Sample records for integer-order chaotic systems

  1. Fast and secure encryption-decryption method based on chaotic dynamics

    DOEpatents

    Protopopescu, Vladimir A.; Santoro, Robert T.; Tolliver, Johnny S.

    1995-01-01

    A method and system for the secure encryption of information. The method comprises the steps of dividing a message of length L into its character components; generating m chaotic iterates from m independent chaotic maps; producing an "initial" value based upon the m chaotic iterates; transforming the "initial" value to create a pseudo-random integer; repeating the steps of generating, producing and transforming until a pseudo-random integer sequence of length L is created; and encrypting the message as ciphertext based upon the pseudo random integer sequence. A system for accomplishing the invention is also provided.

  2. A chaotic secure communication scheme using fractional chaotic systems based on an extended fractional Kalman filter

    NASA Astrophysics Data System (ADS)

    Kiani-B, Arman; Fallahi, Kia; Pariz, Naser; Leung, Henry

    2009-03-01

    In recent years chaotic secure communication and chaos synchronization have received ever increasing attention. In this paper, for the first time, a fractional chaotic communication method using an extended fractional Kalman filter is presented. The chaotic synchronization is implemented by the EFKF design in the presence of channel additive noise and processing noise. Encoding chaotic communication achieves a satisfactory, typical secure communication scheme. In the proposed system, security is enhanced based on spreading the signal in frequency and encrypting it in time domain. In this paper, the main advantages of using fractional order systems, increasing nonlinearity and spreading the power spectrum are highlighted. To illustrate the effectiveness of the proposed scheme, a numerical example based on the fractional Lorenz dynamical system is presented and the results are compared to the integer Lorenz system.

  3. Improvement and empirical research on chaos control by theory of "chaos + chaos = order".

    PubMed

    Fulai, Wang

    2012-12-01

    This paper focuses on advancing the understanding of Parrondian effects and their paradoxical behavior in nonlinear dynamical systems. Some examples are given to show that a dynamics combined by more than two discrete chaotic dynamics in deterministic manners can give rise to order when combined. The chaotic maps in our study are more general than those in the current literatures as far as "chaos + chaos = order" is concerned. Some problems left over in the current literatures are solved. It is proved both theoretically and numerically that, given any m chaotic dynamics generated by the one-dimensional real Mandelbrot maps, it is no possible to get a periodic system when all the m chaotic dynamics are alternated in random manner, but for any integer m(m ≥ 2) a dynamics combined in deterministic manner by m Mandelbrot chaotic dynamics can be found to give rise to a periodic dynamics of m periods. Numerical and mathematical analysis prove that the paradoxical phenomenon of "chaos + chaos = order" also exist in the dynamics generated by non-Mandelbrot maps.

  4. Chaos Suppression in Fractional order Permanent Magnet Synchronous Generator in Wind Turbine Systems

    NASA Astrophysics Data System (ADS)

    Rajagopal, Karthikeyan; Karthikeyan, Anitha; Duraisamy, Prakash

    2017-06-01

    In this paper we investigate the control of three-dimensional non-autonomous fractional-order uncertain model of a permanent magnet synchronous generator (PMSG) via a adaptive control technique. We derive a dimensionless fractional order model of the PMSM from the integer order presented in the literatures. Various dynamic properties of the fractional order model like eigen values, Lyapunov exponents, bifurcation and bicoherence are investigated. The system chaotic behavior for various orders of fractional calculus are presented. An adaptive controller is derived to suppress the chaotic oscillations of the fractional order model. As the direct Lyapunov stability analysis of the robust controller is difficult for a fractional order first derivative, we have derived a new lemma to analyze the stability of the system. Numerical simulations of the proposed chaos suppression methodology are given to prove the analytical results derived through which we show that for the derived adaptive controller and the parameter update law, the origin of the system for any bounded initial conditions is asymptotically stable.

  5. Applying elliptic curve cryptography to a chaotic synchronisation system: neural-network-based approach

    NASA Astrophysics Data System (ADS)

    Hsiao, Feng-Hsiag

    2017-10-01

    In order to obtain double encryption via elliptic curve cryptography (ECC) and chaotic synchronisation, this study presents a design methodology for neural-network (NN)-based secure communications in multiple time-delay chaotic systems. ECC is an asymmetric encryption and its strength is based on the difficulty of solving the elliptic curve discrete logarithm problem which is a much harder problem than factoring integers. Because it is much harder, we can get away with fewer bits to provide the same level of security. To enhance the strength of the cryptosystem, we conduct double encryption that combines chaotic synchronisation with ECC. According to the improved genetic algorithm, a fuzzy controller is synthesised to realise the exponential synchronisation and achieves optimal H∞ performance by minimising the disturbances attenuation level. Finally, a numerical example with simulations is given to demonstrate the effectiveness of the proposed approach.

  6. Fractional order fuzzy control of hybrid power system with renewable generation using chaotic PSO.

    PubMed

    Pan, Indranil; Das, Saptarshi

    2016-05-01

    This paper investigates the operation of a hybrid power system through a novel fuzzy control scheme. The hybrid power system employs various autonomous generation systems like wind turbine, solar photovoltaic, diesel engine, fuel-cell, aqua electrolyzer etc. Other energy storage devices like the battery, flywheel and ultra-capacitor are also present in the network. A novel fractional order (FO) fuzzy control scheme is employed and its parameters are tuned with a particle swarm optimization (PSO) algorithm augmented with two chaotic maps for achieving an improved performance. This FO fuzzy controller shows better performance over the classical PID, and the integer order fuzzy PID controller in both linear and nonlinear operating regimes. The FO fuzzy controller also shows stronger robustness properties against system parameter variation and rate constraint nonlinearity, than that with the other controller structures. The robustness is a highly desirable property in such a scenario since many components of the hybrid power system may be switched on/off or may run at lower/higher power output, at different time instants. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Adaptive Fractional-order Control for Synchronization of Two Coupled Neurons in the External Electrical Stimulation

    PubMed Central

    Mehdiabadi, M. R. Rahmani; Rouhani, E.; Mashhadi, S. K. Mousavi; Jalali, A. A.

    2014-01-01

    This paper addresses synchronizing two coupled chaotic FitzHugh–Nagumo (FHN) neurons with weakly gap junction under external electrical stimulation (EES). To transmit information among coupled neurons, by generalization of the integer-order FHN equations of the coupled system into the fractional-order in frequency domain using Crone approach, the behavior of each coupled neuron relies on its past behavior and the memorized system can be a better fit for the neuron response. An adaptive fractional-order controller based on the Lyaponuv stability theory was designed to synchronize two neurons electrically coupled with gap junction in EES. The proposed controller is also robust to the inevitable random noise such as disturbances of ionic channels. The simulation results demonstrate the effectiveness of the control scheme. PMID:25337373

  8. Chaotic trajectories in the standard map. The concept of anti-integrability

    NASA Astrophysics Data System (ADS)

    Aubry, Serge; Abramovici, Gilles

    1990-07-01

    A rigorous proof is given in the standard map (associated with a Frenkel-Kontorowa model) for the existence of chaotic trajectories with unbounded momenta for large enough coupling constant k > k0. These chaotic trajectories (with finite entropy per site) are coded by integer sequences { mi} such that the sequence bi = |m i+1 + m i-1-2m i| be bounded by some integer b. The bound k0 in k depends on b and can be lowered for coding sequences { mi} fulfilling more restrictive conditions. The obtained chaotic trajectories correspond to stationary configurations of the Frenkel-Kontorowa model with a finite (non-zero) photon gap (called gap parameter in dimensionless units). This property implies that the trajectory (or the configuration { ui}) can be uniquely continued as a uniformly continuous function of the model parameter k in some neighborhood of the initial configuration. A non-zero gap parameter implies that the Lyapunov coefficient is strictly positive (when it is defined). In addition, the existence of dilating and contracting manifolds is proven for these chaotic trajectories. “Exotic” trajectories such as ballistic trajectories are also proven to exist as a consequence of these theorems. The concept of anti-integrability emerges from these theorems. In the anti-integrable limit which can be only defined for a discrete time dynamical system, the coordinates of the trajectory at time i do not depend on the coordinates at time i - 1. Thus, at this singular limit, the existence of chaotic trajectories is trivial and the dynamical system reduces to a Bernoulli shift. It is well known that the KAM tori of symplectic dynamical originates by continuity from the invariant tori which exists in the integrible limit (under certain conditions). In a similar way, it appears that the chaotic trajectories of dynamical systems originate by continuity from those which exists at the anti-integrable limits (also under certain conditions).

  9. Analytical estimation of the correlation dimension of integer lattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lacasa, Lucas, E-mail: l.lacasa@qmul.ac.uk; Gómez-Gardeñes, Jesús, E-mail: gardenes@gmail.com; Departamento de Fisica de la Materia Condensada, Universidad de Zaragoza, Zaragoza

    2014-12-01

    Recently [L. Lacasa and J. Gómez-Gardeñes, Phys. Rev. Lett. 110, 168703 (2013)], a fractal dimension has been proposed to characterize the geometric structure of networks. This measure is an extension to graphs of the so called correlation dimension, originally proposed by Grassberger and Procaccia to describe the geometry of strange attractors in dissipative chaotic systems. The calculation of the correlation dimension of a graph is based on the local information retrieved from a random walker navigating the network. In this contribution, we study such quantity for some limiting synthetic spatial networks and obtain analytical results on agreement with the previouslymore » reported numerics. In particular, we show that up to first order, the correlation dimension β of integer lattices ℤ{sup d} coincides with the Haussdorf dimension of their coarsely equivalent Euclidean spaces, β = d.« less

  10. Alternation of regular and chaotic dynamics in a simple two-degree-of-freedom system with nonlinear inertial coupling.

    PubMed

    Sigalov, G; Gendelman, O V; AL-Shudeifat, M A; Manevitch, L I; Vakakis, A F; Bergman, L A

    2012-03-01

    We show that nonlinear inertial coupling between a linear oscillator and an eccentric rotator can lead to very interesting interchanges between regular and chaotic dynamical behavior. Indeed, we show that this model demonstrates rather unusual behavior from the viewpoint of nonlinear dynamics. Specifically, at a discrete set of values of the total energy, the Hamiltonian system exhibits non-conventional nonlinear normal modes, whose shape is determined by phase locking of rotatory and oscillatory motions of the rotator at integer ratios of characteristic frequencies. Considering the weakly damped system, resonance capture of the dynamics into the vicinity of these modes brings about regular motion of the system. For energy levels far from these discrete values, the motion of the system is chaotic. Thus, the succession of resonance captures and escapes by a discrete set of the normal modes causes a sequence of transitions between regular and chaotic behavior, provided that the damping is sufficiently small. We begin from the Hamiltonian system and present a series of Poincaré sections manifesting the complex structure of the phase space of the considered system with inertial nonlinear coupling. Then an approximate analytical description is presented for the non-conventional nonlinear normal modes. We confirm the analytical results by numerical simulation and demonstrate the alternate transitions between regular and chaotic dynamics mentioned above. The origin of the chaotic behavior is also discussed.

  11. Bifurcation and chaos of a new discrete fractional-order logistic map

    NASA Astrophysics Data System (ADS)

    Ji, YuanDong; Lai, Li; Zhong, SuChuan; Zhang, Lu

    2018-04-01

    The fractional-order discrete maps with chaotic behaviors based on the theory of ;fractional difference; are proposed in recent years. In this paper, instead of using fractional difference, a new fractionalized logistic map is proposed based on the numerical algorithm of fractional differentiation definition. The bifurcation diagrams of this map with various differential orders are given by numerical simulation. The simulation results show that the fractional-order logistic map derived in this manner holds rich dynamical behaviors because of its memory effect. In addition, new types of behaviors of bifurcation and chaos are found, which are different from those of the integer-order and the previous fractional-order logistic maps.

  12. Multiswitching combination synchronisation of non-identical fractional-order chaotic systems

    NASA Astrophysics Data System (ADS)

    Bhat, Muzaffar Ahmad; Khan, Ayub

    2018-06-01

    In this paper, multiswitching combination synchronisation (MSCS) scheme has been investigated in a class of three non-identical fractional-order chaotic systems. The fractional-order Lorenz and Chen systems are taken as the drive systems. The combination of multidrive systems is then synchronised with the fractional-order Lü chaotic system. In MSCS, the state variables of the two drive systems synchronise with different state variables of the response system, simultaneously. Based on the stability of fractional-order chaotic systems, the MSCS of three fractional-order non-identical systems has been investigated. For the synchronisation of three non-identical fractional-order chaotic systems, suitable controllers have been designed. Theoretical analysis and numerical results are presented to demonstrate the validity and feasibility of the applied method.

  13. Coupling between corotation and Lindblad resonances in the presence of secular precession rates

    NASA Astrophysics Data System (ADS)

    El Moutamid, Maryame; Sicardy, Bruno; Renner, Stéfan

    2014-03-01

    We investigate the dynamics of two satellites with masses and orbiting a massive central planet in a common plane, near a first order mean motion resonance ( m integer). We consider only the resonant terms of first order in eccentricity in the disturbing potential of the satellites, plus the secular terms causing the orbital apsidal precessions. We obtain a two-degrees-of-freedom system, associated with the two critical resonant angles and , where and are the mean longitude and longitude of periapsis of , respectively, and where the primed quantities apply to . We consider the special case where (restricted problem). The symmetry between the two angles and is then broken, leading to two different kinds of resonances, classically referred to as corotation eccentric resonance (CER) and Lindblad eccentric Resonance (LER), respectively. We write the four reduced equations of motion near the CER and LER, that form what we call the CoraLin model. This model depends upon only two dimensionless parameters that control the dynamics of the system: the distance between the CER and LER, and a forcing parameter that includes both the mass and the orbital eccentricity of the disturbing satellite. Three regimes are found: for the system is integrable, for of order unity, it exhibits prominent chaotic regions, while for large compared to 2, the behavior of the system is regular and can be qualitatively described using simple adiabatic invariant arguments. We apply this model to three recently discovered small Saturnian satellites dynamically linked to Mimas through first order mean motion resonances: Aegaeon, Methone and Anthe. Poincaré surfaces of section reveal the dynamical structure of each orbit, and their proximity to chaotic regions. This work may be useful to explore various scenarii of resonant capture for those satellites.

  14. Four dimensional chaos and intermittency in a mesoscopic model of the electroencephalogram.

    PubMed

    Dafilis, Mathew P; Frascoli, Federico; Cadusch, Peter J; Liley, David T J

    2013-06-01

    The occurrence of so-called four dimensional chaos in dynamical systems represented by coupled, nonlinear, ordinary differential equations is rarely reported in the literature. In this paper, we present evidence that Liley's mesoscopic theory of the electroencephalogram (EEG), which has been used to describe brain activity in a variety of clinically relevant contexts, possesses a chaotic attractor with a Kaplan-Yorke dimension significantly larger than three. This accounts for simple, high order chaos for a physiologically admissible parameter set. Whilst the Lyapunov spectrum of the attractor has only one positive exponent, the contracting dimensions are such that the integer part of the Kaplan-Yorke dimension is three, thus giving rise to four dimensional chaos. A one-parameter bifurcation analysis with respect to the parameter corresponding to extracortical input is conducted, with results indicating that the origin of chaos is due to an inverse period doubling cascade. Hence, in the vicinity of the high order, strange attractor, the model is shown to display intermittent behavior, with random alternations between oscillatory and chaotic regimes. This phenomenon represents a possible dynamical justification of some of the typical features of clinically established EEG traces, which can arise in the case of burst suppression in anesthesia and epileptic encephalopathies in early infancy.

  15. Condition-based diagnosis of mechatronic systems using a fractional calculus approach

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Carvajal, Ricardo Enrique; Flávio de Melo, Leonimer; Maurício Rosário, João; Tenreiro Machado, J. A.

    2016-07-01

    While fractional calculus (FC) is as old as integer calculus, its application has been mainly restricted to mathematics. However, many real systems are better described using FC equations than with integer models. FC is a suitable tool for describing systems characterised by their fractal nature, long-term memory and chaotic behaviour. It is a promising methodology for failure analysis and modelling, since the behaviour of a failing system depends on factors that increase the model's complexity. This paper explores the proficiency of FC in modelling complex behaviour by tuning only a few parameters. This work proposes a novel two-step strategy for diagnosis, first modelling common failure conditions and, second, by comparing these models with real machine signals and using the difference to feed a computational classifier. Our proposal is validated using an electrical motor coupled with a mechanical gear reducer.

  16. Synchronization and an application of a novel fractional order King Cobra chaotic system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muthukumar, P., E-mail: muthukumardgl@gmail.com; Balasubramaniam, P., E-mail: balugru@gmail.com; Ratnavelu, K., E-mail: kuru052001@gmail.com

    2014-09-01

    In this paper, we design a new three dimensional King Cobra face shaped fractional order chaotic system. The multi-scale synchronization scheme of two fractional order chaotic systems is described. The necessary conditions for the multi-scale synchronization of two identical fractional order King Cobra chaotic systems are derived through feedback control. A new cryptosystem is proposed for an image encryption and decryption by using synchronized fractional order King Cobra chaotic systems with the supports of multiple cryptographic assumptions. The security of the proposed cryptosystem is analyzed by the well known algebraic attacks. Numerical simulations are given to show the effectiveness ofmore » the proposed theoretical results.« less

  17. Modeling and Analysis of a Fractional-Order Generalized Memristor-Based Chaotic System and Circuit Implementation

    NASA Astrophysics Data System (ADS)

    Yang, Ningning; Xu, Cheng; Wu, Chaojun; Jia, Rong; Liu, Chongxin

    2017-12-01

    Memristor is a nonlinear “missing circuit element”, that can easily achieve chaotic oscillation. Memristor-based chaotic systems have received more and more attention. Research shows that fractional-order systems are more close to real systems. As an important parameter, the order can increase the flexibility and degree of freedom of the system. In this paper, a fractional-order generalized memristor, which consists of a diode bridge and a parallel circuit with an equivalent unit circuit and a linear resistance, is proposed. Frequency and electrical characteristics of the fractional-order memristor are analyzed. A chain structure circuit is used to implement the fractional-order unit circuit. Then replacing the conventional Chua’s diode by the fractional-order generalized memristor, a fractional-order memristor-based chaotic circuit is proposed. A large amount of research work has been done to investigate the influence of the order on the dynamical behaviors of the fractional-order memristor-based chaotic circuit. Varying with the order, the system enters the chaotic state from the periodic state through the Hopf bifurcation and period-doubling bifurcation. The chaotic state of the system has two types of attractors: single-scroll and double-scroll attractor. The stability theory of fractional-order systems is used to determine the minimum order occurring Hopf bifurcation. And the influence of the initial value on the system is analyzed. Circuit simulations are designed to verify the results of theoretical analysis and numerical simulation.

  18. Statistics of time delay and scattering correlation functions in chaotic systems. II. Semiclassical approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novaes, Marcel

    2015-06-15

    We consider S-matrix correlation functions for a chaotic cavity having M open channels, in the absence of time-reversal invariance. Relying on a semiclassical approximation, we compute the average over E of the quantities Tr[S{sup †}(E − ϵ) S(E + ϵ)]{sup n}, for general positive integer n. Our result is an infinite series in ϵ, whose coefficients are rational functions of M. From this, we extract moments of the time delay matrix Q = − iħS{sup †}dS/dE and check that the first 8 of them agree with the random matrix theory prediction from our previous paper [M. Novaes, J. Math. Phys.more » 56, 062110 (2015)].« less

  19. Using Chaotic System in Encryption

    NASA Astrophysics Data System (ADS)

    Findik, Oğuz; Kahramanli, Şirzat

    In this paper chaotic systems and RSA encryption algorithm are combined in order to develop an encryption algorithm which accomplishes the modern standards. E.Lorenz's weather forecast' equations which are used to simulate non-linear systems are utilized to create chaotic map. This equation can be used to generate random numbers. In order to achieve up-to-date standards and use online and offline status, a new encryption technique that combines chaotic systems and RSA encryption algorithm has been developed. The combination of RSA algorithm and chaotic systems makes encryption system.

  20. A fractional approach to the Fermi-Pasta-Ulam problem

    NASA Astrophysics Data System (ADS)

    Machado, J. A. T.

    2013-09-01

    This paper studies the Fermi-Pasta-Ulam problem having in mind the generalization provided by Fractional Calculus (FC). The study starts by addressing the classical formulation, based on the standard integer order differential calculus and evaluates the time and frequency responses. A first generalization to be investigated consists in the direct replacement of the springs by fractional elements of the dissipative type. It is observed that the responses settle rapidly and no relevant phenomena occur. A second approach consists of replacing the springs by a blend of energy extracting and energy inserting elements of symmetrical fractional order with amplitude modulated by quadratic terms. The numerical results reveal a response close to chaotic behaviour.

  1. Global bifurcations in fractional-order chaotic systems with an extended generalized cell mapping method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiaojun; School of Mathematics and Statistics, Tianshui Normal University, Tianshui 741001; Hong, Ling, E-mail: hongling@mail.xjtu.edu.cn

    Global bifurcations include sudden changes in chaotic sets due to crises. There are three types of crises defined by Grebogi et al. [Physica D 7, 181 (1983)]: boundary crisis, interior crisis, and metamorphosis. In this paper, by means of the extended generalized cell mapping (EGCM), boundary and interior crises of a fractional-order Duffing system are studied as one of the system parameters or the fractional derivative order is varied. It is found that a crisis can be generally defined as a collision between a chaotic basic set and a basic set, either periodic or chaotic, to cause a sudden discontinuousmore » change in chaotic sets. Here chaotic sets involve three different kinds: a chaotic attractor, a chaotic saddle on a fractal basin boundary, and a chaotic saddle in the interior of a basin and disjoint from the attractor. A boundary crisis results from the collision of a periodic (or chaotic) attractor with a chaotic (or regular) saddle in the fractal (or smooth) boundary. In such a case, the attractor, together with its basin of attraction, is suddenly destroyed as the control parameter passes through a critical value, leaving behind a chaotic saddle in the place of the original attractor and saddle after the crisis. An interior crisis happens when an unstable chaotic set in the basin of attraction collides with a periodic attractor, which causes the appearance of a new chaotic attractor, while the original attractor and the unstable chaotic set are converted to the part of the chaotic attractor after the crisis. These results further demonstrate that the EGCM is a powerful tool to reveal the mechanism of crises in fractional-order systems.« less

  2. Pseudorandom number generation using chaotic true orbits of the Bernoulli map

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saito, Asaki, E-mail: saito@fun.ac.jp; Yamaguchi, Akihiro

    We devise a pseudorandom number generator that exactly computes chaotic true orbits of the Bernoulli map on quadratic algebraic integers. Moreover, we describe a way to select the initial points (seeds) for generating multiple pseudorandom binary sequences. This selection method distributes the initial points almost uniformly (equidistantly) in the unit interval, and latter parts of the generated sequences are guaranteed not to coincide. We also demonstrate through statistical testing that the generated sequences possess good randomness properties.

  3. Parameter Estimation of Fractional-Order Chaotic Systems by Using Quantum Parallel Particle Swarm Optimization Algorithm

    PubMed Central

    Huang, Yu; Guo, Feng; Li, Yongling; Liu, Yufeng

    2015-01-01

    Parameter estimation for fractional-order chaotic systems is an important issue in fractional-order chaotic control and synchronization and could be essentially formulated as a multidimensional optimization problem. A novel algorithm called quantum parallel particle swarm optimization (QPPSO) is proposed to solve the parameter estimation for fractional-order chaotic systems. The parallel characteristic of quantum computing is used in QPPSO. This characteristic increases the calculation of each generation exponentially. The behavior of particles in quantum space is restrained by the quantum evolution equation, which consists of the current rotation angle, individual optimal quantum rotation angle, and global optimal quantum rotation angle. Numerical simulation based on several typical fractional-order systems and comparisons with some typical existing algorithms show the effectiveness and efficiency of the proposed algorithm. PMID:25603158

  4. Probing the statistics of transport in the Hénon Map

    NASA Astrophysics Data System (ADS)

    Alus, O.; Fishman, S.; Meiss, J. D.

    2016-09-01

    The phase space of an area-preserving map typically contains infinitely many elliptic islands embedded in a chaotic sea. Orbits near the boundary of a chaotic region have been observed to stick for long times, strongly influencing their transport properties. The boundary is composed of invariant "boundary circles." We briefly report recent results of the distribution of rotation numbers of boundary circles for the Hénon quadratic map and show that the probability of occurrence of small integer entries of their continued fraction expansions is larger than would be expected for a number chosen at random. However, large integer entries occur with probabilities distributed proportionally to the random case. The probability distributions of ratios of fluxes through island chains is reported as well. These island chains are neighbours in the sense of the Meiss-Ott Markov-tree model. Two distinct universality families are found. The distributions of the ratio between the flux and orbital period are also presented. All of these results have implications for models of transport in mixed phase space.

  5. Robust control for fractional variable-order chaotic systems with non-singular kernel

    NASA Astrophysics Data System (ADS)

    Zuñiga-Aguilar, C. J.; Gómez-Aguilar, J. F.; Escobar-Jiménez, R. F.; Romero-Ugalde, H. M.

    2018-01-01

    This paper investigates the chaos control for a class of variable-order fractional chaotic systems using robust control strategy. The variable-order fractional models of the non-autonomous biological system, the King Cobra chaotic system, the Halvorsen's attractor and the Burke-Shaw system, have been derived using the fractional-order derivative with Mittag-Leffler in the Liouville-Caputo sense. The fractional differential equations and the control law were solved using the Adams-Bashforth-Moulton algorithm. To test the control stability efficiency, different statistical indicators were introduced. Finally, simulation results demonstrate the effectiveness of the proposed robust control.

  6. Analytically solvable chaotic oscillator based on a first-order filter.

    PubMed

    Corron, Ned J; Cooper, Roy M; Blakely, Jonathan N

    2016-02-01

    A chaotic hybrid dynamical system is introduced and its analytic solution is derived. The system is described as an unstable first order filter subject to occasional switching of a set point according to a feedback rule. The system qualitatively differs from other recently studied solvable chaotic hybrid systems in that the timing of the switching is regulated by an external clock. The chaotic analytic solution is an optimal waveform for communications in noise when a resistor-capacitor-integrate-and-dump filter is used as a receiver. As such, these results provide evidence in support of a recent conjecture that the optimal communication waveform for any stable infinite-impulse response filter is chaotic.

  7. Analytically solvable chaotic oscillator based on a first-order filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corron, Ned J.; Cooper, Roy M.; Blakely, Jonathan N.

    2016-02-15

    A chaotic hybrid dynamical system is introduced and its analytic solution is derived. The system is described as an unstable first order filter subject to occasional switching of a set point according to a feedback rule. The system qualitatively differs from other recently studied solvable chaotic hybrid systems in that the timing of the switching is regulated by an external clock. The chaotic analytic solution is an optimal waveform for communications in noise when a resistor-capacitor-integrate-and-dump filter is used as a receiver. As such, these results provide evidence in support of a recent conjecture that the optimal communication waveform formore » any stable infinite-impulse response filter is chaotic.« less

  8. Synchronization of chaotic systems involving fractional operators of Liouville-Caputo type with variable-order

    NASA Astrophysics Data System (ADS)

    Coronel-Escamilla, A.; Gómez-Aguilar, J. F.; Torres, L.; Escobar-Jiménez, R. F.; Valtierra-Rodríguez, M.

    2017-12-01

    In this paper, we propose a state-observer-based approach to synchronize variable-order fractional (VOF) chaotic systems. In particular, this work is focused on complete synchronization with a so-called unidirectional master-slave topology. The master is described by a dynamical system in state-space representation whereas the slave is described by a state observer. The slave is composed of a master copy and a correction term which in turn is constituted of an estimation error and an appropriate gain that assures the synchronization. The differential equations of the VOF chaotic system are described by the Liouville-Caputo and Atangana-Baleanu-Caputo derivatives. Numerical simulations involving the synchronization of Rössler oscillators, Chua's systems and multi-scrolls are studied. The simulations show that different chaotic behaviors can be obtained if different smooths functions defined in the interval (0 , 1 ] are used as the variable order of the fractional derivatives. Furthermore, simulations show that the VOF chaotic systems can be synchronized.

  9. Stabilization of an inverted pendulum-cart system by fractional PI-state feedback.

    PubMed

    Bettayeb, M; Boussalem, C; Mansouri, R; Al-Saggaf, U M

    2014-03-01

    This paper deals with pole placement PI-state feedback controller design to control an integer order system. The fractional aspect of the control law is introduced by a dynamic state feedback as u(t)=K(p)x(t)+K(I)I(α)(x(t)). The closed loop characteristic polynomial is thus fractional for which the roots are complex to calculate. The proposed method allows us to decompose this polynomial into a first order fractional polynomial and an integer order polynomial of order n-1 (n being the order of the integer system). This new stabilization control algorithm is applied for an inverted pendulum-cart test-bed, and the effectiveness and robustness of the proposed control are examined by experiments. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  10. One Adaptive Synchronization Approach for Fractional-Order Chaotic System with Fractional-Order 1 < q < 2

    PubMed Central

    Zhou, Ping; Bai, Rongji

    2014-01-01

    Based on a new stability result of equilibrium point in nonlinear fractional-order systems for fractional-order lying in 1 < q < 2, one adaptive synchronization approach is established. The adaptive synchronization for the fractional-order Lorenz chaotic system with fractional-order 1 < q < 2 is considered. Numerical simulations show the validity and feasibility of the proposed scheme. PMID:25247207

  11. Dynamic Analysis and Adaptive Sliding Mode Controller for a Chaotic Fractional Incommensurate Order Financial System

    NASA Astrophysics Data System (ADS)

    Hajipour, Ahmad; Tavakoli, Hamidreza

    2017-12-01

    In this study, the dynamic behavior and chaos control of a chaotic fractional incommensurate-order financial system are investigated. Using well-known tools of nonlinear theory, i.e. Lyapunov exponents, phase diagrams and bifurcation diagrams, we observe some interesting phenomena, e.g. antimonotonicity, crisis phenomena and route to chaos through a period doubling sequence. Adopting largest Lyapunov exponent criteria, we find that the system yields chaos at the lowest order of 2.15. Next, in order to globally stabilize the chaotic fractional incommensurate order financial system with uncertain dynamics, an adaptive fractional sliding mode controller is designed. Numerical simulations are used to demonstrate the effectiveness of the proposed control method.

  12. Randomly chosen chaotic maps can give rise to nearly ordered behavior

    NASA Astrophysics Data System (ADS)

    Boyarsky, Abraham; Góra, Paweł; Islam, Md. Shafiqul

    2005-10-01

    Parrondo’s paradox [J.M.R. Parrondo, G.P. Harmer, D. Abbott, New paradoxical games based on Brownian ratchets, Phys. Rev. Lett. 85 (2000), 5226-5229] (see also [O.E. Percus, J.K. Percus, Can two wrongs make a right? Coin-tossing games and Parrondo’s paradox, Math. Intelligencer 24 (3) (2002) 68-72]) states that two losing gambling games when combined one after the other (either deterministically or randomly) can result in a winning game: that is, a losing game followed by a losing game = a winning game. Inspired by this paradox, a recent study [J. Almeida, D. Peralta-Salas, M. Romera, Can two chaotic systems give rise to order? Physica D 200 (2005) 124-132] asked an analogous question in discrete time dynamical system: can two chaotic systems give rise to order, namely can they be combined into another dynamical system which does not behave chaotically? Numerical evidence is provided in [J. Almeida, D. Peralta-Salas, M. Romera, Can two chaotic systems give rise to order? Physica D 200 (2005) 124-132] that two chaotic quadratic maps, when composed with each other, create a new dynamical system which has a stable period orbit. The question of what happens in the case of random composition of maps is posed in [J. Almeida, D. Peralta-Salas, M. Romera, Can two chaotic systems give rise to order? Physica D 200 (2005) 124-132] but left unanswered. In this note we present an example of a dynamical system where, at each iteration, a map is chosen in a probabilistic manner from a collection of chaotic maps. The resulting random map is proved to have an infinite absolutely continuous invariant measure (acim) with spikes at two points. From this we show that the dynamics behaves in a nearly ordered manner. When the foregoing maps are applied one after the other, deterministically as in [O.E. Percus, J.K. Percus, Can two wrongs make a right? Coin-tossing games and Parrondo’s paradox, Math. Intelligencer 24 (3) (2002) 68-72], the resulting composed map has a periodic orbit which is stable.

  13. Quantifying phase synchronization using instances of Hilbert phase slips

    NASA Astrophysics Data System (ADS)

    Govindan, R. B.

    2018-07-01

    We propose to quantify phase synchronization between two signals, x(t) and y(t), by calculating variance in the Hilbert phase of y(t) at instances of phase slips exhibited by x(t). The proposed approach is tested on numerically simulated coupled chaotic Roessler systems and second order autoregressive processes. Furthermore we compare the performance of the proposed and original approaches using uterine electromyogram signals and show that both approaches yield consistent results A standard phase synchronization approach, which involves unwrapping the Hilbert phases (ϕ1(t) and ϕ2(t)) of the two signals and analyzing the variance in the | n ṡϕ1(t) - m ṡϕ2(t) | , mod 2 π, (n and m are integers), was used for comparison. The synchronization indexes obtained from the proposed approach and the standard approach agree reasonably well in all of the systems studied in this work. Our results indicate that the proposed approach, unlike the traditional approach, does not require the non-invertible transformations - unwrapping of the phases and calculation of mod 2 π and it can be used to reliably to quantify phase synchrony between two signals.

  14. Design and implementation of grid multi-scroll fractional-order chaotic attractors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Liping, E-mail: lip-chenhut@126.com; Pan, Wei; Wu, Ranchao

    2016-08-15

    This paper proposes a novel approach for generating multi-scroll chaotic attractors in multi-directions for fractional-order (FO) systems. The stair nonlinear function series and the saturated nonlinear function are combined to extend equilibrium points with index 2 in a new FO linear system. With the help of stability theory of FO systems, stability of its equilibrium points is analyzed, and the chaotic behaviors are validated through phase portraits, Lyapunov exponents, and Poincaré section. Choosing the order 0.96 as an example, a circuit for generating 2-D grid multiscroll chaotic attractors is designed, and 2-D 9 × 9 grid FO attractors are observed at most.more » Numerical simulations and circuit experimental results show that the method is feasible and the designed circuit is correct.« less

  15. A conformal mapping based fractional order approach for sub-optimal tuning of PID controllers with guaranteed dominant pole placement

    NASA Astrophysics Data System (ADS)

    Saha, Suman; Das, Saptarshi; Das, Shantanu; Gupta, Amitava

    2012-09-01

    A novel conformal mapping based fractional order (FO) methodology is developed in this paper for tuning existing classical (Integer Order) Proportional Integral Derivative (PID) controllers especially for sluggish and oscillatory second order systems. The conventional pole placement tuning via Linear Quadratic Regulator (LQR) method is extended for open loop oscillatory systems as well. The locations of the open loop zeros of a fractional order PID (FOPID or PIλDμ) controller have been approximated in this paper vis-à-vis a LQR tuned conventional integer order PID controller, to achieve equivalent integer order PID control system. This approach eases the implementation of analog/digital realization of a FOPID controller with its integer order counterpart along with the advantages of fractional order controller preserved. It is shown here in the paper that decrease in the integro-differential operators of the FOPID/PIλDμ controller pushes the open loop zeros of the equivalent PID controller towards greater damping regions which gives a trajectory of the controller zeros and dominant closed loop poles. This trajectory is termed as "M-curve". This phenomena is used to design a two-stage tuning algorithm which reduces the existing PID controller's effort in a significant manner compared to that with a single stage LQR based pole placement method at a desired closed loop damping and frequency.

  16. A new reduced-order observer for the synchronization of nonlinear chaotic systems: An application to secure communications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castro-Ramírez, Joel, E-mail: ingcastro.7@gmail.com; Martínez-Guerra, Rafael, E-mail: rguerra@ctrl.cinvestav.mx; Cruz-Victoria, Juan Crescenciano, E-mail: juancrescenciano.cruz@uptlax.edu.mx

    2015-10-15

    This paper deals with the master-slave synchronization scheme for partially known nonlinear chaotic systems, where the unknown dynamics is considered as the master system and we propose the slave system structure which estimates the unknown states. It introduced a new reduced order observer, using the concept of Algebraic Observability; we applied the results to a Sundarapandian chaotic system, and by means of some numerical simulations we show the effectiveness of the suggested approach. Finally, the proposed observer is utilized for encryption, where encryption key is the master system and decryption key is the slave system.

  17. Asynchronous error-correcting secure communication scheme based on fractional-order shifting chaotic system

    NASA Astrophysics Data System (ADS)

    Chao, Luo

    2015-11-01

    In this paper, a novel digital secure communication scheme is firstly proposed. Different from the usual secure communication schemes based on chaotic synchronization, the proposed scheme employs asynchronous communication which avoids the weakness of synchronous systems and is susceptible to environmental interference. Moreover, as to the transmission errors and data loss in the process of communication, the proposed scheme has the ability to be error-checking and error-correcting in real time. In order to guarantee security, the fractional-order complex chaotic system with the shifting of order is utilized to modulate the transmitted signal, which has high nonlinearity and complexity in both frequency and time domains. The corresponding numerical simulations demonstrate the effectiveness and feasibility of the scheme.

  18. An approach to design controllers for MIMO fractional-order plants based on parameter optimization algorithm.

    PubMed

    Xue, Dingyü; Li, Tingxue

    2017-04-27

    The parameter optimization method for multivariable systems is extended to the controller design problems for multiple input multiple output (MIMO) square fractional-order plants. The algorithm can be applied to search for the optimal parameters of integer-order controllers for fractional-order plants with or without time delays. Two examples are given to present the controller design procedures for MIMO fractional-order systems. Simulation studies show that the integer-order controllers designed are robust to plant gain variations. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Timing variation in an analytically solvable chaotic system

    NASA Astrophysics Data System (ADS)

    Blakely, J. N.; Milosavljevic, M. S.; Corron, N. J.

    2017-02-01

    We present analytic solutions for a chaotic dynamical system that do not have the regular timing characteristic of recently reported solvable chaotic systems. The dynamical system can be viewed as a first order filter with binary feedback. The feedback state may be switched only at instants defined by an external clock signal. Generalizing from a period one clock, we show analytic solutions for period two and higher period clocks. We show that even when the clock 'ticks' randomly the chaotic system has an analytic solution. These solutions can be visualized in a stroboscopic map whose complexity increases with the complexity of the clock. We provide both analytic results as well as experimental data from an electronic circuit implementation of the system. Our findings bridge the gap between the irregular timing of well known chaotic systems such as Lorenz and Rossler and the well regulated oscillations of recently reported solvable chaotic systems.

  20. Simple Chaotic Flow with Circle and Square Equilibrium

    NASA Astrophysics Data System (ADS)

    Gotthans, Tomas; Sprott, Julien Clinton; Petrzela, Jiri

    Simple systems of third-order autonomous nonlinear differential equations can exhibit chaotic behavior. In this paper, we present a new class of chaotic flow with a square-shaped equilibrium. This unique property has apparently not yet been described. Such a system belongs to a newly introduced category of chaotic systems with hidden attractors that are interesting and important in engineering applications. The mathematical model is accompanied by an electrical circuit implementation, demonstrating structural stability of the strange attractor. The circuit is simulated with PSpice, constructed, and analyzed (measured).

  1. A mixed analog/digital chaotic neuro-computer system for quadratic assignment problems.

    PubMed

    Horio, Yoshihiko; Ikeguchi, Tohru; Aihara, Kazuyuki

    2005-01-01

    We construct a mixed analog/digital chaotic neuro-computer prototype system for quadratic assignment problems (QAPs). The QAP is one of the difficult NP-hard problems, and includes several real-world applications. Chaotic neural networks have been used to solve combinatorial optimization problems through chaotic search dynamics, which efficiently searches optimal or near optimal solutions. However, preliminary experiments have shown that, although it obtained good feasible solutions, the Hopfield-type chaotic neuro-computer hardware system could not obtain the optimal solution of the QAP. Therefore, in the present study, we improve the system performance by adopting a solution construction method, which constructs a feasible solution using the analog internal state values of the chaotic neurons at each iteration. In order to include the construction method into our hardware, we install a multi-channel analog-to-digital conversion system to observe the internal states of the chaotic neurons. We show experimentally that a great improvement in the system performance over the original Hopfield-type chaotic neuro-computer is obtained. That is, we obtain the optimal solution for the size-10 QAP in less than 1000 iterations. In addition, we propose a guideline for parameter tuning of the chaotic neuro-computer system according to the observation of the internal states of several chaotic neurons in the network.

  2. Fractal and Chaos Analysis for Dynamics of Radon Exhalation from Uranium Mill Tailings

    NASA Astrophysics Data System (ADS)

    Li, Yongmei; Tan, Wanyu; Tan, Kaixuan; Liu, Zehua; Xie, Yanshi

    2016-08-01

    Tailings from mining and milling of uranium ores potentially are large volumes of low-level radioactive materials. A typical environmental problem associated with uranium tailings is radon exhalation, which can significantly pose risks to environment and human health. In order to reduce these risks, it is essential to study the dynamical nature and underlying mechanism of radon exhalation from uranium mill tailings. This motivates the conduction of this study, which is based on the fractal and chaotic methods (e.g. calculating the Hurst exponent, Lyapunov exponent and correlation dimension) and laboratory experiments of the radon exhalation rates. The experimental results show that the radon exhalation rate from uranium mill tailings is highly oscillated. In addition, the nonlinear analyses of the time series of radon exhalation rate demonstrate the following points: (1) the value of Hurst exponent much larger than 0.5 indicates non-random behavior of the radon time series; (2) the positive Lyapunov exponent and non-integer correlation dimension of the time series imply that the radon exhalation from uranium tailings is a chaotic dynamical process; (3) the required minimum number of variables should be five to describe the time evolution of radon exhalation. Therefore, it can be concluded that the internal factors, including heterogeneous distribution of radium, and randomness of radium decay, as well as the fractal characteristics of the tailings, can result in the chaotic evolution of radon exhalation from the tailings.

  3. Fast Integer Ambiguity Resolution for GPS Attitude Determination

    NASA Technical Reports Server (NTRS)

    Lightsey, E. Glenn; Crassidis, John L.; Markley, F. Landis

    1999-01-01

    In this paper, a new algorithm for GPS (Global Positioning System) integer ambiguity resolution is shown. The algorithm first incorporates an instantaneous (static) integer search to significantly reduce the search space using a geometric inequality. Then a batch-type loss function is used to check the remaining integers in order to determine the optimal integer. This batch function represents the GPS sightline vectors in the body frame as the sum of two vectors, one depending on the phase measurements and the other on the unknown integers. The new algorithm has several advantages: it does not require an a-priori estimate of the vehicle's attitude; it provides an inherent integrity check using a covariance-type expression; and it can resolve the integers even when coplanar baselines exist. The performance of the new algorithm is tested on a dynamic hardware simulator.

  4. Simulation and Visualization of Chaos in a Driven Nonlinear Pendulum -- An Aid to Introducing Chaotic Systems in Physics

    NASA Astrophysics Data System (ADS)

    Akpojotor, Godfrey; Ehwerhemuepha, Louis; Amromanoh, Ogheneriobororue

    2013-03-01

    The presence of physical systems whose characteristics change in a seemingly erratic manner gives rise to the study of chaotic systems. The characteristics of these systems are due to their hypersensitivity to changes in initial conditions. In order to understand chaotic systems, some sort of simulation and visualization is pertinent. Consequently, in this work, we have simulated and graphically visualized chaos in a driven nonlinear pendulum as a means of introducing chaotic systems. The results obtained which highlight the hypersensitivity of the pendulum are used to discuss the effectiveness of teaching and learning the physics of chaotic system using Python. This study is one of the many studies under the African Computational Science and Engineering Tour Project (PASET) which is using Python to model, simulate and visualize concepts, laws and phenomena in Science and Engineering to compliment the teaching/learning of theory and experiment.

  5. A symmetrical image encryption scheme in wavelet and time domain

    NASA Astrophysics Data System (ADS)

    Luo, Yuling; Du, Minghui; Liu, Junxiu

    2015-02-01

    There has been an increasing concern for effective storages and secure transactions of multimedia information over the Internet. Then a great variety of encryption schemes have been proposed to ensure the information security while transmitting, but most of current approaches are designed to diffuse the data only in spatial domain which result in reducing storage efficiency. A lightweight image encryption strategy based on chaos is proposed in this paper. The encryption process is designed in transform domain. The original image is decomposed into approximation and detail components using integer wavelet transform (IWT); then as the more important component of the image, the approximation coefficients are diffused by secret keys generated from a spatiotemporal chaotic system followed by inverse IWT to construct the diffused image; finally a plain permutation is performed for diffusion image by the Logistic mapping in order to reduce the correlation between adjacent pixels further. Experimental results and performance analysis demonstrate the proposed scheme is an efficient, secure and robust encryption mechanism and it realizes effective coding compression to satisfy desirable storage.

  6. Non-integer viscoelastic constitutive law to model soft biological tissues to in-vivo indentation.

    PubMed

    Demirci, Nagehan; Tönük, Ergin

    2014-01-01

    During the last decades, derivatives and integrals of non-integer orders are being more commonly used for the description of constitutive behavior of various viscoelastic materials including soft biological tissues. Compared to integer order constitutive relations, non-integer order viscoelastic material models of soft biological tissues are capable of capturing a wider range of viscoelastic behavior obtained from experiments. Although integer order models may yield comparably accurate results, non-integer order material models have less number of parameters to be identified in addition to description of an intermediate material that can monotonically and continuously be adjusted in between an ideal elastic solid and an ideal viscous fluid. In this work, starting with some preliminaries on non-integer (fractional) calculus, the "spring-pot", (intermediate mechanical element between a solid and a fluid), non-integer order three element (Zener) solid model, finally a user-defined large strain non-integer order viscoelastic constitutive model was constructed to be used in finite element simulations. Using the constitutive equation developed, by utilizing inverse finite element method and in vivo indentation experiments, soft tissue material identification was performed. The results indicate that material coefficients obtained from relaxation experiments, when optimized with creep experimental data could simulate relaxation, creep and cyclic loading and unloading experiments accurately. Non-integer calculus viscoelastic constitutive models, having physical interpretation and modeling experimental data accurately is a good alternative to classical phenomenological viscoelastic constitutive equations.

  7. Joint image encryption and compression scheme based on IWT and SPIHT

    NASA Astrophysics Data System (ADS)

    Zhang, Miao; Tong, Xiaojun

    2017-03-01

    A joint lossless image encryption and compression scheme based on integer wavelet transform (IWT) and set partitioning in hierarchical trees (SPIHT) is proposed to achieve lossless image encryption and compression simultaneously. Making use of the properties of IWT and SPIHT, encryption and compression are combined. Moreover, the proposed secure set partitioning in hierarchical trees (SSPIHT) via the addition of encryption in the SPIHT coding process has no effect on compression performance. A hyper-chaotic system, nonlinear inverse operation, Secure Hash Algorithm-256(SHA-256), and plaintext-based keystream are all used to enhance the security. The test results indicate that the proposed methods have high security and good lossless compression performance.

  8. Fractional System Identification: An Approach Using Continuous Order-Distributions

    NASA Technical Reports Server (NTRS)

    Hartley, Tom T.; Lorenzo, Carl F.

    1999-01-01

    This paper discusses the identification of fractional- and integer-order systems using the concept of continuous order-distribution. Based on the ability to define systems using continuous order-distributions, it is shown that frequency domain system identification can be performed using least squares techniques after discretizing the order-distribution.

  9. Synchronization and anti-synchronization of a fractional order delayed memristor-based chaotic system using active control

    NASA Astrophysics Data System (ADS)

    Ding, Dawei; Qian, Xin; Wang, Nian; Liang, Dong

    2018-05-01

    In this paper, the issue of synchronization and anti-synchronization for fractional-delayed memristor-based chaotic system is studied by using active control strategy. Firstly, some explicit conditions are proposed to guarantee the synchronization and anti-synchronization of the proposed system. Secondly, the influence of order and time delay on the synchronization (anti-synchronization) is discussed. It reveals that synchronization (anti-synchronization) is faster as the order increases or the time delay decreases. Finally, some numerical simulations are presented to verify the validity of our theoretical analysis.

  10. Characterization of chaotic electroconvection near flat electrodes under oscillatory voltages

    NASA Astrophysics Data System (ADS)

    Kim, Jeonglae; Davidson, Scott; Mani, Ali

    2017-11-01

    Onset of hydrodynamic instability and chaotic electroconvection in aqueous systems are studied by directly solving the two-dimensional coupled Poisson-Nernst-Planck and Navier-Stokes equations. An aqueous binary electrolyte is bounded by two planar electrodes where time-harmonic voltage is applied at a constant oscillation frequency. The governing equations are solved using a fully-conservative second-order-accurate finite volume discretization and a second-order implicit Euler time advancement. At a sufficiently high amplitude of applied voltage, the system exhibits chaotic behaviors involving strong hydrodynamic mixing and enhanced electroconvection. The system responses are characterized as a function of oscillation frequency, voltage magnitude, and the ratio of diffusivities of two ion species. Our results indicate that electroconvection is most enhanced for frequencies on the order of inverse system RC time scale. We will discuss the dependence of this optimal frequency on the asymmetry of the diffusion coefficients of ionic species. Supported by the Stanford's Precourt Institute.

  11. Disturbance observer-based adaptive sliding mode hybrid projective synchronisation of identical fractional-order financial systems

    NASA Astrophysics Data System (ADS)

    Khan, Ayub; Tyagi, Arti

    2018-05-01

    In this paper, we have studied the hybrid projective synchronisation for incommensurate, integer and commensurate fractional-order financial systems with unknown disturbance. To tackle the problem of unknown bounded disturbance, fractional-order disturbance observer is designed to approximate the unknown disturbance. Further, we have introduced simple sliding mode surface and designed adaptive sliding mode controllers incorporating with the designed fractional-order disturbance observer to achieve a bounded hybrid projective synchronisation between two identical fractional-order financial model with different initial conditions. It is shown that the slave system with disturbance can be synchronised with the projection of the master system generated through state transformation. Simulation results are presented to ensure the validity and effectiveness of the proposed sliding mode control scheme in the presence of external bounded unknown disturbance. Also, synchronisation error for commensurate, integer and incommensurate fractional-order financial systems is studied in numerical simulation.

  12. Chaotic Dynamics of a Josephson Junction with a Ratchet Potential and Current-Modulating Damping

    NASA Astrophysics Data System (ADS)

    Li, Fei; Li, Wenwu; Xu, Lan

    2018-06-01

    The chaotic dynamics of a Josephson junction with a ratchet potential and current-modulating damping are studied. Under the first-order approximation, we construct the general solution of the first-order equation whose boundedness condition contains the famous Melnikov chaotic criterion. Based on the general solution, the incomputability and unpredictability of the system's chaotic behavior are discussed. For the case beyond perturbation conditions, the evolution of stroboscopic Poincaré sections shows that the system undergoes a quasi-periodic transition to chaos with an increasing intensity of the rf-current. Through a suitable feedback controlling strategy, the chaos can be effectively suppressed and the intensity of the controller can vary in a large range. It is also found that the current between the two separated superconductors increases monotonously in some specific parameter spaces.

  13. Chaotic Dynamics of a Josephson Junction with a Ratchet Potential and Current-Modulating Damping

    NASA Astrophysics Data System (ADS)

    Li, Fei; Li, Wenwu; Xu, Lan

    2018-04-01

    The chaotic dynamics of a Josephson junction with a ratchet potential and current-modulating damping are studied. Under the first-order approximation, we construct the general solution of the first-order equation whose boundedness condition contains the famous Melnikov chaotic criterion. Based on the general solution, the incomputability and unpredictability of the system's chaotic behavior are discussed. For the case beyond perturbation conditions, the evolution of stroboscopic Poincaré sections shows that the system undergoes a quasi-periodic transition to chaos with an increasing intensity of the rf-current. Through a suitable feedback controlling strategy, the chaos can be effectively suppressed and the intensity of the controller can vary in a large range. It is also found that the current between the two separated superconductors increases monotonously in some specific parameter spaces.

  14. Model-order reduction of lumped parameter systems via fractional calculus

    NASA Astrophysics Data System (ADS)

    Hollkamp, John P.; Sen, Mihir; Semperlotti, Fabio

    2018-04-01

    This study investigates the use of fractional order differential models to simulate the dynamic response of non-homogeneous discrete systems and to achieve efficient and accurate model order reduction. The traditional integer order approach to the simulation of non-homogeneous systems dictates the use of numerical solutions and often imposes stringent compromises between accuracy and computational performance. Fractional calculus provides an alternative approach where complex dynamical systems can be modeled with compact fractional equations that not only can still guarantee analytical solutions, but can also enable high levels of order reduction without compromising on accuracy. Different approaches are explored in order to transform the integer order model into a reduced order fractional model able to match the dynamic response of the initial system. Analytical and numerical results show that, under certain conditions, an exact match is possible and the resulting fractional differential models have both a complex and frequency-dependent order of the differential operator. The implications of this type of approach for both model order reduction and model synthesis are discussed.

  15. An Improved Cuckoo Search Optimization Algorithm for the Problem of Chaotic Systems Parameter Estimation

    PubMed Central

    Wang, Jun; Zhou, Bihua; Zhou, Shudao

    2016-01-01

    This paper proposes an improved cuckoo search (ICS) algorithm to establish the parameters of chaotic systems. In order to improve the optimization capability of the basic cuckoo search (CS) algorithm, the orthogonal design and simulated annealing operation are incorporated in the CS algorithm to enhance the exploitation search ability. Then the proposed algorithm is used to establish parameters of the Lorenz chaotic system and Chen chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the algorithm can estimate parameters with high accuracy and reliability. Finally, the results are compared with the CS algorithm, genetic algorithm, and particle swarm optimization algorithm, and the compared results demonstrate the method is energy-efficient and superior. PMID:26880874

  16. Bit-level quantum color image encryption scheme with quantum cross-exchange operation and hyper-chaotic system

    NASA Astrophysics Data System (ADS)

    Zhou, Nanrun; Chen, Weiwei; Yan, Xinyu; Wang, Yunqian

    2018-06-01

    In order to obtain higher encryption efficiency, a bit-level quantum color image encryption scheme by exploiting quantum cross-exchange operation and a 5D hyper-chaotic system is designed. Additionally, to enhance the scrambling effect, the quantum channel swapping operation is employed to swap the gray values of corresponding pixels. The proposed color image encryption algorithm has larger key space and higher security since the 5D hyper-chaotic system has more complex dynamic behavior, better randomness and unpredictability than those based on low-dimensional hyper-chaotic systems. Simulations and theoretical analyses demonstrate that the presented bit-level quantum color image encryption scheme outperforms its classical counterparts in efficiency and security.

  17. Spatiotemporal chaos in mixed linear-nonlinear two-dimensional coupled logistic map lattice

    NASA Astrophysics Data System (ADS)

    Zhang, Ying-Qian; He, Yi; Wang, Xing-Yuan

    2018-01-01

    We investigate a new spatiotemporal dynamics with mixing degrees of nonlinear chaotic maps for spatial coupling connections based on 2DCML. Here, the coupling methods are including with linear neighborhood coupling and the nonlinear chaotic map coupling of lattices, and the former 2DCML system is only a special case in the proposed system. In this paper the criteria such Kolmogorov-Sinai entropy density and universality, bifurcation diagrams, space-amplitude and snapshot pattern diagrams are provided in order to investigate the chaotic behaviors of the proposed system. Furthermore, we also investigate the parameter ranges of the proposed system which holds those features in comparisons with those of the 2DCML system and the MLNCML system. Theoretical analysis and computer simulation indicate that the proposed system contains features such as the higher percentage of lattices in chaotic behaviors for most of parameters, less periodic windows in bifurcation diagrams and the larger range of parameters for chaotic behaviors, which is more suitable for cryptography.

  18. Convergence of fractional adaptive systems using gradient approach.

    PubMed

    Gallegos, Javier A; Duarte-Mermoud, Manuel A

    2017-07-01

    Conditions for boundedness and convergence of the output error and the parameter error for various Caputo's fractional order adaptive schemes based on the steepest descent method are derived in this paper. To this aim, the concept of sufficiently exciting signals is introduced, characterized and related to the concept of persistently exciting signals used in the integer order case. An application is designed in adaptive indirect control of integer order systems using fractional equations to adjust parameters. This application is illustrated for a pole placement adaptive problem. Advantages of using fractional adjustment in control adaptive schemes are experimentally obtained. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Stability enhancement of high Prandtl number chaotic convection in an anisotropic porous layer with feedback control

    NASA Astrophysics Data System (ADS)

    Mahmud, M. N.

    2018-04-01

    The chaotic dynamical behaviour of thermal convection in an anisotropic porous layer subject to gravity, heated from below and cooled from above, is studied based on theory of dynamical system in the presence of feedback control. The extended Darcy model, which includes the time derivative has been employed in the momentum equation to derive a low dimensional Lorenz-like equation by using Galerkin-truncated approximation. The classical fourth-order Runge-Kutta method is used to obtain the numerical solution in order to exemplify the dynamics of the nonlinear autonomous system. The results show that stability enhancement of chaotic convection is feasible via feedback control.

  20. Chaotic interactions of self-replicating RNA.

    PubMed

    Forst, C V

    1996-03-01

    A general system of high-order differential equations describing complex dynamics of replicating biomolecules is given. Symmetry relations and coordinate transformations of general replication systems leading to topologically equivalent systems are derived. Three chaotic attractors observed in Lotka-Volterra equations of dimension n = 3 are shown to represent three cross-sections of one and the same chaotic regime. Also a fractal torus in a generalized three-dimensional Lotka-Volterra Model has been linked to one of the chaotic attractors. The strange attractors are studied in the equivalent four-dimensional catalytic replicator network. The fractal torus has been examined in adapted Lotka-Volterra equations. Analytic expressions are derived for the Lyapunov exponents of the flow in the replicator system. Lyapunov spectra for different pathways into chaos has been calculated. In the generalized Lotka-Volterra system a second inner rest point--coexisting with (quasi)-periodic orbits--can be observed; with an abundance of different bifurcations. Pathways from chaotic tori, via quasi-periodic tori, via limit cycles, via multi-periodic orbits--emerging out of periodic doubling bifurcations--to "simple" chaotic attractors can be found.

  1. Experimental chaotic quantification in bistable vortex induced vibration systems

    NASA Astrophysics Data System (ADS)

    Huynh, B. H.; Tjahjowidodo, T.

    2017-02-01

    The study of energy harvesting by means of vortex induced vibration systems has been initiated a few years ago and it is considered to be potential as a low water current energy source. The energy harvester is realized by exposing an elastically supported blunt structure under water flow. However, it is realized that the system will only perform at a limited operating range (water flow) that is attributed to the resonance phenomenon that occurs only at a frequency that corresponds to the fluid flow. An introduction of nonlinear elements seems to be a prominent solution to overcome the problem. Among many nonlinear elements, a bistable spring is known to be able to improve the harvested power by a vortex induced vibrations (VIV) based energy converter at the low velocity water flows. However, it is also observed that chaotic vibrations will occur at different operating ranges that will erratically diminish the harvested power and cause a difficulty in controlling the system that is due to the unpredictability in motions of the VIV structure. In order to design a bistable VIV energy converter with improved harvested power and minimum negative effect of chaotic vibrations, the bifurcation map of the system for varying governing parameters is highly on demand. In this study, chaotic vibrations of a VIV energy converter enhanced by a bistable stiffness element are quantified in a wide range of the governing parameters, i.e. damping and bistable gap. Chaotic vibrations of the bistable VIV energy converter are simulated by utilization of a wake oscillator model and quantified based on the calculation of the Lyapunov exponent. Ultimately, a series of experiments of the system in a water tunnel, facilitated by a computer-based force-feedback testing platform, is carried out to validate the existence of chaotic responses. The main challenge in dealing with experimental data is in distinguishing chaotic response from noise-contaminated periodic responses as noise will smear out the regularity of periodic responses. For this purpose, a surrogate data test is used in order to check the hypotheses for the presence of chaotic behavior. The analyses from the experimental results support the hypothesis from simulation that chaotic response is likely occur on the real system.

  2. Working Towards Führer: A Chaotic View

    NASA Astrophysics Data System (ADS)

    Cakar, Ulas

    Leadership is a concept that has been discussed since the beginning of history. Even though there have been many theories in the field accepting leadership's role in bringing order, chaotic aspects of leadership are generally neglected. This chapter aims to examine the leadership beyond an orderly interpretation of universe. For this purpose, Third Reich period and leadership during this period will be examined. Ian Kershaw's "Working Towards Führer" concept provides a unique understanding of leadership concept. It goes beyond the dualist depiction of Third Reich, it does not state Adolf Hitler as an all powerful dictator, or a weak one. Rather, he expresses that due to the conditions in the Third Reich, Adolf Hitler was both of this. This complex situation can be understood deeper when it is examined through the lens of chaos theory. This study contributes to the field by being the first in using chaos theory for examining "Working Towards Führer" concept and its development. Seemingly orderly nature of synchronization process and its vortex will be shown. Adolf Hitler's storm spot position in the chaotic system and its dynamics are explained. War's entropic power and its effect on the downfall of the system is crucial in understanding this unique chaotic system. The chaotic pattern of "Working Towards Führer" offers an opportunity to analyze the complexities of the leadership concept.

  3. A discrete-time chaos synchronization system for electronic locking devices

    NASA Astrophysics Data System (ADS)

    Minero-Ramales, G.; López-Mancilla, D.; Castañeda, Carlos E.; Huerta Cuellar, G.; Chiu Z., R.; Hugo García López, J.; Jaimes Reátegui, R.; Villafaña Rauda, E.; Posadas-Castillo, C.

