Sample records for integral equation relating

  1. Dynamics of a differential-difference integrable (2+1)-dimensional system.

    PubMed

    Yu, Guo-Fu; Xu, Zong-Wei

    2015-06-01

    A Kadomtsev-Petviashvili- (KP-) type equation appears in fluid mechanics, plasma physics, and gas dynamics. In this paper, we propose an integrable semidiscrete analog of a coupled (2+1)-dimensional system which is related to the KP equation and the Zakharov equation. N-soliton solutions of the discrete equation are presented. Some interesting examples of soliton resonance related to the two-soliton and three-soliton solutions are investigated. Numerical computations using the integrable semidiscrete equation are performed. It is shown that the integrable semidiscrete equation gives very accurate numerical results in the cases of one-soliton evolution and soliton interactions.

  2. Squared eigenfunctions for the Sasa-Satsuma equation

    NASA Astrophysics Data System (ADS)

    Yang, Jianke; Kaup, D. J.

    2009-02-01

    Squared eigenfunctions are quadratic combinations of Jost functions and adjoint Jost functions which satisfy the linearized equation of an integrable equation. They are needed for various studies related to integrable equations, such as the development of its soliton perturbation theory. In this article, squared eigenfunctions are derived for the Sasa-Satsuma equation whose spectral operator is a 3×3 system, while its linearized operator is a 2×2 system. It is shown that these squared eigenfunctions are sums of two terms, where each term is a product of a Jost function and an adjoint Jost function. The procedure of this derivation consists of two steps: First is to calculate the variations of the potentials via variations of the scattering data by the Riemann-Hilbert method. The second one is to calculate the variations of the scattering data via the variations of the potentials through elementary calculations. While this procedure has been used before on other integrable equations, it is shown here, for the first time, that for a general integrable equation, the functions appearing in these variation relations are precisely the squared eigenfunctions and adjoint squared eigenfunctions satisfying, respectively, the linearized equation and the adjoint linearized equation of the integrable system. This proof clarifies this procedure and provides a unified explanation for previous results of squared eigenfunctions on individual integrable equations. This procedure uses primarily the spectral operator of the Lax pair. Thus two equations in the same integrable hierarchy will share the same squared eigenfunctions (except for a time-dependent factor). In the Appendix, the squared eigenfunctions are presented for the Manakov equations whose spectral operator is closely related to that of the Sasa-Satsuma equation.

  3. On randomized algorithms for numerical solution of applied Fredholm integral equations of the second kind

    NASA Astrophysics Data System (ADS)

    Voytishek, Anton V.; Shipilov, Nikolay M.

    2017-11-01

    In this paper, the systematization of numerical (implemented on a computer) randomized functional algorithms for approximation of a solution of Fredholm integral equation of the second kind is carried out. Wherein, three types of such algorithms are distinguished: the projection, the mesh and the projection-mesh methods. The possibilities for usage of these algorithms for solution of practically important problems is investigated in detail. The disadvantages of the mesh algorithms, related to the necessity of calculation values of the kernels of integral equations in fixed points, are identified. On practice, these kernels have integrated singularities, and calculation of their values is impossible. Thus, for applied problems, related to solving Fredholm integral equation of the second kind, it is expedient to use not mesh, but the projection and the projection-mesh randomized algorithms.

  4. Green function of the double-fractional Fokker-Planck equation: path integral and stochastic differential equations.

    PubMed

    Kleinert, H; Zatloukal, V

    2013-11-01

    The statistics of rare events, the so-called black-swan events, is governed by non-Gaussian distributions with heavy power-like tails. We calculate the Green functions of the associated Fokker-Planck equations and solve the related stochastic differential equations. We also discuss the subject in the framework of path integration.

  5. Equations on knot polynomials and 3d/5d duality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mironov, A.; Morozov, A.; ITEP, Moscow

    2012-09-24

    We briefly review the current situation with various relations between knot/braid polynomials (Chern-Simons correlation functions), ordinary and extended, considered as functions of the representation and of the knot topology. These include linear skein relations, quadratic Plucker relations, as well as 'differential' and (quantum) A-polynomial structures. We pay a special attention to identity between the A-polynomial equations for knots and Baxter equations for quantum relativistic integrable systems, related through Seiberg-Witten theory to 5d super-Yang-Mills models and through the AGT relation to the q-Virasoro algebra. This identity is an important ingredient of emerging a 3d- 5d generalization of the AGT relation. Themore » shape of the Baxter equation (including the values of coefficients) depend on the choice of the knot/braid. Thus, like the case of KP integrability, where (some, so far torus) knots parameterize particular points of the Universal Grassmannian, in this relation they parameterize particular points in the moduli space of many-body integrable systems of relativistic type.« less

  6. Integrable particle systems vs solutions to the KP and 2D Toda equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruijsenaars, S.N.

    Starting from the relation between integrable relativistic N-particle systems with hyperbolic interactions and elementary N-soliton solutions to the KP and 2D Toda equations, we show how fusion properties of the soliton solutions are mirrored by fusion properties of the Poisson commuting particle dynamics. We also obtain previously known relations between elliptic solutions and integrable N-particle systems with elliptic interactions, without invoking finite-gap integration theory. {copyright} 1997 Academic Press, Inc.

  7. A new (2+1) dimensional integrable evolution equation for an ion acoustic wave in a magnetized plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukherjee, Abhik, E-mail: abhik.mukherjee@saha.ac.in; Janaki, M. S., E-mail: ms.janaki@saha.ac.in; Kundu, Anjan, E-mail: anjan.kundu@saha.ac.in

    2015-07-15

    A new, completely integrable, two dimensional evolution equation is derived for an ion acoustic wave propagating in a magnetized, collisionless plasma. The equation is a multidimensional generalization of a modulated wavepacket with weak transverse propagation, which has resemblance to nonlinear Schrödinger (NLS) equation and has a connection to Kadomtsev-Petviashvili equation through a constraint relation. Higher soliton solutions of the equation are derived through Hirota bilinearization procedure, and an exact lump solution is calculated exhibiting 2D structure. Some mathematical properties demonstrating the completely integrable nature of this equation are described. Modulational instability using nonlinear frequency correction is derived, and the correspondingmore » growth rate is calculated, which shows the directional asymmetry of the system. The discovery of this novel (2+1) dimensional integrable NLS type equation for a magnetized plasma should pave a new direction of research in the field.« less

  8. On the integrable elliptic cylindrical Kadomtsev-Petviashvili equation.

    PubMed

    Khusnutdinova, K R; Klein, C; Matveev, V B; Smirnov, A O

    2013-03-01

    There exist two versions of the Kadomtsev-Petviashvili (KP) equation, related to the Cartesian and cylindrical geometries of the waves. In this paper, we derive and study a new version, related to the elliptic cylindrical geometry. The derivation is given in the context of surface waves, but the derived equation is a universal integrable model applicable to generic weakly nonlinear weakly dispersive waves. We also show that there exist nontrivial transformations between all three versions of the KP equation associated with the physical problem formulation, and use them to obtain new classes of approximate solutions for water waves.

  9. Integrable Equations in Multi-Dimensions (2+1) are Bi-Hamiltonian Systems,

    DTIC Science & Technology

    1987-02-01

    equation [18]. It should be noted that the 80 equation has more similarities [19] with the Kadomtsev - Petviashvili (KP...Cimento, 39B, 1 (1977). [31] P. Caudrey, Discrete and Periodic Spectral Transforms Related to the Kadomtsev - Petviashvili Equation , preprint U.M.I.S.T. (1985). II ’AI D p-I 4, - -- - -- - - -w 4 ...TOM NONLINEAR STUDIES IDTIC I IELEC )// MAR 2 51988 I / \\ / Integrable Equations in Multi- dimensions (2+1) are Bi-Hamiltonian Systems by A.S.

  10. Initial-boundary value problems associated with the Ablowitz-Ladik system

    NASA Astrophysics Data System (ADS)

    Xia, Baoqiang; Fokas, A. S.

    2018-02-01

    We employ the Ablowitz-Ladik system as an illustrative example in order to demonstrate how to analyze initial-boundary value problems for integrable nonlinear differential-difference equations via the unified transform (Fokas method). In particular, we express the solutions of the integrable discrete nonlinear Schrödinger and integrable discrete modified Korteweg-de Vries equations in terms of the solutions of appropriate matrix Riemann-Hilbert problems. We also discuss in detail, for both the above discrete integrable equations, the associated global relations and the process of eliminating of the unknown boundary values.

  11. Almost analytical Karhunen-Loeve representation of irregular waves based on the prolate spheroidal wave functions

    NASA Astrophysics Data System (ADS)

    Lee, Gibbeum; Cho, Yeunwoo

    2017-11-01

    We present an almost analytical new approach to solving the matrix eigenvalue problem or the integral equation in Karhunen-Loeve (K-L) representation of random data such as irregular ocean waves. Instead of solving this matrix eigenvalue problem purely numerically, which may suffer from the computational inaccuracy for big data, first, we consider a pair of integral and differential equations, which are related to the so-called prolate spheroidal wave functions (PSWF). For the PSWF differential equation, the pair of the eigenvectors (PSWF) and eigenvalues can be obtained from a relatively small number of analytical Legendre functions. Then, the eigenvalues in the PSWF integral equation are expressed in terms of functional values of the PSWF and the eigenvalues of the PSWF differential equation. Finally, the analytically expressed PSWFs and the eigenvalues in the PWSF integral equation are used to form the kernel matrix in the K-L integral equation for the representation of exemplary wave data; ordinary irregular waves and rogue waves. We found that the present almost analytical method is better than the conventional data-independent Fourier representation and, also, the conventional direct numerical K-L representation in terms of both accuracy and computational cost. This work was supported by the National Research Foundation of Korea (NRF). (NRF-2017R1D1A1B03028299).

  12. Solution of some types of differential equations: operational calculus and inverse differential operators.

    PubMed

    Zhukovsky, K

    2014-01-01

    We present a general method of operational nature to analyze and obtain solutions for a variety of equations of mathematical physics and related mathematical problems. We construct inverse differential operators and produce operational identities, involving inverse derivatives and families of generalised orthogonal polynomials, such as Hermite and Laguerre polynomial families. We develop the methodology of inverse and exponential operators, employing them for the study of partial differential equations. Advantages of the operational technique, combined with the use of integral transforms, generating functions with exponentials and their integrals, for solving a wide class of partial derivative equations, related to heat, wave, and transport problems, are demonstrated.

  13. The Riemann-Lanczos equations in general relativity and their integrability

    NASA Astrophysics Data System (ADS)

    Dolan, P.; Gerber, A.

    2008-06-01

    The aim of this paper is to examine the Riemann-Lanczos equations and how they can be made integrable. They consist of a system of linear first-order partial differential equations that arise in general relativity, whereby the Riemann curvature tensor is generated by an unknown third-order tensor potential field called the Lanczos tensor. Our approach is based on the theory of jet bundles, where all field variables and all their partial derivatives of all relevant orders are treated as independent variables alongside the local manifold coordinates (xa) on the given space-time manifold M. This approach is adopted in (a) Cartan's method of exterior differential systems, (b) Vessiot's dual method using vector field systems, and (c) the Janet-Riquier theory of systems of partial differential equations. All three methods allow for the most general situations under which integrability conditions can be found. They give equivalent results, namely, that involutivity is always achieved at all generic points of the jet manifold M after a finite number of prolongations. Two alternative methods that appear in the general relativity literature to find integrability conditions for the Riemann-Lanczos equations generate new partial differential equations for the Lanczos potential that introduce a source term, which is nonlinear in the components of the Riemann tensor. We show that such sources do not occur when either of method (a), (b), or (c) are used.

  14. A family of wave equations with some remarkable properties.

    PubMed

    da Silva, Priscila Leal; Freire, Igor Leite; Sampaio, Júlio Cesar Santos

    2018-02-01

    We consider a family of homogeneous nonlinear dispersive equations with two arbitrary parameters. Conservation laws are established from the point symmetries and imply that the whole family admits square integrable solutions. Recursion operators are found for two members of the family investigated. For one of them, a Lax pair is also obtained, proving its complete integrability. From the Lax pair, we construct a Miura-type transformation relating the original equation to the Korteweg-de Vries (KdV) equation. This transformation, on the other hand, enables us to obtain solutions of the equation from the kernel of a Schrödinger operator with potential parametrized by the solutions of the KdV equation. In particular, this allows us to exhibit a kink solution to the completely integrable equation from the 1-soliton solution of the KdV equation. Finally, peakon-type solutions are also found for a certain choice of the parameters, although for this particular case the equation is reduced to a homogeneous second-order nonlinear evolution equation.

  15. Integrable equations of the infinite nonlinear Schrödinger equation hierarchy with time variable coefficients.

    PubMed

    Kedziora, D J; Ankiewicz, A; Chowdury, A; Akhmediev, N

    2015-10-01

    We present an infinite nonlinear Schrödinger equation hierarchy of integrable equations, together with the recurrence relations defining it. To demonstrate integrability, we present the Lax pairs for the whole hierarchy, specify its Darboux transformations and provide several examples of solutions. These resulting wavefunctions are given in exact analytical form. We then show that the Lax pair and Darboux transformation formalisms still apply in this scheme when the coefficients in the hierarchy depend on the propagation variable (e.g., time). This extension thus allows for the construction of complicated solutions within a greatly diversified domain of generalised nonlinear systems.

  16. Satellite Formation Design for Space Based Radar Applications

    DTIC Science & Technology

    2007-07-30

    communications. While the Clohessy - Wiltshire Hills (CWH) equations have been in existence for sometime, it is more recently that they have been... Clohessy - Wiltshire equations. To get the state transition matrix for relative position and velocity, these differential equations are integrated to...Practical Guidance Methodology for Relative Motion of LEO Spacecraft Based on the Clohessy - Wiltshire Equations,” AAS Paper 04-252, AAS/AIAA Space

  17. A new solution procedure for a nonlinear infinite beam equation of motion

    NASA Astrophysics Data System (ADS)

    Jang, T. S.

    2016-10-01

    Our goal of this paper is of a purely theoretical question, however which would be fundamental in computational partial differential equations: Can a linear solution-structure for the equation of motion for an infinite nonlinear beam be directly manipulated for constructing its nonlinear solution? Here, the equation of motion is modeled as mathematically a fourth-order nonlinear partial differential equation. To answer the question, a pseudo-parameter is firstly introduced to modify the equation of motion. And then, an integral formalism for the modified equation is found here, being taken as a linear solution-structure. It enables us to formulate a nonlinear integral equation of second kind, equivalent to the original equation of motion. The fixed point approach, applied to the integral equation, results in proposing a new iterative solution procedure for constructing the nonlinear solution of the original beam equation of motion, which consists luckily of just the simple regular numerical integration for its iterative process; i.e., it appears to be fairly simple as well as straightforward to apply. A mathematical analysis is carried out on both natures of convergence and uniqueness of the iterative procedure by proving a contractive character of a nonlinear operator. It follows conclusively,therefore, that it would be one of the useful nonlinear strategies for integrating the equation of motion for a nonlinear infinite beam, whereby the preceding question may be answered. In addition, it may be worth noticing that the pseudo-parameter introduced here has double roles; firstly, it connects the original beam equation of motion with the integral equation, second, it is related with the convergence of the iterative method proposed here.

  18. On solvability of boundary value problems for hyperbolic fourth-order equations with nonlocal boundary conditions of integral type

    NASA Astrophysics Data System (ADS)

    Popov, Nikolay S.

    2017-11-01

    Solvability of some initial-boundary value problems for linear hyperbolic equations of the fourth order is studied. A condition on the lateral boundary in these problems relates the values of a solution or the conormal derivative of a solution to the values of some integral operator applied to a solution. Nonlocal boundary-value problems for one-dimensional hyperbolic second-order equations with integral conditions on the lateral boundary were considered in the articles by A.I. Kozhanov. Higher-dimensional hyperbolic equations of higher order with integral conditions on the lateral boundary were not studied earlier. The existence and uniqueness theorems of regular solutions are proven. The method of regularization and the method of continuation in a parameter are employed to establish solvability.

  19. On an example of a system of differential equations that are integrated in Abelian functions

    NASA Astrophysics Data System (ADS)

    Malykh, M. D.; Sevastianov, L. A.

    2017-12-01

    The short review of the theory of Abelian functions and its applications in mechanics and analytical theory of differential equations is given. We think that Abelian functions are the natural generalization of commonly used functions because if the general solution of the 2nd order differential equation depends algebraically on the constants of integration, then integrating this equation does not lead out of the realm of commonly used functions complemented by the Abelian functions (Painlevé theorem). We present a relatively simple example of a dynamical system that is integrated in Abelian integrals by “pairing” two copies of a hyperelliptic curve. Unfortunately, initially simple formulas unfold into very long ones. Apparently the theory of Abelian functions hasn’t been finished in the last century because without computer algebra systems it was impossible to complete the calculations to the end. All calculations presented in our report are performed in Sage.

  20. Local Observed-Score Kernel Equating

    ERIC Educational Resources Information Center

    Wiberg, Marie; van der Linden, Wim J.; von Davier, Alina A.

    2014-01-01

    Three local observed-score kernel equating methods that integrate methods from the local equating and kernel equating frameworks are proposed. The new methods were compared with their earlier counterparts with respect to such measures as bias--as defined by Lord's criterion of equity--and percent relative error. The local kernel item response…

  1. Degenerate variational integrators for magnetic field line flow and guiding center trajectories

    NASA Astrophysics Data System (ADS)

    Ellison, C. L.; Finn, J. M.; Burby, J. W.; Kraus, M.; Qin, H.; Tang, W. M.

    2018-05-01

    Symplectic integrators offer many benefits for numerically approximating solutions to Hamiltonian differential equations, including bounded energy error and the preservation of invariant sets. Two important Hamiltonian systems encountered in plasma physics—the flow of magnetic field lines and the guiding center motion of magnetized charged particles—resist symplectic integration by conventional means because the dynamics are most naturally formulated in non-canonical coordinates. New algorithms were recently developed using the variational integration formalism; however, those integrators were found to admit parasitic mode instabilities due to their multistep character. This work eliminates the multistep character, and therefore the parasitic mode instabilities via an adaptation of the variational integration formalism that we deem "degenerate variational integration." Both the magnetic field line and guiding center Lagrangians are degenerate in the sense that the resultant Euler-Lagrange equations are systems of first-order ordinary differential equations. We show that retaining the same degree of degeneracy when constructing discrete Lagrangians yields one-step variational integrators preserving a non-canonical symplectic structure. Numerical examples demonstrate the benefits of the new algorithms, including superior stability relative to the existing variational integrators for these systems and superior qualitative behavior relative to non-conservative algorithms.

  2. On Reductions of the Hirota-Miwa Equation

    NASA Astrophysics Data System (ADS)

    Hone, Andrew N. W.; Kouloukas, Theodoros E.; Ward, Chloe

    2017-07-01

    The Hirota-Miwa equation (also known as the discrete KP equation, or the octahedron recurrence) is a bilinear partial difference equation in three independent variables. It is integrable in the sense that it arises as the compatibility condition of a linear system (Lax pair). The Hirota-Miwa equation has infinitely many reductions of plane wave type (including a quadratic exponential gauge transformation), defined by a triple of integers or half-integers, which produce bilinear ordinary difference equations of Somos/Gale-Robinson type. Here it is explained how to obtain Lax pairs and presymplectic structures for these reductions, in order to demonstrate Liouville integrability of some associated maps, certain of which are related to reductions of discrete Toda and discrete KdV equations.

  3. Classical Yang-Baxter equations and quantum integrable systems

    NASA Astrophysics Data System (ADS)

    Jurčo, Branislav

    1989-06-01

    Quantum integrable models associated with nondegenerate solutions of classical Yang-Baxter equations related to the simple Lie algebras are investigated. These models are diagonalized for rational and trigonometric solutions in the cases of sl(N)/gl(N)/, o(N) and sp(N) algebras. The analogy with the quantum inverse scattering method is demonstrated.

  4. Integral method for the calculation of Hawking radiation in dispersive media. I. Symmetric asymptotics.

    PubMed

    Robertson, Scott; Leonhardt, Ulf

    2014-11-01

    Hawking radiation has become experimentally testable thanks to the many analog systems which mimic the effects of the event horizon on wave propagation. These systems are typically dominated by dispersion and give rise to a numerically soluble and stable ordinary differential equation only if the rest-frame dispersion relation Ω^{2}(k) is a polynomial of relatively low degree. Here we present a new method for the calculation of wave scattering in a one-dimensional medium of arbitrary dispersion. It views the wave equation as an integral equation in Fourier space, which can be solved using standard and efficient numerical techniques.

  5. Generalized recursive solutions to Ornstein-Zernike integral equations

    NASA Astrophysics Data System (ADS)

    Rossky, Peter J.; Dale, William D. T.

    1980-09-01

    Recursive procedures for the solution of a class of integral equations based on the Ornstein-Zernike equation are developed; the hypernetted chain and Percus-Yevick equations are two special cases of the class considered. It is shown that certain variants of the new procedures developed here are formally equivalent to those recently developed by Dale and Friedman, if the new recursive expressions are initialized in the same way as theirs. However, the computational solution of the new equations is significantly more efficient. Further, the present analysis leads to the identification of various graphical quantities arising in the earlier study with more familiar quantities related to pair correlation functions. The analysis is greatly facilitated by the use of several identities relating simple chain sums whose graphical elements can be written as a sum of two or more parts. In particular, the use of these identities permits renormalization of the equivalent series solution to the integral equation to be directly incorporated into the recursive solution in a straightforward manner. Formulas appropriate to renormalization with respect to long and short range parts of the pair potential, as well as more general components of the direct correlation function, are obtained. To further illustrate the utility of this approach, we show that a simple generalization of the hypernetted chain closure relation for the direct correlation function leads directly to the reference hypernetted chain (RHNC) equation due to Lado. The form of the correlation function used in the exponential approximation of Andersen and Chandler is then seen to be equivalent to the first estimate obtained from a renormalized RHNC equation.

  6. Simulation electromagnetic scattering on bodies through integral equation and neural networks methods

    NASA Astrophysics Data System (ADS)

    Lvovich, I. Ya; Preobrazhenskiy, A. P.; Choporov, O. N.

    2018-05-01

    The paper deals with the issue of electromagnetic scattering on a perfectly conducting diffractive body of a complex shape. Performance calculation of the body scattering is carried out through the integral equation method. Fredholm equation of the second time was used for calculating electric current density. While solving the integral equation through the moments method, the authors have properly described the core singularity. The authors determined piecewise constant functions as basic functions. The chosen equation was solved through the moments method. Within the Kirchhoff integral approach it is possible to define the scattered electromagnetic field, in some way related to obtained electrical currents. The observation angles sector belongs to the area of the front hemisphere of the diffractive body. To improve characteristics of the diffractive body, the authors used a neural network. All the neurons contained a logsigmoid activation function and weighted sums as discriminant functions. The paper presents the matrix of weighting factors of the connectionist model, as well as the results of the optimized dimensions of the diffractive body. The paper also presents some basic steps in calculation technique of the diffractive bodies, based on the combination of integral equation and neural networks methods.

  7. Numerical solution of boundary-integral equations for molecular electrostatics.

    PubMed

    Bardhan, Jaydeep P

    2009-03-07

    Numerous molecular processes, such as ion permeation through channel proteins, are governed by relatively small changes in energetics. As a result, theoretical investigations of these processes require accurate numerical methods. In the present paper, we evaluate the accuracy of two approaches to simulating boundary-integral equations for continuum models of the electrostatics of solvation. The analysis emphasizes boundary-element method simulations of the integral-equation formulation known as the apparent-surface-charge (ASC) method or polarizable-continuum model (PCM). In many numerical implementations of the ASC/PCM model, one forces the integral equation to be satisfied exactly at a set of discrete points on the boundary. We demonstrate in this paper that this approach to discretization, known as point collocation, is significantly less accurate than an alternative approach known as qualocation. Furthermore, the qualocation method offers this improvement in accuracy without increasing simulation time. Numerical examples demonstrate that electrostatic part of the solvation free energy, when calculated using the collocation and qualocation methods, can differ significantly; for a polypeptide, the answers can differ by as much as 10 kcal/mol (approximately 4% of the total electrostatic contribution to solvation). The applicability of the qualocation discretization to other integral-equation formulations is also discussed, and two equivalences between integral-equation methods are derived.

