer programming. parallelilzng compilers, parallel program analysis, synchronization analysis Solving

  9. Interval-parameter semi-infinite fuzzy-stochastic mixed-integer programming approach for environmental management under multiple uncertainties.

    PubMed

    Guo, P; Huang, G H

    2010-03-01

    In this study, an interval-parameter semi-infinite fuzzy-chance-constrained mixed-integer linear programming (ISIFCIP) approach is developed for supporting long-term planning of waste-management systems under multiple uncertainties in the City of Regina, Canada. The method improves upon the existing interval-parameter semi-infinite programming (ISIP) and fuzzy-chance-constrained programming (FCCP) by incorporating uncertainties expressed as dual uncertainties of functional intervals and multiple uncertainties of distributions with fuzzy-interval admissible probability of violating constraint within a general optimization framework. The binary-variable solutions represent the decisions of waste-management-facility expansion, and the continuous ones are related to decisions of waste-flow allocation. The interval solutions can help decision-makers to obtain multiple decision alternatives, as well as provide bases for further analyses of tradeoffs between waste-management cost and system-failure risk. In the application to the City of Regina, Canada, two scenarios are considered. In Scenario 1, the City's waste-management practices would be based on the existing policy over the next 25 years. The total diversion rate for the residential waste would be approximately 14%. Scenario 2 is associated with a policy for waste minimization and diversion, where 35% diversion of residential waste should be achieved within 15 years, and 50% diversion over 25 years. In this scenario, not only landfill would be expanded, but also CF and MRF would be expanded. Through the scenario analyses, useful decision support for the City's solid-waste managers and decision-makers has been generated. Three special characteristics of the proposed method make it unique compared with other optimization techniques that deal with uncertainties. Firstly, it is useful for tackling multiple uncertainties expressed as intervals, functional intervals, probability distributions, fuzzy sets, and their combinations; secondly, it has capability in addressing the temporal variations of the functional intervals; thirdly, it can facilitate dynamic analysis for decisions of facility-expansion planning and waste-flow allocation within a multi-facility, multi-period and multi-option context. Copyright 2009 Elsevier Ltd. All rights reserved.

  10. Bi-objective integer programming for RNA secondary structure prediction with pseudoknots.

    PubMed

    Legendre, Audrey; Angel, Eric; Tahi, Fariza

    2018-01-15

    RNA structure prediction is an important field in bioinformatics, and numerous methods and tools have been proposed. Pseudoknots are specific motifs of RNA secondary structures that are difficult to predict. Almost all existing methods are based on a single model and return one solution, often missing the real structure. An alternative approach would be to combine different models and return a (small) set of solutions, maximizing its quality and diversity in order to increase the probability that it contains the real structure. We propose here an original method for predicting RNA secondary structures with pseudoknots, based on integer programming. We developed a generic bi-objective integer programming algorithm allowing to return optimal and sub-optimal solutions optimizing simultaneously two models. This algorithm was then applied to the combination of two known models of RNA secondary structure prediction, namely MEA and MFE. The resulting tool, called BiokoP, is compared with the other methods in the literature. The results show that the best solution (structure with the highest F 1 -score) is, in most cases, given by BiokoP. Moreover, the results of BiokoP are homogeneous, regardless of the pseudoknot type or the presence or not of pseudoknots. Indeed, the F 1 -scores are always higher than 70% for any number of solutions returned. The results obtained by BiokoP show that combining the MEA and the MFE models, as well as returning several optimal and several sub-optimal solutions, allow to improve the prediction of secondary structures. One perspective of our work is to combine better mono-criterion models, in particular to combine a model based on the comparative approach with the MEA and the MFE models. This leads to develop in the future a new multi-objective algorithm to combine more than two models. BiokoP is available on the EvryRNA platform: https://EvryRNA.ibisc.univ-evry.fr .

  11. Optimizing Constrained Single Period Problem under Random Fuzzy Demand

    NASA Astrophysics Data System (ADS)

    Taleizadeh, Ata Allah; Shavandi, Hassan; Riazi, Afshin

    2008-09-01

    In this paper, we consider the multi-product multi-constraint newsboy problem with random fuzzy demands and total discount. The demand of the products is often stochastic in the real word but the estimation of the parameters of distribution function may be done by fuzzy manner. So an appropriate option to modeling the demand of products is using the random fuzzy variable. The objective function of proposed model is to maximize the expected profit of newsboy. We consider the constraints such as warehouse space and restriction on quantity order for products, and restriction on budget. We also consider the batch size for products order. Finally we introduce a random fuzzy multi-product multi-constraint newsboy problem (RFM-PM-CNP) and it is changed to a multi-objective mixed integer nonlinear programming model. Furthermore, a hybrid intelligent algorithm based on genetic algorithm, Pareto and TOPSIS is presented for the developed model. Finally an illustrative example is presented to show the performance of the developed model and algorithm.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burchett, Deon L.; Chen, Richard Li-Yang; Phillips, Cynthia A.

    This report summarizes the work performed under the project project Next-Generation Algo- rithms for Assessing Infrastructure Vulnerability and Optimizing System Resilience. The goal of the project was to improve mathematical programming-based optimization technology for in- frastructure protection. In general, the owner of a network wishes to design a network a network that can perform well when certain transportation channels are inhibited (e.g. destroyed) by an adversary. These are typically bi-level problems where the owner designs a system, an adversary optimally attacks it, and then the owner can recover by optimally using the remaining network. This project funded three years ofmore » Deon Burchett's graduate research. Deon's graduate advisor, Professor Jean-Philippe Richard, and his Sandia advisors, Richard Chen and Cynthia Phillips, supported Deon on other funds or volunteer time. This report is, therefore. essentially a replication of the Ph.D. dissertation it funded [12] in a format required for project documentation. The thesis had some general polyhedral research. This is the study of the structure of the feasi- ble region of mathematical programs, such as integer programs. For example, an integer program optimizes a linear objective function subject to linear constraints, and (nonlinear) integrality con- straints on the variables. The feasible region without the integrality constraints is a convex polygon. Careful study of additional valid constraints can significantly improve computational performance. Here is the abstract from the dissertation: We perform a polyhedral study of a multi-commodity generalization of variable upper bound flow models. In particular, we establish some relations between facets of single- and multi- commodity models. We then introduce a new family of inequalities, which generalizes traditional flow cover inequalities to the multi-commodity context. We present encouraging numerical results. We also consider the directed edge-failure resilient network design problem (DRNDP). This problem entails the design of a directed multi-commodity flow network that is capable of fulfilling a specified percentage of demands in the event that any G arcs are destroyed, where G is a constant parameter. We present a formulation of DRNDP and solve it in a branch-column-cut framework. We present computational results.« less

  13. Software For Integer Programming

    NASA Technical Reports Server (NTRS)

    Fogle, F. R.

    1992-01-01

    Improved Exploratory Search Technique for Pure Integer Linear Programming Problems (IESIP) program optimizes objective function of variables subject to confining functions or constraints, using discrete optimization or integer programming. Enables rapid solution of problems up to 10 variables in size. Integer programming required for accuracy in modeling systems containing small number of components, distribution of goods, scheduling operations on machine tools, and scheduling production in general. Written in Borland's TURBO Pascal.

  14. Multiple object tracking using the shortest path faster association algorithm.

    PubMed

    Xi, Zhenghao; Liu, Heping; Liu, Huaping; Yang, Bin

    2014-01-01

    To solve the persistently multiple object tracking in cluttered environments, this paper presents a novel tracking association approach based on the shortest path faster algorithm. First, the multiple object tracking is formulated as an integer programming problem of the flow network. Then we relax the integer programming to a standard linear programming problem. Therefore, the global optimum can be quickly obtained using the shortest path faster algorithm. The proposed method avoids the difficulties of integer programming, and it has a lower worst-case complexity than competing methods but better robustness and tracking accuracy in complex environments. Simulation results show that the proposed algorithm takes less time than other state-of-the-art methods and can operate in real time.

  15. Multiple Object Tracking Using the Shortest Path Faster Association Algorithm

    PubMed Central

    Liu, Heping; Liu, Huaping; Yang, Bin

    2014-01-01

    To solve the persistently multiple object tracking in cluttered environments, this paper presents a novel tracking association approach based on the shortest path faster algorithm. First, the multiple object tracking is formulated as an integer programming problem of the flow network. Then we relax the integer programming to a standard linear programming problem. Therefore, the global optimum can be quickly obtained using the shortest path faster algorithm. The proposed method avoids the difficulties of integer programming, and it has a lower worst-case complexity than competing methods but better robustness and tracking accuracy in complex environments. Simulation results show that the proposed algorithm takes less time than other state-of-the-art methods and can operate in real time. PMID:25215322

  16. Computer Corner: Spreadsheets, Power Series, Generating Functions, and Integers.

    ERIC Educational Resources Information Center

    Snow, Donald R.

    1989-01-01

    Implements a table algorithm on a spreadsheet program and obtains functions for several number sequences such as the Fibonacci and Catalan numbers. Considers other applications of the table algorithm to integers represented in various number bases. (YP)

  17. On the classification of weakly integral modular categories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruillard, Paul; Galindo, César; Ng, Siu-Hung

    In this paper we classify all modular categories of dimension 4m, where m is an odd square-free integer, and all rank 6 and rank 7 weakly integral modular categories. This completes the classification of weakly integral modular categories through rank 7. In particular, our results imply that all integral modular categories of rank at most 7 are pointed (that is, every simple object has dimension 1). All the non-integral (but weakly integral) modular categories of ranks 6 and 7 have dimension 4m, with m an odd square free integer, so their classification is an application of our main result. Themore » classification of rank 7 integral modular categories is facilitated by an analysis of the two group actions on modular categories: the Galois group of the field generated by the entries of the S-matrix and the group of invertible isomorphism classes of objects. We derive some valuable arithmetic consequences from these actions.« less

  18. Optimal multi-floor plant layout based on the mathematical programming and particle swarm optimization.

    PubMed

    Lee, Chang Jun

    2015-01-01

    In the fields of researches associated with plant layout optimization, the main goal is to minimize the costs of pipelines and pumping between connecting equipment under various constraints. However, what is the lacking of considerations in previous researches is to transform various heuristics or safety regulations into mathematical equations. For example, proper safety distances between equipments have to be complied for preventing dangerous accidents on a complex plant. Moreover, most researches have handled single-floor plant. However, many multi-floor plants have been constructed for the last decade. Therefore, the proper algorithm handling various regulations and multi-floor plant should be developed. In this study, the Mixed Integer Non-Linear Programming (MINLP) problem including safety distances, maintenance spaces, etc. is suggested based on mathematical equations. The objective function is a summation of pipeline and pumping costs. Also, various safety and maintenance issues are transformed into inequality or equality constraints. However, it is really hard to solve this problem due to complex nonlinear constraints. Thus, it is impossible to use conventional MINLP solvers using derivatives of equations. In this study, the Particle Swarm Optimization (PSO) technique is employed. The ethylene oxide plant is illustrated to verify the efficacy of this study.

  19. Optimizing decentralized production-distribution planning problem in a multi-period supply chain network under uncertainty

    NASA Astrophysics Data System (ADS)

    Nourifar, Raheleh; Mahdavi, Iraj; Mahdavi-Amiri, Nezam; Paydar, Mohammad Mahdi

    2017-09-01

    Decentralized supply chain management is found to be significantly relevant in today's competitive markets. Production and distribution planning is posed as an important optimization problem in supply chain networks. Here, we propose a multi-period decentralized supply chain network model with uncertainty. The imprecision related to uncertain parameters like demand and price of the final product is appropriated with stochastic and fuzzy numbers. We provide mathematical formulation of the problem as a bi-level mixed integer linear programming model. Due to problem's convolution, a structure to solve is developed that incorporates a novel heuristic algorithm based on Kth-best algorithm, fuzzy approach and chance constraint approach. Ultimately, a numerical example is constructed and worked through to demonstrate applicability of the optimization model. A sensitivity analysis is also made.

  20. Generalized Symbolic Execution for Model Checking and Testing

    NASA Technical Reports Server (NTRS)

    Khurshid, Sarfraz; Pasareanu, Corina; Visser, Willem; Kofmeyer, David (Technical Monitor)

    2003-01-01

    Modern software systems, which often are concurrent and manipulate complex data structures must be extremely reliable. We present a novel framework based on symbolic execution, for automated checking of such systems. We provide a two-fold generalization of traditional symbolic execution based approaches: one, we define a program instrumentation, which enables standard model checkers to perform symbolic execution; two, we give a novel symbolic execution algorithm that handles dynamically allocated structures (e.g., lists and trees), method preconditions (e.g., acyclicity of lists), data (e.g., integers and strings) and concurrency. The program instrumentation enables a model checker to automatically explore program heap configurations (using a systematic treatment of aliasing) and manipulate logical formulae on program data values (using a decision procedure). We illustrate two applications of our framework: checking correctness of multi-threaded programs that take inputs from unbounded domains with complex structure and generation of non-isomorphic test inputs that satisfy a testing criterion. Our implementation for Java uses the Java PathFinder model checker.

  1. Classifying the Progression of Ductal Carcinoma from Single-Cell Sampled Data via Integer Linear Programming: A Case Study

    PubMed Central

    Catanzaro, Daniele; Schäffer, Alejandro A.; Schwartz, Russell

    2016-01-01

    Ductal Carcinoma In Situ (DCIS) is a precursor lesion of Invasive Ductal Carcinoma (IDC) of the breast. Investigating its temporal progression could provide fundamental new insights for the development of better diagnostic tools to predict which cases of DCIS will progress to IDC. We investigate the problem of reconstructing a plausible progression from single-cell sampled data of an individual with Synchronous DCIS and IDC. Specifically, by using a number of assumptions derived from the observation of cellular atypia occurring in IDC, we design a possible predictive model using integer linear programming (ILP). Computational experiments carried out on a preexisting data set of 13 patients with simultaneous DCIS and IDC show that the corresponding predicted progression models are classifiable into categories having specific evolutionary characteristics. The approach provides new insights into mechanisms of clonal progression in breast cancers and helps illustrate the power of the ILP approach for similar problems in reconstructing tumor evolution scenarios under complex sets of constraints. PMID:26353381

  2. Classifying the Progression of Ductal Carcinoma from Single-Cell Sampled Data via Integer Linear Programming: A Case Study.

    PubMed

    Catanzaro, Daniele; Shackney, Stanley E; Schaffer, Alejandro A; Schwartz, Russell

    2016-01-01

    Ductal Carcinoma In Situ (DCIS) is a precursor lesion of Invasive Ductal Carcinoma (IDC) of the breast. Investigating its temporal progression could provide fundamental new insights for the development of better diagnostic tools to predict which cases of DCIS will progress to IDC. We investigate the problem of reconstructing a plausible progression from single-cell sampled data of an individual with synchronous DCIS and IDC. Specifically, by using a number of assumptions derived from the observation of cellular atypia occurring in IDC, we design a possible predictive model using integer linear programming (ILP). Computational experiments carried out on a preexisting data set of 13 patients with simultaneous DCIS and IDC show that the corresponding predicted progression models are classifiable into categories having specific evolutionary characteristics. The approach provides new insights into mechanisms of clonal progression in breast cancers and helps illustrate the power of the ILP approach for similar problems in reconstructing tumor evolution scenarios under complex sets of constraints.

  3. An interactive approach based on a discrete differential evolution algorithm for a class of integer bilevel programming problems

    NASA Astrophysics Data System (ADS)

    Li, Hong; Zhang, Li; Jiao, Yong-Chang

    2016-07-01

    This paper presents an interactive approach based on a discrete differential evolution algorithm to solve a class of integer bilevel programming problems, in which integer decision variables are controlled by an upper-level decision maker and real-value or continuous decision variables are controlled by a lower-level decision maker. Using the Karush--Kuhn-Tucker optimality conditions in the lower-level programming, the original discrete bilevel formulation can be converted into a discrete single-level nonlinear programming problem with the complementarity constraints, and then the smoothing technique is applied to deal with the complementarity constraints. Finally, a discrete single-level nonlinear programming problem is obtained, and solved by an interactive approach. In each iteration, for each given upper-level discrete variable, a system of nonlinear equations including the lower-level variables and Lagrange multipliers is solved first, and then a discrete nonlinear programming problem only with inequality constraints is handled by using a discrete differential evolution algorithm. Simulation results show the effectiveness of the proposed approach.

  4. Dynamic analysis for solid waste management systems: an inexact multistage integer programming approach.

    PubMed

    Li, Yongping; Huang, Guohe

    2009-03-01

    In this study, a dynamic analysis approach based on an inexact multistage integer programming (IMIP) model is developed for supporting municipal solid waste (MSW) management under uncertainty. Techniques of interval-parameter programming and multistage stochastic programming are incorporated within an integer-programming framework. The developed IMIP can deal with uncertainties expressed as probability distributions and interval numbers, and can reflect the dynamics in terms of decisions for waste-flow allocation and facility-capacity expansion over a multistage context. Moreover, the IMIP can be used for analyzing various policy scenarios that are associated with different levels of economic consequences. The developed method is applied to a case study of long-term waste-management planning. The results indicate that reasonable solutions have been generated for binary and continuous variables. They can help generate desired decisions of system-capacity expansion and waste-flow allocation with a minimized system cost and maximized system reliability.

  5. Optimal rail container shipment planning problem in multimodal transportation

    NASA Astrophysics Data System (ADS)

    Cao, Chengxuan; Gao, Ziyou; Li, Keping

    2012-09-01

    The optimal rail container shipment planning problem in multimodal transportation is studied in this article. The characteristics of the multi-period planning problem is presented and the problem is formulated as a large-scale 0-1 integer programming model, which maximizes the total profit generated by all freight bookings accepted in a multi-period planning horizon subject to the limited capacities. Two heuristic algorithms are proposed to obtain an approximate optimal solution of the problem. Finally, numerical experiments are conducted to demonstrate the proposed formulation and heuristic algorithms.

  6. Optimising multi-product multi-chance-constraint inventory control system with stochastic period lengths and total discount under fuzzy purchasing price and holding costs

    NASA Astrophysics Data System (ADS)

    Allah Taleizadeh, Ata; Niaki, Seyed Taghi Akhavan; Aryanezhad, Mir-Bahador

    2010-10-01

    While the usual assumptions in multi-periodic inventory control problems are that the orders are placed at the beginning of each period (periodic review) or depending on the inventory level they can happen at any time (continuous review), in this article, we relax these assumptions and assume that the periods between two replenishments of the products are independent and identically distributed random variables. Furthermore, assuming that the purchasing price are triangular fuzzy variables, the quantities of the orders are of integer-type and that there are space and service level constraints, total discount are considered to purchase products and a combination of back-order and lost-sales are taken into account for the shortages. We show that the model of this problem is a fuzzy mixed-integer nonlinear programming type and in order to solve it, a hybrid meta-heuristic intelligent algorithm is proposed. At the end, a numerical example is given to demonstrate the applicability of the proposed methodology and to compare its performance with one of the existing algorithms in real world inventory control problems.

  7. A Scheme to Optimize Flow Routing and Polling Switch Selection of Software Defined Networks.

    PubMed

    Chen, Huan; Li, Lemin; Ren, Jing; Wang, Yang; Zhao, Yangming; Wang, Xiong; Wang, Sheng; Xu, Shizhong

    2015-01-01

    This paper aims at minimizing the communication cost for collecting flow information in Software Defined Networks (SDN). Since flow-based information collecting method requires too much communication cost, and switch-based method proposed recently cannot benefit from controlling flow routing, jointly optimize flow routing and polling switch selection is proposed to reduce the communication cost. To this end, joint optimization problem is formulated as an Integer Linear Programming (ILP) model firstly. Since the ILP model is intractable in large size network, we also design an optimal algorithm for the multi-rooted tree topology and an efficient heuristic algorithm for general topology. According to extensive simulations, it is found that our method can save up to 55.76% communication cost compared with the state-of-the-art switch-based scheme.

  8. An Improved Multi-Objective Programming with Augmented ε-Constraint Method for Hazardous Waste Location-Routing Problems

    PubMed Central

    Yu, Hao; Solvang, Wei Deng

    2016-01-01

    Hazardous waste location-routing problems are of importance due to the potential risk for nearby residents and the environment. In this paper, an improved mathematical formulation is developed based upon a multi-objective mixed integer programming approach. The model aims at assisting decision makers in selecting locations for different facilities including treatment plants, recycling plants and disposal sites, providing appropriate technologies for hazardous waste treatment, and routing transportation. In the model, two critical factors are taken into account: system operating costs and risk imposed on local residents, and a compensation factor is introduced to the risk objective function in order to account for the fact that the risk level imposed by one type of hazardous waste or treatment technology may significantly vary from that of other types. Besides, the policy instruments for promoting waste recycling are considered, and their influence on the costs and risk of hazardous waste management is also discussed. The model is coded and calculated in Lingo optimization solver, and the augmented ε-constraint method is employed to generate the Pareto optimal curve of the multi-objective optimization problem. The trade-off between different objectives is illustrated in the numerical experiment. PMID:27258293

  9. An Improved Multi-Objective Programming with Augmented ε-Constraint Method for Hazardous Waste Location-Routing Problems.

    PubMed

    Yu, Hao; Solvang, Wei Deng

    2016-05-31

    Hazardous waste location-routing problems are of importance due to the potential risk for nearby residents and the environment. In this paper, an improved mathematical formulation is developed based upon a multi-objective mixed integer programming approach. The model aims at assisting decision makers in selecting locations for different facilities including treatment plants, recycling plants and disposal sites, providing appropriate technologies for hazardous waste treatment, and routing transportation. In the model, two critical factors are taken into account: system operating costs and risk imposed on local residents, and a compensation factor is introduced to the risk objective function in order to account for the fact that the risk level imposed by one type of hazardous waste or treatment technology may significantly vary from that of other types. Besides, the policy instruments for promoting waste recycling are considered, and their influence on the costs and risk of hazardous waste management is also discussed. The model is coded and calculated in Lingo optimization solver, and the augmented ε-constraint method is employed to generate the Pareto optimal curve of the multi-objective optimization problem. The trade-off between different objectives is illustrated in the numerical experiment.

  10. Final Report---Optimization Under Nonconvexity and Uncertainty: Algorithms and Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeff Linderoth

    2011-11-06

    the goal of this work was to develop new algorithmic techniques for solving large-scale numerical optimization problems, focusing on problems classes that have proven to be among the most challenging for practitioners: those involving uncertainty and those involving nonconvexity. This research advanced the state-of-the-art in solving mixed integer linear programs containing symmetry, mixed integer nonlinear programs, and stochastic optimization problems. The focus of the work done in the continuation was on Mixed Integer Nonlinear Programs (MINLP)s and Mixed Integer Linear Programs (MILP)s, especially those containing a great deal of symmetry.

  11. Integration of progressive hedging and dual decomposition in stochastic integer programs

    DOE PAGES

    Watson, Jean -Paul; Guo, Ge; Hackebeil, Gabriel; ...

    2015-04-07

    We present a method for integrating the Progressive Hedging (PH) algorithm and the Dual Decomposition (DD) algorithm of Carøe and Schultz for stochastic mixed-integer programs. Based on the correspondence between lower bounds obtained with PH and DD, a method to transform weights from PH to Lagrange multipliers in DD is found. Fast progress in early iterations of PH speeds up convergence of DD to an exact solution. As a result, we report computational results on server location and unit commitment instances.

  12. Improving energy efficiency in handheld biometric applications

    NASA Astrophysics Data System (ADS)

    Hoyle, David C.; Gale, John W.; Schultz, Robert C.; Rakvic, Ryan N.; Ives, Robert W.

    2012-06-01

    With improved smartphone and tablet technology, it is becoming increasingly feasible to implement powerful biometric recognition algorithms on portable devices. Typical iris recognition algorithms, such as Ridge Energy Direction (RED), utilize two-dimensional convolution in their implementation. This paper explores the energy consumption implications of 12 different methods of implementing two-dimensional convolution on a portable device. Typically, convolution is implemented using floating point operations. If a given algorithm implemented integer convolution vice floating point convolution, it could drastically reduce the energy consumed by the processor. The 12 methods compared include 4 major categories: Integer C, Integer Java, Floating Point C, and Floating Point Java. Each major category is further divided into 3 implementations: variable size looped convolution, static size looped convolution, and unrolled looped convolution. All testing was performed using the HTC Thunderbolt with energy measured directly using a Tektronix TDS5104B Digital Phosphor oscilloscope. Results indicate that energy savings as high as 75% are possible by using Integer C versus Floating Point C. Considering the relative proportion of processing time that convolution is responsible for in a typical algorithm, the savings in energy would likely result in significantly greater time between battery charges.

  13. Item Pool Construction Using Mixed Integer Quadratic Programming (MIQP). GMAC® Research Report RR-14-01

    ERIC Educational Resources Information Center

    Han, Kyung T.; Rudner, Lawrence M.

    2014-01-01

    This study uses mixed integer quadratic programming (MIQP) to construct multiple highly equivalent item pools simultaneously, and compares the results from mixed integer programming (MIP). Three different MIP/MIQP models were implemented and evaluated using real CAT item pool data with 23 different content areas and a goal of equal information…

  14. Smart-Grid Backbone Network Real-Time Delay Reduction via Integer Programming.

    PubMed

    Pagadrai, Sasikanth; Yilmaz, Muhittin; Valluri, Pratyush

    2016-08-01

    This research investigates an optimal delay-based virtual topology design using integer linear programming (ILP), which is applied to the current backbone networks such as smart-grid real-time communication systems. A network traffic matrix is applied and the corresponding virtual topology problem is solved using the ILP formulations that include a network delay-dependent objective function and lightpath routing, wavelength assignment, wavelength continuity, flow routing, and traffic loss constraints. The proposed optimization approach provides an efficient deterministic integration of intelligent sensing and decision making, and network learning features for superior smart grid operations by adaptively responding the time-varying network traffic data as well as operational constraints to maintain optimal virtual topologies. A representative optical backbone network has been utilized to demonstrate the proposed optimization framework whose simulation results indicate that superior smart-grid network performance can be achieved using commercial networks and integer programming.

  15. Sequential computation of elementary modes and minimal cut sets in genome-scale metabolic networks using alternate integer linear programming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Hyun-Seob; Goldberg, Noam; Mahajan, Ashutosh

    Elementary (flux) modes (EMs) have served as a valuable tool for investigating structural and functional properties of metabolic networks. Identification of the full set of EMs in genome-scale networks remains challenging due to combinatorial explosion of EMs in complex networks. It is often, however, that only a small subset of relevant EMs needs to be known, for which optimization-based sequential computation is a useful alternative. Most of the currently available methods along this line are based on the iterative use of mixed integer linear programming (MILP), the effectiveness of which significantly deteriorates as the number of iterations builds up. Tomore » alleviate the computational burden associated with the MILP implementation, we here present a novel optimization algorithm termed alternate integer linear programming (AILP). Results: Our algorithm was designed to iteratively solve a pair of integer programming (IP) and linear programming (LP) to compute EMs in a sequential manner. In each step, the IP identifies a minimal subset of reactions, the deletion of which disables all previously identified EMs. Thus, a subsequent LP solution subject to this reaction deletion constraint becomes a distinct EM. In cases where no feasible LP solution is available, IP-derived reaction deletion sets represent minimal cut sets (MCSs). Despite the additional computation of MCSs, AILP achieved significant time reduction in computing EMs by orders of magnitude. The proposed AILP algorithm not only offers a computational advantage in the EM analysis of genome-scale networks, but also improves the understanding of the linkage between EMs and MCSs.« less

  16. RSM 1.0 - A RESUPPLY SCHEDULER USING INTEGER OPTIMIZATION

    NASA Technical Reports Server (NTRS)

    Viterna, L. A.

    1994-01-01

    RSM, Resupply Scheduling Modeler, is a fully menu-driven program that uses integer programming techniques to determine an optimum schedule for replacing components on or before the end of a fixed replacement period. Although written to analyze the electrical power system on the Space Station Freedom, RSM is quite general and can be used to model the resupply of almost any system subject to user-defined resource constraints. RSM is based on a specific form of the general linear programming problem in which all variables in the objective function and all variables in the constraints are integers. While more computationally intensive, integer programming was required for accuracy when modeling systems with small quantities of components. Input values for component life cane be real numbers, RSM converts them to integers by dividing the lifetime by the period duration, then reducing the result to the next lowest integer. For each component, there is a set of constraints that insure that it is replaced before its lifetime expires. RSM includes user-defined constraints such as transportation mass and volume limits, as well as component life, available repair crew time and assembly sequences. A weighting factor allows the program to minimize factors such as cost. The program then performs an iterative analysis, which is displayed during the processing. A message gives the first period in which resources are being exceeded on each iteration. If the scheduling problem is unfeasible, the final message will also indicate the first period in which resources were exceeded. RSM is written in APL2 for IBM PC series computers and compatibles. A stand-alone executable version of RSM is provided; however, this is a "packed" version of RSM which can only utilize the memory within the 640K DOS limit. This executable requires at least 640K of memory and DOS 3.1 or higher. Source code for an APL2/PC workspace version is also provided. This version of RSM can make full use of any installed extended memory but must be run with the APL2 interpreter; and it requires an 80486 based microcomputer or an 80386 based microcomputer with an 80387 math coprocessor, at least 2Mb of extended memory, and DOS 3.3 or higher. The standard distribution medium for this package is one 5.25 inch 360K MS-DOS format diskette. RSM was developed in 1991. APL2 and IBM PC are registered trademarks of International Business Machines Corporation. MS-DOS is a registered trademark of Microsoft Corporation.

  17. Introducing health gains in location-allocation models: A stochastic model for planning the delivery of long-term care

    NASA Astrophysics Data System (ADS)

    Cardoso, T.; Oliveira, M. D.; Barbosa-Póvoa, A.; Nickel, S.

    2015-05-01

    Although the maximization of health is a key objective in health care systems, location-allocation literature has not yet considered this dimension. This study proposes a multi-objective stochastic mathematical programming approach to support the planning of a multi-service network of long-term care (LTC), both in terms of services location and capacity planning. This approach is based on a mixed integer linear programming model with two objectives - the maximization of expected health gains and the minimization of expected costs - with satisficing levels in several dimensions of equity - namely, equity of access, equity of utilization, socioeconomic equity and geographical equity - being imposed as constraints. The augmented ε-constraint method is used to explore the trade-off between these conflicting objectives, with uncertainty in the demand and delivery of care being accounted for. The model is applied to analyze the (re)organization of the LTC network currently operating in the Great Lisbon region in Portugal for the 2014-2016 period. Results show that extending the network of LTC is a cost-effective investment.

  18. A Scheme to Optimize Flow Routing and Polling Switch Selection of Software Defined Networks

    PubMed Central

    Chen, Huan; Li, Lemin; Ren, Jing; Wang, Yang; Zhao, Yangming; Wang, Xiong; Wang, Sheng; Xu, Shizhong

    2015-01-01

    This paper aims at minimizing the communication cost for collecting flow information in Software Defined Networks (SDN). Since flow-based information collecting method requires too much communication cost, and switch-based method proposed recently cannot benefit from controlling flow routing, jointly optimize flow routing and polling switch selection is proposed to reduce the communication cost. To this end, joint optimization problem is formulated as an Integer Linear Programming (ILP) model firstly. Since the ILP model is intractable in large size network, we also design an optimal algorithm for the multi-rooted tree topology and an efficient heuristic algorithm for general topology. According to extensive simulations, it is found that our method can save up to 55.76% communication cost compared with the state-of-the-art switch-based scheme. PMID:26690571

  19. Multi-Item Multiperiodic Inventory Control Problem with Variable Demand and Discounts: A Particle Swarm Optimization Algorithm

    PubMed Central

    Mousavi, Seyed Mohsen; Niaki, S. T. A.; Bahreininejad, Ardeshir; Musa, Siti Nurmaya

    2014-01-01

    A multi-item multiperiod inventory control model is developed for known-deterministic variable demands under limited available budget. Assuming the order quantity is more than the shortage quantity in each period, the shortage in combination of backorder and lost sale is considered. The orders are placed in batch sizes and the decision variables are assumed integer. Moreover, all unit discounts for a number of products and incremental quantity discount for some other items are considered. While the objectives are to minimize both the total inventory cost and the required storage space, the model is formulated into a fuzzy multicriteria decision making (FMCDM) framework and is shown to be a mixed integer nonlinear programming type. In order to solve the model, a multiobjective particle swarm optimization (MOPSO) approach is applied. A set of compromise solution including optimum and near optimum ones via MOPSO has been derived for some numerical illustration, where the results are compared with those obtained using a weighting approach. To assess the efficiency of the proposed MOPSO, the model is solved using multi-objective genetic algorithm (MOGA) as well. A large number of numerical examples are generated at the end, where graphical and statistical approaches show more efficiency of MOPSO compared with MOGA. PMID:25093195

  20. Development of a Menu Driven Materials Data Base for Use on Personal Computers

    DTIC Science & Technology

    1992-07-01

    written permission. Copyright Is the responsibility of the Director Publishing and Marketing , AGPS. Enquiries should be directed to the Manager, AGPS...PROGRAM LISTING A-2-1 Program MOB; uses crt; label levell,level2,level3,shutdown,dis;play; var options,code, nlines ,nmeflitemp,i,j4,k :integer; w,chl,ch2,ch3...char; menus :array [I. .1001 of st~ring[801; nline :array [l. .100] of integer; s2 :string[21; control :string[4]; aline :string[801; inm,iflt :text

  1. Design of supply chain in fuzzy environment

    NASA Astrophysics Data System (ADS)

    Rao, Kandukuri Narayana; Subbaiah, Kambagowni Venkata; Singh, Ganja Veera Pratap

    2013-05-01

    Nowadays, customer expectations are increasing and organizations are prone to operate in an uncertain environment. Under this uncertain environment, the ultimate success of the firm depends on its ability to integrate business processes among supply chain partners. Supply chain management emphasizes cross-functional links to improve the competitive strategy of organizations. Now, companies are moving from decoupled decision processes towards more integrated design and control of their components to achieve the strategic fit. In this paper, a new approach is developed to design a multi-echelon, multi-facility, and multi-product supply chain in fuzzy environment. In fuzzy environment, mixed integer programming problem is formulated through fuzzy goal programming in strategic level with supply chain cost and volume flexibility as fuzzy goals. These fuzzy goals are aggregated using minimum operator. In tactical level, continuous review policy for controlling raw material inventories in supplier echelon and controlling finished product inventories in plant as well as distribution center echelon is considered as fuzzy goals. A non-linear programming model is formulated through fuzzy goal programming using minimum operator in the tactical level. The proposed approach is illustrated with a numerical example.

  2. A generalized interval fuzzy mixed integer programming model for a multimodal transportation problem under uncertainty

    NASA Astrophysics Data System (ADS)

    Tian, Wenli; Cao, Chengxuan

    2017-03-01

    A generalized interval fuzzy mixed integer programming model is proposed for the multimodal freight transportation problem under uncertainty, in which the optimal mode of transport and the optimal amount of each type of freight transported through each path need to be decided. For practical purposes, three mathematical methods, i.e. the interval ranking method, fuzzy linear programming method and linear weighted summation method, are applied to obtain equivalents of constraints and parameters, and then a fuzzy expected value model is presented. A heuristic algorithm based on a greedy criterion and the linear relaxation algorithm are designed to solve the model.

  3. Reduced-Size Integer Linear Programming Models for String Selection Problems: Application to the Farthest String Problem.

    PubMed

    Zörnig, Peter

    2015-08-01

    We present integer programming models for some variants of the farthest string problem. The number of variables and constraints is substantially less than that of the integer linear programming models known in the literature. Moreover, the solution of the linear programming-relaxation contains only a small proportion of noninteger values, which considerably simplifies the rounding process. Numerical tests have shown excellent results, especially when a small set of long sequences is given.

  4. Investigation of some selected strategies for multi-GNSS instantaneous RTK positioning

    NASA Astrophysics Data System (ADS)

    Paziewski, Jacek; Wielgosz, Pawel

    2017-01-01

    It is clear that we can benefit from multi-constellation GNSS in precise relative positioning. On the other hand, it is still an open problem how to combine multi-GNSS signals in a single functional model. This study presents methodology and quality assessment of selected methods allowing for multi-GNSS observations combining in relative kinematic positioning using baselines up to tens of kilometers. In specific, this paper characterizes loose and tight integration strategies applied to the ionosphere and troposphere weighted model. Performance assessment of the established strategies was based on the analyses of the integer ambiguity resolution and rover coordinates' repeatability obtained in the medium range instantaneous RTK positioning with the use of full constellation dual frequency GPS and Galileo signals. Since full constellation of Galileo satellites is not yet available, the observational data were obtained from a hardware GNSS signal simulator using regular geodetic GNSS receivers. The results indicate on similar and high performance of the loose, and tight integration with calibrated receiver ISBs strategies. These approaches have undeniable advantage over single system positioning in terms of reliability of the integer ambiguity resolution as well as rover coordinate repeatability.

  5. Anisotropic fractal media by vector calculus in non-integer dimensional space

    NASA Astrophysics Data System (ADS)

    Tarasov, Vasily E.

    2014-08-01

    A review of different approaches to describe anisotropic fractal media is proposed. In this paper, differentiation and integration non-integer dimensional and multi-fractional spaces are considered as tools to describe anisotropic fractal materials and media. We suggest a generalization of vector calculus for non-integer dimensional space by using a product measure method. The product of fractional and non-integer dimensional spaces allows us to take into account the anisotropy of the fractal media in the framework of continuum models. The integration over non-integer-dimensional spaces is considered. In this paper differential operators of first and second orders for fractional space and non-integer dimensional space are suggested. The differential operators are defined as inverse operations to integration in spaces with non-integer dimensions. Non-integer dimensional space that is product of spaces with different dimensions allows us to give continuum models for anisotropic type of the media. The Poisson's equation for fractal medium, the Euler-Bernoulli fractal beam, and the Timoshenko beam equations for fractal material are considered as examples of application of suggested generalization of vector calculus for anisotropic fractal materials and media.

  6. Optimal Diet Planning for Eczema Patient Using Integer Programming

    NASA Astrophysics Data System (ADS)

    Zhen Sheng, Low; Sufahani, Suliadi

    2018-04-01

    Human diet planning is conducted by choosing appropriate food items that fulfill the nutritional requirements into the diet formulation. This paper discusses the application of integer programming to build the mathematical model of diet planning for eczema patients. The model developed is used to solve the diet problem of eczema patients from young age group. The integer programming is a scientific approach to select suitable food items, which seeks to minimize the costs, under conditions of meeting desired nutrient quantities, avoiding food allergens and getting certain foods into the diet that brings relief to the eczema conditions. This paper illustrates that the integer programming approach able to produce the optimal and feasible solution to deal with the diet problem of eczema patient.

  7. Integer Linear Programming in Computational Biology

    NASA Astrophysics Data System (ADS)

    Althaus, Ernst; Klau, Gunnar W.; Kohlbacher, Oliver; Lenhof, Hans-Peter; Reinert, Knut

    Computational molecular biology (bioinformatics) is a young research field that is rich in NP-hard optimization problems. The problem instances encountered are often huge and comprise thousands of variables. Since their introduction into the field of bioinformatics in 1997, integer linear programming (ILP) techniques have been successfully applied to many optimization problems. These approaches have added much momentum to development and progress in related areas. In particular, ILP-based approaches have become a standard optimization technique in bioinformatics. In this review, we present applications of ILP-based techniques developed by members and former members of Kurt Mehlhorn’s group. These techniques were introduced to bioinformatics in a series of papers and popularized by demonstration of their effectiveness and potential.

  8. Fast scaffolding with small independent mixed integer programs

    PubMed Central

    Salmela, Leena; Mäkinen, Veli; Välimäki, Niko; Ylinen, Johannes; Ukkonen, Esko

    2011-01-01

    Motivation: Assembling genomes from short read data has become increasingly popular, but the problem remains computationally challenging especially for larger genomes. We study the scaffolding phase of sequence assembly where preassembled contigs are ordered based on mate pair data. Results: We present MIP Scaffolder that divides the scaffolding problem into smaller subproblems and solves these with mixed integer programming. The scaffolding problem can be represented as a graph and the biconnected components of this graph can be solved independently. We present a technique for restricting the size of these subproblems so that they can be solved accurately with mixed integer programming. We compare MIP Scaffolder to two state of the art methods, SOPRA and SSPACE. MIP Scaffolder is fast and produces better or as good scaffolds as its competitors on large genomes. Availability: The source code of MIP Scaffolder is freely available at http://www.cs.helsinki.fi/u/lmsalmel/mip-scaffolder/. Contact: leena.salmela@cs.helsinki.fi PMID:21998153

  9. Tuning iteration space slicing based tiled multi-core code implementing Nussinov's RNA folding.

    PubMed

    Palkowski, Marek; Bielecki, Wlodzimierz

    2018-01-15

    RNA folding is an ongoing compute-intensive task of bioinformatics. Parallelization and improving code locality for this kind of algorithms is one of the most relevant areas in computational biology. Fortunately, RNA secondary structure approaches, such as Nussinov's recurrence, involve mathematical operations over affine control loops whose iteration space can be represented by the polyhedral model. This allows us to apply powerful polyhedral compilation techniques based on the transitive closure of dependence graphs to generate parallel tiled code implementing Nussinov's RNA folding. Such techniques are within the iteration space slicing framework - the transitive dependences are applied to the statement instances of interest to produce valid tiles. The main problem at generating parallel tiled code is defining a proper tile size and tile dimension which impact parallelism degree and code locality. To choose the best tile size and tile dimension, we first construct parallel parametric tiled code (parameters are variables defining tile size). With this purpose, we first generate two nonparametric tiled codes with different fixed tile sizes but with the same code structure and then derive a general affine model, which describes all integer factors available in expressions of those codes. Using this model and known integer factors present in the mentioned expressions (they define the left-hand side of the model), we find unknown integers in this model for each integer factor available in the same fixed tiled code position and replace in this code expressions, including integer factors, with those including parameters. Then we use this parallel parametric tiled code to implement the well-known tile size selection (TSS) technique, which allows us to discover in a given search space the best tile size and tile dimension maximizing target code performance. For a given search space, the presented approach allows us to choose the best tile size and tile dimension in parallel tiled code implementing Nussinov's RNA folding. Experimental results, received on modern Intel multi-core processors, demonstrate that this code outperforms known closely related implementations when the length of RNA strands is bigger than 2500.

  10. Robust design of (s, S) inventory policy parameters in supply chains with demand and lead time uncertainties

    NASA Astrophysics Data System (ADS)

    Karimi Movahed, Kamran; Zhang, Zhi-Hai

    2015-09-01

    Demand and lead time uncertainties have significant effects on supply chain behaviour. In this paper, we present a single-product three-level multi-period supply chain with uncertain demands and lead times by using robust techniques to study the managerial insights of the supply chain inventory system under uncertainty. We formulate this problem as a robust mixed-integer linear program with minimised expected cost and total cost variation to determine the optimal (s, S) values of the inventory parameters. Several numerical studies are performed to investigate the supply chain behaviour. Useful guidelines for the design of a robust supply chain are also provided. Results show that the order variance and the expected cost in a supply chain significantly increase when the manufacturer's review period is an integer ratio of the distributor's and the retailer's review periods.

  11. Microgrid Optimal Scheduling With Chance-Constrained Islanding Capability

    DOE PAGES

    Liu, Guodong; Starke, Michael R.; Xiao, B.; ...

    2017-01-13

    To facilitate the integration of variable renewable generation and improve the resilience of electricity sup-ply in a microgrid, this paper proposes an optimal scheduling strategy for microgrid operation considering constraints of islanding capability. A new concept, probability of successful islanding (PSI), indicating the probability that a microgrid maintains enough spinning reserve (both up and down) to meet local demand and accommodate local renewable generation after instantaneously islanding from the main grid, is developed. The PSI is formulated as mixed-integer linear program using multi-interval approximation taking into account the probability distributions of forecast errors of wind, PV and load. With themore » goal of minimizing the total operating cost while preserving user specified PSI, a chance-constrained optimization problem is formulated for the optimal scheduling of mirogrids and solved by mixed integer linear programming (MILP). Numerical simulations on a microgrid consisting of a wind turbine, a PV panel, a fuel cell, a micro-turbine, a diesel generator and a battery demonstrate the effectiveness of the proposed scheduling strategy. Lastly, we verify the relationship between PSI and various factors.« less

  12. Stacking-sequence optimization for buckling of laminated plates by integer programming

    NASA Technical Reports Server (NTRS)

    Haftka, Raphael T.; Walsh, Joanne L.

    1991-01-01

    Integer-programming formulations for the design of symmetric and balanced laminated plates under biaxial compression are presented. Both maximization of buckling load for a given total thickness and the minimization of total thickness subject to a buckling constraint are formulated. The design variables that define the stacking sequence of the laminate are zero-one integers. It is shown that the formulation results in a linear optimization problem that can be solved on readily available software. This is in contrast to the continuous case, where the design variables are the thicknesses of layers with specified ply orientations, and the optimization problem is nonlinear. Constraints on the stacking sequence such as a limit on the number of contiguous plies of the same orientation and limits on in-plane stiffnesses are easily accommodated. Examples are presented for graphite-epoxy plates under uniaxial and biaxial compression using a commercial software package based on the branch-and-bound algorithm.

  13. Comparison of two non-convex mixed-integer nonlinear programming algorithms applied to autoregressive moving average model structure and parameter estimation

    NASA Astrophysics Data System (ADS)

    Uilhoorn, F. E.

    2016-10-01

    In this article, the stochastic modelling approach proposed by Box and Jenkins is treated as a mixed-integer nonlinear programming (MINLP) problem solved with a mesh adaptive direct search and a real-coded genetic class of algorithms. The aim is to estimate the real-valued parameters and non-negative integer, correlated structure of stationary autoregressive moving average (ARMA) processes. The maximum likelihood function of the stationary ARMA process is embedded in Akaike's information criterion and the Bayesian information criterion, whereas the estimation procedure is based on Kalman filter recursions. The constraints imposed on the objective function enforce stability and invertibility. The best ARMA model is regarded as the global minimum of the non-convex MINLP problem. The robustness and computational performance of the MINLP solvers are compared with brute-force enumeration. Numerical experiments are done for existing time series and one new data set.

  14. A two-stage mixed-integer fuzzy programming with interval-valued membership functions approach for flood-diversion planning.

    PubMed

    Wang, S; Huang, G H

    2013-03-15

    Flood disasters have been extremely severe in recent decades, and they account for about one third of all natural catastrophes throughout the world. In this study, a two-stage mixed-integer fuzzy programming with interval-valued membership functions (TMFP-IMF) approach is developed for flood-diversion planning under uncertainty. TMFP-IMF integrates the fuzzy flexible programming, two-stage stochastic programming, and integer programming within a general framework. A concept of interval-valued fuzzy membership function is introduced to address complexities of system uncertainties. TMFP-IMF can not only deal with uncertainties expressed as fuzzy sets and probability distributions, but also incorporate pre-regulated water-diversion policies directly into its optimization process. TMFP-IMF is applied to a hypothetical case study of flood-diversion planning for demonstrating its applicability. Results indicate that reasonable solutions can be generated for binary and continuous variables. A variety of flood-diversion and capacity-expansion schemes can be obtained under four scenarios, which enable decision makers (DMs) to identify the most desired one based on their perceptions and attitudes towards the objective-function value and constraints. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Anisotropic fractal media by vector calculus in non-integer dimensional space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarasov, Vasily E., E-mail: tarasov@theory.sinp.msu.ru

    2014-08-15

    A review of different approaches to describe anisotropic fractal media is proposed. In this paper, differentiation and integration non-integer dimensional and multi-fractional spaces are considered as tools to describe anisotropic fractal materials and media. We suggest a generalization of vector calculus for non-integer dimensional space by using a product measure method. The product of fractional and non-integer dimensional spaces allows us to take into account the anisotropy of the fractal media in the framework of continuum models. The integration over non-integer-dimensional spaces is considered. In this paper differential operators of first and second orders for fractional space and non-integer dimensionalmore » space are suggested. The differential operators are defined as inverse operations to integration in spaces with non-integer dimensions. Non-integer dimensional space that is product of spaces with different dimensions allows us to give continuum models for anisotropic type of the media. The Poisson's equation for fractal medium, the Euler-Bernoulli fractal beam, and the Timoshenko beam equations for fractal material are considered as examples of application of suggested generalization of vector calculus for anisotropic fractal materials and media.« less

  16. Menu-Driven Solver Of Linear-Programming Problems

    NASA Technical Reports Server (NTRS)

    Viterna, L. A.; Ferencz, D.

    1992-01-01

    Program assists inexperienced user in formulating linear-programming problems. A Linear Program Solver (ALPS) computer program is full-featured LP analysis program. Solves plain linear-programming problems as well as more-complicated mixed-integer and pure-integer programs. Also contains efficient technique for solution of purely binary linear-programming problems. Written entirely in IBM's APL2/PC software, Version 1.01. Packed program contains licensed material, property of IBM (copyright 1988, all rights reserved).

  17. Split diversity in constrained conservation prioritization using integer linear programming.

    PubMed

    Chernomor, Olga; Minh, Bui Quang; Forest, Félix; Klaere, Steffen; Ingram, Travis; Henzinger, Monika; von Haeseler, Arndt

    2015-01-01

    Phylogenetic diversity (PD) is a measure of biodiversity based on the evolutionary history of species. Here, we discuss several optimization problems related to the use of PD, and the more general measure split diversity (SD), in conservation prioritization.Depending on the conservation goal and the information available about species, one can construct optimization routines that incorporate various conservation constraints. We demonstrate how this information can be used to select sets of species for conservation action. Specifically, we discuss the use of species' geographic distributions, the choice of candidates under economic pressure, and the use of predator-prey interactions between the species in a community to define viability constraints.Despite such optimization problems falling into the area of NP hard problems, it is possible to solve them in a reasonable amount of time using integer programming. We apply integer linear programming to a variety of models for conservation prioritization that incorporate the SD measure.We exemplarily show the results for two data sets: the Cape region of South Africa and a Caribbean coral reef community. Finally, we provide user-friendly software at http://www.cibiv.at/software/pda.

  18. Integer programming for improving radiotherapy treatment efficiency.

    PubMed

    Lv, Ming; Li, Yi; Kou, Bo; Zhou, Zhili

    2017-01-01

    Patients received by radiotherapy departments are diverse and may be diagnosed with different cancers. Therefore, they need different radiotherapy treatment plans and thus have different needs for medical resources. This research aims to explore the best method of scheduling the admission of patients receiving radiotherapy so as to reduce patient loss and maximize the usage efficiency of service resources. A mix integer programming (MIP) model integrated with special features of radiotherapy is constructed. The data used here is based on the historical data collected and we propose an exact method to solve the MIP model. Compared with the traditional First Come First Served (FCFS) method, the new method has boosted patient admission as well as the usage of linear accelerators (LINAC) and beds. The integer programming model can be used to describe the complex problem of scheduling radio-receiving patients, to identify the bottleneck resources that hinder patient admission, and to obtain the optimal LINAC-bed radio under the current data conditions. Different management strategies can be implemented by adjusting the settings of the MIP model. The computational results can serve as a reference for the policy-makers in decision making.

  19. The use of integer programming to select bulls across breeding companies with volume price discounts.

    PubMed

    McConnel, M B; Galligan, D T

    2004-10-01

    Optimization programs are currently used to aid in the selection of bulls to be used in herd breeding programs. While these programs offer a systematic approach to the problem of semen selection, they ignore the impact of volume discounts. Volume discounts are discounts that vary depending on the number of straws purchased. The dynamic nature of volume discounts means that, in order to be adequately accounted for, they must be considered in the optimization routine. Failing to do this creates a missed economic opportunity because the potential benefits of optimally selecting and combining breeding company discount opportunities are not captured. To address these issues, an integer program was created which used binary decision variables to incorporate the effects of quantity discounts into the optimization program. A consistent set of trait criteria was used to select a group of bulls from 3 sample breeding companies. Three different selection programs were used to select the bulls, 2 traditional methods and the integer method. After the discounts were applied using each method, the integer program resulted in the lowest cost portfolio of bulls. A sensitivity analysis showed that the integer program also resulted in a low cost portfolio when the genetic trait goals were changed to be more or less stringent. In the sample application, a net benefit of the new approach over the traditional approaches was a 12.3 to 20.0% savings in semen cost.

  20. GLOBAL SOLUTIONS TO FOLDED CONCAVE PENALIZED NONCONVEX LEARNING

    PubMed Central

    Liu, Hongcheng; Yao, Tao; Li, Runze

    2015-01-01

    This paper is concerned with solving nonconvex learning problems with folded concave penalty. Despite that their global solutions entail desirable statistical properties, there lack optimization techniques that guarantee global optimality in a general setting. In this paper, we show that a class of nonconvex learning problems are equivalent to general quadratic programs. This equivalence facilitates us in developing mixed integer linear programming reformulations, which admit finite algorithms that find a provably global optimal solution. We refer to this reformulation-based technique as the mixed integer programming-based global optimization (MIPGO). To our knowledge, this is the first global optimization scheme with a theoretical guarantee for folded concave penalized nonconvex learning with the SCAD penalty (Fan and Li, 2001) and the MCP penalty (Zhang, 2010). Numerical results indicate a significant outperformance of MIPGO over the state-of-the-art solution scheme, local linear approximation, and other alternative solution techniques in literature in terms of solution quality. PMID:27141126

  1. Development of Web-Based Menu Planning Support System and its Solution Using Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Kashima, Tomoko; Matsumoto, Shimpei; Ishii, Hiroaki

    2009-10-01

    Recently lifestyle-related diseases have become an object of public concern, while at the same time people are being more health conscious. As an essential factor for causing the lifestyle-related diseases, we assume that the knowledge circulation on dietary habits is still insufficient. This paper focuses on everyday meals close to our life and proposes a well-balanced menu planning system as a preventive measure of lifestyle-related diseases. The system is developed by using a Web-based frontend and it provides multi-user services and menu information sharing capabilities like social networking services (SNS). The system is implemented on a Web server running Apache (HTTP server software), MySQL (database management system), and PHP (scripting language for dynamic Web pages). For the menu planning, a genetic algorithm is applied by understanding this problem as multidimensional 0-1 integer programming.

  2. Multi-Target Tracking via Mixed Integer Optimization

    DTIC Science & Technology

    2016-05-13

    solving these two problems separately, however few algorithms attempt to solve these simultaneously and even fewer utilize optimization. In this paper we...introduce a new mixed integer optimization (MIO) model which solves the data association and trajectory estimation problems simultaneously by minimizing...Kalman filter [5], which updates the trajectory estimates before the algorithm progresses forward to the next scan. This process repeats sequentially

  3. Sequential computation of elementary modes and minimal cut sets in genome-scale metabolic networks using alternate integer linear programming.

    PubMed

    Song, Hyun-Seob; Goldberg, Noam; Mahajan, Ashutosh; Ramkrishna, Doraiswami

    2017-08-01

    Elementary (flux) modes (EMs) have served as a valuable tool for investigating structural and functional properties of metabolic networks. Identification of the full set of EMs in genome-scale networks remains challenging due to combinatorial explosion of EMs in complex networks. It is often, however, that only a small subset of relevant EMs needs to be known, for which optimization-based sequential computation is a useful alternative. Most of the currently available methods along this line are based on the iterative use of mixed integer linear programming (MILP), the effectiveness of which significantly deteriorates as the number of iterations builds up. To alleviate the computational burden associated with the MILP implementation, we here present a novel optimization algorithm termed alternate integer linear programming (AILP). Our algorithm was designed to iteratively solve a pair of integer programming (IP) and linear programming (LP) to compute EMs in a sequential manner. In each step, the IP identifies a minimal subset of reactions, the deletion of which disables all previously identified EMs. Thus, a subsequent LP solution subject to this reaction deletion constraint becomes a distinct EM. In cases where no feasible LP solution is available, IP-derived reaction deletion sets represent minimal cut sets (MCSs). Despite the additional computation of MCSs, AILP achieved significant time reduction in computing EMs by orders of magnitude. The proposed AILP algorithm not only offers a computational advantage in the EM analysis of genome-scale networks, but also improves the understanding of the linkage between EMs and MCSs. The software is implemented in Matlab, and is provided as supplementary information . hyunseob.song@pnnl.gov. Supplementary data are available at Bioinformatics online. Published by Oxford University Press 2017. This work is written by US Government employees and are in the public domain in the US.

  4. Distributed mixed-integer fuzzy hierarchical programming for municipal solid waste management. Part I: System identification and methodology development.

    PubMed

    Cheng, Guanhui; Huang, Guohe; Dong, Cong; Xu, Ye; Chen, Xiujuan; Chen, Jiapei

    2017-03-01

    Due to the existence of complexities of heterogeneities, hierarchy, discreteness, and interactions in municipal solid waste management (MSWM) systems such as Beijing, China, a series of socio-economic and eco-environmental problems may emerge or worsen and result in irredeemable damages in the following decades. Meanwhile, existing studies, especially ones focusing on MSWM in Beijing, could hardly reflect these complexities in system simulations and provide reliable decision support for management practices. Thus, a framework of distributed mixed-integer fuzzy hierarchical programming (DMIFHP) is developed in this study for MSWM under these complexities. Beijing is selected as a representative case. The Beijing MSWM system is comprehensively analyzed in many aspects such as socio-economic conditions, natural conditions, spatial heterogeneities, treatment facilities, and system complexities, building a solid foundation for system simulation and optimization. Correspondingly, the MSWM system in Beijing is discretized as 235 grids to reflect spatial heterogeneity. A DMIFHP model which is a nonlinear programming problem is constructed to parameterize the Beijing MSWM system. To enable scientific solving of it, a solution algorithm is proposed based on coupling of fuzzy programming and mixed-integer linear programming. Innovations and advantages of the DMIFHP framework are discussed. The optimal MSWM schemes and mechanism revelations will be discussed in another companion paper due to length limitation.

  5. ALPS: A Linear Program Solver

    NASA Technical Reports Server (NTRS)

    Ferencz, Donald C.; Viterna, Larry A.

    1991-01-01

    ALPS is a computer program which can be used to solve general linear program (optimization) problems. ALPS was designed for those who have minimal linear programming (LP) knowledge and features a menu-driven scheme to guide the user through the process of creating and solving LP formulations. Once created, the problems can be edited and stored in standard DOS ASCII files to provide portability to various word processors or even other linear programming packages. Unlike many math-oriented LP solvers, ALPS contains an LP parser that reads through the LP formulation and reports several types of errors to the user. ALPS provides a large amount of solution data which is often useful in problem solving. In addition to pure linear programs, ALPS can solve for integer, mixed integer, and binary type problems. Pure linear programs are solved with the revised simplex method. Integer or mixed integer programs are solved initially with the revised simplex, and the completed using the branch-and-bound technique. Binary programs are solved with the method of implicit enumeration. This manual describes how to use ALPS to create, edit, and solve linear programming problems. Instructions for installing ALPS on a PC compatible computer are included in the appendices along with a general introduction to linear programming. A programmers guide is also included for assistance in modifying and maintaining the program.