    2016-11-01

    This paper presents a novel electronic locking key based on discrete-time chaos synchronization. Two Chen chaos generators are synchronized using the Model-Matching Approach, from non-linear control theory, in order to perform the encryption/decryption of the signal to be transmitted. A model/transmitter system is designed, generating a key of chaotic pulses in discrete-time. A plant/receiver system uses the above mentioned key to unlock the mechanism. Two alternative schemes to transmit the private chaotic key are proposed. The first one utilizes two transmission channels. One channel is used to encrypt the chaotic key and the other is used to achieve output synchronization. The second alternative uses only one transmission channel for obtaining synchronization and encryption of the chaotic key. In both cases, the private chaotic key is encrypted again with chaos to solve secure communication-related problems. The results obtained via simulations contribute to enhance the electronic locking devices.

  4. Some new surprises in chaos.

    PubMed

    Bunimovich, Leonid A; Vela-Arevalo, Luz V

    2015-09-01

    "Chaos is found in greatest abundance wherever order is being sought.It always defeats order, because it is better organized"Terry PratchettA brief review is presented of some recent findings in the theory of chaotic dynamics. We also prove a statement that could be naturally considered as a dual one to the Poincaré theorem on recurrences. Numerical results demonstrate that some parts of the phase space of chaotic systems are more likely to be visited earlier than other parts. A new class of chaotic focusing billiards is discussed that clearly violates the main condition considered to be necessary for chaos in focusing billiards.

  5. Active control strategy for synchronization and anti-synchronization of a fractional chaotic financial system

    NASA Astrophysics Data System (ADS)

    Huang, Chengdai; Cao, Jinde

    2017-05-01

    This paper is concerned with the issues of synchronization and anti-synchronization for fractional chaotic financial system with market confidence by taking advantage of active control approach. Some sufficient conditions are derived to guarantee the synchronization and anti-synchronization for the proposed fractional system. Moreover, the relationship between the order and synchronization(anti-synchronization) is demonstrated numerically. It reveals that synchronization(anti-synchronization) is faster as the order increases. Finally, two illustrative examples are exploited to verify the efficiency of the obtained theoretical results.

  6. Image encryption based on a delayed fractional-order chaotic logistic system

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Huang, Xia; Li, Ning; Song, Xiao-Na

    2012-05-01

    A new image encryption scheme is proposed based on a delayed fractional-order chaotic logistic system. In the process of generating a key stream, the time-varying delay and fractional derivative are embedded in the proposed scheme to improve the security. Such a scheme is described in detail with security analyses including correlation analysis, information entropy analysis, run statistic analysis, mean-variance gray value analysis, and key sensitivity analysis. Experimental results show that the newly proposed image encryption scheme possesses high security.

  7. Design and Hardware Implementation of a New Chaotic Secure Communication Technique

    PubMed Central

    Xiong, Li; Lu, Yan-Jun; Zhang, Yong-Fang; Zhang, Xin-Guo; Gupta, Parag

    2016-01-01

    In this paper, a scheme for chaotic modulation secure communication is proposed based on chaotic synchronization of an improved Lorenz system. For the first time, the intensity limit and stability of the transmitted signal, the characteristics of broadband and the requirements for accuracy of electronic components are presented by Multisim simulation. In addition, some improvements are made on the measurement method and the proposed experimental circuit in order to facilitate the experiments of chaotic synchronization, chaotic non-synchronization, experiment without signal and experiment with signal. To illustrate the effectiveness of the proposed scheme, some numerical simulations are presented. Then, the proposed chaotic secure communication circuit is implemented through analog electronic circuit, which is characterized by its high accuracy and good robustness. PMID:27548385

  8. Design and Hardware Implementation of a New Chaotic Secure Communication Technique.

    PubMed

    Xiong, Li; Lu, Yan-Jun; Zhang, Yong-Fang; Zhang, Xin-Guo; Gupta, Parag

    2016-01-01

    In this paper, a scheme for chaotic modulation secure communication is proposed based on chaotic synchronization of an improved Lorenz system. For the first time, the intensity limit and stability of the transmitted signal, the characteristics of broadband and the requirements for accuracy of electronic components are presented by Multisim simulation. In addition, some improvements are made on the measurement method and the proposed experimental circuit in order to facilitate the experiments of chaotic synchronization, chaotic non-synchronization, experiment without signal and experiment with signal. To illustrate the effectiveness of the proposed scheme, some numerical simulations are presented. Then, the proposed chaotic secure communication circuit is implemented through analog electronic circuit, which is characterized by its high accuracy and good robustness.

  9. Model-free adaptive sliding mode controller design for generalized projective synchronization of the fractional-order chaotic system via radial basis function neural networks

    NASA Astrophysics Data System (ADS)

    Wang, L. M.

    2017-09-01

    A novel model-free adaptive sliding mode strategy is proposed for a generalized projective synchronization (GPS) between two entirely unknown fractional-order chaotic systems subject to the external disturbances. To solve the difficulties from the little knowledge about the master-slave system and to overcome the bad effects of the external disturbances on the generalized projective synchronization, the radial basis function neural networks are used to approach the packaged unknown master system and the packaged unknown slave system (including the external disturbances). Consequently, based on the slide mode technology and the neural network theory, a model-free adaptive sliding mode controller is designed to guarantee asymptotic stability of the generalized projective synchronization error. The main contribution of this paper is that a control strategy is provided for the generalized projective synchronization between two entirely unknown fractional-order chaotic systems subject to the unknown external disturbances, and the proposed control strategy only requires that the master system has the same fractional orders as the slave system. Moreover, the proposed method allows us to achieve all kinds of generalized projective chaos synchronizations by turning the user-defined parameters onto the desired values. Simulation results show the effectiveness of the proposed method and the robustness of the controlled system.

  10. Chaotic itinerancy and power-law residence time distribution in stochastic dynamical systems.

    PubMed

    Namikawa, Jun

    2005-08-01

    Chaotic itinerant motion among varieties of ordered states is described by a stochastic model based on the mechanism of chaotic itinerancy. The model consists of a random walk on a half-line and a Markov chain with a transition probability matrix. The stability of attractor ruin in the model is investigated by analyzing the residence time distribution of orbits at attractor ruins. It is shown that the residence time distribution averaged over all attractor ruins can be described by the superposition of (truncated) power-law distributions if the basin of attraction for each attractor ruin has a zero measure. This result is confirmed by simulation of models exhibiting chaotic itinerancy. Chaotic itinerancy is also shown to be absent in coupled Milnor attractor systems if the transition probability among attractor ruins can be represented as a Markov chain.

  11. Relative Time-scale for Channeling Events Within Chaotic Terrains, Margaritifer Sinus, Mars

    NASA Technical Reports Server (NTRS)

    Janke, D.

    1985-01-01

    A relative time scale for ordering channel and chaos forming events was constructed for areas within the Margaritifer Sinus region of Mars. Transection and superposition relationships of channels, chaotic terrain, and the surfaces surrounding them were used to create the relative time scale; crater density studies were not used. Channels and chaos in contact with one another were treated as systems. These systems were in turn treated both separately (in order to understand internal relationships) and as members of the suite of Martian erosional forms (in order to produce a combined, master time scale). Channeling events associated with chaotic terrain development occurred over an extended geomorphic period. The channels can be divided into three convenient groups: those that pre-date intercrater plains development post-plains, pre-chasma systems; and those associated with the development of the Vallis Marineris chasmata. No correlations with cyclic climatic changes, major geologic events in other regions on Mars, or triggering phenomena (for example, specific impact events) were found.

  12. Fractional-order in a macroeconomic dynamic model

    NASA Astrophysics Data System (ADS)

    David, S. A.; Quintino, D. D.; Soliani, J.

    2013-10-01

    In this paper, we applied the Riemann-Liouville approach in order to realize the numerical simulations to a set of equations that represent a fractional-order macroeconomic dynamic model. It is a generalization of a dynamic model recently reported in the literature. The aforementioned equations have been simulated for several cases involving integer and non-integer order analysis, with some different values to fractional order. The time histories and the phase diagrams have been plotted to visualize the effect of fractional order approach. The new contribution of this work arises from the fact that the macroeconomic dynamic model proposed here involves the public sector deficit equation, which renders the model more realistic and complete when compared with the ones encountered in the literature. The results reveal that the fractional-order macroeconomic model can exhibit a real reasonable behavior to macroeconomics systems and might offer greater insights towards the understanding of these complex dynamic systems.

  13. An Exploratory Study of the Butterfly Effect Using Agent-Based Modeling

    NASA Technical Reports Server (NTRS)

    Khasawneh, Mahmoud T.; Zhang, Jun; Shearer, Nevan E. N.; Rodriquez-Velasquez, Elkin; Bowling, Shannon R.

    2010-01-01

    This paper provides insights about the behavior of chaotic complex systems, and the sensitive dependence of the system on the initial starting conditions. How much does a small change in the initial conditions of a complex system affect it in the long term? Do complex systems exhibit what is called the "Butterfly Effect"? This paper uses an agent-based modeling approach to address these questions. An existing model from NetLogo library was extended in order to compare chaotic complex systems with near-identical initial conditions. Results show that small changes in initial starting conditions can have a huge impact on the behavior of chaotic complex systems. The term the "butterfly effect" is attributed to the work of Edward Lorenz [1]. It is used to describe the sensitive dependence of the behavior of chaotic complex systems on the initial conditions of these systems. The metaphor refers to the notion that a butterfly flapping its wings somewhere may cause extreme changes in the ecological system's behavior in the future, such as a hurricane.

  14. Stability Analysis of Distributed Order Fractional Chen System

    PubMed Central

    Aminikhah, H.; Refahi Sheikhani, A.; Rezazadeh, H.

    2013-01-01

    We first investigate sufficient and necessary conditions of stability of nonlinear distributed order fractional system and then we generalize the integer-order Chen system into the distributed order fractional domain. Based on the asymptotic stability theory of nonlinear distributed order fractional systems, the stability of distributed order fractional Chen system is discussed. In addition, we have found that chaos exists in the double fractional order Chen system. Numerical solutions are used to verify the analytical results. PMID:24489508

  15. Sliding Mode Control of Fractional-Order Delayed Memristive Chaotic System with Uncertainty and Disturbance

    NASA Astrophysics Data System (ADS)

    Ding, Da-Wei; Liu, Fang-Fang; Chen, Hui; Wang, Nian; Liang, Dong

    2017-12-01

    In this paper, a simplest fractional-order delayed memristive chaotic system is proposed in order to control the chaos behaviors via sliding mode control strategy. Firstly, we design a sliding mode control strategy for the fractional-order system with time delay to make the states of the system asymptotically stable. Then, we obtain theoretical analysis results of the control method using Lyapunov stability theorem which guarantees the asymptotic stability of the non-commensurate order and commensurate order system with and without uncertainty and an external disturbance. Finally, numerical simulations are given to verify that the proposed sliding mode control method can eliminate chaos and stabilize the fractional-order delayed memristive system in a finite time. Supported by the National Nature Science Foundation of China under Grant No. 61201227, Funding of China Scholarship Council, the Natural Science Foundation of Anhui Province under Grant No. 1208085M F93, 211 Innovation Team of Anhui University under Grant Nos. KJTD007A and KJTD001B

  16. Design and implementation of EP-based PID controller for chaos synchronization of Rikitake circuit systems.

    PubMed

    Hou, Yi-You

    2017-09-01

    This article addresses an evolutionary programming (EP) algorithm technique-based and proportional-integral-derivative (PID) control methods are established to guarantee synchronization of the master and slave Rikitake chaotic systems. For PID synchronous control, the evolutionary programming (EP) algorithm is used to find the optimal PID controller parameters k p , k i , k d by integrated absolute error (IAE) method for the convergence conditions. In order to verify the system performance, the basic electronic components containing operational amplifiers (OPAs), resistors, and capacitors are used to implement the proposed chaotic Rikitake systems. Finally, the experimental results validate the proposed Rikitake chaotic synchronization approach. Copyright © 2017. Published by Elsevier Ltd.

  17. Pole-zero form fractional model identification in frequency domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mansouri, R.; Djamah, T.; Djennoune, S.

    2009-03-05

    This paper deals with system identification in the frequency domain using non integer order models given in the pole-zero form. The usual identification techniques cannot be used in this case because of the non integer orders of differentiation which makes the problem strongly nonlinear. A general identification method based on Levenberg-Marquardt algorithm is developed and allows to estimate the (2n+2m+1) parameters of the model. Its application to identify the ''skin effect'' of a squirrel cage induction machine modeling is then presented.

  18. Image compression-encryption algorithms by combining hyper-chaotic system with discrete fractional random transform

    NASA Astrophysics Data System (ADS)

    Gong, Lihua; Deng, Chengzhi; Pan, Shumin; Zhou, Nanrun

    2018-07-01

    Based on hyper-chaotic system and discrete fractional random transform, an image compression-encryption algorithm is designed. The original image is first transformed into a spectrum by the discrete cosine transform and the resulting spectrum is compressed according to the method of spectrum cutting. The random matrix of the discrete fractional random transform is controlled by a chaotic sequence originated from the high dimensional hyper-chaotic system. Then the compressed spectrum is encrypted by the discrete fractional random transform. The order of DFrRT and the parameters of the hyper-chaotic system are the main keys of this image compression and encryption algorithm. The proposed algorithm can compress and encrypt image signal, especially can encrypt multiple images once. To achieve the compression of multiple images, the images are transformed into spectra by the discrete cosine transform, and then the spectra are incised and spliced into a composite spectrum by Zigzag scanning. Simulation results demonstrate that the proposed image compression and encryption algorithm is of high security and good compression performance.

  19. On the control of the chaotic attractors of the 2-d Navier-Stokes equations.

    PubMed

    Smaoui, Nejib; Zribi, Mohamed

    2017-03-01

    The control problem of the chaotic attractors of the two dimensional (2-d) Navier-Stokes (N-S) equations is addressed in this paper. First, the Fourier Galerkin method based on a reduced-order modelling approach developed by Chen and Price is applied to the 2-d N-S equations to construct a fifth-order system of nonlinear ordinary differential equations (ODEs). The dynamics of the fifth-order system was studied by analyzing the system's attractor for different values of Reynolds number, R e . Then, control laws are proposed to drive the states of the ODE system to a desired attractor. Finally, an adaptive controller is designed to synchronize two reduced order ODE models having different Reynolds numbers and starting from different initial conditions. Simulation results indicate that the proposed control schemes work well.

  20. On the control of the chaotic attractors of the 2-d Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Smaoui, Nejib; Zribi, Mohamed

    2017-03-01

    The control problem of the chaotic attractors of the two dimensional (2-d) Navier-Stokes (N-S) equations is addressed in this paper. First, the Fourier Galerkin method based on a reduced-order modelling approach developed by Chen and Price is applied to the 2-d N-S equations to construct a fifth-order system of nonlinear ordinary differential equations (ODEs). The dynamics of the fifth-order system was studied by analyzing the system's attractor for different values of Reynolds number, Re. Then, control laws are proposed to drive the states of the ODE system to a desired attractor. Finally, an adaptive controller is designed to synchronize two reduced order ODE models having different Reynolds numbers and starting from different initial conditions. Simulation results indicate that the proposed control schemes work well.

  1. Precisely cyclic sand: self-organization of periodically sheared frictional grains.

    PubMed

    Royer, John R; Chaikin, Paul M

    2015-01-06

    The disordered static structure and chaotic dynamics of frictional granular matter has occupied scientists for centuries, yet there are few organizational principles or guiding rules for this highly hysteretic, dissipative material. We show that cyclic shear of a granular material leads to dynamic self-organization into several phases with different spatial and temporal order. Using numerical simulations, we present a phase diagram in strain-friction space that shows chaotic dispersion, crystal formation, vortex patterns, and most unusually a disordered phase in which each particle precisely retraces its unique path. However, the system is not reversible. Rather, the trajectory of each particle, and the entire frictional, many-degrees-of-freedom system, organizes itself into a limit cycle absorbing state. Of particular note is that fact that the cyclic states are spatially disordered, whereas the ordered states are chaotic.

  2. Precisely cyclic sand: Self-organization of periodically sheared frictional grains

    PubMed Central

    Royer, John R.; Chaikin, Paul M.

    2015-01-01

    The disordered static structure and chaotic dynamics of frictional granular matter has occupied scientists for centuries, yet there are few organizational principles or guiding rules for this highly hysteretic, dissipative material. We show that cyclic shear of a granular material leads to dynamic self-organization into several phases with different spatial and temporal order. Using numerical simulations, we present a phase diagram in strain–friction space that shows chaotic dispersion, crystal formation, vortex patterns, and most unusually a disordered phase in which each particle precisely retraces its unique path. However, the system is not reversible. Rather, the trajectory of each particle, and the entire frictional, many–degrees-of-freedom system, organizes itself into a limit cycle absorbing state. Of particular note is that fact that the cyclic states are spatially disordered, whereas the ordered states are chaotic. PMID:25538298

  3. Chaotic dynamics of large-scale double-diffusive convection in a porous medium

    NASA Astrophysics Data System (ADS)

    Kondo, Shutaro; Gotoda, Hiroshi; Miyano, Takaya; Tokuda, Isao T.

    2018-02-01

    We have studied chaotic dynamics of large-scale double-diffusive convection of a viscoelastic fluid in a porous medium from the viewpoint of dynamical systems theory. A fifth-order nonlinear dynamical system modeling the double-diffusive convection is theoretically obtained by incorporating the Darcy-Brinkman equation into transport equations through a physical dimensionless parameter representing porosity. We clearly show that the chaotic convective motion becomes much more complicated with increasing porosity. The degree of dynamic instability during chaotic convective motion is quantified by two important measures: the network entropy of the degree distribution in the horizontal visibility graph and the Kaplan-Yorke dimension in terms of Lyapunov exponents. We also present an interesting on-off intermittent phenomenon in the probability distribution of time intervals exhibiting nearly complete synchronization.

  4. Random Matrix Theory Approach to Chaotic Coherent Perfect Absorbers

    NASA Astrophysics Data System (ADS)

    Li, Huanan; Suwunnarat, Suwun; Fleischmann, Ragnar; Schanz, Holger; Kottos, Tsampikos

    2017-01-01

    We employ random matrix theory in order to investigate coherent perfect absorption (CPA) in lossy systems with complex internal dynamics. The loss strength γCPA and energy ECPA, for which a CPA occurs, are expressed in terms of the eigenmodes of the isolated cavity—thus carrying over the information about the chaotic nature of the target—and their coupling to a finite number of scattering channels. Our results are tested against numerical calculations using complex networks of resonators and chaotic graphs as CPA cavities.

  5. Adaptive neural network backstepping control for a class of uncertain fractional-order chaotic systems with unknown backlash-like hysteresis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yimin; Lv, Hui, E-mail: lvhui207@gmail.com

    In this paper, we consider the control problem of a class of uncertain fractional-order chaotic systems preceded by unknown backlash-like hysteresis nonlinearities based on backstepping control algorithm. We model the hysteresis by using a differential equation. Based on the fractional Lyapunov stability criterion and the backstepping algorithm procedures, an adaptive neural network controller is driven. No knowledge of the upper bound of the disturbance and system uncertainty is required in our controller, and the asymptotical convergence of the tracking error can be guaranteed. Finally, we give two simulation examples to confirm our theoretical results.

  6. Order and Value: Transitioning to Integers

    ERIC Educational Resources Information Center

    Bofferding, Laura

    2014-01-01

    As students progress from working with whole numbers to working with integers, they must wrestle with the big ideas of number values and order. Using objects to show positive quantities is easy, but no physical negative quantities exist. Therefore, when talking about integers, the author refers to number values instead of number quantities. The…

  7. On the modeling and nonlinear dynamics of autonomous Silva-Young type chaotic oscillators with flat power spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kengne, Jacques; Kenmogne, Fabien

    2014-12-15

    The nonlinear dynamics of fourth-order Silva-Young type chaotic oscillators with flat power spectrum recently introduced by Tamaseviciute and collaborators is considered. In this type of oscillators, a pair of semiconductor diodes in an anti-parallel connection acts as the nonlinear component necessary for generating chaotic oscillations. Based on the Shockley diode equation and an appropriate selection of the state variables, a smooth mathematical model (involving hyperbolic sine and cosine functions) is derived for a better description of both the regular and chaotic dynamics of the system. The complex behavior of the oscillator is characterized in terms of its parameters by usingmore » time series, bifurcation diagrams, Lyapunov exponents' plots, Poincaré sections, and frequency spectra. It is shown that the onset of chaos is achieved via the classical period-doubling and symmetry restoring crisis scenarios. Some PSPICE simulations of the nonlinear dynamics of the oscillator are presented in order to confirm the ability of the proposed mathematical model to accurately describe/predict both the regular and chaotic behaviors of the oscillator.« less

  8. A New Chaotic Flow with Hidden Attractor: The First Hyperjerk System with No Equilibrium

    NASA Astrophysics Data System (ADS)

    Ren, Shuili; Panahi, Shirin; Rajagopal, Karthikeyan; Akgul, Akif; Pham, Viet-Thanh; Jafari, Sajad

    2018-02-01

    Discovering unknown aspects of non-equilibrium systems with hidden strange attractors is an attractive research topic. A novel quadratic hyperjerk system is introduced in this paper. It is noteworthy that this non-equilibrium system can generate hidden chaotic attractors. The essential properties of such systems are investigated by means of equilibrium points, phase portrait, bifurcation diagram, and Lyapunov exponents. In addition, a fractional-order differential equation of this new system is presented. Moreover, an electronic circuit is also designed and implemented to verify the feasibility of the theoretical model.

  9. Interplay of Hofstadter and quantum Hall states in bilayer graphene

    NASA Astrophysics Data System (ADS)

    Spanton, Eric M.; Zibrov, Alexander A.; Zhou, Haoxin; Taniguchi, Takashi; Watanabe, Kenji; Young, Andrea

    Electron interactions in ultraclean systems such as graphene lead to the fractional quantum Hall effect in an applied magnetic field. Long wavelength periodic potentials from a moiré pattern in aligned boron nitride-graphene heterostructures may compete with such interactions and favor spatially ordered states (e.g. Wigner crystals orcharge density waves). To investigate this competition, we studied the bulk phase diagram of asymmetrically moiré-coupled bilayer graphene via multi-terminal magnetocapacitance measurements at ultra-high magnetic fields. Two quantum numbers characterize energy gaps in this regime: t, which indexes the Bloch bands, and s, which indexes the Landau level. Similar to past experiments, we observe the conventional integer and fractional quantum Hall gaps (t = 0), integer Hofstadter gaps (integer s and integer t ≠ 0), and fractional Bloch states associated with an expanded superlattice unit cell (fractional s and integer t). Additionally, we find states with fractional values for both s and t. Measurement of the capacitance matrix shows that these states occur on the layer exposed to the strong periodic potential. We discuss the results in terms of possible fractional quantum hall states unique to periodically modulated systems.

  10. Design of distributed PID-type dynamic matrix controller for fractional-order systems

    NASA Astrophysics Data System (ADS)

    Wang, Dawei; Zhang, Ridong

    2018-01-01

    With the continuous requirements for product quality and safety operation in industrial production, it is difficult to describe the complex large-scale processes with integer-order differential equations. However, the fractional differential equations may precisely represent the intrinsic characteristics of such systems. In this paper, a distributed PID-type dynamic matrix control method based on fractional-order systems is proposed. First, the high-order approximate model of integer order is obtained by utilising the Oustaloup method. Then, the step response model vectors of the plant is obtained on the basis of the high-order model, and the online optimisation for multivariable processes is transformed into the optimisation of each small-scale subsystem that is regarded as a sub-plant controlled in the distributed framework. Furthermore, the PID operator is introduced into the performance index of each subsystem and the fractional-order PID-type dynamic matrix controller is designed based on Nash optimisation strategy. The information exchange among the subsystems is realised through the distributed control structure so as to complete the optimisation task of the whole large-scale system. Finally, the control performance of the designed controller in this paper is verified by an example.

  11. Short-term cascaded hydroelectric system scheduling based on chaotic particle swarm optimization using improved logistic map

    NASA Astrophysics Data System (ADS)

    He, Yaoyao; Yang, Shanlin; Xu, Qifa

    2013-07-01

    In order to solve the model of short-term cascaded hydroelectric system scheduling, a novel chaotic particle swarm optimization (CPSO) algorithm using improved logistic map is introduced, which uses the water discharge as the decision variables combined with the death penalty function. According to the principle of maximum power generation, the proposed approach makes use of the ergodicity, symmetry and stochastic property of improved logistic chaotic map for enhancing the performance of particle swarm optimization (PSO) algorithm. The new hybrid method has been examined and tested on two test functions and a practical cascaded hydroelectric system. The experimental results show that the effectiveness and robustness of the proposed CPSO algorithm in comparison with other traditional algorithms.

  12. Chaotic Mixing in Magmatic Systems: a new experiment

    NASA Astrophysics Data System (ADS)

    de Campos, C. P.; Perugini, D.; Dingwell, D. B.; Poli, G.; Ertel-Ingrisch, W.; Hess, K.

    2007-12-01

    Previous studies on magma mixing systems have evidenced that mixing processes could be controlled by chaotic dynamics. These processes are thought to be the source of fractal structures propagating within natural magmatic systems, from meter to the micrometer length scale (Perugini et al., 2006. EPSL, 234: 669-680 and references therein). We have developed a device for experimental studies of chaotic mixing dynamics in silicate melts at high temperatures (up to 1700°C). This device has been inspired by the journal bearing or eccentric cylinder geometry for viscous fluids for the study of chaotic mixing in slow flows (Swanson and Ottino, 1990. J. Fluid Mech., 213:227-249). This geometry is thought to be an ideal system for chaotic studies because a) it is experimentally accessible/feasible for silicate rheologies and b) it is subject to an analytical solution for the stream function. In the journal bearing system the flow region, is confined in the torus between the centers of the two cylinders. Their central axes are parallel but not coincident, i. e. the cylinders are eccentric. In order to generate chaos in a flow, the streamlines must be time dependent, resulting in alternating movements between the two cylinders. This means that at least one of the cylinders has alternating rotation directions. The dimension of this new experimental device follows the required main dimensionless numbers for a chaotic flow. Our first experimental goal is to characterize the mixing process in a prototypical system (haplogranite-haplobasalt)under variable mixing protocols. muenchen.de/

  13. Finite-time stabilisation of a class of switched nonlinear systems with state constraints

    NASA Astrophysics Data System (ADS)

    Huang, Shipei; Xiang, Zhengrong

    2018-06-01

    This paper investigates the finite-time stabilisation for a class of switched nonlinear systems with state constraints. Some power orders of the system are allowed to be ratios of positive even integers over odd integers. A Barrier Lyapunov function is introduced to guarantee that the state constraint is not violated at any time. Using the convex combination method and a recursive design approach, a state-dependent switching law and state feedback controllers of individual subsystems are constructed such that the closed-loop system is finite-time stable without violation of the state constraint. Two examples are provided to show the effectiveness of the proposed method.

  14. Gross-Pitaevski map as a chaotic dynamical system.

    PubMed

    Guarneri, Italo

    2017-03-01

    The Gross-Pitaevski map is a discrete time, split-operator version of the Gross-Pitaevski dynamics in the circle, for which exponential instability has been recently reported. Here it is studied as a classical dynamical system in its own right. A systematic analysis of Lyapunov exponents exposes strongly chaotic behavior. Exponential growth of energy is then shown to be a direct consequence of rotational invariance and for stationary solutions the full spectrum of Lyapunov exponents is analytically computed. The present analysis includes the "resonant" case, when the free rotation period is commensurate to 2π, and the map has countably many constants of the motion. Except for lowest-order resonances, this case exhibits an integrable-chaotic transition.

  15. Fourier's law for quasi-one-dimensional chaotic quantum systems

    NASA Astrophysics Data System (ADS)

    Seligman, Thomas H.; Weidenmüller, Hans A.

    2011-05-01

    We derive Fourier's law for a completely coherent quasi-one-dimensional chaotic quantum system coupled locally to two heat baths at different temperatures. We solve the master equation to first order in the temperature difference. We show that the heat conductance can be expressed as a thermodynamic equilibrium coefficient taken at some intermediate temperature. We use that expression to show that for temperatures large compared to the mean level spacing of the system, the heat conductance is inversely proportional to the level density and, thus, inversely proportional to the length of the system.

  16. A supplier selection and order allocation problem with stochastic demands

    NASA Astrophysics Data System (ADS)

    Zhou, Yun; Zhao, Lei; Zhao, Xiaobo; Jiang, Jianhua

    2011-08-01

    We consider a system comprising a retailer and a set of candidate suppliers that operates within a finite planning horizon of multiple periods. The retailer replenishes its inventory from the suppliers and satisfies stochastic customer demands. At the beginning of each period, the retailer makes decisions on the replenishment quantity, supplier selection and order allocation among the selected suppliers. An optimisation problem is formulated to minimise the total expected system cost, which includes an outer level stochastic dynamic program for the optimal replenishment quantity and an inner level integer program for supplier selection and order allocation with a given replenishment quantity. For the inner level subproblem, we develop a polynomial algorithm to obtain optimal decisions. For the outer level subproblem, we propose an efficient heuristic for the system with integer-valued inventory, based on the structural properties of the system with real-valued inventory. We investigate the efficiency of the proposed solution approach, as well as the impact of parameters on the optimal replenishment decision with numerical experiments.

  17. Chaos in the sunspot cycle - Analysis and prediction

    NASA Technical Reports Server (NTRS)

    Mundt, Michael D.; Maguire, W. Bruce, II; Chase, Robert R. P.

    1991-01-01

    The variability of solar activity over long time scales, given semiquantitatively by measurements of sunspot numbers, is examined as a nonlinear dynamical system. First, a discussion of the data set used and the techniques utilized to reduce the noise and capture the long-term dynamics inherent in the data is presented. Subsequently, an attractor is reconstructed from the data set using the method of time delays. The reconstructed attractor is then used to determine both the dimension of the underlying system and also the largest Lyapunov exponent, which together indicate that the sunspot cycle is indeed chaotic and also low dimensional. In addition, recent techniques of exploiting chaotic dynamics to provide accurate, short-term predictions are utilized in order to improve upon current forecasting methods and also to place theoretical limits on predictability extent. The results are compared to chaotic solar-dynamo models as a possible physically motivated source of this chaotic behavior.

  18. Numerical Solutions of the Nonlinear Fractional-Order Brusselator System by Bernstein Polynomials

    PubMed Central

    Khan, Rahmat Ali; Tajadodi, Haleh; Johnston, Sarah Jane

    2014-01-01

    In this paper we propose the Bernstein polynomials to achieve the numerical solutions of nonlinear fractional-order chaotic system known by fractional-order Brusselator system. We use operational matrices of fractional integration and multiplication of Bernstein polynomials, which turns the nonlinear fractional-order Brusselator system to a system of algebraic equations. Two illustrative examples are given in order to demonstrate the accuracy and simplicity of the proposed techniques. PMID:25485293

  19. Mixing Silicate Melts with High Viscosity Contrast by Chaotic Dynamics: Results from a New Experimental Device

    NASA Astrophysics Data System (ADS)

    de Campos, Cristina; Perugini, Diego; Ertel-Ingrisch, Werner; Dingwell, Donald B.; Poli, Giampiero

    2010-05-01

    A new experimental device has been developed to perform chaotic mixing between high viscosity melts under controlled fluid-dynamic conditions. The apparatus is based on the Journal Bearing System (JBS). It consists of an outer cylinder hosting the melts of interest and an inner cylinder, which is eccentrically located. Both cylinders can be independently moved to generate chaotic streamlines in the mixing system. Two experiments were performed using as end-members different proportions of a peralkaline haplogranite and a mafic melt, corresponding to the 1 atm eutectic composition in the An-Di binary system. The two melts were stirred together in the JBS for ca. two hours, at 1,400° C and under laminar fluid dynamic condition (Re of the order of 10-7). The viscosity ratio between the two melts, at the beginning of the experiment, was of the order of 103. Optical analyses of experimental samples revealed, at short length scale (of the order of μm), a complex pattern of mixed structures. These consisted of an intimate distribution of filaments; a complex inter-fingering of the two melts. Such features are typically observed in rocks thought to be produced by magma mixing processes. Stretching and folding dynamics between the melts induced chaotic flow fields and generated wide compositional interfaces. In this way, chemical diffusion processes become more efficient, producing melts with highly heterogeneous compositions. A remarkable modulation of compositional fields has been obtained by performing short time-scale experiments and using melts with a high viscosity ratio. This indicates that chaotic mixing of magmas can be a very efficient process in modulating compositional variability in igneous systems, especially under high viscosity ratios and laminar fluid-dynamic regimes. Our experimental device may replicate magma mixing features, observed in natural rocks, and therefore open new frontiers in the study of this important petrologic and volcanological process.

  20. Magnetic impurity effect on charge and magnetic order in doped La1.5Ca0.5CoO4

    NASA Astrophysics Data System (ADS)

    Horigane, K.; Hiraka, H.; Tomiyasu, K.; Ohoyama, K.; Louca, D.; Yamada, K.

    2012-02-01

    Neutron scattering experiments were performed on single crystals of magnetic impurity doped cobalt oxides La1.5Ca0.5CoO4 to characterize the charge and spin orders. We newly found contrasting impurity effects. Two types of magnetic peaks are observed at q = (0.5,0,L) with L = half-integer and integer in La1.5Ca0.5CoO4, while magnetic peak at L = half-integer (integer) was only observed in Mn (Fe)-substituted sample. Although Mn and Fe impurities degrade charge and magnetic order, Cr impurity stabilizes the ordering at x = 0.5. Based on the crystal structural analysis of Cr doped sample, we found that the excess oxygen and change of octahedron around Co3+ were realized in Cr doped sample.

  1. Quantized Synchronization of Chaotic Neural Networks With Scheduled Output Feedback Control.

    PubMed

    Wan, Ying; Cao, Jinde; Wen, Guanghui

    In this paper, the synchronization problem of master-slave chaotic neural networks with remote sensors, quantization process, and communication time delays is investigated. The information communication channel between the master chaotic neural network and slave chaotic neural network consists of several remote sensors, with each sensor able to access only partial knowledge of output information of the master neural network. At each sampling instants, each sensor updates its own measurement and only one sensor is scheduled to transmit its latest information to the controller's side in order to update the control inputs for the slave neural network. Thus, such communication process and control strategy are much more energy-saving comparing with the traditional point-to-point scheme. Sufficient conditions for output feedback control gain matrix, allowable length of sampling intervals, and upper bound of network-induced delays are derived to ensure the quantized synchronization of master-slave chaotic neural networks. Lastly, Chua's circuit system and 4-D Hopfield neural network are simulated to validate the effectiveness of the main results.In this paper, the synchronization problem of master-slave chaotic neural networks with remote sensors, quantization process, and communication time delays is investigated. The information communication channel between the master chaotic neural network and slave chaotic neural network consists of several remote sensors, with each sensor able to access only partial knowledge of output information of the master neural network. At each sampling instants, each sensor updates its own measurement and only one sensor is scheduled to transmit its latest information to the controller's side in order to update the control inputs for the slave neural network. Thus, such communication process and control strategy are much more energy-saving comparing with the traditional point-to-point scheme. Sufficient conditions for output feedback control gain matrix, allowable length of sampling intervals, and upper bound of network-induced delays are derived to ensure the quantized synchronization of master-slave chaotic neural networks. Lastly, Chua's circuit system and 4-D Hopfield neural network are simulated to validate the effectiveness of the main results.

  2. Exploiting Fractional Order PID Controller Methods in Improving the Performance of Integer Order PID Controllers: A GA Based Approach

    NASA Astrophysics Data System (ADS)

    Mukherjee, Bijoy K.; Metia, Santanu

    2009-10-01

    The paper is divided into three parts. The first part gives a brief introduction to the overall paper, to fractional order PID (PIλDμ) controllers and to Genetic Algorithm (GA). In the second part, first it has been studied how the performance of an integer order PID controller deteriorates when implemented with lossy capacitors in its analog realization. Thereafter it has been shown that the lossy capacitors can be effectively modeled by fractional order terms. Then, a novel GA based method has been proposed to tune the controller parameters such that the original performance is retained even though realized with the same lossy capacitors. Simulation results have been presented to validate the usefulness of the method. Some Ziegler-Nichols type tuning rules for design of fractional order PID controllers have been proposed in the literature [11]. In the third part, a novel GA based method has been proposed which shows how equivalent integer order PID controllers can be obtained which will give performance level similar to those of the fractional order PID controllers thereby removing the complexity involved in the implementation of the latter. It has been shown with extensive simulation results that the equivalent integer order PID controllers more or less retain the robustness and iso-damping properties of the original fractional order PID controllers. Simulation results also show that the equivalent integer order PID controllers are more robust than the normal Ziegler-Nichols tuned PID controllers.

  3. Quantification of chaotic strength and mixing in a micro fluidic system

    NASA Astrophysics Data System (ADS)

    Kim, Ho Jun; Beskok, Ali

    2007-11-01

    Comparative studies of five different techniques commonly employed to identify the chaotic strength and mixing efficiency in micro fluidic systems are presented to demonstrate the competitive advantages and shortcomings of each method. The 'chaotic electroosmotic stirrer' of Qian and Bau (2002 Anal. Chem. 74 3616-25) is utilized as the benchmark case due to its well-defined flow kinematics. Lagrangian particle tracking methods are utilized to study particle dispersion in the conceptual device using spectral element and fourth-order Runge-Kutta discretizations in space and time, respectively. Stirring efficiency is predicted using the stirring index based on the box counting method, and Poincaré sections are utilized to identify the chaotic and regular regions under various actuation conditions. Finite time Lyapunov exponents are calculated to quantify the chaotic strength, while the probability density function of the stretching field is utilized as an alternative method to demonstrate the statistical analysis of chaotic and partially chaotic cases. Mixing index inverse, based on the standard deviation of scalar species distribution, is utilized as a metric to quantify the mixing efficiency. Series of numerical simulations are performed by varying the Peclet number (Pe) at fixed kinematic conditions. The mixing time (tm) is characterized as a function of the Pe number, and tm ~ ln(Pe) scaling is demonstrated for fully chaotic cases, while tm ~ Peα scaling with α ≈ 0.33 and α = 0.5 are observed for partially chaotic and regular cases, respectively. Employing the aforementioned techniques, optimum kinematic conditions and the actuation frequency of the stirrer that result in the highest mixing/stirring efficiency are identified.

  4. Transport properties in nontwist area-preserving maps

    DOE PAGES

    Szezech Jr., J. D.; Caldas, I. L.; Lopes, S. R.; ...

    2009-10-23

    Nontwist systems, common in the dynamical descriptions of fluids and plasmas, possess a shearless curve with a concomitant transport barrier that eliminates or reduces chaotic transport, even after its breakdown. In order to investigate the transport properties of nontwist systems, we analyze the barrier escape time and barrier transmissivity for the standard nontwist map, a paradigm of such systems. We interpret the sensitive dependence of these quantities upon map parameters by investigating chaotic orbit stickiness and the associated role played by the dominant crossing of stable and unstable manifolds.

  5. Robust synchronization of master-slave chaotic systems using approximate model: An experimental study.

    PubMed

    Ahmed, Hafiz; Salgado, Ivan; Ríos, Héctor

    2018-02-01

    Robust synchronization of master slave chaotic systems are considered in this work. First an approximate model of the error system is obtained using the ultra-local model concept. Then a Continuous Singular Terminal Sliding-Mode (CSTSM) Controller is designed for the purpose of synchronization. The proposed approach is output feedback-based and uses fixed-time higher order sliding-mode (HOSM) differentiator for state estimation. Numerical simulation and experimental results are given to show the effectiveness of the proposed technique. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Chaotic Motions in the Real Fuzzy Electronic Circuits (Preprint)

    DTIC Science & Technology

    2012-12-01

    the research field of secure communications, the original source should be blended with other complex signals. Chaotic signals are one of the good... blending of the linear system models. Consider a continuous-time nonlinear dynamic system as follows: Rule i: IF )(1 tx is ...1iM and )(txn is...Chaos Solitons Fractals, vol. 21, no. 4, pp. 957–965, 2004. 29. L. M. Tam and W. M. SiTou, “Parametric study of the fractional order Chen–Lee

  7. Strong Families, Tidy Houses, and Children's Values in Adult Life: Are "Chaotic", "Crowded" and "Unstable" Homes Really so Bad?

    ERIC Educational Resources Information Center

    Flouri, Eirini

    2009-01-01

    Chaotic home systems have been linked with children's adverse psychological and academic outcomes. But, as they represent a departure from the suburban ideal of space, order, and family cohesiveness and stability, they should also be linked with low support for survival values. Using longitudinal data from the 1970 British Cohort Study (BCS70)…

  8. Polariton Chimeras: Bose-Einstein Condensates with Intrinsic Chaoticity and Spontaneous Long-Range Ordering

    NASA Astrophysics Data System (ADS)

    Gavrilov, S. S.

    2018-01-01

    The system of cavity polaritons driven by a plane electromagnetic wave is found to undergo the spontaneous breaking of spatial symmetry, which results in a lifted phase locking with respect to the driving field and, consequently, in the possibility of internal ordering. In particular, periodic spin and intensity patterns arise in polariton wires; they exhibit strong long-range order and can serve as media for signal transmission. Such patterns have the properties of dynamical chimeras: they are formed spontaneously in perfectly homogeneous media and can be partially chaotic. The reported new mechanism of chimera formation requires neither time-delayed feedback loops nor nonlocal interactions.

  9. Least Squares Shadowing sensitivity analysis of chaotic limit cycle oscillations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Qiqi, E-mail: qiqi@mit.edu; Hu, Rui, E-mail: hurui@mit.edu; Blonigan, Patrick, E-mail: blonigan@mit.edu

    2014-06-15

    The adjoint method, among other sensitivity analysis methods, can fail in chaotic dynamical systems. The result from these methods can be too large, often by orders of magnitude, when the result is the derivative of a long time averaged quantity. This failure is known to be caused by ill-conditioned initial value problems. This paper overcomes this failure by replacing the initial value problem with the well-conditioned “least squares shadowing (LSS) problem”. The LSS problem is then linearized in our sensitivity analysis algorithm, which computes a derivative that converges to the derivative of the infinitely long time average. We demonstrate ourmore » algorithm in several dynamical systems exhibiting both periodic and chaotic oscillations.« less

  10. Understanding the Complexity of Temperature Dynamics in Xinjiang, China, from Multitemporal Scale and Spatial Perspectives

    PubMed Central

    Chen, Yaning; Li, Weihong; Liu, Zuhan; Wei, Chunmeng; Tang, Jie

    2013-01-01

    Based on the observed data from 51 meteorological stations during the period from 1958 to 2012 in Xinjiang, China, we investigated the complexity of temperature dynamics from the temporal and spatial perspectives by using a comprehensive approach including the correlation dimension (CD), classical statistics, and geostatistics. The main conclusions are as follows (1) The integer CD values indicate that the temperature dynamics are a complex and chaotic system, which is sensitive to the initial conditions. (2) The complexity of temperature dynamics decreases along with the increase of temporal scale. To describe the temperature dynamics, at least 3 independent variables are needed at daily scale, whereas at least 2 independent variables are needed at monthly, seasonal, and annual scales. (3) The spatial patterns of CD values at different temporal scales indicate that the complex temperature dynamics are derived from the complex landform. PMID:23843732

  11. Fractional-order positive position feedback compensator for active vibration control of a smart composite plate

    NASA Astrophysics Data System (ADS)

    Marinangeli, L.; Alijani, F.; HosseinNia, S. Hassan

    2018-01-01

    In this paper, Active Vibration Control (AVC) of a rectangular carbon fibre composite plate with free edges is presented. The plate is subjected to out-of-plane excitation by a modal vibration exciter and controlled by Macro Fibre Composite (MFC) transducers. Vibration measurements are performed by using a Laser Doppler Vibrometer (LDV) system. A fractional-order Positive Position Feedback (PPF) compensator is proposed, implemented and compared to the standard integer-order PPF. MFC actuator and sensor are positioned on the plate based on maximal modal strain criterion, so as to control the second natural mode of the plate. Both integer and fractional-order PPF allowed for the effective control of the second mode of vibration. However, the newly proposed fractional-order controller is found to be more efficient in achieving the same performance with less actuation voltage. Moreover, it shows promising performance in reducing spillover effect due to uncontrolled modes.

  12. Chaos in a Fractional Order Chua System

    NASA Technical Reports Server (NTRS)

    Lorenzo, Carl F.; Hartley, Tom T.; Qammar, Helen Killory

    1996-01-01

    This report studies the effects of fractional dynamics in chaotic systems. In particular, Chua's system is modified to include fractional order elements. Varying the total system order incrementally from 2.6 to 3.7 demonstrates that systems of 'order' less than three can exhibit chaos as well as other nonlinear behavior. This effectively forces a clarification of the definition of order which can no longer be considered only by the total number of differentiations or by the highest power of the Laplace variable.

  13. Random crystal field effects on the integer and half-integer mixed-spin system

    NASA Astrophysics Data System (ADS)

    Yigit, Ali; Albayrak, Erhan

    2018-05-01

    In this work, we have focused on the random crystal field effects on the phase diagrams of the mixed spin-1 and spin-5/2 Ising system obtained by utilizing the exact recursion relations (ERR) on the Bethe lattice (BL). The distribution function P(Di) = pδ [Di - D(1 + α) ] +(1 - p) δ [Di - D(1 - α) ] is used to randomize the crystal field.The phase diagrams are found to exhibit second- and first-order phase transitions depending on the values of α, D and p. It is also observed that the model displays tricritical point, isolated point, critical end point and three compensation temperatures for suitable values of the system parameters.

  14. Performance analysis of two-degree of freedom fractional order PID controllers for robotic manipulator with payload.

    PubMed

    Sharma, Richa; Gaur, Prerna; Mittal, A P

    2015-09-01

    The robotic manipulators are multi-input multi-output (MIMO), coupled and highly nonlinear systems. The presence of external disturbances and time-varying parameters adversely affects the performance of these systems. Therefore, the controller designed for these systems should effectively deal with such complexities, and it is an intriguing task for control engineers. This paper presents two-degree of freedom fractional order proportional-integral-derivative (2-DOF FOPID) controller scheme for a two-link planar rigid robotic manipulator with payload for trajectory tracking task. The tuning of all controller parameters is done using cuckoo search algorithm (CSA). The performance of proposed 2-DOF FOPID controllers is compared with those of their integer order designs, i.e., 2-DOF PID controllers, and with the traditional PID controllers. In order to show effectiveness of proposed scheme, the robustness testing is carried out for model uncertainties, payload variations with time, external disturbance and random noise. Numerical simulation results indicate that the 2-DOF FOPID controllers are superior to their integer order counterparts and the traditional PID controllers. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Competitive Modes for the Detection of Chaotic Parameter Regimes in the General Chaotic Bilinear System of Lorenz Type

    NASA Astrophysics Data System (ADS)

    Mallory, Kristina; van Gorder, Robert A.

    We study chaotic behavior of solutions to the bilinear system of Lorenz type developed by Celikovsky and Vanecek [1994] through an application of competitive modes. This bilinear system of Lorenz type is one possible canonical form holding the Lorenz equation as a special case. Using a competitive modes analysis, which is a completely analytical method allowing one to identify parameter regimes for which chaos may occur, we are able to demonstrate a number of parameter regimes which admit a variety of distinct chaotic behaviors. Indeed, we are able to draw some interesting conclusions which relate the behavior of the mode frequencies arising from writing the state variables for the Celikovsky-Vanecek model as coupled oscillators, and the types of emergent chaotic behaviors observed. The competitive modes analysis is particularly useful if all but one of the model parameters are fixed, and the remaining free parameter is used to modify the chaos observed, in a manner analogous to a bifurcation parameter. Through a thorough application of the method, we are able to identify several parameter regimes which give new dynamics (such as specific forms of chaos) which were not observed or studied previously in the Celikovsky-Vanecek model. Therefore, the results demonstrate the advantage of the competitive modes approach for detecting new parameter regimes leading to chaos in third-order dynamical systems.

  16. Fractional Order Spatiotemporal Chaos with Delay in Spatial Nonlinear Coupling

    NASA Astrophysics Data System (ADS)

    Zhang, Yingqian; Wang, Xingyuan; Liu, Liyan; Liu, Jia

    We investigate the spatiotemporal dynamics with fractional order differential logistic map with delay under nonlinear chaotic maps for spatial coupling connections. Here, the coupling methods between lattices are the nonlinear chaotic map coupling of lattices. The fractional order differential logistic map with delay breaks the limits of the range of parameter μ ∈ [3.75, 4] in the classical logistic map for chaotic states. The Kolmogorov-Sinai entropy density and universality, and bifurcation diagrams are employed to investigate the chaotic behaviors of the proposed model in this paper. The proposed model can also be applied for cryptography, which is verified in a color image encryption scheme in this paper.

  17. Virtual Libraries: Interactive Support Software and an Application in Chaotic Models.

    ERIC Educational Resources Information Center

    Katsirikou, Anthi; Skiadas, Christos; Apostolou, Apostolos; Rompogiannakis, Giannis

    This paper begins with a discussion of the characteristics and the singularity of chaotic systems, including dynamic systems theory, chaotic orbit, fractals, chaotic attractors, and characteristics of chaotic systems. The second section addresses the digital libraries (DL) concept and the appropriateness of chaotic models, including definition and…

  18. Chaotic Signal Denoising Based on Hierarchical Threshold Synchrosqueezed Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Wang, Wen-Bo; Jing, Yun-yu; Zhao, Yan-chao; Zhang, Lian-Hua; Wang, Xiang-Li

    2017-12-01

    In order to overcoming the shortcoming of single threshold synchrosqueezed wavelet transform(SWT) denoising method, an adaptive hierarchical threshold SWT chaotic signal denoising method is proposed. Firstly, a new SWT threshold function is constructed based on Stein unbiased risk estimation, which is two order continuous derivable. Then, by using of the new threshold function, a threshold process based on the minimum mean square error was implemented, and the optimal estimation value of each layer threshold in SWT chaotic denoising is obtained. The experimental results of the simulating chaotic signal and measured sunspot signals show that, the proposed method can filter the noise of chaotic signal well, and the intrinsic chaotic characteristic of the original signal can be recovered very well. Compared with the EEMD denoising method and the single threshold SWT denoising method, the proposed method can obtain better denoising result for the chaotic signal.

  19. On Selberg's trace formula: chaos, resonances and time delays

    NASA Astrophysics Data System (ADS)

    Lévay, Péter

    2000-06-01

    The quantization of the chaotic geodesic motion on Riemann surfaces Σg,κ of constant negative curvature with genus g and a finite number of points κ infinitely far away (cusps) describing scattering channels is investigated. It is shown that terms in Selberg's trace formula describing scattering states can be expressed in terms of a renormalized time delay. This quantity is the time delay associated with the surface in question minus the time delay corresponding to the scattering problem on the Poincaré upper half-plane uniformizing our surface. Poles in these quantities give rise to resonances reflecting the chaos of the underlying classical dynamics. Our results are illustrated for the surfaces Σ1,1 (Gutzwiller's leaky torus), Σ0,3 (pants), and a class of Σg,2 surfaces. The generalization covering the inclusion of an integer B≥2 magnetic field is also presented. It is shown that the renormalized time delay is not dependent on the magnetic field. This shows that the semiclassical dynamics with an integer magnetic field is the same as the free dynamics.

  20. Order or chaos in Boolean gene networks depends on the mean fraction of canalizing functions

    NASA Astrophysics Data System (ADS)

    Karlsson, Fredrik; Hörnquist, Michael

    2007-10-01

    We explore the connection between order/chaos in Boolean networks and the naturally occurring fraction of canalizing functions in such systems. This fraction turns out to give a very clear indication of whether the system possesses ordered or chaotic dynamics, as measured by Derrida plots, and also the degree of order when we compare different networks with the same number of vertices and edges. By studying also a wide distribution of indegrees in a network, we show that the mean probability of canalizing functions is a more reliable indicator of the type of dynamics for a finite network than the classical result on stability relating the bias to the mean indegree. Finally, we compare by direct simulations two biologically derived networks with networks of similar sizes but with power-law and Poisson distributions of indegrees, respectively. The biologically motivated networks are not more ordered than the latter, and in one case the biological network is even chaotic while the others are not.

  1. Lyapunov functions for a class of nonlinear systems using Caputo derivative

    NASA Astrophysics Data System (ADS)

    Fernandez-Anaya, G.; Nava-Antonio, G.; Jamous-Galante, J.; Muñoz-Vega, R.; Hernández-Martínez, E. G.

    2017-02-01

    This paper presents an extension of recent results that allow proving the stability of Caputo nonlinear and time-varying systems, by means of the fractional order Lyapunov direct method, using quadratic Lyapunov functions. This article introduces a new way of building polynomial Lyapunov functions of any positive integer order as a way of determining the stability of a greater variety of systems when the order of the derivative is 0 < α < 1. Some examples are given to validate these results.

  2. New Insights into the Fractional Order Diffusion Equation Using Entropy and Kurtosis.

    PubMed

    Ingo, Carson; Magin, Richard L; Parrish, Todd B

    2014-11-01

    Fractional order derivative operators offer a concise description to model multi-scale, heterogeneous and non-local systems. Specifically, in magnetic resonance imaging, there has been recent work to apply fractional order derivatives to model the non-Gaussian diffusion signal, which is ubiquitous in the movement of water protons within biological tissue. To provide a new perspective for establishing the utility of fractional order models, we apply entropy for the case of anomalous diffusion governed by a fractional order diffusion equation generalized in space and in time. This fractional order representation, in the form of the Mittag-Leffler function, gives an entropy minimum for the integer case of Gaussian diffusion and greater values of spectral entropy for non-integer values of the space and time derivatives. Furthermore, we consider kurtosis, defined as the normalized fourth moment, as another probabilistic description of the fractional time derivative. Finally, we demonstrate the implementation of anomalous diffusion, entropy and kurtosis measurements in diffusion weighted magnetic resonance imaging in the brain of a chronic ischemic stroke patient.

  3. Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models

    NASA Astrophysics Data System (ADS)

    Ahmed, E.; El-Sayed, A. M. A.; El-Saka, H. A. A.

    2007-01-01

    In this paper we are concerned with the fractional-order predator-prey model and the fractional-order rabies model. Existence and uniqueness of solutions are proved. The stability of equilibrium points are studied. Numerical solutions of these models are given. An example is given where the equilibrium point is a centre for the integer order system but locally asymptotically stable for its fractional-order counterpart.

  4. A time series model: First-order integer-valued autoregressive (INAR(1))

    NASA Astrophysics Data System (ADS)

    Simarmata, D. M.; Novkaniza, F.; Widyaningsih, Y.

    2017-07-01

    Nonnegative integer-valued time series arises in many applications. A time series model: first-order Integer-valued AutoRegressive (INAR(1)) is constructed by binomial thinning operator to model nonnegative integer-valued time series. INAR (1) depends on one period from the process before. The parameter of the model can be estimated by Conditional Least Squares (CLS). Specification of INAR(1) is following the specification of (AR(1)). Forecasting in INAR(1) uses median or Bayesian forecasting methodology. Median forecasting methodology obtains integer s, which is cumulative density function (CDF) until s, is more than or equal to 0.5. Bayesian forecasting methodology forecasts h-step-ahead of generating the parameter of the model and parameter of innovation term using Adaptive Rejection Metropolis Sampling within Gibbs sampling (ARMS), then finding the least integer s, where CDF until s is more than or equal to u . u is a value taken from the Uniform(0,1) distribution. INAR(1) is applied on pneumonia case in Penjaringan, Jakarta Utara, January 2008 until April 2016 monthly.

  5. Hybrid electronic/optical synchronized chaos communication system.

    PubMed

    Toomey, J P; Kane, D M; Davidović, A; Huntington, E H

    2009-04-27

    A hybrid electronic/optical system for synchronizing a chaotic receiver to a chaotic transmitter has been demonstrated. The chaotic signal is generated electronically and injected, in addition to a constant bias current, to a semiconductor laser to produce an optical carrier for transmission. The optical chaotic carrier is photodetected to regenerate an electronic signal for synchronization in a matched electronic receiver The system has been successfully used for the transmission and recovery of a chaos masked message that is added to the chaotic optical carrier. Past demonstrations of synchronized chaos based, secure communication systems have used either an electronic chaotic carrier or an optical chaotic carrier (such as the chaotic output of various nonlinear laser systems). This is the first electronic/optical hybrid system to be demonstrated. We call this generation of a chaotic optical carrier by electronic injection.

  6. Study on Fuzzy Adaptive Fractional Order PIλDμ Control for Maglev Guiding System

    NASA Astrophysics Data System (ADS)

    Hu, Qing; Hu, Yuwei

    The mathematical model of the linear elevator maglev guiding system is analyzed in this paper. For the linear elevator needs strong stability and robustness to run, the integer order PID was expanded to the fractional order, in order to improve the steady state precision, rapidity and robustness of the system, enhance the accuracy of the parameter in fractional order PIλDμ controller, the fuzzy control is combined with the fractional order PIλDμ control, using the fuzzy logic achieves the parameters online adjustment. The simulations reveal that the system has faster response speed, higher tracking precision, and has stronger robustness to the disturbance.

  7. Design and simulation of the micromixer with chaotic advection in twisted microchannels.

    PubMed

    Jen, Chun-Ping; Wu, Chung-Yi; Lin, Yu-Cheng; Wu, Ching-Yi

    2003-05-01

    Chaotic mixers with twisted microchannels were designed and simulated numerically in the present study. The phenomenon whereby a simple Eulerian velocity field may generate a chaotic response in the distribution of a Lagrangian marker is termed chaotic advection. Dynamic system theory indicates that chaotic particle motion can occur when a velocity field is either two-dimensional and time-dependent, or three-dimensional. In the present study, micromixers with three-dimensional structures of the twisted microchannel were designed in order to induce chaotic mixing. In addition to the basic T-mixer, three types of micromixers with inclined, oblique and wavelike microchannels were investigated. In the design of each twisted microchannel, the angle of the channels' bottoms alternates in each subsection. When the fluids enter the twisted microchannels, the flow sways around the varying structures within the microchannels. The designs of the twisted microchannels provide a third degree of freedom to the flow field in the microchannel. Therefore, chaotic regimes that lead to chaotic mixing may arise. The numerical results indicate that mixing occurs in the main channel and progressively larger mixing lengths are required as the Peclet number increased. The swaying of the flow in the twisted microchannel causes chaotic advection. Among the four micromixer designs, the micromixer with the inclined channel most improved mixing. Furthermore, using the inclined mixer with six subsections yielded optimum performance, decreasing the mixing length by up to 31% from that of the basic T-mixer.

  8. Chaotic coordinates for the Large Helical Device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hudson, S. R., E-mail: shudson@pppl.gov; Suzuki, Y.

    The theory of quadratic-flux-minimizing (QFM) surfaces is reviewed, and numerical techniques that allow high-order QFM surfaces to be efficiently constructed for experimentally relevant, non-integrable magnetic fields are described. As a practical example, the chaotic edge of the magnetic field in the Large Helical Device (LHD) is examined. A precise technique for finding the boundary surface is implemented, the hierarchy of partial barriers associated with the near-critical cantori is constructed, and a coordinate system, which we call chaotic coordinates, that is based on a selection of QFM surfaces is constructed that simplifies the description of the magnetic field, so that fluxmore » surfaces become “straight” and islands become “square.”.« less

  9. Illusion optics in chaotic light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Suheng; Gan Shu; Xiong Jun

    2010-08-15

    The time-reversal process provides the possibility to counteract the time evolution of a physical system. Recent research has shown that such a process can occur in the first-order field correlation of chaotic light and result in the spatial interference and phase-reversal diffraction in an unbalanced interferometer. Here we report experimental investigations on the invisibility cloak and illusion phenomena in chaotic light. In an unbalanced interferometer illuminated by thermal light, we have observed the cloak effect and the optical transformation of one object into another object. The experimental results can be understood by the phase-reversal diffraction, and they demonstrate the theoreticalmore » proposal of similar effects in complementary media.« less

  10. A New Color Image Encryption Scheme Using CML and a Fractional-Order Chaotic System

    PubMed Central

    Wu, Xiangjun; Li, Yang; Kurths, Jürgen

    2015-01-01

    The chaos-based image cryptosystems have been widely investigated in recent years to provide real-time encryption and transmission. In this paper, a novel color image encryption algorithm by using coupled-map lattices (CML) and a fractional-order chaotic system is proposed to enhance the security and robustness of the encryption algorithms with a permutation-diffusion structure. To make the encryption procedure more confusing and complex, an image division-shuffling process is put forward, where the plain-image is first divided into four sub-images, and then the position of the pixels in the whole image is shuffled. In order to generate initial conditions and parameters of two chaotic systems, a 280-bit long external secret key is employed. The key space analysis, various statistical analysis, information entropy analysis, differential analysis and key sensitivity analysis are introduced to test the security of the new image encryption algorithm. The cryptosystem speed is analyzed and tested as well. Experimental results confirm that, in comparison to other image encryption schemes, the new algorithm has higher security and is fast for practical image encryption. Moreover, an extensive tolerance analysis of some common image processing operations such as noise adding, cropping, JPEG compression, rotation, brightening and darkening, has been performed on the proposed image encryption technique. Corresponding results reveal that the proposed image encryption method has good robustness against some image processing operations and geometric attacks. PMID:25826602

  11. Sufficient conditions for asymptotic stability and stabilization of autonomous fractional order systems

    NASA Astrophysics Data System (ADS)

    Lenka, Bichitra Kumar; Banerjee, Soumitro

    2018-03-01

    We discuss the asymptotic stability of autonomous linear and nonlinear fractional order systems where the state equations contain same or different fractional orders which lie between 0 and 2. First, we use the Laplace transform method to derive some sufficient conditions which ensure asymptotic stability of linear fractional order systems. Then by using the obtained results and linearization technique, a stability theorem is presented for autonomous nonlinear fractional order system. Finally, we design a control strategy for stabilization of autonomous nonlinear fractional order systems, and apply the results to the chaotic fractional order Lorenz system in order to verify its effectiveness.

  12. Some operational tools for solving fractional and higher integer order differential equations: A survey on their mutual relations

    NASA Astrophysics Data System (ADS)

    Kiryakova, Virginia S.