  8. On the complete and partial integrability of non-Hamiltonian systems

    NASA Astrophysics Data System (ADS)

    Bountis, T. C.; Ramani, A.; Grammaticos, B.; Dorizzi, B.

    1984-11-01

    The methods of singularity analysis are applied to several third order non-Hamiltonian systems of physical significance including the Lotka-Volterra equations, the three-wave interaction and the Rikitake dynamo model. Complete integrability is defined and new completely integrable systems are discovered by means of the Painlevé property. In all these cases we obtain integrals, which reduce the equations either to a final quadrature or to an irreducible second order ordinary differential equation (ODE) solved by Painlevé transcendents. Relaxing the Painlevé property we find many partially integrable cases whose movable singularities are poles at leading order, with In( t- t0) terms entering at higher orders. In an Nth order, generalized Rössler model a precise relation is established between the partial fulfillment of the Painlevé conditions and the existence of N - 2 integrals of the motion.

  9. Integrability of the coupled cubic-quintic complex Ginzburg-Landau equations and multiple-soliton solutions via mathematical methods

    NASA Astrophysics Data System (ADS)

    Selima, Ehab S.; Seadawy, Aly R.; Yao, Xiaohua; Essa, F. A.

    2018-02-01

    This paper is devoted to study the (1+1)-dimensional coupled cubic-quintic complex Ginzburg-Landau equations (cc-qcGLEs) with complex coefficients. This equation can be used to describe the nonlinear evolution of slowly varying envelopes of periodic spatial-temporal patterns in a convective binary fluid. Dispersion relation and properties of cc-qcGLEs are constructed. Painlevé analysis is used to check the integrability of cc-qcGLEs and to establish the Bäcklund transformation form. New traveling wave solutions and a general form of multiple-soliton solutions of cc-qcGLEs are obtained via the Bäcklund transformation and simplest equation method with Bernoulli, Riccati and Burgers’ equations as simplest equations.

  10. Analytical Theory of the Destruction Terms in Dissipation Rate Transport Equations

    NASA Technical Reports Server (NTRS)

    Rubinstein, Robert; Zhou, Ye

    1996-01-01

    Modeled dissipation rate transport equations are often derived by invoking various hypotheses to close correlations in the corresponding exact equations. D. C. Leslie suggested that these models might be derived instead from Kraichnan's wavenumber space integrals for inertial range transport power. This suggestion is applied to the destruction terms in the dissipation rate equations for incompressible turbulence, buoyant turbulence, rotating incompressible turbulence, and rotating buoyant turbulence. Model constants like C(epsilon 2) are expressed as integrals; convergence of these integrals implies the absence of Reynolds number dependence in the corresponding destruction term. The dependence of C(epsilon 2) on rotation rate emerges naturally; sensitization of the modeled dissipation rate equation to rotation is not required. A buoyancy related effect which is absent in the exact transport equation for temperature variance dissipation, but which sometimes improves computational predictions, also arises naturally. Both the presence of this effect and the appropriate time scale in the modeled transport equation depend on whether Bolgiano or Kolmogorov inertial range scaling applies. A simple application of these methods leads to a preliminary, dissipation rate equation for rotating buoyant turbulence.

  11. A multi-domain spectral method for time-fractional differential equations

    NASA Astrophysics Data System (ADS)

    Chen, Feng; Xu, Qinwu; Hesthaven, Jan S.

    2015-07-01

    This paper proposes an approach for high-order time integration within a multi-domain setting for time-fractional differential equations. Since the kernel is singular or nearly singular, two main difficulties arise after the domain decomposition: how to properly account for the history/memory part and how to perform the integration accurately. To address these issues, we propose a novel hybrid approach for the numerical integration based on the combination of three-term-recurrence relations of Jacobi polynomials and high-order Gauss quadrature. The different approximations used in the hybrid approach are justified theoretically and through numerical examples. Based on this, we propose a new multi-domain spectral method for high-order accurate time integrations and study its stability properties by identifying the method as a generalized linear method. Numerical experiments confirm hp-convergence for both time-fractional differential equations and time-fractional partial differential equations.

  12. Integrable structure in discrete shell membrane theory

    PubMed Central

    Schief, W. K.

    2014-01-01

    We present natural discrete analogues of two integrable classes of shell membranes. By construction, these discrete shell membranes are in equilibrium with respect to suitably chosen internal stresses and external forces. The integrability of the underlying equilibrium equations is proved by relating the geometry of the discrete shell membranes to discrete O surface theory. We establish connections with generalized barycentric coordinates and nine-point centres and identify a discrete version of the classical Gauss equation of surface theory. PMID:24808755

  13. Integrable structure in discrete shell membrane theory.

    PubMed

    Schief, W K

    2014-05-08

    We present natural discrete analogues of two integrable classes of shell membranes. By construction, these discrete shell membranes are in equilibrium with respect to suitably chosen internal stresses and external forces. The integrability of the underlying equilibrium equations is proved by relating the geometry of the discrete shell membranes to discrete O surface theory. We establish connections with generalized barycentric coordinates and nine-point centres and identify a discrete version of the classical Gauss equation of surface theory.

  14. Plane elasto-plastic analysis of v-notched plate under bending by boundary integral equation method. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Rzasnicki, W.

    1973-01-01

    A method of solution is presented, which, when applied to the elasto-plastic analysis of plates having a v-notch on one edge and subjected to pure bending, will produce stress and strain fields in much greater detail than presently available. Application of the boundary integral equation method results in two coupled Fredholm-type integral equations, subject to prescribed boundary conditions. These equations are replaced by a system of simultaneous algebraic equations and solved by a successive approximation method employing Prandtl-Reuss incremental plasticity relations. The method is first applied to number of elasto-static problems and the results compared with available solutions. Good agreement is obtained in all cases. The elasto-plastic analysis provides detailed stress and strain distributions for several cases of plates with various notch angles and notch depths. A strain hardening material is assumed and both plane strain and plane stress conditions are considered.

  15. Some operational tools for solving fractional and higher integer order differential equations: A survey on their mutual relations

    NASA Astrophysics Data System (ADS)

    Kiryakova, Virginia S.

    2012-11-01

    The Laplace Transform (LT) serves as a basis of the Operational Calculus (OC), widely explored by engineers and applied scientists in solving mathematical models for their practical needs. This transform is closely related to the exponential and trigonometric functions (exp, cos, sin) and to the classical differentiation and integration operators, reducing them to simple algebraic operations. Thus, the classical LT and the OC give useful tool to handle differential equations and systems with constant coefficients. Several generalizations of the LT have been introduced to allow solving, in a similar way, of differential equations with variable coefficients and of higher integer orders, as well as of fractional (arbitrary non-integer) orders. Note that fractional order mathematical models are recently widely used to describe better various systems and phenomena of the real world. This paper surveys briefly some of our results on classes of such integral transforms, that can be obtained from the LT by means of "transmutations" which are operators of the generalized fractional calculus (GFC). On the list of these Laplace-type integral transforms, we consider the Borel-Dzrbashjan, Meijer, Krätzel, Obrechkoff, generalized Obrechkoff (multi-index Borel-Dzrbashjan) transforms, etc. All of them are G- and H-integral transforms of convolutional type, having as kernels Meijer's G- or Fox's H-functions. Besides, some special functions (also being G- and H-functions), among them - the generalized Bessel-type and Mittag-Leffler (M-L) type functions, are generating Gel'fond-Leontiev (G-L) operators of generalized differentiation and integration, which happen to be also operators of GFC. Our integral transforms have operational properties analogous to those of the LT - they do algebrize the G-L generalized integrations and differentiations, and thus can serve for solving wide classes of differential equations with variable coefficients of arbitrary, including non-integer order. Throughout the survey, we illustrate the parallels in the relationships: Laplace type integral transforms - special functions as kernels - operators of generalized integration and differentiation generated by special functions - special functions as solutions of related differential equations. The role of the so-called Special Functions of Fractional Calculus is emphasized.

  16. CALL FOR PAPERS: Special issue on Symmetries and Integrability of Difference Equations

    NASA Astrophysics Data System (ADS)

    Doliwa, Adam; Korhonen, Risto; Lafortune, Stephane

    2006-10-01

    This is a call for contributions to a special issue of Journal of Physics A: Mathematical and General entitled `Special issue on Symmetries and Integrability of Difference Equations' as featured at the SIDE VII meeting held during July 2006 in Melbourne (http://web.maths.unsw.edu.au/%7Eschief/side/side.html). Participants at that meeting, as well as other researchers working in the field of difference equations and discrete systems, are invited to submit a research paper to this issue. This meeting was the seventh of a series of biennial meetings devoted to the study of integrable difference equations and related topics. The notion of integrability was first introduced in the 19th century in the context of classical mechanics with the definition of Liouville integrability for Hamiltonian flows. Since then, several notions of integrability have been introduced for partial and ordinary differential equations. Closely related to integrability theory is the symmetry analysis of nonlinear evolution equations. Symmetry analysis takes advantage of the Lie group structure of a given equation to study its properties. Together, integrability theory and symmetry analysis provide the main method by which nonlinear evolution equations can be solved explicitly. Difference equations, just as differential equations, are important in numerous fields of science and have a wide variety of applications in such areas as: mathematical physics, computer visualization, numerical analysis, mathematical biology, economics, combinatorics, quantum field theory, etc. It is thus crucial to develop tools to study and solve difference equations. While the theory of symmetry and integrability for differential equations is now well-established, this is not yet the case for discrete equations. The situation has undergone impressive development in recent years and has affected a broad range of fields, including the theory of special functions, quantum integrable systems, numerical analysis, cellular automata, representations of quantum groups, symmetries of difference equations, discrete (difference) geometry, etc. Consequently, the aim of the special issue is to benefit from the occasion offered by the SIDE VII meeting to provide a collection of papers which represent the state-of-the-art knowledge for studying integrability and symmetry properties of difference equations. Scope of the special issue The special issue will feature papers which deal with themes that were covered by the SIDE VII Conference. These are •Integrability testing •Discrete geometry and visualization •Laurent phenomena and cluster algebras •Ultra-discrete systems •Random matrix theory •Algebraic-geometric approaches to integrability •Yang-Baxter equations •Quantum and classical integrable systems •Difference Galois theory Editorial policy •The subject of the paper should relate to the subject of the meeting. The Guest Editors will reserve the right to judge whether a contribution fits the scope of the topic of the special issue. •Contributions will be refereed and processed according to the usual procedure of the journal. •Conference papers may be based on already published work but should either •contain significant additional new results and/or insights or •give a survey of the present state of the art, a critical assessment of the present understanding of a topic, and a discussion of open problems. •Papers submitted by non-participants should be original and contain substantial new results. Guidelines for preparation of contributions • The deadline for contributed papers will be 15 January 2007. •There is a page limit of 16 printed pages (approximately 9600 words) per contribution. For submitted papers exceeding this length the Guest Editors reserve the right to request a reduction in length. Further advice on document preparation can be found at www.iop.org/Journals/jphysa •Contributions to the special issue should if possible be submitted electronically by web upload at www.iop.org/Journals/jphysa, or by email to jphysa@iop.org, quoting 'J. Phys. A Special Issue: SIDE VII'. Submissions should ideally be in standard LaTeX form; we are, however, able to accept most formats including Microsoft Word. Please see the website for further information on electronic submissions. •Authors unable to submit electronically may send hard-copy contributions to: Publishing Administrators, Journal of Physics A, Institute of Physics Publishing, Dirac House, Temple Back, Bristol BS1 6BE, UK, enclosing electronic code on floppy disk if available and quoting 'J. Phys. A Special Issue: SIDE VII'. • All contributions should be accompanied by a read-me file or covering letter giving the postal and email address for correspondence. The Publishing Office should be notified of any subsequent change of address. •The special issue will be published in the paper and online version of the journal. The corresponding author of each contribution will receive a complimentary copy of the issue.

  17. Some integrable maps and their Hirota bilinear forms

    NASA Astrophysics Data System (ADS)

    Hone, A. N. W.; Kouloukas, T. E.; Quispel, G. R. W.

    2018-01-01

    We introduce a two-parameter family of birational maps, which reduces to a family previously found by Demskoi, Tran, van der Kamp and Quispel (DTKQ) when one of the parameters is set to zero. The study of the singularity confinement pattern for these maps leads to the introduction of a tau function satisfying a homogeneous recurrence which has the Laurent property, and the tropical (or ultradiscrete) analogue of this homogeneous recurrence confirms the quadratic degree growth found empirically by Demskoi et al. We prove that the tau function also satisfies two different bilinear equations, each of which is a reduction of the Hirota-Miwa equation (also known as the discrete KP equation, or the octahedron recurrence). Furthermore, these bilinear equations are related to reductions of particular two-dimensional integrable lattice equations, of discrete KdV or discrete Toda type. These connections, as well as the cluster algebra structure of the bilinear equations, allow a direct construction of Poisson brackets, Lax pairs and first integrals for the birational maps. As a consequence of the latter results, we show how each member of the family can be lifted to a system that is integrable in the Liouville sense, clarifying observations made previously in the original DTKQ case.

  18. Radiative transfer in a sphere illuminated by a parallel beam - An integral equation approach. [in planetary atmosphere

    NASA Technical Reports Server (NTRS)

    Shia, R.-L.; Yung, Y. L.

    1986-01-01

    The problem of multiple scattering of nonpolarized light in a planetary body of arbitrary shape illuminated by a parallel beam is formulated using the integral equation approach. There exists a simple functional whose stationarity condition is equivalent to solving the equation of radiative transfer and whose value at the stationary point is proportional to the differential cross section. The analysis reveals a direct relation between the microscopic symmetry of the phase function for each scattering event and the macroscopic symmetry of the differential cross section for the entire planetary body, and the interconnection of these symmetry relations and the variational principle. The case of a homogeneous sphere containing isotropic scatterers is investigated in detail. It is shown that the solution can be expanded in a multipole series such that the general spherical problem is reduced to solving a set of decoupled integral equations in one dimension. Computations have been performed for a range of parameters of interest, and illustrative examples of applications to planetary problems as provided.

  19. Communication: An exact bound on the bridge function in integral equation theories.

    PubMed

    Kast, Stefan M; Tomazic, Daniel

    2012-11-07

    We show that the formal solution of the general closure relation occurring in Ornstein-Zernike-type integral equation theories in terms of the Lambert W function leads to an exact relation between the bridge function and correlation functions, most notably to an inequality that bounds possible bridge values. The analytical results are illustrated on the example of the Lennard-Jones fluid for which the exact bridge function is known from computer simulations under various conditions. The inequality has consequences for the development of bridge function models and rationalizes numerical convergence issues.

  20. A method for computing the kernel of the downwash integral equation for arbitrary complex frequencies

    NASA Technical Reports Server (NTRS)

    Desmarais, R. N.; Rowe, W. S.

    1984-01-01

    For the design of active controls to stabilize flight vehicles, which requires the use of unsteady aerodynamics that are valid for arbitrary complex frequencies, algorithms are derived for evaluating the nonelementary part of the kernel of the integral equation that relates unsteady pressure to downwash. This part of the kernel is separated into an infinite limit integral that is evaluated using Bessel and Struve functions and into a finite limit integral that is expanded in series and integrated termwise in closed form. The developed series expansions gave reliable answers for all complex reduced frequencies and executed faster than exponential approximations for many pressure stations.

  1. Integrals and integral equations in linearized wing theory

    NASA Technical Reports Server (NTRS)

    Lomax, Harvard; Heaslet, Max A; Fuller, Franklyn B

    1951-01-01

    The formulas of subsonic and supersonic wing theory for source, doublet, and vortex distributions are reviewed and a systematic presentation is provided which relates these distributions to the pressure and to the vertical induced velocity in the plane of the wing. It is shown that care must be used in treating the singularities involved in the analysis and that the order of integration is not always reversible. Concepts suggested by the irreversibility of order of integration are shown to be useful in the inversion of singular integral equations when operational techniques are used. A number of examples are given to illustrate the methods presented, attention being directed to supersonic flight speed.

  2. Which Working Memory Functions Predict Intelligence?

    ERIC Educational Resources Information Center

    Oberauer, Klaus; Sub, Heinz-Martin; Wilhelm, Oliver; Wittmann, Werner W.

    2008-01-01

    Investigates the relationship between three factors of working memory (storage and processing, relational integration, and supervision) and four factors of intelligence (reasoning, speed, memory, and creativity) using structural equation models. Relational integration predicted reasoning ability at least as well as the storage-and-processing…

  3. Lens elliptic gamma function solution of the Yang-Baxter equation at roots of unity

    NASA Astrophysics Data System (ADS)

    Kels, Andrew P.; Yamazaki, Masahito

    2018-02-01

    We study the root of unity limit of the lens elliptic gamma function solution of the star-triangle relation, for an integrable model with continuous and discrete spin variables. This limit involves taking an elliptic nome to a primitive rNth root of unity, where r is an existing integer parameter of the lens elliptic gamma function, and N is an additional integer parameter. This is a singular limit of the star-triangle relation, and at subleading order of an asymptotic expansion, another star-triangle relation is obtained for a model with discrete spin variables in {Z}rN . Some special choices of solutions of equation of motion are shown to result in well-known discrete spin solutions of the star-triangle relation. The saddle point equations themselves are identified with three-leg forms of ‘3D-consistent’ classical discrete integrable equations, known as Q4 and Q3(δ=0) . We also comment on the implications for supersymmetric gauge theories, and in particular comment on a close parallel with the works of Nekrasov and Shatashvili.

  4. Method of mechanical quadratures for solving singular integral equations of various types

    NASA Astrophysics Data System (ADS)

    Sahakyan, A. V.; Amirjanyan, H. A.

    2018-04-01

    The method of mechanical quadratures is proposed as a common approach intended for solving the integral equations defined on finite intervals and containing Cauchy-type singular integrals. This method can be used to solve singular integral equations of the first and second kind, equations with generalized kernel, weakly singular equations, and integro-differential equations. The quadrature rules for several different integrals represented through the same coefficients are presented. This allows one to reduce the integral equations containing integrals of different types to a system of linear algebraic equations.

  5. Integral Equations in Computational Electromagnetics: Formulations, Properties and Isogeometric Analysis

    NASA Astrophysics Data System (ADS)

    Lovell, Amy Elizabeth

    Computational electromagnetics (CEM) provides numerical methods to simulate electromagnetic waves interacting with its environment. Boundary integral equation (BIE) based methods, that solve the Maxwell's equations in the homogeneous or piecewise homogeneous medium, are both efficient and accurate, especially for scattering and radiation problems. Development and analysis electromagnetic BIEs has been a very active topic in CEM research. Indeed, there are still many open problems that need to be addressed or further studied. A short and important list includes (1) closed-form or quasi-analytical solutions to time-domain integral equations, (2) catastrophic cancellations at low frequencies, (3) ill-conditioning due to high mesh density, multi-scale discretization, and growing electrical size, and (4) lack of flexibility due to re-meshing when increasing number of forward numerical simulations are involved in the electromagnetic design process. This dissertation will address those several aspects of boundary integral equations in computational electromagnetics. The first contribution of the dissertation is to construct quasi-analytical solutions to time-dependent boundary integral equations using a direct approach. Direct inverse Fourier transform of the time-harmonic solutions is not stable due to the non-existence of the inverse Fourier transform of spherical Hankel functions. Using new addition theorems for the time-domain Green's function and dyadic Green's functions, time-domain integral equations governing transient scattering problems of spherical objects are solved directly and stably for the first time. Additional, the direct time-dependent solutions, together with the newly proposed time-domain dyadic Green's functions, can enrich the time-domain spherical multipole theory. The second contribution is to create a novel method of moments (MoM) framework to solve electromagnetic boundary integral equation on subdivision surfaces. The aim is to avoid the meshing and re-meshing stages to accelerate the design process when the geometry needs to be updated. Two schemes to construct basis functions on the subdivision surface have been explored. One is to use the div-conforming basis function, and the other one is to create a rigorous iso-geometric approach based on the subdivision basis function with better smoothness properties. This new framework provides us better accuracy, more stability and high flexibility. The third contribution is a new stable integral equation formulation to avoid catastrophic cancellations due to low-frequency breakdown or dense-mesh breakdown. Many of the conventional integral equations and their associated post-processing operations suffer from numerical catastrophic cancellations, which can lead to ill-conditioning of the linear systems or serious accuracy problems. Examples includes low-frequency breakdown and dense mesh breakdown. Another instability may come from nontrivial null spaces of involving integral operators that might be related with spurious resonance or topology breakdown. This dissertation presents several sets of new boundary integral equations and studies their analytical properties. The first proposed formulation leads to the scalar boundary integral equations where only scalar unknowns are involved. Besides the requirements of gaining more stability and better conditioning in the resulting linear systems, multi-physics simulation is another driving force for new formulations. Scalar and vector potentials (rather than electromagnetic field) based formulation have been studied for this purpose. Those new contributions focus on different stages of boundary integral equations in an almost independent manner, e.g. isogeometric analysis framework can be used to solve different boundary integral equations, and the time-dependent solutions to integral equations from different formulations can be achieved through the same methodology proposed.

  6. Semi-analytical Karhunen-Loeve representation of irregular waves based on the prolate spheroidal wave functions

    NASA Astrophysics Data System (ADS)

    Lee, Gibbeum; Cho, Yeunwoo

    2018-01-01

    A new semi-analytical approach is presented to solving the matrix eigenvalue problem or the integral equation in Karhunen-Loeve (K-L) representation of random data such as irregular ocean waves. Instead of direct numerical approach to this matrix eigenvalue problem, which may suffer from the computational inaccuracy for big data, a pair of integral and differential equations are considered, which are related to the so-called prolate spheroidal wave functions (PSWF). First, the PSWF is expressed as a summation of a small number of the analytical Legendre functions. After substituting them into the PSWF differential equation, a much smaller size matrix eigenvalue problem is obtained than the direct numerical K-L matrix eigenvalue problem. By solving this with a minimal numerical effort, the PSWF and the associated eigenvalue of the PSWF differential equation are obtained. Then, the eigenvalue of the PSWF integral equation is analytically expressed by the functional values of the PSWF and the eigenvalues obtained in the PSWF differential equation. Finally, the analytically expressed PSWFs and the eigenvalues in the PWSF integral equation are used to form the kernel matrix in the K-L integral equation for the representation of exemplary wave data such as ordinary irregular waves. It is found that, with the same accuracy, the required memory size of the present method is smaller than that of the direct numerical K-L representation and the computation time of the present method is shorter than that of the semi-analytical method based on the sinusoidal functions.

  7. Modeling rainfall infiltration on hillslopes using Flux-concentration relation and time compression approximation

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Chen, Li; Yu, Zhongbo

    2018-02-01

    Rainfall infiltration on hillslopes is an important issue in hydrology, which is related to many environmental problems, such as flood, soil erosion, and nutrient and contaminant transport. This study aimed to improve the quantification of infiltration on hillslopes under both steady and unsteady rainfalls. Starting from Darcy's law, an analytical integral infiltrability equation was derived for hillslope infiltration by use of the flux-concentration relation. Based on this equation, a simple scaling relation linking the infiltration times on hillslopes and horizontal planes was obtained which is applicable for both small and large times and can be used to simplify the solution procedure of hillslope infiltration. The infiltrability equation also improved the estimation of ponding time for infiltration under rainfall conditions. For infiltration after ponding, the time compression approximation (TCA) was applied together with the infiltrability equation. To improve the computational efficiency, the analytical integral infiltrability equation was approximated with a two-term power-like function by nonlinear regression. Procedures of applying this approach to both steady and unsteady rainfall conditions were proposed. To evaluate the performance of the new approach, it was compared with the Green-Ampt model for sloping surfaces by Chen and Young (2006) and Richards' equation. The proposed model outperformed the sloping Green-Ampt, and both ponding time and infiltration predictions agreed well with the solutions of Richards' equation for various soil textures, slope angles, initial water contents, and rainfall intensities for both steady and unsteady rainfalls.

