Spin transitions in graphene butterflies at an integer filling factor
NASA Astrophysics Data System (ADS)
Ghazaryan, Areg; Chakraborty, Tapash
2015-03-01
Recent experiments on the role of electron-electron interactions in fractal Dirac systems have revealed a host of interesting effects, in particular, the unique nature of the magnetic field dependence of butterfly gaps in graphene. The novel gap structure recently observed in the integer quantum Hall effect is quite intriguing [G. L. Yu et al., Nat. Phys. 10, 525 (2014), 10.1038/nphys2979], where one observes a suppression of the ferromagnetic state at one value of the commensurable flux but a reentrant ferromagnetic state at another. In our present work we introduce the magnetic translation symmetry in the integer quantum Hall effect regime and consider the interplay between the electron-electron interaction and the periodic potential. In this approach, we explain the underlying physical processes that can lead to such a unique behavior of the butterfly gaps as observed in that system where we invoke the spin-flip transitions in the ground state.
Spin analogs of superconductivity and integer quantum Hall effect in an array of spin chains
NASA Astrophysics Data System (ADS)
Hill, Daniel; Kim, Se Kwon; Tserkovnyak, Yaroslav
2017-05-01
Motivated by the successful idea of using weakly coupled quantum electronic wires to realize the quantum Hall effects and the quantum spin Hall effects, we theoretically study two systems composed of weakly coupled quantum spin chains within the mean-field approximations, which can exhibit spin analogs of superconductivity and the integer quantum Hall effect. First, a certain bilayer of two arrays of interacting spin chains is mapped, via the Jordan-Wigner transformation, to an attractive Hubbard model that exhibits fermionic superconductivity, which corresponds to spin superconductivity in the original spin Hamiltonian. Secondly, an array of spin-orbit-coupled spin chains in the presence of a suitable external magnetic field is transformed to an array of quantum wires that exhibits the integer quantum Hall effect, which translates into its spin analog in the spin Hamiltonian. The resultant spin superconductivity and spin integer quantum Hall effect can be characterized by their ability to transport spin without any resistance.
Adiabatic sweep cross-polarization magic-angle-spinning NMR of half-integer quadrupolar spins
NASA Astrophysics Data System (ADS)
Wi, Sungsool; Kim, Chul; Schurko, Robert; Frydman, Lucio
2017-04-01
The use of frequency-swept radiofrequency (rf) pulses for enhancing signals in the magic-angle spinning (MAS) spectra of half-integer quadrupolar nuclides was explored. The broadband adiabatic inversion cross-polarization magic-angle spinning (BRAIN-CPMAS) method, involving an adiabatic inversion pulse on the S-channel and a simultaneous rectangular spin-lock pulse on the I-channel (1H), was applied to I(1/2) → S(3/2) systems. Optimal BRAIN-CPMAS matching conditions were found to involve low rf pulse strengths for both the I- and S-spin channels. At these low and easily attainable rf field strengths, level-crossing events among the energy levels | 3 / 2 >, | 1 / 2 >, | - 1 / 2 >, | - 3 / 2 > that are known to complicate the CPMAS of quadrupolar nuclei, are mostly avoided. Zero- and double-quantum polarization transfer modes, akin to those we have observed for I(1/2) → S(1/2) polarization transfers, were evidenced by these analyses even in the presence of the quadrupolar interaction. 1H-23Na and 1H-11B BRAIN-CPMAS conditions were experimentally explored on model compounds by optimizing the width of the adiabatic sweep, as well as the rf pulse powers of the 1H and 23Na/11B channels, for different MAS rates. The experimental data obtained on model compounds containing spin-3/2 nuclides, matched well predictions from numerical simulations and from an average Hamiltonian theory model. Extensions to half-integer spin nuclides with higher spins and potential applications of this BRAIN-CPMAS approach are discussed.
NASA Astrophysics Data System (ADS)
Masrour, R.; Jabar, A.; Bahmad, L.; Hamedoun, M.; Benyoussef, A.
2017-01-01
In this paper, we study the magnetic properties of ferrimagnetic mixed spins with integer σ = 2 and half-integer S = 7 / 2 in a Blume-Capel model, using Monte Carlo simulations. The considered Hamiltonian includes the first nearest-neighbors and the exchange coupling interactions on the two sub-lattices. The effect of these coupling exchange interactions, in the presence of both the external magnetic field and the crystal field, are studied. The magnetizations and the corresponding susceptibilities are presented and discussed. Finally, we have interpreted the behaviors of the magnetic hysteresis of this model.
Solving the Water Jugs Problem by an Integer Sequence Approach
ERIC Educational Resources Information Center
Man, Yiu-Kwong
2012-01-01
In this article, we present an integer sequence approach to solve the classic water jugs problem. The solution steps can be obtained easily by additions and subtractions only, which is suitable for manual calculation or programming by computer. This approach can be introduced to secondary and undergraduate students, and also to teachers and…
Solving the Water Jugs Problem by an Integer Sequence Approach
ERIC Educational Resources Information Center
Man, Yiu-Kwong
2012-01-01
In this article, we present an integer sequence approach to solve the classic water jugs problem. The solution steps can be obtained easily by additions and subtractions only, which is suitable for manual calculation or programming by computer. This approach can be introduced to secondary and undergraduate students, and also to teachers and…
Entanglement in the quantum one-dimensional integer spin S Heisenberg antiferromagnet
NASA Astrophysics Data System (ADS)
Lima, L. S.
2017-10-01
We use the modified spin wave theory of Takahashi to study the entanglement entropy in the quantum one-dimensional integer spin Heisenberg antiferromagnet. We calculate the entanglement entropy of this spin system that is well known to be a quantum wire, in the classical limit (N → ∞). We obtain a decreasing the entanglement entropy with the temperature and we obtain none change in the entanglement in the point Δ = 1 at T = 0 where the system presents a quantum phase transition from a gapless phase in the spectrum Δ < 1 to a gapped phase Δ ≥ 1.
NASA Astrophysics Data System (ADS)
Singha, Aniket; Fauzi, M. H.; Hirayama, Y.; Muralidharan, Bhaskaran
2017-03-01
The interplay of spin-polarized electronic edge states with the dynamics of the host nuclei in quantum Hall systems presents rich and nontrivial transport physics. Here, we develop a Landauer-Büttiker approach to understand various experimental features observed in the integer quantum Hall setups featuring quantum point contacts. The approach developed here entails a phenomenological description of spin-resolved interedge scattering induced via hyperfine assisted electron-nuclear spin flip-flop processes. A self-consistent simulation framework between the nuclear spin dynamics and edge state electronic transport is presented in order to gain crucial insights into the dynamic nuclear polarization effects on electronic transport and in turn the electron-spin polarization effects on the nuclear spin dynamics. In particular, we show that the hysteresis noted experimentally in the conductance-voltage trace as well as in the resistively detected NMR line-shape results from a lack of quasiequilibrium between electronic transport and nuclear polarization evolution. In addition, we present circuit models to emulate such hyperfine mediated transport effects to further facilitate a clear understanding of the electronic transport processes occurring around the quantum point contact. Finally, we extend our model to account for the effects of quadrupolar splitting of nuclear levels and also depict the electronic transport signatures that arise from single and multiphoton processes.
Integer quantum magnon Hall plateau-plateau transition in a spin-ice model
NASA Astrophysics Data System (ADS)
Xu, Baolong; Ohtsuki, Tomi; Shindou, Ryuichi
2016-12-01
Low-energy magnon bands in a two-dimensional spin-ice model become integer quantum magnon Hall bands under an out-of-plane field. By calculating the localization length and the two-terminal conductance of magnon transport, we show that the magnon bands with disorders undergo a quantum phase transition from an integer quantum magnon Hall regime to a conventional magnon localized regime. Finite size scaling analysis as well as a critical conductance distribution shows that the quantum critical point belongs to the same universality class as that in the quantum Hall transition. We characterize thermal magnon Hall conductivity in a disordered quantum magnon Hall system in terms of robust chiral edge magnon transport.
Skyrmions and Single Spin Flips in the Odd Integer Quantized Hall Effect
NASA Astrophysics Data System (ADS)
Schmeller, Andreas
1996-03-01
For an (ideal) two-dimensional electron system in an odd integer quantized Hall state, the energy Δ needed to excite a quasiparticle pair is the sum of the Zeeman energy Sgμ_BB_tot (S is the number of flipped spins) and the many body contribution Δ_ex, where Δ_ex depends only on the perpendicular magnetic field component B_⊥. If the sample is tilted with respect to the field B_tot and B_⊥ is kept constant, the rate of change of Δ with B_tot gives S. We measure the energy gap Δ by thermally-activated magneto-transport experiments in tilted magnetic fields. We find: 1. At ν=1, where the ground state is fully spin polarized with only one spin level occupied, the lowest lying charged excitations have S >> 1. This reflects the excitation of quasiparticle pairs, with spins of up to 7/2 per particle, a value that is in good agreement with recent results of Knight shift experiments [1]. 2. In contrast we observe only single spin flips (S=1) at the higher odd integer filling factors ν=3 and 5. These results lend support to recent suggestions[2] that Skyrmions, which are topological distortions of the spin field that involve large spin values, form the lowest-lying charged excitations in the fully-polarized ν =1 quantum Hall fluid, but are energetically unfavorable with respect to single spin flips at the higher odd-integer filling factors. This work was done in collaboration with J.P. Eisenstein, L.N. Pfeiffer and K.W. West. 1: S.E. Barrett, G. Dabbagh, L.N. Pfeiffer, K.W. West, and Z. Tycko, Phys. Rev. Lett. 74, 5112 (1995). 2: S.L. Sondhi et al. Phys. Rev. B47, 16419 (1993). J. K. Jain and X. G. Wu, Phys. Rev. B49, 5085 (1994). X.-G. Wu and S.L. Sondhi, preprint (1995).
Pulsed field gradient multiple-quantum MAS NMR spectroscopy of half-integer spin quadrupolar nuclei
NASA Astrophysics Data System (ADS)
Fyfe, C. A.; Skibsted, J.; Grondey, H.; Meyer zu Altenschildesche, H.
1997-12-01
Pulsed field gradients (PFGs) have been applied to select coherence transfer pathways in multiple-quantum (MQ) MAS NMR spectra of half-integer spin quadrupolar nuclei in rigid solids. 27Al triple-quantum (3Q) MAS NMR spectra of the aluminophosphate molecular sieves VPI-5 and AlPO 4-18 have been used to demonstrate the selection of the (0)→(3)→(-1) coherence transfer pathway using PFGs and no phase cycling. Compared to MQMAS experiments that employ phase cycling schemes, the main advantage of the PFG-MQMAS technique is its simplicity, which should facilitate the combination of MQMAS with other pulse sequences.
Wu, Gang
2016-08-01
The nuclear quadrupole transverse relaxation process of half-integer spins in liquid samples is known to exhibit multi-exponential behaviors. Within the framework of Redfield's relaxation theory, exact analytical expressions for describing such a process exist only for spin-3/2 nuclei. As a result, analyses of nuclear quadrupole transverse relaxation data for half-integer quadrupolar nuclei with spin >3/2 must rely on numerical diagonalization of the Redfield relaxation matrix over the entire motional range. In this work we propose an approximate analytical expression that can be used to analyze nuclear quadrupole transverse relaxation data of any half-integer spin in liquids over the entire motional range. The proposed equation yields results that are in excellent agreement with the exact numerical calculations.
NASA Astrophysics Data System (ADS)
Edén, Mattias; Annersten, Hans; Zazzi, Åsa
2005-07-01
We demonstrate numerically and experimentally that zero-quantum homonuclear dipolar recoupling techniques employing rotor-synchronized 180° pulses, previously introduced for spin-1/2 applications, are useful also for magnetization transfers between half-integer quadrupolar nuclei in rotating solids. The recoupling sequences are incorporated as mixing periods in two-dimensional experimental protocols, that correlate either single-quantum coherences of coupled spins, or triple-quantum with single-quantum coherences for improving spectral resolution. We present 23Na and 27Al NMR experiments on powders of sodium sulphite [Na 2SO 3], YAG [Y 3Al 5O 12] and a synthetic chlorite mineral [Mg 4.5Al 3Si 2.5O 10(OH) 8].
An alternative approach to calculate the posterior probability of GNSS integer ambiguity resolution
NASA Astrophysics Data System (ADS)
Yu, Xianwen; Wang, Jinling; Gao, Wang
2017-03-01
When precise positioning is carried out via GNSS carrier phases, it is important to make use of the property that every ambiguity should be an integer. With the known float solution, any integer vector, which has the same degree of freedom as the ambiguity vector, is the ambiguity vector in probability. For both integer aperture estimation and integer equivariant estimation, it is of great significance to know the posterior probabilities. However, to calculate the posterior probability, we have to face the thorny problem that the equation involves an infinite number of integer vectors. In this paper, using the float solution of ambiguity and its variance matrix, a new approach to rapidly and accurately calculate the posterior probability is proposed. The proposed approach consists of four steps. First, the ambiguity vector is transformed via decorrelation. Second, the range of the adopted integer of every component is directly obtained via formulas, and a finite number of integer vectors are obtained via combination. Third, using the integer vectors, the principal value of posterior probability and the correction factor are worked out. Finally, the posterior probability of every integer vector and its error upper bound can be obtained. In the paper, the detailed process to calculate the posterior probability and the derivations of the formulas are presented. The theory and numerical examples indicate that the proposed approach has the advantages of small amount of computations, high calculation accuracy and strong adaptability.
An alternative approach to calculate the posterior probability of GNSS integer ambiguity resolution
NASA Astrophysics Data System (ADS)
Yu, Xianwen; Wang, Jinling; Gao, Wang
2016-10-01
When precise positioning is carried out via GNSS carrier phases, it is important to make use of the property that every ambiguity should be an integer. With the known float solution, any integer vector, which has the same degree of freedom as the ambiguity vector, is the ambiguity vector in probability. For both integer aperture estimation and integer equivariant estimation, it is of great significance to know the posterior probabilities. However, to calculate the posterior probability, we have to face the thorny problem that the equation involves an infinite number of integer vectors. In this paper, using the float solution of ambiguity and its variance matrix, a new approach to rapidly and accurately calculate the posterior probability is proposed. The proposed approach consists of four steps. First, the ambiguity vector is transformed via decorrelation. Second, the range of the adopted integer of every component is directly obtained via formulas, and a finite number of integer vectors are obtained via combination. Third, using the integer vectors, the principal value of posterior probability and the correction factor are worked out. Finally, the posterior probability of every integer vector and its error upper bound can be obtained. In the paper, the detailed process to calculate the posterior probability and the derivations of the formulas are presented. The theory and numerical examples indicate that the proposed approach has the advantages of small amount of computations, high calculation accuracy and strong adaptability.
NMR probing of spin and charge order near odd-integer filling in the second Landau level
NASA Astrophysics Data System (ADS)
Rhone, T. D.; Tiemann, L.; Muraki, K.
2015-07-01
Studies of spin degrees of freedom near odd-integer filling ν =3 in the second Landau level have engendered conflicting accounts of the spin properties in this regime. Using resistively detected NMR as a probe of local spin density, we explore the nature of the ground state in the quantum Hall regime near ν =3 . Our Knight shift measurements reveal anomalies in NMR spectral line shapes near ν =3 , which demonstrate the presence of solid phases formed from charged quasiparticles, with maximal spin polarization (i.e., no additional spin flips) at each ν . The long nuclear spin relaxation times demonstrate the absence of Skyrmions, or spin textures, in this phase. On the basis of these observations, we attempt to reconcile conflicting reports on the quasiparticle properties and spin wave excitations at ν ˜3 , which may engender new paradigms for the understanding of spin excitations in a collinear ferromagnet with broken translational symmetry.
Tarallo, M G; Mazzoni, T; Poli, N; Sutyrin, D V; Zhang, X; Tino, G M
2014-07-11
We report on a conceptually new test of the equivalence principle performed by measuring the acceleration in Earth's gravity field of two isotopes of strontium atoms, namely, the bosonic (88)Sr isotope which has no spin versus the fermionic (87)Sr isotope which has a half-integer spin. The effect of gravity on the two atomic species has been probed by means of a precision differential measurement of the Bloch frequency for the two atomic matter waves in a vertical optical lattice. We obtain the values η=(0.2±1.6)×10(-7) for the Eötvös parameter and k=(0.5±1.1)×10(-7) for the coupling between nuclear spin and gravity. This is the first reported experimental test of the equivalence principle for bosonic and fermionic particles and opens a new way to the search for the predicted spin-gravity coupling effects.
An Integer Programming Approach to School District Financial Management.
ERIC Educational Resources Information Center
Dembowski, Frederick L.
Because of the nature of school district cash flows, there are opportunities for investing surplus cash and the necessity to borrow cash in deficit periods. The term structure of interest rates makes the manual determination of the optimal financial package impossible. In this research, an integer programming model of this cash management process…
Optimizing a Library's Loan Policy: An Integer Programming Approach.
ERIC Educational Resources Information Center
Al-Fares, Hesham K.
1998-01-01
Discusses the length of library loan periods and the number of books allowed to be borrowed. An integer programming model is formulated whose solution yields the optimum user satisfaction, and a case study conducted at King Fahd University of Petroleum and Minerals (Saudi Arabia) is presented. (Author/LRW)
An Integer Programming Approach to School District Financial Management.
ERIC Educational Resources Information Center
Dembowski, Frederick L.
Because of the nature of school district cash flows, there are opportunities for investing surplus cash and the necessity to borrow cash in deficit periods. The term structure of interest rates makes the manual determination of the optimal financial package impossible. In this research, an integer programming model of this cash management process…
Distributing Earthquakes Among California's Faults: A Binary Integer Programming Approach
NASA Astrophysics Data System (ADS)
Geist, E. L.; Parsons, T.
2016-12-01
Statement of the problem is simple: given regional seismicity specified by a Gutenber-Richter (G-R) relation, how are earthquakes distributed to match observed fault-slip rates? The objective is to determine the magnitude-frequency relation on individual faults. The California statewide G-R b-value and a-value are estimated from historical seismicity, with the a-value accounting for off-fault seismicity. UCERF3 consensus slip rates are used, based on geologic and geodetic data and include estimates of coupling coefficients. The binary integer programming (BIP) problem is set up such that each earthquake from a synthetic catalog spanning millennia can occur at any location along any fault. The decision vector, therefore, consists of binary variables, with values equal to one indicating the location of each earthquake that results in an optimal match of slip rates, in an L1-norm sense. Rupture area and slip associated with each earthquake are determined from a magnitude-area scaling relation. Uncertainty bounds on the UCERF3 slip rates provide explicit minimum and maximum constraints to the BIP model, with the former more important to feasibility of the problem. There is a maximum magnitude limit associated with each fault, based on fault length, providing an implicit constraint. Solution of integer programming problems with a large number of variables (>105 in this study) has been possible only since the late 1990s. In addition to the classic branch-and-bound technique used for these problems, several other algorithms have been recently developed, including pre-solving, sifting, cutting planes, heuristics, and parallelization. An optimal solution is obtained using a state-of-the-art BIP solver for M≥6 earthquakes and California's faults with slip-rates > 1 mm/yr. Preliminary results indicate a surprising diversity of on-fault magnitude-frequency relations throughout the state.
An Integer Program Decomposition Approach to Combat Planning.
1998-09-01
appear in IEEE Transactions in November 1998), July 1998. 68. Ozdamar, Linet and Giindiiz Ulusoy . "A Local Constraint Based Analysis Approach to Project...Scheduling under General Resource Constraints," European Journal of Operational Research, 79:287-298 (1994). 69. Ozdamar, Linet and Giindiiz Ulusoy . "A
Realization of a Quantum Integer-Spin Chain with Controllable Interactions
2015-06-17
physics experimentally. We demonstrate how spin-dependent forces on trapped ions can be used to engineer an effective system of interacting spin-1...site participate in the dynamics. We observe the time evolution of the system and verify its coherence by entangling a pair of effective three-level...appearing in spin liquids [16] and in the fractional quantum Hall effect . These characteristics suggest that the Haldane phase is one of the simplest
Enhanced index tracking modeling in portfolio optimization with mixed-integer programming z approach
NASA Astrophysics Data System (ADS)
Siew, Lam Weng; Jaaman, Saiful Hafizah Hj.; Ismail, Hamizun bin
2014-09-01
Enhanced index tracking is a popular form of portfolio management in stock market investment. Enhanced index tracking aims to construct an optimal portfolio to generate excess return over the return achieved by the stock market index without purchasing all of the stocks that make up the index. The objective of this paper is to construct an optimal portfolio using mixed-integer programming model which adopts regression approach in order to generate higher portfolio mean return than stock market index return. In this study, the data consists of 24 component stocks in Malaysia market index which is FTSE Bursa Malaysia Kuala Lumpur Composite Index from January 2010 until December 2012. The results of this study show that the optimal portfolio of mixed-integer programming model is able to generate higher mean return than FTSE Bursa Malaysia Kuala Lumpur Composite Index return with only selecting 30% out of the total stock market index components.
Comparison of penalty functions on a penalty approach to mixed-integer optimization
NASA Astrophysics Data System (ADS)
Francisco, Rogério B.; Costa, M. Fernanda P.; Rocha, Ana Maria A. C.; Fernandes, Edite M. G. P.
2016-06-01
In this paper, we present a comparative study involving several penalty functions that can be used in a penalty approach for globally solving bound mixed-integer nonlinear programming (bMIMLP) problems. The penalty approach relies on a continuous reformulation of the bMINLP problem by adding a particular penalty term to the objective function. A penalty function based on the `erf' function is proposed. The continuous nonlinear optimization problems are sequentially solved by the population-based firefly algorithm. Preliminary numerical experiments are carried out in order to analyze the quality of the produced solutions, when compared with other penalty functions available in the literature.
Spin-locking of half-integer quadrupolar nuclei in NMR of solids: The far off-resonance case.
Odedra, Smita; Wimperis, Stephen
Spin-locking of spin I=3/2 and I=5/2 nuclei in the presence of large resonance offsets has been studied using both approximate and exact theoretical approaches and, in the case of I=3/2, experimentally. We show the variety of coherences and population states produced in a far off-resonance spin-locking NMR experiment (one consisting solely of a spin-locking pulse) and how these vary with the radiofrequency field strength and offset frequency. Under magic angle spinning (MAS) conditions and in the "adiabatic limit", these spin-locked states acquire a time dependence. We discuss the rotor-driven interconversion of the spin-locked states, using an exact density matrix approach to confirm the results of the approximate model. Using conventional and multiple-quantum filtered spin-locking (23)Na (I=3/2) NMR experiments under both static and MAS conditions, we confirm the results of the theoretical calculations, demonstrating the applicability of the approximate theoretical model to the far off-resonance case. This simplified model includes only the effects of the initial rapid dephasing of coherences that occurs at the start of the spin-locking period and its success in reproducing both experimental and exact simulation data indicates that it is this dephasing that is the dominant phenomenon in NMR spin-locking of quadrupolar nuclei, as we have previously found for the on-resonance and near-resonance cases. Potentially, far off-resonance spin-locking of quadrupolar nuclei could be of interest in experiments such as cross polarisation as a consequence of the spin-locking pulse being applied to a better defined initial state (the thermal equilibrium bulk magnetisation aligned along the z-axis) than can be created in a powdered solid with a selective radiofrequency pulse, where the effect of the pulse depends on the orientation of the individual crystallites. Copyright © 2016 Elsevier Inc. All rights reserved.
Modeling an integrated hospital management planning problem using integer optimization approach
NASA Astrophysics Data System (ADS)
Sitepu, Suryati; Mawengkang, Herman; Irvan
2017-09-01
Hospital is a very important institution to provide health care for people. It is not surprising that nowadays the people’s demands for hospital is increasing. However, due to the rising cost of healthcare services, hospitals need to consider efficiencies in order to overcome these two problems. This paper deals with an integrated strategy of staff capacity management and bed allocation planning to tackle these problems. Mathematically, the strategy can be modeled as an integer linear programming problem. We solve the model using a direct neighborhood search approach, based on the notion of superbasic variables.
NASA Astrophysics Data System (ADS)
Kantar, Ersin
2016-08-01
In this paper, within the framework of the effective-field theory with correlation, mixed spin-1/2 and spin-3/2 bilayer system on a square lattice is studied. The characteristic behaviors for the magnetic hysteresis, compensation types and phase diagrams depending on effect of the surface and interface exchange parameters as well as crystal field are investigated. From the behavior of total magnetization as a function of the magnetic field and temperature, we obtain the single, double and triple hysteresis loops and the L-, Q-, P-, S-, and N-type compensation behaviors in the system. Moreover, we detect the more effective the J1 and crystal field parameters on the bilayer Ising model according to the behaviors of the phase diagrams.
NASA Astrophysics Data System (ADS)
Huang, Kai; Huang, Gordon; Dai, Liming; Fan, Yurui
2016-08-01
This article introduces an inexact fuzzy integer chance constraint programming (IFICCP) approach for identifying noise reduction strategy under uncertainty. The IFICCP method integrates the interval programming and fuzzy chance constraint programming approaches into a framework, which is able to deal with uncertainties expressed as intervals and fuzziness. The proposed IFICCP model can be converted into two deterministic submodels corresponding to the optimistic and pessimistic conditions. The modelling approach is applied to a hypothetical control measure selection problem for noise reduction. Results of the case study indicate that useful solutions for noise control practices can be acquired. Three acceptable noise levels for two communities are considered. For each acceptable noise level, several decision alternatives have been obtained and analysed under different fuzzy confidence levels, which reflect the trade-offs between environmental and economic considerations.
Instantaneous and controllable integer ambiguity resolution: review and an alternative approach
NASA Astrophysics Data System (ADS)
Zhang, Jingyu; Wu, Meiping; Li, Tao; Zhang, Kaidong
2015-11-01
In the high-precision application of Global Navigation Satellite System (GNSS), integer ambiguity resolution is the key step to realize precise positioning and attitude determination. As the necessary part of quality control, integer aperture (IA) ambiguity resolution provides the theoretical and practical foundation for ambiguity validation. It is mainly realized by acceptance testing. Due to the constraint of correlation between ambiguities, it is impossible to realize the controlling of failure rate according to analytical formula. Hence, the fixed failure rate approach is implemented by Monte Carlo sampling. However, due to the characteristics of Monte Carlo sampling and look-up table, we have to face the problem of a large amount of time consumption if sufficient GNSS scenarios are included in the creation of look-up table. This restricts the fixed failure rate approach to be a post process approach if a look-up table is not available. Furthermore, if not enough GNSS scenarios are considered, the table may only be valid for a specific scenario or application. Besides this, the method of creating look-up table or look-up function still needs to be designed for each specific acceptance test. To overcome these problems in determination of critical values, this contribution will propose an instantaneous and CONtrollable (iCON) IA ambiguity resolution approach for the first time. The iCON approach has the following advantages: (a) critical value of acceptance test is independently determined based on the required failure rate and GNSS model without resorting to external information such as look-up table; (b) it can be realized instantaneously for most of IA estimators which have analytical probability formulas. The stronger GNSS model, the less time consumption; (c) it provides a new viewpoint to improve the research about IA estimation. To verify these conclusions, multi-frequency and multi-GNSS simulation experiments are implemented. Those results show that IA
Large-Scale Bi-Level Strain Design Approaches and Mixed-Integer Programming Solution Techniques
Kim, Joonhoon; Reed, Jennifer L.; Maravelias, Christos T.
2011-01-01
The use of computational models in metabolic engineering has been increasing as more genome-scale metabolic models and computational approaches become available. Various computational approaches have been developed to predict how genetic perturbations affect metabolic behavior at a systems level, and have been successfully used to engineer microbial strains with improved primary or secondary metabolite production. However, identification of metabolic engineering strategies involving a large number of perturbations is currently limited by computational resources due to the size of genome-scale models and the combinatorial nature of the problem. In this study, we present (i) two new bi-level strain design approaches using mixed-integer programming (MIP), and (ii) general solution techniques that improve the performance of MIP-based bi-level approaches. The first approach (SimOptStrain) simultaneously considers gene deletion and non-native reaction addition, while the second approach (BiMOMA) uses minimization of metabolic adjustment to predict knockout behavior in a MIP-based bi-level problem for the first time. Our general MIP solution techniques significantly reduced the CPU times needed to find optimal strategies when applied to an existing strain design approach (OptORF) (e.g., from ∼10 days to ∼5 minutes for metabolic engineering strategies with 4 gene deletions), and identified strategies for producing compounds where previous studies could not (e.g., malate and serine). Additionally, we found novel strategies using SimOptStrain with higher predicted production levels (for succinate and glycerol) than could have been found using an existing approach that considers network additions and deletions in sequential steps rather than simultaneously. Finally, using BiMOMA we found novel strategies involving large numbers of modifications (for pyruvate and glutamate), which sequential search and genetic algorithms were unable to find. The approaches and solution
Large-scale bi-level strain design approaches and mixed-integer programming solution techniques.
Kim, Joonhoon; Reed, Jennifer L; Maravelias, Christos T
2011-01-01
The use of computational models in metabolic engineering has been increasing as more genome-scale metabolic models and computational approaches become available. Various computational approaches have been developed to predict how genetic perturbations affect metabolic behavior at a systems level, and have been successfully used to engineer microbial strains with improved primary or secondary metabolite production. However, identification of metabolic engineering strategies involving a large number of perturbations is currently limited by computational resources due to the size of genome-scale models and the combinatorial nature of the problem. In this study, we present (i) two new bi-level strain design approaches using mixed-integer programming (MIP), and (ii) general solution techniques that improve the performance of MIP-based bi-level approaches. The first approach (SimOptStrain) simultaneously considers gene deletion and non-native reaction addition, while the second approach (BiMOMA) uses minimization of metabolic adjustment to predict knockout behavior in a MIP-based bi-level problem for the first time. Our general MIP solution techniques significantly reduced the CPU times needed to find optimal strategies when applied to an existing strain design approach (OptORF) (e.g., from ∼10 days to ∼5 minutes for metabolic engineering strategies with 4 gene deletions), and identified strategies for producing compounds where previous studies could not (e.g., malate and serine). Additionally, we found novel strategies using SimOptStrain with higher predicted production levels (for succinate and glycerol) than could have been found using an existing approach that considers network additions and deletions in sequential steps rather than simultaneously. Finally, using BiMOMA we found novel strategies involving large numbers of modifications (for pyruvate and glutamate), which sequential search and genetic algorithms were unable to find. The approaches and solution
A mixed-integer linear programming approach to the reduction of genome-scale metabolic networks.
Röhl, Annika; Bockmayr, Alexander
2017-01-03
Constraint-based analysis has become a widely used method to study metabolic networks. While some of the associated algorithms can be applied to genome-scale network reconstructions with several thousands of reactions, others are limited to small or medium-sized models. In 2015, Erdrich et al. introduced a method called NetworkReducer, which reduces large metabolic networks to smaller subnetworks, while preserving a set of biological requirements that can be specified by the user. Already in 2001, Burgard et al. developed a mixed-integer linear programming (MILP) approach for computing minimal reaction sets under a given growth requirement. Here we present an MILP approach for computing minimum subnetworks with the given properties. The minimality (with respect to the number of active reactions) is not guaranteed by NetworkReducer, while the method by Burgard et al. does not allow specifying the different biological requirements. Our procedure is about 5-10 times faster than NetworkReducer and can enumerate all minimum subnetworks in case there exist several ones. This allows identifying common reactions that are present in all subnetworks, and reactions appearing in alternative pathways. Applying complex analysis methods to genome-scale metabolic networks is often not possible in practice. Thus it may become necessary to reduce the size of the network while keeping important functionalities. We propose a MILP solution to this problem. Compared to previous work, our approach is more efficient and allows computing not only one, but even all minimum subnetworks satisfying the required properties.
Poos, Alexandra M; Maicher, André; Dieckmann, Anna K; Oswald, Marcus; Eils, Roland; Kupiec, Martin; Luke, Brian; König, Rainer
2016-06-02
Understanding telomere length maintenance mechanisms is central in cancer biology as their dysregulation is one of the hallmarks for immortalization of cancer cells. Important for this well-balanced control is the transcriptional regulation of the telomerase genes. We integrated Mixed Integer Linear Programming models into a comparative machine learning based approach to identify regulatory interactions that best explain the discrepancy of telomerase transcript levels in yeast mutants with deleted regulators showing aberrant telomere length, when compared to mutants with normal telomere length. We uncover novel regulators of telomerase expression, several of which affect histone levels or modifications. In particular, our results point to the transcription factors Sum1, Hst1 and Srb2 as being important for the regulation of EST1 transcription, and we validated the effect of Sum1 experimentally. We compiled our machine learning method leading to a user friendly package for R which can straightforwardly be applied to similar problems integrating gene regulator binding information and expression profiles of samples of e.g. different phenotypes, diseases or treatments.
Doolittle, R.
1994-11-15
The title integer anatomy is intended to convey the idea of a systematic method for displaying the prime decomposition of the integers. Just as the biological study of anatomy does not teach us all things about behavior of species neither would we expect to learn everything about the number theory from a study of its anatomy. But, some number-theoretic theorems are illustrated by inspection of integer anatomy, which tend to validate the underlying structure and the form as developed and displayed in this treatise. The first statement to be made in this development is: the way structure of the natural numbers is displayed depends upon the allowed operations.
Real-Space Renormalization-Group Approach to the Integer Quantum Hall Effect
NASA Astrophysics Data System (ADS)
Cain, Philipp; Römer, Rudolf A.
We review recent results based on an application of the real-space renormalization group (RG) approach to a network model for the integer quantum Hall (QH) transition. We demonstrate that this RG approach reproduces the critical distribution of the power transmission coefficients, i.e., two-terminal conductances, Pc(G), with very high accuracy. The RG flow of P(G) at energies away from the transition yields a value of the critical exponent ν that agrees with most accurate large-size lattice simulations. A description of how to obtain other relevant transport coefficients such as RL and RH is given. From the non-trivial fixed point of the RG flow we extract the critical level-spacing distribution (LSD). This distribution is close, but distinctively different from the earlier large-scale simulations. We find that the LSD obeys scaling behavior around the QH transition with ν = 2.37±0.02. Away from the transition it crosses over towards the Poisson distribution. We next investigate the plateau-to-insulator transition at strong magnetic fields. For a fully quantum coherent situation, we find a quantized Hall insulator with RH≈h/e2 up to RL 20h/e2 when interpreting the results in terms of most probable value of the distribution function P(RH). Upon further increasing RL→∞, the Hall insulator with diverging Hall resistance R H∝ R Lκ is seen. The crossover between these two regimes depends on the precise nature of the averaging procedure for the distributions P(RL) and P(RH). We also study the effect of long-ranged inhomogeneities on the critical properties of the QH transition. Inhomogeneities are modeled by a smooth random potential with a correlator which falls off with distance as a power law r-α. Similar to the classical percolation, we observe an enhancement of ν with decreasing α. These results exemplify the surprising fact that a small RG unit, containing only five nodes, accurately captures most of the correlations responsible for the localization
A Bose-Einstein approach to the random partitioning of an integer
NASA Astrophysics Data System (ADS)
Huillet, Thierry E.
2011-08-01
Consider N equally spaced points on a circle of circumference N. Pick at random n points out of N on this circle and consider the discrete random spacings between consecutive sampled points, turning clockwise. This defines in the first place a random partitioning of N into n positive summands. Append then clockwise an arc of integral length k to each such sampled point, ending up with a discrete random set on the circle. Questions such as the evaluation of the probability of random covering or parking configurations, number and length of the gaps are addressed. For each value of k, asymptotic results are presented when n, N both go to \\infty according to two different regimes. In the first thermodynamical regime n/N\\rightarrow \\rho , the occurrence of, say, covering and parking configurations is exponentially rare in the whole admissible range of density ρ. We compute the rates from the equations of state. In the second one, they are macroscopically frequent. These questions require some understanding of both the smallest and largest extreme summands in the partition of N. We consider next an urn model where N indistinguishable balls are assigned at random into N distinguishable boxes. This urn model consists of a random partitioning model of integer N into N non-negative summands. Given there are n non-empty boxes this gives back the original partitioning model of N into n positive parts. Following this circle of ideas, a grand canonical balls in boxes approach is supplied, giving some insight into the multiplicities of the box occupancies. The random set model defines a k-nearest neighbor random graph with N vertices and kn edges. We shall also briefly consider the covering problem in the context of a random graph model with N vertices and n (out-degree 1) edges whose endpoints are no longer bound to be neighbors. In the latter setup, connectivity is increased in that there exists a critical density ρc above which covering occurs with probability 1.
Corzilius, Björn
2016-10-21
Dynamic nuclear polarization (DNP) is a powerful method to enhance sensitivity especially of solid-state magic-angle spinning (MAS) NMR by up to several orders of magnitude. The increased interest both from a practical as well as theoretical viewpoint has spawned several fields of active research such as the development of new polarizing agents with improved or unique properties and description of the underlying DNP mechanisms such as solid effect (SE) and cross effect (CE). Even though a novel class of unique polarizing agents based on high-spin metal ions such as Gd(iii) and Mn(ii) has already been utilized for MAS DNP a theoretical description of the involved DNP mechanism is still incomplete. Here, we review several aspects of DNP-relevant electron-paramagnetic resonance (EPR) properties of the general class of these half-integer high-spin metal ions with isotropic Zeeman interaction but significant zero-field splitting (ZFS). While the SE can be relatively easily described similar to that of a S = 1/2 system and is assumed to be effective only for polarizing agents featuring a narrow central EPR transitions (i.e., mS = -1/2 → +1/2) with respect to the nuclear Larmor frequency, the CE between two high-spin ions requires a more detailed theoretical investigation due to a multitude of possible transitions and matching conditions. This is especially interesting in light of recent understanding of CE being induced by MAS-driven level anti-crossings (LACs) between dipolar-coupled electron spins. We discuss the requirements of such CE-enabling LACs to occur due to anisotropy of ZFS, the expected adiabaticity, and the resulting possibilities of high-spin metal ion pairs to act as polarizing agents for DNP. This theoretical description serves as a framework for a detailed experimental study published directly following this work.
Integer programming-based approach to allocation of reporter genes for cell array analysis.
Hayashida, Morihiro; Sun, Fuyan; Aburatani, Sachiyo; Horimoto, Katsuhisa; Akutsu, Tatsuya
2008-01-01
In this paper, we consider the problem of selecting the most effective set of reporter genes for analysis of biological networks using cell microarrays. We propose two graph theoretic formulations of the reporter gene allocation problem, and show that both problems are hard to approximate. We propose integer programming-based methods for solving practical instances of these problems optimally. We apply them to apoptosis pathway maps, and discuss the biological significance of the result. We also apply them to artificial networks, the result of which shows that optimal solutions can be obtained within several seconds for networks with 10,000 nodes.
NASA Astrophysics Data System (ADS)
Li, Hong; Zhang, Li; Jiao, Yong-Chang
2016-07-01
This paper presents an interactive approach based on a discrete differential evolution algorithm to solve a class of integer bilevel programming problems, in which integer decision variables are controlled by an upper-level decision maker and real-value or continuous decision variables are controlled by a lower-level decision maker. Using the Karush--Kuhn-Tucker optimality conditions in the lower-level programming, the original discrete bilevel formulation can be converted into a discrete single-level nonlinear programming problem with the complementarity constraints, and then the smoothing technique is applied to deal with the complementarity constraints. Finally, a discrete single-level nonlinear programming problem is obtained, and solved by an interactive approach. In each iteration, for each given upper-level discrete variable, a system of nonlinear equations including the lower-level variables and Lagrange multipliers is solved first, and then a discrete nonlinear programming problem only with inequality constraints is handled by using a discrete differential evolution algorithm. Simulation results show the effectiveness of the proposed approach.
Odd-Integer Quantum Hall States and Giant Spin Susceptibility in p -Type Few-Layer WSe2
NASA Astrophysics Data System (ADS)
Xu, Shuigang; Shen, Junying; Long, Gen; Wu, Zefei; Bao, Zhi-qiang; Liu, Cheng-Cheng; Xiao, Xiao; Han, Tianyi; Lin, Jiangxiazi; Wu, Yingying; Lu, Huanhuan; Hou, Jianqiang; An, Liheng; Wang, Yuanwei; Cai, Yuan; Ho, K. M.; He, Yuheng; Lortz, Rolf; Zhang, Fan; Wang, Ning
2017-02-01
We fabricate high-mobility p -type few-layer WSe2 field-effect transistors and surprisingly observe a series of quantum Hall (QH) states following an unconventional sequence predominated by odd-integer states under a moderate strength magnetic field. By tilting the magnetic field, we discover Landau level crossing effects at ultralow coincident angles, revealing that the Zeeman energy is about 3 times as large as the cyclotron energy near the valence band top at the Γ valley. This result implies the significant roles played by the exchange interactions in p -type few-layer WSe2 , in which itinerant or QH ferromagnetism likely occurs. Evidently, the Γ valley of few-layer WSe2 offers a unique platform with unusually heavy hole carriers and a substantially enhanced g factor for exploring strongly correlated phenomena.
Spin-spin and spin-orbit interactions in nanographene fragments: a quantum chemistry approach.
Perumal, S; Minaev, B; Ågren, H
2012-03-14
The relativistic behavior of graphene structures, starting from the fundamental building blocks--the poly-aromatic hydrocarbons (PAHs) along with other PAH nanographenes--is studied to quantify any associated intrinsic magnetism in the triplet (T) state and subsequently in the ground singlet (S) state with account of possible S-T mixture induced by spin-orbit coupling (SOC). We employ a first principle quantum chemical-based approach and density functional theory (DFT) for a systematic treatment of the spin-Hamiltonian by considering both the spin-orbit and spin-spin interactions as dependent on different numbers of benzene rings. We assess these relativistic spin-coupling phenomena in terms of splitting parameters which cause magnetic anisotropy in absence of external perturbations. Possible routes for changes in the couplings in terms of doping and defects are also simulated and discussed. Accounting for the artificial character of the broken-symmetry solutions for strong spin polarization of the so-called "singlet open-shell" ground state in zigzag graphene nanoribbons predicted by spin-unrestricted DFT approaches, we interpolate results from more sophisticated methods for the S-T gaps and spin-orbit coupling (SOC) integrals and find that these spin interactions become weak as function of size and increasing decoupling of electrons at the edges. This leads to reduced electron spin-spin interaction and hence almost negligible intrinsic magnetism in the carbon-based PAHs and carbon nanographene fragments. Our results are in agreement with the fact that direct experimental evidence of edge magnetism in pristine graphene has been reported so far. We support the notion that magnetism in graphene only can be ascribed to structural defects or impurities.
Spinning fluids: A group theoretical approach
NASA Astrophysics Data System (ADS)
Capasso, Dario; Sarkar, Debajyoti
2014-04-01
The aim of this article is to introduce a Lagrangian formulation of relativistic non-Abelian spinning fluids in group theory language. The corresponding Mathisson-Papapetrou equation for spinning fluids in terms of the reduction limit of the de Sitter group has been proposed. The equation we find correctly boils down to the one for nonspinning fluids. Two alternative approaches based on a group theoretical formulation of particle dynamics are also explored.
An integer programming approach to a real-world recyclable waste collection problem in Argentina.
Braier, Gustavo; Durán, Guillermo; Marenco, Javier; Wesner, Francisco
2017-05-01
This article reports on the use of mathematical programming techniques to optimise the routes of a recyclable waste collection system servicing Morón, a large municipality outside Buenos Aires, Argentina. The truck routing problem posed by the system is a particular case of the generalised directed open rural postman problem. An integer programming model is developed with a solving procedure built around a subtour-merging algorithm and the addition of subtour elimination constraints. The route solutions generated by the proposed methodology perform significantly better than the previously used, manually designed routes, the main improvement being that coverage of blocks within the municipality with the model solutions is 100% by construction, whereas with the manual routes as much as 16% of the blocks went unserviced. The model-generated routes were adopted by the municipality in 2014 and the national government is planning to introduce the methodology elsewhere in the country.
A mixed integer bi-level DEA model for bank branch performance evaluation by Stackelberg approach
NASA Astrophysics Data System (ADS)
Shafiee, Morteza; Lotfi, Farhad Hosseinzadeh; Saleh, Hilda; Ghaderi, Mehdi
2016-11-01
One of the most complicated decision making problems for managers is the evaluation of bank performance, which involves various criteria. There are many studies about bank efficiency evaluation by network DEA in the literature review. These studies do not focus on multi-level network. Wu (Eur J Oper Res 207:856-864, 2010) proposed a bi-level structure for cost efficiency at the first time. In this model, multi-level programming and cost efficiency were used. He used a nonlinear programming to solve the model. In this paper, we have focused on multi-level structure and proposed a bi-level DEA model. We then used a liner programming to solve our model. In other hand, we significantly improved the way to achieve the optimum solution in comparison with the work by Wu (2010) by converting the NP-hard nonlinear programing into a mixed integer linear programming. This study uses a bi-level programming data envelopment analysis model that embodies internal structure with Stackelberg-game relationships to evaluate the performance of banking chain. The perspective of decentralized decisions is taken in this paper to cope with complex interactions in banking chain. The results derived from bi-level programming DEA can provide valuable insights and detailed information for managers to help them evaluate the performance of the banking chain as a whole using Stackelberg-game relationships. Finally, this model was applied in the Iranian bank to evaluate cost efficiency.
Managing daily surgery schedules in a teaching hospital: a mixed-integer optimization approach.
Pulido, Raul; Aguirre, Adrian M; Ortega-Mier, Miguel; García-Sánchez, Álvaro; Méndez, Carlos A
2014-10-15
This study examined the daily surgical scheduling problem in a teaching hospital. This problem relates to the use of multiple operating rooms and different types of surgeons in a typical surgical day with deterministic operation durations (preincision, incision, and postincision times). Teaching hospitals play a key role in the health-care system; however, existing models assume that the duration of surgery is independent of the surgeon's skills. This problem has not been properly addressed in other studies. We analyze the case of a Spanish public hospital, in which continuous pressures and budgeting reductions entail the more efficient use of resources. To obtain an optimal solution for this problem, we developed a mixed-integer programming model and user-friendly interface that facilitate the scheduling of planned operations for the following surgical day. We also implemented a simulation model to assist the evaluation of different dispatching policies for surgeries and surgeons. The typical aspects we took into account were the type of surgeon, potential overtime, idling time of surgeons, and the use of operating rooms. It is necessary to consider the expertise of a given surgeon when formulating a schedule: such skill can decrease the probability of delays that could affect subsequent surgeries or cause cancellation of the final surgery. We obtained optimal solutions for a set of given instances, which we obtained through surgical information related to acceptable times collected from a Spanish public hospital. We developed a computer-aided framework with a user-friendly interface for use by a surgical manager that presents a 3-D simulation of the problem. Additionally, we obtained an efficient formulation for this complex problem. However, the spread of this kind of operation research in Spanish public health hospitals will take a long time since there is a lack of knowledge of the beneficial techniques and possibilities that operational research can offer for
Chen, Siou-Yin; Beedle, Christopher C; Gan, Pei-Rung; Lee, Gene-Hsian; Hill, Stephen; Yang, En-Che
2012-04-16
The synthesis, X-ray crystallography, magnetic properties, and high-field electron paramagnetic resonance (HFEPR) of a new heptanuclear manganese complex [Mn(7)(heamp)(6)](ClO(4))(2)·4CH(2)Cl(2)·H(2)O (complex 2), in which heampH(3) is 2-[N,N-di(2-hydroxyethyl)aminomethyl]phenol (compound 1), is reported. Complex 2 has a hexagonal, disk-shaped topology and contains six Mn(III) ions and a central Mn(II) ion. It crystallizes in the monoclinic space group P2(1)/c with two molecular orientations. Consideration of the cluster topology, together with variable-temperature and variable-field DC magnetic susceptibility data, suggest that complex 2 exists in a half-integer, S = (19)/(2) ± 1 spin ground state, with appreciable uniaxial zero-field splitting (D = -0.16 cm(-1)). AC magnetic susceptibility measurements clearly show out-of-phase signals, which are frequency- and temperature-dependent, indicating slow magnetization relaxation behavior. An analysis of the relaxation data employing the Arrhenius formula yielded an effective relaxation barrier of 12.9 cm(-1). Simulations of HFEPR studies agree with the assignment of an S ≈ (19)/(2) spin ground state, with g = 1.96, D = -4.71 GHz (-0.16 cm(-1)), and a longitudinal fourth-order zero-field splitting parameter B(4)(0) = -2.7 × 10(-4) GHz (-9.0 × 10(-6) cm(-1)).
Lin, Fu; Leyffer, Sven; Munson, Todd
2016-04-12
We study a two-stage mixed-integer linear program (MILP) with more than 1 million binary variables in the second stage. We develop a two-level approach by constructing a semi-coarse model that coarsens with respect to variables and a coarse model that coarsens with respect to both variables and constraints. We coarsen binary variables by selecting a small number of prespecified on/off profiles. We aggregate constraints by partitioning them into groups and taking convex combination over each group. With an appropriate choice of coarsened profiles, the semi-coarse model is guaranteed to find a feasible solution of the original problem and hence providesmore » an upper bound on the optimal solution. We show that solving a sequence of coarse models converges to the same upper bound with proven finite steps. This is achieved by adding violated constraints to coarse models until all constraints in the semi-coarse model are satisfied. We demonstrate the effectiveness of our approach in cogeneration for buildings. Here, the coarsened models allow us to obtain good approximate solutions at a fraction of the time required by solving the original problem. Extensive numerical experiments show that the two-level approach scales to large problems that are beyond the capacity of state-of-the-art commercial MILP solvers.« less
Lin, Fu; Leyffer, Sven; Munson, Todd
2016-04-12
We study a two-stage mixed-integer linear program (MILP) with more than 1 million binary variables in the second stage. We develop a two-level approach by constructing a semi-coarse model that coarsens with respect to variables and a coarse model that coarsens with respect to both variables and constraints. We coarsen binary variables by selecting a small number of prespecified on/off profiles. We aggregate constraints by partitioning them into groups and taking convex combination over each group. With an appropriate choice of coarsened profiles, the semi-coarse model is guaranteed to find a feasible solution of the original problem and hence provides an upper bound on the optimal solution. We show that solving a sequence of coarse models converges to the same upper bound with proven finite steps. This is achieved by adding violated constraints to coarse models until all constraints in the semi-coarse model are satisfied. We demonstrate the effectiveness of our approach in cogeneration for buildings. Here, the coarsened models allow us to obtain good approximate solutions at a fraction of the time required by solving the original problem. Extensive numerical experiments show that the two-level approach scales to large problems that are beyond the capacity of state-of-the-art commercial MILP solvers.
ERIC Educational Resources Information Center
Seth, Anupam
2009-01-01
Production planning and scheduling for printed circuit, board assembly has so far defied standard operations research approaches due to the size and complexity of the underlying problems, resulting in unexploited automation flexibility. In this thesis, the increasingly popular collect-and-place machine configuration is studied and the assembly…
ERIC Educational Resources Information Center
Seth, Anupam
2009-01-01
Production planning and scheduling for printed circuit, board assembly has so far defied standard operations research approaches due to the size and complexity of the underlying problems, resulting in unexploited automation flexibility. In this thesis, the increasingly popular collect-and-place machine configuration is studied and the assembly…
Lee, E K; Gallagher, R J; Silvern, D; Wuu, C S; Zaider, M
1999-01-01
An integer linear programming model is proposed as a framework for optimizing seed placement and dose distribution in brachytherapy treatment planning. The basic model involves using 0/1 indicator variables to describe the placement or non-placement of seeds in a prespecified three-dimensional grid of potential locations. The dose delivered to each point in a discretized representation of the diseased organ and neighbouring healthy tissue can then be modelled as a linear combination of the indicator variables. A system of linear constraints is imposed to attempt to keep the dose level at each point to within specified target bounds. Since it is physically impossible to satisfy all constraints simultaneously, each constraint uses a variable to either record when the target dose level is achieved, or to record the deviation from the desired level. These additional variables are embedded into an objective function to be optimized. Variations on this model are discussed and two computational approaches--a branch-and-bound algorithm and a genetic algorithm--for finding 'optimal' seed placements are described. Results of computational experiments on a collection of prostate cancer cases are reported. The results indicate that both optimization algorithms are capable of producing good solutions within 5 to 15 min, and that small variations in model parameters can have a measurable effect on the dose distribution of the resulting plans.
An integer linear programming approach for finding deregulated subgraphs in regulatory networks.
Backes, Christina; Rurainski, Alexander; Klau, Gunnar W; Müller, Oliver; Stöckel, Daniel; Gerasch, Andreas; Küntzer, Jan; Maisel, Daniela; Ludwig, Nicole; Hein, Matthias; Keller, Andreas; Burtscher, Helmut; Kaufmann, Michael; Meese, Eckart; Lenhof, Hans-Peter
2012-03-01
Deregulation of cell signaling pathways plays a crucial role in the development of tumors. The identification of such pathways requires effective analysis tools that facilitate the interpretation of expression differences. Here, we present a novel and highly efficient method for identifying deregulated subnetworks in a regulatory network. Given a score for each node that measures the degree of deregulation of the corresponding gene or protein, the algorithm computes the heaviest connected subnetwork of a specified size reachable from a designated root node. This root node can be interpreted as a molecular key player responsible for the observed deregulation. To demonstrate the potential of our approach, we analyzed three gene expression data sets. In one scenario, we compared expression profiles of non-malignant primary mammary epithelial cells derived from BRCA1 mutation carriers and of epithelial cells without BRCA1 mutation. Our results suggest that oxidative stress plays an important role in epithelial cells of BRCA1 mutation carriers and that the activation of stress proteins may result in avoidance of apoptosis leading to an increased overall survival of cells with genetic alterations. In summary, our approach opens new avenues for the elucidation of pathogenic mechanisms and for the detection of molecular key players.
Spinor dipolar bose-einstein condensates: classical spin approach.
Takahashi, M; Ghosh, Sankalpa; Mizushima, T; Machida, K
2007-06-29
Bose-Einstein condensates which are dominated by magnetic dipole-dipole interaction are discussed under spinful situations. We treat the spin degrees of freedom as a classical spin vector, approaching from the large spin limit to obtain an effective minimal Hamiltonian. This is a version extended from a nonlinear sigma model. By solving the Gross-Pitaevskii equation, we find several novel spin textures where the mass density and spin density are strongly coupled, depending upon trap geometries due to the long-range and anisotropic natures of the dipole-dipole interaction.
Spinor Dipolar Bose-Einstein Condensates: Classical Spin Approach
Takahashi, M.; Mizushima, T.; Machida, K.; Ghosh, Sankalpa
2007-06-29
Bose-Einstein condensates which are dominated by magnetic dipole-dipole interaction are discussed under spinful situations. We treat the spin degrees of freedom as a classical spin vector, approaching from the large spin limit to obtain an effective minimal Hamiltonian. This is a version extended from a nonlinear sigma model. By solving the Gross-Pitaevskii equation, we find several novel spin textures where the mass density and spin density are strongly coupled, depending upon trap geometries due to the long-range and anisotropic natures of the dipole-dipole interaction.
ERIC Educational Resources Information Center
Pong, Wai Yan
2007-01-01
We begin by answering the question, "Which natural numbers are sums of consecutive integers?" We then go on to explore the set of lengths (numbers of summands) in the decompositions of an integer as such sums.
ERIC Educational Resources Information Center
Pong, Wai Yan
2007-01-01
We begin by answering the question, "Which natural numbers are sums of consecutive integers?" We then go on to explore the set of lengths (numbers of summands) in the decompositions of an integer as such sums.
NASA Astrophysics Data System (ADS)
Mukherjee, Bijoy K.; Metia, Santanu
2009-10-01
The paper is divided into three parts. The first part gives a brief introduction to the overall paper, to fractional order PID (PIλDμ) controllers and to Genetic Algorithm (GA). In the second part, first it has been studied how the performance of an integer order PID controller deteriorates when implemented with lossy capacitors in its analog realization. Thereafter it has been shown that the lossy capacitors can be effectively modeled by fractional order terms. Then, a novel GA based method has been proposed to tune the controller parameters such that the original performance is retained even though realized with the same lossy capacitors. Simulation results have been presented to validate the usefulness of the method. Some Ziegler-Nichols type tuning rules for design of fractional order PID controllers have been proposed in the literature [11]. In the third part, a novel GA based method has been proposed which shows how equivalent integer order PID controllers can be obtained which will give performance level similar to those of the fractional order PID controllers thereby removing the complexity involved in the implementation of the latter. It has been shown with extensive simulation results that the equivalent integer order PID controllers more or less retain the robustness and iso-damping properties of the original fractional order PID controllers. Simulation results also show that the equivalent integer order PID controllers are more robust than the normal Ziegler-Nichols tuned PID controllers.
ERIC Educational Resources Information Center
Siegel, Jonathan W.; Siegel, P. B.
2011-01-01
Integers are sometimes used in physics problems to simplify the mathematics so the arithmetic does not distract students from the physics concepts. This is particularly important in exams where students should not have to spend a lot of time using their calculators. Common uses of integers in physics problems include integer solutions to…
ERIC Educational Resources Information Center
Siegel, Jonathan W.; Siegel, P. B.
2011-01-01
Integers are sometimes used in physics problems to simplify the mathematics so the arithmetic does not distract students from the physics concepts. This is particularly important in exams where students should not have to spend a lot of time using their calculators. Common uses of integers in physics problems include integer solutions to…
BRST approach to Lagrangian formulation for mixed-symmetry fermionic higher-spin fields
NASA Astrophysics Data System (ADS)
Moshin, Pavel Yu.; Reshetnyak, Alexander A.
2007-10-01
We construct a Lagrangian description of irreducible half-integer higher-spin representations of the Poincare group with the corresponding Young tableaux having two rows, on a basis of the BRST approach. Starting with a description of fermionic higher-spin fields in a flat space of any dimension in terms of an auxiliary Fock space, we realize a conversion of the initial operator constraint system (constructed with respect to the relations extracting irreducible Poincare-group representations) into a first-class constraint system. For this purpose, we find auxiliary representations of the constraint subsuperalgebra containing the subsystem of second-class constraints in terms of Verma modules. We propose a universal procedure of constructing gauge-invariant Lagrangians with reducible gauge symmetries describing the dynamics of both massless and massive fermionic fields of any spin. No off-shell constraints for the fields and gauge parameters are used from the very beginning. It is shown that the space of BRST cohomologies with a vanishing ghost number is determined only by the constraints corresponding to an irreducible Poincare-group representation. To illustrate the general construction, we obtain a Lagrangian description of fermionic fields with generalized spin (3/2, 1/2) and (3/2, 3/2) on a flat background containing the complete set of auxiliary fields and gauge symmetries.
Guo, P; Huang, G H
2010-03-01
In this study, an interval-parameter semi-infinite fuzzy-chance-constrained mixed-integer linear programming (ISIFCIP) approach is developed for supporting long-term planning of waste-management systems under multiple uncertainties in the City of Regina, Canada. The method improves upon the existing interval-parameter semi-infinite programming (ISIP) and fuzzy-chance-constrained programming (FCCP) by incorporating uncertainties expressed as dual uncertainties of functional intervals and multiple uncertainties of distributions with fuzzy-interval admissible probability of violating constraint within a general optimization framework. The binary-variable solutions represent the decisions of waste-management-facility expansion, and the continuous ones are related to decisions of waste-flow allocation. The interval solutions can help decision-makers to obtain multiple decision alternatives, as well as provide bases for further analyses of tradeoffs between waste-management cost and system-failure risk. In the application to the City of Regina, Canada, two scenarios are considered. In Scenario 1, the City's waste-management practices would be based on the existing policy over the next 25 years. The total diversion rate for the residential waste would be approximately 14%. Scenario 2 is associated with a policy for waste minimization and diversion, where 35% diversion of residential waste should be achieved within 15 years, and 50% diversion over 25 years. In this scenario, not only landfill would be expanded, but also CF and MRF would be expanded. Through the scenario analyses, useful decision support for the City's solid-waste managers and decision-makers has been generated. Three special characteristics of the proposed method make it unique compared with other optimization techniques that deal with uncertainties. Firstly, it is useful for tackling multiple uncertainties expressed as intervals, functional intervals, probability distributions, fuzzy sets, and their
Guo, P.; Huang, G.H.