    2012-11-01

    The Laplace Transform (LT) serves as a basis of the Operational Calculus (OC), widely explored by engineers and applied scientists in solving mathematical models for their practical needs. This transform is closely related to the exponential and trigonometric functions (exp, cos, sin) and to the classical differentiation and integration operators, reducing them to simple algebraic operations. Thus, the classical LT and the OC give useful tool to handle differential equations and systems with constant coefficients. Several generalizations of the LT have been introduced to allow solving, in a similar way, of differential equations with variable coefficients and of higher integer orders, as well as of fractional (arbitrary non-integer) orders. Note that fractional order mathematical models are recently widely used to describe better various systems and phenomena of the real world. This paper surveys briefly some of our results on classes of such integral transforms, that can be obtained from the LT by means of "transmutations" which are operators of the generalized fractional calculus (GFC). On the list of these Laplace-type integral transforms, we consider the Borel-Dzrbashjan, Meijer, Krätzel, Obrechkoff, generalized Obrechkoff (multi-index Borel-Dzrbashjan) transforms, etc. All of them are G- and H-integral transforms of convolutional type, having as kernels Meijer's G- or Fox's H-functions. Besides, some special functions (also being G- and H-functions), among them - the generalized Bessel-type and Mittag-Leffler (M-L) type functions, are generating Gel'fond-Leontiev (G-L) operators of generalized differentiation and integration, which happen to be also operators of GFC. Our integral transforms have operational properties analogous to those of the LT - they do algebrize the G-L generalized integrations and differentiations, and thus can serve for solving wide classes of differential equations with variable coefficients of arbitrary, including non-integer order. Throughout the survey, we illustrate the parallels in the relationships: Laplace type integral transforms - special functions as kernels - operators of generalized integration and differentiation generated by special functions - special functions as solutions of related differential equations. The role of the so-called Special Functions of Fractional Calculus is emphasized.

  13. A novel high-resolution chaotic lidar with optical injection to chaotic laser diode

    NASA Astrophysics Data System (ADS)

    Wang, Yun-cai; Wang, An-bang

    2008-03-01

    A novel chaotic lidar with high resolution is proposed and studied theoretically. In chaotic lidar system, the chaotic laser emitted from chaotic laser diode is split into two beams: the probe and the reference light. The ranging is achieved by correlating the reference waveform with the delayed probe waveform backscattered from the target. In chaotic lidar systems presented previously, the chaotic signal source is laser diode with optical feedback or with optical injection by another one. The ranging resolution is limited by the bandwidth of chaotic laser which determined by the configuration of chaotic signal source. We proposed a novel chaotic lidar which ranging resolution is enhanced significantly by external optical injected chaotic laser diode. With the bandwidth-enhanced chaotic laser, the range resolution of the chaotic lidar system with optical injection is roughly two times compared with that of without optical injection. The resolution increases with injection strength increasing in a certain frequency detuning range.

  14. Efficient numerical simulation of non-integer-order space-fractional reaction-diffusion equation via the Riemann-Liouville operator

    NASA Astrophysics Data System (ADS)

    Owolabi, Kolade M.

    2018-03-01

    In this work, we are concerned with the solution of non-integer space-fractional reaction-diffusion equations with the Riemann-Liouville space-fractional derivative in high dimensions. We approximate the Riemann-Liouville derivative with the Fourier transform method and advance the resulting system in time with any time-stepping solver. In the numerical experiments, we expect the travelling wave to arise from the given initial condition on the computational domain (-∞, ∞), which we terminate in the numerical experiments with a large but truncated value of L. It is necessary to choose L large enough to allow the waves to have enough space to distribute. Experimental results in high dimensions on the space-fractional reaction-diffusion models with applications to biological models (Fisher and Allen-Cahn equations) are considered. Simulation results reveal that fractional reaction-diffusion equations can give rise to a range of physical phenomena when compared to non-integer-order cases. As a result, most meaningful and practical situations are found to be modelled with the concept of fractional calculus.

  15. The security energy encryption in wireless power transfer

    NASA Astrophysics Data System (ADS)

    Sadzali, M. N.; Ali, A.; Azizan, M. M.; Albreem, M. A. M.

    2017-09-01

    This paper presents a concept of security in wireless power transfer (WPT) by applying chaos theory. Chaos theory is applied as a security system in order to safeguard the transfer of energy from a transmitter to the intended receiver. The energy encryption of the wireless power transfer utilizes chaos theory to generate the possibility of a logistic map for the chaotic security key. The simulation for energy encryption wireless power transfer system was conducted by using MATLAB and Simulink. By employing chaos theory, the chaotic key ensures the transmission of energy from transmitter to its intended receiver.

  16. Qualitative and quantitative behaviour of planetary systems; Proceedings of the 3rd Alexander von Humboldt Colloquium on Celestial Mechanics, Ramsau, Austria, Mar. 29-Apr. 4, 1992

    NASA Astrophysics Data System (ADS)

    Dvorak, R.; Henrard, J.

    1993-06-01

    Topics addressed include planetary theories, the Sitnikov problem, asteroids, resonance, general dynamical systems, and chaos and stability. Particular attention is given to recent progress in the theory and application of symplectic integrators, a computer-aided analysis of the Sitnikov problem, the chaotic behavior of trajectories for the asteroidal resonances, and the resonant motion in the restricted three-body problem. Also discussed are the second order long-period motion of Hyperion, meteorites from the asteroid 6 Hebe, and least squares parameter estimation in chaotic differential equations.

  17. Adaptative synchronization in multi-output fractional-order complex dynamical networks and secure communications

    NASA Astrophysics Data System (ADS)

    Mata-Machuca, Juan L.; Aguilar-López, Ricardo

    2018-01-01

    This work deals with the adaptative synchronization of complex dynamical networks with fractional-order nodes and its application in secure communications employing chaotic parameter modulation. The complex network is composed of multiple fractional-order systems with mismatch parameters and the coupling functions are given to realize the network synchronization. We introduce a fractional algebraic synchronizability condition (FASC) and a fractional algebraic identifiability condition (FAIC) which are used to know if the synchronization and parameters estimation problems can be solved. To overcome these problems, an adaptative synchronization methodology is designed; the strategy consists in proposing multiple receiver systems which tend to follow asymptotically the uncertain transmitters systems. The coupling functions and parameters of the receiver systems are adjusted continually according to a convenient sigmoid-like adaptative controller (SLAC), until the measurable output errors converge to zero, hence, synchronization between transmitter and receivers is achieved and message signals are recovered. Indeed, the stability analysis of the synchronization error is based on the fractional Lyapunov direct method. Finally, numerical results corroborate the satisfactory performance of the proposed scheme by means of the synchronization of a complex network consisting of several fractional-order unified chaotic systems.

  18. A semi-symmetric image encryption scheme based on the function projective synchronization of two hyperchaotic systems

    PubMed Central

    Li, Jinqing; Qi, Hui; Cong, Ligang; Yang, Huamin

    2017-01-01

    Both symmetric and asymmetric color image encryption have advantages and disadvantages. In order to combine their advantages and try to overcome their disadvantages, chaos synchronization is used to avoid the key transmission for the proposed semi-symmetric image encryption scheme. Our scheme is a hybrid chaotic encryption algorithm, and it consists of a scrambling stage and a diffusion stage. The control law and the update rule of function projective synchronization between the 3-cell quantum cellular neural networks (QCNN) response system and the 6th-order cellular neural network (CNN) drive system are formulated. Since the function projective synchronization is used to synchronize the response system and drive system, Alice and Bob got the key by two different chaotic systems independently and avoid the key transmission by some extra security links, which prevents security key leakage during the transmission. Both numerical simulations and security analyses such as information entropy analysis, differential attack are conducted to verify the feasibility, security, and efficiency of the proposed scheme. PMID:28910349

  19. Revealing the Character of Orbits in a Binary System Consisting of a Primary Galaxy and a Satellite Companion

    NASA Astrophysics Data System (ADS)

    Zotos, Euaggelos E.

    2013-02-01

    In this article, we present a galactic gravitational model of three degrees of freedom (3D), in order to study and reveal the character of the orbits of the stars, in a binary stellar system composed of a primary quiet or active galaxy and a small satellite companion galaxy. Our main dynamical analysis will be focused on the behaviour of the primary galaxy. We investigate in detail the regular or chaotic nature of motion, in two different cases: (i) the time-independent model in both 2D and 3D dynamical systems and (ii) the time-evolving 3D model. For the description of the structure of the 2D system, we use the classical method of the Poincaré (x, px ), y = 0, py < 0 phase plane. In order to study the structure of the phase space of the 3D system, we take sections in the plane y = 0 of the 3D orbits, whose initial conditions differ from the plane parent periodic orbits, only by the z component. The set of the four-dimensional points in the (x, px , z, pz ) phase space is projected on the (z, pz ) plane. The maximum Lyapunov characteristic exponent is used in order to make an estimation of the chaoticity of our galactic system, in both 2D and 3D dynamical models. Our numerical calculations indicate that the percentage of the chaotic orbits increases when the primary galaxy has a dense and massive nucleus. The presence of the dense galactic core also increases the stellar velocities near the center of the galaxy. Moreover, for small values of the distance R between the two bodies, low-energy stars display chaotic motion, near the central region of the galaxy, while for larger values of the distance R, the motion in active galaxies is entirely regular for low-energy stars. Our simulations suggest that in galaxies with a satellite companion, the chaotic nature of motion is not only a result of the galactic interaction between the primary galaxy and its companion, but also a result caused by the presence of the dense nucleus in the core of the primary galaxy. Theoretical arguments are presented in order to support and interpret the numerically derived outcomes. Furthermore, we follow the 3D evolution of the primary galaxy, when mass is transported adiabatically from the disk to the nucleus. Our numerical results are in satisfactory agreement with observational data obtained from the M51-type binary stellar systems. A comparison between the present research and similar and earlier work is also made.

  20. Tuning algorithms for fractional order internal model controllers for time delay processes

    NASA Astrophysics Data System (ADS)

    Muresan, Cristina I.; Dutta, Abhishek; Dulf, Eva H.; Pinar, Zehra; Maxim, Anca; Ionescu, Clara M.

    2016-03-01

    This paper presents two tuning algorithms for fractional-order internal model control (IMC) controllers for time delay processes. The two tuning algorithms are based on two specific closed-loop control configurations: the IMC control structure and the Smith predictor structure. In the latter, the equivalency between IMC and Smith predictor control structures is used to tune a fractional-order IMC controller as the primary controller of the Smith predictor structure. Fractional-order IMC controllers are designed in both cases in order to enhance the closed-loop performance and robustness of classical integer order IMC controllers. The tuning procedures are exemplified for both single-input-single-output as well as multivariable processes, described by first-order and second-order transfer functions with time delays. Different numerical examples are provided, including a general multivariable time delay process. Integer order IMC controllers are designed in each case, as well as fractional-order IMC controllers. The simulation results show that the proposed fractional-order IMC controller ensures an increased robustness to modelling uncertainties. Experimental results are also provided, for the design of a multivariable fractional-order IMC controller in a Smith predictor structure for a quadruple-tank system.

  1. Various Attractors, Coexisting Attractors and Antimonotonicity in a Simple Fourth-Order Memristive Twin-T Oscillator

    NASA Astrophysics Data System (ADS)

    Zhou, Ling; Wang, Chunhua; Zhang, Xin; Yao, Wei

    By replacing the resistor in a Twin-T network with a generalized flux-controlled memristor, this paper proposes a simple fourth-order memristive Twin-T oscillator. Rich dynamical behaviors can be observed in the dynamical system. The most striking feature is that this system has various periodic orbits and various chaotic attractors generated by adjusting parameter b. At the same time, coexisting attractors and antimonotonicity are also detected (especially, two full Feigenbaum remerging trees in series are observed in such autonomous chaotic systems). Their dynamical features are analyzed by phase portraits, Lyapunov exponents, bifurcation diagrams and basin of attraction. Moreover, hardware experiments on a breadboard are carried out. Experimental measurements are in accordance with the simulation results. Finally, a multi-channel random bit generator is designed for encryption applications. Numerical results illustrate the usefulness of the random bit generator.

  2. Is the normal heart rate ``chaotic'' due to respiration?

    NASA Astrophysics Data System (ADS)

    Wessel, Niels; Riedl, Maik; Kurths, Jürgen

    2009-06-01

    The incidence of cardiovascular diseases increases with the growth of the human population and an aging society, leading to very high expenses in the public health system. Therefore, it is challenging to develop sophisticated methods in order to improve medical diagnostics. The question whether the normal heart rate is chaotic or not is an attempt to elucidate the underlying mechanisms of cardiovascular dynamics and therefore a highly controversial topical challenge. In this contribution we demonstrate that linear and nonlinear parameters allow us to separate completely the data sets of the three groups provided for this controversial topic in nonlinear dynamics. The question whether these time series are chaotic or not cannot be answered satisfactorily without investigating the underlying mechanisms leading to them. We give an example of the dominant influence of respiration on heart beat dynamics, which shows that observed fluctuations can be mostly explained by respiratory modulations of heart rate and blood pressure (coefficient of determination: 96%). Therefore, we recommend reformulating the following initial question: "Is the normal heart rate chaotic?" We rather ask the following: "Is the normal heart rate `chaotic' due to respiration?"

  3. Impact of Noise on a Dynamical System: Prediction and Uncertainties from a Swarm-Optimized Neural Network

    PubMed Central

    López-Caraballo, C. H.; Lazzús, J. A.; Salfate, I.; Rojas, P.; Rivera, M.; Palma-Chilla, L.

    2015-01-01

    An artificial neural network (ANN) based on particle swarm optimization (PSO) was developed for the time series prediction. The hybrid ANN+PSO algorithm was applied on Mackey-Glass chaotic time series in the short-term x(t + 6). The performance prediction was evaluated and compared with other studies available in the literature. Also, we presented properties of the dynamical system via the study of chaotic behaviour obtained from the predicted time series. Next, the hybrid ANN+PSO algorithm was complemented with a Gaussian stochastic procedure (called stochastic hybrid ANN+PSO) in order to obtain a new estimator of the predictions, which also allowed us to compute the uncertainties of predictions for noisy Mackey-Glass chaotic time series. Thus, we studied the impact of noise for several cases with a white noise level (σ N) from 0.01 to 0.1. PMID:26351449

  4. Impact of Noise on a Dynamical System: Prediction and Uncertainties from a Swarm-Optimized Neural Network.

    PubMed

    López-Caraballo, C H; Lazzús, J A; Salfate, I; Rojas, P; Rivera, M; Palma-Chilla, L

    2015-01-01

    An artificial neural network (ANN) based on particle swarm optimization (PSO) was developed for the time series prediction. The hybrid ANN+PSO algorithm was applied on Mackey-Glass chaotic time series in the short-term x(t + 6). The performance prediction was evaluated and compared with other studies available in the literature. Also, we presented properties of the dynamical system via the study of chaotic behaviour obtained from the predicted time series. Next, the hybrid ANN+PSO algorithm was complemented with a Gaussian stochastic procedure (called stochastic hybrid ANN+PSO) in order to obtain a new estimator of the predictions, which also allowed us to compute the uncertainties of predictions for noisy Mackey-Glass chaotic time series. Thus, we studied the impact of noise for several cases with a white noise level (σ(N)) from 0.01 to 0.1.

  5. A new kind of metal detector based on chaotic oscillator

    NASA Astrophysics Data System (ADS)

    Hu, Wenjing

    2017-12-01

    The sensitivity of a metal detector greatly depends on the identification ability to weak signals from the probe. In order to improve the sensitivity of metal detectors, this paper applies the Duffing chaotic oscillator to metal detectors based on its characteristic which is very sensitive to weak periodic signals. To make a suitable Duffing system for detectors, this paper computes two Lyapunov characteristics exponents of the Duffing oscillator, which help to obtain the threshold of the Duffing system in the critical state accurately and give quantitative criteria for chaos. Meanwhile, a corresponding simulation model of the chaotic oscillator is made by the Simulink tool box of Matlab. Simulation results shows that Duffing oscillator is very sensitive to sinusoidal signals in high frequency cases. And experimental results show that the measurable diameter of metal particles is about 1.5mm. It indicates that this new method can feasibly and effectively improve the metal detector sensitivity.

  6. Ordering process in the diffusively coupled logistic lattice

    NASA Astrophysics Data System (ADS)

    Conrado, Claudine V.; Bohr, Tomas

    1991-08-01

    We study the ordering process in a lattice of diffusively coupled logistic maps for increasing lattice size. Within a window of parameters, the system goes into a weakly chaotic state with long range "antiferromagnetic" order. This happens for arbitrary lattice size L and the ordering time behaves as t ~ L2 as we would expect from a picture of diffusing defects.

  7. Fractional Order and Dynamic Simulation of a System Involving an Elastic Wide Plate

    NASA Astrophysics Data System (ADS)

    David, S. A.; Balthazar, J. M.; Julio, B. H. S.; Oliveira, C.

    2011-09-01

    Numerous researchers have studied about nonlinear dynamics in several areas of science and engineering. However, in most cases, these concepts have been explored mainly from the standpoint of analytical and computational methods involving integer order calculus (IOC). In this paper we have examined the dynamic behavior of an elastic wide plate induced by two electromagnets of a point of view of the fractional order calculus (FOC). The primary focus of this study is on to help gain a better understanding of nonlinear dynamic in fractional order systems.

  8. Chaotic map clustering algorithm for EEG analysis

    NASA Astrophysics Data System (ADS)

    Bellotti, R.; De Carlo, F.; Stramaglia, S.

    2004-03-01

    The non-parametric chaotic map clustering algorithm has been applied to the analysis of electroencephalographic signals, in order to recognize the Huntington's disease, one of the most dangerous pathologies of the central nervous system. The performance of the method has been compared with those obtained through parametric algorithms, as K-means and deterministic annealing, and supervised multi-layer perceptron. While supervised neural networks need a training phase, performed by means of data tagged by the genetic test, and the parametric methods require a prior choice of the number of classes to find, the chaotic map clustering gives a natural evidence of the pathological class, without any training or supervision, thus providing a new efficient methodology for the recognition of patterns affected by the Huntington's disease.

  9. Synchronized chaotic targeting and acceleration of surface chemistry in prebiotic hydrothermal microenvironments

    PubMed Central

    Priye, Aashish; Yu, Yuncheng; Hassan, Yassin A.; Ugaz, Victor M.

    2017-01-01

    Porous mineral formations near subsea alkaline hydrothermal vents embed microenvironments that make them potential hot spots for prebiotic biochemistry. But, synthesis of long-chain macromolecules needed to support higher-order functions in living systems (e.g., polypeptides, proteins, and nucleic acids) cannot occur without enrichment of chemical precursors before initiating polymerization, and identifying a suitable mechanism has become a key unanswered question in the origin of life. Here, we apply simulations and in situ experiments to show how 3D chaotic thermal convection—flows that naturally permeate hydrothermal pore networks—supplies a robust mechanism for focused accumulation at discrete targeted surface sites. This interfacial enrichment is synchronized with bulk homogenization of chemical species, yielding two distinct processes that are seemingly opposed yet synergistically combine to accelerate surface reaction kinetics by several orders of magnitude. Our results suggest that chaotic thermal convection may play a previously unappreciated role in mediating surface-catalyzed synthesis in the prebiotic milieu. PMID:28119504

  10. A new 4-D chaotic hyperjerk system, its synchronization, circuit design and applications in RNG, image encryption and chaos-based steganography

    NASA Astrophysics Data System (ADS)

    Vaidyanathan, S.; Akgul, A.; Kaçar, S.; Çavuşoğlu, U.

    2018-02-01

    Hyperjerk systems have received significant interest in the literature because of their simple structure and complex dynamical properties. This work presents a new chaotic hyperjerk system having two exponential nonlinearities. Dynamical properties of the chaotic hyperjerk system are discovered through equilibrium point analysis, bifurcation diagram, dissipativity and Lyapunov exponents. Moreover, an adaptive backstepping controller is designed for the synchronization of the chaotic hyperjerk system. Also, a real circuit of the chaotic hyperjerk system has been carried out to show the feasibility of the theoretical hyperjerk model. The chaotic hyperjerk system can also be useful in scientific fields such as Random Number Generators (RNGs), data security, data hiding, etc. In this work, three implementations of the chaotic hyperjerk system, viz. RNG, image encryption and sound steganography have been performed by using complex dynamics characteristics of the system.

  11. Physical Applications of a Simple Approximation of Bessel Functions of Integer Order

    ERIC Educational Resources Information Center

    Barsan, V.; Cojocaru, S.

    2007-01-01

    Applications of a simple approximation of Bessel functions of integer order, in terms of trigonometric functions, are discussed for several examples from electromagnetism and optics. The method may be applied in the intermediate regime, bridging the "small values regime" and the "asymptotic" one, and covering, in this way, an area of great…

  12. Optimizing Multi-Product Multi-Constraint Inventory Control Systems with Stochastic Replenishments

    NASA Astrophysics Data System (ADS)

    Allah Taleizadeh, Ata; Aryanezhad, Mir-Bahador; Niaki, Seyed Taghi Akhavan

    Multi-periodic inventory control problems are mainly studied employing two assumptions. The first is the continuous review, where depending on the inventory level orders can happen at any time and the other is the periodic review, where orders can only happen at the beginning of each period. In this study, we relax these assumptions and assume that the periodic replenishments are stochastic in nature. Furthermore, we assume that the periods between two replenishments are independent and identically random variables. For the problem at hand, the decision variables are of integer-type and there are two kinds of space and service level constraints for each product. We develop a model of the problem in which a combination of back-order and lost-sales are considered for the shortages. Then, we show that the model is of an integer-nonlinear-programming type and in order to solve it, a search algorithm can be utilized. We employ a simulated annealing approach and provide a numerical example to demonstrate the applicability of the proposed methodology.

  13. Urey Prize Lecture - Chaotic dynamics in the solar system

    NASA Technical Reports Server (NTRS)

    Wisdom, Jack

    1987-01-01

    Attention is given to solar system cases in which chaotic solutions of Newton's equations are important, as in chaotic rotation and orbital evolution. Hyperion is noted to be tumbling chaotically; chaotic orbital evolution is suggested to be of fundamental importance to an accounting for the Kirkwood gaps in asteroid distribution and for the phase space boundary of the chaotic zone at the 3/1 mean-motion commensurability with Jupiter. In addition, chaotic trajectories in the 2/1 chaotic zone reach very high eccentricities by a route that carries them to high inclinations temporarily.

  14. Characterizing Strength of Chaotic Dynamics and Numerical Simulation Relevant to Modified Taylor-Couette Flow with Hourglass Geometry

    NASA Astrophysics Data System (ADS)

    Hou, Yu; Kowalski, Adam; Schroder, Kjell; Halmstad, Andrew; Olsen, Thomas; Wiener, Richard

    2006-05-01

    We characterize the strength of chaos in two different regimes of Modified Taylor-Couette flow with Hourglass Geometry: the formation of Taylor Vortices with laminar flow and with turbulent flow. We measure the strength of chaos by calculating the correlation dimension and the Kaplan-Yorke dimension based upon the Lyapunov Exponents of each system. We determine the reliability of our calculations by considering data from a chaotic electronic circuit. In order to predict the behavior of the Modified Taylor-Couette flow system, we employ simulations based upon an idealized Reaction-Diffusion model with a third order non-linearity in the reaction rate. Variation of reaction rate with length corresponds to variation of the effective Reynolds Number along the Taylor-Couette apparatus. We present preliminary results and compare to experimental data.

  15. The properties of borderlines in discontinuous conservative systems

    NASA Astrophysics Data System (ADS)

    Wang, X.-M.; Fang, Z.-J.

    2006-02-01

    The properties of the set of borderline images in discontinuous conservative systems are commonly investigated. The invertible system in which a stochastic web was found in 1999 is re-discussed here. The result shows that the set of images of the borderline actually forms the same stochastic web. The web has two typical local fine structures. Firstly, in some parts of the web the borderline crosses the manifold of hyperbolic points so that the chaotic diffusion is damped greatly; secondly, in other parts of phase space many holes and elliptic islands appear in the stochastic layer. This local structure shows infinite self-similarity. The noninvertible system in which the so-called chaotic quasi-attractor was found in [X.-M. Wang et al., Eur. Phys. J. D 19, 119 (2002)] is also studied here. The numerical investigation shows that such a chaotic quasi-attractor is confined by the preceding lower order images of the borderline. The mechanism of this confinement is revealed: a forbidden zone exists that any orbit can not visit, which is the sub-phase space of one side of the first image of the borderline. Each order of the images of the forbidden zone can be qualitatively divided into two sub-phase regions: one is the so-called escaping region that provides the orbit with an escaping channel, the other is the so-called dissipative region where the contraction of phase space occurs.

  16. Design of an image encryption scheme based on a multiple chaotic map

    NASA Astrophysics Data System (ADS)

    Tong, Xiao-Jun

    2013-07-01

    In order to solve the problem that chaos is degenerated in limited computer precision and Cat map is the small key space, this paper presents a chaotic map based on topological conjugacy and the chaotic characteristics are proved by Devaney definition. In order to produce a large key space, a Cat map named block Cat map is also designed for permutation process based on multiple-dimensional chaotic maps. The image encryption algorithm is based on permutation-substitution, and each key is controlled by different chaotic maps. The entropy analysis, differential analysis, weak-keys analysis, statistical analysis, cipher random analysis, and cipher sensibility analysis depending on key and plaintext are introduced to test the security of the new image encryption scheme. Through the comparison to the proposed scheme with AES, DES and Logistic encryption methods, we come to the conclusion that the image encryption method solves the problem of low precision of one dimensional chaotic function and has higher speed and higher security.

  17. Dynamics and circuit of a chaotic system with a curve of equilibrium points

    NASA Astrophysics Data System (ADS)

    Pham, Viet-Thanh; Volos, Christos; Kapitaniak, Tomasz; Jafari, Sajad; Wang, Xiong

    2018-03-01

    Although chaotic systems have been intensively studied since the 1960s, new systems with mysterious features are still of interest. A novel chaotic system including hyperbolic functions is proposed in this work. Especially, the system has an infinite number of equilibrium points. Dynamics of the system are investigated by using non-linear tools such as phase portrait, bifurcation diagram, and Lyapunov exponent. It is interesting that the system can display coexisting chaotic attractors. An electronic circuit for realising the chaotic system has been implemented. Experimental results show a good agreement with theoretical ones.

  18. ASTEROIDS: Living in the Kingdom of Chaos

    NASA Astrophysics Data System (ADS)

    Morbidelli, A.

    2000-10-01

    The existence of chaotic regions in the main asteroid belt, related with the lowest-order mean-motion and secular resonances, has long been known. However, only in the last decade have semi-analytic theories allowed a proper understanding of the chaotic behavior observed in numerical simulations which accurately incorporate the entire planetary system. The most spectacular result has been the discovery that the asteroids in some of these resonance may collide with the Sun on typical time scales of a few million year, their eccentricities being pumped to unity during their chaotic evolution. But the asteroid belt is not simply divided into violent chaotic zones and regular regions. It has been shown that the belt is criss-crossed by a large number of high-order mean-motion resonances with Jupiter or Mars, as well as by `three-body resonances' with Jupiter and Saturn. All these weak resonances cause the slow chaotic drift of the `proper' eccentricities and inclinations. The traces left by this evolution are visible, for example, in the structure of the Eos and Themis asteroid families. Weak chaos may also explain the anomalous dispersion of the eccentricities and inclinations observed in the Flora ``clan." Moreover, due to slow increases in their eccentricities, many asteroids start to cross the orbit of Mars, over a wide range of semimajor axes. The improved knowledge of the asteroid belt's chaotic structure provides, for the first time, an opportunity to build detailed quantitative models of the origin and the orbital distribution of Near-Earth Asteroids and meteorites. In turn, these models seem to imply that the semimajor axes of main-belt asteroids must also slowly evolve with time. For asteroids larger than about 20 km this is due mainly to encounters with Ceres, Pallas, and Vesta, while for smaller bodies the so-called Yarkovsky effect should dominate. Everything moves chaotically in the asteroid belt.

  19. Anisotropic fractal media by vector calculus in non-integer dimensional space

    NASA Astrophysics Data System (ADS)

    Tarasov, Vasily E.

    2014-08-01

    A review of different approaches to describe anisotropic fractal media is proposed. In this paper, differentiation and integration non-integer dimensional and multi-fractional spaces are considered as tools to describe anisotropic fractal materials and media. We suggest a generalization of vector calculus for non-integer dimensional space by using a product measure method. The product of fractional and non-integer dimensional spaces allows us to take into account the anisotropy of the fractal media in the framework of continuum models. The integration over non-integer-dimensional spaces is considered. In this paper differential operators of first and second orders for fractional space and non-integer dimensional space are suggested. The differential operators are defined as inverse operations to integration in spaces with non-integer dimensions. Non-integer dimensional space that is product of spaces with different dimensions allows us to give continuum models for anisotropic type of the media. The Poisson's equation for fractal medium, the Euler-Bernoulli fractal beam, and the Timoshenko beam equations for fractal material are considered as examples of application of suggested generalization of vector calculus for anisotropic fractal materials and media.

  20. A new two-scroll chaotic attractor with three quadratic nonlinearities, its adaptive control and circuit design

    NASA Astrophysics Data System (ADS)

    Lien, C.-H.; Vaidyanathan, S.; Sambas, A.; Sukono; Mamat, M.; Sanjaya, W. S. M.; Subiyanto

    2018-03-01

    A 3-D new two-scroll chaotic attractor with three quadratic nonlinearities is investigated in this paper. First, the qualitative and dynamical properties of the new two-scroll chaotic system are described in terms of phase portraits, equilibrium points, Lyapunov exponents, Kaplan-Yorke dimension, dissipativity, etc. We show that the new two-scroll dissipative chaotic system has three unstable equilibrium points. As an engineering application, global chaos control of the new two-scroll chaotic system with unknown system parameters is designed via adaptive feedback control and Lyapunov stability theory. Furthermore, an electronic circuit realization of the new chaotic attractor is presented in detail to confirm the feasibility of the theoretical chaotic two-scroll attractor model.

  1. Nonlinear optimal control for the synchronization of chaotic and hyperchaotic finance systems

    NASA Astrophysics Data System (ADS)

    Rigatos, G.; Siano, P.; Loia, V.; Ademi, S.; Ghosh, T.

    2017-11-01

    It is possible to make specific finance systems get synchronized to other finance systems exhibiting chaotic and hyperchaotic dynamics, by applying nonlinear optimal (H-infinity) control. This signifies that chaotic behavior can be generated in finance systems by exerting a suitable control input. Actually, a lead financial system is considered which exhibits inherently chaotic dynamics. Moreover, a follower finance system is introduced having parameters in its model that inherently prohibit the appearance of chaotic dynamics. Through the application of a suitable nonlinear optimal (H-infinity) control input it is proven that the follower finance system can replicate the chaotic dynamics of the lead finance system. By applying Lyapunov analysis it is proven that asymptotically the follower finance system gets synchronized with the lead system and that the tracking error between the state variables of the two systems vanishes.

  2. Complex-enhanced chaotic signals with time-delay signature suppression based on vertical-cavity surface-emitting lasers subject to chaotic optical injection

    NASA Astrophysics Data System (ADS)

    Chen, Jianjun; Duan, Yingni; Zhong, Zhuqiang

    2018-06-01

    A chaotic system is constructed on the basis of vertical-cavity surface-emitting lasers (VCSELs), where a slave VCSEL subject to chaotic optical injection (COI) from a master VCSEL with the external feedback. The complex degree (CD) and time-delay signature (TDS) of chaotic signals generated by this chaotic system are investigated numerically via permutation entropy (PE) and self-correlation function (SF) methods, respectively. The results show that, compared with master VCSEL subject to optical feedback, complex-enhanced chaotic signals with TDS suppression can be achieved for S-VCSEL subject to COI. Meanwhile, the influences of several controllable parameters on the evolution maps of CD of chaotic signals are carefully considered. It is shown that the CD of chaotic signals for S-VCSEL is always higher than that for M-VCSEL due to the CIO effect. The TDS of chaotic signals can be significantly suppressed by choosing the reasonable parameters in this system. Furthermore, TDS suppression and high CD chaos can be obtained simultaneously in the specific parameter ranges. The results confirm that this chaotic system may effectively improve the security of a chaos-based communication scheme.

  3. Complex-enhanced chaotic signals with time-delay signature suppression based on vertical-cavity surface-emitting lasers subject to chaotic optical injection

    NASA Astrophysics Data System (ADS)

    Chen, Jianjun; Duan, Yingni; Zhong, Zhuqiang

    2018-03-01

    A chaotic system is constructed on the basis of vertical-cavity surface-emitting lasers (VCSELs), where a slave VCSEL subject to chaotic optical injection (COI) from a master VCSEL with the external feedback. The complex degree (CD) and time-delay signature (TDS) of chaotic signals generated by this chaotic system are investigated numerically via permutation entropy (PE) and self-correlation function (SF) methods, respectively. The results show that, compared with master VCSEL subject to optical feedback, complex-enhanced chaotic signals with TDS suppression can be achieved for S-VCSEL subject to COI. Meanwhile, the influences of several controllable parameters on the evolution maps of CD of chaotic signals are carefully considered. It is shown that the CD of chaotic signals for S-VCSEL is always higher than that for M-VCSEL due to the CIO effect. The TDS of chaotic signals can be significantly suppressed by choosing the reasonable parameters in this system. Furthermore, TDS suppression and high CD chaos can be obtained simultaneously in the specific parameter ranges. The results confirm that this chaotic system may effectively improve the security of a chaos-based communication scheme.

  4. Generating a Double-Scroll Attractor by Connecting a Pair of Mutual Mirror-Image Attractors via Planar Switching Control

    NASA Astrophysics Data System (ADS)

    Sun, Changchun; Chen, Zhongtang; Xu, Qicheng

    2017-12-01

    An original three-dimensional (3D) smooth continuous chaotic system and its mirror-image system with eight common parameters are constructed and a pair of symmetric chaotic attractors can be generated simultaneously. Basic dynamical behaviors of two 3D chaotic systems are investigated respectively. A double-scroll chaotic attractor by connecting the pair of mutual mirror-image attractors is generated via a novel planar switching control approach. Chaos can also be controlled to a fixed point, a periodic orbit and a divergent orbit respectively by switching between two chaotic systems. Finally, an equivalent 3D chaotic system by combining two 3D chaotic systems with a switching law is designed by utilizing a sign function. Two circuit diagrams for realizing the double-scroll attractor are depicted by employing an improved module-based design approach.

  5. Information encoder/decoder using chaotic systems

    DOEpatents

    Miller, Samuel Lee; Miller, William Michael; McWhorter, Paul Jackson

    1997-01-01

    The present invention discloses a chaotic system-based information encoder and decoder that operates according to a relationship defining a chaotic system. Encoder input signals modify the dynamics of the chaotic system comprising the encoder. The modifications result in chaotic, encoder output signals that contain the encoder input signals encoded within them. The encoder output signals are then capable of secure transmissions using conventional transmission techniques. A decoder receives the encoder output signals (i.e., decoder input signals) and inverts the dynamics of the encoding system to directly reconstruct the original encoder input signals.

  6. Information encoder/decoder using chaotic systems

    DOEpatents

    Miller, S.L.; Miller, W.M.; McWhorter, P.J.

    1997-10-21

    The present invention discloses a chaotic system-based information encoder and decoder that operates according to a relationship defining a chaotic system. Encoder input signals modify the dynamics of the chaotic system comprising the encoder. The modifications result in chaotic, encoder output signals that contain the encoder input signals encoded within them. The encoder output signals are then capable of secure transmissions using conventional transmission techniques. A decoder receives the encoder output signals (i.e., decoder input signals) and inverts the dynamics of the encoding system to directly reconstruct the original encoder input signals. 32 figs.

  7. Multisynchronization of chaotic oscillators via nonlinear observer approach.

    PubMed

    Aguilar-López, Ricardo; Martínez-Guerra, Rafael; Mata-Machuca, Juan L

    2014-01-01

    The goal of this work is to synchronize a class of chaotic oscillators in a master-slave scheme, under different initial conditions, considering several slaves systems. The Chen oscillator is employed as a benchmark model and a nonlinear observer is proposed to reach synchronicity between the master and the slaves' oscillators. The proposed observer contains a proportional and integral form of a bounded function of the synchronization error in order to provide asymptotic synchronization with a satisfactory performance. Numerical experiments were carried out to show the operation of the considered methodology.

  8. Multisynchronization of Chaotic Oscillators via Nonlinear Observer Approach

    PubMed Central

    Aguilar-López, Ricardo; Martínez-Guerra, Rafael; Mata-Machuca, Juan L.

    2014-01-01

    The goal of this work is to synchronize a class of chaotic oscillators in a master-slave scheme, under different initial conditions, considering several slaves systems. The Chen oscillator is employed as a benchmark model and a nonlinear observer is proposed to reach synchronicity between the master and the slaves' oscillators. The proposed observer contains a proportional and integral form of a bounded function of the synchronization error in order to provide asymptotic synchronization with a satisfactory performance. Numerical experiments were carried out to show the operation of the considered methodology. PMID:24578671

  9. A case study in bifurcation theory

    NASA Astrophysics Data System (ADS)

    Khmou, Youssef

    This short paper is focused on the bifurcation theory found in map functions called evolution functions that are used in dynamical systems. The most well-known example of discrete iterative function is the logistic map that puts into evidence bifurcation and chaotic behavior of the topology of the logistic function. We propose a new iterative function based on Lorentizan function and its generalized versions, based on numerical study, it is found that the bifurcation of the Lorentzian function is of second-order where it is characterized by the absence of chaotic region.

  10. A novel double-convection chaotic attractor, its adaptive control and circuit simulation

    NASA Astrophysics Data System (ADS)

    Mamat, M.; Vaidyanathan, S.; Sambas, A.; Mujiarto; Sanjaya, W. S. M.; Subiyanto

    2018-03-01

    A 3-D novel double-convection chaotic system with three nonlinearities is proposed in this research work. The dynamical properties of the new chaotic system are described in terms of phase portraits, Lyapunov exponents, Kaplan-Yorke dimension, dissipativity, stability analysis of equilibria, etc. Adaptive control and synchronization of the new chaotic system with unknown parameters are achieved via nonlinear controllers and the results are established using Lyapunov stability theory. Furthermore, an electronic circuit realization of the new 3-D novel chaotic system is presented in detail. Finally, the circuit experimental results of the 3-D novel chaotic attractor show agreement with the numerical simulations.

  11. Fractional Order PIλDμ Control for Maglev Guiding System

    NASA Astrophysics Data System (ADS)

    Hu, Qing; Hu, Yuwei

    To effectively suppress the external disturbances and parameter perturbation problem of the maglev guiding system, and improve speed and robustness, the electromagnetic guiding system is exactly linearized using state feedback method, Fractional calculus theory is introduced, the order of integer order PID control was extended to the field of fractional, then fractional order PIλDμ Controller was presented, Due to the extra two adjustable parameters compared with traditional PID controller, fractional order PIλDμ controllers were expected to show better control performance. The results of the computer simulation show that the proposed controller suppresses the external disturbances and parameter perturbation of the system effectively; the system response speed was increased; at the same time, it had flexible structure and stronger robustness.

  12. A PRELIMINARY STUDY ON THE FRACTAL PHENOMENON: “DISCONNECTED+ DISCONNECTED=CONNECTED”

    NASA Astrophysics Data System (ADS)

    Wang, Da; Liu, Shutang; Zhao, Yang

    The well-known Parrondo’s paradox: “losing+losing=winning” [G. P. Harmer and D. Abbott, Parrondo’s paradox, Stat. Sci. 14 (2009) 206-213.] indicated that two games with negative gains can generate a new game with positive gain. By extending the Parrondo’s philosophy into chaos research, it was shown that the periodic alteration of two chaotic dynamics results in an ordered dynamics, that is the phenomenon: “chaos+chaos=order” [J. Almeida, D. Peralta-Salas and M. Romera, Can two chaotic systems give rise to order, Physica D 200 124-132 (2005)]. This paper further extends these researches into fractal research by proposing that two disconnected Julia sets can originate a new connected Julia set via alternating order. This new parrondian paradoxical phenomenon can be stated in the Parrondo’s terms as “disconnected+disconnected=connected”.

  13. Variants of kinetically modified non-minimal Higgs inflation in supergravity

    NASA Astrophysics Data System (ADS)

    Pallis, C.

    2016-10-01

    We consider models of chaotic inflation driven by the real parts of a conjugate pair of Higgs superfields involved in the spontaneous breaking of a grand unification symmetry at a scale assuming its Supersymmetric (SUSY) value. Employing Kähler potentials with a prominent shift-symmetric part proportional to c- and a tiny violation, proportional to c+, included in a logarithm we show that the inflationary observables provide an excellent match to the recent Planck and BICAP2/Keck Array results setting, e.g., 6.4 · 10-3 lesssim r± = c+/c- lesssim 1/N where N = 2 or 3 is the prefactor of the logarithm. Deviations of these prefactors from their integer values above are also explored and a region where hilltop inflation occurs is localized. Moreover, we analyze two distinct possible stabilization mechanisms for the non-inflaton accompanying superfield, one tied to higher order terms and one with just quadratic terms within the argument of a logarithm with positive prefactor NS < 6. In all cases, inflation can be attained for subplanckian inflaton values with the corresponding effective theories retaining the perturbative unitarity up to the Planck scale.

  14. A new chaotic attractor with two quadratic nonlinearities, its synchronization and circuit implementation

    NASA Astrophysics Data System (ADS)

    Vaidyanathan, S.; Sambas, A.; Sukono; Mamat, M.; Gundara, G.; Mada Sanjaya, W. S.; Subiyanto

    2018-03-01

    A 3-D new chaotic attractor with two quadratic nonlinearities is proposed in this paper. The dynamical properties of the new chaotic system are described in terms of phase portraits, equilibrium points, Lyapunov exponents, Kaplan-Yorke dimension, dissipativity, etc. We show that the new chaotic system has three unstable equilibrium points. The new chaotic attractor is dissipative in nature. As an engineering application, adaptive synchronization of identical new chaotic attractors is designed via nonlinear control and Lyapunov stability theory. Furthermore, an electronic circuit realization of the new chaotic attractor is presented in detail to confirm the feasibility of the theoretical chaotic attractor model.

  15. Analysis, synchronisation and circuit design of a new highly nonlinear chaotic system

    NASA Astrophysics Data System (ADS)

    Mobayen, Saleh; Kingni, Sifeu Takougang; Pham, Viet-Thanh; Nazarimehr, Fahimeh; Jafari, Sajad

    2018-02-01

    This paper investigates a three-dimensional autonomous chaotic flow without linear terms. Dynamical behaviour of the proposed system is investigated through eigenvalue structures, phase portraits, bifurcation diagram, Lyapunov exponents and basin of attraction. For a suitable choice of the parameters, the proposed system can exhibit anti-monotonicity, periodic oscillations and double-scroll chaotic attractor. Basin of attraction of the proposed system shows that the chaotic attractor is self-excited. Furthermore, feasibility of double-scroll chaotic attractor in the real word is investigated by using the OrCAD-PSpice software via an electronic implementation of the proposed system. A good qualitative agreement is illustrated between the numerical simulations and the OrCAD-PSpice results. Finally, a finite-time control method based on dynamic sliding surface for the synchronisation of master and slave chaotic systems in the presence of external disturbances is performed. Using the suggested control technique, the superior master-slave synchronisation is attained. Illustrative simulation results on the studied chaotic system are presented to indicate the effectiveness of the suggested scheme.

  16. Open problems in active chaotic flows: Competition between chaos and order in granular materials.

    PubMed

    Ottino, J. M.; Khakhar, D. V.

    2002-06-01

    There are many systems where interaction among the elementary building blocks-no matter how well understood-does not even give a glimpse of the behavior of the global system itself. Characteristic for these systems is the ability to display structure without any external organizing principle being applied. They self-organize as a consequence of synthesis and collective phenomena and the behavior cannot be understood in terms of the systems' constitutive elements alone. A simple example is flowing granular materials, i.e., systems composed of particles or grains. How the grains interact with each other is reasonably well understood; as to how particles move, the governing law is Newton's second law. There are no surprises at this level. However, when the particles are many and the material is vibrated or tumbled, surprising behavior emerges. Systems self-organize in complex patterns that cannot be deduced from the behavior of the particles alone. Self-organization is often the result of competing effects; flowing granular matter displays both mixing and segregation. Small differences in either size or density lead to flow-induced segregation and order; similar to fluids, noncohesive granular materials can display chaotic mixing and disorder. Competition gives rise to a wealth of experimental outcomes. Equilibrium structures, obtained experimentally in quasi-two-dimensional systems, display organization in the presence of disorder, and are captured by a continuum flow model incorporating collisional diffusion and density-driven segregation. Several open issues remain to be addressed. These include analysis of segregating chaotic systems from a dynamical systems viewpoint, and understanding three-dimensional systems and wet granular systems (slurries). General aspects of the competition between chaos-enhanced mixing and properties-induced de-mixing go beyond granular materials and may offer a paradigm for other kinds of physical systems. (c) 2002 American Institute of Physics.

  17. Distributed containment control of heterogeneous fractional-order multi-agent systems with communication delays

    NASA Astrophysics Data System (ADS)

    Yang, Hongyong; Han, Fujun; Zhao, Mei; Zhang, Shuning; Yue, Jun

    2017-08-01

    Because many networked systems can only be characterized with fractional-order dynamics in complex environments, fractional-order calculus has been studied deeply recently. When diverse individual features are shown in different agents of networked systems, heterogeneous fractional-order dynamics will be used to describe the complex systems. Based on the distinguishing properties of agents, heterogeneous fractional-order multi-agent systems (FOMAS) are presented. With the supposition of multiple leader agents in FOMAS, distributed containment control of FOMAS is studied in directed weighted topologies. By applying Laplace transformation and frequency domain theory of the fractional-order operator, an upper bound of delays is obtained to ensure containment consensus of delayed heterogenous FOMAS. Consensus results of delayed FOMAS in this paper can be extended to systems with integer-order models. Finally, numerical examples are used to verify our results.

  18. Disturbance observer based active and adaptive synchronization of energy resource chaotic system.

    PubMed

    Wei, Wei; Wang, Meng; Li, Donghai; Zuo, Min; Wang, Xiaoyi

    2016-11-01

    In this paper, synchronization of a three-dimensional energy resource chaotic system is considered. For the sake of achieving the synchronization between the drive and response systems, two different nonlinear control approaches, i.e. active control with known parameters and adaptive control with unknown parameters, have been designed. In order to guarantee the transient performance, finite-time boundedness (FTB) and finite-time stability (FTS) are introduced in the design of active control and adaptive control, respectively. Simultaneously, in view of the existence of disturbances, a new disturbance observer is proposed to estimate the disturbance. The conditions of the asymptotic stability for the closed-loop system are obtained. Numerical simulations are provided to illustrate the proposed approaches. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Analysis of chaotic saddles in a nonlinear vibro-impact system

    NASA Astrophysics Data System (ADS)

    Feng, Jinqian

    2017-07-01

    In this paper, a computational investigation of chaotic saddles in a nonlinear vibro-impact system is presented. For a classical Duffing vibro-impact oscillator, we employ the bisection procedure and an improved stagger-and-step method to present evidence of visual chaotic saddles on the fractal basin boundary and in the internal basin, respectively. The results show that the period saddles play an important role in the evolution of chaotic saddle. The dynamics mechanics of three types of bifurcation such as saddle-node bifurcation, chaotic saddle crisis bifurcation and interior chaotic crisis bifurcation are discussed. The results reveal that the period saddle created at saddle-node bifurcation is responsible for the switch of the internal chaotic saddle to the boundary chaotic saddle. At chaotic saddle crisis bifurcation, a large chaotic saddle can divide into two different chaotic saddle connected by a period saddle. The intersection points between stable and unstable manifolds of this period saddle supply access for chaotic orbits from one chaotic saddle to another and eventually induce the coupling of these two chaotic saddle. Interior chaotic crisis bifurcation is associated with the intersection of stable and unstable manifolds of the period saddle connecting two chaotic invariant sets. In addition, the gaps in chaotic saddle is responsible for the fractal structure.

  20. A new 4D chaotic system with hidden attractor and its engineering applications: Analog circuit design and field programmable gate array implementation

    NASA Astrophysics Data System (ADS)

    Abdolmohammadi, Hamid Reza; Khalaf, Abdul Jalil M.; Panahi, Shirin; Rajagopal, Karthikeyan; Pham, Viet-Thanh; Jafari, Sajad

    2018-06-01

    Nowadays, designing chaotic systems with hidden attractor is one of the most interesting topics in nonlinear dynamics and chaos. In this paper, a new 4D chaotic system is proposed. This new chaotic system has no equilibria, and so it belongs to the category of systems with hidden attractors. Dynamical features of this system are investigated with the help of its state-space portraits, bifurcation diagram, Lyapunov exponents diagram, and basin of attraction. Also a hardware realisation of this system is proposed by using field programmable gate arrays (FPGA). In addition, an electronic circuit design for the chaotic system is introduced.

  1. Scale invariance in chaotic time series: Classical and quantum examples

    NASA Astrophysics Data System (ADS)

    Landa, Emmanuel; Morales, Irving O.; Stránský, Pavel; Fossion, Rubén; Velázquez, Victor; López Vieyra, J. C.; Frank, Alejandro

    Important aspects of chaotic behavior appear in systems of low dimension, as illustrated by the Map Module 1. It is indeed a remarkable fact that all systems tha make a transition from order to disorder display common properties, irrespective of their exacta functional form. We discuss evidence for 1/f power spectra in the chaotic time series associated in classical and quantum examples, the one-dimensional map module 1 and the spectrum of 48Ca. A Detrended Fluctuation Analysis (DFA) method is applied to investigate the scaling properties of the energy fluctuations in the spectrum of 48Ca obtained with a large realistic shell model calculation (ANTOINE code) and with a random shell model (TBRE) calculation also in the time series obtained with the map mod 1. We compare the scale invariant properties of the 48Ca nuclear spectrum sith similar analyses applied to the RMT ensambles GOE and GDE. A comparison with the corresponding power spectra is made in both cases. The possible consequences of the results are discussed.

  2. Stages of chaotic synchronization.

    PubMed

    Tang, D. Y.; Dykstra, R.; Hamilton, M. W.; Heckenberg, N. R.

    1998-09-01

    In an experimental investigation of the response of a chaotic system to a chaotic driving force, we have observed synchronization of chaos of the response system in the forms of generalized synchronization, phase synchronization, and lag synchronization to the driving signal. In this paper we compare the features of these forms of synchronized chaos and study their relations and physical origins. We found that different forms of chaotic synchronization could be interpreted as different stages of nonlinear interaction between the coupled chaotic systems. (c) 1998 American Institute of Physics.

  3. A Tribute to J. C. Sprott

    NASA Astrophysics Data System (ADS)

    Nazarimehr, Fahimeh; Jafari, Sajad; Chen, Guanrong; Kapitaniak, Tomasz; Kuznetsov, Nikolay V.; Leonov, Gennady A.; Li, Chunbiao; Wei, Zhouchao

    2017-12-01

    In honor of his 75th birthday, we review the prominent works of Professor Julien Clinton Sprott in chaos and nonlinear dynamics. We categorize his works into three important groups. The first and most important group is identifying new dynamical systems with special properties. He has proposed different chaotic maps, flows, complex variable systems, nonautonomous systems, partial differential equations, fractional-order systems, delay differential systems, spatiotemporal systems, artificial neural networks, and chaotic electrical circuits. He has also studied dynamical properties of complex systems such as bifurcations and basins of attraction. He has done work on generating fractal art. He has examined models of real-world systems that exhibit chaos. The second group of his works comprise control and synchronization of chaos. Finally, the third group is extracting dynamical properties of systems using time-series analysis. This paper highlights the impact of Sprott’s work on the promotion of nonlinear dynamics.

  4. Strong-coupling phases of the spin-orbit-coupled spin-1 Bose-Hubbard chain: Odd-integer Mott lobes and helical magnetic phases

    NASA Astrophysics Data System (ADS)

    Pixley, J. H.; Cole, William S.; Spielman, I. B.; Rizzi, Matteo; Das Sarma, S.

    2017-10-01

    We study the odd-integer filled Mott phases of a spin-1 Bose-Hubbard chain and determine their fate in the presence of a Raman induced spin-orbit coupling which has been achieved in ultracold atomic gases; this system is described by a quantum spin-1 chain with a spiral magnetic field. The spiral magnetic field initially induces helical order with either ferromagnetic or dimer order parameters, giving rise to a spiral paramagnet at large field. The spiral ferromagnet-to-paramagnet phase transition is in a universality class with critical exponents associated with the divergence of the correlation length ν ≈2 /3 and the order-parameter susceptibility γ ≈1 /2 . We solve the effective spin model exactly using the density-matrix renormalization group, and compare with both a large-S classical solution and a phenomenological Landau theory. We discuss how these exotic bosonic magnetic phases can be produced and probed in ultracold atomic experiments in optical lattices.

  5. Anisotropic fractal media by vector calculus in non-integer dimensional space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarasov, Vasily E., E-mail: tarasov@theory.sinp.msu.ru

    2014-08-15

    A review of different approaches to describe anisotropic fractal media is proposed. In this paper, differentiation and integration non-integer dimensional and multi-fractional spaces are considered as tools to describe anisotropic fractal materials and media. We suggest a generalization of vector calculus for non-integer dimensional space by using a product measure method. The product of fractional and non-integer dimensional spaces allows us to take into account the anisotropy of the fractal media in the framework of continuum models. The integration over non-integer-dimensional spaces is considered. In this paper differential operators of first and second orders for fractional space and non-integer dimensionalmore » space are suggested. The differential operators are defined as inverse operations to integration in spaces with non-integer dimensions. Non-integer dimensional space that is product of spaces with different dimensions allows us to give continuum models for anisotropic type of the media. The Poisson's equation for fractal medium, the Euler-Bernoulli fractal beam, and the Timoshenko beam equations for fractal material are considered as examples of application of suggested generalization of vector calculus for anisotropic fractal materials and media.« less

  6. Visibility graphlet approach to chaotic time series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mutua, Stephen; Computer Science Department, Masinde Muliro University of Science and Technology, P.O. Box 190-50100, Kakamega; Gu, Changgui, E-mail: gu-changgui@163.com, E-mail: hjyang@ustc.edu.cn

    Many novel methods have been proposed for mapping time series into complex networks. Although some dynamical behaviors can be effectively captured by existing approaches, the preservation and tracking of the temporal behaviors of a chaotic system remains an open problem. In this work, we extended the visibility graphlet approach to investigate both discrete and continuous chaotic time series. We applied visibility graphlets to capture the reconstructed local states, so that each is treated as a node and tracked downstream to create a temporal chain link. Our empirical findings show that the approach accurately captures the dynamical properties of chaotic systems.more » Networks constructed from periodic dynamic phases all converge to regular networks and to unique network structures for each model in the chaotic zones. Furthermore, our results show that the characterization of chaotic and non-chaotic zones in the Lorenz system corresponds to the maximal Lyapunov exponent, thus providing a simple and straightforward way to analyze chaotic systems.« less

  7. A combination chaotic system and application in color image encryption

    NASA Astrophysics Data System (ADS)

    Parvaz, R.; Zarebnia, M.

    2018-05-01

    In this paper, by using Logistic, Sine and Tent systems we define a combination chaotic system. Some properties of the chaotic system are studied by using figures and numerical results. A color image encryption algorithm is introduced based on new chaotic system. Also this encryption algorithm can be used for gray scale or binary images. The experimental results of the encryption algorithm show that the encryption algorithm is secure and practical.

  8. A new transiently chaotic flow with ellipsoid equilibria

    NASA Astrophysics Data System (ADS)

    Panahi, Shirin; Aram, Zainab; Jafari, Sajad; Pham, Viet-Thanh; Volos, Christos; Rajagopal, Karthikeyan

    2018-03-01

    In this article, a simple autonomous transiently chaotic flow with cubic nonlinearities is proposed. This system represents some unusual features such as having a surface of equilibria. We shall describe some dynamical properties and behaviours of this system in terms of eigenvalue structures, bifurcation diagrams, time series, and phase portraits. Various behaviours of this system such as periodic and transiently chaotic dynamics can be shown by setting special parameters in proper values. Our system belongs to a newly introduced category of transiently chaotic systems: systems with hidden attractors. Transiently chaotic behaviour of our proposed system has been implemented and tested by the OrCAD-PSpise software. We have found a proper qualitative similarity between circuit and simulation results.

  9. Synchronisation and Circuit Realisation of Chaotic Hartley System

    NASA Astrophysics Data System (ADS)

    Varan, Metin; Akgül, Akif; Güleryüz, Emre; Serbest, Kasım

    2018-06-01

    Hartley chaotic system is topologically the simplest, but its dynamical behaviours are very rich and its synchronisation has not been seen in literature. This paper aims to introduce a simple chaotic system which can be used as alternative to classical chaotic systems in synchronisation fields. Time series, phase portraits, and bifurcation diagrams reveal the dynamics of the mentioned system. Chaotic Hartley model is also supported with electronic circuit model simulations. Its exponential dynamics are hard to realise on circuit model; this paper is the first in literature that handles such a complex modelling problem. Modelling, synchronisation, and circuit realisation of the Hartley system are implemented respectively in MATLAB-Simulink and ORCAD environments. The effectiveness of the applied synchronisation method is revealed via numerical methods, and the results are discussed. Retrieved results show that this complex chaotic system can be used in secure communication fields.

  10. The equal combination synchronization of a class of chaotic systems with discontinuous output

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Runzi; Zeng, Yanhui

    This paper investigates the equal combination synchronization of a class of chaotic systems. The chaotic systems are assumed that only the output state variable is available and the output may be discontinuous state variable. By constructing proper observers, some novel criteria for the equal combination synchronization are proposed. The Lorenz chaotic system is taken as an example to demonstrate the efficiency of the proposed approach.

  11. Bitwise efficiency in chaotic models

    PubMed Central

    Düben, Peter; Palmer, Tim

    2017-01-01

    Motivated by the increasing energy consumption of supercomputing for weather and climate simulations, we introduce a framework for investigating the bit-level information efficiency of chaotic models. In comparison with previous explorations of inexactness in climate modelling, the proposed and tested information metric has three specific advantages: (i) it requires only a single high-precision time series; (ii) information does not grow indefinitely for decreasing time step; and (iii) information is more sensitive to the dynamics and uncertainties of the model rather than to the implementation details. We demonstrate the notion of bit-level information efficiency in two of Edward Lorenz’s prototypical chaotic models: Lorenz 1963 (L63) and Lorenz 1996 (L96). Although L63 is typically integrated in 64-bit ‘double’ floating point precision, we show that only 16 bits have significant information content, given an initial condition uncertainty of approximately 1% of the size of the attractor. This result is sensitive to the size of the uncertainty but not to the time step of the model. We then apply the metric to the L96 model and find that a 16-bit scaled integer model would suffice given the uncertainty of the unresolved sub-grid-scale dynamics. We then show that, by dedicating computational resources to spatial resolution rather than numeric precision in a field programmable gate array (FPGA), we see up to 28.6% improvement in forecast accuracy, an approximately fivefold reduction in the number of logical computing elements required and an approximately 10-fold reduction in energy consumed by the FPGA, for the L96 model. PMID:28989303

  12. Bitwise efficiency in chaotic models

    NASA Astrophysics Data System (ADS)

    Jeffress, Stephen; Düben, Peter; Palmer, Tim

    2017-09-01

    Motivated by the increasing energy consumption of supercomputing for weather and climate simulations, we introduce a framework for investigating the bit-level information efficiency of chaotic models. In comparison with previous explorations of inexactness in climate modelling, the proposed and tested information metric has three specific advantages: (i) it requires only a single high-precision time series; (ii) information does not grow indefinitely for decreasing time step; and (iii) information is more sensitive to the dynamics and uncertainties of the model rather than to the implementation details. We demonstrate the notion of bit-level information efficiency in two of Edward Lorenz's prototypical chaotic models: Lorenz 1963 (L63) and Lorenz 1996 (L96). Although L63 is typically integrated in 64-bit `double' floating point precision, we show that only 16 bits have significant information content, given an initial condition uncertainty of approximately 1% of the size of the attractor. This result is sensitive to the size of the uncertainty but not to the time step of the model. We then apply the metric to the L96 model and find that a 16-bit scaled integer model would suffice given the uncertainty of the unresolved sub-grid-scale dynamics. We then show that, by dedicating computational resources to spatial resolution rather than numeric precision in a field programmable gate array (FPGA), we see up to 28.6% improvement in forecast accuracy, an approximately fivefold reduction in the number of logical computing elements required and an approximately 10-fold reduction in energy consumed by the FPGA, for the L96 model.

  13. Copenhagen's single system premise prevents a unified view of integer and fractional quantum hall effect

    NASA Astrophysics Data System (ADS)

    Post, Evert Jan

    1999-05-01

    This essay presents conclusive evidence of the impermissibility of Copenhagen's single system interpretation of the Schroedinger process. The latter needs to be viewed as a tool exclusively describing phase and orientation randomized ensembles and is not be used for isolated single systems. Asymptotic closeness of single system and ensemble behavior and the rare nature of true single system manifestations have prevented a definitive identification of this Copenhagen deficiency over the past three quarter century. Quantum uncertainty so becomes a basic trade mark of phase and orientation disordered ensembles. The ensuing void of usable single system tools opens a new inquiry for tools without statistical connotations. Three, in part already known, period integrals here identified as flux, charge and action counters emerge as diffeo-4 invariant tools fully compatible with the demands of the general theory of relativity. The discovery of the quantum Hall effect has been instrumental in forcing a distinction between ensemble disorder as in the normal Hall effect versus ensemble order in the plateau states. Since the order of the latter permits a view of the plateau states as a macro- or meso-scopic single system, the period integral description applies, yielding a straightforward unified description of integer and fractional quantum Hall effects.