  8. Nonlinear integral equations for the sausage model

    NASA Astrophysics Data System (ADS)

    Ahn, Changrim; Balog, Janos; Ravanini, Francesco

    2017-08-01

    The sausage model, first proposed by Fateev, Onofri, and Zamolodchikov, is a deformation of the O(3) sigma model preserving integrability. The target space is deformed from the sphere to ‘sausage’ shape by a deformation parameter ν. This model is defined by a factorizable S-matrix which is obtained by deforming that of the O(3) sigma model by a parameter λ. Clues for the deformed sigma model are provided by various UV and IR information through the thermodynamic Bethe ansatz (TBA) analysis based on the S-matrix. Application of TBA to the sausage model is, however, limited to the case of 1/λ integer where the coupled integral equations can be truncated to a finite number. In this paper, we propose a finite set of nonlinear integral equations (NLIEs), which are applicable to generic value of λ. Our derivation is based on T-Q relations extracted from the truncated TBA equations. For a consistency check, we compute next-leading order corrections of the vacuum energy and extract the S-matrix information in the IR limit. We also solved the NLIE both analytically and numerically in the UV limit to get the effective central charge and compared with that of the zero-mode dynamics to obtain exact relation between ν and λ. Dedicated to the memory of Petr Petrovich Kulish.

  9. Explicit integration of Friedmann's equation with nonlinear equations of state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Shouxin; Gibbons, Gary W.; Yang, Yisong, E-mail: chensx@henu.edu.cn, E-mail: gwg1@damtp.cam.ac.uk, E-mail: yisongyang@nyu.edu

    2015-05-01

    In this paper we study the integrability of the Friedmann equations, when the equation of state for the perfect-fluid universe is nonlinear, in the light of the Chebyshev theorem. A series of important, yet not previously touched, problems will be worked out which include the generalized Chaplygin gas, two-term energy density, trinomial Friedmann, Born-Infeld, two-fluid models, and Chern-Simons modified gravity theory models. With the explicit integration, we are able to understand exactly the roles of the physical parameters in various models play in the cosmological evolution which may also offer clues to a profound understanding of the problems in generalmore » settings. For example, in the Chaplygin gas universe, a few integrable cases lead us to derive a universal formula for the asymptotic exponential growth rate of the scale factor, of an explicit form, whether the Friedmann equation is integrable or not, which reveals the coupled roles played by various physical sectors and it is seen that, as far as there is a tiny presence of nonlinear matter, conventional linear matter makes contribution to the dark matter, which becomes significant near the phantom divide line. The Friedmann equations also arise in areas of physics not directly related to cosmology. We provide some examples ranging from geometric optics and central orbits to soap films and the shape of glaciated valleys to which our results may be applied.« less

  10. Alternative forms of the Spencer-Fano equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inokuti, M.; Kowari, K.

    We point out a relation between the electron degradation spectra determined by two differing cross-section sets but subject to the same source. The relation takes a form of the Fredholm integral equation of the second kind and may be viewed as an alternative form of the Spencer-Fano equation. The relation leads to a precise definition of the partial degradation spectra of electrons of successive generations. It also provides a basis for the perturbation theory by which one calculates effects of small changes of cross-section data upon the electron degradation spectrum.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, S.

    This report describes the use of several subroutines from the CORLIB core mathematical subroutine library for the solution of a model fluid flow problem. The model consists of the Euler partial differential equations. The equations are spatially discretized using the method of pseudo-characteristics. The resulting system of ordinary differential equations is then integrated using the method of lines. The stiff ordinary differential equation solver LSODE (2) from CORLIB is used to perform the time integration. The non-stiff solver ODE (4) is used to perform a related integration. The linear equation solver subroutines DECOMP and SOLVE are used to solve linearmore » systems whose solutions are required in the calculation of the time derivatives. The monotone cubic spline interpolation subroutines PCHIM and PCHFE are used to approximate water properties. The report describes the use of each of these subroutines in detail. It illustrates the manner in which modules from a standard mathematical software library such as CORLIB can be used as building blocks in the solution of complex problems of practical interest. 9 refs., 2 figs., 4 tabs.« less

  12. A new numerical approach for uniquely solvable exterior Riemann-Hilbert problem on region with corners

    NASA Astrophysics Data System (ADS)

    Zamzamir, Zamzana; Murid, Ali H. M.; Ismail, Munira

    2014-06-01

    Numerical solution for uniquely solvable exterior Riemann-Hilbert problem on region with corners at offcorner points has been explored by discretizing the related integral equation using Picard iteration method without any modifications to the left-hand side (LHS) and right-hand side (RHS) of the integral equation. Numerical errors for all iterations are converge to the required solution. However, for certain problems, it gives lower accuracy. Hence, this paper presents a new numerical approach for the problem by treating the generalized Neumann kernel at LHS and the function at RHS of the integral equation. Due to the existence of the corner points, Gaussian quadrature is employed which avoids the corner points during numerical integration. Numerical example on a test region is presented to demonstrate the effectiveness of this formulation.

  13. Integrable Semi-discrete Kundu-Eckhaus Equation: Darboux Transformation, Breather, Rogue Wave and Continuous Limit Theory

    NASA Astrophysics Data System (ADS)

    Zhao, Hai-qiong; Yuan, Jinyun; Zhu, Zuo-nong

    2018-02-01

    To get more insight into the relation between discrete model and continuous counterpart, a new integrable semi-discrete Kundu-Eckhaus equation is derived from the reduction in an extended Ablowitz-Ladik hierarchy. The integrability of the semi-discrete model is confirmed by showing the existence of Lax pair and infinite number of conservation laws. The dynamic characteristics of the breather and rational solutions have been analyzed in detail for our semi-discrete Kundu-Eckhaus equation to reveal some new interesting phenomena which was not found in continuous one. It is shown that the theory of the discrete system including Lax pair, Darboux transformation and explicit solutions systematically yields their continuous counterparts in the continuous limit.

  14. Bending of Euler-Bernoulli nanobeams based on the strain-driven and stress-driven nonlocal integral models: a numerical approach

    NASA Astrophysics Data System (ADS)

    Oskouie, M. Faraji; Ansari, R.; Rouhi, H.

    2018-04-01

    Eringen's nonlocal elasticity theory is extensively employed for the analysis of nanostructures because it is able to capture nanoscale effects. Previous studies have revealed that using the differential form of the strain-driven version of this theory leads to paradoxical results in some cases, such as bending analysis of cantilevers, and recourse must be made to the integral version. In this article, a novel numerical approach is developed for the bending analysis of Euler-Bernoulli nanobeams in the context of strain- and stress-driven integral nonlocal models. This numerical approach is proposed for the direct solution to bypass the difficulties related to converting the integral governing equation into a differential equation. First, the governing equation is derived based on both strain-driven and stress-driven nonlocal models by means of the minimum total potential energy. Also, in each case, the governing equation is obtained in both strong and weak forms. To solve numerically the derived equations, matrix differential and integral operators are constructed based upon the finite difference technique and trapezoidal integration rule. It is shown that the proposed numerical approach can be efficiently applied to the strain-driven nonlocal model with the aim of resolving the mentioned paradoxes. Also, it is able to solve the problem based on the strain-driven model without inconsistencies of the application of this model that are reported in the literature.

  15. I -Love- Q relations for white dwarf stars

    NASA Astrophysics Data System (ADS)

    Boshkayev, K.; Quevedo, H.; Zhami, B.

    2017-02-01

    We investigate the equilibrium configurations of uniformly rotating white dwarfs, using Chandrasekhar and Salpeter equations of state in the framework of Newtonian physics. The Hartle formalism is applied to integrate the field equation together with the hydrostatic equilibrium condition. We consider the equations of structure up to the second order in the angular velocity, and compute all basic parameters of rotating white dwarfs to test the so-called moment of inertia, rotational Love number, and quadrupole moment (I-Love-Q) relations. We found that the I-Love-Q relations are also valid for white dwarfs regardless of the equation of state and nuclear composition. In addition, we show that the moment of inertia, quadrupole moment, and eccentricity (I-Q-e) relations are valid as well.

  16. Dusty Pair Plasma—Wave Propagation and Diffusive Transition of Oscillations

    NASA Astrophysics Data System (ADS)

    Atamaniuk, Barbara; Turski, Andrzej J.

    2011-11-01

    The crucial point of the paper is the relation between equilibrium distributions of plasma species and the type of propagation or diffusive transition of plasma response to a disturbance. The paper contains a unified treatment of disturbance propagation (transport) in the linearized Vlasov electron-positron and fullerene pair plasmas containing charged dust impurities, based on the space-time convolution integral equations. Electron-positron-dust/ion (e-p-d/i) plasmas are rather widespread in nature. Space-time responses of multi-component linearized Vlasov plasmas on the basis of multiple integral equations are invoked. An initial-value problem for Vlasov-Poisson/Ampère equations is reduced to the one multiple integral equation and the solution is expressed in terms of forcing function and its space-time convolution with the resolvent kernel. The forcing function is responsible for the initial disturbance and the resolvent is responsible for the equilibrium velocity distributions of plasma species. By use of resolvent equations, time-reversibility, space-reflexivity and the other symmetries are revealed. The symmetries carry on physical properties of Vlasov pair plasmas, e.g., conservation laws. Properly choosing equilibrium distributions for dusty pair plasmas, we can reduce the resolvent equation to: (i) the undamped dispersive wave equations, (ii) and diffusive transport equations of oscillations.

  17. Isotropic matrix elements of the collision integral for the Boltzmann equation

    NASA Astrophysics Data System (ADS)

    Ender, I. A.; Bakaleinikov, L. A.; Flegontova, E. Yu.; Gerasimenko, A. B.

    2017-09-01

    We have proposed an algorithm for constructing matrix elements of the collision integral for the nonlinear Boltzmann equation isotropic in velocities. These matrix elements have been used to start the recurrent procedure for calculating matrix elements of the velocity-nonisotropic collision integral described in our previous publication. In addition, isotropic matrix elements are of independent interest for calculating isotropic relaxation in a number of physical kinetics problems. It has been shown that the coefficients of expansion of isotropic matrix elements in Ω integrals are connected by the recurrent relations that make it possible to construct the procedure of their sequential determination.

  18. Boundary transfer matrices and boundary quantum KZ equations

    NASA Astrophysics Data System (ADS)

    Vlaar, Bart

    2015-07-01

    A simple relation between inhomogeneous transfer matrices and boundary quantum Knizhnik-Zamolodchikov (KZ) equations is exhibited for quantum integrable systems with reflecting boundary conditions, analogous to an observation by Gaudin for periodic systems. Thus, the boundary quantum KZ equations receive a new motivation. We also derive the commutativity of Sklyanin's boundary transfer matrices by merely imposing appropriate reflection equations, in particular without using the conditions of crossing symmetry and unitarity of the R-matrix.

  19. A momentum-space formulation without partial wave decomposition for scattering of two spin-half particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fachruddin, Imam, E-mail: imam.fachruddin@sci.ui.ac.id; Salam, Agus

    2016-03-11

    A new momentum-space formulation for scattering of two spin-half particles, both either identical or unidentical, is formulated. As basis states the free linear-momentum states are not expanded into the angular-momentum states, the system’s spin states are described by the product of the spin states of the two particles, and the system’s isospin states by the total isospin states of the two particles. We evaluate the Lippmann-Schwinger equations for the T-matrix elements in these basis states. The azimuthal behavior of the potential and of the T-matrix elements leads to a set of coupled integral equations for the T-matrix elements in twomore » variables only, which are the magnitude of the relative momentum and the scattering angle. Some symmetry relations for the potential and the T-matrix elements reduce the number of the integral equations to be solved. A set of six spin operators to express any interaction of two spin-half particles is introduced. We show the spin-averaged differential cross section as being calculated in terms of the solution of the set of the integral equations.« less

  20. Path Integration on the Upper Half-Plane

    NASA Astrophysics Data System (ADS)

    Kubo, R.

    1987-10-01

    Feynman's path integral is considered on the Poincaré upper half-plane. It is shown that the fundermental solution to the heat equation partial f/partial t=Delta_{H}f can be expressed in terms of a path integral. A simple relation between the path integral and the Selberg trace formula is discussed briefly.

  1. TBA-like integral equations from quantized mirror curves

    NASA Astrophysics Data System (ADS)

    Okuyama, Kazumi; Zakany, Szabolcs

    2016-03-01

    Quantizing the mirror curve of certain toric Calabi-Yau (CY) three-folds leads to a family of trace class operators. The resolvent function of these operators is known to encode topological data of the CY. In this paper, we show that in certain cases, this resolvent function satisfies a system of non-linear integral equations whose structure is very similar to the Thermodynamic Bethe Ansatz (TBA) systems. This can be used to compute spectral traces, both exactly and as a semiclassical expansion. As a main example, we consider the system related to the quantized mirror curve of local P2. According to a recent proposal, the traces of this operator are determined by the refined BPS indices of the underlying CY. We use our non-linear integral equations to test that proposal.

  2. On square-integrability of solutions of the stationary Schrödinger equation for the quantum harmonic oscillator in two dimensional constant curvature spaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noguera, Norman, E-mail: norman.noguera@ucr.ac.cr; Rózga, Krzysztof, E-mail: krzysztof.rozga@upr.edu

    In this work, one provides a justification of the condition that is usually imposed on the parameters of the hypergeometric equation, related to the solutions of the stationary Schrödinger equation for the harmonic oscillator in two-dimensional constant curvature spaces, in order to determine the solutions which are square-integrable. One proves that in case of negative curvature, it is a necessary condition of square integrability and in case of positive curvature, a necessary condition of regularity. The proof is based on the analytic continuation formulas for the hypergeometric function. It is observed also that the same is true in case ofmore » a slightly more general potential than the one for harmonic oscillator.« less

  3. Asymptotic integration algorithms for nonhomogeneous, nonlinear, first order, ordinary differential equations

    NASA Technical Reports Server (NTRS)

    Walker, K. P.; Freed, A. D.

    1991-01-01

    New methods for integrating systems of stiff, nonlinear, first order, ordinary differential equations are developed by casting the differential equations into integral form. Nonlinear recursive relations are obtained that allow the solution to a system of equations at time t plus delta t to be obtained in terms of the solution at time t in explicit and implicit forms. Examples of accuracy obtained with the new technique are given by considering systems of nonlinear, first order equations which arise in the study of unified models of viscoplastic behaviors, the spread of the AIDS virus, and predator-prey populations. In general, the new implicit algorithm is unconditionally stable, and has a Jacobian of smaller dimension than that which is acquired by current implicit methods, such as the Euler backward difference algorithm; yet, it gives superior accuracy. The asymptotic explicit and implicit algorithms are suitable for solutions that are of the growing and decaying exponential kinds, respectively, whilst the implicit Euler-Maclaurin algorithm is superior when the solution oscillates, i.e., when there are regions in which both growing and decaying exponential solutions exist.

  4. Gröbner Bases and Generation of Difference Schemes for Partial Differential Equations

    NASA Astrophysics Data System (ADS)

    Gerdt, Vladimir P.; Blinkov, Yuri A.; Mozzhilkin, Vladimir V.

    2006-05-01

    In this paper we present an algorithmic approach to the generation of fully conservative difference schemes for linear partial differential equations. The approach is based on enlargement of the equations in their integral conservation law form by extra integral relations between unknown functions and their derivatives, and on discretization of the obtained system. The structure of the discrete system depends on numerical approximation methods for the integrals occurring in the enlarged system. As a result of the discretization, a system of linear polynomial difference equations is derived for the unknown functions and their partial derivatives. A difference scheme is constructed by elimination of all the partial derivatives. The elimination can be achieved by selecting a proper elimination ranking and by computing a Gröbner basis of the linear difference ideal generated by the polynomials in the discrete system. For these purposes we use the difference form of Janet-like Gröbner bases and their implementation in Maple. As illustration of the described methods and algorithms, we construct a number of difference schemes for Burgers and Falkowich-Karman equations and discuss their numerical properties.

  5. ALGORITHM TO REDUCE APPROXIMATION ERROR FROM THE COMPLEX-VARIABLE BOUNDARY-ELEMENT METHOD APPLIED TO SOIL FREEZING.

    USGS Publications Warehouse

    Hromadka, T.V.; Guymon, G.L.

    1985-01-01

    An algorithm is presented for the numerical solution of the Laplace equation boundary-value problem, which is assumed to apply to soil freezing or thawing. The Laplace equation is numerically approximated by the complex-variable boundary-element method. The algorithm aids in reducing integrated relative error by providing a true measure of modeling error along the solution domain boundary. This measure of error can be used to select locations for adding, removing, or relocating nodal points on the boundary or to provide bounds for the integrated relative error of unknown nodal variable values along the boundary.

  6. Scale relativity theory and integrative systems biology: 1. Founding principles and scale laws.

    PubMed

    Auffray, Charles; Nottale, Laurent

    2008-05-01

    In these two companion papers, we provide an overview and a brief history of the multiple roots, current developments and recent advances of integrative systems biology and identify multiscale integration as its grand challenge. Then we introduce the fundamental principles and the successive steps that have been followed in the construction of the scale relativity theory, and discuss how scale laws of increasing complexity can be used to model and understand the behaviour of complex biological systems. In scale relativity theory, the geometry of space is considered to be continuous but non-differentiable, therefore fractal (i.e., explicitly scale-dependent). One writes the equations of motion in such a space as geodesics equations, under the constraint of the principle of relativity of all scales in nature. To this purpose, covariant derivatives are constructed that implement the various effects of the non-differentiable and fractal geometry. In this first review paper, the scale laws that describe the new dependence on resolutions of physical quantities are obtained as solutions of differential equations acting in the scale space. This leads to several possible levels of description for these laws, from the simplest scale invariant laws to generalized laws with variable fractal dimensions. Initial applications of these laws to the study of species evolution, embryogenesis and cell confinement are discussed.

  7. A new treatment of nonlocality in scattering process

    NASA Astrophysics Data System (ADS)

    Upadhyay, N. J.; Bhagwat, A.; Jain, B. K.

    2018-01-01

    Nonlocality in the scattering potential leads to an integro-differential equation. In this equation nonlocality enters through an integral over the nonlocal potential kernel. The resulting Schrödinger equation is usually handled by approximating r,{r}{\\prime }-dependence of the nonlocal kernel. The present work proposes a novel method to solve the integro-differential equation. The method, using the mean value theorem of integral calculus, converts the nonhomogeneous term to a homogeneous term. The effective local potential in this equation turns out to be energy independent, but has relative angular momentum dependence. This method is accurate and valid for any form of nonlocality. As illustrative examples, the total and differential cross sections for neutron scattering off 12C, 56Fe and 100Mo nuclei are calculated with this method in the low energy region (up to 10 MeV) and are found to be in reasonable accord with the experiments.

  8. Integrable multi-component generalization of a modified short pulse equation

    NASA Astrophysics Data System (ADS)

    Matsuno, Yoshimasa

    2016-11-01

    We propose a multi-component generalization of the modified short pulse (SP) equation which was derived recently as a reduction of Feng's two-component SP equation. Above all, we address the two-component system in depth. We obtain the Lax pair, an infinite number of conservation laws and multisoliton solutions for the system, demonstrating its integrability. Subsequently, we show that the two-component system exhibits cusp solitons and breathers for which the detailed analysis is performed. Specifically, we explore the interaction process of two cusp solitons and derive the formula for the phase shift. While cusp solitons are singular solutions, smooth breather solutions are shown to exist, provided that the parameters characterizing the solutions satisfy certain conditions. Last, we discuss the relation between the proposed system and existing two-component SP equations.

  9. Soliton solutions of an integrable nonlinear Schrödinger equation with quintic terms.

    PubMed

    Chowdury, A; Kedziora, D J; Ankiewicz, A; Akhmediev, N

    2014-09-01

    We present the fifth-order equation of the nonlinear Schrödinger hierarchy. This integrable partial differential equation contains fifth-order dispersion and nonlinear terms related to it. We present the Lax pair and use Darboux transformations to derive exact expressions for the most representative soliton solutions. This set includes two-soliton collisions and the degenerate case of the two-soliton solution, as well as beating structures composed of two or three solitons. Ultimately, the new quintic operator and the terms it adds to the standard nonlinear Schrödinger equation (NLSE) are found to primarily affect the velocity of solutions, with complicated flow-on effects. Furthermore, we present a new structure, composed of coincident equal-amplitude solitons, which cannot exist for the standard NLSE.

  10. An exact sum-rule for the Hubbard model: an historical/pedagogical approach

    NASA Astrophysics Data System (ADS)

    Di Matteo, S.; Claveau, Y.

    2017-07-01

    The aim of the present article is to derive an exact integral equation for the Green function of the Hubbard model through an equation-of-motion procedure, like in the original Hubbard papers. Though our exact integral equation does not allow to solve the Hubbard model, it represents a strong constraint on its approximate solutions. An analogous sum rule has been already obtained in the literature, through the use of a spectral moment technique. We think however that our equation-of-motion procedure can be more easily related to the historical procedure of the original Hubbard papers. We also discuss examples of possible applications of the sum rule and propose and analyse a solution, fulfilling it, that can be used for a pedagogical introduction to the Mott-Hubbard metal-insulator transition.

  11. A Maple package for computing Gröbner bases for linear recurrence relations

    NASA Astrophysics Data System (ADS)

    Gerdt, Vladimir P.; Robertz, Daniel

    2006-04-01

    A Maple package for computing Gröbner bases of linear difference ideals is described. The underlying algorithm is based on Janet and Janet-like monomial divisions associated with finite difference operators. The package can be used, for example, for automatic generation of difference schemes for linear partial differential equations and for reduction of multiloop Feynman integrals. These two possible applications are illustrated by simple examples of the Laplace equation and a one-loop scalar integral of propagator type.

  12. Integrated force method versus displacement method for finite element analysis

    NASA Technical Reports Server (NTRS)

    Patnaik, S. N.; Berke, L.; Gallagher, R. H.

    1991-01-01

    A novel formulation termed the integrated force method (IFM) has been developed in recent years for analyzing structures. In this method all the internal forces are taken as independent variables, and the system equilibrium equations (EEs) are integrated with the global compatibility conditions (CCs) to form the governing set of equations. In IFM the CCs are obtained from the strain formulation of St. Venant, and no choices of redundant load systems have to be made, in constrast to the standard force method (SFM). This property of IFM allows the generation of the governing equation to be automated straightforwardly, as it is in the popular stiffness method (SM). In this report IFM and SM are compared relative to the structure of their respective equations, their conditioning, required solution methods, overall computational requirements, and convergence properties as these factors influence the accuracy of the results. Overall, this new version of the force method produces more accurate results than the stiffness method for comparable computational cost.

  13. Integrated force method versus displacement method for finite element analysis

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Berke, Laszlo; Gallagher, Richard H.

    1990-01-01

    A novel formulation termed the integrated force method (IFM) has been developed in recent years for analyzing structures. In this method all the internal forces are taken as independent variables, and the system equilibrium equations (EE's) are integrated with the global compatibility conditions (CC's) to form the governing set of equations. In IFM the CC's are obtained from the strain formulation of St. Venant, and no choices of redundant load systems have to be made, in constrast to the standard force method (SFM). This property of IFM allows the generation of the governing equation to be automated straightforwardly, as it is in the popular stiffness method (SM). In this report IFM and SM are compared relative to the structure of their respective equations, their conditioning, required solution methods, overall computational requirements, and convergence properties as these factors influence the accuracy of the results. Overall, this new version of the force method produces more accurate results than the stiffness method for comparable computational cost.

  14. Correlations and the Ring-Kinetic Equation in Dense Sheared Granular Flows

    NASA Astrophysics Data System (ADS)

    Kumaran, V.

    A formal way of deriving fluctuation-correlation relations in densesheared granular media, starting with the Enskog approximation for the collision integral in the Chapman-Enskog theory, is discussed. The correlation correction to the viscosity is obtained using the ring-kinetic equation, in terms of the correlations in the hydrodynamic modes of the linearised Enskog equation. It is shown that the Green-Kubo formula for the shear viscosity emerges from the two-body correlation function obtained from the ring-kinetic equation.