  6. A mixed integer program to model spatial wildfire behavior and suppression placement decisions

    Treesearch

    Erin J. Belval; Yu Wei; Michael Bevers

    2015-01-01

    Wildfire suppression combines multiple objectives and dynamic fire behavior to form a complex problem for decision makers. This paper presents a mixed integer program designed to explore integrating spatial fire behavior and suppression placement decisions into a mathematical programming framework. Fire behavior and suppression placement decisions are modeled using...

  7. Generalized Buneman Pruning for Inferring the Most Parsimonious Multi-state Phylogeny

    NASA Astrophysics Data System (ADS)

    Misra, Navodit; Blelloch, Guy; Ravi, R.; Schwartz, Russell

    Accurate reconstruction of phylogenies remains a key challenge in evolutionary biology. Most biologically plausible formulations of the problem are formally NP-hard, with no known efficient solution. The standard in practice are fast heuristic methods that are empirically known to work very well in general, but can yield results arbitrarily far from optimal. Practical exact methods, which yield exponential worst-case running times but generally much better times in practice, provide an important alternative. We report progress in this direction by introducing a provably optimal method for the weighted multi-state maximum parsimony phylogeny problem. The method is based on generalizing the notion of the Buneman graph, a construction key to efficient exact methods for binary sequences, so as to apply to sequences with arbitrary finite numbers of states with arbitrary state transition weights. We implement an integer linear programming (ILP) method for the multi-state problem using this generalized Buneman graph and demonstrate that the resulting method is able to solve data sets that are intractable by prior exact methods in run times comparable with popular heuristics. Our work provides the first method for provably optimal maximum parsimony phylogeny inference that is practical for multi-state data sets of more than a few characters.

  8. MITIE: Simultaneous RNA-Seq-based transcript identification and quantification in multiple samples.

    PubMed

    Behr, Jonas; Kahles, André; Zhong, Yi; Sreedharan, Vipin T; Drewe, Philipp; Rätsch, Gunnar

    2013-10-15

    High-throughput sequencing of mRNA (RNA-Seq) has led to tremendous improvements in the detection of expressed genes and reconstruction of RNA transcripts. However, the extensive dynamic range of gene expression, technical limitations and biases, as well as the observed complexity of the transcriptional landscape, pose profound computational challenges for transcriptome reconstruction. We present the novel framework MITIE (Mixed Integer Transcript IdEntification) for simultaneous transcript reconstruction and quantification. We define a likelihood function based on the negative binomial distribution, use a regularization approach to select a few transcripts collectively explaining the observed read data and show how to find the optimal solution using Mixed Integer Programming. MITIE can (i) take advantage of known transcripts, (ii) reconstruct and quantify transcripts simultaneously in multiple samples, and (iii) resolve the location of multi-mapping reads. It is designed for genome- and assembly-based transcriptome reconstruction. We present an extensive study based on realistic simulated RNA-Seq data. When compared with state-of-the-art approaches, MITIE proves to be significantly more sensitive and overall more accurate. Moreover, MITIE yields substantial performance gains when used with multiple samples. We applied our system to 38 Drosophila melanogaster modENCODE RNA-Seq libraries and estimated the sensitivity of reconstructing omitted transcript annotations and the specificity with respect to annotated transcripts. Our results corroborate that a well-motivated objective paired with appropriate optimization techniques lead to significant improvements over the state-of-the-art in transcriptome reconstruction. MITIE is implemented in C++ and is available from http://bioweb.me/mitie under the GPL license.

  9. An Improved Search Approach for Solving Non-Convex Mixed-Integer Non Linear Programming Problems

    NASA Astrophysics Data System (ADS)

    Sitopu, Joni Wilson; Mawengkang, Herman; Syafitri Lubis, Riri

    2018-01-01

    The nonlinear mathematical programming problem addressed in this paper has a structure characterized by a subset of variables restricted to assume discrete values, which are linear and separable from the continuous variables. The strategy of releasing nonbasic variables from their bounds, combined with the “active constraint” method, has been developed. This strategy is used to force the appropriate non-integer basic variables to move to their neighbourhood integer points. Successful implementation of these algorithms was achieved on various test problems.

  10. A Structural Weight Estimation Program (SWEEP) for Aircraft. Volume 11 - Flexible Airloads Stand-Alone Program

    DTIC Science & Technology

    1974-06-01

    stiffness, lb-in. I Integer used to designate wing strip number 2 I Airplanw pitching moment of inertia, slug ft 2 I Airplane yawing moment of inertia...slug ft J Integer used to designated wing-loading distribution, i.e., J-l, loading due to angle of attack J=2> loading due to flap deflection J-3...moment at intersection of load reference line and body interface station (for vertical tail), in.-lb Integer used to designate type of wing airload

  11. Analysis, Evaluation and Improvement of Sequential Single-Item Auctions for the Cooperative Real-Time Allocation of Tasks

    DTIC Science & Technology

    2013-03-30

    Abstract: We study multi-robot routing problems (MR- LDR ) where a team of robots has to visit a set of given targets with linear decreasing rewards over...time, such as required for the delivery of goods to rescue sites after disasters. The objective of MR- LDR is to find an assignment of targets to...We develop a mixed integer program that solves MR- LDR optimally with a flow-type formulation and can be solved faster than the standard TSP-type

  12. A hybrid Jaya algorithm for reliability-redundancy allocation problems

    NASA Astrophysics Data System (ADS)

    Ghavidel, Sahand; Azizivahed, Ali; Li, Li

    2018-04-01

    This article proposes an efficient improved hybrid Jaya algorithm based on time-varying acceleration coefficients (TVACs) and the learning phase introduced in teaching-learning-based optimization (TLBO), named the LJaya-TVAC algorithm, for solving various types of nonlinear mixed-integer reliability-redundancy allocation problems (RRAPs) and standard real-parameter test functions. RRAPs include series, series-parallel, complex (bridge) and overspeed protection systems. The search power of the proposed LJaya-TVAC algorithm for finding the optimal solutions is first tested on the standard real-parameter unimodal and multi-modal functions with dimensions of 30-100, and then tested on various types of nonlinear mixed-integer RRAPs. The results are compared with the original Jaya algorithm and the best results reported in the recent literature. The optimal results obtained with the proposed LJaya-TVAC algorithm provide evidence for its better and acceptable optimization performance compared to the original Jaya algorithm and other reported optimal results.

  13. Comparison of penalty functions on a penalty approach to mixed-integer optimization

    NASA Astrophysics Data System (ADS)

    Francisco, Rogério B.; Costa, M. Fernanda P.; Rocha, Ana Maria A. C.; Fernandes, Edite M. G. P.

    2016-06-01

    In this paper, we present a comparative study involving several penalty functions that can be used in a penalty approach for globally solving bound mixed-integer nonlinear programming (bMIMLP) problems. The penalty approach relies on a continuous reformulation of the bMINLP problem by adding a particular penalty term to the objective function. A penalty function based on the `erf' function is proposed. The continuous nonlinear optimization problems are sequentially solved by the population-based firefly algorithm. Preliminary numerical experiments are carried out in order to analyze the quality of the produced solutions, when compared with other penalty functions available in the literature.

  14. An integer programming model for distal humerus fracture fixation planning.

    PubMed

    Maratt, Joseph D; Peaks, Ya-Sin A; Doro, Lisa Case; Karunakar, Madhav A; Hughes, Richard E

    2008-05-01

    To demonstrate the feasibility of an integer programming model to assist in pre-operative planning for open reduction and internal fixation of a distal humerus fracture. We describe an integer programming model based on the objective of maximizing the reward for screws placed while satisfying the requirements for sound internal fixation. The model maximizes the number of bicortical screws placed while avoiding screw collision and favoring screws of greater length that cross multiple fracture planes. The model was tested on three types of total articular fractures of the distal humerus. Solutions were generated using 5, 9, 21 and 33 possible screw orientations per hole. Solutions generated using 33 possible screw orientations per hole and five screw lengths resulted in the most clinically relevant fixation plan and required the calculation of 1,191,975 pairs of screws that resulted in collision. At this level of complexity, the pre-processor took 104 seconds to generate the constraints for the solver, and a solution was generated in under one minute in all three cases. Despite the large size of this problem, it can be solved in a reasonable amount of time, making use of the model practical in pre-surgical planning.

  15. Dynamic UNITY

    DTIC Science & Technology

    2002-01-01

    UNITY program that implements exactly the same algorithm as Specification 1.1. The correctness of this program is proven in amanner sim- 4 program...chapter, we introduce the Dynamic UNITY formalism, which allows us to reason about algorithms and protocols in which the sets of participating processes...implements Euclid’s algorithm for calculating the greatest common divisor (GCD) of two integers; it repeat- edly reads an integer message from each of its

  16. Stochastic Semidefinite Programming: Applications and Algorithms

    DTIC Science & Technology

    2012-03-03

    doi: 2011/09/07 13:38:21 13 TOTAL: 1 Number of Papers published in non peer-reviewed journals: Baha M. Alzalg and K. A. Ariyawansa, Stochastic...symmetric programming over integers. International Conference on Scientific Computing, Las Vegas, Nevada, July 18--21, 2011. Baha M. Alzalg. On recent...Proceeding publications (other than abstracts): PaperReceived Baha M. Alzalg, K. A. Ariyawansa. Stochastic mixed integer second-order cone programming

  17. Comparison of Integer Programming (IP) Solvers for Automated Test Assembly (ATA). Research Report. ETS RR-15-05

    ERIC Educational Resources Information Center

    Donoghue, John R.

    2015-01-01

    At the heart of van der Linden's approach to automated test assembly (ATA) is a linear programming/integer programming (LP/IP) problem. A variety of IP solvers are available, ranging in cost from free to hundreds of thousands of dollars. In this paper, I compare several approaches to solving the underlying IP problem. These approaches range from…

  18. Optimal Facility Location Tool for Logistics Battle Command (LBC)

    DTIC Science & Technology

    2015-08-01

    64 Appendix B. VBA Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Appendix C. Story...should city planners have located emergency service facilities so that all households (the demand) had equal access to coverage?” The critical...programming language called Visual Basic for Applications ( VBA ). CPLEX is a commercial solver for linear, integer, and mixed integer linear programming problems

  19. A Treatment of Computational Precision, Number Representation, and Large Integers in an Introductory Fortran Course

    ERIC Educational Resources Information Center

    Richardson, William H., Jr.

    2006-01-01

    Computational precision is sometimes given short shrift in a first programming course. Treating this topic requires discussing integer and floating-point number representations and inaccuracies that may result from their use. An example of a moderately simple programming problem from elementary statistics was examined. It forced students to…

  20. An Integer Programming Approach to School District Financial Management.

    ERIC Educational Resources Information Center

    Dembowski, Frederick L.

    Because of the nature of school district cash flows, there are opportunities for investing surplus cash and the necessity to borrow cash in deficit periods. The term structure of interest rates makes the manual determination of the optimal financial package impossible. In this research, an integer programming model of this cash management process…

  1. Currency Arbitrage Detection Using a Binary Integer Programming Model

    ERIC Educational Resources Information Center

    Soon, Wanmei; Ye, Heng-Qing

    2011-01-01

    In this article, we examine the use of a new binary integer programming (BIP) model to detect arbitrage opportunities in currency exchanges. This model showcases an excellent application of mathematics to the real world. The concepts involved are easily accessible to undergraduate students with basic knowledge in Operations Research. Through this…

  2. Multi-input and binary reproducible, high bandwidth floating point adder in a collective network

    DOEpatents

    Chen, Dong; Eisley, Noel A.; Heidelberger, Philip; Steinmacher-Burow, Burkhard

    2016-11-15

    To add floating point numbers in a parallel computing system, a collective logic device receives the floating point numbers from computing nodes. The collective logic devices converts the floating point numbers to integer numbers. The collective logic device adds the integer numbers and generating a summation of the integer numbers. The collective logic device converts the summation to a floating point number. The collective logic device performs the receiving, the converting the floating point numbers, the adding, the generating and the converting the summation in one pass. One pass indicates that the computing nodes send inputs only once to the collective logic device and receive outputs only once from the collective logic device.

  3. Finite pure integer programming algorithms employing only hyperspherically deduced cuts

    NASA Technical Reports Server (NTRS)

    Young, R. D.

    1971-01-01

    Three algorithms are developed that may be based exclusively on hyperspherically deduced cuts. The algorithms only apply, therefore, to problems structured so that these cuts are valid. The algorithms are shown to be finite.

  4. Solving large-scale fixed cost integer linear programming models for grid-based location problems with heuristic techniques

    NASA Astrophysics Data System (ADS)

    Noor-E-Alam, Md.; Doucette, John

    2015-08-01

    Grid-based location problems (GBLPs) can be used to solve location problems in business, engineering, resource exploitation, and even in the field of medical sciences. To solve these decision problems, an integer linear programming (ILP) model is designed and developed to provide the optimal solution for GBLPs considering fixed cost criteria. Preliminary results show that the ILP model is efficient in solving small to moderate-sized problems. However, this ILP model becomes intractable in solving large-scale instances. Therefore, a decomposition heuristic is proposed to solve these large-scale GBLPs, which demonstrates significant reduction of solution runtimes. To benchmark the proposed heuristic, results are compared with the exact solution via ILP. The experimental results show that the proposed method significantly outperforms the exact method in runtime with minimal (and in most cases, no) loss of optimality.

  5. Determining inter-system bias of GNSS signals with narrowly spaced frequencies for GNSS positioning

    NASA Astrophysics Data System (ADS)

    Tian, Yumiao; Liu, Zhizhao; Ge, Maorong; Neitzel, Frank

    2017-12-01

    Relative positioning using multi-GNSS (global navigation satellite systems) can improve accuracy, reliability, and availability compared to the use of a single constellation system. Intra-system double-difference (DD) ambiguities (ISDDAs) refer to the DD ambiguities between satellites of a single constellation system and can be fixed to an integer to derive the precise fixed solution. Inter-system ambiguities, which denote the DD ambiguities between different constellation systems, can also be fixed to integers on overlapping frequencies, once the inter-system bias (ISB) is removed. Compared with fixing ISDDAs, fixing both integer intra- and inter-system DD ambiguities (IIDDAs) means an increase of positioning precision through an integration of multiple GNSS constellations. Previously, researchers have studied IIDDA fixing with systems of the same frequencies, but not with systems of different frequencies. Integer IIDDAs can be determined from single-difference (SD) ambiguities, even if the frequencies of multi-GNSS signals used in the positioning are different. In this study, we investigated IIDDA fixing for multi-GNSS signals of narrowly spaced frequencies. First, the inter-system DD models of multi-GNSS signals of different frequencies are introduced, and the strategy for compensating for ISB is presented. The ISB is decomposed into three parts: 1) a float approximate ISB number that can be considered equal to the ISB of code pseudorange observations and thus can be estimated through single point positioning (SPP); 2) a number that is a multiple of the GNSS signal wavelength; and 3) a fractional ISB part, with a magnitude smaller than a single wavelength. Then, the relationship between intra- and inter-system DD ambiguity RATIO values and ISB was investigated by integrating GPS L1 and GLONASS L1 signals. In our numerical analyses with short baselines, the ISB parameter and IIDDA were successfully fixed, even if the number of observed satellites in each system was small.

  6. Puerto Rico water resources planning model program description

    USGS Publications Warehouse

    Moody, D.W.; Maddock, Thomas; Karlinger, M.R.; Lloyd, J.J.

    1973-01-01

    Because the use of the Mathematical Programming System -Extended (MPSX) to solve large linear and mixed integer programs requires the preparation of many input data cards, a matrix generator program to produce the MPSX input data from a much more limited set of data may expedite the use of the mixed integer programming optimization technique. The Model Definition and Control Program (MODCQP) is intended to assist a planner in preparing MPSX input data for the Puerto Rico Water Resources Planning Model. The model utilizes a mixed-integer mathematical program to identify a minimum present cost set of water resources projects (diversions, reservoirs, ground-water fields, desalinization plants, water treatment plants, and inter-basin transfers of water) which will meet a set of future water demands and to determine their sequence of construction. While MODCOP was specifically written to generate MPSX input data for the planning model described in this report, the program can be easily modified to reflect changes in the model's mathematical structure.

  7. A Bayesian Multi-Level Factor Analytic Model of Consumer Price Sensitivities across Categories

    ERIC Educational Resources Information Center

    Duvvuri, Sri Devi; Gruca, Thomas S.

    2010-01-01

    Identifying price sensitive consumers is an important problem in marketing. We develop a Bayesian multi-level factor analytic model of the covariation among household-level price sensitivities across product categories that are substitutes. Based on a multivariate probit model of category incidence, this framework also allows the researcher to…

  8. Strategic planning for disaster recovery with stochastic last mile distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bent, Russell Whitford; Van Hentenryck, Pascal; Coffrin, Carleton

    2010-01-01

    This paper considers the single commodity allocation problem (SCAP) for disaster recovery, a fundamental problem faced by all populated areas. SCAPs are complex stochastic optimization problems that combine resource allocation, warehouse routing, and parallel fleet routing. Moreover, these problems must be solved under tight runtime constraints to be practical in real-world disaster situations. This paper formalizes the specification of SCAPs and introduces a novel multi-stage hybrid-optimization algorithm that utilizes the strengths of mixed integer programming, constraint programming, and large neighborhood search. The algorithm was validated on hurricane disaster scenarios generated by Los Alamos National Laboratory using state-of-the-art disaster simulation toolsmore » and is deployed to aid federal organizations in the US.« less

  9. Large-Scale Multiobjective Static Test Generation for Web-Based Testing with Integer Programming

    ERIC Educational Resources Information Center

    Nguyen, M. L.; Hui, Siu Cheung; Fong, A. C. M.

    2013-01-01

    Web-based testing has become a ubiquitous self-assessment method for online learning. One useful feature that is missing from today's web-based testing systems is the reliable capability to fulfill different assessment requirements of students based on a large-scale question data set. A promising approach for supporting large-scale web-based…

  10. Airborne Tactical Crossload Planner

    DTIC Science & Technology

    2017-12-01

    set out in the Airborne Standard Operating Procedure (ASOP). 14. SUBJECT TERMS crossload, airborne, optimization, integer linear programming ...they land to their respective sub-mission locations. In this thesis, we formulate and implement an integer linear program called the Tactical...to meet any desired crossload objectives. xiv We demonstrate TCP with two real-world tactical problems from recent airborne operations: one by the

  11. Solving mixed integer nonlinear programming problems using spiral dynamics optimization algorithm

    NASA Astrophysics Data System (ADS)

    Kania, Adhe; Sidarto, Kuntjoro Adji

    2016-02-01

    Many engineering and practical problem can be modeled by mixed integer nonlinear programming. This paper proposes to solve the problem with modified spiral dynamics inspired optimization method of Tamura and Yasuda. Four test cases have been examined, including problem in engineering and sport. This method succeeds in obtaining the optimal result in all test cases.

  12. PIPS-SBB: A Parallel Distributed-Memory Branch-and-Bound Algorithm for Stochastic Mixed-Integer Programs

    DOE PAGES

    Munguia, Lluis-Miquel; Oxberry, Geoffrey; Rajan, Deepak

    2016-05-01

    Stochastic mixed-integer programs (SMIPs) deal with optimization under uncertainty at many levels of the decision-making process. When solved as extensive formulation mixed- integer programs, problem instances can exceed available memory on a single workstation. In order to overcome this limitation, we present PIPS-SBB: a distributed-memory parallel stochastic MIP solver that takes advantage of parallelism at multiple levels of the optimization process. We also show promising results on the SIPLIB benchmark by combining methods known for accelerating Branch and Bound (B&B) methods with new ideas that leverage the structure of SMIPs. Finally, we expect the performance of PIPS-SBB to improve furthermore » as more functionality is added in the future.« less

  13. Logic integer programming models for signaling networks.

    PubMed

    Haus, Utz-Uwe; Niermann, Kathrin; Truemper, Klaus; Weismantel, Robert

    2009-05-01

    We propose a static and a dynamic approach to model biological signaling networks, and show how each can be used to answer relevant biological questions. For this, we use the two different mathematical tools of Propositional Logic and Integer Programming. The power of discrete mathematics for handling qualitative as well as quantitative data has so far not been exploited in molecular biology, which is mostly driven by experimental research, relying on first-order or statistical models. The arising logic statements and integer programs are analyzed and can be solved with standard software. For a restricted class of problems the logic models reduce to a polynomial-time solvable satisfiability algorithm. Additionally, a more dynamic model enables enumeration of possible time resolutions in poly-logarithmic time. Computational experiments are included.

  14. Calculating the Mean Amplitude of Glycemic Excursions from Continuous Glucose Data Using an Open-Code Programmable Algorithm Based on the Integer Nonlinear Method.

    PubMed

    Yu, Xuefei; Lin, Liangzhuo; Shen, Jie; Chen, Zhi; Jian, Jun; Li, Bin; Xin, Sherman Xuegang

    2018-01-01

    The mean amplitude of glycemic excursions (MAGE) is an essential index for glycemic variability assessment, which is treated as a key reference for blood glucose controlling at clinic. However, the traditional "ruler and pencil" manual method for the calculation of MAGE is time-consuming and prone to error due to the huge data size, making the development of robust computer-aided program an urgent requirement. Although several software products are available instead of manual calculation, poor agreement among them is reported. Therefore, more studies are required in this field. In this paper, we developed a mathematical algorithm based on integer nonlinear programming. Following the proposed mathematical method, an open-code computer program named MAGECAA v1.0 was developed and validated. The results of the statistical analysis indicated that the developed program was robust compared to the manual method. The agreement among the developed program and currently available popular software is satisfied, indicating that the worry about the disagreement among different software products is not necessary. The open-code programmable algorithm is an extra resource for those peers who are interested in the related study on methodology in the future.

  15. RSM 1.0 user's guide: A resupply scheduler using integer optimization

    NASA Technical Reports Server (NTRS)

    Viterna, Larry A.; Green, Robert D.; Reed, David M.

    1991-01-01

    The Resupply Scheduling Model (RSM) is a PC based, fully menu-driven computer program. It uses integer programming techniques to determine an optimum schedule to replace components on or before a fixed replacement period, subject to user defined constraints such as transportation mass and volume limits or available repair crew time. Principal input for RSJ includes properties such as mass and volume and an assembly sequence. Resource constraints are entered for each period corresponding to the component properties. Though written to analyze the electrical power system on the Space Station Freedom, RSM is quite general and can be used to model the resupply of almost any system subject to user defined resource constraints. Presented here is a step by step procedure for preparing the input, performing the analysis, and interpreting the results. Instructions for installing the program and information on the algorithms are given.

  16. Mixed integer nonlinear programming model of wireless pricing scheme with QoS attribute of bandwidth and end-to-end delay

    NASA Astrophysics Data System (ADS)

    Irmeilyana, Puspita, Fitri Maya; Indrawati

    2016-02-01

    The pricing for wireless networks is developed by considering linearity factors, elasticity price and price factors. Mixed Integer Nonlinear Programming of wireless pricing model is proposed as the nonlinear programming problem that can be solved optimally using LINGO 13.0. The solutions are expected to give some information about the connections between the acceptance factor and the price. Previous model worked on the model that focuses on bandwidth as the QoS attribute. The models attempt to maximize the total price for a connection based on QoS parameter. The QoS attributes used will be the bandwidth and the end to end delay that affect the traffic. The maximum goal to maximum price is achieved when the provider determine the requirement for the increment or decrement of price change due to QoS change and amount of QoS value.

  17. Simultaneous delivery time and aperture shape optimization for the volumetric-modulated arc therapy (VMAT) treatment planning problem

    NASA Astrophysics Data System (ADS)

    Mahnam, Mehdi; Gendreau, Michel; Lahrichi, Nadia; Rousseau, Louis-Martin

    2017-07-01

    In this paper, we propose a novel heuristic algorithm for the volumetric-modulated arc therapy treatment planning problem, optimizing the trade-off between delivery time and treatment quality. We present a new mixed integer programming model in which the multi-leaf collimator leaf positions, gantry speed, and dose rate are determined simultaneously. Our heuristic is based on column generation; the aperture configuration is modeled in the columns and the dose distribution and time restriction in the rows. To reduce the number of voxels and increase the efficiency of the master model, we aggregate similar voxels using a clustering technique. The efficiency of the algorithm and the treatment quality are evaluated on a benchmark clinical prostate cancer case. The computational results show that a high-quality treatment is achievable using a four-thread CPU. Finally, we analyze the effects of the various parameters and two leaf-motion strategies.

  18. Integer Optimization Model for a Logistic System based on Location-Routing Considering Distance and Chosen Route

    NASA Astrophysics Data System (ADS)

    Mulyasari, Joni; Mawengkang, Herman; Efendi, Syahril

    2018-02-01

    In a distribution network it is important to decide the locations of facilities that impacts not only the profitability of an organization but the ability to serve customers.Generally the location-routing problem is to minimize the overall cost by simultaneously selecting a subset of candidate facilities and constructing a set of delivery routes that satisfy some restrictions. In this paper we impose restriction on the route that should be passed for delivery. We use integer programming model to describe the problem. A feasible neighbourhood search is proposed to solve the result model.

  19. Modeling an integrated hospital management planning problem using integer optimization approach

    NASA Astrophysics Data System (ADS)

    Sitepu, Suryati; Mawengkang, Herman; Irvan

    2017-09-01

    Hospital is a very important institution to provide health care for people. It is not surprising that nowadays the people’s demands for hospital is increasing. However, due to the rising cost of healthcare services, hospitals need to consider efficiencies in order to overcome these two problems. This paper deals with an integrated strategy of staff capacity management and bed allocation planning to tackle these problems. Mathematically, the strategy can be modeled as an integer linear programming problem. We solve the model using a direct neighborhood search approach, based on the notion of superbasic variables.

  20. Multi-input and binary reproducible, high bandwidth floating point adder in a collective network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Dong; Eisley, Noel A; Heidelberger, Philip

    To add floating point numbers in a parallel computing system, a collective logic device receives the floating point numbers from computing nodes. The collective logic devices converts the floating point numbers to integer numbers. The collective logic device adds the integer numbers and generating a summation of the integer numbers. The collective logic device converts the summation to a floating point number. The collective logic device performs the receiving, the converting the floating point numbers, the adding, the generating and the converting the summation in one pass. One pass indicates that the computing nodes send inputs only once to themore » collective logic device and receive outputs only once from the collective logic device.« less

  1. 47 CFR 1.2202 - Competitive bidding design options.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Section 1.2202 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL PRACTICE AND PROCEDURE Grants...) Procedures that utilize mathematical computer optimization software, such as integer programming, to evaluate... evaluating bids using a ranking based on specified factors. (B) Procedures that combine computer optimization...

  2. Compute-unified device architecture implementation of a block-matching algorithm for multiple graphical processing unit cards

    PubMed Central

    Massanes, Francesc; Cadennes, Marie; Brankov, Jovan G.

    2012-01-01

    In this paper we describe and evaluate a fast implementation of a classical block matching motion estimation algorithm for multiple Graphical Processing Units (GPUs) using the Compute Unified Device Architecture (CUDA) computing engine. The implemented block matching algorithm (BMA) uses summed absolute difference (SAD) error criterion and full grid search (FS) for finding optimal block displacement. In this evaluation we compared the execution time of a GPU and CPU implementation for images of various sizes, using integer and non-integer search grids. The results show that use of a GPU card can shorten computation time by a factor of 200 times for integer and 1000 times for a non-integer search grid. The additional speedup for non-integer search grid comes from the fact that GPU has built-in hardware for image interpolation. Further, when using multiple GPU cards, the presented evaluation shows the importance of the data splitting method across multiple cards, but an almost linear speedup with a number of cards is achievable. In addition we compared execution time of the proposed FS GPU implementation with two existing, highly optimized non-full grid search CPU based motion estimations methods, namely implementation of the Pyramidal Lucas Kanade Optical flow algorithm in OpenCV and Simplified Unsymmetrical multi-Hexagon search in H.264/AVC standard. In these comparisons, FS GPU implementation still showed modest improvement even though the computational complexity of FS GPU implementation is substantially higher than non-FS CPU implementation. We also demonstrated that for an image sequence of 720×480 pixels in resolution, commonly used in video surveillance, the proposed GPU implementation is sufficiently fast for real-time motion estimation at 30 frames-per-second using two NVIDIA C1060 Tesla GPU cards. PMID:22347787

  3. Compute-unified device architecture implementation of a block-matching algorithm for multiple graphical processing unit cards.

    PubMed

    Massanes, Francesc; Cadennes, Marie; Brankov, Jovan G

    2011-07-01

    In this paper we describe and evaluate a fast implementation of a classical block matching motion estimation algorithm for multiple Graphical Processing Units (GPUs) using the Compute Unified Device Architecture (CUDA) computing engine. The implemented block matching algorithm (BMA) uses summed absolute difference (SAD) error criterion and full grid search (FS) for finding optimal block displacement. In this evaluation we compared the execution time of a GPU and CPU implementation for images of various sizes, using integer and non-integer search grids.The results show that use of a GPU card can shorten computation time by a factor of 200 times for integer and 1000 times for a non-integer search grid. The additional speedup for non-integer search grid comes from the fact that GPU has built-in hardware for image interpolation. Further, when using multiple GPU cards, the presented evaluation shows the importance of the data splitting method across multiple cards, but an almost linear speedup with a number of cards is achievable.In addition we compared execution time of the proposed FS GPU implementation with two existing, highly optimized non-full grid search CPU based motion estimations methods, namely implementation of the Pyramidal Lucas Kanade Optical flow algorithm in OpenCV and Simplified Unsymmetrical multi-Hexagon search in H.264/AVC standard. In these comparisons, FS GPU implementation still showed modest improvement even though the computational complexity of FS GPU implementation is substantially higher than non-FS CPU implementation.We also demonstrated that for an image sequence of 720×480 pixels in resolution, commonly used in video surveillance, the proposed GPU implementation is sufficiently fast for real-time motion estimation at 30 frames-per-second using two NVIDIA C1060 Tesla GPU cards.

  4. The Capability Portfolio Analysis Tool (CPAT): A Mixed Integer Linear Programming Formulation for Fleet Modernization Analysis (Version 2.0.2).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waddell, Lucas; Muldoon, Frank; Henry, Stephen Michael

    In order to effectively plan the management and modernization of their large and diverse fleets of vehicles, Program Executive Office Ground Combat Systems (PEO GCS) and Program Executive Office Combat Support and Combat Service Support (PEO CS&CSS) commis- sioned the development of a large-scale portfolio planning optimization tool. This software, the Capability Portfolio Analysis Tool (CPAT), creates a detailed schedule that optimally prioritizes the modernization or replacement of vehicles within the fleet - respecting numerous business rules associated with fleet structure, budgets, industrial base, research and testing, etc., while maximizing overall fleet performance through time. This paper contains a thor-more » ough documentation of the terminology, parameters, variables, and constraints that comprise the fleet management mixed integer linear programming (MILP) mathematical formulation. This paper, which is an update to the original CPAT formulation document published in 2015 (SAND2015-3487), covers the formulation of important new CPAT features.« less

  5. Determination of optimum values for maximizing the profit in bread production: Daily bakery Sdn Bhd

    NASA Astrophysics Data System (ADS)

    Muda, Nora; Sim, Raymond

    2015-02-01

    An integer programming problem is a mathematical optimization or feasibility program in which some or all of the variables are restricted to be integers. In many settings the term refers to integer linear programming (ILP), in which the objective function and the constraints (other than the integer constraints) are linear. An ILP has many applications in industrial production, including job-shop modelling. A possible objective is to maximize the total production, without exceeding the available resources. In some cases, this can be expressed in terms of a linear program, but variables must be constrained to be integer. It concerned with the optimization of a linear function while satisfying a set of linear equality and inequality constraints and restrictions. It has been used to solve optimization problem in many industries area such as banking, nutrition, agriculture, and bakery and so on. The main purpose of this study is to formulate the best combination of all ingredients in producing different type of bread in Daily Bakery in order to gain maximum profit. This study also focuses on the sensitivity analysis due to changing of the profit and the cost of each ingredient. The optimum result obtained from QM software is RM 65,377.29 per day. This study will be benefited for Daily Bakery and also other similar industries. By formulating a combination of all ingredients make up, they can easily know their total profit in producing bread everyday.

  6. Between unemployment and employment: experience of unemployed long-term pain sufferers.

    PubMed

    Glavare, Maria; Löfgren, Monika; Schult, Marie-Louise

    2012-01-01

    This study explored and analysed how patients experienced possibilities for, and barriers to, work return after participation in a multi-professional pain-rehabilitation program followed by a coached work-training program (CWT). Eleven informants (8 women/3 men) with long-term musculoskeletal pain who had participated in the CWT program for 4-21 months (mean=11) comprised the study. A qualitative emergent design was used. Data collected with interviews were analysed using the constant comparison method of grounded theory. Triangulation in researchers were used. The analyses of the interviews resulted in the development of a three-category theoretical model, which was named "a way back to work". The main category "Experience of a way back to work" consisted of the informants' experience during the process between unemployment and employment. The category "Support" describes the help the informants received from various actors, and the category "Negative response" describes negative responses from the actors involved, which was an important barrier in the process between unemployment and employment. Professional individualised support, participants feeling involved in their rehabilitation process, coaching at real workplaces and multi-professional team including health care personnel, were valuable during the process towards work.

  7. Interplay of Hofstadter and quantum Hall states in bilayer graphene

    NASA Astrophysics Data System (ADS)

    Spanton, Eric M.; Zibrov, Alexander A.; Zhou, Haoxin; Taniguchi, Takashi; Watanabe, Kenji; Young, Andrea

    Electron interactions in ultraclean systems such as graphene lead to the fractional quantum Hall effect in an applied magnetic field. Long wavelength periodic potentials from a moiré pattern in aligned boron nitride-graphene heterostructures may compete with such interactions and favor spatially ordered states (e.g. Wigner crystals orcharge density waves). To investigate this competition, we studied the bulk phase diagram of asymmetrically moiré-coupled bilayer graphene via multi-terminal magnetocapacitance measurements at ultra-high magnetic fields. Two quantum numbers characterize energy gaps in this regime: t, which indexes the Bloch bands, and s, which indexes the Landau level. Similar to past experiments, we observe the conventional integer and fractional quantum Hall gaps (t = 0), integer Hofstadter gaps (integer s and integer t ≠ 0), and fractional Bloch states associated with an expanded superlattice unit cell (fractional s and integer t). Additionally, we find states with fractional values for both s and t. Measurement of the capacitance matrix shows that these states occur on the layer exposed to the strong periodic potential. We discuss the results in terms of possible fractional quantum hall states unique to periodically modulated systems.

  8. An improved exploratory search technique for pure integer linear programming problems

    NASA Technical Reports Server (NTRS)

    Fogle, F. R.

    1990-01-01

    The development is documented of a heuristic method for the solution of pure integer linear programming problems. The procedure draws its methodology from the ideas of Hooke and Jeeves type 1 and 2 exploratory searches, greedy procedures, and neighborhood searches. It uses an efficient rounding method to obtain its first feasible integer point from the optimal continuous solution obtained via the simplex method. Since this method is based entirely on simple addition or subtraction of one to each variable of a point in n-space and the subsequent comparison of candidate solutions to a given set of constraints, it facilitates significant complexity improvements over existing techniques. It also obtains the same optimal solution found by the branch-and-bound technique in 44 of 45 small to moderate size test problems. Two example problems are worked in detail to show the inner workings of the method. Furthermore, using an established weighted scheme for comparing computational effort involved in an algorithm, a comparison of this algorithm is made to the more established and rigorous branch-and-bound method. A computer implementation of the procedure, in PC compatible Pascal, is also presented and discussed.

  9. A Novel Optimal Joint Resource Allocation Method in Cooperative Multicarrier Networks: Theory and Practice

    PubMed Central

    Gao, Yuan; Zhou, Weigui; Ao, Hong; Chu, Jian; Zhou, Quan; Zhou, Bo; Wang, Kang; Li, Yi; Xue, Peng

    2016-01-01

    With the increasing demands for better transmission speed and robust quality of service (QoS), the capacity constrained backhaul gradually becomes a bottleneck in cooperative wireless networks, e.g., in the Internet of Things (IoT) scenario in joint processing mode of LTE-Advanced Pro. This paper focuses on resource allocation within capacity constrained backhaul in uplink cooperative wireless networks, where two base stations (BSs) equipped with single antennae serve multiple single-antennae users via multi-carrier transmission mode. In this work, we propose a novel cooperative transmission scheme based on compress-and-forward with user pairing to solve the joint mixed integer programming problem. To maximize the system capacity under the limited backhaul, we formulate the joint optimization problem of user sorting, subcarrier mapping and backhaul resource sharing among different pairs (subcarriers for users). A novel robust and efficient centralized algorithm based on alternating optimization strategy and perfect mapping is proposed. Simulations show that our novel method can improve the system capacity significantly under the constraint of the backhaul resource compared with the blind alternatives. PMID:27077865

  10. Optimization Research of Generation Investment Based on Linear Programming Model

    NASA Astrophysics Data System (ADS)

    Wu, Juan; Ge, Xueqian

    Linear programming is an important branch of operational research and it is a mathematical method to assist the people to carry out scientific management. GAMS is an advanced simulation and optimization modeling language and it will combine a large number of complex mathematical programming, such as linear programming LP, nonlinear programming NLP, MIP and other mixed-integer programming with the system simulation. In this paper, based on the linear programming model, the optimized investment decision-making of generation is simulated and analyzed. At last, the optimal installed capacity of power plants and the final total cost are got, which provides the rational decision-making basis for optimized investments.

  11. An MILP-based cross-layer optimization for a multi-reader arbitration in the UHF RFID system.

    PubMed

    Choi, Jinchul; Lee, Chaewoo

    2011-01-01

    In RFID systems, the performance of each reader such as interrogation range and tag recognition rate may suffer from interferences from other readers. Since the reader interference can be mitigated by output signal power control, spectral and/or temporal separation among readers, the system performance depends on how to adapt the various reader arbitration metrics such as time, frequency, and output power to the system environment. However, complexity and difficulty of the optimization problem increase with respect to the variety of the arbitration metrics. Thus, most proposals in previous study have been suggested to primarily prevent the reader collision with consideration of one or two arbitration metrics. In this paper, we propose a novel cross-layer optimization design based on the concept of combining time division, frequency division, and power control not only to solve the reader interference problem, but also to achieve the multiple objectives such as minimum interrogation delay, maximum reader utilization, and energy efficiency. Based on the priority of the multiple objectives, our cross-layer design optimizes the system sequentially by means of the mixed-integer linear programming. In spite of the multi-stage optimization, the optimization design is formulated as a concise single mathematical form by properly assigning a weight to each objective. Numerical results demonstrate the effectiveness of the proposed optimization design.

  12. An MILP-Based Cross-Layer Optimization for a Multi-Reader Arbitration in the UHF RFID System

    PubMed Central

    Choi, Jinchul; Lee, Chaewoo

    2011-01-01

    In RFID systems, the performance of each reader such as interrogation range and tag recognition rate may suffer from interferences from other readers. Since the reader interference can be mitigated by output signal power control, spectral and/or temporal separation among readers, the system performance depends on how to adapt the various reader arbitration metrics such as time, frequency, and output power to the system environment. However, complexity and difficulty of the optimization problem increase with respect to the variety of the arbitration metrics. Thus, most proposals in previous study have been suggested to primarily prevent the reader collision with consideration of one or two arbitration metrics. In this paper, we propose a novel cross-layer optimization design based on the concept of combining time division, frequency division, and power control not only to solve the reader interference problem, but also to achieve the multiple objectives such as minimum interrogation delay, maximum reader utilization, and energy efficiency. Based on the priority of the multiple objectives, our cross-layer design optimizes the system sequentially by means of the mixed-integer linear programming. In spite of the multi-stage optimization, the optimization design is formulated as a concise single mathematical form by properly assigning a weight to each objective. Numerical results demonstrate the effectiveness of the proposed optimization design. PMID:22163743

  13. An interval-parameter mixed integer multi-objective programming for environment-oriented evacuation management

    NASA Astrophysics Data System (ADS)

    Wu, C. Z.; Huang, G. H.; Yan, X. P.; Cai, Y. P.; Li, Y. P.

    2010-05-01

    Large crowds are increasingly common at political, social, economic, cultural and sports events in urban areas. This has led to attention on the management of evacuations under such situations. In this study, we optimise an approximation method for vehicle allocation and route planning in case of an evacuation. This method, based on an interval-parameter multi-objective optimisation model, has potential for use in a flexible decision support system for evacuation management. The modeling solutions are obtained by sequentially solving two sub-models corresponding to lower- and upper-bounds for the desired objective function value. The interval solutions are feasible and stable in the given decision space, and this may reduce the negative effects of uncertainty, thereby improving decision makers' estimates under different conditions. The resulting model can be used for a systematic analysis of the complex relationships among evacuation time, cost and environmental considerations. The results of a case study used to validate the proposed model show that the model does generate useful solutions for planning evacuation management and practices. Furthermore, these results are useful for evacuation planners, not only in making vehicle allocation decisions but also for providing insight into the tradeoffs among evacuation time, environmental considerations and economic objectives.

  14. Instantaneous and controllable integer ambiguity resolution: review and an alternative approach

    NASA Astrophysics Data System (ADS)

    Zhang, Jingyu; Wu, Meiping; Li, Tao; Zhang, Kaidong

    2015-11-01

    In the high-precision application of Global Navigation Satellite System (GNSS), integer ambiguity resolution is the key step to realize precise positioning and attitude determination. As the necessary part of quality control, integer aperture (IA) ambiguity resolution provides the theoretical and practical foundation for ambiguity validation. It is mainly realized by acceptance testing. Due to the constraint of correlation between ambiguities, it is impossible to realize the controlling of failure rate according to analytical formula. Hence, the fixed failure rate approach is implemented by Monte Carlo sampling. However, due to the characteristics of Monte Carlo sampling and look-up table, we have to face the problem of a large amount of time consumption if sufficient GNSS scenarios are included in the creation of look-up table. This restricts the fixed failure rate approach to be a post process approach if a look-up table is not available. Furthermore, if not enough GNSS scenarios are considered, the table may only be valid for a specific scenario or application. Besides this, the method of creating look-up table or look-up function still needs to be designed for each specific acceptance test. To overcome these problems in determination of critical values, this contribution will propose an instantaneous and CONtrollable (iCON) IA ambiguity resolution approach for the first time. The iCON approach has the following advantages: (a) critical value of acceptance test is independently determined based on the required failure rate and GNSS model without resorting to external information such as look-up table; (b) it can be realized instantaneously for most of IA estimators which have analytical probability formulas. The stronger GNSS model, the less time consumption; (c) it provides a new viewpoint to improve the research about IA estimation. To verify these conclusions, multi-frequency and multi-GNSS simulation experiments are implemented. Those results show that IA estimators based on iCON approach can realize controllable ambiguity resolution. Besides this, compared with ratio test IA based on look-up table, difference test IA and IA least square based on the iCON approach most of times have higher success rates and better controllability to failure rates.

  15. Adverse Childhood Experiences and Childhood Autobiographical Memory Disturbance

    ERIC Educational Resources Information Center

    Brown, David W.; Anda, Robert F.; Edwards, Valerie J.; Felitti, Vincent J.; Dube, Shanta R.; Giles, Wayne H.

    2007-01-01

    Objective: To examine relationships between childhood autobiographical memory disturbance (CAMD) and adverse childhood experiences (ACEs) which are defined as common forms of child maltreatment and related traumatic stressors. Methods: We use the ACE score (an integer count of eight different categories of ACEs) as a measure of cumulative exposure…

  16. Efficiency and Flexibility of Indirect Addition in the Domain of Multi-Digit Subtraction

    ERIC Educational Resources Information Center

    Torbeyns, Joke; Ghesquiere, Pol; Verschaffel, Lieven

    2009-01-01

    This article discusses the characteristics of the indirect addition strategy (IA) in the domain of multi-digit subtraction. In two studies, adults' use of IA on three-digit subtractions with a small, medium, or large difference between the integers was analysed using the choice/no-choice method. Results from both studies indicate that adults…

  17. Secure multi-party quantum summation based on quantum Fourier transform

    NASA Astrophysics Data System (ADS)

    Yang, Hui-Yi; Ye, Tian-Yu

    2018-06-01

    In this paper, we propose a novel secure multi-party quantum summation protocol based on quantum Fourier transform, where the traveling particles are transmitted in a tree-type mode. The party who prepares the initial quantum states is assumed to be semi-honest, which means that she may misbehave on her own but will not conspire with anyone. The proposed protocol can resist both the outside attacks and the participant attacks. Especially, one party cannot obtain other parties' private integer strings; and it is secure for the colluding attack performed by at most n - 2 parties, where n is the number of parties. In addition, the proposed protocol calculates the addition of modulo d and implements the calculation of addition in a secret-by-secret way rather than a bit-by-bit way.

  18. A multi-period optimization model for energy planning with CO(2) emission consideration.

    PubMed

    Mirzaesmaeeli, H; Elkamel, A; Douglas, P L; Croiset, E; Gupta, M

    2010-05-01

    A novel deterministic multi-period mixed-integer linear programming (MILP) model for the power generation planning of electric systems is described and evaluated in this paper. The model is developed with the objective of determining the optimal mix of energy supply sources and pollutant mitigation options that meet a specified electricity demand and CO(2) emission targets at minimum cost. Several time-dependent parameters are included in the model formulation; they include forecasted energy demand, fuel price variability, construction lead time, conservation initiatives, and increase in fixed operational and maintenance costs over time. The developed model is applied to two case studies. The objective of the case studies is to examine the economical, structural, and environmental effects that would result if the electricity sector was required to reduce its CO(2) emissions to a specified limit. Copyright 2009 Elsevier Ltd. All rights reserved.

  19. Multi-faceted Rasch measurement and bias patterns in EFL writing performance assessment.

    PubMed

    He, Tung-Hsien; Gou, Wen Johnny; Chien, Ya-Chen; Chen, I-Shan Jenny; Chang, Shan-Mao

    2013-04-01

    This study applied multi-faceted Rasch measurement to examine rater bias in the assessment of essays written by college students learning English as a foreign language. Four raters who had received different academic training from four distinctive disciplines applied a six-category rating scale to analytically rate essays on an argumentative topic and on a descriptive topic. FACETS, a Rasch computer program, was utilized to pinpoint bias patterns by analyzing the rater-topic, rater-category, and topic-category interactions. Results showed: argumentative essays were rated more severely than were descriptive essays; the linguistics-major rater was the most lenient rater, while the literature-major rater was the severest one; and the category of language use received the severest ratings, whereas content was given the most lenient ratings. The severity hierarchies for raters, essay topics, and rating categories suggested that raters' academic training and their perceptions of the importance of categories were associated with their bias patterns. Implications for rater training are discussed.

  20. Currency arbitrage detection using a binary integer programming model

    NASA Astrophysics Data System (ADS)

    Soon, Wanmei; Ye, Heng-Qing

    2011-04-01

    In this article, we examine the use of a new binary integer programming (BIP) model to detect arbitrage opportunities in currency exchanges. This model showcases an excellent application of mathematics to the real world. The concepts involved are easily accessible to undergraduate students with basic knowledge in Operations Research. Through this work, students can learn to link several types of basic optimization models, namely linear programming, integer programming and network models, and apply the well-known sensitivity analysis procedure to accommodate realistic changes in the exchange rates. Beginning with a BIP model, we discuss how it can be reduced to an equivalent but considerably simpler model, where an efficient algorithm can be applied to find the arbitrages and incorporate the sensitivity analysis procedure. A simple comparison is then made with a different arbitrage detection model. This exercise helps students learn to apply basic Operations Research concepts to a practical real-life example, and provides insights into the processes involved in Operations Research model formulations.

  1. Mixed Integer Programming and Heuristic Scheduling for Space Communication Networks

    NASA Technical Reports Server (NTRS)

    Cheung, Kar-Ming; Lee, Charles H.

    2012-01-01

    We developed framework and the mathematical formulation for optimizing communication network using mixed integer programming. The design yields a system that is much smaller, in search space size, when compared to the earlier approach. Our constrained network optimization takes into account the dynamics of link performance within the network along with mission and operation requirements. A unique penalty function is introduced to transform the mixed integer programming into the more manageable problem of searching in a continuous space. The constrained optimization problem was proposed to solve in two stages: first using the heuristic Particle Swarming Optimization algorithm to get a good initial starting point, and then feeding the result into the Sequential Quadratic Programming algorithm to achieve the final optimal schedule. We demonstrate the above planning and scheduling methodology with a scenario of 20 spacecraft and 3 ground stations of a Deep Space Network site. Our approach and framework have been simple and flexible so that problems with larger number of constraints and network can be easily adapted and solved.

  2. An Interactive Artificial Cutting Plane Method for Bicriterion Integer Programming Problems

    DTIC Science & Technology

    1992-08-01

    AUTHOR(S) Diane Breivik Allen, 1st Lt 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER AFIT Student Attending...INTERACTIVE ARTIFICIAL CUTTING PLANE METHOD FOR BICRITERION INTEGER PROGRAMMING PROBLEMS By Diane Breivik Allen A Thesis Submitted to the Faculty of...ITfiSRA&1 DTIC TAB 0 Unannounced 0 Justirication By BY Diane Breivik Allen Distributlon/ Availability CQdes Avail and/or Dist Special Approved: DTI

  3. Enhanced index tracking modeling in portfolio optimization with mixed-integer programming z approach

    NASA Astrophysics Data System (ADS)

    Siew, Lam Weng; Jaaman, Saiful Hafizah Hj.; Ismail, Hamizun bin

    2014-09-01

    Enhanced index tracking is a popular form of portfolio management in stock market investment. Enhanced index tracking aims to construct an optimal portfolio to generate excess return over the return achieved by the stock market index without purchasing all of the stocks that make up the index. The objective of this paper is to construct an optimal portfolio using mixed-integer programming model which adopts regression approach in order to generate higher portfolio mean return than stock market index return. In this study, the data consists of 24 component stocks in Malaysia market index which is FTSE Bursa Malaysia Kuala Lumpur Composite Index from January 2010 until December 2012. The results of this study show that the optimal portfolio of mixed-integer programming model is able to generate higher mean return than FTSE Bursa Malaysia Kuala Lumpur Composite Index return with only selecting 30% out of the total stock market index components.

  4. Item Selection for the Development of Parallel Forms from an IRT-Based Seed Test Using a Sampling and Classification Approach

    ERIC Educational Resources Information Center

    Chen, Pei-Hua; Chang, Hua-Hua; Wu, Haiyan

    2012-01-01

    Two sampling-and-classification-based procedures were developed for automated test assembly: the Cell Only and the Cell and Cube methods. A simulation study based on a 540-item bank was conducted to compare the performance of the procedures with the performance of a mixed-integer programming (MIP) method for assembling multiple parallel test…

  5. Optimum use of air tankers in initial attack: selection, basing, and transfer rules

    Treesearch

    Francis E. Greulich; William G. O' Regan

    1982-01-01

    Fire managers face two interrelated problems in deciding the most efficient use of air tankers: where best to base them, and how best to reallocate them each day in anticipation of fire occurrence. A computerized model based on a mixed integer linear program can help in assigning air tankers throughout the fire season. The model was tested using information from...

  6. Chromosome structures: reduction of certain problems with unequal gene content and gene paralogs to integer linear programming.

    PubMed

    Lyubetsky, Vassily; Gershgorin, Roman; Gorbunov, Konstantin

    2017-12-06

    Chromosome structure is a very limited model of the genome including the information about its chromosomes such as their linear or circular organization, the order of genes on them, and the DNA strand encoding a gene. Gene lengths, nucleotide composition, and intergenic regions are ignored. Although highly incomplete, such structure can be used in many cases, e.g., to reconstruct phylogeny and evolutionary events, to identify gene synteny, regulatory elements and promoters (considering highly conserved elements), etc. Three problems are considered; all assume unequal gene content and the presence of gene paralogs. The distance problem is to determine the minimum number of operations required to transform one chromosome structure into another and the corresponding transformation itself including the identification of paralogs in two structures. We use the DCJ model which is one of the most studied combinatorial rearrangement models. Double-, sesqui-, and single-operations as well as deletion and insertion of a chromosome region are considered in the model; the single ones comprise cut and join. In the reconstruction problem, a phylogenetic tree with chromosome structures in the leaves is given. It is necessary to assign the structures to inner nodes of the tree to minimize the sum of distances between terminal structures of each edge and to identify the mutual paralogs in a fairly large set of structures. A linear algorithm is known for the distance problem without paralogs, while the presence of paralogs makes it NP-hard. If paralogs are allowed but the insertion and deletion operations are missing (and special constraints are imposed), the reduction of the distance problem to integer linear programming is known. Apparently, the reconstruction problem is NP-hard even in the absence of paralogs. The problem of contigs is to find the optimal arrangements for each given set of contigs, which also includes the mutual identification of paralogs. We proved that these problems can be reduced to integer linear programming formulations, which allows an algorithm to redefine the problems to implement a very special case of the integer linear programming tool. The results were tested on synthetic and biological samples. Three well-known problems were reduced to a very special case of integer linear programming, which is a new method of their solutions. Integer linear programming is clearly among the main computational methods and, as generally accepted, is fast on average; in particular, computation systems specifically targeted at it are available. The challenges are to reduce the size of the corresponding integer linear programming formulations and to incorporate a more detailed biological concept in our model of the reconstruction.

  7. On the composition of an arbitrary collection of SU(2) spins: an enumerative combinatoric approach

    NASA Astrophysics Data System (ADS)

    Gyamfi, J. A.; Barone, V.

    2018-03-01

    The whole enterprise of spin compositions can be recast as simple enumerative combinatoric problems. We show here that enumerative combinatorics (Stanley 2011 Enumerative Combinatorics (Cambridge Studies in Advanced Mathematics vol 1) (Cambridge: Cambridge University Press)) is a natural setting for spin composition, and easily leads to very general analytic formulae—many of which hitherto not present in the literature. Based on it, we propose three general methods for computing spin multiplicities; namely, (1) the multi-restricted composition, (2) the generalized binomial and (3) the generating function methods. Symmetric and anti-symmetric compositions of SU(2) spins are also discussed, using generating functions. Of particular importance is the observation that while the common Clebsch-Gordan decomposition—which considers the spins as distinguishable—is related to integer compositions, the symmetric and anti-symmetric compositions (where one considers the spins as indistinguishable) are obtained considering integer partitions. The integers in question here are none other than the occupation numbers of the Holstein-Primakoff bosons. The pervasiveness of q-analogues in our approach is a testament to the fundamental role they play in spin compositions. In the appendix, some new results in the power series representation of Gaussian polynomials (or q-binomial coefficients)—relevant to symmetric and antisymmetric compositions—are presented.

  8. A Generalized National Planning Approach for Admission Capacity in Higher Education: A Nonlinear Integer Goal Programming Model with a Novel Differential Evolution Algorithm

    PubMed Central

    El-Qulity, Said Ali; Mohamed, Ali Wagdy

    2016-01-01

    This paper proposes a nonlinear integer goal programming model (NIGPM) for solving the general problem of admission capacity planning in a country as a whole. The work aims to satisfy most of the required key objectives of a country related to the enrollment problem for higher education. The system general outlines are developed along with the solution methodology for application to the time horizon in a given plan. The up-to-date data for Saudi Arabia is used as a case study and a novel evolutionary algorithm based on modified differential evolution (DE) algorithm is used to solve the complexity of the NIGPM generated for different goal priorities. The experimental results presented in this paper show their effectiveness in solving the admission capacity for higher education in terms of final solution quality and robustness. PMID:26819583

  9. A Generalized National Planning Approach for Admission Capacity in Higher Education: A Nonlinear Integer Goal Programming Model with a Novel Differential Evolution Algorithm.

    PubMed

    El-Qulity, Said Ali; Mohamed, Ali Wagdy

    2016-01-01

    This paper proposes a nonlinear integer goal programming model (NIGPM) for solving the general problem of admission capacity planning in a country as a whole. The work aims to satisfy most of the required key objectives of a country related to the enrollment problem for higher education. The system general outlines are developed along with the solution methodology for application to the time horizon in a given plan. The up-to-date data for Saudi Arabia is used as a case study and a novel evolutionary algorithm based on modified differential evolution (DE) algorithm is used to solve the complexity of the NIGPM generated for different goal priorities. The experimental results presented in this paper show their effectiveness in solving the admission capacity for higher education in terms of final solution quality and robustness.

  10. Discovery of Boolean metabolic networks: integer linear programming based approach.

    PubMed

    Qiu, Yushan; Jiang, Hao; Ching, Wai-Ki; Cheng, Xiaoqing

    2018-04-11

    Traditional drug discovery methods focused on the efficacy of drugs rather than their toxicity. However, toxicity and/or lack of efficacy are produced when unintended targets are affected in metabolic networks. Thus, identification of biological targets which can be manipulated to produce the desired effect with minimum side-effects has become an important and challenging topic. Efficient computational methods are required to identify the drug targets while incurring minimal side-effects. In this paper, we propose a graph-based computational damage model that summarizes the impact of enzymes on compounds in metabolic networks. An efficient method based on Integer Linear Programming formalism is then developed to identify the optimal enzyme-combination so as to minimize the side-effects. The identified target enzymes for known successful drugs are then verified by comparing the results with those in the existing literature. Side-effects reduction plays a crucial role in the study of drug development. A graph-based computational damage model is proposed and the theoretical analysis states the captured problem is NP-completeness. The proposed approaches can therefore contribute to the discovery of drug targets. Our developed software is available at " http://hkumath.hku.hk/~wkc/APBC2018-metabolic-network.zip ".

  11. On the estimability of parameters in undifferenced, uncombined GNSS network and PPP-RTK user models by means of $mathcal {S}$ S -system theory

    NASA Astrophysics Data System (ADS)

    Odijk, Dennis; Zhang, Baocheng; Khodabandeh, Amir; Odolinski, Robert; Teunissen, Peter J. G.

    2016-01-01

    The concept of integer ambiguity resolution-enabled Precise Point Positioning (PPP-RTK) relies on appropriate network information for the parameters that are common between the single-receiver user that applies and the network that provides this information. Most of the current methods for PPP-RTK are based on forming the ionosphere-free combination using dual-frequency Global Navigation Satellite System (GNSS) observations. These methods are therefore restrictive in the light of the development of new multi-frequency GNSS constellations, as well as from the point of view that the PPP-RTK user requires ionospheric corrections to obtain integer ambiguity resolution results based on short observation time spans. The method for PPP-RTK that is presented in this article does not have above limitations as it is based on the undifferenced, uncombined GNSS observation equations, thereby keeping all parameters in the model. Working with the undifferenced observation equations implies that the models are rank-deficient; not all parameters are unbiasedly estimable, but only combinations of them. By application of S-system theory the model is made of full rank by constraining a minimum set of parameters, or S-basis. The choice of this S-basis determines the estimability and the interpretation of the parameters that are transmitted to the PPP-RTK users. As this choice is not unique, one has to be very careful when comparing network solutions in different S-systems; in that case the S-transformation, which is provided by the S-system method, should be used to make the comparison. Knowing the estimability and interpretation of the parameters estimated by the network is shown to be crucial for a correct interpretation of the estimable PPP-RTK user parameters, among others the essential ambiguity parameters, which have the integer property which is clearly following from the interpretation of satellite phase biases from the network. The flexibility of the S-system method is furthermore demonstrated by the fact that all models in this article are derived in multi-epoch mode, allowing to incorporate dynamic model constraints on all or subsets of parameters.