  14. New Approaches to Minimum-Energy Design of Integer- and Fractional-Order Perfect Control Algorithms

    NASA Astrophysics Data System (ADS)

    Hunek, Wojciech P.; Wach, Łukasz

    2017-10-01

    In this paper the new methods concerning the energy-based minimization of the perfect control inputs is presented. For that reason the multivariable integer- and fractional-order models are applied which can be used for describing a various real world processes. Up to now, the classical approaches have been used in forms of minimum-norm/least squares inverses. Notwithstanding, the above-mentioned tool do not guarantee the optimal control corresponding to optimal input energy. Therefore the new class of inversebased methods has been introduced, in particular the new σ- and H-inverse of nonsquare parameter and polynomial matrices. Thus a proposed solution remarkably outperforms the typical ones in systems where the control runs can be understood in terms of different physical quantities, for example heat and mass transfer, electricity etc. A simulation study performed in Matlab/Simulink environment confirms the big potential of the new energy-based approaches.

  15. Analytical Studies on the Synchronization of a Network of Linearly-Coupled Simple Chaotic Systems

    NASA Astrophysics Data System (ADS)

    Sivaganesh, G.; Arulgnanam, A.; Seethalakshmi, A. N.; Selvaraj, S.

    2018-05-01

    We present explicit generalized analytical solutions for a network of linearly-coupled simple chaotic systems. Analytical solutions are obtained for the normalized state equations of a network of linearly-coupled systems driven by a common chaotic drive system. Two parameter bifurcation diagrams revealing the various hidden synchronization regions, such as complete, phase and phase-lag synchronization are identified using the analytical results. The synchronization dynamics and their stability are studied using phase portraits and the master stability function, respectively. Further, experimental results for linearly-coupled simple chaotic systems are presented to confirm the analytical results. The synchronization dynamics of a network of chaotic systems studied analytically is reported for the first time.

  16. Long-term influence of asteroids on planet longitudes and chaotic dynamics of the solar system

    NASA Astrophysics Data System (ADS)

    Woillez, E.; Bouchet, F.

    2017-11-01

    Over timescales much longer than an orbital period, the solar system exhibits large-scale chaotic behavior and can thus be viewed as a stochastic dynamical system. The aim of the present paper is to compare different sources of stochasticity in the solar system. More precisely we studied the importance of the long term influence of asteroids on the chaotic dynamics of the solar system. We show that the effects of asteroids on planets is similar to a white noise process, when those effects are considered on a timescale much larger than the correlation time τϕ ≃ 104 yr of asteroid trajectories. We computed the timescale τe after which the effects of the stochastic evolution of the asteroids lead to a loss of information for the initial conditions of the perturbed Laplace-Lagrange secular dynamics. The order of magnitude of this timescale is precisely determined by theoretical argument, and we find that τe ≃ 104 Myr. Although comparable to the full main-sequence lifetime of the sun, this timescale is considerably longer than the Lyapunov time τI ≃ 10 Myr of the solar system without asteroids. This shows that the external sources of chaos arise as a small perturbation in the stochastic secular behavior of the solar system, rather due to intrinsic chaos.

  17. Giant Suppression of the Activation Rate in Dynamical Systems Exhibiting Chaotic Transitions

    NASA Astrophysics Data System (ADS)

    Gac, J. M.; Xafebrowski, J. J.

    2008-05-01

    The phenomenon of giant suppression of activation, when two or more correlated noise signals act on the system, was found a few years ago in dynamical bistable or metastable systems. When the correlation between these noise signals is strong enough and the amplitudes of the noise are chosen correctly --- the life time of the metastable state may be longer than in the case of the application of only a single noise even by many orders of magnitude. In this paper, we investigate similar phenomena in systems exhibiting several chaotic transitions: Pomeau--Manneville intermittency, boundary crisis and interior crisis induced intermittency. Our goal is to show that, in these systems the application of two noise components with the proper choice of the parameters in the case of intermittency can also lengthen the mean laminar phase length or, in the case of boundary crisis, lengthen the time the trajectory spends on the pre-crisis attractor. In systems with crisis induced intermittency, we introduce a new phenomenon we called quasi-deterministic giant suppression of activation in which the lengthening of the laminar phase lengths is caused not by the action of two correlated noise signals but by a single noise term which is correlated with one of the chaotic variables of the system.

  18. High security chaotic multiple access scheme for visible light communication systems with advanced encryption standard interleaving

    NASA Astrophysics Data System (ADS)

    Qiu, Junchao; Zhang, Lin; Li, Diyang; Liu, Xingcheng

    2016-06-01

    Chaotic sequences can be applied to realize multiple user access and improve the system security for a visible light communication (VLC) system. However, since the map patterns of chaotic sequences are usually well known, eavesdroppers can possibly derive the key parameters of chaotic sequences and subsequently retrieve the information. We design an advanced encryption standard (AES) interleaving aided multiple user access scheme to enhance the security of a chaotic code division multiple access-based visible light communication (C-CDMA-VLC) system. We propose to spread the information with chaotic sequences, and then the spread information is interleaved by an AES algorithm and transmitted over VLC channels. Since the computation complexity of performing inverse operations to deinterleave the information is high, the eavesdroppers in a high speed VLC system cannot retrieve the information in real time; thus, the system security will be enhanced. Moreover, we build a mathematical model for the AES-aided VLC system and derive the theoretical information leakage to analyze the system security. The simulations are performed over VLC channels, and the results demonstrate the effectiveness and high security of our presented AES interleaving aided chaotic CDMA-VLC system.

  19. Design and experiment of controlled bistable vortex induced vibration energy harvesting systems operating in chaotic regions

    NASA Astrophysics Data System (ADS)

    Huynh, B. H.; Tjahjowidodo, T.; Zhong, Z.-W.; Wang, Y.; Srikanth, N.

    2018-01-01

    Vortex induced vibration based energy harvesting systems have gained interests in these recent years due to its potential as a low water current energy source. However, the effectiveness of the system is limited only at a certain water current due to the resonance principle that governs the concept. In order to extend the working range, a bistable spring to support the structure is introduced on the system. The improvement on the performance is essentially dependent on the bistable gap as one of the main parameters of the nonlinear spring. A sufficiently large bistable gap will result in a significant performance improvement. Unfortunately, a large bistable gap might also increase a chance of chaotic responses, which in turn will result in diminutive harvested power. To mitigate the problem, an appropriate control structure is required to stabilize the chaotic vibrations of a VIV energy converter with the bistable supporting structure. Based on the nature of the double-well potential energy in a bistable spring, the ideal control structure will attempt to drive the responses to inter-well periodic vibrations in order to maximize the harvested power. In this paper, the OGY control algorithm is designed and implemented to the system. The control strategy is selected since it requires only a small perturbation in a structural parameter to execute the control effort, thus, minimum power is needed to drive the control input. Facilitated by a wake oscillator model, the bistable VIV system is modelled as a 4-dimensional autonomous continuous-time dynamical system. To implement the controller strategy, the system is discretized at a period estimated from the subspace hyperplane intersecting to the chaotic trajectory, whereas the fixed points that correspond to the desired periodic orbits are estimated by the recurrence method. Simultaneously, the Jacobian and sensitivity matrices are estimated by the least square regression method. Based on the defined fixed point and the linearized model, the control gain matrix is calculated using the pole placement technique. The results show that the OGY controller is capable of stabilizing the chaotic responses by driving them to the desired inter-well period-one periodic vibrations and it is also shown that the harvested power is successfully improved. For validation purpose, a real-time experiment was carried out on a computer-based forced-feedback testing platform to validate the applicability of the controller in real-time applications. The experimental results confirm the feasibility of the controller to stabilize the responses.

  20. Vector calculus in non-integer dimensional space and its applications to fractal media

    NASA Astrophysics Data System (ADS)

    Tarasov, Vasily E.

    2015-02-01

    We suggest a generalization of vector calculus for the case of non-integer dimensional space. The first and second orders operations such as gradient, divergence, the scalar and vector Laplace operators for non-integer dimensional space are defined. For simplification we consider scalar and vector fields that are independent of angles. We formulate a generalization of vector calculus for rotationally covariant scalar and vector functions. This generalization allows us to describe fractal media and materials in the framework of continuum models with non-integer dimensional space. As examples of application of the suggested calculus, we consider elasticity of fractal materials (fractal hollow ball and fractal cylindrical pipe with pressure inside and outside), steady distribution of heat in fractal media, electric field of fractal charged cylinder. We solve the correspondent equations for non-integer dimensional space models.

  1. Fermi acceleration in time-dependent billiards: theory of the velocity diffusion in conformally breathing fully chaotic billiards

    NASA Astrophysics Data System (ADS)

    Batistić, Benjamin; Robnik, Marko

    2011-09-01

    We study aspects of the Fermi acceleration (the unbounded growth of the energy) in a certain class of time-dependent 2D billiards. Specifically, we look at the conformally breathing billiards (periodic oscillation of the boundary which preserves the shape of the billiard at all times), which are fully chaotic as static (frozen) billiards, and we show that for large velocities around v0 and for not too long times, we observe just normal diffusion of the velocity as a function of the physical (continuous) time, around v0. However, the diffusion is not homogeneous, as the diffusion constant D depends on v0 as a power law D∝1/v30. Taking this into account, we show that to the leading order the average velocity v(n) as a function of the number of collisions n obeys a power law v∝n1/6 thus, the Fermi acceleration exponent is β = 1/6, which is in excellent agreement with the numerical calculations of the fully chaotic oval billiard, the Sinai billiard and the cardioid billiard. The error of the velocity estimates is of the order 1/v2. Thus, the higher the velocity, the better our analytic approximation. Moreover, we derive the underlying universal equation of the velocity dynamics of the time-dependent conformally breathing billiards, correct up to and including the order 1/v in the regime of the large velocity of the particle v. This universal equation does not depend on the dynamical properties of the system (integrability, ergodicity, chaoticity). We present the results of the numerical simulations for three billiards in complete agreement with the theory. We believe that this is a first step towards theoretical understanding of the power law growth and the Fermi acceleration exponents in 2D billiards, although our theory is so far specialized to the conformally breathing fully chaotic billiards.

  2. A nonlinear controller design for permanent magnet motors using a synchronization-based technique inspired from the Lorenz system.

    PubMed

    Zaher, Ashraf A

    2008-03-01

    The dynamic behavior of a permanent magnet synchronous machine (PMSM) is analyzed. Nominal and special operating conditions are explored to show that the PMSM can experience chaos. A nonlinear controller is introduced to control these unwanted chaotic oscillations and to bring the PMSM to a stable steady state. The designed controller uses a pole-placement approach to force the closed-loop system to follow the performance of a simple first-order linear system with zero steady-state error to a desired set point. The similarity between the mathematical model of the PMSM and the famous chaotic Lorenz system is utilized to design a synchronization-based state observer using only the angular speed for feedback. Simulation results verify the effectiveness of the proposed controller in eliminating the chaotic oscillations while using a single feedback signal. The superiority of the proposed controller is further demonstrated by comparing it with a conventional PID controller. Finally, a laboratory-based experiment was conducted using the MCK2812 C Pro-MS(BL) motion control kit to confirm the theoretical results and to verify both the causality and versatility of the proposed controller.

  3. Deterministic diffusion in flower-shaped billiards.

    PubMed

    Harayama, Takahisa; Klages, Rainer; Gaspard, Pierre

    2002-08-01

    We propose a flower-shaped billiard in order to study the irregular parameter dependence of chaotic normal diffusion. Our model is an open system consisting of periodically distributed obstacles in the shape of a flower, and it is strongly chaotic for almost all parameter values. We compute the parameter dependent diffusion coefficient of this model from computer simulations and analyze its functional form using different schemes, all generalizing the simple random walk approximation of Machta and Zwanzig. The improved methods we use are based either on heuristic higher-order corrections to the simple random walk model, on lattice gas simulation methods, or they start from a suitable Green-Kubo formula for diffusion. We show that dynamical correlations, or memory effects, are of crucial importance in reproducing the precise parameter dependence of the diffusion coefficent.

  4. Synchronization of Chaotic Systems without Direct Connections Using Reinforcement Learning

    NASA Astrophysics Data System (ADS)

    Sato, Norihisa; Adachi, Masaharu

    In this paper, we propose a control method for the synchronization of chaotic systems that does not require the systems to be connected, unlike existing methods such as that proposed by Pecora and Carroll in 1990. The method is based on the reinforcement learning algorithm. We apply our method to two discrete-time chaotic systems with mismatched parameters and achieve M step delay synchronization. Moreover, we extend the proposed method to the synchronization of continuous-time chaotic systems.

  5. Cascade Error Projection with Low Bit Weight Quantization for High Order Correlation Data

    NASA Technical Reports Server (NTRS)

    Duong, Tuan A.; Daud, Taher

    1998-01-01

    In this paper, we reinvestigate the solution for chaotic time series prediction problem using neural network approach. The nature of this problem is such that the data sequences are never repeated, but they are rather in chaotic region. However, these data sequences are correlated between past, present, and future data in high order. We use Cascade Error Projection (CEP) learning algorithm to capture the high order correlation between past and present data to predict a future data using limited weight quantization constraints. This will help to predict a future information that will provide us better estimation in time for intelligent control system. In our earlier work, it has been shown that CEP can sufficiently learn 5-8 bit parity problem with 4- or more bits, and color segmentation problem with 7- or more bits of weight quantization. In this paper, we demonstrate that chaotic time series can be learned and generalized well with as low as 4-bit weight quantization using round-off and truncation techniques. The results show that generalization feature will suffer less as more bit weight quantization is available and error surfaces with the round-off technique are more symmetric around zero than error surfaces with the truncation technique. This study suggests that CEP is an implementable learning technique for hardware consideration.

  6. Synchronization of chaotic systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pecora, Louis M.; Carroll, Thomas L.

    2015-09-15

    We review some of the history and early work in the area of synchronization in chaotic systems. We start with our own discovery of the phenomenon, but go on to establish the historical timeline of this topic back to the earliest known paper. The topic of synchronization of chaotic systems has always been intriguing, since chaotic systems are known to resist synchronization because of their positive Lyapunov exponents. The convergence of the two systems to identical trajectories is a surprise. We show how people originally thought about this process and how the concept of synchronization changed over the years tomore » a more geometric view using synchronization manifolds. We also show that building synchronizing systems leads naturally to engineering more complex systems whose constituents are chaotic, but which can be tuned to output various chaotic signals. We finally end up at a topic that is still in very active exploration today and that is synchronization of dynamical systems in networks of oscillators.« less

  7. Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance.

    PubMed

    Vandersypen, L M; Steffen, M; Breyta, G; Yannoni, C S; Sherwood, M H; Chuang, I L

    The number of steps any classical computer requires in order to find the prime factors of an l-digit integer N increases exponentially with l, at least using algorithms known at present. Factoring large integers is therefore conjectured to be intractable classically, an observation underlying the security of widely used cryptographic codes. Quantum computers, however, could factor integers in only polynomial time, using Shor's quantum factoring algorithm. Although important for the study of quantum computers, experimental demonstration of this algorithm has proved elusive. Here we report an implementation of the simplest instance of Shor's algorithm: factorization of N = 15 (whose prime factors are 3 and 5). We use seven spin-1/2 nuclei in a molecule as quantum bits, which can be manipulated with room temperature liquid-state nuclear magnetic resonance techniques. This method of using nuclei to store quantum information is in principle scalable to systems containing many quantum bits, but such scalability is not implied by the present work. The significance of our work lies in the demonstration of experimental and theoretical techniques for precise control and modelling of complex quantum computers. In particular, we present a simple, parameter-free but predictive model of decoherence effects in our system.

  8. Higher order supersymmetric truncated oscillators

    NASA Astrophysics Data System (ADS)

    Fernández C., David J.; Morales-Salgado, Vicente Said

    2018-01-01

    We study the supersymmetric partners of the harmonic oscillator with an infinite potential barrier at the origin and obtain the conditions under which it is possible to add levels to the energy spectrum of these systems. It is found that instead of the usual rule for non-singular potentials, where the order of the transformation corresponds to the maximum number of levels which can be added, now it is the integer part of half the order of the transformation which gives the maximum number of levels to be created.

  9. A new VLSI complex integer multiplier which uses a quadratic-polynomial residue system with Fermat numbers

    NASA Technical Reports Server (NTRS)

    Truong, T. K.; Hsu, I. S.; Chang, J. J.; Shyu, H. C.; Reed, I. S.

    1986-01-01

    A quadratic-polynomial Fermat residue number system (QFNS) has been used to compute complex integer multiplications. The advantage of such a QFNS is that a complex integer multiplication requires only two integer multiplications. In this article, a new type Fermat number multiplier is developed which eliminates the initialization condition of the previous method. It is shown that the new complex multiplier can be implemented on a single VLSI chip. Such a chip is designed and fabricated in CMOS-pw technology.

  10. A new VLSI complex integer multiplier which uses a quadratic-polynomial residue system with Fermat numbers

    NASA Technical Reports Server (NTRS)

    Shyu, H. C.; Reed, I. S.; Truong, T. K.; Hsu, I. S.; Chang, J. J.

    1987-01-01

    A quadratic-polynomial Fermat residue number system (QFNS) has been used to compute complex integer multiplications. The advantage of such a QFNS is that a complex integer multiplication requires only two integer multiplications. In this article, a new type Fermat number multiplier is developed which eliminates the initialization condition of the previous method. It is shown that the new complex multiplier can be implemented on a single VLSI chip. Such a chip is designed and fabricated in CMOS-Pw technology.

  11. Hybridization with a twist: Hidden (hastatic) order in URu2Si2

    NASA Astrophysics Data System (ADS)

    Flint, Rebecca

    The hidden order developing below 17.5K in the heavy fermion material URu2Si2 has eluded identification for over thirty years. A number of recent experiments have shed new light on the nature of this phase. In particular, de Haas-van Alphen measurements indicate nearly perfectly Ising quasiparticles deep in the hidden order phase, and recent nonlinear susceptibility measurements show that this strong Ising anisotropy persists up to and above the hidden order transition itself. Along with other features, this Ising anisotropy implies that the conduction electrons hybridize with a local Ising moment - a 5f2 state of the uranium atom with integer spin. As the hybridization mixes states of integer and half-integer spin, it is itself a spinor and this ``hastatic'' (hasta: [Latin] spear) order parameter therefore breaks both time-reversal and double time-reversal symmetries. A microscopic theory of hastatic order naturally unites a number of disparate experimental results from the large entropy of condensation to the spin rotational symmetry breaking seen in torque magnetometry, and provides a number of experimental predictions. Moreover, this new spinorial order parameter provides a window into a number of new heavy fermion phases.

  12. Modelling of long-wave chaotic radar system for anti-stealth applications

    NASA Astrophysics Data System (ADS)

    Al-Suhail, Ghaida A.; Tahir, Fadhil Rahma; Abd, Mariam Hussien; Pham, Viet-Thanh; Fortuna, Luigi

    2018-04-01

    Although the Very Low-Frequency (VLF) waveforms have limited practical applications in acoustics (sonar) and secure military communications with radars and submarines; to this end; this paper presents a new and simple analytical model of VLF monostatic direct chaotic radar system. The model hypothetically depends on the two identical coupled time-delayed feedback chaotic systems which can generate and recover a long-wave chaotic signal. To resist the influence of positive Lyapunov exponents of the time-delay chaotic systems, the complete replacement of Pecaro and Carroll (PC) synchronization is employed. It can faithfully recover the chaotic signal from the back-scattered (echo) signal from the target over a noisy channel. The system performance is characterized in terms of the time series of synchronization in addition to the peak of the cross-correlation. Simulation results are conducted for substantial sensitivities of the chaotic signal to the system parameters and initial conditions. As a result, it is found that an effective and robust chaotic radar (CRADAR) model can be obtained when the signal-to-noise ratio (SNR) highly degrades to 0 dB, but with clear peak in correlation performance for detecting the target. Then, the model can be considered as a state of the art towards counter stealth technology and might be developed for other acoustic secure applications.

  13. Homoclinic behaviors and chaotic motions of double layered viscoelastic nanoplates based on nonlocal theory and extended Melnikov method.

    PubMed

    Wang, Yu; Li, Feng-Ming; Wang, Yi-Ze

    2015-06-01

    The nonlinear dynamical equations are established for the double layered viscoelastic nanoplates (DLNP) subjected to in-plane excitation based on the nonlocal theory and von Kármán large deformation theory. The extended high dimensional homoclinic Melnikov method is employed to study the homoclinic phenomena and chaotic motions for the parametrically excited DLNP system. The criteria for the homoclinic transverse intersection for both the asynchronous and synchronous buckling cases are proposed. Lyapunov exponents and phase portraits are obtained to verify the Melnikov-type analysis. The influences of structural parameters on the transverse homoclinic orbits and homoclinic bifurcation sets are discussed for the two buckling cases. Some novel phenomena are observed in the investigation. It should be noticed that the nonlocal effect on the homoclinic behaviors and chaotic motions is quite remarkable. Hence, the small scale effect should be taken into account for homoclinic and chaotic analysis for nanostructures. It is significant that the nonlocal effect on the homoclinic phenomena for the asynchronous buckling case is quite different from that for the synchronous buckling case. Moreover, due to the van der Walls interaction between the layers, the nonlocal effect on the homoclinic behaviors and chaotic motions for high order mode is rather tiny under the asynchronous buckling condition.

  14. Homoclinic behaviors and chaotic motions of double layered viscoelastic nanoplates based on nonlocal theory and extended Melnikov method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yu; Wang, Yi-Ze; Li, Feng-Ming, E-mail: fmli@bjut.edu.cn

    2015-06-15

    The nonlinear dynamical equations are established for the double layered viscoelastic nanoplates (DLNP) subjected to in-plane excitation based on the nonlocal theory and von Kármán large deformation theory. The extended high dimensional homoclinic Melnikov method is employed to study the homoclinic phenomena and chaotic motions for the parametrically excited DLNP system. The criteria for the homoclinic transverse intersection for both the asynchronous and synchronous buckling cases are proposed. Lyapunov exponents and phase portraits are obtained to verify the Melnikov-type analysis. The influences of structural parameters on the transverse homoclinic orbits and homoclinic bifurcation sets are discussed for the two bucklingmore » cases. Some novel phenomena are observed in the investigation. It should be noticed that the nonlocal effect on the homoclinic behaviors and chaotic motions is quite remarkable. Hence, the small scale effect should be taken into account for homoclinic and chaotic analysis for nanostructures. It is significant that the nonlocal effect on the homoclinic phenomena for the asynchronous buckling case is quite different from that for the synchronous buckling case. Moreover, due to the van der Walls interaction between the layers, the nonlocal effect on the homoclinic behaviors and chaotic motions for high order mode is rather tiny under the asynchronous buckling condition.« less

  15. A new chaotic communication scheme based on adaptive synchronization.

    PubMed

    Xiang-Jun, Wu

    2006-12-01

    A new chaotic communication scheme using adaptive synchronization technique of two unified chaotic systems is proposed. Different from the existing secure communication methods, the transmitted signal is modulated into the parameter of chaotic systems. The adaptive synchronization technique is used to synchronize two identical chaotic systems embedded in the transmitter and the receiver. It is assumed that the parameter of the receiver system is unknown. Based on the Lyapunov stability theory, an adaptive control law is derived to make the states of two identical unified chaotic systems with unknown system parameters asymptotically synchronized; thus the parameter of the receiver system is identified. Then the recovery of the original information signal in the receiver is successfully achieved on the basis of the estimated parameter. It is noticed that the time required for recovering the information signal and the accuracy of the recovered signal very sensitively depends on the frequency of the information signal. Numerical results have verified the effectiveness of the proposed scheme.

  16. On Complete Control and Synchronization of Zhang Chaotic System with Uncertain Parameters using Adaptive Control Method

    NASA Astrophysics Data System (ADS)

    Tirandaz, Hamed

    2018-03-01

    Chaos control and synchronization of chaotic systems is seemingly a challenging problem and has got a lot of attention in recent years due to its numerous applications in science and industry. This paper concentrates on the control and synchronization problem of the three-dimensional (3D) Zhang chaotic system. At first, an adaptive control law and a parameter estimation law are achieved for controlling the behavior of the Zhang chaotic system. Then, non-identical synchronization of Zhang chaotic system is provided with considering the Lü chaotic system as the follower system. The synchronization problem and parameters identification are achieved by introducing an adaptive control law and a parameters estimation law. Stability analysis of the proposed method is proved by the Lyapanov stability theorem. In addition, the convergence of the estimated parameters to their truly unknown values are evaluated. Finally, some numerical simulations are carried out to illustrate and to validate the effectiveness of the suggested method.

  17. Identical synchronization of chaotic secure communication systems with channel induced coherence resonance

    NASA Astrophysics Data System (ADS)

    Sepantaie, Marc M.; Namazi, Nader M.; Sepantaie, Amir M.

    2016-05-01

    This paper is devoted to addressing the synchronization, and detection of random binary data exposed to inherent channel variations existing in Free Space Optical (FSO) communication systems. This task is achieved by utilizing the identical synchronization methodology of Lorenz chaotic communication system, and its synergetic interaction in adversities imposed by the FSO channel. Moreover, the Lorenz system has been analyzed, and revealed to induce Stochastic Resonance (SR) once exposed to Additive White Gaussian Noise (AWGN). In particular, the resiliency of the Lorenz chaotic system, in light of channel adversities, has been attributed to the success of the proposed communication system. Furthermore, this paper advocates the use of Haar wavelet transform for enhanced detection capability of the proposed chaotic communication system, which utilizes Chaotic Parameter Modulation (CPM) technique for means of transmission.

  18. Chaotic Oscillations of Second Order Linear Hyperbolic Equations with Nonlinear Boundary Conditions: A Factorizable but Noncommutative Case

    NASA Astrophysics Data System (ADS)

    Li, Liangliang; Huang, Yu; Chen, Goong; Huang, Tingwen

    If a second order linear hyperbolic partial differential equation in one-space dimension can be factorized as a product of two first order operators and if the two first order operators commute, with one boundary condition being the van der Pol type and the other being linear, one can establish the occurrence of chaos when the parameters enter a certain regime [Chen et al., 2014]. However, if the commutativity of the two first order operators fails to hold, then the treatment in [Chen et al., 2014] no longer works and significant new challenges arise in determining nonlinear boundary conditions that engenders chaos. In this paper, we show that by incorporating a linear memory effect, a nonlinear van der Pol boundary condition can cause chaotic oscillations when the parameter enters a certain regime. Numerical simulations illustrating chaotic oscillations are also presented.

  19. Lagrangian chaos in three- dimensional steady buoyancy-driven flows

    NASA Astrophysics Data System (ADS)

    Contreras, Sebastian; Speetjens, Michel; Clercx, Herman

    2016-11-01

    Natural convection plays a key role in fluid dynamics owing to its ubiquitous presence in nature and industry. Buoyancy-driven flows are prototypical systems in the study of thermal instabilities and pattern formation. The differentially heated cavity problem has been widely studied for the investigation of buoyancy-induced oscillatory flow. However, far less attention has been devoted to the three-dimensional Lagrangian transport properties in such flows. This study seeks to address this by investigating Lagrangian transport in the steady flow inside a cubic cavity differentially-heated from the side. The theoretical and numerical analysis expands on previously reported similarities between the current flow and lid-driven flows. The Lagrangian dynamics are controlled by the Péclet number (Pe) and the Prandtl number (Pr). Pe controls the behaviour qualitatively in that growing Pe progressively perturbs the integable state (Pe =0), thus paving the way to chaotic dynamics. Pr plays an entirely quantitative role in that Pr<1 and Pr>1 amplifies and diminishes, respectively, the perturbative effect of non-zero Pe. S.C. acknowledges financial support from Consejo Nacional de Ciencia y Tecnología (CONACYT).

  20. A hybrid inventory management system respondingto regular demand and surge demand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohammad S. Roni; Mingzhou Jin; Sandra D. Eksioglu

    2014-06-01

    This paper proposes a hybrid policy for a stochastic inventory system facing regular demand and surge demand. The combination of two different demand patterns can be observed in many areas, such as healthcare inventory and humanitarian supply chain management. The surge demand has a lower arrival rate but higher demand volume per arrival. The solution approach proposed in this paper incorporates the level crossing method and mixed integer programming technique to optimize the hybrid inventory policy with both regular orders and emergency orders. The level crossing method is applied to obtain the equilibrium distributions of inventory levels under a givenmore » policy. The model is further transformed into a mixed integer program to identify an optimal hybrid policy. A sensitivity analysis is conducted to investigate the impact of parameters on the optimal inventory policy and minimum cost. Numerical results clearly show the benefit of using the proposed hybrid inventory model. The model and solution approach could help healthcare providers or humanitarian logistics providers in managing their emergency supplies in responding to surge demands.« less

  1. Negative Integer Understanding: Characterizing First Graders' Mental Models

    ERIC Educational Resources Information Center

    Bofferding, Laura

    2014-01-01

    This article presents results of a research study. Sixty-one first graders' responses to interview questions about negative integer values and order and directed magnitudes were examined to characterize the students' mental models. The models reveal that initially, students overrelied on various combinations of whole-number principles as…

  2. Behaviour of Lyapunov exponents near crisis points in the dissipative standard map

    NASA Astrophysics Data System (ADS)

    Pompe, B.; Leven, R. W.

    1988-11-01

    We numerically study the behaviour of the largest Lyapunov characteristic exponent λ1 in dependence on a control parameter in the 2D standard map with dissipation. In order to investigate the system's motion in parameter intervals slightly above crisis points we introduce "partial" Lyapunov exponents which characterize the average exponential divergence of nearby orbits on a semi-attractor at a boundary crisis and on distinct parts of a "large" chaotic attractor near an interior crisis. In the former case we find no significant difference between λ1 in the pre-crisis regime and the partial Lyapunov exponent describing transient chaotic motions slightly above the crisis. For the latter case we give a quantitative description of the drastic increase of λ1. Moreover, a formula which connects the critical exponent of a chaotic transient above a boundary crisis with a pointwise dimension is derived.

  3. Stability of uncertain impulsive complex-variable chaotic systems with time-varying delays.

    PubMed

    Zheng, Song

    2015-09-01

    In this paper, the robust exponential stabilization of uncertain impulsive complex-variable chaotic delayed systems is considered with parameters perturbation and delayed impulses. It is assumed that the considered complex-variable chaotic systems have bounded parametric uncertainties together with the state variables on the impulses related to the time-varying delays. Based on the theories of adaptive control and impulsive control, some less conservative and easily verified stability criteria are established for a class of complex-variable chaotic delayed systems with delayed impulses. Some numerical simulations are given to validate the effectiveness of the proposed criteria of impulsive stabilization for uncertain complex-variable chaotic delayed systems. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Extreme multistability in a memristor-based multi-scroll hyper-chaotic system.

    PubMed

    Yuan, Fang; Wang, Guangyi; Wang, Xiaowei

    2016-07-01

    In this paper, a new memristor-based multi-scroll hyper-chaotic system is designed. The proposed memristor-based system possesses multiple complex dynamic behaviors compared with other chaotic systems. Various coexisting attractors and hidden coexisting attractors are observed in this system, which means extreme multistability arises. Besides, by adjusting parameters of the system, this chaotic system can perform single-scroll attractors, double-scroll attractors, and four-scroll attractors. Basic dynamic characteristics of the system are investigated, including equilibrium points and stability, bifurcation diagrams, Lyapunov exponents, and so on. In addition, the presented system is also realized by an analog circuit to confirm the correction of the numerical simulations.

  5. Adaptive fractional order sliding mode control for Boost converter in the Battery/Supercapacitor HESS.

    PubMed

    Wang, Jianlin; Xu, Dan; Zhou, Huan; Zhou, Tao

    2018-01-01

    In this paper, an adaptive fractional order sliding mode control (AFSMC) scheme is designed for the current tracking control of the Boost-type converter in a Battery/Supercapacitor hybrid energy storage system (HESS). In order to stabilize the current, the adaptation rules based on state-observer and Lyapunov function are being designed. A fractional order sliding surface function is defined based on the tracking current error and adaptive rules. Furthermore, through fractional order analysis, the stability of the fractional order control system is proven, and the value of the fractional order (λ) is being investigated. In addition, the effectiveness of the proposed AFSMC strategy is being verified by numerical simulations. The advantages of good transient response and robustness to uncertainty are being indicated by this design, when compared with a conventional integer order sliding mode control system.

  6. Dynamic interaction of monowheel inclined vehicle-vibration platform coupled system with quadratic and cubic nonlinearities

    NASA Astrophysics Data System (ADS)

    Zhou, Shihua; Song, Guiqiu; Sun, Maojun; Ren, Zhaohui; Wen, Bangchun

    2018-01-01

    In order to analyze the nonlinear dynamics and stability of a novel design for the monowheel inclined vehicle-vibration platform coupled system (MIV-VPCS) with intermediate nonlinearity support subjected to a harmonic excitation, a multi-degree of freedom lumped parameter dynamic model taking into account the dynamic interaction of the MIV-VPCS with quadratic and cubic nonlinearities is presented. The dynamical equations of the coupled system are derived by applying the displacement relationship, interaction force relationship at the contact position and Lagrange's equation, which are further discretized into a set of nonlinear ordinary differential equations with coupled terms by Galerkin's truncation. Based on the mathematical model, the coupled multi-body nonlinear dynamics of the vibration system is investigated by numerical method, and the parameters influences of excitation amplitude, mass ratio and inclined angle on the dynamic characteristics are precisely analyzed and discussed by bifurcation diagram, Largest Lyapunov exponent and 3-D frequency spectrum. Depending on different ranges of system parameters, the results show that the different motions and jump discontinuity appear, and the coupled system enters into chaotic behavior through different routes (period-doubling bifurcation, inverse period-doubling bifurcation, saddle-node bifurcation and Hopf bifurcation), which are strongly attributed to the dynamic interaction of the MIV-VPCS. The decreasing excitation amplitude and inclined angle could reduce the higher order bifurcations, and effectively control the complicated nonlinear dynamic behaviors under the perturbation of low rotational speed. The first bifurcation and chaotic motion occur at lower value of inclined angle, and the chaotic behavior lasts for larger intervals with higher rotational speed. The investigation results could provide a better understanding of the nonlinear dynamic behaviors for the dynamic interaction of the MIV-VPCS.

  7. Software For Integer Programming

    NASA Technical Reports Server (NTRS)

    Fogle, F. R.

    1992-01-01

    Improved Exploratory Search Technique for Pure Integer Linear Programming Problems (IESIP) program optimizes objective function of variables subject to confining functions or constraints, using discrete optimization or integer programming. Enables rapid solution of problems up to 10 variables in size. Integer programming required for accuracy in modeling systems containing small number of components, distribution of goods, scheduling operations on machine tools, and scheduling production in general. Written in Borland's TURBO Pascal.

  8. Topics in quantum chaos

    NASA Astrophysics Data System (ADS)

    Jordan, Andrew Noble

    2002-09-01

    In this dissertation, we study the quantum mechanics of classically chaotic dynamical systems. We begin by considering the decoherence effects a quantum chaotic system has on a simple quantum few state system. Typical time evolution of a quantum system whose classical limit is chaotic generates structures in phase space whose size is much smaller than Planck's constant. A naive application of Heisenberg's uncertainty principle indicates that these structures are not physically relevant. However, if we take the quantum chaotic system in question to be an environment which interacts with a simple two state quantum system (qubit), we show that these small phase-space structures cause the qubit to generically lose quantum coherence if and only if the environment has many degrees of freedom, such as a dilute gas. This implies that many-body environments may be crucial for the phenomenon of quantum decoherence. Next, we turn to an analysis of statistical properties of time correlation functions and matrix elements of quantum chaotic systems. A semiclassical evaluation of matrix elements of an operator indicates that the dominant contribution will be related to a classical time correlation function over the energy surface. For a highly chaotic class of dynamics, these correlation functions may be decomposed into sums of Ruelle resonances, which control exponential decay to the ergodic distribution. The theory is illustrated both numerically and theoretically on the Baker map. For this system, we are able to isolate individual Ruelle modes. We further consider dynamical systems whose approach to ergodicity is given by a power law rather than an exponential in time. We propose a billiard with diffusive boundary conditions, whose classical solution may be calculated analytically. We go on to compare the exact solution with an approximation scheme, as well calculate asympotic corrections. Quantum spectral statistics are calculated assuming the validity of the Again, Altshuler and Andreev ansatz. We find singular behavior of the two point spectral correlator in the limit of small spacing. Finally, we analyse the effect that slow decay to ergodicity has on the structure of the quantum propagator, as well as wavefunction localization. We introduce a statistical quantum description of systems that are composed of both an orderly region and a random region. By averaging over the random region only, we find that measures of localization in momentum space semiclassically diverge with the dimension of the Hilbert space. We illustrate this numerically with quantum maps and suggest various other systems where this behavior should be important.

  9. From Fault-Diagnosis and Performance Recovery of a Controlled System to Chaotic Secure Communication

    NASA Astrophysics Data System (ADS)

    Hsu, Wen-Teng; Tsai, Jason Sheng-Hong; Guo, Fang-Cheng; Guo, Shu-Mei; Shieh, Leang-San

    Chaotic systems are often applied to encryption on secure communication, but they may not provide high-degree security. In order to improve the security of communication, chaotic systems may need to add other secure signals, but this may cause the system to diverge. In this paper, we redesign a communication scheme that could create secure communication with additional secure signals, and the proposed scheme could keep system convergence. First, we introduce the universal state-space adaptive observer-based fault diagnosis/estimator and the high-performance tracker for the sampled-data linear time-varying system with unanticipated decay factors in actuators/system states. Besides, robustness, convergence in the mean, and tracking ability are given in this paper. A residual generation scheme and a mechanism for auto-tuning switched gain is also presented, so that the introduced methodology is applicable for the fault detection and diagnosis (FDD) for actuator and state faults to yield a high tracking performance recovery. The evolutionary programming-based adaptive observer is then applied to the problem of secure communication. Whenever the tracker induces a large control input which might not conform to the input constraint of some physical systems, the proposed modified linear quadratic optimal tracker (LQT) can effectively restrict the control input within the specified constraint interval, under the acceptable tracking performance. The effectiveness of the proposed design methodology is illustrated through tracking control simulation examples.

  10. Chaotic Dynamics and Application of LCR Oscillators Sharing Common Nonlinearity

    NASA Astrophysics Data System (ADS)

    Jeevarekha, A.; Paul Asir, M.; Philominathan, P.

    2016-06-01

    This paper addresses the problem of sharing common nonlinearity among nonautonomous and autonomous oscillators. By choosing a suitable common nonlinear element with the driving point characteristics capable of bringing out chaotic motion in a combined system, we obtain identical chaotic states. The dynamics of the coupled system is explored through numerical and experimental studies. Employing the concept of common nonlinearity, a simple chaotic communication system is modeled and its performance is verified through Multisim simulation.

  11. Software Technology for Adaptable, Reliable Systems (STARS) (User Manual). Ada Command Environment (ACE) Version 8.0 Sun OS Implementation

    DTIC Science & Technology

    1990-10-29

    the equivalent type names in the basic X libary . 37. Intrinsics Contains the type declarations common to all Xt toolkit routines. 38. Widget-Package...Memory-Size constant Integer 1; MinInt constant I-reger Integer’First; MaxInt const-i’ integer Integer’Last; -- Max- Digits constant Integer 1; -- MaxMan...connection between some type names used by Xt routines and the equivalent type names in the basic X libary . .package RenamedXlibTypes is P;’ge 65 29

  12. On Reductions of the Hirota-Miwa Equation

    NASA Astrophysics Data System (ADS)

    Hone, Andrew N. W.; Kouloukas, Theodoros E.; Ward, Chloe

    2017-07-01

    The Hirota-Miwa equation (also known as the discrete KP equation, or the octahedron recurrence) is a bilinear partial difference equation in three independent variables. It is integrable in the sense that it arises as the compatibility condition of a linear system (Lax pair). The Hirota-Miwa equation has infinitely many reductions of plane wave type (including a quadratic exponential gauge transformation), defined by a triple of integers or half-integers, which produce bilinear ordinary difference equations of Somos/Gale-Robinson type. Here it is explained how to obtain Lax pairs and presymplectic structures for these reductions, in order to demonstrate Liouville integrability of some associated maps, certain of which are related to reductions of discrete Toda and discrete KdV equations.

  13. Scilab software package for the study of dynamical systems

    NASA Astrophysics Data System (ADS)

    Bordeianu, C. C.; Beşliu, C.; Jipa, Al.; Felea, D.; Grossu, I. V.

    2008-05-01

    This work presents a new software package for the study of chaotic flows and maps. The codes were written using Scilab, a software package for numerical computations providing a powerful open computing environment for engineering and scientific applications. It was found that Scilab provides various functions for ordinary differential equation solving, Fast Fourier Transform, autocorrelation, and excellent 2D and 3D graphical capabilities. The chaotic behaviors of the nonlinear dynamics systems were analyzed using phase-space maps, autocorrelation functions, power spectra, Lyapunov exponents and Kolmogorov-Sinai entropy. Various well known examples are implemented, with the capability of the users inserting their own ODE. Program summaryProgram title: Chaos Catalogue identifier: AEAP_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAP_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 885 No. of bytes in distributed program, including test data, etc.: 5925 Distribution format: tar.gz Programming language: Scilab 3.1.1 Computer: PC-compatible running Scilab on MS Windows or Linux Operating system: Windows XP, Linux RAM: below 100 Megabytes Classification: 6.2 Nature of problem: Any physical model containing linear or nonlinear ordinary differential equations (ODE). Solution method: Numerical solving of ordinary differential equations. The chaotic behavior of the nonlinear dynamical system is analyzed using Poincaré sections, phase-space maps, autocorrelation functions, power spectra, Lyapunov exponents and Kolmogorov-Sinai entropies. Restrictions: The package routines are normally able to handle ODE systems of high orders (up to order twelve and possibly higher), depending on the nature of the problem. Running time: 10 to 20 seconds for problems that do not involve Lyapunov exponents calculation; 60 to 1000 seconds for problems that involve high orders ODE and Lyapunov exponents calculation.

  14. On synchronisation of a class of complex chaotic systems with complex unknown parameters via integral sliding mode control

    NASA Astrophysics Data System (ADS)

    Tirandaz, Hamed; Karami-Mollaee, Ali

    2018-06-01

    Chaotic systems demonstrate complex behaviour in their state variables and their parameters, which generate some challenges and consequences. This paper presents a new synchronisation scheme based on integral sliding mode control (ISMC) method on a class of complex chaotic systems with complex unknown parameters. Synchronisation between corresponding states of a class of complex chaotic systems and also convergence of the errors of the system parameters to zero point are studied. The designed feedback control vector and complex unknown parameter vector are analytically achieved based on the Lyapunov stability theory. Moreover, the effectiveness of the proposed methodology is verified by synchronisation of the Chen complex system and the Lorenz complex systems as the leader and the follower chaotic systems, respectively. In conclusion, some numerical simulations related to the synchronisation methodology is given to illustrate the effectiveness of the theoretical discussions.

  15. The synchronisation of fractional-order hyperchaos compound system

    NASA Astrophysics Data System (ADS)

    Noghredani, Naeimadeen; Riahi, Aminreza; Pariz, Naser; Karimpour, Ali

    2018-02-01

    This paper presents a new compound synchronisation scheme among four hyperchaotic memristor system with incommensurate fractional-order derivatives. First a new controller was designed based on adaptive technique to minimise the errors and guarantee compound synchronisation of four fractional-order memristor chaotic systems. According to the suitability of compound synchronisation as a reliable solution for secure communication, we then examined the application of the proposed adaptive compound synchronisation scheme in the presence of noise for secure communication. In addition, the unpredictability and complexity of the drive systems enhance the security of secure communication. The corresponding theoretical analysis and results of simulation validated the effectiveness of the proposed synchronisation scheme using MATLAB.

  16. Experimental realization of a highly secure chaos communication under strong channel noise

    NASA Astrophysics Data System (ADS)

    Ye, Weiping; Dai, Qionglin; Wang, Shihong; Lu, Huaping; Kuang, Jinyu; Zhao, Zhenfeng; Zhu, Xiangqing; Tang, Guoning; Huang, Ronghuai; Hu, Gang

    2004-09-01

    A one-way coupled spatiotemporally chaotic map lattice is used to construct cryptosystem. With the combinatorial applications of both chaotic computations and conventional algebraic operations, our system has optimal cryptographic properties much better than the separative applications of known chaotic and conventional methods. We have realized experiments to practice duplex voice secure communications in realistic Wired Public Switched Telephone Network by applying our chaotic system and the system of Advanced Encryption Standard (AES), respectively, for cryptography. Our system can work stably against strong channel noise when AES fails to work.

  17. Exploring plenoptic properties of correlation imaging with chaotic light

    NASA Astrophysics Data System (ADS)

    Pepe, Francesco V.; Vaccarelli, Ornella; Garuccio, Augusto; Scarcelli, Giuliano; D'Angelo, Milena

    2017-11-01

    In a setup illuminated by chaotic light, we consider different schemes that enable us to perform imaging by measuring second-order intensity correlations. The most relevant feature of the proposed protocols is the ability to perform plenoptic imaging, namely to reconstruct the geometrical path of light propagating in the system, by imaging both the object and the focusing element. This property allows us to encode, in a single data acquisition, both multi-perspective images of the scene and light distribution in different planes between the scene and the focusing element. We unveil the plenoptic property of three different setups, explore their refocusing potentialities and discuss their practical applications.

  18. File compression and encryption based on LLS and arithmetic coding

    NASA Astrophysics Data System (ADS)

    Yu, Changzhi; Li, Hengjian; Wang, Xiyu

    2018-03-01

    e propose a file compression model based on arithmetic coding. Firstly, the original symbols, to be encoded, are input to the encoder one by one, we produce a set of chaotic sequences by using the Logistic and sine chaos system(LLS), and the values of this chaotic sequences are randomly modified the Upper and lower limits of current symbols probability. In order to achieve the purpose of encryption, we modify the upper and lower limits of all character probabilities when encoding each symbols. Experimental results show that the proposed model can achieve the purpose of data encryption while achieving almost the same compression efficiency as the arithmetic coding.

  19. On the conservation of the Jacobi integral in the post-Newtonian circular restricted three-body problem

    NASA Astrophysics Data System (ADS)

    Dubeibe, F. L.; Lora-Clavijo, F. D.; González, Guillermo A.

    2017-05-01

    In the present paper, using the first-order approximation of the n-body Lagrangian (derived on the basis of the post-Newtonian gravitational theory of Einstein, Infeld, and Hoffman), we explicitly write down the equations of motion for the planar circular restricted three-body problem in the Solar system. Additionally, with some simplified assumptions, we obtain two formulas for estimating the values of the mass-distance and velocity-speed of light ratios appropriate for a given post-Newtonian approximation. We show that the formulas derived in the present study, lead to good numerical accuracy in the conservation of the Jacobi constant and almost allow for an equivalence between the Lagrangian and Hamiltonian approaches at the same post-Newtonian order. Accordingly, the dynamics of the system is analyzed in terms of the Poincaré sections method and Lyapunov exponents, finding that for specific values of the Jacobi constant the dynamics can be either chaotic or regular. Our results suggest that the chaoticity of the post-Newtonian system is slightly increased in comparison with its Newtonian counterpart.

  20. Projective-anticipating, projective, and projective-lag synchronization of time-delayed chaotic systems on random networks.

    PubMed

    Feng, Cun-Fang; Xu, Xin-Jian; Wang, Sheng-Jun; Wang, Ying-Hai

    2008-06-01

    We study projective-anticipating, projective, and projective-lag synchronization of time-delayed chaotic systems on random networks. We relax some limitations of previous work, where projective-anticipating and projective-lag synchronization can be achieved only on two coupled chaotic systems. In this paper, we realize projective-anticipating and projective-lag synchronization on complex dynamical networks composed of a large number of interconnected components. At the same time, although previous work studied projective synchronization on complex dynamical networks, the dynamics of the nodes are coupled partially linear chaotic systems. In this paper, the dynamics of the nodes of the complex networks are time-delayed chaotic systems without the limitation of the partial linearity. Based on the Lyapunov stability theory, we suggest a generic method to achieve the projective-anticipating, projective, and projective-lag synchronization of time-delayed chaotic systems on random dynamical networks, and we find both its existence and sufficient stability conditions. The validity of the proposed method is demonstrated and verified by examining specific examples using Ikeda and Mackey-Glass systems on Erdos-Renyi networks.

  1. Data-driven forecasting of high-dimensional chaotic systems with long short-term memory networks.

    PubMed

    Vlachas, Pantelis R; Byeon, Wonmin; Wan, Zhong Y; Sapsis, Themistoklis P; Koumoutsakos, Petros

    2018-05-01

    We introduce a data-driven forecasting method for high-dimensional chaotic systems using long short-term memory (LSTM) recurrent neural networks. The proposed LSTM neural networks perform inference of high-dimensional dynamical systems in their reduced order space and are shown to be an effective set of nonlinear approximators of their attractor. We demonstrate the forecasting performance of the LSTM and compare it with Gaussian processes (GPs) in time series obtained from the Lorenz 96 system, the Kuramoto-Sivashinsky equation and a prototype climate model. The LSTM networks outperform the GPs in short-term forecasting accuracy in all applications considered. A hybrid architecture, extending the LSTM with a mean stochastic model (MSM-LSTM), is proposed to ensure convergence to the invariant measure. This novel hybrid method is fully data-driven and extends the forecasting capabilities of LSTM networks.

  2. Efficient biometric authenticated key agreements based on extended chaotic maps for telecare medicine information systems.

    PubMed

    Lou, Der-Chyuan; Lee, Tian-Fu; Lin, Tsung-Hung

    2015-05-01

    Authenticated key agreements for telecare medicine information systems provide patients, doctors, nurses and health visitors with accessing medical information systems and getting remote services efficiently and conveniently through an open network. In order to have higher security, many authenticated key agreement schemes appended biometric keys to realize identification except for using passwords and smartcards. Due to too many transmissions and computational costs, these authenticated key agreement schemes are inefficient in communication and computation. This investigation develops two secure and efficient authenticated key agreement schemes for telecare medicine information systems by using biometric key and extended chaotic maps. One scheme is synchronization-based, while the other nonce-based. Compared to related approaches, the proposed schemes not only retain the same security properties with previous schemes, but also provide users with privacy protection and have fewer transmissions and lower computational cost.

  3. Epidemic outbreaks and its control using a fractional order model with seasonality and stochastic infection

    NASA Astrophysics Data System (ADS)

    He, Shaobo; Banerjee, Santo

    2018-07-01

    A fractional-order SIR epidemic model is proposed under the influence of both parametric seasonality and the external noise. The integer order SIR epidemic model originally is stable. By introducing seasonality and noise force to the model, behaviors of the system is changed. It is shown that the system has rich dynamical behaviors with different system parameters, fractional derivative order and the degree of seasonality and noise. Complexity of the stochastic model is investigated by using multi-scale fuzzy entropy. Finally, hard limiter controlled system is designed and simulation results show the ratio of infected individuals can converge to a small enough target ρ, which means the epidemic outbreak can be under control by the implementation of some effective medical and health measures.

  4. Extreme multistability in a memristor-based multi-scroll hyper-chaotic system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Fang, E-mail: yf210yf@163.com; Wang, Guangyi, E-mail: wanggyi@163.com; Wang, Xiaowei

    In this paper, a new memristor-based multi-scroll hyper-chaotic system is designed. The proposed memristor-based system possesses multiple complex dynamic behaviors compared with other chaotic systems. Various coexisting attractors and hidden coexisting attractors are observed in this system, which means extreme multistability arises. Besides, by adjusting parameters of the system, this chaotic system can perform single-scroll attractors, double-scroll attractors, and four-scroll attractors. Basic dynamic characteristics of the system are investigated, including equilibrium points and stability, bifurcation diagrams, Lyapunov exponents, and so on. In addition, the presented system is also realized by an analog circuit to confirm the correction of the numericalmore » simulations.« less

  5. Optimising multi-product multi-chance-constraint inventory control system with stochastic period lengths and total discount under fuzzy purchasing price and holding costs

    NASA Astrophysics Data System (ADS)

    Allah Taleizadeh, Ata; Niaki, Seyed Taghi Akhavan; Aryanezhad, Mir-Bahador

    2010-10-01

    While the usual assumptions in multi-periodic inventory control problems are that the orders are placed at the beginning of each period (periodic review) or depending on the inventory level they can happen at any time (continuous review), in this article, we relax these assumptions and assume that the periods between two replenishments of the products are independent and identically distributed random variables. Furthermore, assuming that the purchasing price are triangular fuzzy variables, the quantities of the orders are of integer-type and that there are space and service level constraints, total discount are considered to purchase products and a combination of back-order and lost-sales are taken into account for the shortages. We show that the model of this problem is a fuzzy mixed-integer nonlinear programming type and in order to solve it, a hybrid meta-heuristic intelligent algorithm is proposed. At the end, a numerical example is given to demonstrate the applicability of the proposed methodology and to compare its performance with one of the existing algorithms in real world inventory control problems.

  6. Parameter estimation for chaotic systems using improved bird swarm algorithm

    NASA Astrophysics Data System (ADS)

    Xu, Chuangbiao; Yang, Renhuan

    2017-12-01

    Parameter estimation of chaotic systems is an important problem in nonlinear science and has aroused increasing interest of many research fields, which can be basically reduced to a multidimensional optimization problem. In this paper, an improved boundary bird swarm algorithm is used to estimate the parameters of chaotic systems. This algorithm can combine the good global convergence and robustness of the bird swarm algorithm and the exploitation capability of improved boundary learning strategy. Experiments are conducted on the Lorenz system and the coupling motor system. Numerical simulation results reveal the effectiveness and with desirable performance of IBBSA for parameter estimation of chaotic systems.

  7. A novel grid multiwing chaotic system with only non-hyperbolic equilibria

    NASA Astrophysics Data System (ADS)

    Zhang, Sen; Zeng, Yicheng; Li, Zhijun; Wang, Mengjiao; Xiong, Le

    2018-05-01

    The structure of the chaotic attractor of a system is mainly determined by the nonlinear functions in system equations. By using a new saw-tooth wave function and a new stair function, a novel complex grid multiwing chaotic system which belongs to non-Shil'nikov chaotic system with non-hyperbolic equilibrium points is proposed in this paper. It is particularly interesting that the complex grid multiwing attractors are generated by increasing the number of non-hyperbolic equilibrium points, which are different from the traditional methods of realising multiwing attractors by adding the index-2 saddle-focus equilibrium points in double-wing chaotic systems. The basic dynamical properties of the new system, such as dissipativity, phase portraits, the stability of the equilibria, the time-domain waveform, power spectrum, bifurcation diagram, Lyapunov exponents, and so on, are investigated by theoretical analysis and numerical simulations. Furthermore, the corresponding electronic circuit is designed and simulated on the Multisim platform. The Multisim simulation results and the hardware experimental results are in good agreement with the numerical simulations of the same system on Matlab platform, which verify the feasibility of this new grid multiwing chaotic system.

  8. On the Chaotic Vibrations of Electrostatically Actuated Arch Micro/Nano Resonators: A Parametric Study

    NASA Astrophysics Data System (ADS)

    Tajaddodianfar, Farid; Hairi Yazdi, Mohammad Reza; Pishkenari, Hossein Nejat

    Motivated by specific applications, electrostatically actuated bistable arch shaped micro-nano resonators have attracted growing attention in the research community in recent years. Nevertheless, some issues relating to their nonlinear dynamics, including the possibility of chaos, are still not well known. In this paper, we investigate the chaotic vibrations of a bistable resonator comprised of a double clamped initially curved microbeam under combined harmonic AC and static DC distributed electrostatic actuation. A reduced order equation obtained by the application of the Galerkin method to the nonlinear partial differential equation of motion, given in the framework of Euler-Bernoulli beam theory, is used for the investigation in this paper. We numerically integrate the obtained equation to study the chaotic vibrations of the proposed system. Moreover, we investigate the effects of various parameters including the arch curvature, the actuation parameters and the quality factor of the resonator, which are effective in the formation of both static and dynamic behaviors of the system. Using appropriate numerical tools, including Poincaré maps, bifurcation diagrams, Fourier spectrum and Lyapunov exponents we scrutinize the effects of various parameters on the formation of chaotic regions in the parametric space of the resonator. Results of this work provide better insight into the problem of nonlinear dynamics of the investigated family of bistable micro/nano resonators, and facilitate the design of arch resonators for applications such as filters.

  9. Hierarchical collapse of regular islands via dissipation

    NASA Astrophysics Data System (ADS)

    Jousseph, C. A. C.; Abdulack, S. A.; Manchein, C.; Beims, M. W.

    2018-03-01

    In this work we investigate how regular islands localized in a mixed phase-space of generic area-preserving Hamiltonian systems are affected by a small amount of dissipation. Mainly we search for a universality (hierarchy) in the convergence of higher-order resonances and their periods when dissipation increases. One very simple scenario is already known: when subjected to small dissipation, stable periodic points become sinks attracting almost all the surrounding orbits, destroying all invariant curves which divide the phase-space in chaotic and regular domains. However, performing numerical experiments with the paradigmatic Chirikov-Taylor standard mapping we show that this presumably simple scenario can be rather complicated. The first, not trivial, scenario is what happens to chaotic trajectories, since they can be attracted by the sinks or by chaotic attractors, in cases when they exist. We show that this depends very much on how basins of attraction are formed as dissipation increases. In addition, we demonstrate that higher-order resonances are usually first affected by small dissipation when compared to lower-order resonances from the conservative case. Nevertheless, this is not a generic behaviour. We show that a local hierarchical collapse of resonances, as dissipation increases, is related to the area of the islands from the conservative case surrounding the periodic orbits. All observed resonance destructions occur via the bifurcation phenomena and are quantified here by determining the largest finite-time Lyapunov exponent.

  10. Chaotic diffusion in the Gliese-876 planetary system

    NASA Astrophysics Data System (ADS)

    Martí, J. G.; Cincotta, P. M.; Beaugé, C.

    2016-07-01

    Chaotic diffusion is supposed to be responsible for orbital instabilities in planetary systems after the dissipation of the protoplanetary disc, and a natural consequence of irregular motion. In this paper, we show that resonant multiplanetary systems, despite being highly chaotic, not necessarily exhibit significant diffusion in phase space, and may still survive virtually unchanged over time-scales comparable to their age. Using the GJ-876 system as an example, we analyse the chaotic diffusion of the outermost (and less massive) planet. We construct a set of stability maps in the surrounding regions of the Laplace resonance. We numerically integrate ensembles of close initial conditions, compute Poincaré maps and estimate the chaotic diffusion present in this system. Our results show that, the Laplace resonance contains two different regions: an inner domain characterized by low chaoticity and slow diffusion, and an outer one displaying larger values of dynamical indicators. In the outer resonant domain, the stochastic borders of the Laplace resonance seem to prevent the complete destruction of the system. We characterize the diffusion for small ensembles along the parameters of the outermost planet. Finally, we perform a stability analysis of the inherent chaotic, albeit stable Laplace resonance, by linking the behaviour of the resonant variables of the configurations to the different sub-structures inside the three-body resonance.

  11. Lyapunov spectrum of the separated flow around the NACA 0012 airfoil and its dependence on numerical discretization

    NASA Astrophysics Data System (ADS)

    Fernandez, P.; Wang, Q.

    2017-12-01

    We investigate the impact of numerical discretization on the Lyapunov spectrum of separated flow simulations. The two-dimensional chaotic flow around the NACA 0012 airfoil at a low Reynolds number and large angle of attack is considered to that end. Time, space and accuracy-order refinement studies are performed to examine each of these effects separately. Numerical results show that the time discretization has a small impact on the dynamics of the system, whereas the spatial discretization can dramatically change them. Also, the finite-time Lyapunov exponents associated to unstable modes are shown to be positively skewed, and quasi-homoclinic tangencies are observed in the attractor of the system. The implications of these results on flow physics and sensitivity analysis of chaotic flows are discussed.

  12. From Determinism and Probability to Chaos: Chaotic Evolution towards Philosophy and Methodology of Chaotic Optimization

    PubMed Central

    2015-01-01

    We present and discuss philosophy and methodology of chaotic evolution that is theoretically supported by chaos theory. We introduce four chaotic systems, that is, logistic map, tent map, Gaussian map, and Hénon map, in a well-designed chaotic evolution algorithm framework to implement several chaotic evolution (CE) algorithms. By comparing our previous proposed CE algorithm with logistic map and two canonical differential evolution (DE) algorithms, we analyse and discuss optimization performance of CE algorithm. An investigation on the relationship between optimization capability of CE algorithm and distribution characteristic of chaotic system is conducted and analysed. From evaluation result, we find that distribution of chaotic system is an essential factor to influence optimization performance of CE algorithm. We propose a new interactive EC (IEC) algorithm, interactive chaotic evolution (ICE) that replaces fitness function with a real human in CE algorithm framework. There is a paired comparison-based mechanism behind CE search scheme in nature. A simulation experimental evaluation is conducted with a pseudo-IEC user to evaluate our proposed ICE algorithm. The evaluation result indicates that ICE algorithm can obtain a significant better performance than or the same performance as interactive DE. Some open topics on CE, ICE, fusion of these optimization techniques, algorithmic notation, and others are presented and discussed. PMID:25879067

  13. From determinism and probability to chaos: chaotic evolution towards philosophy and methodology of chaotic optimization.

    PubMed

    Pei, Yan

    2015-01-01

    We present and discuss philosophy and methodology of chaotic evolution that is theoretically supported by chaos theory. We introduce four chaotic systems, that is, logistic map, tent map, Gaussian map, and Hénon map, in a well-designed chaotic evolution algorithm framework to implement several chaotic evolution (CE) algorithms. By comparing our previous proposed CE algorithm with logistic map and two canonical differential evolution (DE) algorithms, we analyse and discuss optimization performance of CE algorithm. An investigation on the relationship between optimization capability of CE algorithm and distribution characteristic of chaotic system is conducted and analysed. From evaluation result, we find that distribution of chaotic system is an essential factor to influence optimization performance of CE algorithm. We propose a new interactive EC (IEC) algorithm, interactive chaotic evolution (ICE) that replaces fitness function with a real human in CE algorithm framework. There is a paired comparison-based mechanism behind CE search scheme in nature. A simulation experimental evaluation is conducted with a pseudo-IEC user to evaluate our proposed ICE algorithm. The evaluation result indicates that ICE algorithm can obtain a significant better performance than or the same performance as interactive DE. Some open topics on CE, ICE, fusion of these optimization techniques, algorithmic notation, and others are presented and discussed.