2010-03-15
In this study, an interval-parameter semi-infinite fuzzy-chance-constrained mixed-integer linear programming (ISIFCIP) approach is developed for supporting long-term planning of waste-management systems under multiple uncertainties in the City of Regina, Canada. The method improves upon the existing interval-parameter semi-infinite programming (ISIP) and fuzzy-chance-constrained programming (FCCP) by incorporating uncertainties expressed as dual uncertainties of functional intervals and multiple uncertainties of distributions with fuzzy-interval admissible probability of violating constraint within a general optimization framework. The binary-variable solutions represent the decisions of waste-management-facility expansion, and the continuous ones are related to decisions of waste-flow allocation. The interval solutions can help decision-makers to obtain multiple decision alternatives, as well as provide bases for further analyses of tradeoffs between waste-management cost and system-failure risk. In the application to the City of Regina, Canada, two scenarios are considered. In Scenario 1, the City's waste-management practices would be based on the existing policy over the next 25 years. The total diversion rate for the residential waste would be approximately 14%. Scenario 2 is associated with a policy for waste minimization and diversion, where 35% diversion of residential waste should be achieved within 15 years, and 50% diversion over 25 years. In this scenario, not only landfill would be expanded, but also CF and MRF would be expanded. Through the scenario analyses, useful decision support for the City's solid-waste managers and decision-makers has been generated. Three special characteristics of the proposed method make it unique compared with other optimization techniques that deal with uncertainties. Firstly, it is useful for tackling multiple uncertainties expressed as intervals, functional intervals, probability distributions, fuzzy sets, and their
Equation-of-motion approach of spin-motive force
Yamane, Yuta; Ieda, Jun'ichi; Ohe, Jun-ichiro; Maekawa, Sadamichi; Barnes, Stewart E.
2011-04-01
We formulate a quantitative theory of an electromotive force of spin origin, i.e., spin-motive force, by the equation-of-motion approach. In a ferromagnetic metal, electrons couple to the local magnetization via the exchange interaction. The electrons are affected by spin dependent forces due to this interaction and the spin-motive force and the anomalous Hall effect appears. We have revealed that the origin of these phenomena is a misalignment between the conduction electron spin and the local magnetization.
Software For Integer Programming
NASA Technical Reports Server (NTRS)
Fogle, F. R.
1992-01-01
Improved Exploratory Search Technique for Pure Integer Linear Programming Problems (IESIP) program optimizes objective function of variables subject to confining functions or constraints, using discrete optimization or integer programming. Enables rapid solution of problems up to 10 variables in size. Integer programming required for accuracy in modeling systems containing small number of components, distribution of goods, scheduling operations on machine tools, and scheduling production in general. Written in Borland's TURBO Pascal.
Electrically tunable spin polarization in silicene: A multi-terminal spin density matrix approach
NASA Astrophysics Data System (ADS)
Chen, Son-Hsien
2016-05-01
Recent realized silicene field-effect transistor yields promising electronic applications. Using a multi-terminal spin density matrix approach, this paper presents an analysis of the spin polarizations in a silicene structure of the spin field-effect transistor by considering the intertwined intrinsic and Rashba spin-orbit couplings, gate voltage, Zeeman splitting, as well as disorder. Coexistence of the stagger potential and intrinsic spin-orbit coupling results in spin precession, making any in-plane polarization directions reachable by the gate voltage; specifically, the intrinsic coupling allows one to electrically adjust the in-plane components of the polarizations, while the Rashba coupling to adjust the out-of-plan polarizations. Larger electrically tunable ranges of in-plan polarizations are found in oppositely gated silicene than in the uniformly gated silicene. Polarizations in different phases behave distinguishably in weak disorder regime, while independent of the phases, stronger disorder leads to a saturation value.
Baliban, Richard C; DiMaggio, Peter A; Plazas-Mayorca, Mariana D; Young, Nicolas L; Garcia, Benjamin A; Floudas, Christodoulos A
2010-05-01
A novel algorithm, PILOT_PTM, has been developed for the untargeted identification of post-translational modifications (PTMs) on a template sequence. The algorithm consists of an analysis of an MS/MS spectrum via an integer linear optimization model to output a rank-ordered list of PTMs that best match the experimental data. Each MS/MS spectrum is analyzed by a preprocessing algorithm to reduce spectral noise and label potential complimentary, offset, isotope, and multiply charged peaks. Postprocessing of the rank-ordered list from the integer linear optimization model will resolve fragment mass errors and will reorder the list of PTMs based on the cross-correlation between the experimental and theoretical MS/MS spectrum. PILOT_PTM is instrument-independent, capable of handling multiple fragmentation technologies, and can address the universe of PTMs for every amino acid on the template sequence. The various features of PILOT_PTM are presented, and it is tested on several modified and unmodified data sets including chemically synthesized phosphopeptides, histone H3-(1-50) polypeptides, histone H3-(1-50) tryptic fragments, and peptides generated from proteins extracted from chromatin-enriched fractions. The data sets consist of spectra derived from fragmentation via collision-induced dissociation, electron transfer dissociation, and electron capture dissociation. The capability of PILOT_PTM is then benchmarked using five state-of-the-art methods, InsPecT, Virtual Expert Mass Spectrometrist (VEMS), Mod(i), Mascot, and X!Tandem. PILOT_PTM demonstrates superior accuracy on both the small and large scale proteome experiments. A protocol is finally developed for the analysis of a complete LC-MS/MS scan using template sequences generated from SEQUEST and is demonstrated on over 270,000 MS/MS spectra collected from a total chromatin digest.
Baliban, Richard C.; DiMaggio, Peter A.; Plazas-Mayorca, Mariana D.; Young, Nicolas L.; Garcia, Benjamin A.; Floudas, Christodoulos A.
2010-01-01
A novel algorithm, PILOT_PTM, has been developed for the untargeted identification of post-translational modifications (PTMs) on a template sequence. The algorithm consists of an analysis of an MS/MS spectrum via an integer linear optimization model to output a rank-ordered list of PTMs that best match the experimental data. Each MS/MS spectrum is analyzed by a preprocessing algorithm to reduce spectral noise and label potential complimentary, offset, isotope, and multiply charged peaks. Postprocessing of the rank-ordered list from the integer linear optimization model will resolve fragment mass errors and will reorder the list of PTMs based on the cross-correlation between the experimental and theoretical MS/MS spectrum. PILOT_PTM is instrument-independent, capable of handling multiple fragmentation technologies, and can address the universe of PTMs for every amino acid on the template sequence. The various features of PILOT_PTM are presented, and it is tested on several modified and unmodified data sets including chemically synthesized phosphopeptides, histone H3-(1–50) polypeptides, histone H3-(1–50) tryptic fragments, and peptides generated from proteins extracted from chromatin-enriched fractions. The data sets consist of spectra derived from fragmentation via collision-induced dissociation, electron transfer dissociation, and electron capture dissociation. The capability of PILOT_PTM is then benchmarked using five state-of-the-art methods, InsPecT, Virtual Expert Mass Spectrometrist (VEMS), Modi, Mascot, and X!Tandem. PILOT_PTM demonstrates superior accuracy on both the small and large scale proteome experiments. A protocol is finally developed for the analysis of a complete LC-MS/MS scan using template sequences generated from SEQUEST and is demonstrated on over 270,000 MS/MS spectra collected from a total chromatin digest. PMID:20103568
Wang, S; Huang, G H
2013-03-15
Flood disasters have been extremely severe in recent decades, and they account for about one third of all natural catastrophes throughout the world. In this study, a two-stage mixed-integer fuzzy programming with interval-valued membership functions (TMFP-IMF) approach is developed for flood-diversion planning under uncertainty. TMFP-IMF integrates the fuzzy flexible programming, two-stage stochastic programming, and integer programming within a general framework. A concept of interval-valued fuzzy membership function is introduced to address complexities of system uncertainties. TMFP-IMF can not only deal with uncertainties expressed as fuzzy sets and probability distributions, but also incorporate pre-regulated water-diversion policies directly into its optimization process. TMFP-IMF is applied to a hypothetical case study of flood-diversion planning for demonstrating its applicability. Results indicate that reasonable solutions can be generated for binary and continuous variables. A variety of flood-diversion and capacity-expansion schemes can be obtained under four scenarios, which enable decision makers (DMs) to identify the most desired one based on their perceptions and attitudes towards the objective-function value and constraints.
Guo, P; Huang, G H
2009-01-01
In this study, an inexact fuzzy chance-constrained two-stage mixed-integer linear programming (IFCTIP) approach is proposed for supporting long-term planning of waste-management systems under multiple uncertainties in the City of Regina, Canada. The method improves upon the existing inexact two-stage programming and mixed-integer linear programming techniques by incorporating uncertainties expressed as multiple uncertainties of intervals and dual probability distributions within a general optimization framework. The developed method can provide an effective linkage between the predefined environmental policies and the associated economic implications. Four special characteristics of the proposed method make it unique compared with other optimization techniques that deal with uncertainties. Firstly, it provides a linkage to predefined policies that have to be respected when a modeling effort is undertaken; secondly, it is useful for tackling uncertainties presented as intervals, probabilities, fuzzy sets and their incorporation; thirdly, it facilitates dynamic analysis for decisions of facility-expansion planning and waste-flow allocation within a multi-facility, multi-period, multi-level, and multi-option context; fourthly, the penalties are exercised with recourse against any infeasibility, which permits in-depth analyses of various policy scenarios that are associated with different levels of economic consequences when the promised solid waste-generation rates are violated. In a companion paper, the developed method is applied to a real case for the long-term planning of waste management in the City of Regina, Canada.
NASA Astrophysics Data System (ADS)
Guo, P.; Huang, G. H.; Li, Y. P.
2010-01-01
In this study, an inexact fuzzy-chance-constrained two-stage mixed-integer linear programming (IFCTIP) approach is developed for flood diversion planning under multiple uncertainties. A concept of the distribution with fuzzy boundary interval probability is defined to address multiple uncertainties expressed as integration of intervals, fuzzy sets and probability distributions. IFCTIP integrates the inexact programming, two-stage stochastic programming, integer programming and fuzzy-stochastic programming within a general optimization framework. IFCTIP incorporates the pre-regulated water-diversion policies directly into its optimization process to analyze various policy scenarios; each scenario has different economic penalty when the promised targets are violated. More importantly, it can facilitate dynamic programming for decisions of capacity-expansion planning under fuzzy-stochastic conditions. IFCTIP is applied to a flood management system. Solutions from IFCTIP provide desired flood diversion plans with a minimized system cost and a maximized safety level. The results indicate that reasonable solutions are generated for objective function values and decision variables, thus a number of decision alternatives can be generated under different levels of flood flows.
NASA Astrophysics Data System (ADS)
Dietl, Tomasz
2015-03-01
A physically transparent and mathematically simple semiclassical model is employed to examine dynamics in the central-spin problem. The results reproduce previous findings obtained by various quantum approaches and, at the same time, provide information on the electron spin dynamics and Berry's phase effects over a wider range of experimentally relevant parameters than available previously. This development is relevant to dynamics of bound magnetic polarons and spin dephasing of an electron trapped by an impurity or a quantum dot, and coupled by a contact interaction to neighboring localized magnetic impurities or nuclear spins. Furthermore, it substantiates the applicability of semiclassical models to simulate dynamic properties of spintronic nanostructures with a mesoscopic number of spins.
Henriques, David; Rocha, Miguel; Saez-Rodriguez, Julio; Banga, Julio R.
2015-01-01
Motivation: Systems biology models can be used to test new hypotheses formulated on the basis of previous knowledge or new experimental data, contradictory with a previously existing model. New hypotheses often come in the shape of a set of possible regulatory mechanisms. This search is usually not limited to finding a single regulation link, but rather a combination of links subject to great uncertainty or no information about the kinetic parameters. Results: In this work, we combine a logic-based formalism, to describe all the possible regulatory structures for a given dynamic model of a pathway, with mixed-integer dynamic optimization (MIDO). This framework aims to simultaneously identify the regulatory structure (represented by binary parameters) and the real-valued parameters that are consistent with the available experimental data, resulting in a logic-based differential equation model. The alternative to this would be to perform real-valued parameter estimation for each possible model structure, which is not tractable for models of the size presented in this work. The performance of the method presented here is illustrated with several case studies: a synthetic pathway problem of signaling regulation, a two-component signal transduction pathway in bacterial homeostasis, and a signaling network in liver cancer cells. Supplementary information: Supplementary data are available at Bioinformatics online. Contact: julio@iim.csic.es or saezrodriguez@ebi.ac.uk PMID:26002881
Henriques, David; Rocha, Miguel; Saez-Rodriguez, Julio; Banga, Julio R
2015-09-15
Systems biology models can be used to test new hypotheses formulated on the basis of previous knowledge or new experimental data, contradictory with a previously existing model. New hypotheses often come in the shape of a set of possible regulatory mechanisms. This search is usually not limited to finding a single regulation link, but rather a combination of links subject to great uncertainty or no information about the kinetic parameters. In this work, we combine a logic-based formalism, to describe all the possible regulatory structures for a given dynamic model of a pathway, with mixed-integer dynamic optimization (MIDO). This framework aims to simultaneously identify the regulatory structure (represented by binary parameters) and the real-valued parameters that are consistent with the available experimental data, resulting in a logic-based differential equation model. The alternative to this would be to perform real-valued parameter estimation for each possible model structure, which is not tractable for models of the size presented in this work. The performance of the method presented here is illustrated with several case studies: a synthetic pathway problem of signaling regulation, a two-component signal transduction pathway in bacterial homeostasis, and a signaling network in liver cancer cells. Supplementary data are available at Bioinformatics online. julio@iim.csic.es or saezrodriguez@ebi.ac.uk. © The Author 2015. Published by Oxford University Press.
From the Kohn-Sham band gap to the fundamental gap in solids. An integer electron approach.
Baerends, E J
2017-06-21
It is often stated that the Kohn-Sham occupied-unoccupied gap in both molecules and solids is "wrong". We argue that this is not a correct statement. The KS theory does not allow to interpret the exact KS HOMO-LUMO gap as the fundamental gap (difference (I - A) of electron affinity (A) and ionization energy (I), twice the chemical hardness), from which it indeed differs, strongly in molecules and moderately in solids. The exact Kohn-Sham HOMO-LUMO gap in molecules is much below the fundamental gap and very close to the much smaller optical gap (first excitation energy), and LDA/GGA yield very similar gaps. In solids the situation is different: the excitation energy to delocalized excited states and the fundamental gap (I - A) are very similar, not so disparate as in molecules. Again the Kohn-Sham and LDA/GGA band gaps do not represent (I - A) but are significantly smaller. However, the special properties of an extended system like a solid make it very easy to calculate the fundamental gap from the ground state (neutral system) band structure calculations entirely within a density functional framework. The correction Δ from the KS gap to the fundamental gap originates from the response part v(resp) of the exchange-correlation potential and can be calculated very simply using an approximation to v(resp). This affords a calculation of the fundamental gap at the same level of accuracy as other properties of crystals at little extra cost beyond the ground state bandstructure calculation. The method is based on integer electron systems, fractional electron systems (an ensemble of N- and (N + 1)-electron systems) and the derivative discontinuity are not invoked.
Analytical Approach Validation for the Spin-Stabilized Satellite Attitude
NASA Technical Reports Server (NTRS)
Zanardi, Maria Cecilia F. P. S.; Garcia, Roberta Veloso; Kuga, Helio Koiti
2007-01-01
An analytical approach for spin-stabilized spacecraft attitude prediction is presented for the influence of the residual magnetic torques and the satellite in an elliptical orbit. Assuming a quadripole model for the Earth s magnetic field, an analytical averaging method is applied to obtain the mean residual torque in every orbital period. The orbit mean anomaly is used to compute the average components of residual torque in the spacecraft body frame reference system. The theory is developed for time variations in the orbital elements, giving rise to many curvature integrals. It is observed that the residual magnetic torque does not have component along the spin axis. The inclusion of this torque on the rotational motion differential equations of a spin stabilized spacecraft yields conditions to derive an analytical solution. The solution shows that the residual torque does not affect the spin velocity magnitude, contributing only for the precession and the drift of the spin axis of the spacecraft. The theory developed has been applied to the Brazilian s spin stabilized satellites, which are quite appropriated for verification and comparison of the theory with the data generated and processed by the Satellite Control Center of Brazil National Research Institute. The results show the period that the analytical solution can be used to the attitude propagation, within the dispersion range of the attitude determination system performance of Satellite Control Center of Brazil National Research Institute.
ERIC Educational Resources Information Center
Griffiths, Martin
2011-01-01
One of the author's undergraduate students recently asked him whether it was possible to generate a random positive integer. After some thought, the author realised that there were plenty of interesting mathematical ideas inherent in her question. So much so in fact, that the author decided to organise a workshop, open both to undergraduates and…
Meyers, C A; Schulz, A S
2009-01-07
The integer equal flow problem is an NP-hard network flow problem, in which all arcs in given sets R{sub 1}, ..., R{sub {ell}} must carry equal flow. We show this problem is effectively inapproximable, even if the cardinality of each set R{sub k} is two. When {ell} is fixed, it is solvable in polynomial time.
Proton detection of MAS solid-state NMR spectra of half-integer quadrupolar nuclei.
Venkatesh, Amrit; Hanrahan, Michael P; Rossini, Aaron J
Fast magic angle spinning (MAS) and proton detection has found widespread application to enhance the sensitivity of solid-state NMR experiments with spin-1/2 nuclei such as (13)C, (15)N and (29)Si, however, this approach is not yet routinely applied to half-integer quadrupolar nuclei. Here we have investigated the feasibility of using fast MAS and proton detection to enhance the sensitivity of solid-state NMR experiments with half-integer quadrupolar nuclei. The previously described dipolar hetero-nuclear multiple quantum correlation (D-HMQC) and dipolar refocused insensitive nuclei enhanced by polarization transfer (D-RINEPT) pulse sequences were used for proton detection of half-integer quadrupolar nuclei. Quantitative comparisons of signal-to-noise ratios and the sensitivity of proton detected D-HMQC and D-RINEPT and direct detection spin echo and quadrupolar Carr-Purcell Meiboom-Gill (QCPMG) solid-state NMR spectra, demonstrate that one dimensional proton detected experiments can provide sensitivity similar to or exceeding that obtainable with direct detection QCPMG experiments. 2D D-HMQC and D-RINEPT experiments provide less sensitivity than QCPMG experiments but proton detected 2D hetero-nuclear correlation solid-state NMR spectra of half-integer nuclei can still be acquired in about the same time as a 1D spin echo spectrum. Notably, the rarely used D-RINEPT pulse sequence is found to provide similar, or better sensitivity than D-HMQC in some cases. Proton detected D-RINEPT benefits from the short longitudinal relaxation times (T1) normally associated with half-integer quadrupolar nuclei, it can be combined with existing signal enhancement methods for quadrupolar nuclei, and t1-noise in the indirect dimension can easily be removed by pre-saturation of the (1)H nuclei. The rapid acquisition of proton detected 2D HETCOR solid-state NMR spectra of a range of half-integer quadrupolar nuclei such as (17)O, (27)Al, (35)Cl and (71)Ga is demonstrated. Copyright
Pulse-noise approach for classical spin systems.
Garanin, D A
2017-01-01
For systems of classical spins interacting with the bath via damping and thermal noise, an approach is suggested to replace the white noise by a pulse noise acting at regular time intervals Δt, within which the system evolves conservatively. The method is working well in the typical case of a small dimensionless damping constant λ and allows a considerable speedup of computations by using high-order numerical integrators with a large time step δt (up to a fraction of the precession period), while keeping δt≪Δt to reduce the relative contribution of noise-related operations. In cases when precession can be discarded, δt can be increased up to a fraction of the relaxation time ∝1/λ that leads to a further speedup. This makes equilibration speed comparable with that of the Metropolis Monte Carlo method. The pulse-noise approach is tested on single-spin and multispin models.
Pulse-noise approach for classical spin systems
NASA Astrophysics Data System (ADS)
Garanin, D. A.
2017-01-01
For systems of classical spins interacting with the bath via damping and thermal noise, an approach is suggested to replace the white noise by a pulse noise acting at regular time intervals Δ t , within which the system evolves conservatively. The method is working well in the typical case of a small dimensionless damping constant λ and allows a considerable speedup of computations by using high-order numerical integrators with a large time step δ t (up to a fraction of the precession period), while keeping δ t ≪Δ t to reduce the relative contribution of noise-related operations. In cases when precession can be discarded, δ t can be increased up to a fraction of the relaxation time ∝1 /λ that leads to a further speedup. This makes equilibration speed comparable with that of the Metropolis Monte Carlo method. The pulse-noise approach is tested on single-spin and multispin models.
Quantum Spin Liquids and Fractionalization
NASA Astrophysics Data System (ADS)
Misguich, Grégoire
This chapter discusses quantum antiferromagnets which do not break any symmetries at zero temperature - also called "spin liquids" - and focuses on lattice spin models with Heisenberg-like (i.e. SU(2)-symmetric) interactions in dimensions larger than one. We begin by discussing the Lieb-Schultz-Mattis theorem and its recent extension to D > 1 by Hastings (2004), which establishes an important distinction between spin liquids with an integer and with a half-integer spin per unit cell. Spin liquids of the first kind, "band insulators", can often be understood by elementary means, whereas the latter, "Mott insulators", are more complex (featuring "topological order") and support spin-1/2 excitations (spinons). The fermionic formalism (Affleck and Marston, 1988) is described and the effect of fluctuations about mean-field solutions, such as the possible creation of instabilities, is discussed in a qualitative way. In particular, we explain the emergence of gauge modes and their relation to fractionalization. The concept of the projective symmetry group (X.-G. Wen, 2002) is introduced, with the aid of some examples. Finally, we present the phenomenology of (gapped) short-ranged resonating-valence-bond spin liquids, and make contact with the fermionic approach by discussing their description in terms of a fluctuating Z 2 gauge field. Some recent references are given to other types of spin liquid, including gapless ones.
Quantum field theory in non-integer dimensions
Eyink, G.L.
1987-01-01
In a 1973 paper entitled Quantum Field-Theory Models in Less Than 4 Dimensions, Kenneth G. Wilson studied field-theories for spacetime dimension d between 2 and 4. With unconventional renormalizations, these models were found to have non-Gaussian ultraviolet renormalization group fixed points. Wilson's method was perturbative dimensional regularization: the Feynman-graph integrals were analytically continued to non-integer d. His work left open the question of the nonperturbative existence of the models. Since that landmark paper, Yuval Gefen, Amnon Aharony and Benoit B. Mandelbrot have shown that Ising spin models on fractal lattices have critical properties like those predicted for non-integer dimensions by the analytic continuation, or {epsilon}-expansion method. This work shows that fractal lattices and continua provide also a nonperturbative definition of field-theories in non-integer dimensions. The fractal point-sets employed are the Sierpinski carpets and their higher-dimensional generalizations. This class of point-sets has a tunable dimension which allows the approach to four from below. Furthermore, the carpets have discrete groups of scale or dilation invariances and infinite order of ramification. A class of scalar field models are defined on these sets which should reduce to the standard models when d {nearrow}4. The propagator for these models is given by a proper-time or heat-kernel representation. For this propagator, reflection-positivity is established, a general scaling law is conjectured (and established in a special case), and the perturbative renormalizability shown to be governed by the spectral dimensionality. Scalar models with another choice of propagator, the hierarchical propagator, are studied by rigorous renormalization-group methods.
BAI,M.; ROSER, T.
2007-06-25
This paper proposes a new design of spin flipper for RHIC to obtain full spin flip with the spin tune staying at half integer. The traditional technique of using an rf dipole or solenoid as spin flipper to achieve full spin flip in the presence of full Siberian snake requires one to change the snake configuration to move the spin tune away from half integer. This is not practical for an operational high energy polarized proton collider like RHIC where beam lifetime is sensitive to small betatron tune change. The design of the new spin flipper as well as numerical simulations are presented.
Algebraic spin liquid in an exactly solvable spin model
Yao, Hong; Zhang, Shou-Cheng; Kivelson, Steven A.; /Stanford U., Phys. Dept.
2010-03-25
We have proposed an exactly solvable quantum spin-3/2 model on a square lattice. Its ground state is a quantum spin liquid with a half integer spin per unit cell. The fermionic excitations are gapless with a linear dispersion, while the topological 'vison' excitations are gapped. Moreover, the massless Dirac fermions are stable. Thus, this model is, to the best of our knowledge, the first exactly solvable model of half-integer spins whose ground state is an 'algebraic spin liquid.'
Random walk approach to spin dynamics in a two-dimensional electron gas with spin-orbit coupling
Yang, Luyi; Orenstein, J.; Lee, Dung-Hai
2010-09-27
We introduce and solve a semiclassical random walk (RW) model that describes the dynamics of spin polarization waves in zinc-blende semiconductor quantum wells. We derive the dispersion relations for these waves, including the Rashba, linear and cubic Dresselhaus spin-orbit interactions, as well as the effects of an electric field applied parallel to the spin polarization wave vector. In agreement with calculations based on quantum kinetic theory [P. Kleinert and V. V. Bryksin, Phys. Rev. B 76, 205326 (2007)], the RW approach predicts that spin waves acquire a phase velocity in the presence of the field that crosses zero at a nonzero wave vector, q{sub 0}. In addition, we show that the spin-wave decay rate is independent of field at q{sub 0} but increases as (q-q{sub 0}){sup 2} for q {ne} q{sub 0}. These predictions can be tested experimentally by suitable transient spin grating experiments.
Half-Integer Spin Molecular Nanomagnets
2003-01-01
Alcade, 2 Sumit Bhaduri, 2 Rachel S. Edwards,4 Sheila M. J. Aubinl and Ziming Sun1 1Department of Chemistry and Biochemistry-0358, University of...Hendrickson, J. Am. Chem. Soc. 117, 301 (1995). 9. S. M. J. Aubin, S. Spagna, H. J. Eppley, R. E. Sager , G. Christou and D. N. Hendrickson, J. Chem. Soc., Chem
The Spin-Foam Approach to Quantum Gravity.
Perez, Alejandro
2013-01-01
This article reviews the present status of the spin-foam approach to the quantization of gravity. Special attention is payed to the pedagogical presentation of the recently-introduced new models for four-dimensional quantum gravity. The models are motivated by a suitable implementation of the path integral quantization of the Plebanski formulation of gravity on a simplicial regularization. The article also includes a self-contained treatment of 2+1 gravity. The simple nature of the latter provides the basis and a perspective for the analysis of both conceptual and technical issues that remain open in four dimensions.
Laser-induced ultrafast spin current pulses: a thermodynamic approach.
Fognini, A; Michlmayr, T U; Vaterlaus, A; Acremann, Y
2017-06-01
The ultrafast demagnetization process allows for the generation of femtosecond spin current pulses. Here, we present a thermodynamic model of the spin current generation process, based on the chemical potential gradients as the driving force for the spin current. We demonstrate that the laser-induced spin current can be estimated by an easy to understand diffusion model.
NASA Astrophysics Data System (ADS)
Ibarra-Sierra, V. G.; Sandoval-Santana, J. C.; Azaizia, S.; Carrère, H.; Bakaleinikov, L. A.; Kalevich, V. K.; Ivchenko, E. L.; Marie, X.; Amand, T.; Balocchi, A.; Kunold, A.
2017-05-01
Similar to nitrogen-vacancy centers in diamond and impurity atoms in silicon, interstitial gallium deep paramagnetic centers in GaAsN have been proven to have useful characteristics for the development of spintronic devices. Among other interesting properties, under circularly polarized light, gallium centers act as spin filters that dynamically polarize free and bound electrons reaching record spin polarizations (close to 100%). Furthermore, the recent observation of the amplification of the spin filtering effect under a Faraday configuration magnetic field has suggested that the hyperfine interaction that couples bound electrons and nuclei permits the optical manipulation of the nuclear spin polarization. Even though the mechanisms behind the nuclear spin polarization in gallium centers are fairly well understood, the origin of nuclear spin relaxation and the formation of an Overhauser-like magnetic field remain elusive. In this work we develop a model based on the master equation approach to describe the evolution of electronic and nuclear spin polarizations of gallium centers interacting with free electrons and holes. Our results are in good agreement with existing experimental observations. In particular, we are able to reproduce the amplification of the spin filtering effect under a circularly polarized excitation in a Faraday configuration magnetic field. In regard to the nuclear spin relaxation, the roles of nuclear dipolar and quadrupolar interactions are discussed. Our findings show that, besides the hyperfine interaction, the spin relaxation mechanisms are key to understand the amplification of the spin filtering effect and the appearance of the Overhauser-like magnetic field. To gain a deeper insight in the interplay of the hyperfine interaction and the relaxation mechanisms, we have also performed calculations in the pulsed excitation regime. Our model's results allow us to propose an experimental protocol based on time-resolved spectroscopy. It
Logic integer programming models for signaling networks.
Haus, Utz-Uwe; Niermann, Kathrin; Truemper, Klaus; Weismantel, Robert
2009-05-01
We propose a static and a dynamic approach to model biological signaling networks, and show how each can be used to answer relevant biological questions. For this, we use the two different mathematical tools of Propositional Logic and Integer Programming. The power of discrete mathematics for handling qualitative as well as quantitative data has so far not been exploited in molecular biology, which is mostly driven by experimental research, relying on first-order or statistical models. The arising logic statements and integer programs are analyzed and can be solved with standard software. For a restricted class of problems the logic models reduce to a polynomial-time solvable satisfiability algorithm. Additionally, a more dynamic model enables enumeration of possible time resolutions in poly-logarithmic time. Computational experiments are included.
Phase Diagram of a 2-D Plane Rotator Model with Integer and Half-Integer Vortices
NASA Astrophysics Data System (ADS)
de Souza, Adauto J. F.; Landau, D. P.
1996-03-01
A two-dimensional plane rotator spin model is simulated by employing the single cluster embeding Monte Carlo technique and the re-weighting histogram analysis. The system is described by the Hamiltonian^1 \\cal H = -J1 sum_< i,j > Si \\cdot Sj - J2 sum_< i,j > ( Si \\cdot Sj )^2. In adition to the familiar integer vortices, this model possesses half-integer vortex excitations as well. The system exhibits three low-temperature phases which may be identified by the behavior of suitably defined two-point correlation functions. The half- and integer-vortex densities as a function of temperature are calculated for several values of the parameter α = J_2/J_1. The phase boundaries are determined and the nature of the phase transitions is investigated. Research supported in part by the CNPq and the NSF. Permanent address: Departmento de Física e Matemática, Universidade Federal Rural de Pernambuco, 52171-900, Recife, Pernambuco, Brazil ^1 D.H. Lee and G. Grinstein Phys. Rev. Lett. \\underline55, 541, (1985)
El-Qulity, Said Ali; Mohamed, Ali Wagdy
2016-01-01
This paper proposes a nonlinear integer goal programming model (NIGPM) for solving the general problem of admission capacity planning in a country as a whole. The work aims to satisfy most of the required key objectives of a country related to the enrollment problem for higher education. The system general outlines are developed along with the solution methodology for application to the time horizon in a given plan. The up-to-date data for Saudi Arabia is used as a case study and a novel evolutionary algorithm based on modified differential evolution (DE) algorithm is used to solve the complexity of the NIGPM generated for different goal priorities. The experimental results presented in this paper show their effectiveness in solving the admission capacity for higher education in terms of final solution quality and robustness. PMID:26819583
El-Qulity, Said Ali; Mohamed, Ali Wagdy
2016-01-01
This paper proposes a nonlinear integer goal programming model (NIGPM) for solving the general problem of admission capacity planning in a country as a whole. The work aims to satisfy most of the required key objectives of a country related to the enrollment problem for higher education. The system general outlines are developed along with the solution methodology for application to the time horizon in a given plan. The up-to-date data for Saudi Arabia is used as a case study and a novel evolutionary algorithm based on modified differential evolution (DE) algorithm is used to solve the complexity of the NIGPM generated for different goal priorities. The experimental results presented in this paper show their effectiveness in solving the admission capacity for higher education in terms of final solution quality and robustness.
A review of «integer PPP» applications
NASA Astrophysics Data System (ADS)
Perosanz, Felix; Mercier, Flavien; Loyer, Sylvain; Petit, Gérard; Marty, Jean-Charles
2016-04-01
The possibility of fixing GNSS phase observations to integer values in PPP mode has been demonstrated by several authors. Various scientific and commercial services have started offering this option. In this presentation we first summarize the mathematical formalism needed to recover integer ambiguities while processing un-differenced GNSS phase observations. The improvements but also the limitations of "integer PPP" (IPPP) solutions are discussed. Then we make a review of several scientific results based on this method to illustrate its wide field of applications like oceanic buoy tracking, glacier deformation, atomic oscillator frequency transfer, LEO satellite orbit determination. Several ideas for future improvement are also discussed including the recommendation to IGS Analysis Centers to adopt a compatible approach to deliver "integer" clock products for a combined solution that would allow for IPPP solutions.
Trace of totally positive algebraic integers and integer transfinite diameter
NASA Astrophysics Data System (ADS)
Flammang, V.
2009-06-01
Explicit auxiliary functions can be used in the ``Schur-Siegel- Smyth trace problem''. In the previous works, these functions were constructed only with polynomials having all their roots positive. Here, we use several polynomials with complex roots, which are found with Wu's algorithm, and we improve the known lower bounds for the absolute trace of totally positive algebraic integers. This improvement has a consequence for the search of Salem numbers that have a negative trace. The same method also gives a small improvement of the upper bound for the integer transfinite diameter of [0,1].
Synthetic Approach To Determine the Effect of Nuclear Spin Distance on Electronic Spin Decoherence.
Graham, Michael J; Yu, Chung-Jui; Krzyaniak, Matthew D; Wasielewski, Michael R; Freedman, Danna E
2017-03-01
Nuclear-electronic interactions are a fundamental phenomenon which impacts fields from magnetic resonance imaging to quantum information processing (QIP). The realization of QIP would transform diverse areas of research including accurate simulation of quantum dynamics and cryptography. One promising candidate for the smallest unit of QIP, a qubit, is electronic spin. Electronic spins in molecules offer significant advantages with regard to QIP, and for the emerging field of quantum sensing. Yet relative to other qubit candidates, they possess shorter superposition lifetimes, known as coherence times or T2, due to interactions with nuclear spins in the local environment. Designing complexes with sufficiently long values of T2 requires an understanding of precisely how the position of nuclear spins relative to the electronic spin center affects decoherence. Herein, we report the first synthetic study of the relationship between nuclear spin-electron spin distance and decoherence. Through the synthesis of four vanadyl complexes, (Ph4P)2[VO(C3H6S2)2] (1), (Ph4P)2[VO(C5H6S4)2] (2), (Ph4P)2[VO(C7H6S6)2] (3), and (Ph4P)2[VO(C9H6S8)2] (4), we are able to synthetically place a spin-laden propyl moiety at well-defined distances from an electronic spin center by employing a spin-free carbon-sulfur scaffold. We interrogate this series of molecules with pulsed electron paramagnetic resonance (EPR) spectroscopy to determine their coherence times. Our studies demonstrate a sharp jump in T2 when the average V-H distance is decreased from 6.6(6) to 4.0(4) Å, indicating that spin-active nuclei sufficiently close to the electronic spin center do not contribute to decoherence. These results illustrate the power of synthetic chemistry in elucidating the fundamental mechanisms underlying electronic polarization transfer and provide vital principles for the rational design of long-coherence electronic qubits.
Finite block pseudo-spin approach of proton glass
NASA Astrophysics Data System (ADS)
Lee, Kwang-Sei; Koo, Je Huan; Lee, Cheol Eui
2016-08-01
We herein propose an alternative phenomenology to explain the phase of proton glass by reference to finite block spin theory in magnetism, in which the phase may be considered as being a short-range ferroelectric ordering of block pseudo-spins comprised of random pseudo-spins that have a majority of individual pseudo-spins in a given sense. By making use of the Curie law of block pseudo-spins, we obtained the dielectric susceptibility for the lower and higher temperature approximations of the Brillouin function. The experimental results for the susceptibility in hydrogen-bonded mixed crystals of ferroelectric RbH2P(As)O4 and antiferroelectric NH4H2P(As)O4 were thus fitted fairly well at low temperatures in the proton glass phase whereas some deviation from our formulation was seen at high temperatures in the paraelectric phase.
The quench action approach in finite integrable spin chains
NASA Astrophysics Data System (ADS)
Alba, Vincenzo; Calabrese, Pasquale
2016-04-01
We consider the problem of constructing the stationary state following a quantum quench, using the exact overlaps for finite size integrable models. We focus on the isotropic Heisenberg spin chain with initial state Néel or Majumdar-Ghosh (dimer), although the proposed approach is valid for an arbitrary integrable model. We consider only eigenstates which do not contain zero-momentum strings because the latter are affected by fictitious singularities that are very difficult to take into account. We show that the fraction of eigenstates that do not contain zero-momentum strings is vanishing in the thermodynamic limit. Consequently, restricting to this part of the Hilbert space leads to vanishing expectation values of local observables. However, it is possible to reconstruct the asymptotic values by properly reweighting the expectations in the considered subspace, at the price of introducing finite-size corrections. We also develop a Monte Carlo sampling of the Hilbert space which allows us to study larger systems. We accurately reconstruct the expectation values of the conserved charges and the root distributions in the stationary state, which turn out to match the exact thermodynamic results. The proposed method can be implemented even in cases in which an analytic thermodynamic solution is not obtainable.
Ning Boyuan; Zhuang Jun; Zhang Wenxian; You, J. Q.
2011-07-15
We study the enhancement of spin coherence with periodic, concatenated, or Uhrig dynamical decoupling N-pulse sequences in a spin-1 Bose-Einstein condensate, where the intrinsic dynamical instability in such a ferromagnetically interacting condensate causes spin decoherence and eventually leads to a multiple spatial-domain structure or a spin texture. Our results show that all three sequences successfully enhance the spin coherence by pushing the wave vector of the most unstable mode in the condensate to a larger value. Among the three sequences with the same number of pulses, the concatenated one shows the best performance in preserving the spin coherence. More interestingly, we find that all three sequences exactly follow the same enhancement law, k{sub -}T{sup 1/2}=c, with k{sub -} the wave vector of the most unstable mode, T the sequence period, and c a sequence-dependent constant. Such a law between k{sub -} and T is also derived analytically for an attractive scalar Bose-Einstein condensate subjected to a periodic dynamical decoupling sequence.
Computational approach to the study of thermal spin crossover phenomena
Rudavskyi, Andrii; Broer, Ria; Sousa, Carmen
2014-05-14
The key parameters associated to the thermally induced spin crossover process have been calculated for a series of Fe(II) complexes with mono-, bi-, and tridentate ligands. Combination of density functional theory calculations for the geometries and for normal vibrational modes, and highly correlated wave function methods for the energies, allows us to accurately compute the entropy variation associated to the spin transition and the zero-point corrected energy difference between the low- and high-spin states. From these values, the transition temperature, T{sub 1/2}, is estimated for different compounds.
NASA Astrophysics Data System (ADS)
Henner, Victor K.; Klots, Andrey; Belozerova, Tatyana
2016-12-01
Problems of interacting quantum magnetic moments become exponentially complex with increasing number of particles. As a result, classical equations are often used to model spin systems. In this paper we show that a classical spins based approach can be used to describe the phenomena essentially quantum in nature such as of the Pake doublet.
NASA Astrophysics Data System (ADS)
Purnomo, Muhammad Ridwan Andi; Satrio Wiwoho, Yoga
2016-01-01
Facility layout becomes one of production system factor that should be managed well, as it is designated for the location of production. In managing the layout, designing the layout by considering the optimal layout condition that supports the work condition is essential. One of the method for facility layout optimization is Mixed Integer Programming (MIP). In this study, the MIP is solved using Lingo 9.0 software and considering quantitative and qualitative objectives to be achieved simultaneously: minimizing material handling cost, maximizing closeness rating, and minimizing re-layout cost. The research took place in Rekayasa Wangdi as a make to order company, focusing on the making of concrete brick dough stirring machine with 10 departments involved. The result shows an improvement in the new layout for 333,72 points of objective value compared with the initial layout. As the conclusion, the proposed MIP is proven to be used to model facility layout problem under multi objective consideration for a more realistic look.
Integer Operations Using a Whiteboard
ERIC Educational Resources Information Center
Andrews, Delise R.
2011-01-01
Interactive whiteboards are somewhat unimpressive at first and look like the whiteboards that already hang on the walls of many classrooms. However, integrating interactive whiteboard technology in a unit on adding and subtracting integers enhances student engagement and understanding. In this article, the author describes how she used an…
Integer Operations Using a Whiteboard
ERIC Educational Resources Information Center
Andrews, Delise R.
2011-01-01
Interactive whiteboards are somewhat unimpressive at first and look like the whiteboards that already hang on the walls of many classrooms. However, integrating interactive whiteboard technology in a unit on adding and subtracting integers enhances student engagement and understanding. In this article, the author describes how she used an…
Quantum spins and quasiperiodicity: a real space renormalization group approach.
Jagannathan, A
2004-01-30
We study the antiferromagnetic spin-1/2 Heisenberg model on a two-dimensional bipartite quasiperiodic structure, the octagonal tiling, the aperiodic equivalent of the square lattice for periodic systems. An approximate block spin renormalization scheme is described for this problem. The ground state energy and local staggered magnetizations for this system are calculated and compared with the results of a recent quantum Monte Carlo calculation for the tiling. It is conjectured that the ground state energy is exactly equal to that of the quantum antiferromagnet on the square lattice.
More Designer Decimals: The Integers and Their Geometric Extensions
ERIC Educational Resources Information Center
Chan, O-Yeat; Smoak, James
2006-01-01
The fraction 10000/9801 has an intriguing decimal expansion, namely 1.02030405... In this paper, we investigate the properties of this fraction via an arithmetical approach. The approach also yields a class of fractions whose decimal expansions involve higher-dimensional analogues of the integers, the n-dimensional pyramidal numbers, thereby…
Bohr-Sommerfeld quantization of spin Hamiltonians.
Garg, Anupam; Stone, Michael
2004-01-09
The Bohr-Sommerfeld rule for a spin system is obtained, including the first quantum corrections. The rule applies to both integer and half-integer spin. It is tested for various models, in particular, the Lipkin-Meshkov-Glick model, and found to agree very well with exact results.
Integers Made Easy: Just Walk It Off
ERIC Educational Resources Information Center
Nurnberger-Haag, Julie
2007-01-01
This article describes a multisensory method for teaching students how to multiply and divide as well as add and subtract integers. The author uses sidewalk chalk and the underlying concept of integers to physically and mentally engage students in understanding the concepts of integers, making connections, and developing computational fluency.…
Integers Made Easy: Just Walk It Off
ERIC Educational Resources Information Center
Nurnberger-Haag, Julie
2007-01-01
This article describes a multisensory method for teaching students how to multiply and divide as well as add and subtract integers. The author uses sidewalk chalk and the underlying concept of integers to physically and mentally engage students in understanding the concepts of integers, making connections, and developing computational fluency.…
Lagrangian approach to the Barrett-Crane spin foam model
Bonzom, Valentin; Livine, Etera R.
2009-03-15
We provide the Barrett-Crane spin foam model for quantum gravity with a discrete action principle, consisting in the usual BF term with discretized simplicity constraints which in the continuum turn topological BF theory into gravity. The setting is the same as usually considered in the literature: space-time is cut into 4-simplices, the connection describes how to glue these 4-simplices together and the action is a sum of terms depending on the holonomies around each triangle. We impose the discretized simplicity constraints on disjoint tetrahedra and we show how the Lagrange multipliers distort the parallel transport and the correlations between neighboring simplices. We then construct the discretized BF action using a noncommutative * product between SU(2) plane waves. We show how this naturally leads to the Barrett-Crane model. This clears up the geometrical meaning of the model. We discuss the natural generalization of this action principle and the spin foam models it leads to. We show how the recently introduced spin foam fusion coefficients emerge with a nontrivial measure. In particular, we recover the Engle-Pereira-Rovelli spin foam model by weakening the discretized simplicity constraints. Finally, we identify the two sectors of Plebanski's theory and we give the analog of the Barrett-Crane model in the nongeometric sector.
Teaching the Spin Selection Rule: An Inductive Approach
ERIC Educational Resources Information Center
Halstead, Judith A.
2013-01-01
In the group exercise described, students are guided through an inductive justification for the spin conservation selection rule ([delta]S = 0). Although the exercise only explicitly involves various states of helium, the conclusion is one of the most widely applicable selection rules for the interaction of light with matter, applying, in various…
Dry spinning approach to continuous graphene fibers with high toughness.
Tian, Qishi; Xu, Zhen; Liu, Yingjun; Fang, Bo; Peng, Li; Xi, Jiabin; Li, Zheng; Gao, Chao
2017-08-31
Graphene fiber (GF) has emerged as a new carbonaceous fiber species since graphene-based liquid crystals were discovered. The growing performances of GFs in terms of their mechanical performance and their functionalities have assured their extensive applications in structural materials and functional textiles. To date, many spinning strategies utilizing coagulation baths have been applied in GF, which necessitates a complicated washing process. Dry spinning is a more convenient and green method for use with fibers in the chemical fiber industry, and should be a good option for GFs; however, this technique has never been used in a system of GF. In this research, first the dry spinning technique was used to fabricate continuous GFs and the dry spun GFs showed good toughness and flexibility. The dry spinnability of graphene oxide liquid crystals was achieved by choosing dispersive solvents with low surface tension and high volatility. The dry spun neat GFs possessed high toughness up to 19.12 MJ m(-3), outperforming the wet spun neat GFs. This dry spinning methodology facilitates the green fabrication of fibers of graphene and graphene-beyond two-dimensional nanomaterials, and it may also be extended to other printing technologies for complex graphene architectures.
Teaching the Spin Selection Rule: An Inductive Approach
ERIC Educational Resources Information Center
Halstead, Judith A.
2013-01-01
In the group exercise described, students are guided through an inductive justification for the spin conservation selection rule ([delta]S = 0). Although the exercise only explicitly involves various states of helium, the conclusion is one of the most widely applicable selection rules for the interaction of light with matter, applying, in various…
MISO - Mixed Integer Surrogate Optimization
Mueller, Juliane
2016-01-20
MISO is an optimization framework for solving computationally expensive mixed-integer, black-box, global optimization problems. MISO uses surrogate models to approximate the computationally expensive objective function. Hence, derivative information, which is generally unavailable for black-box simulation objective functions, is not needed. MISO allows the user to choose the initial experimental design strategy, the type of surrogate model, and the sampling strategy.
Higher-spin charges in Hamiltonian form. II. Fermi fields
NASA Astrophysics Data System (ADS)
Campoleoni, A.; Henneaux, M.; Hörtner, S.; Leonard, A.
2017-02-01
We build the asymptotic higher-spin charges associated with "improper" gauge transformations for fermionic higher-spin gauge fields on Anti de Sitter backgrounds of arbitrary dimension. This is achieved within the canonical formalism. We consider massless fields of spin s+1/2, described by a symmetric spinor-tensor of rank s in the Fang-Fronsdal approach. We begin from a detailed analysis of the spin 5/2 example, for which we cast the Fang-Fronsdal action in Hamiltonian form, we derive the charges and we propose boundary conditions on the canonical variables that secure their finiteness. We then extend the computation of charges and the characterisation of boundary conditions to arbitrary half-integer spin. Our construction generalises to higher-spin fermionic gauge fields the known Hamiltonian derivation of supercharges in AdS supergravity.
Solid-State Electronic Spin Coherence Time Approaching One Second
2013-04-23
Methods) allows for common-mode rejection of noise, but does not remove the effect of pulse errors. We noticed a modest reduction in signal contrast and...for natural abundance diamond (1.1% 13C), as the dynamical decoupling sequences we employ are also effective in suppressing dephasing caused by the...since for ensembles of NVs in the presence of 13C nuclear spins, additional decoherence is caused by variations in the effective Larmor frequency of
Levi, Michele; Steinhoff, Jan E-mail: jan.steinhoff@ist.utl.pt
2014-12-01
The next-to-next-to-leading order spin1-spin2 potential for an inspiralling binary, that is essential for accuracy to fourth post-Newtonian order, if both components in the binary are spinning rapidly, has been recently derived independently via the ADM Hamiltonian and the Effective Field Theory approaches, using different gauges and variables. Here we show the complete physical equivalence of the two results, thereby we first prove the equivalence of the ADM Hamiltonian and the Effective Field Theory approaches at next-to-next-to-leading order with the inclusion of spins. The main difficulty in the spinning sectors, which also prescribes the manner in which the comparison of the two results is tackled here, is the existence of redundant unphysical spin degrees of freedom, associated with the spin gauge choice of a point within the extended spinning object for its representative worldline. After gauge fixing and eliminating the unphysical degrees of freedom of the spin and its conjugate at the level of the action, we arrive at curved spacetime generalizations of the Newton-Wigner variables in closed form, which can also be used to obtain further Hamiltonians, based on an Effective Field Theory formulation and computation. Finally, we make use of our validated result to provide gauge invariant relations among the binding energy, angular momentum, and orbital frequency of an inspiralling binary with generic compact spinning components to fourth post-Newtonian order, including all known sectors up to date.
NASA Astrophysics Data System (ADS)
Levi, Michele; Steinhoff, Jan
2014-12-01
The next-to-next-to-leading order spin1-spin2 potential for an inspiralling binary, that is essential for accuracy to fourth post-Newtonian order, if both components in the binary are spinning rapidly, has been recently derived independently via the ADM Hamiltonian and the Effective Field Theory approaches, using different gauges and variables. Here we show the complete physical equivalence of the two results, thereby we first prove the equivalence of the ADM Hamiltonian and the Effective Field Theory approaches at next-to-next-to-leading order with the inclusion of spins. The main difficulty in the spinning sectors, which also prescribes the manner in which the comparison of the two results is tackled here, is the existence of redundant unphysical spin degrees of freedom, associated with the spin gauge choice of a point within the extended spinning object for its representative worldline. After gauge fixing and eliminating the unphysical degrees of freedom of the spin and its conjugate at the level of the action, we arrive at curved spacetime generalizations of the Newton-Wigner variables in closed form, which can also be used to obtain further Hamiltonians, based on an Effective Field Theory formulation and computation. Finally, we make use of our validated result to provide gauge invariant relations among the binding energy, angular momentum, and orbital frequency of an inspiralling binary with generic compact spinning components to fourth post-Newtonian order, including all known sectors up to date.
Next-to-leading order gravitational spin-orbit coupling in an effective field theory approach
Levi, Michele
2010-11-15
We use an effective field theory (EFT) approach to calculate the next-to-leading order (NLO) gravitational spin-orbit interaction between two spinning compact objects. The NLO spin-orbit interaction provides the most computationally complex sector of the NLO spin effects, previously derived within the EFT approach. In particular, it requires the inclusion of nonstationary cubic self-gravitational interaction, as well as the implementation of a spin supplementary condition (SSC) at higher orders. The EFT calculation is carried out in terms of the nonrelativistic gravitational field parametrization, making the calculation more efficient with no need to rely on automated computations, and illustrating the coupling hierarchy of the different gravitational field components to the spin and mass sources. Finally, we show explicitly how to relate the EFT derived spin results to the canonical results obtained with the Arnowitt-Deser-Misner (ADM) Hamiltonian formalism. This is done using noncanonical transformations, required due to the implementation of covariant SSC, as well as canonical transformations at the level of the Hamiltonian, with no need to resort to the equations of motion or the Dirac brackets.
Theory of spin wave modes in tangentially magnetized thin cylindrical dots: A variational approach
NASA Astrophysics Data System (ADS)
Zivieri, R.; Stamps, R. L.
2006-04-01
We present a theoretical study of the quantized spin wave spectrum in tangentially magnetized cylindrical thin magnetic dots. Low-energy spin waves in magnetic dots may be subdivided into four families: Damon-Eshbach like, backward like, mixed, and end modes. Frequencies and mode profiles are found using a variational approach based on carefully chosen trial functions. The variational method has the advantage that it can be used for large dots that are not practical to treat using numerical finite-element methods. Results for small dots generated using the variational method compare well with micromagnetic results. The variational method is demonstrated with an analysis of data obtained from experimental Brillouin light scattering data from saturated thin cylindrical Permalloy dots. Our approach allows for the definition of parameters describing important contributions to the spin wave energies. As an example, we show that a variational parameter γ provides a measure of spin wave localization near the dot border for one class of modes.
Hybrid Biogeography-Based Optimization for Integer Programming
Wang, Zhi-Cheng
2014-01-01
Biogeography-based optimization (BBO) is a relatively new bioinspired heuristic for global optimization based on the mathematical models of biogeography. By investigating the applicability and performance of BBO for integer programming, we find that the original BBO algorithm does not perform well on a set of benchmark integer programming problems. Thus we modify the mutation operator and/or the neighborhood structure of the algorithm, resulting in three new BBO-based methods, named BlendBBO, BBO_DE, and LBBO_LDE, respectively. Computational experiments show that these methods are competitive approaches to solve integer programming problems, and the LBBO_LDE shows the best performance on the benchmark problems. PMID:25003142
A Class of Cuts and Related Algorithms in Integer Programming.
A new family of intersection cuts is obtained from a class of convex polyhedra (generalized octahedra). It is shown that these cuts can also be...obtained as convex combinations of the Gomory mixed integer cuts . A constructive approach to obtain improved (i.e. deeper) cuts is then presented and discussed. (Author)
Leveraging Structure: Logical Necessity in the Context of Integer Arithmetic
ERIC Educational Resources Information Center
Bishop, Jessica Pierson; Lamb, Lisa L.; Philipp, Randolph A.; Whitacre, Ian; Schappelle, Bonnie P.
2016-01-01
Looking for, recognizing, and using underlying mathematical structure is an important aspect of mathematical reasoning. We explore the use of mathematical structure in children's integer strategies by developing and exemplifying the construct of logical necessity. Students in our study used logical necessity to approach and use numbers in a…
Leveraging Structure: Logical Necessity in the Context of Integer Arithmetic
ERIC Educational Resources Information Center
Bishop, Jessica Pierson; Lamb, Lisa L.; Philipp, Randolph A.; Whitacre, Ian; Schappelle, Bonnie P.
2016-01-01
Looking for, recognizing, and using underlying mathematical structure is an important aspect of mathematical reasoning. We explore the use of mathematical structure in children's integer strategies by developing and exemplifying the construct of logical necessity. Students in our study used logical necessity to approach and use numbers in a…
Broken spin symmetry approach to chemical reactivity and magnetism of graphenium species
Sheka, E. F.; Chernozatonskii, L. A.
2010-01-15
The basic problem of weak interaction between odd electrons in graphene and silicene is considered in the framework of the broken spin symmetry approach. This approach exhibits the peculiarities of the odd-electron behavior via both enhanced chemical reactivity and magnetism.
Integer programming, fullerenes and nanotubes
Fowler, P.W.; Hansen, P.; Leroy, C.; Sachs, H.
1994-12-31
Graph theoretic and integer programming techniques provide answers to a series of questions in organic chemistry. We focus on problems on fullerenes, or closed carbon-cage molecules with large number of carbon atoms, and nanotubes, which are similar open or closed end tubes of carbon atoms with a few manometer diameter. These problems include isomer enumeration, counting Kekul{acute e} structures (or perfect matchings), finding Kekul{acute e} structures with a maximum number of resonant hexagons (i.e., determining the Clar and Fries numbers) and finding the stability number of fullerenes.
Spin glass approach to the feedback vertex set problem
NASA Astrophysics Data System (ADS)
Zhou, Hai-Jun
2013-11-01
A feedback vertex set (FVS) of an undirected graph is a set of vertices that contains at least one vertex of each cycle of the graph. The feedback vertex set problem consists of constructing a FVS of size less than a certain given value. This combinatorial optimization problem has many practical applications, but it is in the nondeterministic polynomial-complete class of worst-case computational complexity. In this paper we define a spin glass model for the FVS problem and then study this model on the ensemble of finite-connectivity random graphs. In our model the global cycle constraints are represented through the local constraints on all the edges of the graph, and they are then treated by distributed message-passing procedures such as belief propagation. Our belief propagation-guided decimation algorithm can construct nearly optimal feedback vertex sets for single random graph instances and regular lattices. We also design a spin glass model for the FVS problem on a directed graph. Our work will be very useful for identifying the set of vertices that contribute most significantly to the dynamical complexity of a large networked system.
Edge states and integer quantum Hall effect in topological insulator thin films
NASA Astrophysics Data System (ADS)
Zhang, Song-Bo; Lu, Hai-Zhou; Shen, Shun-Qing
The integer quantum Hall effect is a topological state of quantum matter in two dimensions, and has recently been observed in three-dimensional topological insulator thin films. In this report, I will talk about the Landau levels and edge states of surface Dirac fermions in topological insulators under a strong magnetic field. We examine the formation of the quantum plateaux of the Hall conductance and find two different patterns, in one pattern the filling number covers all integers while only odd integers in the other. We focus on the quantum plateau closest to zero energy and demonstrate the breakdown of the quantum spin Hall effect as a result of the interplay of magnetic field and structure inversion asymmetry. We also reveal that the edge states exist only for the integer Hall conductance while no edge-state solution can be found for the ''half-integer'' Hall conductance. The addition of top and bottom surface Dirac fermions always form well-defined edge states, and gives an integer quantum Hall effect. This work establishes an intuitive picture of the edge states to understand the integer quantum Hall effect for Dirac electrons in topological insulator thin films.
Edge states and integer quantum Hall effect in topological insulator thin films.
Zhang, Song-Bo; Lu, Hai-Zhou; Shen, Shun-Qing
2015-08-25
The integer quantum Hall effect is a topological state of quantum matter in two dimensions, and has recently been observed in three-dimensional topological insulator thin films. Here we study the Landau levels and edge states of surface Dirac fermions in topological insulators under strong magnetic field. We examine the formation of the quantum plateaux of the Hall conductance and find two different patterns, in one pattern the filling number covers all integers while only odd integers in the other. We focus on the quantum plateau closest to zero energy and demonstrate the breakdown of the quantum spin Hall effect resulting from structure inversion asymmetry. The phase diagrams of the quantum Hall states are presented as functions of magnetic field, gate voltage and chemical potential. This work establishes an intuitive picture of the edge states to understand the integer quantum Hall effect for Dirac electrons in topological insulator thin films.
A new approach to distance measurements between two spin labels in the >10 nm range.
Blank, A
2017-02-15
ESR spectroscopy can be efficiently used to acquire the distance between two spin labels placed on a macromolecule by measuring their mutual dipolar interaction frequency, as long as the distance is not greater than ∼10 nm. Any hope to significantly increase this figure is hampered by the fact that all available spin labels have a phase memory time (Tm), restricted to the microseconds range, which provides a limited window during which the dipolar interaction frequency can be measured. Thus, due to the inverse cubic dependence of the dipolar frequency over the labels' separation distance, evaluating much larger distances, e.g. 20 nm, would require to have a Tm that is ∼200 microsecond, clearly beyond any hope. Here we propose a new approach to greatly enhancing the maximum measured distance available by relying on another type of dipole interaction-mediated mechanism called spin diffusion. This mechanism operates and can be evaluated during the spin lattice relaxation time, T1 (commonly in the milliseconds range), rather than only during Tm. Up until recently, the observation of spin diffusion in solid electron spin systems was considered experimentally impractical. However, recent developments have enabled its direct measurement by means of high sensitivity pulsed ESR that employs intense short magnetic field gradients, thus opening the door to the subsequent utilization of these capabilities. The manuscript presents the subject of spin diffusion, the ways it can be directly measured, and a theoretical discussion on how intramolecular spin-pair distance, even in the range of 20-30 nm, could be accurately extracted from spin diffusion measurements.