  12. Distributing Earthquakes Among California's Faults: A Binary Integer Programming Approach

    NASA Astrophysics Data System (ADS)

    Geist, E. L.; Parsons, T.

    2016-12-01

    Statement of the problem is simple: given regional seismicity specified by a Gutenber-Richter (G-R) relation, how are earthquakes distributed to match observed fault-slip rates? The objective is to determine the magnitude-frequency relation on individual faults. The California statewide G-R b-value and a-value are estimated from historical seismicity, with the a-value accounting for off-fault seismicity. UCERF3 consensus slip rates are used, based on geologic and geodetic data and include estimates of coupling coefficients. The binary integer programming (BIP) problem is set up such that each earthquake from a synthetic catalog spanning millennia can occur at any location along any fault. The decision vector, therefore, consists of binary variables, with values equal to one indicating the location of each earthquake that results in an optimal match of slip rates, in an L1-norm sense. Rupture area and slip associated with each earthquake are determined from a magnitude-area scaling relation. Uncertainty bounds on the UCERF3 slip rates provide explicit minimum and maximum constraints to the BIP model, with the former more important to feasibility of the problem. There is a maximum magnitude limit associated with each fault, based on fault length, providing an implicit constraint. Solution of integer programming problems with a large number of variables (>105 in this study) has been possible only since the late 1990s. In addition to the classic branch-and-bound technique used for these problems, several other algorithms have been recently developed, including pre-solving, sifting, cutting planes, heuristics, and parallelization. An optimal solution is obtained using a state-of-the-art BIP solver for M≥6 earthquakes and California's faults with slip-rates > 1 mm/yr. Preliminary results indicate a surprising diversity of on-fault magnitude-frequency relations throughout the state.

  13. Determining the optimal number of Kanban in multi-products supply chain system

    NASA Astrophysics Data System (ADS)

    Widyadana, G. A.; Wee, H. M.; Chang, Jer-Yuan

    2010-02-01

    Kanban, a key element of just-in-time system, is a re-order card or signboard giving instruction or triggering the pull system to manufacture or supply a component based on actual usage of material. There are two types of Kanban: production Kanban and withdrawal Kanban. This study uses optimal and meta-heuristic methods to determine the Kanban quantity and withdrawal lot sizes in a supply chain system. Although the mix integer programming method gives an optimal solution, it is not time efficient. For this reason, the meta-heuristic methods are suggested. In this study, a genetic algorithm (GA) and a hybrid of genetic algorithm and simulated annealing (GASA) are used. The study compares the performance of GA and GASA with that of the optimal method using MIP. The given problems show that both GA and GASA result in a near optimal solution, and they outdo the optimal method in term of run time. In addition, the GASA heuristic method gives a better performance than the GA heuristic method.

  14. A uniform LMI formulation for tuning PID, multi-term fractional-order PID, and Tilt-Integral-Derivative (TID) for integer and fractional-order processes.

    PubMed

    Merrikh-Bayat, Farshad

    2017-05-01

    In this paper first the Multi-term Fractional-Order PID (MFOPID) whose transfer function is equal to [Formula: see text] , where k j and α j are unknown and known real parameters respectively, is introduced. Without any loss of generality, a special form of MFOPID with transfer function k p +k i /s+k d1 s+k d2 s μ where k p , k i , k d1 , and k d2 are unknown real and μ is a known positive real parameter, is considered. Similar to PID and TID, MFOPID is also linear in its parameters which makes it possible to study all of them in a same framework. Tuning the parameters of PID, TID, and MFOPID based on loop shaping using Linear Matrix Inequalities (LMIs) is discussed. For this purpose separate LMIs for closed-loop stability (of sufficient type) and adjusting different aspects of the open-loop frequency response are developed. The proposed LMIs for stability are obtained based on the Nyquist stability theorem and can be applied to both integer and fractional-order (not necessarily commensurate) processes which are either stable or have one unstable pole. Numerical simulations show that the performance of the four-variable MFOPID can compete the trivial five-variable FOPID and often excels PID and TID. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Alternative mathematical programming formulations for FSS synthesis

    NASA Technical Reports Server (NTRS)

    Reilly, C. H.; Mount-Campbell, C. A.; Gonsalvez, D. J. A.; Levis, C. A.

    1986-01-01

    A variety of mathematical programming models and two solution strategies are suggested for the problem of allocating orbital positions to (synthesizing) satellites in the Fixed Satellite Service. Mixed integer programming and almost linear programming formulations are presented in detail for each of two objectives: (1) positioning satellites as closely as possible to specified desired locations, and (2) minimizing the total length of the geostationary arc allocated to the satellites whose positions are to be determined. Computational results for mixed integer and almost linear programming models, with the objective of positioning satellites as closely as possible to their desired locations, are reported for three six-administration test problems and a thirteen-administration test problem.

  16. Integration of environmental aspects in modelling and optimisation of water supply chains.

    PubMed

    Koleva, Mariya N; Calderón, Andrés J; Zhang, Di; Styan, Craig A; Papageorgiou, Lazaros G

    2018-04-26

    Climate change becomes increasingly more relevant in the context of water systems planning. Tools are necessary to provide the most economic investment option considering the reliability of the infrastructure from technical and environmental perspectives. Accordingly, in this work, an optimisation approach, formulated as a spatially-explicit multi-period Mixed Integer Linear Programming (MILP) model, is proposed for the design of water supply chains at regional and national scales. The optimisation framework encompasses decisions such as installation of new purification plants, capacity expansion, and raw water trading schemes. The objective is to minimise the total cost incurring from capital and operating expenditures. Assessment of available resources for withdrawal is performed based on hydrological balances, governmental rules and sustainable limits. In the light of the increasing importance of reliability of water supply, a second objective, seeking to maximise the reliability of the supply chains, is introduced. The epsilon-constraint method is used as a solution procedure for the multi-objective formulation. Nash bargaining approach is applied to investigate the fair trade-offs between the two objectives and find the Pareto optimality. The models' capability is addressed through a case study based on Australia. The impact of variability in key input parameters is tackled through the implementation of a rigorous global sensitivity analysis (GSA). The findings suggest that variations in water demand can be more disruptive for the water supply chain than scenarios in which rainfalls are reduced. The frameworks can facilitate governmental multi-aspect decision making processes for the adequate and strategic investments of regional water supply infrastructure. Copyright © 2018. Published by Elsevier B.V.

  17. Aerospace Applications of Integer and Combinatorial Optimization

    NASA Technical Reports Server (NTRS)

    Padula, S. L.; Kincaid, R. K.

    1995-01-01

    Research supported by NASA Langley Research Center includes many applications of aerospace design optimization and is conducted by teams of applied mathematicians and aerospace engineers. This paper investigates the benefits from this combined expertise in formulating and solving integer and combinatorial optimization problems. Applications range from the design of large space antennas to interior noise control. A typical problem, for example, seeks the optimal locations for vibration-damping devices on an orbiting platform and is expressed as a mixed/integer linear programming problem with more than 1500 design variables.

  18. Aerospace applications on integer and combinatorial optimization

    NASA Technical Reports Server (NTRS)

    Padula, S. L.; Kincaid, R. K.

    1995-01-01

    Research supported by NASA Langley Research Center includes many applications of aerospace design optimization and is conducted by teams of applied mathematicians and aerospace engineers. This paper investigates the benefits from this combined expertise in formulating and solving integer and combinatorial optimization problems. Applications range from the design of large space antennas to interior noise control. A typical problem. for example, seeks the optimal locations for vibration-damping devices on an orbiting platform and is expressed as a mixed/integer linear programming problem with more than 1500 design variables.

  19. A deterministic aggregate production planning model considering quality of products

    NASA Astrophysics Data System (ADS)

    Madadi, Najmeh; Yew Wong, Kuan

    2013-06-01

    Aggregate Production Planning (APP) is a medium-term planning which is concerned with the lowest-cost method of production planning to meet customers' requirements and to satisfy fluctuating demand over a planning time horizon. APP problem has been studied widely since it was introduced and formulated in 1950s. However, in several conducted studies in the APP area, most of the researchers have concentrated on some common objectives such as minimization of cost, fluctuation in the number of workers, and inventory level. Specifically, maintaining quality at the desirable level as an objective while minimizing cost has not been considered in previous studies. In this study, an attempt has been made to develop a multi-objective mixed integer linear programming model that serves those companies aiming to incur the minimum level of operational cost while maintaining quality at an acceptable level. In order to obtain the solution to the multi-objective model, the Fuzzy Goal Programming approach and max-min operator of Bellman-Zadeh were applied to the model. At the final step, IBM ILOG CPLEX Optimization Studio software was used to obtain the experimental results based on the data collected from an automotive parts manufacturing company. The results show that incorporating quality in the model imposes some costs, however a trade-off should be done between the cost resulting from producing products with higher quality and the cost that the firm may incur due to customer dissatisfaction and sale losses.

  20. Time-Series INSAR: An Integer Least-Squares Approach For Distributed Scatterers

    NASA Astrophysics Data System (ADS)

    Samiei-Esfahany, Sami; Hanssen, Ramon F.

    2012-01-01

    The objective of this research is to extend the geode- tic mathematical model which was developed for persistent scatterers to a model which can exploit distributed scatterers (DS). The main focus is on the integer least- squares framework, and the main challenge is to include the decorrelation effect in the mathematical model. In order to adapt the integer least-squares mathematical model for DS we altered the model from a single master to a multi-master configuration and introduced the decorrelation effect stochastically. This effect is described in our model by a full covariance matrix. We propose to de- rive this covariance matrix by numerical integration of the (joint) probability distribution function (PDF) of interferometric phases. This PDF is a function of coherence values and can be directly computed from radar data. We show that the use of this model can improve the performance of temporal phase unwrapping of distributed scatterers.

  1. An Integer Programming-Based Generalized Vehicle Routing Approach for Printed Circuit Board Assembly Optimization

    ERIC Educational Resources Information Center

    Seth, Anupam

    2009-01-01

    Production planning and scheduling for printed circuit, board assembly has so far defied standard operations research approaches due to the size and complexity of the underlying problems, resulting in unexploited automation flexibility. In this thesis, the increasingly popular collect-and-place machine configuration is studied and the assembly…

  2. Elements of Mathematics, Book O: Intuitive Background. Chapter 2, The Integers.

    ERIC Educational Resources Information Center

    Exner, Robert; And Others

    The sixteen chapters of this book provide the core materials for the Elements of Mathematics Program, a secondary sequence developed for highly motivated students with strong verbal abilities. The sequence is based on a functional-relational approach to mathematics teaching, and emphasizes teaching by analysis of real-life situations. This text is…

  3. Performance comparison of genetic algorithms and particle swarm optimization for model integer programming bus timetabling problem

    NASA Astrophysics Data System (ADS)

    Wihartiko, F. D.; Wijayanti, H.; Virgantari, F.

    2018-03-01

    Genetic Algorithm (GA) is a common algorithm used to solve optimization problems with artificial intelligence approach. Similarly, the Particle Swarm Optimization (PSO) algorithm. Both algorithms have different advantages and disadvantages when applied to the case of optimization of the Model Integer Programming for Bus Timetabling Problem (MIPBTP), where in the case of MIPBTP will be found the optimal number of trips confronted with various constraints. The comparison results show that the PSO algorithm is superior in terms of complexity, accuracy, iteration and program simplicity in finding the optimal solution.

  4. The Efficiency of Split Panel Designs in an Analysis of Variance Model

    PubMed Central

    Wang, Wei-Guo; Liu, Hai-Jun

    2016-01-01

    We consider split panel design efficiency in analysis of variance models, that is, the determination of the cross-sections series optimal proportion in all samples, to minimize parametric best linear unbiased estimators of linear combination variances. An orthogonal matrix is constructed to obtain manageable expression of variances. On this basis, we derive a theorem for analyzing split panel design efficiency irrespective of interest and budget parameters. Additionally, relative estimator efficiency based on the split panel to an estimator based on a pure panel or a pure cross-section is present. The analysis shows that the gains from split panel can be quite substantial. We further consider the efficiency of split panel design, given a budget, and transform it to a constrained nonlinear integer programming. Specifically, an efficient algorithm is designed to solve the constrained nonlinear integer programming. Moreover, we combine one at time designs and factorial designs to illustrate the algorithm’s efficiency with an empirical example concerning monthly consumer expenditure on food in 1985, in the Netherlands, and the efficient ranges of the algorithm parameters are given to ensure a good solution. PMID:27163447

  5. A farm-level precision land management framework based on integer programming

    PubMed Central

    Li, Qi; Hu, Guiping; Jubery, Talukder Zaki; Ganapathysubramanian, Baskar

    2017-01-01

    Farmland management involves several planning and decision making tasks including seed selection and irrigation management. A farm-level precision farmland management model based on mixed integer linear programming is proposed in this study. Optimal decisions are designed for pre-season planning of crops and irrigation water allocation. The model captures the effect of size and shape of decision scale as well as special irrigation patterns. The authors illustrate the model with a case study on a farm in the state of California in the U.S. and show the model can capture the impact of precision farm management on profitability. The results show that threefold increase of annual net profit for farmers could be achieved by carefully choosing irrigation and seed selection. Although farmers could increase profits by applying precision management to seed or irrigation alone, profit increase is more significant if farmers apply precision management on seed and irrigation simultaneously. The proposed model can also serve as a risk analysis tool for farmers facing seasonal irrigation water limits as well as a quantitative tool to explore the impact of precision agriculture. PMID:28346499

  6. Two Methods for Efficient Solution of the Hitting-Set Problem

    NASA Technical Reports Server (NTRS)

    Vatan, Farrokh; Fijany, Amir

    2005-01-01

    A paper addresses much of the same subject matter as that of Fast Algorithms for Model-Based Diagnosis (NPO-30582), which appears elsewhere in this issue of NASA Tech Briefs. However, in the paper, the emphasis is more on the hitting-set problem (also known as the transversal problem), which is well known among experts in combinatorics. The authors primary interest in the hitting-set problem lies in its connection to the diagnosis problem: it is a theorem of model-based diagnosis that in the set-theory representation of the components of a system, the minimal diagnoses of a system are the minimal hitting sets of the system. In the paper, the hitting-set problem (and, hence, the diagnosis problem) is translated from a combinatorial to a computational problem by mapping it onto the Boolean satisfiability and integer- programming problems. The paper goes on to describe developments nearly identical to those summarized in the cited companion NASA Tech Briefs article, including the utilization of Boolean-satisfiability and integer- programming techniques to reduce the computation time and/or memory needed to solve the hitting-set problem.

  7. Solving the Water Jugs Problem by an Integer Sequence Approach

    ERIC Educational Resources Information Center

    Man, Yiu-Kwong

    2012-01-01

    In this article, we present an integer sequence approach to solve the classic water jugs problem. The solution steps can be obtained easily by additions and subtractions only, which is suitable for manual calculation or programming by computer. This approach can be introduced to secondary and undergraduate students, and also to teachers and…

  8. Integrated optimization of location assignment and sequencing in multi-shuttle automated storage and retrieval systems under modified 2n-command cycle pattern

    NASA Astrophysics Data System (ADS)

    Yang, Peng; Peng, Yongfei; Ye, Bin; Miao, Lixin

    2017-09-01

    This article explores the integrated optimization problem of location assignment and sequencing in multi-shuttle automated storage/retrieval systems under the modified 2n-command cycle pattern. The decision of storage and retrieval (S/R) location assignment and S/R request sequencing are jointly considered. An integer quadratic programming model is formulated to describe this integrated optimization problem. The optimal travel cycles for multi-shuttle S/R machines can be obtained to process S/R requests in the storage and retrieval request order lists by solving the model. The small-sized instances are optimally solved using CPLEX. For large-sized problems, two tabu search algorithms are proposed, in which the first come, first served and nearest neighbour are used to generate initial solutions. Various numerical experiments are conducted to examine the heuristics' performance and the sensitivity of algorithm parameters. Furthermore, the experimental results are analysed from the viewpoint of practical application, and a parameter list for applying the proposed heuristics is recommended under different real-life scenarios.

  9. Galaxy Redshifts from Discrete Optimization of Correlation Functions

    NASA Astrophysics Data System (ADS)

    Lee, Benjamin C. G.; Budavári, Tamás; Basu, Amitabh; Rahman, Mubdi

    2016-12-01

    We propose a new method of constraining the redshifts of individual extragalactic sources based on celestial coordinates and their ensemble statistics. Techniques from integer linear programming (ILP) are utilized to optimize simultaneously for the angular two-point cross- and autocorrelation functions. Our novel formalism introduced here not only transforms the otherwise hopelessly expensive, brute-force combinatorial search into a linear system with integer constraints but also is readily implementable in off-the-shelf solvers. We adopt Gurobi, a commercial optimization solver, and use Python to build the cost function dynamically. The preliminary results on simulated data show potential for future applications to sky surveys by complementing and enhancing photometric redshift estimators. Our approach is the first application of ILP to astronomical analysis.

  10. NASA Applications of Structural Health Monitoring Technology

    NASA Technical Reports Server (NTRS)

    Richards, W Lance; Madaras, Eric I.; Prosser, William H.; Studor, George

    2013-01-01

    This presentation provides examples of research and development that has recently or is currently being conducted at NASA, with a special emphasis on the application of structural health monitoring (SHM) of aerospace vehicles. SHM applications on several vehicle programs are highlighted, including Space Shuttle Orbiter, International Space Station, Uninhabited Aerial Vehicles, and Expandable Launch Vehicles. Examples of current and previous work are presented in the following categories: acoustic emission impact detection, multi-parameter fiber optic strain-based sensing, wireless sensor system development, and distributed leak detection.

  11. NASA Applications of Structural Health Monitoring Technology

    NASA Technical Reports Server (NTRS)

    Richards, W Lance; Madaras, Eric I.; Prosser, William H.; Studor, George

    2013-01-01

    This presentation provides examples of research and development that has recently or is currently being conducted at NASA, with a special emphasis on the application of structural health monitoring (SHM) of aerospace vehicles. SHM applications on several vehicle programs are highlighted, including Space Shuttle Orbiter, the International Space Station, Uninhabited Aerial Vehicles, and Expendable Launch Vehicles. Examples of current and previous work are presented in the following categories: acoustic emission impact detection, multi-parameter fiber optic strain-based sensing, wireless sensor system development, and distributed leak detection.

  12. A Comparison of the DISASTER (Trademark) Scheduling Software with a Simultaneous Scheduling Algorithm for Minimizing Maximum Tardiness in Job Shops

    DTIC Science & Technology

    1993-09-01

    goal ( Heizer , Render , and Stair, 1993:94). Integer Prgronmming. Integer programming is a general purpose approach used to optimally solve job shop...Scheduling," Operations Research Journal. 29, No 4: 646-667 (July-August 1981). Heizer , Jay, Barry Render and Ralph M. Stair, Jr. Production and Operations

  13. An integer programming model to optimize resource allocation for wildfire containment.

    Treesearch

    Geoffrey H. Donovan; Douglas B. Rideout

    2003-01-01

    Determining the specific mix of fire-fighting resources for a given fire is a necessary condition for identifying the minimum of the Cost Plus Net Value Change (C+NVC) function. Current wildland fire management models may not reliably do so. The problem of identifying the most efficient wildland fire organization is characterized mathematically using integer-...

  14. Process simulation and dynamic control for marine oily wastewater treatment using UV irradiation.

    PubMed

    Jing, Liang; Chen, Bing; Zhang, Baiyu; Li, Pu

    2015-09-15

    UV irradiation and advanced oxidation processes have been recently regarded as promising solutions in removing polycyclic aromatic hydrocarbons (PAHs) from marine oily wastewater. However, such treatment methods are generally not sufficiently understood in terms of reaction mechanisms, process simulation and process control. These deficiencies can drastically hinder their application in shipping and offshore petroleum industries which produce bilge/ballast water and produced water as the main streams of marine oily wastewater. In this study, the factorial design of experiment was carried out to investigate the degradation mechanism of a typical PAH, namely naphthalene, under UV irradiation in seawater. Based on the experimental results, a three-layer feed-forward artificial neural network simulation model was developed to simulate the treatment process and to forecast the removal performance. A simulation-based dynamic mixed integer nonlinear programming (SDMINP) approach was then proposed to intelligently control the treatment process by integrating the developed simulation model, genetic algorithm and multi-stage programming. The applicability and effectiveness of the developed approach were further tested though a case study. The experimental results showed that the influences of fluence rate and temperature on the removal of naphthalene were greater than those of salinity and initial concentration. The developed simulation model could well predict the UV-induced removal process under varying conditions. The case study suggested that the SDMINP approach, with the aid of the multi-stage control strategy, was able to significantly reduce treatment cost when comparing to the traditional single-stage process optimization. The developed approach and its concept/framework have high potential of applicability in other environmental fields where a treatment process is involved and experimentation and modeling are used for process simulation and control. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. A case of cooperation in the European OR education

    NASA Astrophysics Data System (ADS)

    Miranda, João; Nagy, Mariana

    2011-12-01

    European cooperation is a relevant subject that contributes to building a competitive network of high education institutions. A case of teacher mobility on behalf of the Erasmus programme is presented: it considers some Operations Research topics and the development of the Lego on My Decision module. The module considers eight lecture hours in four sessions: (i) the introductory session, to focus on the basics of computational linear algebra, linear programming, integer programming, with computational support (Excel®); (ii) the interim session, to address modelling subjects in a drop by-session; (iii) the advanced session, on the sequence of (i), to consider uncertainty and also how to use multi-criteria decision-making methods; (iv) the final session, to perform the evaluation of learning outcomes. This cooperation at European level is further exploited, including curricula normalisation and adjustments, cultural exchanges and research lines sharing in the idea of promoting the mobility of students and faculty.

  16. Residual Risk Assessments

    EPA Science Inventory

    Each source category previously subjected to a technology-based standard will be examined to determine if health or ecological risks are significant enough to warrant further regulation. These assesments utilize existing models and data bases to examine the multi-media and multi-...

  17. NASA Tech Briefs, May 2013

    NASA Technical Reports Server (NTRS)

    2013-01-01

    Topics include: Test Waveform Applications for JPL STRS Operating Environment; Pneumatic Proboscis Heat-Flow Probe; Method to Measure Total Noise Temperature of a Wireless Receiver During Operation; Cursor Control Device Test Battery; Functional Near-Infrared Spectroscopy Signals Measure Neuronal Activity in the Cortex; ESD Test Apparatus for Soldering Irons; FPGA-Based X-Ray Detection and Measurement for an X-Ray Polarimeter; Sequential Probability Ratio Test for Spacecraft Collision Avoidance Maneuver Decisions; Silicon/Carbon Nanotube Photocathode for Splitting Water; Advanced Materials and Fabrication Techniques for the Orion Attitude Control Motor; Flight Hardware Packaging Design for Stringent EMC Radiated Emission Requirements; RF Reference Switch for Spaceflight Radiometer Calibration; An Offload NIC for NASA, NLR, and Grid Computing; Multi-Scale CNT-Based Reinforcing Polymer Matrix Composites for Lightweight Structures; Ceramic Adhesive and Methods for On-Orbit Repair of Re-Entry Vehicles; Self-Healing Nanocomposites for Reusable Composite Cryotanks; Pt-Ni and Pt-Co Catalyst Synthesis Route for Fuel Cell Applications; Aerogel-Based Multilayer Insulation with Micrometeoroid Protection; Manufacturing of Nanocomposite Carbon Fibers and Composite Cylinders; Optimized Radiator Geometries for Hot Lunar Thermal Environments; A Mission Concept: Re-Entry Hopper-Aero-Space-Craft System on-Mars (REARM-Mars); New Class of Flow Batteries for Terrestrial and Aerospace Energy Storage Applications; Reliability of CCGA 1152 and CCGA 1272 Interconnect Packages for Extreme Thermal Environments; Using a Blender to Assess the Microbial Density of Encapsulated Organisms; Mixed Integer Programming and Heuristic Scheduling for Space Communication; Video Altimeter and Obstruction Detector for an Aircraft; Control Software for Piezo Stepping Actuators; Galactic Cosmic Ray Event-Based Risk Model (GERM) Code; Sasquatch Footprint Tool; and Multi-User Space Link Extension (SLE) System.

  18. Density of Primitive Pythagorean Triples

    ERIC Educational Resources Information Center

    Killen, Duncan A.

    2004-01-01

    Based on the properties of a Primitive Pythagorean Triple (PPT), a computer program was written to generate, print, and count all PPTs greater than or equal to I[subscript x], where I[subscript x] is an arbitrarily chosen integer. The Density of Primitive Pythagorean Triples may be defined as the ratio of the number of PPTs whose hypotenuse is…

  19. Moving multiple sinks through wireless sensor networks for lifetime maximization.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrioli, Chiara; Carosi, Alessio; Basagni, Stefano

    2008-01-01

    Unattended sensor networks typically watch for some phenomena such as volcanic events, forest fires, pollution, or movements in animal populations. Sensors report to a collection point periodically or when they observe reportable events. When sensors are too far from the collection point to communicate directly, other sensors relay messages for them. If the collection point location is static, sensor nodes that are closer to the collection point relay far more messages than those on the periphery. Assuming all sensor nodes have roughly the same capabilities, those with high relay burden experience battery failure much faster than the rest of themore » network. However, since their death disconnects the live nodes from the collection point, the whole network is then dead. We consider the problem of moving a set of collectors (sinks) through a wireless sensor network to balance the energy used for relaying messages, maximizing the lifetime of the network. We show how to compute an upper bound on the lifetime for any instance using linear and integer programming. We present a centralized heuristic that produces sink movement schedules that produce network lifetimes within 1.4% of the upper bound for realistic settings. We also present a distributed heuristic that produces lifetimes at most 25:3% below the upper bound. More specifically, we formulate a linear program (LP) that is a relaxation of the scheduling problem. The variables are naturally continuous, but the LP relaxes some constraints. The LP has an exponential number of constraints, but we can satisfy them all by enforcing only a polynomial number using a separation algorithm. This separation algorithm is a p-median facility location problem, which we can solve efficiently in practice for huge instances using integer programming technology. This LP selects a set of good sensor configurations. Given the solution to the LP, we can find a feasible schedule by selecting a subset of these configurations, ordering them via a traveling salesman heuristic, and computing feasible transitions using matching algorithms. This algorithm assumes sinks can get a schedule from a central server or a leader sink. If the network owner prefers the sinks make independent decisions, they can use our distributed heuristic. In this heuristic, sinks maintain estimates of the energy distribution in the network and move greedily (with some coordination) based on local search. This application uses the new SUCASA (Solver Utility for Customization with Automatic Symbol Access) facility within the PICO (Parallel Integer and Combinatorial Optimizer) integer programming solver system. SUCASA allows rapid development of customized math programming (search-based) solvers using a problem's natural multidimensional representation. In this case, SUCASA also significantly improves runtime compared to implementations in the ampl math programming language or in perl.« less

  20. Multi-objective LQR with optimum weight selection to design FOPID controllers for delayed fractional order processes.

    PubMed

    Das, Saptarshi; Pan, Indranil; Das, Shantanu

    2015-09-01

    An optimal trade-off design for fractional order (FO)-PID controller is proposed with a Linear Quadratic Regulator (LQR) based technique using two conflicting time domain objectives. A class of delayed FO systems with single non-integer order element, exhibiting both sluggish and oscillatory open loop responses, have been controlled here. The FO time delay processes are handled within a multi-objective optimization (MOO) formalism of LQR based FOPID design. A comparison is made between two contemporary approaches of stabilizing time-delay systems withinLQR. The MOO control design methodology yields the Pareto optimal trade-off solutions between the tracking performance and total variation (TV) of the control signal. Tuning rules are formed for the optimal LQR-FOPID controller parameters, using median of the non-dominated Pareto solutions to handle delayed FO processes. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  1. A Mixed-Integer Linear Programming Problem which is Efficiently Solvable.

    DTIC Science & Technology

    1987-10-01

    INTEGER LINEAR PROGRAMMING PROBLEM WHICH IS EFFICIENTLY SOLVABLE 12. PERSONAL AUTHOR(S) Leiserson, Charles, and Saxe, James B. 13a. TYPE OF REPORT j13b TIME...ger prongramn rg versions or the problem is not ac’hievable in genieral for sparse inistancves of’ P rolem(r Mi. Th le remrai nder or thris paper is...rClazes c:oIh edge (i,I*) by comlpli urg +- rnirr(z 3, ,x + a,j). A sirnI) le analysis (11 vto Nei [131 indicates why whe Iellinan-Ford algorithm works

  2. A new mathematical modeling for pure parsimony haplotyping problem.

    PubMed

    Feizabadi, R; Bagherian, M; Vaziri, H R; Salahi, M

    2016-11-01

    Pure parsimony haplotyping (PPH) problem is important in bioinformatics because rational haplotyping inference plays important roles in analysis of genetic data, mapping complex genetic diseases such as Alzheimer's disease, heart disorders and etc. Haplotypes and genotypes are m-length sequences. Although several integer programing models have already been presented for PPH problem, its NP-hardness characteristic resulted in ineffectiveness of those models facing the real instances especially instances with many heterozygous sites. In this paper, we assign a corresponding number to each haplotype and genotype and based on those numbers, we set a mixed integer programing model. Using numbers, instead of sequences, would lead to less complexity of the new model in comparison with previous models in a way that there are neither constraints nor variables corresponding to heterozygous nucleotide sites in it. Experimental results approve the efficiency of the new model in producing better solution in comparison to two state-of-the art haplotyping approaches. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Discovering Link Communities in Complex Networks by an Integer Programming Model and a Genetic Algorithm

    PubMed Central

    Li, Zhenping; Zhang, Xiang-Sun; Wang, Rui-Sheng; Liu, Hongwei; Zhang, Shihua

    2013-01-01

    Identification of communities in complex networks is an important topic and issue in many fields such as sociology, biology, and computer science. Communities are often defined as groups of related nodes or links that correspond to functional subunits in the corresponding complex systems. While most conventional approaches have focused on discovering communities of nodes, some recent studies start partitioning links to find overlapping communities straightforwardly. In this paper, we propose a new quantity function for link community identification in complex networks. Based on this quantity function we formulate the link community partition problem into an integer programming model which allows us to partition a complex network into overlapping communities. We further propose a genetic algorithm for link community detection which can partition a network into overlapping communities without knowing the number of communities. We test our model and algorithm on both artificial networks and real-world networks. The results demonstrate that the model and algorithm are efficient in detecting overlapping community structure in complex networks. PMID:24386268

  4. Fish Processed Production Planning Using Integer Stochastic Programming Model

    NASA Astrophysics Data System (ADS)

    Firmansyah, Mawengkang, Herman

    2011-06-01

    Fish and its processed products are the most affordable source of animal protein in the diet of most people in Indonesia. The goal in production planning is to meet customer demand over a fixed time horizon divided into planning periods by optimizing the trade-off between economic objectives such as production cost and customer satisfaction level. The major decisions are production and inventory levels for each product and the number of workforce in each planning period. In this paper we consider the management of small scale traditional business at North Sumatera Province which performs processing fish into several local seafood products. The inherent uncertainty of data (e.g. demand, fish availability), together with the sequential evolution of data over time leads the production planning problem to a nonlinear mixed-integer stochastic programming model. We use scenario generation based approach and feasible neighborhood search for solving the model. The results which show the amount of each fish processed product and the number of workforce needed in each horizon planning are presented.

  5. A supplier selection and order allocation problem with stochastic demands

    NASA Astrophysics Data System (ADS)

    Zhou, Yun; Zhao, Lei; Zhao, Xiaobo; Jiang, Jianhua

    2011-08-01

    We consider a system comprising a retailer and a set of candidate suppliers that operates within a finite planning horizon of multiple periods. The retailer replenishes its inventory from the suppliers and satisfies stochastic customer demands. At the beginning of each period, the retailer makes decisions on the replenishment quantity, supplier selection and order allocation among the selected suppliers. An optimisation problem is formulated to minimise the total expected system cost, which includes an outer level stochastic dynamic program for the optimal replenishment quantity and an inner level integer program for supplier selection and order allocation with a given replenishment quantity. For the inner level subproblem, we develop a polynomial algorithm to obtain optimal decisions. For the outer level subproblem, we propose an efficient heuristic for the system with integer-valued inventory, based on the structural properties of the system with real-valued inventory. We investigate the efficiency of the proposed solution approach, as well as the impact of parameters on the optimal replenishment decision with numerical experiments.

  6. Multi-Time Step Service Restoration for Advanced Distribution Systems and Microgrids

    DOE PAGES

    Chen, Bo; Chen, Chen; Wang, Jianhui; ...

    2017-07-07

    Modern power systems are facing increased risk of disasters that can cause extended outages. The presence of remote control switches (RCSs), distributed generators (DGs), and energy storage systems (ESS) provides both challenges and opportunities for developing post-fault service restoration methodologies. Inter-temporal constraints of DGs, ESS, and loads under cold load pickup (CLPU) conditions impose extra complexity on problem formulation and solution. In this paper, a multi-time step service restoration methodology is proposed to optimally generate a sequence of control actions for controllable switches, ESSs, and dispatchable DGs to assist the system operator with decision making. The restoration sequence is determinedmore » to minimize the unserved customers by energizing the system step by step without violating operational constraints at each time step. The proposed methodology is formulated as a mixed-integer linear programming (MILP) model and can adapt to various operation conditions. Furthermore, the proposed method is validated through several case studies that are performed on modified IEEE 13-node and IEEE 123-node test feeders.« less

  7. A generalized network flow model for the multi-mode resource-constrained project scheduling problem with discounted cash flows

    NASA Astrophysics Data System (ADS)

    Chen, Miawjane; Yan, Shangyao; Wang, Sin-Siang; Liu, Chiu-Lan

    2015-02-01

    An effective project schedule is essential for enterprises to increase their efficiency of project execution, to maximize profit, and to minimize wastage of resources. Heuristic algorithms have been developed to efficiently solve the complicated multi-mode resource-constrained project scheduling problem with discounted cash flows (MRCPSPDCF) that characterize real problems. However, the solutions obtained in past studies have been approximate and are difficult to evaluate in terms of optimality. In this study, a generalized network flow model, embedded in a time-precedence network, is proposed to formulate the MRCPSPDCF with the payment at activity completion times. Mathematically, the model is formulated as an integer network flow problem with side constraints, which can be efficiently solved for optimality, using existing mathematical programming software. To evaluate the model performance, numerical tests are performed. The test results indicate that the model could be a useful planning tool for project scheduling in the real world.

  8. Multi-Time Step Service Restoration for Advanced Distribution Systems and Microgrids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Bo; Chen, Chen; Wang, Jianhui

    Modern power systems are facing increased risk of disasters that can cause extended outages. The presence of remote control switches (RCSs), distributed generators (DGs), and energy storage systems (ESS) provides both challenges and opportunities for developing post-fault service restoration methodologies. Inter-temporal constraints of DGs, ESS, and loads under cold load pickup (CLPU) conditions impose extra complexity on problem formulation and solution. In this paper, a multi-time step service restoration methodology is proposed to optimally generate a sequence of control actions for controllable switches, ESSs, and dispatchable DGs to assist the system operator with decision making. The restoration sequence is determinedmore » to minimize the unserved customers by energizing the system step by step without violating operational constraints at each time step. The proposed methodology is formulated as a mixed-integer linear programming (MILP) model and can adapt to various operation conditions. Furthermore, the proposed method is validated through several case studies that are performed on modified IEEE 13-node and IEEE 123-node test feeders.« less

  9. An examination of the spectral class low frequency limit for helicopters

    DOT National Transportation Integrated Search

    2011-01-01

    Currently, INM and AEDT do not use spectral data below 50 Hz in their noise computations. However, helicopter rotor rotational noise is dominant below 50Hz, with a fundamental frequency at the blade-pass frequency (BPF) and harmonics at integer multi...

  10. Integer aperture ambiguity resolution based on difference test

    NASA Astrophysics Data System (ADS)

    Zhang, Jingyu; Wu, Meiping; Li, Tao; Zhang, Kaidong

    2015-07-01

    Carrier-phase integer ambiguity resolution (IAR) is the key to highly precise, fast positioning and attitude determination with Global Navigation Satellite System (GNSS). It can be seen as the process of estimating the unknown cycle ambiguities of the carrier-phase observations as integers. Once the ambiguities are fixed, carrier phase data will act as the very precise range data. Integer aperture (IA) ambiguity resolution is the combination of acceptance testing and integer ambiguity resolution, which can realize better quality control of IAR. Difference test (DT) is one of the most popular acceptance tests. This contribution will give a detailed analysis about the following properties of IA ambiguity resolution based on DT: 1. The sharpest and loose upper bounds of DT are derived from the perspective of geometry. These bounds are very simple and easy to be computed, which give the range for the critical values of DT.

  11. Rarity-weighted richness: a simple and reliable alternative to integer programming and heuristic algorithms for minimum set and maximum coverage problems in conservation planning.

    PubMed

    Albuquerque, Fabio; Beier, Paul

    2015-01-01

    Here we report that prioritizing sites in order of rarity-weighted richness (RWR) is a simple, reliable way to identify sites that represent all species in the fewest number of sites (minimum set problem) or to identify sites that represent the largest number of species within a given number of sites (maximum coverage problem). We compared the number of species represented in sites prioritized by RWR to numbers of species represented in sites prioritized by the Zonation software package for 11 datasets in which the size of individual planning units (sites) ranged from <1 ha to 2,500 km2. On average, RWR solutions were more efficient than Zonation solutions. Integer programming remains the only guaranteed way find an optimal solution, and heuristic algorithms remain superior for conservation prioritizations that consider compactness and multiple near-optimal solutions in addition to species representation. But because RWR can be implemented easily and quickly in R or a spreadsheet, it is an attractive alternative to integer programming or heuristic algorithms in some conservation prioritization contexts.

  12. Quantum-Inspired Maximizer

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    2008-01-01

    A report discusses an algorithm for a new kind of dynamics based on a quantum- classical hybrid-quantum-inspired maximizer. The model is represented by a modified Madelung equation in which the quantum potential is replaced by different, specially chosen 'computational' potential. As a result, the dynamics attains both quantum and classical properties: it preserves superposition and entanglement of random solutions, while allowing one to measure its state variables, using classical methods. Such optimal combination of characteristics is a perfect match for quantum-inspired computing. As an application, an algorithm for global maximum of an arbitrary integrable function is proposed. The idea of the proposed algorithm is very simple: based upon the Quantum-inspired Maximizer (QIM), introduce a positive function to be maximized as the probability density to which the solution is attracted. Then the larger value of this function will have the higher probability to appear. Special attention is paid to simulation of integer programming and NP-complete problems. It is demonstrated that the problem of global maximum of an integrable function can be found in polynomial time by using the proposed quantum- classical hybrid. The result is extended to a constrained maximum with applications to integer programming and TSP (Traveling Salesman Problem).

  13. Mixed Integer Linear Programming based machine learning approach identifies regulators of telomerase in yeast.

    PubMed

    Poos, Alexandra M; Maicher, André; Dieckmann, Anna K; Oswald, Marcus; Eils, Roland; Kupiec, Martin; Luke, Brian; König, Rainer

    2016-06-02

    Understanding telomere length maintenance mechanisms is central in cancer biology as their dysregulation is one of the hallmarks for immortalization of cancer cells. Important for this well-balanced control is the transcriptional regulation of the telomerase genes. We integrated Mixed Integer Linear Programming models into a comparative machine learning based approach to identify regulatory interactions that best explain the discrepancy of telomerase transcript levels in yeast mutants with deleted regulators showing aberrant telomere length, when compared to mutants with normal telomere length. We uncover novel regulators of telomerase expression, several of which affect histone levels or modifications. In particular, our results point to the transcription factors Sum1, Hst1 and Srb2 as being important for the regulation of EST1 transcription, and we validated the effect of Sum1 experimentally. We compiled our machine learning method leading to a user friendly package for R which can straightforwardly be applied to similar problems integrating gene regulator binding information and expression profiles of samples of e.g. different phenotypes, diseases or treatments. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Using Minimax Regret Optimization to Search for Multi-Stakeholder Solutions to Deeply Uncertain Flood Hazards under Climate Change

    NASA Astrophysics Data System (ADS)

    Kirshen, P. H.; Hecht, J. S.; Vogel, R. M.

    2015-12-01

    Prescribing long-term urban floodplain management plans under the deep uncertainty of climate change is a challenging endeavor. To address this, we have implemented and tested with stakeholders a parsimonious multi-stage mixed integer programming (MIP) model that identifies the optimal time period(s) for implementing publicly and privately financed adaptation measures. Publicly funded measures include reach-scale flood barriers, flood insurance, and buyout programs to encourage property owners in flood-prone areas to retreat from the floodplain. Measures privately funded by property owners consist of property-scale floodproofing options, such as raising building foundations, as well as investments in flood insurance or retreat from flood-prone areas. The objective function to minimize the sum of flood control and damage costs in all planning stages for different property types during floods of different severities. There are constraints over time for flow mass balances, construction of flood management alternatives and their cumulative implementation, budget allocations, and binary decisions. Damages are adjusted for flood control investments. In recognition of the deep uncertainty of GCM-derived climate change scenarios, we employ the minimax regret criterion to identify adaptation portfolios robust to different climate change trajectories. As an example, we identify publicly and privately funded adaptation measures for a stylized community based on the estuarine community of Exeter, New Hampshire, USA. We explore the sensitivity of recommended portfolios to different ranges of climate changes, and costs associated with economies of scale and flexible infrastructure design as well as different municipal budget constraints.

  15. Mixed Integer Linear Programming model for Crude Palm Oil Supply Chain Planning

    NASA Astrophysics Data System (ADS)

    Sembiring, Pasukat; Mawengkang, Herman; Sadyadharma, Hendaru; Bu'ulolo, F.; Fajriana

    2018-01-01

    The production process of crude palm oil (CPO) can be defined as the milling process of raw materials, called fresh fruit bunch (FFB) into end products palm oil. The process usually through a series of steps producing and consuming intermediate products. The CPO milling industry considered in this paper does not have oil palm plantation, therefore the FFB are supplied by several public oil palm plantations. Due to the limited availability of FFB, then it is necessary to choose from which plantations would be appropriate. This paper proposes a mixed integer linear programming model the supply chain integrated problem, which include waste processing. The mathematical programming model is solved using neighborhood search approach.

  16. Structure based re-design of the binding specificity of anti-apoptotic Bcl-xL

    PubMed Central

    Chen, T. Scott; Palacios, Hector; Keating, Amy E.

    2012-01-01

    Many native proteins are multi-specific and interact with numerous partners, which can confound analysis of their functions. Protein design provides a potential route to generating synthetic variants of native proteins with more selective binding profiles. Re-designed proteins could be used as research tools, diagnostics or therapeutics. In this work, we used a library screening approach to re-engineer the multi-specific anti-apoptotic protein Bcl-xL to remove its interactions with many of its binding partners, making it a high affinity and selective binder of the BH3 region of pro-apoptotic protein Bad. To overcome the enormity of the potential Bcl-xL sequence space, we developed and applied a computational/experimental framework that used protein structure information to generate focused combinatorial libraries. Sequence features were identified using structure-based modeling, and an optimization algorithm based on integer programming was used to select degenerate codons that maximally covered these features. A constraint on library size was used to ensure thorough sampling. Using yeast surface display to screen a designed library of Bcl-xL variants, we successfully identified a protein with ~1,000-fold improvement in binding specificity for the BH3 region of Bad over the BH3 region of Bim. Although negative design was targeted only against the BH3 region of Bim, the best re-designed protein was globally specific against binding to 10 other peptides corresponding to native BH3 motifs. Our design framework demonstrates an efficient route to highly specific protein binders and may readily be adapted for application to other design problems. PMID:23154169

  17. An Integer Programming Model for the Management of a Forest in the North of Portugal

    NASA Astrophysics Data System (ADS)

    Cerveira, Adelaide; Fonseca, Teresa; Mota, Artur; Martins, Isabel

    2011-09-01

    This study aims to develop an approach for the management of a forest of maritime pine located in the north region of Portugal. The forest is classified into five public lands, the so-called baldios, extending over 4432 ha. These baldios are co-managed by the Official Forest Services and the local communities mainly for timber production purposes. The forest planning involves non-spatial and spatial constraints. Spatial constraints dictate a maximum clearcut area and an exclusion time. An integer programming model is presented and the computational results are discussed.

  18. Energy-Efficient Deadline-Aware Data-Gathering Scheme Using Multiple Mobile Data Collectors.

    PubMed

    Dasgupta, Rumpa; Yoon, Seokhoon

    2017-04-01

    In wireless sensor networks, the data collected by sensors are usually forwarded to the sink through multi-hop forwarding. However, multi-hop forwarding can be inefficient due to the energy hole problem and high communications overhead. Moreover, when the monitored area is large and the number of sensors is small, sensors cannot send the data via multi-hop forwarding due to the lack of network connectivity. In order to address those problems of multi-hop forwarding, in this paper, we consider a data collection scheme that uses mobile data collectors (MDCs), which visit sensors and collect data from them. Due to the recent breakthroughs in wireless power transfer technology, MDCs can also be used to recharge the sensors to keep them from draining their energy. In MDC-based data-gathering schemes, a big challenge is how to find the MDCs' traveling paths in a balanced way, such that their energy consumption is minimized and the packet-delay constraint is satisfied. Therefore, in this paper, we aim at finding the MDCs' paths, taking energy efficiency and delay constraints into account. We first define an optimization problem, named the delay-constrained energy minimization (DCEM) problem, to find the paths for MDCs. An integer linear programming problem is formulated to find the optimal solution. We also propose a two-phase path-selection algorithm to efficiently solve the DCEM problem. Simulations are performed to compare the performance of the proposed algorithms with two heuristics algorithms for the vehicle routing problem under various scenarios. The simulation results show that the proposed algorithms can outperform existing algorithms in terms of energy efficiency and packet delay.

  19. Energy-Efficient Deadline-Aware Data-Gathering Scheme Using Multiple Mobile Data Collectors

    PubMed Central

    Dasgupta, Rumpa; Yoon, Seokhoon

    2017-01-01

    In wireless sensor networks, the data collected by sensors are usually forwarded to the sink through multi-hop forwarding. However, multi-hop forwarding can be inefficient due to the energy hole problem and high communications overhead. Moreover, when the monitored area is large and the number of sensors is small, sensors cannot send the data via multi-hop forwarding due to the lack of network connectivity. In order to address those problems of multi-hop forwarding, in this paper, we consider a data collection scheme that uses mobile data collectors (MDCs), which visit sensors and collect data from them. Due to the recent breakthroughs in wireless power transfer technology, MDCs can also be used to recharge the sensors to keep them from draining their energy. In MDC-based data-gathering schemes, a big challenge is how to find the MDCs’ traveling paths in a balanced way, such that their energy consumption is minimized and the packet-delay constraint is satisfied. Therefore, in this paper, we aim at finding the MDCs’ paths, taking energy efficiency and delay constraints into account. We first define an optimization problem, named the delay-constrained energy minimization (DCEM) problem, to find the paths for MDCs. An integer linear programming problem is formulated to find the optimal solution. We also propose a two-phase path-selection algorithm to efficiently solve the DCEM problem. Simulations are performed to compare the performance of the proposed algorithms with two heuristics algorithms for the vehicle routing problem under various scenarios. The simulation results show that the proposed algorithms can outperform existing algorithms in terms of energy efficiency and packet delay. PMID:28368300

  20. Obstacle avoidance handling and mixed integer predictive control for space robots

    NASA Astrophysics Data System (ADS)

    Zong, Lijun; Luo, Jianjun; Wang, Mingming; Yuan, Jianping

    2018-04-01

    This paper presents a novel obstacle avoidance constraint and a mixed integer predictive control (MIPC) method for space robots avoiding obstacles and satisfying physical limits during performing tasks. Firstly, a novel kind of obstacle avoidance constraint of space robots, which needs the assumption that the manipulator links and the obstacles can be represented by convex bodies, is proposed by limiting the relative velocity between two closest points which are on the manipulator and the obstacle, respectively. Furthermore, the logical variables are introduced into the obstacle avoidance constraint, which have realized the constraint form is automatically changed to satisfy different obstacle avoidance requirements in different distance intervals between the space robot and the obstacle. Afterwards, the obstacle avoidance constraint and other system physical limits, such as joint angle ranges, the amplitude boundaries of joint velocities and joint torques, are described as inequality constraints of a quadratic programming (QP) problem by using the model predictive control (MPC) method. To guarantee the feasibility of the obtained multi-constraint QP problem, the constraints are treated as soft constraints and assigned levels of priority based on the propositional logic theory, which can realize that the constraints with lower priorities are always firstly violated to recover the feasibility of the QP problem. Since the logical variables have been introduced, the optimization problem including obstacle avoidance and system physical limits as prioritized inequality constraints is termed as MIPC method of space robots, and its computational complexity as well as possible strategies for reducing calculation amount are analyzed. Simulations of the space robot unfolding its manipulator and tracking the end-effector's desired trajectories with the existence of obstacles and physical limits are presented to demonstrate the effectiveness of the proposed obstacle avoidance strategy and MIPC control method of space robots.

  1. A hybrid approach to modeling and control of vehicle height for electronically controlled air suspension

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoqiang; Cai, Yingfeng; Wang, Shaohua; Liu, Yanling; Chen, Long

    2016-01-01

    The control problems associated with vehicle height adjustment of electronically controlled air suspension (ECAS) still pose theoretical challenges for researchers, which manifest themselves in the publications on this subject over the last years. This paper deals with modeling and control of a vehicle height adjustment system for ECAS, which is an example of a hybrid dynamical system due to the coexistence and coupling of continuous variables and discrete events. A mixed logical dynamical (MLD) modeling approach is chosen for capturing enough details of the vehicle height adjustment process. The hybrid dynamic model is constructed on the basis of some assumptions and piecewise linear approximation for components nonlinearities. Then, the on-off statuses of solenoid valves and the piecewise approximation process are described by propositional logic, and the hybrid system is transformed into the set of linear mixed-integer equalities and inequalities, denoted as MLD model, automatically by HYSDEL. Using this model, a hybrid model predictive controller (HMPC) is tuned based on online mixed-integer quadratic optimization (MIQP). Two different scenarios are considered in the simulation, whose results verify the height adjustment effectiveness of the proposed approach. Explicit solutions of the controller are computed to control the vehicle height adjustment system in realtime using an offline multi-parametric programming technology (MPT), thus convert the controller into an equivalent explicit piecewise affine form. Finally, bench experiments for vehicle height lifting, holding and lowering procedures are conducted, which demonstrate that the HMPC can adjust the vehicle height by controlling the on-off statuses of solenoid valves directly. This research proposes a new modeling and control method for vehicle height adjustment of ECAS, which leads to a closed-loop system with favorable dynamical properties.

  2. Model for the design of distributed data bases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ram, S.

    This research focuses on developing a model to solve the File Allocation Problem (FAP). The model integrates two major design issues, namely Concurrently Control and Data Distribution. The central node locking mechanism is incorporated in developing a nonlinear integer programming model. Two solution algorithms are proposed, one of which was implemented in FORTRAN.V. The allocation of data bases and programs are examined using this heuristic. Several decision rules were also formulated based on the results of the heuristic. A second more comprehensive heuristic was proposed, based on the knapsack problem. The development and implementation of this algorithm has been leftmore » as a topic for future research.« less

  3. Optimization methods for decision making in disease prevention and epidemic control.

    PubMed

    Deng, Yan; Shen, Siqian; Vorobeychik, Yevgeniy

    2013-11-01

    This paper investigates problems of disease prevention and epidemic control (DPEC), in which we optimize two sets of decisions: (i) vaccinating individuals and (ii) closing locations, given respective budgets with the goal of minimizing the expected number of infected individuals after intervention. The spread of diseases is inherently stochastic due to the uncertainty about disease transmission and human interaction. We use a bipartite graph to represent individuals' propensities of visiting a set of location, and formulate two integer nonlinear programming models to optimize choices of individuals to vaccinate and locations to close. Our first model assumes that if a location is closed, its visitors stay in a safe location and will not visit other locations. Our second model incorporates compensatory behavior by assuming multiple behavioral groups, always visiting the most preferred locations that remain open. The paper develops algorithms based on a greedy strategy, dynamic programming, and integer programming, and compares the computational efficacy and solution quality. We test problem instances derived from daily behavior patterns of 100 randomly chosen individuals (corresponding to 195 locations) in Portland, Oregon, and provide policy insights regarding the use of the two DPEC models. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Exact and Metaheuristic Approaches for a Bi-Objective School Bus Scheduling Problem.

    PubMed

    Chen, Xiaopan; Kong, Yunfeng; Dang, Lanxue; Hou, Yane; Ye, Xinyue

    2015-01-01

    As a class of hard combinatorial optimization problems, the school bus routing problem has received considerable attention in the last decades. For a multi-school system, given the bus trips for each school, the school bus scheduling problem aims at optimizing bus schedules to serve all the trips within the school time windows. In this paper, we propose two approaches for solving the bi-objective school bus scheduling problem: an exact method of mixed integer programming (MIP) and a metaheuristic method which combines simulated annealing with local search. We develop MIP formulations for homogenous and heterogeneous fleet problems respectively and solve the models by MIP solver CPLEX. The bus type-based formulation for heterogeneous fleet problem reduces the model complexity in terms of the number of decision variables and constraints. The metaheuristic method is a two-stage framework for minimizing the number of buses to be used as well as the total travel distance of buses. We evaluate the proposed MIP and the metaheuristic method on two benchmark datasets, showing that on both instances, our metaheuristic method significantly outperforms the respective state-of-the-art methods.

  5. Resilient Distribution System by Microgrids Formation After Natural Disasters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Chen; Wang, Jianhui; Qiu, Feng

    2016-03-01

    Microgrids with distributed generation provide a resilient solution in the case of major faults in a distribution system due to natural disasters. This paper proposes a novel distribution system operational approach by forming multiple microgrids energized by distributed generation from the radial distribution system in real-time operations, to restore critical loads from the power outage. Specifically, a mixed-integer linear program (MILP) is formulated to maximize the critical loads to be picked up while satisfying the self-adequacy and operation constraints for the microgrids formation problem, by controlling the ON/OFF status of the remotely controlled switch devices and distributed generation. A distributedmore » multi-agent coordination scheme is designed via local communications for the global information discovery as inputs of the optimization, which is suitable for autonomous communication requirements after the disastrous event. The formed microgrids can be further utilized for power quality control and can be connected to a larger microgrid before the restoration of the main grids is complete. Numerical results based on modified IEEE distribution test systems validate the effectiveness of our proposed scheme.« less

  6. Multi-objective reverse logistics model for integrated computer waste management.

    PubMed

    Ahluwalia, Poonam Khanijo; Nema, Arvind K

    2006-12-01

    This study aimed to address the issues involved in the planning and design of a computer waste management system in an integrated manner. A decision-support tool is presented for selecting an optimum configuration of computer waste management facilities (segregation, storage, treatment/processing, reuse/recycle and disposal) and allocation of waste to these facilities. The model is based on an integer linear programming method with the objectives of minimizing environmental risk as well as cost. The issue of uncertainty in the estimated waste quantities from multiple sources is addressed using the Monte Carlo simulation technique. An illustrated example of computer waste management in Delhi, India is presented to demonstrate the usefulness of the proposed model and to study tradeoffs between cost and risk. The results of the example problem show that it is possible to reduce the environmental risk significantly by a marginal increase in the available cost. The proposed model can serve as a powerful tool to address the environmental problems associated with exponentially growing quantities of computer waste which are presently being managed using rudimentary methods of reuse, recovery and disposal by various small-scale vendors.

  7. Scheduling work zones in multi-modal networks phase 1: scheduling work zones in transportation service networks.

    DOT National Transportation Integrated Search

    2016-06-01

    The purpose of this project is to study the optimal scheduling of work zones so that they have minimum negative impact (e.g., travel delay, gas consumption, accidents, etc.) on transport service vehicle flows. In this project, a mixed integer linear ...

  8. Strategic considerations for support of humans in space and Moon/Mars exploration missions. Life sciences research and technology programs, volume 2

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Summary charts of the following topics are presented: the Percentage of Critical Questions in Constrained and Robust Programs; the Executive Committee and AMAC Disposition of Critical Questions for Constrained and Robust Programs; and the Requirements for Ground-based Research and Flight Platforms for Constrained and Robust Programs. Data Tables are also presented and cover the following: critical questions from all Life Sciences Division Discipline Science Plans; critical questions listed by category and criticality; all critical questions which require ground-based research; critical questions that would utilize spacelabs listed by category and criticality; critical questions that would utilize Space Station Freedom (SSF) listed by category and criticality; critical questions that would utilize the SSF Centrifuge; facility listed by category and criticality; critical questions that would utilize a Moon base listed by category and criticality; critical questions that would utilize robotic missions listed by category and criticality; critical questions that would utilize free flyers listed by category and criticality; and critical questions by deliverables.

  9. Solving the water jugs problem by an integer sequence approach

    NASA Astrophysics Data System (ADS)

    Man, Yiu-Kwong

    2012-01-01

    In this article, we present an integer sequence approach to solve the classic water jugs problem. The solution steps can be obtained easily by additions and subtractions only, which is suitable for manual calculation or programming by computer. This approach can be introduced to secondary and undergraduate students, and also to teachers and lecturers involved in teaching mathematical problem solving, recreational mathematics, or elementary number theory.

  10. New Approaches for Very Large-Scale Integer Programming

    DTIC Science & Technology

    2016-06-24

    existing algorithms. This research has been presented at several conferences and has and will appear in archival journals. 15. SUBJECT TERMS integer...This research has been presented at several conferences and has and will appear in archival journals. Distribution Statement This is block 12 on the...pdf Upload a Report Document, if any. The maximum file size for the Report Document is 50MB. Archival Publications (published) during reporting

  11. Fast and secure encryption-decryption method based on chaotic dynamics

    DOEpatents

    Protopopescu, Vladimir A.; Santoro, Robert T.; Tolliver, Johnny S.

    1995-01-01

    A method and system for the secure encryption of information. The method comprises the steps of dividing a message of length L into its character components; generating m chaotic iterates from m independent chaotic maps; producing an "initial" value based upon the m chaotic iterates; transforming the "initial" value to create a pseudo-random integer; repeating the steps of generating, producing and transforming until a pseudo-random integer sequence of length L is created; and encrypting the message as ciphertext based upon the pseudo random integer sequence. A system for accomplishing the invention is also provided.