  14. Attractors of relaxation discrete-time systems with chaotic dynamics on a fast time scale.

    PubMed

    Maslennikov, Oleg V; Nekorkin, Vladimir I

    2016-07-01

    In this work, a new type of relaxation systems is considered. Their prominent feature is that they comprise two distinct epochs, one is slow regular motion and another is fast chaotic motion. Unlike traditionally studied slow-fast systems that have smooth manifolds of slow motions in the phase space and fast trajectories between them, in this new type one observes, apart the same geometric objects, areas of transient chaos. Alternating periods of slow regular motions and fast chaotic ones as well as transitions between them result in a specific chaotic attractor with chaos on a fast time scale. We formulate basic properties of such attractors in the framework of discrete-time systems and consider several examples. Finally, we provide an important application of such systems, the neuronal electrical activity in the form of chaotic spike-burst oscillations.

  15. On the fragility of fractional-order PID controllers for FOPDT processes.

    PubMed

    Padula, Fabrizio; Visioli, Antonio

    2016-01-01

    This paper analyzes the fragility issue of fractional-order proportional-integral-derivative controllers applied to integer first-order plus-dead-time processes. In particular, the effects of the variations of the controller parameters on the achieved control system robustness and performance are investigated. Results show that this kind of controllers is more fragile with respect to the standard proportional-integral-derivative controllers and therefore a significant attention should be paid by the user in their tuning. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Chaotic dynamics of controlled electric power systems

    NASA Astrophysics Data System (ADS)

    Kozlov, V. N.; Trosko, I. U.

    2016-12-01

    The conditions for appearance of chaotic dynamics of electromagnetic and electromechanical processes in energy systems described by the Park-Gorev bilinear differential equations with account for lags of coordinates and restrictions on control have been formulated. On the basis of classical equations, the parameters of synchronous generators and power lines, at which the chaotic dynamics of energy systems appears, have been found. The qualitative and quantitative characteristics of chaotic processes in energy associations of two types, based on the Hopf theorem, and methods of nonstationary linearization and decompositions are given. The properties of spectral characteristics of chaotic processes have been investigated, and the qualitative similarity of bilinear equations of power systems and Lorentz equations have been found. These results can be used for modernization of the systems of control of energy objects. The qualitative and quantitative characteristics for power energy systems as objects of control and for some laws of control with the feedback have been established.

  17. Adaptive fractional order sliding mode control for Boost converter in the Battery/Supercapacitor HESS

    PubMed Central

    Xu, Dan; Zhou, Huan; Zhou, Tao

    2018-01-01

    In this paper, an adaptive fractional order sliding mode control (AFSMC) scheme is designed for the current tracking control of the Boost-type converter in a Battery/Supercapacitor hybrid energy storage system (HESS). In order to stabilize the current, the adaptation rules based on state-observer and Lyapunov function are being designed. A fractional order sliding surface function is defined based on the tracking current error and adaptive rules. Furthermore, through fractional order analysis, the stability of the fractional order control system is proven, and the value of the fractional order (λ) is being investigated. In addition, the effectiveness of the proposed AFSMC strategy is being verified by numerical simulations. The advantages of good transient response and robustness to uncertainty are being indicated by this design, when compared with a conventional integer order sliding mode control system. PMID:29702696

  18. Chaos in a chemical system

    NASA Astrophysics Data System (ADS)

    Srivastava, R.; Srivastava, P. K.; Chattopadhyay, J.

    2013-07-01

    Chaotic oscillations have been observed experimentally in dual-frequency oscillator OAP - Ce+4-BrO- 3-H2SO4 in CSTR. The system shows variation of oscillating potential and frequencies when it moves from low frequency to high frequency region and vice-versa. It was observed that system bifurcate from low frequency to chaotic regime through periode-2 and period-3 on the other hand system bifurcate from chaotic regime to high frequency oscillation through period-2. It was established that the observed oscillations are chaotic in nature on the basis of next amplitude map and bifurcation sequences.

  19. Bluetooth based chaos synchronization using particle swarm optimization and its applications to image encryption.

    PubMed

    Yau, Her-Terng; Hung, Tzu-Hsiang; Hsieh, Chia-Chun

    2012-01-01

    This study used the complex dynamic characteristics of chaotic systems and Bluetooth to explore the topic of wireless chaotic communication secrecy and develop a communication security system. The PID controller for chaos synchronization control was applied, and the optimum parameters of this PID controller were obtained using a Particle Swarm Optimization (PSO) algorithm. Bluetooth was used to realize wireless transmissions, and a chaotic wireless communication security system was developed in the design concept of a chaotic communication security system. The experimental results show that this scheme can be used successfully in image encryption.

  20. System using leo satellites for centimeter-level navigation

    NASA Technical Reports Server (NTRS)

    Rabinowitz, Matthew (Inventor); Parkinson, Bradford W. (Inventor); Cohen, Clark E. (Inventor); Lawrence, David G. (Inventor)

    2002-01-01

    Disclosed herein is a system for rapidly resolving position with centimeter-level accuracy for a mobile or stationary receiver [4]. This is achieved by estimating a set of parameters that are related to the integer cycle ambiguities which arise in tracking the carrier phase of satellite downlinks [5,6]. In the preferred embodiment, the technique involves a navigation receiver [4] simultaneously tracking transmissions [6] from Low Earth Orbit Satellites (LEOS) [2] together with transmissions [5] from GPS navigation satellites [1]. The rapid change in the line-of-sight vectors from the receiver [4] to the LEO signal sources [2], due to the orbital motion of the LEOS, enables the resolution with integrity of the integer cycle ambiguities of the GPS signals [5] as well as parameters related to the integer cycle ambiguity on the LEOS signals [6]. These parameters, once identified, enable real-time centimeter-level positioning of the receiver [4]. In order to achieve high-precision position estimates without the use of specialized electronics such as atomic clocks, the technique accounts for instabilities in the crystal oscillators driving the satellite transmitters, as well as those in the reference [3] and user [4] receivers. In addition, the algorithm accommodates as well as to LEOS that receive signals from ground-based transmitters, then re-transmit frequency-converted signals to the ground.

  1. Constrained spacecraft reorientation using mixed integer convex programming

    NASA Astrophysics Data System (ADS)

    Tam, Margaret; Glenn Lightsey, E.

    2016-10-01

    A constrained attitude guidance (CAG) system is developed using convex optimization to autonomously achieve spacecraft pointing objectives while meeting the constraints imposed by on-board hardware. These constraints include bounds on the control input and slew rate, as well as pointing constraints imposed by the sensors. The pointing constraints consist of inclusion and exclusion cones that dictate permissible orientations of the spacecraft in order to keep objects in or out of the field of view of the sensors. The optimization scheme drives a body vector towards a target inertial vector along a trajectory that consists solely of permissible orientations in order to achieve the desired attitude for a given mission mode. The non-convex rotational kinematics are handled by discretization, which also ensures that the quaternion stays unity norm. In order to guarantee an admissible path, the pointing constraints are relaxed. Depending on how strict the pointing constraints are, the degree of relaxation is tuneable. The use of binary variables permits the inclusion of logical expressions in the pointing constraints in the case that a set of sensors has redundancies. The resulting mixed integer convex programming (MICP) formulation generates a steering law that can be easily integrated into an attitude determination and control (ADC) system. A sample simulation of the system is performed for the Bevo-2 satellite, including disturbance torques and actuator dynamics which are not modeled by the controller. Simulation results demonstrate the robustness of the system to disturbances while meeting the mission requirements with desirable performance characteristics.

  2. Chaos control and synchronization in Bragg acousto-optic bistable systems driven by a separate chaotic system.

    PubMed

    Wang, Rong; Gao, Jin-Yue

    2005-09-01

    In this paper we propose a new scheme to achieve chaos control and synchronization in Bragg acousto-optic bistable systems. In the scheme, we use the output of one system to drive two identical chaotic systems. Using the maximal conditional Lyapunov exponent (MCLE) as the criterion, we analyze the conditions for realizing chaos synchronization. Numerical calculation shows that the two identical systems in chaos with negative MCLEs and driven by a chaotic system can go into chaotic synchronization whether or not they were in chaos initially. The two systems can go into different periodic states from chaos following an inverse period-doubling bifurcation route as well when driven by a periodic system.

  3. Compound synchronization of four memristor chaotic oscillator systems and secure communication.

    PubMed

    Sun, Junwei; Shen, Yi; Yin, Quan; Xu, Chengjie

    2013-03-01

    In this paper, a novel kind of compound synchronization among four chaotic systems is investigated, where the drive systems have been conceptually divided into two categories: scaling drive systems and base drive systems. Firstly, a sufficient condition is obtained to ensure compound synchronization among four memristor chaotic oscillator systems based on the adaptive technique. Secondly, a secure communication scheme via adaptive compound synchronization of four memristor chaotic oscillator systems is presented. The corresponding theoretical proofs and numerical simulations are given to demonstrate the validity and feasibility of the proposed control technique. The unpredictability of scaling drive systems can additionally enhance the security of communication. The transmitted signals can be split into several parts loaded in the drive systems to improve the reliability of communication.

  4. Dynamic analyses, FPGA implementation and engineering applications of multi-butterfly chaotic attractors generated from generalised Sprott C system

    NASA Astrophysics Data System (ADS)

    Lai, Qiang; Zhao, Xiao-Wen; Rajagopal, Karthikeyan; Xu, Guanghui; Akgul, Akif; Guleryuz, Emre

    2018-01-01

    This paper considers the generation of multi-butterfly chaotic attractors from a generalised Sprott C system with multiple non-hyperbolic equilibria. The system is constructed by introducing an additional variable whose derivative has a switching function to the Sprott C system. It is numerically found that the system creates two-, three-, four-, five-butterfly attractors and any other multi-butterfly attractors. First, the dynamic analyses of multi-butterfly chaotic attractors are presented. Secondly, the field programmable gate array implementation, electronic circuit realisation and random number generator are done with the multi-butterfly chaotic attractors.

  5. Breaking chaotic secure communication using a spectrogram

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Yang, Lin-Bao; Yang, Chun-Mei

    1998-10-01

    We present the results of breaking a kind of chaotic secure communication system called chaotic switching scheme, also known as chaotic shift keying, in which a binary message signal is scrambled by two chaotic attractors. The spectrogram which can reveal the energy evolving process in the spectral-temporal space is used to distinguish the two different chaotic attractors, which are qualitatively and statistically similar in phase space. Then mathematical morphological filters are used to decode the binary message signal without the knowledge of the binary message signal and the transmitter. The computer experimental results are provided to show how our method works when both the chaotic and hyper-chaotic transmitter are used.

  6. Triangular Numbers, Gaussian Integers, and KenKen

    ERIC Educational Resources Information Center

    Watkins, John J.

    2012-01-01

    Latin squares form the basis for the recreational puzzles sudoku and KenKen. In this article we show how useful several ideas from number theory are in solving a KenKen puzzle. For example, the simple notion of triangular number is surprisingly effective. We also introduce a variation of KenKen that uses the Gaussian integers in order to…

  7. Orderly Thinking about a Chaotic System.

    ERIC Educational Resources Information Center

    Cohen, Arthur M.

    Half of all students who begin college in America--and an even higher proportion of underrepresetned minorities--matriculate at community colleges. If the bachelor's degree is a requisite for major social and economic advancement, then transfer must be an essential community college mission. Calculating the transfer rate is important as a measure…

  8. Chimera states in coupled Kuramoto oscillators with inertia.

    PubMed

    Olmi, Simona

    2015-12-01

    The dynamics of two symmetrically coupled populations of rotators is studied for different values of the inertia. The system is characterized by different types of solutions, which all coexist with the fully synchronized state. At small inertia, the system is no more chaotic and one observes mainly quasi-periodic chimeras, while the usual (stationary) chimera state is not anymore observable. At large inertia, one observes two different kind of chaotic solutions with broken symmetry: the intermittent chaotic chimera, characterized by a synchronized population and a population displaying a turbulent behaviour, and a second state where the two populations are both chaotic but whose dynamics adhere to two different macroscopic attractors. The intermittent chaotic chimeras are characterized by a finite life-time, whose duration increases as a power-law with the system size and the inertia value. Moreover, the chaotic population exhibits clear intermittent behavior, displaying a laminar phase where the two populations tend to synchronize, and a turbulent phase where the macroscopic motion of one population is definitely erratic. In the thermodynamic limit, these states survive for infinite time and the laminar regimes tends to disappear, thus giving rise to stationary chaotic solutions with broken symmetry contrary to what observed for chaotic chimeras on a ring geometry.

  9. An information hiding method based on LSB and tent chaotic map

    NASA Astrophysics Data System (ADS)

    Song, Jianhua; Ding, Qun

    2011-06-01

    In order to protect information security more effectively, a novel information hiding method based on LSB and Tent chaotic map was proposed, first the secret message is Tent chaotic encrypted, and then LSB steganography is executed for the encrypted message in the cover-image. Compared to the traditional image information hiding method, the simulation results indicate that the method greatly improved in imperceptibility and security, and acquired good results.

  10. Solar System Dynamics

    NASA Technical Reports Server (NTRS)

    Wisdom, Jack

    2002-01-01

    In these 18 years, the research has touched every major dynamical problem in the solar system, including: the effect of chaotic zones on the distribution of asteroids, the delivery of meteorites along chaotic pathways, the chaotic motion of Pluto, the chaotic motion of the outer planets and that of the whole solar system, the delivery of short period comets from the Kuiper belt, the tidal evolution of the Uranian arid Galilean satellites, the chaotic tumbling of Hyperion and other irregular satellites, the large chaotic variations of the obliquity of Mars, the evolution of the Earth-Moon system, and the resonant core- mantle dynamics of Earth and Venus. It has introduced new analytical and numerical tools that are in widespread use. Today, nearly every long-term integration of our solar system, its subsystems, and other solar systems uses algorithms that was invented. This research has all been primarily Supported by this sequence of PGG NASA grants. During this period published major investigations of tidal evolution of the Earth-Moon system and of the passage of the Earth and Venus through non-linear core-mantle resonances were completed. It has published a major innovation in symplectic algorithms: the symplectic corrector. A paper was completed on non-perturbative hydrostatic equilibrium.

  11. A chaotic jerk system with non-hyperbolic equilibrium: Dynamics, effect of time delay and circuit realisation

    NASA Astrophysics Data System (ADS)

    Rajagopal, Karthikeyan; Pham, Viet-Thanh; Tahir, Fadhil Rahma; Akgul, Akif; Abdolmohammadi, Hamid Reza; Jafari, Sajad

    2018-04-01

    The literature on chaos has highlighted several chaotic systems with special features. In this work, a novel chaotic jerk system with non-hyperbolic equilibrium is proposed. The dynamics of this new system is revealed through equilibrium analysis, phase portrait, bifurcation diagram and Lyapunov exponents. In addition, we investigate the time-delay effects on the proposed system. Realisation of such a system is presented to verify its feasibility.

  12. Horseshoes in a Chaotic System with Only One Stable Equilibrium

    NASA Astrophysics Data System (ADS)

    Huan, Songmei; Li, Qingdu; Yang, Xiao-Song

    To confirm the numerically demonstrated chaotic behavior in a chaotic system with only one stable equilibrium reported by Wang and Chen, we resort to Poincaré map technique and present a rigorous computer-assisted verification of horseshoe chaos by virtue of topological horseshoes theory.

  13. Quantum mushroom billiards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnett, Alex H.; Betcke, Timo; School of Mathematics, University of Manchester, Manchester, M13 9PL

    2007-12-15

    We report the first large-scale statistical study of very high-lying eigenmodes (quantum states) of the mushroom billiard proposed by L. A. Bunimovich [Chaos 11, 802 (2001)]. The phase space of this mixed system is unusual in that it has a single regular region and a single chaotic region, and no KAM hierarchy. We verify Percival's conjecture to high accuracy (1.7%). We propose a model for dynamical tunneling and show that it predicts well the chaotic components of predominantly regular modes. Our model explains our observed density of such superpositions dying as E{sup -1/3} (E is the eigenvalue). We compare eigenvaluemore » spacing distributions against Random Matrix Theory expectations, using 16 000 odd modes (an order of magnitude more than any existing study). We outline new variants of mesh-free boundary collocation methods which enable us to achieve high accuracy and high mode numbers ({approx}10{sup 5}) orders of magnitude faster than with competing methods.« less

  14. Dancing Protein Clouds: The Strange Biology and Chaotic Physics of Intrinsically Disordered Proteins*

    PubMed Central

    2016-01-01

    Biologically active but floppy proteins represent a new reality of modern protein science. These intrinsically disordered proteins (IDPs) and hybrid proteins containing ordered and intrinsically disordered protein regions (IDPRs) constitute a noticeable part of any given proteome. Functionally, they complement ordered proteins, and their conformational flexibility and structural plasticity allow them to perform impossible tricks and be engaged in biological activities that are inaccessible to well folded proteins with their unique structures. The major goals of this minireview are to show that, despite their simplified amino acid sequences, IDPs/IDPRs are complex entities often resembling chaotic systems, are structurally and functionally heterogeneous, and can be considered an important part of the structure-function continuum. Furthermore, IDPs/IDPRs are everywhere, and are ubiquitously engaged in various interactions characterized by a wide spectrum of binding scenarios and an even wider spectrum of structural and functional outputs. PMID:26851286

  15. Attractors of relaxation discrete-time systems with chaotic dynamics on a fast time scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maslennikov, Oleg V.; Nekorkin, Vladimir I.

    In this work, a new type of relaxation systems is considered. Their prominent feature is that they comprise two distinct epochs, one is slow regular motion and another is fast chaotic motion. Unlike traditionally studied slow-fast systems that have smooth manifolds of slow motions in the phase space and fast trajectories between them, in this new type one observes, apart the same geometric objects, areas of transient chaos. Alternating periods of slow regular motions and fast chaotic ones as well as transitions between them result in a specific chaotic attractor with chaos on a fast time scale. We formulate basicmore » properties of such attractors in the framework of discrete-time systems and consider several examples. Finally, we provide an important application of such systems, the neuronal electrical activity in the form of chaotic spike-burst oscillations.« less

  16. Exponential Synchronization of Networked Chaotic Delayed Neural Network by a Hybrid Event Trigger Scheme.

    PubMed

    Fei, Zhongyang; Guan, Chaoxu; Gao, Huijun; Zhongyang Fei; Chaoxu Guan; Huijun Gao; Fei, Zhongyang; Guan, Chaoxu; Gao, Huijun

    2018-06-01

    This paper is concerned with the exponential synchronization for master-slave chaotic delayed neural network with event trigger control scheme. The model is established on a network control framework, where both external disturbance and network-induced delay are taken into consideration. The desired aim is to synchronize the master and slave systems with limited communication capacity and network bandwidth. In order to save the network resource, we adopt a hybrid event trigger approach, which not only reduces the data package sending out, but also gets rid of the Zeno phenomenon. By using an appropriate Lyapunov functional, a sufficient criterion for the stability is proposed for the error system with extended ( , , )-dissipativity performance index. Moreover, hybrid event trigger scheme and controller are codesigned for network-based delayed neural network to guarantee the exponential synchronization between the master and slave systems. The effectiveness and potential of the proposed results are demonstrated through a numerical example.

  17. Operations research applications in nuclear energy

    NASA Astrophysics Data System (ADS)

    Johnson, Benjamin Lloyd

    This dissertation consists of three papers; the first is published in Annals of Operations Research, the second is nearing submission to INFORMS Journal on Computing, and the third is the predecessor of a paper nearing submission to Progress in Nuclear Energy. We apply operations research techniques to nuclear waste disposal and nuclear safeguards. Although these fields are different, they allow us to showcase some benefits of using operations research techniques to enhance nuclear energy applications. The first paper, "Optimizing High-Level Nuclear Waste Disposal within a Deep Geologic Repository," presents a mixed-integer programming model that determines where to place high-level nuclear waste packages in a deep geologic repository to minimize heat load concentration. We develop a heuristic that increases the size of solvable model instances. The second paper, "Optimally Configuring a Measurement System to Detect Diversions from a Nuclear Fuel Cycle," introduces a simulation-optimization algorithm and an integer-programming model to find the best, or near-best, resource-limited nuclear fuel cycle measurement system with a high degree of confidence. Given location-dependent measurement method precisions, we (i) optimize the configuration of n methods at n locations of a hypothetical nuclear fuel cycle facility, (ii) find the most important location at which to improve method precision, and (iii) determine the effect of measurement frequency on near-optimal configurations and objective values. Our results correspond to existing outcomes but we obtain them at least an order of magnitude faster. The third paper, "Optimizing Nuclear Material Control and Accountability Measurement Systems," extends the integer program from the second paper to locate measurement methods in a larger, hypothetical nuclear fuel cycle scenario given fixed purchase and utilization budgets. This paper also presents two mixed-integer quadratic programming models to increase the precision of existing methods given a fixed improvement budget and to reduce the measurement uncertainty in the system while limiting improvement costs. We quickly obtain similar or better solutions compared to several intuitive analyses that take much longer to perform.

  18. Chaotic behaviour of Zeeman machines at introductory course of mechanics

    NASA Astrophysics Data System (ADS)

    Nagy, Péter; Tasnádi, Péter

    2016-05-01

    Investigation of chaotic motions and cooperative systems offers a magnificent opportunity to involve modern physics into the basic course of mechanics taught to engineering students. In the present paper it will be demonstrated that Zeeman Machine can be a versatile and motivating tool for students to get introductory knowledge about chaotic motion via interactive simulations. It works in a relatively simple way and its properties can be understood very easily. Since the machine can be built easily and the simulation of its movement is also simple the experimental investigation and the theoretical description can be connected intuitively. Although Zeeman Machine is known mainly for its quasi-static and catastrophic behaviour, its dynamic properties are also of interest with its typical chaotic features. By means of a periodically driven Zeeman Machine a wide range of chaotic properties of the simple systems can be demonstrated such as bifurcation diagrams, chaotic attractors, transient chaos and so on. The main goal of this paper is the presentation of an interactive learning material for teaching the basic features of the chaotic systems through the investigation of the Zeeman Machine.

  19. The use of fractional orders in the determination of birefringence of highly dispersive materials by the channelled spectrum method

    NASA Astrophysics Data System (ADS)

    Nagarajan, K.; Shashidharan Nair, C. K.

    2007-07-01

    The channelled spectrum employing polarized light interference is a very convenient method for the study of dispersion of birefringence. However, while using this method, the absolute order of the polarized light interference fringes cannot be determined easily. Approximate methods are therefore used to estimate the order. One of the approximations is that the dispersion of birefringence across neighbouring integer order fringes is negligible. In this paper, we show how this approximation can cause errors. A modification is reported whereby the error in the determination of absolute fringe order can be reduced using fractional orders instead of integer orders. The theoretical background for this method supported with computer simulation is presented. An experimental arrangement implementing these modifications is described. This method uses a Constant Deviation Spectrometer (CDS) and a Soleil Babinet Compensator (SBC).

  20. Optimal control problem for linear fractional-order systems, described by equations with Hadamard-type derivative

    NASA Astrophysics Data System (ADS)

    Postnov, Sergey

    2017-11-01

    Two kinds of optimal control problem are investigated for linear time-invariant fractional-order systems with lumped parameters which dynamics described by equations with Hadamard-type derivative: the problem of control with minimal norm and the problem of control with minimal time at given restriction on control norm. The problem setting with nonlocal initial conditions studied. Admissible controls allowed to be the p-integrable functions (p > 1) at half-interval. The optimal control problem studied by moment method. The correctness and solvability conditions for the corresponding moment problem are derived. For several special cases the optimal control problems stated are solved analytically. Some analogies pointed for results obtained with the results which are known for integer-order systems and fractional-order systems describing by equations with Caputo- and Riemann-Liouville-type derivatives.

  1. Future missions studies: Combining Schatten's solar activity prediction model with a chaotic prediction model

    NASA Technical Reports Server (NTRS)

    Ashrafi, S.

    1991-01-01

    K. Schatten (1991) recently developed a method for combining his prediction model with our chaotic model. The philosophy behind this combined model and his method of combination is explained. Because the Schatten solar prediction model (KS) uses a dynamo to mimic solar dynamics, accurate prediction is limited to long-term solar behavior (10 to 20 years). The Chaotic prediction model (SA) uses the recently developed techniques of nonlinear dynamics to predict solar activity. It can be used to predict activity only up to the horizon. In theory, the chaotic prediction should be several orders of magnitude better than statistical predictions up to that horizon; beyond the horizon, chaotic predictions would theoretically be just as good as statistical predictions. Therefore, chaos theory puts a fundamental limit on predictability.

  2. An Integer Programming Model for Multi-Echelon Supply Chain Decision Problem Considering Inventories

    NASA Astrophysics Data System (ADS)

    Harahap, Amin; Mawengkang, Herman; Siswadi; Effendi, Syahril

    2018-01-01

    In this paper we address a problem that is of significance to the industry, namely the optimal decision of a multi-echelon supply chain and the associated inventory systems. By using the guaranteed service approach to model the multi-echelon inventory system, we develop a mixed integer; programming model to simultaneously optimize the transportation, inventory and network structure of a multi-echelon supply chain. To solve the model we develop a direct search approach using a strategy of releasing nonbasic variables from their bounds, combined with the “active constraint” method. This strategy is used to force the appropriate non-integer basic variables to move to their neighbourhood integer points.

  3. Detecting unstable periodic orbits in chaotic time series using synchronization

    NASA Astrophysics Data System (ADS)

    Olyaei, Ali Azimi; Wu, Christine; Kinsner, Witold

    2017-07-01

    An alternative approach of detecting unstable periodic orbits in chaotic time series is proposed using synchronization techniques. A master-slave synchronization scheme is developed, in which the chaotic system drives a system of harmonic oscillators through a proper coupling condition. The proposed scheme is designed so that the power of the coupling signal exhibits notches that drop to zero once the system approaches an unstable orbit yielding an explicit indication of the presence of a periodic motion. The results shows that the proposed approach is particularly suitable in practical situations, where the time series is short and noisy, or it is obtained from high-dimensional chaotic systems.

  4. Nonlinear dynamical analysis of an aeroelastic system with multi-segmented moment in the pitch degree-of-freedom

    NASA Astrophysics Data System (ADS)

    Vasconcellos, Rui; Abdelkefi, Abdessattar

    2015-01-01

    The effects of a multi-segmented nonlinearity in the pitch degree of freedom on the behavior of a two-degree of freedom aeroelastic system are investigated. The aeroelastic system is free to plunge and pitch and is supported by linear translational and nonlinear torsional springs and is subjected to an incoming flow. The unsteady representation based on the Duhamel formulation is used to model the aerodynamic loads. Using modern method of nonlinear dynamics, a nonlinear characterization is performed to identify the system's response when increasing the wind speed. It is demonstrated that four sudden transitions take place with a change in the system's response. It is shown that, in the first transition, the system's response changes from simply periodic (only main oscillating frequency) to two periods (having the main oscillating frequency and its superharmonic of order 2). In the second transition, the response of the system changes from two periods (having the main oscillating frequency and its superharmonic of order 2) to a period-1. The results also show that the third transition is accompanied by a change in the system's response from simply periodic to two periods (having the main oscillating frequency and its superharmonic of order 3). After this transition, chaotic responses take place and then the fourth transition is accompanied by a sudden change in the system's response from chaotic to two periods (having the main oscillating frequency and its superharmonic of order 3). The results show that these transitions are caused by the tangential contact between the trajectory and the multi-segmented nonlinearity boundaries and with a zero-pitch speed incidence. This observation is associated with the definition of grazing bifurcation.

  5. Techniques for computing the discrete Fourier transform using the quadratic residue Fermat number systems

    NASA Technical Reports Server (NTRS)

    Truong, T. K.; Chang, J. J.; Hsu, I. S.; Pei, D. Y.; Reed, I. S.

    1986-01-01

    The complex integer multiplier and adder over the direct sum of two copies of finite field developed by Cozzens and Finkelstein (1985) is specialized to the direct sum of the rings of integers modulo Fermat numbers. Such multiplication over the rings of integers modulo Fermat numbers can be performed by means of two integer multiplications, whereas the complex integer multiplication requires three integer multiplications. Such multiplications and additions can be used in the implementation of a discrete Fourier transform (DFT) of a sequence of complex numbers. The advantage of the present approach is that the number of multiplications needed to compute a systolic array of the DFT can be reduced substantially. The architectural designs using this approach are regular, simple, expandable and, therefore, naturally suitable for VLSI implementation.

  6. A new chaotic oscillator with free control

    NASA Astrophysics Data System (ADS)

    Li, Chunbiao; Sprott, Julien Clinton; Akgul, Akif; Iu, Herbert H. C.; Zhao, Yibo

    2017-08-01

    A novel chaotic system is explored in which all terms are quadratic except for a linear function. The slope of the linear function rescales the amplitude and frequency of the variables linearly while its zero intercept allows offset boosting for one of the variables. Therefore, a free-controlled chaotic oscillation can be obtained with any desired amplitude, frequency, and offset by an easy modification of the linear function. When implemented as an electronic circuit, the corresponding chaotic signal can be controlled by two independent potentiometers, which is convenient for constructing a chaos-based application system. To the best of our knowledge, this class of chaotic oscillators has never been reported.

  7. A chaotic model for advertising diffusion problem with competition

    NASA Astrophysics Data System (ADS)

    Ip, W. H.; Yung, K. L.; Wang, Dingwei

    2012-08-01

    In this article, the author extends Dawid and Feichtinger's chaotic advertising diffusion model into the duopoly case. A computer simulation system is used to test this enhanced model. Based on the analysis of simulation results, it is found that the best advertising strategy in duopoly is to increase the advertising investment to reach the best Win-Win situation where the oscillation of market portion will not occur. In order to effectively arrive at the best situation, we define a synthetic index and two thresholds. An estimation method for the parameters of the index and thresholds is proposed in this research. We can reach the Win-Win situation by simply selecting the control parameters to make the synthetic index close to the threshold of min-oscillation state. The numerical example and computational results indicated that the proposed chaotic model is useful to describe and analyse advertising diffusion process in duopoly, it is an efficient tool for the selection and optimisation of advertising strategy.

  8. ORIGIN OF THE CHAOTIC MOTION OF THE SATURNIAN SATELLITE ATLAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renner, S.; Vienne, A.; Cooper, N. J.

    2016-05-01

    We revisit the dynamics of Atlas. Using Cassini ISS astrometric observations spanning 2004 February to 2013 August, Cooper et al. found evidence that Atlas is currently perturbed by both a 54:53 corotation eccentricity resonance (CER) and a 54:53 Lindblad eccentricity resonance (LER) with Prometheus. They demonstrated that the orbit of Atlas is chaotic, with a Lyapunov time of order 10 years, as a direct consequence of the coupled resonant interaction (CER/LER) with Prometheus. Here we investigate the interactions between the two resonances using the CoraLin analytical model, showing that the chaotic zone fills almost all the corotation sites occupied bymore » the satellite's orbit. Four 70:67 apse-type mean motion resonances with Pandora are also overlapping, but these resonances have a much weaker effect. Frequency analysis allows us to highlight the coupling between the 54:53 resonances, and confirms that a simplified system including the perturbations due to Prometheus and Saturn's oblateness only captures the essential features of the dynamics.« less

  9. Origin of the Chaotic Motion of the Saturnian Satellite Atlas

    NASA Astrophysics Data System (ADS)

    Renner, S.; Cooper, N. J.; El Moutamid, M.; Sicardy, B.; Vienne, A.; Murray, C. D.; Saillenfest, M.

    2016-05-01

    We revisit the dynamics of Atlas. Using Cassini ISS astrometric observations spanning 2004 February to 2013 August, Cooper et al. found evidence that Atlas is currently perturbed by both a 54:53 corotation eccentricity resonance (CER) and a 54:53 Lindblad eccentricity resonance (LER) with Prometheus. They demonstrated that the orbit of Atlas is chaotic, with a Lyapunov time of order 10 years, as a direct consequence of the coupled resonant interaction (CER/LER) with Prometheus. Here we investigate the interactions between the two resonances using the CoraLin analytical model, showing that the chaotic zone fills almost all the corotation sites occupied by the satellite's orbit. Four 70:67 apse-type mean motion resonances with Pandora are also overlapping, but these resonances have a much weaker effect. Frequency analysis allows us to highlight the coupling between the 54:53 resonances, and confirms that a simplified system including the perturbations due to Prometheus and Saturn's oblateness only captures the essential features of the dynamics.

  10. A new feedback image encryption scheme based on perturbation with dynamical compound chaotic sequence cipher generator

    NASA Astrophysics Data System (ADS)

    Tong, Xiaojun; Cui, Minggen; Wang, Zhu

    2009-07-01

    The design of the new compound two-dimensional chaotic function is presented by exploiting two one-dimensional chaotic functions which switch randomly, and the design is used as a chaotic sequence generator which is proved by Devaney's definition proof of chaos. The properties of compound chaotic functions are also proved rigorously. In order to improve the robustness against difference cryptanalysis and produce avalanche effect, a new feedback image encryption scheme is proposed using the new compound chaos by selecting one of the two one-dimensional chaotic functions randomly and a new image pixels method of permutation and substitution is designed in detail by array row and column random controlling based on the compound chaos. The results from entropy analysis, difference analysis, statistical analysis, sequence randomness analysis, cipher sensitivity analysis depending on key and plaintext have proven that the compound chaotic sequence cipher can resist cryptanalytic, statistical and brute-force attacks, and especially it accelerates encryption speed, and achieves higher level of security. By the dynamical compound chaos and perturbation technology, the paper solves the problem of computer low precision of one-dimensional chaotic function.

  11. Towards a definition of life.

    PubMed

    Macklem, Peter T; Seely, Andrew

    2010-01-01

    This article offers a new definition of life as a "self-contained, self-regulating, self-organizing, self-reproducing, interconnected, open thermodynamic network of component parts which performs work, existing in a complex regime which combines stability and adaptability in the phase transition between order and chaos, as a plant, animal, fungus, or microbe." Open thermodynamic networks, which create and maintain order and are used by all organisms to perform work, import energy from and export entropy into the environment. Intra- and extracellular interconnected networks also confer order. Although life obeys the laws of physics and chemistry, the design of living organisms is not determined by these laws, but by Darwinian selection of the fittest designs. Over a short range of normalized energy consumption, open thermodynamic systems change from deeply ordered to chaotic, and life is found in this phase transition, where a dynamic balance between stability and adaptability allows for homeokinesis. Organisms and cells move within the phase transition with changes in metabolic rate. Seeds, spores and cryo-preserved tissue are well within the ordered regime, while health probably cannot be maintained with displacements into the chaotic regime. Understanding life in these terms may provide new insights into what constitutes health and lead to new theories of disease.

  12. Multiple shooting shadowing for sensitivity analysis of chaotic dynamical systems

    NASA Astrophysics Data System (ADS)

    Blonigan, Patrick J.; Wang, Qiqi

    2018-02-01

    Sensitivity analysis methods are important tools for research and design with simulations. Many important simulations exhibit chaotic dynamics, including scale-resolving turbulent fluid flow simulations. Unfortunately, conventional sensitivity analysis methods are unable to compute useful gradient information for long-time-averaged quantities in chaotic dynamical systems. Sensitivity analysis with least squares shadowing (LSS) can compute useful gradient information for a number of chaotic systems, including simulations of chaotic vortex shedding and homogeneous isotropic turbulence. However, this gradient information comes at a very high computational cost. This paper presents multiple shooting shadowing (MSS), a more computationally efficient shadowing approach than the original LSS approach. Through an analysis of the convergence rate of MSS, it is shown that MSS can have lower memory usage and run time than LSS.

  13. General hybrid projective complete dislocated synchronization with non-derivative and derivative coupling based on parameter identification in several chaotic and hyperchaotic systems

    NASA Astrophysics Data System (ADS)

    Sun, Jun-Wei; Shen, Yi; Zhang, Guo-Dong; Wang, Yan-Feng; Cui, Guang-Zhao

    2013-04-01

    According to the Lyapunov stability theorem, a new general hybrid projective complete dislocated synchronization scheme with non-derivative and derivative coupling based on parameter identification is proposed under the framework of drive-response systems. Every state variable of the response system equals the summation of the hybrid drive systems in the previous hybrid synchronization. However, every state variable of the drive system equals the summation of the hybrid response systems while evolving with time in our method. Complete synchronization, hybrid dislocated synchronization, projective synchronization, non-derivative and derivative coupling, and parameter identification are included as its special item. The Lorenz chaotic system, Rössler chaotic system, memristor chaotic oscillator system, and hyperchaotic Lü system are discussed to show the effectiveness of the proposed methods.

  14. A quasi-crisis

    NASA Astrophysics Data System (ADS)

    Wang, Ying-Mei; Wang, Wen-Xiu; Chen, He-Sheng; Zhang, Kai; Jiang, Yu-Mei; Wang, Xu-Ming; He, Da-Ren

    2002-03-01

    A system concatenated by two area-preserving maps may be addressed as "quasi- dissipative," since such a system can display dissipative behaviors^1. This is due to noninvertibility induced by discontinuity in the system function. In such a system, the image set of the discontinuous border forms a chaotic quasi-attractor. At a critical control parameter value the quasi-attractor suddenly vanishes. The chaotic iterations escape, via a leaking hole, to an emergent period-8 elliptic island. The hole is the intersection of the chaotic quasi-attractor and the period-8 island. The chaotic quasi-attractor thus changes to chaotic quasi-transients. The scaling behavior that drives the quasi-crisis has been investigated numerically. It reads: ∝ (p-p_c)^-ν , where is defined as the averaged length of quasi-transients. The scaling exponent ν=1.66 ± 0.04. The critical parameter value equals p_c=-1.0069799. ^1 J. Wang et al., Phys.Rev.E, 64(2001)026202.

  15. A one-time pad color image cryptosystem based on SHA-3 and multiple chaotic systems

    NASA Astrophysics Data System (ADS)

    Wang, Xingyuan; Wang, Siwei; Zhang, Yingqian; Luo, Chao

    2018-04-01

    A novel image encryption algorithm is proposed that combines the SHA-3 hash function and two chaotic systems: the hyper-chaotic Lorenz and Chen systems. First, 384 bit keystream hash values are obtained by applying SHA-3 to plaintext. The sensitivity of the SHA-3 algorithm and chaotic systems ensures the effect of a one-time pad. Second, the color image is expanded into three-dimensional space. During permutation, it undergoes plane-plane displacements in the x, y and z dimensions. During diffusion, we use the adjacent pixel dataset and corresponding chaotic value to encrypt each pixel. Finally, the structure of alternating between permutation and diffusion is applied to enhance the level of security. Furthermore, we design techniques to improve the algorithm's encryption speed. Our experimental simulations show that the proposed cryptosystem achieves excellent encryption performance and can resist brute-force, statistical, and chosen-plaintext attacks.

  16. Theoretical and numerical studies of chaotic mixing

    NASA Astrophysics Data System (ADS)

    Kim, Ho Jun

    Theoretical and numerical studies of chaotic mixing are performed to circumvent the difficulties of efficient mixing, which come from the lack of turbulence in microfluidic devices. In order to carry out efficient and accurate parametric studies and to identify a fully chaotic state, a spectral element algorithm for solution of the incompressible Navier-Stokes and species transport equations is developed. Using Taylor series expansions in time marching, the new algorithm employs an algebraic factorization scheme on multi-dimensional staggered spectral element grids, and extends classical conforming Galerkin formulations to nonconforming spectral elements. Lagrangian particle tracking methods are utilized to study particle dispersion in the mixing device using spectral element and fourth order Runge-Kutta discretizations in space and time, respectively. Comparative studies of five different techniques commonly employed to identify the chaotic strength and mixing efficiency in microfluidic systems are presented to demonstrate the competitive advantages and shortcomings of each method. These are the stirring index based on the box counting method, Poincare sections, finite time Lyapunov exponents, the probability density function of the stretching field, and mixing index inverse, based on the standard deviation of scalar species distribution. Series of numerical simulations are performed by varying the Peclet number (Pe) at fixed kinematic conditions. The mixing length (lm) is characterized as function of the Pe number, and lm ∝ ln(Pe) scaling is demonstrated for fully chaotic cases. Employing the aforementioned techniques, optimum kinematic conditions and the actuation frequency of the stirrer that result in the highest mixing/stirring efficiency are identified in a zeta potential patterned straight micro channel, where a continuous flow is generated by superposition of a steady pressure driven flow and time periodic electroosmotic flow induced by a stream-wise AC electric field. Finally, it is shown that the invariant manifold of hyperbolic periodic point determines the geometry of fast mixing zones in oscillatory flows in two-dimensional cavity.

  17. Dynamic analysis, circuit implementation and passive control of a novel four-dimensional chaotic system with multiscroll attractor and multiple coexisting attractors

    NASA Astrophysics Data System (ADS)

    Lai, Bang-Cheng; He, Jian-Jun

    2018-03-01

    In this paper, we construct a novel 4D autonomous chaotic system with four cross-product nonlinear terms and five equilibria. The multiple coexisting attractors and the multiscroll attractor of the system are numerically investigated. Research results show that the system has various types of multiple attractors, including three strange attractors with a limit cycle, three limit cycles, two strange attractors with a pair of limit cycles, two coexisting strange attractors. By using the passive control theory, a controller is designed for controlling the chaos of the system. Both analytical and numerical studies verify that the designed controller can suppress chaotic motion and stabilise the system at the origin. Moreover, an electronic circuit is presented for implementing the chaotic system.

  18. Adaptive feedback synchronization of a unified chaotic system

    NASA Astrophysics Data System (ADS)

    Lu, Junan; Wu, Xiaoqun; Han, Xiuping; Lü, Jinhu

    2004-08-01

    This Letter further improves and extends the work of Wang et al. [Phys. Lett. A 312 (2003) 34]. In detailed, the linear feedback synchronization and adaptive feedback synchronization with only one controller for a unified chaotic system are discussed here. It is noticed that this unified system contains the noted Lorenz and Chen systems. Two chaotic synchronization theorems are attained. Also, numerical simulations are given to show the effectiveness of these methods.

  19. Chaotic carrier pulse position modulation communication system and method

    DOEpatents

    Abarbanel, Henry D. I.; Larson, Lawrence E.; Rulkov, Nikolai F.; Sushchik, Mikhail M.; Tsimring, Lev S.; Volkovskii, Alexander R.

    2001-01-01

    A chaotic carrier pulse position modulation communication system and method is disclosed. The system includes a transmitter and receiver having matched chaotic pulse regenerators. The chaotic pulse regenerator in the receiver produces a synchronized replica of a chaotic pulse train generated by the regenerator in the transmitter. The pulse train from the transmitter can therefore act as a carrier signal. Data is encoded by the transmitter through selectively altering the interpulse timing between pulses in the chaotic pulse train. The altered pulse train is transmitted as a pulse signal. The receiver can detect whether a particular interpulse interval in the pulse signal has been altered by reference to the synchronized replica it generates, and can therefore detect the data transmitted by the receiver. Preferably, the receiver predicts the earliest moment in time it can expect a next pulse after observation of at least two consecutive pulses. It then decodes the pulse signal beginning at a short time before expected arrival of a pulse.

  20. Integer sequence discovery from small graphs

    PubMed Central

    Hoppe, Travis; Petrone, Anna

    2015-01-01

    We have exhaustively enumerated all simple, connected graphs of a finite order and have computed a selection of invariants over this set. Integer sequences were constructed from these invariants and checked against the Online Encyclopedia of Integer Sequences (OEIS). 141 new sequences were added and six sequences were extended. From the graph database, we were able to programmatically suggest relationships among the invariants. It will be shown that we can readily visualize any sequence of graphs with a given criteria. The code has been released as an open-source framework for further analysis and the database was constructed to be extensible to invariants not considered in this work. PMID:27034526

  1. A novel image encryption algorithm based on the chaotic system and DNA computing

    NASA Astrophysics Data System (ADS)

    Chai, Xiuli; Gan, Zhihua; Lu, Yang; Chen, Yiran; Han, Daojun

    A novel image encryption algorithm using the chaotic system and deoxyribonucleic acid (DNA) computing is presented. Different from the traditional encryption methods, the permutation and diffusion of our method are manipulated on the 3D DNA matrix. Firstly, a 3D DNA matrix is obtained through bit plane splitting, bit plane recombination, DNA encoding of the plain image. Secondly, 3D DNA level permutation based on position sequence group (3DDNALPBPSG) is introduced, and chaotic sequences generated from the chaotic system are employed to permutate the positions of the elements of the 3D DNA matrix. Thirdly, 3D DNA level diffusion (3DDNALD) is given, the confused 3D DNA matrix is split into sub-blocks, and XOR operation by block is manipulated to the sub-DNA matrix and the key DNA matrix from the chaotic system. At last, by decoding the diffused DNA matrix, we get the cipher image. SHA 256 hash of the plain image is employed to calculate the initial values of the chaotic system to avoid chosen plaintext attack. Experimental results and security analyses show that our scheme is secure against several known attacks, and it can effectively protect the security of the images.

  2. Using chaotic artificial neural networks to model memory in the brain

    NASA Astrophysics Data System (ADS)

    Aram, Zainab; Jafari, Sajad; Ma, Jun; Sprott, Julien C.; Zendehrouh, Sareh; Pham, Viet-Thanh

    2017-03-01

    In the current study, a novel model for human memory is proposed based on the chaotic dynamics of artificial neural networks. This new model explains a biological fact about memory which is not yet explained by any other model: There are theories that the brain normally works in a chaotic mode, while during attention it shows ordered behavior. This model uses the periodic windows observed in a previously proposed model for the brain to store and then recollect the information.

  3. Solving large scale traveling salesman problems by chaotic neurodynamics.

    PubMed

    Hasegawa, Mikio; Ikeguch, Tohru; Aihara, Kazuyuki

    2002-03-01

    We propose a novel approach for solving large scale traveling salesman problems (TSPs) by chaotic dynamics. First, we realize the tabu search on a neural network, by utilizing the refractory effects as the tabu effects. Then, we extend it to a chaotic neural network version. We propose two types of chaotic searching methods, which are based on two different tabu searches. While the first one requires neurons of the order of n2 for an n-city TSP, the second one requires only n neurons. Moreover, an automatic parameter tuning method of our chaotic neural network is presented for easy application to various problems. Last, we show that our method with n neurons is applicable to large TSPs such as an 85,900-city problem and exhibits better performance than the conventional stochastic searches and the tabu searches.

  4. Restoration and recovery of damaged eco-epidemiological systems: application to the Salton Sea, California, USA.

    PubMed

    Upadhyay, Ranjit Kumar; Raw, S N; Roy, P; Rai, Vikas

    2013-04-01

    In this paper, we have proposed and analysed a mathematical model to figure out possible ways to rescue a damaged eco-epidemiological system. Our strategy of rescue is based on the realization of the fact that chaotic dynamics often associated with excursions of system dynamics to extinction-sized densities. Chaotic dynamics of the model is depicted by 2D scans, bifurcation analysis, largest Lyapunov exponent and basin boundary calculations. 2D scan results show that μ, the total death rate of infected prey should be brought down in order to avoid chaotic dynamics. We have carried out linear and nonlinear stability analysis and obtained Hopf-bifurcation and persistence criteria of the proposed model system. The other outcome of this study is a suggestion which involves removal of infected fishes at regular interval of time. The estimation of timing and periodicity of the removal exercises would be decided by the nature of infection more than anything else. If this suggestion is carefully worked out and implemented, it would be most effective in restoring the health of the ecosystem which has immense ecological, economic and aesthetic potential. We discuss the implications of this result to Salton Sea, California, USA. The restoration of the Salton Sea provides a perspective for conservation and management strategy. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Improving performance of DS-CDMA systems using chaotic complex Bernoulli spreading codes

    NASA Astrophysics Data System (ADS)

    Farzan Sabahi, Mohammad; Dehghanfard, Ali

    2014-12-01

    The most important goal of spreading spectrum communication system is to protect communication signals against interference and exploitation of information by unintended listeners. In fact, low probability of detection and low probability of intercept are two important parameters to increase the performance of the system. In Direct Sequence Code Division Multiple Access (DS-CDMA) systems, these properties are achieved by multiplying the data information in spreading sequences. Chaotic sequences, with their particular properties, have numerous applications in constructing spreading codes. Using one-dimensional Bernoulli chaotic sequence as spreading code is proposed in literature previously. The main feature of this sequence is its negative auto-correlation at lag of 1, which with proper design, leads to increase in efficiency of the communication system based on these codes. On the other hand, employing the complex chaotic sequences as spreading sequence also has been discussed in several papers. In this paper, use of two-dimensional Bernoulli chaotic sequences is proposed as spreading codes. The performance of a multi-user synchronous and asynchronous DS-CDMA system will be evaluated by applying these sequences under Additive White Gaussian Noise (AWGN) and fading channel. Simulation results indicate improvement of the performance in comparison with conventional spreading codes like Gold codes as well as similar complex chaotic spreading sequences. Similar to one-dimensional Bernoulli chaotic sequences, the proposed sequences also have negative auto-correlation. Besides, construction of complex sequences with lower average cross-correlation is possible with the proposed method.

  6. The chaotic saddle of a three degrees of freedom scattering system reconstructed from cross-section data

    NASA Astrophysics Data System (ADS)

    Drótos, G.; Jung, C.

    2016-06-01

    The topic of this paper is hyperbolic chaotic scattering in a three degrees of freedom system. We generalize how shadows in the domain of the doubly differential cross-section are found: they are traced out by the appropriately filtered unstable manifolds of the periodic trajectories in the chaotic saddle. These shadows are related to the rainbow singularities in the doubly differential cross-section. As a result of this relation, we discover a method of how to recognize in the cross section a smoothly deformed image of the chaotic saddle, allowing the reconstruction of the symbolic dynamics of the chaotic saddle, its topology and its scaling factors.

  7. A New Method for Suppressing Periodic Narrowband Interference Based on the Chaotic van der Pol Oscillator

    NASA Astrophysics Data System (ADS)

    Lu, Jia; Zhang, Xiaoxing; Xiong, Hao

    The chaotic van der Pol oscillator is a powerful tool for detecting defects in electric systems by using online partial discharge (PD) monitoring. This paper focuses on realizing weak PD signal detection in the strong periodic narrowband interference by using high sensitivity to the periodic narrowband interference signals and immunity to white noise and PD signals of chaotic systems. A new approach to removing the periodic narrowband interference by using a van der Pol chaotic oscillator is described by analyzing the motion characteristic of the chaotic oscillator on the basis of the van der Pol equation. Furthermore, the Floquet index for measuring the amplitude of periodic narrowband signals is redefined. The denoising signal processed by the chaotic van der Pol oscillators is further processed by wavelet analysis. Finally, the denoising results verify that the periodic narrowband and white noise interference can be removed efficiently by combining the theory of the chaotic van der Pol oscillator and wavelet analysis.

  8. Stability analysis of piecewise non-linear systems and its application to chaotic synchronisation with intermittent control

    NASA Astrophysics Data System (ADS)

    Wang, Qingzhi; Tan, Guanzheng; He, Yong; Wu, Min

    2017-10-01

    This paper considers a stability analysis issue of piecewise non-linear systems and applies it to intermittent synchronisation of chaotic systems. First, based on piecewise Lyapunov function methods, more general and less conservative stability criteria of piecewise non-linear systems in periodic and aperiodic cases are presented, respectively. Next, intermittent synchronisation conditions of chaotic systems are derived which extend existing results. Finally, Chua's circuit is taken as an example to verify the validity of our methods.

  9. Entanglement as a signature of quantum chaos.

    PubMed

    Wang, Xiaoguang; Ghose, Shohini; Sanders, Barry C; Hu, Bambi

    2004-01-01

    We explore the dynamics of entanglement in classically chaotic systems by considering a multiqubit system that behaves collectively as a spin system obeying the dynamics of the quantum kicked top. In the classical limit, the kicked top exhibits both regular and chaotic dynamics depending on the strength of the chaoticity parameter kappa in the Hamiltonian. We show that the entanglement of the multiqubit system, considered for both the bipartite and the pairwise entanglement, yields a signature of quantum chaos. Whereas bipartite entanglement is enhanced in the chaotic region, pairwise entanglement is suppressed. Furthermore, we define a time-averaged entangling power and show that this entangling power changes markedly as kappa moves the system from being predominantly regular to being predominantly chaotic, thus sharply identifying the edge of chaos. When this entangling power is averaged over all states, it yields a signature of global chaos. The qualitative behavior of this global entangling power is similar to that of the classical Lyapunov exponent.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olmi, Simona, E-mail: simona.olmi@fi.isc.cnr.it; INFN Sez. Firenze, via Sansone, 1 - I-50019 Sesto Fiorentino

    The dynamics of two symmetrically coupled populations of rotators is studied for different values of the inertia. The system is characterized by different types of solutions, which all coexist with the fully synchronized state. At small inertia, the system is no more chaotic and one observes mainly quasi-periodic chimeras, while the usual (stationary) chimera state is not anymore observable. At large inertia, one observes two different kind of chaotic solutions with broken symmetry: the intermittent chaotic chimera, characterized by a synchronized population and a population displaying a turbulent behaviour, and a second state where the two populations are both chaoticmore » but whose dynamics adhere to two different macroscopic attractors. The intermittent chaotic chimeras are characterized by a finite life-time, whose duration increases as a power-law with the system size and the inertia value. Moreover, the chaotic population exhibits clear intermittent behavior, displaying a laminar phase where the two populations tend to synchronize, and a turbulent phase where the macroscopic motion of one population is definitely erratic. In the thermodynamic limit, these states survive for infinite time and the laminar regimes tends to disappear, thus giving rise to stationary chaotic solutions with broken symmetry contrary to what observed for chaotic chimeras on a ring geometry.« less

  11. Complexity and Hopf Bifurcation Analysis on a Kind of Fractional-Order IS-LM Macroeconomic System

    NASA Astrophysics Data System (ADS)

    Ma, Junhai; Ren, Wenbo

    On the basis of our previous research, we deepen and complete a kind of macroeconomics IS-LM model with fractional-order calculus theory, which is a good reflection on the memory characteristics of economic variables, we also focus on the influence of the variables on the real system, and improve the analysis capabilities of the traditional economic models to suit the actual macroeconomic environment. The conditions of Hopf bifurcation in fractional-order system models are briefly demonstrated, and the fractional order when Hopf bifurcation occurs is calculated, showing the inherent complex dynamic characteristics of the system. With numerical simulation, bifurcation, strange attractor, limit cycle, waveform and other complex dynamic characteristics are given; and the order condition is obtained with respect to time. We find that the system order has an important influence on the running state of the system. The system has a periodic motion when the order meets the conditions of Hopf bifurcation; the fractional-order system gradually stabilizes with the change of the order and parameters while the corresponding integer-order system diverges. This study has certain significance to policy-making about macroeconomic regulation and control.

  12. Stochastic Semidefinite Programming: Applications and Algorithms

    DTIC Science & Technology

    2012-03-03

    doi: 2011/09/07 13:38:21 13 TOTAL: 1 Number of Papers published in non peer-reviewed journals: Baha M. Alzalg and K. A. Ariyawansa, Stochastic...symmetric programming over integers. International Conference on Scientific Computing, Las Vegas, Nevada, July 18--21, 2011. Baha M. Alzalg. On recent...Proceeding publications (other than abstracts): PaperReceived Baha M. Alzalg, K. A. Ariyawansa. Stochastic mixed integer second-order cone programming

  13. The chaotic "sculpting" of the Solar System

    NASA Astrophysics Data System (ADS)

    Tsiganis, K.

    2006-01-01

    The orbits of the large celestial bodies in our Solar System are stable for very long times, as can be shown by numerical simulation. This gives the erroneous impression of perpetual stability of the system. It is only when we study the orbital distribution of the numerous minor bodies in the Solar System that we discover the rich variety of complex dynamical processes that have in fact shaped our system. During the last decade, enormous progress has been made, in understanding the evolution of the system over the last ~3.9 Gy. However, it also became clear that, in order to unveil its behaviour during the first ~700 million years of its lifetime, we have to find convincing explanations for observations that appear as details of its dynamical architecture. In the following we are going to show how the two best known - and up to now unexplained - observations in the Solar System, namely (i) the heavily cratered surface of the Moon and (ii) the elliptic (and not circular) motion of the planets, lead us to the discovery of the chaotic sculpting of the Solar System [1]-[3].

  14. Study the complexity and control of the recycling-supply chain of China's color TVs market based on the government subsidy

    NASA Astrophysics Data System (ADS)

    Xie, Lei; Ma, Junhai

    2016-09-01

    In these days, as the recycling of household appliances becomes increasingly popular, the recycling network tends to be perfect in television industry. This paper focuses on the game among two recyclers and a processor in a Duopoly market of color TV recycling. We find that if the adjustment coefficients of the decision variables are changed abruptly, the system will fall into chaotic state. In order to avoid hazard of falling into a chaotic state, we adopt the method of delay control, providing the manufacturers with effective measures about chaos control. This paper analyzes the system's reactions to government decision, finding that when the parameters become beneficial for manufacturers, consumers and the environment, the system will fall into chaos and system's regional stability will reduce. Resulting from our analysis, this paper gives advice on the improvement of the environment and enhance in social welfare. Tested through the data we collected, this study is practical in both its theory and its applicability.

  15. A semi-analytical method for the computation of the Lyapunov exponents of fractional-order systems

    NASA Astrophysics Data System (ADS)

    Caponetto, Riccardo; Fazzino, Stefano

    2013-01-01

    Fractional-order differential equations are interesting for their applications in the construction of mathematical models in finance, materials science or diffusion. In this paper, an application of a well known transformation technique, Differential Transform Method (DTM), to the area of fractional differential equation is employed for calculating Lyapunov exponents of fractional order systems. It is known that the Lyapunov exponents, first introduced by Oseledec, play a crucial role in characterizing the behaviour of dynamical systems. They can be used to analyze the sensitive dependence on initial conditions and the presence of chaotic attractors. The results reveal that the proposed method is very effective and simple and leads to accurate, approximately convergent solutions.

  16. A reducing of a chaotic movement to a periodic orbit, of a micro-electro-mechanical system, by using an optimal linear control design

    NASA Astrophysics Data System (ADS)

    Chavarette, Fábio Roberto; Balthazar, José Manoel; Felix, Jorge L. P.; Rafikov, Marat

    2009-05-01

    This paper analyzes the non-linear dynamics, with a chaotic behavior of a particular micro-electro-mechanical system. We used a technique of the optimal linear control for reducing the irregular (chaotic) oscillatory movement of the non-linear systems to a periodic orbit. We use the mathematical model of a (MEMS) proposed by Luo and Wang.

  17. Chaotic behavior in Malaysian stock market: A study with recurrence quantification analysis

    NASA Astrophysics Data System (ADS)

    Niu, Betty Voon Wan; Noorani, Mohd Salmi Md; Jaaman, Saiful Hafizah

    2016-11-01

    The dynamics of stock market has been questioned for decades. Its behavior appeared random yet some found it behaves as chaos. Up to 5000 daily adjusted closing data of FTSE Bursa Malaysia Kuala Lumpur Composite Index (KLSE) was investigated through recurrence plot and recurrence quantification analysis. Results were compared between stochastic system, chaotic system and deterministic system. Results show that KLSE daily adjusted closing data behaves chaotically.

  18. Chaotic Motions in the Real Fuzzy Electronic Circuits

    DTIC Science & Technology

    2012-12-30

    field of secure communications, the original source should be blended with other complex signals. Chaotic signals are one of the good sources to be...Takagi-Sugeno (T-S) fuzzy chaotic systems on electronic circuit. In the research field of secure communications, the original source should be blended ...model. The overall fuzzy model of the system is achieved by fuzzy blending of the linear system models. Consider a continuous-time nonlinear dynamic

  19. Floquet Topological Order in Interacting Systems of Bosons and Fermions

    NASA Astrophysics Data System (ADS)

    Harper, Fenner; Roy, Rahul

    2017-03-01

    Periodically driven noninteracting systems may exhibit anomalous chiral edge modes, despite hosting bands with trivial topology. We find that these drives have surprising many-body analogs, corresponding to class A, which exhibit anomalous charge and information transport at the boundary. Drives of this form are applicable to generic systems of bosons, fermions, and spins, and may be characterized by the anomalous unitary operator that acts at the edge of an open system. We find that these operators are robust to all local perturbations and may be classified by a pair of coprime integers. This defines a notion of dynamical topological order that may be applied to general time-dependent systems, including many-body localized phases or time crystals.

  20. Utilization of coincidence criteria in absolute length measurements by optical interferometry in vacuum and air

    NASA Astrophysics Data System (ADS)

    Schödel, R.

    2015-08-01

    Traceability of length measurements to the international system of units (SI) can be realized by using optical interferometry making use of well-known frequencies of monochromatic light sources mentioned in the Mise en Pratique for the realization of the metre. At some national metrology institutes, such as Physikalisch-Technische Bundesanstalt (PTB) in Germany, the absolute length of prismatic bodies (e.g. gauge blocks) is realized by so-called gauge-block interference comparators. At PTB, a number of such imaging phase-stepping interference comparators exist, including specialized vacuum interference comparators, each equipped with three highly stabilized laser light sources. The length of a material measure is expressed as a multiple of each wavelength. The large number of integer interference orders can be extracted by the method of exact fractions in which the coincidence of the lengths resulting from the different wavelengths is utilized as a criterion. The unambiguous extraction of the integer interference orders is an essential prerequisite for correct length measurements. This paper critically discusses coincidence criteria and their validity for three modes of absolute length measurements: 1) measurements under vacuum in which the wavelengths can be identified with the vacuum wavelengths, 2) measurements under air in which the air refractive index is obtained from environmental parameters using an empirical equation, and 3) measurements under air in which the air refractive index is obtained interferometrically by utilizing a vacuum cell placed along the measurement pathway. For case 3), which corresponds to PTB’s Kösters-Comparator for long gauge blocks, the unambiguous determination of integer interference orders related to the air refractive index could be improved by about a factor of ten when an ‘overall dispersion value,’ suggested in this paper, is used as coincidence criterion.