  15. Versatile rogue waves in scalar, vector, and multidimensional nonlinear systems

    NASA Astrophysics Data System (ADS)

    Chen, Shihua; Baronio, Fabio; Soto-Crespo, Jose M.; Grelu, Philippe; Mihalache, Dumitru

    2017-11-01

    This review is dedicated to recent progress in the active field of rogue waves, with an emphasis on the analytical prediction of versatile rogue wave structures in scalar, vector, and multidimensional integrable nonlinear systems. We first give a brief outline of the historical background of the rogue wave research, including referring to relevant up-to-date experimental results. Then we present an in-depth discussion of the scalar rogue waves within two different integrable frameworks—the infinite nonlinear Schrödinger (NLS) hierarchy and the general cubic-quintic NLS equation, considering both the self-focusing and self-defocusing Kerr nonlinearities. We highlight the concept of chirped Peregrine solitons, the baseband modulation instability as an origin of rogue waves, and the relation between integrable turbulence and rogue waves, each with illuminating examples confirmed by numerical simulations. Later, we recur to the vector rogue waves in diverse coupled multicomponent systems such as the long-wave short-wave equations, the three-wave resonant interaction equations, and the vector NLS equations (alias Manakov system). In addition to their intriguing bright-dark dynamics, a series of other peculiar structures, such as coexisting rogue waves, watch-hand-like rogue waves, complementary rogue waves, and vector dark three sisters, are reviewed. Finally, for practical considerations, we also remark on higher-dimensional rogue waves occurring in three closely-related (2  +  1)D nonlinear systems, namely, the Davey-Stewartson equation, the composite (2  +  1)D NLS equation, and the Kadomtsev-Petviashvili I equation. As an interesting contrast to the peculiar X-shaped light bullets, a concept of rogue wave bullets intended for high-dimensional systems is particularly put forward by combining contexts in nonlinear optics.

  16. Integral approximations to classical diffusion and smoothed particle hydrodynamics

    DOE PAGES

    Du, Qiang; Lehoucq, R. B.; Tartakovsky, A. M.

    2014-12-31

    The contribution of the paper is the approximation of a classical diffusion operator by an integral equation with a volume constraint. A particular focus is on classical diffusion problems associated with Neumann boundary conditions. By exploiting this approximation, we can also approximate other quantities such as the flux out of a domain. Our analysis of the model equation on the continuum level is closely related to the recent work on nonlocal diffusion and peridynamic mechanics. In particular, we elucidate the role of a volumetric constraint as an approximation to a classical Neumann boundary condition in the presence of physical boundary.more » The volume-constrained integral equation then provides the basis for accurate and robust discretization methods. As a result, an immediate application is to the understanding and improvement of the Smoothed Particle Hydrodynamics (SPH) method.« less

  17. Quaternion Regularization of the Equations of the Perturbed Spatial Restricted Three-Body Problem: I

    NASA Astrophysics Data System (ADS)

    Chelnokov, Yu. N.

    2017-11-01

    We develop a quaternion method for regularizing the differential equations of the perturbed spatial restricted three-body problem by using the Kustaanheimo-Stiefel variables, which is methodologically closely related to the quaternion method for regularizing the differential equations of perturbed spatial two-body problem, which was proposed by the author of the present paper. A survey of papers related to the regularization of the differential equations of the two- and threebody problems is given. The original Newtonian equations of perturbed spatial restricted three-body problem are considered, and the problem of their regularization is posed; the energy relations and the differential equations describing the variations in the energies of the system in the perturbed spatial restricted three-body problem are given, as well as the first integrals of the differential equations of the unperturbed spatial restricted circular three-body problem (Jacobi integrals); the equations of perturbed spatial restricted three-body problem written in terms of rotating coordinate systems whose angular motion is described by the rotation quaternions (Euler (Rodrigues-Hamilton) parameters) are considered; and the differential equations for angular momenta in the restricted three-body problem are given. Local regular quaternion differential equations of perturbed spatial restricted three-body problem in the Kustaanheimo-Stiefel variables, i.e., equations regular in a neighborhood of the first and second body of finite mass, are obtained. The equations are systems of nonlinear nonstationary eleventhorder differential equations. These equations employ, as additional dependent variables, the energy characteristics of motion of the body under study (a body of a negligibly small mass) and the time whose derivative with respect to a new independent variable is equal to the distance from the body of negligibly small mass to the first or second body of finite mass. The equations obtained in the paper permit developing regular methods for determining solutions, in analytical or numerical form, of problems difficult for classicalmethods, such as the motion of a body of negligibly small mass in a neighborhood of the other two bodies of finite masses.

  18. A Constitutive Equation Relating Composition and Microstructure to Properties in Ti-6Al-4V: As Derived Using a Novel Integrated Computational Approach

    NASA Astrophysics Data System (ADS)

    Ghamarian, Iman; Samimi, Peyman; Dixit, Vikas; Collins, Peter C.

    2015-11-01

    While it is useful to predict properties in metallic materials based upon the composition and microstructure, the complexity of real, multi-component, and multi-phase engineering alloys presents difficulties when attempting to determine constituent-based phenomenological equations. This paper applies an approach based upon the integration of three separate modeling approaches, specifically artificial neural networks, genetic algorithms, and Monte Carlo simulations to determine a mechanism-based equation for the yield strength of α+ β processed Ti-6Al-4V (all compositions in weight percent) which consists of a complex multi-phase microstructure with varying spatial and morphological distributions of the key microstructural features. Notably, this is an industrially important alloy yet an alloy for which such an equation does not exist in the published literature. The equation ultimately derived in this work not only can accurately describe the properties of the current dataset but also is consistent with the limited and dissociated information available in the literature regarding certain parameters such as intrinsic yield strength of pure hexagonal close-packed alpha titanium. In addition, this equation suggests new interesting opportunities for controlling yield strength by controlling the relative intrinsic strengths of the two phases through solid solution strengthening.

  19. Generalizations of the classical Yang-Baxter equation and O-operators

    NASA Astrophysics Data System (ADS)

    Bai, Chengming; Guo, Li; Ni, Xiang

    2011-06-01

    Tensor solutions (r-matrices) of the classical Yang-Baxter equation (CYBE) in a Lie algebra, obtained as the classical limit of the R-matrix solution of the quantum Yang-Baxter equation, is an important structure appearing in different areas such as integrable systems, symplectic geometry, quantum groups, and quantum field theory. Further study of CYBE led to its interpretation as certain operators, giving rise to the concept of {O}-operators. The O-operators were in turn interpreted as tensor solutions of CYBE by enlarging the Lie algebra [Bai, C., "A unified algebraic approach to the classical Yang-Baxter equation," J. Phys. A: Math. Theor. 40, 11073 (2007)], 10.1088/1751-8113/40/36/007. The purpose of this paper is to extend this study to a more general class of operators that were recently introduced [Bai, C., Guo, L., and Ni, X., "Nonabelian generalized Lax pairs, the classical Yang-Baxter equation and PostLie algebras," Commun. Math. Phys. 297, 553 (2010)], 10.1007/s00220-010-0998-7 in the study of Lax pairs in integrable systems. Relations between O-operators, relative differential operators, and Rota-Baxter operators are also discussed.

  20. A new integrable equation combining the modified KdV equation with the negative-order modified KdV equation: multiple soliton solutions and a variety of solitonic solutions

    NASA Astrophysics Data System (ADS)

    Wazwaz, Abdul-Majid

    2018-07-01

    A new third-order integrable equation is constructed via combining the recursion operator of the modified KdV equation (MKdV) and its inverse recursion operator. The developed equation will be termed the modified KdV-negative order modified KdV equation (MKdV-nMKdV). The complete integrability of this equation is confirmed by showing that it nicely possesses the Painlevé property. We obtain multiple soliton solutions for the newly developed integrable equation. Moreover, this equation enjoys a variety of solutions which include solitons, peakons, cuspons, negaton, positon, complexiton and other solutions.

  1. Linear response theory and transient fluctuation relations for diffusion processes: a backward point of view

    NASA Astrophysics Data System (ADS)

    Liu, Fei; Tong, Huan; Ma, Rui; Ou-Yang, Zhong-can

    2010-12-01

    A formal apparatus is developed to unify derivations of the linear response theory and a variety of transient fluctuation relations for continuous diffusion processes from a backward point of view. The basis is a perturbed Kolmogorov backward equation and the path integral representation of its solution. We find that these exact transient relations could be interpreted as a consequence of a generalized Chapman-Kolmogorov equation, which intrinsically arises from the Markovian characteristic of diffusion processes.

  2. Opening of an interface flaw in a layered elastic half-plane under compressive loading

    NASA Technical Reports Server (NTRS)

    Kennedy, J. M.; Fichter, W. B.; Goree, J. G.

    1984-01-01

    A static analysis is given of the problem of an elastic layer perfectly bonded, except for a frictionless interface crack, to a dissimilar elastic half-plane. The free surface of the layer is loaded by a finite pressure distribution directly over the crack. The problem is formulated using the two dimensional linear elasticity equations. Using Fourier transforms, the governing equations are converted to a pair of coupled singular integral equations. The integral equations are reduced to a set of simultaneous algebraic equations by expanding the unknown functions in a series of Jacobi polynomials and then evaluating the singular Cauchy-type integrals. The resulting equations are found to be ill-conditioned and, consequently, are solved in the least-squares sense. Results from the analysis show that, under a normal pressure distribution on the free surface of the layer and depending on the combination of geometric and material parameters, the ends of the crack can open. The resulting stresses at the crack-tips are singular, implying that crack growth is possible. The extent of the opening and the crack-top stress intensity factors depend on the width of the pressure distribution zone, the layer thickness, and the relative material properties of the layer and half-plane.

  3. On integrability of the Killing equation

    NASA Astrophysics Data System (ADS)

    Houri, Tsuyoshi; Tomoda, Kentaro; Yasui, Yukinori

    2018-04-01

    Killing tensor fields have been thought of as describing the hidden symmetry of space(-time) since they are in one-to-one correspondence with polynomial first integrals of geodesic equations. Since many problems in classical mechanics can be formulated as geodesic problems in curved space and spacetime, solving the defining equation for Killing tensor fields (the Killing equation) is a powerful way to integrate equations of motion. Thus it has been desirable to formulate the integrability conditions of the Killing equation, which serve to determine the number of linearly independent solutions and also to restrict the possible forms of solutions tightly. In this paper, we show the prolongation for the Killing equation in a manner that uses Young symmetrizers. Using the prolonged equations, we provide the integrability conditions explicitly.

  4. Integral-equation based methods for parameter estimation in output pulses of radiation detectors: Application in nuclear medicine and spectroscopy

    NASA Astrophysics Data System (ADS)

    Mohammadian-Behbahani, Mohammad-Reza; Saramad, Shahyar

    2018-04-01

    Model based analysis methods are relatively new approaches for processing the output data of radiation detectors in nuclear medicine imaging and spectroscopy. A class of such methods requires fast algorithms for fitting pulse models to experimental data. In order to apply integral-equation based methods for processing the preamplifier output pulses, this article proposes a fast and simple method for estimating the parameters of the well-known bi-exponential pulse model by solving an integral equation. The proposed method needs samples from only three points of the recorded pulse as well as its first and second order integrals. After optimizing the sampling points, the estimation results were calculated and compared with two traditional integration-based methods. Different noise levels (signal-to-noise ratios from 10 to 3000) were simulated for testing the functionality of the proposed method, then it was applied to a set of experimental pulses. Finally, the effect of quantization noise was assessed by studying different sampling rates. Promising results by the proposed method endorse it for future real-time applications.

  5. On the Monge-Ampere equivalent of the sine-Gordon equation

    NASA Astrophysics Data System (ADS)

    Ferapontov, E. V.; Nutku, Y.

    1994-12-01

    Surfaces of constant negative curvature in Euclidean space can be described by either the sine-Gordon equation for the angle between asymptotic directions, or a Monge-Ampere equation for the graph of the surface. We present the explicit form of the correspondence between these two integrable non-linear partial differential equations using their well-known properties in differential geometry. We find that the cotangent of the angle between asymptotic directions is directly related to the mean curvature of the surface. This is a Backlund-type transformation between the sine-Gordon and Monge-Ampere equations.

  6. Vertically Integrated Models for Carbon Storage Modeling in Heterogeneous Domains

    NASA Astrophysics Data System (ADS)

    Bandilla, K.; Celia, M. A.

    2017-12-01

    Numerical modeling is an essential tool for studying the impacts of geologic carbon storage (GCS). Injection of carbon dioxide (CO2) into deep saline aquifers leads to multi-phase flow (injected CO2 and resident brine), which can be described by a set of three-dimensional governing equations, including mass-balance equation, volumetric flux equations (modified Darcy), and constitutive equations. This is the modeling approach on which commonly used reservoir simulators such as TOUGH2 are based. Due to the large density difference between CO2 and brine, GCS models can often be simplified by assuming buoyant segregation and integrating the three-dimensional governing equations in the vertical direction. The integration leads to a set of two-dimensional equations coupled with reconstruction operators for vertical profiles of saturation and pressure. Vertically-integrated approaches have been shown to give results of comparable quality as three-dimensional reservoir simulators when applied to realistic CO2 injection sites such as the upper sand wedge at the Sleipner site. However, vertically-integrated approaches usually rely on homogeneous properties over the thickness of a geologic layer. Here, we investigate the impact of general (vertical and horizontal) heterogeneity in intrinsic permeability, relative permeability functions, and capillary pressure functions. We consider formations involving complex fluvial deposition environments and compare the performance of vertically-integrated models to full three-dimensional models for a set of hypothetical test cases consisting of high permeability channels (streams) embedded in a low permeability background (floodplains). The domains are randomly generated assuming that stream channels can be represented by sinusoidal waves in the plan-view and by parabolas for the streams' cross-sections. Stream parameters such as width, thickness and wavelength are based on values found at the Ketzin site in Germany. Results from the vertically-integrated approach are compared to results using TOUGH2, both in terms of depth-averaged saturation and vertical saturation profiles.

  7. Time step rescaling recovers continuous-time dynamical properties for discrete-time Langevin integration of nonequilibrium systems.

    PubMed

    Sivak, David A; Chodera, John D; Crooks, Gavin E

    2014-06-19

    When simulating molecular systems using deterministic equations of motion (e.g., Newtonian dynamics), such equations are generally numerically integrated according to a well-developed set of algorithms that share commonly agreed-upon desirable properties. However, for stochastic equations of motion (e.g., Langevin dynamics), there is still broad disagreement over which integration algorithms are most appropriate. While multiple desiderata have been proposed throughout the literature, consensus on which criteria are important is absent, and no published integration scheme satisfies all desiderata simultaneously. Additional nontrivial complications stem from simulating systems driven out of equilibrium using existing stochastic integration schemes in conjunction with recently developed nonequilibrium fluctuation theorems. Here, we examine a family of discrete time integration schemes for Langevin dynamics, assessing how each member satisfies a variety of desiderata that have been enumerated in prior efforts to construct suitable Langevin integrators. We show that the incorporation of a novel time step rescaling in the deterministic updates of position and velocity can correct a number of dynamical defects in these integrators. Finally, we identify a particular splitting (related to the velocity Verlet discretization) that has essentially universally appropriate properties for the simulation of Langevin dynamics for molecular systems in equilibrium, nonequilibrium, and path sampling contexts.

  8. Stochastic differential equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobczyk, K.

    1990-01-01

    This book provides a unified treatment of both regular (or random) and Ito stochastic differential equations. It focuses on solution methods, including some developed only recently. Applications are discussed, in particular an insight is given into both the mathematical structure, and the most efficient solution methods (analytical as well as numerical). Starting from basic notions and results of the theory of stochastic processes and stochastic calculus (including Ito's stochastic integral), many principal mathematical problems and results related to stochastic differential equations are expounded here for the first time. Applications treated include those relating to road vehicles, earthquake excitations and offshoremore » structures.« less

  9. Building Context with Tumor Growth Modeling Projects in Differential Equations

    ERIC Educational Resources Information Center

    Beier, Julie C.; Gevertz, Jana L.; Howard, Keith E.

    2015-01-01

    The use of modeling projects serves to integrate, reinforce, and extend student knowledge. Here we present two projects related to tumor growth appropriate for a first course in differential equations. They illustrate the use of problem-based learning to reinforce and extend course content via a writing or research experience. Here we discuss…

  10. Quantum integrability and functional equations

    NASA Astrophysics Data System (ADS)

    Volin, Dmytro

    2010-03-01

    In this thesis a general procedure to represent the integral Bethe Ansatz equations in the form of the Reimann-Hilbert problem is given. This allows us to study in simple way integrable spin chains in the thermodynamic limit. Based on the functional equations we give the procedure that allows finding the subleading orders in the solution of various integral equations solved to the leading order by the Wiener-Hopf technics. The integral equations are studied in the context of the AdS/CFT correspondence, where their solution allows verification of the integrability conjecture up to two loops of the strong coupling expansion. In the context of the two-dimensional sigma models we analyze the large-order behavior of the asymptotic perturbative expansion. Obtained experience with the functional representation of the integral equations allowed us also to solve explicitly the crossing equations that appear in the AdS/CFT spectral problem.

  11. Explicit solution of integrated 1 - exp equation for predicting accumulation and decline of concentrations for drugs obeying nonlinear saturation kinetics.

    PubMed

    Keller, Frieder; Hartmann, Bertram; Czock, David

    2009-12-01

    To describe nonlinear, saturable pharmacokinetics, the Michaelis-Menten equation is frequently used. However, the Michaelis-Menten equation has no integrated solution for concentrations but only for the time factor. Application of the Lambert W function was proposed recently to obtain an integrated solution of the Michaelis-Menten equation. As an alternative to the Michaelis-Menten equation, a 1 - exp equation has been used to describe saturable kinetics, with the advantage that the integrated 1 - exp equation has an explicit solution for concentrations. We used the integrated 1 - exp equation to predict the accumulation kinetics and the nonlinear concentration decline for a proposed fictive drug. In agreement with the recently proposed method, we found that for the integrated 1 - exp equation no steady state is obtained if the maximum rate of change in concentrations (Vmax) within interval (Tau) is less than the difference between peak and trough concentrations (Vmax x Tau < C peak - C trough).

  12. Non-invertible transformations of differential-difference equations

    NASA Astrophysics Data System (ADS)

    Garifullin, R. N.; Yamilov, R. I.; Levi, D.

    2016-09-01

    We discuss aspects of the theory of non-invertible transformations of differential-difference equations and, in particular, the notion of Miura type transformation. We introduce the concept of non-Miura type linearizable transformation and we present techniques that allow one to construct simple linearizable transformations and might help one to solve classification problems. This theory is illustrated by the example of a new integrable differential-difference equation depending on five lattice points, interesting from the viewpoint of the non-invertible transformation, which relate it to an Itoh-Narita-Bogoyavlensky equation.

  13. A coupled-mode theory for multiwaveguide systems satisfying the reciprocity theorem and power conservation

    NASA Technical Reports Server (NTRS)

    Chuang, Shun-Lien

    1987-01-01

    Two sets of coupled-mode equations for multiwaveguide systems are derived using a generalized reciprocity relation; one set for a lossless system, and the other for a general lossy or lossless system. The second set of equations also reduces to those of the first set in the lossless case under the condition that the transverse field components are chosen to be real. Analytical relations between the coupling coefficients are shown and applied to the coupling of mode equations. It is shown analytically that these results satisfy exactly both the reciprocity theorem and power conservation. New orthogonal relations between the supermodes are derived in matrix form, with the overlap integrals taken into account.

  14. An accurate and efficient method for evaluating the kernel of the integral equation relating pressure to normalwash in unsteady potential flow

    NASA Technical Reports Server (NTRS)

    Desmarais, R. N.

    1982-01-01

    This paper describes an accurate economical method for generating approximations to the kernel of the integral equation relating unsteady pressure to normalwash in nonplanar flow. The method is capable of generating approximations of arbitrary accuracy. It is based on approximating the algebraic part of the non elementary integrals in the kernel by exponential approximations and then integrating termwise. The exponent spacing in the approximation is a geometric sequence. The coefficients and exponent multiplier of the exponential approximation are computed by least squares so the method is completely automated. Exponential approximates generated in this manner are two orders of magnitude more accurate than the exponential approximation that is currently most often used for this purpose. Coefficients for 8, 12, 24, and 72 term approximations are tabulated in the report. Also, since the method is automated, it can be used to generate approximations to attain any desired trade-off between accuracy and computing cost.

  15. The new AP Physics exams: Integrating qualitative and quantitative reasoning

    NASA Astrophysics Data System (ADS)

    Elby, Andrew

    2015-04-01

    When physics instructors and education researchers emphasize the importance of integrating qualitative and quantitative reasoning in problem solving, they usually mean using those types of reasoning serially and separately: first students should analyze the physical situation qualitatively/conceptually to figure out the relevant equations, then they should process those equations quantitatively to generate a solution, and finally they should use qualitative reasoning to check that answer for plausibility (Heller, Keith, & Anderson, 1992). The new AP Physics 1 and 2 exams will, of course, reward this approach to problem solving. But one kind of free response question will demand and reward a further integration of qualitative and quantitative reasoning, namely mathematical modeling and sense-making--inventing new equations to capture a physical situation and focusing on proportionalities, inverse proportionalities, and other functional relations to infer what the equation ``says'' about the physical world. In this talk, I discuss examples of these qualitative-quantitative translation questions, highlighting how they differ from both standard quantitative and standard qualitative questions. I then discuss the kinds of modeling activities that can help AP and college students develop these skills and habits of mind.

  16. On the integration of a class of nonlinear systems of ordinary differential equations

    NASA Astrophysics Data System (ADS)

    Talyshev, Aleksandr A.

    2017-11-01

    For each associative, commutative, and unitary algebra over the field of real or complex numbers and an integrable nonlinear ordinary differential equation we can to construct integrable systems of ordinary differential equations and integrable systems of partial differential equations. In this paper we consider in some sense the inverse problem. Determine the conditions under which a given system of ordinary differential equations can be represented as a differential equation in some associative, commutative and unitary algebra. It is also shown that associativity is not a necessary condition.

  17. Coupled dynamics in gluon mass generation and the impact of the three-gluon vertex

    NASA Astrophysics Data System (ADS)

    Binosi, Daniele; Papavassiliou, Joannis

    2018-03-01

    We present a detailed study of the subtle interplay transpiring at the level of two integral equations that are instrumental for the dynamical generation of a gluon mass in pure Yang-Mills theories. The main novelty is the joint treatment of the Schwinger-Dyson equation governing the infrared behavior of the gluon propagator and of the integral equation that controls the formation of massless bound-state excitations, whose inclusion is instrumental for obtaining massive solutions from the former equation. The self-consistency of the entire approach imposes the requirement of using a single value for the gauge coupling entering in the two key equations; its fulfilment depends crucially on the details of the three-gluon vertex, which contributes to both of them, but with different weight. In particular, the characteristic suppression of this vertex at intermediate and low energies enables the convergence of the iteration procedure to a single gauge coupling, whose value is reasonably close to that extracted from related lattice simulations.

  18. Aspects of Integrability in One and Several Dimensions,

    DTIC Science & Technology

    1986-01-01

    Kadomtsev - Petviashvili (KP) equation , the modified KdV to the modified KP, the non-linear Schr6d- inger to the Davey-Stewartson, etc. Furthermore...but a function de- noted in 20 by T12. This function also generates recursion operators in analogy with T. i % 61 4. THE KADOMTSEV - PETVIASHVILI EQUATION ...and its Appl., 19 L • 11 (1985). [41] Caudrey, P.J., Discrete and Periodic Spectral Transforms Related to the Kadomtsev - Petviashvili Equation (preprint

  19. G-Strands on symmetric spaces

    PubMed Central

    2017-01-01

    We study the G-strand equations that are extensions of the classical chiral model of particle physics in the particular setting of broken symmetries described by symmetric spaces. These equations are simple field theory models whose configuration space is a Lie group, or in this case a symmetric space. In this class of systems, we derive several models that are completely integrable on finite dimensional Lie group G, and we treat in more detail examples with symmetric space SU(2)/S1 and SO(4)/SO(3). The latter model simplifies to an apparently new integrable nine-dimensional system. We also study the G-strands on the infinite dimensional group of diffeomorphisms, which gives, together with the Sobolev norm, systems of 1+2 Camassa–Holm equations. The solutions of these equations on the complementary space related to the Witt algebra decomposition are the odd function solutions. PMID:28413343

  20. Relative Performance of Rescaling and Resampling Approaches to Model Chi Square and Parameter Standard Error Estimation in Structural Equation Modeling.