  12. Path Finding for Maximum Value of Information in Multi-Modal Underwater Wireless Sensor Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gjanci, Petrika; Petrioli, Chiara; Basagni, Stefano

    Here, we consider underwater multi-modal wireless sensor networks (UWSNs) suitable for applications on submarine surveillance and monitoring, where nodes offload data to a mobile autonomous underwater vehicle (AUV) via optical technology, and coordinate using acoustic communication. Sensed data are associated with a value, decaying in time. In this scenario, we address the problem of finding the path of the AUV so that the Value of Information (VoI) of the data delivered to a sink on the surface is maximized. We define a Greedy and Adaptive AUV Path-finding (GAAP) heuristic that drives the AUV to collect data from nodes depending onmore » the VoI of their data. For benchmarking the performance of AUV path-finding heuristics, we define an integer linear programming (ILP) formulation that accurately models the considered scenario, deriving a path that drives the AUV to collect and deliver data with the maximum VoI. In our experiments GAAP consistently delivers more than 80 percent of the theoretical maximum VoI determined by the ILP model. We also compare the performance of GAAP with that of other strategies for driving the AUV among sensing nodes, namely, random paths, TSP-based paths and a “lawn mower”-like strategy. Our results show that GAAP always outperforms every other heuristic in terms of delivered VoI, also obtaining higher energy efficiency.« less

  13. Path Finding for Maximum Value of Information in Multi-Modal Underwater Wireless Sensor Networks

    DOE PAGES

    Gjanci, Petrika; Petrioli, Chiara; Basagni, Stefano; ...

    2017-05-19

    Here, we consider underwater multi-modal wireless sensor networks (UWSNs) suitable for applications on submarine surveillance and monitoring, where nodes offload data to a mobile autonomous underwater vehicle (AUV) via optical technology, and coordinate using acoustic communication. Sensed data are associated with a value, decaying in time. In this scenario, we address the problem of finding the path of the AUV so that the Value of Information (VoI) of the data delivered to a sink on the surface is maximized. We define a Greedy and Adaptive AUV Path-finding (GAAP) heuristic that drives the AUV to collect data from nodes depending onmore » the VoI of their data. For benchmarking the performance of AUV path-finding heuristics, we define an integer linear programming (ILP) formulation that accurately models the considered scenario, deriving a path that drives the AUV to collect and deliver data with the maximum VoI. In our experiments GAAP consistently delivers more than 80 percent of the theoretical maximum VoI determined by the ILP model. We also compare the performance of GAAP with that of other strategies for driving the AUV among sensing nodes, namely, random paths, TSP-based paths and a “lawn mower”-like strategy. Our results show that GAAP always outperforms every other heuristic in terms of delivered VoI, also obtaining higher energy efficiency.« less

  14. Decision Model for Planning and Scheduling of Seafood Product Considering Traceability

    NASA Astrophysics Data System (ADS)

    Agustin; Mawengkang, Herman; Mathelinea, Devy

    2018-01-01

    Due to the global challenges, it is necessary for an industrial company to integrate production scheduling and distribution planning, in order to be more efficient and to get more economics advantages. This paper presents seafood production planning and scheduling of a seafood manufacture company which produces simultaneously multi kind of seafood products, located at Aceh Province, Indonesia. The perishability nature of fish highly restricts its storage duration and delivery conditions. Traceability is a tracking requirement to check whether the quality of the product is satisfied. The production and distribution planning problem aims to meet customer demand subject to traceability of the seafood product and other restrictions. The problem is modeled as a mixed integer linear program, and then it is solved using neighborhood search approach.

  15. Automated Discovery of Speech Act Categories in Educational Games

    ERIC Educational Resources Information Center

    Rus, Vasile; Moldovan, Cristian; Niraula, Nobal; Graesser, Arthur C.

    2012-01-01

    In this paper we address the important task of automated discovery of speech act categories in dialogue-based, multi-party educational games. Speech acts are important in dialogue-based educational systems because they help infer the student speaker's intentions (the task of speech act classification) which in turn is crucial to providing adequate…

  16. Multi-voxel patterns of visual category representation during episodic encoding are predictive of subsequent memory

    PubMed Central

    Kuhl, Brice A.; Rissman, Jesse; Wagner, Anthony D.

    2012-01-01

    Successful encoding of episodic memories is thought to depend on contributions from prefrontal and temporal lobe structures. Neural processes that contribute to successful encoding have been extensively explored through univariate analyses of neuroimaging data that compare mean activity levels elicited during the encoding of events that are subsequently remembered vs. those subsequently forgotten. Here, we applied pattern classification to fMRI data to assess the degree to which distributed patterns of activity within prefrontal and temporal lobe structures elicited during the encoding of word-image pairs were diagnostic of the visual category (Face or Scene) of the encoded image. We then assessed whether representation of category information was predictive of subsequent memory. Classification analyses indicated that temporal lobe structures contained information robustly diagnostic of visual category. Information in prefrontal cortex was less diagnostic of visual category, but was nonetheless associated with highly reliable classifier-based evidence for category representation. Critically, trials associated with greater classifier-based estimates of category representation in temporal and prefrontal regions were associated with a higher probability of subsequent remembering. Finally, consideration of trial-by-trial variance in classifier-based measures of category representation revealed positive correlations between prefrontal and temporal lobe representations, with the strength of these correlations varying as a function of the category of image being encoded. Together, these results indicate that multi-voxel representations of encoded information can provide unique insights into how visual experiences are transformed into episodic memories. PMID:21925190

  17. HIPPO Unit Commitment Version 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2017-01-17

    Developed for the Midcontinent Independent System Operator, Inc. (MISO), HIPPO-Unit Commitment Version 1 is for solving security constrained unit commitment problem. The model was developed to solve MISO's cases. This version of codes includes I/O module to read in MISO's csv files, modules to create a state-based mixed integer programming formulation for solving MIP, and modules to test basic procedures to solve MIP via HPC.

  18. A singular value decomposition linear programming (SVDLP) optimization technique for circular cone based robotic radiotherapy.

    PubMed

    Liang, Bin; Li, Yongbao; Wei, Ran; Guo, Bin; Xu, Xuang; Liu, Bo; Li, Jiafeng; Wu, Qiuwen; Zhou, Fugen

    2018-01-05

    With robot-controlled linac positioning, robotic radiotherapy systems such as CyberKnife significantly increase freedom of radiation beam placement, but also impose more challenges on treatment plan optimization. The resampling mechanism in the vendor-supplied treatment planning system (MultiPlan) cannot fully explore the increased beam direction search space. Besides, a sparse treatment plan (using fewer beams) is desired to improve treatment efficiency. This study proposes a singular value decomposition linear programming (SVDLP) optimization technique for circular collimator based robotic radiotherapy. The SVDLP approach initializes the input beams by simulating the process of covering the entire target volume with equivalent beam tapers. The requirements on dosimetry distribution are modeled as hard and soft constraints, and the sparsity of the treatment plan is achieved by compressive sensing. The proposed linear programming (LP) model optimizes beam weights by minimizing the deviation of soft constraints subject to hard constraints, with a constraint on the l 1 norm of the beam weight. A singular value decomposition (SVD) based acceleration technique was developed for the LP model. Based on the degeneracy of the influence matrix, the model is first compressed into lower dimension for optimization, and then back-projected to reconstruct the beam weight. After beam weight optimization, the number of beams is reduced by removing the beams with low weight, and optimizing the weights of the remaining beams using the same model. This beam reduction technique is further validated by a mixed integer programming (MIP) model. The SVDLP approach was tested on a lung case. The results demonstrate that the SVD acceleration technique speeds up the optimization by a factor of 4.8. Furthermore, the beam reduction achieves a similar plan quality to the globally optimal plan obtained by the MIP model, but is one to two orders of magnitude faster. Furthermore, the SVDLP approach is tested and compared with MultiPlan on three clinical cases of varying complexities. In general, the plans generated by the SVDLP achieve steeper dose gradient, better conformity and less damage to normal tissues. In conclusion, the SVDLP approach effectively improves the quality of treatment plan due to the use of the complete beam search space. This challenging optimization problem with the complete beam search space is effectively handled by the proposed SVD acceleration.

  19. A singular value decomposition linear programming (SVDLP) optimization technique for circular cone based robotic radiotherapy

    NASA Astrophysics Data System (ADS)

    Liang, Bin; Li, Yongbao; Wei, Ran; Guo, Bin; Xu, Xuang; Liu, Bo; Li, Jiafeng; Wu, Qiuwen; Zhou, Fugen

    2018-01-01

    With robot-controlled linac positioning, robotic radiotherapy systems such as CyberKnife significantly increase freedom of radiation beam placement, but also impose more challenges on treatment plan optimization. The resampling mechanism in the vendor-supplied treatment planning system (MultiPlan) cannot fully explore the increased beam direction search space. Besides, a sparse treatment plan (using fewer beams) is desired to improve treatment efficiency. This study proposes a singular value decomposition linear programming (SVDLP) optimization technique for circular collimator based robotic radiotherapy. The SVDLP approach initializes the input beams by simulating the process of covering the entire target volume with equivalent beam tapers. The requirements on dosimetry distribution are modeled as hard and soft constraints, and the sparsity of the treatment plan is achieved by compressive sensing. The proposed linear programming (LP) model optimizes beam weights by minimizing the deviation of soft constraints subject to hard constraints, with a constraint on the l 1 norm of the beam weight. A singular value decomposition (SVD) based acceleration technique was developed for the LP model. Based on the degeneracy of the influence matrix, the model is first compressed into lower dimension for optimization, and then back-projected to reconstruct the beam weight. After beam weight optimization, the number of beams is reduced by removing the beams with low weight, and optimizing the weights of the remaining beams using the same model. This beam reduction technique is further validated by a mixed integer programming (MIP) model. The SVDLP approach was tested on a lung case. The results demonstrate that the SVD acceleration technique speeds up the optimization by a factor of 4.8. Furthermore, the beam reduction achieves a similar plan quality to the globally optimal plan obtained by the MIP model, but is one to two orders of magnitude faster. Furthermore, the SVDLP approach is tested and compared with MultiPlan on three clinical cases of varying complexities. In general, the plans generated by the SVDLP achieve steeper dose gradient, better conformity and less damage to normal tissues. In conclusion, the SVDLP approach effectively improves the quality of treatment plan due to the use of the complete beam search space. This challenging optimization problem with the complete beam search space is effectively handled by the proposed SVD acceleration.

  20. Distributed containment control of heterogeneous fractional-order multi-agent systems with communication delays

    NASA Astrophysics Data System (ADS)

    Yang, Hongyong; Han, Fujun; Zhao, Mei; Zhang, Shuning; Yue, Jun

    2017-08-01

    Because many networked systems can only be characterized with fractional-order dynamics in complex environments, fractional-order calculus has been studied deeply recently. When diverse individual features are shown in different agents of networked systems, heterogeneous fractional-order dynamics will be used to describe the complex systems. Based on the distinguishing properties of agents, heterogeneous fractional-order multi-agent systems (FOMAS) are presented. With the supposition of multiple leader agents in FOMAS, distributed containment control of FOMAS is studied in directed weighted topologies. By applying Laplace transformation and frequency domain theory of the fractional-order operator, an upper bound of delays is obtained to ensure containment consensus of delayed heterogenous FOMAS. Consensus results of delayed FOMAS in this paper can be extended to systems with integer-order models. Finally, numerical examples are used to verify our results.

  1. Analysis misconception of integers in microteaching activities

    NASA Astrophysics Data System (ADS)

    Setyawati, R. D.; Indiati, I.

    2018-05-01

    This study view to analyse student misconceptions on integers in microteaching activities. This research used qualitative research design. An integers test contained questions from eight main areas of integers. The Integers material test includes (a) converting the image into fractions, (b) examples of positive numbers including rational numbers, (c) operations in fractions, (d) sorting fractions from the largest to the smallest, and vice versa; e) equate denominator, (f) concept of ratio mark, (g) definition of fraction, and (h) difference between fractions and parts. The results indicated an integers concepts: (1) the students have not been able to define concepts well based on the classification of facts in organized part; (2) The correlational concept: students have not been able to combine interrelated events in the form of general principles; and (3) theoretical concepts: students have not been able to use concepts that facilitate in learning the facts or events in an organized system.

  2. An interactive computer approach to performing resource analysis for a multi-resource/multi-project problem. [Spacelab inventory procurement planning

    NASA Technical Reports Server (NTRS)

    Schlagheck, R. A.

    1977-01-01

    New planning techniques and supporting computer tools are needed for the optimization of resources and costs for space transportation and payload systems. Heavy emphasis on cost effective utilization of resources has caused NASA program planners to look at the impact of various independent variables that affect procurement buying. A description is presented of a category of resource planning which deals with Spacelab inventory procurement analysis. Spacelab is a joint payload project between NASA and the European Space Agency and will be flown aboard the Space Shuttle starting in 1980. In order to respond rapidly to the various procurement planning exercises, a system was built that could perform resource analysis in a quick and efficient manner. This system is known as the Interactive Resource Utilization Program (IRUP). Attention is given to aspects of problem definition, an IRUP system description, questions of data base entry, the approach used for project scheduling, and problems of resource allocation.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiaohu; Shi, Di; Wang, Zhiwei

    Shunt FACTS devices, such as, a Static Var Compensator (SVC), are capable of providing local reactive power compensation. They are widely used in the network to reduce the real power loss and improve the voltage profile. This paper proposes a planning model based on mixed integer conic programming (MICP) to optimally allocate SVCs in the transmission network considering load uncertainty. The load uncertainties are represented by a number of scenarios. Reformulation and linearization techniques are utilized to transform the original non-convex model into a convex second order cone programming (SOCP) model. Numerical case studies based on the IEEE 30-bus systemmore » demonstrate the effectiveness of the proposed planning model.« less

  4. Integer programming of cement distribution by train

    NASA Astrophysics Data System (ADS)

    Indarsih

    2018-01-01

    Cement industry in Central Java distributes cement by train to meet daily demand in Yogyakarta and Central Java area. There are five destination stations. For each destination station, there is a warehouse to load cements. Decision maker of cement industry have a plan to redesign the infrastructure and transportation system. The aim is to determine how many locomotives, train wagons, and containers and how to arrange train schedules with subject to the delivery time. For this purposes, we consider an integer programming to minimize the total of operational cost. Further, we will discuss a case study and the solution the problem can be calculated by LINGO software.

  5. Mixed-Integer Conic Linear Programming: Challenges and Perspectives

    DTIC Science & Technology

    2013-10-01

    The novel DCCs for MISOCO may be used in branch- and-cut algorithms when solving MISOCO problems. The experimental software CICLO was developed to...perform limited, but rigorous computational experiments. The CICLO solver utilizes continuous SOCO solvers, MOSEK, CPLES or SeDuMi, builds on the open...submitted Fall 2013. Software: 1. CICLO : Integer conic linear optimization package. Authors: J.C. Góez, T.K. Ralphs, Y. Fu, and T. Terlaky

  6. Integer cosine transform for image compression

    NASA Technical Reports Server (NTRS)

    Cheung, K.-M.; Pollara, F.; Shahshahani, M.

    1991-01-01

    This article describes a recently introduced transform algorithm called the integer cosine transform (ICT), which is used in transform-based data compression schemes. The ICT algorithm requires only integer operations on small integers and at the same time gives a rate-distortion performance comparable to that offered by the floating-point discrete cosine transform (DCT). The article addresses the issue of implementation complexity, which is of prime concern for source coding applications of interest in deep-space communications. Complexity reduction in the transform stage of the compression scheme is particularly relevant, since this stage accounts for most (typically over 80 percent) of the computational load.

  7. A Three-Dimensional Target Depth-Resolution Method with a Single-Vector Sensor

    PubMed Central

    Zhao, Anbang; Bi, Xuejie; Hui, Juan; Zeng, Caigao; Ma, Lin

    2018-01-01

    This paper mainly studies and verifies the target number category-resolution method in multi-target cases and the target depth-resolution method of aerial targets. Firstly, target depth resolution is performed by using the sign distribution of the reactive component of the vertical complex acoustic intensity; the target category and the number resolution in multi-target cases is realized with a combination of the bearing-time recording information; and the corresponding simulation verification is carried out. The algorithm proposed in this paper can distinguish between the single-target multi-line spectrum case and the multi-target multi-line spectrum case. This paper presents an improved azimuth-estimation method for multi-target cases, which makes the estimation results more accurate. Using the Monte Carlo simulation, the feasibility of the proposed target number and category-resolution algorithm in multi-target cases is verified. In addition, by studying the field characteristics of the aerial and surface targets, the simulation results verify that there is only amplitude difference between the aerial target field and the surface target field under the same environmental parameters, and an aerial target can be treated as a special case of a surface target; the aerial target category resolution can then be realized based on the sign distribution of the reactive component of the vertical acoustic intensity so as to realize three-dimensional target depth resolution. By processing data from a sea experiment, the feasibility of the proposed aerial target three-dimensional depth-resolution algorithm is verified. PMID:29649173

  8. A Three-Dimensional Target Depth-Resolution Method with a Single-Vector Sensor.

    PubMed

    Zhao, Anbang; Bi, Xuejie; Hui, Juan; Zeng, Caigao; Ma, Lin

    2018-04-12

    This paper mainly studies and verifies the target number category-resolution method in multi-target cases and the target depth-resolution method of aerial targets. Firstly, target depth resolution is performed by using the sign distribution of the reactive component of the vertical complex acoustic intensity; the target category and the number resolution in multi-target cases is realized with a combination of the bearing-time recording information; and the corresponding simulation verification is carried out. The algorithm proposed in this paper can distinguish between the single-target multi-line spectrum case and the multi-target multi-line spectrum case. This paper presents an improved azimuth-estimation method for multi-target cases, which makes the estimation results more accurate. Using the Monte Carlo simulation, the feasibility of the proposed target number and category-resolution algorithm in multi-target cases is verified. In addition, by studying the field characteristics of the aerial and surface targets, the simulation results verify that there is only amplitude difference between the aerial target field and the surface target field under the same environmental parameters, and an aerial target can be treated as a special case of a surface target; the aerial target category resolution can then be realized based on the sign distribution of the reactive component of the vertical acoustic intensity so as to realize three-dimensional target depth resolution. By processing data from a sea experiment, the feasibility of the proposed aerial target three-dimensional depth-resolution algorithm is verified.

  9. Recent Results of NASA's Space Environments and Effects Program

    NASA Technical Reports Server (NTRS)

    Minor, Jody L.; Brewer, Dana S.

    1998-01-01

    The Space Environments and Effects (SEE) Program is a multi-center multi-agency program managed by the NASA Marshall Space Flight Center. The program evolved from the Long Duration Exposure Facility (LDEF), analysis of LDEF data, and recognition of the importance of the environments and environmental effects on future space missions. It is a very comprehensive and focused approach to understanding the space environments, to define the best techniques for both flight and ground-based experimentation, to update the models which predict both the environments and the environmental effects on spacecraft, and finally to ensure that this information is properly maintained and inserted into spacecraft design programs. Formal funding of the SEE Program began initially in FY95. A NASA Research Announcement (NRA) solicited research proposals in the following categories: 1) Engineering environment definitions; 2) Environments and effects design guidelines; 3) Environments and effects assessment models and databases; and, 4) Flight/ground simulation/technology assessment data. This solicitation resulted in funding for eighteen technology development activities (TDA's). This paper will present and describe technical results rom the first set of TDA's of the SEE Program. It will also describe the second set of technology development activities which are expected to begin in January 1998. These new technology development activities will enable the SEE Program to start numerous new development activities in support of mission customer needs.

  10. MultiDay Test | Center for Cancer Research

    Cancer.gov

    Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nam posuere egestas risus eget venenatis. Integer in metus a leo sodales pulvinar in sed dolor. Fusce tincidunt iaculis condimentum. Nam semper sapien nec est consequat, eu pretium arcu facilisis. Donec non viverra mauris. Pellentesque porttitor risus sit amet iaculis finibus. Ut quis justo consequat, fermentum sem in,

  11. Dynamic Distributed Cooperative Control of Multiple Heterogeneous Resources

    DTIC Science & Technology

    2012-10-01

    of the UAVs to maximize the total sensor footprint over the region of interest. The algorithm utilized to solve this problem was based on sampling a...and moving obstacles. Obstacle positions were assumed known a priori. Kingston and Beard [22] presented an algorithm to keep moving UAVs equally spaced...Planning Algorithms , Cambridge University Press, 2006. 11. Ma, C. S. and Miller, R. H., “Mixed integer linear programming trajectory generation for

  12. RF model of the distribution system as a communication channel, phase 2. Volume 4: Sofware source program and illustrations ASCII database listings

    NASA Technical Reports Server (NTRS)

    Rustay, R. C.; Gajjar, J. T.; Rankin, R. W.; Wentz, R. C.; Wooding, R.

    1982-01-01

    Listings of source programs and some illustrative examples of various ASCII data base files are presented. The listings are grouped into the following categories: main programs, subroutine programs, illustrative ASCII data base files. Within each category files are listed alphabetically.

  13. Three Program Architecture for Design Optimization

    NASA Technical Reports Server (NTRS)

    Miura, Hirokazu; Olson, Lawrence E. (Technical Monitor)

    1998-01-01

    In this presentation, I would like to review historical perspective on the program architecture used to build design optimization capabilities based on mathematical programming and other numerical search techniques. It is rather straightforward to classify the program architecture in three categories as shown above. However, the relative importance of each of the three approaches has not been static, instead dynamically changing as the capabilities of available computational resource increases. For example, we considered that the direct coupling architecture would never be used for practical problems, but availability of such computer systems as multi-processor. In this presentation, I would like to review the roles of three architecture from historical as well as current and future perspective. There may also be some possibility for emergence of hybrid architecture. I hope to provide some seeds for active discussion where we are heading to in the very dynamic environment for high speed computing and communication.

  14. State-of-the-Art: DTM Generation Using Airborne LIDAR Data

    PubMed Central

    Chen, Ziyue; Gao, Bingbo; Devereux, Bernard

    2017-01-01

    Digital terrain model (DTM) generation is the fundamental application of airborne Lidar data. In past decades, a large body of studies has been conducted to present and experiment a variety of DTM generation methods. Although great progress has been made, DTM generation, especially DTM generation in specific terrain situations, remains challenging. This research introduces the general principles of DTM generation and reviews diverse mainstream DTM generation methods. In accordance with the filtering strategy, these methods are classified into six categories: surface-based adjustment; morphology-based filtering, triangulated irregular network (TIN)-based refinement, segmentation and classification, statistical analysis and multi-scale comparison. Typical methods for each category are briefly introduced and the merits and limitations of each category are discussed accordingly. Despite different categories of filtering strategies, these DTM generation methods present similar difficulties when implemented in sharply changing terrain, areas with dense non-ground features and complicated landscapes. This paper suggests that the fusion of multi-sources and integration of different methods can be effective ways for improving the performance of DTM generation. PMID:28098810

  15. Fast parallel DNA-based algorithms for molecular computation: quadratic congruence and factoring integers.

    PubMed

    Chang, Weng-Long

    2012-03-01

    Assume that n is a positive integer. If there is an integer such that M (2) ≡ C (mod n), i.e., the congruence has a solution, then C is said to be a quadratic congruence (mod n). If the congruence does not have a solution, then C is said to be a quadratic noncongruence (mod n). The task of solving the problem is central to many important applications, the most obvious being cryptography. In this article, we describe a DNA-based algorithm for solving quadratic congruence and factoring integers. In additional to this novel contribution, we also show the utility of our encoding scheme, and of the algorithm's submodules. We demonstrate how a variety of arithmetic, shifted and comparative operations, namely bitwise and full addition, subtraction, left shifter and comparison perhaps are performed using strands of DNA.

  16. Multi-Objectivising Combinatorial Optimisation Problems by Means of Elementary Landscape Decompositions.

    PubMed

    Ceberio, Josu; Calvo, Borja; Mendiburu, Alexander; Lozano, Jose A

    2018-02-15

    In the last decade, many works in combinatorial optimisation have shown that, due to the advances in multi-objective optimisation, the algorithms from this field could be used for solving single-objective problems as well. In this sense, a number of papers have proposed multi-objectivising single-objective problems in order to use multi-objective algorithms in their optimisation. In this article, we follow up this idea by presenting a methodology for multi-objectivising combinatorial optimisation problems based on elementary landscape decompositions of their objective function. Under this framework, each of the elementary landscapes obtained from the decomposition is considered as an independent objective function to optimise. In order to illustrate this general methodology, we consider four problems from different domains: the quadratic assignment problem and the linear ordering problem (permutation domain), the 0-1 unconstrained quadratic optimisation problem (binary domain), and the frequency assignment problem (integer domain). We implemented two widely known multi-objective algorithms, NSGA-II and SPEA2, and compared their performance with that of a single-objective GA. The experiments conducted on a large benchmark of instances of the four problems show that the multi-objective algorithms clearly outperform the single-objective approaches. Furthermore, a discussion on the results suggests that the multi-objective space generated by this decomposition enhances the exploration ability, thus permitting NSGA-II and SPEA2 to obtain better results in the majority of the tested instances.

  17. Reliable design of a closed loop supply chain network under uncertainty: An interval fuzzy possibilistic chance-constrained model

    NASA Astrophysics Data System (ADS)

    Vahdani, Behnam; Tavakkoli-Moghaddam, Reza; Jolai, Fariborz; Baboli, Arman

    2013-06-01

    This article seeks to offer a systematic approach to establishing a reliable network of facilities in closed loop supply chains (CLSCs) under uncertainties. Facilities that are located in this article concurrently satisfy both traditional objective functions and reliability considerations in CLSC network designs. To attack this problem, a novel mathematical model is developed that integrates the network design decisions in both forward and reverse supply chain networks. The model also utilizes an effective reliability approach to find a robust network design. In order to make the results of this article more realistic, a CLSC for a case study in the iron and steel industry has been explored. The considered CLSC is multi-echelon, multi-facility, multi-product and multi-supplier. Furthermore, multiple facilities exist in the reverse logistics network leading to high complexities. Since the collection centres play an important role in this network, the reliability concept of these facilities is taken into consideration. To solve the proposed model, a novel interactive hybrid solution methodology is developed by combining a number of efficient solution approaches from the recent literature. The proposed solution methodology is a bi-objective interval fuzzy possibilistic chance-constraint mixed integer linear programming (BOIFPCCMILP). Finally, computational experiments are provided to demonstrate the applicability and suitability of the proposed model in a supply chain environment and to help decision makers facilitate their analyses.

  18. Simultaneous Identification of Multiple Driver Pathways in Cancer

    PubMed Central

    Leiserson, Mark D. M.; Blokh, Dima

    2013-01-01

    Distinguishing the somatic mutations responsible for cancer (driver mutations) from random, passenger mutations is a key challenge in cancer genomics. Driver mutations generally target cellular signaling and regulatory pathways consisting of multiple genes. This heterogeneity complicates the identification of driver mutations by their recurrence across samples, as different combinations of mutations in driver pathways are observed in different samples. We introduce the Multi-Dendrix algorithm for the simultaneous identification of multiple driver pathways de novo in somatic mutation data from a cohort of cancer samples. The algorithm relies on two combinatorial properties of mutations in a driver pathway: high coverage and mutual exclusivity. We derive an integer linear program that finds set of mutations exhibiting these properties. We apply Multi-Dendrix to somatic mutations from glioblastoma, breast cancer, and lung cancer samples. Multi-Dendrix identifies sets of mutations in genes that overlap with known pathways – including Rb, p53, PI(3)K, and cell cycle pathways – and also novel sets of mutually exclusive mutations, including mutations in several transcription factors or other genes involved in transcriptional regulation. These sets are discovered directly from mutation data with no prior knowledge of pathways or gene interactions. We show that Multi-Dendrix outperforms other algorithms for identifying combinations of mutations and is also orders of magnitude faster on genome-scale data. Software available at: http://compbio.cs.brown.edu/software. PMID:23717195

  19. A qualitative study exploring adolescents' experiences with a school-based mental health program.

    PubMed

    Garmy, Pernilla; Berg, Agneta; Clausson, Eva K

    2015-10-21

    Supporting positive mental health development in adolescents is a major public health concern worldwide. Although several school-based programs aimed at preventing depression have been launched, it is crucial to evaluate these programs and to obtain feedback from participating adolescents. This study aimed to explore adolescents' experiences with a -based cognitive-behavioral depression prevention program. Eighty-nine adolescents aged 13-15 years were divided into 12 focus groups. The focus group interviews were analyzed using qualitative content analysis. Three categories and eight subcategories were found to be related to the experience of the school-based program. The first category, intrapersonal strategies, consisted of the subcategories of directed thinking, improved self-confidence, stress management, and positive activities. The second category, interpersonal awareness, consisted of the subcategories of trusting the group and considering others. The third category, structural constraints, consisted of the subcategories of negative framing and emphasis on performance. The school-based mental health program was perceived as beneficial and meaningful on both individual and group levels, but students expressed a desire for a more health-promoting approach.

  20. On the origins of generalized fractional calculus

    NASA Astrophysics Data System (ADS)

    Kiryakova, Virginia

    2015-11-01

    In Fractional Calculus (FC), as in the (classical) Calculus, the notions of derivatives and integrals (of first, second, etc. or arbitrary, incl. non-integer order) are basic and co-related. One of the most frequent approach in FC is to define first the Riemann-Liouville (R-L) integral of fractional order, and then by means of suitable integer-order differentiation operation applied over it (or under its sign) a fractional derivative is defined - in the R-L sense (or in Caputo sense). The first mentioned (R-L type) is closer to the theoretical studies in analysis, but has some shortages - from the point of view of interpretation of the initial conditions for Cauchy problems for fractional differential equations (stated also by means of fractional order derivatives/ integrals), and also for the analysts' confusion that such a derivative of a constant is not zero in general. The Caputo (C-) derivative, arising first in geophysical studies, helps to overcome these problems and to describe models of applied problems with physically consistent initial conditions. The operators of the Generalized Fractional Calculus - GFC (integrals and derivatives) are based on commuting m-tuple (m = 1, 2, 3, …) compositions of operators of the classical FC with power weights (the so-called Erdélyi-Kober operators), but represented in compact and explicit form by means of integral, integro-differential (R-L type) or differential-integral (C-type) operators, where the kernels are special functions of most general hypergeometric kind. The foundations of this theory are given in Kiryakova 18. In this survey we present the genesis of the definitions of the GFC - the generalized fractional integrals and derivatives (of fractional multi-order) of R-L type and Caputo type, analyze their properties and applications. Their special cases are all the known operators of classical FC, their generalizations introduced by other authors, the hyper-Bessel differential operators of higher integer order m as a multi-order (1, 1,…, 1), the Gelfond-Leontiev generalized differentiation operators, many other integral and differential operators in Calculus that have been used in various topics, some of them not related to FC at all, others involved in differential and integral equations for treating fractional order models.

  1. A chance-constrained stochastic approach to intermodal container routing problems.

    PubMed

    Zhao, Yi; Liu, Ronghui; Zhang, Xi; Whiteing, Anthony

    2018-01-01

    We consider a container routing problem with stochastic time variables in a sea-rail intermodal transportation system. The problem is formulated as a binary integer chance-constrained programming model including stochastic travel times and stochastic transfer time, with the objective of minimising the expected total cost. Two chance constraints are proposed to ensure that the container service satisfies ship fulfilment and cargo on-time delivery with pre-specified probabilities. A hybrid heuristic algorithm is employed to solve the binary integer chance-constrained programming model. Two case studies are conducted to demonstrate the feasibility of the proposed model and to analyse the impact of stochastic variables and chance-constraints on the optimal solution and total cost.

  2. A chance-constrained stochastic approach to intermodal container routing problems

    PubMed Central

    Zhao, Yi; Zhang, Xi; Whiteing, Anthony

    2018-01-01

    We consider a container routing problem with stochastic time variables in a sea-rail intermodal transportation system. The problem is formulated as a binary integer chance-constrained programming model including stochastic travel times and stochastic transfer time, with the objective of minimising the expected total cost. Two chance constraints are proposed to ensure that the container service satisfies ship fulfilment and cargo on-time delivery with pre-specified probabilities. A hybrid heuristic algorithm is employed to solve the binary integer chance-constrained programming model. Two case studies are conducted to demonstrate the feasibility of the proposed model and to analyse the impact of stochastic variables and chance-constraints on the optimal solution and total cost. PMID:29438389

  3. Edit distance for marked point processes revisited: An implementation by binary integer programming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirata, Yoshito; Aihara, Kazuyuki

    2015-12-15

    We implement the edit distance for marked point processes [Suzuki et al., Int. J. Bifurcation Chaos 20, 3699–3708 (2010)] as a binary integer program. Compared with the previous implementation using minimum cost perfect matching, the proposed implementation has two advantages: first, by using the proposed implementation, we can apply a wide variety of software and hardware, even spin glasses and coherent ising machines, to calculate the edit distance for marked point processes; second, the proposed implementation runs faster than the previous implementation when the difference between the numbers of events in two time windows for a marked point process ismore » large.« less

  4. SSP: an interval integer linear programming for de novo transcriptome assembly and isoform discovery of RNA-seq reads.

    PubMed

    Safikhani, Zhaleh; Sadeghi, Mehdi; Pezeshk, Hamid; Eslahchi, Changiz

    2013-01-01

    Recent advances in the sequencing technologies have provided a handful of RNA-seq datasets for transcriptome analysis. However, reconstruction of full-length isoforms and estimation of the expression level of transcripts with a low cost are challenging tasks. We propose a novel de novo method named SSP that incorporates interval integer linear programming to resolve alternatively spliced isoforms and reconstruct the whole transcriptome from short reads. Experimental results show that SSP is fast and precise in determining different alternatively spliced isoforms along with the estimation of reconstructed transcript abundances. The SSP software package is available at http://www.bioinf.cs.ipm.ir/software/ssp. © 2013.

  5. Solution of the Generalized Noah's Ark Problem.

    PubMed

    Billionnet, Alain

    2013-01-01

    The phylogenetic diversity (PD) of a set of species is a measure of the evolutionary distance among the species in the collection, based on a phylogenetic tree. Such a tree is composed of a root, internal nodes, and leaves that correspond to the set of taxa under study. With each edge of the tree is associated a non-negative branch length (evolutionary distance). If a particular survival probability is associated with each taxon, the PD measure becomes the expected PD measure. In the Noah's Ark Problem (NAP) introduced by Weitzman (1998), these survival probabilities can be increased at some cost. The problem is to determine how best to allocate a limited amount of resources to maximize the expected PD of the considered species. It is easy to formulate the NAP as a (difficult) nonlinear 0-1 programming problem. The aim of this article is to show that a general version of the NAP (GNAP) can be solved simply and efficiently with any set of edge weights and any set of survival probabilities by using standard mixed-integer linear programming software. The crucial point to move from a nonlinear program in binary variables to a mixed-integer linear program, is to approximate the logarithmic function by the lower envelope of a set of tangents to the curve. Solving the obtained mixed-integer linear program provides not only a near-optimal solution but also an upper bound on the value of the optimal solution. We also applied this approach to a generalization of the nature reserve problem (GNRP) that consists of selecting a set of regions to be conserved so that the expected PD of the set of species present in these regions is maximized. In this case, the survival probabilities of different taxa are not independent of each other. Computational results are presented to illustrate potentialities of the approach. Near-optimal solutions with hypothetical phylogenetic trees comprising about 4000 taxa are obtained in a few seconds or minutes of computing time for the GNAP, and in about 30 min for the GNRP. In all the cases the average guarantee varies from 0% to 1.20%.

  6. A combinatorial approach to the design of vaccines.

    PubMed

    Martínez, Luis; Milanič, Martin; Legarreta, Leire; Medvedev, Paul; Malaina, Iker; de la Fuente, Ildefonso M

    2015-05-01

    We present two new problems of combinatorial optimization and discuss their applications to the computational design of vaccines. In the shortest λ-superstring problem, given a family S1,...,S(k) of strings over a finite alphabet, a set Τ of "target" strings over that alphabet, and an integer λ, the task is to find a string of minimum length containing, for each i, at least λ target strings as substrings of S(i). In the shortest λ-cover superstring problem, given a collection X1,...,X(n) of finite sets of strings over a finite alphabet and an integer λ, the task is to find a string of minimum length containing, for each i, at least λ elements of X(i) as substrings. The two problems are polynomially equivalent, and the shortest λ-cover superstring problem is a common generalization of two well known combinatorial optimization problems, the shortest common superstring problem and the set cover problem. We present two approaches to obtain exact or approximate solutions to the shortest λ-superstring and λ-cover superstring problems: one based on integer programming, and a hill-climbing algorithm. An application is given to the computational design of vaccines and the algorithms are applied to experimental data taken from patients infected by H5N1 and HIV-1.

  7. Classification and disease prediction via mathematical programming

    NASA Astrophysics Data System (ADS)

    Lee, Eva K.; Wu, Tsung-Lin

    2007-11-01

    In this chapter, we present classification models based on mathematical programming approaches. We first provide an overview on various mathematical programming approaches, including linear programming, mixed integer programming, nonlinear programming and support vector machines. Next, we present our effort of novel optimization-based classification models that are general purpose and suitable for developing predictive rules for large heterogeneous biological and medical data sets. Our predictive model simultaneously incorporates (1) the ability to classify any number of distinct groups; (2) the ability to incorporate heterogeneous types of attributes as input; (3) a high-dimensional data transformation that eliminates noise and errors in biological data; (4) the ability to incorporate constraints to limit the rate of misclassification, and a reserved-judgment region that provides a safeguard against over-training (which tends to lead to high misclassification rates from the resulting predictive rule) and (5) successive multi-stage classification capability to handle data points placed in the reserved judgment region. To illustrate the power and flexibility of the classification model and solution engine, and its multigroup prediction capability, application of the predictive model to a broad class of biological and medical problems is described. Applications include: the differential diagnosis of the type of erythemato-squamous diseases; predicting presence/absence of heart disease; genomic analysis and prediction of aberrant CpG island meythlation in human cancer; discriminant analysis of motility and morphology data in human lung carcinoma; prediction of ultrasonic cell disruption for drug delivery; identification of tumor shape and volume in treatment of sarcoma; multistage discriminant analysis of biomarkers for prediction of early atherosclerois; fingerprinting of native and angiogenic microvascular networks for early diagnosis of diabetes, aging, macular degeneracy and tumor metastasis; prediction of protein localization sites; and pattern recognition of satellite images in classification of soil types. In all these applications, the predictive model yields correct classification rates ranging from 80% to 100%. This provides motivation for pursuing its use as a medical diagnostic, monitoring and decision-making tool.

  8. Multi-Cultural Graduate Library Education. Historical Paper 5

    ERIC Educational Resources Information Center

    Carter, Jane Robbins

    2015-01-01

    This paper examines factors influencing the number of minority students enrolling in library schools during the 10 years prior to 1978. Robbins notes that there are four categories of barriers likely obstructing recruitment of students of color into LIS programs: financial, educational, psychosocial, and cultural. [For the commentary on this…

  9. Intelligent Tutoring for Programming Tasks: Using Plan Analysis to Generate Better Hints.

    DTIC Science & Technology

    1982-03-01

    construction and execution of a BASIC proqram that assiqns an integer value to a variable and then prints the value of that integer. - ARTICHOKE : assign...the string " ARTICHOKE " to a string variable, assiqn the value of that variable to a second variable, and print the second variable. -SINOP: qet two...the first five tasks: GREENFLAG, ARTICHOKE , SINOP, NINOP, and TWOS. Because the protocols are very lonq, it was necessary to condense them into a

  10. Determining the Surface-to-Air Missile Requirement for Western and Southern Part of the Turkish Air Defense System

    DTIC Science & Technology

    2008-03-01

    been shown to yield success in such applications as well. ( Daskin ,1995). LP optimization, matrix row reduction, a combination of both, or cutting...integer solution (Current, 2002). If the LP relaxation of the SCLP results in a fractional solution, Current, Daskin , and Schilling (2002) recommend...coverage for a given number of SAM sites. The model is formulated as an integer program, and the LINGO 10 software package is used to solve the model

  11. Aerospace applications of integer and combinatorial optimization

    NASA Technical Reports Server (NTRS)

    Padula, S. L.; Kincaid, R. K.

    1995-01-01

    Research supported by NASA Langley Research Center includes many applications of aerospace design optimization and is conducted by teams of applied mathematicians and aerospace engineers. This paper investigates the benefits from this combined expertise in solving combinatorial optimization problems. Applications range from the design of large space antennas to interior noise control. A typical problem, for example, seeks the optimal locations for vibration-damping devices on a large space structure and is expressed as a mixed/integer linear programming problem with more than 1500 design variables.

  12. Scattering and cloaking of binary hyper-particles in metamaterials.

    PubMed

    Alexopoulos, A; Yau, K S B

    2010-09-13

    We derive the d-dimensional scattering cross section for homogeneous and composite hyper-particles inside a metamaterial. The polarizability of the hyper-particles is expressed in multi-dimensional form and is used in order to examine various scattering characteristics. We introduce scattering bounds that display interesting results when d --> ∞ and in particular consider the special limit of hyper-particle cloaking in some detail. We demonstrate cloaking via resonance for homogeneous particles and show that composite hyper-particles can be used in order to obtain electromagnetic cloaking with either negative or all positive constitutive parameters respectively. Our approach not only considers cloaking of particles of integer dimension but also particles with non-integer dimension such as fractals. Theoretical results are compared to full-wave numerical simulations for two interacting hyper-particles in a medium.

  13. Extension of the firefly algorithm and preference rules for solving MINLP problems

    NASA Astrophysics Data System (ADS)

    Costa, M. Fernanda P.; Francisco, Rogério B.; Rocha, Ana Maria A. C.; Fernandes, Edite M. G. P.

    2017-07-01

    An extension of the firefly algorithm (FA) for solving mixed-integer nonlinear programming (MINLP) problems is presented. Although penalty functions are nowadays frequently used to handle integrality conditions and inequality and equality constraints, this paper proposes the implementation within the FA of a simple rounded-based heuristic and four preference rules to find and converge to MINLP feasible solutions. Preliminary numerical experiments are carried out to validate the proposed methodology.

  14. Results of the Clarus Regional Demonstrations : Evaluation of Enhanced Road Weather Forecasting

    DOT National Transportation Integrated Search

    2012-01-01

    The Clarus Initiative is a research effort of the U.S. Department of Transportation Intelligent Transportation Systems Joint Program Office and the Federal Highway Administrations Road Weather Management Program to develop and demonstrate an integ...

  15. Population-genetic nature of copy number variations in the human genome.

    PubMed

    Kato, Mamoru; Kawaguchi, Takahisa; Ishikawa, Shumpei; Umeda, Takayoshi; Nakamichi, Reiichiro; Shapero, Michael H; Jones, Keith W; Nakamura, Yusuke; Aburatani, Hiroyuki; Tsunoda, Tatsuhiko

    2010-03-01

    Copy number variations (CNVs) are universal genetic variations, and their association with disease has been increasingly recognized. We designed high-density microarrays for CNVs, and detected 3000-4000 CNVs (4-6% of the genomic sequence) per population that included CNVs previously missed because of smaller sizes and residing in segmental duplications. The patterns of CNVs across individuals were surprisingly simple at the kilo-base scale, suggesting the applicability of a simple genetic analysis for these genetic loci. We utilized the probabilistic theory to determine integer copy numbers of CNVs and employed a recently developed phasing tool to estimate the population frequencies of integer copy number alleles and CNV-SNP haplotypes. The results showed a tendency toward a lower frequency of CNV alleles and that most of our CNVs were explained only by zero-, one- and two-copy alleles. Using the estimated population frequencies, we found several CNV regions with exceptionally high population differentiation. Investigation of CNV-SNP linkage disequilibrium (LD) for 500-900 bi- and multi-allelic CNVs per population revealed that previous conflicting reports on bi-allelic LD were unexpectedly consistent and explained by an LD increase correlated with deletion-allele frequencies. Typically, the bi-allelic LD was lower than SNP-SNP LD, whereas the multi-allelic LD was somewhat stronger than the bi-allelic LD. After further investigation of tag SNPs for CNVs, we conclude that the customary tagging strategy for disease association studies can be applicable for common deletion CNVs, but direct interrogation is needed for other types of CNVs.

  16. Determining on-fault earthquake magnitude distributions from integer programming

    NASA Astrophysics Data System (ADS)

    Geist, Eric L.; Parsons, Tom

    2018-02-01

    Earthquake magnitude distributions among faults within a fault system are determined from regional seismicity and fault slip rates using binary integer programming. A synthetic earthquake catalog (i.e., list of randomly sampled magnitudes) that spans millennia is first formed, assuming that regional seismicity follows a Gutenberg-Richter relation. Each earthquake in the synthetic catalog can occur on any fault and at any location. The objective is to minimize misfits in the target slip rate for each fault, where slip for each earthquake is scaled from its magnitude. The decision vector consists of binary variables indicating which locations are optimal among all possibilities. Uncertainty estimates in fault slip rates provide explicit upper and lower bounding constraints to the problem. An implicit constraint is that an earthquake can only be located on a fault if it is long enough to contain that earthquake. A general mixed-integer programming solver, consisting of a number of different algorithms, is used to determine the optimal decision vector. A case study is presented for the State of California, where a 4 kyr synthetic earthquake catalog is created and faults with slip ≥3 mm/yr are considered, resulting in >106 variables. The optimal magnitude distributions for each of the faults in the system span a rich diversity of shapes, ranging from characteristic to power-law distributions.

  17. Cloud-based large-scale air traffic flow optimization

    NASA Astrophysics Data System (ADS)

    Cao, Yi

    The ever-increasing traffic demand makes the efficient use of airspace an imperative mission, and this paper presents an effort in response to this call. Firstly, a new aggregate model, called Link Transmission Model (LTM), is proposed, which models the nationwide traffic as a network of flight routes identified by origin-destination pairs. The traversal time of a flight route is assumed to be the mode of distribution of historical flight records, and the mode is estimated by using Kernel Density Estimation. As this simplification abstracts away physical trajectory details, the complexity of modeling is drastically decreased, resulting in efficient traffic forecasting. The predicative capability of LTM is validated against recorded traffic data. Secondly, a nationwide traffic flow optimization problem with airport and en route capacity constraints is formulated based on LTM. The optimization problem aims at alleviating traffic congestions with minimal global delays. This problem is intractable due to millions of variables. A dual decomposition method is applied to decompose the large-scale problem such that the subproblems are solvable. However, the whole problem is still computational expensive to solve since each subproblem is an smaller integer programming problem that pursues integer solutions. Solving an integer programing problem is known to be far more time-consuming than solving its linear relaxation. In addition, sequential execution on a standalone computer leads to linear runtime increase when the problem size increases. To address the computational efficiency problem, a parallel computing framework is designed which accommodates concurrent executions via multithreading programming. The multithreaded version is compared with its monolithic version to show decreased runtime. Finally, an open-source cloud computing framework, Hadoop MapReduce, is employed for better scalability and reliability. This framework is an "off-the-shelf" parallel computing model that can be used for both offline historical traffic data analysis and online traffic flow optimization. It provides an efficient and robust platform for easy deployment and implementation. A small cloud consisting of five workstations was configured and used to demonstrate the advantages of cloud computing in dealing with large-scale parallelizable traffic problems.

  18. Operations research applications in nuclear energy

    NASA Astrophysics Data System (ADS)

    Johnson, Benjamin Lloyd

    This dissertation consists of three papers; the first is published in Annals of Operations Research, the second is nearing submission to INFORMS Journal on Computing, and the third is the predecessor of a paper nearing submission to Progress in Nuclear Energy. We apply operations research techniques to nuclear waste disposal and nuclear safeguards. Although these fields are different, they allow us to showcase some benefits of using operations research techniques to enhance nuclear energy applications. The first paper, "Optimizing High-Level Nuclear Waste Disposal within a Deep Geologic Repository," presents a mixed-integer programming model that determines where to place high-level nuclear waste packages in a deep geologic repository to minimize heat load concentration. We develop a heuristic that increases the size of solvable model instances. The second paper, "Optimally Configuring a Measurement System to Detect Diversions from a Nuclear Fuel Cycle," introduces a simulation-optimization algorithm and an integer-programming model to find the best, or near-best, resource-limited nuclear fuel cycle measurement system with a high degree of confidence. Given location-dependent measurement method precisions, we (i) optimize the configuration of n methods at n locations of a hypothetical nuclear fuel cycle facility, (ii) find the most important location at which to improve method precision, and (iii) determine the effect of measurement frequency on near-optimal configurations and objective values. Our results correspond to existing outcomes but we obtain them at least an order of magnitude faster. The third paper, "Optimizing Nuclear Material Control and Accountability Measurement Systems," extends the integer program from the second paper to locate measurement methods in a larger, hypothetical nuclear fuel cycle scenario given fixed purchase and utilization budgets. This paper also presents two mixed-integer quadratic programming models to increase the precision of existing methods given a fixed improvement budget and to reduce the measurement uncertainty in the system while limiting improvement costs. We quickly obtain similar or better solutions compared to several intuitive analyses that take much longer to perform.

  19. Investigating Integer Restrictions in Linear Programming

    ERIC Educational Resources Information Center

    Edwards, Thomas G.; Chelst, Kenneth R.; Principato, Angela M.; Wilhelm, Thad L.

    2015-01-01

    Linear programming (LP) is an application of graphing linear systems that appears in many Algebra 2 textbooks. Although not explicitly mentioned in the Common Core State Standards for Mathematics, linear programming blends seamlessly into modeling with mathematics, the fourth Standard for Mathematical Practice (CCSSI 2010, p. 7). In solving a…

  20. An outer approximation method for the road network design problem

    PubMed Central

    2018-01-01

    Best investment in the road infrastructure or the network design is perceived as a fundamental and benchmark problem in transportation. Given a set of candidate road projects with associated costs, finding the best subset with respect to a limited budget is known as a bilevel Discrete Network Design Problem (DNDP) of NP-hard computationally complexity. We engage with the complexity with a hybrid exact-heuristic methodology based on a two-stage relaxation as follows: (i) the bilevel feature is relaxed to a single-level problem by taking the network performance function of the upper level into the user equilibrium traffic assignment problem (UE-TAP) in the lower level as a constraint. It results in a mixed-integer nonlinear programming (MINLP) problem which is then solved using the Outer Approximation (OA) algorithm (ii) we further relax the multi-commodity UE-TAP to a single-commodity MILP problem, that is, the multiple OD pairs are aggregated to a single OD pair. This methodology has two main advantages: (i) the method is proven to be highly efficient to solve the DNDP for a large-sized network of Winnipeg, Canada. The results suggest that within a limited number of iterations (as termination criterion), global optimum solutions are quickly reached in most of the cases; otherwise, good solutions (close to global optimum solutions) are found in early iterations. Comparative analysis of the networks of Gao and Sioux-Falls shows that for such a non-exact method the global optimum solutions are found in fewer iterations than those found in some analytically exact algorithms in the literature. (ii) Integration of the objective function among the constraints provides a commensurate capability to tackle the multi-objective (or multi-criteria) DNDP as well. PMID:29590111

  1. An outer approximation method for the road network design problem.

    PubMed

    Asadi Bagloee, Saeed; Sarvi, Majid

    2018-01-01

    Best investment in the road infrastructure or the network design is perceived as a fundamental and benchmark problem in transportation. Given a set of candidate road projects with associated costs, finding the best subset with respect to a limited budget is known as a bilevel Discrete Network Design Problem (DNDP) of NP-hard computationally complexity. We engage with the complexity with a hybrid exact-heuristic methodology based on a two-stage relaxation as follows: (i) the bilevel feature is relaxed to a single-level problem by taking the network performance function of the upper level into the user equilibrium traffic assignment problem (UE-TAP) in the lower level as a constraint. It results in a mixed-integer nonlinear programming (MINLP) problem which is then solved using the Outer Approximation (OA) algorithm (ii) we further relax the multi-commodity UE-TAP to a single-commodity MILP problem, that is, the multiple OD pairs are aggregated to a single OD pair. This methodology has two main advantages: (i) the method is proven to be highly efficient to solve the DNDP for a large-sized network of Winnipeg, Canada. The results suggest that within a limited number of iterations (as termination criterion), global optimum solutions are quickly reached in most of the cases; otherwise, good solutions (close to global optimum solutions) are found in early iterations. Comparative analysis of the networks of Gao and Sioux-Falls shows that for such a non-exact method the global optimum solutions are found in fewer iterations than those found in some analytically exact algorithms in the literature. (ii) Integration of the objective function among the constraints provides a commensurate capability to tackle the multi-objective (or multi-criteria) DNDP as well.

  2. The Retrofit Puzzle Extended: Optimal Fleet Owner Behavior over Multiple Time Periods

    DOT National Transportation Integrated Search

    2009-08-04

    In "The Retrofit Puzzle: Optimal Fleet Owner Behavior in the Context of Diesel Retrofit Incentive Programs" (1) an integer program was developed to model profit-maximizing diesel fleet owner behavior when selecting pollution reduction retrofits. Flee...

  3. Analysis of the single-vehicle cyclic inventory routing problem

    NASA Astrophysics Data System (ADS)

    Aghezzaf, El-Houssaine; Zhong, Yiqing; Raa, Birger; Mateo, Manel

    2012-11-01

    The single-vehicle cyclic inventory routing problem (SV-CIRP) consists of a repetitive distribution of a product from a single depot to a selected subset of customers. For each customer, selected for replenishments, the supplier collects a corresponding fixed reward. The objective is to determine the subset of customers to replenish, the quantity of the product to be delivered to each and to design the vehicle route so that the resulting profit (difference between the total reward and the total logistical cost) is maximised while preventing stockouts at each of the selected customers. This problem appears often as a sub-problem in many logistical problems. In this article, the SV-CIRP is formulated as a mixed-integer program with a nonlinear objective function. After a thorough analysis of the structure of the problem and its features, an exact algorithm for its solution is proposed. This exact algorithm requires only solutions of linear mixed-integer programs. Values of a savings-based heuristic for this problem are compared to the optimal values obtained for a set of some test problems. In general, the gap may get as large as 25%, which justifies the effort to continue exploring and developing exact and approximation algorithms for the SV-CIRP.

  4. MIP models for connected facility location: A theoretical and computational study☆

    PubMed Central

    Gollowitzer, Stefan; Ljubić, Ivana

    2011-01-01

    This article comprises the first theoretical and computational study on mixed integer programming (MIP) models for the connected facility location problem (ConFL). ConFL combines facility location and Steiner trees: given a set of customers, a set of potential facility locations and some inter-connection nodes, ConFL searches for the minimum-cost way of assigning each customer to exactly one open facility, and connecting the open facilities via a Steiner tree. The costs needed for building the Steiner tree, facility opening costs and the assignment costs need to be minimized. We model ConFL using seven compact and three mixed integer programming formulations of exponential size. We also show how to transform ConFL into the Steiner arborescence problem. A full hierarchy between the models is provided. For two exponential size models we develop a branch-and-cut algorithm. An extensive computational study is based on two benchmark sets of randomly generated instances with up to 1300 nodes and 115,000 edges. We empirically compare the presented models with respect to the quality of obtained bounds and the corresponding running time. We report optimal values for all but 16 instances for which the obtained gaps are below 0.6%. PMID:25009366

  5. A combined MOIP-MCDA approach to building and screening atmospheric pollution control strategies in urban regions.

    PubMed

    Mavrotas, George; Ziomas, Ioannis C; Diakouaki, Danae

    2006-07-01

    This article presents a methodological approach for the formulation of control strategies capable of reducing atmospheric pollution at the standards set by European legislation. The approach was implemented in the greater area of Thessaloniki and was part of a project aiming at the compliance with air quality standards in five major cities in Greece. The methodological approach comprises two stages: in the first stage, the availability of several measures contributing to a certain extent to reducing atmospheric pollution indicates a combinatorial problem and favors the use of Integer Programming. More specifically, Multiple Objective Integer Programming is used in order to generate alternative efficient combinations of the available policy measures on the basis of two conflicting objectives: public expenditure minimization and social acceptance maximization. In the second stage, these combinations of control measures (i.e., the control strategies) are then comparatively evaluated with respect to a wider set of criteria, using tools from Multiple Criteria Decision Analysis, namely, the well-known PROMETHEE method. The whole procedure is based on the active involvement of local and central authorities in order to incorporate their concerns and preferences, as well as to secure the adoption and implementation of the resulting solution.

  6. A Combined MOIP-MCDA Approach to Building and Screening Atmospheric Pollution Control Strategies in Urban Regions

    NASA Astrophysics Data System (ADS)

    Mavrotas, George; Ziomas, Ioannis C.; Diakouaki, Danae

    2006-07-01

    This article presents a methodological approach for the formulation of control strategies capable of reducing atmospheric pollution at the standards set by European legislation. The approach was implemented in the greater area of Thessaloniki and was part of a project aiming at the compliance with air quality standards in five major cities in Greece. The methodological approach comprises two stages: in the first stage, the availability of several measures contributing to a certain extent to reducing atmospheric pollution indicates a combinatorial problem and favors the use of Integer Programming. More specifically, Multiple Objective Integer Programming is used in order to generate alternative efficient combinations of the available policy measures on the basis of two conflicting objectives: public expenditure minimization and social acceptance maximization. In the second stage, these combinations of control measures (i.e., the control strategies) are then comparatively evaluated with respect to a wider set of criteria, using tools from Multiple Criteria Decision Analysis, namely, the well-known PROMETHEE method. The whole procedure is based on the active involvement of local and central authorities in order to incorporate their concerns and preferences, as well as to secure the adoption and implementation of the resulting solution.

  7. Metamodeling and the Critic-based approach to multi-level optimization.

    PubMed

    Werbos, Ludmilla; Kozma, Robert; Silva-Lugo, Rodrigo; Pazienza, Giovanni E; Werbos, Paul J

    2012-08-01

    Large-scale networks with hundreds of thousands of variables and constraints are becoming more and more common in logistics, communications, and distribution domains. Traditionally, the utility functions defined on such networks are optimized using some variation of Linear Programming, such as Mixed Integer Programming (MIP). Despite enormous progress both in hardware (multiprocessor systems and specialized processors) and software (Gurobi) we are reaching the limits of what these tools can handle in real time. Modern logistic problems, for example, call for expanding the problem both vertically (from one day up to several days) and horizontally (combining separate solution stages into an integrated model). The complexity of such integrated models calls for alternative methods of solution, such as Approximate Dynamic Programming (ADP), which provide a further increase in the performance necessary for the daily operation. In this paper, we present the theoretical basis and related experiments for solving the multistage decision problems based on the results obtained for shorter periods, as building blocks for the models and the solution, via Critic-Model-Action cycles, where various types of neural networks are combined with traditional MIP models in a unified optimization system. In this system architecture, fast and simple feed-forward networks are trained to reasonably initialize more complicated recurrent networks, which serve as approximators of the value function (Critic). The combination of interrelated neural networks and optimization modules allows for multiple queries for the same system, providing flexibility and optimizing performance for large-scale real-life problems. A MATLAB implementation of our solution procedure for a realistic set of data and constraints shows promising results, compared to the iterative MIP approach. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Cost-aware request routing in multi-geography cloud data centres using software-defined networking

    NASA Astrophysics Data System (ADS)

    Yuan, Haitao; Bi, Jing; Li, Bo Hu; Tan, Wei

    2017-03-01

    Current geographically distributed cloud data centres (CDCs) require gigantic energy and bandwidth costs to provide multiple cloud applications to users around the world. Previous studies only focus on energy cost minimisation in distributed CDCs. However, a CDC provider needs to deliver gigantic data between users and distributed CDCs through internet service providers (ISPs). Geographical diversity of bandwidth and energy costs brings a highly challenging problem of how to minimise the total cost of a CDC provider. With the recently emerging software-defined networking, we study the total cost minimisation problem for a CDC provider by exploiting geographical diversity of energy and bandwidth costs. We formulate the total cost minimisation problem as a mixed integer non-linear programming (MINLP). Then, we develop heuristic algorithms to solve the problem and to provide a cost-aware request routing for joint optimisation of the selection of ISPs and the number of servers in distributed CDCs. Besides, to tackle the dynamic workload in distributed CDCs, this article proposes a regression-based workload prediction method to obtain future incoming workload. Finally, this work evaluates the cost-aware request routing by trace-driven simulation and compares it with the existing approaches to demonstrate its effectiveness.