  1. A new Fortran 90 program to compute regular and irregular associated Legendre functions (new version announcement)

    NASA Astrophysics Data System (ADS)

    Schneider, Barry I.; Segura, Javier; Gil, Amparo; Guan, Xiaoxu; Bartschat, Klaus

    2018-04-01

    This is a revised and updated version of a modern Fortran 90 code to compute the regular Plm (x) and irregular Qlm (x) associated Legendre functions for all x ∈(- 1 , + 1) (on the cut) and | x | > 1 and integer degree (l) and order (m). The necessity to revise the code comes as a consequence of some comments of Prof. James Bremer of the UC//Davis Mathematics Department, who discovered that there were errors in the code for large integer degree and order for the normalized regular Legendre functions on the cut.

  2. Fractional order PID controller for improvement of PMSM speed control in aerospace applications

    NASA Astrophysics Data System (ADS)

    Saraji, Ali Motalebi; Ghanbari, Mahmood

    2014-12-01

    Because of the benefits reduced size, cost and maintenance, noise, CO2 emissions and increased control flexibility and precision, to meet these expectations, electrical equipment increasingly utilize in modern aircraft systems and aerospace industry rather than conventional mechanic, hydraulic, and pneumatic power systems. Electric motor drives are capable of converting electrical power to drive actuators, pumps, compressors, and other subsystems at variable speeds. In the past decades, permanent magnet synchronous motor (PMSM) and brushless dc (BLDC) motor were investigated for aerospace applications such as aircraft actuators. In this paper, the fractional-order PID controller is used in the design of speed loop of PMSM speed control system. Having more parameters for tuning fractional order PID controller lead to good performance ratio to integer order. This good performance is shown by comparison fractional order PID controller with the conventional PI and tuned PID controller by Genetic algorithm in MATLAB soft wear.

  3. Microwave spectroscopic observation of distinct electron solid phases in wide quantum wells

    NASA Astrophysics Data System (ADS)

    Hatke, A. T.; Liu, Yang; Magill, B. A.; Moon, B. H.; Engel, L. W.; Shayegan, M.; Pfeiffer, L. N.; West, K. W.; Baldwin, K. W.

    2014-06-01

    In high magnetic fields, two-dimensional electron systems can form a number of phases in which interelectron repulsion plays the central role, since the kinetic energy is frozen out by Landau quantization. These phases include the well-known liquids of the fractional quantum Hall effect, as well as solid phases with broken spatial symmetry and crystalline order. Solids can occur at the low Landau-filling termination of the fractional quantum Hall effect series but also within integer quantum Hall effects. Here we present microwave spectroscopy studies of wide quantum wells that clearly reveal two distinct solid phases, hidden within what in d.c. transport would be the zero diagonal conductivity of an integer quantum-Hall-effect state. Explanation of these solids is not possible with the simple picture of a Wigner solid of ordinary (quasi) electrons or holes.

  4. Tracking Simulation of Third-Integer Resonant Extraction for Fermilab's Mu2e Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Chong Shik; Amundson, James; Michelotti, Leo

    2015-02-13

    The Mu2e experiment at Fermilab requires acceleration and transport of intense proton beams in order to deliver stable, uniform particle spills to the production target. To meet the experimental requirement, particles will be extracted slowly from the Delivery Ring to the external beamline. Using Synergia2, we have performed multi-particle tracking simulations of third-integer resonant extraction in the Delivery Ring, including space charge effects, physical beamline elements, and apertures. A piecewise linear ramp profile of tune quadrupoles was used to maintain a constant averaged spill rate throughout extraction. To study and minimize beam losses, we implemented and introduced a number ofmore » features, beamline element apertures, and septum plane alignments. Additionally, the RF Knockout (RFKO) technique, which excites particles transversely, is employed for spill regulation. Combined with a feedback system, it assists in fine-tuning spill uniformity. Simulation studies were carried out to optimize the RFKO feedback scheme, which will be helpful in designing the final spill regulation system.« less

  5. Experimental Chaos - Proceedings of the 3rd Conference

    NASA Astrophysics Data System (ADS)

    Harrison, Robert G.; Lu, Weiping; Ditto, William; Pecora, Lou; Spano, Mark; Vohra, Sandeep

    1996-10-01

    The Table of Contents for the full book PDF is as follows: * Preface * Spatiotemporal Chaos and Patterns * Scale Segregation via Formation of Domains in a Nonlinear Optical System * Laser Dynamics as Hydrodynamics * Spatiotemporal Dynamics of Human Epileptic Seizures * Experimental Transition to Chaos in a Quasi 1D Chain of Oscillators * Measuring Coupling in Spatiotemporal Dynamical Systems * Chaos in Vortex Breakdown * Dynamical Analysis * Radial Basis Function Modelling and Prediction of Time Series * Nonlinear Phenomena in Polyrhythmic Hand Movements * Using Models to Diagnose, Test and Control Chaotic Systems * New Real-Time Analysis of Time Series Data with Physical Wavelets * Control and Synchronization * Measuring and Controlling Chaotic Dynamics in a Slugging Fluidized Bed * Control of Chaos in a Laser with Feedback * Synchronization and Chaotic Diode Resonators * Control of Chaos by Continuous-time Feedback with Delay * A Framework for Communication using Chaos Sychronization * Control of Chaos in Switching Circuits * Astrophysics, Meteorology and Oceanography * Solar-Wind-Magnetospheric Dynamics via Satellite Data * Nonlinear Dynamics of the Solar Atmosphere * Fractal Dimension of Scalar and Vector Variables from Turbulence Measurements in the Atmospheric Surface Layer * Mechanics * Escape and Overturning: Subtle Transient Behavior in Nonlinear Mechanical Models * Organising Centres in the Dynamics of Parametrically Excited Double Pendulums * Intermittent Behaviour in a Heating System Driven by Phase Transitions * Hydrodynamics * Size Segregation in Couette Flow of Granular Material * Routes to Chaos in Rotational Taylor-Couette Flow * Experimental Study of the Laminar-Turbulent Transition in an Open Flow System * Chemistry * Order and Chaos in Excitable Media under External Forcing * A Chemical Wave Propagation with Accelerating Speed Accompanied by Hydrodynamic Flow * Optics * Instabilities in Semiconductor Lasers with Optical Injection * Spatio-Temporal Dynamics of a Bimode CO2 Laser with Saturable Absorber * Chaotic Homoclinic Phenomena in Opto-Thermal Devices * Observation and Characterisation of Low-Frequency Chaos in Semiconductor Lasers with External Feedback * Condensed Matter * The Application of Nonlinear Dynamics in the Study of Ferroelectric Materials * Cellular Convection in a Small Aspect Ratio Liquid Crystal Device * Driven Spin-Wave Dynamics in YIG Films * Quantum Chaology in Quartz * Small Signal Amplification Caused by Nonlinear Properties of Ferroelectrics * Composite Materials Evolved from Chaos * Electronics and Circuits * Controlling a Chaotic Array of Pulse-Coupled Fitzhugh-Nagumo Circuits * Experimental Observation of On-Off Intermittency * Phase Lock-In of Chaotic Relaxation Oscillators * Biology and Medicine * Singular Value Decomposition and Circuit Structure in Invertebrate Ganglia * Nonlinear Forecasting of Spike Trains from Neurons of a Mollusc * Ultradian Rhythm in the Sensitive Plants: Chaos or Coloured Noise? * Chaos and the Crayfish Sixth Ganglion * Hardware Coupled Nonlinear Oscillators as a Model of Retina

  6. Characterization of normality of chaotic systems including prediction and detection of anomalies

    NASA Astrophysics Data System (ADS)

    Engler, Joseph John

    Accurate prediction and control pervades domains such as engineering, physics, chemistry, and biology. Often, it is discovered that the systems under consideration cannot be well represented by linear, periodic nor random data. It has been shown that these systems exhibit deterministic chaos behavior. Deterministic chaos describes systems which are governed by deterministic rules but whose data appear to be random or quasi-periodic distributions. Deterministically chaotic systems characteristically exhibit sensitive dependence upon initial conditions manifested through rapid divergence of states initially close to one another. Due to this characterization, it has been deemed impossible to accurately predict future states of these systems for longer time scales. Fortunately, the deterministic nature of these systems allows for accurate short term predictions, given the dynamics of the system are well understood. This fact has been exploited in the research community and has resulted in various algorithms for short term predictions. Detection of normality in deterministically chaotic systems is critical in understanding the system sufficiently to able to predict future states. Due to the sensitivity to initial conditions, the detection of normal operational states for a deterministically chaotic system can be challenging. The addition of small perturbations to the system, which may result in bifurcation of the normal states, further complicates the problem. The detection of anomalies and prediction of future states of the chaotic system allows for greater understanding of these systems. The goal of this research is to produce methodologies for determining states of normality for deterministically chaotic systems, detection of anomalous behavior, and the more accurate prediction of future states of the system. Additionally, the ability to detect subtle system state changes is discussed. The dissertation addresses these goals by proposing new representational techniques and novel prediction methodologies. The value and efficiency of these methods are explored in various case studies. Presented is an overview of chaotic systems with examples taken from the real world. A representation schema for rapid understanding of the various states of deterministically chaotic systems is presented. This schema is then used to detect anomalies and system state changes. Additionally, a novel prediction methodology which utilizes Lyapunov exponents to facilitate longer term prediction accuracy is presented and compared with other nonlinear prediction methodologies. These novel methodologies are then demonstrated on applications such as wind energy, cyber security and classification of social networks.

  7. Analysis misconception of integers in microteaching activities

    NASA Astrophysics Data System (ADS)

    Setyawati, R. D.; Indiati, I.

    2018-05-01

    This study view to analyse student misconceptions on integers in microteaching activities. This research used qualitative research design. An integers test contained questions from eight main areas of integers. The Integers material test includes (a) converting the image into fractions, (b) examples of positive numbers including rational numbers, (c) operations in fractions, (d) sorting fractions from the largest to the smallest, and vice versa; e) equate denominator, (f) concept of ratio mark, (g) definition of fraction, and (h) difference between fractions and parts. The results indicated an integers concepts: (1) the students have not been able to define concepts well based on the classification of facts in organized part; (2) The correlational concept: students have not been able to combine interrelated events in the form of general principles; and (3) theoretical concepts: students have not been able to use concepts that facilitate in learning the facts or events in an organized system.

  8. Proceedings of the 2nd Experimental Chaos Conference

    NASA Astrophysics Data System (ADS)

    Ditto, William; Pecora, Lou; Shlesinger, Michael; Spano, Mark; Vohra, Sandeep

    1995-02-01

    The Table of Contents for the full book PDF is as follows: * Introduction * Spatiotemporal Phenomena * Experimental Studies of Chaotic Mixing * Using Random Maps in the Analysis of Experimental Fluid Flows * Transition to Spatiotemporal Chaos in a Reaction-Diffusion System * Ion-Dynamical Chaos in Plasmas * Optics * Chaos in a Synchronously Driven Optical Resonator * Chaos, Patterns and Defects in Stimulated Scattering Phenomena * Test of the Normal Form for a Subcritical Bifurcation * Observation of Bifurcations and Chaos in a Driven Fiber Optic Coil * Applications -- Communications * Robustness and Signal Recovery in a Synchronized Chaotic System * Synchronizing Nonautonomous Chaotic Circuits * Synchronization of Pulse-Coupled Chaotic Oscillators * Ocean Transmission Effects on Chaotic Signals * Controlling Symbolic Dynamics for Communication * Applications -- Control * Analysis of Nonlinear Actuators Using Chaotic Waveforms * Controlling Chaos in a Quasiperiodic Electronic System * Control of Chaos in a CO2 Laser * General Research * Video-Based Analysis of Bifurcation Phenomena in Radio-Frequency-Excited Inert Gas Plasmas * Transition from Soliton to Chaotic Motion During the Impact of a Nonlinear Structure * Sonoluminescence in a Single Bubble: Periodic, Quasiperiodic and Chaotic Light Source * Quantum Chaos Experiments Using Microwave Cavities * Experiments on Quantum Chaos With and Without Time Reversibility * When Small Noise Imposed on Deterministic Dynamics Becomes Important * Biology * Chaos Control for Cardiac Arrhythmias * Irregularities in Spike Trains of Cat Retinal Ganglion Cells * Broad-Band Synchronization in Monkey Neocortex * Applicability of Correlation Dimension Calculations to Blood Pressure Signal in Rats * Tests for Deterministic Chaos in Noisy Time Series * The Crayfish Mechanoreceptor Cell: A Biological Example of Stochastic Resonance * Chemistry * Chaos During Heterogeneous Chemical Reactions * Stabilizing and Tracking Unstable Periodic Orbits and Stationary States in Chemical Systems * Recursive Proportional-Feedback and Its Use to Control Chaos in an Electrochemical System * Temperature Patterns on Catalytic Surfaces * Meteorology/Oceanography * Nonlinear Evolution of Water Waves: Hilbert's View * Fractal Properties of Isoconcentration Surfaces in a Smoke Plume * Fractal Dimensions of Remotely Sensed Atmospheric Signals * Are Ocean Surface Waves Chaotic? * Dynamical Attractor Reconstruction for a Marine Stratocumulus Cloud

  9. Dynamic Long-Term Anticipation of Chaotic States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voss, Henning U.

    2001-07-02

    Introducing a short time delay into the coupling of two synchronizing chaotic systems, it was shown recently that the driven system may anticipate the driving system in real time. Augmenting the phase space of the driven system, we accomplish anticipation times that are multiples of the coupling delay time and exceed characteristic time scales of the chaotic dynamics. The stability properties of the associated anticipatory synchronization manifold in certain cases turn out to be the same as for identically synchronizing oscillators.

  10. Impact of hyperbolicity on chimera states in ensembles of nonlocally coupled chaotic oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Semenova, N.; Anishchenko, V.; Zakharova, A.

    2016-06-08

    In this work we analyse nonlocally coupled networks of identical chaotic oscillators. We study both time-discrete and time-continuous systems (Henon map, Lozi map, Lorenz system). We hypothesize that chimera states, in which spatial domains of coherent (synchronous) and incoherent (desynchronized) dynamics coexist, can be obtained only in networks of chaotic non-hyperbolic systems and cannot be found in networks of hyperbolic systems. This hypothesis is supported by numerical simulations for hyperbolic and non-hyperbolic cases.

  11. Quantum-chaotic cryptography

    NASA Astrophysics Data System (ADS)

    de Oliveira, G. L.; Ramos, R. V.

    2018-03-01

    In this work, it is presented an optical scheme for quantum key distribution employing two synchronized optoelectronic oscillators (OEO) working in the chaotic regime. The produced key depends on the chaotic dynamic, and the synchronization between Alice's and Bob's OEOs uses quantum states. An attack on the synchronization signals will disturb the synchronization of the chaotic systems increasing the error rate in the final key.

  12. A novel chaos-based image encryption algorithm using DNA sequence operations

    NASA Astrophysics Data System (ADS)

    Chai, Xiuli; Chen, Yiran; Broyde, Lucie

    2017-01-01

    An image encryption algorithm based on chaotic system and deoxyribonucleic acid (DNA) sequence operations is proposed in this paper. First, the plain image is encoded into a DNA matrix, and then a new wave-based permutation scheme is performed on it. The chaotic sequences produced by 2D Logistic chaotic map are employed for row circular permutation (RCP) and column circular permutation (CCP). Initial values and parameters of the chaotic system are calculated by the SHA 256 hash of the plain image and the given values. Then, a row-by-row image diffusion method at DNA level is applied. A key matrix generated from the chaotic map is used to fuse the confused DNA matrix; also the initial values and system parameters of the chaotic system are renewed by the hamming distance of the plain image. Finally, after decoding the diffused DNA matrix, we obtain the cipher image. The DNA encoding/decoding rules of the plain image and the key matrix are determined by the plain image. Experimental results and security analyses both confirm that the proposed algorithm has not only an excellent encryption result but also resists various typical attacks.

  13. Detection of chaotic dynamics in human gait signals from mobile devices

    NASA Astrophysics Data System (ADS)

    DelMarco, Stephen; Deng, Yunbin

    2017-05-01

    The ubiquity of mobile devices offers the opportunity to exploit device-generated signal data for biometric identification, health monitoring, and activity recognition. In particular, mobile devices contain an Inertial Measurement Unit (IMU) that produces acceleration and rotational rate information from the IMU accelerometers and gyros. These signals reflect motion properties of the human carrier. It is well-known that the complexity of bio-dynamical systems gives rise to chaotic dynamics. Knowledge of chaotic properties of these systems has shown utility, for example, in detecting abnormal medical conditions and neurological disorders. Chaotic dynamics has been found, in the lab, in bio-dynamical systems data such as electrocardiogram (heart), electroencephalogram (brain), and gait data. In this paper, we investigate the following question: can we detect chaotic dynamics in human gait as measured by IMU acceleration and gyro data from mobile phones? To detect chaotic dynamics, we perform recurrence analysis on real gyro and accelerometer signal data obtained from mobile devices. We apply the delay coordinate embedding approach from Takens' theorem to reconstruct the phase space trajectory of the multi-dimensional gait dynamical system. We use mutual information properties of the signal to estimate the appropriate delay value, and the false nearest neighbor approach to determine the phase space embedding dimension. We use a correlation dimension-based approach together with estimation of the largest Lyapunov exponent to make the chaotic dynamics detection decision. We investigate the ability to detect chaotic dynamics for the different one-dimensional IMU signals, across human subject and walking modes, and as a function of different phone locations on the human carrier.

  14. Terminal Transient Phase of Chaotic Transients

    NASA Astrophysics Data System (ADS)

    Lilienkamp, Thomas; Parlitz, Ulrich

    2018-03-01

    Transient chaos in spatially extended systems can be characterized by the length of the transient phase, which typically grows quickly with the system size (supertransients). For a large class of these systems, the chaotic phase terminates abruptly, without any obvious precursors in commonly used observables. Here we investigate transient spatiotemporal chaos in two different models of this class. By probing the state space using perturbed trajectories we show the existence of a "terminal transient phase," which occurs prior to the abrupt collapse of chaotic dynamics. During this phase the impact of perturbations is significantly different from the earlier transient and particular patterns of (non)susceptible regions in state space occur close to the chaotic trajectories. We therefore hypothesize that even without perturbations proper precursors for the collapse of chaotic transients exist, which might be highly relevant for coping with spatiotemporal chaos in cardiac arrhythmias or brain functionality, for example.

  15. Complexity and network dynamics in physiological adaptation: an integrated view.

    PubMed

    Baffy, György; Loscalzo, Joseph

    2014-05-28

    Living organisms constantly interact with their surroundings and sustain internal stability against perturbations. This dynamic process follows three fundamental strategies (restore, explore, and abandon) articulated in historical concepts of physiological adaptation such as homeostasis, allostasis, and the general adaptation syndrome. These strategies correspond to elementary forms of behavior (ordered, chaotic, and static) in complex adaptive systems and invite a network-based analysis of the operational characteristics, allowing us to propose an integrated framework of physiological adaptation from a complex network perspective. Applicability of this concept is illustrated by analyzing molecular and cellular mechanisms of adaptation in response to the pervasive challenge of obesity, a chronic condition resulting from sustained nutrient excess that prompts chaotic exploration for system stability associated with tradeoffs and a risk of adverse outcomes such as diabetes, cardiovascular disease, and cancer. Deconstruction of this complexity holds the promise of gaining novel insights into physiological adaptation in health and disease. Published by Elsevier Inc.

  16. Finding fixed satellite service orbital allotments with a k-permutation algorithm

    NASA Technical Reports Server (NTRS)

    Reilly, Charles H.; Mount-Campbell, Clark A.; Gonsalvez, David J. A.

    1990-01-01

    A satellite system synthesis problem, the satellite location problem (SLP), is addressed. In SLP, orbital locations (longitudes) are allotted to geostationary satellites in the fixed satellite service. A linear mixed-integer programming model is presented that views SLP as a combination of two problems: the problem of ordering the satellites and the problem of locating the satellites given some ordering. A special-purpose heuristic procedure, a k-permutation algorithm, has been developed to find solutions to SLPs. Solutions to small sample problems are presented and analyzed on the basis of calculated interferences.

  17. On adaptive modified projective synchronization of a supply chain management system

    NASA Astrophysics Data System (ADS)

    Tirandaz, Hamed

    2017-12-01

    In this paper, the synchronization problem of a chaotic supply chain management system is studied. A novel adaptive modified projective synchronization method is introduced to control the behaviour of the leader supply chain system by a follower chaotic system and to adjust the leader system parameters until the measurable errors of the system parameters converge to zero. The stability evaluation and convergence analysis are carried out by the Lyapanov stability theorem. The proposed synchronization and antisynchronization techniques are studied for identical supply chain chaotic systems. Finally, some numerical simulations are presented to verify the effectiveness of the theoretical discussions.

  18. On the efficiency of the image encryption and decryption by using logistic-sine chaotic system and logistic-tent chaotic system

    NASA Astrophysics Data System (ADS)

    Chiun, Lee Chia; Mandangan, Arif; Daud, Muhamad Azlan; Hussin, Che Haziqah Che

    2017-04-01

    We may secure the content of text, audio, image and video during their transmission from one party to another party via an open channel such as the internet by using cryptograph. Logistic-Sine System (LSS) is a combination on two 1D chaotic maps which are Logistic Map and Sine Map. By applying the LSS into cryptography, the image encryption and decryption can be performed. This study is focusing on the performance test of the image encryption and decryption processes by using the LSS. For comparison purpose, we compare the performance of the encryption and decryption by using two different chaotic systems, which are the LSS and Logistic-Tent System (LTS). The result shows that system with LSS is less efficient than LTS in term of encryption time but both systems have similar efficiency in term of decryption time.

  19. A new class of long-term stable lunar resonance orbits: Space weather applications and the Interstellar Boundary Explorer

    NASA Astrophysics Data System (ADS)

    McComas, D. J.; Carrico, J. P.; Hautamaki, B.; Intelisano, M.; Lebois, R.; Loucks, M.; Policastri, L.; Reno, M.; Scherrer, J.; Schwadron, N. A.; Tapley, M.; Tyler, R.

    2011-11-01

    NASA's Interstellar Boundary Explorer (IBEX) mission was recently maneuvered into a unique long-term stable Earth orbit, with apogee at ˜50 Earth radii (RE). The Moon's (˜65 RE) gravity disrupts most highly elliptical Earth orbits, leading to (1) chaotic orbital solutions, (2) the inability to predict orbital positions more than a few years into the future, and ultimately (3) mission-ending possibilities of atmospheric reentry or escape from Earth orbit. By synchronizing the satellite's orbital period to integer fractions of the Moon's sidereal period, PM = 27.3 days (e.g., PM/2 = 13.6 days, PM/3 = 9.1 days), and phasing apogee to stay away from the Moon, very long term stability can be achieved. Our analysis indicates orbital stability for well over a decade, and these IBEX-like orbits represent a new class of Earth orbits that are stable far longer than typical satellite lifetimes. These orbits provide cost-effective and nearly ideal locations for long-term space weather observations from spacecraft that can remotely image the Earth's magnetosphere from outside its boundaries while simultaneously providing external (solar wind or magnetosheath) observation over most of their orbits. Utilized with multiple spacecraft, such orbits would allow continuous and simultaneous monitoring of the magnetosphere in order to help predict and mitigate adverse space weather-driven effects.

  20. Synthesis of Feedback Controller for Chaotic Systems by Means of Evolutionary Techniques

    NASA Astrophysics Data System (ADS)

    Senkerik, Roman; Oplatkova, Zuzana; Zelinka, Ivan; Davendra, Donald; Jasek, Roman

    2011-06-01

    This research deals with a synthesis of control law for three selected discrete chaotic systems by means of analytic programming. The novality of the approach is that a tool for symbolic regression—analytic programming—is used for such kind of difficult problem. The paper consists of the descriptions of analytic programming as well as chaotic systems and used cost function. For experimentation, Self-Organizing Migrating Algorithm (SOMA) with analytic programming was used.

  1. Regular transport dynamics produce chaotic travel times.

    PubMed

    Villalobos, Jorge; Muñoz, Víctor; Rogan, José; Zarama, Roberto; Johnson, Neil F; Toledo, Benjamín; Valdivia, Juan Alejandro

    2014-06-01

    In the hope of making passenger travel times shorter and more reliable, many cities are introducing dedicated bus lanes (e.g., Bogota, London, Miami). Here we show that chaotic travel times are actually a natural consequence of individual bus function, and hence of public transport systems more generally, i.e., chaotic dynamics emerge even when the route is empty and straight, stops and lights are equidistant and regular, and loading times are negligible. More generally, our findings provide a novel example of chaotic dynamics emerging from a single object following Newton's laws of motion in a regularized one-dimensional system.

  2. Regular transport dynamics produce chaotic travel times

    NASA Astrophysics Data System (ADS)

    Villalobos, Jorge; Muñoz, Víctor; Rogan, José; Zarama, Roberto; Johnson, Neil F.; Toledo, Benjamín; Valdivia, Juan Alejandro

    2014-06-01

    In the hope of making passenger travel times shorter and more reliable, many cities are introducing dedicated bus lanes (e.g., Bogota, London, Miami). Here we show that chaotic travel times are actually a natural consequence of individual bus function, and hence of public transport systems more generally, i.e., chaotic dynamics emerge even when the route is empty and straight, stops and lights are equidistant and regular, and loading times are negligible. More generally, our findings provide a novel example of chaotic dynamics emerging from a single object following Newton's laws of motion in a regularized one-dimensional system.

  3. Parameter estimation for chaotic systems using a hybrid adaptive cuckoo search with simulated annealing algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, Zheng, E-mail: 19994035@sina.com; Wang, Jun; Zhou, Bihua

    2014-03-15

    This paper introduces a novel hybrid optimization algorithm to establish the parameters of chaotic systems. In order to deal with the weaknesses of the traditional cuckoo search algorithm, the proposed adaptive cuckoo search with simulated annealing algorithm is presented, which incorporates the adaptive parameters adjusting operation and the simulated annealing operation in the cuckoo search algorithm. Normally, the parameters of the cuckoo search algorithm are kept constant that may result in decreasing the efficiency of the algorithm. For the purpose of balancing and enhancing the accuracy and convergence rate of the cuckoo search algorithm, the adaptive operation is presented tomore » tune the parameters properly. Besides, the local search capability of cuckoo search algorithm is relatively weak that may decrease the quality of optimization. So the simulated annealing operation is merged into the cuckoo search algorithm to enhance the local search ability and improve the accuracy and reliability of the results. The functionality of the proposed hybrid algorithm is investigated through the Lorenz chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the method can estimate parameters efficiently and accurately in the noiseless and noise condition. Finally, the results are compared with the traditional cuckoo search algorithm, genetic algorithm, and particle swarm optimization algorithm. Simulation results demonstrate the effectiveness and superior performance of the proposed algorithm.« less

  4. Dancing Protein Clouds: The Strange Biology and Chaotic Physics of Intrinsically Disordered Proteins.

    PubMed

    Uversky, Vladimir N

    2016-03-25

    Biologically active but floppy proteins represent a new reality of modern protein science. These intrinsically disordered proteins (IDPs) and hybrid proteins containing ordered and intrinsically disordered protein regions (IDPRs) constitute a noticeable part of any given proteome. Functionally, they complement ordered proteins, and their conformational flexibility and structural plasticity allow them to perform impossible tricks and be engaged in biological activities that are inaccessible to well folded proteins with their unique structures. The major goals of this minireview are to show that, despite their simplified amino acid sequences, IDPs/IDPRs are complex entities often resembling chaotic systems, are structurally and functionally heterogeneous, and can be considered an important part of the structure-function continuum. Furthermore, IDPs/IDPRs are everywhere, and are ubiquitously engaged in various interactions characterized by a wide spectrum of binding scenarios and an even wider spectrum of structural and functional outputs. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Solving Partial Differential Equations in a data-driven multiprocessor environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaudiot, J.L.; Lin, C.M.; Hosseiniyar, M.

    1988-12-31

    Partial differential equations can be found in a host of engineering and scientific problems. The emergence of new parallel architectures has spurred research in the definition of parallel PDE solvers. Concurrently, highly programmable systems such as data-how architectures have been proposed for the exploitation of large scale parallelism. The implementation of some Partial Differential Equation solvers (such as the Jacobi method) on a tagged token data-flow graph is demonstrated here. Asynchronous methods (chaotic relaxation) are studied and new scheduling approaches (the Token No-Labeling scheme) are introduced in order to support the implementation of the asychronous methods in a data-driven environment.more » New high-level data-flow language program constructs are introduced in order to handle chaotic operations. Finally, the performance of the program graphs is demonstrated by a deterministic simulation of a message passing data-flow multiprocessor. An analysis of the overhead in the data-flow graphs is undertaken to demonstrate the limits of parallel operations in dataflow PDE program graphs.« less

  6. On common noise-induced synchronization in complex networks with state-dependent noise diffusion processes

    NASA Astrophysics Data System (ADS)

    Russo, Giovanni; Shorten, Robert

    2018-04-01

    This paper is concerned with the study of common noise-induced synchronization phenomena in complex networks of diffusively coupled nonlinear systems. We consider the case where common noise propagation depends on the network state and, as a result, the noise diffusion process at the nodes depends on the state of the network. For such networks, we present an algebraic sufficient condition for the onset of synchronization, which depends on the network topology, the dynamics at the nodes, the coupling strength and the noise diffusion. Our result explicitly shows that certain noise diffusion processes can drive an unsynchronized network towards synchronization. In order to illustrate the effectiveness of our result, we consider two applications: collective decision processes and synchronization of chaotic systems. We explicitly show that, in the former application, a sufficiently large noise can drive a population towards a common decision, while, in the latter, we show how common noise can synchronize a network of Lorentz chaotic systems.

  7. Chaos and crises in a model for cooperative hunting: a symbolic dynamics approach.

    PubMed

    Duarte, Jorge; Januário, Cristina; Martins, Nuno; Sardanyés, Josep

    2009-12-01

    In this work we investigate the population dynamics of cooperative hunting extending the McCann and Yodzis model for a three-species food chain system with a predator, a prey, and a resource species. The new model considers that a given fraction sigma of predators cooperates in prey's hunting, while the rest of the population 1-sigma hunts without cooperation. We use the theory of symbolic dynamics to study the topological entropy and the parameter space ordering of the kneading sequences associated with one-dimensional maps that reproduce significant aspects of the dynamics of the species under several degrees of cooperative hunting. Our model also allows us to investigate the so-called deterministic extinction via chaotic crisis and transient chaos in the framework of cooperative hunting. The symbolic sequences allow us to identify a critical boundary in the parameter spaces (K,C(0)) and (K,sigma) which separates two scenarios: (i) all-species coexistence and (ii) predator's extinction via chaotic crisis. We show that the crisis value of the carrying capacity K(c) decreases at increasing sigma, indicating that predator's populations with high degree of cooperative hunting are more sensitive to the chaotic crises. We also show that the control method of Dhamala and Lai [Phys. Rev. E 59, 1646 (1999)] can sustain the chaotic behavior after the crisis for systems with cooperative hunting. We finally analyze and quantify the inner structure of the target regions obtained with this control method for wider parameter values beyond the crisis, showing a power law dependence of the extinction transients on such critical parameters.

  8. Chaotic oscillator containing memcapacitor and meminductor and its dimensionality reduction analysis.

    PubMed

    Yuan, Fang; Wang, Guangyi; Wang, Xiaowei

    2017-03-01

    In this paper, smooth curve models of meminductor and memcapacitor are designed, which are generalized from a memristor. Based on these models, a new five-dimensional chaotic oscillator that contains a meminductor and memcapacitor is proposed. By dimensionality reducing, this five-dimensional system can be transformed into a three-dimensional system. The main work of this paper is to give the comparisons between the five-dimensional system and its dimensionality reduction model. To investigate dynamics behaviors of the two systems, equilibrium points and stabilities are analyzed. And the bifurcation diagrams and Lyapunov exponent spectrums are used to explore their properties. In addition, digital signal processing technologies are used to realize this chaotic oscillator, and chaotic sequences are generated by the experimental device, which can be used in encryption applications.

  9. Desktop chaotic systems: Intuition and visualization

    NASA Technical Reports Server (NTRS)

    Bright, Michelle M.; Melcher, Kevin J.; Qammar, Helen K.; Hartley, Tom T.

    1993-01-01

    This paper presents a dynamic study of the Wildwood Pendulum, a commercially available desktop system which exhibits a strange attractor. The purpose of studying this chaotic pendulum is twofold: to gain insight in the paradigmatic approach of modeling, simulating, and determining chaos in nonlinear systems; and to provide a desktop model of chaos as a visual tool. For this study, the nonlinear behavior of this chaotic pendulum is modeled, a computer simulation is performed, and an experimental performance is measured. An assessment of the pendulum in the phase plane shows the strange attractor. Through the use of a box-assisted correlation dimension methodology, the attractor dimension is determined for both the model and the experimental pendulum systems. Correlation dimension results indicate that the pendulum and the model are chaotic and their fractal dimensions are similar.

  10. Transversal homoclinic orbits in a transiently chaotic neural network.

    PubMed

    Chen, Shyan-Shiou; Shih, Chih-Wen

    2002-09-01

    We study the existence of snap-back repellers, hence the existence of transversal homoclinic orbits in a discrete-time neural network. Chaotic behaviors for the network system in the sense of Li and Yorke or Marotto can then be concluded. The result is established by analyzing the structures of the system and allocating suitable parameters in constructing the fixed points and their pre-images for the system. The investigation provides a theoretical confirmation on the scenario of transient chaos for the system. All the parameter conditions for the theory can be examined numerically. The numerical ranges for the parameters which yield chaotic dynamics and convergent dynamics provide significant information in the annealing process in solving combinatorial optimization problems using this transiently chaotic neural network. (c) 2002 American Institute of Physics.

  11. Chaotic simulated annealing by a neural network with a variable delay: design and application.

    PubMed

    Chen, Shyan-Shiou

    2011-10-01

    In this paper, we have three goals: the first is to delineate the advantages of a variably delayed system, the second is to find a more intuitive Lyapunov function for a delayed neural network, and the third is to design a delayed neural network for a quadratic cost function. For delayed neural networks, most researchers construct a Lyapunov function based on the linear matrix inequality (LMI) approach. However, that approach is not intuitive. We provide a alternative candidate Lyapunov function for a delayed neural network. On the other hand, if we are first given a quadratic cost function, we can construct a delayed neural network by suitably dividing the second-order term into two parts: a self-feedback connection weight and a delayed connection weight. To demonstrate the advantage of a variably delayed neural network, we propose a transiently chaotic neural network with variable delay and show numerically that the model should possess a better searching ability than Chen-Aihara's model, Wang's model, and Zhao's model. We discuss both the chaotic and the convergent phases. During the chaotic phase, we simply present bifurcation diagrams for a single neuron with a constant delay and with a variable delay. We show that the variably delayed model possesses the stochastic property and chaotic wandering. During the convergent phase, we not only provide a novel Lyapunov function for neural networks with a delay (the Lyapunov function is independent of the LMI approach) but also establish a correlation between the Lyapunov function for a delayed neural network and an objective function for the traveling salesman problem. © 2011 IEEE

  12. A Simple Snap Oscillator with Coexisting Attractors, Its Time-Delayed Form, Physical Realization, and Communication Designs

    NASA Astrophysics Data System (ADS)

    Rajagopal, Karthikeyan; Jafari, Sajad; Akgul, Akif; Karthikeyan, Anitha; Çiçek, Serdar; Shekofteh, Yasser

    2018-05-01

    In this paper, we report a novel chaotic snap oscillator with one nonlinear function. Dynamic analysis of the system shows the existence of bistability. To study the time delay effects on the proposed snap oscillator, we introduce multiple time delay in the fourth state equation. Investigation of dynamical properties of the time-delayed system shows that the snap oscillator exhibits the same multistable properties as the nondelayed system. The new multistable hyperjerk chaotic system has been tested in chaos shift keying and symmetric choc shift keying modulated communication designs for engineering applications. It has been determined that the symmetric chaos shift keying modulated communication system implemented with the new chaotic system is more successful than the chaos shift keying modulation for secure communication. Also, circuit implementation of the chaotic snap oscillator with tangent function is carried out showing its feasibility.

  13. Ordering kinetics in the long-period superlattice alloy Cu0.79 Pd0.21

    NASA Astrophysics Data System (ADS)

    Wang, X.; Mainville, J.; Ludwig, K.; Flament, X.; Finel, A.; Caudron, R.

    2005-07-01

    The kinetics of long-period superlattice (LPS) formation from the disordered state has been examined in a Cu0.79Pd0.21 alloy that exhibits a one-dimensional LPS ordered state. Time-resolved x-ray scattering shows that, following a rapid temperature quench from the disordered state into the LPS region of the phase diagram, the satellite peaks initially grow more quickly than do the central integer-order superlattice peaks. During this process, the satellite peak position, which is inversely related to the average modulation wavelength 2M , initially decreases rapidly, then reaches a minimum and relaxes slowly back toward its new equilibrium position. In the later stages of the LPS formation process, the satellite and central integer-order superlattice peaks narrow in a manner consistent with t1/2 domain coarsening. A simple stochastic model of the partially ordered structure was developed to better understand the relationships between peak widths.

  14. Chaos in driven Alfvén systems: unstable periodic orbits and chaotic saddles

    NASA Astrophysics Data System (ADS)

    Chian, A. C.-L.; Santana, W. M.; Rempel, E. L.; Borotto, F. A.; Hada, T.; Kamide, Y.

    2007-01-01

    The chaotic dynamics of Alfvén waves in space plasmas governed by the derivative nonlinear Schrödinger equation, in the low-dimensional limit described by stationary spatial solutions, is studied. A bifurcation diagram is constructed, by varying the driver amplitude, to identify a number of nonlinear dynamical processes including saddle-node bifurcation, boundary crisis, and interior crisis. The roles played by unstable periodic orbits and chaotic saddles in these transitions are analyzed, and the conversion from a chaotic saddle to a chaotic attractor in these dynamical processes is demonstrated. In particular, the phenomenon of gap-filling in the chaotic transition from weak chaos to strong chaos via an interior crisis is investigated. A coupling unstable periodic orbit created by an explosion, within the gaps of the chaotic saddles embedded in a chaotic attractor following an interior crisis, is found numerically. The gap-filling unstable periodic orbits are responsible for coupling the banded chaotic saddle (BCS) to the surrounding chaotic saddle (SCS), leading to crisis-induced intermittency. The physical relevance of chaos for Alfvén intermittent turbulence observed in the solar wind is discussed.

  15. Video encryption using chaotic masks in joint transform correlator

    NASA Astrophysics Data System (ADS)

    Saini, Nirmala; Sinha, Aloka

    2015-03-01

    A real-time optical video encryption technique using a chaotic map has been reported. In the proposed technique, each frame of video is encrypted using two different chaotic random phase masks in the joint transform correlator architecture. The different chaotic random phase masks can be obtained either by using different iteration levels or by using different seed values of the chaotic map. The use of different chaotic random phase masks makes the decryption process very complex for an unauthorized person. Optical, as well as digital, methods can be used for video encryption but the decryption is possible only digitally. To further enhance the security of the system, the key parameters of the chaotic map are encoded using RSA (Rivest-Shamir-Adleman) public key encryption. Numerical simulations are carried out to validate the proposed technique.

  16. Absence of even-integer ζ-function values in Euclidean physical quantities in QCD

    NASA Astrophysics Data System (ADS)

    Jamin, Matthias; Miravitllas, Ramon

    2018-04-01

    At order αs4 in perturbative quantum chromodynamics, even-integer ζ-function values are present in Euclidean physical correlation functions like the scalar quark correlation function or the scalar gluonium correlator. We demonstrate that these contributions cancel when the perturbative expansion is expressed in terms of the so-called C-scheme coupling αˆs which has recently been introduced in Ref. [1]. It is furthermore conjectured that a ζ4 term should arise in the Adler function at order αs5 in the MS ‾-scheme, and that this term is expected to disappear in the C-scheme as well.

  17. Biologically inspired rate control of chaos.

    PubMed

    Olde Scheper, Tjeerd V

    2017-10-01

    The overall intention of chaotic control is to eliminate chaos and to force the system to become stable in the classical sense. In this paper, I demonstrate a more subtle method that does not eliminate all traces of chaotic behaviour; yet it consistently, and reliably, can provide control as intended. The Rate Control of Chaos (RCC) method is derived from metabolic control processes and has several remarkable properties. RCC can control complex systems continuously, and unsupervised, it can also maintain control across bifurcations, and in the presence of significant systemic noise. Specifically, I show that RCC can control a typical set of chaotic models, including the 3 and 4 dimensional chaotic Lorenz systems, in all modes. Furthermore, it is capable of controlling spatiotemporal chaos without supervision and maintains control of the system across bifurcations. This property of RCC allows a dynamic system to operate in parameter spaces that are difficult to control otherwise. This may be particularly interesting for the control of forced systems or dynamic systems that are chaotically perturbed. These control properties of RCC are applicable to a range of dynamic systems, thereby appearing to have far-reaching effects beyond just controlling chaos. RCC may also point to the existence of a biochemical control function of an enzyme, to stabilise the dynamics of the reaction cascade.

  18. Pseudo-Random Number Generator Based on Coupled Map Lattices

    NASA Astrophysics Data System (ADS)

    Lü, Huaping; Wang, Shihong; Hu, Gang

    A one-way coupled chaotic map lattice is used for generating pseudo-random numbers. It is shown that with suitable cooperative applications of both chaotic and conventional approaches, the output of the spatiotemporally chaotic system can easily meet the practical requirements of random numbers, i.e., excellent random statistical properties, long periodicity of computer realizations, and fast speed of random number generations. This pseudo-random number generator system can be used as ideal synchronous and self-synchronizing stream cipher systems for secure communications.

  19. Information's role in the estimation of chaotic signals

    NASA Astrophysics Data System (ADS)

    Drake, Daniel Fred

    1998-11-01

    Researchers have proposed several methods designed to recover chaotic signals from noise-corrupted observations. While the methods vary, their qualitative performance does not: in low levels of noise all methods effectively recover the underlying signal; in high levels of noise no method can recover the underlying signal to any meaningful degree of accuracy. Of the methods proposed to date, all represent sub-optimal estimators. So: Is the inability to recover the signal in high noise levels simply a consequence of estimator sub-optimality? Or is estimator failure actually a manifestation of some intrinsic property of chaos itself? These questions are answered by deriving an optimal estimator for a class of chaotic systems and noting that it, too, fails in high levels of noise. An exact, closed- form expression for the estimator is obtained for a class of chaotic systems whose signals are solutions to a set of linear (but noncausal) difference equations. The existence of this linear description circumvents the difficulties normally encountered when manipulating the nonlinear (but causal) expressions that govern. chaotic behavior. The reason why even the optimal estimator fails to recover underlying chaotic signals in high levels of noise has its roots in information theory. At such noise levels, the mutual information linking the corrupted observations to the underlying signal is essentially nil, reducing the estimator to a simple guessing strategy based solely on a priori statistics. Entropy, long the common bond between information theory and dynamical systems, is actually one aspect of a far more complete characterization of information sources: the rate distortion function. Determining the rate distortion function associated with the class of chaotic systems considered in this work provides bounds on estimator performance in high levels of noise. Finally, a slight modification of the linear description leads to a method of synthesizing on limited precision platforms ``pseudo-chaotic'' sequences that mimic true chaotic behavior to any finite degree of precision and duration. The use of such a technique in spread-spectrum communications is considered.

  20. Mixed integer simulation optimization for optimal hydraulic fracturing and production of shale gas fields

    NASA Astrophysics Data System (ADS)

    Li, J. C.; Gong, B.; Wang, H. G.

    2016-08-01

    Optimal development of shale gas fields involves designing a most productive fracturing network for hydraulic stimulation processes and operating wells appropriately throughout the production time. A hydraulic fracturing network design-determining well placement, number of fracturing stages, and fracture lengths-is defined by specifying a set of integer ordered blocks to drill wells and create fractures in a discrete shale gas reservoir model. The well control variables such as bottom hole pressures or production rates for well operations are real valued. Shale gas development problems, therefore, can be mathematically formulated with mixed-integer optimization models. A shale gas reservoir simulator is used to evaluate the production performance for a hydraulic fracturing and well control plan. To find the optimal fracturing design and well operation is challenging because the problem is a mixed integer optimization problem and entails computationally expensive reservoir simulation. A dynamic simplex interpolation-based alternate subspace (DSIAS) search method is applied for mixed integer optimization problems associated with shale gas development projects. The optimization performance is demonstrated with the example case of the development of the Barnett Shale field. The optimization results of DSIAS are compared with those of a pattern search algorithm.

  1. Extreme multistability analysis of memristor-based chaotic system and its application in image decryption

    NASA Astrophysics Data System (ADS)

    Li, Chuang; Min, Fuhong; Jin, Qiusen; Ma, Hanyuan

    2017-12-01

    An active charge-controlled memristive Chua's circuit is implemented, and its basic properties are analyzed. Firstly, with the system trajectory starting from an equilibrium point, the dynamic behavior of multiple coexisting attractors depending on the memristor initial value and the system parameter is studied, which shows the coexisting behaviors of point, period, chaos, and quasic-period. Secondly, with the system motion starting from a non-equilibrium point, the dynamics of extreme multistability in a wide initial value domain are easily conformed by new analytical methods. Furthermore, the simulation results indicate that some strange chaotic attractors like multi-wing type and multi-scroll type are observed when the observed signals are extended from voltage and current to power and energy, respectively. Specially, when different initial conditions are taken, the coexisting strange chaotic attractors between the power and energy signals are exhibited. Finally, the chaotic sequences of the new system are used for encrypting color image to protect image information security. The encryption performance is analyzed by statistic histogram, correlation, key spaces and key sensitivity. Simulation results show that the new memristive chaotic system has high security in color image encryption.

  2. Periodic or chaotic bursting dynamics via delayed pitchfork bifurcation in a slow-varying controlled system

    NASA Astrophysics Data System (ADS)

    Yu, Yue; Zhang, Zhengdi; Han, Xiujing

    2018-03-01

    In this work, we aim to demonstrate the novel routes to periodic and chaotic bursting, i.e., the different bursting dynamics via delayed pitchfork bifurcations around stable attractors, in the classical controlled Lü system. First, by computing the corresponding characteristic polynomial, we determine where some critical values about bifurcation behaviors appear in the Lü system. Moreover, the transition mechanism among different stable attractors has been introduced including homoclinic-type connections or chaotic attractors. Secondly, taking advantage of the above analytical results, we carry out a study of the mechanism for bursting dynamics in the Lü system with slowly periodic variation of certain control parameter. A distinct delayed supercritical pitchfork bifurcation behavior can be discussed when the control item passes through bifurcation points periodically. This delayed dynamical behavior may terminate at different parameter areas, which leads to different spiking modes around different stable attractors (equilibriums, limit cycles, or chaotic attractors). In particular, the chaotic attractor may appear by Shilnikov connections or chaos boundary crisis, which leads to the occurrence of impressive chaotic bursting oscillations. Our findings enrich the study of bursting dynamics and deepen the understanding of some similar sorts of delayed bursting phenomena. Finally, some numerical simulations are included to illustrate the validity of our study.

  3. Robust design of (s, S) inventory policy parameters in supply chains with demand and lead time uncertainties

    NASA Astrophysics Data System (ADS)

    Karimi Movahed, Kamran; Zhang, Zhi-Hai

    2015-09-01

    Demand and lead time uncertainties have significant effects on supply chain behaviour. In this paper, we present a single-product three-level multi-period supply chain with uncertain demands and lead times by using robust techniques to study the managerial insights of the supply chain inventory system under uncertainty. We formulate this problem as a robust mixed-integer linear program with minimised expected cost and total cost variation to determine the optimal (s, S) values of the inventory parameters. Several numerical studies are performed to investigate the supply chain behaviour. Useful guidelines for the design of a robust supply chain are also provided. Results show that the order variance and the expected cost in a supply chain significantly increase when the manufacturer's review period is an integer ratio of the distributor's and the retailer's review periods.

  4. Comparative performance evaluation of transform coding in image pre-processing

    NASA Astrophysics Data System (ADS)

    Menon, Vignesh V.; NB, Harikrishnan; Narayanan, Gayathri; CK, Niveditha

    2017-07-01

    We are in the midst of a communication transmute which drives the development as largely as dissemination of pioneering communication systems with ever-increasing fidelity and resolution. Distinguishable researches have been appreciative in image processing techniques crazed by a growing thirst for faster and easier encoding, storage and transmission of visual information. In this paper, the researchers intend to throw light on many techniques which could be worn at the transmitter-end in order to ease the transmission and reconstruction of the images. The researchers investigate the performance of different image transform coding schemes used in pre-processing, their comparison, and effectiveness, the necessary and sufficient conditions, properties and complexity in implementation. Whimsical by prior advancements in image processing techniques, the researchers compare various contemporary image pre-processing frameworks- Compressed Sensing, Singular Value Decomposition, Integer Wavelet Transform on performance. The paper exposes the potential of Integer Wavelet transform to be an efficient pre-processing scheme.

  5. Chaotic Stochasticity: A Ubiquitous Source of Unpredictability in Epidemics

    NASA Astrophysics Data System (ADS)

    Rand, D. A.; Wilson, H. B.

    1991-11-01

    We address the question of whether or not childhood epidemics such as measles and chickenpox are chaotic, and argue that the best explanation of the observed unpredictability is that it is a manifestation of what we call chaotic stochasticity. Such chaos is driven and made permanent by the fluctuations from the mean field encountered in epidemics, or by extrinsic stochastic noise, and is dependent upon the existence of chaotic repellors in the mean field dynamics. Its existence is also a consequence of the near extinctions in the epidemic. For such systems, chaotic stochasticity is likely to be far more ubiquitous than the presence of deterministic chaotic attractors. It is likely to be a common phenomenon in biological dynamics.

  6. Effect of Parametric Dichotomic Markov Noise on the Properties of Chaotic Transitions in Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Gac, J. M.; Żebrowski, J. J.

    A chaotic transition occurs when a continuous change of one of the parameters of the system causes a discontinuous change in the properties of the chaotic attractor of the system. Such phenomena are present in many dynamical systems, in which a chaotic behavior occurs. The best known of these transitions are: the period-doubling bifurcation cascade, intermittency and crises. The effect of dichotomous Markov noise (DMN) on the properties of systems with chaotic transitions is discussed. DMN is a very simple two-valued stochastic process, with constant transition rates between the two states. In spite of its simplicity, this kind of noise is a very powerful tool to describe various phenomena present in many physical, chemical or biological systems. Many interesting phenomena induced by DMN are known. However, there is no research on the effect of this kind of noise on intermittency or crises. We present the change of the mean laminar phase length and of laminar phase length distribution caused by DMN modulating the parameters of a system with intermittency and the modification of the mean life time on the pre-crisis attractor in the case of a boundary crisis. The results obtained analytically are compared with numerical simulations for several simple dynamical systems.

  7. Out-of-time-order fluctuation-dissipation theorem

    NASA Astrophysics Data System (ADS)

    Tsuji, Naoto; Shitara, Tomohiro; Ueda, Masahito

    2018-01-01

    We prove a generalized fluctuation-dissipation theorem for a certain class of out-of-time-ordered correlators (OTOCs) with a modified statistical average, which we call bipartite OTOCs, for general quantum systems in thermal equilibrium. The difference between the bipartite and physical OTOCs defined by the usual statistical average is quantified by a measure of quantum fluctuations known as the Wigner-Yanase skew information. Within this difference, the theorem describes a universal relation between chaotic behavior in quantum systems and a nonlinear-response function that involves a time-reversed process. We show that the theorem can be generalized to higher-order n -partite OTOCs as well as in the form of generalized covariance.

  8. Chaos synchronization of uncertain chaotic systems using composite nonlinear feedback based integral sliding mode control.

    PubMed

    Mobayen, Saleh

    2018-06-01

    This paper proposes a combination of composite nonlinear feedback and integral sliding mode techniques for fast and accurate chaos synchronization of uncertain chaotic systems with Lipschitz nonlinear functions, time-varying delays and disturbances. The composite nonlinear feedback method allows accurate following of the master chaotic system and the integral sliding mode control provides invariance property which rejects the perturbations and preserves the stability of the closed-loop system. Based on the Lyapunov- Krasovskii stability theory and linear matrix inequalities, a novel sufficient condition is offered for the chaos synchronization of uncertain chaotic systems. This method not only guarantees the robustness against perturbations and time-delays, but also eliminates reaching phase and avoids chattering problem. Simulation results demonstrate that the suggested procedure leads to a great control performance. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  9. PIPS-SBB: A Parallel Distributed-Memory Branch-and-Bound Algorithm for Stochastic Mixed-Integer Programs

    DOE PAGES

    Munguia, Lluis-Miquel; Oxberry, Geoffrey; Rajan, Deepak

    2016-05-01

    Stochastic mixed-integer programs (SMIPs) deal with optimization under uncertainty at many levels of the decision-making process. When solved as extensive formulation mixed- integer programs, problem instances can exceed available memory on a single workstation. In order to overcome this limitation, we present PIPS-SBB: a distributed-memory parallel stochastic MIP solver that takes advantage of parallelism at multiple levels of the optimization process. We also show promising results on the SIPLIB benchmark by combining methods known for accelerating Branch and Bound (B&B) methods with new ideas that leverage the structure of SMIPs. Finally, we expect the performance of PIPS-SBB to improve furthermore » as more functionality is added in the future.« less

  10. Logic integer programming models for signaling networks.

    PubMed

    Haus, Utz-Uwe; Niermann, Kathrin; Truemper, Klaus; Weismantel, Robert

    2009-05-01

    We propose a static and a dynamic approach to model biological signaling networks, and show how each can be used to answer relevant biological questions. For this, we use the two different mathematical tools of Propositional Logic and Integer Programming. The power of discrete mathematics for handling qualitative as well as quantitative data has so far not been exploited in molecular biology, which is mostly driven by experimental research, relying on first-order or statistical models. The arising logic statements and integer programs are analyzed and can be solved with standard software. For a restricted class of problems the logic models reduce to a polynomial-time solvable satisfiability algorithm. Additionally, a more dynamic model enables enumeration of possible time resolutions in poly-logarithmic time. Computational experiments are included.

  11. Axial distribution of plasma fluctuations, plasma parameters, deposition rate and grain size during copper deposition

    NASA Astrophysics Data System (ADS)

    Gopikishan, S.; Banerjee, I.; Pathak, Anand; Mahapatra, S. K.

    2017-08-01

    Floating potential fluctuations, plasma parameters and deposition rate have been investigated as a function of axial distance during deposition of copper in direct current (DC) magnetron sputtering system. Fluctuations were analyzed using phase space, power spectra and amplitude bifurcation plots. It has been observed that the fluctuations are modified from chaotic to ordered state with increase in the axial distance from cathode. Plasma parameters such as electron density (ne), electron temperature (Te) and deposition rate (Dr) were measured and correlated with plasma fluctuations. It was found that more the deposition rate, greater the grain size, higher the electron density, higher the electron temperature and more chaotic the oscillations near the cathode. This observation could be helpful to the thin film technology industry to optimize the required film.

  12. A Novel Type of Chaotic Attractor for Quadratic Systems Without Equilibriums

    NASA Astrophysics Data System (ADS)

    Dantsev, Danylo

    In this paper, a new chaotic dynamic system without equilibriums is presented. A conducted research of the qualitative properties of the discovered system reveals a noncompliance between the bifurcation behavior of the system and the Feigenbaum-Sharkovskii-Magnitsky theory. Additional research of known systems confirms the discrepancy.

  13. Conjunctive management of multi-reservoir network system and groundwater system

    NASA Astrophysics Data System (ADS)

    Mani, A.; Tsai, F. T. C.

    2015-12-01

    This study develops a successive mixed-integer linear fractional programming (successive MILFP) method to conjunctively manage water resources provided by a multi-reservoir network system and a groundwater system. The conjunctive management objectives are to maximize groundwater withdrawals and maximize reservoir storages while satisfying water demands and raising groundwater level to a target level. The decision variables in the management problem are reservoir releases and spills, network flows and groundwater pumping rates. Using the fractional programming approach, the objective function is defined as a ratio of total groundwater withdraws to total reservoir storage deficits from the maximum storages. Maximizing this ratio function tends to maximizing groundwater use and minimizing surface water use. This study introduces a conditional constraint on groundwater head in order to sustain aquifers from overpumping: if current groundwater level is less than a target level, groundwater head at the next time period has to be raised; otherwise, it is allowed to decrease up to a certain extent. This conditional constraint is formulated into a set of mixed binary nonlinear constraints and results in a mixed-integer nonlinear fractional programming (MINLFP) problem. To solve the MINLFP problem, we first use the response matrix approach to linearize groundwater head with respect to pumping rate and reduce the problem to an MILFP problem. Using the Charnes-Cooper transformation, the MILFP is transformed to an equivalent mixed-integer linear programming (MILP). The solution of the MILP is successively updated by updating the response matrix in every iteration. The study uses IBM CPLEX to solve the MILP problem. The methodology is applied to water resources management in northern Louisiana. This conjunctive management approach aims to recover the declining groundwater level of the stressed Sparta aquifer by using surface water from a network of four reservoirs as an alternative source of supply.

  14. Robust pre-specified time synchronization of chaotic systems by employing time-varying switching surfaces in the sliding mode control scheme

    NASA Astrophysics Data System (ADS)

    Khanzadeh, Alireza; Pourgholi, Mahdi

    2016-08-01

    In the conventional chaos synchronization methods, the time at which two chaotic systems are synchronized, is usually unknown and depends on initial conditions. In this work based on Lyapunov stability theory a sliding mode controller with time-varying switching surfaces is proposed to achieve chaos synchronization at a pre-specified time for the first time. The proposed controller is able to synchronize chaotic systems precisely at any time when we want. Moreover, by choosing the time-varying switching surfaces in a way that the reaching phase is eliminated, the synchronization becomes robust to uncertainties and exogenous disturbances. Simulation results are presented to show the effectiveness of the proposed method of stabilizing and synchronizing chaotic systems with complete robustness to uncertainty and disturbances exactly at a pre-specified time.

  15. A new approach of optimal control for a class of continuous-time chaotic systems by an online ADP algorithm

    NASA Astrophysics Data System (ADS)

    Song, Rui-Zhuo; Xiao, Wen-Dong; Wei, Qing-Lai

    2014-05-01

    We develop an online adaptive dynamic programming (ADP) based optimal control scheme for continuous-time chaotic systems. The idea is to use the ADP algorithm to obtain the optimal control input that makes the performance index function reach an optimum. The expression of the performance index function for the chaotic system is first presented. The online ADP algorithm is presented to achieve optimal control. In the ADP structure, neural networks are used to construct a critic network and an action network, which can obtain an approximate performance index function and the control input, respectively. It is proven that the critic parameter error dynamics and the closed-loop chaotic systems are uniformly ultimately bounded exponentially. Our simulation results illustrate the performance of the established optimal control method.

  16. Modelling and prediction for chaotic fir laser attractor using rational function neural network.

    PubMed

    Cho, S

    2001-02-01

    Many real-world systems such as irregular ECG signal, volatility of currency exchange rate and heated fluid reaction exhibit highly complex nonlinear characteristic known as chaos. These chaotic systems cannot be retreated satisfactorily using linear system theory due to its high dimensionality and irregularity. This research focuses on prediction and modelling of chaotic FIR (Far InfraRed) laser system for which the underlying equations are not given. This paper proposed a method for prediction and modelling a chaotic FIR laser time series using rational function neural network. Three network architectures, TDNN (Time Delayed Neural Network), RBF (radial basis function) network and the RF (rational function) network, are also presented. Comparisons between these networks performance show the improvements introduced by the RF network in terms of a decrement in network complexity and better ability of predictability.

  17. Amplification through chaotic synchronization in spatially extended beam-plasma systems

    NASA Astrophysics Data System (ADS)

    Moskalenko, Olga I.; Frolov, Nikita S.; Koronovskii, Alexey A.; Hramov, Alexander E.

    2017-12-01

    In this paper, we have studied the relationship between chaotic synchronization and microwave signal amplification in coupled beam-plasma systems. We have considered a 1D particle-in-cell numerical model of unidirectionally coupled beam-plasma oscillatory media being in the regime of electron pattern formation. We have shown the significant gain of microwave oscillation power in coupled beam-plasma media being in the different regimes of generation. The discovered effect has a close connection with the chaotic synchronization phenomenon, so we have observed that amplification appears after the onset of the complete time scale synchronization regime in the analyzed coupled spatially extended systems. We have also provided the numerical study of physical processes in the chain of beam-plasma systems leading to the chaotic synchronization and the amplification of microwave oscillations power, respectively.