On the Geometry of the Berry-Robbins Approach to Spin-Statistics
NASA Astrophysics Data System (ADS)
Papadopoulos, Nikolaos; Reyes-Lega, Andrés F.
2010-07-01
Within a geometric and algebraic framework, the structures which are related to the spin-statistics connection are discussed. A comparison with the Berry-Robbins approach is made. The underlying geometric structure constitutes an additional support for this approach. In our work, a geometric approach to quantum indistinguishability is introduced which allows the treatment of singlevaluedness of wave functions in a global, model independent way.
Phenomenological approach to a hyperkagome spin liquid: Emergent gauge fields and spinons
NASA Astrophysics Data System (ADS)
Wan, Yuan; Kim, Yong Baek
2016-12-01
A number of experiments on the hyperkagome iridate, Na4Ir3O8 , suggest existence of a gapless quantum spin liquid state at low temperature. Circumventing the slave-particle approach commonly used in theoretical analyses of frustrated magnets, we provide a more intuitive, albeit more phenomenological, construction of a quantum spin liquid state for the hyperkagome Heisenberg model. An effective monomer-dimer model on the hyperkagome lattice is proposed à la Hao and Tchernyshyov's approach cultivated from the Husimi cactus model. Employing an arrow representation for the monomer-dimer model, we obtain a compact U (1 ) gauge theory with a finite density of fermionic spinons on the hyperoctagon lattice. The resulting theory and its mean-field treatment are consistent with previous slave-particle construction of a quantum spin liquid state on the hyperkagome lattice. Our results offer novel insights into the emergence of spinon Fermi surfaces and useful predictions for future experiments.
Gelman, David; Koch, Christiane P; Kosloff, Ronnie
2004-07-08
The dissipative quantum dynamics of an anharmonic oscillator coupled to a bath is studied with the purpose of elucidating the differences between the relaxation to a spin bath and to a harmonic bath. Converged results are obtained for the spin bath by the surrogate Hamiltonian approach. This method is based on constructing a system-bath Hamiltonian, with a finite but large number of spin bath modes, that mimics exactly a bath with an infinite number of modes for a finite time interval. Convergence with respect to the number of simultaneous excitations of bath modes can be checked. The results are compared to calculations that include a finite number of harmonic modes carried out by using the multiconfiguration time-dependent Hartree method of Nest and Meyer [J. Chem. Phys. 119, 24 (2003)]. In the weak coupling regime, at zero temperature and for small excitations of the primary system, both methods converge to the Markovian limit. When initially the primary system is significantly excited, the spin bath can saturate restricting the energy acceptance. An interaction term between bath modes that spreads the excitation eliminates the saturation. The loss of phase between two cat states has been analyzed and the results for the spin and harmonic baths are almost identical. For stronger couplings, the dynamics induced by the two types of baths deviate. The accumulation and degree of entanglement between the bath modes have been characterized. Only in the spin bath the dynamics generate entanglement between the bath modes.
NASA Astrophysics Data System (ADS)
Gelman, David; Koch, Christiane P.; Kosloff, Ronnie
2004-07-01
The dissipative quantum dynamics of an anharmonic oscillator coupled to a bath is studied with the purpose of elucidating the differences between the relaxation to a spin bath and to a harmonic bath. Converged results are obtained for the spin bath by the surrogate Hamiltonian approach. This method is based on constructing a system-bath Hamiltonian, with a finite but large number of spin bath modes, that mimics exactly a bath with an infinite number of modes for a finite time interval. Convergence with respect to the number of simultaneous excitations of bath modes can be checked. The results are compared to calculations that include a finite number of harmonic modes carried out by using the multiconfiguration time-dependent Hartree method of Nest and Meyer [J. Chem. Phys. 119, 24 (2003)]. In the weak coupling regime, at zero temperature and for small excitations of the primary system, both methods converge to the Markovian limit. When initially the primary system is significantly excited, the spin bath can saturate restricting the energy acceptance. An interaction term between bath modes that spreads the excitation eliminates the saturation. The loss of phase between two cat states has been analyzed and the results for the spin and harmonic baths are almost identical. For stronger couplings, the dynamics induced by the two types of baths deviate. The accumulation and degree of entanglement between the bath modes have been characterized. Only in the spin bath the dynamics generate entanglement between the bath modes.
Population transfer HMQC for half-integer quadrupolar nuclei
Wang, Qiang; Xu, Jun; Feng, Ningdong; Deng, Feng E-mail: jean-paul.amoureux@univ-lille1.fr; Li, Yixuan; Trébosc, Julien; Lafon, Olivier; Hu, Bingwen; Chen, Qun; Amoureux, Jean-Paul E-mail: jean-paul.amoureux@univ-lille1.fr
2015-03-07
This work presents a detailed analysis of a recently proposed nuclear magnetic resonance method [Wang et al., Chem. Commun. 49(59), 6653-6655 (2013)] for accelerating heteronuclear coherence transfers involving half-integer spin quadrupolar nuclei by manipulating their satellite transitions. This method, called Population Transfer Heteronuclear Multiple Quantum Correlation (PT-HMQC), is investigated in details by combining theoretical analyses, numerical simulations, and experimental investigations. We find that compared to instant inversion or instant saturation, continuous saturation is the most practical strategy to accelerate coherence transfers on half-integer quadrupolar nuclei. We further demonstrate that this strategy is efficient to enhance the sensitivity of J-mediated heteronuclear correlation experiments between two half-integer quadrupolar isotopes (e.g., {sup 27}Al-{sup 17}O). In this case, the build-up is strongly affected by relaxation for small T{sub 2}′ and J coupling values, and shortening the mixing time makes a huge signal enhancement. Moreover, this concept of population transfer can also be applied to dipolar-mediated HMQC experiments. Indeed, on the AlPO{sub 4}-14 sample, one still observes experimentally a 2-fold shortening of the optimum mixing time albeit with no significant signal gain in the {sup 31}P-({sup 27}Al) experiments.
2. QUANTUM HALL EFFECT: Hidden SU(4) symmetry in bilayer quantum well at integer filling factors
NASA Astrophysics Data System (ADS)
Fal'ko, V. I.; Iordanskii, S. V.; Kashuba, A. B.
2001-10-01
Phase diagram of a bilayer quantum well at integer filling factors is established using the hidden symmetry method. Three phases: ferromagnetic, canted antiferromagnetic (CAP) and spin-singlet, have been found. We confirm early results of Das Sarma et al. Each phase violates the SU(4) hidden symmetry and is stabilized by the anisotropy interactions.
Order and Value: Transitioning to Integers
ERIC Educational Resources Information Center
Bofferding, Laura
2014-01-01
As students progress from working with whole numbers to working with integers, they must wrestle with the big ideas of number values and order. Using objects to show positive quantities is easy, but no physical negative quantities exist. Therefore, when talking about integers, the author refers to number values instead of number quantities. The…
Prospective Elementary Teachers' Conceptual Understanding of Integers
ERIC Educational Resources Information Center
Reeder, Stacy; Bateiha, Summer
2016-01-01
This investigation examined the degree to which prospective elementary teachers had developed a meaningful and conceptual understanding of what integers are and explored their development of models for multiplication with integers that are related to everyday activities. Additionally, this study explored how these understandings informed…
Prospective Elementary Teachers' Conceptual Understanding of Integers
ERIC Educational Resources Information Center
Reeder, Stacy; Bateiha, Summer
2016-01-01
This investigation examined the degree to which prospective elementary teachers had developed a meaningful and conceptual understanding of what integers are and explored their development of models for multiplication with integers that are related to everyday activities. Additionally, this study explored how these understandings informed…
Order and Value: Transitioning to Integers
ERIC Educational Resources Information Center
Bofferding, Laura
2014-01-01
As students progress from working with whole numbers to working with integers, they must wrestle with the big ideas of number values and order. Using objects to show positive quantities is easy, but no physical negative quantities exist. Therefore, when talking about integers, the author refers to number values instead of number quantities. The…
NASA Astrophysics Data System (ADS)
Xiao, C. W.; Ozpineci, A.; Oset, E.
2015-10-01
Using a coupled channel unitary approach, combining the heavy quark spin symmetry and the dynamics of the local hidden gauge, we investigate the meson-meson interaction with hidden beauty. We obtain several new states of isospin I = 0: six bound states, and weakly bound six more possible states which depend on the influence of the coupled channel effects.
Topological Effects on Quantum Phase Slips in Superfluid Spin Transport.
Kim, Se Kwon; Tserkovnyak, Yaroslav
2016-03-25
We theoretically investigate effects of quantum fluctuations on superfluid spin transport through easy-plane quantum antiferromagnetic spin chains in the large-spin limit. Quantum fluctuations result in the decaying spin supercurrent by unwinding the magnetic order parameter within the easy plane, which is referred to as phase slips. We show that the topological term in the nonlinear sigma model for the spin chains qualitatively differentiates the decaying rate of the spin supercurrent between the integer versus half-odd-integer spin chains. An experimental setup for a magnetoelectric circuit is proposed, in which the dependence of the decaying rate on constituent spins can be verified by measuring the nonlocal magnetoresistance.
NASA Astrophysics Data System (ADS)
Krizanac, M.; Vedmedenko, E. Y.; Wiesendanger, R.
2017-01-01
We present a perturbative approach for the resonant tunnel splittings of an arbitrary effective single spin system. The Hamiltonian of such a system contains a uniaxial anisotropy, a transversal magnetic field and a second-order transversal anisotropy. Further, we investigate the influence of the transversal magnetic field on the energy splittings for higher integer quantum spins and we introduce an exact formula, which defines values of the transversal magnetic field, the transversal anisotropy and the uniaxial anisotropy where the contribution of the transversal magnetic field to the energy splitting is at least equal to the contribution of the transversal anisotropy.
NASA Astrophysics Data System (ADS)
Ruangsri, Uchupol; Vigeland, Sarah J.; Hughes, Scott A.
2016-08-01
A small body orbiting a black hole follows a trajectory that, at leading order, is a geodesic of the black hole spacetime. Much effort has gone into computing "self-force" corrections to this motion, arising from the small body's own contributions to the system's spacetime. Another correction to the motion arises from coupling of the small body's spin to the black hole's spacetime curvature. Spin-curvature coupling drives a precession of the small body, and introduces a "force" (relative to the geodesic) which shifts the small body's worldline. These effects scale with the small body's spin at leading order. In this paper, we show that the equations which govern spin-curvature coupling can be analyzed with a frequency-domain decomposition, at least to leading order in the small body's spin. We show how to compute the frequency of precession along generic orbits, and how to describe the small body's precession and motion in the frequency domain. We illustrate this approach with a number of examples. This approach is likely to be useful for understanding spin coupling effects in the extreme mass ratio limit, and may provide insight into modeling spin effects in the strong field for nonextreme mass ratios.
Effective integer-to-integer transforms for JPEG2000 coder
NASA Astrophysics Data System (ADS)
Przelaskowski, Artur
2001-12-01
This paper considers reversible transforms which are used in wavelet compression according to nowadays JPEG2000 standard. Original data decomposition in a form of integer wavelet transformation realized in subband decomposition scheme is optimized by design and selection of the most effective transforms. Lifting scheme is used to construct new biorthogonal symmetric wavelets. Number and distribution of vanishing moments, subband coding gain, associated filter length, computational complexity and number of lifting steps were mainly analyzed in the optimization of designed transforms. Coming from many tests of compression efficiency evaluation in JPEG2000 standardization process, the best selected transforms have been compared to designed ones to conclude the most efficient for compression wavelet bases and their important features. Certain new transforms overcome all other in both phases of lossy-to-lossless compression (e.g. up to 0.5 dB of PSNR for 0.5 bpp in comparison to the state-of-art transforms of JPEG2000 compression, and up to 3dB over 5/3 standard reversible transform). Moreover, the lossy compression efficiency of proposed reversible wavelets is comparable to reference irreversible wavelets potential in several cases. The highest improvement over that reference PSNR values is close to 1.2 dB.
Analytical slave-spin mean-field approach to orbital selective Mott insulators
NASA Astrophysics Data System (ADS)
Komijani, Yashar; Kotliar, Gabriel
2017-09-01
We use the slave-spin mean-field approach to study particle-hole symmetric one- and two-band Hubbard models in the presence of Hund's coupling interaction. By analytical analysis of the Hamiltonian, we show that the locking of the two orbitals vs orbital selective Mott transition can be formulated within a Landau-Ginzburg framework. By applying the slave-spin mean field to impurity problems, we are able to make a correspondence between impurity and lattice. We also consider the stability of the orbital selective Mott phase to the hybridization between the orbitals and study the limitations of the slave-spin method for treating interorbital tunnelings in the case of multiorbital Bethe lattices with particle-hole symmetry.
Topological invariants in interacting quantum spin Hall: a cluster perturbation theory approach
NASA Astrophysics Data System (ADS)
Grandi, F.; Manghi, F.; Corradini, O.; Bertoni, C. M.; Bonini, A.
2015-02-01
Using cluster perturbation theory we calculate Green's functions, quasi-particle energies and topological invariants for interacting electrons on a 2D honeycomb lattice, with intrinsic spin-orbit coupling and on-site e-e interaction. This allows us to define the parameter range (Hubbard U versus spin-orbit coupling) where the 2D system behaves as a trivial insulator or quantum spin Hall insulator. This behavior is confirmed by the existence of gapless quasi-particle states in honeycomb ribbons. We have discussed the importance of the cluster symmetry and the effects of the lack of full translation symmetry typical of CPT and of most quantum cluster approaches. Comments on the limits of applicability of the method are also provided.
Spin treatment-based approach for electronic transport in paramagnetic liquid transition metals
NASA Astrophysics Data System (ADS)
Grosdidier, B.; Ben Abdellah, A.; Bouziane, K.; Mujibur Rahman, S. M.; Gasser, J. G.
2013-09-01
A novel concept is proposed to calculate both the electrical resistivity and thermoelectric power (TEP) of liquid transition metals (Mn, Fe, Co and Ni) characterized by a paramagnetic state in the liquid phase. By contrast to a previous work (PRB64, 094202 (2001)), where the resistivity was calculated by treating separately the interactions between spin up and spin down using the Matthiessen rule, our current approach is based on two types of muffin tin potentials in the t-matrix, namely spin up and spin down. The resistivity is treated as the result of the interference of the two kinds of spin states of electrons including a cross-contribution. The calculated resistivity values agree reasonably well with the available experimental ones for all the metals considered. Moreover, the calculated TEP, as deduced from the slope of resistivity vs. energy, has been found to be positive for Mn and Fe but negative for Co and Ni. Besides that, this formalism for resistivity calculation may be generalized to a system that may exist in different atomic states. It is worth mentioning that this concept is analogous to the one used in the process of neutron scattering on a metal composed of multiple isotopes.
Tadyszak, Krzysztof; Rudowicz, Czesław; Ohta, Hitoshi; Sakurai, Takahiro
2017-10-01
The spin Hamiltonian (SH) parameters experimentally determined by EMR (EPR) may be corroborated or otherwise using various theoretical modeling approaches. To this end semiempirical modeling is carried out for high-spin (S=2) manganese (III) 3d(4) ions in complex of tetraphenylporphyrinato manganese (III) chloride (MnTPPCl). This modeling utilizes the microscopic spin Hamiltonians (MSH) approach developed for the 3d(4) and 3d(6) ions with spin S=2 at orthorhombic and tetragonal symmetry sites in crystals, which exhibit an orbital singlet ground state. Calculations of the zero-field splitting (ZFS) parameters and the Zeeman electronic (Ze) factors (g||=gz, g⊥=gx=gy) are carried out for wide ranges of values of the microscopic parameters using the MSH/VBA package. This enables to examine the dependence of the theoretically determined ZFS parameters bk(q) (in the Stevens notation) and the Zeeman factors gi on the spin-orbit (λ), spin-spin (ρ) coupling constant, and the ligand-field energy levels (Δi) within the (5)D multiplet. The results are presented in suitable tables and graphs. The values of λ, ρ, and Δi best describing Mn(III) ions in MnTPPCl are determined by matching the theoretical second-rank ZFSP b2(0)(D) parameter and the experimental one. The fourth-rank ZFS parameters (b4(0), b4(4)) and the ρ (spin-spin)-related contributions, which have been omitted in previous studies, are considered for the first time here and are found important. Semiempirical modeling results are compared with those obtained recently by the density functional theory (DFT) and/or ab initio methods. Copyright © 2017 Elsevier Inc. All rights reserved.
Extracting vascular networks under physiological constraints via integer programming.
Rempfler, Markus; Schneider, Matthias; Ielacqua, Giovanna D; Xiao, Xianghui; Stock, Stuart R; Klohs, Jan; Székely, Gábor; Andres, Bjoern; Menze, Bjoern H
2014-01-01
We introduce an integer programming-based approach to vessel network extraction that enforces global physiological constraints on the vessel structure and learn this prior from a high-resolution reference network. The method accounts for both image evidence and geometric relationships between vessels by formulating and solving an integer programming problem. Starting from an over-connected network, it is pruning vessel stumps and spurious connections by evaluating bifurcation angle and connectivity of the graph. We utilize a high-resolution micro computed tomography (μCT) dataset of a cerebrovascular corrosion cast to obtain a reference network, perform experiments on micro magnetic resonance angiography (μMRA) images of mouse brains and discuss properties of the networks obtained under different tracking and pruning approaches.
Integer cosine transform for image compression
NASA Technical Reports Server (NTRS)
Cheung, K.-M.; Pollara, F.; Shahshahani, M.
1991-01-01
This article describes a recently introduced transform algorithm called the integer cosine transform (ICT), which is used in transform-based data compression schemes. The ICT algorithm requires only integer operations on small integers and at the same time gives a rate-distortion performance comparable to that offered by the floating-point discrete cosine transform (DCT). The article addresses the issue of implementation complexity, which is of prime concern for source coding applications of interest in deep-space communications. Complexity reduction in the transform stage of the compression scheme is particularly relevant, since this stage accounts for most (typically over 80 percent) of the computational load.
Spin First vs. Position First instructional approaches to teaching introductory quantum mechanics
NASA Astrophysics Data System (ADS)
Sadaghiani, Homeyra
2017-01-01
As part of ongoing research in teaching and learning quantum mechanics, we are investigating student learning of basic introductory quantum concepts in two different paradigms. In one paradigm, students are introduced to the postulates of quantum mechanics by discrete bases of Spin-half (Spin First) before being introduced to Schrödinger's equation. In the second paradigm, continuous bases of position probability wave functions (Position First) are the context within which students first encounter quantum mechanical phenomena. In this paper, we compare student learning of basic introductory quantum ideas in two sections of a sophomore level modern physics course at Cal Poly Pomona that were taught using these two approaches by means of their performances on a research-based concept posttest. Based on our results, the students who were taught using Spin First outperformed their peers in Position First group with average score of 53 +/- 3% vs. 34 +/- 5% in Quantum Mechanics Concept Assessment (QMCA), suggesting that the Spin First approach might improve some aspects of student learning of quantum mechanics. NSF 1626482.
Integer lattice dynamics for Vlasov-Poisson
NASA Astrophysics Data System (ADS)
Mocz, Philip; Succi, Sauro
2017-03-01
We revisit the integer lattice (IL) method to numerically solve the Vlasov-Poisson equations, and show that a slight variant of the method is a very easy, viable, and efficient numerical approach to study the dynamics of self-gravitating, collisionless systems. The distribution function lives in a discretized lattice phase-space, and each time-step in the simulation corresponds to a simple permutation of the lattice sites. Hence, the method is Lagrangian, conservative, and fully time-reversible. IL complements other existing methods, such as N-body/particle mesh (computationally efficient, but affected by Monte Carlo sampling noise and two-body relaxation) and finite volume (FV) direct integration schemes (expensive, accurate but diffusive). We also present improvements to the FV scheme, using a moving-mesh approach inspired by IL, to reduce numerical diffusion and the time-step criterion. Being a direct integration scheme like FV, IL is memory limited (memory requirement for a full 3D problem scales as N6, where N is the resolution per linear phase-space dimension). However, we describe a new technique for achieving N4 scaling. The method offers promise for investigating the full 6D phase-space of collisionless systems of stars and dark matter.
Asymptotic prime partitions of integers
NASA Astrophysics Data System (ADS)
Bartel, Johann; Bhaduri, R. K.; Brack, Matthias; Murthy, M. V. N.
2017-05-01
In this paper, we discuss P (n ) , the number of ways a given integer n may be written as a sum of primes. In particular, an asymptotic form Pas(n ) valid for n →∞ is obtained analytically using standard techniques of quantum statistical mechanics. First, the bosonic partition function of primes, or the generating function of unrestricted prime partitions in number theory, is constructed. Next, the density of states is obtained using the saddle-point method for Laplace inversion of the partition function in the limit of large n . This gives directly the asymptotic number of prime partitions Pas(n ) . The leading term in the asymptotic expression grows exponentially as √{n /ln(n ) } and agrees with previous estimates. We calculate the next-to-leading-order term in the exponent, proportional to ln[ln(n )]/ln(n ) , and we show that an earlier result in the literature for its coefficient is incorrect. Furthermore, we also calculate the next higher-order correction, proportional to 1 /ln(n ) and given in Eq. (43), which so far has not been available in the literature. Finally, we compare our analytical results with the exact numerical values of P (n ) up to n ˜8 ×106 . For the highest values, the remaining error between the exact P (n ) and our Pas(n ) is only about half of that obtained with the leading-order approximation. But we also show that, unlike for other types of partitions, the asymptotic limit for the prime partitions is still quite far from being reached even for n ˜107 .
Quantum Langevin approach for non-Markovian quantum dynamics of the spin-boson model
NASA Astrophysics Data System (ADS)
Zhou, Zheng-Yang; Chen, Mi; Yu, Ting; You, J. Q.
2016-02-01
One longstanding difficult problem in quantum dissipative dynamics is to solve the spin-boson model in a non-Markovian regime where a tractable systematic master equation does not exist. The spin-boson model is particularly important due to its crucial applications in quantum noise control and manipulation as well as its central role in developing quantum theories of open systems. Here we solve this important model by developing a non-Markovian quantum Langevin approach. By projecting the quantum Langevin equation onto the coherent states of the bath, we can derive a set of non-Markovian quantum Bloch equations containing no explicit noise variables. This special feature offers a tremendous advantage over the existing stochastic Schrödinger equations in numerical simulations. The physical significance and generality of our approach are briefly discussed.
NASA Astrophysics Data System (ADS)
Chuntonov, Lev; Peskin, Uri
2017-01-01
Vibrational energy transfer driven by anharmonicity is the major mechanism of energy dissipation in polyatomic molecules and in molecules embedded in condensed phase environment. Energy transfer pathways are sensitive to the particular intra-molecular structure as well as to specific interactions between the molecule and its environment, and their identification is a challenging many-body problem. This work introduces a theoretical approach which enables to identify the dominant pathways for specified initial excitations, by screening the different possible relaxation channels. For each channel, the many-body Hamiltonian is mapped onto a respective all-vibrational Spin-Boson Hamiltonian, expressed in terms of the harmonic frequencies and the anharmonic coupling parameters obtained from the electronic structure of the molecule in its environment. A focus is given on the formulation of the relaxation rates when different limits of perturbation theory apply. In these cases the proposed Spin-Boson Screening approach becomes especially powerful.
Eslami, Leila Esmaeilzadeh, Mahdi
2014-02-28
Spin-dependent electron transport in an open double quantum ring, when each ring is made up of four quantum dots and threaded by a magnetic flux, is studied. Two independent and tunable gate voltages are applied to induce Rashba spin-orbit effect in the quantum rings. Using non-equilibrium Green's function formalism, we study the effects of electron-electron interaction on spin-dependent electron transport and show that although the electron-electron interaction induces an energy gap, it has no considerable effect when the bias voltage is sufficiently high. We also show that the double quantum ring can operate as a spin-filter for both spin up and spin down electrons. The spin-polarization of transmitted electrons can be tuned from −1 (pure spin-down current) to +1 (pure spin-up current) by changing the magnetic flux and/or the gates voltage. Also, the double quantum ring can act as AND and NOR gates when the system parameters such as Rashba coefficient are properly adjusted.
N-leg spin-S Heisenberg ladders: A density-matrix renormalization group study
NASA Astrophysics Data System (ADS)
Ramos, F. B.; Xavier, J. C.
2014-03-01
We investigate the N-leg spin-S Heisenberg ladders by using the density matrix renormalization group method. We present estimates of the spin gap Δs and of the ground-state energy per site e∞N in the thermodynamic limit for ladders with widths up to six legs and spin S≤5/2. We also estimate the ground-state energy per site e∞2D for the infinite two-dimensional spin-S Heisenberg model. Our results support that for ladders with semi-integer spins the spin excitation is gapless for N odd and gapped for N even, whereas for integer spin ladders the spin gap is nonzero, independent of the number of legs. Those results agree with the well-known conjectures of Haldane and Sénéchal-Sierra for chains and ladders, respectively. We also observe edge states for ladders with N odd, similar to what happens in spin chains.
a New Approach to LAGEOS Spin Orientation and its Role in General Relativity Measurements
NASA Astrophysics Data System (ADS)
Currie, Douglas; Dell'Agnello, Simone; Monache, Giovanni Dell; Tauraso, Roberto
2008-06-01
The two LAGEOS Satellites have addressed a variety of issues in Geophysics (GP) and General Relativity (GR). The extreme accuracy of laser ranging (currently approaching millimeter accuracy) now means that very small error sources act upon LAGEOS and have become important, affecting the study of GP (e.g., the tides) and GR (e.g., Lenses-Thirring Effect). Initial measurements and analysis of the spin orientation were first performed at the in the early 1990s at the University of Maryland. However, the spin rate of LAGEOS has slowed to the point that this method is no longer effective. A new observing approach (the "Pocket Modulation Effect") to determine the spin axis has been proposed by the first author. Data that addresses this method has been collected at various sites and is being analyzed at LNF/INFI. We will report on the physics involved in the PME and describe the laboratory data and simulations performed to validate the proposed approach, the LAGEOS data obtained at sites, the new analysis procedures and then address the impact of this new information.
Anisotropic fractal media by vector calculus in non-integer dimensional space
Tarasov, Vasily E.
2014-08-15
A review of different approaches to describe anisotropic fractal media is proposed. In this paper, differentiation and integration non-integer dimensional and multi-fractional spaces are considered as tools to describe anisotropic fractal materials and media. We suggest a generalization of vector calculus for non-integer dimensional space by using a product measure method. The product of fractional and non-integer dimensional spaces allows us to take into account the anisotropy of the fractal media in the framework of continuum models. The integration over non-integer-dimensional spaces is considered. In this paper differential operators of first and second orders for fractional space and non-integer dimensional space are suggested. The differential operators are defined as inverse operations to integration in spaces with non-integer dimensions. Non-integer dimensional space that is product of spaces with different dimensions allows us to give continuum models for anisotropic type of the media. The Poisson's equation for fractal medium, the Euler-Bernoulli fractal beam, and the Timoshenko beam equations for fractal material are considered as examples of application of suggested generalization of vector calculus for anisotropic fractal materials and media.
A Crystal Field Approach to Orbitally Degenerate SMMs: Beyond the Spin-Only Hamiltonian
NASA Astrophysics Data System (ADS)
Bhaskaran, Lakshmi; Marriott, Katie; Murrie, Mark; Hill, Stephen
Single-Molecule Magnets (SMMs) with large magnetization reversal barriers are promising candidates for high-density information storage. Recently, a large uniaxial magnetic anisotropy was observed for a mononuclear trigonal bipyramidal (TBP) [NiIICl3(Me-abco)2] SMM. High-field EPR studies analyzed on the basis of a spin-only Hamiltonian give ¦D¦>400 cm-1, which is close to the spin-orbit coupling parameter λ = 668 cm-1 for NiII, suggesting an orbitally degenerate ground state. The spin-only description is ineffective in this limit, necessitating the development of a model that includes the orbital moment. Here we describe a phenomenological approach that takes into account a full description of crystal field, electron-electron repulsion and spin-orbit coupling effects on the ground state of a NiII ion in a TBP coordination geometry. The model is in good agreement with the high-field EPR experiments, validating its use for spectroscopic studies of orbitally degenerate molecular nanomagnets. This work was supported by the NSF (DMR-1309463).
Two dimensional convolute integers for machine vision and image recognition
NASA Technical Reports Server (NTRS)
Edwards, Thomas R.
1988-01-01
Machine vision and image recognition require sophisticated image processing prior to the application of Artificial Intelligence. Two Dimensional Convolute Integer Technology is an innovative mathematical approach for addressing machine vision and image recognition. This new technology generates a family of digital operators for addressing optical images and related two dimensional data sets. The operators are regression generated, integer valued, zero phase shifting, convoluting, frequency sensitive, two dimensional low pass, high pass and band pass filters that are mathematically equivalent to surface fitted partial derivatives. These operators are applied non-recursively either as classical convolutions (replacement point values), interstitial point generators (bandwidth broadening or resolution enhancement), or as missing value calculators (compensation for dead array element values). These operators show frequency sensitive feature selection scale invariant properties. Such tasks as boundary/edge enhancement and noise or small size pixel disturbance removal can readily be accomplished. For feature selection tight band pass operators are essential. Results from test cases are given.
Two dimensional convolute integers for machine vision and image recognition
NASA Technical Reports Server (NTRS)
Edwards, Thomas R.
1988-01-01
Machine vision and image recognition require sophisticated image processing prior to the application of Artificial Intelligence. Two Dimensional Convolute Integer Technology is an innovative mathematical approach for addressing machine vision and image recognition. This new technology generates a family of digital operators for addressing optical images and related two dimensional data sets. The operators are regression generated, integer valued, zero phase shifting, convoluting, frequency sensitive, two dimensional low pass, high pass and band pass filters that are mathematically equivalent to surface fitted partial derivatives. These operators are applied non-recursively either as classical convolutions (replacement point values), interstitial point generators (bandwidth broadening or resolution enhancement), or as missing value calculators (compensation for dead array element values). These operators show frequency sensitive feature selection scale invariant properties. Such tasks as boundary/edge enhancement and noise or small size pixel disturbance removal can readily be accomplished. For feature selection tight band pass operators are essential. Results from test cases are given.
Reversible integer wavelet transform for blind image hiding method
Bibi, Nargis; Mahmood, Zahid; Akram, Tallha; Naqvi, Syed Rameez
2017-01-01
In this article, a blind data hiding reversible methodology to embed the secret data for hiding purpose into cover image is proposed. The key advantage of this research work is to resolve the privacy and secrecy issues raised during the data transmission over the internet. Firstly, data is decomposed into sub-bands using the integer wavelets. For decomposition, the Fresnelet transform is utilized which encrypts the secret data by choosing a unique key parameter to construct a dummy pattern. The dummy pattern is then embedded into an approximated sub-band of the cover image. Our proposed method reveals high-capacity and great imperceptibility of the secret embedded data. With the utilization of family of integer wavelets, the proposed novel approach becomes more efficient for hiding and retrieving process. It retrieved the secret hidden data from the embedded data blindly, without the requirement of original cover image. PMID:28498855
Molecular solutions to the binary integer programming problem based on DNA computation.
Yeh, Chung-Wei; Chu, Chih-Ping; Wu, Kee-Rong
2006-01-01
Binary optimization is a widely investigated topic in integer linear programming. This study proposes a DNA-based computing algorithm for solving the significantly large binary integer programming (BIP) problem. The proposed approach is based upon Adleman and Lipton's DNA operations to solve the BIP problem. The potential of DNA computation for the BIP problem is promising given the operational time complexity of O(nxk).
A spin column-free approach to sodium hydroxide-based glycan permethylation.
Hu, Yueming; Borges, Chad R
2017-07-24
Glycan permethylation was introduced as a tool to facilitate the study of glycans in 1903. Since that time, permethylation procedures have been continually modified to improve permethylation efficiency and qualitative applicability. Typically, however, either laborious preparation steps or cumbersome and uneconomical spin columns have been needed to obtain decent permethylation yields on small glycan samples. Here we describe a spin column-free (SCF) glycan permethylation procedure that is applicable to both O- and N-linked glycans and can be employed upstream to intact glycan analysis by MALDI-MS, ESI-MS, or glycan linkage analysis by GC-MS. The SCF procedure involves neutralization of NaOH beads by acidified phosphate buffer, which eliminates the risk of glycan oxidative degradation and avoids the use of spin columns. Optimization of the new permethylation procedure provided high permethylation efficiency for both hexose (>98%) and HexNAc (>99%) residues-yields which were comparable to (or better than) those of some widely-used spin column-based procedures. A light vs. heavy labelling approach was employed to compare intact glycan yields from a popular spin-column based approach to the SCF approach. Recovery of intact N-glycans was significantly better with the SCF procedure (p < 0.05), but overall yield of O-glycans was similar or slightly diminished (p < 0.05 for tetrasaccharides or smaller). When the SCF procedure was employed upstream to hydrolysis, reduction and acetylation for glycan linkage analysis of pooled glycans from unfractionated blood plasma, analytical reproducibility was on par with that from previous spin column-based "glycan node" analysis results. When applied to blood plasma samples from stage III-IV breast cancer patients (n = 20) and age-matched controls (n = 20), the SCF procedure facilitated identification of three glycan nodes with significantly different distributions between the cases and controls (ROC c-statistics > 0.75; p < 0
NASA Astrophysics Data System (ADS)
Zhang, Yachao
2014-12-01
A first-principles study of critical temperatures (Tc) of spin crossover (SCO) materials requires accurate description of the strongly correlated 3d electrons as well as much computational effort. This task is still a challenge for the widely used local density or generalized gradient approximations (LDA/GGA) and hybrid functionals. One remedy, termed density functional theory plus U (DFT+U) approach, introduces a Hubbard U term to deal with the localized electrons at marginal computational cost, while treats the delocalized electrons with LDA/GGA. Here, we employ the DFT+U approach to investigate the Tc of a pair of iron(II) SCO molecular crystals (α and β phase), where identical constituent molecules are packed in different ways. We first calculate the adiabatic high spin-low spin energy splitting ΔEHL and molecular vibrational frequencies in both spin states, then obtain the temperature dependent enthalpy and entropy changes (ΔH and ΔS), and finally extract Tc by exploiting the ΔH/T - T and ΔS - T relationships. The results are in agreement with experiment. Analysis of geometries and electronic structures shows that the local ligand field in the α phase is slightly weakened by the H-bondings involving the ligand atoms and the specific crystal packing style. We find that this effect is largely responsible for the difference in Tc of the two phases. This study shows the applicability of the DFT+U approach for predicting Tc of SCO materials, and provides a clear insight into the subtle influence of the crystal packing effects on SCO behavior.
Zhang, Yachao
2014-12-07
A first-principles study of critical temperatures (T{sub c}) of spin crossover (SCO) materials requires accurate description of the strongly correlated 3d electrons as well as much computational effort. This task is still a challenge for the widely used local density or generalized gradient approximations (LDA/GGA) and hybrid functionals. One remedy, termed density functional theory plus U (DFT+U) approach, introduces a Hubbard U term to deal with the localized electrons at marginal computational cost, while treats the delocalized electrons with LDA/GGA. Here, we employ the DFT+U approach to investigate the T{sub c} of a pair of iron(II) SCO molecular crystals (α and β phase), where identical constituent molecules are packed in different ways. We first calculate the adiabatic high spin-low spin energy splitting ΔE{sub HL} and molecular vibrational frequencies in both spin states, then obtain the temperature dependent enthalpy and entropy changes (ΔH and ΔS), and finally extract T{sub c} by exploiting the ΔH/T − T and ΔS − T relationships. The results are in agreement with experiment. Analysis of geometries and electronic structures shows that the local ligand field in the α phase is slightly weakened by the H-bondings involving the ligand atoms and the specific crystal packing style. We find that this effect is largely responsible for the difference in T{sub c} of the two phases. This study shows the applicability of the DFT+U approach for predicting T{sub c} of SCO materials, and provides a clear insight into the subtle influence of the crystal packing effects on SCO behavior.
Zhang, Yachao
2014-12-07
A first-principles study of critical temperatures (T(c)) of spin crossover (SCO) materials requires accurate description of the strongly correlated 3d electrons as well as much computational effort. This task is still a challenge for the widely used local density or generalized gradient approximations (LDA/GGA) and hybrid functionals. One remedy, termed density functional theory plus U (DFT+U) approach, introduces a Hubbard U term to deal with the localized electrons at marginal computational cost, while treats the delocalized electrons with LDA/GGA. Here, we employ the DFT+U approach to investigate the T(c) of a pair of iron(II) SCO molecular crystals (α and β phase), where identical constituent molecules are packed in different ways. We first calculate the adiabatic high spin-low spin energy splitting ΔE(HL) and molecular vibrational frequencies in both spin states, then obtain the temperature dependent enthalpy and entropy changes (ΔH and ΔS), and finally extract T(c) by exploiting the ΔH/T - T and ΔS - T relationships. The results are in agreement with experiment. Analysis of geometries and electronic structures shows that the local ligand field in the α phase is slightly weakened by the H-bondings involving the ligand atoms and the specific crystal packing style. We find that this effect is largely responsible for the difference in T(c) of the two phases. This study shows the applicability of the DFT+U approach for predicting T(c) of SCO materials, and provides a clear insight into the subtle influence of the crystal packing effects on SCO behavior.
IESIP - AN IMPROVED EXPLORATORY SEARCH TECHNIQUE FOR PURE INTEGER LINEAR PROGRAMMING PROBLEMS
NASA Technical Reports Server (NTRS)
Fogle, F. R.
1994-01-01
IESIP, an Improved Exploratory Search Technique for Pure Integer Linear Programming Problems, addresses the problem of optimizing an objective function of one or more variables subject to a set of confining functions or constraints by a method called discrete optimization or integer programming. Integer programming is based on a specific form of the general linear programming problem in which all variables in the objective function and all variables in the constraints are integers. While more difficult, integer programming is required for accuracy when modeling systems with small numbers of components such as the distribution of goods, machine scheduling, and production scheduling. IESIP establishes a new methodology for solving pure integer programming problems by utilizing a modified version of the univariate exploratory move developed by Robert Hooke and T.A. Jeeves. IESIP also takes some of its technique from the greedy procedure and the idea of unit neighborhoods. A rounding scheme uses the continuous solution found by traditional methods (simplex or other suitable technique) and creates a feasible integer starting point. The Hook and Jeeves exploratory search is modified to accommodate integers and constraints and is then employed to determine an optimal integer solution from the feasible starting solution. The user-friendly IESIP allows for rapid solution of problems up to 10 variables in size (limited by DOS allocation). Sample problems compare IESIP solutions with the traditional branch-and-bound approach. IESIP is written in Borland's TURBO Pascal for IBM PC series computers and compatibles running DOS. Source code and an executable are provided. The main memory requirement for execution is 25K. This program is available on a 5.25 inch 360K MS DOS format diskette. IESIP was developed in 1990. IBM is a trademark of International Business Machines. TURBO Pascal is registered by Borland International.
IESIP - AN IMPROVED EXPLORATORY SEARCH TECHNIQUE FOR PURE INTEGER LINEAR PROGRAMMING PROBLEMS
NASA Technical Reports Server (NTRS)
Fogle, F. R.
1994-01-01
IESIP, an Improved Exploratory Search Technique for Pure Integer Linear Programming Problems, addresses the problem of optimizing an objective function of one or more variables subject to a set of confining functions or constraints by a method called discrete optimization or integer programming. Integer programming is based on a specific form of the general linear programming problem in which all variables in the objective function and all variables in the constraints are integers. While more difficult, integer programming is required for accuracy when modeling systems with small numbers of components such as the distribution of goods, machine scheduling, and production scheduling. IESIP establishes a new methodology for solving pure integer programming problems by utilizing a modified version of the univariate exploratory move developed by Robert Hooke and T.A. Jeeves. IESIP also takes some of its technique from the greedy procedure and the idea of unit neighborhoods. A rounding scheme uses the continuous solution found by traditional methods (simplex or other suitable technique) and creates a feasible integer starting point. The Hook and Jeeves exploratory search is modified to accommodate integers and constraints and is then employed to determine an optimal integer solution from the feasible starting solution. The user-friendly IESIP allows for rapid solution of problems up to 10 variables in size (limited by DOS allocation). Sample problems compare IESIP solutions with the traditional branch-and-bound approach. IESIP is written in Borland's TURBO Pascal for IBM PC series computers and compatibles running DOS. Source code and an executable are provided. The main memory requirement for execution is 25K. This program is available on a 5.25 inch 360K MS DOS format diskette. IESIP was developed in 1990. IBM is a trademark of International Business Machines. TURBO Pascal is registered by Borland International.
NASA Astrophysics Data System (ADS)
Chien, Alan D.; Zimmerman, Paul M.
2017-01-01
This article introduces the restricted-active-space n-spin flip configuration interaction models, RAS(S)-SF and RAS(S,2h,2p)-SF, which provide highly correlated, yet low cost approaches for treating polyradical systems. These levels of theory add electronic degrees of freedom beyond those of previous spin flip approaches in order to achieve accurate ground and excited state energetics. The effects of additional dynamic correlation were investigated by comparing these two techniques to the prior RAS(h,p)-SF method on a variety of test systems, including multiple electronic states of methylene, tetramethyleneethane, three binuclear transition metal complexes, and a tetracene dimer. RAS(S,2h,2p)-SF significantly improves state descriptions in all cases and provides high accuracy even when using a minimal number of spin flips. Furthermore, this correlated level of theory is shown to be extensible to the large systems involved in singlet fission, where the multi-excitonic states in tetracene dimers are difficult to simulate with standard methods and therefore are still a matter of debate. Using a triple-zeta basis, the double triplet state, 1(TT), is predicted to be unbound. This result contradicts lower levels of theory and provides important insight into tetracene's ability to undergo efficient singlet fission.
Tangprasertchai, Narin S.; Zhang, Xiaojun; Ding, Yuan; Tham, Kenneth; Rohs, Remo; Haworth, Ian S.; Qin, Peter Z.
2015-01-01
The technique of site-directed spin labeling (SDSL) provides unique information on biomolecules by monitoring the behavior of a stable radical tag (i.e., spin label) using electron paramagnetic resonance (EPR) spectroscopy. In this chapter, we describe an approach in which SDSL is integrated with computational modeling to map conformations of nucleic acids. This approach builds upon a SDSL tool kit previously developed and validated, which includes three components: (i) a nucleotide-independent nitroxide probe, designated as R5, which can be efficiently attached at defined sites within arbitrary nucleic acid sequences; (ii) inter-R5 distances in the nanometer range, measured via pulsed EPR; and (iii) an efficient program, called NASNOX, that computes inter-R5 distances on given nucleic acid structures. Following a general framework of data mining, our approach uses multiple sets of measured inter-R5 distances to retrieve “correct” all-atom models from a large ensemble of models. The pool of models can be generated independently without relying on the inter-R5 distances, thus allowing a large degree of flexibility in integrating the SDSL-measured distances with a modeling approach best suited for the specific system under investigation. As such, the integrative experimental/computational approach described here represents a hybrid method for determining all-atom models based on experimentally-derived distance measurements. PMID:26477260
Tangprasertchai, Narin S; Zhang, Xiaojun; Ding, Yuan; Tham, Kenneth; Rohs, Remo; Haworth, Ian S; Qin, Peter Z
2015-01-01
The technique of site-directed spin labeling (SDSL) provides unique information on biomolecules by monitoring the behavior of a stable radical tag (i.e., spin label) using electron paramagnetic resonance (EPR) spectroscopy. In this chapter, we describe an approach in which SDSL is integrated with computational modeling to map conformations of nucleic acids. This approach builds upon a SDSL tool kit previously developed and validated, which includes three components: (i) a nucleotide-independent nitroxide probe, designated as R5, which can be efficiently attached at defined sites within arbitrary nucleic acid sequences; (ii) inter-R5 distances in the nanometer range, measured via pulsed EPR; and (iii) an efficient program, called NASNOX, that computes inter-R5 distances on given nucleic acid structures. Following a general framework of data mining, our approach uses multiple sets of measured inter-R5 distances to retrieve "correct" all-atom models from a large ensemble of models. The pool of models can be generated independently without relying on the inter-R5 distances, thus allowing a large degree of flexibility in integrating the SDSL-measured distances with a modeling approach best suited for the specific system under investigation. As such, the integrative experimental/computational approach described here represents a hybrid method for determining all-atom models based on experimentally-derived distance measurements.
NASA Astrophysics Data System (ADS)
Arne, Walter; Marheineke, Nicole; Meister, Andreas; Schiessl, Stefan; Wegener, Raimund
2015-08-01
The spinning of slender viscous jets can be asymptotically described by one-dimensional models that consist of systems of partial and ordinary differential equations. Whereas well-established string models only possess solutions for certain choices of parameters and configurations, the more sophisticated rod model is not limited by restrictions. It can be considered as an ɛ-regularized string model, but containing the slenderness ratio ɛ in the equations complicates its numerical treatment. We develop numerical schemes for fixed or enlarging (time-dependent) domains, using a finite volume approach in space with mixed central, up- and down-winded differences and stiffly accurate Radau methods for the time integration. For the first time, results of instationary simulations for a fixed or growing jet in a rotational spinning process are presented for arbitrary parameter ranges.
Dissipative quantum dynamics of fermions in optical lattices: A slave-spin approach
NASA Astrophysics Data System (ADS)
Bernier, Jean-Sébastien; Poletti, Dario; Kollath, Corinna
2014-11-01
We investigate the influence of a Markovian environment on the dynamics of interacting spinful fermionic atoms in a lattice. To explore the physical phenomena occurring at short times, we develop a method based on a slave-spin representation of fermions that is amenable to the investigation of the dynamics of dissipative systems. We apply this approach to two different dissipative couplings that can occur in current experiments: a coupling via the local density and a coupling via the local double occupancy. We complement our study based on this method, with results obtained using the adiabatic elimination technique and with an exact study of a two-site model. We uncover that the decoherence is slowed down by increasing either the interaction strength or the dissipative coupling (the Zeno effect). We also find, for the coupling to the local double occupancy, that the final steady state can sustain single-particle coherence.
Slip and Slide Method of Factoring Trinomials with Integer Coefficients over the Integers
ERIC Educational Resources Information Center
Donnell, William A.
2012-01-01
In intermediate and college algebra courses there are a number of methods for factoring quadratic trinomials with integer coefficients over the integers. Some of these methods have been given names, such as trial and error, reversing FOIL, AC method, middle term splitting method and slip and slide method. The purpose of this article is to discuss…
Elementary Theory of Factoring Trinomials with Integer Coefficients over the Integers
ERIC Educational Resources Information Center
Donnell, William A.
2010-01-01
An important component of intermediate and college algebra courses involves teaching students methods to factor a trinomial with integer coefficients over the integers. The aim of this article is to present a theoretical justification of that which is often taught, but really never explained as to why it works. The theory is presented, and a…
Savochkin, I V; Jäckl, M; Belotelov, V I; Akimov, I A; Kozhaev, M A; Sylgacheva, D A; Chernov, A I; Shaposhnikov, A N; Prokopov, A R; Berzhansky, V N; Yakovlev, D R; Zvezdin, A K; Bayer, M
2017-07-18
Currently spin waves are considered for computation and data processing as an alternative to charge currents. Generation of spin waves by ultrashort laser pulses provides several important advances with respect to conventional approaches using microwaves. In particular, focused laser spot works as a point source for spin waves and allows for directional control of spin waves and switching between their different types. For further progress in this direction it is important to manipulate with the spectrum of the optically generated spin waves. Here we tackle this problem by launching spin waves by a sequence of femtosecond laser pulses with pulse interval much shorter than the relaxation time of the magnetization oscillations. This leads to the cumulative phenomenon and allows us to generate magnons in a specific narrow range of wavenumbers. The wavelength of spin waves can be tuned from 15 μm to hundreds of microns by sweeping the external magnetic field by only 10 Oe or by slight variation of the pulse repetition rate. Our findings expand the capabilities of the optical spin pump-probe technique and provide a new method for the spin wave generation and control.
The Anticommutator Spin Algebra, its Representations and Quantum Group Invariance
NASA Astrophysics Data System (ADS)
Arik, M.; Kayserilioglu, U.
We define a 3-generator algebra obtained by replacing the commutators with anticommutators in the defining relations of the angular momentum algebra. We show that integer spin representations are in one to one correspondence with those of the angular momentum algebra. The half-integer spin representations, on the other hand, split into two representations of dimension j+(1)/(2). The anticommutator spin algebra is invariant under the action of the quantum group SOq(3) with q=-1.
Integer quantum Hall effect of interacting electrons in graphene
NASA Astrophysics Data System (ADS)
Yan, Xin-Zhong; Ting, C. S.
2017-02-01
By taking into account the charge and spin orderings and the exchange interactions between all the Landau levels, we investigate the integer quantum Hall effect of electrons in graphene using the mean-field theory. We find that the fourfold degeneracy of the Landau levels cannot be completely lifted by the Coulomb interactions. In particular, at fillings ν =4 n +2 with n =0 ,1 ,... , there is no splitting between the fourfold degenerated Landau levels. We show that with doping the degenerated lowest empty level can be sequentially filled one by one; the filled level is lower than the empty ones because of the Coulomb-exchange interactions. This result explains the step Δ ν =1 in the quantized Hall conductivity. We present a highly efficient method for dealing with a huge number of the Coulomb couplings between all the Landau levels of the Dirac fermions.
Integer sequence discovery from small graphs
Hoppe, Travis; Petrone, Anna
2015-01-01
We have exhaustively enumerated all simple, connected graphs of a finite order and have computed a selection of invariants over this set. Integer sequences were constructed from these invariants and checked against the Online Encyclopedia of Integer Sequences (OEIS). 141 new sequences were added and six sequences were extended. From the graph database, we were able to programmatically suggest relationships among the invariants. It will be shown that we can readily visualize any sequence of graphs with a given criteria. The code has been released as an open-source framework for further analysis and the database was constructed to be extensible to invariants not considered in this work. PMID:27034526
PSLQ: An Algorithm to Discover Integer Relations
Bailey, David H.; Borwein, J. M.
2009-04-03
Let x = (x{sub 1}, x{sub 2} {hor_ellipsis}, x{sub n}) be a vector of real or complex numbers. x is said to possess an integer relation if there exist integers a{sub i}, not all zero, such that a{sub 1}x{sub 1} + a{sub 2}x{sub 2} + {hor_ellipsis} + a{sub n}x{sub n} = 0. By an integer relation algorithm, we mean a practical computational scheme that can recover the vector of integers ai, if it exists, or can produce bounds within which no integer relation exists. As we will see in the examples below, an integer relation algorithm can be used to recognize a computed constant in terms of a formula involving known constants, or to discover an underlying relation between quantities that can be computed to high precision. At the present time, the most effective algorithm for integer relation detection is the 'PSLQ' algorithm of mathematician-sculptor Helaman Ferguson [10, 4]. Some efficient 'multi-level' implementations of PSLQ, as well as a variant of PSLQ that is well-suited for highly parallel computer systems, are given in [4]. PSLQ constructs a sequence of integer-valued matrices B{sub n} that reduces the vector y = xB{sub n}, until either the relation is found (as one of the columns of B{sub n}), or else precision is exhausted. At the same time, PSLQ generates a steadily growing bound on the size of any possible relation. When a relation is found, the size of smallest entry of the vector y abruptly drops to roughly 'epsilon' (i.e. 10{sup -p}, where p is the number of digits of precision). The size of this drop can be viewed as a 'confidence level' that the relation is real and not merely a numerical artifact - a drop of 20 or more orders of magnitude almost always indicates a real relation. Very high precision arithmetic must be used in PSLQ. If one wishes to recover a relation of length n, with coefficients of maximum size d digits, then the input vector x must be specified to at least nd digits, and one must employ nd-digit floating-point arithmetic. Maple and
Reducing Truncation Error In Integer Processing
NASA Technical Reports Server (NTRS)
Thomas, J. Brooks; Berner, Jeffrey B.; Graham, J. Scott
1995-01-01
Improved method of rounding off (truncation of least-significant bits) in integer processing of data devised. Provides for reduction, to extremely low value, of numerical bias otherwise generated by accumulation of truncation errors from many arithmetic operations. Devised for use in integer signal processing, in which rescaling and truncation usually performed to reduce number of bits, which typically builds up in sequence of operations. Essence of method to alternate direction of roundoff (plus, then minus) on alternate occurrences of truncated values contributing to bias.
Aerospace Applications of Integer and Combinatorial Optimization
NASA Technical Reports Server (NTRS)
Padula, S. L.; Kincaid, R. K.
1995-01-01
Research supported by NASA Langley Research Center includes many applications of aerospace design optimization and is conducted by teams of applied mathematicians and aerospace engineers. This paper investigates the benefits from this combined expertise in formulating and solving integer and combinatorial optimization problems. Applications range from the design of large space antennas to interior noise control. A typical problem, for example, seeks the optimal locations for vibration-damping devices on an orbiting platform and is expressed as a mixed/integer linear programming problem with more than 1500 design variables.
Aerospace applications on integer and combinatorial optimization
NASA Technical Reports Server (NTRS)
Padula, S. L.; Kincaid, R. K.
1995-01-01
Research supported by NASA Langley Research Center includes many applications of aerospace design optimization and is conducted by teams of applied mathematicians and aerospace engineers. This paper investigates the benefits from this combined expertise in formulating and solving integer and combinatorial optimization problems. Applications range from the design of large space antennas to interior noise control. A typical problem. for example, seeks the optimal locations for vibration-damping devices on an orbiting platform and is expressed as a mixed/integer linear programming problem with more than 1500 design variables.
A Binomial Integer-Valued ARCH Model.
Ristić, Miroslav M; Weiß, Christian H; Janjić, Ana D
2016-11-01
We present an integer-valued ARCH model which can be used for modeling time series of counts with under-, equi-, or overdispersion. The introduced model has a conditional binomial distribution, and it is shown to be strictly stationary and ergodic. The unknown parameters are estimated by three methods: conditional maximum likelihood, conditional least squares and maximum likelihood type penalty function estimation. The asymptotic distributions of the estimators are derived. A real application of the novel model to epidemic surveillance is briefly discussed. Finally, a generalization of the introduced model is considered by introducing an integer-valued GARCH model.
Liquid-vapor interfaces in XY -spin fluids: an inhomogeneous anisotropic integral-equation approach.
Omelyan, I P; Folk, R; Kovalenko, A; Fenz, W; Mryglod, I M
2009-01-01
An integral-equation approach is developed to study interfacial properties of anisotropic fluids with planar spins in the presence of an external magnetic field. The approach is based on the coupled set of the Lovett-Mou-Buff-Wertheim integro-differential equation for the inhomogeneous anisotropic one-particle density and the Ornstein-Zernike equation for the orientationally dependent two-particle correlation functions. Using the proposed inhomogeneous angle-harmonics expansion formalism we show that these integral equations can be reduced to a much simpler form similar to that inherent for a system of isotropic fluids. The interfacial orientationally dependent direct correlation function can be consistently constructed by means of a nonlinear interpolation via its values obtained in the coexisting anisotropic bulk phases. A soft mean spherical approximation is employed for the closure relation. This has allowed us to solve the complicated integral equations in the situation when both spatial inhomogeneity and orientational anisotropy are present simultaneously. The approach introduced is applied to an XY fluid model with ferromagnetic spin interactions. As a result, the density-orientation and magnetization profiles at the liquid-vapor interfaces are calculated in a wide range of temperatures up to subcritical regions. The influence of the external field on the microscopic structure of the interfaces and the surface tension is also analyzed in detail.
Mixed-Integer Formulations for Constellation Scheduling
NASA Astrophysics Data System (ADS)
Valicka, C.; Hart, W.; Rintoul, M.
Remote sensing systems have expanded the set of capabilities available for and critical to national security. Cooperating, high-fidelity sensing systems and growing mission applications have exponentially increased the set of potential schedules. A definitive lack of advanced tools places an increased burden on operators, as planning and scheduling remain largely manual tasks. This is particularly true in time-critical planning activities where operators aim to accomplish a large number of missions through optimal utilization of single or multiple sensor systems. Automated scheduling through identification and comparison of alternative schedules remains a challenging problem applicable across all remote sensing systems. Previous approaches focused on a subset of sensor missions and do not consider ad-hoc tasking. We have begun development of a robust framework that leverages the Pyomo optimization modeling language for the design of a tool to assist sensor operators planning under the constraints of multiple concurrent missions and uncertainty. Our scheduling models have been formulated to address the stochastic nature of ad-hoc tasks inserted under a variety of scenarios. Operator experience is being leveraged to select appropriate model objectives. Successful development of the framework will include iterative development of high-fidelity mission models that consider and expose various schedule performance metrics. Creating this tool will aid time-critical scheduling by increasing planning efficiency, clarifying the value of alternative modalities uniquely provided by multi-sensor systems, and by presenting both sets of organized information to operators. Such a tool will help operators more quickly and fully utilize sensing systems, a high interest objective within the current remote sensing operations community. Preliminary results for mixed-integer programming formulations of a sensor scheduling problem will be presented. Assumptions regarding sensor geometry
Topologically induced fractional Hall steps in the integer quantum Hall regime of MoS 2.
Islam, S K Firoz; Benjamin, Colin
2016-09-23
The quantum magnetotransport properties of a monolayer of molybdenum disulfide are derived using linear response theory. In particular, the effect of topological terms on longitudinal and Hall conductivity is analyzed. The Hall conductivity exhibits fractional steps in the integer quantum Hall regime. Further complete spin and valley polarization of the longitudinal conductivitity is seen in presence of these topological terms. Finally, the Shubnikov-de Hass oscillations are suppressed or enhanced contingent on the sign of these topological terms.
Topologically induced fractional Hall steps in the integer quantum Hall regime of MoS 2
NASA Astrophysics Data System (ADS)
Firoz Islam, SK; Benjamin, Colin
2016-09-01
The quantum magnetotransport properties of a monolayer of molybdenum disulfide are derived using linear response theory. In particular, the effect of topological terms on longitudinal and Hall conductivity is analyzed. The Hall conductivity exhibits fractional steps in the integer quantum Hall regime. Further complete spin and valley polarization of the longitudinal conductivitity is seen in presence of these topological terms. Finally, the Shubnikov-de Hass oscillations are suppressed or enhanced contingent on the sign of these topological terms.
Approach for making visible and stable stripes in a spin-orbit-coupled Bose-Einstein superfluid
NASA Astrophysics Data System (ADS)
Martone, Giovanni I.; Li, Yun; Stringari, Sandro
2014-10-01
The striped phase exhibited by a spin-1 /2 Bose-Einstein condensate with spin-orbit coupling is characterized by the spontaneous breaking of two continuous symmetries: gauge and translational symmetry. This is a peculiar feature of supersolids and is the consequence of interaction effects. We propose an approach to produce striped configurations with high-contrast fringes, making their experimental detection in atomic gases a realistic perspective. Our approach, whose efficiency is directly confirmed by three-dimensional Gross-Pitaevskii simulations, is based on the space separation of the two spin components into a two-dimensional bilayer configuration, causing the reduction of the effective interspecies interaction and the increase of the stability of the striped phase. We also explore the effect of a π /2 Bragg pulse, causing the increase of the fringe wavelength, and of a π /2 rf pulse, revealing the coherent nature of the order parameter in the spin channel.