  9. Exact and Metaheuristic Approaches for a Bi-Objective School Bus Scheduling Problem

    PubMed Central

    Chen, Xiaopan; Kong, Yunfeng; Dang, Lanxue; Hou, Yane; Ye, Xinyue

    2015-01-01

    As a class of hard combinatorial optimization problems, the school bus routing problem has received considerable attention in the last decades. For a multi-school system, given the bus trips for each school, the school bus scheduling problem aims at optimizing bus schedules to serve all the trips within the school time windows. In this paper, we propose two approaches for solving the bi-objective school bus scheduling problem: an exact method of mixed integer programming (MIP) and a metaheuristic method which combines simulated annealing with local search. We develop MIP formulations for homogenous and heterogeneous fleet problems respectively and solve the models by MIP solver CPLEX. The bus type-based formulation for heterogeneous fleet problem reduces the model complexity in terms of the number of decision variables and constraints. The metaheuristic method is a two-stage framework for minimizing the number of buses to be used as well as the total travel distance of buses. We evaluate the proposed MIP and the metaheuristic method on two benchmark datasets, showing that on both instances, our metaheuristic method significantly outperforms the respective state-of-the-art methods. PMID:26176764

  10. Synchronic interval Gaussian mixed-integer programming for air quality management.

    PubMed

    Cheng, Guanhui; Huang, Guohe Gordon; Dong, Cong

    2015-12-15

    To reveal the synchronism of interval uncertainties, the tradeoff between system optimality and security, the discreteness of facility-expansion options, the uncertainty of pollutant dispersion processes, and the seasonality of wind features in air quality management (AQM) systems, a synchronic interval Gaussian mixed-integer programming (SIGMIP) approach is proposed in this study. A robust interval Gaussian dispersion model is developed for approaching the pollutant dispersion process under interval uncertainties and seasonal variations. The reflection of synchronic effects of interval uncertainties in the programming objective is enabled through introducing interval functions. The proposition of constraint violation degrees helps quantify the tradeoff between system optimality and constraint violation under interval uncertainties. The overall optimality of system profits of an SIGMIP model is achieved based on the definition of an integrally optimal solution. Integer variables in the SIGMIP model are resolved by the existing cutting-plane method. Combining these efforts leads to an effective algorithm for the SIGMIP model. An application to an AQM problem in a region in Shandong Province, China, reveals that the proposed SIGMIP model can facilitate identifying the desired scheme for AQM. The enhancement of the robustness of optimization exercises may be helpful for increasing the reliability of suggested schemes for AQM under these complexities. The interrelated tradeoffs among control measures, emission sources, flow processes, receptors, influencing factors, and economic and environmental goals are effectively balanced. Interests of many stakeholders are reasonably coordinated. The harmony between economic development and air quality control is enabled. Results also indicate that the constraint violation degree is effective at reflecting the compromise relationship between constraint-violation risks and system optimality under interval uncertainties. This can help decision makers mitigate potential risks, e.g. insufficiency of pollutant treatment capabilities, exceedance of air quality standards, deficiency of pollution control fund, or imbalance of economic or environmental stress, in the process of guiding AQM. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. TH-EF-BRB-04: 4π Dynamic Conformal Arc Therapy Dynamic Conformal Arc Therapy (DCAT) for SBRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiu, T; Long, T; Tian, Z.

    2016-06-15

    Purpose: To develop an efficient and effective trajectory optimization methodology for 4π dynamic conformal arc treatment (4π DCAT) with synchronized gantry and couch motion; and to investigate potential clinical benefits for stereotactic body radiation therapy (SBRT) to breast, lung, liver and spine tumors. Methods: The entire optimization framework for 4π DCAT inverse planning consists of two parts: 1) integer programming algorithm and 2) particle swarm optimization (PSO) algorithm. The integer programming is designed to find an optimal solution for arc delivery trajectory with both couch and gantry rotation, while PSO minimize a non-convex objective function based on the selected trajectorymore » and dose-volume constraints. In this study, control point interaction is explicitly taken into account. Beam trajectory was modeled as a series of control points connected together to form a deliverable path. With linear treatment planning objectives, a mixed-integer program (MIP) was formulated. Under mild assumptions, the MIP is tractable. Assigning monitor units to control points along the path can be integrated into the model and done by PSO. The developed 4π DCAT inverse planning strategy is evaluated on SBRT cases and compared to clinically treated plans. Results: The resultant dose distribution of this technique was evaluated between 3D conformal treatment plan generated by Pinnacle treatment planning system and 4π DCAT on a lung SBRT patient case. Both plans share the same scale of MU, 3038 and 2822 correspondingly to 3D conformal plan and 4π DCAT. The mean doses for most of OARs were greatly reduced at 32% (cord), 70% (esophagus), 2.8% (lung) and 42.4% (stomach). Conclusion: Initial results in this study show the proposed 4π DCAT treatment technique can achieve better OAR sparing and lower MUs, which indicates that the developed technique is promising for high dose SBRT to reduce the risk of secondary cancer.« less

  12. Combined Economic and Hydrologic Modeling to Support Collaborative Decision Making Processes

    NASA Astrophysics Data System (ADS)

    Sheer, D. P.

    2008-12-01

    For more than a decade, the core concept of the author's efforts in support of collaborative decision making has been a combination of hydrologic simulation and multi-objective optimization. The modeling has generally been used to support collaborative decision making processes. The OASIS model developed by HydroLogics Inc. solves a multi-objective optimization at each time step using a mixed integer linear program (MILP). The MILP can be configured to include any user defined objective, including but not limited too economic objectives. For example, an estimated marginal value for water for crops and M&I use were included in the objective function to drive trades in a model of the lower Rio Grande. The formulation of the MILP, constraints and objectives, in any time step is conditional: it changes based on the value of state variables and dynamic external forcing functions, such as rainfall, hydrology, market prices, arrival of migratory fish, water temperature, etc. It therefore acts as a dynamic short term multi-objective economic optimization for each time step. MILP is capable of solving a general problem that includes a very realistic representation of the physical system characteristics in addition to the normal multi-objective optimization objectives and constraints included in economic models. In all of these models, the short term objective function is a surrogate for achieving long term multi-objective results. The long term performance for any alternative (especially including operating strategies) is evaluated by simulation. An operating rule is the combination of conditions, parameters, constraints and objectives used to determine the formulation of the short term optimization in each time step. Heuristic wrappers for the simulation program have been developed improve the parameters of an operating rule, and are initiating research on a wrapper that will allow us to employ a genetic algorithm to improve the form of the rule (conditions, constraints, and short term objectives) as well. In the models operating rules represent different models of human behavior, and the objective of the modeling is to find rules for human behavior that perform well in terms of long term human objectives. The conceptual model used to represent human behavior incorporates economic multi-objective optimization for surrogate objectives, and rules that set those objectives based on current conditions and accounting for uncertainty, at least implicitly. The author asserts that real world operating rules follow this form and have evolved because they have been perceived as successful in the past. Thus, the modeling efforts focus on human behavior in much the same way that economic models focus on human behavior. This paper illustrates the above concepts with real world examples.

  13. Comparing the performance of expert user heuristics and an integer linear program in aircraft carrier deck operations.

    PubMed

    Ryan, Jason C; Banerjee, Ashis Gopal; Cummings, Mary L; Roy, Nicholas

    2014-06-01

    Planning operations across a number of domains can be considered as resource allocation problems with timing constraints. An unexplored instance of such a problem domain is the aircraft carrier flight deck, where, in current operations, replanning is done without the aid of any computerized decision support. Rather, veteran operators employ a set of experience-based heuristics to quickly generate new operating schedules. These expert user heuristics are neither codified nor evaluated by the United States Navy; they have grown solely from the convergent experiences of supervisory staff. As unmanned aerial vehicles (UAVs) are introduced in the aircraft carrier domain, these heuristics may require alterations due to differing capabilities. The inclusion of UAVs also allows for new opportunities for on-line planning and control, providing an alternative to the current heuristic-based replanning methodology. To investigate these issues formally, we have developed a decision support system for flight deck operations that utilizes a conventional integer linear program-based planning algorithm. In this system, a human operator sets both the goals and constraints for the algorithm, which then returns a proposed schedule for operator approval. As a part of validating this system, the performance of this collaborative human-automation planner was compared with that of the expert user heuristics over a set of test scenarios. The resulting analysis shows that human heuristics often outperform the plans produced by an optimization algorithm, but are also often more conservative.

  14. Performance analysis of two-degree of freedom fractional order PID controllers for robotic manipulator with payload.

    PubMed

    Sharma, Richa; Gaur, Prerna; Mittal, A P

    2015-09-01

    The robotic manipulators are multi-input multi-output (MIMO), coupled and highly nonlinear systems. The presence of external disturbances and time-varying parameters adversely affects the performance of these systems. Therefore, the controller designed for these systems should effectively deal with such complexities, and it is an intriguing task for control engineers. This paper presents two-degree of freedom fractional order proportional-integral-derivative (2-DOF FOPID) controller scheme for a two-link planar rigid robotic manipulator with payload for trajectory tracking task. The tuning of all controller parameters is done using cuckoo search algorithm (CSA). The performance of proposed 2-DOF FOPID controllers is compared with those of their integer order designs, i.e., 2-DOF PID controllers, and with the traditional PID controllers. In order to show effectiveness of proposed scheme, the robustness testing is carried out for model uncertainties, payload variations with time, external disturbance and random noise. Numerical simulation results indicate that the 2-DOF FOPID controllers are superior to their integer order counterparts and the traditional PID controllers. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Orchestra Festival Evaluations: Interjudge Agreement and Relationships between Performance Categories and Final Ratings.

    ERIC Educational Resources Information Center

    Garman, Barry R.; And Others

    1991-01-01

    Band, orchestra, and choir festival evaluations are a regular part of many secondary school music programs, and most such festivals engage adjudicators who rate each group's performance. Because music ensemble performance is complex and multi-dimensional, it does not lend itself readily to precise measurement; generally, musical performances are…

  16. NEWTONP - CUMULATIVE BINOMIAL PROGRAMS

    NASA Technical Reports Server (NTRS)

    Bowerman, P. N.

    1994-01-01

    The cumulative binomial program, NEWTONP, is one of a set of three programs which calculate cumulative binomial probability distributions for arbitrary inputs. The three programs, NEWTONP, CUMBIN (NPO-17555), and CROSSER (NPO-17557), can be used independently of one another. NEWTONP can be used by statisticians and users of statistical procedures, test planners, designers, and numerical analysts. The program has been used for reliability/availability calculations. NEWTONP calculates the probably p required to yield a given system reliability V for a k-out-of-n system. It can also be used to determine the Clopper-Pearson confidence limits (either one-sided or two-sided) for the parameter p of a Bernoulli distribution. NEWTONP can determine Bayesian probability limits for a proportion (if the beta prior has positive integer parameters). It can determine the percentiles of incomplete beta distributions with positive integer parameters. It can also determine the percentiles of F distributions and the midian plotting positions in probability plotting. NEWTONP is designed to work well with all integer values 0 < k <= n. To run the program, the user simply runs the executable version and inputs the information requested by the program. NEWTONP is not designed to weed out incorrect inputs, so the user must take care to make sure the inputs are correct. Once all input has been entered, the program calculates and lists the result. It also lists the number of iterations of Newton's method required to calculate the answer within the given error. The NEWTONP program is written in C. It was developed on an IBM AT with a numeric co-processor using Microsoft C 5.0. Because the source code is written using standard C structures and functions, it should compile correctly with most C compilers. The program format is interactive. It has been implemented under DOS 3.2 and has a memory requirement of 26K. NEWTONP was developed in 1988.

  17. HAL/S programmer's guide. [space shuttle flight software language

    NASA Technical Reports Server (NTRS)

    Newbold, P. M.; Hotz, R. L.

    1974-01-01

    HAL/S is a programming language developed to satisfy the flight software requirements for the space shuttle program. The user's guide explains pertinent language operating procedures and described the various HAL/S facilities for manipulating integer, scalar, vector, and matrix data types.

  18. Are you ready? Managing transportation resources through the Y2K weekend

    DOT National Transportation Integrated Search

    2011-01-01

    The Clarus Initiative, a joint effort of the U.S. Department of Transportation Intelligent Transportation Systems (ITS) Joint Program Office and FHWAs Road Weather Management Program (RWMP), is a six-year effort to develop and demonstrate an integ...

  19. Mixed Integer Programming and Heuristic Scheduling for Space Communication

    NASA Technical Reports Server (NTRS)

    Lee, Charles H.; Cheung, Kar-Ming

    2013-01-01

    Optimal planning and scheduling for a communication network was created where the nodes within the network are communicating at the highest possible rates while meeting the mission requirements and operational constraints. The planning and scheduling problem was formulated in the framework of Mixed Integer Programming (MIP) to introduce a special penalty function to convert the MIP problem into a continuous optimization problem, and to solve the constrained optimization problem using heuristic optimization. The communication network consists of space and ground assets with the link dynamics between any two assets varying with respect to time, distance, and telecom configurations. One asset could be communicating with another at very high data rates at one time, and at other times, communication is impossible, as the asset could be inaccessible from the network due to planetary occultation. Based on the network's geometric dynamics and link capabilities, the start time, end time, and link configuration of each view period are selected to maximize the communication efficiency within the network. Mathematical formulations for the constrained mixed integer optimization problem were derived, and efficient analytical and numerical techniques were developed to find the optimal solution. By setting up the problem using MIP, the search space for the optimization problem is reduced significantly, thereby speeding up the solution process. The ratio of the dimension of the traditional method over the proposed formulation is approximately an order N (single) to 2*N (arraying), where N is the number of receiving antennas of a node. By introducing a special penalty function, the MIP problem with non-differentiable cost function and nonlinear constraints can be converted into a continuous variable problem, whose solution is possible.

  20. Optimization-based channel constrained data aggregation routing algorithms in multi-radio wireless sensor networks.

    PubMed

    Yen, Hong-Hsu

    2009-01-01

    In wireless sensor networks, data aggregation routing could reduce the number of data transmissions so as to achieve energy efficient transmission. However, data aggregation introduces data retransmission that is caused by co-channel interference from neighboring sensor nodes. This kind of co-channel interference could result in extra energy consumption and significant latency from retransmission. This will jeopardize the benefits of data aggregation. One possible solution to circumvent data retransmission caused by co-channel interference is to assign different channels to every sensor node that is within each other's interference range on the data aggregation tree. By associating each radio with a different channel, a sensor node could receive data from all the children nodes on the data aggregation tree simultaneously. This could reduce the latency from the data source nodes back to the sink so as to meet the user's delay QoS. Since the number of radios on each sensor node and the number of non-overlapping channels are all limited resources in wireless sensor networks, a challenging question here is to minimize the total transmission cost under limited number of non-overlapping channels in multi-radio wireless sensor networks. This channel constrained data aggregation routing problem in multi-radio wireless sensor networks is an NP-hard problem. I first model this problem as a mixed integer and linear programming problem where the objective is to minimize the total transmission subject to the data aggregation routing, channel and radio resources constraints. The solution approach is based on the Lagrangean relaxation technique to relax some constraints into the objective function and then to derive a set of independent subproblems. By optimally solving these subproblems, it can not only calculate the lower bound of the original primal problem but also provide useful information to get the primal feasible solutions. By incorporating these Lagrangean multipliers as the link arc weight, the optimization-based heuristics are proposed to get energy-efficient data aggregation tree with better resource (channel and radio) utilization. From the computational experiments, the proposed optimization-based approach is superior to existing heuristics under all tested cases.

  1. Saturation: An efficient iteration strategy for symbolic state-space generation

    NASA Technical Reports Server (NTRS)

    Ciardo, Gianfranco; Luettgen, Gerald; Siminiceanu, Radu; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    This paper presents a novel algorithm for generating state spaces of asynchronous systems using Multi-valued Decision Diagrams. In contrast to related work, the next-state function of a system is not encoded as a single Boolean function, but as cross-products of integer functions. This permits the application of various iteration strategies to build a system's state space. In particular, this paper introduces a new elegant strategy, called saturation, and implements it in the tool SMART. On top of usually performing several orders of magnitude faster than existing BDD-based state-space generators, the algorithm's required peak memory is often close to the nal memory needed for storing the overall state spaces.

  2. A Bell-Curved Based Algorithm for Mixed Continuous and Discrete Structural Optimization

    NASA Technical Reports Server (NTRS)

    Kincaid, Rex K.; Weber, Michael; Sobieszczanski-Sobieski, Jaroslaw

    2001-01-01

    An evolutionary based strategy utilizing two normal distributions to generate children is developed to solve mixed integer nonlinear programming problems. This Bell-Curve Based (BCB) evolutionary algorithm is similar in spirit to (mu + mu) evolutionary strategies and evolutionary programs but with fewer parameters to adjust and no mechanism for self adaptation. First, a new version of BCB to solve purely discrete optimization problems is described and its performance tested against a tabu search code for an actuator placement problem. Next, the performance of a combined version of discrete and continuous BCB is tested on 2-dimensional shape problems and on a minimum weight hub design problem. In the latter case the discrete portion is the choice of the underlying beam shape (I, triangular, circular, rectangular, or U).

  3. Modeling sustainability in renewable energy supply chain systems

    NASA Astrophysics Data System (ADS)

    Xie, Fei

    This dissertation aims at modeling sustainability of renewable fuel supply chain systems against emerging challenges. In particular, the dissertation focuses on the biofuel supply chain system design, and manages to develop advanced modeling framework and corresponding solution methods in tackling challenges in sustaining biofuel supply chain systems. These challenges include: (1) to integrate "environmental thinking" into the long-term biofuel supply chain planning; (2) to adopt multimodal transportation to mitigate seasonality in biofuel supply chain operations; (3) to provide strategies in hedging against uncertainty from conversion technology; and (4) to develop methodologies in long-term sequential planning of the biofuel supply chain under uncertainties. All models are mixed integer programs, which also involves multi-objective programming method and two-stage/multistage stochastic programming methods. In particular for the long-term sequential planning under uncertainties, to reduce the computational challenges due to the exponential expansion of the scenario tree, I also developed efficient ND-Max method which is more efficient than CPLEX and Nested Decomposition method. Through result analysis of four independent studies, it is found that the proposed modeling frameworks can effectively improve the economic performance, enhance environmental benefits and reduce risks due to systems uncertainties for the biofuel supply chain systems.

  4. An integer programming approach to a real-world recyclable waste collection problem in Argentina.

    PubMed

    Braier, Gustavo; Durán, Guillermo; Marenco, Javier; Wesner, Francisco

    2017-05-01

    This article reports on the use of mathematical programming techniques to optimise the routes of a recyclable waste collection system servicing Morón, a large municipality outside Buenos Aires, Argentina. The truck routing problem posed by the system is a particular case of the generalised directed open rural postman problem. An integer programming model is developed with a solving procedure built around a subtour-merging algorithm and the addition of subtour elimination constraints. The route solutions generated by the proposed methodology perform significantly better than the previously used, manually designed routes, the main improvement being that coverage of blocks within the municipality with the model solutions is 100% by construction, whereas with the manual routes as much as 16% of the blocks went unserviced. The model-generated routes were adopted by the municipality in 2014 and the national government is planning to introduce the methodology elsewhere in the country.

  5. Evaluation of trade-offs in costs and environmental impacts for returnable packaging implementation

    NASA Astrophysics Data System (ADS)

    Jarupan, Lerpong; Kamarthi, Sagar V.; Gupta, Surendra M.

    2004-02-01

    The main thrust of returnable packaging these days is to provide logistical services through transportation and distribution of products and be environmentally friendly. Returnable packaging and reverse logistics concepts have converged to mitigate the adverse effect of packaging materials entering the solid waste stream. Returnable packaging must be designed by considering the trade-offs between costs and environmental impact to satisfy manufacturers and environmentalists alike. The cost of returnable packaging entails such items as materials, manufacturing, collection, storage and disposal. Environmental impacts are explicitly linked with solid waste, air pollution, and water pollution. This paper presents a multi-criteria evaluation technique to assist decision-makers for evaluating the trade-offs in costs and environmental impact during the returnable packaging design process. The proposed evaluation technique involves a combination of multiple objective integer linear programming and analytic hierarchy process. A numerical example is used to illustrate the methodology.

  6. Achieving full connectivity of sites in the multiperiod reserve network design problem

    USGS Publications Warehouse

    Jafari, Nahid; Nuse, Bryan L.; Moore, Clinton; Dilkina, Bistra; Hepinstall-Cymerman, Jeffrey

    2017-01-01

    The conservation reserve design problem is a challenge to solve because of the spatial and temporal nature of the problem, uncertainties in the decision process, and the possibility of alternative conservation actions for any given land parcel. Conservation agencies tasked with reserve design may benefit from a dynamic decision system that provides tactical guidance for short-term decision opportunities while maintaining focus on a long-term objective of assembling the best set of protected areas possible. To plan cost-effective conservation over time under time-varying action costs and budget, we propose a multi-period mixed integer programming model for the budget-constrained selection of fully connected sites. The objective is to maximize a summed conservation value over all network parcels at the end of the planning horizon. The originality of this work is in achieving full spatial connectivity of the selected sites during the schedule of conservation actions.

  7. Synchronizable Series Expressions. Part 2. Overview of the Theory and Implementation.

    DTIC Science & Technology

    1987-11-01

    more running time than shown in the table. because time is eventually required in order to collect the garbage it creates. Program Running ’rime Garbage...possible to simply put an enumerator where it is used.) (loop for x integer from I to 4 collect x) - (lotS* ((x (Eup I :to 4))) (declare (type integer x...below. (loop for x from 1 to 4 and for y = 0 then (1- x) collect (list x y)) - (lotS* ((x (Eup 1 :to 4)) (y (Tprevious (1- x) 0))) (Rlist (list x y

  8. Papers on Program Testing,

    DTIC Science & Technology

    1979-01-01

    tractability for scientific analysis. Although much remains to be learned about mutation as a testing tool, there is a considerable body of written material...explicitly address classifications (2) may not have been affected at all! In general, the and (3) in this article , except to point out that even relative...34 ARTICLE B=B’B C IN CACM 1971). C=C*02 INTEGER AiN),N.F D=B+C INTEGER M.NS.R.I.J.W IF (A.NE.D) GOTO 200 MI PRINT 150 NS=N 150 FORMATIIH .RIGHT ANGLED

  9. Network design and analysis for multi-enzyme biocatalysis.

    PubMed

    Blaß, Lisa Katharina; Weyler, Christian; Heinzle, Elmar

    2017-08-10

    As more and more biological reaction data become available, the full exploration of the enzymatic potential for the synthesis of valuable products opens up exciting new opportunities but is becoming increasingly complex. The manual design of multi-step biosynthesis routes involving enzymes from different organisms is very challenging. To harness the full enzymatic potential, we developed a computational tool for the directed design of biosynthetic production pathways for multi-step catalysis with in vitro enzyme cascades, cell hydrolysates and permeabilized cells. We present a method which encompasses the reconstruction of a genome-scale pan-organism metabolic network, path-finding and the ranking of the resulting pathway candidates for proposing suitable synthesis pathways. The network is based on reaction and reaction pair data from the Kyoto Encyclopedia of Genes and Genomes (KEGG) and the thermodynamics calculator eQuilibrator. The pan-organism network is especially useful for finding the most suitable pathway to a target metabolite from a thermodynamic or economic standpoint. However, our method can be used with any network reconstruction, e.g. for a specific organism. We implemented a path-finding algorithm based on a mixed-integer linear program (MILP) which takes into account both topology and stoichiometry of the underlying network. Unlike other methods we do not specify a single starting metabolite, but our algorithm searches for pathways starting from arbitrary start metabolites to a target product of interest. Using a set of biochemical ranking criteria including pathway length, thermodynamics and other biological characteristics such as number of heterologous enzymes or cofactor requirement, it is possible to obtain well-designed meaningful pathway alternatives. In addition, a thermodynamic profile, the overall reactant balance and potential side reactions as well as an SBML file for visualization are generated for each pathway alternative. We present an in silico tool for the design of multi-enzyme biosynthetic production pathways starting from a pan-organism network. The method is highly customizable and each module can be adapted to the focus of the project at hand. This method is directly applicable for (i) in vitro enzyme cascades, (ii) cell hydrolysates and (iii) permeabilized cells.

  10. Study on stimulus-responsive cellulose-based polymeric materials

    NASA Astrophysics Data System (ADS)

    Luo, Hongsheng

    Stimulus-responsive cellulose-based polymeric materials were developed by physical and chemical approaches. The thermal, structural, mechanical and morphological properties of the samples were comprehensively investigated by multiple tools. Shape memory effect (SME), programming-structure-property relationship and underling mechanisms were emphasized in this study. Some new concepts, such as heterogeneous-twin-switch, path-dependent multi-shape, rapidly switchable water-sensitive SME were established. The samples were divided into two categories. For the first category, cellulose nano-whiskers (CNWs) were incorporated into crystalline shape memory polyurethane (SMPU) and thermal plastic polyurethane (TPU). The CNW-SMPU nano-composites had heterogeneous switches. Triple- and multi-shape effects were achieved for the CNW-SMPU nano-composites by applying into appropriate thermal-aqueous-mechanical programming. Furthermore, the thermally triggered shape recovery of the composites was found to be tuneable, depending on the PCN content. Theoretical prediction along with numerical analysis was conducted, providing evidence on the possible microstructure of the CNW-SMPU nano-composites. Rapidly switchable water-sensitive SME of the CNW-TPU nano-composites was unprecedentedly studied, which originated from the reversible regulation of hydrogen bonding by water. The samples in the second category consisted of cellulose-polyurethane (PU) blends, cellulose-poly(acrylic acid) (PAA) composites and modified cellulose with supramolecular switches, featuring the requirement of homogeneous cellulose solution in the synthesis process. The reversible behaviours of the cellulose-PU blends in wet-dry cycles as well as the underlying shape memory mechanism were characterized and disclosed. The micro-patterns of the blends were found to be self-similar in fractal dimensions. Cellulose-PAA semi-interpenetrating networks exhibited mechanical adaptability in wet-dry cycles. A type of thermally reversible quadruple hydrogen bonding units, ureidopyrimidinone (UPy), reacted with the cellulose as pendent side-groups, which may impart the modified cellulose with thermal sensitivity. It is the first attempt to explore the natural cellulose as smart polymeric materials systematically and comprehensively. The concepts originally created in the study provided new viewpoints and routes for the development of novel shape memory polymers. The findings significantly benefits extension of the potential application of the cellulose in smart polymeric materials field.

  11. ALPS - A LINEAR PROGRAM SOLVER

    NASA Technical Reports Server (NTRS)

    Viterna, L. A.

    1994-01-01

    Linear programming is a widely-used engineering and management tool. Scheduling, resource allocation, and production planning are all well-known applications of linear programs (LP's). Most LP's are too large to be solved by hand, so over the decades many computer codes for solving LP's have been developed. ALPS, A Linear Program Solver, is a full-featured LP analysis program. ALPS can solve plain linear programs as well as more complicated mixed integer and pure integer programs. ALPS also contains an efficient solution technique for pure binary (0-1 integer) programs. One of the many weaknesses of LP solvers is the lack of interaction with the user. ALPS is a menu-driven program with no special commands or keywords to learn. In addition, ALPS contains a full-screen editor to enter and maintain the LP formulation. These formulations can be written to and read from plain ASCII files for portability. For those less experienced in LP formulation, ALPS contains a problem "parser" which checks the formulation for errors. ALPS creates fully formatted, readable reports that can be sent to a printer or output file. ALPS is written entirely in IBM's APL2/PC product, Version 1.01. The APL2 workspace containing all the ALPS code can be run on any APL2/PC system (AT or 386). On a 32-bit system, this configuration can take advantage of all extended memory. The user can also examine and modify the ALPS code. The APL2 workspace has also been "packed" to be run on any DOS system (without APL2) as a stand-alone "EXE" file, but has limited memory capacity on a 640K system. A numeric coprocessor (80X87) is optional but recommended. The standard distribution medium for ALPS is a 5.25 inch 360K MS-DOS format diskette. IBM, IBM PC and IBM APL2 are registered trademarks of International Business Machines Corporation. MS-DOS is a registered trademark of Microsoft Corporation.

  12. Selecting university undergraduate student activities via compromised-analytical hierarchy process and 0-1 integer programming to maximize SETARA points

    NASA Astrophysics Data System (ADS)

    Nazri, Engku Muhammad; Yusof, Nur Ai'Syah; Ahmad, Norazura; Shariffuddin, Mohd Dino Khairri; Khan, Shazida Jan Mohd

    2017-11-01

    Prioritizing and making decisions on what student activities to be selected and conducted to fulfill the aspiration of a university as translated in its strategic plan must be executed with transparency and accountability. It is becoming even more crucial, particularly for universities in Malaysia with the recent budget cut imposed by the Malaysian government. In this paper, we illustrated how 0-1 integer programming (0-1 IP) model was implemented to select which activities among the forty activities proposed by the student body of Universiti Utara Malaysia (UUM) to be implemented for the 2017/2018 academic year. Two different models were constructed. The first model was developed to determine the minimum total budget that should be given to the student body by the UUM management to conduct all the activities that can fulfill the minimum targeted number of activities as stated in its strategic plan. On the other hand, the second model was developed to determine which activities to be selected based on the total budget already allocated beforehand by the UUM management towards fulfilling the requirements as set in its strategic plan. The selection of activities for the second model, was also based on the preference of the members of the student body whereby the preference value for each activity was determined using Compromised-Analytical Hierarchy Process. The outputs from both models were compared and discussed. The technique used in this study will be useful and suitable to be implemented by organizations with key performance indicator-oriented programs and having limited budget allocation issues.

  13. Determining on-fault earthquake magnitude distributions from integer programming

    USGS Publications Warehouse

    Geist, Eric L.; Parsons, Thomas E.

    2018-01-01

    Earthquake magnitude distributions among faults within a fault system are determined from regional seismicity and fault slip rates using binary integer programming. A synthetic earthquake catalog (i.e., list of randomly sampled magnitudes) that spans millennia is first formed, assuming that regional seismicity follows a Gutenberg-Richter relation. Each earthquake in the synthetic catalog can occur on any fault and at any location. The objective is to minimize misfits in the target slip rate for each fault, where slip for each earthquake is scaled from its magnitude. The decision vector consists of binary variables indicating which locations are optimal among all possibilities. Uncertainty estimates in fault slip rates provide explicit upper and lower bounding constraints to the problem. An implicit constraint is that an earthquake can only be located on a fault if it is long enough to contain that earthquake. A general mixed-integer programming solver, consisting of a number of different algorithms, is used to determine the optimal decision vector. A case study is presented for the State of California, where a 4 kyr synthetic earthquake catalog is created and faults with slip ≥3 mm/yr are considered, resulting in >106  variables. The optimal magnitude distributions for each of the faults in the system span a rich diversity of shapes, ranging from characteristic to power-law distributions. 

  14. New scheduling rules for a dynamic flexible flow line problem with sequence-dependent setup times

    NASA Astrophysics Data System (ADS)

    Kia, Hamidreza; Ghodsypour, Seyed Hassan; Davoudpour, Hamid

    2017-09-01

    In the literature, the application of multi-objective dynamic scheduling problem and simple priority rules are widely studied. Although these rules are not efficient enough due to simplicity and lack of general insight, composite dispatching rules have a very suitable performance because they result from experiments. In this paper, a dynamic flexible flow line problem with sequence-dependent setup times is studied. The objective of the problem is minimization of mean flow time and mean tardiness. A 0-1 mixed integer model of the problem is formulated. Since the problem is NP-hard, four new composite dispatching rules are proposed to solve it by applying genetic programming framework and choosing proper operators. Furthermore, a discrete-event simulation model is made to examine the performances of scheduling rules considering four new heuristic rules and the six adapted heuristic rules from the literature. It is clear from the experimental results that composite dispatching rules that are formed from genetic programming have a better performance in minimization of mean flow time and mean tardiness than others.

  15. Serving some and serving all: how providers navigate the challenges of providing racially targeted health services.

    PubMed

    Zhou, Amy

    2017-10-01

    Racially targeted healthcare provides racial minorities with culturally and linguistically appropriate health services. This mandate, however, can conflict with the professional obligation of healthcare providers to serve patients based on their health needs. The dilemma between serving a particular population and serving all is heightened when the patients seeking care are racially diverse. This study examines how providers in a multi-racial context decide whom to include or exclude from health programs. This study draws on 12 months of ethnographic fieldwork at an Asian-specific HIV organization. Fieldwork included participant observation of HIV support groups, community outreach programs, and substance abuse recovery groups, as well as interviews with providers and clients. Providers managed the dilemma in different ways. While some programs in the organization focused on an Asian clientele, others de-emphasized race and served a predominantly Latino and African American clientele. Organizational structures shaped whether services were delivered according to racial categories. When funders examined client documents, providers prioritized finding Asian clients so that their documents reflected program goals to serve the Asian population. In contrast, when funders used qualitative methods, providers could construct an image of a program that targets Asians during evaluations while they included other racial minorities in their everyday practice. Program services were organized more broadly by health needs. Even within racially targeted programs, the meaning of race fluctuates and is contested. Patients' health needs cross cut racial boundaries, and in some circumstances, the boundaries of inclusion can expand beyond specific racial categories to include racial minorities and underserved populations more generally.

  16. Using Integer Clocks to Verify the Timing-Sync Sensor Network Protocol

    NASA Technical Reports Server (NTRS)

    Huang, Xiaowan; Singh, Anu; Smolka, Scott A.

    2010-01-01

    We use the UPPAAL model checker for Timed Automata to verify the Timing-Sync time-synchronization protocol for sensor networks (TPSN). The TPSN protocol seeks to provide network-wide synchronization of the distributed clocks in a sensor network. Clock-synchronization algorithms for sensor networks such as TPSN must be able to perform arithmetic on clock values to calculate clock drift and network propagation delays. They must be able to read the value of a local clock and assign it to another local clock. Such operations are not directly supported by the theory of Timed Automata. To overcome this formal-modeling obstacle, we augment the UPPAAL specification language with the integer clock derived type. Integer clocks, which are essentially integer variables that are periodically incremented by a global pulse generator, greatly facilitate the encoding of the operations required to synchronize clocks as in the TPSN protocol. With this integer-clock-based model of TPSN in hand, we use UPPAAL to verify that the protocol achieves network-wide time synchronization and is devoid of deadlock. We also use the UPPAAL Tracer tool to illustrate how integer clocks can be used to capture clock drift and resynchronization during protocol execution

  17. The whole number axis integer linear transformation reversible information hiding algorithm on wavelet domain

    NASA Astrophysics Data System (ADS)

    Jiang, Zhuo; Xie, Chengjun

    2013-12-01

    This paper improved the algorithm of reversible integer linear transform on finite interval [0,255], which can realize reversible integer linear transform in whole number axis shielding data LSB (least significant bit). Firstly, this method use integer wavelet transformation based on lifting scheme to transform the original image, and select the transformed high frequency areas as information hiding area, meanwhile transform the high frequency coefficients blocks in integer linear way and embed the secret information in LSB of each coefficient, then information hiding by embedding the opposite steps. To extract data bits and recover the host image, a similar reverse procedure can be conducted, and the original host image can be lossless recovered. The simulation experimental results show that this method has good secrecy and concealment, after conducted the CDF (m, n) and DD (m, n) series of wavelet transformed. This method can be applied to information security domain, such as medicine, law and military.

  18. Adaptive Resampling Particle Filters for GPS Carrier-Phase Navigation and Collision Avoidance System

    NASA Astrophysics Data System (ADS)

    Hwang, Soon Sik

    This dissertation addresses three problems: 1) adaptive resampling technique (ART) for Particle Filters, 2) precise relative positioning using Global Positioning System (GPS) Carrier-Phase (CP) measurements applied to nonlinear integer resolution problem for GPS CP navigation using Particle Filters, and 3) collision detection system based on GPS CP broadcasts. First, Monte Carlo filters, called Particle Filters (PF), are widely used where the system is non-linear and non-Gaussian. In real-time applications, their estimation accuracies and efficiencies are significantly affected by the number of particles and the scheduling of relocating weights and samples, the so-called resampling step. In this dissertation, the appropriate number of particles is estimated adaptively such that the error of the sample mean and variance stay in bounds. These bounds are given by the confidence interval of a normal probability distribution for a multi-variate state. Two required number of samples maintaining the mean and variance error within the bounds are derived. The time of resampling is determined when the required sample number for the variance error crosses the required sample number for the mean error. Second, the PF using GPS CP measurements with adaptive resampling is applied to precise relative navigation between two GPS antennas. In order to make use of CP measurements for navigation, the unknown number of cycles between GPS antennas, the so called integer ambiguity, should be resolved. The PF is applied to this integer ambiguity resolution problem where the relative navigation states estimation involves nonlinear observations and nonlinear dynamics equation. Using the PF, the probability density function of the states is estimated by sampling from the position and velocity space and the integer ambiguities are resolved without using the usual hypothesis tests to search for the integer ambiguity. The ART manages the number of position samples and the frequency of the resampling step for real-time kinematics GPS navigation. The experimental results demonstrate the performance of the ART and the insensitivity of the proposed approach to GPS CP cycle-slips. Third, the GPS has great potential for the development of new collision avoidance systems and is being considered for the next generation Traffic alert and Collision Avoidance System (TCAS). The current TCAS equipment, is capable of broadcasting GPS code information to nearby airplanes, and also, the collision avoidance system using the navigation information based on GPS code has been studied by researchers. In this dissertation, the aircraft collision detection system using GPS CP information is addressed. The PF with position samples is employed for the CP based relative position estimation problem and the same algorithm can be used to determine the vehicle attitude if multiple GPS antennas are used. For a reliable and enhanced collision avoidance system, three dimensional trajectories are projected using the estimates of the relative position, velocity, and the attitude. It is shown that the performance of GPS CP based collision detecting algorithm meets the accuracy requirements for a precise approach of flight for auto landing with significantly less unnecessary collision false alarms and no miss alarms.

  19. A GA based penalty function technique for solving constrained redundancy allocation problem of series system with interval valued reliability of components

    NASA Astrophysics Data System (ADS)

    Gupta, R. K.; Bhunia, A. K.; Roy, D.

    2009-10-01

    In this paper, we have considered the problem of constrained redundancy allocation of series system with interval valued reliability of components. For maximizing the overall system reliability under limited resource constraints, the problem is formulated as an unconstrained integer programming problem with interval coefficients by penalty function technique and solved by an advanced GA for integer variables with interval fitness function, tournament selection, uniform crossover, uniform mutation and elitism. As a special case, considering the lower and upper bounds of the interval valued reliabilities of the components to be the same, the corresponding problem has been solved. The model has been illustrated with some numerical examples and the results of the series redundancy allocation problem with fixed value of reliability of the components have been compared with the existing results available in the literature. Finally, sensitivity analyses have been shown graphically to study the stability of our developed GA with respect to the different GA parameters.

  20. A multi-objective model for sustainable recycling of municipal solid waste.

    PubMed

    Mirdar Harijani, Ali; Mansour, Saeed; Karimi, Behrooz

    2017-04-01

    The efficient management of municipal solid waste is a major problem for large and populated cities. In many countries, the majority of municipal solid waste is landfilled or dumped owing to an inefficient waste management system. Therefore, an optimal and sustainable waste management strategy is needed. This study introduces a recycling and disposal network for sustainable utilisation of municipal solid waste. In order to optimise the network, we develop a multi-objective mixed integer linear programming model in which the economic, environmental and social dimensions of sustainability are concurrently balanced. The model is able to: select the best combination of waste treatment facilities; specify the type, location and capacity of waste treatment facilities; determine the allocation of waste to facilities; consider the transportation of waste and distribution of processed products; maximise the profit of the system; minimise the environmental footprint; maximise the social impacts of the system; and eventually generate an optimal and sustainable configuration for municipal solid waste management. The proposed methodology could be applied to any region around the world. Here, the city of Tehran, Iran, is presented as a real case study to show the applicability of the methodology.

  1. A Multi-Objective, Hub-and-Spoke Supply Chain Design Model For Densified Biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Md S. Roni; Sandra Eksioglu; Kara G. Cafferty

    In this paper we propose a model to design the supply chain for densified biomass. Rail is typically used for long-haul, high-volume shipment of densified biomass. This is the reason why a hub-and-spoke network structure is used to model this supply chain. The model is formulated as a multi-objective, mixed-integer programing problem under economic, environmental, and social criteria. The goal is to identify the feasibility of meeting the Renewable Fuel Standard (RFS) by using biomass for production of cellulosic ethanol. The focus in not just on the costs associated with meeting these standards, but also exploring the social and environmentalmore » benefits that biomass production and processing offers by creating new jobs and reducing greenhouse gas (GHG) emissions. We develop an augmented ?-constraint method to find the exact Pareto solution to this optimization problem. We develop a case study using data from the Mid-West. The model identifies the number, capacity and location of biorefineries needed to make use of the biomass available in the region. The model estimates the delivery cost of cellulosic ethanol under different scenario, the number new jobs created and the GHG emission reductions in the supply chain.« less

  2. A Multi-Objective, Hub-and-Spoke Supply Chain Design Model for Densified Biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacob J. Jacobson; Md. S. Roni; Kara G. Cafferty

    In this paper we propose a model to design the supply chain for densified biomass. Rail is typically used for longhaul, high-volume shipment of densified biomass. This is the reason why a hub-and-spoke network structure is used to model this supply chain. The model is formulated as a multi-objective, mixed-integer programing problem under economic, environmental, and social criteria. The goal is to identify the feasibility of meeting the Renewable Fuel Standard (RFS) by using biomass for production of cellulosic ethanol. The focus is not just on the costs associated with meeting these standards, but also exploring the social and environmentalmore » benefits that biomass production and processing offers by creating new jobs and reducing greenhouse gas (GHG) emissions. We develop an augmented ?-constraint method to find the exact Pareto solution to this optimization problem. We develop a case study using data from the Mid-West. The model identifies the number, capacity and location of biorefineries needed to make use of the biomass available in the region. The model estimates the delivery cost of cellulosic ethanol under different scenario, the number new jobs created and the GHG emission reductions in the supply chain.« less

  3. Start small, dream big: Experiences of physical activity in public spaces in Colombia.

    PubMed

    Díaz Del Castillo, Adriana; González, Silvia Alejandra; Ríos, Ana Paola; Páez, Diana C; Torres, Andrea; Díaz, María Paula; Pratt, Michael; Sarmiento, Olga L

    2017-10-01

    Multi-sectoral strategies to promote active recreation and physical activity in public spaces are crucial to building a "culture of health". However, studies on the sustainability and scalability of these strategies are limited. This paper identifies the factors related to the sustainability and scaling up of two community-based programs offering physical activity classes in public spaces in Colombia: Bogotá's Recreovía and Colombia's "Healthy Habits and Lifestyles Program-HEVS". Both programs have been sustained for more than 10years, and have benefited 1455 communities. We used a mixed-methods approach including semi-structured interviews, document review and an analysis of data regarding the programs' history, characteristics, funding, capacity building and challenges. Interviews were conducted between May-October 2015. Based on the sustainability frameworks of Shediac-Rizkallah and Bone and Scheirer, we developed categories to independently code each interview. All information was independently analyzed by four of the authors and cross-compared between programs. Findings showed that these programs underwent adaptation processes to address the challenges that threatened their continuation and growth. The primary strategies included flexibility/adaptability, investing in the working conditions and training of instructors, allocating public funds and requesting accountability, diversifying resources, having community support and champions at different levels and positions, and carrying out continuous advocacy to include physical activity in public policies. Recreovía and HEVS illustrate sustainability as an incremental, multi-level process at different levels. Lessons learned for similar initiatives include the importance of individual actions and small events, a willingness to start small while dreaming big, being flexible, and prioritizing the human factor. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Path finding methods accounting for stoichiometry in metabolic networks

    PubMed Central

    2011-01-01

    Graph-based methods have been widely used for the analysis of biological networks. Their application to metabolic networks has been much discussed, in particular noting that an important weakness in such methods is that reaction stoichiometry is neglected. In this study, we show that reaction stoichiometry can be incorporated into path-finding approaches via mixed-integer linear programming. This major advance at the modeling level results in improved prediction of topological and functional properties in metabolic networks. PMID:21619601

  5. Selection of actuator locations for static shape control of large space structures by heuristic integer programing

    NASA Technical Reports Server (NTRS)

    Haftka, R. T.; Adelman, H. M.

    1984-01-01

    Orbiting spacecraft such as large space antennas have to maintain a highly accurate space to operate satisfactorily. Such structures require active and passive controls to mantain an accurate shape under a variety of disturbances. Methods for the optimum placement of control actuators for correcting static deformations are described. In particular, attention is focused on the case were control locations have to be selected from a large set of available sites, so that integer programing methods are called for. The effectiveness of three heuristic techniques for obtaining a near-optimal site selection is compared. In addition, efficient reanalysis techniques for the rapid assessment of control effectiveness are presented. Two examples are used to demonstrate the methods: a simple beam structure and a 55m space-truss-parabolic antenna.

  6. Developing optimal nurses work schedule using integer programming

    NASA Astrophysics Data System (ADS)

    Shahidin, Ainon Mardhiyah; Said, Mohd Syazwan Md; Said, Noor Hizwan Mohamad; Sazali, Noor Izatie Amaliena

    2017-08-01

    Time management is the art of arranging, organizing and scheduling one's time for the purpose of generating more effective work and productivity. Scheduling is the process of deciding how to commit resources between varieties of possible tasks. Thus, it is crucial for every organization to have a good work schedule for their staffs. The job of Ward nurses at hospitals runs for 24 hours every day. Therefore, nurses will be working using shift scheduling. This study is aimed to solve the nurse scheduling problem at an emergency ward of a private hospital. A 7-day work schedule for 7 consecutive weeks satisfying all the constraints set by the hospital will be developed using Integer Programming. The work schedule for the nurses obtained gives an optimal solution where all the constraints are being satisfied successfully.

  7. An Integer Programming Model For Solving Heterogeneous Vehicle Routing Problem With Hard Time Window considering Service Choice

    NASA Astrophysics Data System (ADS)

    Susilawati, Enny; Mawengkang, Herman; Efendi, Syahril

    2018-01-01

    Generally a Vehicle Routing Problem with time windows (VRPTW) can be defined as a problem to determine the optimal set of routes used by a fleet of vehicles to serve a given set of customers with service time restrictions; the objective is to minimize the total travel cost (related to the travel times or distances) and operational cost (related to the number of vehicles used). In this paper we address a variant of the VRPTW in which the fleet of vehicle is heterogenic due to the different size of demand from customers. The problem, called Heterogeneous VRP (HVRP) also includes service levels. We use integer programming model to describe the problem. A feasible neighbourhood approach is proposed to solve the model.

  8. A solution procedure for mixed-integer nonlinear programming formulation of supply chain planning with quantity discounts under demand uncertainty

    NASA Astrophysics Data System (ADS)

    Yin, Sisi; Nishi, Tatsushi

    2014-11-01

    Quantity discount policy is decision-making for trade-off prices between suppliers and manufacturers while production is changeable due to demand fluctuations in a real market. In this paper, quantity discount models which consider selection of contract suppliers, production quantity and inventory simultaneously are addressed. The supply chain planning problem with quantity discounts under demand uncertainty is formulated as a mixed-integer nonlinear programming problem (MINLP) with integral terms. We apply an outer-approximation method to solve MINLP problems. In order to improve the efficiency of the proposed method, the problem is reformulated as a stochastic model replacing the integral terms by using a normalisation technique. We present numerical examples to demonstrate the efficiency of the proposed method.

  9. Advances in mixed-integer programming methods for chemical production scheduling.

    PubMed

    Velez, Sara; Maravelias, Christos T

    2014-01-01

    The goal of this paper is to critically review advances in the area of chemical production scheduling over the past three decades and then present two recently proposed solution methods that have led to dramatic computational enhancements. First, we present a general framework and problem classification and discuss modeling and solution methods with an emphasis on mixed-integer programming (MIP) techniques. Second, we present two solution methods: (a) a constraint propagation algorithm that allows us to compute parameters that are then used to tighten MIP scheduling models and (b) a reformulation that introduces new variables, thus leading to effective branching. We also present computational results and an example illustrating how these methods are implemented, as well as the resulting enhancements. We close with a discussion of open research challenges and future research directions.

  10. Toward an Innovative, Basic Program Model for the Improvement of Professional Instruction in Dental Education: A Review of the Literature.

    ERIC Educational Resources Information Center

    Wulf, Kathleen M.; And Others

    1980-01-01

    An analysis of the massive amount of literature pertaining to the improvement of professional instruction in dental education resulted in the formation of a comprehensive model of 10 categories, including Delphi technique; systems approach; agencies; workshops; multi-media, self-instruction; evaluation paradigms, measurement, courses, and…

  11. Self-organization in neural networks - Applications in structural optimization

    NASA Technical Reports Server (NTRS)

    Hajela, Prabhat; Fu, B.; Berke, Laszlo

    1993-01-01

    The present paper discusses the applicability of ART (Adaptive Resonance Theory) networks, and the Hopfield and Elastic networks, in problems of structural analysis and design. A characteristic of these network architectures is the ability to classify patterns presented as inputs into specific categories. The categories may themselves represent distinct procedural solution strategies. The paper shows how this property can be adapted in the structural analysis and design problem. A second application is the use of Hopfield and Elastic networks in optimization problems. Of particular interest are problems characterized by the presence of discrete and integer design variables. The parallel computing architecture that is typical of neural networks is shown to be effective in such problems. Results of preliminary implementations in structural design problems are also included in the paper.

  12. Exploiting Fractional Order PID Controller Methods in Improving the Performance of Integer Order PID Controllers: A GA Based Approach

    NASA Astrophysics Data System (ADS)

    Mukherjee, Bijoy K.; Metia, Santanu

    2009-10-01

    The paper is divided into three parts. The first part gives a brief introduction to the overall paper, to fractional order PID (PIλDμ) controllers and to Genetic Algorithm (GA). In the second part, first it has been studied how the performance of an integer order PID controller deteriorates when implemented with lossy capacitors in its analog realization. Thereafter it has been shown that the lossy capacitors can be effectively modeled by fractional order terms. Then, a novel GA based method has been proposed to tune the controller parameters such that the original performance is retained even though realized with the same lossy capacitors. Simulation results have been presented to validate the usefulness of the method. Some Ziegler-Nichols type tuning rules for design of fractional order PID controllers have been proposed in the literature [11]. In the third part, a novel GA based method has been proposed which shows how equivalent integer order PID controllers can be obtained which will give performance level similar to those of the fractional order PID controllers thereby removing the complexity involved in the implementation of the latter. It has been shown with extensive simulation results that the equivalent integer order PID controllers more or less retain the robustness and iso-damping properties of the original fractional order PID controllers. Simulation results also show that the equivalent integer order PID controllers are more robust than the normal Ziegler-Nichols tuned PID controllers.

  13. Ground-Based Research within NASA's Materials Science Program

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.; Curreri, Peter (Technical Monitor)

    2002-01-01

    Ground-based research in Materials Science for NASA's Microgravity program serves several purposes, and includes approximately four Principal Investigators for every one in the flight program. While exact classification is difficult. the ground program falls roughly into the following categories: (1) Intellectual Underpinning of the Flight Program - Theoretical Studies; (2) Intellectual Underpinning of the Flight Program - Bringing to Maturity New Research; (3) Intellectual Underpinning of the Flight Program - Enabling Characterization; (4) Intellectual Underpinning of the Flight Program - Thermophysical Property Determination; (5) Radiation Shielding; (6) Preliminary In Situ Resource Utilization; (7) Biomaterials; (8) Nanostructured Materials; (9) Materials Science for Advanced Space Propulsion. It must be noted that while the first four categories are aimed at using long duration low gravity conditions, the other categories pertain more to more recent NASA initiatives in materials science. These new initiatives address NASA's future materials science needs in the realms of crew health and safety, and exploration, and have been included in the most recent NASA Research Announcements (NRA). A description of each of these nine categories will be given together with examples of the kinds of research being undertaken.

  14. System and Method for Multi-Wavelength Optical Signal Detection

    NASA Technical Reports Server (NTRS)

    McGlone, Thomas D. (Inventor)

    2017-01-01

    The system and method for multi-wavelength optical signal detection enables the detection of optical signal levels significantly below those processed at the discrete circuit level by the use of mixed-signal processing methods implemented with integrated circuit technologies. The present invention is configured to detect and process small signals, which enables the reduction of the optical power required to stimulate detection networks, and lowers the required laser power to make specific measurements. The present invention provides an adaptation of active pixel networks combined with mixed-signal processing methods to provide an integer representation of the received signal as an output. The present invention also provides multi-wavelength laser detection circuits for use in various systems, such as a differential absorption light detection and ranging system.

  15. Environment-Aware Production Scheduling for Paint Shops in Automobile Manufacturing: A Multi-Objective Optimization Approach

    PubMed Central

    Zhang, Rui

    2017-01-01

    The traditional way of scheduling production processes often focuses on profit-driven goals (such as cycle time or material cost) while tending to overlook the negative impacts of manufacturing activities on the environment in the form of carbon emissions and other undesirable by-products. To bridge the gap, this paper investigates an environment-aware production scheduling problem that arises from a typical paint shop in the automobile manufacturing industry. In the studied problem, an objective function is defined to minimize the emission of chemical pollutants caused by the cleaning of painting devices which must be performed each time before a color change occurs. Meanwhile, minimization of due date violations in the downstream assembly shop is also considered because the two shops are interrelated and connected by a limited-capacity buffer. First, we have developed a mixed-integer programming formulation to describe this bi-objective optimization problem. Then, to solve problems of practical size, we have proposed a novel multi-objective particle swarm optimization (MOPSO) algorithm characterized by problem-specific improvement strategies. A branch-and-bound algorithm is designed for accurately assessing the most promising solutions. Finally, extensive computational experiments have shown that the proposed MOPSO is able to match the solution quality of an exact solver on small instances and outperform two state-of-the-art multi-objective optimizers in literature on large instances with up to 200 cars. PMID:29295603

  16. Environment-Aware Production Schedulingfor Paint Shops in Automobile Manufacturing: A Multi-Objective Optimization Approach.

    PubMed

    Zhang, Rui

    2017-12-25

    The traditional way of scheduling production processes often focuses on profit-driven goals (such as cycle time or material cost) while tending to overlook the negative impacts of manufacturing activities on the environment in the form of carbon emissions and other undesirable by-products. To bridge the gap, this paper investigates an environment-aware production scheduling problem that arises from a typical paint shop in the automobile manufacturing industry. In the studied problem, an objective function is defined to minimize the emission of chemical pollutants caused by the cleaning of painting devices which must be performed each time before a color change occurs. Meanwhile, minimization of due date violations in the downstream assembly shop is also considered because the two shops are interrelated and connected by a limited-capacity buffer. First, we have developed a mixed-integer programming formulation to describe this bi-objective optimization problem. Then, to solve problems of practical size, we have proposed a novel multi-objective particle swarm optimization (MOPSO) algorithm characterized by problem-specific improvement strategies. A branch-and-bound algorithm is designed for accurately assessing the most promising solutions. Finally, extensive computational experiments have shown that the proposed MOPSO is able to match the solution quality of an exact solver on small instances and outperform two state-of-the-art multi-objective optimizers in literature on large instances with up to 200 cars.

  17. New mathematical modeling for a location-routing-inventory problem in a multi-period closed-loop supply chain in a car industry

    NASA Astrophysics Data System (ADS)

    Forouzanfar, F.; Tavakkoli-Moghaddam, R.; Bashiri, M.; Baboli, A.; Hadji Molana, S. M.

    2017-11-01

    This paper studies a location-routing-inventory problem in a multi-period closed-loop supply chain with multiple suppliers, producers, distribution centers, customers, collection centers, recovery, and recycling centers. In this supply chain, centers are multiple levels, a price increase factor is considered for operational costs at centers, inventory and shortage (including lost sales and backlog) are allowed at production centers, arrival time of vehicles of each plant to its dedicated distribution centers and also departure from them are considered, in such a way that the sum of system costs and the sum of maximum time at each level should be minimized. The aforementioned problem is formulated in the form of a bi-objective nonlinear integer programming model. Due to the NP-hard nature of the problem, two meta-heuristics, namely, non-dominated sorting genetic algorithm (NSGA-II) and multi-objective particle swarm optimization (MOPSO), are used in large sizes. In addition, a Taguchi method is used to set the parameters of these algorithms to enhance their performance. To evaluate the efficiency of the proposed algorithms, the results for small-sized problems are compared with the results of the ɛ-constraint method. Finally, four measuring metrics, namely, the number of Pareto solutions, mean ideal distance, spacing metric, and quality metric, are used to compare NSGA-II and MOPSO.

  18. A divide-and-conquer approach to determine the Pareto frontier for optimization of protein engineering experiments.

    PubMed

    He, Lu; Friedman, Alan M; Bailey-Kellogg, Chris

    2012-03-01

    In developing improved protein variants by site-directed mutagenesis or recombination, there are often competing objectives that must be considered in designing an experiment (selecting mutations or breakpoints): stability versus novelty, affinity versus specificity, activity versus immunogenicity, and so forth. Pareto optimal experimental designs make the best trade-offs between competing objectives. Such designs are not "dominated"; that is, no other design is better than a Pareto optimal design for one objective without being worse for another objective. Our goal is to produce all the Pareto optimal designs (the Pareto frontier), to characterize the trade-offs and suggest designs most worth considering, but to avoid explicitly considering the large number of dominated designs. To do so, we develop a divide-and-conquer algorithm, Protein Engineering Pareto FRontier (PEPFR), that hierarchically subdivides the objective space, using appropriate dynamic programming or integer programming methods to optimize designs in different regions. This divide-and-conquer approach is efficient in that the number of divisions (and thus calls to the optimizer) is directly proportional to the number of Pareto optimal designs. We demonstrate PEPFR with three protein engineering case studies: site-directed recombination for stability and diversity via dynamic programming, site-directed mutagenesis of interacting proteins for affinity and specificity via integer programming, and site-directed mutagenesis of a therapeutic protein for activity and immunogenicity via integer programming. We show that PEPFR is able to effectively produce all the Pareto optimal designs, discovering many more designs than previous methods. The characterization of the Pareto frontier provides additional insights into the local stability of design choices as well as global trends leading to trade-offs between competing criteria. Copyright © 2011 Wiley Periodicals, Inc.