  18. A Simple Approach to Achieve Modified Projective Synchronization between Two Different Chaotic Systems

    PubMed Central

    2013-01-01

    A new approach, the projective system approach, is proposed to realize modified projective synchronization between two different chaotic systems. By simple analysis of trajectories in the phase space, a projective system of the original chaotic systems is obtained to replace the errors system to judge the occurrence of modified projective synchronization. Theoretical analysis and numerical simulations show that, although the projective system may not be unique, modified projective synchronization can be achieved provided that the origin of any of projective systems is asymptotically stable. Furthermore, an example is presented to illustrate that even a necessary and sufficient condition for modified projective synchronization can be derived by using the projective system approach. PMID:24187522

  19. Fractional Modeling of the AC Large-Signal Frequency Response in Magnetoresistive Current Sensors

    PubMed Central

    Arias, Sergio Iván Ravello; Muñoz, Diego Ramírez; Moreno, Jaime Sánchez; Cardoso, Susana; Ferreira, Ricardo; de Freitas, Paulo Jorge Peixeiro

    2013-01-01

    Fractional calculus is considered when derivatives and integrals of non-integer order are applied over a specific function. In the electrical and electronic domain, the transfer function dependence of a fractional filter not only by the filter order n, but additionally, of the fractional order α is an example of a great number of systems where its input-output behavior could be more exactly modeled by a fractional behavior. Following this aim, the present work shows the experimental ac large-signal frequency response of a family of electrical current sensors based in different spintronic conduction mechanisms. Using an ac characterization set-up the sensor transimpedance function Zt(if) is obtained considering it as the relationship between sensor output voltage and input sensing current, Zt(jf)=Vo,sensor(jf)/Isensor(jf). The study has been extended to various magnetoresistance sensors based in different technologies like anisotropic magnetoresistance (AMR), giant magnetoresistance (GMR), spin-valve (GMR-SV) and tunnel magnetoresistance (TMR). The resulting modeling shows two predominant behaviors, the low-pass and the inverse low-pass with fractional index different from the classical integer response. The TMR technology with internal magnetization offers the best dynamic and sensitivity properties opening the way to develop actual industrial applications. PMID:24351648

  20. Experimental distinction between chaotic and strange nonchaotic attractors on the basis of consistency.

    PubMed

    Uenohara, Seiji; Mitsui, Takahito; Hirata, Yoshito; Morie, Takashi; Horio, Yoshihiko; Aihara, Kazuyuki

    2013-06-01

    We experimentally study strange nonchaotic attractors (SNAs) and chaotic attractors by using a nonlinear integrated circuit driven by a quasiperiodic input signal. An SNA is a geometrically strange attractor for which typical orbits have nonpositive Lyapunov exponents. It is a difficult problem to distinguish between SNAs and chaotic attractors experimentally. If a system has an SNA as a unique attractor, the system produces an identical response to a repeated quasiperiodic signal, regardless of the initial conditions, after a certain transient time. Such reproducibility of response outputs is called consistency. On the other hand, if the attractor is chaotic, the consistency is low owing to the sensitive dependence on initial conditions. In this paper, we analyze the experimental data for distinguishing between SNAs and chaotic attractors on the basis of the consistency.

  1. Characterizing chaotic melodies in automatic music composition

    NASA Astrophysics Data System (ADS)

    Coca, Andrés E.; Tost, Gerard O.; Zhao, Liang

    2010-09-01

    In this paper, we initially present an algorithm for automatic composition of melodies using chaotic dynamical systems. Afterward, we characterize chaotic music in a comprehensive way as comprising three perspectives: musical discrimination, dynamical influence on musical features, and musical perception. With respect to the first perspective, the coherence between generated chaotic melodies (continuous as well as discrete chaotic melodies) and a set of classical reference melodies is characterized by statistical descriptors and melodic measures. The significant differences among the three types of melodies are determined by discriminant analysis. Regarding the second perspective, the influence of dynamical features of chaotic attractors, e.g., Lyapunov exponent, Hurst coefficient, and correlation dimension, on melodic features is determined by canonical correlation analysis. The last perspective is related to perception of originality, complexity, and degree of melodiousness (Euler's gradus suavitatis) of chaotic and classical melodies by nonparametric statistical tests.

  2. Numerical explorations of R. M. Goodwin's business cycle model.

    PubMed

    Jakimowicz, Aleksander

    2010-01-01

    Goodwin's model, which was formulated in , still attracts economists' attention. The model possesses numerous interesting properties that have been discovered only recently due to the development of the chaos theory and the complexity theory. The first numerical explorations of the model were conducted in the early s by Strotz, McAnulty and Naines (1953). They discovered the coexistence of attractors that are well-known today, two properties of chaotic systems: the sensitive dependence on the initial conditions and the sensitive dependence on parameters. The occurrence of periodic and chaotic attractors is dependent on the value of parameters in a system. In case of certain parametric values fractal basin boundaries exist which results in enormous system sensitivity to external noise. If periodic attractors are placed in the neighborhood of the fractal basin boundaries, then even a low external noise can move the trajectory into the region in which the basin's structure is tangled. This leads to a kind of movement that resembles a chaotic movement on a strange attractor. In Goodwin's model, apart from typical chaotic behavior, there exists yet another kind of complex movements - transient chaotic behavior that is caused by the occurrence of invariant chaotic sets that are not attracting. Such sets are represented by chaotic saddles. Some of the latest observation methods of trajectories lying on invariant chaotic sets that are not attracting are straddle methods. This article provides examples of the basin boundary straddle trajectory and the saddle straddle trajectory. These cases were studied by Lorenz and Nusse (2002). I supplement the results they acquired with calculations of capacity dimension and correlation dimension.

  3. Generation of 2N + 1-scroll existence in new three-dimensional chaos systems.

    PubMed

    Liu, Yue; Guan, Jian; Ma, Chunyang; Guo, Shuxu

    2016-08-01

    We propose a systematic methodology for creating 2N + 1-scroll chaotic attractors from a simple three-dimensional system, which is named as the translation chaotic system. It satisfies the condition a12a21 = 0, while the Chua system satisfies a12a21 > 0. In this paper, we also propose a successful (an effective) design and an analytical approach for constructing 2N + 1-scrolls, the translation transformation principle. Also, the dynamics properties of the system are studied in detail. MATLAB simulation results show very sophisticated dynamical behaviors and unique chaotic behaviors of the system. It provides a new approach for 2N + 1-scroll attractors. Finally, to explore the potential use in technological applications, a novel block circuit diagram is also designed for the hardware implementation of 1-, 3-, 5-, and 7-scroll attractors via switching the switches. Translation chaotic system has the merit of convenience and high sensitivity to initial values, emerging potentials in future engineering chaos design.

  4. Modelling chaotic vibrations using NASTRAN

    NASA Technical Reports Server (NTRS)

    Sheerer, T. J.

    1993-01-01

    Due to the unavailability and, later, prohibitive cost of the computational power required, many phenomena in nonlinear dynamic systems have in the past been addressed in terms of linear systems. Linear systems respond to periodic inputs with periodic outputs, and may be characterized in the time domain or in the frequency domain as convenient. Reduction to the frequency domain is frequently desireable to reduce the amount of computation required for solution. Nonlinear systems are only soluble in the time domain, and may exhibit a time history which is extremely sensitive to initial conditions. Such systems are termed chaotic. Dynamic buckling, aeroelasticity, fatigue analysis, control systems and electromechanical actuators are among the areas where chaotic vibrations have been observed. Direct transient analysis over a long time period presents a ready means of simulating the behavior of self-excited or externally excited nonlinear systems for a range of experimental parameters, either to characterize chaotic behavior for development of load spectra, or to define its envelope and preclude its occurrence.

  5. Hybrid forecasting of chaotic processes: Using machine learning in conjunction with a knowledge-based model

    NASA Astrophysics Data System (ADS)

    Pathak, Jaideep; Wikner, Alexander; Fussell, Rebeckah; Chandra, Sarthak; Hunt, Brian R.; Girvan, Michelle; Ott, Edward

    2018-04-01

    A model-based approach to forecasting chaotic dynamical systems utilizes knowledge of the mechanistic processes governing the dynamics to build an approximate mathematical model of the system. In contrast, machine learning techniques have demonstrated promising results for forecasting chaotic systems purely from past time series measurements of system state variables (training data), without prior knowledge of the system dynamics. The motivation for this paper is the potential of machine learning for filling in the gaps in our underlying mechanistic knowledge that cause widely-used knowledge-based models to be inaccurate. Thus, we here propose a general method that leverages the advantages of these two approaches by combining a knowledge-based model and a machine learning technique to build a hybrid forecasting scheme. Potential applications for such an approach are numerous (e.g., improving weather forecasting). We demonstrate and test the utility of this approach using a particular illustrative version of a machine learning known as reservoir computing, and we apply the resulting hybrid forecaster to a low-dimensional chaotic system, as well as to a high-dimensional spatiotemporal chaotic system. These tests yield extremely promising results in that our hybrid technique is able to accurately predict for a much longer period of time than either its machine-learning component or its model-based component alone.

  6. Saturnʼs Inner Satellites: Orbits, Masses, and the Chaotic Motion of Atlas from New Cassini Imaging Observations

    NASA Astrophysics Data System (ADS)

    Cooper, N. J.; Renner, S.; Murray, C. D.; Evans, M. W.

    2015-01-01

    We present numerically derived orbits and mass estimates for the inner Saturnian satellites, Atlas, Prometheus, Pandora, Janus, and Epimetheus from a fit to 2580 new Cassini Imaging Science Subsystem astrometric observations spanning 2004 February to 2013 August. The observations are provided as machine-readable and Virtual Observatory tables. We estimate G{{M}Atlas} = (0.384 ± 0.001) × 10-3 km3 s-2, a value 13% smaller than the previously published estimate but with an order of magnitude reduction in the uncertainty. We also find G{{M}Prometheus} = (10.677 ± 0.006) × 10-3 km3 s-2, G{{M}Pandora} = (9.133 ± 0.009) × 10-3 km3 s-2, G{{M}Janus} = (126.51 ± 0.03) × 10-3 km3 s-2, and G{{M}Epimetheus} = (35.110 ± 0.009) × 10-3 km3 s-2, consistent with previously published values, but also with significant reductions in uncertainties. We show that Atlas is currently librating in both the 54:53 co-rotation-eccentricity resonance (CER) and the 54:53 inner Lindblad (ILR) resonance with Prometheus, making it the latest example of a coupled CER-ILR system, in common with the Saturnian satellites Anthe, Aegaeon, and Methone, and possibly Neptune's ring arcs. We further demonstrate that Atlas's orbit is chaotic, with a Lyapunov time of ˜10 years, and show that its chaotic behavior is a direct consequence of the coupled resonant interaction with Prometheus, rather than being an indirect effect of the known chaotic interaction between Prometheus and Pandora. We provide an updated analysis of the second-order resonant perturbations involving Prometheus, Pandora, and Epimetheus based on the new observations, showing that these resonant arguments are librating only when Epimetheus is the innermost of the co-orbital pair, Janus and Epimetheus. We also find evidence that the known chaotic changes in the orbits of Prometheus and Pandora are not confined to times of apse anti-alignment.

  7. A simple approximation of moments of the quasi-equilibrium distribution of an extended stochastic theta-logistic model with non-integer powers.

    PubMed

    Bhowmick, Amiya Ranjan; Bandyopadhyay, Subhadip; Rana, Sourav; Bhattacharya, Sabyasachi

    2016-01-01

    The stochastic versions of the logistic and extended logistic growth models are applied successfully to explain many real-life population dynamics and share a central body of literature in stochastic modeling of ecological systems. To understand the randomness in the population dynamics of the underlying processes completely, it is important to have a clear idea about the quasi-equilibrium distribution and its moments. Bartlett et al. (1960) took a pioneering attempt for estimating the moments of the quasi-equilibrium distribution of the stochastic logistic model. Matis and Kiffe (1996) obtain a set of more accurate and elegant approximations for the mean, variance and skewness of the quasi-equilibrium distribution of the same model using cumulant truncation method. The method is extended for stochastic power law logistic family by the same and several other authors (Nasell, 2003; Singh and Hespanha, 2007). Cumulant truncation and some alternative methods e.g. saddle point approximation, derivative matching approach can be applied if the powers involved in the extended logistic set up are integers, although plenty of evidence is available for non-integer powers in many practical situations (Sibly et al., 2005). In this paper, we develop a set of new approximations for mean, variance and skewness of the quasi-equilibrium distribution under more general family of growth curves, which is applicable for both integer and non-integer powers. The deterministic counterpart of this family of models captures both monotonic and non-monotonic behavior of the per capita growth rate, of which theta-logistic is a special case. The approximations accurately estimate the first three order moments of the quasi-equilibrium distribution. The proposed method is illustrated with simulated data and real data from global population dynamics database. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Observation of high-order quantum resonances in the kicked rotor.

    PubMed

    Kanem, J F; Maneshi, S; Partlow, M; Spanner, M; Steinberg, A M

    2007-02-23

    Quantum resonances in the kicked rotor are characterized by a dramatically increased energy absorption rate, in stark contrast to the momentum localization generally observed. These resonances occur when the scaled Planck's constant Planck's [over ]=r/s 4pi, for any integers r and s. However, only the variant Planck's [over ]=r2pi resonances are easily observable. We have observed high-order quantum resonances (s>2) utilizing a sample of low energy, noncondensed atoms and a pulsed optical standing wave. Resonances are observed for variant Planck's [over ]=r/16 4pi for integers r=2-6. Quantum numerical simulations suggest that our observation of high-order resonances indicate a larger coherence length (i.e., coherence between different wells) than expected from an initially thermal atomic sample.

  9. Forecasting Nonlinear Chaotic Time Series with Function Expression Method Based on an Improved Genetic-Simulated Annealing Algorithm

    PubMed Central

    Wang, Jun; Zhou, Bi-hua; Zhou, Shu-dao; Sheng, Zheng

    2015-01-01

    The paper proposes a novel function expression method to forecast chaotic time series, using an improved genetic-simulated annealing (IGSA) algorithm to establish the optimum function expression that describes the behavior of time series. In order to deal with the weakness associated with the genetic algorithm, the proposed algorithm incorporates the simulated annealing operation which has the strong local search ability into the genetic algorithm to enhance the performance of optimization; besides, the fitness function and genetic operators are also improved. Finally, the method is applied to the chaotic time series of Quadratic and Rossler maps for validation. The effect of noise in the chaotic time series is also studied numerically. The numerical results verify that the method can forecast chaotic time series with high precision and effectiveness, and the forecasting precision with certain noise is also satisfactory. It can be concluded that the IGSA algorithm is energy-efficient and superior. PMID:26000011

  10. Chaotic dynamics and its analysis of Hindmarsh-Rose neurons by Shil’nikov approach

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Zuo, Min

    2015-08-01

    In this paper, the relationship between external current stimulus and chaotic behaviors of a Hindmarsh-Rose (HR) neuron is considered. In order to find out the range of external current stimulus which will produce chaotic behaviors of an HR neuron, the Shil’nikov technique is employed. The Cardano formula is taken to obtain the threshold of the chaotic motion, and series solution to a differential equation is utilized to obtain the homoclinic orbit of HR neurons. This analysis establishes mathematically the value of external current input in generating chaotic motion of HR neurons by the Shil’nikov method. The numerical simulations are performed to support the theoretical results. Project supported by the Beijing Natural Science Foundation, China (Grant No. 4132005), the National Natural Science Foundation of China (Grant No. 61403006), the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions, China (Grant No. YETP1449), and the Project of Scientific and Technological Innovation Platform, China (Grant No. PXM2015_014213_000063).

  11. Experimental demonstration of the real-time online fault monitoring technique for chaos-based passive optical networks

    NASA Astrophysics Data System (ADS)

    Dou, Xinyu; Yin, Hongxi; Yue, Hehe; Jin, Yu; Shen, Jing; Li, Lin

    2015-09-01

    In this paper, a real-time online fault monitoring technique for chaos-based passive optical networks (PONs) is proposed and experimentally demonstrated. The fault monitoring is performed by the chaotic communication signal. The proof-of-concept experiments are demonstrated for two PON structures, i.e., wavelength-division-multiplexing (WDM) PON and Ethernet PON (EPON), respectively. For WDM PON, two monitoring approaches are investigated, one deploying a chaotic optical time domain reflectometry (OTDR) for each transmitter, and the other using only one tunable chaotic OTDR. The experimental results show that the faults at beyond 20 km from the OLT can be detected and located. The spatial resolution of the tunable chaotic OTDR is an order of magnitude of centimeter. Meanwhile, the monitoring process can operate in parallel with the chaotic optical secure communications. The proposed technique has benefits of real-time, online, precise fault location, and simple realization, which will significantly reduce the cost of operation, administration and maintenance (OAM) of PON.

  12. Forecasting nonlinear chaotic time series with function expression method based on an improved genetic-simulated annealing algorithm.

    PubMed

    Wang, Jun; Zhou, Bi-hua; Zhou, Shu-dao; Sheng, Zheng

    2015-01-01

    The paper proposes a novel function expression method to forecast chaotic time series, using an improved genetic-simulated annealing (IGSA) algorithm to establish the optimum function expression that describes the behavior of time series. In order to deal with the weakness associated with the genetic algorithm, the proposed algorithm incorporates the simulated annealing operation which has the strong local search ability into the genetic algorithm to enhance the performance of optimization; besides, the fitness function and genetic operators are also improved. Finally, the method is applied to the chaotic time series of Quadratic and Rossler maps for validation. The effect of noise in the chaotic time series is also studied numerically. The numerical results verify that the method can forecast chaotic time series with high precision and effectiveness, and the forecasting precision with certain noise is also satisfactory. It can be concluded that the IGSA algorithm is energy-efficient and superior.

  13. Discrete Time-Crystalline Order in Cavity and Circuit QED Systems

    NASA Astrophysics Data System (ADS)

    Gong, Zongping; Hamazaki, Ryusuke; Ueda, Masahito

    2018-01-01

    Discrete time crystals are a recently proposed and experimentally observed out-of-equilibrium dynamical phase of Floquet systems, where the stroboscopic dynamics of a local observable repeats itself at an integer multiple of the driving period. We address this issue in a driven-dissipative setup, focusing on the modulated open Dicke model, which can be implemented by cavity or circuit QED systems. In the thermodynamic limit, we employ semiclassical approaches and find rich dynamical phases on top of the discrete time-crystalline order. In a deep quantum regime with few qubits, we find clear signatures of a transient discrete time-crystalline behavior, which is absent in the isolated counterpart. We establish a phenomenology of dissipative discrete time crystals by generalizing the Landau theory of phase transitions to Floquet open systems.

  14. Existence and uniqueness theorems for impulsive fractional differential equations with the two-point and integral boundary conditions.

    PubMed

    Mardanov, M J; Mahmudov, N I; Sharifov, Y A

    2014-01-01

    We study a boundary value problem for the system of nonlinear impulsive fractional differential equations of order α (0 < α ≤ 1) involving the two-point and integral boundary conditions. Some new results on existence and uniqueness of a solution are established by using fixed point theorems. Some illustrative examples are also presented. We extend previous results even in the integer case α = 1.

  15. Implementation of an integrated op-amp based chaotic neuron model and observation of its chaotic dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, Jinwoo; Lee, Jewon; Song, Hanjung

    2011-03-15

    This paper presents a fully integrated circuit implementation of an operational amplifier (op-amp) based chaotic neuron model with a bipolar output function, experimental measurements, and analyses of its chaotic behavior. The proposed chaotic neuron model integrated circuit consists of several op-amps, sample and hold circuits, a nonlinear function block for chaotic signal generation, a clock generator, a nonlinear output function, etc. Based on the HSPICE (circuit program) simulation results, approximated empirical equations for analyses were formulated. Then, the chaotic dynamical responses such as bifurcation diagrams, time series, and Lyapunov exponent were calculated using these empirical equations. In addition, we performedmore » simulations about two chaotic neuron systems with four synapses to confirm neural network connections and got normal behavior of the chaotic neuron such as internal state bifurcation diagram according to the synaptic weight variation. The proposed circuit was fabricated using a 0.8-{mu}m single poly complementary metal-oxide semiconductor technology. Measurements of the fabricated single chaotic neuron with {+-}2.5 V power supplies and a 10 kHz sampling clock frequency were carried out and compared with the simulated results.« less

  16. Partially chaotic orbits in a perturbed cubic force model

    NASA Astrophysics Data System (ADS)

    Muzzio, J. C.

    2017-11-01

    Three types of orbits are theoretically possible in autonomous Hamiltonian systems with 3 degrees of freedom: fully chaotic (they only obey the energy integral), partially chaotic (they obey an additional isolating integral besides energy) and regular (they obey two isolating integrals besides energy). The existence of partially chaotic orbits has been denied by several authors, however, arguing either that there is a sudden transition from regularity to full chaoticity or that a long enough follow-up of a supposedly partially chaotic orbit would reveal a fully chaotic nature. This situation needs clarification, because partially chaotic orbits might play a significant role in the process of chaotic diffusion. Here we use numerically computed Lyapunov exponents to explore the phase space of a perturbed three-dimensional cubic force toy model, and a generalization of the Poincaré maps to show that partially chaotic orbits are actually present in that model. They turn out to be double orbits joined by a bifurcation zone, which is the most likely source of their chaos, and they are encapsulated in regions of phase space bounded by regular orbits similar to each one of the components of the double orbit.

  17. Geometrical meaning of winding number and its characterization of topological phases in one-dimensional chiral non-Hermitian systems

    NASA Astrophysics Data System (ADS)

    Yin, Chuanhao; Jiang, Hui; Li, Linhu; Lü, Rong; Chen, Shu

    2018-05-01

    We unveil the geometrical meaning of winding number and utilize it to characterize the topological phases in one-dimensional chiral non-Hermitian systems. While chiral symmetry ensures the winding number of Hermitian systems are integers, it can take half integers for non-Hermitian systems. We give a geometrical interpretation of the half integers by demonstrating that the winding number ν of a non-Hermitian system is equal to half of the summation of two winding numbers ν1 and ν2 associated with two exceptional points, respectively. The winding numbers ν1 and ν2 represent the times of the real part of the Hamiltonian in momentum space encircling the exceptional points and can only take integers. We further find that the difference of ν1 and ν2 is related to the second winding number or energy vorticity. By applying our scheme to a non-Hermitian Su-Schrieffer-Heeger model and an extended version of it, we show that the topologically different phases can be well characterized by winding numbers. Furthermore, we demonstrate that the existence of left and right zero-mode edge states is closely related to the winding number ν1 and ν2.

  18. Insights on chaotic dynamics: mixing experiments between natural silicate melts from Vulcano island (Aeolian Islands, Italy)

    NASA Astrophysics Data System (ADS)

    Rossi, Stefano; Morgavi, Daniele; Vetere, Francesco; Petrelli, Maurizio; Perugini, Diego

    2017-04-01

    keywords: Magma mixing, chaotic dynamics, time series experiments Magma mixing is a petrologic phenomenon which is recognized as potential trigger of highly explosive eruptions and its evidence is commonly observable in natural rocks. Here we tried to replicate the dynamic conditions of mixing performing a set of chaotic mixing experiments between shoshonitic and rhyolitic magmas from Vulcano island. Vulcano is the southernmost island of the Aeolian Archipelago (Aeolian Islands, Italy); it is completely built by volcanic rocks with variable degree of evolution ranging from basalt to rhyolite (e.g. Keller 1980; Ellam et al. 1988; De Astis 1995; De Astis et al. 2013) and its magmatic activity dates back to about 120 ky. Last eruption occurred in 1888-1890. The chaotic mixing experiments were performed by using the new ChaOtic Magma Mixing Apparatus (COMMA), held at the Department of Physics and Geology, University of Perugia. This new experimental device allows to track the evolution of the mixing process and the associated modulation of chemical composition between different magmas. Experiments were performed at 1200°C and atmospheric pressure with a viscosity ratio higher than three orders of magnitude. The experimental protocol was chosen to ensure the occurrence of chaotic dynamics in the system and the run duration was progressively increased (e.g. 10.5 h, 21 h, 42 h). The products of each experiment are crystal-free glasses in which the variation of major elements was investigated along different profiles using electron microprobe (EMPA) at Institute für Mineralogie, Leibniz Universität of Hannover (Germany). The efficiency of the mixing process is estimated by calculating the decrease of concentration variance in time and it is shown that the variance of major elements exponentially decays. Our results confirm and quantify how different chemical elements homogenize in the melt at differing rates. It is also observable that the mixing structures generated during the mixing experiments are topologically identical to those observed in natural mixed volcanic rocks.

  19. Synchronization in node of complex networks consist of complex chaotic system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Qiang, E-mail: qiangweibeihua@163.com; Digital Images Processing Institute of Beihua University, BeiHua University, Jilin, 132011, Jilin; Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, 116024

    2014-07-15

    A new synchronization method is investigated for node of complex networks consists of complex chaotic system. When complex networks realize synchronization, different component of complex state variable synchronize up to different scaling complex function by a designed complex feedback controller. This paper change synchronization scaling function from real field to complex field for synchronization in node of complex networks with complex chaotic system. Synchronization in constant delay and time-varying coupling delay complex networks are investigated, respectively. Numerical simulations are provided to show the effectiveness of the proposed method.

  20. Improved numerical solutions for chaotic-cancer-model

    NASA Astrophysics Data System (ADS)

    Yasir, Muhammad; Ahmad, Salman; Ahmed, Faizan; Aqeel, Muhammad; Akbar, Muhammad Zubair

    2017-01-01

    In biological sciences, dynamical system of cancer model is well known due to its sensitivity and chaoticity. Present work provides detailed computational study of cancer model by counterbalancing its sensitive dependency on initial conditions and parameter values. Cancer chaotic model is discretized into a system of nonlinear equations that are solved using the well-known Successive-Over-Relaxation (SOR) method with a proven convergence. This technique enables to solve large systems and provides more accurate approximation which is illustrated through tables, time history maps and phase portraits with detailed analysis.

  1. Persistent stability of a chaotic system

    NASA Astrophysics Data System (ADS)

    Huber, Greg; Pradas, Marc; Pumir, Alain; Wilkinson, Michael

    2018-02-01

    We report that trajectories of a one-dimensional model for inertial particles in a random velocity field can remain stable for a surprisingly long time, despite the fact that the system is chaotic. We provide a detailed quantitative description of this effect by developing the large-deviation theory for fluctuations of the finite-time Lyapunov exponent of this system. Specifically, the determination of the entropy function for the distribution reduces to the analysis of a Schrödinger equation, which is tackled by semi-classical methods. The system has 'generic' instability properties, and we consider the broader implications of our observation of long-term stability in chaotic systems.

  2. A k-permutation algorithm for Fixed Satellite Service orbital allotments

    NASA Technical Reports Server (NTRS)

    Reilly, Charles H.; Mount-Campbell, Clark A.; Gonsalvez, David J. A.

    1988-01-01

    A satellite system synthesis problem, the satellite location problem (SLP), is addressed in this paper. In SLP, orbital locations (longitudes) are allotted to geostationary satellites in the Fixed Satellite Service. A linear mixed-integer programming model is presented that views SLP as a combination of two problems: (1) the problem of ordering the satellites and (2) the problem of locating the satellites given some ordering. A special-purpose heuristic procedure, a k-permutation algorithm, that has been developed to find solutions to SLPs formulated in the manner suggested is described. Solutions to small example problems are presented and analyzed.

  3. IESIP - AN IMPROVED EXPLORATORY SEARCH TECHNIQUE FOR PURE INTEGER LINEAR PROGRAMMING PROBLEMS

    NASA Technical Reports Server (NTRS)

    Fogle, F. R.

    1994-01-01

    IESIP, an Improved Exploratory Search Technique for Pure Integer Linear Programming Problems, addresses the problem of optimizing an objective function of one or more variables subject to a set of confining functions or constraints by a method called discrete optimization or integer programming. Integer programming is based on a specific form of the general linear programming problem in which all variables in the objective function and all variables in the constraints are integers. While more difficult, integer programming is required for accuracy when modeling systems with small numbers of components such as the distribution of goods, machine scheduling, and production scheduling. IESIP establishes a new methodology for solving pure integer programming problems by utilizing a modified version of the univariate exploratory move developed by Robert Hooke and T.A. Jeeves. IESIP also takes some of its technique from the greedy procedure and the idea of unit neighborhoods. A rounding scheme uses the continuous solution found by traditional methods (simplex or other suitable technique) and creates a feasible integer starting point. The Hook and Jeeves exploratory search is modified to accommodate integers and constraints and is then employed to determine an optimal integer solution from the feasible starting solution. The user-friendly IESIP allows for rapid solution of problems up to 10 variables in size (limited by DOS allocation). Sample problems compare IESIP solutions with the traditional branch-and-bound approach. IESIP is written in Borland's TURBO Pascal for IBM PC series computers and compatibles running DOS. Source code and an executable are provided. The main memory requirement for execution is 25K. This program is available on a 5.25 inch 360K MS DOS format diskette. IESIP was developed in 1990. IBM is a trademark of International Business Machines. TURBO Pascal is registered by Borland International.

  4. Secular chaos and its application to Mercury, hot Jupiters, and the organization of planetary systems.

    PubMed

    Lithwick, Yoram; Wu, Yanqin

    2014-09-02

    In the inner solar system, the planets' orbits evolve chaotically, driven primarily by secular chaos. Mercury has a particularly chaotic orbit and is in danger of being lost within a few billion years. Just as secular chaos is reorganizing the solar system today, so it has likely helped organize it in the past. We suggest that extrasolar planetary systems are also organized to a large extent by secular chaos. A hot Jupiter could be the end state of a secularly chaotic planetary system reminiscent of the solar system. However, in the case of the hot Jupiter, the innermost planet was Jupiter (rather than Mercury) sized, and its chaotic evolution was terminated when it was tidally captured by its star. In this contribution, we review our recent work elucidating the physics of secular chaos and applying it to Mercury and to hot Jupiters. We also present results comparing the inclinations of hot Jupiters thus produced with observations.

  5. Secular chaos and its application to Mercury, hot Jupiters, and the organization of planetary systems

    PubMed Central

    Lithwick, Yoram; Wu, Yanqin

    2014-01-01

    In the inner solar system, the planets’ orbits evolve chaotically, driven primarily by secular chaos. Mercury has a particularly chaotic orbit and is in danger of being lost within a few billion years. Just as secular chaos is reorganizing the solar system today, so it has likely helped organize it in the past. We suggest that extrasolar planetary systems are also organized to a large extent by secular chaos. A hot Jupiter could be the end state of a secularly chaotic planetary system reminiscent of the solar system. However, in the case of the hot Jupiter, the innermost planet was Jupiter (rather than Mercury) sized, and its chaotic evolution was terminated when it was tidally captured by its star. In this contribution, we review our recent work elucidating the physics of secular chaos and applying it to Mercury and to hot Jupiters. We also present results comparing the inclinations of hot Jupiters thus produced with observations. PMID:24367108

  6. Non-symmetric forms of non-linear vibrations of flexible cylindrical panels and plates under longitudinal load and additive white noise

    NASA Astrophysics Data System (ADS)

    Krysko, V. A.; Awrejcewicz, J.; Krylova, E. Yu; Papkova, I. V.; Krysko, A. V.

    2018-06-01

    Parametric non-linear vibrations of flexible cylindrical panels subjected to additive white noise are studied. The governing Marguerre equations are investigated using the finite difference method (FDM) of the second-order accuracy and the Runge-Kutta method. The considered mechanical structural member is treated as a system of many/infinite number of degrees of freedom (DoF). The dependence of chaotic vibrations on the number of DoFs is investigated. Reliability of results is guaranteed by comparing the results obtained using two qualitatively different methods to reduce the problem of PDEs (partial differential equations) to ODEs (ordinary differential equations), i.e. the Faedo-Galerkin method in higher approximations and the 4th and 6th order FDM. The Cauchy problem obtained by the FDM is eventually solved using the 4th-order Runge-Kutta methods. The numerical experiment yielded, for a certain set of parameters, the non-symmetric vibration modes/forms with and without white noise. In particular, it has been illustrated and discussed that action of white noise on chaotic vibrations implies quasi-periodicity, whereas the previously non-symmetric vibration modes are closer to symmetric ones.

  7. Fractional order PID controller for improvement of PMSM speed control in aerospace applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saraji, Ali Motalebi; Ghanbari, Mahmood

    Because of the benefits reduced size, cost and maintenance, noise, CO2 emissions and increased control flexibility and precision, to meet these expectations, electrical equipment increasingly utilize in modern aircraft systems and aerospace industry rather than conventional mechanic, hydraulic, and pneumatic power systems. Electric motor drives are capable of converting electrical power to drive actuators, pumps, compressors, and other subsystems at variable speeds. In the past decades, permanent magnet synchronous motor (PMSM) and brushless dc (BLDC) motor were investigated for aerospace applications such as aircraft actuators. In this paper, the fractional-order PID controller is used in the design of speed loopmore » of PMSM speed control system. Having more parameters for tuning fractional order PID controller lead to good performance ratio to integer order. This good performance is shown by comparison fractional order PID controller with the conventional PI and tuned PID controller by Genetic algorithm in MATLAB soft wear.« less

  8. Studies in astronomical time series analysis. IV - Modeling chaotic and random processes with linear filters

    NASA Technical Reports Server (NTRS)

    Scargle, Jeffrey D.

    1990-01-01

    While chaos arises only in nonlinear systems, standard linear time series models are nevertheless useful for analyzing data from chaotic processes. This paper introduces such a model, the chaotic moving average. This time-domain model is based on the theorem that any chaotic process can be represented as the convolution of a linear filter with an uncorrelated process called the chaotic innovation. A technique, minimum phase-volume deconvolution, is introduced to estimate the filter and innovation. The algorithm measures the quality of a model using the volume covered by the phase-portrait of the innovation process. Experiments on synthetic data demonstrate that the algorithm accurately recovers the parameters of simple chaotic processes. Though tailored for chaos, the algorithm can detect both chaos and randomness, distinguish them from each other, and separate them if both are present. It can also recover nonminimum-delay pulse shapes in non-Gaussian processes, both random and chaotic.

  9. Chimeras and clusters in networks of hyperbolic chaotic oscillators

    NASA Astrophysics Data System (ADS)

    Cano, A. V.; Cosenza, M. G.

    2017-03-01

    We show that chimera states, where differentiated subsets of synchronized and desynchronized dynamical elements coexist, can emerge in networks of hyperbolic chaotic oscillators subject to global interactions. As local dynamics we employ Lozi maps, which possess hyperbolic chaotic attractors. We consider a globally coupled system of these maps and use two statistical quantities to describe its collective behavior: the average fraction of elements belonging to clusters and the average standard deviation of state variables. Chimera states, clusters, complete synchronization, and incoherence are thus characterized on the space of parameters of the system. We find that chimera states are related to the formation of clusters in the system. In addition, we show that chimera states arise for a sufficiently long range of interactions in nonlocally coupled networks of these maps. Our results reveal that, under some circumstances, hyperbolicity does not impede the formation of chimera states in networks of coupled chaotic systems, as it had been previously hypothesized.

  10. Temperature crossover of decoherence rates in chaotic and regular bath dynamics.

    PubMed

    Sanz, A S; Elran, Y; Brumer, P

    2012-03-01

    The effect of chaotic bath dynamics on the decoherence of a quantum system is examined for the vibrational degrees of freedom of a diatomic molecule in a realistic, constant temperature collisional bath. As an example, the specific case of I(2) in liquid xenon is examined as a function of temperature, and the results compared with an integrable xenon bath. A crossover in behavior is found: The integrable bath induces more decoherence at low bath temperatures than does the chaotic bath, whereas the opposite is the case at the higher bath temperatures. These results, verifying a conjecture due to Wilkie, shed light on the differing views of the effect of chaotic dynamics on system decoherence.

  11. Integer aperture ambiguity resolution based on difference test

    NASA Astrophysics Data System (ADS)

    Zhang, Jingyu; Wu, Meiping; Li, Tao; Zhang, Kaidong

    2015-07-01

    Carrier-phase integer ambiguity resolution (IAR) is the key to highly precise, fast positioning and attitude determination with Global Navigation Satellite System (GNSS). It can be seen as the process of estimating the unknown cycle ambiguities of the carrier-phase observations as integers. Once the ambiguities are fixed, carrier phase data will act as the very precise range data. Integer aperture (IA) ambiguity resolution is the combination of acceptance testing and integer ambiguity resolution, which can realize better quality control of IAR. Difference test (DT) is one of the most popular acceptance tests. This contribution will give a detailed analysis about the following properties of IA ambiguity resolution based on DT: 1. The sharpest and loose upper bounds of DT are derived from the perspective of geometry. These bounds are very simple and easy to be computed, which give the range for the critical values of DT.

  12. On the adaptivity and complexity embedded into differential evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senkerik, Roman; Pluhacek, Michal; Jasek, Roman

    2016-06-08

    This research deals with the comparison of the two modern approaches for evolutionary algorithms, which are the adaptivity and complex chaotic dynamics. This paper aims on the investigations on the chaos-driven Differential Evolution (DE) concept. This paper is aimed at the embedding of discrete dissipative chaotic systems in the form of chaotic pseudo random number generators for the DE and comparing the influence to the performance with the state of the art adaptive representative jDE. This research is focused mainly on the possible disadvantages and advantages of both compared approaches. Repeated simulations for Lozi map driving chaotic systems were performedmore » on the simple benchmark functions set, which are more close to the real optimization problems. Obtained results are compared with the canonical not-chaotic and not adaptive DE. Results show that with used simple test functions, the performance of ChaosDE is better in the most cases than jDE and Canonical DE, furthermore due to the unique sequencing in CPRNG given by the hidden chaotic dynamics, thus better and faster selection of unique individuals from population, ChaosDE is faster.« less

  13. The grief map

    NASA Astrophysics Data System (ADS)

    Monteiro, L. H. A.

    2014-12-01

    Grieving is a natural human reaction to a significant loss. According to a psychiatric model, this process is characterized by a typical sequence of psychological changes. Here, I propose a discrete-time dynamical system, called the grief map, in order to represent the grieving process. The corresponding bifurcation diagram, which exhibits stationary, periodic, and chaotic behavior, is related to the stages of this sorrowful journey occurring during about 12 months post-loss.

  14. Implementing direct, spatially isolated problems on transputer networks

    NASA Technical Reports Server (NTRS)

    Ellis, Graham K.

    1988-01-01

    Parametric studies were performed on transputer networks of up to 40 processors to determine how to implement and maximize the performance of the solution of problems where no processor-to-processor data transfer is required for the problem solution (spatially isolated). Two types of problems are investigated a computationally intensive problem where the solution required the transmission of 160 bytes of data through the parallel network, and a communication intensive example that required the transmission of 3 Mbytes of data through the network. This data consists of solutions being sent back to the host processor and not intermediate results for another processor to work on. Studies were performed on both integer and floating-point transputers. The latter features an on-chip floating-point math unit and offers approximately an order of magnitude performance increase over the integer transputer on real valued computations. The results indicate that a minimum amount of work is required on each node per communication to achieve high network speedups (efficiencies). The floating-point processor requires approximately an order of magnitude more work per communication than the integer processor because of the floating-point unit's increased computing capacity.

  15. Complex dynamics of a new 3D Lorenz-type autonomous chaotic system

    NASA Astrophysics Data System (ADS)

    Zhang, Fuchen; Liao, Xiaofeng; Zhang, Guangyun; Mu, Chunlai

    2017-12-01

    This paper investigates a new three-dimensional continuous quadratic autonomous chaotic system which is not topologically equivalent to the Lorenz system. The dynamical behaviours of this system are further investigated in detail, including the ultimate boundedness, the invariant sets and the global attraction domain according to Lyapunov stability theory of dynamical systems. The innovation of the paper lies in the fact that this paper not only proves this chaotic system is globally bounded for the parameters of this system but also gives a family of mathematical expressions of global exponential attractive sets with respect to the parameters of this system. To validate the ultimate bound estimation, numerical simulations are also investigated. Numerical simulations verify the effectiveness and feasibility of the theoretical scheme.

  16. Discrete time-crystalline order in black diamond

    NASA Astrophysics Data System (ADS)

    Zhou, Hengyun; Choi, Soonwon; Choi, Joonhee; Landig, Renate; Kucsko, Georg; Isoya, Junichi; Jelezko, Fedor; Onoda, Shinobu; Sumiya, Hitoshi; Khemani, Vedika; von Keyserlingk, Curt; Yao, Norman; Demler, Eugene; Lukin, Mikhail D.

    2017-04-01

    The interplay of periodic driving, disorder, and strong interactions has recently been predicted to result in exotic ``time-crystalline'' phases, which spontaneously break the discrete time-translation symmetry of the underlying drive. Here, we report the experimental observation of such discrete time-crystalline order in a driven, disordered ensemble of 106 dipolar spin impurities in diamond at room-temperature. We observe long-lived temporal correlations at integer multiples of the fundamental driving period, experimentally identify the phase boundary and find that the temporal order is protected by strong interactions; this order is remarkably stable against perturbations, even in the presence of slow thermalization. Our work opens the door to exploring dynamical phases of matter and controlling interacting, disordered many-body systems.

  17. Example Level 1 Ada/SQL (Structured Query Language) System Software

    DTIC Science & Technology

    1987-09-01

    PUTLINE ("EMPNAME JOB SALARY COMMISSION"); loop FETCH ( CURSOR ); INTO ( VEMP NAME , STR LAST ); T LEN INTEGER (STR LAST - V EMP NAME’FIRST + 1); for I in 1...begin PUT_LINE ("EMPNAME JOB SALARY DEPT"); loop FETCH (CURSOR); INTO ( VEMP NAME , STRLAST ); T_LEN := INTEGER (STRLAST - V_EMPNAME’FIRST + 1); for I in...NUMBERS OPEN ( CURSOR ); begin PUT_LINE ("EMP_NAME SALARY JOB"); loop FETCH ( CURSOR ); INTO ( VEMP NAME , STRLAST ); T_LEN := INTEGER (STR_LAST

  18. Synthesis of a fully-integrated digital signal source for communications from chaotic dynamics-based oscillations

    NASA Astrophysics Data System (ADS)

    Glenn, Chance Michael, Sr.

    This work is the conceptualization, derivation, analysis, and fabrication of a fully practical digital signal source designed from a chaotic oscillator. In it we show how a simple electronic circuit based upon the Colpitts oscillator, can be made to produce highly complex signals capable of carrying digital information. We show a direct relationship between the continuous-time chaotic oscillations produced by the circuit and the logistic map, which is discrete-time, one-dimensional map that is a fundamental paradigm for the study of chaotic systems. We demonstrate the direct encoding of binary information into the oscillations of the chaotic circuit. We demonstrate a new concept in power amplification, called syncrodyne amplification , which uses fundamental properties of chaotic oscillators to provide high-efficiency, high gain amplification of standard communication waveforms as well as typical chaotic oscillations. We show modeling results of this system providing nearly 60-dB power gain and 80% PAE for communications waveforms conforming to GMSK modulation. Finally we show results from a fabricated syncrodyne amplifier circuit operating at 2 MHz, providing over 40-dB power gain and 72% PAE, and propose design criteria for an 824--850 MHz circuit utilizing heterojunction bipolar transistors (HBTs), providing the basis for microwave frequency realization.

  19. On the estimation of the correlation dimension and its application to radar reflector discrimination

    NASA Technical Reports Server (NTRS)

    Barnett, Kevin D.

    1993-01-01

    Recently, system theorists have recognized that low order systems of nonlinear differential equations can give rise to solutions which are neither periodic, constant, nor predictable in steady state, but which are nonetheless bounded and deterministic. This behavior, which was first described in the study of weather systems, has been termed 'chaotic.' Much study of chaotic systems has concentrated on analysis of the systems' phase space attractors. It has been recognized that invariant measures of the attractor possess inherent information about the system. One such measure is the dimension of the attractors. The dimension of a chaotic attractor has been shown to be noninteger, leading to the term 'strange attractor;' the attractor is said to have a fractal structure. The correlation dimension has become one of the most popular measures of dimension. However, many problems have been identified in correlation dimension estimation from time sequences. The most common methods for obtaining the correlation dimension have been least squares curves fitting to find the slope of the correlation integral and the Takens Estimator. However, these estimates show unacceptable sensitivity to the upper limit on the distance chosen. Here, a new method is proposed which is shown to be rather insensitive to the upper limit and to perform in a very stable manner, at least in the absence of noise. The correlation dimension is also shown to be an effective discriminant in distinguishing between radar returns resulting from weather and those from the ground. The weather returns are shown to have a correlation dimension generally between 2.0 and 3.0, while ground returns have a correlation dimension exceeding 3.0.

  20. Single-Event Upset Characterization of Common First- and Second-Order All-Digital Phase-Locked Loops

    NASA Astrophysics Data System (ADS)

    Chen, Y. P.; Massengill, L. W.; Kauppila, J. S.; Bhuva, B. L.; Holman, W. T.; Loveless, T. D.

    2017-08-01

    The single-event upset (SEU) vulnerability of common first- and second-order all-digital-phase-locked loops (ADPLLs) is investigated through field-programmable gate array-based fault injection experiments. SEUs in the highest order pole of the loop filter and fraction-based phase detectors (PDs) may result in the worst case error response, i.e., limit cycle errors, often requiring system restart. SEUs in integer-based linear PDs may result in loss-of-lock errors, while SEUs in bang-bang PDs only result in temporary-frequency errors. ADPLLs with the same frequency tuning range but fewer bits in the control word exhibit better overall SEU performance.

  1. Finding equilibrium in the spatiotemporal chaos of the complex Ginzburg-Landau equation

    NASA Astrophysics Data System (ADS)

    Ballard, Christopher C.; Esty, C. Clark; Egolf, David A.

    2016-11-01

    Equilibrium statistical mechanics allows the prediction of collective behaviors of large numbers of interacting objects from just a few system-wide properties; however, a similar theory does not exist for far-from-equilibrium systems exhibiting complex spatial and temporal behavior. We propose a method for predicting behaviors in a broad class of such systems and apply these ideas to an archetypal example, the spatiotemporal chaotic 1D complex Ginzburg-Landau equation in the defect chaos regime. Building on the ideas of Ruelle and of Cross and Hohenberg that a spatiotemporal chaotic system can be considered a collection of weakly interacting dynamical units of a characteristic size, the chaotic length scale, we identify underlying, mesoscale, chaotic units and effective interaction potentials between them. We find that the resulting equilibrium Takahashi model accurately predicts distributions of particle numbers. These results suggest the intriguing possibility that a class of far-from-equilibrium systems may be well described at coarse-grained scales by the well-established theory of equilibrium statistical mechanics.

  2. Finding equilibrium in the spatiotemporal chaos of the complex Ginzburg-Landau equation.

    PubMed

    Ballard, Christopher C; Esty, C Clark; Egolf, David A

    2016-11-01

    Equilibrium statistical mechanics allows the prediction of collective behaviors of large numbers of interacting objects from just a few system-wide properties; however, a similar theory does not exist for far-from-equilibrium systems exhibiting complex spatial and temporal behavior. We propose a method for predicting behaviors in a broad class of such systems and apply these ideas to an archetypal example, the spatiotemporal chaotic 1D complex Ginzburg-Landau equation in the defect chaos regime. Building on the ideas of Ruelle and of Cross and Hohenberg that a spatiotemporal chaotic system can be considered a collection of weakly interacting dynamical units of a characteristic size, the chaotic length scale, we identify underlying, mesoscale, chaotic units and effective interaction potentials between them. We find that the resulting equilibrium Takahashi model accurately predicts distributions of particle numbers. These results suggest the intriguing possibility that a class of far-from-equilibrium systems may be well described at coarse-grained scales by the well-established theory of equilibrium statistical mechanics.

  3. Efficient topological chaos embedded in the blinking vortex system.

    PubMed

    Kin, Eiko; Sakajo, Takashi

    2005-06-01

    We consider the particle mixing in the plane by two vortex points appearing one after the other, called the blinking vortex system. Mathematical and numerical studies of the system reveal that the chaotic particle mixing, i.e., the chaotic advection, is observed due to the homoclinic chaos, but the mixing region is restricted locally in the neighborhood of the vortex points. The present article shows that it is possible to realize a global and efficient chaotic advection in the blinking vortex system with the help of the Thurston-Nielsen theory, which classifies periodic orbits for homeomorphisms in the plane into three types: periodic, reducible, and pseudo-Anosov (pA). It is mathematically shown that periodic orbits of pA type generate a complicated dynamics, which is called topological chaos. We show that the combination of the local chaotic mixing due to the topological chaos and the dipole-like return orbits realize an efficient and global particle mixing in the blinking vortex system.

  4. Clustering stock market companies via chaotic map synchronization

    NASA Astrophysics Data System (ADS)

    Basalto, N.; Bellotti, R.; De Carlo, F.; Facchi, P.; Pascazio, S.

    2005-01-01

    A pairwise clustering approach is applied to the analysis of the Dow Jones index companies, in order to identify similar temporal behavior of the traded stock prices. To this end, the chaotic map clustering algorithm is used, where a map is associated to each company and the correlation coefficients of the financial time series to the coupling strengths between maps. The simulation of a chaotic map dynamics gives rise to a natural partition of the data, as companies belonging to the same industrial branch are often grouped together. The identification of clusters of companies of a given stock market index can be exploited in the portfolio optimization strategies.

  5. The Chaplygin Sleigh with Parametric Excitation: Chaotic Dynamics and Nonholonomic Acceleration

    NASA Astrophysics Data System (ADS)

    Bizyaev, Ivan A.; Borisov, Alexey V.; Mamaev, Ivan S.

    2017-12-01

    This paper is concerned with the Chaplygin sleigh with time-varying mass distribution (parametric excitation). The focus is on the case where excitation is induced by a material point that executes periodic oscillations in a direction transverse to the plane of the knife edge of the sleigh. In this case, the problem reduces to investigating a reduced system of two first-order equations with periodic coefficients, which is similar to various nonlinear parametric oscillators. Depending on the parameters in the reduced system, one can observe different types of motion, including those accompanied by strange attractors leading to a chaotic (diffusion) trajectory of the sleigh on the plane. The problem of unbounded acceleration (an analog of Fermi acceleration) of the sleigh is examined in detail. It is shown that such an acceleration arises due to the position of the moving point relative to the line of action of the nonholonomic constraint and the center of mass of the platform. Various special cases of existence of tensor invariants are found.

  6. An Experimental Realization of a Chaos-Based Secure Communication Using Arduino Microcontrollers.

    PubMed

    Zapateiro De la Hoz, Mauricio; Acho, Leonardo; Vidal, Yolanda

    2015-01-01

    Security and secrecy are some of the important concerns in the communications world. In the last years, several encryption techniques have been proposed in order to improve the secrecy of the information transmitted. Chaos-based encryption techniques are being widely studied as part of the problem because of the highly unpredictable and random-look nature of the chaotic signals. In this paper we propose a digital-based communication system that uses the logistic map which is a mathematically simple model that is chaotic under certain conditions. The input message signal is modulated using a simple Delta modulator and encrypted using a logistic map. The key signal is also encrypted using the same logistic map with different initial conditions. In the receiver side, the binary-coded message is decrypted using the encrypted key signal that is sent through one of the communication channels. The proposed scheme is experimentally tested using Arduino shields which are simple yet powerful development kits that allows for the implementation of the communication system for testing purposes.

  7. A secure communication using cascade chaotic computing systems on clinical decision support.

    PubMed

    Koksal, Ahmet Sertol; Er, Orhan; Evirgen, Hayrettin; Yumusak, Nejat

    2016-06-01

    Clinical decision support systems (C-DSS) provide supportive tools to the expert for the determination of the disease. Today, many of the support systems, which have been developed for a better and more accurate diagnosis, have reached a dynamic structure due to artificial intelligence techniques. However, in cases when important diagnosis studies should be performed in secret, a secure communication system is required. In this study, secure communication of a DSS is examined through a developed double layer chaotic communication system. The developed communication system consists of four main parts: random number generator, cascade chaotic calculation layer, PCM, and logical mixer layers. Thanks to this system, important patient data created by DSS will be conveyed to the center through a secure communication line.

  8. State-space prediction model for chaotic time series

    NASA Astrophysics Data System (ADS)

    Alparslan, A. K.; Sayar, M.; Atilgan, A. R.

    1998-08-01

    A simple method for predicting the continuation of scalar chaotic time series ahead in time is proposed. The false nearest neighbors technique in connection with the time-delayed embedding is employed so as to reconstruct the state space. A local forecasting model based upon the time evolution of the topological neighboring in the reconstructed phase space is suggested. A moving root-mean-square error is utilized in order to monitor the error along the prediction horizon. The model is tested for the convection amplitude of the Lorenz model. The results indicate that for approximately 100 cycles of the training data, the prediction follows the actual continuation very closely about six cycles. The proposed model, like other state-space forecasting models, captures the long-term behavior of the system due to the use of spatial neighbors in the state space.

  9. Hastatic order in URu2Si2 : Hybridization with a twist

    NASA Astrophysics Data System (ADS)

    Chandra, Premala; Coleman, Piers; Flint, Rebecca

    2015-05-01

    The broken symmetry that develops below 17.5 K in the heavy fermion compound URu2Si2 has long eluded identification. Here we argue that the recent observation of Ising quasiparticles in URu2Si2 results from a spinor hybridization order parameter that breaks double time-reversal symmetry by mixing states of integer and half-integer spin. Such "hastatic order" (hasta: [Latin] spear) hybridizes Kramers conduction electrons with Ising, non-Kramers 5 f2 states of the uranium atoms to produce Ising quasiparticles. The development of a spinorial hybridization at 17.5 K accounts for both the large entropy of condensation and the magnetic anomaly observed in torque magnetometry. This paper develops the theory of hastatic order in detail, providing the mathematical development of its key concepts. Hastatic order predicts a tiny transverse moment in the conduction sea, a colossal Ising anisotropy in the nonlinear susceptibility anomaly and a resonant energy-dependent nematicity in the tunneling density of states.

  10. Devaney chaos plus shadowing implies distributional chaos.

    PubMed

    Li, Jian; Li, Jie; Tu, Siming

    2016-09-01

    We explore connections among the regional proximal relation, the asymptotic relation, and the distal relation for a topological dynamical system with the shadowing property and show that if a Devaney chaotic system has the shadowing property then it is distributionally chaotic.

  11. Isochromatic photoelasticity fringe patterns of PMMA in various shapes and stress applications

    NASA Astrophysics Data System (ADS)

    Manjit, Y.; Limpichaipanit, A.; Ngamjarurojana, A.

    2018-03-01

    The research focuses on isochromatic photoelastic fringe patterns in solid materials by using reflection mode in dark field polariscope. The optical setup consists of light source, polarizers, quarter wave plates, 577 nm optical pass filter, compensator and digital camera system. The fringe patterns were produced on the sample and fractional / integer number of fringe order was observed using Babinet compensator and digital camera system. The samples were circular and rectangular shape of PMMA coated with silver spray and compressed by hydraulic system at the top and the bottom. The results of the isochromatic fringe pattern were analyzed in horizontal and vertical positions. It was found that force and the number of isochromatic photoelastic fringe order depended on shape of sample, which reflects stress distribution behavior.

  12. Analysis of the time structure of synchronization in multidimensional chaotic systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makarenko, A. V., E-mail: avm.science@mail.ru

    2015-05-15

    A new approach is proposed to the integrated analysis of the time structure of synchronization of multidimensional chaotic systems. The method allows one to diagnose and quantitatively evaluate the intermittency characteristics during synchronization of chaotic oscillations in the T-synchronization mode. A system of two identical logistic mappings with unidirectional coupling that operate in the developed chaos regime is analyzed. It is shown that the widely used approach, in which only synchronization patterns are subjected to analysis while desynchronization areas are considered as a background signal and removed from analysis, should be regarded as methodologically incomplete.

  13. Mechanisms of appearance of amplitude and phase chimera states in ensembles of nonlocally coupled chaotic systems

    NASA Astrophysics Data System (ADS)

    Bogomolov, Sergey A.; Slepnev, Andrei V.; Strelkova, Galina I.; Schöll, Eckehard; Anishchenko, Vadim S.

    2017-02-01

    We explore the bifurcation transition from coherence to incoherence in ensembles of nonlocally coupled chaotic systems. It is firstly shown that two types of chimera states, namely, amplitude and phase, can be found in a network of coupled logistic maps, while only amplitude chimera states can be observed in a ring of continuous-time chaotic systems. We reveal a bifurcation mechanism by analyzing the evolution of space-time profiles and the coupling function with varying coupling coefficient and formulate the necessary and sufficient conditions for realizing the chimera states in the ensembles.

  14. Finite-time stabilization of chaotic gyros based on a homogeneous supertwisting-like algorithm

    NASA Astrophysics Data System (ADS)

    Khamsuwan, Pitcha; Sangpet, Teerawat; Kuntanapreeda, Suwat

    2018-01-01

    This paper presents a finite-time stabilization scheme for nonlinear chaotic gyros. The scheme utilizes a supertwisting-like continuous control algorithm for the systems of dimension more than one with a Lipschitz disturbance. The algorithm yields finite-time convergence similar to that produces by discontinuous sliding mode control algorithms. To design the controller, the nonlinearities in the gyro are treated as a disturbance in the system. Thanks to the dissipativeness of chaotic systems, the nonlinearities also possess the Lipschitz property. Numerical results are provided to illustrate the effectiveness of the scheme.

  15. Suppression of chaos at slow variables by rapidly mixing fast dynamics through linear energy-preserving coupling

    NASA Astrophysics Data System (ADS)

    Abramov, R. V.

    2011-12-01

    Chaotic multiscale dynamical systems are common in many areas of science, one of the examples being the interaction of the low-frequency dynamics in the atmosphere with the fast turbulent weather dynamics. One of the key questions about chaotic multiscale systems is how the fast dynamics affects chaos at the slow variables, and, therefore, impacts uncertainty and predictability of the slow dynamics. Here we demonstrate that the linear slow-fast coupling with the total energy conservation property promotes the suppression of chaos at the slow variables through the rapid mixing at the fast variables, both theoretically and through numerical simulations. A suitable mathematical framework is developed, connecting the slow dynamics on the tangent subspaces to the infinite-time linear response of the mean state to a constant external forcing at the fast variables. Additionally, it is shown that the uncoupled dynamics for the slow variables may remain chaotic while the complete multiscale system loses chaos and becomes completely predictable at the slow variables through increasing chaos and turbulence at the fast variables. This result contradicts the common sense intuition, where, naturally, one would think that coupling a slow weakly chaotic system with another much faster and much stronger chaotic system would result in general increase of chaos at the slow variables.

  16. Resonant responses and chaotic dynamics of composite laminated circular cylindrical shell with membranes

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Liu, T.; Xi, A.; Wang, Y. N.

    2018-06-01

    This paper is focused on the resonant responses and chaotic dynamics of a composite laminated circular cylindrical shell with radially pre-stretched membranes at both ends and clamped along a generatrix. Based on the two-degree-of-freedom non-autonomous nonlinear equations of this system, the method of multiple scales is employed to obtain the four-dimensional nonlinear averaged equation. The resonant case considered here is the primary parametric resonance-1/2 subharmonic resonance and 1:1 internal resonance. Corresponding to several selected parameters, the frequency-response curves are obtained. From the numerical results, we find that the hardening-spring-type behaviors and jump phenomena are exhibited. The jump phenomena also occur in the amplitude curves of the temperature parameter excitation. Moreover, it is found that the temperature parameter excitation, the coupling degree of two order modes and the detuning parameters can effect the nonlinear oscillations of this system. The periodic and chaotic motions of the composite laminated circular cylindrical shell clamped along a generatrix are demonstrated by the bifurcation diagrams, the maximum Lyapunov exponents, the phase portraits, the waveforms, the power spectrums and the Poincaré map. The temperature parameter excitation shows that the Pomeau-Manneville type intermittent chaos occur under the certain initial conditions. It is also found that there exist the twin phenomena between the Pomeau-Manneville type intermittent chaos and the period-doubling bifurcation.

  17. Time-delayed chameleon: Analysis, synchronization and FPGA implementation

    NASA Astrophysics Data System (ADS)

    Rajagopal, Karthikeyan; Jafari, Sajad; Laarem, Guessas

    2017-12-01

    In this paper we report a time-delayed chameleon-like chaotic system which can belong to different families of chaotic attractors depending on the choices of parameters. Such a characteristic of self-excited and hidden chaotic flows in a simple 3D system with time delay has not been reported earlier. Dynamic analysis of the proposed time-delayed systems are analysed in time-delay space and parameter space. A novel adaptive modified functional projective lag synchronization algorithm is derived for synchronizing identical time-delayed chameleon systems with uncertain parameters. The proposed time-delayed systems and the synchronization algorithm with controllers and parameter estimates are then implemented in FPGA using hardware-software co-simulation and the results are presented.

  18. A Channel Network Evolution Model with Subsurface Saturation Mechanism and Analysis of the Chaotic Behavior of the Model

    DTIC Science & Technology

    1990-09-01

    between basin shapes and hydrologic responses is fundamental for the purpose of hydrologic predictions , especially in ungaged basins. Another goal is...47] studied this model and showed analitically how very small differences in the c field generated completely different leaf vein network structures... predictability impossible. Complexity is by no means a requirement in order for a system to exhibit SIC. A system as simple as the logistic equation x,,,,=ax,,(l

  19. Fluid elasticity and the transition to chaos in thermal convection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khayat, R.E.

    1995-01-01

    The influence of fluid elasticity on the onset of aperiodic or chaotic motion of an upper-convected Maxwellian fluid is examined in the context of the Rayleigh-Benard thermal convection problem. A truncated Fourier representation of the flow and temperature fields leads to a four-dimensional dynamical system that constitutes a generalization of the classical Lorenz system for Newtonian fluids. It is found that, to the order of the present truncation and above a critical value of the Deborah number De[sup [ital c

  20. Generating Random Numbers by Means of Nonlinear Dynamic Systems

    ERIC Educational Resources Information Center

    Zang, Jiaqi; Hu, Haojie; Zhong, Juhua; Luo, Duanbin; Fang, Yi

    2018-01-01

    To introduce the randomness of a physical process to students, a chaotic pendulum experiment was opened in East China University of Science and Technology (ECUST) on the undergraduate level in the physics department. It was shown chaotic motion could be initiated through adjusting the operation of a chaotic pendulum. By using the data of the…

  1. Generation of 2N + 1-scroll existence in new three-dimensional chaos systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yue; Guan, Jian; Ma, Chunyang

    2016-08-15

    We propose a systematic methodology for creating 2N + 1-scroll chaotic attractors from a simple three-dimensional system, which is named as the translation chaotic system. It satisfies the condition a{sub 12}a{sub 21} = 0, while the Chua system satisfies a{sub 12}a{sub 21} > 0. In this paper, we also propose a successful (an effective) design and an analytical approach for constructing 2N + 1-scrolls, the translation transformation principle. Also, the dynamics properties of the system are studied in detail. MATLAB simulation results show very sophisticated dynamical behaviors and unique chaotic behaviors of the system. It provides a new approach for 2N + 1-scroll attractors. Finally, to explore the potential usemore » in technological applications, a novel block circuit diagram is also designed for the hardware implementation of 1-, 3-, 5-, and 7-scroll attractors via switching the switches. Translation chaotic system has the merit of convenience and high sensitivity to initial values, emerging potentials in future engineering chaos design.« less

  2. A Chaotic Ordered Hierarchies Consistency Analysis Performance Evaluation Model

    NASA Astrophysics Data System (ADS)

    Yeh, Wei-Chang

    2013-02-01

    The Hierarchies Consistency Analysis (HCA) is proposed by Guh in-cooperated along with some case study on a Resort to reinforce the weakness of Analytical Hierarchy Process (AHP). Although the results obtained enabled aid for the Decision Maker to make more reasonable and rational verdicts, the HCA itself is flawed. In this paper, our objective is to indicate the problems of HCA, and then propose a revised method called chaotic ordered HCA (COH in short) which can avoid problems. Since the COH is based upon Guh's method, the Decision Maker establishes decisions in a way similar to that of the original method.