Dollars & Sense: Students' Integer Perspectives
ERIC Educational Resources Information Center
Whitacre, Ian; Bishop, Jessica Pierson; Philipp, Randolph A.; Lamb, Lisa L.; Schappelle, Bonnie P.
2014-01-01
A story problem about borrowing money, presented in this article, may be represented with positive or negative numbers and thought about in different ways. The authors describe ideas related to integers (both positive and negative) and how students used them in relation to a story problem, and how they related these ideas to equations.
Dollars & Sense: Students' Integer Perspectives
ERIC Educational Resources Information Center
Whitacre, Ian; Bishop, Jessica Pierson; Philipp, Randolph A.; Lamb, Lisa L.; Schappelle, Bonnie P.
2014-01-01
A story problem about borrowing money, presented in this article, may be represented with positive or negative numbers and thought about in different ways. The authors describe ideas related to integers (both positive and negative) and how students used them in relation to a story problem, and how they related these ideas to equations.
How to Differentiate an Integer Modulo n
ERIC Educational Resources Information Center
Emmons, Caleb; Krebs, Mike; Shaheen, Anthony
2009-01-01
A number derivative is a numerical mapping that satisfies the product rule. In this paper, we determine all number derivatives on the set of integers modulo n. We also give a list of undergraduate research projects to pursue using these maps as a starting point.
A Theoretical Design Approach for Passive Shimming of a Magic-Angle-Spinning NMR Magnet.
Li, Frank X; Voccio, John P; Sammartino, Michael; Ahn, Minchul; Hahn, Seungyong; Bascuñán, Juan; Iwasa, Yukikazu
2016-06-01
This paper presents a passive shimming design approach for a magic-angle-spinning (MAS) NMR magnet. In order to achieve a 1.5-T magic-angle field in NMR samples, we created two independent orthogonal magnetic vector fields by two separate coils: the dipole and solenoid. These two coils create a combined 1.5-T magnetic field vector directed at the magic angle (54.74° from the spinning axis). Additionally, the stringent magnetic field homogeneity requirement of the MAS magnet is the same as that of a solenoidal NMR magnet. The challenge for the magic-angle passive shimming design is to correct both the dipole and solenoid magnetic field spherical harmonics with one set of iron pieces, the so-called ferromagnetic shimming. Furthermore, the magnetization of the iron pieces is produced by both the dipole and solenoid coils. In our design approach, a matrix of 2 mm by 5 mm iron pieces with different thicknesses was attached to a thin-walled tube, 90-mm diameter and 40-mm high. Two sets of spherical harmonic coefficients were calculated for both the dipole and solenoid coil windings. By using the multiple-objective linear programming optimization technique and coordinate transformations, we have designed a passive shimming set that can theoretically reduce 22 lower-order spherical harmonics and improve the homogeneity of our MAS NMR magnet.
Carvalho, D C; Plascak, J A; Castro, L M
2013-09-01
A variational approach based on Bogoliubov inequality for the free energy is employed in order to treat the quantum spin-1 anisotropic ferromagnetic Heisenberg model in the presence of a crystal field. Within the Bogoliubov scheme an improved pair approximation has been used. The temperature-dependent thermodynamic functions have been obtained and provide much better results than the previous simple mean-field scheme. In one dimension, which is still nonintegrable for quantum spin-1, we get the exact results in the classical limit, or near-exact results in the quantum case, for the free energy, magnetization, and quadrupole moment, as well for the transition temperature. In two and three dimensions the corresponding global phase diagrams have been obtained as a function of the parameters of the Hamiltonian. First-order transition lines, second-order transition lines, tricritical and tetracritical points, and critical endpoints have been located through the analysis of the minimum of the Helmholtz free energy and a Landau-like expansion in the approximated free energy. Only first-order quantum transitions have been found at zero temperature. Limiting cases, such as isotropic Heisenberg, Blume-Capel, and Ising models, have been analyzed and compared to previous results obtained from other analytical approaches as well as from Monte Carlo simulations.
Parity Anomaly and Spin Transmutation in Quantum Spin Hall Josephson Junctions
NASA Astrophysics Data System (ADS)
Peng, Yang; Vinkler-Aviv, Yuval; Brouwer, Piet W.; Glazman, Leonid I.; von Oppen, Felix
2016-12-01
We study the Josephson effect in a quantum spin Hall system coupled to a localized magnetic impurity. As a consequence of the fermion parity anomaly, the spin of the combined system of impurity and spin-Hall edge alternates between half-integer and integer values when the superconducting phase difference across the junction advances by 2 π . This leads to characteristic differences in the splittings of the spin multiplets by exchange coupling and single-ion anisotropy at phase differences, for which time-reversal symmetry is preserved. We discuss the resulting 8 π -periodic (or Z4) fractional Josephson effect in the context of recent experiments.
Parity Anomaly and Spin Transmutation in Quantum Spin Hall Josephson Junctions.
Peng, Yang; Vinkler-Aviv, Yuval; Brouwer, Piet W; Glazman, Leonid I; von Oppen, Felix
2016-12-23
We study the Josephson effect in a quantum spin Hall system coupled to a localized magnetic impurity. As a consequence of the fermion parity anomaly, the spin of the combined system of impurity and spin-Hall edge alternates between half-integer and integer values when the superconducting phase difference across the junction advances by 2π. This leads to characteristic differences in the splittings of the spin multiplets by exchange coupling and single-ion anisotropy at phase differences, for which time-reversal symmetry is preserved. We discuss the resulting 8π-periodic (or Z_{4}) fractional Josephson effect in the context of recent experiments.
Mixed integer evolution strategies for parameter optimization.
Li, Rui; Emmerich, Michael T M; Eggermont, Jeroen; Bäck, Thomas; Schütz, M; Dijkstra, J; Reiber, J H C
2013-01-01
Evolution strategies (ESs) are powerful probabilistic search and optimization algorithms gleaned from biological evolution theory. They have been successfully applied to a wide range of real world applications. The modern ESs are mainly designed for solving continuous parameter optimization problems. Their ability to adapt the parameters of the multivariate normal distribution used for mutation during the optimization run makes them well suited for this domain. In this article we describe and study mixed integer evolution strategies (MIES), which are natural extensions of ES for mixed integer optimization problems. MIES can deal with parameter vectors consisting not only of continuous variables but also with nominal discrete and integer variables. Following the design principles of the canonical evolution strategies, they use specialized mutation operators tailored for the aforementioned mixed parameter classes. For each type of variable, the choice of mutation operators is governed by a natural metric for this variable type, maximal entropy, and symmetry considerations. All distributions used for mutation can be controlled in their shape by means of scaling parameters, allowing self-adaptation to be implemented. After introducing and motivating the conceptual design of the MIES, we study the optimality of the self-adaptation of step sizes and mutation rates on a generalized (weighted) sphere model. Moreover, we prove global convergence of the MIES on a very general class of problems. The remainder of the article is devoted to performance studies on artificial landscapes (barrier functions and mixed integer NK landscapes), and a case study in the optimization of medical image analysis systems. In addition, we show that with proper constraint handling techniques, MIES can also be applied to classical mixed integer nonlinear programming problems.
Elementary theory of factoring trinomials with integer coefficients over the integers
NASA Astrophysics Data System (ADS)
Donnell, William A.
2010-12-01
An important component of intermediate and college algebra courses involves teaching students methods to factor a trinomial with integer coefficients over the integers. The aim of this article is to present a theoretical justification of that which is often taught, but really never explained as to why it works. The theory is presented, and a suggestion for an inquiry-based learning project is given.
Vela, Sergi; Verot, Martin; Fromager, Emmanuel; Robert, Vincent
2017-02-14
The present paper reports the application of a computational framework, based on the quantum master equation, the Fermi's golden Rule, and conventional wavefunction-based methods, to describe electron transport through a spin crossover molecular junction (Fe(bapbpy) (NCS)2, 1, bapbpy = N-(6-(6-(Pyridin-2-ylamino)pyridin-2-yl)pyridin-2-yl)-pyridin-2-amine). This scheme is an alternative to the standard approaches based on the relative position and nature of the frontier orbitals, as it evaluates the junction's Green's function by means of accurate state energies and wavefunctions. In the present work, those elements are calculated for the relevant states of the high- and low-spin species of 1, and they are used to evaluate the output conductance within a given range of bias- and gate-voltages. The contribution of the ground and low-lying excited states to the current is analyzed, and inspected in terms of their 2S + 1 Ms-states. In doing so, it is shown the relevance of treating not only the ground state in its maximum-Ms projection, as usually done in most computational-chemistry packages, but the whole spectrum of low-energy states of the molecule. Such improved representation of the junction has a notable impact on the total conductivity and, more importantly, it restores the equivalence between alpha and beta transport, which means that no spin polarization is observed in the absence of Zeeman splitting. Finally, this work inspects the strong- and weak-points of the suggested theoretical framework to understand electron transport through molecular switchable materials, identifies a pathway for future improvement, and offers a new insight into concepts that play a key role in spintronics.
NASA Astrophysics Data System (ADS)
Vela, Sergi; Verot, Martin; Fromager, Emmanuel; Robert, Vincent
2017-02-01
The present paper reports the application of a computational framework, based on the quantum master equation, the Fermi's golden Rule, and conventional wavefunction-based methods, to describe electron transport through a spin crossover molecular junction (Fe(bapbpy) (NCS)2, 1, bapbpy = N-(6-(6-(Pyridin-2-ylamino)pyridin-2-yl)pyridin-2-yl)-pyridin-2-amine). This scheme is an alternative to the standard approaches based on the relative position and nature of the frontier orbitals, as it evaluates the junction's Green's function by means of accurate state energies and wavefunctions. In the present work, those elements are calculated for the relevant states of the high- and low-spin species of 1, and they are used to evaluate the output conductance within a given range of bias- and gate-voltages. The contribution of the ground and low-lying excited states to the current is analyzed, and inspected in terms of their 2S + 1 Ms-states. In doing so, it is shown the relevance of treating not only the ground state in its maximum-Ms projection, as usually done in most computational-chemistry packages, but the whole spectrum of low-energy states of the molecule. Such improved representation of the junction has a notable impact on the total conductivity and, more importantly, it restores the equivalence between alpha and beta transport, which means that no spin polarization is observed in the absence of Zeeman splitting. Finally, this work inspects the strong- and weak-points of the suggested theoretical framework to understand electron transport through molecular switchable materials, identifies a pathway for future improvement, and offers a new insight into concepts that play a key role in spintronics.
NASA Astrophysics Data System (ADS)
Benetis, Nikolas P.
In this paper a general theory for treating the spin-lattice relaxation of a ligand nucleus (denoted by I) is derived for a metal complex in a doublet electron spin state ( S = {1}/{2}). The dipole-dipole SI interaction is treated for the case where the electron spin is also strongly coupled to the metal nucleus K. The SK interaction considered here is the hyperfine coupling, both scalar (SC) and dipolar (DD). The present theory is valid for slowly reorienting complexes in solution and can, furthermore, incorporate relaxation effects of the electron spin S, and the metal nucleus K due to processes which are faster than, and independent of, reorientation, i.e., for processes that fulfil the strong narrowing conditions. The effects of chemical exchange of the ligands and of anisotropic reorientation of the complex are also studied. Together with our previous studies of paramagnetic complexes with electron spin S ≧ 1, that have been recently reviewed by J. Kowalewski, L. Nordenskiöld, N. Benetis, and P. O. Westlund, ( Prog. NMR Spectrosc.17, 141 (1985)), the present work completes the elementary relaxation features of ligand nuclei of metal complexes in the slow motional regime. The present theory is shown to be more general than the theory of Bertini and co-workers ( J. Magn. Reson.59 , 213 (1984)), which can be obtained as a limit of the present approach by decoupling the reorientation from the motions of the S-K two spin system. The treatment of a strongly coupled two-spin system is emphasized since it provides a necessary step to the treatment of the relaxation of paramagnetic doublets.
Ramachandran, G.; Vidya, M. S.; Balasubramanyam, J.
2007-06-15
A theoretical formalism leading to elegant derivation of formulas for all spin observables is outlined for photoproduction of mesons with arbitrary spin-parity s{sup {pi}}. The salient features of this formalism, based on irreducible tensor techniques, are (i) the number of independent irreducible tensor amplitudes is 4(2s+1) (ii) a single compact formula is sufficient to express these amplitudes in terms of allowed electric and magnetic multipole amplitudes, and (iii) all the spin observables, including beam analyzing powers as well as the differential cross section, are expressible in terms of bilinear irreducible tensors of rank 0 to 2(s+1). The relationship between the irreducible tensor amplitudes and the helicity amplitudes is elucidated in general and explicit expressions for the helicity amplitudes are given in terms of the irreducible tensor amplitudes in the particular cases of pseudoscalar and vector meson photoproduction. The connection between the irreducible tensor amplitudes introduced here and the well-known Chew-Goldberger-Low-Nambu amplitudes for photoproduction of pseudoscalar mesons is also established.
Unlimited Capacity Parallel Quantity Comparison of Multiple Integers
ERIC Educational Resources Information Center
Blanc-Goldhammer, Daryn R.; Cohen, Dale J.
2014-01-01
Research has shown that integer comparison is quick and efficient. This efficiency may be a function of the structure of the integer comparison system. The present study tests whether integers are compared with an unlimited capacity system or a limited capacity system. We tested these models using a visual search task with time delimitation. The…
Unlimited Capacity Parallel Quantity Comparison of Multiple Integers
ERIC Educational Resources Information Center
Blanc-Goldhammer, Daryn R.; Cohen, Dale J.
2014-01-01
Research has shown that integer comparison is quick and efficient. This efficiency may be a function of the structure of the integer comparison system. The present study tests whether integers are compared with an unlimited capacity system or a limited capacity system. We tested these models using a visual search task with time delimitation. The…
NASA Astrophysics Data System (ADS)
Wellens, Thomas; Jalabert, Rodolfo A.
2016-10-01
We develop a self-consistent theory describing the spin and spatial electron diffusion in the impurity band of doped semiconductors under the effect of a weak spin-orbit coupling. The resulting low-temperature spin-relaxation time and diffusion coefficient are calculated within different schemes of the self-consistent framework. The simplest of these schemes qualitatively reproduces previous phenomenological developments, while more elaborate calculations provide corrections that approach the values obtained in numerical simulations. The results are universal for zinc-blende semiconductors with electron conductance in the impurity band, and thus they are able to account for the measured spin-relaxation times of materials with very different physical parameters. From a general point of view, our theory opens a new perspective for describing the hopping dynamics in random quantum networks.
Multi-reference approach to the calculation of photoelectron spectra including spin-orbit coupling
Grell, Gilbert; Bokarev, Sergey I. Kühn, Oliver; Winter, Bernd; Seidel, Robert; Aziz, Emad F.; Aziz, Saadullah G.
2015-08-21
X-ray photoelectron spectra provide a wealth of information on the electronic structure. The extraction of molecular details requires adequate theoretical methods, which in case of transition metal complexes has to account for effects due to the multi-configurational and spin-mixed nature of the many-electron wave function. Here, the restricted active space self-consistent field method including spin-orbit coupling is used to cope with this challenge and to calculate valence- and core-level photoelectron spectra. The intensities are estimated within the frameworks of the Dyson orbital formalism and the sudden approximation. Thereby, we utilize an efficient computational algorithm that is based on a biorthonormal basis transformation. The approach is applied to the valence photoionization of the gas phase water molecule and to the core ionization spectrum of the [Fe(H{sub 2}O){sub 6}]{sup 2+} complex. The results show good agreement with the experimental data obtained in this work, whereas the sudden approximation demonstrates distinct deviations from experiments.
Can a Topological Approach Predict Spin-Symmetry Breaking in Conjugated Hydrocarbons?
Malrieu, Jean-Paul; Trinquier, Georges
2016-12-08
The closed-shell mean-field single determinants of large alternant hydrocarbons are frequently unstable with respect to a possible spin-symmetry breaking which produces different orbitals for the α and β electrons, either in Hartree-Fock or in Kohn-Sham DFT calculations. The present work shows that one may easily predict whether such a symmetry breaking will take place from the elementary topological Hückel Hamiltonian which introduces a simple hopping integral t. The demonstration makes use of the simplest representation of the bielectronic repulsion, namely, the Hubbard bielectronic operator, reduced to an on-site repulsion U, and takes benefit of the mirror theorem. A recipe is proposed to determine the relevant t/U ratio for a given exchange-correlation potential. The symmetry-breaking phenomenon first concerns the mixing between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), but it may eventually run on other pairs of mirror orbitals. These symmetry breakings may take place while the other molecular orbitals keep a closed-shell character. The spin polarization of these MOs, appearing in typical unrestricted mean-field calculations, is an induced and amplifying effect, which has to be distinguished from the symmetry breaking itself. Special attention is paid to the possible appearance of multiple symmetry breakings, leading to a polyradical character. The model is tested on six series of polycyclic hydrocarbons. This elementary approach sheds new arguments on the debate concerning the di- or polyradical character of polyacenes.
A hybrid-systems approach to spin squeezing using a highly dissipative ancillary system
NASA Astrophysics Data System (ADS)
Dooley, Shane; Yukawa, Emi; Matsuzaki, Yuichiro; Knee, George C.; Munro, William J.; Nemoto, Kae
2016-05-01
Squeezed states of spin systems are an important entangled resource for quantum technologies, particularly quantum metrology and sensing. Here we consider the generation of spin squeezed states by interacting the spins with a dissipative ancillary system. We show that spin squeezing can be generated in this model by two different mechanisms: one-axis twisting (OAT) and driven collective relaxation (DCR). We can interpolate between the two mechanisms by simply adjusting the detuning between the dissipative ancillary system and the spin system. Interestingly, we find that for both mechanisms, ancillary system dissipation need not be considered an imperfection in our model, but plays a positive role in spin squeezing. To assess the feasibility of spin squeezing we consider two different implementations with superconducting circuits. We conclude that it is experimentally feasible to generate a squeezed state of hundreds of spins either by OAT or by DCR.
NASA Astrophysics Data System (ADS)
Ayabe, Kazuki; Sato, Kazunobu; Nakazawa, Shigeaki; Nishida, Shinsuke; Sugisaki, Kenji; Ise, Tomoaki; Morita, Yasushi; Toyota, Kazuo; Shiomi, Daisuke; Kitagawa, Masahiro; Suzuki, Shuichi; Okada, Keiji; Takui, Takeji
2013-10-01
Weakly exchange-coupled biradicals have attracted much attention in terms of their dynamic nuclear polarisation application in NMR spectroscopy for biological systems or the use of synthetic electron-spin qubits in quantum information processing/quantum-computing technology. Analogues multi-partite molecular systems are important in entering a new phase of the relevant fields. Many stable organic biradicals known so far have nitrogen nuclei at their electron spin sites, where singly occupied molecular orbitals are dominating and large hyperfine couplings occur. A salient feature of such weakly exchange-coupled molecular systems in terms of electronic spin structures is underlain by small zero-field splitting (ZFS) parameters comparable with nuclear hyperfine and/or exchange interactions. Pulse-based electron spin nutation (ESN) spectroscopy of weakly exchange-coupled biradicals, applicable to oriented or non-oriented media, has proven to be a useful and facile approach to the determination of ZFS parameters, which reflect relatively short distances between unpaired electron spins. In the present study, we first treat two-dimensional single-crystal ESN spectroscopy (Q-band) of a 15N-labelled weakly exchange-coupled biradical, showing the nuclear hyperfine effects on the ESN phenomena from both the experimental and theoretical side. ESN spectroscopy is transition moment spectroscopy, in which the nutation frequency as a function of the microwave irradiation strength ω1 (angular frequency) for any cases of weakly exchange-coupled systems can be treated. The results provide a testing ground for the simplified but general approach to the ESN analysis. In this study, we have invoked single-crystal electron-electron double resonance measurements on a typical biradical well incorporated in a diamagnetic host lattice and checked the accuracy of our ESN analysis for the spin dipolar tensor and exchange interaction. Next, we extend the general approach to analogues multi
Universal spin transport in a strongly interacting Fermi gas.
Sommer, Ariel; Ku, Mark; Roati, Giacomo; Zwierlein, Martin W
2011-04-14
Transport of fermions, particles with half-integer spin, is central to many fields of physics. Electron transport runs modern technology, defining states of matter such as superconductors and insulators, and electron spin is being explored as a new carrier of information. Neutrino transport energizes supernova explosions following the collapse of a dying star, and hydrodynamic transport of the quark-gluon plasma governed the expansion of the early Universe. However, our understanding of non-equilibrium dynamics in such strongly interacting fermionic matter is still limited. Ultracold gases of fermionic atoms realize a pristine model for such systems and can be studied in real time with the precision of atomic physics. Even above the superfluid transition, such gases flow as an almost perfect fluid with very low viscosity when interactions are tuned to a scattering resonance. In this hydrodynamic regime, collective density excitations are weakly damped. Here we experimentally investigate spin excitations in a Fermi gas of (6)Li atoms, finding that, in contrast, they are maximally damped. A spin current is induced by spatially separating two spin components and observing their evolution in an external trapping potential. We demonstrate that interactions can be strong enough to reverse spin currents, with components of opposite spin reflecting off each other. Near equilibrium, we obtain the spin drag coefficient, the spin diffusivity and the spin susceptibility as a function of temperature on resonance and show that they obey universal laws at high temperatures. In the degenerate regime, the spin diffusivity approaches a value set by [planck]/m, the quantum limit of diffusion, where [planck]/m is Planck's constant divided by 2π and m the atomic mass. For repulsive interactions, our measurements seem to exclude a metastable ferromagnetic state.
Integer sparse distributed memory: analysis and results.
Snaider, Javier; Franklin, Stan; Strain, Steve; George, E Olusegun
2013-10-01
Sparse distributed memory is an auto-associative memory system that stores high dimensional Boolean vectors. Here we present an extension of the original SDM, the Integer SDM that uses modular arithmetic integer vectors rather than binary vectors. This extension preserves many of the desirable properties of the original SDM: auto-associativity, content addressability, distributed storage, and robustness over noisy inputs. In addition, it improves the representation capabilities of the memory and is more robust over normalization. It can also be extended to support forgetting and reliable sequence storage. We performed several simulations that test the noise robustness property and capacity of the memory. Theoretical analyses of the memory's fidelity and capacity are also presented.
An approach to attitude determination for a spin-stabilized spacecraft (IMP 1)
NASA Technical Reports Server (NTRS)
Fang, A. C.
1972-01-01
The analysis and the FORTRAN program are presented for the determination of attitude of a spin-stabilized spacecraft. The use of telemetry data that provide information about two reference vectors and their relation to the spin is outlined. A technique for the determination of the spin-axis orientation that employs only simple calculations is described.
Mixed Integer Programming and Heuristic Scheduling for Space Communication Networks
NASA Technical Reports Server (NTRS)
Cheung, Kar-Ming; Lee, Charles H.
2012-01-01
We developed framework and the mathematical formulation for optimizing communication network using mixed integer programming. The design yields a system that is much smaller, in search space size, when compared to the earlier approach. Our constrained network optimization takes into account the dynamics of link performance within the network along with mission and operation requirements. A unique penalty function is introduced to transform the mixed integer programming into the more manageable problem of searching in a continuous space. The constrained optimization problem was proposed to solve in two stages: first using the heuristic Particle Swarming Optimization algorithm to get a good initial starting point, and then feeding the result into the Sequential Quadratic Programming algorithm to achieve the final optimal schedule. We demonstrate the above planning and scheduling methodology with a scenario of 20 spacecraft and 3 ground stations of a Deep Space Network site. Our approach and framework have been simple and flexible so that problems with larger number of constraints and network can be easily adapted and solved.
Mixed Integer Programming and Heuristic Scheduling for Space Communication Networks
NASA Technical Reports Server (NTRS)
Cheung, Kar-Ming; Lee, Charles H.
2012-01-01
We developed framework and the mathematical formulation for optimizing communication network using mixed integer programming. The design yields a system that is much smaller, in search space size, when compared to the earlier approach. Our constrained network optimization takes into account the dynamics of link performance within the network along with mission and operation requirements. A unique penalty function is introduced to transform the mixed integer programming into the more manageable problem of searching in a continuous space. The constrained optimization problem was proposed to solve in two stages: first using the heuristic Particle Swarming Optimization algorithm to get a good initial starting point, and then feeding the result into the Sequential Quadratic Programming algorithm to achieve the final optimal schedule. We demonstrate the above planning and scheduling methodology with a scenario of 20 spacecraft and 3 ground stations of a Deep Space Network site. Our approach and framework have been simple and flexible so that problems with larger number of constraints and network can be easily adapted and solved.
Schuenke, Patrick; Koehler, Christina; Korzowski, Andreas; Windschuh, Johannes; Bachert, Peter; Ladd, Mark E; Mundiyanapurath, Sibu; Paech, Daniel; Bickelhaupt, Sebastian; Bonekamp, David; Schlemmer, Heinz-Peter; Radbruch, Alexander; Zaiss, Moritz
2017-07-01
Chemical exchange sensitive spin-lock and related techniques allow to observe the uptake of administered D-glucose in vivo. The exchange-weighting increases with the magnetic field strength, but inhomogeneities in the radiofrequency (RF) field at ultrahigh field whole-body scanners lead to artifacts in conventional spin-lock experiments. Thus, our aim was the development of an adiabatically prepared T1ρ -based imaging sequence applicable to studies of glucose metabolism in tumor patients at ultrahigh field strengths. An adiabatically prepared on-resonant spin-lock approach was realized at a 7 Tesla whole-body scanner and compared with conventional spin-lock. The insensitivity to RF field inhomogeneities as well as the chemical exchange sensitivity of the approach was investigated in simulations, model solutions and in the human brain. The suggested spin-lock approach was shown to be feasible for in vivo application at ultrahigh field whole-body scanners and showed substantially improved image quality compared with conventional spin-lock. The sensitivity of the presented method to glucose was verified in model solutions and a glucose contrast was observed in a glioblastoma patient after intravenous administration of glucose solution. An adiabatically prepared spin-lock preparation was presented that enables a homogeneous and chemical exchange sensitive T1ρ -based imaging at ultra-high field whole-body scanners, e.g., for T1ρ -based dynamic glucose enhanced MRI. Magn Reson Med 78:215-225, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Finding community structures in complex networks using mixed integer optimisation
NASA Astrophysics Data System (ADS)
Xu, G.; Tsoka, S.; Papageorgiou, L. G.
2007-11-01
The detection of community structure has been used to reveal the relationships between individual objects and their groupings in networks. This paper presents a mathematical programming approach to identify the optimal community structures in complex networks based on the maximisation of a network modularity metric for partitioning a network into modules. The overall problem is formulated as a mixed integer quadratic programming (MIQP) model, which can then be solved to global optimality using standard optimisation software. The solution procedure is further enhanced by developing special symmetry-breaking constraints to eliminate equivalent solutions. It is shown that additional features such as minimum/maximum module size and balancing among modules can easily be incorporated in the model. The applicability of the proposed optimisation-based approach is demonstrated by four examples. Comparative results with other approaches from the literature show that the proposed methodology has superior performance while global optimum is guaranteed.
Ground-state phase-space structures of two-dimensional ±J spin glasses: A network approach.
Cao, Xin; Wang, Feng; Han, Yilong
2015-06-01
We illustrate a complex-network approach to study the phase spaces of spin glasses. By mapping the whole ground-state phase spaces of two-dimensional Edwards-Anderson bimodal (±J) spin glasses exactly into networks for analysis, we discovered various phase-space properties. The Gaussian connectivity distribution of the phase-space networks demonstrates that both the number of free spins and the visiting frequency of all microstates follow the Gaussian distribution. The spectra of phase-space networks are Gaussian, which is proven to be exact when the system is infinitely large. The phase-space networks exhibit community structures. By coarse graining to the community level, we constructed a network representing the entropy landscape of the ground state and discovered its scale-free property. The phase-space networks exhibit fractal structures, as a result of the rugged entropy landscape. Moreover, we show that the connectivity distribution, community structures, and fractal structures change drastically at the ferromagnetic-to-glass phase transition. These quantitative measurements of the ground states provide new insight into the study of spin glasses. The phase-space networks of spin glasses share a number of common features with those of lattice gases and geometrically frustrated spin systems and form a new class of complex networks with unique topology.
NASA Astrophysics Data System (ADS)
Cheng, Lan; Gauss, Jürgen; Stanton, John F.
2013-08-01
A cost-effective treatment of scalar-relativistic effects on nuclear magnetic shieldings based on the spin-free exact-two-component theory in its one-electron variant (SFX2C-1e) is presented. The SFX2C-1e scheme gains its computational efficiency, in comparison to the four-component approach, from a focus on spin-free contributions and from the elimination of the small component. For the calculation of nuclear magnetic shieldings, the separation of spin-free and spin-dependent terms in the parent four-component theory is carried out here for the matrix representation of the Dirac equation in terms of a restricted-magnetically balanced gauge-including atomic orbital basis. The resulting spin-free four-component matrix elements required to calculate nuclear magnetic shieldings are then used to construct the corresponding SFX2C-1e Hamiltonian and its perturbed counterpart in the context of SFX2C-1e analytic derivative theory. To demonstrate the applicability of the approach, we report coupled-cluster calculations for prototypical problems such as the 17O shieldings of transition-metal oxo complexes (MO_4^{2-}, M = Cr, Mo, and W) and the 129Xe shieldings of xenon fluorides (XeF2, XeF4, and XeF6).
A max-min theorem for integer multiflows
Lomonosov, M.; Ilani, H; Korach, E.
1994-12-31
We consider a multigraph G = (V, E), with the vertex-set V and edge-set E, and a set T {improper_subset} V of terminals, {vert_bar}T{vert_bar} {>=} 2. Given a graph S = (T, U) with U {intersection} E = {O}, called scheme, define an integer S-flow in G as a collection C of edge-disjoint paths in G whose ends are terminals adjacent in S. We address the problem of maximum integer S-flow under the following assumptions: (1) the non-terminal vertices of G have even degrees, and (2) each terminal belongs to atmost two anticliques of S. Due to the assumption, there arises a deep analogy of this problem with matchings in graphs. In fact, it admits formulating as a polymatroid matching problem. We develop an approach analogous to the Berge method of alternating paths, with the notion of {open_quotes}blossom{close_quotes} closely related to that introduced by Edmonds. We characterize max {vert_bar}C{vert_bar} by a max-min relation analogous to the Berge-Tutte formula of the Matching theory.
Alignment of molecular networks by integer quadratic programming.
Zhenping, Li; Zhang, Shihua; Wang, Yong; Zhang, Xiang-Sun; Chen, Luonan
2007-07-01
With more and more data on molecular networks (e.g. protein interaction networks, gene regulatory networks and metabolic networks) available, the discovery of conserved patterns or signaling pathways by comparing various kinds of networks among different species or within a species becomes an increasingly important problem. However, most of the conventional approaches either restrict comparative analysis to special structures, such as pathways, or adopt heuristic algorithms due to computational burden. In this article, to find the conserved substructures, we develop an efficient algorithm for aligning molecular networks based on both molecule similarity and architecture similarity, by using integer quadratic programming (IQP). Such an IQP can be relaxed into the corresponding quadratic programming (QP) which almost always ensures an integer solution, thereby making molecular network alignment tractable without any approximation. The proposed framework is very flexible and can be applied to many kinds of molecular networks including weighted and unweighted, directed and undirected networks with or without loops. Matlab code and data are available from http://zhangroup.aporc.org/bioinfo/MNAligner or http://intelligent.eic.osaka-sandai.ac.jp/chenen/software/MNAligner, or upon request from authors. Supplementary data are available at Bioinformatics online.
Reconstructing cerebrovascular networks under local physiological constraints by integer programming
Rempfler, Markus; Schneider, Matthias; Ielacqua, Giovanna D.; ...
2015-04-23
We introduce a probabilistic approach to vessel network extraction that enforces physiological constraints on the vessel structure. The method accounts for both image evidence and geometric relationships between vessels by solving an integer program, which is shown to yield the maximum a posteriori (MAP) estimate to the probabilistic model. Starting from an over-connected network, it is pruning vessel stumps and spurious connections by evaluating the local geometry and the global connectivity of the graph. We utilize a high-resolution micro computed tomography (µCT) dataset of a cerebrovascular corrosion cast to obtain a reference network and learn the prior distributions of ourmore » probabilistic model. As a result, we perform experiments on micro magnetic resonance angiography (µMRA) images of mouse brains and discuss properties of the networks obtained under different tracking and pruning approaches.« less
Reconstructing cerebrovascular networks under local physiological constraints by integer programming
Rempfler, Markus; Schneider, Matthias; Ielacqua, Giovanna D.; Xiao, Xianghui; Stock, Stuart R.; Klohs, Jan; Szekely, Gabor; Andres, Bjoern; Menze, Bjoern H.
2015-04-23
We introduce a probabilistic approach to vessel network extraction that enforces physiological constraints on the vessel structure. The method accounts for both image evidence and geometric relationships between vessels by solving an integer program, which is shown to yield the maximum a posteriori (MAP) estimate to the probabilistic model. Starting from an over-connected network, it is pruning vessel stumps and spurious connections by evaluating the local geometry and the global connectivity of the graph. We utilize a high-resolution micro computed tomography (µCT) dataset of a cerebrovascular corrosion cast to obtain a reference network and learn the prior distributions of our probabilistic model. As a result, we perform experiments on micro magnetic resonance angiography (µMRA) images of mouse brains and discuss properties of the networks obtained under different tracking and pruning approaches.
Rempfler, Markus; Schneider, Matthias; Ielacqua, Giovanna D; Xiao, Xianghui; Stock, Stuart R; Klohs, Jan; Székely, Gábor; Andres, Bjoern; Menze, Bjoern H
2015-10-01
We introduce a probabilistic approach to vessel network extraction that enforces physiological constraints on the vessel structure. The method accounts for both image evidence and geometric relationships between vessels by solving an integer program, which is shown to yield the maximum a posteriori (MAP) estimate to a probabilistic model. Starting from an overconnected network, it is pruning vessel stumps and spurious connections by evaluating the local geometry and the global connectivity of the graph. We utilize a high-resolution micro computed tomography (μCT) dataset of a cerebrovascular corrosion cast to obtain a reference network and learn the prior distributions of our probabilistic model and we perform experiments on in-vivo magnetic resonance microangiography (μMRA) images of mouse brains. We finally discuss properties of the networks obtained under different tracking and pruning approaches. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Guan, Qingze; Blume, Doerte
2016-05-01
The explicit correlated Gaussian (ECG) basis set expansion approach is a variational approach that has been used in various areas, including molecular, nuclear, atomic, and chemical physics. In the world of cold atoms, e.g., the ECG approach has been used to calculate the eigenenergies and eigenstates of few-body systems governed by Efimov physics. Since the first experimental realization of synthesized gauge fields, few-body systems with spin-orbit coupling have attracted a great deal of attention. Here, the ECG approach is customized to few-body systems with both short-range interactions and spin-orbit couplings. Benchmark tests and a performance analysis will be presented. Support by the NSF is gratefully acknowledged.
NASA Astrophysics Data System (ADS)
Santos, F. A. N.; da Silva, L. C. B.; Coutinho-Filho, M. D.
2017-01-01
We propose a topological approach suitable to establish a connection between thermodynamics and topology in the microcanonical ensemble. Indeed, we report on results that point to the possibility of describing interacting classical spin systems in the thermodynamic limit, including the occurrence of a phase transition, using topological arguments only. Our approach relies on Morse theory, through the determination of the critical points of the potential energy, which is the proper Morse function. Our main finding is that, in the context of the classical models studied, the Euler characteristic χ (E) embeds the necessary features for a correct description of several magnetic thermodynamic quantities of the systems, such as the magnetization, correlation function, susceptibility, and critical temperature. Despite the classical nature of the models, such quantities are those that do not violate the laws of thermodynamics (with the proviso that van der Waals loop states are mean field (MF) artifacts). We also discuss the subtle connection between our approach using the Euler entropy, defined by the logarithm of the modulus of χ (E) per site, and that using the Boltzmann microcanonical entropy. Moreover, the results suggest that the loss of regularity in the Morse function is associated with the occurrence of unstable and metastable thermodynamic solutions in the MF case. The reliability of our approach is tested in two exactly soluble systems: the infinite-range and the one-dimensional short-range XY models in the presence of a magnetic field. In particular, we confirm that the topological hypothesis holds for both the infinite-range ({{T}c}\
Research on application for integer wavelet transform for lossless compression of medical image
NASA Astrophysics Data System (ADS)
Zhou, Zude; Li, Quan; Long, Quan
2003-09-01
This paper proposes an approach based on using lifting scheme to construct integer wavelet transform whose purpose is to realize the lossless compression of images. Then researches on application of medical image, software simulation of corresponding algorithm and experiment result are presented in this paper. Experiment shows that this method could improve the compression ration and resolution.
Quantum spin Hamiltonians for the SU(2)k WZW model
NASA Astrophysics Data System (ADS)
Nielsen, Anne E. B.; Cirac, J. Ignacio; Sierra, Germán
2011-11-01
We propose to use null vectors in conformal field theories to derive model Hamiltonians of quantum spin chains and the corresponding ground state wavefunction(s). The approach is quite general, and we illustrate it by constructing a family of Hamiltonians whose ground states are the chiral correlators of the SU(2)k WZW model for integer values of the level k. The simplest example corresponds to k = 1 and is essentially a nonuniform generalization of the Haldane-Shastry model with long-range exchange couplings. At level k = 2, we analyse the model for N spin 1 fields. We find that the Renyi entropy and the two-point spin correlator show, respectively, logarithmic growth and algebraic decay. Furthermore, we use the null vectors to derive a set of algebraic, linear equations relating spin correlators within each model. At level k = 1, these equations allow us to compute the two-point spin correlators analytically for the finite chain uniform Haldane-Shastry model and to obtain numerical results for the nonuniform case and for higher-point spin correlators in a very simple way and without resorting to Monte Carlo techniques.
Aerospace applications of integer and combinatorial optimization
NASA Technical Reports Server (NTRS)
Padula, S. L.; Kincaid, R. K.
1995-01-01
Research supported by NASA Langley Research Center includes many applications of aerospace design optimization and is conducted by teams of applied mathematicians and aerospace engineers. This paper investigates the benefits from this combined expertise in solving combinatorial optimization problems. Applications range from the design of large space antennas to interior noise control. A typical problem, for example, seeks the optimal locations for vibration-damping devices on a large space structure and is expressed as a mixed/integer linear programming problem with more than 1500 design variables.
Integer Quantum Hall Effect in Trilayer Graphene
NASA Astrophysics Data System (ADS)
Kumar, A.; Escoffier, W.; Poumirol, J. M.; Faugeras, C.; Arovas, D. P.; Fogler, M. M.; Guinea, F.; Roche, S.; Goiran, M.; Raquet, B.
2011-09-01
By using high-magnetic fields (up to 60 T), we observe compelling evidence of the integer quantum Hall effect in trilayer graphene. The magnetotransport fingerprints are similar to those of the graphene monolayer, except for the absence of a plateau at a filling factor of ν=2. At a very low filling factor, the Hall resistance vanishes due to the presence of mixed electron and hole carriers induced by disorder. The measured Hall resistivity plateaus are well reproduced theoretically, using a self-consistent Hartree calculations of the Landau levels and assuming an ABC stacking order of the three layers.
Simulation of electron spin resonance spectroscopy in diverse environments: An integrated approach
NASA Astrophysics Data System (ADS)
Zerbetto, Mirco; Polimeno, Antonino; Barone, Vincenzo
2009-12-01
We discuss in this work a new software tool, named E-SpiReS (Electron Spin Resonance Simulations), aimed at the interpretation of dynamical properties of molecules in fluids from electron spin resonance (ESR) measurements. The code implements an integrated computational approach (ICA) for the calculation of relevant molecular properties that are needed in order to obtain spectral lines. The protocol encompasses information from atomistic level (quantum mechanical) to coarse grained level (hydrodynamical), and evaluates ESR spectra for rigid or flexible single or multi-labeled paramagnetic molecules in isotropic and ordered phases, based on a numerical solution of a stochastic Liouville equation. E-SpiReS automatically interfaces all the computational methodologies scheduled in the ICA in a way completely transparent for the user, who controls the whole calculation flow via a graphical interface. Parallelized algorithms are employed in order to allow running on calculation clusters, and a web applet Java has been developed with which it is possible to work from any operating system, avoiding the problems of recompilation. E-SpiReS has been used in the study of a number of different systems and two relevant cases are reported to underline the promising applicability of the ICA to complex systems and the importance of similar software tools in handling a laborious protocol. Program summaryProgram title: E-SpiReS Catalogue identifier: AEEM_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEM_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GPL v2.0 No. of lines in distributed program, including test data, etc.: 311 761 No. of bytes in distributed program, including test data, etc.: 10 039 531 Distribution format: tar.gz Programming language: C (core programs) and Java (graphical interface) Computer: PC and Macintosh Operating system: Unix and Windows Has the code been vectorized or
Quantum phase interference and spin-parity in Mn12 single-molecule magnets.
Wernsdorfer, W; Chakov, N E; Christou, G
2005-07-15
Magnetization measurements of Mn12 molecular nanomagnets with spin ground states of S=10 and S=19/2 show resonance tunneling at avoided energy level crossings. The observed oscillations of the tunnel probability as a function of the magnetic field applied along the hard anisotropy axis are due to topological quantum phase interference of two tunnel paths of opposite windings. Spin-parity dependent tunneling is established by comparing the quantum phase interference of integer and half-integer spin systems.
Fast Integer Ambiguity Resolution for GPS Attitude Determination
NASA Technical Reports Server (NTRS)
Lightsey, E. Glenn; Crassidis, John L.; Markley, F. Landis
1999-01-01
In this paper, a new algorithm for GPS (Global Positioning System) integer ambiguity resolution is shown. The algorithm first incorporates an instantaneous (static) integer search to significantly reduce the search space using a geometric inequality. Then a batch-type loss function is used to check the remaining integers in order to determine the optimal integer. This batch function represents the GPS sightline vectors in the body frame as the sum of two vectors, one depending on the phase measurements and the other on the unknown integers. The new algorithm has several advantages: it does not require an a-priori estimate of the vehicle's attitude; it provides an inherent integrity check using a covariance-type expression; and it can resolve the integers even when coplanar baselines exist. The performance of the new algorithm is tested on a dynamic hardware simulator.
A group-theoretic approach to constructions of non-relativistic spin-statistics
NASA Astrophysics Data System (ADS)
Harrison, J. M.; Robbins, J. M.
2000-11-01
We give a group-theoretical generalization of Berry and Robbins' treatment of identical particles with spin. The original construction, which leads to the correct spin-statistics relation, is seen to arise from particular irreducible representations—the totally symmetric representations—of the group SU(4). Here we calculate the exchange signs and corresponding statistics for all irreducible representations of SU(4).
Forward scattering approximation and bosonization in integer quantum Hall systems
Rosenau da Costa, M. Westfahl, H.; Caldeira, A.O.
2008-03-15
In this work, we present a model and a method to study integer quantum Hall (IQH) systems. Making use of the Landau levels structure we divide these two-dimensional systems into a set of interacting one-dimensional gases, one for each guiding center. We show that the so-called strong field approximation, used by Kallin and Halperin and by MacDonald, is equivalent, in first order, to a forward scattering approximation and analyze the IQH systems within this approximation. Using an appropriate variation of the Landau level bosonization method we obtain the dispersion relations for the collective excitations and the single-particle spectral functions. For the bulk states, these results evidence a behavior typical of non-normal strongly correlated systems, including the spin-charge splitting of the single-particle spectral function. We discuss the origin of this behavior in the light of the Tomonaga-Luttinger model and the bosonization of two-dimensional electron gases.
An experiment on Lowest Unique Integer Games
NASA Astrophysics Data System (ADS)
Yamada, Takashi; Hanaki, Nobuyuki
2016-12-01
We experimentally study Lowest Unique Integer Games (LUIGs) to determine if and how subjects self-organize into different behavioral classes. In a LUIG, N(≥ 3) players submit a positive integer up to M and the player choosing the smallest number not chosen by anyone else wins. LUIGs are simplified versions of real systems such as Lowest/Highest Unique Bid Auctions that have been attracting attention from scholars, yet experimental studies are scarce. Furthermore, LUIGs offer insights into choice patterns that can shed light on the alleviation of congestion problems. Here, we consider four LUIGs with N = { 3 , 4 } and M = { 3 , 4 } . We find that (a) choices made by more than 1/3 of subjects were not significantly different from what a symmetric mixed-strategy Nash equilibrium (MSE) predicts; however, (b) subjects who behaved significantly differently from what the MSE predicts won the game more frequently. What distinguishes subjects was their tendencies to change their choices following losses.
Can statistical learning bootstrap the integers?
Rips, Lance J; Asmuth, Jennifer; Bloomfield, Amber
2013-09-01
This paper examines Piantadosi, Tenenbaum, and Goodman's (2012) model for how children learn the relation between number words ("one" through "ten") and cardinalities (sizes of sets with one through ten elements). This model shows how statistical learning can induce this relation, reorganizing its procedures as it does so in roughly the way children do. We question, however, Piantadosi et al.'s claim that the model performs "Quinian bootstrapping," in the sense of Carey (2009). Unlike bootstrapping, the concept it learns is not discontinuous with the concepts it starts with. Instead, the model learns by recombining its primitives into hypotheses and confirming them statistically. As such, it accords better with earlier claims (Fodor, 1975, 1981) that learning does not increase expressive power. We also question the relevance of the simulation for children's learning. The model starts with a preselected set of15 primitives, and the procedure it learns differs from children's method. Finally, the partial knowledge of the positive integers that the model attains is consistent with an infinite number of nonstandard meanings-for example, that the integers stop after ten or loop from ten back to one.
Integer programming for improving radiotherapy treatment efficiency.
Lv, Ming; Li, Yi; Kou, Bo; Zhou, Zhili
2017-01-01
Patients received by radiotherapy departments are diverse and may be diagnosed with different cancers. Therefore, they need different radiotherapy treatment plans and thus have different needs for medical resources. This research aims to explore the best method of scheduling the admission of patients receiving radiotherapy so as to reduce patient loss and maximize the usage efficiency of service resources. A mix integer programming (MIP) model integrated with special features of radiotherapy is constructed. The data used here is based on the historical data collected and we propose an exact method to solve the MIP model. Compared with the traditional First Come First Served (FCFS) method, the new method has boosted patient admission as well as the usage of linear accelerators (LINAC) and beds. The integer programming model can be used to describe the complex problem of scheduling radio-receiving patients, to identify the bottleneck resources that hinder patient admission, and to obtain the optimal LINAC-bed radio under the current data conditions. Different management strategies can be implemented by adjusting the settings of the MIP model. The computational results can serve as a reference for the policy-makers in decision making.
NASA Astrophysics Data System (ADS)
Cory, Marshall George, Jr.
Within the last decade the anticipation of some experimentalists for the ability to ascertain the structure of biologically important chemical systems has been realized. The elucidation of the structure of the photosynthetic reaction center of R. Viridis, including some 13,000 atomic centers, is a prime example, and this structure has led to a deeper understanding of the mechanisms of photosynthesis. Along with this increase in structural knowledge, a concurrent increase in the knowledge of the observable properties of such structures has also occurred. Of particular interest to this work are the magnetic properties of these systems, as revealed by Electron Spin Resonance (ESR) spectroscopy. The magnetic spectra, ESR, of such systems are quite complex and require some effort to understand, and a need for theoretical aids has been expressed. In many cases the ESR signal is the only structural signature available. This work has explored several quantum chemical methods for determining the isotropic hyperfine splitting (hfs) in such systems as those described above. Several semiempirical Self-Consistent Field (SCF) and post-SCF approaches are explored. Two distinct parameterizations of the Intermediate Neglect of Differential Overlap (INDO) approximation are examined for their ability to produce good reference functions. Both Unrestricted Hartree-Fock (UHF) and Restricted Open-Shell Hartree-Fock (ROHF) SCF wavefunctions are investigated, as well as the Configuration Interaction Single replacement (CIS) wavefunction. The results of applying the most promising method to several of the bacteria chlorophyll ions are reported and compared to those observed experimentally.
NASA Astrophysics Data System (ADS)
Rotskoff, Grant M.; Crooks, Gavin E.; Vanden-Eijnden, Eric
2017-01-01
Optimal control of nanomagnets has become an urgent problem for the field of spintronics as technological tools approach thermodynamically determined limits of efficiency. In complex, fluctuating systems, such as nanomagnetic bits, finding optimal protocols is challenging, requiring detailed information about the dynamical fluctuations of the controlled system. We provide a physically transparent derivation of a metric tensor for which the length of a protocol is proportional to its dissipation. This perspective simplifies nonequilibrium optimization problems by recasting them in a geometric language. We then describe a numerical method, an instance of geometric minimum action methods, that enables computation of geodesics even when the number of control parameters is large. We apply these methods to two models of nanomagnetic bits: a Landau-Lifshitz-Gilbert description of a single magnetic spin controlled by two orthogonal magnetic fields, and a two-dimensional Ising model in which the field is spatially controlled. These calculations reveal nontrivial protocols for bit erasure and reversal, providing important, experimentally testable predictions for ultra-low-power computing.
Solving Integer Programming Problems by Using Artificial Bee Colony Algorithm
NASA Astrophysics Data System (ADS)
Akay, Bahriye; Karaboga, Dervis
This paper presents a study that applies the Artificial Bee Colony algorithm to integer programming problems and compares its performance with those of Particle Swarm Optimization algorithm variants and Branch and Bound technique presented to the literature. In order to cope with integer programming problems, in neighbour solution production unit, solutions are truncated to the nearest integer values. The experimental results show that Artificial Bee Colony algorithm can handle integer programming problems efficiently and Artificial Bee Colony algorithm can be considered to be very robust by the statistics calculated such as mean, median, standard deviation.
Collective modes of a spin-orbit-coupled Bose-Einstein condensate: A hydrodynamic approach
NASA Astrophysics Data System (ADS)
Zheng, Wei; Li, Zhibing
2012-05-01
We studied the collective modes of a Bose-Einstein condensate (BEC) with spin-orbit coupling. We developed the hydrodynamic equations for spin-orbit coupled BECs and used them to study collective modes in the plane-wave phase and large Rabi coupling regime for both a uniform BEC and a BEC in a harmonic trap. In the homogeneous situation, we obtained energy spectra of elementary excitations and found that the spin-orbit coupling can increase the effective mass of the atoms, which will suppress the sound velocity. The spin-orbit coupling can also change the spin mixing, which will modify the interaction energy, and may lead to an enhancement of sound velocity. The competition between these two effects gives the behavior of sound velocity. In a harmonic trap, we found that the dipole mode and the breathing mode are coupled together in the plane-wave phase, and these two modes have a π/2 phase difference, because the spin-orbit coupling and the interaction are not invariant under spin rotation. However, in the large Rabi coupling regime, the dipole mode and the breathing mode are decoupled due to the symmetry restriction.
Edit distance for marked point processes revisited: An implementation by binary integer programming
Hirata, Yoshito; Aihara, Kazuyuki
2015-12-15
We implement the edit distance for marked point processes [Suzuki et al., Int. J. Bifurcation Chaos 20, 3699–3708 (2010)] as a binary integer program. Compared with the previous implementation using minimum cost perfect matching, the proposed implementation has two advantages: first, by using the proposed implementation, we can apply a wide variety of software and hardware, even spin glasses and coherent ising machines, to calculate the edit distance for marked point processes; second, the proposed implementation runs faster than the previous implementation when the difference between the numbers of events in two time windows for a marked point process is large.
Edit distance for marked point processes revisited: An implementation by binary integer programming
NASA Astrophysics Data System (ADS)
Hirata, Yoshito; Aihara, Kazuyuki
2015-12-01
We implement the edit distance for marked point processes [Suzuki et al., Int. J. Bifurcation Chaos 20, 3699-3708 (2010)] as a binary integer program. Compared with the previous implementation using minimum cost perfect matching, the proposed implementation has two advantages: first, by using the proposed implementation, we can apply a wide variety of software and hardware, even spin glasses and coherent ising machines, to calculate the edit distance for marked point processes; second, the proposed implementation runs faster than the previous implementation when the difference between the numbers of events in two time windows for a marked point process is large.
Edit distance for marked point processes revisited: An implementation by binary integer programming.
Hirata, Yoshito; Aihara, Kazuyuki
2015-12-01
We implement the edit distance for marked point processes [Suzuki et al., Int. J. Bifurcation Chaos 20, 3699-3708 (2010)] as a binary integer program. Compared with the previous implementation using minimum cost perfect matching, the proposed implementation has two advantages: first, by using the proposed implementation, we can apply a wide variety of software and hardware, even spin glasses and coherent ising machines, to calculate the edit distance for marked point processes; second, the proposed implementation runs faster than the previous implementation when the difference between the numbers of events in two time windows for a marked point process is large.
The slave-fermion approach of spin fluctuations in ferromagnet metals
NASA Astrophysics Data System (ADS)
Hu, C. D.
2015-11-01
In this work we propose a method to treat the spin fluctuations in itinerant ferromagnets. It is able to do calculation with a convergent series. The slave fermion method is applied to separate the charge (denoted by fermions) and spin (denoted by bosons) degrees of freedom. The spin operators are then replaced by the Schwinger boson fields. This way, the interaction term in the model can be reduced to a very simple form and can be teated without difficulty. Finally the equations of motion are derived in order to obtain the forms of Green's functions of fermions and bosons. The result is applied to the calculation of resistivity as a function temperature.
Evolutions of nearly maximally spinning black hole binaries using the moving puncture approach
NASA Astrophysics Data System (ADS)
Zlochower, Yosef; Healy, James; Lousto, Carlos O.; Ruchlin, Ian
2017-08-01
We demonstrate that numerical relativity codes based on the "moving punctures" formalism are capable of evolving nearly maximally spinning black hole binaries. We compare a new evolution of an equal-mass, aligned-spin binary with dimensionless spin χ =0.99 using puncture-based data with recent simulations of the SXS Collaboration. We find that the overlap of our new waveform with the published results of the SXS Collaboration is larger than 0.999. To generate our new waveform, we use the recently introduced HiSpID puncture data, the CCZ4 evolution system, and a modified lapse condition that helps keep the horizon radii reasonably large.
ERIC Educational Resources Information Center
Donoghue, John R.
2015-01-01
At the heart of van der Linden's approach to automated test assembly (ATA) is a linear programming/integer programming (LP/IP) problem. A variety of IP solvers are available, ranging in cost from free to hundreds of thousands of dollars. In this paper, I compare several approaches to solving the underlying IP problem. These approaches range from…
NASA Astrophysics Data System (ADS)
Shim, Jeong Hyun; Lee, Seong-Joo; Hwang, Seong-min; Yu, Kwon Kyu; Kim, Kiwoong
2015-08-01
We demonstrate a proton spin echo magnetometer, in which the interrogation time is not limited by T2* and can be prolonged to T2. Therefore, even under a severe field gradient, the precision of the measurement does not degrade. We devised a phase linearization method that enables accurate estimation of the precession frequency from a spin-echo train. With proton spins in deoxygenated tetramethylsilane and a superconducting quantum interference device-detected NMR system at KRISS, an average field of around 5 μT was measured with an uncertainty of 0.42 nT in the presence of a field gradient of 12.8 μT m-1. This implies that our system tolerated a 25% variation in magnetic field over the sample area. The proton spin-echo magnetometer will be useful in measuring magnetic fields without compensating for residual field gradients.
Yamaji, Youhei
2015-12-31
Recently, condensed-matter ab initio approaches to strongly correlated electrons confined in crystalline solids have been developed and applied to transition-metal oxides and molecular conductors. In this paper, an ab initio scheme based on constrained random phase approximations and localized Wannier orbitals is applied to a spin liquid candidate Na{sub 2}IrO{sub 3} and is shown to reproduce experimentally observed specific heat.
A New Approach for Single Transverse-Spin Asymmetries from Twist-3 Soft-Gluon Mechanism
Koike, Yuji; Tanaka, Kazuhiro
2007-06-13
A dominant QCD mechanism for the single transverse-spin asymmetry in hard processes is induced by the twist-3 quark-gluon correlations inside nucleon, combined with the soft-gluonic poles to produce the interfering phase for the associated partonic hard scattering. It is shown that the corresponding interfering amplitude can be calculated entirely in terms of the partonic Born cross section which participates in the twist-2 cross section formula for the spin-averaged process.
Ensemble segmentation using efficient integer linear programming.
Alush, Amir; Goldberger, Jacob
2012-10-01
We present a method for combining several segmentations of an image into a single one that in some sense is the average segmentation in order to achieve a more reliable and accurate segmentation result. The goal is to find a point in the "space of segmentations" which is close to all the individual segmentations. We present an algorithm for segmentation averaging. The image is first oversegmented into superpixels. Next, each segmentation is projected onto the superpixel map. An instance of the EM algorithm combined with integer linear programming is applied on the set of binary merging decisions of neighboring superpixels to obtain the average segmentation. Apart from segmentation averaging, the algorithm also reports the reliability of each segmentation. The performance of the proposed algorithm is demonstrated on manually annotated images from the Berkeley segmentation data set and on the results of automatic segmentation algorithms.
Statistical Mechanical Models of Integer Factorization Problem
NASA Astrophysics Data System (ADS)
Nakajima, Chihiro H.; Ohzeki, Masayuki
2017-01-01
We formulate the integer factorization problem via a formulation of the searching problem for the ground state of a statistical mechanical Hamiltonian. The first passage time required to find a correct divisor of a composite number signifies the exponential computational hardness. The analysis of the density of states of two macroscopic quantities, i.e., the energy and the Hamming distance from the correct solutions, leads to the conclusion that the ground state (correct solution) is completely isolated from the other low-energy states, with the distance being proportional to the system size. In addition, the profile of the microcanonical entropy of the model has two peculiar features that are each related to two marked changes in the energy region sampled via Monte Carlo simulation or simulated annealing. Hence, we find a peculiar first-order phase transition in our model.
NASA Astrophysics Data System (ADS)
Ikeda, Ryusuke
2015-05-01
Motivated by recent experiments on liquid 3He reporting emergence of novel superfluid phases in globally anisotropic aerogels, our previous theory on superfluid 3He in globally anisotropic aerogels is extended to incorporate the effects of anisotropy of the quasiparticle scattering cross section on the strong-coupling (SC) contributions to the Ginzburg-Landau (GL) free energy on the basis of the spin-fluctuation (paramagnon) approach to the SC contributions developed by Brinkman et al. [Phys. Rev. A 10, 2386 (1974), 10.1103/PhysRevA.10.2386]. In the globally isotropic case, impurity effects on the SC correction destabilize the A phase even at higher pressures of about 30 bar and make the B phase the only state in equilibrium, while SC contributions accompanied by a global stretched anisotropy to the GL quartic terms generally tend to broaden the stability region of the A phase compared with that of the B phase. In particular, in contrast to the cases in bulk and in the isotropic aerogel, the SC corrections to the GL quadratic terms are not negligible in the globally anisotropic case but may change the sign of the apparent anisotropy depending on the magnitude of the frequency cutoff of the normal paramagnon propagator. Based on this sign change of the apparent anisotropy, we discuss different strange observations on superfluid 3He in porous media such as the disappearance of the polar superfluid phase at higher pressures seen in nematically ordered aerogels and the absence of B and A phases with planar l ̂ vector in a stretched aerogel.