  19. Problems in the Multi-Service Acquisition of Less-Than-Major Ground Communications-Electronics Systems.

    DTIC Science & Technology

    1981-06-01

    eucation about nsiti-serviue program, especially at higher levels 1 1 2 4 Other 2 1 1 4 ,! provisioning. Two interviewees mentioned the need for a cost...generator project. Also, the Program Manager was only a Lieutenant Colonel. Colonel Haney felt that a higher [ I. rank would be required since the... higher than for the military in both services in all three categories. Table 3-4 illustrates average years of experience by system studied. Again

  20. An Examination of Strategy Implementation During Abstract Nonlinguistic Category Learning in Aphasia.

    PubMed

    Vallila-Rohter, Sofia; Kiran, Swathi

    2015-08-01

    Our purpose was to study strategy use during nonlinguistic category learning in aphasia. Twelve control participants without aphasia and 53 participants with aphasia (PWA) completed a computerized feedback-based category learning task consisting of training and testing phases. Accuracy rates of categorization in testing phases were calculated. To evaluate strategy use, strategy analyses were conducted over training and testing phases. Participant data were compared with model data that simulated complex multi-cue, single feature, and random pattern strategies. Learning success and strategy use were evaluated within the context of standardized cognitive-linguistic assessments. Categorization accuracy was higher among control participants than among PWA. The majority of control participants implemented suboptimal or optimal multi-cue and single-feature strategies by testing phases of the experiment. In contrast, a large subgroup of PWA implemented random patterns, or no strategy, during both training and testing phases of the experiment. Person-to-person variability arises not only in category learning ability but also in the strategies implemented to complete category learning tasks. PWA less frequently developed effective strategies during category learning tasks than control participants. Certain PWA may have impairments of strategy development or feedback processing not captured by language and currently probed cognitive abilities.

  1. Using ESO Reflex with Web Services

    NASA Astrophysics Data System (ADS)

    Järveläinen, P.; Savolainen, V.; Oittinen, T.; Maisala, S.; Ullgrén, M. Hook, R.

    2008-08-01

    ESO Reflex is a prototype graphical workflow system, based on Taverna, and primarily intended to be a flexible way of running ESO data reduction recipes along with other legacy applications and user-written tools. ESO Reflex can also readily use the Taverna Web Services features that are based on the Apache Axis SOAP implementation. Taverna is a general purpose Web Service client, and requires no programming to use such services. However, Taverna also has some restrictions: for example, no numerical types such integers. In addition the preferred binding style is document/literal wrapped, but most astronomical services publish the Axis default WSDL using RPC/encoded style. Despite these minor limitations we have created simple but very promising test VO workflow using the Sesame name resolver service at CDS Strasbourg, the Hubble SIAP server at the Multi-Mission Archive at Space Telescope (MAST) and the WESIX image cataloging and catalogue cross-referencing service at the University of Pittsburgh. ESO Reflex can also pass files and URIs via the PLASTIC protocol to visualisation tools and has its own viewer for VOTables. We picked these three Web Services to try to set up a realistic and useful ESO Reflex workflow. They also demonstrate ESO Reflex abilities to use many kind of Web Services because each of them requires a different interface. We describe each of these services in turn and comment on how it was used

  2. Decoding Multiple Sound Categories in the Human Temporal Cortex Using High Resolution fMRI

    PubMed Central

    Zhang, Fengqing; Wang, Ji-Ping; Kim, Jieun; Parrish, Todd; Wong, Patrick C. M.

    2015-01-01

    Perception of sound categories is an important aspect of auditory perception. The extent to which the brain’s representation of sound categories is encoded in specialized subregions or distributed across the auditory cortex remains unclear. Recent studies using multivariate pattern analysis (MVPA) of brain activations have provided important insights into how the brain decodes perceptual information. In the large existing literature on brain decoding using MVPA methods, relatively few studies have been conducted on multi-class categorization in the auditory domain. Here, we investigated the representation and processing of auditory categories within the human temporal cortex using high resolution fMRI and MVPA methods. More importantly, we considered decoding multiple sound categories simultaneously through multi-class support vector machine-recursive feature elimination (MSVM-RFE) as our MVPA tool. Results show that for all classifications the model MSVM-RFE was able to learn the functional relation between the multiple sound categories and the corresponding evoked spatial patterns and classify the unlabeled sound-evoked patterns significantly above chance. This indicates the feasibility of decoding multiple sound categories not only within but across subjects. However, the across-subject variation affects classification performance more than the within-subject variation, as the across-subject analysis has significantly lower classification accuracies. Sound category-selective brain maps were identified based on multi-class classification and revealed distributed patterns of brain activity in the superior temporal gyrus and the middle temporal gyrus. This is in accordance with previous studies, indicating that information in the spatially distributed patterns may reflect a more abstract perceptual level of representation of sound categories. Further, we show that the across-subject classification performance can be significantly improved by averaging the fMRI images over items, because the irrelevant variations between different items of the same sound category are reduced and in turn the proportion of signals relevant to sound categorization increases. PMID:25692885

  3. Decoding multiple sound categories in the human temporal cortex using high resolution fMRI.

    PubMed

    Zhang, Fengqing; Wang, Ji-Ping; Kim, Jieun; Parrish, Todd; Wong, Patrick C M

    2015-01-01

    Perception of sound categories is an important aspect of auditory perception. The extent to which the brain's representation of sound categories is encoded in specialized subregions or distributed across the auditory cortex remains unclear. Recent studies using multivariate pattern analysis (MVPA) of brain activations have provided important insights into how the brain decodes perceptual information. In the large existing literature on brain decoding using MVPA methods, relatively few studies have been conducted on multi-class categorization in the auditory domain. Here, we investigated the representation and processing of auditory categories within the human temporal cortex using high resolution fMRI and MVPA methods. More importantly, we considered decoding multiple sound categories simultaneously through multi-class support vector machine-recursive feature elimination (MSVM-RFE) as our MVPA tool. Results show that for all classifications the model MSVM-RFE was able to learn the functional relation between the multiple sound categories and the corresponding evoked spatial patterns and classify the unlabeled sound-evoked patterns significantly above chance. This indicates the feasibility of decoding multiple sound categories not only within but across subjects. However, the across-subject variation affects classification performance more than the within-subject variation, as the across-subject analysis has significantly lower classification accuracies. Sound category-selective brain maps were identified based on multi-class classification and revealed distributed patterns of brain activity in the superior temporal gyrus and the middle temporal gyrus. This is in accordance with previous studies, indicating that information in the spatially distributed patterns may reflect a more abstract perceptual level of representation of sound categories. Further, we show that the across-subject classification performance can be significantly improved by averaging the fMRI images over items, because the irrelevant variations between different items of the same sound category are reduced and in turn the proportion of signals relevant to sound categorization increases.

  4. A new Fortran 90 program to compute regular and irregular associated Legendre functions (new version announcement)

    NASA Astrophysics Data System (ADS)

    Schneider, Barry I.; Segura, Javier; Gil, Amparo; Guan, Xiaoxu; Bartschat, Klaus

    2018-04-01

    This is a revised and updated version of a modern Fortran 90 code to compute the regular Plm (x) and irregular Qlm (x) associated Legendre functions for all x ∈(- 1 , + 1) (on the cut) and | x | > 1 and integer degree (l) and order (m). The necessity to revise the code comes as a consequence of some comments of Prof. James Bremer of the UC//Davis Mathematics Department, who discovered that there were errors in the code for large integer degree and order for the normalized regular Legendre functions on the cut.

  5. Uncluttered Single-Image Visualization of Vascular Structures using GPU and Integer Programming

    PubMed Central

    Won, Joong-Ho; Jeon, Yongkweon; Rosenberg, Jarrett; Yoon, Sungroh; Rubin, Geoffrey D.; Napel, Sandy

    2013-01-01

    Direct projection of three-dimensional branching structures, such as networks of cables, blood vessels, or neurons onto a 2D image creates the illusion of intersecting structural parts and creates challenges for understanding and communication. We present a method for visualizing such structures, and demonstrate its utility in visualizing the abdominal aorta and its branches, whose tomographic images might be obtained by computed tomography or magnetic resonance angiography, in a single two-dimensional stylistic image, without overlaps among branches. The visualization method, termed uncluttered single-image visualization (USIV), involves optimization of geometry. This paper proposes a novel optimization technique that utilizes an interesting connection of the optimization problem regarding USIV to the protein structure prediction problem. Adopting the integer linear programming-based formulation for the protein structure prediction problem, we tested the proposed technique using 30 visualizations produced from five patient scans with representative anatomical variants in the abdominal aortic vessel tree. The novel technique can exploit commodity-level parallelism, enabling use of general-purpose graphics processing unit (GPGPU) technology that yields a significant speedup. Comparison of the results with the other optimization technique previously reported elsewhere suggests that, in most aspects, the quality of the visualization is comparable to that of the previous one, with a significant gain in the computation time of the algorithm. PMID:22291148

  6. Automatic design of synthetic gene circuits through mixed integer non-linear programming.

    PubMed

    Huynh, Linh; Kececioglu, John; Köppe, Matthias; Tagkopoulos, Ilias

    2012-01-01

    Automatic design of synthetic gene circuits poses a significant challenge to synthetic biology, primarily due to the complexity of biological systems, and the lack of rigorous optimization methods that can cope with the combinatorial explosion as the number of biological parts increases. Current optimization methods for synthetic gene design rely on heuristic algorithms that are usually not deterministic, deliver sub-optimal solutions, and provide no guaranties on convergence or error bounds. Here, we introduce an optimization framework for the problem of part selection in synthetic gene circuits that is based on mixed integer non-linear programming (MINLP), which is a deterministic method that finds the globally optimal solution and guarantees convergence in finite time. Given a synthetic gene circuit, a library of characterized parts, and user-defined constraints, our method can find the optimal selection of parts that satisfy the constraints and best approximates the objective function given by the user. We evaluated the proposed method in the design of three synthetic circuits (a toggle switch, a transcriptional cascade, and a band detector), with both experimentally constructed and synthetic promoter libraries. Scalability and robustness analysis shows that the proposed framework scales well with the library size and the solution space. The work described here is a step towards a unifying, realistic framework for the automated design of biological circuits.

  7. GAMBIT: A Parameterless Model-Based Evolutionary Algorithm for Mixed-Integer Problems.

    PubMed

    Sadowski, Krzysztof L; Thierens, Dirk; Bosman, Peter A N

    2018-01-01

    Learning and exploiting problem structure is one of the key challenges in optimization. This is especially important for black-box optimization (BBO) where prior structural knowledge of a problem is not available. Existing model-based Evolutionary Algorithms (EAs) are very efficient at learning structure in both the discrete, and in the continuous domain. In this article, discrete and continuous model-building mechanisms are integrated for the Mixed-Integer (MI) domain, comprising discrete and continuous variables. We revisit a recently introduced model-based evolutionary algorithm for the MI domain, the Genetic Algorithm for Model-Based mixed-Integer opTimization (GAMBIT). We extend GAMBIT with a parameterless scheme that allows for practical use of the algorithm without the need to explicitly specify any parameters. We furthermore contrast GAMBIT with other model-based alternatives. The ultimate goal of processing mixed dependences explicitly in GAMBIT is also addressed by introducing a new mechanism for the explicit exploitation of mixed dependences. We find that processing mixed dependences with this novel mechanism allows for more efficient optimization. We further contrast the parameterless GAMBIT with Mixed-Integer Evolution Strategies (MIES) and other state-of-the-art MI optimization algorithms from the General Algebraic Modeling System (GAMS) commercial algorithm suite on problems with and without constraints, and show that GAMBIT is capable of solving problems where variable dependences prevent many algorithms from successfully optimizing them.

  8. Classification of drug molecules considering their IC50 values using mixed-integer linear programming based hyper-boxes method.

    PubMed

    Armutlu, Pelin; Ozdemir, Muhittin E; Uney-Yuksektepe, Fadime; Kavakli, I Halil; Turkay, Metin

    2008-10-03

    A priori analysis of the activity of drugs on the target protein by computational approaches can be useful in narrowing down drug candidates for further experimental tests. Currently, there are a large number of computational methods that predict the activity of drugs on proteins. In this study, we approach the activity prediction problem as a classification problem and, we aim to improve the classification accuracy by introducing an algorithm that combines partial least squares regression with mixed-integer programming based hyper-boxes classification method, where drug molecules are classified as low active or high active regarding their binding activity (IC50 values) on target proteins. We also aim to determine the most significant molecular descriptors for the drug molecules. We first apply our approach by analyzing the activities of widely known inhibitor datasets including Acetylcholinesterase (ACHE), Benzodiazepine Receptor (BZR), Dihydrofolate Reductase (DHFR), Cyclooxygenase-2 (COX-2) with known IC50 values. The results at this stage proved that our approach consistently gives better classification accuracies compared to 63 other reported classification methods such as SVM, Naïve Bayes, where we were able to predict the experimentally determined IC50 values with a worst case accuracy of 96%. To further test applicability of this approach we first created dataset for Cytochrome P450 C17 inhibitors and then predicted their activities with 100% accuracy. Our results indicate that this approach can be utilized to predict the inhibitory effects of inhibitors based on their molecular descriptors. This approach will not only enhance drug discovery process, but also save time and resources committed.

  9. Coordinated Control Method of Voltage and Reactive Power for Active Distribution Networks Based on Soft Open Point

    DOE PAGES

    Li, Peng; Ji, Haoran; Wang, Chengshan; ...

    2017-03-22

    The increasing penetration of distributed generators (DGs) exacerbates the risk of voltage violations in active distribution networks (ADNs). The conventional voltage regulation devices limited by the physical constraints are difficult to meet the requirement of real-time voltage and VAR control (VVC) with high precision when DGs fluctuate frequently. But, soft open point (SOP), a flexible power electronic device, can be used as the continuous reactive power source to realize the fast voltage regulation. Considering the cooperation of SOP and multiple regulation devices, this paper proposes a coordinated VVC method based on SOP for ADNs. Firstly, a time-series model of coordi-natedmore » VVC is developed to minimize operation costs and eliminate voltage violations of ADNs. Then, by applying the linearization and conic relaxation, the original nonconvex mixed-integer non-linear optimization model is converted into a mixed-integer second-order cone programming (MISOCP) model which can be efficiently solved to meet the requirement of voltage regulation rapidity. Here, we carried out some case studies on the IEEE 33-node system and IEEE 123-node system to illustrate the effectiveness of the proposed method.« less

  10. Coordinated Control Method of Voltage and Reactive Power for Active Distribution Networks Based on Soft Open Point

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Peng; Ji, Haoran; Wang, Chengshan

    The increasing penetration of distributed generators (DGs) exacerbates the risk of voltage violations in active distribution networks (ADNs). The conventional voltage regulation devices limited by the physical constraints are difficult to meet the requirement of real-time voltage and VAR control (VVC) with high precision when DGs fluctuate frequently. But, soft open point (SOP), a flexible power electronic device, can be used as the continuous reactive power source to realize the fast voltage regulation. Considering the cooperation of SOP and multiple regulation devices, this paper proposes a coordinated VVC method based on SOP for ADNs. Firstly, a time-series model of coordi-natedmore » VVC is developed to minimize operation costs and eliminate voltage violations of ADNs. Then, by applying the linearization and conic relaxation, the original nonconvex mixed-integer non-linear optimization model is converted into a mixed-integer second-order cone programming (MISOCP) model which can be efficiently solved to meet the requirement of voltage regulation rapidity. Here, we carried out some case studies on the IEEE 33-node system and IEEE 123-node system to illustrate the effectiveness of the proposed method.« less

  11. Resource allocation in shared spectrum access communications for operators with diverse service requirements

    NASA Astrophysics Data System (ADS)

    Kibria, Mirza Golam; Villardi, Gabriel Porto; Ishizu, Kentaro; Kojima, Fumihide; Yano, Hiroyuki

    2016-12-01

    In this paper, we study inter-operator spectrum sharing and intra-operator resource allocation in shared spectrum access communication systems and propose efficient dynamic solutions to address both inter-operator and intra-operator resource allocation optimization problems. For inter-operator spectrum sharing, we present two competent approaches, namely the subcarrier gain-based sharing and fragmentation-based sharing, which carry out fair and flexible allocation of the available shareable spectrum among the operators subject to certain well-defined sharing rules, traffic demands, and channel propagation characteristics. The subcarrier gain-based spectrum sharing scheme has been found to be more efficient in terms of achieved throughput. However, the fragmentation-based sharing is more attractive in terms of computational complexity. For intra-operator resource allocation, we consider resource allocation problem with users' dissimilar service requirements, where the operator supports users with delay constraint and non-delay constraint service requirements, simultaneously. This optimization problem is a mixed-integer non-linear programming problem and non-convex, which is computationally very expensive, and the complexity grows exponentially with the number of integer variables. We propose less-complex and efficient suboptimal solution based on formulating exact linearization, linear approximation, and convexification techniques for the non-linear and/or non-convex objective functions and constraints. Extensive simulation performance analysis has been carried out that validates the efficiency of the proposed solution.

  12. Magnetic impurity effect on charge and magnetic order in doped La1.5Ca0.5CoO4

    NASA Astrophysics Data System (ADS)

    Horigane, K.; Hiraka, H.; Tomiyasu, K.; Ohoyama, K.; Louca, D.; Yamada, K.

    2012-02-01

    Neutron scattering experiments were performed on single crystals of magnetic impurity doped cobalt oxides La1.5Ca0.5CoO4 to characterize the charge and spin orders. We newly found contrasting impurity effects. Two types of magnetic peaks are observed at q = (0.5,0,L) with L = half-integer and integer in La1.5Ca0.5CoO4, while magnetic peak at L = half-integer (integer) was only observed in Mn (Fe)-substituted sample. Although Mn and Fe impurities degrade charge and magnetic order, Cr impurity stabilizes the ordering at x = 0.5. Based on the crystal structural analysis of Cr doped sample, we found that the excess oxygen and change of octahedron around Co3+ were realized in Cr doped sample.

  13. Recent research in network problems with applications

    NASA Technical Reports Server (NTRS)

    Thompson, G. L.

    1980-01-01

    The capabilities of network codes and their extensions are surveyed in regard to specially structured integer programming problems which are solved by using the solutions of a series of ordinary network problems.

  14. Quantum Hall effect in ac driven graphene: From the half-integer to the integer case

    NASA Astrophysics Data System (ADS)

    Ding, Kai-He; Lim, Lih-King; Su, Gang; Weng, Zheng-Yu

    2018-01-01

    We theoretically study the quantum Hall effect (QHE) in graphene with an ac electric field. Based on the tight-binding model, the structure of the half-integer Hall plateaus at σxy=±(n +1 /2 ) 4 e2/h (n is an integer) gets qualitatively changed with the addition of new integer Hall plateaus at σxy=±n (4 e2/h ) starting from the edges of the band center regime towards the band center with an increasing ac field. Beyond a critical field strength, a Hall plateau with σxy=0 can be realized at the band center, hence fully restoring a conventional integer QHE with particle-hole symmetry. Within a low-energy Hamiltonian for Dirac cones merging, we show a very good agreement with the tight-binding calculations for the Hall plateau transitions. We also obtain the band structure for driven graphene ribbons to provide a further understanding on the appearance of the new Hall plateaus, showing a trivial insulator behavior for the σxy=0 state. In the presence of disorder, we numerically study the disorder-induced destruction of the quantum Hall states in a finite driven sample and find that qualitative features known in the undriven disordered case are maintained.

  15. Design Study: Integer Subtraction Operation Teaching Learning Using Multimedia in Primary School

    ERIC Educational Resources Information Center

    Aris, Rendi Muhammad; Putri, Ratu Ilma Indra

    2017-01-01

    This study aims to develop a learning trajectory to help students understand concept of subtraction of integers using multimedia in the fourth grade. This study is thematic integrative learning in Curriculum 2013 PMRI based. The method used is design research consists of three stages; preparing for the experiment, design experiment, retrospective…

  16. Integer programming model for optimizing bus timetable using genetic algorithm

    NASA Astrophysics Data System (ADS)

    Wihartiko, F. D.; Buono, A.; Silalahi, B. P.

    2017-01-01

    Bus timetable gave an information for passengers to ensure the availability of bus services. Timetable optimal condition happened when bus trips frequency could adapt and suit with passenger demand. In the peak time, the number of bus trips would be larger than the off-peak time. If the number of bus trips were more frequent than the optimal condition, it would make a high operating cost for bus operator. Conversely, if the number of trip was less than optimal condition, it would make a bad quality service for passengers. In this paper, the bus timetabling problem would be solved by integer programming model with modified genetic algorithm. Modification was placed in the chromosomes design, initial population recovery technique, chromosomes reconstruction and chromosomes extermination on specific generation. The result of this model gave the optimal solution with accuracy 99.1%.

  17. Reconstructing cerebrovascular networks under local physiological constraints by integer programming

    DOE PAGES

    Rempfler, Markus; Schneider, Matthias; Ielacqua, Giovanna D.; ...

    2015-04-23

    We introduce a probabilistic approach to vessel network extraction that enforces physiological constraints on the vessel structure. The method accounts for both image evidence and geometric relationships between vessels by solving an integer program, which is shown to yield the maximum a posteriori (MAP) estimate to the probabilistic model. Starting from an over-connected network, it is pruning vessel stumps and spurious connections by evaluating the local geometry and the global connectivity of the graph. We utilize a high-resolution micro computed tomography (µCT) dataset of a cerebrovascular corrosion cast to obtain a reference network and learn the prior distributions of ourmore » probabilistic model. As a result, we perform experiments on micro magnetic resonance angiography (µMRA) images of mouse brains and discuss properties of the networks obtained under different tracking and pruning approaches.« less

  18. FPGA Implementation of Optimal 3D-Integer DCT Structure for Video Compression

    PubMed Central

    2015-01-01

    A novel optimal structure for implementing 3D-integer discrete cosine transform (DCT) is presented by analyzing various integer approximation methods. The integer set with reduced mean squared error (MSE) and high coding efficiency are considered for implementation in FPGA. The proposed method proves that the least resources are utilized for the integer set that has shorter bit values. Optimal 3D-integer DCT structure is determined by analyzing the MSE, power dissipation, coding efficiency, and hardware complexity of different integer sets. The experimental results reveal that direct method of computing the 3D-integer DCT using the integer set [10, 9, 6, 2, 3, 1, 1] performs better when compared to other integer sets in terms of resource utilization and power dissipation. PMID:26601120

  19. Improving consensus contact prediction via server correlation reduction.

    PubMed

    Gao, Xin; Bu, Dongbo; Xu, Jinbo; Li, Ming

    2009-05-06

    Protein inter-residue contacts play a crucial role in the determination and prediction of protein structures. Previous studies on contact prediction indicate that although template-based consensus methods outperform sequence-based methods on targets with typical templates, such consensus methods perform poorly on new fold targets. However, we find out that even for new fold targets, the models generated by threading programs can contain many true contacts. The challenge is how to identify them. In this paper, we develop an integer linear programming model for consensus contact prediction. In contrast to the simple majority voting method assuming that all the individual servers are equally important and independent, the newly developed method evaluates their correlation by using maximum likelihood estimation and extracts independent latent servers from them by using principal component analysis. An integer linear programming method is then applied to assign a weight to each latent server to maximize the difference between true contacts and false ones. The proposed method is tested on the CASP7 data set. If the top L/5 predicted contacts are evaluated where L is the protein size, the average accuracy is 73%, which is much higher than that of any previously reported study. Moreover, if only the 15 new fold CASP7 targets are considered, our method achieves an average accuracy of 37%, which is much better than that of the majority voting method, SVM-LOMETS, SVM-SEQ, and SAM-T06. These methods demonstrate an average accuracy of 13.0%, 10.8%, 25.8% and 21.2%, respectively. Reducing server correlation and optimally combining independent latent servers show a significant improvement over the traditional consensus methods. This approach can hopefully provide a powerful tool for protein structure refinement and prediction use.

  20. Op-Ug TD Optimizer Tool Based on Matlab Code to Find Transition Depth From Open Pit to Block Caving / Narzędzie Optymalizacyjne Oparte O Kod Matlab Wykorzystane Do Określania Głębokości Przejściowej Od Wydobycia Odkrywkowego Do Wybierania Komorami

    NASA Astrophysics Data System (ADS)

    Bakhtavar, E.

    2015-09-01

    In this study, transition from open pit to block caving has been considered as a challenging problem. For this purpose, the linear integer programing code of Matlab was initially developed on the basis of the binary integer model proposed by Bakhtavar et al (2012). Then a program based on graphical user interface (GUI) was set up and named "Op-Ug TD Optimizer". It is a beneficial tool for simple application of the model in all situations where open pit is considered together with block caving method for mining an ore deposit. Finally, Op-Ug TD Optimizer has been explained step by step through solving the transition from open pit to block caving problem of a case ore deposit. W pracy tej rozważano skomplikowane zagadnienie przejścia od wybierania odkrywkowego do komorowego. W tym celu opracowano kod programowania liniowego w środowisku MATLAB w oparciu o model liczb binarnych zaproponowany przez Bakhtavara (2012). Następnie opracowano program z wykorzystujący graficzny interfejs użytkownika o nazwie Optymalizator Op-Ug TD. Jest to niezwykle cenne narzędzie umożliwiające stosowanie modelu dla wszystkich warunków w sytuacjach gdy rozważamy prowadzenie wydobycia metodą odkrywkową oraz wydobycie komorowe przy eksploatacji złóż rud żelaza. W końcowej części pracy podano szczegółową instrukcję stosowanie programu Optymalizator na przedstawionym przykładzie przejścia od wydobycia rud żelaza metodami odkrywkowymi poprzez wydobycie komorami.

  1. A set-covering based heuristic algorithm for the periodic vehicle routing problem.

    PubMed

    Cacchiani, V; Hemmelmayr, V C; Tricoire, F

    2014-01-30

    We present a hybrid optimization algorithm for mixed-integer linear programming, embedding both heuristic and exact components. In order to validate it we use the periodic vehicle routing problem (PVRP) as a case study. This problem consists of determining a set of minimum cost routes for each day of a given planning horizon, with the constraints that each customer must be visited a required number of times (chosen among a set of valid day combinations), must receive every time the required quantity of product, and that the number of routes per day (each respecting the capacity of the vehicle) does not exceed the total number of available vehicles. This is a generalization of the well-known vehicle routing problem (VRP). Our algorithm is based on the linear programming (LP) relaxation of a set-covering-like integer linear programming formulation of the problem, with additional constraints. The LP-relaxation is solved by column generation, where columns are generated heuristically by an iterated local search algorithm. The whole solution method takes advantage of the LP-solution and applies techniques of fixing and releasing of the columns as a local search, making use of a tabu list to avoid cycling. We show the results of the proposed algorithm on benchmark instances from the literature and compare them to the state-of-the-art algorithms, showing the effectiveness of our approach in producing good quality solutions. In addition, we report the results on realistic instances of the PVRP introduced in Pacheco et al. (2011)  [24] and on benchmark instances of the periodic traveling salesman problem (PTSP), showing the efficacy of the proposed algorithm on these as well. Finally, we report the new best known solutions found for all the tested problems.

  2. A set-covering based heuristic algorithm for the periodic vehicle routing problem

    PubMed Central

    Cacchiani, V.; Hemmelmayr, V.C.; Tricoire, F.

    2014-01-01

    We present a hybrid optimization algorithm for mixed-integer linear programming, embedding both heuristic and exact components. In order to validate it we use the periodic vehicle routing problem (PVRP) as a case study. This problem consists of determining a set of minimum cost routes for each day of a given planning horizon, with the constraints that each customer must be visited a required number of times (chosen among a set of valid day combinations), must receive every time the required quantity of product, and that the number of routes per day (each respecting the capacity of the vehicle) does not exceed the total number of available vehicles. This is a generalization of the well-known vehicle routing problem (VRP). Our algorithm is based on the linear programming (LP) relaxation of a set-covering-like integer linear programming formulation of the problem, with additional constraints. The LP-relaxation is solved by column generation, where columns are generated heuristically by an iterated local search algorithm. The whole solution method takes advantage of the LP-solution and applies techniques of fixing and releasing of the columns as a local search, making use of a tabu list to avoid cycling. We show the results of the proposed algorithm on benchmark instances from the literature and compare them to the state-of-the-art algorithms, showing the effectiveness of our approach in producing good quality solutions. In addition, we report the results on realistic instances of the PVRP introduced in Pacheco et al. (2011)  [24] and on benchmark instances of the periodic traveling salesman problem (PTSP), showing the efficacy of the proposed algorithm on these as well. Finally, we report the new best known solutions found for all the tested problems. PMID:24748696

  3. Array-based satellite phase bias sensing: theory and GPS/BeiDou/QZSS results

    NASA Astrophysics Data System (ADS)

    Khodabandeh, A.; Teunissen, P. J. G.

    2014-09-01

    Single-receiver integer ambiguity resolution (IAR) is a measurement concept that makes use of network-derived non-integer satellite phase biases (SPBs), among other corrections, to recover and resolve the integer ambiguities of the carrier-phase data of a single GNSS receiver. If it is realized, the very precise integer ambiguity-resolved carrier-phase data would then contribute to the estimation of the receiver’s position, thus making (near) real-time precise point positioning feasible. Proper definition and determination of the SPBs take a leading part in developing the idea of single-receiver IAR. In this contribution, the concept of array-based between-satellite single-differenced (SD) SPB determination is introduced, which is aimed to reduce the code-dominated precision of the SD-SPB corrections. The underlying model is realized by giving the role of the local reference network to an array of antennas, mounted on rigid platforms, that are separated by short distances so that the same ionospheric delay is assumed to be experienced by all the antennas. To that end, a closed-form expression of the array-aided SD-SPB corrections is presented, thereby proposing a simple strategy to compute the SD-SPBs. After resolving double-differenced ambiguities of the array’s data, the variance of the SD-SPB corrections is shown to be reduced by a factor equal to the number of antennas. This improvement in precision is also affirmed by numerical results of the three GNSSs GPS, BeiDou and QZSS. Experimental results demonstrate that the integer-recovered ambiguities converge to integers faster, upon increasing the number of antennas aiding the SD-SPB corrections.

  4. Automated Simultaneous Assembly of Multistage Testlets for a High-Stakes Licensing Examination

    ERIC Educational Resources Information Center

    Breithaupt, Krista; Hare, Donovan R.

    2007-01-01

    Many challenges exist for high-stakes testing programs offering continuous computerized administration. The automated assembly of test questions to exactly meet content and other requirements, provide uniformity, and control item exposure can be modeled and solved by mixed-integer programming (MIP) methods. A case study of the computerized…

  5. THREE-PEE SAMPLING THEORY and program 'THRP' for computer generation of selection criteria

    Treesearch

    L. R. Grosenbaugh

    1965-01-01

    Theory necessary for sampling with probability proportional to prediction ('three-pee,' or '3P,' sampling) is first developed and then exemplified by numerical comparisons of several estimators. Program 'T RP' for computer generation of appropriate 3P-sample-selection criteria is described, and convenient random integer dispensers are...

  6. The checkpoint ordering problem

    PubMed Central

    Hungerländer, P.

    2017-01-01

    Abstract We suggest a new variant of a row layout problem: Find an ordering of n departments with given lengths such that the total weighted sum of their distances to a given checkpoint is minimized. The Checkpoint Ordering Problem (COP) is both of theoretical and practical interest. It has several applications and is conceptually related to some well-studied combinatorial optimization problems, namely the Single-Row Facility Layout Problem, the Linear Ordering Problem and a variant of parallel machine scheduling. In this paper we study the complexity of the (COP) and its special cases. The general version of the (COP) with an arbitrary but fixed number of checkpoints is NP-hard in the weak sense. We propose both a dynamic programming algorithm and an integer linear programming approach for the (COP) . Our computational experiments indicate that the (COP) is hard to solve in practice. While the run time of the dynamic programming algorithm strongly depends on the length of the departments, the integer linear programming approach is able to solve instances with up to 25 departments to optimality. PMID:29170574

  7. (In)Flexibility of Constituency in Japanese in Multi-Modal Categorial Grammar with Structured Phonology

    ERIC Educational Resources Information Center

    Kubota, Yusuke

    2010-01-01

    This dissertation proposes a theory of categorial grammar called Multi-Modal Categorial Grammar with Structured Phonology. The central feature that distinguishes this theory from the majority of contemporary syntactic theories is that it decouples (without completely segregating) two aspects of syntax--hierarchical organization (reflecting…

  8. Anomalous thermoelectric phenomena in lattice models of multi-Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Gorbar, E. V.; Miransky, V. A.; Shovkovy, I. A.; Sukhachov, P. O.

    2017-10-01

    The thermoelectric transport coefficients are calculated in a generic lattice model of multi-Weyl semimetals with a broken time-reversal symmetry by using the Kubo's linear response theory. The contributions connected with the Berry curvature-induced electromagnetic orbital and heat magnetizations are systematically taken into account. It is shown that the thermoelectric transport is profoundly affected by the nontrivial topology of multi-Weyl semimetals. In particular, the calculation reveals a number of thermal coefficients of the topological origin which describe the anomalous Nernst and thermal Hall effects in the absence of background magnetic fields. Similarly to the anomalous Hall effect, all anomalous thermoelectric coefficients are proportional to the integer topological charge of the Weyl nodes. The dependence of the thermoelectric coefficients on the chemical potential and temperature is also studied.

  9. Campaign-level dynamic network modelling for spaceflight logistics for the flexible path concept

    NASA Astrophysics Data System (ADS)

    Ho, Koki; de Weck, Olivier L.; Hoffman, Jeffrey A.; Shishko, Robert

    2016-06-01

    This paper develops a network optimization formulation for dynamic campaign-level space mission planning. Although many past space missions have been designed mainly from a mission-level perspective, a campaign-level perspective will be important for future space exploration. In order to find the optimal campaign-level space transportation architecture, a mixed-integer linear programming (MILP) formulation with a generalized multi-commodity flow and a time-expanded network is developed. Particularly, a new heuristics-based method, a partially static time-expanded network, is developed to provide a solution quickly. The developed method is applied to a case study containing human exploration of a near-Earth object (NEO) and Mars, related to the concept of the Flexible Path. The numerical results show that using the specific combinations of propulsion technologies, in-situ resource utilization (ISRU), and other space infrastructure elements can reduce the initial mass in low-Earth orbit (IMLEO) significantly. In addition, the case study results also show that we can achieve large IMLEO reduction by designing NEO and Mars missions together as a campaign compared with designing them separately owing to their common space infrastructure pre-deployment. This research will be an important step toward efficient and flexible campaign-level space mission planning.

  10. Statistical analysis of the limitation of half integer resonances on the available momentum acceptance of the High Energy Photon Source

    NASA Astrophysics Data System (ADS)

    Jiao, Yi; Duan, Zhe

    2017-01-01

    In a diffraction-limited storage ring, half integer resonances can have strong effects on the beam dynamics, associated with the large detuning terms from the strong focusing and strong sextupoles as required for an ultralow emittance. In this study, the limitation of half integer resonances on the available momentum acceptance (MA) was statistically analyzed based on one design of the High Energy Photon Source (HEPS). It was found that the probability of MA reduction due to crossing of half integer resonances is closely correlated with the level of beta beats at the nominal tunes, but independent of the error sources. The analysis indicated that for the presented HEPS lattice design, the rms amplitude of beta beats should be kept below 1.5% horizontally and 2.5% vertically to reach a small MA reduction probability of about 1%.

  11. Incorporation of Fixed Installation Costs into Optimization of Groundwater Remediation with a New Efficient Surrogate Nonlinear Mixed Integer Optimization Algorithm

    NASA Astrophysics Data System (ADS)

    Shoemaker, Christine; Wan, Ying

    2016-04-01

    Optimization of nonlinear water resources management issues which have a mixture of fixed (e.g. construction cost for a well) and variable (e.g. cost per gallon of water pumped) costs has been not well addressed because prior algorithms for the resulting nonlinear mixed integer problems have required many groundwater simulations (with different configurations of decision variable), especially when the solution space is multimodal. In particular heuristic methods like genetic algorithms have often been used in the water resources area, but they require so many groundwater simulations that only small systems have been solved. Hence there is a need to have a method that reduces the number of expensive groundwater simulations. A recently published algorithm for nonlinear mixed integer programming using surrogates was shown in this study to greatly reduce the computational effort for obtaining accurate answers to problems involving fixed costs for well construction as well as variable costs for pumping because of a substantial reduction in the number of groundwater simulations required to obtain an accurate answer. Results are presented for a US EPA hazardous waste site. The nonlinear mixed integer surrogate algorithm is general and can be used on other problems arising in hydrology with open source codes in Matlab and python ("pySOT" in Bitbucket).

  12. Polynomial Size Formulations for the Distance and Capacity Constrained Vehicle Routing Problem

    NASA Astrophysics Data System (ADS)

    Kara, Imdat; Derya, Tusan

    2011-09-01

    The Distance and Capacity Constrained Vehicle Routing Problem (DCVRP) is an extension of the well known Traveling Salesman Problem (TSP). DCVRP arises in distribution and logistics problems. It would be beneficial to construct new formulations, which is the main motivation and contribution of this paper. We focused on two indexed integer programming formulations for DCVRP. One node based and one arc (flow) based formulation for DCVRP are presented. Both formulations have O(n2) binary variables and O(n2) constraints, i.e., the number of the decision variables and constraints grows with a polynomial function of the nodes of the underlying graph. It is shown that proposed arc based formulation produces better lower bound than the existing one (this refers to the Water's formulation in the paper). Finally, various problems from literature are solved with the node based and arc based formulations by using CPLEX 8.0. Preliminary computational analysis shows that, arc based formulation outperforms the node based formulation in terms of linear programming relaxation.

  13. Mathematical programming (MP) model to determine optimal transportation infrastructure for geologic CO2 storage in the Illinois basin

    NASA Astrophysics Data System (ADS)

    Rehmer, Donald E.

    Analysis of results from a mathematical programming model were examined to 1) determine the least cost options for infrastructure development of geologic storage of CO2 in the Illinois Basin, and 2) perform an analysis of a number of CO2 emission tax and oil price scenarios in order to implement development of the least-cost pipeline networks for distribution of CO2. The model, using mixed integer programming, tested the hypothesis of whether viable EOR sequestration sites can serve as nodal points or hubs to expand the CO2 delivery infrastructure to more distal locations from the emissions sources. This is in contrast to previous model results based on a point-to- point model having direct pipeline segments from each CO2 capture site to each storage sink. There is literature on the spoke and hub problem that relates to airline scheduling as well as maritime shipping. A large-scale ship assignment problem that utilized integer linear programming was run on Excel Solver and described by Mourao et al., (2001). Other literature indicates that aircraft assignment in spoke and hub routes can also be achieved using integer linear programming (Daskin and Panayotopoulos, 1989; Hane et al., 1995). The distribution concept is basically the reverse of the "tree and branch" type (Rothfarb et al., 1970) gathering systems for oil and natural gas that industry has been developing for decades. Model results indicate that the inclusion of hubs as variables in the model yields lower transportation costs for geologic carbon dioxide storage over previous models of point-to-point infrastructure geometries. Tabular results and GIS maps of the selected scenarios illustrate that EOR sites can serve as nodal points or hubs for distribution of CO2 to distal oil field locations as well as deeper saline reservoirs. Revenue amounts and capture percentages both show an improvement over solutions when the hubs are not allowed to come into the solution. Other results indicate that geologic storage of CO2 into saline aquifers does not come into solutions selected by the model until the CO 2 emissions tax approaches 50/tonne. CO2 capture and storage begins to occur when the oil price is above 24.42 a barrel based on the constraints of the model. The annual storage capacity of the basin is nearly maximized when the net price of oil is as low as 40 per barrel and the CO2 emission tax is 60/tonne. The results from every subsequent scenario that was examined by this study demonstrate that EOR utilizing anthropogenically captured CO2 will earn net revenue, and thus represents an economically viable option for CO2 storage in the Illinois Basin.

  14. Understanding the complexity of the Lévy-walk nature of human mobility with a multi-scale cost∕benefit model.

    PubMed

    Scafetta, Nicola

    2011-12-01

    Probability distributions of human displacements have been fit with exponentially truncated Lévy flights or fat tailed Pareto inverse power law probability distributions. Thus, people usually stay within a given location (for example, the city of residence), but with a non-vanishing frequency they visit nearby or far locations too. Herein, we show that an important empirical distribution of human displacements (range: from 1 to 1000 km) can be well fit by three consecutive Pareto distributions with simple integer exponents equal to 1, 2, and (>) 3. These three exponents correspond to three displacement range zones of about 1 km ≲Δr≲10 km, 10 km ≲Δr≲300 km, and 300 km ≲Δr≲1000 km, respectively. These three zones can be geographically and physically well determined as displacements within a city, visits to nearby cities that may occur within just one-day trips, and visit to far locations that may require multi-days trips. The incremental integer values of the three exponents can be easily explained with a three-scale mobility cost∕benefit model for human displacements based on simple geometrical constrains. Essentially, people would divide the space into three major regions (close, medium, and far distances) and would assume that the travel benefits are randomly∕uniformly distributed mostly only within specific urban-like areas. The three displacement distribution zones appear to be characterized by an integer (1, 2, or >3) inverse power exponent because of the specific number (1, 2, or >3) of cost mechanisms (each of which is proportional to the displacement length). The distributions in the first two zones would be associated to Pareto distributions with exponent β = 1 and β = 2 because of simple geometrical statistical considerations due to the a priori assumption that most benefits are searched in the urban area of the city of residence or in the urban area of specific nearby cities. We also show, by using independent records of human mobility, that the proposed model predicts the statistical properties of human mobility below 1 km ranges, where people just walk. In the latter case, the threshold between zone 1 and zone 2 may be around 100-200 m and, perhaps, may have been evolutionary determined by the natural human high resolution visual range, which characterizes an area of interest where the benefits are assumed to be randomly and uniformly distributed. This rich and suggestive interpretation of human mobility may characterize other complex random walk phenomena that may also be described by a N-piece fit Pareto distributions with increasing integer exponents. This study also suggests that distribution functions used to fit experimental probability distributions must be carefully chosen for not improperly obscuring the physics underlying a phenomenon.

  15. A Computer Model for the Transmission Characteristics of Dielectric Radomes

    DTIC Science & Technology

    1992-03-01

    GAUS.F....... 104 APPENDIX D........................105 A. ARGUMENTS: CIRCTHETA. CIRCRHO AND CIRCPHI . . . 105 B. TEST PROGRAM: CIRCSUB.F...ETSCAT(500),EPSCAT(500),ETHF(500),EPHF(500) INTEGER NT,NPHI,CNRHO,CNPHI,NP,SELECTION REAL MODE,BASE,RS,ZP, RHB ,ZHB DATA PI,START,STOP/3.1415926,0.,90...ZH(I)).LT..OO1) ZH(I)=O. IF(ABS(RH(I)).LT..O01) RH(I)=O. ZHB=ZH (I) /BK RHB =RH (I) /BK ZiG (i)=IMP C C ASSIGN SURFACE IMPEDANCE AT THIS POINT. THE

  16. An optimization model for metabolic pathways.

    PubMed

    Planes, F J; Beasley, J E

    2009-10-15

    Different mathematical methods have emerged in the post-genomic era to determine metabolic pathways. These methods can be divided into stoichiometric methods and path finding methods. In this paper we detail a novel optimization model, based upon integer linear programming, to determine metabolic pathways. Our model links reaction stoichiometry with path finding in a single approach. We test the ability of our model to determine 40 annotated Escherichia coli metabolic pathways. We show that our model is able to determine 36 of these 40 pathways in a computationally effective manner.

  17. Optimal reconfiguration strategy for a degradable multimodule computing system

    NASA Technical Reports Server (NTRS)

    Lee, Yann-Hang; Shin, Kang G.

    1987-01-01

    The present quantitative approach to the problem of reconfiguring a degradable multimode system assigns some modules to computation and arranges others for reliability. By using expected total reward as the optimal criterion, there emerges an active reconfiguration strategy based not only on the occurrence of failure but the progression of the given mission. This reconfiguration strategy requires specification of the times at which the system should undergo reconfiguration, and the configurations to which the system should change. The optimal reconfiguration problem is converted to integer nonlinear knapsack and fractional programming problems.

  18. Non-integer expansion embedding techniques for reversible image watermarking

    NASA Astrophysics Data System (ADS)

    Xiang, Shijun; Wang, Yi

    2015-12-01

    This work aims at reducing the embedding distortion of prediction-error expansion (PE)-based reversible watermarking. In the classical PE embedding method proposed by Thodi and Rodriguez, the predicted value is rounded to integer number for integer prediction-error expansion (IPE) embedding. The rounding operation makes a constraint on a predictor's performance. In this paper, we propose a non-integer PE (NIPE) embedding approach, which can proceed non-integer prediction errors for embedding data into an audio or image file by only expanding integer element of a prediction error while keeping its fractional element unchanged. The advantage of the NIPE embedding technique is that the NIPE technique can really bring a predictor into full play by estimating a sample/pixel in a noncausal way in a single pass since there is no rounding operation. A new noncausal image prediction method to estimate a pixel with four immediate pixels in a single pass is included in the proposed scheme. The proposed noncausal image predictor can provide better performance than Sachnev et al.'s noncausal double-set prediction method (where data prediction in two passes brings a distortion problem due to the fact that half of the pixels were predicted with the watermarked pixels). In comparison with existing several state-of-the-art works, experimental results have shown that the NIPE technique with the new noncausal prediction strategy can reduce the embedding distortion for the same embedding payload.

  19. An Examination of Strategy Implementation During Abstract Nonlinguistic Category Learning in Aphasia

    PubMed Central

    Kiran, Swathi

    2015-01-01

    Purpose Our purpose was to study strategy use during nonlinguistic category learning in aphasia. Method Twelve control participants without aphasia and 53 participants with aphasia (PWA) completed a computerized feedback-based category learning task consisting of training and testing phases. Accuracy rates of categorization in testing phases were calculated. To evaluate strategy use, strategy analyses were conducted over training and testing phases. Participant data were compared with model data that simulated complex multi-cue, single feature, and random pattern strategies. Learning success and strategy use were evaluated within the context of standardized cognitive–linguistic assessments. Results Categorization accuracy was higher among control participants than among PWA. The majority of control participants implemented suboptimal or optimal multi-cue and single-feature strategies by testing phases of the experiment. In contrast, a large subgroup of PWA implemented random patterns, or no strategy, during both training and testing phases of the experiment. Conclusions Person-to-person variability arises not only in category learning ability but also in the strategies implemented to complete category learning tasks. PWA less frequently developed effective strategies during category learning tasks than control participants. Certain PWA may have impairments of strategy development or feedback processing not captured by language and currently probed cognitive abilities. PMID:25908438

  20. Directional enhancement of selected high-order-harmonics from intense laser irradiated blazed grating targets.

    PubMed

    Zhang, Guobo; Chen, Min; Liu, Feng; Yuan, Xiaohui; Weng, Suming; Zheng, Jun; Ma, Yanyun; Shao, Fuqiu; Sheng, Zhengming; Zhang, Jie

    2017-10-02

    Relativistically intense laser solid target interaction has been proved to be a promising way to generate high-order harmonics, which can be used to diagnose ultrafast phenomena. However, their emission direction and spectra still lack tunability. Based upon two-dimensional particle-in-cell simulations, we show that directional enhancement of selected high-order-harmonics can be realized using blazed grating targets. Such targets can select harmonics with frequencies being integer times of the grating frequency. Meanwhile, the radiation intensity and emission area of the harmonics are increased. The emission direction is controlled by tailoring the local blazed structure. Theoretical and electron dynamics analysis for harmonics generation, selection and directional enhancement from the interaction between multi-cycle laser and grating target are carried out. These studies will benefit the generation and application of laser plasma-based high order harmonics.

  1. Optimization of Sensor Monitoring Strategies for Emissions

    NASA Astrophysics Data System (ADS)

    Klise, K. A.; Laird, C. D.; Downey, N.; Baker Hebert, L.; Blewitt, D.; Smith, G. R.

    2016-12-01

    Continuous or regularly scheduled monitoring has the potential to quickly identify changes in air quality. However, even with low-cost sensors, only a limited number of sensors can be placed to monitor airborne pollutants. The physical placement of these sensors and the sensor technology used can have a large impact on the performance of a monitoring strategy. Furthermore, sensors can be placed for different objectives, including maximum coverage, minimum time to detection or exposure, or to quantify emissions. Different objectives may require different monitoring strategies, which need to be evaluated by stakeholders before sensors are placed in the field. In this presentation, we outline methods to enhance ambient detection programs through optimal design of the monitoring strategy. These methods integrate atmospheric transport models with sensor characteristics, including fixed and mobile sensors, sensor cost and failure rate. The methods use site specific pre-computed scenarios which capture differences in meteorology, terrain, concentration averaging times, gas concentration, and emission characteristics. The pre-computed scenarios become input to a mixed-integer, stochastic programming problem that solves for sensor locations and types that maximize the effectiveness of the detection program. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  2. Speedy Alchemy.

    ERIC Educational Resources Information Center

    Deininger, Rolf A.; Berger, Carl F., Jr.

    1983-01-01

    Provides instructions for interfacing a pH meter directly to an Apple II microcomputer without an analog-to-digital converter. Includes program listing (with enough remark statements to make it self-documenting) in Integer Basic to display the pH readings. (Author/JN)

  3. Personnel scheduling using an integer programming model- an application at Avanti Blue-Nile Hotels.

    PubMed

    Kassa, Biniyam Asmare; Tizazu, Anteneh Eshetu

    2013-01-01

    In this paper, we report perhaps a first of its kind application of management science in the Ethiopian hotel industry. Avanti Blue Nile Hotels, a newly established five star hotel in Bahir Dar, is the company for which we developed an integer programming model that determines an optimal weekly shift schedule for the Hotel's engineering department personnel while satisfying several constraints including weekly rest requirements per employee, rest requirements between working shifts per employee, required number of personnel per shift, and other constraints. The model is implemented on an excel solver routine. The model enables the company's personnel department management to develop a fair personnel schedule as needed and to effectively utilize personnel resources while satisfying several technical, legal and economic requirements. These encouraging achievements make us optimistic about the gains other Ethiopian organizations can amass by introducing management science approaches in their management planning and decision making systems.

  4. Combinatorial optimization games

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, X.; Ibaraki, Toshihide; Nagamochi, Hiroshi

    1997-06-01

    We introduce a general integer programming formulation for a class of combinatorial optimization games, which immediately allows us to improve the algorithmic result for finding amputations in the core (an important solution concept in cooperative game theory) of the network flow game on simple networks by Kalai and Zemel. An interesting result is a general theorem that the core for this class of games is nonempty if and only if a related linear program has an integer optimal solution. We study the properties for this mathematical condition to hold for several interesting problems, and apply them to resolve algorithmic andmore » complexity issues for their cores along the line as put forward in: decide whether the core is empty; if the core is empty, find an imputation in the core; given an imputation x, test whether x is in the core. We also explore the properties of totally balanced games in this succinct formulation of cooperative games.« less

  5. Effect of e-learning program on risk assessment and pressure ulcer classification - A randomized study.

    PubMed

    Bredesen, Ida Marie; Bjøro, Karen; Gunningberg, Lena; Hofoss, Dag

    2016-05-01

    Pressure ulcers (PUs) are a problem in health care. Staff competency is paramount to PU prevention. Education is essential to increase skills in pressure ulcer classification and risk assessment. Currently, no pressure ulcer learning programs are available in Norwegian. Develop and test an e-learning program for assessment of pressure ulcer risk and pressure ulcer classification. Forty-four nurses working in acute care hospital wards or nursing homes participated and were assigned randomly into two groups: an e-learning program group (intervention) and a traditional classroom lecture group (control). Data was collected immediately before and after training, and again after three months. The study was conducted at one nursing home and two hospitals between May and December 2012. Accuracy of risk assessment (five patient cases) and pressure ulcer classification (40 photos [normal skin, pressure ulcer categories I-IV] split in two sets) were measured by comparing nurse evaluations in each of the two groups to a pre-established standard based on ratings by experts in pressure ulcer classification and risk assessment. Inter-rater reliability was measured by exact percent agreement and multi-rater Fleiss kappa. A Mann-Whitney U test was used for continuous sum score variables. An e-learning program did not improve Braden subscale scoring. For pressure ulcer classification, however, the intervention group scored significantly higher than the control group on several of the categories in post-test immediately after training. However, after three months there were no significant differences in classification skills between the groups. An e-learning program appears to have a greater effect on the accuracy of pressure ulcer classification than classroom teaching in the short term. For proficiency in Braden scoring, no significant effect of educational methods on learning results was detected. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Neural representations of magnitude for natural and rational numbers.

    PubMed

    DeWolf, Melissa; Chiang, Jeffrey N; Bassok, Miriam; Holyoak, Keith J; Monti, Martin M

    2016-11-01

    Humans have developed multiple symbolic representations for numbers, including natural numbers (positive integers) as well as rational numbers (both fractions and decimals). Despite a considerable body of behavioral and neuroimaging research, it is currently unknown whether different notations map onto a single, fully abstract, magnitude code, or whether separate representations exist for specific number types (e.g., natural versus rational) or number representations (e.g., base-10 versus fractions). We address this question by comparing brain metabolic response during a magnitude comparison task involving (on different trials) integers, decimals, and fractions. Univariate and multivariate analyses revealed that the strength and pattern of activation for fractions differed systematically, within the intraparietal sulcus, from that of both decimals and integers, while the latter two number representations appeared virtually indistinguishable. These results demonstrate that the two major notations formats for rational numbers, fractions and decimals, evoke distinct neural representations of magnitude, with decimals representations being more closely linked to those of integers than to those of magnitude-equivalent fractions. Our findings thus suggest that number representation (base-10 versus fractions) is an important organizational principle for the neural substrate underlying mathematical cognition. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Calibration of Magnetometers with GNSS Receivers and Magnetometer-Aided GNSS Ambiguity Fixing

    PubMed Central

    Henkel, Patrick

    2017-01-01

    Magnetometers provide compass information, and are widely used for navigation, orientation and alignment of objects. As magnetometers are affected by sensor biases and eventually by systematic distortions of the Earth magnetic field, a calibration is needed. In this paper, a method for calibration of magnetometers with three Global Navigation Satellite System (GNSS) receivers is presented. We perform a least-squares estimation of the magnetic flux and sensor biases using GNSS-based attitude information. The attitude is obtained from the relative positions between the GNSS receivers in the North-East-Down coordinate frame and prior knowledge of these relative positions in the platform’s coordinate frame. The relative positions and integer ambiguities of the periodic carrier phase measurements are determined with an integer least-squares estimation using an integer decorrelation and sequential tree search. Prior knowledge on the relative positions is used to increase the success rate of ambiguity fixing. We have validated the proposed method with low-cost magnetometers and GNSS receivers on a vehicle in a test drive. The calibration enabled a consistent heading determination with an accuracy of five degrees. This precise magnetometer-based attitude information allows an instantaneous GNSS integer ambiguity fixing. PMID:28594369

  8. Calibration of Magnetometers with GNSS Receivers and Magnetometer-Aided GNSS Ambiguity Fixing.

    PubMed

    Henkel, Patrick

    2017-06-08

    Magnetometers provide compass information, and are widely used for navigation, orientation and alignment of objects. As magnetometers are affected by sensor biases and eventually by systematic distortions of the Earth magnetic field, a calibration is needed. In this paper, a method for calibration of magnetometers with three Global Navigation Satellite System (GNSS) receivers is presented. We perform a least-squares estimation of the magnetic flux and sensor biases using GNSS-based attitude information. The attitude is obtained from the relative positions between the GNSS receivers in the North-East-Down coordinate frame and prior knowledge of these relative positions in the platform's coordinate frame. The relative positions and integer ambiguities of the periodic carrier phase measurements are determined with an integer least-squares estimation using an integer decorrelation and sequential tree search. Prior knowledge on the relative positions is used to increase the success rate of ambiguity fixing. We have validated the proposed method with low-cost magnetometers and GNSS receivers on a vehicle in a test drive. The calibration enabled a consistent heading determination with an accuracy of five degrees. This precise magnetometer-based attitude information allows an instantaneous GNSS integer ambiguity fixing.

  9. JPLEX: Java Simplex Implementation with Branch-and-Bound Search for Automated Test Assembly

    ERIC Educational Resources Information Center

    Park, Ryoungsun; Kim, Jiseon; Dodd, Barbara G.; Chung, Hyewon

    2011-01-01

    JPLEX, short for Java simPLEX, is an automated test assembly (ATA) program. It is a mixed integer linear programming (MILP) solver written in Java. It reads in a configuration file, solves the minimization problem, and produces an output file for postprocessing. It implements the simplex algorithm to create a fully relaxed solution and…

  10. Radar Resource Management in a Dense Target Environment

    DTIC Science & Technology

    2014-03-01

    problem faced by networked MFRs . While relaxing our assumptions concerning information gain presents numerous challenges worth exploring, future research...linear programming MFR multifunction phased array radar MILP mixed integer linear programming NATO North Atlantic Treaty Organization PDF probability...1: INTRODUCTION Multifunction phased array radars ( MFRs ) are capable of performing various tasks in rapid succession. The performance of target search

  11. Pattern-based integer sample motion search strategies in the context of HEVC

    NASA Astrophysics Data System (ADS)

    Maier, Georg; Bross, Benjamin; Grois, Dan; Marpe, Detlev; Schwarz, Heiko; Veltkamp, Remco C.; Wiegand, Thomas

    2015-09-01

    The H.265/MPEG-H High Efficiency Video Coding (HEVC) standard provides a significant increase in coding efficiency compared to its predecessor, the H.264/MPEG-4 Advanced Video Coding (AVC) standard, which however comes at the cost of a high computational burden for a compliant encoder. Motion estimation (ME), which is a part of the inter-picture prediction process, typically consumes a high amount of computational resources, while significantly increasing the coding efficiency. In spite of the fact that both H.265/MPEG-H HEVC and H.264/MPEG-4 AVC standards allow processing motion information on a fractional sample level, the motion search algorithms based on the integer sample level remain to be an integral part of ME. In this paper, a flexible integer sample ME framework is proposed, thereby allowing to trade off significant reduction of ME computation time versus coding efficiency penalty in terms of bit rate overhead. As a result, through extensive experimentation, an integer sample ME algorithm that provides a good trade-off is derived, incorporating a combination and optimization of known predictive, pattern-based and early termination techniques. The proposed ME framework is implemented on a basis of the HEVC Test Model (HM) reference software, further being compared to the state-of-the-art fast search algorithm, which is a native part of HM. It is observed that for high resolution sequences, the integer sample ME process can be speed-up by factors varying from 3.2 to 7.6, resulting in the bit-rate overhead of 1.5% and 0.6% for Random Access (RA) and Low Delay P (LDP) configurations, respectively. In addition, the similar speed-up is observed for sequences with mainly Computer-Generated Imagery (CGI) content while trading off the bit rate overhead of up to 5.2%.

  12. Mixed integer simulation optimization for optimal hydraulic fracturing and production of shale gas fields

    NASA Astrophysics Data System (ADS)

    Li, J. C.; Gong, B.; Wang, H. G.