  3. Space-Group Symmetries Generate Chaotic Fluid Advection in Crystalline Granular Media

    NASA Astrophysics Data System (ADS)

    Turuban, R.; Lester, D. R.; Le Borgne, T.; Méheust, Y.

    2018-01-01

    The classical connection between symmetry breaking and the onset of chaos in dynamical systems harks back to the seminal theory of Noether [Transp. Theory Statist. Phys. 1, 186 (1918), 10.1080/00411457108231446]. We study the Lagrangian kinematics of steady 3D Stokes flow through simple cubic and body-centered cubic (bcc) crystalline lattices of close-packed spheres, and uncover an important exception. While breaking of point-group symmetries is a necessary condition for chaotic mixing in both lattices, a further space-group (glide) symmetry of the bcc lattice generates a transition from globally regular to globally chaotic dynamics. This finding provides new insights into chaotic mixing in porous media and has significant implications for understanding the impact of symmetries upon generic dynamical systems.

  4. Dynamics, Analysis and Implementation of a Multiscroll Memristor-Based Chaotic Circuit

    NASA Astrophysics Data System (ADS)

    Alombah, N. Henry; Fotsin, Hilaire; Ngouonkadi, E. B. Megam; Nguazon, Tekou

    This article introduces a novel four-dimensional autonomous multiscroll chaotic circuit which is derived from the actual simplest memristor-based chaotic circuit. A fourth circuit element — another inductor — is introduced to generate the complex behavior observed. A systematic study of the chaotic behavior is performed with the help of some nonlinear tools such as Lyapunov exponents, phase portraits, and bifurcation diagrams. Multiple scroll attractors are observed in Matlab, Pspice environments and also experimentally. We also observe the phenomenon of antimonotonicity, periodic and chaotic bubbles, multiple periodic-doubling bifurcations, Hopf bifurcations, crises and the phenomenon of intermittency. The chaotic dynamics of this circuit is realized by laboratory experiments, Pspice simulations, numerical and analytical investigations. It is observed that the results from the three environments agree to a great extent. This topology is likely convenient to be used to intentionally generate chaos in memristor-based chaotic circuit applications, given the fact that multiscroll chaotic systems have found important applications as broadband signal generators, pseudorandom number generators for communication engineering and also in biometric authentication.

  5. Chaotic phase synchronization in bursting-neuron models driven by a weak periodic force

    NASA Astrophysics Data System (ADS)

    Ando, Hiroyasu; Suetani, Hiromichi; Kurths, Jürgen; Aihara, Kazuyuki

    2012-07-01

    We investigate the entrainment of a neuron model exhibiting a chaotic spiking-bursting behavior in response to a weak periodic force. This model exhibits two types of oscillations with different characteristic time scales, namely, long and short time scales. Several types of phase synchronization are observed, such as 1:1 phase locking between a single spike and one period of the force and 1:l phase locking between the period of slow oscillation underlying bursts and l periods of the force. Moreover, spiking-bursting oscillations with chaotic firing patterns can be synchronized with the periodic force. Such a type of phase synchronization is detected from the position of a set of points on a unit circle, which is determined by the phase of the periodic force at each spiking time. We show that this detection method is effective for a system with multiple time scales. Owing to the existence of both the short and the long time scales, two characteristic phenomena are found around the transition point to chaotic phase synchronization. One phenomenon shows that the average time interval between successive phase slips exhibits a power-law scaling against the driving force strength and that the scaling exponent has an unsmooth dependence on the changes in the driving force strength. The other phenomenon shows that Kuramoto's order parameter before the transition exhibits stepwise behavior as a function of the driving force strength, contrary to the smooth transition in a model with a single time scale.

  6. Chaotic dynamics of flexible Euler-Bernoulli beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Awrejcewicz, J., E-mail: awrejcew@p.lodz.pl; Krysko, A. V., E-mail: anton.krysko@gmail.com; Kutepov, I. E., E-mail: iekutepov@gmail.com

    2013-12-15

    Mathematical modeling and analysis of spatio-temporal chaotic dynamics of flexible simple and curved Euler-Bernoulli beams are carried out. The Kármán-type geometric non-linearity is considered. Algorithms reducing partial differential equations which govern the dynamics of studied objects and associated boundary value problems are reduced to the Cauchy problem through both Finite Difference Method with the approximation of O(c{sup 2}) and Finite Element Method. The obtained Cauchy problem is solved via the fourth and sixth-order Runge-Kutta methods. Validity and reliability of the results are rigorously discussed. Analysis of the chaotic dynamics of flexible Euler-Bernoulli beams for a series of boundary conditions ismore » carried out with the help of the qualitative theory of differential equations. We analyze time histories, phase and modal portraits, autocorrelation functions, the Poincaré and pseudo-Poincaré maps, signs of the first four Lyapunov exponents, as well as the compression factor of the phase volume of an attractor. A novel scenario of transition from periodicity to chaos is obtained, and a transition from chaos to hyper-chaos is illustrated. In particular, we study and explain the phenomenon of transition from symmetric to asymmetric vibrations. Vibration-type charts are given regarding two control parameters: amplitude q{sub 0} and frequency ω{sub p} of the uniformly distributed periodic excitation. Furthermore, we detected and illustrated how the so called temporal-space chaos is developed following the transition from regular to chaotic system dynamics.« less

  7. Fuzzy fractals, chaos, and noise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zardecki, A.

    1997-05-01

    To distinguish between chaotic and noisy processes, the authors analyze one- and two-dimensional chaotic mappings, supplemented by the additive noise terms. The predictive power of a fuzzy rule-based system allows one to distinguish ergodic and chaotic time series: in an ergodic series the likelihood of finding large numbers is small compared to the likelihood of finding them in a chaotic series. In the case of two dimensions, they consider the fractal fuzzy sets whose {alpha}-cuts are fractals, arising in the context of a quadratic mapping in the extended complex plane. In an example provided by the Julia set, the conceptmore » of Hausdorff dimension enables one to decide in favor of chaotic or noisy evolution.« less

  8. Chaotic ultra-wideband radio generator based on an optoelectronic oscillator with a built-in microwave photonic filter.

    PubMed

    Wang, Li Xian; Zhu, Ning Hua; Zheng, Jian Yu; Liu, Jian Guo; Li, Wei

    2012-05-20

    We induce a microwave photonic bandpass filter into an optoelectronic oscillator to generate a chaotic ultra-wideband signal in both the optical and electrical domain. The theoretical analysis and numerical simulation indicate that this system is capable of generating band-limited high-dimensional chaos. Experimental results coincide well with the theoretical prediction and show that the power spectrum of the generated chaotic signal basically meets the Federal Communications Commission indoor mask. The generated chaotic carrier is further intensity modulated by a 10 MHz square wave, and the waveform of the output ultra-wideband signal is measured for demonstrating the chaotic on-off keying modulation.

  9. Active synchronization between two different chaotic dynamical system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maheri, M.; Arifin, N. Md; Ismail, F.

    2015-05-15

    In this paper we investigate on the synchronization problem between two different chaotic dynamical system based on the Lyapunov stability theorem by using nonlinear control functions. Active control schemes are used for synchronization Liu system as drive and Rossler system as response. Numerical simulation by using Maple software are used to show effectiveness of the proposed schemes.

  10. A comparative analysis of chaotic particle swarm optimizations for detecting single nucleotide polymorphism barcodes.

    PubMed

    Chuang, Li-Yeh; Moi, Sin-Hua; Lin, Yu-Da; Yang, Cheng-Hong

    2016-10-01

    Evolutionary algorithms could overcome the computational limitations for the statistical evaluation of large datasets for high-order single nucleotide polymorphism (SNP) barcodes. Previous studies have proposed several chaotic particle swarm optimization (CPSO) methods to detect SNP barcodes for disease analysis (e.g., for breast cancer and chronic diseases). This work evaluated additional chaotic maps combined with the particle swarm optimization (PSO) method to detect SNP barcodes using a high-dimensional dataset. Nine chaotic maps were used to improve PSO method results and compared the searching ability amongst all CPSO methods. The XOR and ZZ disease models were used to compare all chaotic maps combined with PSO method. Efficacy evaluations of CPSO methods were based on statistical values from the chi-square test (χ 2 ). The results showed that chaotic maps could improve the searching ability of PSO method when population are trapped in the local optimum. The minor allele frequency (MAF) indicated that, amongst all CPSO methods, the numbers of SNPs, sample size, and the highest χ 2 value in all datasets were found in the Sinai chaotic map combined with PSO method. We used the simple linear regression results of the gbest values in all generations to compare the all methods. Sinai chaotic map combined with PSO method provided the highest β values (β≥0.32 in XOR disease model and β≥0.04 in ZZ disease model) and the significant p-value (p-value<0.001 in both the XOR and ZZ disease models). The Sinai chaotic map was found to effectively enhance the fitness values (χ 2 ) of PSO method, indicating that the Sinai chaotic map combined with PSO method is more effective at detecting potential SNP barcodes in both the XOR and ZZ disease models. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. The complexity of proving chaoticity and the Church-Turing thesis

    NASA Astrophysics Data System (ADS)

    Calude, Cristian S.; Calude, Elena; Svozil, Karl

    2010-09-01

    Proving the chaoticity of some dynamical systems is equivalent to solving the hardest problems in mathematics. Conversely, classical physical systems may "compute the hard or even the incomputable" by measuring observables which correspond to computationally hard or even incomputable problems.

  12. Least Squares Shadowing Sensitivity Analysis of Chaotic Flow Around a Two-Dimensional Airfoil

    NASA Technical Reports Server (NTRS)

    Blonigan, Patrick J.; Wang, Qiqi; Nielsen, Eric J.; Diskin, Boris

    2016-01-01

    Gradient-based sensitivity analysis has proven to be an enabling technology for many applications, including design of aerospace vehicles. However, conventional sensitivity analysis methods break down when applied to long-time averages of chaotic systems. This breakdown is a serious limitation because many aerospace applications involve physical phenomena that exhibit chaotic dynamics, most notably high-resolution large-eddy and direct numerical simulations of turbulent aerodynamic flows. A recently proposed methodology, Least Squares Shadowing (LSS), avoids this breakdown and advances the state of the art in sensitivity analysis for chaotic flows. The first application of LSS to a chaotic flow simulated with a large-scale computational fluid dynamics solver is presented. The LSS sensitivity computed for this chaotic flow is verified and shown to be accurate, but the computational cost of the current LSS implementation is high.

  13. System design optimization for stand-alone photovoltaic systems sizing by using superstructure model

    NASA Astrophysics Data System (ADS)

    Azau, M. A. M.; Jaafar, S.; Samsudin, K.

    2013-06-01

    Although the photovoltaic (PV) systems have been increasingly installed as an alternative and renewable green power generation, the initial set up cost, maintenance cost and equipment mismatch are some of the key issues that slows down the installation in small household. This paper presents the design optimization of stand-alone photovoltaic systems using superstructure model where all possible types of technology of the equipment are captured and life cycle cost analysis is formulated as a mixed integer programming (MIP). A model for investment planning of power generation and long-term decision model are developed in order to help the system engineer to build a cost effective system.

  14. Hysteresis-induced bifurcation and chaos in a magneto-rheological suspension system under external excitation

    NASA Astrophysics Data System (ADS)

    Hailong, Zhang; Enrong, Wang; Fuhong, Min; Ning, Zhang

    2016-03-01

    The magneto-rheological damper (MRD) is a promising device used in vehicle semi-active suspension systems, for its continuous adjustable damping output. However, the innate nonlinear hysteresis characteristic of MRD may cause the nonlinear behaviors. In this work, a two-degree-of-freedom (2-DOF) MR suspension system was established first, by employing the modified Bouc-Wen force-velocity (F-v) hysteretic model. The nonlinear dynamic response of the system was investigated under the external excitation of single-frequency harmonic and bandwidth-limited stochastic road surface. The largest Lyapunov exponent (LLE) was used to detect the chaotic area of the frequency and amplitude of harmonic excitation, and the bifurcation diagrams, time histories, phase portraits, and power spectrum density (PSD) diagrams were used to reveal the dynamic evolution process in detail. Moreover, the LLE and Kolmogorov entropy (K entropy) were used to identify whether the system response was random or chaotic under stochastic road surface. The results demonstrated that the complex dynamical behaviors occur under different external excitation conditions. The oscillating mechanism of alternating periodic oscillations, quasi-periodic oscillations, and chaotic oscillations was observed in detail. The chaotic regions revealed that chaotic motions may appear in conditions of mid-low frequency and large amplitude, as well as small amplitude and all frequency. The obtained parameter regions where the chaotic motions may appear are useful for design of structural parameters of the vibration isolation, and the optimization of control strategy for MR suspension system. Projects supported by the National Natural Science Foundation of China (Grant Nos. 51475246, 51277098, and 51075215), the Research Innovation Program for College Graduates of Jiangsu Province China (Grant No. KYLX15 0725), and the Natural Science Foundation of Jiangsu Province of China (Grant No. BK20131402).

  15. A review of fractional-order techniques applied to lithium-ion batteries, lead-acid batteries, and supercapacitors

    NASA Astrophysics Data System (ADS)

    Zou, Changfu; Zhang, Lei; Hu, Xiaosong; Wang, Zhenpo; Wik, Torsten; Pecht, Michael

    2018-06-01

    Electrochemical energy storage systems play an important role in diverse applications, such as electrified transportation and integration of renewable energy with the electrical grid. To facilitate model-based management for extracting full system potentials, proper mathematical models are imperative. Due to extra degrees of freedom brought by differentiation derivatives, fractional-order models may be able to better describe the dynamic behaviors of electrochemical systems. This paper provides a critical overview of fractional-order techniques for managing lithium-ion batteries, lead-acid batteries, and supercapacitors. Starting with the basic concepts and technical tools from fractional-order calculus, the modeling principles for these energy systems are presented by identifying disperse dynamic processes and using electrochemical impedance spectroscopy. Available battery/supercapacitor models are comprehensively reviewed, and the advantages of fractional types are discussed. Two case studies demonstrate the accuracy and computational efficiency of fractional-order models. These models offer 15-30% higher accuracy than their integer-order analogues, but have reasonable complexity. Consequently, fractional-order models can be good candidates for the development of advanced battery/supercapacitor management systems. Finally, the main technical challenges facing electrochemical energy storage system modeling, state estimation, and control in the fractional-order domain, as well as future research directions, are highlighted.

  16. Controlling effect of geometrically defined local structural changes on chaotic Hamiltonian systems.

    PubMed

    Ben Zion, Yossi; Horwitz, Lawrence

    2010-04-01

    An effective characterization of chaotic conservative Hamiltonian systems in terms of the curvature associated with a Riemannian metric tensor derived from the structure of the Hamiltonian has been extended to a wide class of potential models of standard form through definition of a conformal metric. The geodesic equations reproduce the Hamilton equations of the original potential model through an inverse map in the tangent space. The second covariant derivative of the geodesic deviation in this space generates a dynamical curvature, resulting in (energy-dependent) criteria for unstable behavior different from the usual Lyapunov criteria. We show here that this criterion can be constructively used to modify locally the potential of a chaotic Hamiltonian model in such a way that stable motion is achieved. Since our criterion for instability is local in coordinate space, these results provide a minimal method for achieving control of a chaotic system.

  17. Observation of discrete time-crystalline order in a disordered dipolar many-body system

    NASA Astrophysics Data System (ADS)

    Choi, Soonwon; Choi, Joonhee; Landig, Renate; Kucsko, Georg; Zhou, Hengyun; Isoya, Junichi; Jelezko, Fedor; Onoda, Shinobu; Sumiya, Hitoshi; Khemani, Vedika; von Keyserlingk, Curt; Yao, Norman; Demler, Eugene; Lukin, Mikhail

    2017-04-01

    The interplay of periodic driving, disorder, and strong interactions has recently been predicted to result in exotic ``time crystalline'' phases, which spontaneously break the discrete time translation symmetry of the underlying drive. Here, we report the experimental observation of such discrete time crystalline order in a driven, disordered ensemble of dipolar spin impurities in diamond at room temperature. We observe long lived temporal correlations at integer multiples of the fundamental driving period, experimentally identify the phase boundary and find that the temporal order is protected by strong interactions; this order is remarkably stable against perturbations, even in the presence of slow thermalization. We provide a theoretical description of approximate Floquet eigenstates of the system based on product state ansatz and predict the phase boundary, which is in qualitative agreement with our observations. Our work opens the door to exploring dynamical phases of matter and controlling interacting, disordered many body systems. NSF, CUA, NSSEFF, ARO MURI, Moore Foundation.

  18. The Influence of Road Bumps Characteristics on the Chaotic Vibration of a Nonlinear Full-Vehicle Model with Driver

    NASA Astrophysics Data System (ADS)

    Fakhraei, J.; Khanlo, H. M.; Ghayour, M.; Faramarzi, Kh.

    In this paper, the chaotic behavior of a ground vehicle system with driver subjected to road disturbances is studied and the relationship between the nonlinear vibration of the vehicle and ride comfort is evaluated. The vehicle system is modeled as fully nonlinear with seven degrees of freedom and an additional degree of freedom for driver (8-DOF). The excitation force is the road irregularities that are assumed as road speed control bumps. The sinusoidal, consecutive half-sine and dented-rectangular waveforms are considered to simulate the road speed control bumps. The nonlinearities of the system are due to the nonlinear springs and dampers that are used in the suspension system and tires. The governing differential equations are extracted under Newton-Euler laws and solved via numerical methods. The chaotic behaviors were studied in more detail with special techniques such as bifurcation diagrams, phase plane portrait, Poincaré map and Lyapunov exponents. The ride comfort was evaluated as the RMS value of the vertical displacement of the vehicle body and driver. Firstly, the effect of amplitude (height) and frequency (vehicle’s speed) of these speed control bumps on chaotic vibrations of vehicle are studied. The obtained results show that various forms of vibrations, such as periodic, subharmonic and chaotic vibrations, can be detected in the system behavior with the change of the height and frequency of speed control bumps and present different types of strange attractors in the vehicle with and without driver. Then, the influence of nonlinear vibration on ride comfort and the relationship between chaotic vibrations of the vehicle and driving comfort are investigated. The results of analyzing the RMS diagrams reveal that the chaotic behaviors can directly affect the driving comfort and lead to the driver’s comfort being reduced. The obtained results can be used in the design of vehicle and road bumps pavement.

  19. Dynamic analysis for solid waste management systems: an inexact multistage integer programming approach.

    PubMed

    Li, Yongping; Huang, Guohe

    2009-03-01

    In this study, a dynamic analysis approach based on an inexact multistage integer programming (IMIP) model is developed for supporting municipal solid waste (MSW) management under uncertainty. Techniques of interval-parameter programming and multistage stochastic programming are incorporated within an integer-programming framework. The developed IMIP can deal with uncertainties expressed as probability distributions and interval numbers, and can reflect the dynamics in terms of decisions for waste-flow allocation and facility-capacity expansion over a multistage context. Moreover, the IMIP can be used for analyzing various policy scenarios that are associated with different levels of economic consequences. The developed method is applied to a case study of long-term waste-management planning. The results indicate that reasonable solutions have been generated for binary and continuous variables. They can help generate desired decisions of system-capacity expansion and waste-flow allocation with a minimized system cost and maximized system reliability.

  20. Melnikov method approach to control of homoclinic/heteroclinic chaos by weak harmonic excitations.

    PubMed

    Chacón, Ricardo

    2006-09-15

    A review on the application of Melnikov's method to control homoclinic and heteroclinic chaos in low-dimensional, non-autonomous and dissipative oscillator systems by weak harmonic excitations is presented, including diverse applications, such as chaotic escape from a potential well, chaotic solitons in Frenkel-Kontorova chains and chaotic-charged particles in the field of an electrostatic wave packet.

  1. Cooling of a magmatic system under thermal chaotic mixing

    NASA Astrophysics Data System (ADS)

    Petrelli, Maurizio; El Omari, Kamal; Le Guer, Yves; Perugini, Diego

    2015-04-01

    The cooling of a melt undergoing chaotic advection is studied numerically for a magma with a temperature-dependent viscosity in a 2D cavity with moving boundary. Different statistical mixing and energy indicators are used to characterize the efficiency of cooling by thermal chaotic mixing. We show that different cooling rates can be obtained during the thermal mixing even of a single basaltic magmatic batch undergoing chaotic advection. This process can induce complex temperature patterns inside the magma chamber. The emergence of chaotic dynamics strongly affects the temperature field during time and greatly increases the cooling rates. This mechanism has implications for the lifetime of a magmatic body and may favor the appearance of chemical heterogeneities in igneous systems as a result of different crystallization rates. Results from this study also highlight that even a single magma batch can develop, under chaotic thermal advection, complex thermal and therefore compositional patterns resulting from different cooling rates, which can account for some natural features that, to date, have received unsatisfactory explanations. Among them, the production of magmatic enclaves showing completely different cooling histories compared with the host magma, compositional zoning in mineral phases, and the generation of large-scale compositionally zoning observed in many plutons worldwide.

  2. Chaotic behaviour of the short-term variations in ozone column observed in Arctic

    NASA Astrophysics Data System (ADS)

    Petkov, Boyan H.; Vitale, Vito; Mazzola, Mauro; Lanconelli, Christian; Lupi, Angelo

    2015-09-01

    The diurnal variations observed in the ozone column at Ny-Ålesund, Svalbard during different periods of 2009, 2010 and 2011 have been examined to test the hypothesis that they could be a result of a chaotic process. It was found that each of the attractors, reconstructed by applying the time delay technique and corresponding to any of the three time series can be embedded by 6-dimensional space. Recurrence plots, depicted to characterise the attractor features revealed structures typical for a chaotic system. In addition, the two positive Lyapunov exponents found for the three attractors, the fractal Hausdorff dimension presented by the Kaplan-Yorke estimator and the feasibility to predict the short-term ozone column variations within 10-20 h, knowing the past behaviour make the assumption about their chaotic character more realistic. The similarities of the estimated parameters in all three cases allow us to hypothesise that the three time series under study likely present one-dimensional projections of the same chaotic system taken at different time intervals.

  3. The effect of inertia, viscous damping, temperature and normal stress on chaotic behaviour of the rate and state friction model

    NASA Astrophysics Data System (ADS)

    Sinha, Nitish; Singh, Arun K.; Singh, Trilok N.

    2018-04-01

    A fundamental understanding of frictional sliding at rock surfaces is of practical importance for nucleation and propagation of earthquakes and rock slope stability. We investigate numerically the effect of different physical parameters such as inertia, viscous damping, temperature and normal stress on the chaotic behaviour of the two state variables rate and state friction (2sRSF) model. In general, a slight variation in any of inertia, viscous damping, temperature and effective normal stress reduces the chaotic behaviour of the sliding system. However, the present study has shown the appearance of chaos for the specific values of normal stress before it disappears again as the normal stress varies further. It is also observed that magnitude of system stiffness at which chaotic motion occurs, is less than the corresponding value of critical stiffness determined by using the linear stability analysis. These results explain the practical observation why chaotic nucleation of an earthquake is a rare phenomenon as reported in literature.

  4. Fractional-order information in the visual control of lateral locomotor interception.

    PubMed

    Bootsma, Reinoud J; Ledouit, Simon; Casanova, Remy; Zaal, Frank T J M

    2016-04-01

    Previous work on locomotor interception of a target moving in the transverse plane has suggested that interception is achieved by maintaining the target's bearing angle (often inadvertently confused and/or confounded with the target heading angle) at a constant value. However, dynamics-based model simulations testing the veracity of the underlying control strategy of nulling the rate of change in the bearing angle have been restricted to limited conditions of target motion, and only a few alternatives have been considered. Exploring a wide range of target motion characteristics with straight and curving ball trajectories in a virtual reality setting, we examined how soccer goalkeepers moved along the goal line to intercept long-range shots on goal, a situation in which interception is naturally constrained to movement along a single dimension. Analyses of the movement patterns suggested reliance on combinations of optical position and velocity for straight trajectories and optical velocity and acceleration for curving trajectories. As an alternative to combining such standard integer-order derivatives, we demonstrate with a simple dynamical model that nulling a single informational variable of a self-tuned fractional (rather than integer) order efficiently captures the timing and patterning of the observed interception behaviors. This new perspective could fundamentally change the conception of what perceptual systems may actually provide, both in humans and in other animals. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  5. MV-OPES: Multivalued-Order Preserving Encryption Scheme: A Novel Scheme for Encrypting Integer Value to Many Different Values

    NASA Astrophysics Data System (ADS)

    Kadhem, Hasan; Amagasa, Toshiyuki; Kitagawa, Hiroyuki

    Encryption can provide strong security for sensitive data against inside and outside attacks. This is especially true in the “Database as Service” model, where confidentiality and privacy are important issues for the client. In fact, existing encryption approaches are vulnerable to a statistical attack because each value is encrypted to another fixed value. This paper presents a novel database encryption scheme called MV-OPES (Multivalued — Order Preserving Encryption Scheme), which allows privacy-preserving queries over encrypted databases with an improved security level. Our idea is to encrypt a value to different multiple values to prevent statistical attacks. At the same time, MV-OPES preserves the order of the integer values to allow comparison operations to be directly applied on encrypted data. Using calculated distance (range), we propose a novel method that allows a join query between relations based on inequality over encrypted values. We also present techniques to offload query execution load to a database server as much as possible, thereby making a better use of server resources in a database outsourcing environment. Our scheme can easily be integrated with current database systems as it is designed to work with existing indexing structures. It is robust against statistical attack and the estimation of true values. MV-OPES experiments show that security for sensitive data can be achieved with reasonable overhead, establishing the practicability of the scheme.

  6. Coexistence and chaos in complex ecologies [rapid communication

    NASA Astrophysics Data System (ADS)

    Sprott, J. C.; Vano, J. A.; Wildenberg, J. C.; Anderson, M. B.; Noel, J. K.

    2005-02-01

    Many complex dynamical systems in ecology, economics, neurology, and elsewhere, in which agents compete for limited resources, exhibit apparently chaotic fluctuations. This Letter proposes a purely deterministic mechanism for evolving robustly but weakly chaotic systems that exhibit adaptation, self-organization, sporadic volatility, and punctuated equilibria.

  7. Security scheme in IMDD-OFDM-PON system with the chaotic pilot interval and scrambling

    NASA Astrophysics Data System (ADS)

    Chen, Qianghua; Bi, Meihua; Fu, Xiaosong; Lu, Yang; Zeng, Ran; Yang, Guowei; Yang, Xuelin; Xiao, Shilin

    2018-01-01

    In this paper, a random chaotic pilot interval and permutations scheme without any requirement of redundant sideband information is firstly proposed for the physical layer security-enhanced intensity modulation direct detection orthogonal frequency division multiplexing passive optical network (IMDD-OFDM-PON) system. With the help of the position feature of inserting the pilot, a simple logistic chaos map is used to generate the random pilot interval and scramble the chaotic subcarrier allocation of each column pilot data for improving the physical layer confidentiality. Due to the dynamic chaotic permutations of pilot data, the enhanced key space of ∼103303 is achieved in OFDM-PON. Moreover, the transmission experiment of 10-Gb/s 16-QAM encrypted OFDM data is successfully demonstrated over 20-km single-mode fiber, which indicates that the proposed scheme not only improves the system security, but also can achieve the same performance as in the common IMDD-OFDM-PON system without encryption scheme.

  8. Nonlinear filtering techniques for noisy geophysical data: Using big data to predict the future

    NASA Astrophysics Data System (ADS)

    Moore, J. M.

    2014-12-01

    Chaos is ubiquitous in physical systems. Within the Earth sciences it is readily evident in seismology, groundwater flows and drilling data. Models and workflows have been applied successfully to understand and even to predict chaotic systems in other scientific fields, including electrical engineering, neurology and oceanography. Unfortunately, the high levels of noise characteristic of our planet's chaotic processes often render these frameworks ineffective. This contribution presents techniques for the reduction of noise associated with measurements of nonlinear systems. Our ultimate aim is to develop data assimilation techniques for forward models that describe chaotic observations, such as episodic tremor and slip (ETS) events in fault zones. A series of nonlinear filters are presented and evaluated using classical chaotic systems. To investigate whether the filters can successfully mitigate the effect of noise typical of Earth science, they are applied to sunspot data. The filtered data can be used successfully to forecast sunspot evolution for up to eight years (see figure).

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grebogi, C.; Yorke, J.A.

    This report discusses the following topics: controlling chaotic dynamical systems; embedding of experimental data; effect of noise on critical exponents of crises; transition to chaotic scattering; and distribution of floaters on a fluid surface. (LSP)

  10. Chaotic behaviour of the Rossler model and its analysis by using bifurcations of limit cycles and chaotic attractors

    NASA Astrophysics Data System (ADS)

    Ibrahim, K. M.; Jamal, R. K.; Ali, F. H.

    2018-05-01

    The behaviour of certain dynamical nonlinear systems are described in term as chaos, i.e., systems’ variables change with the time, displaying very sensitivity to initial conditions of chaotic dynamics. In this paper, we study archetype systems of ordinary differential equations in two-dimensional phase spaces of the Rössler model. A system displays continuous time chaos and is explained by three coupled nonlinear differential equations. We study its characteristics and determine the control parameters that lead to different behavior of the system output, periodic, quasi-periodic and chaos. The time series, attractor, Fast Fourier Transformation and bifurcation diagram for different values have been described.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munoz, Pablo R.; Rempel, Erico L.; Barroso, Joaquim J.

    We study the chaotic dynamics of the Pierce diode, a simple spatially extended system for collisionless bounded plasmas, focusing on the concept of edge of chaos, the boundary that separates transient from asymptotic dynamics. We fully characterize an interior crisis at the end of a periodic window, thereby showing direct evidence of the collision between a chaotic attractor, a chaotic saddle, and the edge of chaos, formed by a period-3 unstable periodic orbit and its stable manifold. The edge of chaos persists after the interior crisis, when the global attractor of the system increases its size in the phase space.

  12. Proving Chaotic Behavior of CBC Mode of Operation

    NASA Astrophysics Data System (ADS)

    Abidi, Abdessalem; Wang, Qianxue; Bouallegue, Belgacem; Machhout, Mohsen; Guyeux, Christophe

    2016-06-01

    The cipher block chaining (CBC) mode of operation was invented by IBM (International Business Machine) in 1976. It presents a very popular way of encrypting that is used in various applications. In this paper, we have mathematically proven that, under some conditions, the CBC mode of operation can admit a chaotic behavior according to Devaney. Some cases will be properly studied in order to provide evidence for this idea.

  13. System and method for generating attitude determinations using GPS

    NASA Technical Reports Server (NTRS)

    Cohen, Clark E. (Inventor)

    1996-01-01

    A GPS attitude receiver for determining the attitude of a moving vehicle in conjunction with a first, a second, a third, and a fourth antenna mounted to the moving vehicle. Each of the antennas receives a plurality of GPS signals that each include a carrier component. For each of the carrier components of the received GPS signals there is an integer ambiguity associated with the first and fourth antennas, an integer ambiguity associated with second and fourth antennas, and an integer ambiguity associated with the third and fourth antennas. The GPS attitude receiver measures phase values for the carrier components of the GPS signals received from each of the antennas at a plurality of measurement epochs during an initialization period and at a measurement epoch after the initialization period. In response to the phase values measured at the measurement epochs during the initialization period, the GPS attitude receiver computes integer ambiguity resolution values representing resolution of the integer ambiguities. Then, in response to the computed integer ambiguity resolution values and the phase value measured at the measurement epoch after the initialization period, it computes values defining the attitude of the moving vehicle at the measurement epoch after the initialization period.

  14. Adaptive Resampling Particle Filters for GPS Carrier-Phase Navigation and Collision Avoidance System

    NASA Astrophysics Data System (ADS)

    Hwang, Soon Sik

    This dissertation addresses three problems: 1) adaptive resampling technique (ART) for Particle Filters, 2) precise relative positioning using Global Positioning System (GPS) Carrier-Phase (CP) measurements applied to nonlinear integer resolution problem for GPS CP navigation using Particle Filters, and 3) collision detection system based on GPS CP broadcasts. First, Monte Carlo filters, called Particle Filters (PF), are widely used where the system is non-linear and non-Gaussian. In real-time applications, their estimation accuracies and efficiencies are significantly affected by the number of particles and the scheduling of relocating weights and samples, the so-called resampling step. In this dissertation, the appropriate number of particles is estimated adaptively such that the error of the sample mean and variance stay in bounds. These bounds are given by the confidence interval of a normal probability distribution for a multi-variate state. Two required number of samples maintaining the mean and variance error within the bounds are derived. The time of resampling is determined when the required sample number for the variance error crosses the required sample number for the mean error. Second, the PF using GPS CP measurements with adaptive resampling is applied to precise relative navigation between two GPS antennas. In order to make use of CP measurements for navigation, the unknown number of cycles between GPS antennas, the so called integer ambiguity, should be resolved. The PF is applied to this integer ambiguity resolution problem where the relative navigation states estimation involves nonlinear observations and nonlinear dynamics equation. Using the PF, the probability density function of the states is estimated by sampling from the position and velocity space and the integer ambiguities are resolved without using the usual hypothesis tests to search for the integer ambiguity. The ART manages the number of position samples and the frequency of the resampling step for real-time kinematics GPS navigation. The experimental results demonstrate the performance of the ART and the insensitivity of the proposed approach to GPS CP cycle-slips. Third, the GPS has great potential for the development of new collision avoidance systems and is being considered for the next generation Traffic alert and Collision Avoidance System (TCAS). The current TCAS equipment, is capable of broadcasting GPS code information to nearby airplanes, and also, the collision avoidance system using the navigation information based on GPS code has been studied by researchers. In this dissertation, the aircraft collision detection system using GPS CP information is addressed. The PF with position samples is employed for the CP based relative position estimation problem and the same algorithm can be used to determine the vehicle attitude if multiple GPS antennas are used. For a reliable and enhanced collision avoidance system, three dimensional trajectories are projected using the estimates of the relative position, velocity, and the attitude. It is shown that the performance of GPS CP based collision detecting algorithm meets the accuracy requirements for a precise approach of flight for auto landing with significantly less unnecessary collision false alarms and no miss alarms.

  15. Fidelity decay in interacting two-level boson systems: Freezing and revivals

    NASA Astrophysics Data System (ADS)

    Benet, Luis; Hernández-Quiroz, Saúl; Seligman, Thomas H.

    2011-05-01

    We study the fidelity decay in the k-body embedded ensembles of random matrices for bosons distributed in two single-particle states, considering the reference or unperturbed Hamiltonian as the one-body terms and the diagonal part of the k-body embedded ensemble of random matrices and the perturbation as the residual off-diagonal part of the interaction. We calculate the ensemble-averaged fidelity with respect to an initial random state within linear response theory to second order on the perturbation strength and demonstrate that it displays the freeze of the fidelity. During the freeze, the average fidelity exhibits periodic revivals at integer values of the Heisenberg time tH. By selecting specific k-body terms of the residual interaction, we find that the periodicity of the revivals during the freeze of fidelity is an integer fraction of tH, thus relating the period of the revivals with the range of the interaction k of the perturbing terms. Numerical calculations confirm the analytical results.

  16. The Capability Portfolio Analysis Tool (CPAT): A Mixed Integer Linear Programming Formulation for Fleet Modernization Analysis (Version 2.0.2).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waddell, Lucas; Muldoon, Frank; Henry, Stephen Michael

    In order to effectively plan the management and modernization of their large and diverse fleets of vehicles, Program Executive Office Ground Combat Systems (PEO GCS) and Program Executive Office Combat Support and Combat Service Support (PEO CS&CSS) commis- sioned the development of a large-scale portfolio planning optimization tool. This software, the Capability Portfolio Analysis Tool (CPAT), creates a detailed schedule that optimally prioritizes the modernization or replacement of vehicles within the fleet - respecting numerous business rules associated with fleet structure, budgets, industrial base, research and testing, etc., while maximizing overall fleet performance through time. This paper contains a thor-more » ough documentation of the terminology, parameters, variables, and constraints that comprise the fleet management mixed integer linear programming (MILP) mathematical formulation. This paper, which is an update to the original CPAT formulation document published in 2015 (SAND2015-3487), covers the formulation of important new CPAT features.« less

  17. Chimeralike states in a network of oscillators under attractive and repulsive global coupling.

    PubMed

    Mishra, Arindam; Hens, Chittaranjan; Bose, Mridul; Roy, Prodyot K; Dana, Syamal K

    2015-12-01

    We report chimeralike states in an ensemble of oscillators using a type of global coupling consisting of two components: attractive and repulsive mean-field feedback. We identify the existence of two types of chimeralike states in a bistable Liénard system; in one type, both the coherent and the incoherent populations are in chaotic states (which we refer to as chaos-chaos chimeralike states) and, in another type, the incoherent population is in periodic state while the coherent population has irregular small oscillation. We find a metastable state in a parameter regime of the Liénard system where the coherent and noncoherent states migrate in time from one to another subpopulation. The relative size of the incoherent subpopulation, in the chimeralike states, remains almost stable with increasing size of the network. The generality of the coupling configuration in the origin of the chimeralike states is tested, using a second example of bistable system, the van der Pol-Duffing oscillator where the chimeralike states emerge as weakly chaotic in the coherent subpopulation and chaotic in the incoherent subpopulation. Furthermore, we apply the coupling, in a simplified form, to form a network of the chaotic Rössler system where both the noncoherent and the coherent subpopulations show chaotic dynamics.

  18. Maximizing the security of chaotic optical communications.

    PubMed

    Hou, T T; Yi, L L; Yang, X L; Ke, J X; Hu, Y; Yang, Q; Zhou, P; Hu, W S

    2016-10-03

    The practical application of chaotic optical communications has been limited by two aspects: the difficulty in concealing the time delay - a critical security parameter in feedback chaotic systems, and the difficulty of significantly enlarging the key space without complicating the implementation. Here we propose an architecture to break the above limits. By introducing a frequency-dependent group delay module with frequency tuning resolution of 1 MHz into the chaotic feedback loop, we demonstrate excellent time delay concealment effect, and an additional huge key space of 1048 can be achieved at the same time. The effectiveness is proved by both numerical simulation and experiment. Besides, the proposed scheme is compatible with the existing commercial optical communication systems, thus pave the way for high-speed secure optical communications.

  19. Quantum Transport near the Charge Neutrality Point in Inverted Type-II InAs/GaSb Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Pan, W.; Klem, J. F.; Kim, J. K.; Thalakulam, M.; Cich, M. J.; Lyo, S. K.

    2013-03-01

    We present here our recent quantum transport results around the charge neutrality point (CNP) in a type-II InAs/GaSb field-effect transistor. At zero magnetic field, a conductance minimum close to 4e2 / h develops at the CNP and it follows semi-logarithmic temperature dependence. In quantized magnetic (B) fields and at low temperatures, well developed integer quantum Hall states are observed in the electron as well as hole regimes. Electron transport shows noisy behavior around the CNP at extremely high B fields. When the diagonal conductivity σxx is plotted against the Hall conductivity σxy, a conductivity circle law is discovered, suggesting a chaotic quantum transport behavior. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  20. A Low-Cost Part-Task Flight Training System: An Application of a Head Mounted Display

    DTIC Science & Technology

    1990-12-01

    architecture. The task at hand was to develop a software emulation libary that would emulate the function calls used within the Flight and Dog programs. This...represented in two hexadecimal digits for each color. The format of the packed long integer looks like aaggbbrr with each color value representing a...Western Digital ethernet card as the cheapest compatible card available. Good fortune arrived, as I was calling to order the card, I saw an unused card

  1. A novel chaotic based image encryption using a hybrid model of deoxyribonucleic acid and cellular automata

    NASA Astrophysics Data System (ADS)

    Enayatifar, Rasul; Sadaei, Hossein Javedani; Abdullah, Abdul Hanan; Lee, Malrey; Isnin, Ismail Fauzi

    2015-08-01

    Currently, there are many studies have conducted on developing security of the digital image in order to protect such data while they are sending on the internet. This work aims to propose a new approach based on a hybrid model of the Tinkerbell chaotic map, deoxyribonucleic acid (DNA) and cellular automata (CA). DNA rules, DNA sequence XOR operator and CA rules are used simultaneously to encrypt the plain-image pixels. To determine rule number in DNA sequence and also CA, a 2-dimension Tinkerbell chaotic map is employed. Experimental results and computer simulations, both confirm that the proposed scheme not only demonstrates outstanding encryption, but also resists various typical attacks.

  2. Time Series Analysis of the Bacillus subtilis Sporulation Network Reveals Low Dimensional Chaotic Dynamics.

    PubMed

    Lecca, Paola; Mura, Ivan; Re, Angela; Barker, Gary C; Ihekwaba, Adaoha E C

    2016-01-01

    Chaotic behavior refers to a behavior which, albeit irregular, is generated by an underlying deterministic process. Therefore, a chaotic behavior is potentially controllable. This possibility becomes practically amenable especially when chaos is shown to be low-dimensional, i.e., to be attributable to a small fraction of the total systems components. In this case, indeed, including the major drivers of chaos in a system into the modeling approach allows us to improve predictability of the systems dynamics. Here, we analyzed the numerical simulations of an accurate ordinary differential equation model of the gene network regulating sporulation initiation in Bacillus subtilis to explore whether the non-linearity underlying time series data is due to low-dimensional chaos. Low-dimensional chaos is expectedly common in systems with few degrees of freedom, but rare in systems with many degrees of freedom such as the B. subtilis sporulation network. The estimation of a number of indices, which reflect the chaotic nature of a system, indicates that the dynamics of this network is affected by deterministic chaos. The neat separation between the indices obtained from the time series simulated from the model and those obtained from time series generated by Gaussian white and colored noise confirmed that the B. subtilis sporulation network dynamics is affected by low dimensional chaos rather than by noise. Furthermore, our analysis identifies the principal driver of the networks chaotic dynamics to be sporulation initiation phosphotransferase B (Spo0B). We then analyzed the parameters and the phase space of the system to characterize the instability points of the network dynamics, and, in turn, to identify the ranges of values of Spo0B and of the other drivers of the chaotic dynamics, for which the whole system is highly sensitive to minimal perturbation. In summary, we described an unappreciated source of complexity in the B. subtilis sporulation network by gathering evidence for the chaotic behavior of the system, and by suggesting candidate molecules driving chaos in the system. The results of our chaos analysis can increase our understanding of the intricacies of the regulatory network under analysis, and suggest experimental work to refine our behavior of the mechanisms underlying B. subtilis sporulation initiation control.

  3. Stabilization of active matter by flow-vortex lattices and defect ordering

    PubMed Central

    Doostmohammadi, Amin; Adamer, Michael F.; Thampi, Sumesh P.; Yeomans, Julia M.

    2016-01-01

    Active systems, from bacterial suspensions to cellular monolayers, are continuously driven out of equilibrium by local injection of energy from their constituent elements and exhibit turbulent-like and chaotic patterns. Here we demonstrate both theoretically and through numerical simulations, that the crossover between wet active systems, whose behaviour is dominated by hydrodynamics, and dry active matter where any flow is screened, can be achieved by using friction as a control parameter. Moreover, we discover unexpected vortex ordering at this wet–dry crossover. We show that the self organization of vortices into lattices is accompanied by the spatial ordering of topological defects leading to active crystal-like structures. The emergence of vortex lattices, which leads to the positional ordering of topological defects, suggests potential applications in the design and control of active materials. PMID:26837846

  4. The Six Fundamental Characteristics of Chaos and Their Clinical Relevance to Psychiatry: a New Hypothesis for the Origin of Psychosis

    NASA Astrophysics Data System (ADS)

    Schmid, Gary Bruno

    Underlying idea: A new hypothesis about how the mental state of psychosis may arise in the brain as a "linear" information processing pathology is briefly introduced. This hypothesis is proposed in the context of a complementary approach to psychiatry founded in the logical paradigm of chaos theory. To best understand the relation between chaos theory and psychiatry, the semantic structure of chaos theory is analyzed with the help of six general, and six specific, fundamental characteristics which can be directly inferred from empirical observations on chaotic systems. This enables a mathematically and physically stringent perspective on psychological phenomena which until now could only be grasped intuitively: Chaotic systems are in a general sense dynamic, intrinsically coherent, deterministic, recursive, reactive and structured: in a specific sense, self-organizing, unpredictable, nonreproducible, triadic, unstable and self-similar. To a great extent, certain concepts of chaos theory can be associated with corresponding concepts in psychiatry, psychology and psychotherapy, thus enabling an understanding of the human psyche in general as a (fractal) chaotic system and an explanation of certain mental developments, such as the course of schizophrenia, the course of psychosis and psychotherapy as chaotic processes. General overview: A short comparison and contrast of classical and chaotic physical theory leads to four postulates and one hypothesis motivating a new, dynamic, nonlinear approach to classical, causal psychiatry: Process-Oriented PSYchiatry or "POPSY", for short. Four aspects of the relationship between chaos theory and POPSY are discussed: (1) The first of these, namely, Identification of Chaos / Picture of Illness involves a definition of Chaos / Psychosis and a discussion of the 6 logical characteristics of each. This leads to the concept of dynamical disease (definition, characteristics and examples) and to the idea of "psychological disturbance as dynamical illness". On the one hand, it is argued that the developmental course of psychosis is chaotic. On the other hand, we propose the hypothesis that the mental state of psychosis may be a linear information processing pathology. (2) The second aspect under discussion is the Assessment of Chaos / Diagnosis of Illness. In order to better understand how POPSY research treats this aspect, we take a look at the 3 different classes of (non-quantum) motion as models of 3 different possible courses of illness and outline present-day methods available for the quantitative assessment of chaotic (fractal) motion. (3) The third aspect, namely. Prediction of Chaos / Prognosis of Illness considers how each of these 3 classes of motion implies a different way of looking into the future: linear-causal, statistical and nonlinear-fractal, respectively (4) The fourth aspect of the relationship between chaos theory and POPSY, Control of Chaos / Treatment of Illness, is shown to have certain implications to complementary medicine. This paper completes with a short summary, conclusion and a closing remark.

  5. Generating random numbers by means of nonlinear dynamic systems

    NASA Astrophysics Data System (ADS)

    Zang, Jiaqi; Hu, Haojie; Zhong, Juhua; Luo, Duanbin; Fang, Yi

    2018-07-01

    To introduce the randomness of a physical process to students, a chaotic pendulum experiment was opened in East China University of Science and Technology (ECUST) on the undergraduate level in the physics department. It was shown chaotic motion could be initiated through adjusting the operation of a chaotic pendulum. By using the data of the angular displacements of chaotic motion, random binary numerical arrays can be generated. To check the randomness of generated numerical arrays, the NIST Special Publication 800-20 method was adopted. As a result, it was found that all the random arrays which were generated by the chaotic motion could pass the validity criteria and some of them were even better than the quality of pseudo-random numbers generated by a computer. Through the experiments, it is demonstrated that chaotic pendulum can be used as an efficient mechanical facility in generating random numbers, and can be applied in teaching random motion to the students.

  6. Synchronization of an Inertial Neural Network With Time-Varying Delays and Its Application to Secure Communication.

    PubMed

    Lakshmanan, Shanmugam; Prakash, Mani; Lim, Chee Peng; Rakkiyappan, Rajan; Balasubramaniam, Pagavathigounder; Nahavandi, Saeid

    2018-01-01

    In this paper, synchronization of an inertial neural network with time-varying delays is investigated. Based on the variable transformation method, we transform the second-order differential equations into the first-order differential equations. Then, using suitable Lyapunov-Krasovskii functionals and Jensen's inequality, the synchronization criteria are established in terms of linear matrix inequalities. Moreover, a feedback controller is designed to attain synchronization between the master and slave models, and to ensure that the error model is globally asymptotically stable. Numerical examples and simulations are presented to indicate the effectiveness of the proposed method. Besides that, an image encryption algorithm is proposed based on the piecewise linear chaotic map and the chaotic inertial neural network. The chaotic signals obtained from the inertial neural network are utilized for the encryption process. Statistical analyses are provided to evaluate the effectiveness of the proposed encryption algorithm. The results ascertain that the proposed encryption algorithm is efficient and reliable for secure communication applications.

  7. Synchronizable Series Expressions. Part 2. Overview of the Theory and Implementation.

    DTIC Science & Technology

    1987-11-01

    more running time than shown in the table. because time is eventually required in order to collect the garbage it creates. Program Running ’rime Garbage...possible to simply put an enumerator where it is used.) (loop for x integer from I to 4 collect x) - (lotS* ((x (Eup I :to 4))) (declare (type integer x...below. (loop for x from 1 to 4 and for y = 0 then (1- x) collect (list x y)) - (lotS* ((x (Eup 1 :to 4)) (y (Tprevious (1- x) 0))) (Rlist (list x y

  8. Exploration of the Chaotic Behaviour in a Buck-Boost Converter Depending on the Converter and Load Elements

    NASA Astrophysics Data System (ADS)

    Demirbaş, Şevki; Fidanboy, Hikmet; Kurt, Erol

    2016-08-01

    In this paper, detailed analyses of the chaotic behavior observed in a buck-boost converter are presented. Although this basic converter system is already known world-wide for the purpose of dc-dc conversion of the output of renewable energy systems, it indicates certain chaotic regimes where both the output amplitude and frequency change randomly. This chaotic regime can yield an unstable output over the resistive or resistive/inductive electrical loads. This study presents a detailed map for the regular and chaotic regions in terms of material parameters, such as converter capacitance C, resistive load R, and inductive load L. Thus, the stable area of operation for efficient and renewable electricity production will be ascertained for the studied converter system. We emphasize that the material parameters C, R, and L play important roles in generating energy from the solar cell; indeed, the stability increases with higher values of the converter capacitor and load inductance, whereas it decreases according to the resistive load. A number of periodic windows have been observed and the output frequency gives a broad-band spectrum of up to 50 kHz.

  9. Chaos as an intermittently forced linear system.

    PubMed

    Brunton, Steven L; Brunton, Bingni W; Proctor, Joshua L; Kaiser, Eurika; Kutz, J Nathan

    2017-05-30

    Understanding the interplay of order and disorder in chaos is a central challenge in modern quantitative science. Approximate linear representations of nonlinear dynamics have long been sought, driving considerable interest in Koopman theory. We present a universal, data-driven decomposition of chaos as an intermittently forced linear system. This work combines delay embedding and Koopman theory to decompose chaotic dynamics into a linear model in the leading delay coordinates with forcing by low-energy delay coordinates; this is called the Hankel alternative view of Koopman (HAVOK) analysis. This analysis is applied to the Lorenz system and real-world examples including Earth's magnetic field reversal and measles outbreaks. In each case, forcing statistics are non-Gaussian, with long tails corresponding to rare intermittent forcing that precedes switching and bursting phenomena. The forcing activity demarcates coherent phase space regions where the dynamics are approximately linear from those that are strongly nonlinear.The huge amount of data generated in fields like neuroscience or finance calls for effective strategies that mine data to reveal underlying dynamics. Here Brunton et al.develop a data-driven technique to analyze chaotic systems and predict their dynamics in terms of a forced linear model.

  10. Synchronization transition in neuronal networks composed of chaotic or non-chaotic oscillators.

    PubMed

    Xu, Kesheng; Maidana, Jean Paul; Castro, Samy; Orio, Patricio

    2018-05-30

    Chaotic dynamics has been shown in the dynamics of neurons and neural networks, in experimental data and numerical simulations. Theoretical studies have proposed an underlying role of chaos in neural systems. Nevertheless, whether chaotic neural oscillators make a significant contribution to network behaviour and whether the dynamical richness of neural networks is sensitive to the dynamics of isolated neurons, still remain open questions. We investigated synchronization transitions in heterogeneous neural networks of neurons connected by electrical coupling in a small world topology. The nodes in our model are oscillatory neurons that - when isolated - can exhibit either chaotic or non-chaotic behaviour, depending on conductance parameters. We found that the heterogeneity of firing rates and firing patterns make a greater contribution than chaos to the steepness of the synchronization transition curve. We also show that chaotic dynamics of the isolated neurons do not always make a visible difference in the transition to full synchrony. Moreover, macroscopic chaos is observed regardless of the dynamics nature of the neurons. However, performing a Functional Connectivity Dynamics analysis, we show that chaotic nodes can promote what is known as multi-stable behaviour, where the network dynamically switches between a number of different semi-synchronized, metastable states.

  11. Probability distributions of linear statistics in chaotic cavities and associated phase transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vivo, Pierpaolo; Majumdar, Satya N.; Bohigas, Oriol

    2010-03-01

    We establish large deviation formulas for linear statistics on the N transmission eigenvalues (T{sub i}) of a chaotic cavity, in the framework of random matrix theory. Given any linear statistics of interest A=SIGMA{sub i=1}{sup N}a(T{sub i}), the probability distribution P{sub A}(A,N) of A generically satisfies the large deviation formula lim{sub N-}>{sub i}nfinity[-2 log P{sub A}(Nx,N)/betaN{sup 2}]=PSI{sub A}(x), where PSI{sub A}(x) is a rate function that we compute explicitly in many cases (conductance, shot noise, and moments) and beta corresponds to different symmetry classes. Using these large deviation expressions, it is possible to recover easily known results and to produce newmore » formulas, such as a closed form expression for v(n)=lim{sub N-}>{sub i}nfinity var(T{sub n}) (where T{sub n}=SIGMA{sub i}T{sub i}{sup n}) for arbitrary integer n. The universal limit v*=lim{sub n-}>{sub i}nfinity v(n)=1/2pibeta is also computed exactly. The distributions display a central Gaussian region flanked on both sides by non-Gaussian tails. At the junction of the two regimes, weakly nonanalytical points appear, a direct consequence of phase transitions in an associated Coulomb gas problem. Numerical checks are also provided, which are in full agreement with our asymptotic results in both real and Laplace space even for moderately small N. Part of the results have been announced by Vivo et al. [Phys. Rev. Lett. 101, 216809 (2008)].« less

  12. Amplification of intrinsic fluctuations by the Lorenz equations

    NASA Astrophysics Data System (ADS)

    Fox, Ronald F.; Elston, T. C.

    1993-07-01

    Macroscopic systems (e.g., hydrodynamics, chemical reactions, electrical circuits, etc.) manifest intrinsic fluctuations of molecular and thermal origin. When the macroscopic dynamics is deterministically chaotic, the intrinsic fluctuations may become amplified by several orders of magnitude. Numerical studies of this phenomenon are presented in detail for the Lorenz model. Amplification to macroscopic scales is exhibited, and quantitative methods (binning and a difference-norm) are presented for measuring macroscopically subliminal amplification effects. In order to test the quality of the numerical results, noise induced chaos is studied around a deterministically nonchaotic state, where the scaling law relating the Lyapunov exponent to noise strength obtained for maps is confirmed for the Lorenz model, a system of ordinary differential equations.

  13. Chaotic Dynamical Ferromagnetic Phase Induced by Nonequilibrium Quantum Fluctuations

    NASA Astrophysics Data System (ADS)

    Lerose, Alessio; Marino, Jamir; Žunkovič, Bojan; Gambassi, Andrea; Silva, Alessandro

    2018-03-01

    We investigate the robustness of a dynamical phase transition against quantum fluctuations by studying the impact of a ferromagnetic nearest-neighbor spin interaction in one spatial dimension on the nonequilibrium dynamical phase diagram of the fully connected quantum Ising model. In particular, we focus on the transient dynamics after a quantum quench and study the prethermal state via a combination of analytic time-dependent spin wave theory and numerical methods based on matrix product states. We find that, upon increasing the strength of the quantum fluctuations, the dynamical critical point fans out into a chaotic dynamical phase within which the asymptotic ordering is characterized by strong sensitivity to the parameters and initial conditions. We argue that such a phenomenon is general, as it arises from the impact of quantum fluctuations on the mean-field out of equilibrium dynamics of any system which exhibits a broken discrete symmetry.

  14. Chaotic Dynamical Ferromagnetic Phase Induced by Nonequilibrium Quantum Fluctuations.

    PubMed

    Lerose, Alessio; Marino, Jamir; Žunkovič, Bojan; Gambassi, Andrea; Silva, Alessandro

    2018-03-30

    We investigate the robustness of a dynamical phase transition against quantum fluctuations by studying the impact of a ferromagnetic nearest-neighbor spin interaction in one spatial dimension on the nonequilibrium dynamical phase diagram of the fully connected quantum Ising model. In particular, we focus on the transient dynamics after a quantum quench and study the prethermal state via a combination of analytic time-dependent spin wave theory and numerical methods based on matrix product states. We find that, upon increasing the strength of the quantum fluctuations, the dynamical critical point fans out into a chaotic dynamical phase within which the asymptotic ordering is characterized by strong sensitivity to the parameters and initial conditions. We argue that such a phenomenon is general, as it arises from the impact of quantum fluctuations on the mean-field out of equilibrium dynamics of any system which exhibits a broken discrete symmetry.

  15. Lossy chaotic electromagnetic reverberation chambers: Universal statistical behavior of the vectorial field

    NASA Astrophysics Data System (ADS)

    Gros, J.-B.; Kuhl, U.; Legrand, O.; Mortessagne, F.

    2016-03-01

    The effective Hamiltonian formalism is extended to vectorial electromagnetic waves in order to describe statistical properties of the field in reverberation chambers. The latter are commonly used in electromagnetic compatibility tests. As a first step, the distribution of wave intensities in chaotic systems with varying opening in the weak coupling limit for scalar quantum waves is derived by means of random matrix theory. In this limit the only parameters are the modal overlap and the number of open channels. Using the extended effective Hamiltonian, we describe the intensity statistics of the vectorial electromagnetic eigenmodes of lossy reverberation chambers. Finally, the typical quantity of interest in such chambers, namely, the distribution of the electromagnetic response, is discussed. By determining the distribution of the phase rigidity, describing the coupling to the environment, using random matrix numerical data, we find good agreement between the theoretical prediction and numerical calculations of the response.

  16. A Unit on Deterministic Chaos for Student Teachers

    ERIC Educational Resources Information Center

    Stavrou, D.; Assimopoulos, S.; Skordoulis, C.

    2013-01-01

    A unit aiming to introduce pre-service teachers of primary education to the limited predictability of deterministic chaotic systems is presented. The unit is based on a commercial chaotic pendulum system connected with a data acquisition interface. The capabilities and difficulties in understanding the notion of limited predictability of 18…

  17. Chaotic attractors in tumor growth and decay: a differential equation model.

    PubMed

    Harney, Michael; Yim, Wen-sau

    2015-01-01

    Tumorigenesis can be modeled as a system of chaotic nonlinear differential equations. A simulation of the system is realized by converting the differential equations to difference equations. The results of the simulation show that an increase in glucose in the presence of low oxygen levels decreases tumor growth.

  18. How to Generate Chaos at Home.

    ERIC Educational Resources Information Center

    Smith, Douglas

    1992-01-01

    Describes an electronic circuit that can function as a prototype for chaotic systems. Specific applied voltages produce chaotic signals that can be viewed with an oscilloscope or be made audible with a home stereo system. Provides directions for assembly with typical costs, mathematical basis of chaos theory, and experimental extensions. (JJK)

  19. Multiswitching compound antisynchronization of four chaotic systems

    NASA Astrophysics Data System (ADS)

    Khan, Ayub; Khattar, Dinesh; Prajapati, Nitish

    2017-12-01

    Based on three drive-one response system, in this article, the authors investigate a novel synchronization scheme for a class of chaotic systems. The new scheme, multiswitching compound antisynchronization (MSCoAS), is a notable extension of the earlier multiswitching schemes concerning only one drive-one response system model. The concept of multiswitching synchronization is extended to compound synchronization scheme such that the state variables of three drive systems antisynchronize with different state variables of the response system, simultaneously. The study involving multiswitching of three drive systems and one response system is first of its kind. Various switched modified function projective antisynchronization schemes are obtained as special cases of MSCoAS, for a suitable choice of scaling factors. Using suitable controllers and Lyapunov stability theory, sufficient condition is obtained to achieve MSCoAS between four chaotic systems and the corresponding theoretical proof is given. Numerical simulations are performed using Lorenz system in MATLAB to demonstrate the validity of the presented method.

  20. Chaos control of Hastings-Powell model by combining chaotic motions.

    PubMed

    Danca, Marius-F; Chattopadhyay, Joydev

    2016-04-01

    In this paper, we propose a Parameter Switching (PS) algorithm as a new chaos control method for the Hastings-Powell (HP) system. The PS algorithm is a convergent scheme that switches the control parameter within a set of values while the controlled system is numerically integrated. The attractor obtained with the PS algorithm matches the attractor obtained by integrating the system with the parameter replaced by the averaged value of the switched parameter values. The switching rule can be applied periodically or randomly over a set of given values. In this way, every stable cycle of the HP system can be approximated if its underlying parameter value equalizes the average value of the switching values. Moreover, the PS algorithm can be viewed as a generalization of Parrondo's game, which is applied for the first time to the HP system, by showing that losing strategy can win: "losing + losing = winning." If "loosing" is replaced with "chaos" and, "winning" with "order" (as the opposite to "chaos"), then by switching the parameter value in the HP system within two values, which generate chaotic motions, the PS algorithm can approximate a stable cycle so that symbolically one can write "chaos + chaos = regular." Also, by considering a different parameter control, new complex dynamics of the HP model are revealed.

Top