    ERIC Educational Resources Information Center

    Nevitt, Johnathan; Hancock, Gregory R.

    Though common structural equation modeling (SEM) methods are predicated upon the assumption of multivariate normality, applied researchers often find themselves with data clearly violating this assumption and without sufficient sample size to use distribution-free estimation methods. Fortunately, promising alternatives are being integrated into…

  1. Morphing Continuum Theory: A First Order Approximation to the Balance Laws

    NASA Astrophysics Data System (ADS)

    Wonnell, Louis; Cheikh, Mohamad Ibrahim; Chen, James

    2017-11-01

    Morphing Continuum Theory is constructed under the framework of Rational Continuum Mechanics (RCM) for fluid flows with inner structure. This multiscale theory has been successfully emplyed to model turbulent flows. The framework of RCM ensures the mathematical rigor of MCT, but contains new material constants related to the inner structure. The physical meanings of these material constants have yet to be determined. Here, a linear deviation from the zeroth-order Boltzmann-Curtiss distribution function is derived. When applied to the Boltzmann-Curtiss equation, a first-order approximation of the MCT governing equations is obtained. The integral equations are then related to the appropriate material constants found in the heat flux, Cauchy stress, and moment stress terms in the governing equations. These new material properties associated with the inner structure of the fluid are compared with the corresponding integrals, and a clearer physical interpretation of these coefficients emerges. The physical meanings of these material properties is determined by analyzing previous results obtained from numerical simulations of MCT for compressible and incompressible flows. The implications for the physics underlying the MCT governing equations will also be discussed. This material is based upon work supported by the Air Force Office of Scientific Research under Award Number FA9550-17-1-0154.

  2. On the Kernel function of the integral equation relating lift and downwash distributions of oscillating wings in supersonic flow

    NASA Technical Reports Server (NTRS)

    Watkins, Charles E; Berman, Julian H

    1956-01-01

    This report treats the Kernel function of the integral equation that relates a known or prescribed downwash distribution to an unknown lift distribution for harmonically oscillating wings in supersonic flow. The treatment is essentially an extension to supersonic flow of the treatment given in NACA report 1234 for subsonic flow. For the supersonic case the Kernel function is derived by use of a suitable form of acoustic doublet potential which employs a cutoff or Heaviside unit function. The Kernel functions are reduced to forms that can be accurately evaluated by considering the functions in two parts: a part in which the singularities are isolated and analytically expressed, and a nonsingular part which can be tabulated.

  3. Some guidelines for structural equation modelling in cognitive neuroscience: the case of Charlton et al.'s study on white matter integrity and cognitive ageing.

    PubMed

    Penke, Lars; Deary, Ian J

    2010-09-01

    Charlton et al. (2008) (Charlton, R.A., Landua, S., Schiavone, F., Barrick, T.R., Clark, C.A., Markus, H.S., Morris, R.G.A., 2008. Structural equation modelling investigation of age-related variance in executive function and DTI-measured white matter change. Neurobiol. Aging 29, 1547-1555) presented a model that suggests a specific age-related effect of white matter integrity on working memory. We illustrate potential pitfalls of structural equation modelling by criticizing their model for (a) its neglect of latent variables, (b) its complexity, (c) its questionable causal assumptions, (d) the use of empirical model reduction, (e) the mix-up of theoretical perspectives, and (f) the failure to compare alternative models. We show that a more parsimonious model, based solely on the well-established general factor of cognitive ability, fits their data at least as well. Importantly, when modelled this way there is no support for a role of white matter integrity in cognitive aging in this sample, indicating that their conclusion is strongly dependent on how the data are analysed. We suggest that evidence from more conclusive study designs is needed. Copyright 2009 Elsevier Inc. All rights reserved.

  4. Investigation of viscous/inviscid interaction in transonic flow over airfoils with suction

    NASA Technical Reports Server (NTRS)

    Vemuru, C. S.; Tiwari, S. N.

    1988-01-01

    The viscous/inviscid interaction over transonic airfoils with and without suction is studied. The streamline angle at the edge of the boundary layer is used to couple the viscous and inviscid flows. The potential flow equations are solved for the inviscid flow field. In the shock region, the Euler equations are solved using the method of integral relations. For this, the potential flow solution is used as the initial and boundary conditions. An integral method is used to solve the laminar boundary-layer equations. Since both methods are integral methods, a continuous interaction is allowed between the outer inviscid flow region and the inner viscous flow region. To avoid the Goldstein singularity near the separation point the laminar boundary-layer equations are derived in an inverse form to obtain solution for the flows with small separations. The displacement thickness distribution is specified instead of the usual pressure distribution to solve the boundry-layer equations. The Euler equations are solved for the inviscid flow using the finite volume technique and the coupling is achieved by a surface transpiration model. A method is developed to apply a minimum amount of suction that is required to have an attached flow on the airfoil. The turbulent boundary layer equations are derived using the bi-logarithmic wall law for mass transfer. The results are found to be in good agreement with available experimental data and with the results of other computational methods.

  5. A Semi-Implicit, Three-Dimensional Model for Estuarine Circulation

    USGS Publications Warehouse

    Smith, Peter E.

    2006-01-01

    A semi-implicit, finite-difference method for the numerical solution of the three-dimensional equations for circulation in estuaries is presented and tested. The method uses a three-time-level, leapfrog-trapezoidal scheme that is essentially second-order accurate in the spatial and temporal numerical approximations. The three-time-level scheme is shown to be preferred over a two-time-level scheme, especially for problems with strong nonlinearities. The stability of the semi-implicit scheme is free from any time-step limitation related to the terms describing vertical diffusion and the propagation of the surface gravity waves. The scheme does not rely on any form of vertical/horizontal mode-splitting to treat the vertical diffusion implicitly. At each time step, the numerical method uses a double-sweep method to transform a large number of small tridiagonal equation systems and then uses the preconditioned conjugate-gradient method to solve a single, large, five-diagonal equation system for the water surface elevation. The governing equations for the multi-level scheme are prepared in a conservative form by integrating them over the height of each horizontal layer. The layer-integrated volumetric transports replace velocities as the dependent variables so that the depth-integrated continuity equation that is used in the solution for the water surface elevation is linear. Volumetric transports are computed explicitly from the momentum equations. The resulting method is mass conservative, efficient, and numerically accurate.

  6. Hamilton-Jacobi modelling of relative motion for formation flying.

    PubMed

    Kolemen, Egemen; Kasdin, N Jeremy; Gurfil, Pini

    2005-12-01

    A precise analytic model for the relative motion of a group of satellites in slightly elliptic orbits is introduced. With this aim, we describe the relative motion of an object relative to a circular or slightly elliptic reference orbit in the rotating Hill frame via a low-order Hamiltonian, and solve the Hamilton-Jacobi equation. This results in a first-order solution to the relative motion identical to the Clohessy-Wiltshire approach; here, however, rather than using initial conditions as our constants of the motion, we utilize the canonical momenta and coordinates. This allows us to treat perturbations in an identical manner, as in the classical Delaunay formulation of the two-body problem. A precise analytical model for the base orbit is chosen with the included effect of zonal harmonics (J(2), J(3), J(4)). A Hamiltonian describing the real relative motion is formed and by differing this from the nominal Hamiltonian, the perturbing Hamiltonian is obtained. Using the Hamilton equations, the variational equations for the new constants are found. In a manner analogous to the center manifold reduction procedure, the non-periodic part of the motion is canceled through a magnitude analysis leading to simple boundedness conditions that cancel the drift terms due to the higher order perturbations. Using this condition, the variational equations are integrated to give periodic solutions that closely approximate the results from numerical integration (1 mm/per orbit for higher order and eccentricity perturbations and 30 cm/per orbit for zonal perturbations). This procedure provides a compact and insightful analytic description of the resulting relative motion.

  7. VERTICAL INTEGRATION OF THREE-PHASE FLOW EQUATIONS FOR ANALYSIS OF LIGHT HYDROCARBON PLUME MOVEMENT

    EPA Science Inventory

    A mathematical model is derived for areal flow of water and light hydrocarbon in the presence of gas at atmospheric pressure. Closed-form expressions for the vertically integrated constitutive relations are derived based on a three-phase extension of the Brooks-Corey saturation-...

  8. Determination of elementary first integrals of a generalized Raychaudhuri equation by the Darboux integrability method

    NASA Astrophysics Data System (ADS)

    Choudhury, A. Ghose; Guha, Partha; Khanra, Barun

    2009-10-01

    The Darboux integrability method is particularly useful to determine first integrals of nonplanar autonomous systems of ordinary differential equations, whose associated vector fields are polynomials. In particular, we obtain first integrals for a variant of the generalized Raychaudhuri equation, which has appeared in string inspired modern cosmology.

  9. Two-dimensional integrating matrices on rectangular grids. [solving differential equations associated with rotating structures

    NASA Technical Reports Server (NTRS)

    Lakin, W. D.

    1981-01-01

    The use of integrating matrices in solving differential equations associated with rotating beam configurations is examined. In vibration problems, by expressing the equations of motion of the beam in matrix notation, utilizing the integrating matrix as an operator, and applying the boundary conditions, the spatial dependence is removed from the governing partial differential equations and the resulting ordinary differential equations can be cast into standard eigenvalue form. Integrating matrices are derived based on two dimensional rectangular grids with arbitrary grid spacings allowed in one direction. The derivation of higher dimensional integrating matrices is the initial step in the generalization of the integrating matrix methodology to vibration and stability problems involving plates and shells.

  10. Relation of Different Type Love-Shida Numbers Determined with the Use of Time-Varying Incremental Gravitational Potential

    NASA Astrophysics Data System (ADS)

    Varga, Peter; Grafarend, Erik; Engels, Johannes

    2017-03-01

    There are different equations to describe relations between different classes of Love-Shida numbers. In this study with the use of the time-varying gravitational potential an integral relation was obtained which connects tidal Love-Shida numbers (h, l, k), load numbers (h', l', k'), potential free Love-Shida numbers generated by normal (h″, l″, k″) and horizontal (h‴, l‴, k‴) stresses. The equations obtained in frame of present study is the only one which - holds for every type of Love-Shida numbers, - describes a relationship not between different, but the same type of Love-Shida numbers, - does not follow from the sixth-order differential equation system of motion usually applied to calculate the Love-Shida numbers.

  11. GL/sub 3/-invariant solutions of the Yang-Baxter equation and associated quantum systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulish, P.P.; Reshetikin N.Y.

    1986-09-01

    GL/sub 3/-invariant, finite-dimensional solutions of the Yang-Baxter equations acting in the tensor product of two irreducible representations of the group GL/sub 3/ are investigated. A number of relations are obtained for the transfer matrices which demonstrate the connection of representation theory and the Bethe Ansatz in GL/sub 3/invariant models. Some of the most interesting quantum and classical integrable systems connected with GL/sub 3/-invariant solutions of the Yang-Baxter equation are presented.

  12. GL/sub 3/-invariant solutions of the Yang-Baxter equation and associated quantum systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulish, P.P.; Reshetikhin, N.Yu.

    1986-09-10

    GL/sub 3/-invariant, finite-dimensional solutions of the Yang-Baxter equations acting in the tensor product of two irreducible representations of the group GL/sub 3/ are investigated. A number of relations are obtained for the transfer matrices which demonstrate the connection of representation theory and the Bethe Ansatz in GL/sub 3/-invariant models. Some of the most interesting quantum and classical integrable systems connected with GL/sub 3/-invariant solutions of the Yang-Baxter equation are presented.

  13. Accurate D-bar Reconstructions of Conductivity Images Based on a Method of Moment with Sinc Basis.

    PubMed

    Abbasi, Mahdi

    2014-01-01

    Planar D-bar integral equation is one of the inverse scattering solution methods for complex problems including inverse conductivity considered in applications such as Electrical impedance tomography (EIT). Recently two different methodologies are considered for the numerical solution of D-bar integrals equation, namely product integrals and multigrid. The first one involves high computational burden and the other one suffers from low convergence rate (CR). In this paper, a novel high speed moment method based using the sinc basis is introduced to solve the two-dimensional D-bar integral equation. In this method, all functions within D-bar integral equation are first expanded using the sinc basis functions. Then, the orthogonal properties of their products dissolve the integral operator of the D-bar equation and results a discrete convolution equation. That is, the new moment method leads to the equation solution without direct computation of the D-bar integral. The resulted discrete convolution equation maybe adapted to a suitable structure to be solved using fast Fourier transform. This allows us to reduce the order of computational complexity to as low as O (N (2)log N). Simulation results on solving D-bar equations arising in EIT problem show that the proposed method is accurate with an ultra-linear CR.

  14. Non-autonomous Hénon--Heiles systems

    NASA Astrophysics Data System (ADS)

    Hone, Andrew N. W.

    1998-07-01

    Scaling similarity solutions of three integrable PDEs, namely the Sawada-Kotera, fifth order KdV and Kaup-Kupershmidt equations, are considered. It is shown that the resulting ODEs may be written as non-autonomous Hamiltonian equations, which are time-dependent generalizations of the well-known integrable Hénon-Heiles systems. The (time-dependent) Hamiltonians are given by logarithmic derivatives of the tau-functions (inherited from the original PDEs). The ODEs for the similarity solutions also have inherited Bäcklund transformations, which may be used to generate sequences of rational solutions as well as other special solutions related to the first Painlevé transcendent.

  15. Long period perturbations of earth satellite orbits. [Von Zeipel method and zonal harmonics

    NASA Technical Reports Server (NTRS)

    Wang, K. C.

    1979-01-01

    All the equations involved in extending the PS phi solution to include the long periodic and second order secular effects of the zonal harmonics are presented. Topics covered include DSphi elements and relations for their conconical transformation into the PS phi elements; the solution algorithm based on the Von Zeipel method; and the elimination of long periodic terms and analytical integration of primed variables. The equations were entered into the ASOP program, checked out, and verified. Comparisons with numerical integrations show the long period theory to be accurate within several meters after 800 revolutions.

  16. Geometry, Heat Equation and Path Integrals on the Poincaré Upper Half-Plane

    NASA Astrophysics Data System (ADS)

    Kubo, R.

    1988-01-01

    Geometry, heat equation and Feynman's path integrals are studied on the Poincaré upper half-plane. The fundamental solution to the heat equation partial f/partial t = Delta_{H} f is expressed in terms of a path integral defined on the upper half-plane. It is shown that Kac's statement that Feynman's path integral satisfies the Schrödinger equation is also valid for our case.

  17. Exact Mass-Coupling Relation for the Homogeneous Sine-Gordon Model.

    PubMed

    Bajnok, Zoltán; Balog, János; Ito, Katsushi; Satoh, Yuji; Tóth, Gábor Zsolt

    2016-05-06

    We derive the exact mass-coupling relation of the simplest multiscale quantum integrable model, i.e., the homogeneous sine-Gordon model with two mass scales. The relation is obtained by comparing the perturbed conformal field theory description of the model valid at short distances to the large distance bootstrap description based on the model's integrability. In particular, we find a differential equation for the relation by constructing conserved tensor currents, which satisfy a generalization of the Θ sum rule Ward identity. The mass-coupling relation is written in terms of hypergeometric functions.

  18. Foundations of radiation hydrodynamics

    NASA Astrophysics Data System (ADS)

    Mihalas, D.; Mihalas, B. W.

    This book is the result of an attempt, over the past few years, to gather the basic tools required to do research on radiating flows in astrophysics. The microphysics of gases is discussed, taking into account the equation of state of a perfect gas, the first and second law of thermodynamics, the thermal properties of a perfect gas, the distribution function and Boltzmann's equation, the collision integral, the Maxwellian velocity distribution, Boltzmann's H-theorem, the time of relaxation, and aspects of classical statistical mechanics. Other subjects explored are related to the dynamics of ideal fluids, the dynamics of viscous and heat-conducting fluids, relativistic fluid flow, waves, shocks, winds, radiation and radiative transfer, the equations of radiation hydrodynamics, and radiating flows. Attention is given to small-amplitude disturbances, nonlinear flows, the interaction of radiation and matter, the solution of the transfer equation, acoustic waves, acoustic-gravity waves, basic concepts of special relativity, and equations of motion and energy.

  19. Mathematical Methods for Physics and Engineering Third Edition Paperback Set

    NASA Astrophysics Data System (ADS)

    Riley, Ken F.; Hobson, Mike P.; Bence, Stephen J.

    2006-06-01

    Prefaces; 1. Preliminary algebra; 2. Preliminary calculus; 3. Complex numbers and hyperbolic functions; 4. Series and limits; 5. Partial differentiation; 6. Multiple integrals; 7. Vector algebra; 8. Matrices and vector spaces; 9. Normal modes; 10. Vector calculus; 11. Line, surface and volume integrals; 12. Fourier series; 13. Integral transforms; 14. First-order ordinary differential equations; 15. Higher-order ordinary differential equations; 16. Series solutions of ordinary differential equations; 17. Eigenfunction methods for differential equations; 18. Special functions; 19. Quantum operators; 20. Partial differential equations: general and particular; 21. Partial differential equations: separation of variables; 22. Calculus of variations; 23. Integral equations; 24. Complex variables; 25. Application of complex variables; 26. Tensors; 27. Numerical methods; 28. Group theory; 29. Representation theory; 30. Probability; 31. Statistics; Index.

  20. Integrability: mathematical methods for studying solitary waves theory

    NASA Astrophysics Data System (ADS)

    Wazwaz, Abdul-Majid

    2014-03-01

    In recent decades, substantial experimental research efforts have been devoted to linear and nonlinear physical phenomena. In particular, studies of integrable nonlinear equations in solitary waves theory have attracted intensive interest from mathematicians, with the principal goal of fostering the development of new methods, and physicists, who are seeking solutions that represent physical phenomena and to form a bridge between mathematical results and scientific structures. The aim for both groups is to build up our current understanding and facilitate future developments, develop more creative results and create new trends in the rapidly developing field of solitary waves. The notion of the integrability of certain partial differential equations occupies an important role in current and future trends, but a unified rigorous definition of the integrability of differential equations still does not exist. For example, an integrable model in the Painlevé sense may not be integrable in the Lax sense. The Painlevé sense indicates that the solution can be represented as a Laurent series in powers of some function that vanishes on an arbitrary surface with the possibility of truncating the Laurent series at finite powers of this function. The concept of Lax pairs introduces another meaning of the notion of integrability. The Lax pair formulates the integrability of nonlinear equation as the compatibility condition of two linear equations. However, it was shown by many researchers that the necessary integrability conditions are the existence of an infinite series of generalized symmetries or conservation laws for the given equation. The existence of multiple soliton solutions often indicates the integrability of the equation but other tests, such as the Painlevé test or the Lax pair, are necessary to confirm the integrability for any equation. In the context of completely integrable equations, studies are flourishing because these equations are able to describe the real features in a variety of vital areas in science, technology and engineering. In recognition of the importance of solitary waves theory and the underlying concept of integrable equations, a variety of powerful methods have been developed to carry out the required analysis. Examples of such methods which have been advanced are the inverse scattering method, the Hirota bilinear method, the simplified Hirota method, the Bäcklund transformation method, the Darboux transformation, the Pfaffian technique, the Painlevé analysis, the generalized symmetry method, the subsidiary ordinary differential equation method, the coupled amplitude-phase formulation, the sine-cosine method, the sech-tanh method, the mapping and deformation approach and many new other methods. The inverse scattering method, viewed as a nonlinear analogue of the Fourier transform method, is a powerful approach that demonstrates the existence of soliton solutions through intensive computations. At the center of the theory of integrable equations lies the bilinear forms and Hirota's direct method, which can be used to obtain soliton solutions by using exponentials. The Bäcklund transformation method is a useful invariant transformation that transforms one solution into another of a differential equation. The Darboux transformation method is a well known tool in the theory of integrable systems. It is believed that there is a connection between the Bäcklund transformation and the Darboux transformation, but it is as yet not known. Archetypes of integrable equations are the Korteweg-de Vries (KdV) equation, the modified KdV equation, the sine-Gordon equation, the Schrödinger equation, the Vakhnenko equation, the KdV6 equation, the Burgers equation, the fifth-order Lax equation and many others. These equations yield soliton solutions, multiple soliton solutions, breather solutions, quasi-periodic solutions, kink solutions, homo-clinic solutions and other solutions as well. The couplings of linear and nonlinear equations were recently discovered and subsequently received considerable attention. The concept of couplings forms a new direction for developing innovative construction methods. The recently obtained results in solitary waves theory highlight new approaches for additional creative ideas, promising further achievements and increased progress in this field. We are grateful to all of the authors who accepted our invitation to contribute to this comment section.

  1. Stability of the iterative solutions of integral equations as one phase freezing criterion.

    PubMed

    Fantoni, R; Pastore, G

    2003-10-01

    A recently proposed connection between the threshold for the stability of the iterative solution of integral equations for the pair correlation functions of a classical fluid and the structural instability of the corresponding real fluid is carefully analyzed. Direct calculation of the Lyapunov exponent of the standard iterative solution of hypernetted chain and Percus-Yevick integral equations for the one-dimensional (1D) hard rods fluid shows the same behavior observed in 3D systems. Since no phase transition is allowed in such 1D system, our analysis shows that the proposed one phase criterion, at least in this case, fails. We argue that the observed proximity between the numerical and the structural instability in 3D originates from the enhanced structure present in the fluid but, in view of the arbitrary dependence on the iteration scheme, it seems uneasy to relate the numerical stability analysis to a robust one-phase criterion for predicting a thermodynamic phase transition.

  2. Coprimeness-preserving non-integrable extension to the two-dimensional discrete Toda lattice equation

    NASA Astrophysics Data System (ADS)

    Kamiya, Ryo; Kanki, Masataka; Mase, Takafumi; Tokihiro, Tetsuji

    2017-01-01

    We introduce a so-called coprimeness-preserving non-integrable extension to the two-dimensional Toda lattice equation. We believe that this equation is the first example of such discrete equations defined over a three-dimensional lattice. We prove that all the iterates of the equation are irreducible Laurent polynomials of the initial data and that every pair of two iterates is co-prime, which indicate confined singularities of the equation. By reducing the equation to two- or one-dimensional lattices, we obtain coprimeness-preserving non-integrable extensions to the one-dimensional Toda lattice equation and the Somos-4 recurrence.

  3. Integrability and solitons for the higher-order nonlinear Schrödinger equation with space-dependent coefficients in an optical fiber

    NASA Astrophysics Data System (ADS)

    Su, Jing-Jing; Gao, Yi-Tian

    2018-03-01

    Under investigation in this paper is a higher-order nonlinear Schrödinger equation with space-dependent coefficients, related to an optical fiber. Based on the self-similarity transformation and Hirota method, related to the integrability, the N-th-order bright and dark soliton solutions are derived under certain constraints. It is revealed that the velocities and trajectories of the solitons are both affected by the coefficient of the sixth-order dispersion term while the amplitudes of the solitons are determined by the gain function. Amplitudes increase when the gain function is positive and decrease when the gain function is negative. Furthermore, we find that the intensities of dark solitons are presented as a superposition of the solitons and stationary waves.

  4. Calculation of transonic flows using an extended integral equation method

    NASA Technical Reports Server (NTRS)

    Nixon, D.

    1976-01-01

    An extended integral equation method for transonic flows is developed. In the extended integral equation method velocities in the flow field are calculated in addition to values on the aerofoil surface, in contrast with the less accurate 'standard' integral equation method in which only surface velocities are calculated. The results obtained for aerofoils in subcritical flow and in supercritical flow when shock waves are present compare satisfactorily with the results of recent finite difference methods.