    2016-08-01

    Optimal development of shale gas fields involves designing a most productive fracturing network for hydraulic stimulation processes and operating wells appropriately throughout the production time. A hydraulic fracturing network design-determining well placement, number of fracturing stages, and fracture lengths-is defined by specifying a set of integer ordered blocks to drill wells and create fractures in a discrete shale gas reservoir model. The well control variables such as bottom hole pressures or production rates for well operations are real valued. Shale gas development problems, therefore, can be mathematically formulated with mixed-integer optimization models. A shale gas reservoir simulator is used to evaluate the production performance for a hydraulic fracturing and well control plan. To find the optimal fracturing design and well operation is challenging because the problem is a mixed integer optimization problem and entails computationally expensive reservoir simulation. A dynamic simplex interpolation-based alternate subspace (DSIAS) search method is applied for mixed integer optimization problems associated with shale gas development projects. The optimization performance is demonstrated with the example case of the development of the Barnett Shale field. The optimization results of DSIAS are compared with those of a pattern search algorithm.

  13. A statistical mechanical approach to restricted integer partition functions

    NASA Astrophysics Data System (ADS)

    Zhou, Chi-Chun; Dai, Wu-Sheng

    2018-05-01

    The main aim of this paper is twofold: (1) suggesting a statistical mechanical approach to the calculation of the generating function of restricted integer partition functions which count the number of partitions—a way of writing an integer as a sum of other integers under certain restrictions. In this approach, the generating function of restricted integer partition functions is constructed from the canonical partition functions of various quantum gases. (2) Introducing a new type of restricted integer partition functions corresponding to general statistics which is a generalization of Gentile statistics in statistical mechanics; many kinds of restricted integer partition functions are special cases of this restricted integer partition function. Moreover, with statistical mechanics as a bridge, we reveal a mathematical fact: the generating function of restricted integer partition function is just the symmetric function which is a class of functions being invariant under the action of permutation groups. Using this approach, we provide some expressions of restricted integer partition functions as examples.

  14. Content Analysis of Student Essays after Attending a Problem-Based Learning Course: Facilitating the Development of Critical Thinking and Communication Skills in Japanese Nursing Students.

    PubMed

    Itatani, Tomoya; Nagata, Kyoko; Yanagihara, Kiyoko; Tabuchi, Noriko

    2017-08-22

    The importance of active learning has continued to increase in Japan. The authors conducted classes for first-year students who entered the nursing program using the problem-based learning method which is a kind of active learning. Students discussed social topics in classes. The purposes of this study were to analyze the post-class essay, describe logical and critical thinking after attended a Problem-Based Learning (PBL) course. The authors used Mayring's methodology for qualitative content analysis and text mining. In the description about the skills required to resolve social issues, seven categories were extracted: (recognition of diverse social issues), (attitudes about resolving social issues), (discerning the root cause), (multi-lateral information processing skills), (making a path to resolve issues), (processivity in dealing with issues), and (reflecting). In the description about communication, five categories were extracted: (simple statement), (robust theories), (respecting the opponent), (communication skills), and (attractive presentations). As the result of text mining, the words extracted more than 100 times included "issue," "society," "resolve," "myself," "ability," "opinion," and "information." Education using PBL could be an effective means of improving skills that students described, and communication in general. Some students felt difficulty of communication resulting from characteristics of Japanese.

  15. Application of optimization technique for flood damage modeling in river system

    NASA Astrophysics Data System (ADS)

    Barman, Sangita Deb; Choudhury, Parthasarathi

    2018-04-01

    A river system is defined as a network of channels that drains different parts of a basin uniting downstream to form a common outflow. An application of various models found in literatures, to a river system having multiple upstream flows is not always straight forward, involves a lengthy procedure; and with non-availability of data sets model calibration and applications may become difficult. In the case of a river system the flow modeling can be simplified to a large extent if the channel network is replaced by an equivalent single channel. In the present work optimization model formulations based on equivalent flow and applications of the mixed integer programming based pre-emptive goal programming model in evaluating flood control alternatives for a real life river system in India are proposed to be covered in the study.

  16. COMSAT: Residue contact prediction of transmembrane proteins based on support vector machines and mixed integer linear programming.

    PubMed

    Zhang, Huiling; Huang, Qingsheng; Bei, Zhendong; Wei, Yanjie; Floudas, Christodoulos A

    2016-03-01

    In this article, we present COMSAT, a hybrid framework for residue contact prediction of transmembrane (TM) proteins, integrating a support vector machine (SVM) method and a mixed integer linear programming (MILP) method. COMSAT consists of two modules: COMSAT_SVM which is trained mainly on position-specific scoring matrix features, and COMSAT_MILP which is an ab initio method based on optimization models. Contacts predicted by the SVM model are ranked by SVM confidence scores, and a threshold is trained to improve the reliability of the predicted contacts. For TM proteins with no contacts above the threshold, COMSAT_MILP is used. The proposed hybrid contact prediction scheme was tested on two independent TM protein sets based on the contact definition of 14 Å between Cα-Cα atoms. First, using a rigorous leave-one-protein-out cross validation on the training set of 90 TM proteins, an accuracy of 66.8%, a coverage of 12.3%, a specificity of 99.3% and a Matthews' correlation coefficient (MCC) of 0.184 were obtained for residue pairs that are at least six amino acids apart. Second, when tested on a test set of 87 TM proteins, the proposed method showed a prediction accuracy of 64.5%, a coverage of 5.3%, a specificity of 99.4% and a MCC of 0.106. COMSAT shows satisfactory results when compared with 12 other state-of-the-art predictors, and is more robust in terms of prediction accuracy as the length and complexity of TM protein increase. COMSAT is freely accessible at http://hpcc.siat.ac.cn/COMSAT/. © 2016 Wiley Periodicals, Inc.

  17. Stochastic Dynamic Mixed-Integer Programming (SD-MIP)

    DTIC Science & Technology

    2015-05-05

    stochastic linear programming ( SLP ) problems. By using a combination of ideas from cutting plane theory of deterministic MIP (especially disjunctive...developed to date. b) As part of this project, we have also developed tools for very large scale Stochastic Linear Programming ( SLP ). There are...several reasons for this. First, SLP models continue to challenge many of the fastest computers to date, and many applications within the DoD (e.g

  18. Mixed-Integer Nonconvex Quadratic Optimization Relaxations and Performance Analysis

    DTIC Science & Technology

    2016-10-11

    Analysis of Interior Point Algorithms for Non-Lipschitz and Nonconvex Minimization,” (W. Bian, X. Chen, and Ye), Math Programming, 149 (2015) 301-327...Chen, Ge, Wang, Ye), Math Programming, 143 (1-2) (2014) 371-383. This paper resolved an important open question in cardinality constrained...Statistical Performance, and Algorithmic Theory for Local Solutions,” (H. Liu, T. Yao, R. Li, Y. Ye) manuscript, 2nd revision in Math Programming

  19. Materiel Acquisition Management of U.S. Army Attack Helicopters

    DTIC Science & Technology

    1989-06-02

    used to evaluate the existing helicopter program periodically in order to determine utility in reference to all evaluation criteria. Defintion of... mixed integer linear programming model, the Phoenix model has demonstrated the potential to assist in the analysis of strategic and operational issues in...Fleet Max i of Aircraft per Fleet Programmed Buys .. -- Technology Unit Production mix Retirement Start-up ROTIE Flying Hour Aviation Overheadl I Aviation

  20. Development of closed-loop supply chain network in terms of corporate social responsibility.

    PubMed

    Pedram, Ali; Pedram, Payam; Yusoff, Nukman Bin; Sorooshian, Shahryar

    2017-01-01

    Due to the rise in awareness of environmental issues and the depletion of virgin resources, many firms have attempted to increase the sustainability of their activities. One efficient way to elevate sustainability is the consideration of corporate social responsibility (CSR) by designing a closed loop supply chain (CLSC). This paper has developed a mathematical model to increase corporate social responsibility in terms of job creation. Moreover the model, in addition to increasing total CLSC profit, provides a range of strategic decision solutions for decision makers to select a best action plan for a CLSC. A proposed multi-objective mixed-integer linear programming (MILP) model was solved with non-dominated sorting genetic algorithm II (NSGA-II). Fuzzy set theory was employed to select the best compromise solution from the Pareto-optimal solutions. A numerical example was used to validate the potential application of the proposed model. The results highlight the effect of CSR in the design of CLSC.

  1. Development of closed–loop supply chain network in terms of corporate social responsibility

    PubMed Central

    Pedram, Payam; Yusoff, Nukman Bin; Sorooshian, Shahryar

    2017-01-01

    Due to the rise in awareness of environmental issues and the depletion of virgin resources, many firms have attempted to increase the sustainability of their activities. One efficient way to elevate sustainability is the consideration of corporate social responsibility (CSR) by designing a closed loop supply chain (CLSC). This paper has developed a mathematical model to increase corporate social responsibility in terms of job creation. Moreover the model, in addition to increasing total CLSC profit, provides a range of strategic decision solutions for decision makers to select a best action plan for a CLSC. A proposed multi-objective mixed-integer linear programming (MILP) model was solved with non-dominated sorting genetic algorithm II (NSGA-II). Fuzzy set theory was employed to select the best compromise solution from the Pareto-optimal solutions. A numerical example was used to validate the potential application of the proposed model. The results highlight the effect of CSR in the design of CLSC. PMID:28384250

  2. Quantum Transport near the Charge Neutrality Point in Inverted Type-II InAs/GaSb Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Pan, W.; Klem, J. F.; Kim, J. K.; Thalakulam, M.; Cich, M. J.; Lyo, S. K.

    2013-03-01

    We present here our recent quantum transport results around the charge neutrality point (CNP) in a type-II InAs/GaSb field-effect transistor. At zero magnetic field, a conductance minimum close to 4e2 / h develops at the CNP and it follows semi-logarithmic temperature dependence. In quantized magnetic (B) fields and at low temperatures, well developed integer quantum Hall states are observed in the electron as well as hole regimes. Electron transport shows noisy behavior around the CNP at extremely high B fields. When the diagonal conductivity σxx is plotted against the Hall conductivity σxy, a conductivity circle law is discovered, suggesting a chaotic quantum transport behavior. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  3. Logistics system design for biomass-to-bioenergy industry with multiple types of feedstocks.

    PubMed

    Zhu, Xiaoyan; Yao, Qingzhu

    2011-12-01

    It is technologically possible for a biorefinery to use a variety of biomass as feedstock including native perennial grasses (e.g., switchgrass) and agricultural residues (e.g., corn stalk and wheat straw). Incorporating the distinct characteristics of various types of biomass feedstocks and taking into account their interaction in supplying the bioenergy production, this paper proposed a multi-commodity network flow model to design the logistics system for a multiple-feedstock biomass-to-bioenergy industry. The model was formulated as a mixed integer linear programming, determining the locations of warehouses, the size of harvesting team, the types and amounts of biomass harvested/purchased, stored, and processed in each month, the transportation of biomass in the system, and so on. This paper demonstrated the advantages of using multiple types of biomass feedstocks by comparing with the case of using a single feedstock (switchgrass) and analyzed the relationship of the supply capacity of biomass feedstocks to the output and cost of biofuel. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Design Considerations for Proposed Fermilab Integrable RCS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eldred, Jeffrey; Valishev, Alexander

    2017-03-02

    Integrable optics is an innovation in particle accelerator design that provides strong nonlinear focusing while avoiding parametric resonances. One promising application of integrable optics is to overcome the traditional limits on accelerator intensity imposed by betatron tune-spread and collective instabilities. The efficacy of high-intensity integrable accelerators will be undergo comprehensive testing over the next several years at the Fermilab Integrable Optics Test Accelerator (IOTA) and the University of Maryland Electron Ring (UMER). We propose an integrable Rapid-Cycling Synchrotron (iRCS) as a replacement for the Fermilab Booster to achieve multi-MW beam power for the Fermilab high-energy neutrino program. We provide amore » overview of the machine parameters and discuss an approach to lattice optimization. Integrable optics requires arcs with integer-pi phase advance followed by drifts with matched beta functions. We provide an example integrable lattice with features of a modern RCS - long dispersion-free drifts, low momentum compaction, superperiodicity, chromaticity correction, separate-function magnets, and bounded beta functions.« less

  5. The receiver operational characteristic for binary classification with multiple indices and its application to the neuroimaging study of Alzheimer's disease.

    PubMed

    Wu, Xia; Li, Juan; Ayutyanont, Napatkamon; Protas, Hillary; Jagust, William; Fleisher, Adam; Reiman, Eric; Yao, Li; Chen, Kewei

    2013-01-01

    Given a single index, the receiver operational characteristic (ROC) curve analysis is routinely utilized for characterizing performances in distinguishing two conditions/groups in terms of sensitivity and specificity. Given the availability of multiple data sources (referred to as multi-indices), such as multimodal neuroimaging data sets, cognitive tests, and clinical ratings and genomic data in Alzheimer’s disease (AD) studies, the single-index-based ROC underutilizes all available information. For a long time, a number of algorithmic/analytic approaches combining multiple indices have been widely used to simultaneously incorporate multiple sources. In this study, we propose an alternative for combining multiple indices using logical operations, such as “AND,” “OR,” and “at least n” (where n is an integer), to construct multivariate ROC (multiV-ROC) and characterize the sensitivity and specificity statistically associated with the use of multiple indices. With and without the “leave-one-out” cross-validation, we used two data sets from AD studies to showcase the potentially increased sensitivity/specificity of the multiV-ROC in comparison to the single-index ROC and linear discriminant analysis (an analytic way of combining multi-indices). We conclude that, for the data sets we investigated, the proposed multiV-ROC approach is capable of providing a natural and practical alternative with improved classification accuracy as compared to univariate ROC and linear discriminant analysis.

  6. The Receiver Operational Characteristic for Binary Classification with Multiple Indices and Its Application to the Neuroimaging Study of Alzheimer’s Disease

    PubMed Central

    Wu, Xia; Li, Juan; Ayutyanont, Napatkamon; Protas, Hillary; Jagust, William; Fleisher, Adam; Reiman, Eric; Yao, Li; Chen, Kewei

    2014-01-01

    Given a single index, the receiver operational characteristic (ROC) curve analysis is routinely utilized for characterizing performances in distinguishing two conditions/groups in terms of sensitivity and specificity. Given the availability of multiple data sources (referred to as multi-indices), such as multimodal neuroimaging data sets, cognitive tests, and clinical ratings and genomic data in Alzheimer’s disease (AD) studies, the single-index-based ROC underutilizes all available information. For a long time, a number of algorithmic/analytic approaches combining multiple indices have been widely used to simultaneously incorporate multiple sources. In this study, we propose an alternative for combining multiple indices using logical operations, such as “AND,” “OR,” and “at least n” (where n is an integer), to construct multivariate ROC (multiV-ROC) and characterize the sensitivity and specificity statistically associated with the use of multiple indices. With and without the “leave-one-out” cross-validation, we used two data sets from AD studies to showcase the potentially increased sensitivity/specificity of the multiV-ROC in comparison to the single-index ROC and linear discriminant analysis (an analytic way of combining multi-indices). We conclude that, for the data sets we investigated, the proposed multiV-ROC approach is capable of providing a natural and practical alternative with improved classification accuracy as compared to univariate ROC and linear discriminant analysis. PMID:23702553

  7. Optimal Decisions for Organ Exchanges in a Kidney Paired Donation Program.

    PubMed

    Li, Yijiang; Song, Peter X-K; Zhou, Yan; Leichtman, Alan B; Rees, Michael A; Kalbfleisch, John D

    2014-05-01

    The traditional concept of barter exchange in economics has been extended in the modern era to the area of living-donor kidney transplantation, where one incompatible donor-candidate pair is matched to another pair with a complementary incompatibility, such that the donor from one pair gives an organ to a compatible candidate in the other pair and vice versa. Kidney paired donation (KPD) programs provide a unique and important platform for living incompatible donor-candidate pairs to exchange organs in order to achieve mutual benefit. In this paper, we propose novel organ allocation strategies to arrange kidney exchanges under uncertainties with advantages, including (i) allowance for a general utility-based evaluation of potential kidney transplants and an explicit consideration of stochastic features inherent in a KPD program; and (ii) exploitation of possible alternative exchanges when the originally planned allocation cannot be fully executed. This allocation strategy is implemented using an integer programming (IP) formulation, and its implication is assessed via a data-based simulation system by tracking an evolving KPD program over a series of match runs. Extensive simulation studies are provided to illustrate our proposed approach.

  8. Emerald: an object-based language for distributed programming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutchinson, N.C.

    1987-01-01

    Distributed systems have become more common, however constructing distributed applications remains a very difficult task. Numerous operating systems and programming languages have been proposed that attempt to simplify the programming of distributed applications. Here a programing language called Emerald is presented that simplifies distributed programming by extending the concepts of object-based languages to the distributed environment. Emerald supports a single model of computation: the object. Emerald objects include private entities such as integers and Booleans, as well as shared, distributed entities such as compilers, directories, and entire file systems. Emerald objects may move between machines in the system, but objectmore » invocation is location independent. The uniform semantic model used for describing all Emerald objects makes the construction of distributed applications in Emerald much simpler than in systems where the differences in implementation between local and remote entities are visible in the language semantics. Emerald incorporates a type system that deals only with the specification of objects - ignoring differences in implementation. Thus, two different implementations of the same abstraction may be freely mixed.« less

  9. A Polyhedral Outer-approximation, Dynamic-discretization optimization solver, 1.x

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bent, Rusell; Nagarajan, Harsha; Sundar, Kaarthik

    2017-09-25

    In this software, we implement an adaptive, multivariate partitioning algorithm for solving mixed-integer nonlinear programs (MINLP) to global optimality. The algorithm combines ideas that exploit the structure of convex relaxations to MINLPs and bound tightening procedures

  10. Integer programming methods for reserve selection and design

    Treesearch

    Robert G. Haight; Stephanie A. Snyder

    2009-01-01

    How many nature reserves should there be? Where should they be located? Which places have highest priority for protection? Conservation biologists, economists, and operations researchers have been developing quantitative methods to address these questions since the 1980s.

  11. Optimal traffic resource allocation and management.

    DOT National Transportation Integrated Search

    2010-05-01

    "In this paper, we address the problem of determining the patrol routes of state troopers for maximum coverage of : highway spots with high frequencies of crashes (hot spots). We develop a mixed integer linear programming model : for this problem und...

  12. Automatic Design of Synthetic Gene Circuits through Mixed Integer Non-linear Programming

    PubMed Central

    Huynh, Linh; Kececioglu, John; Köppe, Matthias; Tagkopoulos, Ilias

    2012-01-01

    Automatic design of synthetic gene circuits poses a significant challenge to synthetic biology, primarily due to the complexity of biological systems, and the lack of rigorous optimization methods that can cope with the combinatorial explosion as the number of biological parts increases. Current optimization methods for synthetic gene design rely on heuristic algorithms that are usually not deterministic, deliver sub-optimal solutions, and provide no guaranties on convergence or error bounds. Here, we introduce an optimization framework for the problem of part selection in synthetic gene circuits that is based on mixed integer non-linear programming (MINLP), which is a deterministic method that finds the globally optimal solution and guarantees convergence in finite time. Given a synthetic gene circuit, a library of characterized parts, and user-defined constraints, our method can find the optimal selection of parts that satisfy the constraints and best approximates the objective function given by the user. We evaluated the proposed method in the design of three synthetic circuits (a toggle switch, a transcriptional cascade, and a band detector), with both experimentally constructed and synthetic promoter libraries. Scalability and robustness analysis shows that the proposed framework scales well with the library size and the solution space. The work described here is a step towards a unifying, realistic framework for the automated design of biological circuits. PMID:22536398

  13. Actinide halide complexes

    DOEpatents

    Avens, Larry R.; Zwick, Bill D.; Sattelberger, Alfred P.; Clark, David L.; Watkin, John G.

    1992-01-01

    A compound of the formula MX.sub.n L.sub.m wherein M is a metal atom selected from the group consisting of thorium, plutonium, neptunium or americium, X is a halide atom, n is an integer selected from the group of three or four, L is a coordinating ligand selected from the group consisting of aprotic Lewis bases having an oxygen-, nitrogen-, sulfur-, or phosphorus-donor, and m is an integer selected from the group of three or four for monodentate ligands or is the integer two for bidentate ligands, where the sum of n+m equals seven or eight for monodentate ligands or five or six for bidentate ligands, a compound of the formula MX.sub.n wherein M, X, and n are as previously defined, and a process of preparing such actinide metal compounds including admixing the actinide metal in an aprotic Lewis base as a coordinating solvent in the presence of a halogen-containing oxidant, are provided.

  14. Actinide halide complexes

    DOEpatents

    Avens, L.R.; Zwick, B.D.; Sattelberger, A.P.; Clark, D.L.; Watkin, J.G.

    1992-11-24

    A compound is described of the formula MX[sub n]L[sub m] wherein M is a metal atom selected from the group consisting of thorium, plutonium, neptunium or americium, X is a halide atom, n is an integer selected from the group of three or four, L is a coordinating ligand selected from the group consisting of aprotic Lewis bases having an oxygen-, nitrogen-, sulfur-, or phosphorus-donor, and m is an integer selected from the group of three or four for monodentate ligands or is the integer two for bidentate ligands, where the sum of n+m equals seven or eight for monodentate ligands or five or six for bidentate ligands. A compound of the formula MX[sub n] wherein M, X, and n are as previously defined, and a process of preparing such actinide metal compounds are described including admixing the actinide metal in an aprotic Lewis base as a coordinating solvent in the presence of a halogen-containing oxidant.

  15. A conformal mapping based fractional order approach for sub-optimal tuning of PID controllers with guaranteed dominant pole placement

    NASA Astrophysics Data System (ADS)

    Saha, Suman; Das, Saptarshi; Das, Shantanu; Gupta, Amitava

    2012-09-01

    A novel conformal mapping based fractional order (FO) methodology is developed in this paper for tuning existing classical (Integer Order) Proportional Integral Derivative (PID) controllers especially for sluggish and oscillatory second order systems. The conventional pole placement tuning via Linear Quadratic Regulator (LQR) method is extended for open loop oscillatory systems as well. The locations of the open loop zeros of a fractional order PID (FOPID or PIλDμ) controller have been approximated in this paper vis-à-vis a LQR tuned conventional integer order PID controller, to achieve equivalent integer order PID control system. This approach eases the implementation of analog/digital realization of a FOPID controller with its integer order counterpart along with the advantages of fractional order controller preserved. It is shown here in the paper that decrease in the integro-differential operators of the FOPID/PIλDμ controller pushes the open loop zeros of the equivalent PID controller towards greater damping regions which gives a trajectory of the controller zeros and dominant closed loop poles. This trajectory is termed as "M-curve". This phenomena is used to design a two-stage tuning algorithm which reduces the existing PID controller's effort in a significant manner compared to that with a single stage LQR based pole placement method at a desired closed loop damping and frequency.

  16. Behavior-based aggregation of land categories for temporal change analysis

    NASA Astrophysics Data System (ADS)

    Aldwaik, Safaa Zakaria; Onsted, Jeffrey A.; Pontius, Robert Gilmore, Jr.

    2015-03-01

    Comparison between two time points of the same categorical variable for the same study extent can reveal changes among categories over time, such as transitions among land categories. If many categories exist, then analysis can be difficult to interpret. Category aggregation is the procedure that combines two or more categories to create a single broader category. Aggregation can simplify interpretation, and can also influence the sizes and types of changes. Some classifications have an a priori hierarchy to facilitate aggregation, but an a priori aggregation might make researchers blind to important category dynamics. We created an algorithm to aggregate categories in a sequence of steps based on the categories' behaviors in terms of gross losses and gross gains. The behavior-based algorithm aggregates net gaining categories with net gaining categories and aggregates net losing categories with net losing categories, but never aggregates a net gaining category with a net losing category. The behavior-based algorithm at each step in the sequence maintains net change and maximizes swap change. We present a case study where data from 2001 and 2006 for 64 land categories indicate change on 17% of the study extent. The behavior-based algorithm produces a set of 10 categories that maintains nearly the original amount of change. In contrast, an a priori aggregation produces 10 categories while reducing the change to 9%. We offer a free computer program to perform the behavior-based aggregation.

  17. Mathematical Construction of Magic Squares Utilizing Base-N Arithmetic

    ERIC Educational Resources Information Center

    O'Brien, Thomas D.

    2006-01-01

    Magic squares have been of interest as a source of recreation for over 4,500 years. A magic square consists of a square array of n[squared] positive and distinct integers arranged so that the sum of any column, row, or main diagonal is the same. In particular, an array of consecutive integers from 1 to n[squared] forming an nxn magic square is…

  18. Efficient Remainder Rule

    ERIC Educational Resources Information Center

    Firozzaman, Firoz; Firoz, Fahim

    2017-01-01

    Understanding the solution of a problem may require the reader to have background knowledge on the subject. For instance, finding an integer which, when divided by a nonzero integer leaves a remainder; but when divided by another nonzero integer may leave a different remainder. To find a smallest positive integer or a set of integers following the…

  19. New Insights into the Fractional Order Diffusion Equation Using Entropy and Kurtosis.

    PubMed

    Ingo, Carson; Magin, Richard L; Parrish, Todd B

    2014-11-01

    Fractional order derivative operators offer a concise description to model multi-scale, heterogeneous and non-local systems. Specifically, in magnetic resonance imaging, there has been recent work to apply fractional order derivatives to model the non-Gaussian diffusion signal, which is ubiquitous in the movement of water protons within biological tissue. To provide a new perspective for establishing the utility of fractional order models, we apply entropy for the case of anomalous diffusion governed by a fractional order diffusion equation generalized in space and in time. This fractional order representation, in the form of the Mittag-Leffler function, gives an entropy minimum for the integer case of Gaussian diffusion and greater values of spectral entropy for non-integer values of the space and time derivatives. Furthermore, we consider kurtosis, defined as the normalized fourth moment, as another probabilistic description of the fractional time derivative. Finally, we demonstrate the implementation of anomalous diffusion, entropy and kurtosis measurements in diffusion weighted magnetic resonance imaging in the brain of a chronic ischemic stroke patient.

  20. A real-time inverse quantised transform for multi-standard with dynamic resolution support

    NASA Astrophysics Data System (ADS)

    Sun, Chi-Chia; Lin, Chun-Ying; Zhang, Ce

    2016-06-01

    In this paper, a real-time configurable intelligent property (IP) core is presented for image/video decoding process in compatibility with the standard MPEG-4 Visual and the standard H.264/AVC. The inverse quantised discrete cosine and integer transform can be used to perform inverse quantised discrete cosine transform and inverse quantised inverse integer transforms which only required shift and add operations. Meanwhile, COordinate Rotation DIgital Computer iterations and compensation steps are adjustable in order to compensate for the video compression quality regarding various data throughput. The implementations are embedded in publicly available software XVID Codes 1.2.2 for the standard MPEG-4 Visual and the H.264/AVC reference software JM 16.1, where the experimental results show that the balance between the computational complexity and video compression quality is retained. At the end, FPGA synthesised results show that the proposed IP core can bring advantages to low hardware costs and also provide real-time performance for Full HD and 4K-2K video decoding.

  1. Tracking Simulation of Third-Integer Resonant Extraction for Fermilab's Mu2e Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Chong Shik; Amundson, James; Michelotti, Leo

    2015-02-13

    The Mu2e experiment at Fermilab requires acceleration and transport of intense proton beams in order to deliver stable, uniform particle spills to the production target. To meet the experimental requirement, particles will be extracted slowly from the Delivery Ring to the external beamline. Using Synergia2, we have performed multi-particle tracking simulations of third-integer resonant extraction in the Delivery Ring, including space charge effects, physical beamline elements, and apertures. A piecewise linear ramp profile of tune quadrupoles was used to maintain a constant averaged spill rate throughout extraction. To study and minimize beam losses, we implemented and introduced a number ofmore » features, beamline element apertures, and septum plane alignments. Additionally, the RF Knockout (RFKO) technique, which excites particles transversely, is employed for spill regulation. Combined with a feedback system, it assists in fine-tuning spill uniformity. Simulation studies were carried out to optimize the RFKO feedback scheme, which will be helpful in designing the final spill regulation system.« less

  2. A multiobjective modeling approach to locate multi-compartment containers for urban-sorted waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tralhao, Lino, E-mail: lmlrt@inescc.p; Coutinho-Rodrigues, Joao, E-mail: coutinho@dec.uc.p; Alcada-Almeida, Luis, E-mail: alcada@inescc.p

    2010-12-15

    The location of multi-compartment sorted waste containers for recycling purposes in cities is an important problem in the context of urban waste management. The costs associated with those facilities and the impacts placed on populations are important concerns. This paper introduces a mixed-integer, multiobjective programming approach to identify the locations and capacities of such facilities. The approach incorporates an optimization model in a Geographical Information System (GIS)-based interactive decision support system that includes four objectives. The first objective minimizes the total investment cost; the second one minimizes the average distance from dwellings to the respective multi-compartment container; the last twomore » objectives address the 'pull' and 'push' characteristics of the decision problem, one by minimizing the number of individuals too close to any container, and the other by minimizing the number of dwellings too far from the respective multi-compartment container. The model determines the number of facilities to be opened, the respective container capacities, their locations, their respective shares of the total waste of each type to be collected, and the dwellings assigned to each facility. The approach proposed was tested with a case study for the historical center of Coimbra city, Portugal, where a large urban renovation project, addressing about 800 buildings, is being undertaken. This paper demonstrates that the models and techniques incorporated in the interactive decision support system (IDSS) can be used to assist a decision maker (DM) in analyzing this complex problem in a realistically sized urban application. Ten solutions consisting of different combinations of underground containers for the disposal of four types of sorted waste in 12 candidate sites, were generated. These solutions and tradeoffs among the objectives are presented to the DM via tables, graphs, color-coded maps and other graphics. The DM can then use this information to 'guide' the IDSS in identifying additional solutions of potential interest. Nevertheless, this research showed that a particular solution with a better objective balance can be identified. The actual sequence of additional solutions generated will depend upon the objectives and preferences of the DM in a specific application.« less

  3. Comparison between multi-constellation ambiguity-fixed PPP and RTK for maritime precise navigation

    NASA Astrophysics Data System (ADS)

    Tegedor, Javier; Liu, Xianglin; Ørpen, Ole; Treffers, Niels; Goode, Matthew; Øvstedal, Ola

    2015-06-01

    In order to achieve high-accuracy positioning, either Real-Time Kinematic (RTK) or Precise Point Positioning (PPP) techniques can be used. While RTK normally delivers higher accuracy with shorter convergence times, PPP has been an attractive technology for maritime applications, as it delivers uniform positioning performance without the direct need of a nearby reference station. Traditional PPP has been based on ambiguity-­float solutions using GPS and Glonass constellations. However, the addition of new satellite systems, such as Galileo and BeiDou, and the possibility of fixing integer carrier-phase ambiguities (PPP-AR) allow to increase PPP accuracy. In this article, a performance assessment has been done between RTK, PPP and PPP-AR, using GNSS data collected from two antennas installed on a ferry navigating in Oslo (Norway). RTK solutions have been generated using short, medium and long baselines (up to 290 km). For the generation of PPP-AR solutions, Uncalibrated Hardware Delays (UHDs) for GPS, Galileo and BeiDou have been estimated using reference stations in Oslo and Onsala. The performance of RTK and multi-­constellation PPP and PPP-AR are presented.

  4. Fuzzy Energy and Reserve Co-optimization With High Penetration of Renewable Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Cong; Botterud, Audun; Zhou, Zhi

    In this study, we propose a fuzzy-based energy and reserve co-optimization model with consideration of high penetration of renewable energy. Under the assumption of a fixed uncertainty set of renewables, a two-stage robust model is proposed for clearing energy and reserves in the first stage and checking the feasibility and robustness of re-dispatches in the second stage. Fuzzy sets and their membership functions are introduced into the optimization model to represent the satisfaction degree of the variable uncertainty sets. The lower bound of the uncertainty set is expressed as fuzzy membership functions. The solutions are obtained by transforming the fuzzymore » mathematical programming formulation into traditional mixed integer linear programming problems.« less

  5. Fuzzy Energy and Reserve Co-optimization With High Penetration of Renewable Energy

    DOE PAGES

    Liu, Cong; Botterud, Audun; Zhou, Zhi; ...

    2016-10-21

    In this study, we propose a fuzzy-based energy and reserve co-optimization model with consideration of high penetration of renewable energy. Under the assumption of a fixed uncertainty set of renewables, a two-stage robust model is proposed for clearing energy and reserves in the first stage and checking the feasibility and robustness of re-dispatches in the second stage. Fuzzy sets and their membership functions are introduced into the optimization model to represent the satisfaction degree of the variable uncertainty sets. The lower bound of the uncertainty set is expressed as fuzzy membership functions. The solutions are obtained by transforming the fuzzymore » mathematical programming formulation into traditional mixed integer linear programming problems.« less

  6. Hybrid Nested Partitions and Math Programming Framework for Large-scale Combinatorial Optimization

    DTIC Science & Technology

    2010-03-31

    optimization problems: 1) exact algorithms and 2) metaheuristic algorithms . This project will integrate concepts from these two technologies to develop...optimal solutions within an acceptable amount of computation time, and 2) metaheuristic algorithms such as genetic algorithms , tabu search, and the...integer programming decomposition approaches, such as Dantzig Wolfe decomposition and Lagrangian relaxation, and metaheuristics such as the Nested

  7. Automated Test Assembly Using lp_Solve Version 5.5 in R

    ERIC Educational Resources Information Center

    Diao, Qi; van der Linden, Wim J.

    2011-01-01

    This article reviews the use of the software program lp_solve version 5.5 for solving mixed-integer automated test assembly (ATA) problems. The program is freely available under Lesser General Public License 2 (LGPL2). It can be called from the statistical language R using the lpSolveAPI interface. Three empirical problems are presented to…

  8. Modeling of thermal storage systems in MILP distributed energy resource models

    DOE PAGES

    Steen, David; Stadler, Michael; Cardoso, Gonçalo; ...

    2014-08-04

    Thermal energy storage (TES) and distributed generation technologies, such as combined heat and power (CHP) or photovoltaics (PV), can be used to reduce energy costs and decrease CO 2 emissions from buildings by shifting energy consumption to times with less emissions and/or lower energy prices. To determine the feasibility of investing in TES in combination with other distributed energy resources (DER), mixed integer linear programming (MILP) can be used. Such a MILP model is the well-established Distributed Energy Resources Customer Adoption Model (DER-CAM); however, it currently uses only a simplified TES model to guarantee linearity and short run-times. Loss calculationsmore » are based only on the energy contained in the storage. This paper presents a new DER-CAM TES model that allows improved tracking of losses based on ambient and storage temperatures, and compares results with the previous version. A multi-layer TES model is introduced that retains linearity and avoids creating an endogenous optimization problem. The improved model increases the accuracy of the estimated storage losses and enables use of heat pumps for low temperature storage charging. Ultimately,results indicate that the previous model overestimates the attractiveness of TES investments for cases without possibility to invest in heat pumps and underestimates it for some locations when heat pumps are allowed. Despite a variation in optimal technology selection between the two models, the objective function value stays quite stable, illustrating the complexity of optimal DER sizing problems in buildings and microgrids.« less

  9. MEIGO: an open-source software suite based on metaheuristics for global optimization in systems biology and bioinformatics.

    PubMed

    Egea, Jose A; Henriques, David; Cokelaer, Thomas; Villaverde, Alejandro F; MacNamara, Aidan; Danciu, Diana-Patricia; Banga, Julio R; Saez-Rodriguez, Julio

    2014-05-10

    Optimization is the key to solving many problems in computational biology. Global optimization methods, which provide a robust methodology, and metaheuristics in particular have proven to be the most efficient methods for many applications. Despite their utility, there is a limited availability of metaheuristic tools. We present MEIGO, an R and Matlab optimization toolbox (also available in Python via a wrapper of the R version), that implements metaheuristics capable of solving diverse problems arising in systems biology and bioinformatics. The toolbox includes the enhanced scatter search method (eSS) for continuous nonlinear programming (cNLP) and mixed-integer programming (MINLP) problems, and variable neighborhood search (VNS) for Integer Programming (IP) problems. Additionally, the R version includes BayesFit for parameter estimation by Bayesian inference. The eSS and VNS methods can be run on a single-thread or in parallel using a cooperative strategy. The code is supplied under GPLv3 and is available at http://www.iim.csic.es/~gingproc/meigo.html. Documentation and examples are included. The R package has been submitted to BioConductor. We evaluate MEIGO against optimization benchmarks, and illustrate its applicability to a series of case studies in bioinformatics and systems biology where it outperforms other state-of-the-art methods. MEIGO provides a free, open-source platform for optimization that can be applied to multiple domains of systems biology and bioinformatics. It includes efficient state of the art metaheuristics, and its open and modular structure allows the addition of further methods.

  10. MEIGO: an open-source software suite based on metaheuristics for global optimization in systems biology and bioinformatics

    PubMed Central

    2014-01-01

    Background Optimization is the key to solving many problems in computational biology. Global optimization methods, which provide a robust methodology, and metaheuristics in particular have proven to be the most efficient methods for many applications. Despite their utility, there is a limited availability of metaheuristic tools. Results We present MEIGO, an R and Matlab optimization toolbox (also available in Python via a wrapper of the R version), that implements metaheuristics capable of solving diverse problems arising in systems biology and bioinformatics. The toolbox includes the enhanced scatter search method (eSS) for continuous nonlinear programming (cNLP) and mixed-integer programming (MINLP) problems, and variable neighborhood search (VNS) for Integer Programming (IP) problems. Additionally, the R version includes BayesFit for parameter estimation by Bayesian inference. The eSS and VNS methods can be run on a single-thread or in parallel using a cooperative strategy. The code is supplied under GPLv3 and is available at http://www.iim.csic.es/~gingproc/meigo.html. Documentation and examples are included. The R package has been submitted to BioConductor. We evaluate MEIGO against optimization benchmarks, and illustrate its applicability to a series of case studies in bioinformatics and systems biology where it outperforms other state-of-the-art methods. Conclusions MEIGO provides a free, open-source platform for optimization that can be applied to multiple domains of systems biology and bioinformatics. It includes efficient state of the art metaheuristics, and its open and modular structure allows the addition of further methods. PMID:24885957

  11. Multi-Level Partnerships Support a Comprehensive Faith-Based Health Promotion Program

    ERIC Educational Resources Information Center

    Hardison-Moody, Annie; Dunn, Carolyn; Hall, David; Jones, Lorelei; Newkirk, Jimmy; Thomas, Cathy

    2011-01-01

    This article examines the role of multi-level partnerships in implementing Faithful Families Eating Smart and Moving More, a faith-based health promotion program that works with low-resource faith communities in North Carolina. This program incorporates a nine-lesson individual behavior change program in concert with policy and environmental…

  12. SPECIES RICHNESS AND BIODIVERSITY CONSERVATION PRIORITIES IN BRITISH COLUMBIA

    EPA Science Inventory

    Patterns in the geographic distribution of seven species groups were used to identify important areas for conservation in British Columbia, Canada. Potential priority sites for conservation were determined using an integer programming algorithm that maximized the number of speci...

  13. Selective Optimization

    DTIC Science & Technology

    2015-07-06

    NUMBER 5b. GRANT NUMBER AFOSR FA9550-12-1-0154 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Shabbir Ahmed and Santanu S. Dey 5d. PROJECT NUMBER 5e. TASK...standard mixed-integer programming (MIP) formulations of selective optimization problems. While such formulations can be attacked by commercial...F33615-86-C-5169. 5b. GRANT NUMBER. Enter all grant numbers as they appear in the report, e.g. AFOSR-82-1234. 5c. PROGRAM ELEMENT NUMBER. Enter

  14. Online and mobile technologies for self-management in bipolar disorder: A systematic review.

    PubMed

    Gliddon, Emma; Barnes, Steven J; Murray, Greg; Michalak, Erin E

    2017-09-01

    Internet (eHealth) and smartphone-based (mHealth) approaches to self-management for bipolar disorder are increasingly common. Evidence-based self-management strategies are available for bipolar disorder and provide a useful framework for reviewing existing eHealth/mHealth programs to determine whether these strategies are supported by current technologies. This review assesses which self-management strategies are most supported by technology. Based on 3 previous studies, 7 categories of self-management strategies related to bipolar disorder were identified, followed by a systematic literature review to identify existing eHealth and mHealth programs for this disorder. Searches were conducted by using PubMed, CINAHL, PsycINFO, EMBASE, and the Cochrane Database of Systematic Reviews for relevant peer-reviewed articles published January 2005 to May 2015. eHealth and mHealth programs were summarized and reviewed to identify which of the 7 self-management strategy categories were supported by eHealth or mHealth programs. From 1,654 publications, 15 papers were identified for inclusion. From these, 9 eHealth programs and 2 mHealth programs were identified. The most commonly supported self-management strategy categories were "ongoing monitoring," "maintaining hope," "education," and "planning for and taking action"; the least commonly supported categories were "relaxation" and "maintaining a healthy lifestyle." eHealth programs appear to provide more comprehensive coverage of self-management strategies compared with mHealth programs. Both eHealth and mHealth programs present a wide range of self-management strategies for bipolar disorder, although individuals seeking comprehensive interventions might be best served by eHealth programs, while those seeking more condensed and direct interventions might prefer mHealth programs. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  15. Optimal space-time attacks on system state estimation under a sparsity constraint

    NASA Astrophysics Data System (ADS)

    Lu, Jingyang; Niu, Ruixin; Han, Puxiao

    2016-05-01

    System state estimation in the presence of an adversary that injects false information into sensor readings has attracted much attention in wide application areas, such as target tracking with compromised sensors, secure monitoring of dynamic electric power systems, secure driverless cars, and radar tracking and detection in the presence of jammers. From a malicious adversary's perspective, the optimal strategy for attacking a multi-sensor dynamic system over sensors and over time is investigated. It is assumed that the system defender can perfectly detect the attacks and identify and remove sensor data once they are corrupted by false information injected by the adversary. With this in mind, the adversary's goal is to maximize the covariance matrix of the system state estimate by the end of attack period under a sparse attack constraint such that the adversary can only attack the system a few times over time and over sensors. The sparsity assumption is due to the adversary's limited resources and his/her intention to reduce the chance of being detected by the system defender. This becomes an integer programming problem and its optimal solution, the exhaustive search, is intractable with a prohibitive complexity, especially for a system with a large number of sensors and over a large number of time steps. Several suboptimal solutions, such as those based on greedy search and dynamic programming are proposed to find the attack strategies. Examples and numerical results are provided in order to illustrate the effectiveness and the reduced computational complexities of the proposed attack strategies.

  16. Cumulative Poisson Distribution Program

    NASA Technical Reports Server (NTRS)

    Bowerman, Paul N.; Scheuer, Ernest M.; Nolty, Robert

    1990-01-01

    Overflow and underflow in sums prevented. Cumulative Poisson Distribution Program, CUMPOIS, one of two computer programs that make calculations involving cumulative Poisson distributions. Both programs, CUMPOIS (NPO-17714) and NEWTPOIS (NPO-17715), used independently of one another. CUMPOIS determines cumulative Poisson distribution, used to evaluate cumulative distribution function (cdf) for gamma distributions with integer shape parameters and cdf for X (sup2) distributions with even degrees of freedom. Used by statisticians and others concerned with probabilities of independent events occurring over specific units of time, area, or volume. Written in C.

  17. A nonlinear bi-level programming approach for product portfolio management.

    PubMed

    Ma, Shuang

    2016-01-01

    Product portfolio management (PPM) is a critical decision-making for companies across various industries in today's competitive environment. Traditional studies on PPM problem have been motivated toward engineering feasibilities and marketing which relatively pay less attention to other competitors' actions and the competitive relations, especially in mathematical optimization domain. The key challenge lies in that how to construct a mathematical optimization model to describe this Stackelberg game-based leader-follower PPM problem and the competitive relations between them. The primary work of this paper is the representation of a decision framework and the optimization model to leverage the PPM problem of leader and follower. A nonlinear, integer bi-level programming model is developed based on the decision framework. Furthermore, a bi-level nested genetic algorithm is put forward to solve this nonlinear bi-level programming model for leader-follower PPM problem. A case study of notebook computer product portfolio optimization is reported. Results and analyses reveal that the leader-follower bi-level optimization model is robust and can empower product portfolio optimization.

  18. Polarization singularity indices in Gaussian laser beams

    NASA Astrophysics Data System (ADS)

    Freund, Isaac

    2002-01-01

    Two types of point singularities in the polarization of a paraxial Gaussian laser beam are discussed in detail. V-points, which are vector point singularities where the direction of the electric vector of a linearly polarized field becomes undefined, and C-points, which are elliptic point singularities where the ellipse orientations of elliptically polarized fields become undefined. Conventionally, V-points are characterized by the conserved integer valued Poincaré-Hopf index η, with generic value η=±1, while C-points are characterized by the conserved half-integer singularity index IC, with generic value IC=±1/2. Simple algorithms are given for generating V-points with arbitrary positive or negative integer indices, including zero, at arbitrary locations, and C-points with arbitrary positive or negative half-integer or integer indices, including zero, at arbitrary locations. Algorithms are also given for generating continuous lines of these singularities in the plane, V-lines and C-lines. V-points and C-points may be transformed one into another. A topological index based on directly measurable Stokes parameters is used to discuss this transformation. The evolution under propagation of V-points and C-points initially embedded in the beam waist is studied, as is the evolution of V-dipoles and C-dipoles.

  19. A Composite Algorithm for Mixed Integer Constrained Nonlinear Optimization.

    DTIC Science & Technology

    1980-01-01

    de Silva [141, and Weisman and Wood [76). A particular direct search algorithm, the simplex method, has been cited for having the potential for...spaced discrete points on a line which makes the direction suitable for an efficient integer search technique based on Fibonacci numbers. Two...defined by a subset of variables. The complex algorithm is particularly well suited for this subspace search for two reasons. First, the complex method

  20. Programming support environment issues in the Byron programming environment

    NASA Technical Reports Server (NTRS)

    Larsen, Matthew J.

    1986-01-01

    Issues are discussed which programming support environments need to address in order to successfully support software engineering. These concerns are divided into two categories. The first category, issues of how software development is supported by an environment, includes support of the full life cycle, methodology flexibility, and support of software reusability. The second category contains issues of how environments should operate, such as tool reusability and integration, user friendliness, networking, and use of a central data base. This discussion is followed by an examination of Byron, an Ada based programming support environment developed at Intermetrics, focusing on the solutions Byron offers to these problems, including the support provided for software reusability and the test and maintenance phases of the life cycle. The use of Byron in project development is described briefly, and some suggestions for future Byron tools and user written tools are presented.

  1. An exact algorithm for optimal MAE stack filter design.

    PubMed

    Dellamonica, Domingos; Silva, Paulo J S; Humes, Carlos; Hirata, Nina S T; Barrera, Junior

    2007-02-01

    We propose a new algorithm for optimal MAE stack filter design. It is based on three main ingredients. First, we show that the dual of the integer programming formulation of the filter design problem is a minimum cost network flow problem. Next, we present a decomposition principle that can be used to break this dual problem into smaller subproblems. Finally, we propose a specialization of the network Simplex algorithm based on column generation to solve these smaller subproblems. Using our method, we were able to efficiently solve instances of the filter problem with window size up to 25 pixels. To the best of our knowledge, this is the largest dimension for which this problem was ever solved exactly.

  2. Localization of diffusion sources in complex networks with sparse observations

    NASA Astrophysics Data System (ADS)

    Hu, Zhao-Long; Shen, Zhesi; Tang, Chang-Bing; Xie, Bin-Bin; Lu, Jian-Feng

    2018-04-01

    Locating sources in a large network is of paramount importance to reduce the spreading of disruptive behavior. Based on the backward diffusion-based method and integer programming, we propose an efficient approach to locate sources in complex networks with limited observers. The results on model networks and empirical networks demonstrate that, for a certain fraction of observers, the accuracy of our method for source localization will improve as the increase of network size. Besides, compared with the previous method (the maximum-minimum method), the performance of our method is much better with a small fraction of observers, especially in heterogeneous networks. Furthermore, our method is more robust against noise environments and strategies of choosing observers.

  3. Optimization Model for Capacity Management and Bed Scheduling for Hospital

    NASA Astrophysics Data System (ADS)

    Sitepu, Suryati; Mawengkang, Herman; Husein, Ismail

    2018-01-01

    Hospital is a very important institution to provide health care for people. It is not surprising that nowadays the people’s demands for hospital is increasing.. However, due to the rising cost of healthcare services, hospitals need to consider efficiencies in order to overcome these two problems. This paper deals with an integrated strategy of staff capacity management and bed allocation planning to tackle these problems. Mathematically, the strategy can be modeled as an integer linear programming problem. We solve the model using a direct neighborhood search approach, based on the notion of superbasic variables.

  4. Exact calculation of distributions on integers, with application to sequence alignment.

    PubMed

    Newberg, Lee A; Lawrence, Charles E

    2009-01-01

    Computational biology is replete with high-dimensional discrete prediction and inference problems. Dynamic programming recursions can be applied to several of the most important of these, including sequence alignment, RNA secondary-structure prediction, phylogenetic inference, and motif finding. In these problems, attention is frequently focused on some scalar quantity of interest, a score, such as an alignment score or the free energy of an RNA secondary structure. In many cases, score is naturally defined on integers, such as a count of the number of pairing differences between two sequence alignments, or else an integer score has been adopted for computational reasons, such as in the test of significance of motif scores. The probability distribution of the score under an appropriate probabilistic model is of interest, such as in tests of significance of motif scores, or in calculation of Bayesian confidence limits around an alignment. Here we present three algorithms for calculating the exact distribution of a score of this type; then, in the context of pairwise local sequence alignments, we apply the approach so as to find the alignment score distribution and Bayesian confidence limits.

  5. Center for Parallel Optimization

    DTIC Science & Technology

    1993-09-30

    BOLLING AFB DC 20332-0001 _ii _ 11. SUPPLEMENTARY NOTES 12a. DISTRIBUTION/ AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE APPROVED FOR PUBLIC RELEASE...Machines Corporation, March 16-19, 1993 , A Branch- and-Bound Method for Mixed Integer Programming on the CM-.5 "* Dr. Roberto Musmanno, University of

  6. Topics

    ERIC Educational Resources Information Center

    Mathematics Teaching, 1973

    1973-01-01

    This column includes the description of a game involving addition and subtraction of integers represented by colored bricks, a general formula for an enlargement in the Cartesian plane, an analysis of the possibilities for certain games of board Solitaire, and a BASIC program for a recreational mathematics problem. (DT)

  7. A content-based news video retrieval system: NVRS

    NASA Astrophysics Data System (ADS)

    Liu, Huayong; He, Tingting

    2009-10-01

    This paper focus on TV news programs and design a content-based news video browsing and retrieval system, NVRS, which is convenient for users to fast browsing and retrieving news video by different categories such as political, finance, amusement, etc. Combining audiovisual features and caption text information, the system automatically segments a complete news program into separate news stories. NVRS supports keyword-based news story retrieval, category-based news story browsing and generates key-frame-based video abstract for each story. Experiments show that the method of story segmentation is effective and the retrieval is also efficient.

  8. Life Cycle Assessment of Mixed Municipal Solid Waste: Multi-input versus multi-output perspective.

    PubMed

    Fiorentino, G; Ripa, M; Protano, G; Hornsby, C; Ulgiati, S

    2015-12-01

    This paper analyses four strategies for managing the Mixed Municipal Solid Waste (MMSW) in terms of their environmental impacts and potential advantages by means of Life Cycle Assessment (LCA) methodology. To this aim, both a multi-input and a multi-output approach are applied to evaluate the effect of these perspectives on selected impact categories. The analyzed management options include direct landfilling with energy recovery (S-1), Mechanical-Biological Treatment (MBT) followed by Waste-to-Energy (WtE) conversion (S-2), a combination of an innovative MBT/MARSS (Material Advanced Recovery Sustainable Systems) process and landfill disposal (S-3), and finally a combination of the MBT/MARSS process with WtE conversion (S-4). The MARSS technology, developed within an European LIFE PLUS framework and currently implemented at pilot plant scale, is an innovative MBT plant having the main goal to yield a Renewable Refined Biomass Fuel (RRBF) to be used for combined heat and power production (CHP) under the regulations enforced for biomass-based plants instead of Waste-to-Energy systems, for increased environmental performance. The four scenarios are characterized by different resource investment for plant and infrastructure construction and different quantities of matter, heat and electricity recovery and recycling. Results, calculated per unit mass of waste treated and per unit exergy delivered, under both multi-input and multi-output LCA perspectives, point out improved performance for scenarios characterized by increased matter and energy recovery. Although none of the investigated scenarios is capable to provide the best performance in all the analyzed impact categories, the scenario S-4 shows the best LCA results in the human toxicity and freshwater eutrophication categories, i.e. the ones with highest impacts in all waste management processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. 50 CFR 679.50 - Groundfish Observer Program.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... following: (A) Identification of the management, organizational structure, and ownership structure of the.../processors. A catcher/processor will be assigned to a fishery category based on the retained groundfish catch... in Federal waters will be assigned to a fishery category based on the retained groundfish catch...

  10. Multi-categorical deep learning neural network to classify retinal images: A pilot study employing small database.

    PubMed

    Choi, Joon Yul; Yoo, Tae Keun; Seo, Jeong Gi; Kwak, Jiyong; Um, Terry Taewoong; Rim, Tyler Hyungtaek

    2017-01-01

    Deep learning emerges as a powerful tool for analyzing medical images. Retinal disease detection by using computer-aided diagnosis from fundus image has emerged as a new method. We applied deep learning convolutional neural network by using MatConvNet for an automated detection of multiple retinal diseases with fundus photographs involved in STructured Analysis of the REtina (STARE) database. Dataset was built by expanding data on 10 categories, including normal retina and nine retinal diseases. The optimal outcomes were acquired by using a random forest transfer learning based on VGG-19 architecture. The classification results depended greatly on the number of categories. As the number of categories increased, the performance of deep learning models was diminished. When all 10 categories were included, we obtained results with an accuracy of 30.5%, relative classifier information (RCI) of 0.052, and Cohen's kappa of 0.224. Considering three integrated normal, background diabetic retinopathy, and dry age-related macular degeneration, the multi-categorical classifier showed accuracy of 72.8%, 0.283 RCI, and 0.577 kappa. In addition, several ensemble classifiers enhanced the multi-categorical classification performance. The transfer learning incorporated with ensemble classifier of clustering and voting approach presented the best performance with accuracy of 36.7%, 0.053 RCI, and 0.225 kappa in the 10 retinal diseases classification problem. First, due to the small size of datasets, the deep learning techniques in this study were ineffective to be applied in clinics where numerous patients suffering from various types of retinal disorders visit for diagnosis and treatment. Second, we found that the transfer learning incorporated with ensemble classifiers can improve the classification performance in order to detect multi-categorical retinal diseases. Further studies should confirm the effectiveness of algorithms with large datasets obtained from hospitals.

  11. Newton/Poisson-Distribution Program

    NASA Technical Reports Server (NTRS)

    Bowerman, Paul N.; Scheuer, Ernest M.

    1990-01-01

    NEWTPOIS, one of two computer programs making calculations involving cumulative Poisson distributions. NEWTPOIS (NPO-17715) and CUMPOIS (NPO-17714) used independently of one another. NEWTPOIS determines Poisson parameter for given cumulative probability, from which one obtains percentiles for gamma distributions with integer shape parameters and percentiles for X(sup2) distributions with even degrees of freedom. Used by statisticians and others concerned with probabilities of independent events occurring over specific units of time, area, or volume. Program written in C.

  12. Integers as Transformations.

    ERIC Educational Resources Information Center

    Thompson, Patrick W.; Dreyfus, Tommy

    1988-01-01

    Investigates whether elementary school students can construct operations of thought for integers and integer addition crucial for understanding elementary algebra. Two sixth graders were taught using a computer. Results included both students being able to construct mental operations for negating arbitrary integers and determining sign and…

  13. Prioritizing Genes Related to Nicotine Addiction Via a Multi-source-Based Approach.

    PubMed

    Liu, Xinhua; Liu, Meng; Li, Xia; Zhang, Lihua; Fan, Rui; Wang, Ju

    2015-08-01

    Nicotine has a broad impact on both the central and peripheral nervous systems. Over the past decades, an increasing number of genes potentially involved in nicotine addiction have been identified by different technical approaches. However, the molecular mechanisms underlying nicotine addiction remain largely unknown. Under such situation, prioritizing the candidate genes for further investigation is becoming increasingly important. In this study, we presented a multi-source-based gene prioritization approach for nicotine addiction by utilizing the vast amounts of information generated from for nicotine addiction study during the past years. In this approach, we first collected and curated genes from studies in four categories, i.e., genetic association analysis, genetic linkage analysis, high-throughput gene/protein expression analysis, and literature search of single gene/protein-based studies. Based on these resources, the genes were scored and a weight value was determined for each category. Finally, the genes were ranked by their combined scores, and 220 genes were selected as the prioritized nicotine addiction-related genes. Evaluation suggested the prioritized genes were promising targets for further analysis and replication study.

  14. APPLICATION OF NEURAL NETWORK ALGORITHMS FOR BPM LINEARIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musson, John C.; Seaton, Chad; Spata, Mike F.

    2012-11-01

    Stripline BPM sensors contain inherent non-linearities, as a result of field distortions from the pickup elements. Many methods have been devised to facilitate corrections, often employing polynomial fitting. The cost of computation makes real-time correction difficult, particulalry when integer math is utilized. The application of neural-network technology, particularly the multi-layer perceptron algorithm, is proposed as an efficient alternative for electrode linearization. A process of supervised learning is initially used to determine the weighting coefficients, which are subsequently applied to the incoming electrode data. A non-linear layer, known as an activation layer, is responsible for the removal of saturation effects. Implementationmore » of a perceptron in an FPGA-based software-defined radio (SDR) is presented, along with performance comparisons. In addition, efficient calculation of the sigmoidal activation function via the CORDIC algorithm is presented.« less

  15. Effectiveness of employee internet-based weight management program.

    PubMed

    Petersen, Ruth; Sill, Stewart; Lu, Chifung; Young, Joyce; Edington, Dee W

    2008-02-01

    To evaluate an employee Internet-based weight management program. Changes in eating habits, stage of change, body weight, and weight categories were compared between enrollment and 6 months after enrollment. Weights and weight categories were compared among a subset of participants and non-participants at 12 months. Seven thousand seven hundred forty-three International Business Machines employees enrolled in the program between December 2004 and February 2006, and 74% were overweight or obese (body mass index > or =25). At 6 months, follow-up survey respondents (1639) had significantly increased most healthy eating habits (eg, 20% decrease in junk foods) and the frequency of healthy foods eaten (eg, 12% increase in fruits). The percentage of participants in the normal weight category had increased from 27.0% to 29.8%, while average weight decreased from 182.6 to 180.2 lbs (P < 0.05). Increased web site usage was associated with increased weight loss and stage of change improvements. At 12 months, a higher percentage of participants had moved into the normal weight category compared with the percentage of non-participants (+2.0% points; P < 0.05), although there were no differences in average weight change. Despite issues of limited penetration and potential self-selection, this Internet-based program had utility in reaching a large number of employees in dispersed work settings, and it led to improved eating habits and improved stage of change at 6 months and more individuals moving into the normal weight category at 6 and 12 months.