A Paper-and-Pencil gcd Algorithm for Gaussian Integers
ERIC Educational Resources Information Center
Szabo, Sandor
2005-01-01
As with natural numbers, a greatest common divisor of two Gaussian (complex) integers "a" and "b" is a Gaussian integer "d" that is a common divisor of both "a" and "b". This article explores an algorithm for such gcds that is easy to do by hand.
A Proposed Instructional Theory for Integer Addition and Subtraction
ERIC Educational Resources Information Center
Stephan, Michelle; Akyuz, Didem
2012-01-01
This article presents the results of a 7th-grade classroom teaching experiment that supported students' understanding of integer addition and subtraction. The experiment was conducted to test and revise a hypothetical learning trajectory so as to propose a potential instructional theory for integer addition and subtraction. The instructional…
Discrete Dirac equation on a finite half-integer lattice
NASA Technical Reports Server (NTRS)
Smalley, L. L.
1986-01-01
The formulation of the Dirac equation on a discrete lattice with half-integer spacing and periodic boundary conditions is investigated analytically. The importance of lattice formulations for problems in field theory and quantum mechanics is explained; the concept of half-integer Fourier representation is introduced; the discrete Dirac equation for the two-dimensional case is derived; dispersion relations for the four-dimensional case are developed; and the spinor formulation for the Dirac fields on the half-integer lattice and the discrete time variable for the four-dimensional time-dependent Dirac equation are obtained. It is argued that the half-integer lattice, because it takes the Dirac Lagrangian into account, is more than a mere relabeling of the integer lattice and may have fundamental physical meaning (e.g., for the statistics of fermions). It is noted that the present formulation does not lead to species doubling, except in the continuum limit.
Discrete Dirac equation on a finite half-integer lattice
NASA Technical Reports Server (NTRS)
Smalley, L. L.
1986-01-01
The formulation of the Dirac equation on a discrete lattice with half-integer spacing and periodic boundary conditions is investigated analytically. The importance of lattice formulations for problems in field theory and quantum mechanics is explained; the concept of half-integer Fourier representation is introduced; the discrete Dirac equation for the two-dimensional case is derived; dispersion relations for the four-dimensional case are developed; and the spinor formulation for the Dirac fields on the half-integer lattice and the discrete time variable for the four-dimensional time-dependent Dirac equation are obtained. It is argued that the half-integer lattice, because it takes the Dirac Lagrangian into account, is more than a mere relabeling of the integer lattice and may have fundamental physical meaning (e.g., for the statistics of fermions). It is noted that the present formulation does not lead to species doubling, except in the continuum limit.
First-principles approach to Non-Collinear Magnetism: towards Spin Dynamics
NASA Astrophysics Data System (ADS)
Gross, E. K. U.
2008-03-01
Most formulations of spin density functional theory (SDFT) restrict the magnetization vector field to have global collinearity. Nevertheless, there exists a wealth of strong non-collinearity in nature, for example molecular magnets, spin-spirals, spin-glasses and all magnets at finite temperatures. The local spin density approximation (LSDA) can be extended to these non-collinear cases [1] but this extension has the undesirable property of having the exchange-correlation (xc) field parallel to the magnetization density at each point in space. When used in conjunction with the equation of motion for the spin magnetization in the absence of spin currents and external fields [2,3], this local collinearity eliminates the torsional term, resulting in no time evolution. This severe shortcoming of LSDA, where the physical prediction is qualitatively wrong, opens up an important new direction for the development of functionals where this time evolution is correctly described. Towards this goal, I will describe our extension of the Kohn-Sham optimized effective potential (OEP) method to the non-collinear case and derive the corresponding integral equations, applicable to both finite and extended systems [3,4]. Most importantly I'll show that the resulting magnetization and xc field are not locally collinear to each other for real solids, and will therefore produce manifestly different spin-dynamics. [1] J. Kuebler, K.-H. Hoeck, J. Sticht and A. R. Williams, J. Phys. F18, 469 (1993). [2] K. Capelle, G. Vignale and B. L. Gyoerffy, Phys. Rev. Lett.87, 206403 (2001). [3] S. Sharma, J. K. Dewhurst, C. Ambrosch-Draxl, S. Kurth, N. Helbig, S. Pittalis, S. Shallcross, L. Nordstroem and E.K.U. Gross Phys. Rev. Lett.98, 196405 (2007) S. Sharma, S. Pittalis, S. Kurth, S. Shallcross, J. K. Dewhurst and E.K.U. Gross Phys. Rev. B76, 100401 (Rapid Comm.) (2007)
NASA Astrophysics Data System (ADS)
Tkachenko, Georgiy; Chen, Mingzhou; Dholakia, Kishan; Mazilu, Michael
2016-09-01
A photon can carry orbital angular momentum equal to an integer number of the reduced Planck's constant. This principle expresses itself in geometrical quantization of optical vortex beams, which thus can propagate only in the form of fields having a helically wavefront characterized by an integer valued topological charge. However, one can create an optical vortex beam of an effective fractional charge by combining multiple integer vortices. Here, we investigate this apparent violation of the geometrical quantization of orbital angular momentum of light. Our approach relies on observation of the light-induced motion of a microscopic particle, which thus acts as an optomechanical probe for the optical vortex beam. A fractional topological charge corresponds to an abrupt jump in the helical phase front of the beam. This singularity expresses itself as an off-axis disturbance in the intensity profile, and thus complicates the optomechanical probing. We overcome this problem by distributing the disturbance along the vortex ring, so that a microparticle can continuously orbit due to the orbital angular momentum transfer. We demonstrate theoretically that whatever effort is put into smoothing the fractional vortex ring (as long as the net topological charge is fixed), the particle's orbital motion cannot be as uniform as in the case of an integer vortex beam. We support this prediction by experimental proof. The experimental technique benefits from the recently introduced "perfect" vortex beams which allow an optically trapped particle to orbit along a constant trajectory irrespective of any topological charge.
Effective one-band approach for the spin splittings in quantum wells
NASA Astrophysics Data System (ADS)
Alekseev, P. S.; Nestoklon, M. O.
2017-03-01
The spin-orbit interaction of two-dimensional electrons in quantum wells grown from the III-V semiconductors consists of two parts with different symmetry: the Bychkov-Rashba and the Dresselhaus terms. The last term is usually attributed to the bulk spin-orbit Hamiltonian which reflects the Td symmetry of the zincblende lattice. While it is known that the quantum well interfaces may also contribute to the Dresselhaus term, the exact structure and relative importance of the interface and bulk contributions are not well understood. To deal with this problem, we perform tight-binding calculations of the spin splittings of the electron levels in [100] GaAs/AlGaAs quantum wells. We show that the obtained spin splittings can be adequately described within the one-band electron Hamiltonian containing, together with the bulk contribution, the two interface contributions to the Dresselhaus term. The magnitude of the interface contribution to the spin-orbit interaction for sufficiently narrow quantum wells is of the same order as the bulk contribution.
A NEW APPROACH TO CONSTRAIN BLACK HOLE SPINS IN ACTIVE GALAXIES USING OPTICAL REVERBERATION MAPPING
Wang, Jian-Min; Du, Pu; Li, Yan-Rong; Hu, Chen; Ho, Luis C.; Bai, Jin-Ming
2014-09-01
A tight relation between the size of the broad-line region (BLR) and optical luminosity has been established in about 50 active galactic nuclei studied through reverberation mapping of the broad Hβ emission line. The R {sub BLR}-L relation arises from simple photoionization considerations. Using a general relativistic model of an optically thick, geometrically thin accretion disk, we show that the ionizing luminosity jointly depends on black hole mass, accretion rate, and spin. The non-monotonic relation between the ionizing and optical luminosity gives rise to a complicated relation between the BLR size and the optical luminosity. We show that the reverberation lag of Hβ to the varying continuum depends very sensitively on black hole spin. For retrograde spins, the disk is so cold that there is a deficit of ionizing photons in the BLR, resulting in shrinkage of the hydrogen ionization front with increasing optical luminosity, and hence shortened Hβ lags. This effect is specially striking for luminous quasars undergoing retrograde accretion, manifesting in strong deviations from the canonical R {sub BLR}-L relation. This could lead to a method to estimate black hole spins of quasars and to study their cosmic evolution. At the same time, the small scatter of the observed R {sub BLR}-L relation for the current sample of reverberation-mapped active galaxies implies that the majority of these sources have rapidly spinning black holes.
NASA Astrophysics Data System (ADS)
Fu, Hua-Hua; Yao, Kai-Lun
2011-02-01
Electronic transport through a quasi-one-dimensional zigzaglike polymer device is theoretically studied by means of the nonequilibrium Green's function approach. In this system, the main zigzag chain consists of carbon atoms and is attached with side radicals at its next-near-neighbor sites. The results show that a zero point of the linear conductance spectrum occurs due to the Fano antiresonance induced by the electron hoppings between the main chain and the side radicals, which leads to the fact that the linear conductance spectrum displays an insulating band around the antiresonant point. The increase in the polymer size makes both edges of the insulating band to become steep rapidly, which makes the insulating band approach to be a well-defined one. The formation of the dimer along the main chain enhances the insulating band width but much suppresses the electronic transport through the device. Moreover, if the many-body effect due to the electron interaction is taken into account, the antiresonance effect and the well-defined insulating band remain. As a result, a well spin-polarized window appears as the spin splitting occurred by applying an external magnetic field. These results strongly propose that there is a new way for the organic polymer to be applied as a spin-filter.
Gradient ascent pulse engineering approach to CNOT gates in donor electron spin quantum computing
Tsai, D.-B.; Goan, H.-S.
2008-11-07
In this paper, we demonstrate how gradient ascent pulse engineering (GRAPE) optimal control methods can be implemented on donor electron spin qubits in semiconductors with an architecture complementary to the original Kane's proposal. We focus on the high fidelity controlled-NOT (CNOT) gate and we explicitly find the digitized control sequences for a controlled-NOT gate by optimizing its fidelity using the effective, reduced donor electron spin Hamiltonian with external controls over the hyperfine A and exchange J interactions. We then simulate the CNOT-gate sequence with the full spin Hamiltonian and find that it has an error of 10{sup -6} that is below the error threshold of 10{sup -4} required for fault-tolerant quantum computation. Also the CNOT gate operation time of 100 ns is 3 times faster than 297 ns of the proposed global control scheme.
Improving integer ambiguity resolution for GLONASS precise orbit determination
NASA Astrophysics Data System (ADS)
Liu, Yang; Ge, Maorong; Shi, Chuang; Lou, Yidong; Wickert, Jens; Schuh, Harald
2016-08-01
The frequency division multiple access adopted in present GLONASS introduces inter-frequency bias (IFB) at the receiver-end both in code and phase observables, which makes GLONASS ambiguity resolution rather difficult or even not available, especially for long baselines up to several thousand kilometers. This is one of the major reasons that GLONASS could hardly reach the orbit precision of GPS, both in terms of consistency among individual International GNSS Service (IGS) analysis centers and discontinuity at the overlapping day boundaries. Based on the fact that the GLONASS phase IFB is similar on L1 and L2 bands in unit of length and is a linear function of the frequency number, several approaches have been developed to estimate and calibrate the IFB for integer ambiguity resolution. However, they are only for short and medium baselines. In this study, a new ambiguity resolution approach is developed for GLONASS global networks. In the approach, the phase ambiguities in the ionosphere-free linear combination are directly transformed with a wavelength of about 5.3 cm, according to the special frequency relationship of GLONASS L1 and L2 signals. After such transformation, the phase IFB rate can be estimated and corrected precisely and then the corresponding double-differenced ambiguities can be directly fixed to integers even for baselines up to several thousand kilometers. To evaluate this approach, experimental validations using one-month data of a global network with 140 IGS stations was carried out for GLONASS precise orbit determination. The results show that the GLONASS double-difference ambiguity resolution for long baselines could be achieved with an average fixing-rate of 91.4 %. Applying the fixed ambiguities as constraints, the GLONASS orbit overlapping RMS at the day boundaries could be reduced by 37.2 % in ideal cases and with an averaged reduction of about 21.4 %, which is comparable with that by the GPS ambiguity resolution. The orbit improvement is
Xu, Zhuo Gu, Bo; Mori, Michiyasu; Maekawa, Sadamichi; Ziman, Timothy
2015-05-07
We analyze the spin Hall effect in CuIr alloys in theory by the combined approach of the density functional theory (DFT) and Hartree-Fock (HF) approximation. The spin Hall angle (SHA) is obtained to be negative without the local correlation effects. After including the local correlation effects of the 5d orbitals of Ir impurities, the SHA becomes positive with realistic correlation parameters and consistent with experiment [Niimi et al., Phys. Rev. Lett. 106, 126601 (2011)]. Moreover, our analysis shows that the DFT + HF approach is a convenient and general method to study the influence of local correlation effects on the spin Hall effect.
NASA Astrophysics Data System (ADS)
Karadakov, Peter B.; Cooper, David L.
The total energies from spin-projected Hartree-Fock (spin-PHF), generalized valence-bond with perfect-pairing and strong orthogonality restrictions (GVB-PP-SO), and fully-variational spin-coupled (SC) calculations are compared for a series of unsaturated alternant hydrocarbons, ranging from trans buta-1,3-diene to naphthalene. The extent to which the spin-PHF and GVB-PP-SO wavefunctions for these molecules can approximate the more general SC wavefunction can be understood by analyzing the weights of the different modes of spin coupling in the full SC treatment. The spin-PHF wavefunction is found to display a surprising ability to capture more of the π-space correlation effects in aromatic and antiaromatic systems than its GVB-PP-SO counterpart, even in the case of naphthalene, a molecule with 10 π electrons.
Solid effect in the electron spin dressed state: A new approach for dynamic nuclear polarization
NASA Astrophysics Data System (ADS)
Weis, V.; Bennati, M.; Rosay, M.; Griffin, R. G.
2000-10-01
We describe a new type of solid effect for dynamic nuclear polarization (DNP) that is based on simultaneous, near resonant microwave (mw) and radio frequency (rf) irradiation of a coupled electron nuclear spin system. The interaction of the electron spin with the mw field is treated as an electron spin dressed state. In contrast to the customary laboratory frame solid effect, it is possible to obtain nuclear polarization with the dressed state solid effect (DSSE) even in the absence of nonsecular hyperfine coupling. Efficient, selective excitation of dressed state transitions generates nuclear polarization in the nuclear laboratory frame on a time scale of tens of μs, depending on the strength of the electron-nuclear coupling, the mw and rf offset and field strength. The experiment employs both pulsed mw and rf irradiation at a repetition rate comparable to T1e-1, where T1e is the electronic spin lattice relaxation time. The DSSE is demonstrated on a perdeuterated BDPA radical in a protonated matrix of polystyrene.
Metal-insulator transition and local moment formation: A spin-density functional approach
NASA Astrophysics Data System (ADS)
Ghazali, A.; Leroux-Hugon, P.
1980-01-01
A more thorough description of the metal-insulator transition in correlated systems including local moment formation may be achieved through the spin-density functional method when compared to the Hubbard model. We have applied this method to doped semiconductors and found a transition between an insulating phase with local moments and a metallic one without moments.
NASA Astrophysics Data System (ADS)
Chen, Son-Hsien; Chang, Ching-Ray; Xiao, John Q.; Nikolić, Branislav K.
2009-02-01
We study spin and charge currents pumped by precessing magnetization of a single ferromagnetic layer within F|I|N or F|I|F ( F -ferromagnet; I -insulator; N -normal metal) multilayers of nanoscale thickness attached to two normal-metal electrodes with no applied bias voltage between them. Both simple one-dimensional model, consisting of a single precessing spin and a potential barrier as the “sample,” and realistic three-dimensional devices are investigated. In the rotating reference frame, where the magnetization appears to be static, these junctions are mapped onto a four-terminal dc circuit whose effectively half-metallic ferromagnetic electrodes are biased by the frequency ℏω/e of microwave radiation driving magnetization precession at the ferromagnetic resonance (FMR) conditions. We show that pumped spin current in F|I|F junctions, diminished behind the tunnel barrier and increased in the opposite direction, is filtered into charge current by the second F layer to generate dc pumping voltage of the order of ˜1μV (at FMR frequency ˜10GHz ) in an open circuit. In F|I|N devices, several orders of magnitude smaller charge current and the corresponding dc voltage appear concomitantly with the pumped spin current due to barrier induced asymmetry in the transmission coefficients connecting the four electrodes in the rotating-frame picture of pumping.
Dynamics of open quantum spin systems: An assessment of the quantum master equation approach.
Zhao, P; De Raedt, H; Miyashita, S; Jin, F; Michielsen, K
2016-08-01
Data of the numerical solution of the time-dependent Schrödinger equation of a system containing one spin-1/2 particle interacting with a bath of up to 32 spin-1/2 particles is used to construct a Markovian quantum master equation describing the dynamics of the system spin. The procedure of obtaining this quantum master equation, which takes the form of a Bloch equation with time-independent coefficients, accounts for all non-Markovian effects inasmuch the general structure of the quantum master equation allows. Our simulation results show that, with a few rather exotic exceptions, the Bloch-type equation with time-independent coefficients provides a simple and accurate description of the dynamics of a spin-1/2 particle in contact with a thermal bath. A calculation of the coefficients that appear in the Redfield master equation in the Markovian limit shows that this perturbatively derived equation quantitatively differs from the numerically estimated Markovian master equation, the results of which agree very well with the solution of the time-dependent Schrödinger equation.
Chernikova, Valeriya; Shekhah, Osama; Eddaoudi, Mohamed
2016-08-10
Here, we report a new and advanced method for the fabrication of highly oriented/polycrystalline metal-organic framework (MOF) thin films. Building on the attractive features of the liquid-phase epitaxy (LPE) approach, a facile spin coating method was implemented to generate MOF thin films in a high-throughput fashion. Advantageously, this approach offers a great prospective to cost-effectively construct thin-films with a significantly shortened preparation time and a lessened chemicals and solvents consumption, as compared to the conventional LPE-process. Certainly, this new spin-coating approach has been implemented successfully to construct various MOF thin films, ranging in thickness from a few micrometers down to the nanometer scale, spanning 2-D and 3-D benchmark MOF materials including Cu2(bdc)2·xH2O, Zn2(bdc)2·xH2O, HKUST-1, and ZIF-8. This method was appraised and proved effective on a variety of substrates comprising functionalized gold, silicon, glass, porous stainless steel, and aluminum oxide. The facile, high-throughput and cost-effective nature of this approach, coupled with the successful thin film growth and substrate versatility, represents the next generation of methods for MOF thin film fabrication. Therefore, paving the way for these unique MOF materials to address a wide range of challenges in the areas of sensing devices and membrane technology.
The integer quantum hall effect revisited
Michalakis, Spyridon; Hastings, Matthew
2009-01-01
For T - L x L a finite subset of Z{sup 2}, let H{sub o} denote a Hamiltonian on T with periodic boundary conditions and finite range, finite strength intetactions and a unique ground state with a nonvanishing spectral gap. For S {element_of} T, let q{sub s} denote the charge at site s and assume that the total charge Q = {Sigma}{sub s {element_of} T} q{sub s} is conserved. Using the local charge operators q{sub s}, we introduce a boundary magnetic flux in the horizontal and vertical direction and allow the ground state to evolve quasiadiabatically around a square of size one magnetic flux, in flux space. At the end of the evolution we obtain a trivial Berry phase, which we compare, via a method reminiscent of Stokes Theorem. to the Berry phase obtained from an evolution around an exponentially small loop near the origin. As a result, we show, without any averaging assumption, that the Hall conductance is quantized in integer multiples of e{sup 2}/h up to exponentially small corrections of order e{sup -L/{zeta}}, where {zeta}, is a correlation length that depends only on the gap and the range and strength of the interactions.
NASA Astrophysics Data System (ADS)
Lavanant, M.; Petit-Watelot, S.; Kent, A. D.; Mangin, S.
2017-04-01
The state diagram of a magnetic tunnel junction with perpendicularly magnetized electrodes in the presence of spin-transfer torques is computed in a macrospin approximation using a power dissipation model. Starting from the macrospin's energy we determine the stability of energy extremum in terms of power received and dissipated, allowing the consideration of non-conservative torques associated with spin transfer and damping. The results are shown to be in agreement with those obtained by direct integration of the Landau-Lifshitz-Gilbert-Slonczewski equation. However, the power dissipation model approach is faster and shows the reason certain magnetic states are stable, such as states that are energy maxima but are stabilized by spin transfer torque. Breaking the axial system, such as by a tilted applied field or tilted anisotropy, is shown to dramatically affect the state diagrams. Finally, the influence of a higher order uniaxial anisotropy that can stabilize a canted magnetization state is considered and the results are compared to experimental data.
Module detection in complex networks using integer optimisation
2010-01-01
Background The detection of modules or community structure is widely used to reveal the underlying properties of complex networks in biology, as well as physical and social sciences. Since the adoption of modularity as a measure of network topological properties, several methodologies for the discovery of community structure based on modularity maximisation have been developed. However, satisfactory partitions of large graphs with modest computational resources are particularly challenging due to the NP-hard nature of the related optimisation problem. Furthermore, it has been suggested that optimising the modularity metric can reach a resolution limit whereby the algorithm fails to detect smaller communities than a specific size in large networks. Results We present a novel solution approach to identify community structure in large complex networks and address resolution limitations in module detection. The proposed algorithm employs modularity to express network community structure and it is based on mixed integer optimisation models. The solution procedure is extended through an iterative procedure to diminish effects that tend to agglomerate smaller modules (resolution limitations). Conclusions A comprehensive comparative analysis of methodologies for module detection based on modularity maximisation shows that our approach outperforms previously reported methods. Furthermore, in contrast to previous reports, we propose a strategy to handle resolution limitations in modularity maximisation. Overall, we illustrate ways to improve existing methodologies for community structure identification so as to increase its efficiency and applicability. PMID:21073720
Monkenbusch, Michael; Holderer, Olaf; Ohl, Michael
2015-01-01
Neutron spin echo (NSE) method at a pulsed neutron source presents new challenges to the data reduction and analysis as compared to the instruments installed at reactor sources. The main advantage of the pulsed source NSE is the ability to resolve the neutron wavelength and collect neutrons over a wider bandwidth. This allows us to more precisely determine the symmetry phase and measure the data for several Q-values at the same time. Based on the experience gained at the SNS NSE - the first, and to date the only one, NSE instrument installed at a pulsed spallation source, we propose a novel and unified approach to the NSE data processing.
A spin glass approach to the directed feedback vertex set problem
NASA Astrophysics Data System (ADS)
Zhou, Hai-Jun
2016-07-01
A directed graph (digraph) is formed by vertices and arcs (directed edges) from one vertex to another. A feedback vertex set (FVS) is a set of vertices that contains at least one vertex of every directed cycle in this digraph. The directed feedback vertex set problem aims at constructing a FVS of minimum cardinality. This is a fundamental cycle-constrained hard combinatorial optimization problem with wide practical applications. In this paper we construct a spin glass model for the directed FVS problem by converting the global cycle constraints into local arc constraints, and study this model through the replica-symmetric (RS) mean field theory of statistical physics. We then implement a belief propagation-guided decimation (BPD) algorithm for single digraph instances. The BPD algorithm slightly outperforms the simulated annealing algorithm on large random graph instances. The RS mean field results and algorithmic results can be further improved by working on a more restrictive (and more difficult) spin glass model.
Two-leg SU(2n) spin ladder: A low-energy effective field theory approach
Lecheminant, P.; Tsvelik, A. M.
2015-05-07
We present a field-theory analysis of a model of two SU(2n)-invariant magnetic chains coupled by a generic interaction preserving time reversal and inversion symmetry. Contrary to the SU(2)-invariant case the zero-temperature phase diagram of such two-leg spin ladder does not contain topological phases. Thus, only generalized Valence Bond Solid phases are stabilized when n > 1 with different wave vectors and ground-state degeneracies. In particular, we find a phase which is made of a cluster of 2n spins put in an SU(2n) singlet state. For n = 3, this cluster phase is relevant to ¹⁷³Yb ultracold atoms, with an emergentmore » SU(6) symmetry, loaded in a double-well optical lattice.« less
Computer Corner: Spreadsheets, Power Series, Generating Functions, and Integers.
ERIC Educational Resources Information Center
Snow, Donald R.
1989-01-01
Implements a table algorithm on a spreadsheet program and obtains functions for several number sequences such as the Fibonacci and Catalan numbers. Considers other applications of the table algorithm to integers represented in various number bases. (YP)
Current dependence of spin torque switching rate based on Fokker-Planck approach
Taniguchi, Tomohiro Imamura, Hiroshi
2014-05-07
The spin torque switching rate of an in-plane magnetized system in the presence of an applied field is derived by solving the Fokker-Planck equation. It is found that three scaling currents are necessary to describe the current dependence of the switching rate in the low-current limit. The dependences of these scaling currents on the applied field strength are also studied.
A facile approach to spinning multifunctional conductive elastomer fibres with nanocarbon fillers
NASA Astrophysics Data System (ADS)
Seyedin, Shayan; Razal, Joselito M.; Innis, Peter C.; Wallace, Gordon G.
2016-03-01
Electrically conductive elastomeric fibres prepared using a wet-spinning process are promising materials for intelligent textiles, in particular as a strain sensing component of the fabric. However, these fibres, when reinforced with conducting fillers, typically result in a compromise between mechanical and electrical properties and, ultimately, in the strain sensing functionality. Here we investigate the wet-spinning of polyurethane (PU) fibres with a range of conducting fillers such as carbon black (CB), single-walled carbon nanotubes (SWCNTs), and chemically converted graphene. We show that the electrical and mechanical properties of the composite fibres were strongly dependent on the aspect ratio of the filler and the interaction between the filler and the elastomer. The high aspect ratio SWCNT filler resulted in fibres with the highest electrical properties and reinforcement, while the fibres produced from the low aspect ratio CB had the highest stretchability. Furthermore, PU/SWCNT fibres presented the largest sensing range (up to 60% applied strain) and the most consistent and stable cyclic sensing behaviour. This work provides an understanding of the important factors that influence the production of conductive elastomer fibres by wet-spinning, which can be woven or knitted into textiles for the development of wearable strain sensors.
Accurate Waveforms for Non-spinning Binary Black Holes using the Effective-one-body Approach
NASA Technical Reports Server (NTRS)
Buonanno, Alessandra; Pan, Yi; Baker, John G.; Centrella, Joan; Kelly, Bernard J.; McWilliams, Sean T.; vanMeter, James R.
2007-01-01
Using numerical relativity as guidance and the natural flexibility of the effective-one-body (EOB) model, we extend the latter so that it can successfully match the numerical relativity waveforms of non-spinning binary black holes during the last stages of inspiral, merger and ringdown. Here, by successfully, we mean with phase differences < or approx. 8% of a gravitational-wave cycle accumulated until the end of the ringdown phase. We obtain this result by simply adding a 4 post-Newtonian order correction in the EOB radial potential and determining the (constant) coefficient by imposing high-matching performances with numerical waveforms of mass ratios m1/m2 = 1,2/3,1/2 and = 1/4, m1 and m2 being the individual black-hole masses. The final black-hole mass and spin predicted by the numerical simulations are used to determine the ringdown frequency and decay time of three quasi-normal-mode damped sinusoids that are attached to the EOB inspiral-(plunge) waveform at the light-ring. The accurate EOB waveforms may be employed for coherent searches of gravitational waves emitted by non-spinning coalescing binary black holes with ground-based laser-interferometer detectors.
Exchange-mediated dynamic screening in the integer quantum Hall effect regime
NASA Astrophysics Data System (ADS)
Oswald, Josef; Römer, Rudolf A.
2017-03-01
We study many-body interaction effects in the spatially resolved filling factor (ν) distribution for higher Landau levels (LLs) via self-consistent Hartree-Fock simulations in the integer quantum Hall (IQH) regime. Our results indicate a strong, interaction-induced tendency to avoid the simultaneous existence of partially filled spin-up and spin-down LLs. Rather, we find that such partially filled LLs consist of coexisting regions of full and empty LLs. At the boundaries between the regions of full and empty LLs, we observe edge stripes of nearly constant ν close to half-filling. This suggests that the exchange interaction induces a behavior similar to a Hund's rule for the occupation of the spin split LLs. The screening of the disorder and edge potential appears significantly reduced as compared to static Thomas-Fermi screening (Chklovskii D. B. et al., Phys. Rev. B, 46 (1992) 4026). Our results are consistent with a local, lateral ν-dependence of the exchange-enhanced spin splitting. Hence, on quantum-coherent length scales as probed here, the electron system of the IQH effect behaves similarly to a non-interacting single particle system —not because of the absence, but rather due to the dominance of many-body effects.
New Approaches For Asteroid Spin State and Shape Modeling From Delay-Doppler Radar Images
NASA Astrophysics Data System (ADS)
Raissi, Chedy; Lamee, Mehdi; Mosiane, Olorato; Vassallo, Corinne; Busch, Michael W.; Greenberg, Adam; Benner, Lance A. M.; Naidu, Shantanu P.; Duong, Nicholas
2016-10-01
Delay-Doppler radar imaging is a powerful technique to characterize the trajectories, shapes, and spin states of near-Earth asteroids; and has yielded detailed models of dozens of objects. Reconstructing objects' shapes and spins from delay-Doppler data is a computationally intensive inversion problem. Since the 1990s, delay-Doppler data has been analyzed using the SHAPE software. SHAPE performs sequential single-parameter fitting, and requires considerable computer runtime and human intervention (Hudson 1993, Magri et al. 2007). Recently, multiple-parameter fitting algorithms have been shown to more efficiently invert delay-Doppler datasets (Greenberg & Margot 2015) - decreasing runtime while improving accuracy. However, extensive human oversight of the shape modeling process is still required. We have explored two new techniques to better automate delay-Doppler shape modeling: Bayesian optimization and a machine-learning neural network.One of the most time-intensive steps of the shape modeling process is to perform a grid search to constrain the target's spin state. We have implemented a Bayesian optimization routine that uses SHAPE to autonomously search the space of spin-state parameters. To test the efficacy of this technique, we compared it to results with human-guided SHAPE for asteroids 1992 UY4, 2000 RS11, and 2008 EV5. Bayesian optimization yielded similar spin state constraints within a factor of 3 less computer runtime.The shape modeling process could be further accelerated using a deep neural network to replace iterative fitting. We have implemented a neural network with a variational autoencoder (VAE), using a subset of known asteroid shapes and a large set of synthetic radar images as inputs to train the network. Conditioning the VAE in this manner allows the user to give the network a set of radar images and get a 3D shape model as an output. Additional development will be required to train a network to reliably render shapes from delay
Interactions in higher-spin gravity: a holographic perspective
NASA Astrophysics Data System (ADS)
Sleight, Charlotte
2017-09-01
This review is an elaboration of recent results on the holographic re-construction of metric-like interactions in higher-spin gauge theories on anti-de Sitter space (AdS), employing their conjectured duality with free conformal field theories (CFTs). After reviewing the general approach and establishing the necessary intermediate results, we extract explicit expressions for the complete cubic action on AdSd+1 and the quartic self-interaction of the scalar on AdS4 for the type A minimal bosonic higher-spin theory from the three- and four- point correlation functions of single-trace operators in the free scalar O(N) vector model. For this purpose tools were developed to evaluate tree-level three-point Witten diagrams involving totally symmetric fields of arbitrary integer spin and mass, and the conformal partial wave expansions of their tree-level four-point Witten diagrams. We also discuss the implications of the holographic duality on the locality properties of interactions in higher-spin gauge theories.
Cahaya, Adam B.; Tretiakov, O. A.; Bauer, Gerrit E. W.
2014-01-27
We derive expressions for the efficiency and figure of merit of two spin caloritronic devices based on the spin Seebeck effect (SSE), i.e., the generation of spin currents by a temperature gradient. The inverse spin Hall effect is conventionally used to detect the SSE and offers advantages for large area applications. We also propose a device that converts spin current into electric one by means of a spin-valve detector, which scales favorably to small sizes and approaches a figure of merit of 0.5 at room temperature.
NASA Astrophysics Data System (ADS)
Koc, A.; Reinhardt, M.; von Reppert, A.; Rössle, M.; Leitenberger, W.; Gleich, M.; Weinelt, M.; Zamponi, F.; Bargheer, M.
2017-07-01
We study gadolinium thin films as a model system for ferromagnets with negative thermal expansion. Ultrashort laser pulses heat up the electronic subsystem and we follow the transient strain via ultrafast x-ray diffraction. In terms of a simple Grueneisen approach, the strain is decomposed into two contributions proportional to the thermal energy of spin and phonon subsystems. Our analysis reveals that upon femtosecond laser excitation, phonons and spins can be driven out of thermal equilibrium for several nanoseconds.
Detection of code spread OFDM based on 0-1 integer quadratic programming
NASA Astrophysics Data System (ADS)
Elghariani, Ali; Zoltowski, Michael D.
2012-05-01
In this paper we introduce Integer Quadratic Programming (MIQP) approach to optimally detect QPSK Code Spread OFDM (CS-OFDM) by formulating the problem as a combinatorial optimization problem. The Branch and Bound (BB) algorithm is utilized to solve this integer quadratic programming problem. Furthermore, we propose combined preprocessing steps that can be applied prior to BB so that the computational complexity of the optimum receiver is reduced. The first step in this combination is to detect as much as possible symbols using procedures presented in [9], which is basically based on the gradient of quadratic function. The second step detects the undetected symbols from the first step using MMSE estimator. The result of the latter step will be used to predict the initial upper bound of the BB algorithm. Simulation results show that the proposed preprocessing combination when applied prior to BB provides optimal performance with a significantly reduced computational complexity.
IMC-PID-fractional-order-filter controllers design for integer order systems.
Maâmar, Bettayeb; Rachid, Mansouri
2014-09-01
One of the reasons of the great success of standard PID controllers is the presence of simple tuning rules, of the automatic tuning feature and of tables that simplify significantly their design. For the fractional order case, some tuning rules have been proposed in the literature. However, they are not general because they are valid only for some model cases. In this paper, a new approach is investigated. The fractional property is not especially imposed by the controller structure but by the closed loop reference model. The resulting controller is fractional but it has a very interesting structure for its implementation. Indeed, the controller can be decomposed into two transfer functions: an integer transfer function which is generally an integer PID controller and a simple fractional filter.
Smart-Grid Backbone Network Real-Time Delay Reduction via Integer Programming.
Pagadrai, Sasikanth; Yilmaz, Muhittin; Valluri, Pratyush
2016-08-01
This research investigates an optimal delay-based virtual topology design using integer linear programming (ILP), which is applied to the current backbone networks such as smart-grid real-time communication systems. A network traffic matrix is applied and the corresponding virtual topology problem is solved using the ILP formulations that include a network delay-dependent objective function and lightpath routing, wavelength assignment, wavelength continuity, flow routing, and traffic loss constraints. The proposed optimization approach provides an efficient deterministic integration of intelligent sensing and decision making, and network learning features for superior smart grid operations by adaptively responding the time-varying network traffic data as well as operational constraints to maintain optimal virtual topologies. A representative optical backbone network has been utilized to demonstrate the proposed optimization framework whose simulation results indicate that superior smart-grid network performance can be achieved using commercial networks and integer programming.
NASA Astrophysics Data System (ADS)
Xu, Fei
In this article, we present a systematic approach to design chaos generators using integer order and fractional order differential equation systems. A series of multiwing chaotic attractors and grid multiwing chaotic attractors are obtained using linear integer order differential equation systems with switching controls. The existence of chaotic attractors in the corresponding fractional order differential equation systems is also investigated. We show that, using the nonlinear fractional order differential equation system, or linear fractional order differential equation systems with switching controls, a series of multiwing chaotic attractors can be obtained.
Wu, Z; Zhang, Y
2008-01-01
The double digestion problem for DNA restriction mapping has been proved to be NP-complete and intractable if the numbers of the DNA fragments become large. Several approaches to the problem have been tested and proved to be effective only for small problems. In this paper, we formulate the problem as a mixed-integer linear program (MIP) by following (Waterman, 1995) in a slightly different form. With this formulation and using state-of-the-art integer programming techniques, we can solve randomly generated problems whose search space sizes are many-magnitude larger than previously reported testing sizes.
Fish Processed Production Planning Using Integer Stochastic Programming Model
NASA Astrophysics Data System (ADS)
Firmansyah, Mawengkang, Herman
2011-06-01
Fish and its processed products are the most affordable source of animal protein in the diet of most people in Indonesia. The goal in production planning is to meet customer demand over a fixed time horizon divided into planning periods by optimizing the trade-off between economic objectives such as production cost and customer satisfaction level. The major decisions are production and inventory levels for each product and the number of workforce in each planning period. In this paper we consider the management of small scale traditional business at North Sumatera Province which performs processing fish into several local seafood products. The inherent uncertainty of data (e.g. demand, fish availability), together with the sequential evolution of data over time leads the production planning problem to a nonlinear mixed-integer stochastic programming model. We use scenario generation based approach and feasible neighborhood search for solving the model. The results which show the amount of each fish processed product and the number of workforce needed in each horizon planning are presented.
Maximum likelihood pedigree reconstruction using integer linear programming.
Cussens, James; Bartlett, Mark; Jones, Elinor M; Sheehan, Nuala A
2013-01-01
Large population biobanks of unrelated individuals have been highly successful in detecting common genetic variants affecting diseases of public health concern. However, they lack the statistical power to detect more modest gene-gene and gene-environment interaction effects or the effects of rare variants for which related individuals are ideally required. In reality, most large population studies will undoubtedly contain sets of undeclared relatives, or pedigrees. Although a crude measure of relatedness might sometimes suffice, having a good estimate of the true pedigree would be much more informative if this could be obtained efficiently. Relatives are more likely to share longer haplotypes around disease susceptibility loci and are hence biologically more informative for rare variants than unrelated cases and controls. Distant relatives are arguably more useful for detecting variants with small effects because they are less likely to share masking environmental effects. Moreover, the identification of relatives enables appropriate adjustments of statistical analyses that typically assume unrelatedness. We propose to exploit an integer linear programming optimisation approach to pedigree learning, which is adapted to find valid pedigrees by imposing appropriate constraints. Our method is not restricted to small pedigrees and is guaranteed to return a maximum likelihood pedigree. With additional constraints, we can also search for multiple high-probability pedigrees and thus account for the inherent uncertainty in any particular pedigree reconstruction. The true pedigree is found very quickly by comparison with other methods when all individuals are observed. Extensions to more complex problems seem feasible. © 2012 Wiley Periodicals, Inc.
Conductivity of a spin-polarized two-dimensional hole gas at very low temperature
Dlimi, S. Kaaouachi, A. El Limouny, L. Sybous, A.; Narjis, A.; Errai, M.; Daoudi, E.; Idrissi, H. El; Zatni, A.
2014-01-27
In the ballistic regime where k{sub B}Tτ / ħ ≥1, the temperature dependence of the metallic conductivity in a two-dimensional hole system of gallium arsenide, is found to change non-monotonically with the degree of spin polarization. In particular, it fades away just before the onset of complete spin polarization, but reappears again in the fully spin-polarized state, being, however, suppressed relative to the zero magnetic field case. The analysis of the degree of suppression can distinguish between screening and interaction-based theories. We show that in a fully polarized spin state, the effects of disorder are dominant and approach a strong localization regime, which is contrary to the behavior of 2D electron systems in a weakly disordered unpolarized state. It was found that the elastic relaxation time correction, depending on the temperature, changed significantly with the degree of spin polarization, to reach a minimum just below the start of the spin-polarized integer, where the conductivity is practically independent of temperature.
Thin film engineering for N@C 60 quantum computers: Spin detection and device patterning approaches
NASA Astrophysics Data System (ADS)
Schaefer, Sebastian; Huebener, Kati; Harneit, Wolfgang; Boehme, Christoph; Fostiropoulos, Konstantinos; Angermann, Heike; Rappich, Jörg; Behrends, Jan; Lips, Klaus
2008-10-01
Using pulsed electrically detected magnetic resonance (p-EDMR), we measured the coherent spin evolution of about 10,000 paramagnetic states in C 60 fullerene thin films, opening a way to study potentially single-qubit read-out mechanisms of N@C 60 molecules. The N@C 60 compatible, low-temperature method of spray-deposition of fullerenes on silicon substrates pre-patterned by local anodic oxidation is shown to yield fullerene structures on the 10 nm scale, still somewhat too coarse for quantum register structures, but suitable for further steps in the application of the p-EDMR method to N@C 60.
Spacetime path formalism for massive particles of any spin
Seidewitz, Ed
2009-02-15
Earlier work presented spacetime path formalism for relativistic quantum mechanics arising naturally from the fundamental principles of the Born probability rule, superposition, and spacetime translation invariance. The resulting formalism can be seen as a foundation for a number of previous parametrized approaches to relativistic quantum mechanics in the literature. Because time is treated similarly to the three-space coordinates, rather than as an evolution parameter, such approaches have proved particularly useful in the study of quantum gravity and cosmology. The present paper extends the foundational spacetime path formalism to include massive, non-scalar particles of any (integer or half-integer) spin. This is done by generalizing the principle of translational invariance used in the scalar case to the principle of full Poincare invariance, leading to a formulation for the non-scalar propagator in terms of a path integral over the Poincare group. Once the difficulty of the non-compactness of the component Lorentz group is dealt with, the subsequent development is remarkably parallel to the scalar case. This allows the formalism to retain a clear probabilistic interpretation throughout, with a natural reduction to non-relativistic quantum mechanics closely related to the well-known generalized Foldy-Wouthuysen transformation.
NASA Astrophysics Data System (ADS)
Sleight, Charlotte; Taronna, Massimo
2017-06-01
We develop a systematic framework to compute the conformal partial wave expansions (CPWEs) of tree-level four-point Witten diagrams with totally symmetric external fields of arbitrary mass and integer spin in AdS d+1. As an intermediate step, we identify convenient bases of three-point bulk and boundary structures to invert linear map between spinning three-point conformal structures and spinning cubic couplings in AdS. Given a CFT d , this provides the complete holographic reconstruction of all cubic couplings involving totally symmetric fields in the putative dual theory on AdS d+1. Employing this framework, we determine the CPWE of a generic four-point exchange Witten diagram with spinning exchanged field. As a concrete application, we compute all four-point exchange Witten diagrams in the type A higher-spin gauge theory on AdS d+1, which is conjectured to be dual to the free scalar O ( N ) model.
Higher spin approaches to quantum field theory and (psuedo)-Riemannian geometries
NASA Astrophysics Data System (ADS)
Hallowell, Karl Evan
In this thesis, we study a number of higher spin quantum field theories and some of their algebraic and geometric consequences. These theories apply mostly either over constant curvature or more generally symmetric pseudo-Riemannian manifolds. The first part of this dissertation covers a superalgebra coming from a family of particle models over symmetric spaces. These theories are novel in that the symmetries of the (super)algebra osp( Q|2p) are larger and more elaborate than traditional symmetries. We construct useful (super)algebras related to and generalizing old work by Lichnerowicz and describe their role in developing the geometry of massless models with osp(Q|2 p) symmetry. The result is two practical applications of these (super)algebras: (1) a lunch more concise description of a family of higher spin quantum field theories; and (2) an interesting algebraic probe of underlying background geometries. We also consider massive models over constant curvature spaces. We use a radial dimensional reduction process which converts massless models into massive ones over a lower dimensional space. In our case, we take from the family of theories above the particular free, massless model over flat space associated with sp(2, R ) and derive a massive model. In the process, we develop a novel associative algebra, which is a deformation of the original differential operator algebra associated with the sp(2, R ) model. This algebra is interesting in its own right since its operators realize the representation structure of the sp(2, R ) group. The massive model also has implications for a sequence of unusual, "partially massless" theories. The derivation illuminates how reduced degrees of freedom become manifest in these particular models. Finally, we study a Yang-Mills model using an on-shell Poincare Yang-Mills twist of the Maxwell complex along with a non-minimal coupling. This is a special, higher spin case of a quantum field theory called a Yang-Mills detour complex
Dynamically sculpturing plasmonic vortices: from integer to fractional orbital angular momentum
Wang, Yu; Zhao, Peng; Feng, Xue; Xu, Yuntao; Liu, Fang; Cui, Kaiyu; Zhang, Wei; Huang, Yidong
2016-01-01
As a fundamental tool for light-matter interactions, plasmonic vortex (PV) is extremely useful due to the unique near field property. However, it is a pity that, up to now, the orbital angular momentum (OAM) carried by PVs could not be dynamically and continuously tuned in practice as well as the properties of fractional PVs are still not well investigated. By comparing with two previously reported methods, it is suggested that our proposal of utilizing the propagation induced radial phase gradient of incident Laguerre-Gaussian (LG) beam is a promising candidate to sculpture PVs from integer to fractional OAM dynamically. Consequently, the preset OAM of PVs could have four composing parts: the incident spin and orbital angular momentum, the geometric contribution of chiral plasmonic structure, and the radial phase gradient dependent contribution. Moreover, an analytical expression for the fractional PV is derived as a linear superposition of infinite numbers of integer PVs described by Bessel function of the first kind. It is also shown that the actual mean OAM of a fractional PV would deviate from the preset value, which is similar with previous results for spatial fractional optical vortices. PMID:27811986
Dynamically sculpturing plasmonic vortices: from integer to fractional orbital angular momentum.
Wang, Yu; Zhao, Peng; Feng, Xue; Xu, Yuntao; Liu, Fang; Cui, Kaiyu; Zhang, Wei; Huang, Yidong
2016-11-04
As a fundamental tool for light-matter interactions, plasmonic vortex (PV) is extremely useful due to the unique near field property. However, it is a pity that, up to now, the orbital angular momentum (OAM) carried by PVs could not be dynamically and continuously tuned in practice as well as the properties of fractional PVs are still not well investigated. By comparing with two previously reported methods, it is suggested that our proposal of utilizing the propagation induced radial phase gradient of incident Laguerre-Gaussian (LG) beam is a promising candidate to sculpture PVs from integer to fractional OAM dynamically. Consequently, the preset OAM of PVs could have four composing parts: the incident spin and orbital angular momentum, the geometric contribution of chiral plasmonic structure, and the radial phase gradient dependent contribution. Moreover, an analytical expression for the fractional PV is derived as a linear superposition of infinite numbers of integer PVs described by Bessel function of the first kind. It is also shown that the actual mean OAM of a fractional PV would deviate from the preset value, which is similar with previous results for spatial fractional optical vortices.
Dynamically sculpturing plasmonic vortices: from integer to fractional orbital angular momentum
NASA Astrophysics Data System (ADS)
Wang, Yu; Zhao, Peng; Feng, Xue; Xu, Yuntao; Liu, Fang; Cui, Kaiyu; Zhang, Wei; Huang, Yidong
2016-11-01
As a fundamental tool for light-matter interactions, plasmonic vortex (PV) is extremely useful due to the unique near field property. However, it is a pity that, up to now, the orbital angular momentum (OAM) carried by PVs could not be dynamically and continuously tuned in practice as well as the properties of fractional PVs are still not well investigated. By comparing with two previously reported methods, it is suggested that our proposal of utilizing the propagation induced radial phase gradient of incident Laguerre-Gaussian (LG) beam is a promising candidate to sculpture PVs from integer to fractional OAM dynamically. Consequently, the preset OAM of PVs could have four composing parts: the incident spin and orbital angular momentum, the geometric contribution of chiral plasmonic structure, and the radial phase gradient dependent contribution. Moreover, an analytical expression for the fractional PV is derived as a linear superposition of infinite numbers of integer PVs described by Bessel function of the first kind. It is also shown that the actual mean OAM of a fractional PV would deviate from the preset value, which is similar with previous results for spatial fractional optical vortices.
A Polynomial Time, Numerically Stable Integer Relation Algorithm
NASA Technical Reports Server (NTRS)
Ferguson, Helaman R. P.; Bailey, Daivd H.; Kutler, Paul (Technical Monitor)
1998-01-01
Let x = (x1, x2...,xn be a vector of real numbers. X is said to possess an integer relation if there exist integers a(sub i) not all zero such that a1x1 + a2x2 + ... a(sub n)Xn = 0. Beginning in 1977 several algorithms (with proofs) have been discovered to recover the a(sub i) given x. The most efficient of these existing integer relation algorithms (in terms of run time and the precision required of the input) has the drawback of being very unstable numerically. It often requires a numeric precision level in the thousands of digits to reliably recover relations in modest-sized test problems. We present here a new algorithm for finding integer relations, which we have named the "PSLQ" algorithm. It is proved in this paper that the PSLQ algorithm terminates with a relation in a number of iterations that is bounded by a polynomial in it. Because this algorithm employs a numerically stable matrix reduction procedure, it is free from the numerical difficulties, that plague other integer relation algorithms. Furthermore, its stability admits an efficient implementation with lower run times oil average than other algorithms currently in Use. Finally, this stability can be used to prove that relation bounds obtained from computer runs using this algorithm are numerically accurate.
A mixed-ligand approach for spin-crossover modulation in a linear Fe(II) coordination polymer.
Calvo Galve, Néstor; Coronado, Eugenio; Giménez-Marqués, Mónica; Mínguez Espallargas, Guillermo
2014-05-05
In this work, we present a family of Fe(II) coordination polymers of general formula [Fe(btzx)(3-3x)(btix)(3x)](ClO4)2 with interesting spin-crossover properties. These coordination polymers have been synthesized using chemical mixtures of two different but closely related ligands, 1,4-bis(tetrazol-1-ylmethyl)benzene (btzx) and 1,4-bis(triazol-1-ylmethyl)benzene (btix), and the effect of a gradual substitution of the ligand in the spin transition temperature has been investigated. Several chemical mixtures have been structurally characterized by X-ray powder diffraction indicating a clear critical amount in the composition of the mixture after which mixed phases rather than a single phase comprising mixed components are observed. Importantly, this approach causes the appearance of a new transition at lower temperatures that is not present in the pure [Fe(L)3](ClO4)2 systems.
NASA Astrophysics Data System (ADS)
Lu, Yuan-Ming; Vishwanath, Ashvin
2016-04-01
We study (2+1)-dimensional phases with topological order, such as fractional quantum Hall states and gapped spin liquids, in the presence of global symmetries. Phases that share the same topological order can then differ depending on the action of symmetry, leading to symmetry-enriched topological (SET) phases. Here, we present a K -matrix Chern-Simons approach to identify distinct phases with Abelian topological order, in the presence of unitary or antiunitary global symmetries. A key step is the identification of a smooth edge sewing condition that is used to check if two putative phases are indeed distinct. We illustrate this method by classifying Z2 topological order (Z2 spin liquids) in the presence of an internal Z2 global symmetry for which we find six distinct phases. These include two phases with an unconventional action of symmetry that permutes anyons leading to symmetry-protected Majorana edge modes. Other routes to realizing protected edge states in SET phases are identified. Symmetry-enriched Laughlin states and double-semion theories are also discussed. Somewhat surprisingly, we observe that (i) gauging the global symmetry of distinct SET phases leads to topological orders with the same total quantum dimension, and (ii) a pair of distinct SET phases can yield the same topological order on gauging the symmetry.
Rich gauge structures from a unitary approach of some massless gauge fields of spins one and two
NASA Astrophysics Data System (ADS)
Cioroianu, Eugen-Mihaita
2017-04-01
The aim of this paper consists in the investigation of both first- and second-order dynamics for a special massless tensor gauge field of degree (k + 1). Geometrically, this can be interpreted as a bosonic (1-)form-valued k-form that, in specific space-time dimensions, describes either spin-1 or spin 2 gauge fields. The idea of using multi-forms in describing general tensor gauge fields is not new. It was previously investigated at Lagrangian level1-3 where was displayed interesting exotic gauge theories. In arbitrary Minkowski space-times, the considered geometric object combines two tensor gauge fields with mixed symmetry namely a (k + 1)-form and a massless tensor gauge field with the mixed symmetry (k, 1). Concretely, we first approach the bosonic (1-)form-valued k-form from the Hamiltonian perspective, Dirac analysis revealing new compelling gauge structures. Second, we construct the Lagrangian first-order formulations for the considered geometric ingredient.
Dangerous "spin": the probability myth of evidence-based prescribing - a Merleau-Pontyian approach.
Morstyn, Ron
2011-08-01
The aim of this study was to examine logical positivist statistical probability statements used to support and justify "evidence-based" prescribing rules in psychiatry when viewed from the major philosophical theories of probability, and to propose "phenomenological probability" based on Maurice Merleau-Ponty's philosophy of "phenomenological positivism" as a better clinical and ethical basis for psychiatric prescribing. The logical positivist statistical probability statements which are currently used to support "evidence-based" prescribing rules in psychiatry have little clinical or ethical justification when subjected to critical analysis from any of the major theories of probability and represent dangerous "spin" because they necessarily exclude the individual , intersubjective and ambiguous meaning of mental illness. A concept of "phenomenological probability" founded on Merleau-Ponty's philosophy of "phenomenological positivism" overcomes the clinically destructive "objectivist" and "subjectivist" consequences of logical positivist statistical probability and allows psychopharmacological treatments to be appropriately integrated into psychiatric treatment.
New Approaches for Very Large-Scale Integer Programming
2016-06-24
Machine Learning in solving MIPs. 4. Parallel Processing in Solving MIPS. The new algorithms are computational tested and, in many cases, outperform...programming, algorithms, parallel processing, machine learning, heuristics 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18. NUMBER OF...Programming, Operations Research Letters 43, 411-417, 2015. Choosing good branching variables in branch-and-bound algorithms and machine learning for
BitPAl: a bit-parallel, general integer-scoring sequence alignment algorithm
Loving, Joshua; Hernandez, Yozen; Benson, Gary
2014-01-01
Motivation: Mapping of high-throughput sequencing data and other bulk sequence comparison applications have motivated a search for high-efficiency sequence alignment algorithms. The bit-parallel approach represents individual cells in an alignment scoring matrix as bits in computer words and emulates the calculation of scores by a series of logic operations composed of AND, OR, XOR, complement, shift and addition. Bit-parallelism has been successfully applied to the longest common subsequence (LCS) and edit-distance problems, producing fast algorithms in practice. Results: We have developed BitPAl, a bit-parallel algorithm for general, integer-scoring global alignment. Integer-scoring schemes assign integer weights for match, mismatch and insertion/deletion. The BitPAl method uses structural properties in the relationship between adjacent scores in the scoring matrix to construct classes of efficient algorithms, each designed for a particular set of weights. In timed tests, we show that BitPAl runs 7–25 times faster than a standard iterative algorithm. Availability and implementation: Source code is freely available for download at http://lobstah.bu.edu/BitPAl/BitPAl.html. BitPAl is implemented in C and runs on all major operating systems. Contact: jloving@bu.edu or yhernand@bu.edu or gbenson@bu.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25075119
Manifestation of many-body interactions in the integer quantum Hall effect regime
NASA Astrophysics Data System (ADS)
Oswald, Josef; Römer, Rudolf A.
2017-09-01
We use the self-consistent Hartree-Fock approximation for numerically addressing the integer quantum Hall (IQH) regime in terms of many-body physics at higher Landau levels (LL). The results exhibit a strong tendency to avoid the simultaneous existence of partly filled spin-up and spin-down LLs. Partly filled LLs appear as a mixture of coexisting regions of full and empty LLs. We obtain edge stripes with approximately constant filling factor ν close to half-odd filling at the boundaries between the regions of full and empty LLs, which we explain in terms of the g -factor enhancement as a function of a locally varying ν across the compressible stripes. The many-particle interactions follow a behavior as it would result from applying Hund's rule for the occupation of the spin split LLs. The screening of the disorder and edge potential appears significantly reduced as compared to screening based on a Thomas-Fermi approximation. For addressing carrier transport, we use a nonequilibrium network model (NNM) that handles the lateral distribution of the experimentally injected nonequilibrium chemical potentials μ .
Shi, Yanmeng; Lee, Yongjin; Che, Shi; Pi, Ziqi; Espiritu, Timothy; Stepanov, Petr; Smirnov, Dmitry; Lau, Chun Ning; Zhang, Fan
2016-02-05
Owing to the spin, valley, and orbital symmetries, the lowest Landau level in bilayer graphene exhibits multicomponent quantum Hall ferromagnetism. Using transport spectroscopy, we investigate the energy gaps of integer and fractional quantum Hall (QH) states in bilayer graphene with controlled layer polarization. The state at filling factor ν=1 has two distinct phases: a layer polarized state that has a larger energy gap and is stabilized by high electric field, and a hitherto unobserved interlayer coherent state with a smaller gap that is stabilized by large magnetic field. In contrast, the ν=2/3 quantum Hall state and a feature at ν=1/2 are only resolved at finite electric field and large magnetic field. These results underscore the importance of controlling layer polarization in understanding the competing symmetries in the unusual QH system of BLG.
Energy Gaps and Layer Polarization of Integer and Fractional Quantum Hall States in Bilayer Graphene
NASA Astrophysics Data System (ADS)
Shi, Yanmeng; Lee, Yongjin; Che, Shi; Pi, Ziqi; Espiritu, Timothy; Stepanov, Petr; Smirnov, Dmitry; Lau, Chun Ning; Zhang, Fan
2016-02-01
Owing to the spin, valley, and orbital symmetries, the lowest Landau level in bilayer graphene exhibits multicomponent quantum Hall ferromagnetism. Using transport spectroscopy, we investigate the energy gaps of integer and fractional quantum Hall (QH) states in bilayer graphene with controlled layer polarization. The state at filling factor ν =1 has two distinct phases: a layer polarized state that has a larger energy gap and is stabilized by high electric field, and a hitherto unobserved interlayer coherent state with a smaller gap that is stabilized by large magnetic field. In contrast, the ν =2 /3 quantum Hall state and a feature at ν =1 /2 are only resolved at finite electric field and large magnetic field. These results underscore the importance of controlling layer polarization in understanding the competing symmetries in the unusual QH system of BLG.
On the Relationship Between Sigma Models and Spin Chains
NASA Astrophysics Data System (ADS)
Controzzi, D.; Hawkins, E.
We consider the two-dimensional O(3) non-linear sigma model with topological term using a lattice regularization introduced by Shankar and Read [Nucl. Phys. B 336, 457 (1990)], that is suitable for studying the strong coupling regime. When this lattice model is quantized, the coefficient θ of the topological term is quantized as θ=2πs, with s integer or half-integer. We study in detail the relationship between the low energy behaviour of this theory and the one-dimensional spin-s Heisenberg model. We generalize the analysis to sigma models with other symmetries.
Fractional spin in reduced density-matrix functional theory.
Helbig, N; Theodorakopoulos, G; Lathiotakis, N N
2011-08-07
We study the behavior of different functionals of the one-body reduced density matrix (1RDM) for systems with fractional z-component of the total spin. We define these systems as ensembles of integer spin states. It is shown that, similarly to density functional theory, the error in the dissociation of diatomic molecules is directly related to the deviation from constancy of the atomic total energies as functions of the fractional spin. However, several functionals of the 1RDM show a size inconsistency which leads to additional errors. We also investigate the difference between a direct evaluation of the energy of an ensemble of integer-spin systems and a direct minimization of the energy of a fractional-spin system.
NASA Astrophysics Data System (ADS)
Li, Shiqi; Sarachik, M. P.
2017-01-01
The resistivities of the dilute, strongly interacting two-dimensional electron systems in the insulating phase of a silicon MOSFET are the same for unpolarized electrons in the absence of magnetic field and for electrons that are fully spin polarized by the presence of an in-plane magnetic field. In both cases the resistivity obeys Efros-Shklovskii variable range hopping ρ (T ) =ρ0exp[(TES/T ) 1 /2] , with TE S and 1 /ρ0 mapping onto each other if one applies a shift of the critical density nc reported earlier. With and without magnetic field, the parameters TE S and 1 /ρ0=σ0 exhibit scaling consistent with critical behavior approaching a metal-insulator transition.