  5. Planck constant as spectral parameter in integrable systems and KZB equations

    NASA Astrophysics Data System (ADS)

    Levin, A.; Olshanetsky, M.; Zotov, A.

    2014-10-01

    We construct special rational gl N Knizhnik-Zamolodchikov-Bernard (KZB) equations with Ñ punctures by deformation of the corresponding quantum gl N rational R-matrix. They have two parameters. The limit of the first one brings the model to the ordinary rational KZ equation. Another one is τ. At the level of classical mechanics the deformation parameter τ allows to extend the previously obtained modified Gaudin models to the modified Schlesinger systems. Next, we notice that the identities underlying generic (elliptic) KZB equations follow from some additional relations for the properly normalized R-matrices. The relations are noncommutative analogues of identities for (scalar) elliptic functions. The simplest one is the unitarity condition. The quadratic (in R matrices) relations are generated by noncommutative Fay identities. In particular, one can derive the quantum Yang-Baxter equations from the Fay identities. The cubic relations provide identities for the KZB equations as well as quadratic relations for the classical r-matrices which can be treated as halves of the classical Yang-Baxter equation. At last we discuss the R-matrix valued linear problems which provide gl Ñ CM models and Painlevé equations via the above mentioned identities. The role of the spectral parameter plays the Planck constant of the quantum R-matrix. When the quantum gl N R-matrix is scalar ( N = 1) the linear problem reproduces the Krichever's ansatz for the Lax matrices with spectral parameter for the gl Ñ CM models. The linear problems for the quantum CM models generalize the KZ equations in the same way as the Lax pairs with spectral parameter generalize those without it.

  6. Fredholm-Volterra Integral Equation with a Generalized Singular Kernel and its Numerical Solutions

    NASA Astrophysics Data System (ADS)

    El-Kalla, I. L.; Al-Bugami, A. M.

    2010-11-01

    In this paper, the existence and uniqueness of solution of the Fredholm-Volterra integral equation (F-VIE), with a generalized singular kernel, are discussed and proved in the spaceL2(Ω)×C(0,T). The Fredholm integral term (FIT) is considered in position while the Volterra integral term (VIT) is considered in time. Using a numerical technique we have a system of Fredholm integral equations (SFIEs). This system of integral equations can be reduced to a linear algebraic system (LAS) of equations by using two different methods. These methods are: Toeplitz matrix method and Product Nyström method. A numerical examples are considered when the generalized kernel takes the following forms: Carleman function, logarithmic form, Cauchy kernel, and Hilbert kernel.

  7. ODE/IM correspondence for modified B2(1) affine Toda field equation

    NASA Astrophysics Data System (ADS)

    Ito, Katsushi; Shu, Hongfei

    2017-03-01

    We study the massive ODE/IM correspondence for modified B2(1) affine Toda field equation. Based on the ψ-system for the solutions of the associated linear problem, we obtain the Bethe ansatz equations. We also discuss the T-Q relations, the T-system and the Y-system, which are shown to be related to those of the A3 /Z2 integrable system. We consider the case that the solution of the linear problem has a monodromy around the origin, which imposes nontrivial boundary conditions for the T-/Y-system. The high-temperature limit of the T- and Y-system and their monodromy dependence are studied numerically.

  8. A massive Feynman integral and some reduction relations for Appell functions

    NASA Astrophysics Data System (ADS)

    Shpot, M. A.

    2007-12-01

    New explicit expressions are derived for the one-loop two-point Feynman integral with arbitrary external momentum and masses m12 and m22 in D dimensions. The results are given in terms of Appell functions, manifestly symmetric with respect to the masses mi2. Equating our expressions with previously known results in terms of Gauss hypergeometric functions yields reduction relations for the involved Appell functions that are apparently new mathematical results.

  9. Student Solution Manual for Mathematical Methods for Physics and Engineering Third Edition

    NASA Astrophysics Data System (ADS)

    Riley, K. F.; Hobson, M. P.

    2006-03-01

    Preface; 1. Preliminary algebra; 2. Preliminary calculus; 3. Complex numbers and hyperbolic functions; 4. Series and limits; 5. Partial differentiation; 6. Multiple integrals; 7. Vector algebra; 8. Matrices and vector spaces; 9. Normal modes; 10. Vector calculus; 11. Line, surface and volume integrals; 12. Fourier series; 13. Integral transforms; 14. First-order ordinary differential equations; 15. Higher-order ordinary differential equations; 16. Series solutions of ordinary differential equations; 17. Eigenfunction methods for differential equations; 18. Special functions; 19. Quantum operators; 20. Partial differential equations: general and particular; 21. Partial differential equations: separation of variables; 22. Calculus of variations; 23. Integral equations; 24. Complex variables; 25. Application of complex variables; 26. Tensors; 27. Numerical methods; 28. Group theory; 29. Representation theory; 30. Probability; 31. Statistics.

  10. PREFACE: Symmetries and Integrability of Difference Equations

    NASA Astrophysics Data System (ADS)

    Doliwa, Adam; Korhonen, Risto; Lafortune, Stéphane

    2007-10-01

    The notion of integrability was first introduced in the 19th century in the context of classical mechanics with the definition of Liouville integrability for Hamiltonian flows. Since then, several notions of integrability have been introduced for partial and ordinary differential equations. Closely related to integrability theory is the symmetry analysis of nonlinear evolution equations. Symmetry analysis takes advantage of the Lie group structure of a given equation to study its properties. Together, integrability theory and symmetry analysis provide the main method by which nonlinear evolution equations can be solved explicitly. Difference equations (DE), like differential equations, are important in numerous fields of science and have a wide variety of applications in such areas as mathematical physics, computer visualization, numerical analysis, mathematical biology, economics, combinatorics, and quantum field theory. It is thus crucial to develop tools to study and solve DEs. While the theory of symmetry and integrability for differential equations is now largely well-established, this is not yet the case for discrete equations. Although over recent years there has been significant progress in the development of a complete analytic theory of difference equations, further tools are still needed to fully understand, for instance, the symmetries, asymptotics and the singularity structure of difference equations. The series of SIDE meetings on Symmetries and Integrability of Difference Equations started in 1994. Its goal is to provide a platform for an international and interdisciplinary communication for researchers working in areas associated with integrable discrete systems, such as classical and quantum physics, computer science and numerical analysis, mathematical biology and economics, discrete geometry and combinatorics, theory of special functions, etc. The previous SIDE meetings took place in Estérel near Montréal, Canada (1994), at the University of Kent in Canterbury, UK (1996), in Sabaudia near Rome, Italy (1998), at the University of Tokyo, Japan (2000), in Giens, France (2002), and in Helsinki, Finland (2004). The SIDE VII meeting was held at the University of Melbourne from 10-14 July 2006. The scientific committee consisted of Nalini Joshi (The University of Sydney), Frank W Nijhoff (University of Leeds), Reinout Quispel (La Trobe University) and Colin Rogers (University of New South Wales). The local organization was in the hands of John A G Roberts and Wolfgang K Schief. Proceedings of all the previous SIDE meetings have been published; the 1994 and 1988 meetings (edited respectively by D Levi, L Vinet and P Winternitz, and by D Levi and O Ragnisco) as volumes of the CRM Proceedings and Lecture Notes (AMS Publications), the 1996 meeting (edited by P Clarkson and F W Nijhoff) as Volume 255 in the LMS Lecture Note Series. Starting from the 1996 meeting the formula of publication has been changed to include rather selected refereed contributions submitted in response to a call for papers issued after the meetings and not restricted to their participants. Thus publications reflecting the scope of the 1996 meeting (edited by J Hietarinta, F W Nijhoff and J Satsuma) appeared in Journal of Physics A: Mathematical and General 34 48 (special issue), and of the 1998 and 2000 meetings (edited respectively by F W Nijhoff, Yu B Suris and C-M Viallet, and by J F van Diejen and R Halburd) in Journal of Nonlinear Mathematical Physics 10 (Suppl. 2) and 12 (Suppl. 2). The aim of this special issue is to benefit from the occasion offered by the SIDE VII meeting, producing an issue containing papers which represent the state-of-the-art knowledge for studying integrability and symmetry properties of difference equations. This special issue features high quality research papers and invited reviews which deal with themes that were covered by the SIDE VII conference. These are in alphabetical order: Algebraic-geometric approaches to integrability. The first section contains a paper by T Hamamoto and K Kajiwara on hypergeometric solutions to the q-Painlevé equation of type A4(1). Discrete geometry. In this category there are three papers. J Cielinski offers a geometric definition and a spectral approach on pseudospherical surfaces on time scales, while A Doliwa considers generalized isothermic lattices. The paper by U Pinkall, B Springborn and S Weiss mann is concerned with a new doubly discrete analogue of smoke ring flow and the real time simulation of fluid flow. Integrable systems in statistical physics. Under this heading there is a paper by R J Baxter on corner transfer matrices in statistical mechanics, and a paper by S Boukraa, S Hassani, J-M Maillard, B M McCoy, J-A Weil and N Zenine where the authors consider Fuchs-Painlevé elliptic representation of the Painlevé VI equation. KP lattices and differential-difference hierarchies. In this section we have seven articles. C R Gilson, J J C Nimmo and Y Ohta consider quasideterminant solutions of a non-Abelian Hirota-Miwa equation, while B Grammaticos, A Ramani, V Papageorgiou, J Satsuma and R Willox discuss the construction of lump-like solutions of the Hirota-Miwa equation. J Hietarinta and C Viallet analyze the factorization process for lattice maps searching for integrable cases, the paper by X-B Hu and G-F Yu is concerned with integrable discretizations of the (2+1)-dimensional sinh-Gordon equation, and K Kajiwara, M Mazzocco and Y Ohta consider the Hankel determinant formula of the tau-functions of the Toda equation. Finally, V G Papageorgiou and A G Tongas study Yang-Baxter maps and multi-field integrable lattice equations, and H-Y Wang, X-B Hu and H-W Tam consider the two-dimensional Leznov lattice equation with self-consistent sources. Quantum integrable systems. This category contains a paper on q-extended eigenvectors of the integral and finite Fourier transforms by N M Atakishiyev, J P Rueda and K B Wolf, and an article by S M Sergeev on quantization of three-wave equations. Random matrix theory. This section contains a paper by A V Kitaev on the boundary conditions for scaled random matrix ensembles in the bulk of the spectrum. Symmetries and conservation laws. In this section we have five articles. H Gegen, X-B Hu, D Levi and S Tsujimoto consider a difference-analogue of Davey-Stewartson system giving its discrete Gram-type determinant solution and Lax pair. The paper by D Levi, M Petrera, and C Scimiterna is about the lattice Schwarzian KDV equation and its symmetries, while O G Rasin and P E Hydon study the conservation laws for integrable difference equations. S Saito and N Saitoh discuss recurrence equations associated with invariant varieties of periodic points, and P H van der Kamp presents closed-form expressions for integrals of MKDV and sine-Gordon maps. Ultra-discrete systems. This final category contains an article by C Ormerod on connection matrices for ultradiscrete linear problems. We would like to express our sincerest thanks to all contributors, and to everyone involved in compiling this special issue.

  11. Algorithms for the computation of solutions of the Ornstein-Zernike equation.

    PubMed

    Peplow, A T; Beardmore, R E; Bresme, F

    2006-10-01

    We introduce a robust and efficient methodology to solve the Ornstein-Zernike integral equation using the pseudoarc length (PAL) continuation method that reformulates the integral equation in an equivalent but nonstandard form. This enables the computation of solutions in regions where the compressibility experiences large changes or where the existence of multiple solutions and so-called branch points prevents Newton's method from converging. We illustrate the use of the algorithm with a difficult problem that arises in the numerical solution of integral equations, namely the evaluation of the so-called no-solution line of the Ornstein-Zernike hypernetted chain (HNC) integral equation for the Lennard-Jones potential. We are able to use the PAL algorithm to solve the integral equation along this line and to connect physical and nonphysical solution branches (both isotherms and isochores) where appropriate. We also show that PAL continuation can compute solutions within the no-solution region that cannot be computed when Newton and Picard methods are applied directly to the integral equation. While many solutions that we find are new, some correspond to states with negative compressibility and consequently are not physical.

  12. Integral equations in the study of polar and ionic interaction site fluids

    PubMed Central

    Howard, Jesse J.

    2011-01-01

    In this review article we consider some of the current integral equation approaches and application to model polar liquid mixtures. We consider the use of multidimensional integral equations and in particular progress on the theory and applications of three dimensional integral equations. The IEs we consider may be derived from equilibrium statistical mechanical expressions incorporating a classical Hamiltonian description of the system. We give example including salt solutions, inhomogeneous solutions and systems including proteins and nucleic acids. PMID:22383857

  13. On the Assessment of Acoustic Scattering and Shielding by Time Domain Boundary Integral Equation Solutions

    NASA Technical Reports Server (NTRS)

    Hu, Fang Q.; Pizzo, Michelle E.; Nark, Douglas M.

    2016-01-01

    Based on the time domain boundary integral equation formulation of the linear convective wave equation, a computational tool dubbed Time Domain Fast Acoustic Scattering Toolkit (TD-FAST) has recently been under development. The time domain approach has a distinct advantage that the solutions at all frequencies are obtained in a single computation. In this paper, the formulation of the integral equation, as well as its stabilization by the Burton-Miller type reformulation, is extended to cases of a constant mean flow in an arbitrary direction. In addition, a "Source Surface" is also introduced in the formulation that can be employed to encapsulate regions of noise sources and to facilitate coupling with CFD simulations. This is particularly useful for applications where the noise sources are not easily described by analytical source terms. Numerical examples are presented to assess the accuracy of the formulation, including a computation of noise shielding by a thin barrier motivated by recent Historical Baseline F31A31 open rotor noise shielding experiments. Furthermore, spatial resolution requirements of the time domain boundary element method are also assessed using point per wavelength metrics. It is found that, using only constant basis functions and high-order quadrature for surface integration, relative errors of less than 2% may be obtained when the surface spatial resolution is 5 points-per-wavelength (PPW) or 25 points-per-wavelength squared (PPW2).

  14. Conservation laws and conserved quantities for (1+1)D linearized Boussinesq equations

    NASA Astrophysics Data System (ADS)

    Carvalho, Cindy; Harley, Charis

    2017-05-01

    Conservation laws and physical conserved quantities for the (1+1)D linearized Boussinesq equations at a constant water depth are presented. These equations describe incompressible, inviscid, irrotational fluid flow in the form of a non steady solitary wave. A systematic multiplier approach is used to obtain the conservation laws of the system of third order partial differential equations (PDEs) in dimensional form. Physical conserved quantities are derived by integrating the conservation laws in the direction of wave propagation and imposing decaying boundary conditions in the horizontal direction. One of these is a newly discovered conserved quantity which relates to an energy flux density.

  15. Operational method of solution of linear non-integer ordinary and partial differential equations.

    PubMed

    Zhukovsky, K V

    2016-01-01

    We propose operational method with recourse to generalized forms of orthogonal polynomials for solution of a variety of differential equations of mathematical physics. Operational definitions of generalized families of orthogonal polynomials are used in this context. Integral transforms and the operational exponent together with some special functions are also employed in the solutions. The examples of solution of physical problems, related to such problems as the heat propagation in various models, evolutional processes, Black-Scholes-like equations etc. are demonstrated by the operational technique.

  16. A computer model for one-dimensional mass and energy transport in and around chemically reacting particles, including complex gas-phase chemistry, multicomponent molecular diffusion, surface evaporation, and heterogeneous reaction

    NASA Technical Reports Server (NTRS)

    Cho, S. Y.; Yetter, R. A.; Dryer, F. L.

    1992-01-01

    Various chemically reacting flow problems highlighting chemical and physical fundamentals rather than flow geometry are presently investigated by means of a comprehensive mathematical model that incorporates multicomponent molecular diffusion, complex chemistry, and heterogeneous processes, in the interest of obtaining sensitivity-related information. The sensitivity equations were decoupled from those of the model, and then integrated one time-step behind the integration of the model equations, and analytical Jacobian matrices were applied to improve the accuracy of sensitivity coefficients that are calculated together with model solutions.

  17. Killing spinors and related symmetries in six dimensions

    NASA Astrophysics Data System (ADS)

    Batista, Carlos

    2016-03-01

    Benefiting from the index spinorial formalism, the Killing spinor equation is integrated in six-dimensional spacetimes. The integrability conditions for the existence of a Killing spinor are worked out and the Killing spinors are classified into two algebraic types; in the first type the scalar curvature of the spacetime must be negative, while in the second type the spacetime must be an Einstein manifold. In addition, the equations that define Killing-Yano (KY) and closed conformal Killing-Yano (CCKY) tensors are expressed in the index notation and, as consequence, all nonvanishing KY and CCKY tensors that can be generated from a Killing spinor are made explicit.

  18. Heat Stress Equation Development and Usage for Dryden Flight Research Center (DFRC)

    NASA Technical Reports Server (NTRS)

    Houtas, Franzeska; Teets, Edward H., Jr.

    2012-01-01

    Heat Stress Indices are equations that integrate some or all variables (e.g. temperature, relative humidity, wind speed), directly or indirectly, to produce a number for thermal stress on humans for a particular environment. There are a large number of equations that have been developed which range from simple equations that may ignore basic factors (e.g. wind effects on thermal loading, fixed contribution from solar heating) to complex equations that attempt to incorporate all variables. Each equation is evaluated for a particular use, as well as considering the ease of use and reliability of the results. The meteorology group at the Dryden Flight Research Center has utilized and enhanced the American College of Sports Medicine equation to represent the specific environment of the Mojave Desert. The Dryden WBGT Heat Stress equation has been vetted and implemented as an automated notification to the entire facility for the safety of all personnel and visitors.

  19. Towards a theory of cortical columns: From spiking neurons to interacting neural populations of finite size.

    PubMed

    Schwalger, Tilo; Deger, Moritz; Gerstner, Wulfram

    2017-04-01

    Neural population equations such as neural mass or field models are widely used to study brain activity on a large scale. However, the relation of these models to the properties of single neurons is unclear. Here we derive an equation for several interacting populations at the mesoscopic scale starting from a microscopic model of randomly connected generalized integrate-and-fire neuron models. Each population consists of 50-2000 neurons of the same type but different populations account for different neuron types. The stochastic population equations that we find reveal how spike-history effects in single-neuron dynamics such as refractoriness and adaptation interact with finite-size fluctuations on the population level. Efficient integration of the stochastic mesoscopic equations reproduces the statistical behavior of the population activities obtained from microscopic simulations of a full spiking neural network model. The theory describes nonlinear emergent dynamics such as finite-size-induced stochastic transitions in multistable networks and synchronization in balanced networks of excitatory and inhibitory neurons. The mesoscopic equations are employed to rapidly integrate a model of a cortical microcircuit consisting of eight neuron types, which allows us to predict spontaneous population activities as well as evoked responses to thalamic input. Our theory establishes a general framework for modeling finite-size neural population dynamics based on single cell and synapse parameters and offers an efficient approach to analyzing cortical circuits and computations.

  20. A new approach for electrical properties estimation using a global integral equation and improvements using high permittivity materials.

    PubMed

    Schmidt, Rita; Webb, Andrew

    2016-01-01

    Electrical Properties Tomography (EPT) using MRI is a technique that has been developed to provide a new contrast mechanism for in vivo imaging. Currently the most common method relies on the solution of the homogeneous Helmholtz equation, which has limitations in accurate estimation at tissue interfaces. A new method proposed in this work combines a Maxwell's integral equation representation of the problem, and the use of high permittivity materials (HPM) to control the RF field, in order to reconstruct the electrical properties image. The magnetic field is represented by an integral equation considering each point as a contrast source. This equation can be solved in an inverse method. In this study we use a reference simulation or scout scan of a uniform phantom to provide an initial estimate for the inverse solution, which allows the estimation of the complex permittivity within a single iteration. Incorporating two setups with and without the HPM improves the reconstructed result, especially with respect to the very low electric field in the center of the sample. Electromagnetic simulations of the brain were performed at 3T to generate the B1(+) field maps and reconstruct the electric properties images. The standard deviations of the relative permittivity and conductivity were within 14% and 18%, respectively for a volume consisting of white matter, gray matter and cerebellum. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. A spectral boundary integral equation method for the 2-D Helmholtz equation

    NASA Technical Reports Server (NTRS)

    Hu, Fang Q.

    1994-01-01

    In this paper, we present a new numerical formulation of solving the boundary integral equations reformulated from the Helmholtz equation. The boundaries of the problems are assumed to be smooth closed contours. The solution on the boundary is treated as a periodic function, which is in turn approximated by a truncated Fourier series. A Fourier collocation method is followed in which the boundary integral equation is transformed into a system of algebraic equations. It is shown that in order to achieve spectral accuracy for the numerical formulation, the nonsmoothness of the integral kernels, associated with the Helmholtz equation, must be carefully removed. The emphasis of the paper is on investigating the essential elements of removing the nonsmoothness of the integral kernels in the spectral implementation. The present method is robust for a general boundary contour. Aspects of efficient implementation of the method using FFT are also discussed. A numerical example of wave scattering is given in which the exponential accuracy of the present numerical method is demonstrated.

  2. The application of the least squares finite element method to Abel's integral equation. [with application to glow discharge problem

    NASA Technical Reports Server (NTRS)

    Balasubramanian, R.; Norrie, D. H.; De Vries, G.

    1979-01-01

    Abel's integral equation is the governing equation for certain problems in physics and engineering, such as radiation from distributed sources. The finite element method for the solution of this non-linear equation is presented for problems with cylindrical symmetry and the extension to more general integral equations is indicated. The technique was applied to an axisymmetric glow discharge problem and the results show excellent agreement with previously obtained solutions

  3. On one solution of Volterra integral equations of second kind

    NASA Astrophysics Data System (ADS)

    Myrhorod, V.; Hvozdeva, I.

    2016-10-01

    A solution of Volterra integral equations of the second kind with separable and difference kernels based on solutions of corresponding equations linking the kernel and resolvent is suggested. On the basis of a discrete functions class, the equations linking the kernel and resolvent are obtained and the methods of their analytical solutions are proposed. A mathematical model of the gas-turbine engine state modification processes in the form of Volterra integral equation of the second kind with separable kernel is offered.

  4. A parameter study of the two-fluid solar wind

    NASA Technical Reports Server (NTRS)

    Sandbaek, Ornulf; Leer, Egil; Holzer, Thomas E.

    1992-01-01

    A two-fluid model of the solar wind was introduced by Sturrock and Hartle (1966) and Hartle and Sturrock (1968). In these studies the proton energy equation was integrated neglecting the heat conductive term. Later several authors solved the equations for the two-fluid solar wind model keeping the proton heat conductive term. Methods where the equations are integrated simultaneously outward and inward from the critical point were used. The equations were also integrated inward from a large heliocentric distance. These methods have been applied to cases with low coronal base electron densities and high base temperatures. In this paper we present a method of integrating the two-fluid solar wind equations using an iteration procedure where the equations are integrated separately and the proton flux is kept constant during the integrations. The technique is applicable for a wide range of coronal base densities and temperatures. The method is used to carry out a parameter study of the two-fluid solar wind.

  5. From integrability to conformal symmetry: Bosonic superconformal Toda theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bo-Yu Hou; Liu Chao

    In this paper the authors study the conformal integrable models obtained from conformal reductions of WZNW theory associated with second order constraints. These models are called bosonic superconformal Toda models due to their conformal spectra and their resemblance to the usual Toda theories. From the reduction procedure they get the equations of motion and the linearized Lax equations in a generic Z gradation of the underlying Lie algebra. Then, in the special case of principal gradation, they derive the classical r matrix, fundamental Poisson relation, exchange algebra of chiral operators and find out the classical vertex operators. The result showsmore » that their model is very similar to the ordinary Toda theories in that one can obtain various conformal properties of the model from its integrability.« less

  6. Thin-plate spline quadrature of geodetic integrals

    NASA Technical Reports Server (NTRS)

    Vangysen, Herman

    1989-01-01

    Thin-plate spline functions (known for their flexibility and fidelity in representing experimental data) are especially well-suited for the numerical integration of geodetic integrals in the area where the integration is most sensitive to the data, i.e., in the immediate vicinity of the evaluation point. Spline quadrature rules are derived for the contribution of a circular innermost zone to Stoke's formula, to the formulae of Vening Meinesz, and to the recursively evaluated operator L(n) in the analytical continuation solution of Molodensky's problem. These rules are exact for interpolating thin-plate splines. In cases where the integration data are distributed irregularly, a system of linear equations needs to be solved for the quadrature coefficients. Formulae are given for the terms appearing in these equations. In case the data are regularly distributed, the coefficients may be determined once-and-for-all. Examples are given of some fixed-point rules. With such rules successive evaluation, within a circular disk, of the terms in Molodensky's series becomes relatively easy. The spline quadrature technique presented complements other techniques such as ring integration for intermediate integration zones.