  16. Characterizing multi-pollutant air pollution in China: Comparison of three air quality indices.

    PubMed

    Hu, Jianlin; Ying, Qi; Wang, Yungang; Zhang, Hongliang

    2015-11-01

    Multi-pollutant air pollution (i.e., several pollutants reaching very high concentrations simultaneously) frequently occurs in many regions across China. Air quality index (AQI) is used worldwide to inform the public about levels of air pollution and associated health risks. The current AQI approach used in China is based on the maximum value of individual pollutants, and does not consider the combined health effects of exposure to multiple pollutants. In this study, two novel alternative indices--aggregate air quality index (AAQI) and health-risk based air quality index (HAQI)--were calculated based on data collected in six megacities of China (Beijing, Shanghai, Guangzhou, Shjiazhuang, Xi'an, and Wuhan) during 2013 to 2014. Both AAQI and HAQI take into account the combined health effects of various pollutants, and the HAQI considers the exposure (or concentration)-response relationships of pollutants. AAQI and HAQI were compared to AQI to examine the effectiveness of the current AQI in characterizing multi-pollutant air pollution in China. The AAQI and HAQI values are higher than the AQI on days when two or more pollutants simultaneously exceed the Chinese Ambient Air Quality Standards (CAAQS) 24-hour Grade II standards. The results of the comparison of the classification of risk categories based on the three indices indicate that the current AQI approach underestimates the severity of health risk associated with exposure to multi-pollutant air pollution. For the AQI-based risk category of 'unhealthy', 96% and 80% of the days would be 'very unhealthy' or 'hazardous' if based on AAQI and HAQI, respectively; and for the AQI-based risk category of 'very unhealthy', 67% and 75% of the days would be 'hazardous' if based on AAQI and HAQI, respectively. The results suggest that the general public, especially sensitive population groups such as children and the elderly, should take more stringent actions than those currently suggested based on the AQI approach during high air pollution events. Sensitivity studies were conducted to examine the assumptions used in the AAQI and HAQI approaches. Results show that AAQI is sensitive to the choice of pollutant irrelevant constant. HAQI is sensitive to the choice of both threshold values and pollutants included in total risk calculation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. A mathematical model for municipal solid waste management - A case study in Hong Kong.

    PubMed

    Lee, C K M; Yeung, C L; Xiong, Z R; Chung, S H

    2016-12-01

    With the booming economy and increasing population, the accumulation of waste has become an increasingly arduous issue and has aroused the attention from all sectors of society. Hong Kong which has a relative high daily per capita domestic waste generation rate in Asia has not yet established a comprehensive waste management system. This paper conducts a review of waste management approaches and models. Researchers highlight that mathematical models provide useful information for decision-makers to select appropriate choices and save cost. It is suggested to consider municipal solid waste management in a holistic view and improve the utilization of waste management infrastructures. A mathematical model which adopts integer linear programming and mixed integer programming has been developed for Hong Kong municipal solid waste management. A sensitivity analysis was carried out to simulate different scenarios which provide decision-makers important information for establishing Hong Kong waste management system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Optimizing communication satellites payload configuration with exact approaches

    NASA Astrophysics Data System (ADS)

    Stathakis, Apostolos; Danoy, Grégoire; Bouvry, Pascal; Talbi, El-Ghazali; Morelli, Gianluigi

    2015-12-01

    The satellite communications market is competitive and rapidly evolving. The payload, which is in charge of applying frequency conversion and amplification to the signals received from Earth before their retransmission, is made of various components. These include reconfigurable switches that permit the re-routing of signals based on market demand or because of some hardware failure. In order to meet modern requirements, the size and the complexity of current communication payloads are increasing significantly. Consequently, the optimal payload configuration, which was previously done manually by the engineers with the use of computerized schematics, is now becoming a difficult and time consuming task. Efficient optimization techniques are therefore required to find the optimal set(s) of switch positions to optimize some operational objective(s). In order to tackle this challenging problem for the satellite industry, this work proposes two Integer Linear Programming (ILP) models. The first one is single-objective and focuses on the minimization of the length of the longest channel path, while the second one is bi-objective and additionally aims at minimizing the number of switch changes in the payload switch matrix. Experiments are conducted on a large set of instances of realistic payload sizes using the CPLEX® solver and two well-known exact multi-objective algorithms. Numerical results demonstrate the efficiency and limitations of the ILP approach on this real-world problem.

  19. New bounding and decomposition approaches for MILP investment problems: Multi-area transmission and generation planning under policy constraints

    DOE PAGES

    Munoz, F. D.; Hobbs, B. F.; Watson, J. -P.

    2016-02-01

    A novel two-phase bounding and decomposition approach to compute optimal and near-optimal solutions to large-scale mixed-integer investment planning problems is proposed and it considers a large number of operating subproblems, each of which is a convex optimization. Our motivating application is the planning of power transmission and generation in which policy constraints are designed to incentivize high amounts of intermittent generation in electric power systems. The bounding phase exploits Jensen’s inequality to define a lower bound, which we extend to stochastic programs that use expected-value constraints to enforce policy objectives. The decomposition phase, in which the bounds are tightened, improvesmore » upon the standard Benders’ algorithm by accelerating the convergence of the bounds. The lower bound is tightened by using a Jensen’s inequality-based approach to introduce an auxiliary lower bound into the Benders master problem. Upper bounds for both phases are computed using a sub-sampling approach executed on a parallel computer system. Numerical results show that only the bounding phase is necessary if loose optimality gaps are acceptable. But, the decomposition phase is required to attain optimality gaps. Moreover, use of both phases performs better, in terms of convergence speed, than attempting to solve the problem using just the bounding phase or regular Benders decomposition separately.« less

  20. New bounding and decomposition approaches for MILP investment problems: Multi-area transmission and generation planning under policy constraints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munoz, F. D.; Hobbs, B. F.; Watson, J. -P.

    A novel two-phase bounding and decomposition approach to compute optimal and near-optimal solutions to large-scale mixed-integer investment planning problems is proposed and it considers a large number of operating subproblems, each of which is a convex optimization. Our motivating application is the planning of power transmission and generation in which policy constraints are designed to incentivize high amounts of intermittent generation in electric power systems. The bounding phase exploits Jensen’s inequality to define a lower bound, which we extend to stochastic programs that use expected-value constraints to enforce policy objectives. The decomposition phase, in which the bounds are tightened, improvesmore » upon the standard Benders’ algorithm by accelerating the convergence of the bounds. The lower bound is tightened by using a Jensen’s inequality-based approach to introduce an auxiliary lower bound into the Benders master problem. Upper bounds for both phases are computed using a sub-sampling approach executed on a parallel computer system. Numerical results show that only the bounding phase is necessary if loose optimality gaps are acceptable. But, the decomposition phase is required to attain optimality gaps. Moreover, use of both phases performs better, in terms of convergence speed, than attempting to solve the problem using just the bounding phase or regular Benders decomposition separately.« less

  1. Bases for qudits from a nonstandard approach to SU(2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kibler, M. R., E-mail: kibler@ipnl.in2p3.fr

    2011-06-15

    Bases of finite-dimensional Hilbert spaces (in dimension d) of relevance for quantum information and quantum computation are constructed from angular momentum theory and su(2) Lie algebraic methods. We report on a formula for deriving in one step the (1 + p)p qupits (i.e., qudits with d = p a prime integer) of a complete set of 1 + p mutually unbiased bases in C{sup p}. Repeated application of the formula can be used for generating mutually unbiased bases in C{sup d} with d = p{sup e} (e {>=} 2) a power of a prime integer. A connection between mutually unbiasedmore » bases and the unitary group SU(d) is briefly discussed in the case d = p{sup e}.« less

  2. Outcome Evaluation of a Community Center-Based Program for Mothers at High Psychosocial Risk

    ERIC Educational Resources Information Center

    Rodrigo, Maria Jose; Maiquez, Maria Luisa; Correa, Ana Delia; Martin, Juan Carlos; Rodriguez, Guacimara

    2006-01-01

    Objective: This study reported the outcome evaluation of the "Apoyo Personal y Familiar" (APF) program for poorly-educated mothers from multi-problem families, showing inadequate behavior with their children. APF is a community-based multi-site program delivered through weekly group meetings in municipal resource centers. Method: A total…

  3. Accurate multiple sequence-structure alignment of RNA sequences using combinatorial optimization.

    PubMed

    Bauer, Markus; Klau, Gunnar W; Reinert, Knut

    2007-07-27

    The discovery of functional non-coding RNA sequences has led to an increasing interest in algorithms related to RNA analysis. Traditional sequence alignment algorithms, however, fail at computing reliable alignments of low-homology RNA sequences. The spatial conformation of RNA sequences largely determines their function, and therefore RNA alignment algorithms have to take structural information into account. We present a graph-based representation for sequence-structure alignments, which we model as an integer linear program (ILP). We sketch how we compute an optimal or near-optimal solution to the ILP using methods from combinatorial optimization, and present results on a recently published benchmark set for RNA alignments. The implementation of our algorithm yields better alignments in terms of two published scores than the other programs that we tested: This is especially the case with an increasing number of input sequences. Our program LARA is freely available for academic purposes from http://www.planet-lisa.net.

  4. Industrial waste recycling strategies optimization problem: mixed integer programming model and heuristics

    NASA Astrophysics Data System (ADS)

    Tang, Jiafu; Liu, Yang; Fung, Richard; Luo, Xinggang

    2008-12-01

    Manufacturers have a legal accountability to deal with industrial waste generated from their production processes in order to avoid pollution. Along with advances in waste recovery techniques, manufacturers may adopt various recycling strategies in dealing with industrial waste. With reuse strategies and technologies, byproducts or wastes will be returned to production processes in the iron and steel industry, and some waste can be recycled back to base material for reuse in other industries. This article focuses on a recovery strategies optimization problem for a typical class of industrial waste recycling process in order to maximize profit. There are multiple strategies for waste recycling available to generate multiple byproducts; these byproducts are then further transformed into several types of chemical products via different production patterns. A mixed integer programming model is developed to determine which recycling strategy and which production pattern should be selected with what quantity of chemical products corresponding to this strategy and pattern in order to yield maximum marginal profits. The sales profits of chemical products and the set-up costs of these strategies, patterns and operation costs of production are considered. A simulated annealing (SA) based heuristic algorithm is developed to solve the problem. Finally, an experiment is designed to verify the effectiveness and feasibility of the proposed method. By comparing a single strategy to multiple strategies in an example, it is shown that the total sales profit of chemical products can be increased by around 25% through the simultaneous use of multiple strategies. This illustrates the superiority of combinatorial multiple strategies. Furthermore, the effects of the model parameters on profit are discussed to help manufacturers organize their waste recycling network.

  5. Content Analysis of Student Essays after Attending a Problem-Based Learning Course: Facilitating the Development of Critical Thinking and Communication Skills in Japanese Nursing Students

    PubMed Central

    Itatani, Tomoya; Nagata, Kyoko; Yanagihara, Kiyoko; Tabuchi, Noriko

    2017-01-01

    The importance of active learning has continued to increase in Japan. The authors conducted classes for first-year students who entered the nursing program using the problem-based learning method which is a kind of active learning. Students discussed social topics in classes. The purposes of this study were to analyze the post-class essay, describe logical and critical thinking after attended a Problem-Based Learning (PBL) course. The authors used Mayring’s methodology for qualitative content analysis and text mining. In the description about the skills required to resolve social issues, seven categories were extracted: (recognition of diverse social issues), (attitudes about resolving social issues), (discerning the root cause), (multi-lateral information processing skills), (making a path to resolve issues), (processivity in dealing with issues), and (reflecting). In the description about communication, five categories were extracted: (simple statement), (robust theories), (respecting the opponent), (communication skills), and (attractive presentations). As the result of text mining, the words extracted more than 100 times included “issue,” “society,” “resolve,” “myself,” “ability,” “opinion,” and “information.” Education using PBL could be an effective means of improving skills that students described, and communication in general. Some students felt difficulty of communication resulting from characteristics of Japanese. PMID:28829362

  6. Non-integer viscoelastic constitutive law to model soft biological tissues to in-vivo indentation.

    PubMed

    Demirci, Nagehan; Tönük, Ergin

    2014-01-01

    During the last decades, derivatives and integrals of non-integer orders are being more commonly used for the description of constitutive behavior of various viscoelastic materials including soft biological tissues. Compared to integer order constitutive relations, non-integer order viscoelastic material models of soft biological tissues are capable of capturing a wider range of viscoelastic behavior obtained from experiments. Although integer order models may yield comparably accurate results, non-integer order material models have less number of parameters to be identified in addition to description of an intermediate material that can monotonically and continuously be adjusted in between an ideal elastic solid and an ideal viscous fluid. In this work, starting with some preliminaries on non-integer (fractional) calculus, the "spring-pot", (intermediate mechanical element between a solid and a fluid), non-integer order three element (Zener) solid model, finally a user-defined large strain non-integer order viscoelastic constitutive model was constructed to be used in finite element simulations. Using the constitutive equation developed, by utilizing inverse finite element method and in vivo indentation experiments, soft tissue material identification was performed. The results indicate that material coefficients obtained from relaxation experiments, when optimized with creep experimental data could simulate relaxation, creep and cyclic loading and unloading experiments accurately. Non-integer calculus viscoelastic constitutive models, having physical interpretation and modeling experimental data accurately is a good alternative to classical phenomenological viscoelastic constitutive equations.

  7. A mixed-integer linear programming approach to the reduction of genome-scale metabolic networks.

    PubMed

    Röhl, Annika; Bockmayr, Alexander

    2017-01-03

    Constraint-based analysis has become a widely used method to study metabolic networks. While some of the associated algorithms can be applied to genome-scale network reconstructions with several thousands of reactions, others are limited to small or medium-sized models. In 2015, Erdrich et al. introduced a method called NetworkReducer, which reduces large metabolic networks to smaller subnetworks, while preserving a set of biological requirements that can be specified by the user. Already in 2001, Burgard et al. developed a mixed-integer linear programming (MILP) approach for computing minimal reaction sets under a given growth requirement. Here we present an MILP approach for computing minimum subnetworks with the given properties. The minimality (with respect to the number of active reactions) is not guaranteed by NetworkReducer, while the method by Burgard et al. does not allow specifying the different biological requirements. Our procedure is about 5-10 times faster than NetworkReducer and can enumerate all minimum subnetworks in case there exist several ones. This allows identifying common reactions that are present in all subnetworks, and reactions appearing in alternative pathways. Applying complex analysis methods to genome-scale metabolic networks is often not possible in practice. Thus it may become necessary to reduce the size of the network while keeping important functionalities. We propose a MILP solution to this problem. Compared to previous work, our approach is more efficient and allows computing not only one, but even all minimum subnetworks satisfying the required properties.

  8. Fast Integer Ambiguity Resolution for GPS Attitude Determination

    NASA Technical Reports Server (NTRS)

    Lightsey, E. Glenn; Crassidis, John L.; Markley, F. Landis

    1999-01-01

    In this paper, a new algorithm for GPS (Global Positioning System) integer ambiguity resolution is shown. The algorithm first incorporates an instantaneous (static) integer search to significantly reduce the search space using a geometric inequality. Then a batch-type loss function is used to check the remaining integers in order to determine the optimal integer. This batch function represents the GPS sightline vectors in the body frame as the sum of two vectors, one depending on the phase measurements and the other on the unknown integers. The new algorithm has several advantages: it does not require an a-priori estimate of the vehicle's attitude; it provides an inherent integrity check using a covariance-type expression; and it can resolve the integers even when coplanar baselines exist. The performance of the new algorithm is tested on a dynamic hardware simulator.

  9. Learning Integer Addition: Is Later Better?

    ERIC Educational Resources Information Center

    Aqazade, Mahtob; Bofferding, Laura; Farmer, Sherri

    2017-01-01

    We investigate thirty-three second and fifth-grade students' solution strategies on integer addition problems before and after analyzing contrasting cases with integer addition and participating in a lesson on integers. The students took a pretest, participated in two small group sessions and a short lesson, and took a posttest. Even though the…

  10. Online with Integers

    ERIC Educational Resources Information Center

    Siegel, Jonathan W.; Siegel, P. B.

    2011-01-01

    Integers are sometimes used in physics problems to simplify the mathematics so the arithmetic does not distract students from the physics concepts. This is particularly important in exams where students should not have to spend a lot of time using their calculators. Common uses of integers in physics problems include integer solutions to…

  11. Integers Made Easy: Just Walk It Off

    ERIC Educational Resources Information Center

    Nurnberger-Haag, Julie

    2007-01-01

    This article describes a multisensory method for teaching students how to multiply and divide as well as add and subtract integers. The author uses sidewalk chalk and the underlying concept of integers to physically and mentally engage students in understanding the concepts of integers, making connections, and developing computational fluency.…

  12. Computational design of enzyme-ligand binding using a combined energy function and deterministic sequence optimization algorithm.

    PubMed

    Tian, Ye; Huang, Xiaoqiang; Zhu, Yushan

    2015-08-01

    Enzyme amino-acid sequences at ligand-binding interfaces are evolutionarily optimized for reactions, and the natural conformation of an enzyme-ligand complex must have a low free energy relative to alternative conformations in native-like or non-native sequences. Based on this assumption, a combined energy function was developed for enzyme design and then evaluated by recapitulating native enzyme sequences at ligand-binding interfaces for 10 enzyme-ligand complexes. In this energy function, the electrostatic interaction between polar or charged atoms at buried interfaces is described by an explicitly orientation-dependent hydrogen-bonding potential and a pairwise-decomposable generalized Born model based on the general side chain in the protein design framework. The energy function is augmented with a pairwise surface-area based hydrophobic contribution for nonpolar atom burial. Using this function, on average, 78% of the amino acids at ligand-binding sites were predicted correctly in the minimum-energy sequences, whereas 84% were predicted correctly in the most-similar sequences, which were selected from the top 20 sequences for each enzyme-ligand complex. Hydrogen bonds at the enzyme-ligand binding interfaces in the 10 complexes were usually recovered with the correct geometries. The binding energies calculated using the combined energy function helped to discriminate the active sequences from a pool of alternative sequences that were generated by repeatedly solving a series of mixed-integer linear programming problems for sequence selection with increasing integer cuts.

  13. LEO cooperative multi-spacecraft refueling mission optimization considering J2 perturbation and target's surplus propellant constraint

    NASA Astrophysics Data System (ADS)

    Zhao, Zhao; Zhang, Jin; Li, Hai-yang; Zhou, Jian-yong

    2017-01-01

    The optimization of an LEO cooperative multi-spacecraft refueling mission considering the J2 perturbation and target's surplus propellant constraint is studied in the paper. First, a mission scenario is introduced. One service spacecraft and several target spacecraft run on an LEO near-circular orbit, the service spacecraft rendezvouses with some service positions one by one, and target spacecraft transfer to corresponding service positions respectively. Each target spacecraft returns to its original position after obtaining required propellant and the service spacecraft returns to its original position after refueling all target spacecraft. Next, an optimization model of this mission is built. The service sequence, orbital transfer time, and service position are used as deign variables, whereas the propellant cost is used as the design objective. The J2 perturbation, time constraint and the target spacecraft's surplus propellant capability constraint are taken into account. Then, a hybrid two-level optimization approach is presented to solve the formulated mixed integer nonlinear programming (MINLP) problem. A hybrid-encoding genetic algorithm is adopted to seek the near optimal solution in the up-level optimization, while a linear relative dynamic equation considering the J2 perturbation is used to obtain the impulses of orbital transfer in the low-level optimization. Finally, the effectiveness of the proposed model and method is validated by numerical examples.

  14. Two Pathways to Stimulus Encoding in Category Learning?

    PubMed Central

    Davis, Tyler; Love, Bradley C.; Maddox, W. Todd

    2008-01-01

    Category learning theorists tacitly assume that stimuli are encoded by a single pathway. Motivated by theories of object recognition, we evaluate a dual-pathway account of stimulus encoding. The part-based pathway establishes mappings between sensory input and symbols that encode discrete stimulus features, whereas the image-based pathway applies holistic templates to sensory input. Our experiments use rule-plus-exception structures in which one exception item in each category violates a salient regularity and must be distinguished from other items. In Experiment 1, we find that discrete representations are crucial for recognition of exceptions following brief training. Experiments 2 and 3 involve multi-session training regimens designed to encourage either part or image-based encoding. We find that both pathways are able to support exception encoding, but have unique characteristics. We speculate that one advantage of the part-based pathway is the ability to generalize across domains, whereas the image-based pathway provides faster and more effortless recognition. PMID:19460948

  15. Optimally Scheduling Basic Courses at the Defense Language Institute using Integer Programming

    DTIC Science & Technology

    2005-09-01

    DLI’s manual schedules at best can train 8%, 7% and 64%. 15. NUMBER OF PAGES 59 14. SUBJECT TERMS Operations Research, Linear Programming...class in 2006, 2007, and 2008, whereas DLI’s manual schedules at best can train 8%, 7% and 64%. vi THIS PAGE...ARABIC INSTRUTOR LEVELS .....................................25 FIGURE 2. OCS1 AND OCS2 CHINESE-MANDARIN INSTRUTOR LEVELS ............26 FIGURE 3

  16. Wavelet-based reversible watermarking for authentication

    NASA Astrophysics Data System (ADS)

    Tian, Jun

    2002-04-01

    In the digital information age, digital content (audio, image, and video) can be easily copied, manipulated, and distributed. Copyright protection and content authentication of digital content has become an urgent problem to content owners and distributors. Digital watermarking has provided a valuable solution to this problem. Based on its application scenario, most digital watermarking methods can be divided into two categories: robust watermarking and fragile watermarking. As a special subset of fragile watermark, reversible watermark (which is also called lossless watermark, invertible watermark, erasable watermark) enables the recovery of the original, unwatermarked content after the watermarked content has been detected to be authentic. Such reversibility to get back unwatermarked content is highly desired in sensitive imagery, such as military data and medical data. In this paper we present a reversible watermarking method based on an integer wavelet transform. We look into the binary representation of each wavelet coefficient and embed an extra bit to expandable wavelet coefficient. The location map of all expanded coefficients will be coded by JBIG2 compression and these coefficient values will be losslessly compressed by arithmetic coding. Besides these two compressed bit streams, an SHA-256 hash of the original image will also be embedded for authentication purpose.

  17. Functional connectivity constrains the category-related organization of human ventral occipitotemporal cortex

    PubMed Central

    Stevens, W. Dale; Tessler, Michael Henry; Peng, Cynthia S.; Martin, Alex

    2015-01-01

    One of the most robust and oft-replicated findings in cognitive neuroscience is that several spatially distinct, functionally dissociable ventral occipitotemporal cortex (VOTC) regions respond preferentially to different categories of concrete entities. However, the determinants of this category-related organization remain to be fully determined. One recent proposal is that privileged connectivity of these VOTC regions with other regions that store and/or process category-relevant properties may be a major contributing factor. To test this hypothesis, we used a multi-category functional MRI localizer to individually define category-related brain regions of interest (ROIs) in a large group of subjects (n=33). We then used these ROIs in resting-state functional connectivity MRI analyses to explore spontaneous functional connectivity among these regions. We demonstrate that during rest, distinct category-preferential VOTC regions show differentially stronger functional connectivity with other regions that have congruent category-preference, as defined by the functional localizer. Importantly, a ‘tool’-preferential region in the left medial fusiform gyrus showed differentially stronger functional connectivity with other left lateralized cortical regions associated with perceiving and knowing about common tools – posterior middle temporal gyrus (involved in perception of non-biological motion), lateral parietal cortex (critical for reaching, grasping, manipulating), and ventral premotor cortex (involved in storing/executing motor programs) – relative to other category-related regions in VOTC of both the right and left hemisphere. Our findings support the claim that privileged connectivity with other cortical regions that store and/or process category-relevant properties constrains the category-related organization of VOTC. PMID:25704493

  18. 14 CFR Appendix G to Part 135 - Extended Operations (ETOPS)

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... the FAA; (b) The operation is conducted in a multi-engine transport category turbine-powered airplane... Mexico) with multi-engine transport category turbine-engine powered airplanes. The certificate holder may... speed, corrected for wind and temperature) may not exceed the time specified in the Airplane Flight...

  19. 14 CFR Appendix G to Part 135 - Extended Operations (ETOPS)

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... the FAA; (b) The operation is conducted in a multi-engine transport category turbine-powered airplane... Mexico) with multi-engine transport category turbine-engine powered airplanes. The certificate holder may... speed, corrected for wind and temperature) may not exceed the time specified in the Airplane Flight...

  20. 14 CFR Appendix G to Part 135 - Extended Operations (ETOPS)

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... the FAA; (b) The operation is conducted in a multi-engine transport category turbine-powered airplane... Mexico) with multi-engine transport category turbine-engine powered airplanes. The certificate holder may... speed, corrected for wind and temperature) may not exceed the time specified in the Airplane Flight...

  1. 14 CFR Appendix G to Part 135 - Extended Operations (ETOPS)

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... the FAA; (b) The operation is conducted in a multi-engine transport category turbine-powered airplane... Mexico) with multi-engine transport category turbine-engine powered airplanes. The certificate holder may... speed, corrected for wind and temperature) may not exceed the time specified in the Airplane Flight...

  2. 14 CFR Appendix G to Part 135 - Extended Operations (ETOPS)

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... the FAA; (b) The operation is conducted in a multi-engine transport category turbine-powered airplane... Mexico) with multi-engine transport category turbine-engine powered airplanes. The certificate holder may... speed, corrected for wind and temperature) may not exceed the time specified in the Airplane Flight...

  3. Reliability of Multi-Category Rating Scales

    ERIC Educational Resources Information Center

    Parker, Richard I.; Vannest, Kimberly J.; Davis, John L.

    2013-01-01

    The use of multi-category scales is increasing for the monitoring of IEP goals, classroom and school rules, and Behavior Improvement Plans (BIPs). Although they require greater inference than traditional data counting, little is known about the inter-rater reliability of these scales. This simulation study examined the performance of nine…

  4. Ant Lion Optimization algorithm for kidney exchanges.

    PubMed

    Hamouda, Eslam; El-Metwally, Sara; Tarek, Mayada

    2018-01-01

    The kidney exchange programs bring new insights in the field of organ transplantation. They make the previously not allowed surgery of incompatible patient-donor pairs easier to be performed on a large scale. Mathematically, the kidney exchange is an optimization problem for the number of possible exchanges among the incompatible pairs in a given pool. Also, the optimization modeling should consider the expected quality-adjusted life of transplant candidates and the shortage of computational and operational hospital resources. In this article, we introduce a bio-inspired stochastic-based Ant Lion Optimization, ALO, algorithm to the kidney exchange space to maximize the number of feasible cycles and chains among the pool pairs. Ant Lion Optimizer-based program achieves comparable kidney exchange results to the deterministic-based approaches like integer programming. Also, ALO outperforms other stochastic-based methods such as Genetic Algorithm in terms of the efficient usage of computational resources and the quantity of resulting exchanges. Ant Lion Optimization algorithm can be adopted easily for on-line exchanges and the integration of weights for hard-to-match patients, which will improve the future decisions of kidney exchange programs. A reference implementation for ALO algorithm for kidney exchanges is written in MATLAB and is GPL licensed. It is available as free open-source software from: https://github.com/SaraEl-Metwally/ALO_algorithm_for_Kidney_Exchanges.

  5. Optimal planning for the sustainable utilization of municipal solid waste.

    PubMed

    Santibañez-Aguilar, José Ezequiel; Ponce-Ortega, José María; Betzabe González-Campos, J; Serna-González, Medardo; El-Halwagi, Mahmoud M

    2013-12-01

    The increasing generation of municipal solid waste (MSW) is a major problem particularly for large urban areas with insufficient landfill capacities and inefficient waste management systems. Several options associated to the supply chain for implementing a MSW management system are available, however to determine the optimal solution several technical, economic, environmental and social aspects must be considered. Therefore, this paper proposes a mathematical programming model for the optimal planning of the supply chain associated to the MSW management system to maximize the economic benefit while accounting for technical and environmental issues. The optimization model simultaneously selects the processing technologies and their location, the distribution of wastes from cities as well as the distribution of products to markets. The problem was formulated as a multi-objective mixed-integer linear programing problem to maximize the profit of the supply chain and the amount of recycled wastes, where the results are showed through Pareto curves that tradeoff economic and environmental aspects. The proposed approach is applied to a case study for the west-central part of Mexico to consider the integration of MSW from several cities to yield useful products. The results show that an integrated utilization of MSW can provide economic, environmental and social benefits. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Short-term benefits from central unit commitment and dispatch: Application to the Southern African Power Pool

    NASA Astrophysics Data System (ADS)

    Bowen, Brian Hugh

    1998-12-01

    Electricity utilities in the Southern African region are conscious that gains could be made from more economically efficient trading but have had no tools with which to analyze the effects of a change in policy. This research is the first to provide transparent quantitative techniques to quantify the impacts of new trading arrangements in this region. The study poses a model of the recently formed Southern African Power Pool, built with the collaboration of the region's national utilities to represent each country's demand and generation/transmission system. The multi-region model includes commitment and dispatch from diverse hydrothermal sources over a vast area. Economic gains are determined by comparing the total costs under free-trade conditions with those from the existing fixed-trade bilateral arrangements. The objective function minimizes production costs needed to meet total demand, subject to each utility's constraints for thermal and hydro generation, transmission, load balance and losses. Linearized thermal cost functions are used along with linearized input output hydropower plant curves and hydrothermal on/off status variables to formulate a mixed-integer programming problem. Results from the modeling show that moving to optimal trading patterns could save between 70 million and 130 million per year. With free-trade policies the quantity of power flow between utilities is doubled and maximum usage is made of the hydropower stations thus reducing costs and fuel use. In electricity exporting countries such as Zambia and Mozambique gains from increased trade are achieved which equal 16% and 18% respectively of the value of their total manufactured exports. A sensitivity analysis is conducted on the possible effects of derating generation, derating transmission and reducing water inflows but gains remain large. Maximum economic gains from optimal trading patterns can be achieved by each country allowing centralized control through the newly founded SAPP coordination center. Using standard mixed integer programming solvers makes the cost of such modeling activity easily affordable to each utility in the Southern African pool. This research provides the utilities with the modeling tools to quantify the gains from increased trade and thereby furthers a move towards greater efficiency, faster economic growth and reduced use of fossil fuels.

  7. A Two-Stage Stochastic Mixed-Integer Programming Approach to the Smart House Scheduling Problem

    NASA Astrophysics Data System (ADS)

    Ozoe, Shunsuke; Tanaka, Yoichi; Fukushima, Masao

    A “Smart House” is a highly energy-optimized house equipped with photovoltaic systems (PV systems), electric battery systems, fuel cell cogeneration systems (FC systems), electric vehicles (EVs) and so on. Smart houses are attracting much attention recently thanks to their enhanced ability to save energy by making full use of renewable energy and by achieving power grid stability despite an increased power draw for installed PV systems. Yet running a smart house's power system, with its multiple power sources and power storages, is no simple task. In this paper, we consider the problem of power scheduling for a smart house with a PV system, an FC system and an EV. We formulate the problem as a mixed integer programming problem, and then extend it to a stochastic programming problem involving recourse costs to cope with uncertain electricity demand, heat demand and PV power generation. Using our method, we seek to achieve the optimal power schedule running at the minimum expected operation cost. We present some results of numerical experiments with data on real-life demands and PV power generation to show the effectiveness of our method.

  8. Making Sense of Integer Arithmetic: The Effect of Using Virtual Manipulatives on Students' Representational Fluency

    ERIC Educational Resources Information Center

    Bolyard, Johnna; Moyer-Packenham, Patricia

    2012-01-01

    This study investigated how the use of virtual manipulatives in integer instruction impacts student achievement for integer addition and subtraction. Of particular interest was the influence of using virtual manipulatives on students' ability to create and translate among representations for integer computation. The research employed a…

  9. Teachers' Construction of Meanings of Signed Quantities and Integer Operation

    ERIC Educational Resources Information Center

    Kumar, Ruchi S.; Subramaniam, K.; Naik, Shweta Shripad

    2017-01-01

    Understanding signed quantities and its arithmetic is one of the challenging topics of middle school mathematics. The "specialized content knowledge" (SCK) for teaching integers includes understanding of a variety of representations that may be used while teaching. In this study, we argue that meanings of integers and integer operations…

  10. Reliable Facility Location Problem with Facility Protection

    PubMed Central

    Tang, Luohao; Zhu, Cheng; Lin, Zaili; Shi, Jianmai; Zhang, Weiming

    2016-01-01

    This paper studies a reliable facility location problem with facility protection that aims to hedge against random facility disruptions by both strategically protecting some facilities and using backup facilities for the demands. An Integer Programming model is proposed for this problem, in which the failure probabilities of facilities are site-specific. A solution approach combining Lagrangian Relaxation and local search is proposed and is demonstrated to be both effective and efficient based on computational experiments on random numerical examples with 49, 88, 150 and 263 nodes in the network. A real case study for a 100-city network in Hunan province, China, is presented, based on which the properties of the model are discussed and some managerial insights are analyzed. PMID:27583542

  11. Data Sufficiency Assessment and Pumping Test Design for Groundwater Prediction Using Decision Theory and Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    McPhee, J.; William, Y. W.

    2005-12-01

    This work presents a methodology for pumping test design based on the reliability requirements of a groundwater model. Reliability requirements take into consideration the application of the model results in groundwater management, expressed in this case as a multiobjective management model. The pumping test design is formulated as a mixed-integer nonlinear programming (MINLP) problem and solved using a combination of genetic algorithm (GA) and gradient-based optimization. Bayesian decision theory provides a formal framework for assessing the influence of parameter uncertainty over the reliability of the proposed pumping test. The proposed methodology is useful for selecting a robust design that will outperform all other candidate designs under most potential 'true' states of the system

  12. MDTri: robust and efficient global mixed integer search of spaces of multiple ternary alloys: A DIRECT-inspired optimization algorithm for experimentally accessible computational material design

    DOE PAGES

    Graf, Peter A.; Billups, Stephen

    2017-07-24

    Computational materials design has suffered from a lack of algorithms formulated in terms of experimentally accessible variables. Here we formulate the problem of (ternary) alloy optimization at the level of choice of atoms and their composition that is normal for synthesists. Mathematically, this is a mixed integer problem where a candidate solution consists of a choice of three elements, and how much of each of them to use. This space has the natural structure of a set of equilateral triangles. We solve this problem by introducing a novel version of the DIRECT algorithm that (1) operates on equilateral triangles insteadmore » of rectangles and (2) works across multiple triangles. We demonstrate on a test case that the algorithm is both robust and efficient. Lastly, we offer an explanation of the efficacy of DIRECT -- specifically, its balance of global and local search -- by showing that 'potentially optimal rectangles' of the original algorithm are akin to the Pareto front of the 'multi-component optimization' of global and local search.« less

  13. MDTri: robust and efficient global mixed integer search of spaces of multiple ternary alloys: A DIRECT-inspired optimization algorithm for experimentally accessible computational material design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graf, Peter A.; Billups, Stephen

    Computational materials design has suffered from a lack of algorithms formulated in terms of experimentally accessible variables. Here we formulate the problem of (ternary) alloy optimization at the level of choice of atoms and their composition that is normal for synthesists. Mathematically, this is a mixed integer problem where a candidate solution consists of a choice of three elements, and how much of each of them to use. This space has the natural structure of a set of equilateral triangles. We solve this problem by introducing a novel version of the DIRECT algorithm that (1) operates on equilateral triangles insteadmore » of rectangles and (2) works across multiple triangles. We demonstrate on a test case that the algorithm is both robust and efficient. Lastly, we offer an explanation of the efficacy of DIRECT -- specifically, its balance of global and local search -- by showing that 'potentially optimal rectangles' of the original algorithm are akin to the Pareto front of the 'multi-component optimization' of global and local search.« less

  14. Polynomial sequences for bond percolation critical thresholds

    DOE PAGES

    Scullard, Christian R.

    2011-09-22

    In this paper, I compute the inhomogeneous (multi-probability) bond critical surfaces for the (4, 6, 12) and (3 4, 6) using the linearity approximation described in (Scullard and Ziff, J. Stat. Mech. 03021), implemented as a branching process of lattices. I find the estimates for the bond percolation thresholds, pc(4, 6, 12) = 0.69377849... and p c(3 4, 6) = 0.43437077..., compared with Parviainen’s numerical results of p c = 0.69373383... and p c = 0.43430621... . These deviations are of the order 10 -5, as is standard for this method. Deriving thresholds in this way for a given latticemore » leads to a polynomial with integer coefficients, the root in [0, 1] of which gives the estimate for the bond threshold and I show how the method can be refined, leading to a series of higher order polynomials making predictions that likely converge to the exact answer. Finally, I discuss how this fact hints that for certain graphs, such as the kagome lattice, the exact bond threshold may not be the root of any polynomial with integer coefficients.« less

  15. Learning directed acyclic graphs from large-scale genomics data.

    PubMed

    Nikolay, Fabio; Pesavento, Marius; Kritikos, George; Typas, Nassos

    2017-09-20

    In this paper, we consider the problem of learning the genetic interaction map, i.e., the topology of a directed acyclic graph (DAG) of genetic interactions from noisy double-knockout (DK) data. Based on a set of well-established biological interaction models, we detect and classify the interactions between genes. We propose a novel linear integer optimization program called the Genetic-Interactions-Detector (GENIE) to identify the complex biological dependencies among genes and to compute the DAG topology that matches the DK measurements best. Furthermore, we extend the GENIE program by incorporating genetic interaction profile (GI-profile) data to further enhance the detection performance. In addition, we propose a sequential scalability technique for large sets of genes under study, in order to provide statistically significant results for real measurement data. Finally, we show via numeric simulations that the GENIE program and the GI-profile data extended GENIE (GI-GENIE) program clearly outperform the conventional techniques and present real data results for our proposed sequential scalability technique.

  16. A Graphical Teaching Tool for Understanding Two's Complement.

    ERIC Educational Resources Information Center

    Luck, Carlos L.

    As part of the Electrical Engineering program at the Univesity of Southern Maine, students are typically introduced to Two's Complement algebra and representation, a method to include negative numbers in the binary representation of integers that is widely used in microprocessors and related digital systems. The traditional, procedural method to…

  17. Space tug economic analysis study. Volume 2: Tug concepts analysis. Part 2: Economic analysis

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An economic analysis of space tug operations is presented. The subjects discussed are: (1) cost uncertainties, (2) scenario analysis, (3) economic sensitivities, (4) mixed integer programming formulation of the space tug problem, and (5) critical parameters in the evaluation of a public expenditure.

  18. Optimizing efficiency of height modeling for extensive forest inventories.

    Treesearch

    T.M. Barrett

    2006-01-01

    Although critical to monitoring forest ecosystems, inventories are expensive. This paper presents a generalizable method for using an integer programming model to examine tradeoffs between cost and estimation error for alternative measurement strategies in forest inventories. The method is applied to an example problem of choosing alternative height-modeling strategies...

  19. Selecting Personal Computers.

    ERIC Educational Resources Information Center

    Djang, Philipp A.

    1993-01-01

    Describes a Multiple Criteria Decision Analysis Approach for the selection of personal computers that combines the capabilities of Analytic Hierarchy Process and Integer Goal Programing. An example of how decision makers can use this approach to determine what kind of personal computers and how many of each type to purchase is given. (nine…

  20. Integrated Sensing and Processing (ISP) Phase II: Demonstration and Evaluation for Distributed Sensor Netowrks and Missile Seeker Systems

    DTIC Science & Technology

    2007-02-28

    Shah, D. Waagen, H. Schmitt, S. Bellofiore, A. Spanias, and D. Cochran, 32nd International Conference on Acoustics, Speech , and Signal Processing...Information Exploitation Office kNN k-Nearest Neighbor LEAN Laplacian Eigenmap Adaptive Neighbor LIP Linear Integer Programming ISP

  1. INFORM: An interactive data collection and display program with debugging capability

    NASA Technical Reports Server (NTRS)

    Cwynar, D. S.

    1980-01-01

    A computer program was developed to aid ASSEMBLY language programmers of mini and micro computers in solving the man machine communications problems that exist when scaled integers are involved. In addition to producing displays of quasi-steady state values, INFORM provides an interactive mode for debugging programs, making program patches, and modifying the displays. Auxiliary routines SAMPLE and DATAO add dynamic data acquisition and high speed dynamic display capability to the program. Programming information and flow charts to aid in implementing INFORM on various machines together with descriptions of all supportive software are provided. Program modifications to satisfy the individual user's needs are considered.

  2. TORC3: Token-ring clearing heuristic for currency circulation

    NASA Astrophysics Data System (ADS)

    Humes, Carlos, Jr.; Lauretto, Marcelo S.; Nakano, Fábio; Pereira, Carlos A. B.; Rafare, Guilherme F. G.; Stern, Julio Michael

    2012-10-01

    Clearing algorithms are at the core of modern payment systems, facilitating the settling of multilateral credit messages with (near) minimum transfers of currency. Traditional clearing procedures use batch processing based on MILP - mixed-integer linear programming algorithms. The MILP approach demands intensive computational resources; moreover, it is also vulnerable to operational risks generated by possible defaults during the inter-batch period. This paper presents TORC3 - the Token-Ring Clearing Algorithm for Currency Circulation. In contrast to the MILP approach, TORC3 is a real time heuristic procedure, demanding modest computational resources, and able to completely shield the clearing operation against the participating agents' risk of default.

  3. Direct care worker's perceptions of job satisfaction following implementation of work-based learning.

    PubMed

    Lopez, Cynthia; White, Diana L; Carder, Paula C

    2014-02-01

    The purpose of this study was to understand the impact of a work-based learning program on the work lives of Direct Care Workers (DCWs) at assisted living (AL) residences. The research questions were addressed using focus group data collected as part of a larger evaluation of a work-based learning (WBL) program called Jobs to Careers. The theoretical perspective of symbolic interactionism was used to frame the qualitative data analysis. Results indicated that the WBL program impacted DCWs' job satisfaction through the program curriculum and design and through three primary categories: relational aspects of work, worker identity, and finding time. This article presents a conceptual model for understanding how these categories are interrelated and the implications for WBL programs. Job satisfaction is an important topic that has been linked to quality of care and reduced turnover in long-term care settings.

  4. APPLICATION OF A BIP CONSTRAINED OPTIMIZATION MODEL COMBINED WITH NASA's ATLAS MODEL TO OPTIMIZE THE SOCIETAL BENEFITS OF THE USA's INTERNATIONAL SPACE EXPLORATION AND UTILIZATION INITIATIVE OF 1/14/04

    NASA Technical Reports Server (NTRS)

    Morgenthaler, George W.; Glover, Fred W.; Woodcock, Gordon R.; Laguna, Manuel

    2005-01-01

    The 1/14/04 USA Space Exploratiofltilization Initiative invites all Space-faring Nations, all Space User Groups in Science, Space Entrepreneuring, Advocates of Robotic and Human Space Exploration, Space Tourism and Colonization Promoters, etc., to join an International Space Partnership. With more Space-faring Nations and Space User Groups each year, such a Partnership would require Multi-year (35 yr.-45 yr.) Space Mission Planning. With each Nation and Space User Group demanding priority for its missions, one needs a methodology for obiectively selecting the best mission sequences to be added annually to this 45 yr. Moving Space Mission Plan. How can this be done? Planners have suggested building a Reusable, Sustainable, Space Transportation Infrastructure (RSSn) to increase Mission synergism, reduce cost, and increase scientific and societal returns from this Space Initiative. Morgenthaler and Woodcock presented a Paper at the 55th IAC, Vancouver B.C., Canada, entitled Constrained Optimization Models For Optimizing Multi - Year Space Programs. This Paper showed that a Binary Integer Programming (BIP) Constrained Optimization Model combined with the NASA ATLAS Cost and Space System Operational Parameter Estimating Model has the theoretical capability to solve such problems. IAA Commission III, Space Technology and Space System Development, in its ACADEMY DAY meeting at Vancouver, requested that the Authors and NASA experts find several Space Exploration Architectures (SEAS), apply the combined BIP/ATLAS Models, and report the results at the 56th Fukuoka IAC. While the mathematical Model is in Ref.[2] this Paper presents the Application saga of that effort.

  5. Software Technology for Adaptable, Reliable Systems (STARS) (User Manual). Ada Command Environment (ACE) Version 8.0 Sun OS Implementation

    DTIC Science & Technology

    1990-10-29

    the equivalent type names in the basic X libary . 37. Intrinsics Contains the type declarations common to all Xt toolkit routines. 38. Widget-Package...Memory-Size constant Integer 1; MinInt constant I-reger Integer’First; MaxInt const-i’ integer Integer’Last; -- Max- Digits constant Integer 1; -- MaxMan...connection between some type names used by Xt routines and the equivalent type names in the basic X libary . .package RenamedXlibTypes is P;’ge 65 29

  6. REopt: A Platform for Energy System Integration and Optimization: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpkins, T.; Cutler, D.; Anderson, K.

    2014-08-01

    REopt is NREL's energy planning platform offering concurrent, multi-technology integration and optimization capabilities to help clients meet their cost savings and energy performance goals. The REopt platform provides techno-economic decision-support analysis throughout the energy planning process, from agency-level screening and macro planning to project development to energy asset operation. REopt employs an integrated approach to optimizing a site?s energy costs by considering electricity and thermal consumption, resource availability, complex tariff structures including time-of-use, demand and sell-back rates, incentives, net-metering, and interconnection limits. Formulated as a mixed integer linear program, REopt recommends an optimally-sized mix of conventional and renewable energy, andmore » energy storage technologies; estimates the net present value associated with implementing those technologies; and provides the cost-optimal dispatch strategy for operating them at maximum economic efficiency. The REopt platform can be customized to address a variety of energy optimization scenarios including policy, microgrid, and operational energy applications. This paper presents the REopt techno-economic model along with two examples of recently completed analysis projects.« less

  7. CUMBIN - CUMULATIVE BINOMIAL PROGRAMS

    NASA Technical Reports Server (NTRS)

    Bowerman, P. N.

    1994-01-01

    The cumulative binomial program, CUMBIN, is one of a set of three programs which calculate cumulative binomial probability distributions for arbitrary inputs. The three programs, CUMBIN, NEWTONP (NPO-17556), and CROSSER (NPO-17557), can be used independently of one another. CUMBIN can be used by statisticians and users of statistical procedures, test planners, designers, and numerical analysts. The program has been used for reliability/availability calculations. CUMBIN calculates the probability that a system of n components has at least k operating if the probability that any one operating is p and the components are independent. Equivalently, this is the reliability of a k-out-of-n system having independent components with common reliability p. CUMBIN can evaluate the incomplete beta distribution for two positive integer arguments. CUMBIN can also evaluate the cumulative F distribution and the negative binomial distribution, and can determine the sample size in a test design. CUMBIN is designed to work well with all integer values 0 < k <= n. To run the program, the user simply runs the executable version and inputs the information requested by the program. The program is not designed to weed out incorrect inputs, so the user must take care to make sure the inputs are correct. Once all input has been entered, the program calculates and lists the result. The CUMBIN program is written in C. It was developed on an IBM AT with a numeric co-processor using Microsoft C 5.0. Because the source code is written using standard C structures and functions, it should compile correctly with most C compilers. The program format is interactive. It has been implemented under DOS 3.2 and has a memory requirement of 26K. CUMBIN was developed in 1988.

  8. Integrating male sexual diversity into violence prevention efforts with men and boys: evidence from the Asia-Pacific Region.

    PubMed

    Miedema, Stephanie S; Yount, Kathryn M; Chirwa, Esnat; Dunkle, Kristin; Fulu, Emma

    2017-02-01

    Men's perpetration of gender-based violence remains a global public health issue. Violence prevention experts call for engagement of boys and men to change social norms around masculinity in order to prevent gender-based violence. Yet, men do not comprise a homogenous category. Drawing on probability estimates of men who report same-sex practices and preferences captured in a multi-country gender-based violence prevention survey in the Asia-Pacific region, we test the effects of sexuality-related factors on men's adverse life experiences. We find that sexual minority men face statistically higher risk of lifetime adversity related to gender-based violence, stemming from gender inequitable norms in society. Sexuality is thus a key axis of differentiation among men in the Asia-Pacific region, influencing health and wellbeing and reflecting men's differential engagement with dominant norms of masculinity. Integrating awareness of male sexual diversity into gender-based violence prevention interventions, particularly those that work with boys and men, and bridging violence prevention programming between sexual minority communities and women, are essential to tackle the root drivers of violence.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graf, Peter; Dykes, Katherine; Scott, George

    The layout of turbines in a wind farm is already a challenging nonlinear, nonconvex, nonlinearly constrained continuous global optimization problem. Here we begin to address the next generation of wind farm optimization problems by adding the complexity that there is more than one turbine type to choose from. The optimization becomes a nonlinear constrained mixed integer problem, which is a very difficult class of problems to solve. Furthermore, this document briefly summarizes the algorithm and code we have developed, the code validation steps we have performed, and the initial results for multi-turbine type and placement optimization (TTP_OPT) we have run.

  10. Operational Planning for Multiple Heterogeneous Unmanned Aerial Vehicles in Three Dimensions

    DTIC Science & Technology

    2009-06-01

    human input in the planning process. Two solution methods are presented: (1) a mixed-integer program, and (2) an algorithm that utilizes a metaheuristic ...and (2) an algorithm that utilizes a metaheuristic to generate composite variables for a linear program, called the Composite Operations Planning...that represent a path and an associated type of UAV. The reformulation is incorporated into an algorithm that uses a metaheuristic to generate the

  11. Forest management and economics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buongiorno, J.; Gilless, J.K.

    1987-01-01

    This volume provides a survey of quantitative methods, guiding the reader through formulation and analysis of models that address forest management problems. The authors use simple mathematics, graphics, and short computer programs to explain each method. Emphasizing applications, they discuss linear, integer, dynamic, and goal programming; simulation; network modeling; and econometrics, as these relate to problems of determining economic harvest schedules in even-aged and uneven-aged forests, the evaluation of forest policies, multiple-objective decision making, and more.

  12. Modeling Road Vulnerability to Snow Using Mixed Integer Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, Tony K; Omitaomu, Olufemi A; Ostrowski, James A

    As the number and severity of snowfall events continue to grow, the need to intelligently direct road maintenance during these snowfall events will also grow. In several locations, local governments lack the resources to completely treat all roadways during snow events. Furthermore, some governments utilize only traffic data to determine which roads should be treated. As a result, many schools, businesses, and government offices must be unnecessarily closed, which directly impacts the social, educational, and economic well-being of citizens and institutions. In this work, we propose a mixed integer programming formulation to optimally allocate resources to manage snowfall on roadsmore » using meteorological, geographical, and environmental parameters. Additionally, we evaluate the impacts of an increase in budget for winter road maintenance on snow control resources.« less

  13. DORMAN computer program (study 2.5). Volume 2: User's guide and programmer's guide. [development of data bank for computerized information storage of NASA programs

    NASA Technical Reports Server (NTRS)

    Wray, S. T., Jr.

    1973-01-01

    The DORMAN program was developed to create and modify a data bank containing data decks which serve as input to the DORCA Computer Program. Via a remote terminal a user can access the bank, extract any data deck, modify that deck, output the modified deck to be input to the DORCA program, and save the modified deck in the data bank. This computer program is an assist in the utilization of the DORCA program. The program is dimensionless and operates almost entirely in integer mode. The program was developed on the CDC 6400/7600 complex for implementation on a UNIVAC 1108 computer.

  14. Modeling and Simulating Passenger Behavior for a Station Closure in a Rail Transit Network

    PubMed Central

    Yin, Haodong; Han, Baoming; Li, Dewei; Wu, Jianjun; Sun, Huijun

    2016-01-01

    A station closure is an abnormal operational situation in which the entrances or exits of a rail transit station have to be closed for some time due to an unexpected incident. A novel approach is developed to estimate the impacts of the alternative station closure scenarios on both passenger behavioral choices at the individual level and passenger demand at the disaggregate level in a rail transit network. Therefore, the contributions of this study are two-fold: (1) A basic passenger behavior optimization model is mathematically constructed based on 0–1 integer programming to describe passengers’ responses to alternative origin station closure scenarios and destination station closure scenarios; this model also considers the availability of multi-mode transportation and the uncertain duration of the station closure; (2) An integrated solution algorithm based on the passenger simulation is developed to solve the proposed model and to estimate the effects of a station closure on passenger demand in a rail transit network. Furthermore, 13 groups of numerical experiments based on the Beijing rail transit network are performed as case studies with 2,074,267 records of smart card data. The comparisons of the model outputs and the manual survey show that the accuracy of our proposed behavior optimization model is approximately 80%. The results also show that our model can be used to capture the passenger behavior and to quantitatively estimate the effects of alternative closure scenarios on passenger flow demand for the rail transit network. Moreover, the closure duration and its overestimation greatly influence the individual behavioral choices of the affected passengers and the passenger demand. Furthermore, if the rail transit operator can more accurately estimate the closure duration (namely, as g approaches 1), the impact of the closure can be somewhat mitigated. PMID:27935963

  15. Modeling and Simulating Passenger Behavior for a Station Closure in a Rail Transit Network.

    PubMed

    Yin, Haodong; Han, Baoming; Li, Dewei; Wu, Jianjun; Sun, Huijun

    2016-01-01

    A station closure is an abnormal operational situation in which the entrances or exits of a rail transit station have to be closed for some time due to an unexpected incident. A novel approach is developed to estimate the impacts of the alternative station closure scenarios on both passenger behavioral choices at the individual level and passenger demand at the disaggregate level in a rail transit network. Therefore, the contributions of this study are two-fold: (1) A basic passenger behavior optimization model is mathematically constructed based on 0-1 integer programming to describe passengers' responses to alternative origin station closure scenarios and destination station closure scenarios; this model also considers the availability of multi-mode transportation and the uncertain duration of the station closure; (2) An integrated solution algorithm based on the passenger simulation is developed to solve the proposed model and to estimate the effects of a station closure on passenger demand in a rail transit network. Furthermore, 13 groups of numerical experiments based on the Beijing rail transit network are performed as case studies with 2,074,267 records of smart card data. The comparisons of the model outputs and the manual survey show that the accuracy of our proposed behavior optimization model is approximately 80%. The results also show that our model can be used to capture the passenger behavior and to quantitatively estimate the effects of alternative closure scenarios on passenger flow demand for the rail transit network. Moreover, the closure duration and its overestimation greatly influence the individual behavioral choices of the affected passengers and the passenger demand. Furthermore, if the rail transit operator can more accurately estimate the closure duration (namely, as g approaches 1), the impact of the closure can be somewhat mitigated.

  16. Based on Real Time Remote Health Monitoring Systems: A New Approach for Prioritization "Large Scales Data" Patients with Chronic Heart Diseases Using Body Sensors and Communication Technology.

    PubMed

    Kalid, Naser; Zaidan, A A; Zaidan, B B; Salman, Omar H; Hashim, M; Albahri, O S; Albahri, A S

    2018-03-02

    This paper presents a new approach to prioritize "Large-scale Data" of patients with chronic heart diseases by using body sensors and communication technology during disasters and peak seasons. An evaluation matrix is used for emergency evaluation and large-scale data scoring of patients with chronic heart diseases in telemedicine environment. However, one major problem in the emergency evaluation of these patients is establishing a reasonable threshold for patients with the most and least critical conditions. This threshold can be used to detect the highest and lowest priority levels when all the scores of patients are identical during disasters and peak seasons. A practical study was performed on 500 patients with chronic heart diseases and different symptoms, and their emergency levels were evaluated based on four main measurements: electrocardiogram, oxygen saturation sensor, blood pressure monitoring, and non-sensory measurement tool, namely, text frame. Data alignment was conducted for the raw data and decision-making matrix by converting each extracted feature into an integer. This integer represents their state in the triage level based on medical guidelines to determine the features from different sources in a platform. The patients were then scored based on a decision matrix by using multi-criteria decision-making techniques, namely, integrated multi-layer for analytic hierarchy process (MLAHP) and technique for order performance by similarity to ideal solution (TOPSIS). For subjective validation, cardiologists were consulted to confirm the ranking results. For objective validation, mean ± standard deviation was computed to check the accuracy of the systematic ranking. This study provides scenarios and checklist benchmarking to evaluate the proposed and existing prioritization methods. Experimental results revealed the following. (1) The integration of TOPSIS and MLAHP effectively and systematically solved the patient settings on triage and prioritization problems. (2) In subjective validation, the first five patients assigned to the doctors were the most urgent cases that required the highest priority, whereas the last five patients were the least urgent cases and were given the lowest priority. In objective validation, scores significantly differed between the groups, indicating that the ranking results were identical. (3) For the first, second, and third scenarios, the proposed method exhibited an advantage over the benchmark method with percentages of 40%, 60%, and 100%, respectively. In conclusion, patients with the most and least urgent cases received the highest and lowest priority levels, respectively.

  17. Counting Triangles to Sum Squares

    ERIC Educational Resources Information Center

    DeMaio, Joe

    2012-01-01

    Counting complete subgraphs of three vertices in complete graphs, yields combinatorial arguments for identities for sums of squares of integers, odd integers, even integers and sums of the triangular numbers.

  18. Slip and Slide Method of Factoring Trinomials with Integer Coefficients over the Integers

    ERIC Educational Resources Information Center

    Donnell, William A.

    2012-01-01

    In intermediate and college algebra courses there are a number of methods for factoring quadratic trinomials with integer coefficients over the integers. Some of these methods have been given names, such as trial and error, reversing FOIL, AC method, middle term splitting method and slip and slide method. The purpose of this article is to discuss…

  19. Obstacles and Affordances for Integer Reasoning: An Analysis of Children's Thinking and the History of Mathematics

    ERIC Educational Resources Information Center

    Bishop, Jessica Pierson; Lamb, Lisa L.; Philipp, Randolph A.; Whitacre, Ian; Schappelle, Bonnie P.; Lewis, Melinda L.

    2014-01-01

    We identify and document 3 cognitive obstacles, 3 cognitive affordances, and 1 type of integer understanding that can function as either an obstacle or affordance for learners while they extend their numeric domains from whole numbers to include negative integers. In particular, we highlight 2 key subsets of integer reasoning: understanding or…

  20. Techniques for computing the discrete Fourier transform using the quadratic residue Fermat number systems

    NASA Technical Reports Server (NTRS)

    Truong, T. K.; Chang, J. J.; Hsu, I. S.; Pei, D. Y.; Reed, I. S.

    1986-01-01

    The complex integer multiplier and adder over the direct sum of two copies of finite field developed by Cozzens and Finkelstein (1985) is specialized to the direct sum of the rings of integers modulo Fermat numbers. Such multiplication over the rings of integers modulo Fermat numbers can be performed by means of two integer multiplications, whereas the complex integer multiplication requires three integer multiplications. Such multiplications and additions can be used in the implementation of a discrete Fourier transform (DFT) of a sequence of complex numbers. The advantage of the present approach is that the number of multiplications needed to compute a systolic array of the DFT can be reduced substantially. The architectural designs using this approach are regular, simple, expandable and, therefore, naturally suitable for VLSI implementation.

Top