Bases for spin systems and qudits from angular momentum theory
NASA Astrophysics Data System (ADS)
Kibler, Maurice R.
2010-03-01
Spin bases of relevance for quantum systems with cyclic symmetry as well as for quantum information and quantum computation are constructed from angular momentum and Lie algebraic methods. This approach is connected to the use of generalized Pauli matrices (in dimension d) arising from a polar decomposition of the group SU(2). Such a decomposition leads to a Weyl pair which can be used as an integrity basis for constructing a generalized Pauli group and the Lie algebra of the unitary group U(d). The case where d is a prime integer yields a maximal set of d+1 mutually unbiased bases. Numerous examples are given for d=2,3 and 4.
Spin transport at interfaces with spin-orbit coupling: Formalism
NASA Astrophysics Data System (ADS)
Amin, V. P.; Stiles, M. D.
2016-09-01
We generalize magnetoelectronic circuit theory to account for spin transfer to and from the atomic lattice via interfacial spin-orbit coupling. This enables a proper treatment of spin transport at interfaces between a ferromagnet and a heavy-metal nonmagnet. This generalized approach describes spin transport in terms of drops in spin and charge accumulations across the interface (as in the standard approach), but additionally includes the responses from in-plane electric fields and offsets in spin accumulations. A key finding is that in-plane electric fields give rise to spin accumulations and spin currents that can be polarized in any direction, generalizing the Rashba-Edelstein and spin Hall effects. The spin accumulations exert torques on the magnetization at the interface when they are misaligned from the magnetization. The additional out-of-plane spin currents exert torques via the spin-transfer mechanism on the ferromagnetic layer. To account for these phenomena we also describe spin torques within the generalized circuit theory. The additional effects included in this generalized circuit theory suggest modifications in the interpretations of experiments involving spin-orbit torques, spin pumping, spin memory loss, the Rashba-Edelstein effect, and the spin Hall magnetoresistance.
NASA Astrophysics Data System (ADS)
Phelan, Brendan F.
This thesis explores the relative strengths of Spin-Orbit Coupling (SOC) in several perovskite-like systems that feature uninterrupted arrays of isolated IrO6 octahedra. Iridate compounds are particularly interesting to the community due to their relevance to emergent material properties such as insulating antiferromagnets, superconductors, and topological insulators. Recently literature has pointed to a complex interaction between SOC and crystal field splitting (CFS) in d5 metals. I utilize a straightforward, magnetic approach to determine the relative strengths of SOC vs CFS by chemically modifying structure and oxidation state. This contrasts with other work where advanced spectroscopic measurements are utilized to probe energy levels within a single compound. The focus of this study lies in two main methodologies: 1) Tracking the evolution of the Ir magnetic moment on progressing from 5 d5 Ir4+ to 5d 4 Ir5+ oxidation states that are clearly best described by a transition from a J=1/2 to a J=0 Ir magnetic state. In these cases, the evolution of the magnetic susceptibility shows the dominance of spin-orbit coupling in determining the magnetic properties of a material with highly isolated IrO6 octahedra. 2) Distorting J=0 Ir5+ systems where there is no emergence of an enhanced magnetic moment in the series on increasing the structural distortions, as would have been the case for significant crystal field splitting that reinforces the notion that spin-orbit coupling is the dominant force in determining the magnetism of iridium-oxygen octahedra in perovskite-like structures. The organization of this thesis is as follows: Chapter 1 presents a brief introduction to solid-state chemistry, iridates, and magnetism. Chapter 2 is an overview of experimental methodology and instrumentation. Chapter 3, presents a study of tuning the oxidation state of a new structure type: SrxLa11-xIr4O24. Chapter 4 presents a structural tuning of the Ir5+ system: Ba 2-xSrxYIrO6. Finally
FPGA Implementation of Optimal 3D-Integer DCT Structure for Video Compression.
Jacob, J Augustin; Kumar, N Senthil
2015-01-01
A novel optimal structure for implementing 3D-integer discrete cosine transform (DCT) is presented by analyzing various integer approximation methods. The integer set with reduced mean squared error (MSE) and high coding efficiency are considered for implementation in FPGA. The proposed method proves that the least resources are utilized for the integer set that has shorter bit values. Optimal 3D-integer DCT structure is determined by analyzing the MSE, power dissipation, coding efficiency, and hardware complexity of different integer sets. The experimental results reveal that direct method of computing the 3D-integer DCT using the integer set [10, 9, 6, 2, 3, 1, 1] performs better when compared to other integer sets in terms of resource utilization and power dissipation.
FPGA Implementation of Optimal 3D-Integer DCT Structure for Video Compression
Jacob, J. Augustin; Kumar, N. Senthil
2015-01-01
A novel optimal structure for implementing 3D-integer discrete cosine transform (DCT) is presented by analyzing various integer approximation methods. The integer set with reduced mean squared error (MSE) and high coding efficiency are considered for implementation in FPGA. The proposed method proves that the least resources are utilized for the integer set that has shorter bit values. Optimal 3D-integer DCT structure is determined by analyzing the MSE, power dissipation, coding efficiency, and hardware complexity of different integer sets. The experimental results reveal that direct method of computing the 3D-integer DCT using the integer set [10, 9, 6, 2, 3, 1, 1] performs better when compared to other integer sets in terms of resource utilization and power dissipation. PMID:26601120
Bouchard, Frédéric; De Leon, Israel; Schulz, Sebastian A.; Upham, Jeremy; Karimi, Ebrahim; Boyd, Robert W.
2014-09-08
Orbital angular momentum associated with the helical phase-front of optical beams provides an unbounded “space” for both classical and quantum communications. Among the different approaches to generate and manipulate orbital angular momentum states of light, coupling between spin and orbital angular momentum allows a faster manipulation of orbital angular momentum states because it depends on manipulating the polarisation state of light, which is simpler and generally faster than manipulating conventional orbital angular momentum generators. In this work, we design and fabricate an ultra-thin spin-to-orbital angular momentum converter, based on plasmonic nano-antennas and operating in the visible wavelength range that is capable of converting spin to an arbitrary value of orbital angular momentum ℓ. The nano-antennas are arranged in an array with a well-defined geometry in the transverse plane of the beam, possessing a specific integer or half-integer topological charge q. When a circularly polarised light beam traverses this metasurface, the output beam polarisation switches handedness and the orbital angular momentum changes in value by ℓ=±2qℏ per photon. We experimentally demonstrate ℓ values ranging from ±1 to ±25 with conversion efficiencies of 8.6% ± 0.4%. Our ultra-thin devices are integratable and thus suitable for applications in quantum communications, quantum computations, and nano-scale sensing.
NASA Astrophysics Data System (ADS)
Liu, Zhaosen; Ian, Hou
2017-01-01
Using a quantum simulation approach, we investigate in the present work the spontaneous magnetic properties of two pairs of double-walled cylindrical nanotubes consisting of different spins. Our simulated magnetic and thermodynamic properties for each pair of them are precisely identical, exhibiting a fascinating property of the nature world and demonstrating the correctness of our simulation approach. The second pair of nanotubes are frustrated, two magnetic phases of distinct spin configurations appear in the low temperature region, but only the inner layer consisting of small spins is frustrated evidently, its magnetization is considerably suppressed in the high temperature phase. Moreover, the nanosystems exhibit typical Ising-like behavior due to the uniaxial anisotropy along the z-direction, and evident finite-size effects as well.
NASA Astrophysics Data System (ADS)
Hnybida, Jeff
2016-10-01
We formulate the spin foam representation of discrete SU(2) gauge theory as a product of vertex amplitudes each of which is the spin network generating function of the boundary graph dual to the vertex. In doing so the sums over spins have been carried out. The boundary data of each n-valent node is explicitly reduced with respect to the local gauge invariance and has a manifest geometrical interpretation as a framed polyhedron of fixed total area. Ultimately, sums over spins are traded for contour integrals over simple poles and recoupling theory is avoided using generating functions.
NASA Astrophysics Data System (ADS)
Yunes, Nicolas; Tichy, Wolfgang
2006-04-01
The accuracy of gravitational wave templates produced by numerical simulations is partially determined by the initial data chosen. A promising method to construct accurate data employs asymptotic matching to construct an approximate global 4-metric. In this talk, we will apply this method to a binary system of non-spinning black holes and discuss improvements. A global metric can be constructed by asymptotically matching two tidally perturbed Schwarzschild metrics in isotropic coordinates valid near each hole to an ADMTT post-Newtonian metric valid far from them. As a result, adjacent metrics agree in the matching region up to uncontrolled remainders in the approximations. We build a smooth global 4-metric with transition functions, carefully constructed to avoid introducing errors larger than those in the approximations. The main improvement arises by using metrics in similar coordinates before performing the matching. This similarity leads to adjacent metrics that are similar even near the horizons, thus allowing for a smoother transition and constraint violations. We also construct a map that takes this metric to Kerr-Schild coordinates near each hole.
NASA Astrophysics Data System (ADS)
Scarrozza, Marco; Vindigni, Alessandro; Barone, Paolo; Sessoli, Roberta; Picozzi, Silvia
2015-04-01
The properties of two molecular-based magnetic helices, composed of 3 d metal Co and Mn ions bridged by nitronyl nitroxide radicals, are investigated by density-functional calculations. Their peculiar and distinctive magnetic behavior is here elucidated by a thorough description of their magnetic, electronic, and anisotropy properties. Metal ions are antiferromagnetically coupled with the radicals, leading to a ferrimagnetically ordered ground state. A strong metal-radical exchange coupling is found, about 44 and 48 meV for Co and Mn helices, respectively. The latter have also relevant next-nearest-neighbor Mn-Mn antiferromagnetic interactions (of ˜6 meV). Co sites are characterized by noncollinear uniaxial anisotropies, whereas Mn sites are rather isotropic. A key result pertains to the Co helix: The microscopic picture resulting from density-functional calculations allows us to propose a spin Hamiltonian of increased complexity with respect to the commonly employed Ising Hamiltonian, suitable for the study of finite-temperature behavior, and that seems to clarify the puzzling scenario of multiple characteristic energy scales observed in experiments.
NASA Technical Reports Server (NTRS)
Fuchs, Richard; Schmidt, Wilhelm
1931-01-01
With the object of further clarifying the problem of spinning, the equilibrium of the forces and moments acting on an airplane is discussed in light of the most recent test data. Convinced that in a spin the flight attitude by only small angles of yaw is more or less completely steady, the study is primarily devoted to an investigation of steady spin with no side slip. At small angles, wholly arbitrary and perfectly steady spins may be forced, depending on the type of control displacements. But at large angles only very steep and only "approaching steady" spins are possible, no matter what the control displacements.
NASA Astrophysics Data System (ADS)
Verkholyak, Taras; Strečka, Jozef
2016-10-01
The spin-1/2 Heisenberg orthogonal-dimer chain is considered within the perturbative strong-coupling approach, which is developed from the exactly solved spin-1/2 Ising-Heisenberg orthogonal-dimer chain with the Heisenberg intradimer and the Ising interdimer couplings. Although the spin-1/2 Ising-Heisenberg orthogonal-dimer chain exhibits just intermediate plateaus at zero, one-quarter, and one-half of the saturation magnetization, the perturbative treatment up to second order stemming from this exactly solvable model additionally corroborates the fractional one-third plateau as well as the gapless Luttinger spin-liquid phase. It is evidenced that the approximate results obtained from the strong-coupling approach are in an excellent agreement with the state-of-the-art numerical data obtained for the spin-1/2 Heisenberg orthogonal-dimer chain within the exact diagonalization and density-matrix renormalization group method. The nature of individual quantum ground states is comprehensively studied within the developed perturbation theory.
Factoring integers with Young's N-slit interferometer
NASA Astrophysics Data System (ADS)
Clauser, John F.; Dowling, Jonathan P.
1996-06-01
We show that a Young's N-slit interferometer can be used to factor the integer N. The device could factor four- or five-digit numbers in a practical fashion. This work shows how number theory may arise in physical problems, and may provide some insight as to how quantum computers can carry out factoring problems by interferometric means.
Triangular Numbers, Gaussian Integers, and KenKen
ERIC Educational Resources Information Center
Watkins, John J.
2012-01-01
Latin squares form the basis for the recreational puzzles sudoku and KenKen. In this article we show how useful several ideas from number theory are in solving a KenKen puzzle. For example, the simple notion of triangular number is surprisingly effective. We also introduce a variation of KenKen that uses the Gaussian integers in order to…
Unique Factorization in Cyclotomic Integers of Degree Seven
ERIC Educational Resources Information Center
Duckworth, W. Ethan
2008-01-01
This article provides a survey of some basic results in algebraic number theory and applies this material to prove that the cyclotomic integers generated by a seventh root of unity are a unique factorization domain. Part of the proof uses the computer algebra system Maple to find and verify factorizations. The proofs use a combination of historic…
Using Set Model for Learning Addition of Integers
ERIC Educational Resources Information Center
Lestari, Umi Puji; Putri, Ratu Ilma Indra; Hartono, Yusuf
2015-01-01
This study aims to investigate how set model can help students' understanding of addition of integers in fourth grade. The study has been carried out to 23 students and a teacher of IVC SD Iba Palembang in January 2015. This study is a design research that also promotes PMRI as the underlying design context and activity. Results showed that the…
Triangular Numbers, Gaussian Integers, and KenKen
ERIC Educational Resources Information Center
Watkins, John J.
2012-01-01
Latin squares form the basis for the recreational puzzles sudoku and KenKen. In this article we show how useful several ideas from number theory are in solving a KenKen puzzle. For example, the simple notion of triangular number is surprisingly effective. We also introduce a variation of KenKen that uses the Gaussian integers in order to…
Exploring the Sums of Powers of Consecutive q-Integers
ERIC Educational Resources Information Center
Kim, T.; Ryoo, C. S.; Jang, L. C.; Rim, S. H.
2005-01-01
The Bernoulli numbers are among the most interesting and important number sequences in mathematics. They first appeared in the posthumous work "Ars Conjectandi" (1713) by Jacob Bernoulli (1654-1705) in connection with sums of powers of consecutive integers (Bernoulli, 1713; or Smith, 1959). Bernoulli numbers are particularly important in number…
A fast DFT algorithm using complex integer transforms
NASA Technical Reports Server (NTRS)
Reed, I. S.; Truong, T. K.
1978-01-01
Winograd's algorithm for computing the discrete Fourier transform is extended considerably for certain large transform lengths. This is accomplished by performing the cyclic convolution, required by Winograd's method, by a fast transform over certain complex integer fields. This algorithm requires fewer multiplications than either the standard fast Fourier transform or Winograd's more conventional algorithms.
Informing Practice: Making Sense of Integers through Storytelling
ERIC Educational Resources Information Center
Wessman-Enzinger, Nicole M.; Mooney, Edward S.
2014-01-01
The authors asked fifth-grade and eighth-grade students to pose stories for number sentences involving the addition and subtraction of integers. In this article, the authors look at eight stories from students. Which of these stories works for the given number sentence? What do they reveal about student thinking? When the authors examined these…
Orbital rendezvous mission planning using mixed integer nonlinear programming
NASA Astrophysics Data System (ADS)
Zhang, Jin; Tang, Guo-jin; Luo, Ya-Zhong; Li, Hai-yang
2011-04-01
The rendezvous and docking mission is usually divided into several phases, and the mission planning is performed phase by phase. A new planning method using mixed integer nonlinear programming, which investigates single phase parameters and phase connecting parameters simultaneously, is proposed to improve the rendezvous mission's overall performance. The design variables are composed of integers and continuous-valued numbers. The integer part consists of the parameters for station-keeping and sensor-switching, the number of maneuvers in each rendezvous phase and the number of repeating periods to start the rendezvous mission. The continuous part consists of the orbital transfer time and the station-keeping duration. The objective function is a combination of the propellant consumed, the sun angle which represents the power available, and the terminal precision of each rendezvous phase. The operational requirements for the spacecraft-ground communication, sun illumination and the sensor transition are considered. The simple genetic algorithm, which is a combination of the integer-coded and real-coded genetic algorithm, is chosen to obtain the optimal solution. A practical rendezvous mission planning problem is solved by the proposed method. The results show that the method proposed can solve the integral rendezvous mission planning problem effectively, and the solution obtained can satisfy the operational constraints and has a good overall performance.
Currency Arbitrage Detection Using a Binary Integer Programming Model
ERIC Educational Resources Information Center
Soon, Wanmei; Ye, Heng-Qing
2011-01-01
In this article, we examine the use of a new binary integer programming (BIP) model to detect arbitrage opportunities in currency exchanges. This model showcases an excellent application of mathematics to the real world. The concepts involved are easily accessible to undergraduate students with basic knowledge in Operations Research. Through this…
Alternative Strategies for Using Intersection Cuts in Integer Programming.
In a previous paper the author introduced a new cutting plane for integer programming, generated from the intersection of n halflines originating at...polytope whose interior contains no feasible vertex of K. Hence C can be used to generate intersection cuts that are obviously stronger than the ones considered earlier. (Author)
Informing Practice: Making Sense of Integers through Storytelling
ERIC Educational Resources Information Center
Wessman-Enzinger, Nicole M.; Mooney, Edward S.
2014-01-01
The authors asked fifth-grade and eighth-grade students to pose stories for number sentences involving the addition and subtraction of integers. In this article, the authors look at eight stories from students. Which of these stories works for the given number sentence? What do they reveal about student thinking? When the authors examined these…
Happy and Sad Thoughts: An Exploration of Children's Integer Reasoning
ERIC Educational Resources Information Center
Whitacre, Ian; Bishop, Jessica Pierson; Lamb, Lisa L. C.; Philipp, Randolph A.; Schappelle, Bonnie P.; Lewis, Melinda L.
2012-01-01
The purpose of this study was to investigate elementary children's conceptions that might serve as foundations for integer reasoning. Working from an abstract algebraic perspective and using an opposite-magnitudes context that is relevant to children, we analyzed the reasoning of 33 children in grades K-5. We focus our report on three prominent…
Negative Integer Understanding: Characterizing First Graders' Mental Models
ERIC Educational Resources Information Center
Bofferding, Laura
2014-01-01
This article presents results of a research study. Sixty-one first graders' responses to interview questions about negative integer values and order and directed magnitudes were examined to characterize the students' mental models. The models reveal that initially, students overrelied on various combinations of whole-number principles as…
Happy and Sad Thoughts: An Exploration of Children's Integer Reasoning
ERIC Educational Resources Information Center
Whitacre, Ian; Bishop, Jessica Pierson; Lamb, Lisa L. C.; Philipp, Randolph A.; Schappelle, Bonnie P.; Lewis, Melinda L.
2012-01-01
The purpose of this study was to investigate elementary children's conceptions that might serve as foundations for integer reasoning. Working from an abstract algebraic perspective and using an opposite-magnitudes context that is relevant to children, we analyzed the reasoning of 33 children in grades K-5. We focus our report on three prominent…
Currency Arbitrage Detection Using a Binary Integer Programming Model
ERIC Educational Resources Information Center
Soon, Wanmei; Ye, Heng-Qing
2011-01-01
In this article, we examine the use of a new binary integer programming (BIP) model to detect arbitrage opportunities in currency exchanges. This model showcases an excellent application of mathematics to the real world. The concepts involved are easily accessible to undergraduate students with basic knowledge in Operations Research. Through this…
Solving linear integer programming problems by a novel neural model.
Cavalieri, S
1999-02-01
The paper deals with integer linear programming problems. As is well known, these are extremely complex problems, even when the number of integer variables is quite low. Literature provides examples of various methods to solve such problems, some of which are of a heuristic nature. This paper proposes an alternative strategy based on the Hopfield neural network. The advantage of the strategy essentially lies in the fact that hardware implementation of the neural model allows for the time required to obtain a solution so as not depend on the size of the problem to be solved. The paper presents a particular class of integer linear programming problems, including well-known problems such as the Travelling Salesman Problem and the Set Covering Problem. After a brief description of this class of problems, it is demonstrated that the original Hopfield model is incapable of supplying valid solutions. This is attributed to the presence of constant bias currents in the dynamic of the neural model. A demonstration of this is given and then a novel neural model is presented which continues to be based on the same architecture as the Hopfield model, but introduces modifications thanks to which the integer linear programming problems presented can be solved. Some numerical examples and concluding remarks highlight the solving capacity of the novel neural model.
Unique Factorization in Cyclotomic Integers of Degree Seven
ERIC Educational Resources Information Center
Duckworth, W. Ethan
2008-01-01
This article provides a survey of some basic results in algebraic number theory and applies this material to prove that the cyclotomic integers generated by a seventh root of unity are a unique factorization domain. Part of the proof uses the computer algebra system Maple to find and verify factorizations. The proofs use a combination of historic…
Automorphisms of semigroups of invertible matrices with nonnegative integer elements
Semenov, Pavel P
2012-09-30
Let G{sub n}(Z) be the subsemigroup of GL{sub n}(Z) consisting of the matrices with nonnegative integer coefficients. In the paper, the automorphisms of this semigroup are described for n{>=}2. Bibliography: 5 titles.
A Heuristic Ceiling Point Algorithm for General Integer Linear Programming
1988-11-01
narrowly satisfies the il h constraint: taking a unit step from x toward the ilh constraining hyperplane in a direction parallel to some coordinate...Business, Stanford Univesity , Stanford, Calif., December 1964. Hillier, F., "Efficient Heuristic Procedures for Integer Linear Programming with an Inte- rior
An Integer Programming Model for the Management of a Forest in the North of Portugal
NASA Astrophysics Data System (ADS)
Cerveira, Adelaide; Fonseca, Teresa; Mota, Artur; Martins, Isabel
2011-09-01
This study aims to develop an approach for the management of a forest of maritime pine located in the north region of Portugal. The forest is classified into five public lands, the so-called baldios, extending over 4432 ha. These baldios are co-managed by the Official Forest Services and the local communities mainly for timber production purposes. The forest planning involves non-spatial and spatial constraints. Spatial constraints dictate a maximum clearcut area and an exclusion time. An integer programming model is presented and the computational results are discussed.
Models and Algorithms Involving Very Large Scale Stochastic Mixed-Integer Programs
2011-02-28
give rise to a non - convex and discontinuous recourse function that may be difficult to optimize . As a result of this project, there have been... convex , the master problem in (3.1.6)-(3.1.9) is a non - convex mixed-integer program, and as indicated in [C.1], this approach is not scalable without...the first stage would result in a Benders’ master program which is non - convex , leading to a problem that is not any easier than (3.1.5). Nevertheless
NASA Astrophysics Data System (ADS)
Castner, T. G.
1990-09-01
It is demonstrated that the band spin-orbit contribution to the Hall conductivity σyx can qualitatively explain the critical behavior of the Hall coefficient RH for Ge:Sb reported by Field and Rosenbaum. The spin-orbit contribution to σyx for n-type Ge has been experimentally determined by Chazalviel and leads to an R-1H versus (n/nc-1) dependence that is consistent with the Ge:Sb data. This result demonstrates a significant extraordinary contribution to RH for some very weakly paramagnetic metal-insulator systems when closely approaching the critical density nc.
Chazin, W J; Rance, M; Wright, P E
1988-08-05
The identification of the spin systems that comprise the 1H nuclear magnetic resonance spectrum of French bean Cu(I) plastocyanin (Mr 10,600) has been made using an approach that integrates a wide range of two-dimensional nuclear magnetic resonance experiments. A very large percentage of these assignments has been obtained in spectra acquired from 1H2O solution using a backbone amide-based strategy. The spin systems of 91 of the 99 residues have been assigned to the appropriate amino acid, thereby providing an ample basis for obtaining sequence-specific assignments, as described in the accompanying paper.
NASA Astrophysics Data System (ADS)
Kholmetskii, A. L.; Missevitch, O. V.; Yarman, T.
2017-09-01
We carry out the classical analysis of spin-orbit coupling in hydrogen-like atoms, using the modern expressions for the force and energy of an electric/magnetic dipole in an electromagnetic field. We disclose a novel physical meaning of this effect and show that for a laboratory observer the energy of spin-orbit interaction is represented solely by the mechanical energy of the spinning electron (considered as a gyroscope) due to the Thomas precession of its spin. Concurrently we disclose some errors in the old and new publications on this subject.
Can We Spin Straw Into Gold? An Evaluation of Immigrant Legal Status Imputation Approaches
Van Hook, Jennifer; Bachmeier, James D.; Coffman, Donna; Harel, Ofer
2014-01-01
Researchers have developed logical, demographic, and statistical strategies for imputing immigrants’ legal status, but these methods have never been empirically assessed. We used Monte Carlo simulations to test whether, and under what conditions, legal status imputation approaches yield unbiased estimates of the association of unauthorized status with health insurance coverage. We tested five methods under a range of missing data scenarios. Logical and demographic imputation methods yielded biased estimates across all missing data scenarios. Statistical imputation approaches yielded unbiased estimates only when unauthorized status was jointly observed with insurance coverage; when this condition was not met, these methods overestimated insurance coverage for unauthorized relative to legal immigrants. We next showed how bias can be reduced by incorporating prior information about unauthorized immigrants. Finally, we demonstrated the utility of the best-performing statistical method for increasing power. We used it to produce state/regional estimates of insurance coverage among unauthorized immigrants in the Current Population Survey, a data source that contains no direct measures of immigrants’ legal status. We conclude that commonly employed legal status imputation approaches are likely to produce biased estimates, but data and statistical methods exist that could substantially reduce these biases. PMID:25511332
A Mixed Integer Linear Program for Airport Departure Scheduling
NASA Technical Reports Server (NTRS)
Gupta, Gautam; Jung, Yoon Chul
2009-01-01
Aircraft departing from an airport are subject to numerous constraints while scheduling departure times. These constraints include wake-separation constraints for successive departures, miles-in-trail separation for aircraft bound for the same departure fixes, and time-window or prioritization constraints for individual flights. Besides these, emissions as well as increased fuel consumption due to inefficient scheduling need to be included. Addressing all the above constraints in a single framework while allowing for resequencing of the aircraft using runway queues is critical to the implementation of the Next Generation Air Transport System (NextGen) concepts. Prior work on airport departure scheduling has addressed some of the above. However, existing methods use pre-determined runway queues, and schedule aircraft from these departure queues. The source of such pre-determined queues is not explicit, and could potentially be a subjective controller input. Determining runway queues and scheduling within the same framework would potentially result in better scheduling. This paper presents a mixed integer linear program (MILP) for the departure-scheduling problem. The program takes as input the incoming sequence of aircraft for departure from a runway, along with their earliest departure times and an optional prioritization scheme based on time-window of departure for each aircraft. The program then assigns these aircraft to the available departure queues and schedules departure times, explicitly considering wake separation and departure fix restrictions to minimize total delay for all aircraft. The approach is generalized and can be used in a variety of situations, and allows for aircraft prioritization based on operational as well as environmental considerations. We present the MILP in the paper, along with benefits over the first-come-first-serve (FCFS) scheme for numerous randomized problems based on real-world settings. The MILP results in substantially reduced
Integer quantum Hall effect in graphene
NASA Astrophysics Data System (ADS)
Jellal, Ahmed
2016-04-01
We study the quantum Hall effect in a monolayer graphene by using an approach based on thermodynamical properties. This can be done by considering a system of Dirac particles in an electromagnetic field and taking into account of the edges effect as a pseudo-potential varying continuously along the x direction. At low temperature and in the weak electric field limit, we explicitly determine the thermodynamical potential. With this, we derive the particle numbers in terms of the quantized flux and therefore the Hall conductivity immediately follows.
Localized and propagating excitations in gapped phases of spin systems with bond disorder
NASA Astrophysics Data System (ADS)
Utesov, O. I.; Sizanov, A. V.; Syromyatnikov, A. V.
2014-10-01
Using the conventional T-matrix approach, we discuss gapped phases in one-, two-, and three-dimensional (3D) spin systems (both with and without a long-range magnetic order) with bond disorder and with weakly interacting bosonic elementary excitations. This work is motivated by recent experimental and theoretical activity in spin-liquid-like systems with disorder and in the disordered interacting boson problem. In particular, we apply our theory to both paramagnetic low-field and fully polarized high-field phases in dimerized spin-1/2 systems and in integer-spin magnets with large single-ion easy-plane anisotropy D with disorder in exchange coupling constants (and/or D). The elementary excitation spectrum and the density of states are calculated in the first order in defects concentration c ≪1. In 2D and 3D systems, the scattering on defects leads to a finite damping of all propagating excitations in the band except for states lying near its edges. We demonstrate that the analytical approach is inapplicable for states near the band edges and our numerical calculations reveal their localized nature. We find that the damping of propagating excitations can be much more pronounced in considered systems than in magnetically ordered gapless magnets with impurities. In 1D systems, the disorder leads to localization of all states in the band, while those lying far from the band edges (short-wavelength excitations) can look like conventional wave packets.
NASA Astrophysics Data System (ADS)
Nabila, Ezra; Noor, Fatimah A.; Khairurrijal
2017-07-01
In this study, we report an analytical calculation of electron transmittance and polarized tunneling current in a single barrier heterostructure of a metal-GaSb-metal by considering the Dresselhaus spin orbit effect. Exponential function, WKB method and Airy function were used in calculating the electron transmittance and tunneling current. A Transfer Matrix Method, as a numerical method, was utilized as the benchmark to evaluate the analytical calculation. It was found that the transmittances calculated under exponential function and Airy function is the same as that calculated under TMM method at low electron energy. However, at high electron energy only the transmittance calculated under Airy function approach is the same as that calculated under TMM method. It was also shown that the transmittances both of spin-up and spin-down conditions increase as the electron energy increases for low energies. Furthermore, the tunneling current decreases with increasing the barrier width.
NASA Astrophysics Data System (ADS)
Jiménez-Forteza, Xisco; Keitel, David; Husa, Sascha; Hannam, Mark; Khan, Sebastian; Pürrer, Michael
2017-03-01
Numerical relativity is an essential tool in studying the coalescence of binary black holes (BBHs). It is still computationally prohibitive to cover the BBH parameter space exhaustively, making phenomenological fitting formulas for BBH waveforms and final-state properties important for practical applications. We describe a general hierarchical bottom-up fitting methodology to design and calibrate fits to numerical relativity simulations for the three-dimensional parameter space of quasicircular nonprecessing merging BBHs, spanned by mass ratio and by the individual spin components orthogonal to the orbital plane. Particular attention is paid to incorporating the extreme-mass-ratio limit and to the subdominant unequal-spin effects. As an illustration of the method, we provide two applications, to the final spin and final mass (or equivalently: radiated energy) of the remnant black hole. Fitting to 427 numerical relativity simulations, we obtain results broadly consistent with previously published fits, but improving in overall accuracy and particularly in the approach to extremal limits and for unequal-spin configurations. We also discuss the importance of data quality studies when combining simulations from diverse sources, how detailed error budgets will be necessary for further improvements of these already highly accurate fits, and how this first detailed study of unequal-spin effects helps in choosing the most informative parameters for future numerical relativity runs.
Spin-boson dynamics: A unified approach from weak to strong coupling
NASA Astrophysics Data System (ADS)
Nesi, F.; Paladino, E.; Thorwart, M.; Grifoni, M.
2007-11-01
We present a novel approximation scheme to describe the influence of a harmonic bath on the dynamics of a two-level particle over almost the whole regime of temperatures and coupling to the environment, for a wide class of bath spectral densities. Starting from the exact path integral solution for the two-level system density matrix, effective intra-blip correlations are fully included, while inter-blip and blip-sojourn interactions are considered up to first order. In the proper regimes, an excellent agreement with conventional perturbative approaches and ab initio path-integral results is found.
Random SU(2)-symmetric spin-S chains
NASA Astrophysics Data System (ADS)
Quito, V. L.; Hoyos, José A.; Miranda, E.
2016-08-01
We study the low-energy physics of a broad class of time-reversal invariant and SU(2)-symmetric one-dimensional spin-S systems in the presence of quenched disorder via a strong-disorder renormalization-group technique. We show that, in general, there is an antiferromagnetic phase with an emergent SU (2 S +1 ) symmetry. The ground state of this phase is a random singlet state in which the singlets are formed by pairs of spins. For integer spins, there is an additional antiferromagnetic phase which does not exhibit any emergent symmetry (except for S =1 ). The corresponding ground state is a random singlet one but the singlets are formed mostly by trios of spins. In each case the corresponding low-energy dynamics is activated, i.e., with a formally infinite dynamical exponent, and related to distinct infinite-randomness fixed points. The phase diagram has two other phases with ferromagnetic tendencies: a disordered ferromagnetic phase and a large spin phase in which the effective disorder is asymptotically finite. In the latter case, the dynamical scaling is governed by a conventional power law with a finite dynamical exponent.
ERIC Educational Resources Information Center
Tchalakov, Ivan; Mitev, Tihomir; Petrov, Venelin
2010-01-01
The paper questions some of the premises in studying academic spin-offs in developed countries, claiming that when taken as characteristics of "academic spin-offs per se," they are of little help in understanding the phenomenon in the Eastern European countries during the transitional and post-transitional periods after 1989. It argues…
ERIC Educational Resources Information Center
Tchalakov, Ivan; Mitev, Tihomir; Petrov, Venelin
2010-01-01
The paper questions some of the premises in studying academic spin-offs in developed countries, claiming that when taken as characteristics of "academic spin-offs per se," they are of little help in understanding the phenomenon in the Eastern European countries during the transitional and post-transitional periods after 1989. It argues…
ERIC Educational Resources Information Center
Bolyard, Johnna; Moyer-Packenham, Patricia
2012-01-01
This study investigated how the use of virtual manipulatives in integer instruction impacts student achievement for integer addition and subtraction. Of particular interest was the influence of using virtual manipulatives on students' ability to create and translate among representations for integer computation. The research employed a…
A Note on the Visibility in the [1, N ] x [1, N ] Integer Domain
ERIC Educational Resources Information Center
Kim, G. D.; Engelhardt, J.
2007-01-01
A k-dimensional integer point is called visible if the line segment joining the point and the origin contains no proper integer points. This note proposes an explicit formula that represents the number of visible points on the two-dimensional [1,N]x[1,N] integer domain. Simulations and theoretical work are presented. (Contains 5 figures and 2…
ERIC Educational Resources Information Center
Bishop, Jessica Pierson; Lamb, Lisa L.; Philipp, Randolph A.; Whitacre, Ian; Schappelle, Bonnie P.; Lewis, Melinda L.
2014-01-01
We identify and document 3 cognitive obstacles, 3 cognitive affordances, and 1 type of integer understanding that can function as either an obstacle or affordance for learners while they extend their numeric domains from whole numbers to include negative integers. In particular, we highlight 2 key subsets of integer reasoning: understanding or…
Anomalous spin Josephson effect
NASA Astrophysics Data System (ADS)
Wang, Mei-Juan; Wang, Jun; Hao, Lei; Liu, Jun-Feng
2016-10-01
We report a theoretical study on the spin Josephson effect arising from the exchange coupling of the two ferromagnets (Fs), which are deposited on a two-dimensional (2D) time-reversal-invariant topological insulator. An anomalous spin supercurrent Js z˜sin(α +α0) is found to flow in between the two Fs and the ground state of the system is not limited to the magnetically collinear configuration (α =n π ,n is an integer) but determined by a controllable angle α0, where α is the crossed angle between the two F magnetizations. The angle α0 is the dynamic phase of the electrons traveling in between the two Fs and can be controlled electrically by a gate voltage. This anomalous spin Josephson effect, similar to the conventional φ0 superconductor junction, originates from the definite electron chirality of the helical edge states in the 2D topological insulator. These results indicate that the magnetic coupling in a topological system is different from the usual one in conventional materials.
Klix, Sabrina; Hezel, Fabian; Fuchs, Katharina; Ruff, Jan; Dieringer, Matthias A.; Niendorf, Thoralf
2014-01-01
Purpose Design, validation and application of an accelerated fast spin-echo (FSE) variant that uses a split-echo approach for self-calibrated parallel imaging. Methods For self-calibrated, split-echo FSE (SCSE-FSE), extra displacement gradients were incorporated into FSE to decompose odd and even echo groups which were independently phase encoded to derive coil sensitivity maps, and to generate undersampled data (reduction factor up to R = 3). Reference and undersampled data were acquired simultaneously. SENSE reconstruction was employed. Results The feasibility of SCSE-FSE was demonstrated in phantom studies. Point spread function performance of SCSE-FSE was found to be competitive with traditional FSE variants. The immunity of SCSE-FSE for motion induced mis-registration between reference and undersampled data was shown using a dynamic left ventricular model and cardiac imaging. The applicability of black blood prepared SCSE-FSE for cardiac imaging was demonstrated in healthy volunteers including accelerated multi-slice per breath-hold imaging and accelerated high spatial resolution imaging. Conclusion SCSE-FSE obviates the need of external reference scans for SENSE reconstructed parallel imaging with FSE. SCSE-FSE reduces the risk for mis-registration between reference scans and accelerated acquisitions. SCSE-FSE is feasible for imaging of the heart and of large cardiac vessels but also meets the needs of brain, abdominal and liver imaging. PMID:24728341
Miccoli, Paolo; Torregrossa, Liborio; Shintu, Laetitia; Magalhaes, Alviclér; Chandran, JimaNambiath; Tintaru, Aura; Ugolini, Clara; Minuto, Michele N; Miccoli, Mario; Basolo, Fulvio; Caldarelli, Stefano
2012-12-01
Proton magnetic resonance spectroscopy of operative specimens has been reported to successfully differentiate normal tissue from malignant thyroid tissue. We used a new high-resolution magnetic resonance spectroscopy technique for the differentiation of benign and malignant thyroid neoplasms. Histological specimens from 72 patients undergoing a total thyroidectomy were processed into a 4-mm ZrO(2) high-resolution magic angle spinning (HRMAS) rotor with 5 μL of D(2)O. A Bruker Avance spectrometer operating at 400 MHz for the (1)H frequency and equipped with a (1)H/(13)C/(31)P HRMAS probe was used. Normal and neoplastic thyroid tissues could be discriminated from each other by different relative concentrations of several amino acids and lipids, as well as benign and malignant neoplasms, that differed in terms of a greater lactate and taurine and a lesser lipid choline, phosphocholine, myo-inositol, and scyllo-inositol levels in malignant samples. A statistical analysis with a receiver operating characteristic curve revealed that 77% of the samples were accurately predicted. Similar results were obtained with specimens obtained from ex vivo aspirates. A further development of this project will be to use the metabolomics approach on specimens obtained from aspirates in vivo after the resolution of technical problems attributable to possible contamination. Copyright © 2012 Mosby, Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Mahfouzi, Farzad; Nikolić, Branislav K.; Kioussis, Nicholas
2016-03-01
Motivated by recent experiments observing spin-orbit torque (SOT) acting on the magnetization m ⃗ of a ferromagnetic (F) overlayer on the surface of a three-dimensional topological insulator (TI), we investigate the origin of the SOT and the magnetization dynamics in such systems. We predict that lateral F/TI bilayers of finite length, sandwiched between two normal metal leads, will generate a large anti-damping-like SOT per very low charge current injected parallel to the interface. The large values of anti-damping-like SOT are spatially localized around the transverse edges of the F overlayer. Our analysis is based on adiabatic expansion (to first order in ∂ m ⃗/∂ t ) of time-dependent nonequilibrium Green functions (NEGFs), describing electrons pushed out of equilibrium both by the applied bias voltage and by the slow variation of a classical degree of freedom [such as m ⃗(t ) ]. From it we extract formulas for spin torque and charge pumping, which show that they are reciprocal effects to each other, as well as Gilbert damping in the presence of SO coupling. The NEGF-based formula for SOT naturally splits into four components, determined by their behavior (even or odd) under the time and bias voltage reversal. Their complex angular dependence is delineated and employed within Landau-Lifshitz-Gilbert simulations of magnetization dynamics in order to demonstrate capability of the predicted SOT to efficiently switch m ⃗ of a perpendicularly magnetized F overlayer.
Electrical control of flying spin precession in chiral 1D edge states
Nakajima, Takashi; Komiyama, Susumu; Lin, Kuan-Ting
2013-12-04
Electrical control and detection of spin precession are experimentally demonstrated by using spin-resolved edge states in the integer quantum Hall regime. Spin precession is triggered at a corner of a biased metal gate, where electron orbital motion makes a sharp turn leading to a nonadiabatic change in the effective magnetic field via spin-orbit interaction. The phase of precession is controlled by the group velocity of edge-state electrons tuned by gate bias voltage: Spin-FET-like coherent control of spin precession is thus realized by all-electrical means.
Zobi, Fabio
2010-01-01
Transition metal complexes of rhenium and technetium find wide application in nuclear medicine and the chemistry of these elements is still the focus of intense research efforts. For therapeutic and diagnostic applications, currently much attention is dedicated to the development of new targeting strategies aimed at appending the metal complexes to biological vectors (e.g. a peptide) for a site-specific delivery of the radionuclides. Advancements in radiopharmacy, however, will not only arise from the development of new targeted strategies but also from the exploration of the chemistry of these elements in their unusual oxidation states. In this respect the even number oxidation states of Re and Tc (i.e. +II, +IV and +VI) are relatively poorly understood. In particular, stable and substitutionally labile mononuclear 17-electron species of the elements (+II, d(5)) are a rarely encountered class of complexes. In this review we present our recent developments in the field of rhenium (II) chemistry with emphasis on the novel synthetic strategies we have recently introduced. We will also describe how the unique chemical and electronic properties of Re(II)-based complexes may provide a potentially new approach for applications in inorganic medicinal chemistry.
Fast scaffolding with small independent mixed integer programs
Salmela, Leena; Mäkinen, Veli; Välimäki, Niko; Ylinen, Johannes; Ukkonen, Esko
2011-01-01
Motivation: Assembling genomes from short read data has become increasingly popular, but the problem remains computationally challenging especially for larger genomes. We study the scaffolding phase of sequence assembly where preassembled contigs are ordered based on mate pair data. Results: We present MIP Scaffolder that divides the scaffolding problem into smaller subproblems and solves these with mixed integer programming. The scaffolding problem can be represented as a graph and the biconnected components of this graph can be solved independently. We present a technique for restricting the size of these subproblems so that they can be solved accurately with mixed integer programming. We compare MIP Scaffolder to two state of the art methods, SOPRA and SSPACE. MIP Scaffolder is fast and produces better or as good scaffolds as its competitors on large genomes. Availability: The source code of MIP Scaffolder is freely available at http://www.cs.helsinki.fi/u/lmsalmel/mip-scaffolder/. Contact: leena.salmela@cs.helsinki.fi PMID:21998153
On the integer coding profile of JPEG XT
NASA Astrophysics Data System (ADS)
Richter, Thomas
2014-09-01
JPEG XT (ISO/IEC 18477), the latest standardization initiative of the JPEG committee defines an image compression standard backwards compatible to the well-known JPEG standard (ISO/IEC 10918-1). JPEG XT extends JPEG by features like coding of images of higher bit-depth, coding of floating point image formats and lossless compression, all of which are backwards compatible to the legacy JPEG standard. In this work, the author presents profiles of JPEG XT that are especially suited for hardware implementations by requiring only integer logic. All functional blocks of a JPEG XT codec are here implemented by integer or fixed point logic. A performance analysis and comparison with other profiles of JPEG XT concludes the work.
Two-dimensional convolute integers for analytical instrumentation
NASA Technical Reports Server (NTRS)
Edwards, T. R.
1982-01-01
As new analytical instruments and techniques emerge with increased dimensionality, a corresponding need is seen for data processing logic which can appropriately address the data. Two-dimensional measurements reveal enhanced unknown mixture analysis capability as a result of the greater spectral information content over two one-dimensional methods taken separately. It is noted that two-dimensional convolute integers are merely an extension of the work by Savitzky and Golay (1964). It is shown that these low-pass, high-pass and band-pass digital filters are truly two-dimensional and that they can be applied in a manner identical with their one-dimensional counterpart, that is, a weighted nearest-neighbor, moving average with zero phase shifting, convoluted integer (universal number) weighting coefficients.
Optimization of integer wavelet transforms based on difference correlation structures.
Li, Hongliang; Liu, Guizhong; Zhang, Zhongwei
2005-11-01
In this paper, a novel lifting integer wavelet transform based on difference correlation structure (DCCS-LIWT) is proposed. First, we establish a relationship between the performance of a linear predictor and the difference correlations of an image. The obtained results provide a theoretical foundation for the following construction of the optimal lifting filters. Then, the optimal prediction lifting coefficients in the sense of least-square prediction error are derived. DCCS-LIWT puts heavy emphasis on image inherent dependence. A distinct feature of this method is the use of the variance-normalized autocorrelation function of the difference image to construct a linear predictor and adapt the predictor to varying image sources. The proposed scheme also allows respective calculations of the lifting filters for the horizontal and vertical orientations. Experimental evaluation shows that the proposed method produces better results than the other well-known integer transforms for the lossless image compression.
Alignment of protein interaction networks by integer quadratic programming.
Li, Zhenping; Wang, Yong; Zhang, Shihua; Zhang, Xiang-Sun; Chen, Luonan
2006-01-01
With more and more data on protein-protein interaction (PPI) network available, the discovery of conserved patterns in these networks becomes an increasingly important problem. In this paper, to find the conserved substructures, we develop an efficient algorithm for aligning PPI networks based on both the protein sequence similarity and the network architecture similarity, by using integer quadratic programming (IQP). Such an IQP can be relaxed into the corresponding quadratic programming (QP) which in the case of biological data sets almost always ensures the integer solution. Therefore, a QP algorithm can be adopted to efficiently solve this IQP with out any approximation, thereby making PPI network alignment tractable. From the viewpoint of graph theory, the proposed method can identify similar subsets between two graphs, which allow gaps for nodes and edges.
NASA Astrophysics Data System (ADS)
Luo, Zhen; Martonosi, Margaret
1998-10-01
This paper proposes and evaluates an approach for improving the performance of arithmetic calculations via delayed addition. Our approach employs the idea used in Wallace trees to delay addition until the end of a repeated calculation such as accumulation or dot-product; this effectively removes carry propagation overhead from the calculation's critical path. We present imager and floating- point designs that use this technique. Our pipelined integer multiply-accumulate design is based on a fairly traditional multiplier design, but with delayed addition as well. This design achieves a 37 MHz clock rate on an XC4036XL-2 FPGA. Next, we present a 32-bit floating-point accumulator based on delayed addition. Here delayed addition requires a novel alignment technique that decouples the incoming operands from the accumulated result. A conservative version of this design achieves a 33 MHz clock rate. Finally, we also present a more aggressive 32-bit floating-point accumulator design that achieves a 66 MHz clock rate. These designs demonstrate the utility of delayed addition for accelerating FPGA calculations in both the integer and floating-point domains.
Stochastic Dynamic Mixed-Integer Programming (SD-MIP)
2015-05-05
and Matos (2012) the authors try to include a Markov Chain within an SDDP framework (see also Higle and Kempf 2011). However, the MSD framework...provides a more natural setting for such applications because the setup is based on a dynamic systems framework which admits Markov chains seamlessly... Engineering , University of Southern California, Los Angeles, CA 90089 April 2015 Abstract Mixed-Integer Programming has traditionally been
The Staircase and Related Structures in Integer Programming.
1980-06-01
and Cooper have recently demonstrated that dynamic program- ming methods can be applied to integer programming problems without necessitating huge ...called the branch variable, and the entire process is called a branch. A skeleton version of a branch-and-bound procedure would invariably contain the...allows them to exchange information. These techniques have been receiving a great deal of attention recently because of the huge size of the models being
Mixed-Integer Conic Linear Programming: Challenges and Perspectives
2013-10-01
The novel DCCs for MISOCO may be used in branch- and-cut algorithms when solving MISOCO problems. The experimental software CICLO was developed to...perform limited, but rigorous computational experiments. The CICLO solver utilizes continuous SOCO solvers, MOSEK, CPLES or SeDuMi, builds on the open...submitted Fall 2013. Software: 1. CICLO : Integer conic linear optimization package. Authors: J.C. Góez, T.K. Ralphs, Y. Fu, and T. Terlaky
A fast complex integer convolution using a hybrid transform
NASA Technical Reports Server (NTRS)
Reed, I. S.; K Truong, T.
1978-01-01
It is shown that the Winograd transform can be combined with a complex integer transform over the Galois field GF(q-squared) to yield a new algorithm for computing the discrete cyclic convolution of complex number points. By this means a fast method for accurately computing the cyclic convolution of a sequence of complex numbers for long convolution lengths can be obtained. This new hybrid algorithm requires fewer multiplications than previous algorithms.
A fast complex integer convolution using a hybrid transform
NASA Technical Reports Server (NTRS)
Reed, I. S.; K Truong, T.
1978-01-01
It is shown that the Winograd transform can be combined with a complex integer transform over the Galois field GF(q-squared) to yield a new algorithm for computing the discrete cyclic convolution of complex number points. By this means a fast method for accurately computing the cyclic convolution of a sequence of complex numbers for long convolution lengths can be obtained. This new hybrid algorithm requires fewer multiplications than previous algorithms.
Eliav, U. E-mail: eliav@tau.ac.il; Haimovich, A.; Goldbourt, A. E-mail: eliav@tau.ac.il
2016-01-14
We discuss and analyze four magic-angle spinning solid-state NMR methods that can be used to measure internuclear distances and to obtain correlation spectra between a spin I = 1/2 and a half-integer spin S > 1/2 having a small quadrupolar coupling constant. Three of the methods are based on the heteronuclear multiple-quantum and single-quantum correlation experiments, that is, high rank tensors that involve the half spin and the quadrupolar spin are generated. Here, both zero and single-quantum coherence of the half spins are allowed and various coherence orders of the quadrupolar spin are generated, and filtered, via active recoupling of the dipolar interaction. As a result of generating coherence orders larger than one, the spectral resolution for the quadrupolar nucleus increases linearly with the coherence order. Since the formation of high rank tensors is independent of the existence of a finite quadrupolar interaction, these experiments are also suitable to materials in which there is high symmetry around the quadrupolar spin. A fourth experiment is based on the initial quadrupolar-driven excitation of symmetric high order coherences (up to p = 2S, where S is the spin number) and subsequently generating by the heteronuclear dipolar interaction higher rank (l + 1 or higher) tensors that involve also the half spins. Due to the nature of this technique, it also provides information on the relative orientations of the quadrupolar and dipolar interaction tensors. For the ideal case in which the pulses are sufficiently strong with respect to other interactions, we derive analytical expressions for all experiments as well as for the transferred echo double resonance experiment involving a quadrupolar spin. We show by comparison of the fitting of simulations and the analytical expressions to experimental data that the analytical expressions are sufficiently accurate to provide experimental {sup 7}Li–{sup 13}C distances in a complex of lithium, glycine, and water
NASA Astrophysics Data System (ADS)
Zhou, Yi; Kanoda, Kazushi; Ng, Tai-Kai
2017-04-01
This is an introductory review of the physics of quantum spin liquid states. Quantum magnetism is a rapidly evolving field, and recent developments reveal that the ground states and low-energy physics of frustrated spin systems may develop many exotic behaviors once we leave the regime of semiclassical approaches. The purpose of this article is to introduce these developments. The article begins by explaining how semiclassical approaches fail once quantum mechanics become important and then describe the alternative approaches for addressing the problem. Mainly spin-1 /2 systems are discussed, and most of the time is spent in this article on one particular set of plausible spin liquid states in which spins are represented by fermions. These states are spin-singlet states and may be viewed as an extension of Fermi liquid states to Mott insulators, and they are usually classified in the category of so-called S U (2 ), U (1 ), or Z2 spin liquid states. A review is given of the basic theory regarding these states and the extensions of these states to include the effect of spin-orbit coupling and to higher spin (S >1 /2 ) systems. Two other important approaches with strong influences on the understanding of spin liquid states are also introduced: (i) matrix product states and projected entangled pair states and (ii) the Kitaev honeycomb model. Experimental progress concerning spin liquid states in realistic materials, including anisotropic triangular-lattice systems [κ -(ET )2Cu2(CN )3 and EtMe3Sb [Pd (dmit )2]2 ], kagome-lattice system [ZnCu3(OH )6Cl2 ], and hyperkagome lattice system (Na4 Ir3 O8 ), is reviewed and compared against the corresponding theories.
Optimal Estimation of a Subset of Integers with Application to GNSS
NASA Astrophysics Data System (ADS)
Brack, A.
2016-12-01
The problem of integer or mixed integer/real valued parameter estimation in linear models is considered. It is a well-known result that for zero-mean additive Gaussian measurement noise the integer least-squares estimator is optimal in the sense of maximizing the probability of correctly estimating the full vector of integer parameters. In applications such as global navigation satellite system ambiguity resolution, it can be beneficial to resolve only a subset of all integer parameters. We derive the estimator that leads to the highest possible success rate for a given integer subset and compare its performance to suboptimal integer mappings via numerical studies. Implementation aspects of the optimal estimator as well as subset selection criteria are discussed.
Ground-state energies of the nonlinear sigma model and the Heisenberg spin chains
NASA Technical Reports Server (NTRS)
Zhang, Shoucheng; Schulz, H. J.; Ziman, Timothy
1989-01-01
A theorem on the O(3) nonlinear sigma model with the topological theta term is proved, which states that the ground-state energy at theta = pi is always higher than the ground-state energy at theta = 0, for the same value of the coupling constant g. Provided that the nonlinear sigma model gives the correct description for the Heisenberg spin chains in the large-s limit, this theorem makes a definite prediction relating the ground-state energies of the half-integer and the integer spin chains. The ground-state energies obtained from the exact Bethe ansatz solution for the spin-1/2 chain and the numerical diagonalization on the spin-1, spin-3/2, and spin-2 chains support this prediction.
Ground-state energies of the nonlinear sigma model and the Heisenberg spin chains
NASA Technical Reports Server (NTRS)
Zhang, Shoucheng; Schulz, H. J.; Ziman, Timothy
1989-01-01
A theorem on the O(3) nonlinear sigma model with the topological theta term is proved, which states that the ground-state energy at theta = pi is always higher than the ground-state energy at theta = 0, for the same value of the coupling constant g. Provided that the nonlinear sigma model gives the correct description for the Heisenberg spin chains in the large-s limit, this theorem makes a definite prediction relating the ground-state energies of the half-integer and the integer spin chains. The ground-state energies obtained from the exact Bethe ansatz solution for the spin-1/2 chain and the numerical diagonalization on the spin-1, spin-3/2, and spin-2 chains support this prediction.
RSM 1.0 - A RESUPPLY SCHEDULER USING INTEGER OPTIMIZATION
NASA Technical Reports Server (NTRS)
Viterna, L. A.
1994-01-01
RSM, Resupply Scheduling Modeler, is a fully menu-driven program that uses integer programming techniques to determine an optimum schedule for replacing components on or before the end of a fixed replacement period. Although written to analyze the electrical power system on the Space Station Freedom, RSM is quite general and can be used to model the resupply of almost any system subject to user-defined resource constraints. RSM is based on a specific form of the general linear programming problem in which all variables in the objective function and all variables in the constraints are integers. While more computationally intensive, integer programming was required for accuracy when modeling systems with small quantities of components. Input values for component life cane be real numbers, RSM converts them to integers by dividing the lifetime by the period duration, then reducing the result to the next lowest integer. For each component, there is a set of constraints that insure that it is replaced before its lifetime expires. RSM includes user-defined constraints such as transportation mass and volume limits, as well as component life, available repair crew time and assembly sequences. A weighting factor allows the program to minimize factors such as cost. The program then performs an iterative analysis, which is displayed during the processing. A message gives the first period in which resources are being exceeded on each iteration. If the scheduling problem is unfeasible, the final message will also indicate the first period in which resources were exceeded. RSM is written in APL2 for IBM PC series computers and compatibles. A stand-alone executable version of RSM is provided; however, this is a "packed" version of RSM which can only utilize the memory within the 640K DOS limit. This executable requires at least 640K of memory and DOS 3.1 or higher. Source code for an APL2/PC workspace version is also provided. This version of RSM can make full use of any
NASA Astrophysics Data System (ADS)
Carlström, Johan
2017-09-01
I derive a dual description of lattice fermions, specifically focusing on the t-J and Hubbard models, that allow diagrammatic techniques to be employed efficiently in the strongly correlated regime, as well as for systems with a restricted Hilbert space. These constructions are based on spin-charge transformation, where the lattice fermions of the original model are mapped onto spins and spin-less fermions. This mapping can then be combined with Popov-Fedotov fermionisation, where the spins are mapped onto lattice fermions with imaginary chemical potential. The resulting models do not contain any large expansion parameters, even for strongly correlated systems. Also, they exhibit dramatically smaller corrections to the density matrix from nonlinear terms in the Hamiltonian. The combination of these two properties means that they can be addressed with diagrammatic methods, including simulation techniques based on stochastic sampling of diagrammatic expansions.
Three-dimensional fractional-spin gravity
NASA Astrophysics Data System (ADS)
Boulanger, Nicolas; Sundell, Per; Valenzuela, Mauricio
2014-02-01
Using Wigner-deformed Heisenberg oscillators, we construct 3D Chern-Simons models consisting of fractional-spin fields coupled to higher-spin gravity and internal nonabelian gauge fields. The gauge algebras consist of Lorentz-tensorial Blencowe-Vasiliev higher-spin algebras and compact internal algebras intertwined by infinite-dimensional generators in lowest-weight representations of the Lorentz algebra with fractional spin. In integer or half-integer non-unitary cases, there exist truncations to gl(ℓ , ℓ ± 1) or gl(ℓ|ℓ ± 1) models. In all non-unitary cases, the internal gauge fields can be set to zero. At the semi-classical level, the fractional-spin fields are either Grassmann even or odd. The action requires the enveloping-algebra representation of the deformed oscillators, while their Fock-space representation suffices on-shell. The project was funded in part by F.R.S.-FNRS " Ulysse" Incentive Grant for Mobility in Scientific Research.
Spin filter for arbitrary spins by substrate engineering
NASA Astrophysics Data System (ADS)
Pal, Biplab; Römer, Rudolf A.; Chakrabarti, Arunava
2016-08-01
We design spin filters for particles with potentially arbitrary spin S≤ft(=1/2,1,3/2,\\ldots \\right) using a one-dimensional periodic chain of magnetic atoms as a quantum device. Describing the system within a tight-binding formalism we present an analytical method to unravel the analogy between a one-dimensional magnetic chain and a multi-strand ladder network. This analogy is crucial, and is subsequently exploited to engineer gaps in the energy spectrum by an appropriate choice of the magnetic substrate. We obtain an exact correlation between the magnitude of the spin of the incoming beam of particles and the magnetic moment of the substrate atoms in the chain desired for opening up of a spectral gap. Results of spin polarized transport, calculated within a transfer matrix formalism, are presented for particles having half-integer as well as higher spin states. We find that the chain can be made to act as a quantum device which opens a transmission window only for selected spin components over certain ranges of the Fermi energy, blocking them in the remaining part of the spectrum. The results appear to be robust even when the choice of the substrate atoms deviates substantially from the ideal situation, as verified by extending the ideas to the case of a ‘spin spiral’. Interestingly, the spin spiral geometry, apart from exhibiting the filtering effect, is also seen to act as a device flipping spins—an effect that can be monitored by an interplay of the system size and the period of the spiral. Our scheme is applicable to ultracold quantum gases, and might inspire future experiments in this direction.
Topological spin pumps coupled by a magnetic impurity
NASA Astrophysics Data System (ADS)
Ren, Y. J.; Sheng, L.; Xing, D. Y.