  7. Geometry of PDE's. IV

    NASA Astrophysics Data System (ADS)

    Prástaro, Agostino

    2008-02-01

    Following our previous results on this subject [R.P. Agarwal, A. Prástaro, Geometry of PDE's. III(I): Webs on PDE's and integral bordism groups. The general theory, Adv. Math. Sci. Appl. 17 (2007) 239-266; R.P. Agarwal, A. Prástaro, Geometry of PDE's. III(II): Webs on PDE's and integral bordism groups. Applications to Riemannian geometry PDE's, Adv. Math. Sci. Appl. 17 (2007) 267-285; A. Prástaro, Geometry of PDE's and Mechanics, World Scientific, Singapore, 1996; A. Prástaro, Quantum and integral (co)bordism in partial differential equations, Acta Appl. Math. (5) (3) (1998) 243-302; A. Prástaro, (Co)bordism groups in PDE's, Acta Appl. Math. 59 (2) (1999) 111-201; A. Prástaro, Quantized Partial Differential Equations, World Scientific Publishing Co, Singapore, 2004, 500 pp.; A. Prástaro, Geometry of PDE's. I: Integral bordism groups in PDE's, J. Math. Anal. Appl. 319 (2006) 547-566; A. Prástaro, Geometry of PDE's. II: Variational PDE's and integral bordism groups, J. Math. Anal. Appl. 321 (2006) 930-948; A. Prástaro, Th.M. Rassias, Ulam stability in geometry of PDE's, Nonlinear Funct. Anal. Appl. 8 (2) (2003) 259-278; I. Stakgold, Boundary Value Problems of Mathematical Physics, I, The MacMillan Company, New York, 1967; I. Stakgold, Boundary Value Problems of Mathematical Physics, II, Collier-MacMillan, Canada, Ltd, Toronto, Ontario, 1968], integral bordism groups of the Navier-Stokes equation are calculated for smooth, singular and weak solutions, respectively. Then a characterization of global solutions is made on this ground. Enough conditions to assure existence of global smooth solutions are given and related to nullity of integral characteristic numbers of the boundaries. Stability of global solutions are related to some characteristic numbers of the space-like Cauchy dataE Global solutions of variational problems constrained by (NS) are classified by means of suitable integral bordism groups too.

  8. Riccati Parametric Deformations of the Cornu Spiral

    NASA Astrophysics Data System (ADS)

    Rosu, Haret C.; Mancas, Stefan C.; Flores-Garduño, Elizabeth

    2018-06-01

    In this article, a parametric deformation of the Cornu spiral is introduced. The parameter is an integration constant which appears in the general solution of the Riccati equation and is related to the Fresnel integrals. The Argand plots of the deformed spirals are presented and a supersymmetric (Darboux) structure of the deformation is revealed through the factorization approach.

  9. The staircase method: integrals for periodic reductions of integrable lattice equations

    NASA Astrophysics Data System (ADS)

    van der Kamp, Peter H.; Quispel, G. R. W.

    2010-11-01

    We show, in full generality, that the staircase method (Papageorgiou et al 1990 Phys. Lett. A 147 106-14, Quispel et al 1991 Physica A 173 243-66) provides integrals for mappings, and correspondences, obtained as traveling wave reductions of (systems of) integrable partial difference equations. We apply the staircase method to a variety of equations, including the Korteweg-De Vries equation, the five-point Bruschi-Calogero-Droghei equation, the quotient-difference (QD)-algorithm and the Boussinesq system. We show that, in all these cases, if the staircase method provides r integrals for an n-dimensional mapping, with 2r, then one can introduce q <= 2r variables, which reduce the dimension of the mapping from n to q. These dimension-reducing variables are obtained as joint invariants of k-symmetries of the mappings. Our results support the idea that often the staircase method provides sufficiently many integrals for the periodic reductions of integrable lattice equations to be completely integrable. We also study reductions on other quad-graphs than the regular {\\ Z}^2 lattice, and we prove linear growth of the multi-valuedness of iterates of high-dimensional correspondences obtained as reductions of the QD-algorithm.

  10. An integrable semi-discrete Degasperis-Procesi equation

    NASA Astrophysics Data System (ADS)

    Feng, Bao-Feng; Maruno, Ken-ichi; Ohta, Yasuhiro

    2017-06-01

    Based on our previous work on the Degasperis-Procesi equation (Feng et al J. Phys. A: Math. Theor. 46 045205) and the integrable semi-discrete analogue of its short wave limit (Feng et al J. Phys. A: Math. Theor. 48 135203), we derive an integrable semi-discrete Degasperis-Procesi equation by Hirota’s bilinear method. Furthermore, N-soliton solution to the semi-discrete Degasperis-Procesi equation is constructed. It is shown that both the proposed semi-discrete Degasperis-Procesi equation, and its N-soliton solution converge to ones of the original Degasperis-Procesi equation in the continuum limit.

  11. The Kadomtsev{endash}Petviashvili equation as a source of integrable model equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maccari, A.

    1996-12-01

    A new integrable and nonlinear partial differential equation (PDE) in 2+1 dimensions is obtained, by an asymptotically exact reduction method based on Fourier expansion and spatiotemporal rescaling, from the Kadomtsev{endash}Petviashvili equation. The integrability property is explicitly demonstrated, by exhibiting the corresponding Lax pair, that is obtained by applying the reduction technique to the Lax pair of the Kadomtsev{endash}Petviashvili equation. This model equation is likely to be of applicative relevance, because it may be considered a consistent approximation of a large class of nonlinear evolution PDEs. {copyright} {ital 1996 American Institute of Physics.}

  12. Inverse scattering for an exterior Dirichlet program

    NASA Technical Reports Server (NTRS)

    Hariharan, S. I.

    1981-01-01

    Scattering due to a metallic cylinder which is in the field of a wire carrying a periodic current is considered. The location and shape of the cylinder is obtained with a far field measurement in between the wire and the cylinder. The same analysis is applicable in acoustics in the situation that the cylinder is a soft wall body and the wire is a line source. The associated direct problem in this situation is an exterior Dirichlet problem for the Helmholtz equation in two dimensions. An improved low frequency estimate for the solution of this problem using integral equation methods is presented. The far field measurements are related to the solutions of boundary integral equations in the low frequency situation. These solutions are expressed in terms of mapping function which maps the exterior of the unknown curve onto the exterior of a unit disk. The coefficients of the Laurent expansion of the conformal transformations are related to the far field coefficients. The first far field coefficient leads to the calculation of the distance between the source and the cylinder.

  13. A small sample test of the factor structure of postural movement and bilateral motor integration using structural equation modeling.

    PubMed

    Lin, Chin-Kai; Wu, Huey-Min; Lin, Chung-Hui; Wu, Yuh-Yih; Wu, Pei-Fang; Kuo, Bor-Chen; Yeung, Kwok-Tak

    2012-10-01

    The goal of this study was to examine the relationship between the validity of postural movement and bilateral motor integration in terms of sensory integration theory. Participants in this study were 61 Chinese children ages 48 to 70 months. Structural equation modeling was applied to assess the relation between measures tapping postural movement and bilateral motor integration: for postural movement, the measures involve the Monkey Task, Side-Sit Co-contraction, Prone on Elbows, Wheelbarrow Walk, Airplane, and Scooter Board Co-contraction from the DeGangi-Berk Test of Sensory Integration, and Standing Balance with Eyes Closed/Opened in Southern California Sensory Integration Tests. For bilateral motor integration, the measures chosen were the Rolling Pin Activity, Jump and Turn, Diadokokinesis, Drumming, and Upper Extremity Control from the DeGangi-Berk Test of Sensory Integration, and Cross the Midline in Southern California Sensory Integration Tests (SCSIT). Postural movement was highly correlated with the bilateral motor integration. The factor structure fit the theoretical conceptualization, classifying postural movement and bilateral motor integration together in the same category. Therapists could combine two separate objectives (postural movement and bilateral motor integration) of intervention in an activity to improve the adaptive skills based on the vestibular-proprioceptive integration.

  14. On the energy integral for first post-Newtonian approximation

    NASA Astrophysics Data System (ADS)

    O'Leary, Joseph; Hill, James M.; Bennett, James C.

    2018-07-01

    The post-Newtonian approximation for general relativity is widely adopted by the geodesy and astronomy communities. It has been successfully exploited for the inclusion of relativistic effects in practically all geodetic applications and techniques such as satellite/lunar laser ranging and very long baseline interferometry. Presently, the levels of accuracy required in geodetic techniques require that reference frames, planetary and satellite orbits and signal propagation be treated within the post-Newtonian regime. For arbitrary scalar W and vector gravitational potentials W^j (j=1,2,3), we present a novel derivation of the energy associated with a test particle in the post-Newtonian regime. The integral so obtained appears not to have been given previously in the literature and is deduced through algebraic manipulation on seeking a Jacobi-like integral associated with the standard post-Newtonian equations of motion. The new integral is independently verified through a variational formulation using the post-Newtonian metric components and is subsequently verified by numerical integration of the post-Newtonian equations of motion.

  15. Simplifying Differential Equations for Multiscale Feynman Integrals beyond Multiple Polylogarithms.

    PubMed

    Adams, Luise; Chaubey, Ekta; Weinzierl, Stefan

    2017-04-07

    In this Letter we exploit factorization properties of Picard-Fuchs operators to decouple differential equations for multiscale Feynman integrals. The algorithm reduces the differential equations to blocks of the size of the order of the irreducible factors of the Picard-Fuchs operator. As a side product, our method can be used to easily convert the differential equations for Feynman integrals which evaluate to multiple polylogarithms to an ϵ form.

  16. Iterative discrete ordinates solution of the equation for surface-reflected radiance

    NASA Astrophysics Data System (ADS)

    Radkevich, Alexander

    2017-11-01

    This paper presents a new method of numerical solution of the integral equation for the radiance reflected from an anisotropic surface. The equation relates the radiance at the surface level with BRDF and solutions of the standard radiative transfer problems for a slab with no reflection on its surfaces. It is also shown that the kernel of the equation satisfies the condition of the existence of a unique solution and the convergence of the successive approximations to that solution. The developed method features two basic steps: discretization on a 2D quadrature, and solving the resulting system of algebraic equations with successive over-relaxation method based on the Gauss-Seidel iterative process. Presented numerical examples show good coincidence between the surface-reflected radiance obtained with DISORT and the proposed method. Analysis of contributions of the direct and diffuse (but not yet reflected) parts of the downward radiance to the total solution is performed. Together, they represent a very good initial guess for the iterative process. This fact ensures fast convergence. The numerical evidence is given that the fastest convergence occurs with the relaxation parameter of 1 (no relaxation). An integral equation for BRDF is derived as inversion of the original equation. The potential of this new equation for BRDF retrievals is analyzed. The approach is found not viable as the BRDF equation appears to be an ill-posed problem, and it requires knowledge the surface-reflected radiance on the entire domain of both Sun and viewing zenith angles.

  17. Solution of the nonlinear mixed Volterra-Fredholm integral equations by hybrid of block-pulse functions and Bernoulli polynomials.

    PubMed

    Mashayekhi, S; Razzaghi, M; Tripak, O

    2014-01-01

    A new numerical method for solving the nonlinear mixed Volterra-Fredholm integral equations is presented. This method is based upon hybrid functions approximation. The properties of hybrid functions consisting of block-pulse functions and Bernoulli polynomials are presented. The operational matrices of integration and product are given. These matrices are then utilized to reduce the nonlinear mixed Volterra-Fredholm integral equations to the solution of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the technique.

  18. Solution of the Nonlinear Mixed Volterra-Fredholm Integral Equations by Hybrid of Block-Pulse Functions and Bernoulli Polynomials

    PubMed Central

    Mashayekhi, S.; Razzaghi, M.; Tripak, O.

    2014-01-01

    A new numerical method for solving the nonlinear mixed Volterra-Fredholm integral equations is presented. This method is based upon hybrid functions approximation. The properties of hybrid functions consisting of block-pulse functions and Bernoulli polynomials are presented. The operational matrices of integration and product are given. These matrices are then utilized to reduce the nonlinear mixed Volterra-Fredholm integral equations to the solution of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the technique. PMID:24523638

  19. Two volume integral equations for the inhomogeneous and anisotropic forward problem in electroencephalography

    NASA Astrophysics Data System (ADS)

    Rahmouni, Lyes; Mitharwal, Rajendra; Andriulli, Francesco P.

    2017-11-01

    This work presents two new volume integral equations for the Electroencephalography (EEG) forward problem which, differently from the standard integral approaches in the domain, can handle heterogeneities and anisotropies of the head/brain conductivity profiles. The new formulations translate to the quasi-static regime some volume integral equation strategies that have been successfully applied to high frequency electromagnetic scattering problems. This has been obtained by extending, to the volume case, the two classical surface integral formulations used in EEG imaging and by introducing an extra surface equation, in addition to the volume ones, to properly handle boundary conditions. Numerical results corroborate theoretical treatments, showing the competitiveness of our new schemes over existing techniques and qualifying them as a valid alternative to differential equation based methods.

  20. Algebraic Construction of Exact Difference Equations from Symmetry of Equations

    NASA Astrophysics Data System (ADS)

    Itoh, Toshiaki

    2009-09-01

    Difference equations or exact numerical integrations, which have general solutions, are treated algebraically. Eliminating the symmetries of the equation, we can construct difference equations (DCE) or numerical integrations equivalent to some ODEs or PDEs that means both have the same solution functions. When arbitrary functions are given, whether we can construct numerical integrations that have solution functions equal to given function or not are treated in this work. Nowadays, Lie's symmetries solver for ODE and PDE has been implemented in many symbolic software. Using this solver we can construct algebraic DCEs or numerical integrations which are correspond to some ODEs or PDEs. In this work, we treated exact correspondence between ODE or PDE and DCE or numerical integration with Gröbner base and Janet base from the view of Lie's symmetries.

  1. Liouvillian propagators, Riccati equation and differential Galois theory

    NASA Astrophysics Data System (ADS)

    Acosta-Humánez, Primitivo; Suazo, Erwin

    2013-11-01

    In this paper a Galoisian approach to building propagators through Riccati equations is presented. The main result corresponds to the relationship between the Galois integrability of the linear Schrödinger equation and the virtual solvability of the differential Galois group of its associated characteristic equation. As the main application of this approach we solve Ince’s differential equation through the Hamiltonian algebrization procedure and the Kovacic algorithm to find the propagator for a generalized harmonic oscillator. This propagator has applications which describe the process of degenerate parametric amplification in quantum optics and light propagation in a nonlinear anisotropic waveguide. Toy models of propagators inspired by integrable Riccati equations and integrable characteristic equations are also presented.

  2. Master equations and the theory of stochastic path integrals

    NASA Astrophysics Data System (ADS)

    Weber, Markus F.; Frey, Erwin

    2017-04-01

    This review provides a pedagogic and self-contained introduction to master equations and to their representation by path integrals. Since the 1930s, master equations have served as a fundamental tool to understand the role of fluctuations in complex biological, chemical, and physical systems. Despite their simple appearance, analyses of master equations most often rely on low-noise approximations such as the Kramers-Moyal or the system size expansion, or require ad-hoc closure schemes for the derivation of low-order moment equations. We focus on numerical and analytical methods going beyond the low-noise limit and provide a unified framework for the study of master equations. After deriving the forward and backward master equations from the Chapman-Kolmogorov equation, we show how the two master equations can be cast into either of four linear partial differential equations (PDEs). Three of these PDEs are discussed in detail. The first PDE governs the time evolution of a generalized probability generating function whose basis depends on the stochastic process under consideration. Spectral methods, WKB approximations, and a variational approach have been proposed for the analysis of the PDE. The second PDE is novel and is obeyed by a distribution that is marginalized over an initial state. It proves useful for the computation of mean extinction times. The third PDE describes the time evolution of a ‘generating functional’, which generalizes the so-called Poisson representation. Subsequently, the solutions of the PDEs are expressed in terms of two path integrals: a ‘forward’ and a ‘backward’ path integral. Combined with inverse transformations, one obtains two distinct path integral representations of the conditional probability distribution solving the master equations. We exemplify both path integrals in analysing elementary chemical reactions. Moreover, we show how a well-known path integral representation of averaged observables can be recovered from them. Upon expanding the forward and the backward path integrals around stationary paths, we then discuss and extend a recent method for the computation of rare event probabilities. Besides, we also derive path integral representations for processes with continuous state spaces whose forward and backward master equations admit Kramers-Moyal expansions. A truncation of the backward expansion at the level of a diffusion approximation recovers a classic path integral representation of the (backward) Fokker-Planck equation. One can rewrite this path integral in terms of an Onsager-Machlup function and, for purely diffusive Brownian motion, it simplifies to the path integral of Wiener. To make this review accessible to a broad community, we have used the language of probability theory rather than quantum (field) theory and do not assume any knowledge of the latter. The probabilistic structures underpinning various technical concepts, such as coherent states, the Doi-shift, and normal-ordered observables, are thereby made explicit.

  3. Master equations and the theory of stochastic path integrals.

    PubMed

    Weber, Markus F; Frey, Erwin

    2017-04-01

    This review provides a pedagogic and self-contained introduction to master equations and to their representation by path integrals. Since the 1930s, master equations have served as a fundamental tool to understand the role of fluctuations in complex biological, chemical, and physical systems. Despite their simple appearance, analyses of master equations most often rely on low-noise approximations such as the Kramers-Moyal or the system size expansion, or require ad-hoc closure schemes for the derivation of low-order moment equations. We focus on numerical and analytical methods going beyond the low-noise limit and provide a unified framework for the study of master equations. After deriving the forward and backward master equations from the Chapman-Kolmogorov equation, we show how the two master equations can be cast into either of four linear partial differential equations (PDEs). Three of these PDEs are discussed in detail. The first PDE governs the time evolution of a generalized probability generating function whose basis depends on the stochastic process under consideration. Spectral methods, WKB approximations, and a variational approach have been proposed for the analysis of the PDE. The second PDE is novel and is obeyed by a distribution that is marginalized over an initial state. It proves useful for the computation of mean extinction times. The third PDE describes the time evolution of a 'generating functional', which generalizes the so-called Poisson representation. Subsequently, the solutions of the PDEs are expressed in terms of two path integrals: a 'forward' and a 'backward' path integral. Combined with inverse transformations, one obtains two distinct path integral representations of the conditional probability distribution solving the master equations. We exemplify both path integrals in analysing elementary chemical reactions. Moreover, we show how a well-known path integral representation of averaged observables can be recovered from them. Upon expanding the forward and the backward path integrals around stationary paths, we then discuss and extend a recent method for the computation of rare event probabilities. Besides, we also derive path integral representations for processes with continuous state spaces whose forward and backward master equations admit Kramers-Moyal expansions. A truncation of the backward expansion at the level of a diffusion approximation recovers a classic path integral representation of the (backward) Fokker-Planck equation. One can rewrite this path integral in terms of an Onsager-Machlup function and, for purely diffusive Brownian motion, it simplifies to the path integral of Wiener. To make this review accessible to a broad community, we have used the language of probability theory rather than quantum (field) theory and do not assume any knowledge of the latter. The probabilistic structures underpinning various technical concepts, such as coherent states, the Doi-shift, and normal-ordered observables, are thereby made explicit.

  4. Stochastic Models for Laser Propagation in Atmospheric Turbulence.

    NASA Astrophysics Data System (ADS)

    Leland, Robert Patton

    In this dissertation, stochastic models for laser propagation in atmospheric turbulence are considered. A review of the existing literature on laser propagation in the atmosphere and white noise theory is presented, with a view toward relating the white noise integral and Ito integral approaches. The laser beam intensity is considered as the solution to a random Schroedinger equation, or forward scattering equation. This model is formulated in a Hilbert space context as an abstract bilinear system with a multiplicative white noise input, as in the literature. The model is also modeled in the Banach space of Fresnel class functions to allow the plane wave case and the application of path integrals. Approximate solutions to the Schroedinger equation of the Trotter-Kato product form are shown to converge for each white noise sample path. The product forms are shown to be physical random variables, allowing an Ito integral representation. The corresponding Ito integrals are shown to converge in mean square, providing a white noise basis for the Stratonovich correction term associated with this equation. Product form solutions for Ornstein -Uhlenbeck process inputs were shown to converge in mean square as the input bandwidth was expanded. A digital simulation of laser propagation in strong turbulence was used to study properties of the beam. Empirical distributions for the irradiance function were estimated from simulated data, and the log-normal and Rice-Nakagami distributions predicted by the classical perturbation methods were seen to be inadequate. A gamma distribution fit the simulated irradiance distribution well in the vicinity of the boresight. Statistics of the beam were seen to converge rapidly as the bandwidth of an Ornstein-Uhlenbeck process was expanded to its white noise limit. Individual trajectories of the beam were presented to illustrate the distortion and bending of the beam due to turbulence. Feynman path integrals were used to calculate an approximate expression for the mean of the beam intensity without using the Markov, or white noise, assumption, and to relate local variations in the turbulence field to the behavior of the beam by means of two approximations.

  5. Unified method to integrate and blend several, potentially related, sources of information for genetic evaluation.

    PubMed

    Vandenplas, Jérémie; Colinet, Frederic G; Gengler, Nicolas

    2014-09-30

    A condition to predict unbiased estimated breeding values by best linear unbiased prediction is to use simultaneously all available data. However, this condition is not often fully met. For example, in dairy cattle, internal (i.e. local) populations lead to evaluations based only on internal records while widely used foreign sires have been selected using internally unavailable external records. In such cases, internal genetic evaluations may be less accurate and biased. Because external records are unavailable, methods were developed to combine external information that summarizes these records, i.e. external estimated breeding values and associated reliabilities, with internal records to improve accuracy of internal genetic evaluations. Two issues of these methods concern double-counting of contributions due to relationships and due to records. These issues could be worse if external information came from several evaluations, at least partially based on the same records, and combined into a single internal evaluation. Based on a Bayesian approach, the aim of this research was to develop a unified method to integrate and blend simultaneously several sources of information into an internal genetic evaluation by avoiding double-counting of contributions due to relationships and due to records. This research resulted in equations that integrate and blend simultaneously several sources of information and avoid double-counting of contributions due to relationships and due to records. The performance of the developed equations was evaluated using simulated and real datasets. The results showed that the developed equations integrated and blended several sources of information well into a genetic evaluation. The developed equations also avoided double-counting of contributions due to relationships and due to records. Furthermore, because all available external sources of information were correctly propagated, relatives of external animals benefited from the integrated information and, therefore, more reliable estimated breeding values were obtained. The proposed unified method integrated and blended several sources of information well into a genetic evaluation by avoiding double-counting of contributions due to relationships and due to records. The unified method can also be extended to other types of situations such as single-step genomic or multi-trait evaluations, combining information across different traits.

  6. Evaluating four-loop conformal Feynman integrals by D-dimensional differential equations

    NASA Astrophysics Data System (ADS)

    Eden, Burkhard; Smirnov, Vladimir A.

    2016-10-01

    We evaluate a four-loop conformal integral, i.e. an integral over four four-dimensional coordinates, by turning to its dimensionally regularized version and applying differential equations for the set of the corresponding 213 master integrals. To solve these linear differential equations we follow the strategy suggested by Henn and switch to a uniformly transcendental basis of master integrals. We find a solution to these equations up to weight eight in terms of multiple polylogarithms. Further, we present an analytical result for the given four-loop conformal integral considered in four-dimensional space-time in terms of single-valued harmonic polylogarithms. As a by-product, we obtain analytical results for all the other 212 master integrals within dimensional regularization, i.e. considered in D dimensions.