2016-05-01
The recently proposed topological spin pump is a full spin analogue to the famous Thouless charge pump, in the sense that it is protected by bulk band topology alone and independent of any symmetries. The previous works were however confined to a single one-dimensional (1D) pump with spin Chern number C{spin}=C\\uparrow-C \\downarrow= 2 or a series of such pumps in parallel without any interaction. In this paper, we investigate the influence of coupling between two 1D spin Chern pumps by a magnetic impurity potential, which also breaks the time-reversal symmetry, on the spin pumping effect. By using the Green's function and Born approximation, it is shown that the leading correction to the spin pumped per cycle due to the impurity scattering is of the second order in the impurity potential. For not very strong impurity potential, the spin pumped per cycle in units of \\hbar/2 stays near the quantized value determined by the total spin Chern number of the system C{spin} , for all the cases in which both, either or none of the two pumps are topologically nontrivial, corresponding to C{spin}=4 , 2 or 0, respectively. This result demonstrates that the topological spin pumps can be generally classified by different integer values of the total spin Chern number C{spin} .
Decomposition of the polynomial kernel of arbitrary higher spin Dirac operators
Eelbode, D.; Raeymaekers, T.; Van der Jeugt, J.
2015-10-15
In a series of recent papers, we have introduced higher spin Dirac operators, which are generalisations of the classical Dirac operator. Whereas the latter acts on spinor-valued functions, the former acts on functions taking values in arbitrary irreducible half-integer highest weight representations for the spin group. In this paper, we describe how the polynomial kernel spaces of such operators decompose in irreducible representations of the spin group. We will hereby make use of results from representation theory.
Unfolded equations for massive higher spin supermultiplets in AdS3
NASA Astrophysics Data System (ADS)
Buchbinder, I. L.; Snegirev, T. V.; Zinoviev, Yu. M.
2016-08-01
In this paper we give an explicit construction of unfolded equations for massive higher spin supermultiplets of the minimal (1, 0) supersymmetry in AdS 3 space. For that purpose we use an unfolded formulation for massive bosonic and fermionic higher spins and find supertransformations leaving appropriate set of unfolded equations invariant. We provide two general supermultiplets ( s, s + 1 /2) and ( s, s - 1 /2) with arbitrary integer s, as well as a number of lower spin examples.
Design of real-time video watermarking based on Integer DCT for H.264 encoder
NASA Astrophysics Data System (ADS)
Joshi, Amit M.; Mishra, Vivekanand; Patrikar, R. M.
2015-01-01
With the advent of technology, video has become a prominent entity that is shared over networks. With easy availability of various editing tools, data integrity and ownership issues have caused great concern worldwide. Video watermarking is an evolving field that may be used to address such issues. Till date, most of the algorithms have been developed for uncompressed domain watermarking and implemented on software platforms. They provide flexibility and simplicity, but at the same time, they are not suited for real-time applications. They work offline where videos are captured and then watermark is embedded in the video. In the present work, a hardware-based implementation of video watermarking is proposed that overcomes the limitation of software watermarking methods and can be readily adapted to the H.264 standard. This paper focuses on an invisible and robust video watermarking scheme, which can be easily implemented as an integral part of the standard H.264 encoder. The proposed watermarking algorithm involves Integer DCT-based watermark embedding method, wherein Integer DCT is calculated with a fully parallel approach resulting in better speed. The proposed video watermarking is designed with pipelining and parallel architecture for real-time implementation. Here, scene change detection technique is used to improve the performance. Different planes of the watermark are embedded in different frames of a particular scene in order to achieve robustness against various temporal attacks.
On control of singleton attractors in multiple Boolean networks: integer programming-based method
2014-01-01
Background Boolean network (BN) is a mathematical model for genetic network and control of genetic networks has become an important issue owing to their potential application in the field of drug discovery and treatment of intractable diseases. Early researches have focused primarily on the analysis of attractor control for a randomly generated BN. However, one may also consider how anti-cancer drugs act in both normal and cancer cells. Thus, the development of controls for multiple BNs is an important and interesting challenge. Results In this article, we formulate three novel problems about attractor control for two BNs (i.e., normal cell and cancer cell). The first is about finding a control that can significantly damage cancer cells but has a limited damage to normal cells. The second is about finding a control for normal cells with a guaranteed damaging effect on cancer cells. Finally, we formulate a definition for finding a control for cancer cells with limited damaging effect on normal cells. We propose integer programming-based methods for solving these problems in a unified manner, and we conduct computational experiments to illustrate the efficiency and the effectiveness of our method for our multiple-BN control problems. Conclusions We present three novel control problems for multiple BNs that are realistic control models for gene regulation networks and adopt an integer programming approach to address these problems. Experimental results indicate that our proposed method is useful and effective for moderate size BNs. PMID:24565276
Villamena, Frederick A; Hadad, Christopher M; Zweier, Jay L
2004-02-18
The hydroxyl radical (*OH) is an important mediator of biological oxidative stress, and this has stimulated interest in its detection. 5,5-Dimethyl-1-pyrroline N-oxide (DMPO) and its alkoxycarbonyl and alkoxyphosphoryl analogues have been employed as spin traps for electron paramagnetic resonance (EPR) spectroscopic radical detection. Energies of optimized geometries of nitrones and their corresponding *OH adducts were calculated using density functional theory (DFT) at the B3LYP/6-31+G//B3LYP/6-31G level. Calculations predict that the trans adduct formation is favored in alkoxycarbonyl nitrones, while cis adducts with intramolecular H-bonding is favored for alkoxyphosphoryl nitrones. Addition of *OH to a phosphoryl-substituted nitrone is more exoergic than the carbonylated nitrones. Charge and spin densities on the nitrone spin traps were correlated with their rates of addition with *OH, and results show that the charge density on the nitronyl C, the site of *OH addition, is more positive in phosphorylated nitrones compared to DMPO and the alkoxycarbonyl nitrones. The dihedral angle between the beta-H and nitroxyl O bonds is smaller in phosphorylated nitrones, and that aspect appears to account for the longer half-lives of the spin adducts compared to those in DMPO and alkoxycarbonyl nitrones. Structures of nitrones with trifluoromethyl-, trifluoromethylcarbonyl-, methylsulfonyl-, trifluoromethylsulfonyl-, amido-, spiropentyl-, and spiroester substituents were optimized and their energies compared. Amido and spiroester nitrones were predicted to be the most suitable nitrones for spin trapping of *OH due to the similarity of their thermodynamic and electronic properties to those of alkoxyphosphoryl nitrones. Moreover, dimethoxyphosphoryl substitution at C-5 was found to be the most efficient substitution site for spin trapping of *OH, and their spin adducts are predicted to be the most stable of all of the isomeric forms.
Alves, Cíntia; Pereira, Rui; Prieto, Lourdes; Aler, Mercedes; Amaral, Cesar R L; Arévalo, Cristina; Berardi, Gabriela; Di Rocco, Florencia; Caputo, Mariela; Carmona, Cristian Hernandez; Catelli, Laura; Costa, Heloísa Afonso; Coufalova, Pavla; Furfuro, Sandra; García, Óscar; Gaviria, Anibal; Goios, Ana; Gómez, Juan José Builes; Hernández, Alexis; Hernández, Eva Del Carmen Betancor; Miranda, Luís; Parra, David; Pedrosa, Susana; Porto, Maria João Anjos; Rebelo, Maria de Lurdes; Spirito, Matteo; Torres, María Del Carmen Villalobos; Amorim, António; Pereira, Filipe
2017-05-01
DNA is a powerful tool available for forensic investigations requiring identification of species. However, it is necessary to develop and validate methods able to produce results in degraded and or low quality DNA samples with the high standards obligatory in forensic research. Here, we describe a voluntary collaborative exercise to test the recently developed Species Identification by Insertions/Deletions (SPInDel) method. The SPInDel kit allows the identification of species by the generation of numeric profiles combining the lengths of six mitochondrial ribosomal RNA (rRNA) gene regions amplified in a single reaction followed by capillary electrophoresis. The exercise was organized during 2014 by a Working Commission of the Spanish and Portuguese-Speaking Working Group of the International Society for Forensic Genetics (GHEP-ISFG), created in 2013. The 24 participating laboratories from 10 countries were asked to identify the species in 11 DNA samples from previous GHEP-ISFG proficiency tests using a SPInDel primer mix and control samples of the 10 target species. A computer software was also provided to the participants to assist the analyses of the results. All samples were correctly identified by 22 of the 24 laboratories, including samples with low amounts of DNA (hair shafts) and mixtures of saliva and blood. Correct species identifications were obtained in 238 of the 241 (98.8%) reported SPInDel profiles. Two laboratories were responsible for the three cases of misclassifications. The SPInDel was efficient in the identification of species in mixtures considering that only a single laboratory failed to detect a mixture in one sample. This result suggests that SPInDel is a valid method for mixture analyses without the need for DNA sequencing, with the advantage of identifying more than one species in a single reaction. The low frequency of wrong (5.0%) and missing (2.1%) alleles did not interfere with the correct species identification, which demonstrated the
NASA Astrophysics Data System (ADS)
Faria Junior, Paulo E.; Campos, Tiago; Bastos, Carlos M. O.; Gmitra, Martin; Fabian, Jaroslav; Sipahi, Guilherme M.
2016-06-01
Semiconductor nanowires based on non-nitride III-V compounds can be synthesized under certain growth conditions to favor the appearance of the wurtzite crystal phase. Despite reports in the literature of ab initio band structures for these wurtzite compounds, we still lack effective multiband models and parameter sets that can be simply used to investigate physical properties of such systems, for instance, under quantum confinement effects. In order to address this deficiency, in this study we calculate the ab initio band structure of bulk InAs and InP in the wurtzite phase and develop an 8 ×8 k .p Hamiltonian to describe the energy bands around the Γ point. We show that our k .p model is robust and can be fitted to describe the important features of the ab initio band structure. The correct description of the spin-splitting effects that arise due to the lack of inversion symmetry in wurtzite crystals is obtained with the k -dependent spin-orbit term in the Hamiltonian, often neglected in the literature. All the energy bands display a Rashba-like spin texture for the in-plane spin expectation value. We also provide the density of states and the carrier density as functions of the Fermi energy. Alternatively, we show an analytical description of the conduction band, valid close to the Γ point. The same fitting procedure is applied to the 6 ×6 valence band Hamiltonian. However, we find that the most reliable approach is the 8 ×8 k .p Hamiltonian for both compounds. The k .p Hamiltonians and parameter sets that we develop in this paper provide a reliable theoretical framework that can be easily applied to investigate electronic, transport, optical, and spin properties of InAs- and InP-based nanostructures.
NASA Astrophysics Data System (ADS)
Enachescu, Cristian; Stoleriu, Laurentiu; Nishino, Masamichi; Miyashita, Seiji; Stancu, Alexandru; Lorenc, Maciej; Bertoni, Roman; Cailleau, Hervé; Collet, Eric
2017-06-01
In this paper, we use an elastic model in order to study the elastically driven cooperative switching of spin-crossover materials after femtosecond laser excitation. In this model, the molecules occupy a triangular lattice in open-boundary systems, and they are connected by springs. The volume change of a molecule between its two possible spin states, low-spin and high-spin, determines a variation of the spring length and therefore modifies elastic interactions between molecules, which propagates throughout the whole sample as elastic distortions. This model is able to reproduce the multistep out-of-equilibrium response to ultrashort laser excitation and especially the elastically driven cooperative response. It is developed in order to predict the behavior of the system as a function of its different physical parameters, such as the magnitude of the elastic constant or the homogeneity of the photoexcitation. The contribution of the reorganization of the molecular states during elastic steps, leading to clusters of high-spin molecules toward the edge or the corners, is also revealed.
Single spin-torque vortex oscillator using combined bottom-up approach and e-beam lithography
NASA Astrophysics Data System (ADS)
Abreu Araujo, F.; Piraux, L.; Antohe, V. A.; Cros, V.; Gence, L.
2013-06-01
A combined bottom-up assembly of electrodeposited nanowires and electron beam lithography technique has been developed to investigate the spin transfer torque and microwave emission on specially designed nanowires containing a single Co/Cu/Co pseudo spin valve. Microwave signals have been obtained even at zero magnetic field. Interestingly, high frequency vs. magnetic field tunability was demonstrated, in the range 0.4-2 MHz/Oe, depending on the orientation of the applied magnetic field relative to the magnetic layers of the pseudo spin valve. The frequency values and the emitted signal frequency as a function of the external magnetic field are in good quantitative agreement with the analytical vortex model as well as with micromagnetic simulations.
Integer least-squares theory for the GNSS compass
NASA Astrophysics Data System (ADS)
Teunissen, P. J. G.
2010-07-01
Global navigation satellite system (GNSS) carrier phase integer ambiguity resolution is the key to high-precision positioning and attitude determination. In this contribution, we develop new integer least-squares (ILS) theory for the GNSS compass model, together with efficient integer search strategies. It extends current unconstrained ILS theory to the nonlinearly constrained case, an extension that is particularly suited for precise attitude determination. As opposed to current practice, our method does proper justice to the a priori given information. The nonlinear baseline constraint is fully integrated into the ambiguity objective function, thereby receiving a proper weighting in its minimization and providing guidance for the integer search. Different search strategies are developed to compute exact and approximate solutions of the nonlinear constrained ILS problem. Their applicability depends on the strength of the GNSS model and on the length of the baseline. Two of the presented search strategies, a global and a local one, are based on the use of an ellipsoidal search space. This has the advantage that standard methods can be applied. The global ellipsoidal search strategy is applicable to GNSS models of sufficient strength, while the local ellipsoidal search strategy is applicable to models for which the baseline lengths are not too small. We also develop search strategies for the most challenging case, namely when the curvature of the non-ellipsoidal ambiguity search space needs to be taken into account. Two such strategies are presented, an approximate one and a rigorous, somewhat more complex, one. The approximate one is applicable when the fixed baseline variance matrix is close to diagonal. Both methods make use of a search and shrink strategy. The rigorous solution is efficiently obtained by means of a search and shrink strategy that uses non-quadratic, but easy-to-evaluate, bounding functions of the ambiguity objective function. The theory
Gaussian free fields at the integer quantum Hall plateau transition
NASA Astrophysics Data System (ADS)
Bondesan, R.; Wieczorek, D.; Zirnbauer, M. R.
2017-05-01
In this work we put forward an effective Gaussian free field description of critical wavefunctions at the transition between plateaus of the integer quantum Hall effect. To this end, we expound our earlier proposal that powers of critical wave intensities prepared via point contacts behave as pure scaling fields obeying an Abelian operator product expansion. Our arguments employ the framework of conformal field theory and, in particular, lead to a multifractality spectrum which is parabolic. We also derive a number of old and new identities that hold exactly at the lattice level and hinge on the correspondence between the Chalker-Coddington network model and a supersymmetric vertex model.
Spin-Pump-Induced Spin Transport in p-Type Si at Room Temperature
NASA Astrophysics Data System (ADS)
Shikoh, Eiji; Ando, Kazuya; Kubo, Kazuki; Saitoh, Eiji; Shinjo, Teruya; Shiraishi, Masashi
2013-03-01
A spin battery concept is applied for the dynamical generation of pure spin current and spin transport in p-type silicon (p-Si). Ferromagnetic resonance and effective s-d coupling in Ni80Fe20 results in spin accumulation at the Ni80Fe20/p-Si interface, inducing spin injection and the generation of spin current in the p-Si. The pure spin current is converted to a charge current by the inverse spin Hall effect of Pd evaporated onto the p-Si. This approach demonstrates the generation and transport of pure spin current in p-Si at room temperature.
Spin-pump-induced spin transport in p-type Si at room temperature.
Shikoh, Eiji; Ando, Kazuya; Kubo, Kazuki; Saitoh, Eiji; Shinjo, Teruya; Shiraishi, Masashi
2013-03-22
A spin battery concept is applied for the dynamical generation of pure spin current and spin transport in p-type silicon (p-Si). Ferromagnetic resonance and effective s-d coupling in Ni(80)Fe(20) results in spin accumulation at the Ni(80)Fe(20)/p-Si interface, inducing spin injection and the generation of spin current in the p-Si. The pure spin current is converted to a charge current by the inverse spin Hall effect of Pd evaporated onto the p-Si. This approach demonstrates the generation and transport of pure spin current in p-Si at room temperature.
Quek, Su Ying; Khoo, Khoong Hong
2014-11-18
CONSPECTUS: The emerging field of flexible electronics based on organics and two-dimensional (2D) materials relies on a fundamental understanding of charge and spin transport at the molecular and nanoscale. It is desirable to make predictions and shine light on unexplained experimental phenomena independently of experimentally derived parameters. Indeed, density functional theory (DFT), the workhorse of first-principles approaches, has been used extensively to model charge/spin transport at the nanoscale. However, DFT is essentially a ground state theory that simply guarantees correct total energies given the correct charge density, while charge/spin transport is a nonequilibrium phenomenon involving the scattering of quasiparticles. In this Account, we critically assess the validity and applicability of DFT to predict charge/spin transport at the nanoscale. We also describe a DFT-based approach, DFT+Σ, which incorporates corrections to Kohn-Sham energy levels based on many-electron calculations. We focus on single-molecule junctions and then discuss how the important considerations for DFT descriptions of transport can differ in 2D materials. We conclude that when used appropriately, DFT and DFT-based approaches can play an important role in making predictions and gaining insight into transport in these materials. Specifically, we shall focus on the low-bias quasi-equilibrium regime, which is also experimentally most relevant for single-molecule junctions. The next question is how well can the scattering of DFT Kohn-Sham particles approximate the scattering of true quasiparticles in the junction? Quasiparticles are electrons (holes) that are surrounded by a constantly changing cloud of holes (electrons), but Kohn-Sham particles have no physical significance. However, Kohn-Sham particles can often be used as a qualitative approximation to quasiparticles. The errors in standard DFT descriptions of transport arise primarily from errors in the Kohn-Sham energy levels
NASA Astrophysics Data System (ADS)
D'Alesio, Umberto; Flore, Carlo; Murgia, Francesco
2017-05-01
We present an updated study of transverse single-spin asymmetries for the inclusive large-PT processes ℓp↑→h X and ℓp↑→jet X , within a transverse momentum-dependent approach, including the contribution of quasireal (Weizsäcker-Williams) photons. In the spirit of a unified transverse momentum-dependent scheme, predictions are obtained adopting the Sivers and transversity distributions and the Collins fragmentation functions as extracted from fits to the azimuthal asymmetries measured in semi-inclusive deep inelastic scattering and e+e- annihilation processes. The description of the available data is extremely good, showing a clear general improvement with respect to the previous leading-order analysis. Predictions for unpolarized cross sections and single-spin asymmetries for ongoing and future experiments are also given.
NASA Astrophysics Data System (ADS)
Liu, Zhaosen; Ian, Hou
2016-04-01
We employed a quantum simulation approach to investigate the magnetic properties of monolayer square nanodisks with Dzyaloshinsky-Moriya (DM) interaction. The computational program converged very quickly, and generated chiral spin structures on the disk planes with good symmetry. When the DM interaction is sufficiently strong, multi-domain structures appears, their sizes or average distance between each pair of domains can be approximately described by a modified grid theory. We further found that the external magnetic field and uniaxial magnetic anisotropy both normal to the disk plane lead to reductions of the total free energy and total energy of the nanosystems, thus are able to stabilize and/or induce the vortical structures, however, the chirality of the vortex is still determined by the sign of the DM interaction parameter. Moreover, the geometric shape of the nanodisk affects the spin configuration on the disk plane as well.
Exact spin-cluster ground states in a mixed diamond chain
NASA Astrophysics Data System (ADS)
Takano, Ken'Ichi; Suzuki, Hidenori; Hida, Kazuo
2009-09-01
The mixed diamond chain is a frustrated Heisenberg chain composed of successive diamond-shaped units with two kinds of spins of magnitudes S and S/2 ( S : integer). Ratio λ of two exchange parameters controls the strength of frustration. With varying λ , the Haldane state and several spin-cluster states appear as the ground state. A spin-cluster state is a tensor product of exact local eigenstates of cluster spins. We prove that a spin-cluster state is the ground state in a finite interval of λ . For S=1 , we numerically determine the total phase diagram consisting of five phases.
Analytical theory and possible detection of the ac quantum spin Hall effect.
Deng, W Y; Ren, Y J; Lin, Z X; Shen, R; Sheng, L; Sheng, D N; Xing, D Y
2017-07-11
We develop an analytical theory of the low-frequency ac quantum spin Hall (QSH) effect based upon the scattering matrix formalism. It is shown that the ac QSH effect can be interpreted as a bulk quantum pumping effect. When the electron spin is conserved, the integer-quantized ac spin Hall conductivity can be linked to the winding numbers of the reflection matrices in the electrodes, which also equal to the bulk spin Chern numbers of the QSH material. Furthermore, a possible experimental scheme by using ferromagnetic metals as electrodes is proposed to detect the topological ac spin current by electrical means.
NASA Astrophysics Data System (ADS)
Bahr, Benjamin; Hellmann, Frank; Kamiński, Wojciech; Kisielowski, Marcin; Lewandowski, Jerzy
2011-05-01
The goal of this paper is to introduce a systematic approach to spin foams. We define operator spin foams, that is foams labelled by group representations and operators, as our main tool. A set of moves we define in the set of the operator spin foams (among other operations) allows us to split the faces and the edges of the foams. We assign to each operator spin foam a contracted operator, by using the contractions at the vertices and suitably adjusted face amplitudes. The emergence of the face amplitudes is the consequence of assuming the invariance of the contracted operator with respect to the moves. Next, we define spin foam models and consider the class of models assumed to be symmetric with respect to the moves we have introduced, and assuming their partition functions (state sums) are defined by the contracted operators. Briefly speaking, those operator spin foam models are invariant with respect to the cellular decomposition, and are sensitive only to the topology and colouring of the foam. Imposing an extra symmetry leads to a family we call natural operator spin foam models. This symmetry, combined with assumed invariance with respect to the edge splitting move, determines a complete characterization of a general natural model. It can be obtained by applying arbitrary (quantum) constraints on an arbitrary BF spin foam model. In particular, imposing suitable constraints on a spin(4) BF spin foam model is exactly the way we tend to view 4D quantum gravity, starting with the BC model and continuing with the Engle-Pereira-Rovelli-Livine (EPRL) or Freidel-Krasnov (FK) models. That makes our framework directly applicable to those models. Specifically, our operator spin foam framework can be translated into the language of spin foams and partition functions. Among our natural spin foam models there are the BF spin foam model, the BC model, and a model corresponding to the EPRL intertwiners. Our operator spin foam framework can also be used for more general spin
GNSS integer ambiguity validation based on posterior probability
NASA Astrophysics Data System (ADS)
Wu, Zemin; Bian, Shaofeng
2015-10-01
GNSS integer ambiguity validation is considered to be a challenge task for decades. Several kinds of validation tests are developed and widely used in these years, but theoretical basis is their weakness. Ambiguity validation theoretically is an issue of hypothesis test. In the frame of Bayesian hypothesis testing, posterior probability is the canonical standard that statistical decision should be based on. In this contribution, (i) we derive the posterior probability of the fixed ambiguity based on the Bayesian principle and modify it for practice ambiguity validation. (ii) The optimal property of the posterior probability test is proved based on an extended Neyman-Pearson lemma. Since validation failure rate is the issue users most concerned about, (iii) we derive the failure rate upper bound of the posterior probability test, so the user can use the posterior probability test either in the fixed posterior probability or in the fixed failure rate way. Simulated as well as real observed data are used for experimental validations. The results show that (i) the posterior probability test is the most effective within the R-ratio test, difference test, ellipsoidal integer aperture test and posterior probability test, (ii) the posterior probability test is computational efficient and (iii) the failure rate estimation for posterior probability test is useful.
Split diversity in constrained conservation prioritization using integer linear programming.
Chernomor, Olga; Minh, Bui Quang; Forest, Félix; Klaere, Steffen; Ingram, Travis; Henzinger, Monika; von Haeseler, Arndt
2015-01-01
Phylogenetic diversity (PD) is a measure of biodiversity based on the evolutionary history of species. Here, we discuss several optimization problems related to the use of PD, and the more general measure split diversity (SD), in conservation prioritization.Depending on the conservation goal and the information available about species, one can construct optimization routines that incorporate various conservation constraints. We demonstrate how this information can be used to select sets of species for conservation action. Specifically, we discuss the use of species' geographic distributions, the choice of candidates under economic pressure, and the use of predator-prey interactions between the species in a community to define viability constraints.Despite such optimization problems falling into the area of NP hard problems, it is possible to solve them in a reasonable amount of time using integer programming. We apply integer linear programming to a variety of models for conservation prioritization that incorporate the SD measure.We exemplarily show the results for two data sets: the Cape region of South Africa and a Caribbean coral reef community. Finally, we provide user-friendly software at http://www.cibiv.at/software/pda.
Currency arbitrage detection using a binary integer programming model
NASA Astrophysics Data System (ADS)
Soon, Wanmei; Ye, Heng-Qing
2011-04-01
In this article, we examine the use of a new binary integer programming (BIP) model to detect arbitrage opportunities in currency exchanges. This model showcases an excellent application of mathematics to the real world. The concepts involved are easily accessible to undergraduate students with basic knowledge in Operations Research. Through this work, students can learn to link several types of basic optimization models, namely linear programming, integer programming and network models, and apply the well-known sensitivity analysis procedure to accommodate realistic changes in the exchange rates. Beginning with a BIP model, we discuss how it can be reduced to an equivalent but considerably simpler model, where an efficient algorithm can be applied to find the arbitrages and incorporate the sensitivity analysis procedure. A simple comparison is then made with a different arbitrage detection model. This exercise helps students learn to apply basic Operations Research concepts to a practical real-life example, and provides insights into the processes involved in Operations Research model formulations.
Single-flux-quantum integer multiplier with systolic array structure
NASA Astrophysics Data System (ADS)
Obata, K.; Tanaka, M.; Tashiro, Y.; Kamiya, Y.; Irie, N.; Takagi, K.; Takagi, N.; Fujimaki, A.; Yoshikawa, N.; Terai, H.; Yorozu, S.
2006-10-01
We propose an integer multiplier with systolic array structure for single-flux-quantum (SFQ) technology. Since SFQ logic circuits work by pulse logic, suitable circuit structure for SFQ logic circuits is different from one for semiconductor logic circuits. The systolic array is a circuit structure for VLSIs and consists of regularly arranged simple processing elements. All signals of the proposed systolic multiplier flow from input to output unidirectionally. This feature matches concurrent-flow clocking well. For evaluating the proposed systolic multiplier, we have designed a 4-bit systolic multiplier, as well as a 4-bit array multiplier which is one of the most typical parallel multipliers, and have compared them with each other. From the results of the design and the digital simulation, the number of Josephson junctions (JJs) of the 4-bit systolic multiplier is almost the half of that of the 4-bit array multiplier, and the latency of the former is about 1.5 times longer than that of the latter. Our estimation of the performance of larger-scale multipliers shows that the proposed systolic multiplier achieves comparable latency to the array multiplier, using extremely smaller number of JJs when the bit-width of input becomes large. We have fabricated a 1-bit cell of the systolic multiplier using NEC standard Nb process and have successfully tested it at low speed. The proposed systolic integer multiplier is attractive for SFQ technology.
The mental representation of numerical fractions: real or integer?
Bonato, Mario; Fabbri, Sara; Umiltà, Carlo; Zorzi, Marco
2007-12-01
Numerical fractions are commonly used to express ratios and proportions (i.e., real numbers), but little is known about how they are mentally represented and processed by skilled adults. Four experiments employed comparison tasks to investigate the distance effect and the effect of the spatial numerical association of response codes (SNARC) for fractions. Results showed that fractions were processed componentially and that the real numerical value of the fraction was not accessed, indicating that processing the fraction's magnitude is not automatic. In contrast, responses were influenced by the numerical magnitude of the components and reflected the simple comparison between numerators, denominators, and reference, depending on the strategy adopted. Strategies were used even by highly skilled participants and were flexibly adapted to the specific experimental context. In line with results on the whole number bias in children, these findings suggest that the understanding of fractions is rooted in the ability to represent discrete numerosities (i.e., integers) rather than real numbers and that the well-known difficulties of children in mastering fractions are circumvented by skilled adults through a flexible use of strategies based on the integer components.
Direct comparison of fractional and integer quantized Hall resistance
NASA Astrophysics Data System (ADS)
Ahlers, Franz J.; Götz, Martin; Pierz, Klaus
2017-08-01
We present precision measurements of the fractional quantized Hall effect, where the quantized resistance {{R}≤ft[ 1/3 \\right]} in the fractional quantum Hall state at filling factor 1/3 was compared with a quantized resistance {{R}[2]} , represented by an integer quantum Hall state at filling factor 2. A cryogenic current comparator bridge capable of currents down to the nanoampere range was used to directly compare two resistance values of two GaAs-based devices located in two cryostats. A value of 1-(5.3 ± 6.3) 10-8 (95% confidence level) was obtained for the ratio ({{R}≤ft[ 1/3 \\right]}/6{{R}[2]} ). This constitutes the most precise comparison of integer resistance quantization (in terms of h/e 2) in single-particle systems and of fractional quantization in fractionally charged quasi-particle systems. While not relevant for practical metrology, such a test of the validity of the underlying physics is of significance in the context of the upcoming revision of the SI.
NASA Astrophysics Data System (ADS)
Pederzoli, Marek; Pittner, Jiří
2017-03-01
We present surface hopping dynamics on potential energy surfaces resulting from the spin-orbit splitting, i.e., surfaces corresponding to the eigenstates of the total electronic Hamiltonian including the spin-orbit coupling. In this approach, difficulties arise because of random phases of degenerate eigenvectors and possibility of crossings of the resulting mixed states. Our implementation solves these problems and allows propagation of the coefficients both in the representation of the spin free Hamiltonian and directly in the "diagonal representation" of the mixed states. We also provide a detailed discussion of the state crossing and point out several peculiarities that were not mentioned in the previous literature. We also incorporate the effect of the environment via the quantum mechanics/molecular mechanics approach. As a test case, we apply our methodology to deactivation of thiophene and selenophene in the gas phase, ethanol solution, and bulk liquid phase. First, 100 trajectories without spin-orbit coupling have been calculated for thiophene starting both in S1 and S2 states. A subset of 32 initial conditions starting in the S2 state was then used for gas phase simulations with spin-orbit coupling utilizing the 3-step integrator of SHARC, our implementation of the 3-step propagator in Newton-X and two new "one-step" approaches. Subsequently, we carried out simulations in ethanol solution and bulk liquid phase for both thiophene and selenophene. For both molecules, the deactivation of the S2 state proceeds via the ring opening pathway. The total population of triplet states reaches around 15% and 40% after 80 fs for thiophene and selenophene, respectively. However, it only begins growing after the ring opening is initiated; hence, the triplet states do not directly contribute to the deactivation mechanism. For thiophene, the resulting deactivation lifetime of the S2 state was 68 fs in the gas phase, 76 fs in ethanol solution, and 78 fs in the liquid phase
ON THE DISTRIBUTION OF THE GREATEST COMMON DIVISOR OF GAUSSIAN INTEGERS
BRADLEY, TAI-DANAE; CHENG, YIN CHOI; LUO, YAN FEI
2016-01-01
For a pair of random Gaussian integers chosen uniformly and independently from the set of Gaussian integers of norm x or less as x goes to infinity, we find asymptotics for the average norm of their greatest common divisor, with explicit error terms. We also present results for higher moments along with computational data which support the results for the second, third, fourth, and fifth moments. The analogous question for integers is studied by Diaconis and Erdös. PMID:27761199
Soft Decoding of Integer Codes and Their Application to Coded Modulation
NASA Astrophysics Data System (ADS)
Kostadinov, Hristo; Morita, Hiroyoshi; Iijima, Noboru; Han Vinck, A. J.; Manev, Nikolai
Integer codes are very flexible and can be applied in different modulation schemes. A soft decoding algorithm for integer codes will be introduced. Comparison of symbol error probability (SEP) versus signal-to-noise ratio (SNR) between soft and hard decoding using integer coded modulation shows us that we can obtain at least 2dB coding gain. Also, we shall compare our results with trellis coded modulation (TCM) because of their similar decoding schemes and complexity.
Measurement of the spin of the omega(-) hyperon.
Aubert, B; Barate, R; Bona, M; Boutigny, D; Couderc, F; Karyotakis, Y; Lees, J P; Poireau, V; Tisserand, V; Zghiche, A; Grauges, E; Palano, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Battaglia, M; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Gill, M S; Groysman, Y; Jacobsen, R G; Kadyk, J A; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Lynch, G; Mir, L M; Oddone, P J; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, M T; Wenzel, W A; Del Amo Sanchez, P; Barrett, M; Ford, K E; Harrison, T J; Hart, A J; Hawkes, C M; Morgan, S E; Watson, A T; Goetzen, K; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Peters, K; Schroeder, T; Steinke, M; Boyd, J T; Burke, J P; Cottingham, W N; Walker, D; Cuhadar-Donszelmann, T; Fulsom, B G; Hearty, C; Knecht, N S; Mattison, T S; McKenna, J A; Khan, A; Kyberd, P; Saleem, M; Sherwood, D J; Teodorescu, L; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, K Yu; Best, D S; Bondioli, M; Bruinsma, M; Chao, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M; Mommsen, R K; Roethel, W; Stoker, D P; Abachi, S; Buchanan, C; Foulkes, S D; Gary, J W; Long, O; Shen, B C; Wang, K; Zhang, L; Hadavand, H K; Hill, E J; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Cunha, A; Dahmes, B; Hong, T M; Kovalskyi, D; Richman, J D; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Nesom, G; Schalk, T; Schumm, B A; Seiden, A; Spradlin, P; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dvoretskii, A; Fang, F; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Ryd, A; Samuel, A; Mancinelli, G; Meadows, B T; Sokoloff, M D; Blanc, F; Bloom, P C; Chen, S; Ford, W T; Hirschauer, J F; Kreisel, A; Nauenberg, U; Olivas, A; Ruddick, W O; Smith, J G; Ulmer, K A; Wagner, S R; Zhang, J; Chen, A; Eckhart, E A; Soffer, A; Toki, W H; Wilson, R J; Winklmeier, F; Zeng, Q; Altenburg, D D; Feltresi, E; Hauke, A; Jasper, H; Petzold, A; Spaan, B; Brandt, T; Klose, V; Lacker, H M; Mader, W F; Nogowski, R; Schubert, J; Schubert, K R; Schwierz, R; Sundermann, J E; Volk, A; Bernard, D; Bonneaud, G R; Grenier, P; Latour, E; Thiebaux, Ch; Verderi, M; Bard, D J; Clark, P J; Gradl, W; Muheim, F; Playfer, S; Robertson, A I; Xie, Y; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Petrella, A; Piemontese, L; Prencipe, E; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Lo Vetere, M; Macri, M M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Brandenburg, G; Chaisanguanthum, K S; Morii, M; Wu, J; Dubitzky, R S; Marks, J; Schenk, S; Uwer, U; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Flack, R L; Nash, J A; Nikolich, M B; Panduro Vazquez, W; Chai, X; Charles, M J; Mallik, U; Meyer, N T; Ziegler, V; Cochran, J; Crawley, H B; Dong, L; Eyges, V; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Gritsan, A V; Fritsch, M; Schott, G; Arnaud, N; Davier, M; Grosdidier, G; Höcker, A; Le Diberder, F; Lepeltier, V; Lutz, A M; Oyanguren, A; Pruvot, S; Rodier, S; Roudeau, P; Schune, M H; Stocchi, A; Wang, W F; Wormser, G; Cheng, C H; Lange, D J; Wright, D M; Chavez, C A; Forster, I J; Fry, J R; Gabathuler, E; Gamet, R; George, K A; Hutchcroft, D E; Payne, D J; Schofield, K C; Touramanis, C; Bevan, A J; Di Lodovico, F; Menges, W; Sacco, R; Cowan, G; Flaecher, H U; Hopkins, D A; Jackson, P S; McMahon, T R; Ricciardi, S; Salvatore, F; Wren, A C; Brown, D N; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Chia, Y M; Edgar, C L; Lafferty, G D; Naisbit, M T; Williams, J C; Yi, J I; Chen, C; Hulsbergen, W D; Jawahery, A; Lae, C K; Roberts, D A; Simi, G; Blaylock, G; Dallapiccola, C; Hertzbach, S S; Li, X; Moore, T B; Saremi, S; Staengle, H; Cowan, R; Sciolla, G; Sekula, S J; Spitznagel, M; Taylor, F; Yamamoto, R K; Kim, H; Patel, P M; Robertson, S H; Lazzaro, A; Lombardo, V; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Taras, P; Viaud, F B; Nicholson, H; Cavallo, N; De Nardo, G; Fabozzi, F; Gatto, C; Lista, L; Monorchio, D; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M; Raven, G; Snoek, H L; Jessop, C P; Losecco, J M; Allmendinger, T; Benelli, G; Gan, K K; Honscheid, K; Hufnagel, D; Jackson, P D; Kagan, H; Kass, R; Rahimi, A M; Ter-Antonyan, R; Wong, Q K; Blount, N L; Brau, J; Frey, R; Igonkina, O; Lu, M; Potter, C T; Rahmat, R; Sinev, N B; Strom, D; Strube, J; Torrence, E; Galeazzi, F; Gaz, A; Margoni, M; Morandin, M; Pompili, A; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Benayoun, M; Chauveau, J; David, P; Del Buono, L; de la Vaissière, Ch; Hamon, O; Hartfiel, B L; John, M J J; Malclès, J; Ocariz, J; Roos, L; Therin, G; Behera, P K; Gladney, L; Panetta, J; Biasini, M; Covarelli, R; Angelini, C; Batignani, G; Bettarini, S; Bucci, F; Calderini, G; Carpinelli, M; Cenci, R; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Mazur, M A; Morganti, M; Neri, N; Rizzo, G; Walsh, J J; Haire, M; Judd, D; Wagoner, D E; Biesiada, J; Danielson, N; Elmer, P; Lau, Y P; Lu, C; Olsen, J; Smith, A J S; Telnov, A V; Bellini, F; Cavoto, G; D'Orazio, A; Del Re, D; Di Marco, E; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Li Gioi, L; Mazzoni, M A; Morganti, S; Piredda, G; Polci, F; Safai Tehrani, F; Voena, C; Ebert, M; Schröder, H; Waldi, R; Adye, T; De Groot, N; Franek, B; Olaiya, E O; Wilson, F F; Emery, S; Gaidot, A; Ganzhur, S F; Hamel de Monchenault, G; Kozanecki, W; Legendre, M; Vasseur, G; Yèche, Ch; Zito, M; Chen, X R; Liu, H; Park, W; Purohit, M V; Wilson, J R; Allen, M T; Aston, D; Bartoldus, R; Bechtle, P; Berger, N; Claus, R; Coleman, J P; Convery, M R; Cristinziani, M; Dingfelder, J C; Dorfan, J; Dubois-Felsmann, G P; Dujmic, D; Dunwoodie, W; Field, R C; Glanzman, T; Gowdy, S J; Graham, M T; Halyo, V; Hast, C; Hryn'ova, T; Innes, W R; Kelsey, M H; Kim, P; Leith, D W G S; Li, S; Luitz, S; Luth, V; Lynch, H L; Macfarlane, D B; Marsiske, H; Messner, R; Muller, D R; O'grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Pulliam, T; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Stelzer, J; Su, D; Sullivan, M K; Suzuki, K; Swain, S K; Thompson, J M; Va'vra, J; van Bakel, N; Weaver, M; Weinstein, A J R; Wisniewski, W J; Wittgen, M; Wright, D H; Yarritu, A K; Yi, K; Young, C C; Burchat, P R; Edwards, A J; Majewski, S A; Petersen, B A; Roat, C; Wilden, L; Ahmed, S; Alam, M S; Bula, R; Ernst, J A; Jain, V; Pan, B; Saeed, M A; Wappler, F R; Zain, S B; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Ritchie, J L; Satpathy, A; Schilling, C J; Schwitters, R F; Izen, J M; Lou, X C; Ye, S; Bianchi, F; Gallo, F; Gamba, D; Bomben, M; Bosisio, L; Cartaro, C; Cossutti, F; Della Ricca, G; Dittongo, S; Lanceri, L; Vitale, L; Azzolini, V; Martinez-Vidal, F; Banerjee, Sw; Bhuyan, B; Brown, C M; Fortin, D; Hamano, K; Kowalewski, R; Nugent, I M; Roney, J M; Sobie, R J; Back, J J; Harrison, P F; Latham, T E; Mohanty, G B; Pappagallo, M; Band, H R; Chen, X; Cheng, B; Dasu, S; Datta, M; Flood, K T; Hollar, J J; Kutter, P E; Mellado, B; Mihalyi, A; Pan, Y; Pierini, M; Prepost, R; Wu, S L; Yu, Z; Neal, H
2006-09-15
A measurement of the spin of the Omega(-) hyperon produced through the exclusive process Xi(c)(0)-->Omega(-)K(+) is presented using a total integrated luminosity of 116 fb(-1) recorded with the BABAR detector at the e(+)e(-) asymmetric-energy B factory at SLAC. Under the assumption that the Xi(c)(0) has spin 1/2, the angular distribution of the Lambda from Omega(-)-->LambdaK(-) decay is inconsistent with all half-integer Omega(-) spin values other than 3/2. Lower statistics data for the process Omega(c)(0)-->Omega(-)pi(+) from a 230 fb(-1) sample are also found to be consistent with Omega(-) spin 3/2. If the Xi(c)(0) spin were 3/2, an Omega(-) spin of 5/2 could not be excluded.
Solutions of free higher spins in AdS
NASA Astrophysics Data System (ADS)
Lü, H.; Shao, Kai-Nan
2011-11-01
We consider free massive and massless higher integer spins in AdS backgrounds in general D dimensions. We obtain the solutions corresponding to the highest-weight state of the spin-ℓ representations of the SO (2 , D - 1) isometry groups. The solution for the spin-ℓ field is expressed recursively in terms of that for the spin- (ℓ - 1). Thus starting from the explicit spin-0, all the higher-spin solutions can be obtained. These solutions allow us to derive the generalized Breitenlohner-Freedman bound, and analyze the asymptotic falloffs. In particular, solutions with negative mass square in general have falloffs slower than those of the Schwarzschild AdS black holes in the AdS boundaries.
Quantum spin-Hall effect and topologically invariant Chern numbers.
Sheng, D N; Weng, Z Y; Sheng, L; Haldane, F D M
2006-07-21
We present a topological description of the quantum spin-Hall effect (QSHE) in a two-dimensional electron system on a honeycomb lattice with both intrinsic and Rashba spin-orbit couplings. We show that the topology of the band insulator can be characterized by a 2 x 2 matrix of first Chern integers. The nontrivial QSHE phase is identified by the nonzero diagonal matrix elements of the Chern number matrix (CNM). A spin Chern number is derived from the CNM, which is conserved in the presence of finite disorder scattering and spin nonconserving Rashba coupling. By using the Laughlin gedanken experiment, we numerically calculate the spin polarization and spin transfer rate of the conducting edge states and determine a phase diagram for the QSHE.
Investigating data envelopment analysis model with potential improvement for integer output values
NASA Astrophysics Data System (ADS)
Hussain, Mushtaq Taleb; Ramli, Razamin; Khalid, Ruzelan
2015-12-01
The decrement of input proportions in DEA model is associated with its input reduction. This reduction is apparently good for economy since it could reduce unnecessary cost resources. However, in some situations the reduction of relevant inputs such as labour could create social problems. Such inputs should thus be maintained or increased. This paper develops an advanced radial DEA model dealing with mixed integer linear programming to improve integer output values through the combination of inputs. The model can deal with real input values and integer output values. This model is valuable for situations dealing with input combination to improve integer output values as faced by most organizations.
Personnel scheduling using an integer programming model- an application at Avanti Blue-Nile Hotels.
Kassa, Biniyam Asmare; Tizazu, Anteneh Eshetu
2013-01-01
In this paper, we report perhaps a first of its kind application of management science in the Ethiopian hotel industry. Avanti Blue Nile Hotels, a newly established five star hotel in Bahir Dar, is the company for which we developed an integer programming model that determines an optimal weekly shift schedule for the Hotel's engineering department personnel while satisfying several constraints including weekly rest requirements per employee, rest requirements between working shifts per employee, required number of personnel per shift, and other constraints. The model is implemented on an excel solver routine. The model enables the company's personnel department management to develop a fair personnel schedule as needed and to effectively utilize personnel resources while satisfying several technical, legal and economic requirements. These encouraging achievements make us optimistic about the gains other Ethiopian organizations can amass by introducing management science approaches in their management planning and decision making systems.
Antiferromagnetic molecular nanomagnets with odd-numbered coupled spins
NASA Astrophysics Data System (ADS)
Owerre, S. A.; Nsofini, J.
2015-05-01
In recent years, studies on cyclic molecular nanomagnets have captivated the attention of researchers. These magnets are finite in size and contain very large spins. They are interesting because they possess macroscopic quantum tunneling of Néel vectors. For antiferromagnetic molecular nanomagnets with finite number of even-numbered coupled spins, tunneling involves two classical localized Néel ground states separated by a magnetic energy barrier. The question is: can such phenomena be observed in nanomagnets with odd number of magnetic ions? The answer is not directly obvious because cyclic chains with odd-numbered coupled spins are frustrated as one cannot obtain a perfect Néel order. These frustrated spins can indeed be observed experimentally, so they are of interest. In this letter, we theoretically investigate macroscopic quantum tunneling in this odd spin system with arbitrary spins s, in the presence of a magnetic field applied along the plane of the magnet. In contrast to systems with an even-numbered coupled spins, the ground state of the cyclic odd-spin system contains a topological soliton due to spin frustration. Thus, the classical ground state is 2N-fold degenerate as the soliton can be placed anywhere along the ring with total S_z=+/- s . Small quantum fluctuations delocalize the soliton with a formation of an energy band. We obtain this energy band using degenerate perturbation theory at order 2s. We show that the soliton ground state is chiral for half-odd integer spins and non-chiral for integer spins. From the structure of the energy band we infer that as the value of the spin increases the inelastic polarized neutron-scattering intensity may increase or decrease depending on the strengths of the parameters of the Hamiltonian.
Interaction driven quantum phases in spin-orbit-coupled spin-1 bosons
NASA Astrophysics Data System (ADS)
Pixley, Jedediah; Natu, Stefan; Cole, William; Rizzi, Matteo; Spielman, Ian
2016-05-01
We study the interplay of spin orbit coupling and strong correlations present for ultra cold spin-1 bosons on a square optical lattice. In addition to the conventional spinful Mott and superfluid phases contained in the spin-1 Bose-Hubbard model, we find new lattice symmetry breaking phases. For weak interactions, the interplay between the lattice momentum and the spin-orbit wave-vector induces a phase transition from a uniform superfluid to a phase where bosons simultaneously condense at the center and edge of the Brillouin zone. This state is characterized by spin density wave order, which arises from the spin-1 nature of the system. Interactions suppress this spin density wave order, and for sufficiently strong interactions the system becomes a Mott insulator. Inside the Mott lobes with an odd-integer filling we derive the effective low energy magnetic Hamiltonian. Focusing on the quasi-one-dimensional limit we solve the strongly coupled magnetic model in three ways: in its classical limit, with a spin-wave analysis, and using the density matrix renormalization group.
Single spin magnetic resonance
NASA Astrophysics Data System (ADS)
Wrachtrup, Jörg; Finkler, Amit
2016-08-01
Different approaches have improved the sensitivity of either electron or nuclear magnetic resonance to the single spin level. For optical detection it has essentially become routine to observe a single electron spin or nuclear spin. Typically, the systems in use are carefully designed to allow for single spin detection and manipulation, and of those systems, diamond spin defects rank very high, being so robust that they can be addressed, read out and coherently controlled even under ambient conditions and in a versatile set of nanostructures. This renders them as a new type of sensor, which has been shown to detect single electron and nuclear spins among other quantities like force, pressure and temperature. Adapting pulse sequences from classic NMR and EPR, and combined with high resolution optical microscopy, proximity to the target sample and nanoscale size, the diamond sensors have the potential to constitute a new class of magnetic resonance detectors with single spin sensitivity. As diamond sensors can be operated under ambient conditions, they offer potential application across a multitude of disciplines. Here we review the different existing techniques for magnetic resonance, with a focus on diamond defect spin sensors, showing their potential as versatile sensors for ultra-sensitive magnetic resonance with nanoscale spatial resolution.
Single spin magnetic resonance.
Wrachtrup, Jörg; Finkler, Amit
2016-08-01
Different approaches have improved the sensitivity of either electron or nuclear magnetic resonance to the single spin level. For optical detection it has essentially become routine to observe a single electron spin or nuclear spin. Typically, the systems in use are carefully designed to allow for single spin detection and manipulation, and of those systems, diamond spin defects rank very high, being so robust that they can be addressed, read out and coherently controlled even under ambient conditions and in a versatile set of nanostructures. This renders them as a new type of sensor, which has been shown to detect single electron and nuclear spins among other quantities like force, pressure and temperature. Adapting pulse sequences from classic NMR and EPR, and combined with high resolution optical microscopy, proximity to the target sample and nanoscale size, the diamond sensors have the potential to constitute a new class of magnetic resonance detectors with single spin sensitivity. As diamond sensors can be operated under ambient conditions, they offer potential application across a multitude of disciplines. Here we review the different existing techniques for magnetic resonance, with a focus on diamond defect spin sensors, showing their potential as versatile sensors for ultra-sensitive magnetic resonance with nanoscale spatial resolution. Copyright © 2016 Elsevier Inc. All rights reserved.
Synchronic interval Gaussian mixed-integer programming for air quality management.
Cheng, Guanhui; Huang, Guohe Gordon; Dong, Cong
2015-12-15
To reveal the synchronism of interval uncertainties, the tradeoff between system optimality and security, the discreteness of facility-expansion options, the uncertainty of pollutant dispersion processes, and the seasonality of wind features in air quality management (AQM) systems, a synchronic interval Gaussian mixed-integer programming (SIGMIP) approach is proposed in this study. A robust interval Gaussian dispersion model is developed for approaching the pollutant dispersion process under interval uncertainties and seasonal variations. The reflection of synchronic effects of interval uncertainties in the programming objective is enabled through introducing interval functions. The proposition of constraint violation degrees helps quantify the tradeoff between system optimality and constraint violation under interval uncertainties. The overall optimality of system profits of an SIGMIP model is achieved based on the definition of an integrally optimal solution. Integer variables in the SIGMIP model are resolved by the existing cutting-plane method. Combining these efforts leads to an effective algorithm for the SIGMIP model. An application to an AQM problem in a region in Shandong Province, China, reveals that the proposed SIGMIP model can facilitate identifying the desired scheme for AQM. The enhancement of the robustness of optimization exercises may be helpful for increasing the reliability of suggested schemes for AQM under these complexities. The interrelated tradeoffs among control measures, emission sources, flow processes, receptors, influencing factors, and economic and environmental goals are effectively balanced. Interests of many stakeholders are reasonably coordinated. The harmony between economic development and air quality control is enabled. Results also indicate that the constraint violation degree is effective at reflecting the compromise relationship between constraint-violation risks and system optimality under interval uncertainties. This can
There are many ways to spin a photon: Half-quantization of a total optical angular momentum.
Ballantine, Kyle E; Donegan, John F; Eastham, Paul R
2016-04-01
The angular momentum of light plays an important role in many areas, from optical trapping to quantum information. In the usual three-dimensional setting, the angular momentum quantum numbers of the photon are integers, in units of the Planck constant ħ. We show that, in reduced dimensions, photons can have a half-integer total angular momentum. We identify a new form of total angular momentum, carried by beams of light, comprising an unequal mixture of spin and orbital contributions. We demonstrate the half-integer quantization of this total angular momentum using noise measurements. We conclude that for light, as is known for electrons, reduced dimensionality allows new forms of quantization.
NASA Technical Reports Server (NTRS)
Pasareanu, Corina S.; Giannakopoulou, Dimitra
2006-01-01
This paper discusses our initial experience with introducing automated assume-guarantee verification based on learning in the SPIN tool. We believe that compositional verification techniques such as assume-guarantee reasoning could complement the state-reduction techniques that SPIN already supports, thus increasing the size of systems that SPIN can handle. We present a "light-weight" approach to evaluating the benefits of learning-based assume-guarantee reasoning in the context of SPIN: we turn our previous implementation of learning for the LTSA tool into a main program that externally invokes SPIN to provide the model checking-related answers. Despite its performance overheads (which mandate a future implementation within SPIN itself), this approach provides accurate information about the savings in memory. We have experimented with several versions of learning-based assume guarantee reasoning, including a novel heuristic introduced here for generating component assumptions when their environment is unavailable. We illustrate the benefits of learning-based assume-guarantee reasoning in SPIN through the example of a resource arbiter for a spacecraft. Keywords: assume-guarantee reasoning, model checking, learning.
NASA Astrophysics Data System (ADS)
Azevedo, F. S.; Silva, Edilberto O.; Castro, Luis B.; Filgueiras, Cleverson; Cogollo, D.
2015-11-01
The planar quantum dynamics of a spin-1/2 neutral particle interacting with electrical fields is considered. A set of first order differential equations is obtained directly from the planar Dirac equation with nonminimum coupling. New solutions of this system, in particular, for the Aharonov-Casher effect, are found and discussed in detail. Pauli equation is also obtained by studying the motion of the particle when it describes a circular path of constant radius. We also analyze the planar dynamics in the full space, including the r = 0 region. The self-adjoint extension method is used to obtain the energy levels and wave functions of the particle for two particular values for the self-adjoint extension parameter. The energy levels obtained are analogous to the Landau levels and explicitly depend on the spin projection parameter.
NASA Astrophysics Data System (ADS)
Afzali, R.; Ebrahimian, N.; Eghbalifar, B.
2016-10-01
By approximating the energy gap, entering nano-size effect via gap fluctuation and calculating the Green's functions and the space-spin density matrix, the dependence of quantum correlation (entanglement, discord and tripartite entanglement) on the relative distance of two electron spins forming Cooper pairs, the energy gap and the length of bulk and nano interacting Fermi system (a nodal d-wave superconductor) is determined. In contrast to a s-wave superconductor, quantum correlation of the system is sensitive to the change of the gap magnitude and strongly depends on the length of the grain. Also, quantum discord oscillates. Furthermore, the entanglement length and the correlation length are investigated. Discord becomes zero at a characteristic length of the d-wave superconductor.
Huang, Fengzhen; Wang, Zhijun; Lu, Xiaomei; Zhang, Junting; Min, Kangli; Lin, Weiwei; Ti, Ruixia; Xu, TingTing; He, Ju; Yue, Chen; Zhu, Jinsong
2013-01-01
Size effect of multiferroics is important for its potential applications in new type miniaturized multifunctional devices and thus has been widely studied. However, is there special size effect in the materials with spiral modulated spin structure (such as BiFeO3)? It is still an issue to be investigated. In this report, structural, magnetic and magnetoelectric coupling properties are investigated for sol-gel prepared BiFeO3 nanoparticles with various sizes. It is found that a structural anomaly arises for the particles with size close to the 62 nm period of the spiral modulated spin structure, which induces an obviously increased ferromagnetism. In addition, large magnetoelectric coupling effect is observed in 62 nm BiFeO3 nanoparticles. Our result provides another insight into the size effect of BiFeO3, and also a clue to the magnetic structure at nanoscale. PMID:24105027
Chan, Edwin P.; Chung, Jun Young; Stafford, Christopher M.; Lee, Jung-Hyun
2012-11-15
We present the design of an automated spin-coater that facilitates fabrication of polymer films based on molecular layer-by-layer (mLbL) assembly. Specifically, we demonstrate the synthesis of ultrathin crosslinked fully-aromatic polyamide (PA) films that are chemically identical to polymer membranes used in water desalination applications as measured by X-ray photoelectron spectroscopy. X-ray reflectivity measurements indicate that the automated mLbL assembly creates films with a constant film growth rate and minimal roughness compared with the traditional interfacial polymerization of PA. This automated spin-coater improves the scalability and sample-to-sample consistency by reducing human involvement in the mLbL assembly.
NASA Astrophysics Data System (ADS)
Collauto, A.; Barbon, A.; Zerbetto, M.; Brustolon, M.
2013-10-01
In this work we focus on the spin-rotational contribution to transverse relaxation rate 1/T2 for a nitronyl nitroxide radical (PTIO) in fluid solution of toluene. We recorded the X-band continuous-wave electron paramagnetic resonance spectra of the radical in a wide temperature range and compared them with the calculated spectra. The calculation was afforded in two steps: first, we calculated the spectral profiles in the same range of temperatures taking into account the hyperfine interaction with the two 14N nuclei, by integration of the stochastic Liouville equation with the E-SpiReS package in the presence of the tumbling motion of the molecule, which modulates the hyperfine and the g tensors. In the second step, we included the proton hyperfine structure by convoluting the spectrum with the pattern due to the 17 PTIO-coupled protons. A further Lorentzian broadening was added by a best fitting procedure to reproduce the experimental linewidths. The additional broadening is associated with a relaxation rate, Wγ, which varies linearly on kB?; this trend is expected for the spin-rotational relaxation term modelled by the well-known Atkins-Kivelson expression. We found a discrepancy between the two parameters associated with the radii of the radical, obtained either from the rotational diffusion tensor in the framework of the Debye-Stokes-Einstein model or from the spin-rotational contribution. We discuss this issue in relation to the intrinsic approximations of the spin-rotational model and, in particular, the isotropic Brownian rotation.
Developing optimal nurses work schedule using integer programming
NASA Astrophysics Data System (ADS)
Shahidin, Ainon Mardhiyah; Said, Mohd Syazwan Md; Said, Noor Hizwan Mohamad; Sazali, Noor Izatie Amaliena
2017-08-01
Time management is the art of arranging, organizing and scheduling one's time for the purpose of generating more effective work and productivity. Scheduling is the process of deciding how to commit resources between varieties of possible tasks. Thus, it is crucial for every organization to have a good work schedule for their staffs. The job of Ward nurses at hospitals runs for 24 hours every day. Therefore, nurses will be working using shift scheduling. This study is aimed to solve the nurse scheduling problem at an emergency ward of a private hospital. A 7-day work schedule for 7 consecutive weeks satisfying all the constraints set by the hospital will be developed using Integer Programming. The work schedule for the nurses obtained gives an optimal solution where all the constraints are being satisfied successfully.
Modeling Road Vulnerability to Snow Using Mixed Integer Optimization
Rodriguez, Tony K; Omitaomu, Olufemi A; Ostrowski, James A; Bhaduri, Budhendra L
2017-01-01
As the number and severity of snowfall events continue to grow, the need to intelligently direct road maintenance during these snowfall events will also grow. In several locations, local governments lack the resources to completely treat all roadways during snow events. Furthermore, some governments utilize only traffic data to determine which roads should be treated. As a result, many schools, businesses, and government offices must be unnecessarily closed, which directly impacts the social, educational, and economic well-being of citizens and institutions. In this work, we propose a mixed integer programming formulation to optimally allocate resources to manage snowfall on roads using meteorological, geographical, and environmental parameters. Additionally, we evaluate the impacts of an increase in budget for winter road maintenance on snow control resources.
Analytical estimation of the correlation dimension of integer lattices
Lacasa, Lucas; Gómez-Gardeñes, Jesús
2014-12-01
Recently [L. Lacasa and J. Gómez-Gardeñes, Phys. Rev. Lett. 110, 168703 (2013)], a fractal dimension has been proposed to characterize the geometric structure of networks. This measure is an extension to graphs of the so called correlation dimension, originally proposed by Grassberger and Procaccia to describe the geometry of strange attractors in dissipative chaotic systems. The calculation of the correlation dimension of a graph is based on the local information retrieved from a random walker navigating the network. In this contribution, we study such quantity for some limiting synthetic spatial networks and obtain analytical results on agreement with the previously reported numerics. In particular, we show that up to first order, the correlation dimension β of integer lattices ℤ{sup d} coincides with the Haussdorf dimension of their coarsely equivalent Euclidean spaces, β = d.
Three-dimensional image compression with integer wavelet transforms.
Bilgin, A; Zweig, G; Marcellin, M W
2000-04-10
A three-dimensional (3-D) image-compression algorithm based on integer wavelet transforms and zerotree coding is presented. The embedded coding of zerotrees of wavelet coefficients (EZW) algorithm is extended to three dimensions, and context-based adaptive arithmetic coding is used to improve its performance. The resultant algorithm, 3-D CB-EZW, efficiently encodes 3-D image data by the exploitation of the dependencies in all dimensions, while enabling lossy and lossless decompression from the same bit stream. Compared with the best available two-dimensional lossless compression techniques, the 3-D CB-EZW algorithm produced averages of 22%, 25%, and 20% decreases in compressed file sizes for computed tomography, magnetic resonance, and Airborne Visible Infrared Imaging Spectrometer images, respectively. The progressive performance of the algorithm is also compared with other lossy progressive-coding algorithms.
Three-Dimensional Image Compression With Integer Wavelet Transforms
NASA Astrophysics Data System (ADS)
Bilgin, Ali; Zweig, George; Marcellin, Michael W.
2000-04-01
A three-dimensional (3-D) image-compression algorithm based on integer wavelet transforms and zerotree coding is presented. The embedded coding of zerotrees of wavelet coefficients (EZW) algorithm is extended to three dimensions, and context-based adaptive arithmetic coding is used to improve its performance. The resultant algorithm, 3-D CB-EZW, efficiently encodes 3-D image data by the exploitation of the dependencies in all dimensions, while enabling lossy and lossless decompression from the same bit stream. Compared with the best available two-dimensional lossless compression techniques, the 3-D CB-EZW algorithm produced averages of 22%, 25%, and 20% decreases in compressed file sizes for computed tomography, magnetic resonance, and Airborne Visible Infrared Imaging Spectrometer images, respectively. The progressive performance of the algorithm is also compared with other lossy progressive-coding algorithms.
Integer programming model for optimizing bus timetable using genetic algorithm
NASA Astrophysics Data System (ADS)
Wihartiko, F. D.; Buono, A.; Silalahi, B. P.
2017-01-01
Bus timetable gave an information for passengers to ensure the availability of bus services. Timetable optimal condition happened when bus trips frequency could adapt and suit with passenger demand. In the peak time, the number of bus trips would be larger than the off-peak time. If the number of bus trips were more frequent than the optimal condition, it would make a high operating cost for bus operator. Conversely, if the number of trip was less than optimal condition, it would make a bad quality service for passengers. In this paper, the bus timetabling problem would be solved by integer programming model with modified genetic algorithm. Modification was placed in the chromosomes design, initial population recovery technique, chromosomes reconstruction and chromosomes extermination on specific generation. The result of this model gave the optimal solution with accuracy 99.1%.
Parallel integer sorting with medium and fine-scale parallelism
NASA Technical Reports Server (NTRS)
Dagum, Leonardo
1993-01-01
Two new parallel integer sorting algorithms, queue-sort and barrel-sort, are presented and analyzed in detail. These algorithms do not have optimal parallel complexity, yet they show very good performance in practice. Queue-sort designed for fine-scale parallel architectures which allow the queueing of multiple messages to the same destination. Barrel-sort is designed for medium-scale parallel architectures with a high message passing overhead. The performance results from the implementation of queue-sort on a Connection Machine CM-2 and barrel-sort on a 128 processor iPSC/860 are given. The two implementations are found to be comparable in performance but not as good as a fully vectorized bucket sort on the Cray YMP.
Kinematical and dynamical aspects of higher-spin bound-state equations in holographic QCD
de Téramond, Guy F.; Dosch, Hans Günter; Brodsky, Stanley J.
2013-04-01
In this paper we derive holographic wave equations for hadrons with arbitrary spin starting from an effective action in a higher-dimensional space asymptotic to anti–de Sitter (AdS) space. Our procedure takes advantage of the local tangent frame, and it applies to all spins, including half-integer spins. An essential element is the mapping of the higher-dimensional equations of motion to the light-front Hamiltonian, thus allowing a clear distinction between the kinematical and dynamical aspects of the holographic approach to hadron physics. Accordingly, the nontrivial geometry of pure AdS space encodes the kinematics, and the additional deformations of AdS space encode the dynamics, including confinement. It thus becomes possible to identify the features of holographic QCD, which are independent of the specific mechanisms of conformal symmetry breaking. In particular, we account for some aspects of the striking similarities and differences observed in the systematics of the meson and baryon spectra.
Integer cosine transform chip design for image compression
NASA Astrophysics Data System (ADS)
Ruiz, Gustavo A.; Michell, Juan A.; Buron, Angel M.; Solana, Jose M.; Manzano, Miguel A.; Diaz, J.
2003-04-01
The Discrete Cosine Transform (DCT) is the most widely used transform for image compression. The Integer Cosine Transform denoted ICT (10, 9, 6, 2, 3, 1) has been shown to be a promising alternative to the DCT due to its implementation simplicity, similar performance and compatibility with the DCT. This paper describes the design and implementation of a 8×8 2-D ICT processor for image compression, that meets the numerical characteristic of the IEEE std. 1180-1990. This processor uses a low latency data flow that minimizes the internal memory and a parallel pipelined architecture, based on a numerical strength reduction Integer Cosine Transform (10, 9, 6, 2, 3, 1) algorithm, in order to attain high throughput and continuous data flow. A prototype of the 8×8 ICT processor has been implemented using a standard cell design methodology and a 0.35-μm CMOS CSD 3M/2P 3.3V process on a 10 mm2 die. Pipeline circuit techniques have been used to attain the maximum frequency of operation allowed by the technology, attaining a critical path of 1.8ns, which should be increased by a 20% to allow for line delays, placing the estimated operational frequency at 500Mhz. The circuit includes 12446 cells, being flip-flops 6757 of them. Two clock signals have been distributed, an external one (fs) and an internal one (fs/2). The high number of flip-flops has forced the use of a strategy to minimize clock-skew, combining big sized buffers on the periphery and using wide metal lines (clock-trunks) to distribute the signals.
Mixed Integer Programming and Heuristic Scheduling for Space Communication
NASA Technical Reports Server (NTRS)
Lee, Charles H.; Cheung, Kar-Ming
2013-01-01
Optimal planning and scheduling for a communication network was created where the nodes within the network are communicating at the highest possible rates while meeting the mission requirements and operational constraints. The planning and scheduling problem was formulated in the framework of Mixed Integer Programming (MIP) to introduce a special penalty function to convert the MIP problem into a continuous optimization problem, and to solve the constrained optimization problem using heuristic optimization. The communication network consists of space and ground assets with the link dynamics between any two assets varying with respect to time, distance, and telecom configurations. One asset could be communicating with another at very high data rates at one time, and at other times, communication is impossible, as the asset could be inaccessible from the network due to planetary occultation. Based on the network's geometric dynamics and link capabilities, the start time, end time, and link configuration of each view period are selected to maximize the communication efficiency within the network. Mathematical formulations for the constrained mixed integer optimization problem were derived, and efficient analytical and numerical techniques were developed to find the optimal solution. By setting up the problem using MIP, the search space for the optimization problem is reduced significantly, thereby speeding up the solution process. The ratio of the dimension of the traditional method over the proposed formulation is approximately an order N (single) to 2*N (arraying), where N is the number of receiving antennas of a node. By introducing a special penalty function, the MIP problem with non-differentiable cost function and nonlinear constraints can be converted into a continuous variable problem, whose solution is possible.
NASA Astrophysics Data System (ADS)
Mullin, William
2014-05-01
Transverse spin diffusion is a relatively new transport coefficient and a review of its history and physical basis will be presented. In NMR spin diffusion is often measured by spin echo techniques, which involve spin currents perpendicular to the direction of the magnetization, in contrast with the usual longitudinal case where the current is parallel to the magnetization. The first indication that this involved new physics was the Leggett-Rice effect (1970) in which spin waves, new spin-echo behavior, and an altered spin diffusion coefficient were predicted in liquid 3He. This effect gave the possibility of the first measurement of F1a, the parameter of the Landau Fermi-liquid theory mean-field responsible for the effect. In 1982 Lhuillier and Laloe found a transport equation very similar to the Leggett equation, but valid for highly-polarized dilute Boltzmann Bose and Fermi gases, and describing the ``identical spin rotation effect'' (ISRE), the analog of a Landau mean field. Coincidentally Bashkin and Meyerovich had also given equivalent descriptions of transport in polarized Boltzmann gases. That a mean-field effect could exists in dilute Boltzmann gases was theoretically surprising, but was confirmed experimentally. At low polarization the basic transverse diffusion constant D⊥ coincides with the longitudinal value D∥ however Meyerovich first pointed out that they could differ in highly polarized degenerate gases. Indeed detailed calculations (Jeon and Mullin) showed that, while D∥ is proportional to T-2, D⊥ approaches a constant (depending on polarization) at low T. Considerable controversy existed until experimental verification was achieved in 2004. The importance of ISRE again arose in 2008 as the basis of ``anomalous spin-state segregation'' in Duke and JILA experiments. More recently application of the ideas of transverse spin diffusion to strongly interacting Fermi gases has resulted in the observation of the diffusion constants at the quantum
New pathways towards efficient metallic spin Hall spintronics
Jungfleisch, Matthias Benjamin; Zhang, Wei; Jiang, Wanjun; ...
2015-11-16
Spin Hall effects (SHEs) interconvert spin- and charge currents due to spin- orbit interaction, which enables convenient electrical generation and detection of diffusive spin currents and even collective spin excitations in magnetic solids. Here, we review recent experimental efforts exploring efficient spin Hall detector materials as well as new approaches to drive collective magnetization dynamics and to manipulate spin textures by SHEs. As a result, these studies are also expected to impact practical spintronics applications beyond their significance in fundamental research.
ERIC Educational Resources Information Center
Han, Kyung T.; Rudner, Lawrence M.
2014-01-01
This study uses mixed integer quadratic programming (MIQP) to construct multiple highly equivalent item pools simultaneously, and compares the results from mixed integer programming (MIP). Three different MIP/MIQP models were implemented and evaluated using real CAT item pool data with 23 different content areas and a goal of equal information…
Integral-valued polynomials over sets of algebraic integers of bounded degree.
Peruginelli, Giulio
2014-04-01
Let K be a number field of degree n with ring of integers [Formula: see text]. By means of a criterion of Gilmer for polynomially dense subsets of the ring of integers of a number field, we show that, if [Formula: see text] maps every element of [Formula: see text] of degree n to an algebraic integer, then [Formula: see text] is integral-valued over [Formula: see text], that is, [Formula: see text]. A similar property holds if we consider the set of all algebraic integers of degree n and a polynomial [Formula: see text]: if [Formula: see text] is integral over [Formula: see text] for every algebraic integer α of degree n, then [Formula: see text] is integral over [Formula: see text] for every algebraic integer β of degree smaller than n. This second result is established by proving that the integral closure of the ring of polynomials in [Formula: see text] which are integer-valued over the set of matrices [Formula: see text] is equal to the ring of integral-valued polynomials over the set of algebraic integers of degree equal to n.
A wavelet-based ECG delineation algorithm for 32-bit integer online processing.
Di Marco, Luigi Y; Chiari, Lorenzo
2011-04-03
Since the first well-known electrocardiogram (ECG) delineator based on Wavelet Transform (WT) presented by Li et al. in 1995, a significant research effort has been devoted to the exploitation of this promising method. Its ability to reliably delineate the major waveform components (mono- or bi-phasic P wave, QRS, and mono- or bi-phasic T wave) would make it a suitable candidate for efficient online processing of ambulatory ECG signals. Unfortunately, previous implementations of this method adopt non-linear operators such as root mean square (RMS) or floating point algebra, which are computationally demanding. This paper presents a 32-bit integer, linear algebra advanced approach to online QRS detection and P-QRS-T waves delineation of a single lead ECG signal, based on WT. The QRS detector performance was validated on the MIT-BIH Arrhythmia Database (sensitivity Se = 99.77%, positive predictive value P+ = 99.86%, on 109010 annotated beats) and on the European ST-T Database (Se = 99.81%, P+ = 99.56%, on 788050 annotated beats). The ECG delineator was validated on the QT Database, showing a mean error between manual and automatic annotation below 1.5 samples for all fiducial points: P-onset, P-peak, P-offset, QRS-onset, QRS-offset, T-peak, T-offset, and a mean standard deviation comparable to other established methods. The proposed algorithm exhibits reliable QRS detection as well as accurate ECG delineation, in spite of a simple structure built on integer linear algebra.
Pavone, Michele; Cimino, Paola; De Angelis, Filippo; Barone, Vincenzo
2006-04-05
The nitrogen isotropic hyperfine coupling constant (hcc) and the g tensor of a prototypical spin probe (di-tert-butyl nitroxide, DTBN) in aqueous solution have been investigated by means of an integrated computational approach including Car-Parrinello molecular dynamics and quantum mechanical calculations involving a discrete-continuum embedding. The quantitative agreement between computed and experimental parameters fully validates our integrated approach. Decoupling of the structural, dynamical, and environmental contributions acting onto the spectral observables allows an unbiased judgment of the role played by different effects in determining the overall experimental observables and highlights the importance of finite-temperature vibrational averaging. Together with their intrinsic interest, our results pave the route toward more reliable interpretations of EPR parameters of complex systems of biological and technological relevance.
Langari, A; Pollmann, F; Siahatgar, M
2013-10-09
We study the phase diagram of the anisotropic spin-1 Heisenberg chain with single ion anisotropy (D) using a ground-state fidelity approach. The ground-state fidelity and its corresponding susceptibility are calculated within the quantum renormalization group scheme where we obtained the renormalization of fidelity preventing calculation of the ground state. Using this approach, the phase boundaries between the antiferromagnetic Néel, Haldane and large-D phases are obtained for the whole phase diagram, which justifies the application of quantum renormalization group to trace the symmetry-protected topological phases. In addition, we present numerical exact diagonalization (Lanczos) results in which we employ a recently introduced non-local order parameter to locate the transition from Haldane to large-D phase accurately.
Vortices and vortex states in Rashba spin-orbit-coupled condensates
NASA Astrophysics Data System (ADS)
Nikolić, Predrag
2014-08-01
The Rashba spin-orbit coupling is equivalent to the finite Yang-Mills flux of a static SU(2) gauge field. It gives rise to the protected edge states in two-dimensional topological band insulators, much like magnetic field yields the integer quantum Hall effect. An outstanding question is which collective topological behaviors of interacting particles are made possible by the Rashba spin-orbit coupling. Here we address one aspect of this question by exploring the Rashba SU(2) analogs of vortices in superconductors. Using the Landau-Ginzburg approach and conservation laws, we classify the prominent two-dimensional condensates of two- and three-component spin-orbit-coupled bosons, and characterize their vortex excitations. There are two prominent types of condensates that take advantage of the Rashba spin-orbit coupling. Their vortices exist in multiple flavors whose number is determined by the spin representation, and interact among themselves through logarithmic or linear potentials as a function of distance. The vortices that interact linearly exhibit confinement and asymptotic freedom similar to quarks in quantum chromodynamics. One of the two condensate types supports small metastable neutral quadruplets of vortices, and their tiles as metastable vortex lattices. Quantum melting of such vortex lattices could give rise to non-Abelian fractional topological insulators, SU(2) analogs of fractional quantum Hall states. The physical systems in which these states could exist are trapped two- and three-component bosonic ultracold atoms subjected to artificial gauge fields, as well as solid-state quantum wells made either from Kondo insulators such as SmB6 or conventional topological insulators interfaced with conventional superconductors.
NASA Astrophysics Data System (ADS)
Hida, Kazuo
2007-02-01
The ground state properties of the high spin Heisenberg chains with alternating single site anisotropy are investigated by means of the numerical exact daigonaization and DMRG method. It is found that the ferrimagnetic state appears between the Haldane phase and period doubled Néel phase for the integer spin chains. On the other hand, the transition from the Tomonaga-Luttinger liquid state into the ferrimagnetic state takes place for the half-odd-integer spin chains. In the ferrimagnetic phase, the spontaneous magnetization varies continuously with the modulation amplitude of the single site anisotropy. Eventually, the magnetization is locked to fractional values of the saturated magnetization. These fractional values satisfy the Oshikawa-Yamanaka-Affleck condition. The local spin profile is calculated to reveal the physical nature of each state. In contrast to the case of frustration induced ferrimagnetism, no incommensurate magnetic superstructure is found.
Roemelt, Michael; Neese, Frank
2013-04-11
A spin-adapted configuration interaction with singles method that is based on a restricted open-shell reference function (ROCIS) with general total spin S is presented. All excited configuration state functions (CSFs) are generated with the aid of a spin-free second quantization formalism that only leads to CSFs within the first order interacting space. By virtue of the CSF construction, the formalism involves higher than singly excited determinants but not higher than singly excited configurations. Matrix elements between CSFs are evaluated on the basis of commutator relationships using a symbolic algebra program. The final equations were, however, hand-coded in order to maximize performance. The method can be applied to fairly large systems with more than 100 atoms in reasonable wall-clock times and also parallelizes well. Test calculations demonstrate that the approach is far superior to UHF-based configuration interaction with single excitations but necessarily falls somewhat short of quantitative accuracy due to the lack of dynamic correlation contributions. In order to implicitly account for dynamic correlation in a crude way, the program optionally allows for the use of Kohn-Sham orbitals in combination with a modest downscaling of two-electron integrals (DFT/ROCIS). All two-electron integrals of Kohn-Sham orbitals that appear in the Hamiltonian matrix are reduced by a total of three scaling parameters that are suitable for a wide range of molecules. Test calculations on open-shell organic radicals as well as transition metal complexes demonstrate the wide applicability of the method and its ability to calculate the electronic spectra of large molecular systems.
Third-Order Incremental Dual-Basis Set Zero-Buffer Approach for Large High-Spin Open-Shell Systems.
Zhang, Jun; Dolg, Michael
2015-03-10
The third-order incremental dual-basis set zero-buffer approach (inc3-db-B0) is an efficient, accurate, and black-box quantum chemical method for obtaining correlation energies of large systems, and it has been successfully applied to many real chemical problems. In this work, we extend this approach to high-spin open-shell systems. In the open-shell approach, we will first decompose the occupied orbitals of a system into several domains by a K-means clustering algorithm. The essential part is that we preserve the active (singly occupied) orbitals in all the calculations of the domain correlation energies. The duplicated contributions of the active orbitals to the correlation energy are subtracted from the incremental expansion. All techniques of truncating the virtual space such as the B0 approximation can be applied. This open-shell inc3-db-B0 approach is combined with the CCSD and CCSD(T) methods and applied to the computations of a singlet-triplet gap and an electron detachment process. Our approach exhibits an accuracy better than 0.6 kcal/mol or 0.3 eV compared with the standard implementation, while it saves a large amount of the computational time and can be efficiently parallelized.
2013-01-01
Background Recovering the network topology and associated kinetic parameter values from time-series data are central topics in systems biology. Nevertheless, methods that simultaneously do both are few and lack generality. Results Here, we present a rigorous approach for simultaneously estimating the parameters and regulatory topology of biochemical networks from time-series data. The parameter estimation task is formulated as a mixed-integer dynamic optimization problem with: (i) binary variables, used to model the existence of regulatory interactions and kinetic effects of metabolites in the network processes; and (ii) continuous variables, denoting metabolites concentrations and kinetic parameters values. The approach simultaneously optimizes the Akaike criterion, which captures the trade-off between complexity (measured by the number of parameters), and accuracy of the fitting. This simultaneous optimization mitigates a possible overfitting that could result from addition of spurious regulatory interactions. Conclusion The capabilities of our approach were tested in one benchmark problem. Our algorithm is able to identify a set of plausible network topologies with their associated parameters. PMID:24176044
Takami, Y; Makinouchi, K; Otsuka, G; Nosé, Y
1997-12-01
The Gyro C1E3 pump has been developed as a completely sealless centrifugal pump driven by a magnetic coupling system for long-term usage. The Gyro C1E3 pump is a pivot bearing-supported pump in which the impeller is supported with the top and bottom pivot bearings. In the Gyro C1E3 pump, the impeller spinning is affected by the force balance between the floating force (Ff[N]) of the hydrodynamic effect and the magnetic thrust force (Tf[N]). The authors quantitatively investigated the floating force of the impeller in vitro to determine the magnetic coupling distance (MCD[mm]) that would result in stable impeller spinning. In vitro tests were performed using a loop filled with 37% glycerin solution to obtain the relationship between the MCD and floating speed (Rf, rotational speed when the impeller starts floating [rpm]) and the relationship between the MCD and Tf. From the obtained relationships, we calculated Ff and determined the relationship between the Ff and the rotational speed (R). Furthermore, we determined the relationship between d (minimum required MCD [mm]) and R from the results of determining the relationship of the MCD and Tf and of the Ff and R. The following relationships were obtained: Rf = 6.24 x 10(4) x MCD-1.35; Tf = 5.27 x 10(3) x MCD-2.29; Ff = 4.71 x 10(-6) x RPM1.69; and d = 9.02 x RPM-0.85 where RPM is the rotational speed. It was demonstrated that the floating force of the impeller is a function only of the rotational speed in the pivot bearing-supported Gyro C1E3 pump. The floating force is estimated to be 10 N to 40 N at rotational speeds of 1,500 rpm to 3,000 rpm at which the Gyro pump may be used in most clinical situations. It would be possible to control the impeller position of the Gyro pump automatically at the stable spinning condition by controlling the adequate magnetic coupling distance based upon its relationship with the rotational speed which was obtained in this study.
Bilocal model for the relativistic spinning particle
NASA Astrophysics Data System (ADS)
Rempel, Trevor; Freidel, Laurent
2017-05-01
In this work we show that a relativistic spinning particle can be described at the classical and the quantum level as being composed of two physical constituents which are entangled and separated by a fixed distance. This bilocal model for spinning particles allows for a natural description of particle interactions as a local interaction at each of the constituents. This form of the interaction vertex provides a resolution to a long standing issue on the nature of relativistic interactions for spinning objects in the context of the worldline formalism. It also potentially brings a dynamical explanation for why massive fundamental objects are naturally of lowest spin. We analyze first a nonrelativistic system where spin is modeled as an entangled state of two particles with the entanglement encoded into a set of constraints. It is shown that these constraints can be made relativistic and that the resulting description is isomorphic to the usual description of the phase space of massive relativistic particles with the restriction that the quantum spin has to be an integer.
NASA Astrophysics Data System (ADS)
Mahfouzi, Farzad
ferromagnet (FM). I show that this could be due to the existence of Rashba spin-orbit coupling (SOC) at the interface of the FM and insulator. Assuming that the measured signals are quantum mechanical effect where a solution to the time dependent Schrodinger equation is required, I use Keldysh Green function formalism to introduce a "multi-photon" approach which takes into account the effects of time-dependent term exactly up to scatterings from a finite number of photons. We then proceed to find the corresponding Green function numerically using a recursive method which allows us to increase the size of the system significantly. We also implement other approximations such as adiabatic and rotating frame approaches and compared them with our approach. In Chapter 4, I investigate the spin and charge pumping from a precessing magnetization attached to the edge of a 2-dimensional topological insulator (2DTI). We show that, in this system a huge spin current (or voltage signal if the FM covers only one edge) can be pumped for very small cone angles of the precessing FM (proportional to the intensity of the applied microwave). In Chapter 5 I present the third project in this field of research, where, I investigated the pumping from FM attached to a 3-dimensional TI. Spin-transfer torque: Presented in Chapter 6, in this work I investigate the torque induced by a flow of spin-polarized current into a FM and check the condition in which it can cause the magnetization to flip. Motivated by recent experimental developments in the field, here I consider systems with strong SOC such as TIs within a magnetic tunnel junction (MTJ) heterostructure. In the theoretical part I show the correct way (as opposed to the conventional approach used in some theoretical works which suffers from violation of the gauge invariance) to calculate linear-response torque to the external applied voltage and for the numerical calculation I adopted a parallelized adaptive integration algorithm in order to take
NASA Astrophysics Data System (ADS)
Singh, S. K.; Verma, U. P.
2014-06-01
The structural and electronic properties of ytterbium monopnictides YbX (X = N, P) compounds have been investigated using full potential linear augmented plane wave plus local orbitals approach within the framework of density functional theory. The local spin-density approximation along with Hubbard- U corrections and spin-orbit coupling have been used for correct prediction of electronic properties. At ambient conditions ytterbium monopnictides stabilize in NaCl ( B1) structure. Also, the equilibrium properties, viz., lattice constants ( a), bulk modulus ( B 0) and its pressure derivative ( B 0 ') and total energy ( E 0) have been calculated in three other phases namely CsCl ( B2), zinc blende ( B3) and body centred tetragonal. Under compression, both YbN and YbP undergo first-order structural transition from B1 to B2 phase at 164.0 and 33.7 GPa of pressure, respectively. Obtained results show that YbX is semi-metallic in B1 phase and metallic in B2 phase. Thermal parameters such as Gruneisen parameter, Debye temperature, specific heat, thermal expansion coefficient and entropy have been determined as a function of pressure and temperature. The calculated lattice and other parameters are in good agreement with experimental and other theoretical values reported earlier.
Sun, Xiuhua; Yang, Weichun; Geng, Yanli; Woolley, Adam T
2009-04-07
We have developed a simple and effective method for surface modification of polymer microchips by entrapping hydroxypropyl cellulose (HPC) in a spin-coated thin film on the surface. Poly(methyl methacrylate-8.5-methacrylic acid), a widely available commercial resist formulation, was utilized as a matrix for dissolving HPC and providing adherence to native polymer surfaces. Various amounts of HPC (0.1-2.0%) dissolved in the copolymer and spun on polymer surfaces were evaluated. The modified surfaces were characterized by contact angle measurement, X-ray photoelectron spectroscopy and atomic force microscopy. The developed method was applied on both poly(methyl methacrylate) and cyclic olefin copolymer microchips. A fluorescently labeled myoglobin digest, binary protein mixture, and human serum sample were all separated in these surface-modified polymer microdevices. Our work exhibits an easy and reliable way to achieve favorable biomolecular separation performance in polymer microchips.
Sun, Xiuhua; Yang, Weichun; Geng, Yanli; Woolley, Adam T.
2009-01-01
We have developed a simple and effective method for surface modification of polymer microchips by entrapping hydroxypropyl cellulose (HPC) in a spin-coated thin film on the surface. Poly(methyl methacrylate-8.5-methacrylic acid), a widely available commercial resist formulation, was utilized as a matrix for dissolving HPC and providing adherence to native polymer surfaces. Various amounts of HPC (0.1–2.0%) dissolved in the copolymer and spun on polymer surfaces were evaluated. The modified surfaces were characterized by contact angle measurement, X-ray photoelectron spectroscopy and atomic force microscopy. The developed method was applied on both poly(methyl methacrylate) and cyclic olefin copolymer microchips. A fluorescently labeled myoglobin digest, binary protein mixture, and human serum sample were all separated in these surface-modified polymer microdevices. Our work exhibits an easy and reliable way to achieve favorable biomolecular separation performance in polymer microchips. PMID:19294306
Constrained spacecraft reorientation using mixed integer convex programming
NASA Astrophysics Data System (ADS)
Tam, Margaret; Glenn Lightsey, E.
2016-10-01
A constrained attitude guidance (CAG) system is developed using convex optimization to autonomously achieve spacecraft pointing objectives while meeting the constraints imposed by on-board hardware. These constraints include bounds on the control input and slew rate, as well as pointing constraints imposed by the sensors. The pointing constraints consist of inclusion and exclusion cones that dictate permissible orientations of the spacecraft in order to keep objects in or out of the field of view of the sensors. The optimization scheme drives a body vector towards a target inertial vector along a trajectory that consists solely of permissible orientations in order to achieve the desired attitude for a given mission mode. The non-convex rotational kinematics are handled by discretization, which also ensures that the quaternion stays unity norm. In order to guarantee an admissible path, the pointing constraints are relaxed. Depending on how strict the pointing constraints are, the degree of relaxation is tuneable. The use of binary variables permits the inclusion of logical expressions in the pointing constraints in the case that a set of sensors has redundancies. The resulting mixed integer convex programming (MICP) formulation generates a steering law that can be easily integrated into an attitude determination and control (ADC) system. A sample simulation of the system is performed for the Bevo-2 satellite, including disturbance torques and actuator dynamics which are not modeled by the controller. Simulation results demonstrate the robustness of the system to disturbances while meeting the mission requirements with desirable performance characteristics.
Integer wavelet transform for embedded lossy to lossless image compression.
Reichel, J; Menegaz, G; Nadenau, M J; Kunt, M
2001-01-01
The use of the discrete wavelet transform (DWT) for embedded lossy image compression is now well established. One of the possible implementations of the DWT is the lifting scheme (LS). Because perfect reconstruction is granted by the structure of the LS, nonlinear transforms can be used, allowing efficient lossless compression as well. The integer wavelet transform (IWT) is one of them. This is an interesting alternative to the DWT because its rate-distortion performance is similar and the differences can be predicted. This topic is investigated in a theoretical framework. A model of the degradations caused by the use of the IWT instead of the DWT for lossy compression is presented. The rounding operations are modeled as additive noise. The noise are then propagated through the LS structure to measure their impact on the reconstructed pixels. This methodology is verified using simulations with random noise as input. It predicts accurately the results obtained using images compressed by the well-known EZW algorithm. Experiment are also performed to measure the difference in terms of bit rate and visual quality. This allows to a better understanding of the impact of the IWT when applied to lossy image compression.
Accurate construction of consensus genetic maps via integer linear programming.
Wu, Yonghui; Close, Timothy J; Lonardi, Stefano
2011-01-01
We study the problem of merging genetic maps, when the individual genetic maps are given as directed acyclic graphs. The computational problem is to build a consensus map, which is a directed graph that includes and is consistent with all (or, the vast majority of) the markers in the input maps. However, when markers in the individual maps have ordering conflicts, the resulting consensus map will contain cycles. Here, we formulate the problem of resolving cycles in the context of a parsimonious paradigm that takes into account two types of errors that may be present in the input maps, namely, local reshuffles and global displacements. The resulting combinatorial optimization problem is, in turn, expressed as an integer linear program. A fast approximation algorithm is proposed, and an additional speedup heuristic is developed. Our algorithms were implemented in a software tool named MERGEMAP which is freely available for academic use. An extensive set of experiments shows that MERGEMAP consistently outperforms JOINMAP, which is the most popular tool currently available for this task, both in terms of accuracy and running time. MERGEMAP is available for download at http://www.cs.ucr.edu/~yonghui/mgmap.html.
The transport mechanism of the integer quantum Hall effect
NASA Astrophysics Data System (ADS)
Hui, Tan; LiMing, W.; Liang, Shi-Dong
2016-11-01
The integer quantum Hall effect (IQHE) is analysed using a mechanism of the electron transport in the form of semi-classic wave packages in this paper. Due to the confinement of the edges of a slab the Landau levels of electrons in a strong magnetic field go up at large wave-vectors to form energy bands. The slopes of the energy bands give the group velocities of electron wave packages and thus contribute to the current. Certain magnetic fields separate the electron transport in the slab into two branches with opposite and large wave vectors, which are localized at the two edges of the slab, respectively. In this case back scattering of electrons is prohibited due to the localization of these two branches. Thus the slab exhibits zero longitudinal resistance and plateaus of Hall resistance. When the Fermi level is sweeping over a Landau level at some magnetic fields, however, the electron waves locate around the central axis of the slab and overlap each other thus back scattering of electrons takes place frequently. Then longitudinal resistance appears and the Hall resistance goes up from one plateau to a new one. This transport mechanism is much clearer and more intuitive than the conventional explanations to the IQHE.
Preconditioning 2D Integer Data for Fast Convex Hull Computations.
Cadenas, José Oswaldo; Megson, Graham M; Luengo Hendriks, Cris L
2016-01-01
In order to accelerate computing the convex hull on a set of n points, a heuristic procedure is often applied to reduce the number of points to a set of s points, s ≤ n, which also contains the same hull. We present an algorithm to precondition 2D data with integer coordinates bounded by a box of size p × q before building a 2D convex hull, with three distinct advantages. First, we prove that under the condition min(p, q) ≤ n the algorithm executes in time within O(n); second, no explicit sorting of data is required; and third, the reduced set of s points forms a simple polygonal chain and thus can be directly pipelined into an O(n) time convex hull algorithm. This paper empirically evaluates and quantifies the speed up gained by preconditioning a set of points by a method based on the proposed algorithm before using common convex hull algorithms to build the final hull. A speedup factor of at least four is consistently found from experiments on various datasets when the condition min(p, q) ≤ n holds; the smaller the ratio min(p, q)/n is in the dataset, the greater the speedup factor achieved.
Mixed integer linear programming for maximum-parsimony phylogeny inference.
Sridhar, Srinath; Lam, Fumei; Blelloch, Guy E; Ravi, R; Schwartz, Russell
2008-01-01
Reconstruction of phylogenetic trees is a fundamental problem in computational biology. While excellent heuristic methods are available for many variants of this problem, new advances in phylogeny inference will be required if we are to be able to continue to make effective use of the rapidly growing stores of variation data now being gathered. In this paper, we present two integer linear programming (ILP) formulations to find the most parsimonious phylogenetic tree from a set of binary variation data. One method uses a flow-based formulation that can produce exponential numbers of variables and constraints in the worst case. The method has, however, proven extremely efficient in practice on datasets that are well beyond the reach of the available provably efficient methods, solving several large mtDNA and Y-chromosome instances within a few seconds and giving provably optimal results in times competitive with fast heuristics than cannot guarantee optimality. An alternative formulation establishes that the problem can be solved with a polynomial-sized ILP. We further present a web server developed based on the exponential-sized ILP that performs fast maximum parsimony inferences and serves as a front end to a database of precomputed phylogenies spanning the human genome.
Critical integer quantum Hall topology in the integrable Maryland model
NASA Astrophysics Data System (ADS)
Ganeshan, Sriram; Kechedzhi, Kostyantyn
2014-03-01
One-dimensional tight binding models such as Aubry-Andre-Harper (AAH) model (with onsite cosine potential) and the integrable Maryland model (with onsite tangent potential) have been the subjects of extensive theoretical research in localization studies. AAH can be directly mapped onto the two-dimensional Hofstadter model that manifests the integer quantum Hall topology on a lattice. However, no such connection has been made for the Maryland model (MM). In this talk, we present a generalized model that contains AAH and MM as the limiting cases with the MM lying precisely at a topological quantum phase transition (TQPT) point. A remarkable feature of this critical point is that the 1D MM retains well-defined energy gaps whereas the equivalent 2D model becomes gapless, signifying the 2D nature of the TQPT. The criticality allows us to associate topological invariants with the Maryland model in a restricted mathematical sense at the special filling factors that are adiabatically connected to the spectral gaps in the 1D Aubry-Andre-Harper model. Our theory presented in this work establishes deep and unexpected mathematical connections between 2D topological models and a family of 1D incommensurate localization models. This work is supported by JQI-NSF-PFC, Microsoft Q and JQI-ARO-MU.
The dip effect under integer quantized Hall conditions
NASA Astrophysics Data System (ADS)
Gulebaglan, Sinem Erden; Kalkan, Sirri Batuhan; Sirt, Serkan; Kendirlik, Enver Metin; Siddiki, Afif
2014-03-01
In this work we investigate an unusual transport phenomenon observed in two-dimensional electron gas under integer quantum Hall effect conditions. Our calculations are based on the screening theory, using a semi-analytical model. The transport anomalies are dip and overshoot effects, where the Hall resistance decreases (or increases) unexpectedly at the quantized resistance plateaus intervals. We report on our numerical findings of the dip effect in the Hall resistance, considering GaAs/AlGaAs heterostructures in which we investigated the effect under different experimental conditions. We show that, similar to overshoot, the amplitude of the dip effect is strongly influenced by the edge reconstruction due to electrostatics. It is observed that the steep potential variation close to the physical boundaries of the sample results in narrower incompressible strips, hence, the experimental observation of the dip effect is limited by the properties of these current carrying strips. By performing standard Hall resistance measurements on gate defined narrow samples, we demonstrate that the predictions of the screening theory is in well agreement with our experimental findings.
Learning oncogenetic networks by reducing to mixed integer linear programming.
Shahrabi Farahani, Hossein; Lagergren, Jens
2013-01-01
Cancer can be a result of accumulation of different types of genetic mutations such as copy number aberrations. The data from tumors are cross-sectional and do not contain the temporal order of the genetic events. Finding the order in which the genetic events have occurred and progression pathways are of vital importance in understanding the disease. In order to model cancer progression, we propose Progression Networks, a special case of Bayesian networks, that are tailored to model disease progression. Progression networks have similarities with Conjunctive Bayesian Networks (CBNs) [1],a variation of Bayesian networks also proposed for modeling disease progression. We also describe a learning algorithm for learning Bayesian networks in general and progression networks in particular. We reduce the hard problem of learning the Bayesian and progression networks to Mixed Integer Linear Programming (MILP). MILP is a Non-deterministic Polynomial-time complete (NP-complete) problem for which very good heuristics exists. We tested our algorithm on synthetic and real cytogenetic data from renal cell carcinoma. We also compared our learned progression networks with the networks proposed in earlier publications. The software is available on the website https://bitbucket.org/farahani/diprog.
Spin Funneling for Enhanced Spin Injection into Ferromagnets
Sayed, Shehrin; Diep, Vinh Q.; Camsari, Kerem Yunus; Datta, Supriyo
2016-01-01
It is well-established that high spin-orbit coupling (SOC) materials convert a charge current density into a spin current density which can be used to switch a magnet efficiently and there is increasing interest in identifying materials with large spin Hall angle for lower switching current. Using experimentally benchmarked models, we show that composite structures can be designed using existing spin Hall materials such that the effective spin Hall angle is larger by an order of magnitude. The basic idea is to funnel spins from a large area of spin Hall material into a small area of ferromagnet using a normal metal with large spin diffusion length and low resistivity like Cu or Al. We show that this approach is increasingly effective as magnets get smaller. We avoid unwanted charge current shunting by the low resistive NM layer utilizing the newly discovered phenomenon of pure spin conduction in ferromagnetic insulators via magnon diffusion. We provide a spin circuit model for magnon diffusion in FMI that is benchmarked against recent experiments and theory. PMID:27374496
Spin Funneling for Enhanced Spin Injection into Ferromagnets
NASA Astrophysics Data System (ADS)
Sayed, Shehrin; Diep, Vinh Q.; Camsari, Kerem Yunus; Datta, Supriyo
2016-07-01
It is well-established that high spin-orbit coupling (SOC) materials convert a charge current density into a spin current density which can be used to switch a magnet efficiently and there is increasing interest in identifying materials with large spin Hall angle for lower switching current. Using experimentally benchmarked models, we show that composite structures can be designed using existing spin Hall materials such that the effective spin Hall angle is larger by an order of magnitude. The basic idea is to funnel spins from a large area of spin Hall material into a small area of ferromagnet using a normal metal with large spin diffusion length and low resistivity like Cu or Al. We show that this approach is increasingly effective as magnets get smaller. We avoid unwanted charge current shunting by the low resistive NM layer utilizing the newly discovered phenomenon of pure spin conduction in ferromagnetic insulators via magnon diffusion. We provide a spin circuit model for magnon diffusion in FMI that is benchmarked against recent experiments and theory.
Finite-Dimensional Half-Integer Weight Modules over Queer Lie Superalgebras
NASA Astrophysics Data System (ADS)
Cheng, Shun-Jen; Kwon, Jae-Hoon
2016-09-01
We give a new interpretation of representation theory of the finite-dimensional half-integer weight modules over the queer Lie superalgebra {{q}(n)}. It is given in terms of the Brundan's work on finite-dimensional integer weight {{q}(n)}-modules by means of Lusztig's canonical basis. Using this viewpoint we compute the characters of the finite-dimensional half-integer weight irreducible modules. For a large class of irreducible modules whose highest weights are of special types (i.e., totally connected or totally disconnected) we derive closed-form character formulas that are reminiscent of the Kac-Wakimoto character formula for basic Lie superalgebras.
Adiabatic rotation of effective spin. II. Spin-rotational relaxation
NASA Astrophysics Data System (ADS)
Serebrennikov, Yu. A.; Steiner, U. E.
1994-05-01
The theory of electron spin-rotational (SR) relaxation in systems with an effective spin Seff=1/2 is formulated in terms of the adiabatic rotation of effective spin (ARES) approach. It is shown that SR relaxation results from the orientational random walk of the axes of the intramolecular electric field potential (ligand field) to which a spin-bearing atomic center is exposed. The validity of the stochastic treatment presented here is not limited by the Redfield conditions. The general expression obtained for the time constant of electron spin relaxation in liquid phase reproduces the well-known result of Hubbard-Atkins-Kivelson theory if it is specialized to the case of systems with weak spin-orbit coupling.
Chiral spin liquids in arrays of spin chains
NASA Astrophysics Data System (ADS)
Gorohovsky, Gregory; Pereira, Rodrigo G.; Sela, Eran
2015-06-01
We describe a coupled-chain construction for chiral spin liquids in two-dimensional spin systems. Starting from a one-dimensional zigzag spin chain and imposing SU(2) symmetry in the framework of non-Abelian bosonization, we first show that our approach faithfully describes the low-energy physics of an exactly solvable model with a three-spin interaction. Generalizing the construction to the two-dimensional case, we obtain a theory that incorporates the universal properties of the chiral spin liquid predicted by Kalmeyer and Laughlin: charge-neutral edge states, gapped spin-1/2 bulk excitations, and ground-state degeneracy on the torus signaling the topological order of this quantum state. In addition, we show that the chiral spin liquid phase is more easily stabilized in frustrated lattices containing corner-sharing triangles, such as the extended kagome lattice, than in the triangular lattice. Our field-theoretical approach invites generalizations to more exotic chiral spin liquids and may be used to assess the existence of the chiral spin liquid as the ground state of specific lattice systems.
Abdal-Hay, Abdalla; Hamdy, Abdel Salam; Khalil, Khalil Abdelrazek; Lim, Ju Hyun
2015-04-01
A biocompatible coating consists of a poly(vinyl acetate)/hydroxyapatite (PVAc/HA) composite nanofiber mat was applied to NaOH-treated titanium metal by means of a novel, facile and efficient air jet spinning (AJS) approach. Results showed that HA nanoparticles (NPs) strongly embedded onto the AJS single fiber surface resulting in a strong chemical interfacial bonding between the two phases due to the difference in kinetic energies. It was proven that AJS membrane coatings can provide significant improvement in the corrosion resistance of titanium substrate. Interestingly, the biocompatibility using MC3T3-E1 osteoblast to the PVAc/HA fiber composite layer coated on Ti was significantly higher than pure titanium-substrates.
Xu, Xuefei; Gozem, Samer; Olivucci, Massimo; Truhlar, Donald G
2013-01-17
We present a new approach to calculating potential energy surfaces for photochemical reactions by combining self-consistent-field calculations for single-reference ground and excited states with symmetry-corrected spin-flip Tamm-Dancoff approximation calculations for multireference electronic states. The method is illustrated by an application with the M05-2X exchange-correlation functional to cis-trans isomerization of the penta-2,4-dieniminium cation, which is a model (with three conjugated double bonds) of the protonated Schiff base of retinal. We find good agreement with multireference configuration interaction-plus-quadruples (MRCISD+Q) wave function calculations along three key paths in the strong-interaction region of the ground and first excited singlet states.
Solving and analyzing side-chain positioning problems using linear and integer programming.
Kingsford, Carleton L; Chazelle, Bernard; Singh, Mona
2005-04-01
Side-chain positioning is a central component of homology modeling and protein design. In a common formulation of the problem, the backbone is fixed, side-chain conformations come from a rotamer library, and a pairwise energy function is optimized. It is NP-complete to find even a reasonable approximate solution to this problem. We seek to put this hardness result into practical context. We present an integer linear programming (ILP) formulation of side-chain positioning that allows us to tackle large problem sizes. We relax the integrality constraint to give a polynomial-time linear programming (LP) heuristic. We apply LP to position side chains on native and homologous backbones and to choose side chains for protein design. Surprisingly, when positioning side chains on native and homologous backbones, optimal solutions using a simple, biologically relevant energy function can usually be found using LP. On the other hand, the design problem often cannot be solved using LP directly; however, optimal solutions for large instances can still be found using the computationally more expensive ILP procedure. While different energy functions also affect the difficulty of the problem, the LP/ILP approach is able to find optimal solutions. Our analysis is the first large-scale demonstration that LP-based approaches are highly effective in finding optimal (and successive near-optimal) solutions for the side-chain positioning problem.
Dipole-Dipole Interactions of High-spin Paramagnetic Centers in Disordered Systems
Maryasov, Alexander G.; Bowman, Michael K.; Tsvetkov, Yuri D.
2007-09-13
Dipole-dipole interactions between distant paramagnetic centers (PCs) where at least one PC has spin S>1/2 are examined. The results provide a basis for the application of pulsed DEER or PELDOR methods to the measurement of distances between PC involving high-spin species. A projection operator technique based on spectral decomposition of the secular Hamiltonian is used to calculate EPR line splitting caused by the dipole coupling. This allows calculation of operators projecting arbitrary wavefunction onto high PC eigenstates when the eigenvectors of the Hamiltonian are not known. The effective spin vectors-that is, the expectation values for vector spin operators in the PC eigenstates-are calculated. The dependence of these effective spin vectors on the external magnetic field is calculated. There is a qualitative difference between pairs having at least one integer spin (non Karmers PC) and pairs of two half-integer (Kramers PC) spins. With the help of these effective spin vectors, the dipolar lineshape of EPR lines is calculated. Analytical relations are obtained for PCs with spin S=1/2 and 1. The dependence of Pake patterns on variations of zero field splitting, Zeeman energy, temperature and dipolar coupling are illustrated.
Yan, YiJing
2014-02-07
This work establishes a strongly correlated system-and-bath dynamics theory, the many-dissipaton density operators formalism. It puts forward a quasi-particle picture for environmental influences. This picture unifies the physical descriptions and algebraic treatments on three distinct classes of quantum environments, electron bath, phonon bath, and two-level spin or exciton bath, as their participating in quantum dissipation processes. Dynamical variables for theoretical description are no longer just the reduced density matrix for system, but remarkably also those for quasi-particles of bath. The present theoretical formalism offers efficient and accurate means for the study of steady-state (nonequilibrium and equilibrium) and real-time dynamical properties of both systems and hybridizing environments. It further provides universal evaluations, exact in principle, on various correlation functions, including even those of environmental degrees of freedom in coupling with systems. Induced environmental dynamics could be reflected directly in experimentally measurable quantities, such as Fano resonances and quantum transport current shot noise statistics.
Inverse design of disordered stealthy hyperuniform spin chains
NASA Astrophysics Data System (ADS)
Chertkov, Eli; DiStasio, Robert A.; Zhang, Ge; Car, Roberto; Torquato, Salvatore
2016-02-01
Positioned between crystalline solids and liquids, disordered many-particle systems which are stealthy and hyperuniform represent new states of matter that are endowed with novel physical and thermodynamic properties. Such stealthy and hyperuniform states are unique in that they are transparent to radiation for a range of wave numbers around the origin. In this work, we employ recently developed inverse statistical-mechanical methods, which seek to obtain the optimal set of interactions that will spontaneously produce a targeted structure or configuration as a unique ground state, to investigate the spin-spin interaction potentials required to stabilize disordered stealthy hyperuniform one-dimensional (1D) Ising-type spin chains. By performing an exhaustive search over the spin configurations that can be enumerated on periodic 1D integer lattices containing N =2 ,3 ,...,36 sites, we were able to identify and structurally characterize all stealthy hyperuniform spin chains in this range of system sizes. Within this pool of stealthy hyperuniform spin configurations, we then utilized such inverse optimization techniques to demonstrate that stealthy hyperuniform spin chains can be realized as either unique or degenerate disordered ground states of radial long-ranged (relative to the spin-chain length) spin-spin interactions. Such exotic ground states appear to be distinctly different from spin glasses in both their inherent structural properties and the nature of the spin-spin interactions required to stabilize them. As such, the implications and significance of the existence of these disordered stealthy hyperuniform ground-state spin systems warrants further study, including whether their bulk physical properties and excited states, like their many-particle system counterparts, are singularly remarkable, and can be experimentally realized.
Time domain simulation of Li-ion batteries using non-integer order equivalent electrical circuit
NASA Astrophysics Data System (ADS)
Riu, D.; Montaru, M.; Bultel, Y.
2013-06-01
For electric vehicle (EV) or hybrid EV (HEV) development and integration of renewables in electrical networks, battery monitoring systems have to be more and more precise to take into account the state-of-charge and the dynamic behavior of the battery. Some non-integer order models of electrochemical batteries have been proposed in literacy with a good accuracy and a low number of parameters in the frequential domain. Nevertheless, time simulation of such models required to approximate this non-integer order system by an equivalent high integer order model. An adapted algorithm is then proposed in this article to simulate the non-integer order model without any approximation, thanks to the construction of a 3-order generalized state-space system. This algorithm is applied and validated on a 2.3 A.h Li-ion battery.
NASA Astrophysics Data System (ADS)
Jiang, Zhuo; Xie, Chengjun
2013-12-01
This paper improved the algorithm of reversible integer linear transform on finite interval [0,255], which can realize reversible integer linear transform in whole number axis shielding data LSB (least significant bit). Firstly, this method use integer wavelet transformation based on lifting scheme to transform the original image, and select the transformed high frequency areas as information hiding area, meanwhile transform the high frequency coefficients blocks in integer linear way and embed the secret information in LSB of each coefficient, then information hiding by embedding the opposite steps. To extract data bits and recover the host image, a similar reverse procedure can be conducted, and the original host image can be lossless recovered. The simulation experimental results show that this method has good secrecy and concealment, after conducted the CDF (m, n) and DD (m, n) series of wavelet transformed. This method can be applied to information security domain, such as medicine, law and military.
Invertible update-then-predict integer lifting wavelet for lossless image compression
NASA Astrophysics Data System (ADS)
Chen, Dong; Li, Yanjuan; Zhang, Haiying; Gao, Wenpeng
2017-01-01
This paper presents a new wavelet family for lossless image compression by re-factoring the channel representation of the update-then-predict lifting wavelet, introduced by Claypoole, Davis, Sweldens and Baraniuk, into lifting steps. We name the new wavelet family as invertible update-then-predict integer lifting wavelets (IUPILWs for short). To build IUPILWs, we investigate some central issues such as normalization, invertibility, integer structure, and scaling lifting. The channel representation of the previous update-then-predict lifting wavelet with normalization is given and the invertibility is discussed firstly. To guarantee the invertibility, we re-factor the channel representation into lifting steps. Then the integer structure and scaling lifting of the invertible update-then-predict wavelet are given and the IUPILWs are built. Experiments show that comparing with the integer lifting structure of 5/3 wavelet, 9/7 wavelet, and iDTT, IUPILW results in the lower bit-rates for lossless image compression.
Extraction and characterization of artocarpus integer gum as pharmaceutical excipient.
Farooq, Uzma; Malviya, Rishabha; Sharma, Pramod Kumar
2014-01-01
Natural polymers are widely used as excipients in pharmaceutical formulations. They are easily available, cheap and less toxic as compared to synthetic polymers. This study involves the extraction and characterization of kathal (Artocarpus integer) gum as a pharmaceutical excipient. Water was used as a solvent for extraction of the natural polymer. Yield was calculated with an aim to evaluate the efficacy of the process. The product was screened for the presence of Micrometric properties, and swelling index, flow behavior, surface tension, and viscosity of natural polymers were calculated. Using a water based extraction method, the yield of gum was found to be 2.85%. Various parameters such as flow behavior, organoleptic properties, surface tension, viscosity, loss on drying, ash value and swelling index together with microscopic studies of particles were done to characterize the extracted gum. The result showed that extracted kathal gum exhibited excellent flow properties. The gum was investigated for purity by carrying out chemical tests for different phytochemical constituents and only carbohydrates were found to be present. It had a good swelling index (13 ± 1). The pH and surface tension of the 1% gum solution were found to be 6 ± 0.5 and 0.0627 J/m2, respectively. The ash values such as total ash, acid insoluble ash, and water soluble ash were found to be 18.9%, 0.67% and 4% respectively. Loss on drying was 6.61%. The extracted gum was soluble in warm water and insoluble in organic solvents. The scanning electron micrograph (SEM) revealed rough and irregular particles of the isolated polymer. The results of the evaluated properties showed that kathal-derived gum has acceptable pH and organoleptic properties and can be used as a pharmaceutical excipient to formulate solid oral dosage forms.
Determination of the Pt spin diffusion length by spin-pumping and spin Hall effect
Zhang, Wei; Pearson, John E.; Hoffmann, Axel; Vlaminck, Vincent; Divan, Ralu; Bader, Samuel D.
2013-12-09
The spin diffusion length of Pt at room temperature and at 8 K is experimentally determined via spin pumping and spin Hall effect in permalloy/Pt bilayers. Voltages generated during excitation of ferromagnetic resonance from the inverse spin Hall effect and anisotropic magnetoresistance effect were investigated with a broadband approach. Varying the Pt layer thickness gives rise to an evolution of the voltage line shape due to the superposition of the above two effects. By studying the ratio of the two voltage components with the Pt layer thickness, the spin diffusion length of Pt can be directly extracted. We obtain a spin diffusion length of ∼1.2 nm at room temperature and ∼1.6 nm at 8 K.
Particle in a Moebius wire and half-integer orbital angular momentum
Miliordos, Evangelos
2011-06-15
Restricting one particle on the rim of a Moebius strip (Moebius wire), its wave functions are explicitly calculated through the nonrelativistic quantum theory. Demanding the wave function to be single valued, it is proven that in the case of a narrow strip the orbital angular momentum of the particle takes both integer and half-integer values of ({h_bar}/2{pi}). In addition, the energy values of two chiral Moebius wires are proven to be equal.
Exact solution of the two-axis countertwisting hamiltonian for the half-integer J case
NASA Astrophysics Data System (ADS)
Pan, Feng; Zhang, Yao-Zhong; Draayer, Jerry P.
2017-02-01
Bethe ansatz solutions of the two-axis countertwisting Hamiltonian for any (integer and half-integer) J are derived based on the Jordan–Schwinger (differential) boson realization of the SU(2) algebra after desired Euler rotations, where J is the total angular momentum quantum number of the system. It is shown that solutions to the Bethe ansatz equations can be obtained as zeros of the extended Heine–Stieltjes polynomials. Two sets of solutions, with solution number being J + 1 and J respectively when J is an integer and J + 1/2 each when J is a half-integer, are obtained. Properties of the zeros of the related extended Heine–Stieltjes polynomials for half-integer J cases are discussed. It is clearly shown that double degenerate level energies for half-integer J are symmetric with respect to the E = 0 axis. It is also shown that the excitation energies of the ‘yrast’ and other ‘yrare’ bands can all be asymptotically given by quadratic functions of J, especially when J is large.
NASA Astrophysics Data System (ADS)
Laflorencie, Nicolas; Luitz, David J.; Alet, Fabien
2015-09-01
Using a modified spin-wave theory which artificially restores zero sublattice magnetization on finite lattices, we investigate the entanglement properties of the Néel ordered J1-J2 Heisenberg antiferromagnet on the square lattice. Different kinds of subsystem geometries are studied, either corner-free (line, strip) or with sharp corners (square). Contributions from the nG=2 Nambu-Goldstone modes give additive logarithmic corrections with a prefactor nG/2 independent of the Rényi index. On the other hand, π /2 corners lead to additional (negative) logarithmic corrections with a prefactor lqc which does depend on both nG and the Rényi index q , in good agreement with scalar field theory predictions. By varying the second neighbor coupling J2 we also explore universality across the Néel ordered side of the phase diagram of the J1-J2 antiferromagnet, from the frustrated side 0
Magnetic properties of magnetoactive spin clusters
Khamzin, A. M.; Nigmatullin, R. R.
2010-01-15
A simple model is proposed for describing magnetic properties of magnetoactive nanoclusters, which permits exact analytic solution. Exact expressions are obtained for thermodynamic characteristics of the model, which hold in the entire range of temperatures, magnetic fields, and interaction parameters. It is found that in the case of easy-axis anisotropy, the field dependence of magnetization of a nanocluster consisting of N particles with a spin of 1/2 has [N/2] fractional plateaus ([ Horizontal-Ellipsis ] is the integer part) corresponding to polarized phases with ruptures singlet pairs. A nonmonotonic behavior observed for the magnetic susceptibility of an easy-plane cluster is typical of gap magnets. The spin gap between the ground state and excited states is proportional to the anisotropy parameter.
Construction of conformally invariant higher spin operators using transvector algebras
Eelbode, D.; Raeymaekers, T.
2014-10-15
This paper deals with a systematic construction of higher spin operators, defined as conformally invariant differential operators acting on functions on flat space R{sup m} with values in an arbitrary half-integer irreducible representation for the spin group. To be more precise, the higher spin version of the Dirac operator and associated twistor operators will be constructed as generators of a transvector algebra, hereby generalising the well-known fact that the classical Dirac operator on R{sup m} and its symbol generate the orthosymplectic Lie superalgebra osp(1,2). To do so, we will use the extremal projection operator and its relation to transvector algebras. In the second part of the article, the conformal invariance of the constructed higher spin operators will be proven explicitly.
Spin resonance and spin fluctuations in a quantum wire
NASA Astrophysics Data System (ADS)
Pokrovsky, V. L.
2017-02-01
This is a review of theoretical works on spin resonance in a quantum wire associated with the spin-orbit interaction. We demonstrate that the spin-orbit induced internal "magnetic field" leads to a narrow spin-flip resonance at low temperatures in the absence of an applied magnetic field. An applied dc magnetic field perpendicular to and small compared with the spin-orbit field enhances the resonance absorption by several orders of magnitude. The component of applied field parallel to the spin-orbit field separates the resonance frequencies of right and left movers and enables a linearly polarized ac electric field to produce a dynamic magnetization as well as electric and spin currents. We start with a simple model of noninteracting electrons and then consider the interaction that is not weak in 1d electron system. We show that electron spin resonance in the spin-orbit field persists in the Luttinger liquid. The interaction produces an additional singularity (cusp) in the spin-flip channel associated with the plasma oscillation. As it was shown earlier by Starykh and his coworkers, the interacting 1d electron system in the external field with sufficiently large parallel component becomes unstable with respect to the appearance of a spin-density wave. This instability suppresses the spin resonance. The observation of the electron spin resonance in a thin wires requires low temperature and high intensity of electromagnetic field in the terahertz diapason. The experiment satisfying these two requirements is possible but rather difficult. An alternative approach that does not require strong ac field is to study two-time correlations of the total spin of the wire with an optical method developed by Crooker and coworkers. We developed theory of such correlations. We prove that the correlation of the total spin component parallel to the internal magnetic field is dominant in systems with the developed spin-density waves but it vanishes in Luttinger liquid. Thus, the
Two perspectives on a decohering spin
Albrecht, A.
1992-02-13
I study the quantum mechanics of a spin interacting with an environment. Although the evolution of the whole system is unitary, the spin evolution is not. The system is chosen so that the spin exhibits loss of quantum coherence, or wavefunction collapse,'' of the sort usually associated with a quantum measurement. The system is analyzed from the point of view of the spin density matrix (or Schmidt path''), and also using the consistent histories (or decoherence functional) approach.