  7. Application of the Sumudu Transform to Discrete Dynamic Systems

    ERIC Educational Resources Information Center

    Asiru, Muniru Aderemi

    2003-01-01

    The Sumudu transform is an integral transform introduced to solve differential equations and control engineering problems. The transform possesses many interesting properties that make visualization easier and application has been demonstrated in the solution of partial differential equations, integral equations, integro-differential equations and…

  8. Computational Algorithms or Identification of Distributed Parameter Systems

    DTIC Science & Technology

    1993-04-24

    delay-differential equations, Volterra integral equations, and partial differential equations with memory terms . In particular we investigated a...tested for estimating parameters in a Volterra integral equation arising from a viscoelastic model of a flexible structure with Boltzmann damping. In...particular, one of the parameters identified was the order of the derivative in Volterra integro-differential equations containing fractional

  9. Application of integral equation theory to analyze stability of electric field in multimode microwave heating cavity

    NASA Astrophysics Data System (ADS)

    Tang, Zhengming; Hong, Tao; Chen, Fangyuan; Zhu, Huacheng; Huang, Kama

    2017-10-01

    Microwave heating uniformity is mainly dependent on and affected by electric field. However, little study has paid attention to its stability characteristics in multimode cavity. In this paper, this problem is studied by the theory of Freedholm integral equation. Firstly, Helmholtz equation and the electric dyadic Green's function are used to derive the electric field integral equation. Then, the stability of electric field is demonstrated as the characteristics of solutions to Freedholm integral equation. Finally, the stability characteristics are obtained and verified by finite element calculation. This study not only can provide a comprehensive interpretation of electric field in multimode cavity but also help us make better use of microwave energy.

  10. A semi-discrete Kadomtsev-Petviashvili equation and its coupled integrable system

    NASA Astrophysics Data System (ADS)

    Li, Chun-Xia; Lafortune, Stéphane; Shen, Shou-Feng

    2016-05-01

    We establish connections between two cascades of integrable systems generated from the continuum limits of the Hirota-Miwa equation and its remarkable nonlinear counterpart under the Miwa transformation, respectively. Among these equations, we are mainly concerned with the semi-discrete bilinear Kadomtsev-Petviashvili (KP) equation which is seldomly studied in literature. We present both of its Casorati and Grammian determinant solutions. Through the Pfaffianization procedure proposed by Hirota and Ohta, we are able to derive the coupled integrable system for the semi-discrete KP equation.

  11. Whitham modulation theory for (2  +  1)-dimensional equations of Kadomtsev–Petviashvili type

    NASA Astrophysics Data System (ADS)

    Ablowitz, Mark J.; Biondini, Gino; Rumanov, Igor

    2018-05-01

    Whitham modulation theory for certain two-dimensional evolution equations of Kadomtsev–Petviashvili (KP) type is presented. Three specific examples are considered in detail: the KP equation, the two-dimensional Benjamin–Ono (2DBO) equation and a modified KP (m2KP) equation. A unified derivation is also provided. In the case of the m2KP equation, the corresponding Whitham modulation system exhibits features different from the other two. The approach presented here does not require integrability of the original evolution equation. Indeed, while the KP equation is known to be a completely integrable equation, the 2DBO equation and the m2KP equation are not known to be integrable. In each of the cases considered, the Whitham modulation system obtained consists of five first-order quasilinear partial differential equations. The Riemann problem (i.e. the analogue of the Gurevich–Pitaevskii problem) for the one-dimensional reduction of the m2KP equation is studied. For the m2KP equation, the system of modulation equations is used to analyze the linear stability of traveling wave solutions.

  12. One Solution of the Forward Problem of DC Resistivity Well Logging by the Method of Volume Integral Equations with Allowance for Induced Polarization

    NASA Astrophysics Data System (ADS)

    Kevorkyants, S. S.

    2018-03-01

    For theoretically studying the intensity of the influence exerted by the polarization of the rocks on the results of direct current (DC) well logging, a solution is suggested for the direct inner problem of the DC electric logging in the polarizable model of plane-layered medium containing a heterogeneity by the example of the three-layer model of the hosting medium. Initially, the solution is presented in the form of a traditional vector volume-integral equation of the second kind (IE2) for the electric current density vector. The vector IE2 is solved by the modified iteration-dissipation method. By the transformations, the initial IE2 is reduced to the equation with the contraction integral operator for an axisymmetric model of electrical well-logging of the three-layer polarizable medium intersected by an infinitely long circular cylinder. The latter simulates the borehole with a zone of penetration where the sought vector consists of the radial J r and J z axial (relative to the cylinder's axis) components. The decomposition of the obtained vector IE2 into scalar components and the discretization in the coordinates r and z lead to a heterogeneous system of linear algebraic equations with a block matrix of the coefficients representing 2x2 matrices whose elements are the triple integrals of the mixed derivatives of the second-order Green's function with respect to the parameters r, z, r', and z'. With the use of the analytical transformations and standard integrals, the integrals over the areas of the partition cells and azimuthal coordinate are reduced to single integrals (with respect to the variable t = cos ϕ on the interval [-1, 1]) calculated by the Gauss method for numerical integration. For estimating the effective coefficient of polarization of the complex medium, it is suggested to use the Siegel-Komarov formula.

  13. Applied Mathematical Methods in Theoretical Physics

    NASA Astrophysics Data System (ADS)

    Masujima, Michio

    2005-04-01

    All there is to know about functional analysis, integral equations and calculus of variations in a single volume. This advanced textbook is divided into two parts: The first on integral equations and the second on the calculus of variations. It begins with a short introduction to functional analysis, including a short review of complex analysis, before continuing a systematic discussion of different types of equations, such as Volterra integral equations, singular integral equations of Cauchy type, integral equations of the Fredholm type, with a special emphasis on Wiener-Hopf integral equations and Wiener-Hopf sum equations. After a few remarks on the historical development, the second part starts with an introduction to the calculus of variations and the relationship between integral equations and applications of the calculus of variations. It further covers applications of the calculus of variations developed in the second half of the 20th century in the fields of quantum mechanics, quantum statistical mechanics and quantum field theory. Throughout the book, the author presents over 150 problems and exercises -- many from such branches of physics as quantum mechanics, quantum statistical mechanics, and quantum field theory -- together with outlines of the solutions in each case. Detailed solutions are given, supplementing the materials discussed in the main text, allowing problems to be solved making direct use of the method illustrated. The original references are given for difficult problems. The result is complete coverage of the mathematical tools and techniques used by physicists and applied mathematicians Intended for senior undergraduates and first-year graduates in science and engineering, this is equally useful as a reference and self-study guide.

  14. Miura-type transformations for lattice equations and Lie group actions associated with Darboux-Lax representations

    NASA Astrophysics Data System (ADS)

    Berkeley, George; Igonin, Sergei

    2016-07-01

    Miura-type transformations (MTs) are an essential tool in the theory of integrable nonlinear partial differential and difference equations. We present a geometric method to construct MTs for differential-difference (lattice) equations from Darboux-Lax representations (DLRs) of such equations. The method is applicable to parameter-dependent DLRs satisfying certain conditions. We construct MTs and modified lattice equations from invariants of some Lie group actions on manifolds associated with such DLRs. Using this construction, from a given suitable DLR one can obtain many MTs of different orders. The main idea behind this method is closely related to the results of Drinfeld and Sokolov on MTs for the partial differential KdV equation. Considered examples include the Volterra, Narita-Itoh-Bogoyavlensky, Toda, and Adler-Postnikov lattices. Some of the constructed MTs and modified lattice equations seem to be new.

  15. Green's function solution to heat transfer of a transparent gas through a tube

    NASA Technical Reports Server (NTRS)

    Frankel, J. I.

    1989-01-01

    A heat transfer analysis of a transparent gas flowing through a circular tube of finite thickness is presented. This study includes the effects of wall conduction, internal radiative exchange, and convective heat transfer. The natural mathematical formulation produces a nonlinear, integrodifferential equation governing the wall temperature and an ordinary differential equation describing the gas temperature. This investigation proposes to convert the original system of equations into an equivalent system of integral equations. The Green's function method permits the conversion of an integrodifferential equation into a pure integral equation. The proposed integral formulation and subsequent computational procedure are shown to be stable and accurate.

  16. First integrals of the axisymmetric shape equation of lipid membranes

    NASA Astrophysics Data System (ADS)

    Zhang, Yi-Heng; McDargh, Zachary; Tu, Zhan-Chun

    2018-03-01

    The shape equation of lipid membranes is a fourth-order partial differential equation. Under the axisymmetric condition, this equation was transformed into a second-order ordinary differential equation (ODE) by Zheng and Liu (Phys. Rev. E 48 2856 (1993)). Here we try to further reduce this second-order ODE to a first-order ODE. First, we invert the usual process of variational calculus, that is, we construct a Lagrangian for which the ODE is the corresponding Euler–Lagrange equation. Then, we seek symmetries of this Lagrangian according to the Noether theorem. Under a certain restriction on Lie groups of the shape equation, we find that the first integral only exists when the shape equation is identical to the Willmore equation, in which case the symmetry leading to the first integral is scale invariance. We also obtain the mechanical interpretation of the first integral by using the membrane stress tensor. Project supported by the National Natural Science Foundation of China (Grant No. 11274046) and the National Science Foundation of the United States (Grant No. 1515007).

  17. Selected Aspects of Markovian and Non-Markovian Quantum Master Equations

    NASA Astrophysics Data System (ADS)

    Lendi, K.

    A few particular marked properties of quantum dynamical equations accounting for general relaxation and dissipation are selected and summarized in brief. Most results derive from the universal concept of complete positivity. The considerations mainly regard genuinely irreversible processes as characterized by a unique asymptotically stationary final state for arbitrary initial conditions. From ordinary Markovian master equations and associated quantum dynamical semigroup time-evolution, derivations of higher order Onsager coefficients and related entropy production are discussed. For general processes including non-faithful states a regularized version of quantum relative entropy is introduced. Further considerations extend to time-dependent infinitesimal generators of time-evolution and to a possible description of propagation of initial states entangled between open system and environment. In the coherence-vector representation of the full non-Markovian equations including entangled initial states, first results are outlined towards identifying mathematical properties of a restricted class of trial integral-kernel functions suited to phenomenological applications.

  18. A finite-element analysis for steady and oscillatory supersonic flows around complex configurations

    NASA Technical Reports Server (NTRS)

    Morino, L.; Chen, L. T.

    1974-01-01

    The problem of small perturbation potential supersonic flow around complex configurations is considered. This problem requires the solution of an integral equation relating the values of the potential on the surface of the body to the values of the normal derivative, which is known from the small perturbation boundary conditions. The surface of the body is divided into small (hyperboloidal quadrilateral) surface elements, sigma sub i, which are described in terms of the Cartesian components of the four corner points. The values of the potential (and its normal derivative) within each element is assumed to be constant and equal to its value at the centroid of the element, and this yields a set of linear algebraic equations. The coefficients of the equation are given by source and doublet integrals over the surface elements, sigma sub i. The results obtained using the above formulation are compared with existing analytical and experimental results.

  19. Steady and Oscillatory, Subsonic and Supersonic, Aerodynamic Pressure and Generalized Forces for Complex Aircraft Configurations and Applications to Flutter. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Chen, L. T.

    1975-01-01

    A general method for analyzing aerodynamic flows around complex configurations is presented. By applying the Green function method, a linear integral equation relating the unknown, small perturbation potential on the surface of the body, to the known downwash is obtained. The surfaces of the aircraft, wake and diaphragm (if necessary) are divided into small quadrilateral elements which are approximated with hyperboloidal surfaces. The potential and its normal derivative are assumed to be constant within each element. This yields a set of linear algebraic equations and the coefficients are evaluated analytically. By using Gaussian elimination method, equations are solved for the potentials at the centroids of elements. The pressure coefficient is evaluated by the finite different method; the lift and moment coefficients are evaluated by numerical integration. Numerical results are presented, and applications to flutter are also included.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffin, Brian M.; Larson, Vincent E.

    Microphysical processes, such as the formation, growth, and evaporation of precipitation, interact with variability and covariances (e.g., fluxes) in moisture and heat content. For instance, evaporation of rain may produce cold pools, which in turn may trigger fresh convection and precipitation. These effects are usually omitted or else crudely parameterized at subgrid scales in weather and climate models.A more formal approach is pursued here, based on predictive, horizontally averaged equations for the variances, covariances, and fluxes of moisture and heat content. These higher-order moment equations contain microphysical source terms. The microphysics terms can be integrated analytically, given a suitably simplemore » warm-rain microphysics scheme and an approximate assumption about the multivariate distribution of cloud-related and precipitation-related variables. Performing the integrations provides exact expressions within an idealized context.A large-eddy simulation (LES) of a shallow precipitating cumulus case is performed here, and it indicates that the microphysical effects on (co)variances and fluxes can be large. In some budgets and altitude ranges, they are dominant terms. The analytic expressions for the integrals are implemented in a single-column, higher-order closure model. Interactive single-column simulations agree qualitatively with the LES. The analytic integrations form a parameterization of microphysical effects in their own right, and they also serve as benchmark solutions that can be compared to non-analytic integration methods.« less

  1. Multiple and exact soliton solutions of the perturbed Korteweg-de Vries equation of long surface waves in a convective fluid via Painlevé analysis, factorization, and simplest equation methods.

    PubMed

    Selima, Ehab S; Yao, Xiaohua; Wazwaz, Abdul-Majid

    2017-06-01

    In this research, the surface waves of a horizontal fluid layer open to air under gravity field and vertical temperature gradient effects are studied. The governing equations of this model are reformulated and converted to a nonlinear evolution equation, the perturbed Korteweg-de Vries (pKdV) equation. We investigate the latter equation, which includes dispersion, diffusion, and instability effects, in order to examine the evolution of long surface waves in a convective fluid. Dispersion relation of the pKdV equation and its properties are discussed. The Painlevé analysis is applied not only to check the integrability of the pKdV equation but also to establish the Bäcklund transformation form. In addition, traveling wave solutions and a general form of the multiple-soliton solutions of the pKdV equation are obtained via Bäcklund transformation, the simplest equation method using Bernoulli, Riccati, and Burgers' equations as simplest equations, and the factorization method.

  2. Modulational Instability of Cylindrical and Spherical NLS Equations. Statistical Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grecu, A. T.; Grecu, D.; Visinescu, Anca

    2010-01-21

    The modulational (Benjamin-Feir) instability for cylindrical and spherical NLS equations (c/s NLS equations) is studied using a statistical approach (SAMI). A kinetic equation for a two-point correlation function is written and analyzed using the Wigner-Moyal transform. The linear stability of the Fourier transform of the two-point correlation function is studied and an implicit integral form for the dispersion relation is found. This is solved for different expressions of the initial spectrum (delta-spectrum, Lorentzian, Gaussian), and in the case of a Lorentzian spectrum the total growth of the instability is calculated. The similarities and differences with the usual one-dimensional NLS equationmore » are emphasized.« less

  3. Three New (2+1)-dimensional Integrable Systems and Some Related Darboux Transformations

    NASA Astrophysics Data System (ADS)

    Guo, Xiu-Rong

    2016-06-01

    We introduce two operator commutators by using different-degree loop algebras of the Lie algebra A1, then under the framework of zero curvature equations we generate two (2+1)-dimensional integrable hierarchies, including the (2+1)-dimensional shallow water wave (SWW) hierarchy and the (2+1)-dimensional Kaup-Newell (KN) hierarchy. Through reduction of the (2+1)-dimensional hierarchies, we get a (2+1)-dimensional SWW equation and a (2+1)-dimensional KN equation. Furthermore, we obtain two Darboux transformations of the (2+1)-dimensional SWW equation. Similarly, the Darboux transformations of the (2+1)-dimensional KN equation could be deduced. Finally, with the help of the spatial spectral matrix of SWW hierarchy, we generate a (2+1) heat equation and a (2+1) nonlinear generalized SWW system containing inverse operators with respect to the variables x and y by using a reduction spectral problem from the self-dual Yang-Mills equations. Supported by the National Natural Science Foundation of China under Grant No. 11371361, the Shandong Provincial Natural Science Foundation of China under Grant Nos. ZR2012AQ011, ZR2013AL016, ZR2015EM042, National Social Science Foundation of China under Grant No. 13BJY026, the Development of Science and Technology Project under Grant No. 2015NS1048 and A Project of Shandong Province Higher Educational Science and Technology Program under Grant No. J14LI58

  4. A finite element formulation for supersonic flows around complex configurations

    NASA Technical Reports Server (NTRS)

    Morino, L.

    1974-01-01

    The problem of small perturbation potential supersonic flow around complex configurations is considered. This problem requires the solution of an integral equation relating the values of the potential on the surface of the body to the values of the normal derivative, which is known from the small perturbation boundary conditions. The surface of the body is divided into small (hyperboloidal quadrilateral) surface elements which are described in terms of the Cartesian components of the four corner points. The values of the potential (and its normal derivative) within each element are assumed to be constant and equal to its value at the centroid of the element. This yields a set of linear algebraic equations whose coefficients are given by source and doublet integrals over the surface elements. Closed form evaluations of the integrals are presented.

  5. Derivation of the Schrodinger Equation from the Hamilton-Jacobi Equation in Feynman's Path Integral Formulation of Quantum Mechanics

    ERIC Educational Resources Information Center

    Field, J. H.

    2011-01-01

    It is shown how the time-dependent Schrodinger equation may be simply derived from the dynamical postulate of Feynman's path integral formulation of quantum mechanics and the Hamilton-Jacobi equation of classical mechanics. Schrodinger's own published derivations of quantum wave equations, the first of which was also based on the Hamilton-Jacobi…

  6. Exponential Methods for the Time Integration of Schroedinger Equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cano, B.; Gonzalez-Pachon, A.

    2010-09-30

    We consider exponential methods of second order in time in order to integrate the cubic nonlinear Schroedinger equation. We are interested in taking profit of the special structure of this equation. Therefore, we look at symmetry, symplecticity and approximation of invariants of the proposed methods. That will allow to integrate till long times with reasonable accuracy. Computational efficiency is also our aim. Therefore, we make numerical computations in order to compare the methods considered and so as to conclude that explicit Lawson schemes projected on the norm of the solution are an efficient tool to integrate this equation.

  7. An Algebraic Construction of the First Integrals of the Stationary KdV Hierarchy

    NASA Astrophysics Data System (ADS)

    Matsushima, Masatomo; Ohmiya, Mayumi

    2009-09-01

    The stationary KdV hierarchy is constructed using a kind of recursion operator called Λ-operator. The notion of the maximal solution of the n-th stationary KdV equation is introduced. Using this maximal solution, a specific differential polynomial with the auxiliary spectral parameter called the spectral M-function is constructed as the quadratic form of the fundamental system of the eigenvalue problem for the 2-nd order linear ordinary differential equation which is related to the linearizing operator of the hierarchy. By calculating a perfect square condition of the quadratic form by an elementary algebraic method, the complete set of first integrals of this hierarchy is constructed.

  8. Diffusion Of Mass In Evaporating Multicomponent Drops

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Harstad, Kenneth G.

    1992-01-01

    Report summarizes study of diffusion of mass and related phenomena occurring in evaporation of dense and dilute clusters of drops of multicomponent liquids intended to represent fuels as oil, kerosene, and gasoline. Cluster represented by simplified mathematical model, including global conservation equations for entire cluster and conditions on boundary between cluster and ambient gas. Differential equations of model integrated numerically. One of series of reports by same authors discussing evaporation and combustion of sprayed liquid fuels.

  9. Energy invariant for shallow-water waves and the Korteweg-de Vries equation: Doubts about the invariance of energy

    NASA Astrophysics Data System (ADS)

    Karczewska, Anna; Rozmej, Piotr; Infeld, Eryk

    2015-11-01

    It is well known that the Korteweg-de Vries (KdV) equation has an infinite set of conserved quantities. The first three are often considered to represent mass, momentum, and energy. Here we try to answer the question of how this comes about and also how these KdV quantities relate to those of the Euler shallow-water equations. Here Luke's Lagrangian is helpful. We also consider higher-order extensions of KdV. Though in general not integrable, in some sense they are almost so within the accuracy of the expansion.

  10. An iwatsubo-based solution for labyrinth seals - comparison with experimental results

    NASA Technical Reports Server (NTRS)

    Childs, D. W.; Scharrer, J. K.

    1984-01-01

    The basic equations are derived for compressible flow in a labyrinth seal. The flow is assumed to be completely turbulent in the circumferential direction where the friction factor is determined by the Blasius relation. Linearized zeroth and first-order perturbation equations are developed for small motion about a centered position by an expansion in the eccentricity ratio. The zeroth-order pressure distribution is found by satisfying the leakage equation while the circumferential velocity distribution is determined by satisfying the momentum equation. The first-order equations are solved by a separation of variables solution. Integration of the resultant pressure distribution along and around the seal defines the reaction force developed by the seal and the corresponding dynamic coefficients. The results of this analysis are compared to published test results.

  11. Towards a theory of cortical columns: From spiking neurons to interacting neural populations of finite size

    PubMed Central

    Gerstner, Wulfram

    2017-01-01

    Neural population equations such as neural mass or field models are widely used to study brain activity on a large scale. However, the relation of these models to the properties of single neurons is unclear. Here we derive an equation for several interacting populations at the mesoscopic scale starting from a microscopic model of randomly connected generalized integrate-and-fire neuron models. Each population consists of 50–2000 neurons of the same type but different populations account for different neuron types. The stochastic population equations that we find reveal how spike-history effects in single-neuron dynamics such as refractoriness and adaptation interact with finite-size fluctuations on the population level. Efficient integration of the stochastic mesoscopic equations reproduces the statistical behavior of the population activities obtained from microscopic simulations of a full spiking neural network model. The theory describes nonlinear emergent dynamics such as finite-size-induced stochastic transitions in multistable networks and synchronization in balanced networks of excitatory and inhibitory neurons. The mesoscopic equations are employed to rapidly integrate a model of a cortical microcircuit consisting of eight neuron types, which allows us to predict spontaneous population activities as well as evoked responses to thalamic input. Our theory establishes a general framework for modeling finite-size neural population dynamics based on single cell and synapse parameters and offers an efficient approach to analyzing cortical circuits and computations. PMID:28422957

  12. Discrete integration of continuous Kalman filtering equations for time invariant second-order structural systems

    NASA Technical Reports Server (NTRS)

    Park, K. C.; Belvin, W. Keith

    1990-01-01

    A general form for the first-order representation of the continuous second-order linear structural-dynamics equations is introduced to derive a corresponding form of first-order continuous Kalman filtering equations. Time integration of the resulting equations is carried out via a set of linear multistep integration formulas. It is shown that a judicious combined selection of computational paths and the undetermined matrices introduced in the general form of the first-order linear structural systems leads to a class of second-order discrete Kalman filtering equations involving only symmetric sparse N x N solution matrices.

  13. Integrability and structural stability of solutions to the Ginzburg-Landau equation

    NASA Technical Reports Server (NTRS)

    Keefe, Laurence R.

    1986-01-01

    The integrability of the Ginzburg-Landau equation is studied to investigate if the existence of chaotic solutions found numerically could have been predicted a priori. The equation is shown not to possess the Painleveproperty, except for a special case of the coefficients that corresponds to the integrable, nonlinear Schroedinger (NLS) equation. Regarding the Ginzburg-Landau equation as a dissipative perturbation of the NLS, numerical experiments show all but one of a family of two-tori solutions, possessed by the NLS under particular conditions, to disappear under real perturbations to the NLS coefficients of O(10 to the -6th).

  14. Symbolic computation of recurrence equations for the Chebyshev series solution of linear ODE's. [ordinary differential equations

    NASA Technical Reports Server (NTRS)

    Geddes, K. O.

    1977-01-01

    If a linear ordinary differential equation with polynomial coefficients is converted into integrated form then the formal substitution of a Chebyshev series leads to recurrence equations defining the Chebyshev coefficients of the solution function. An explicit formula is presented for the polynomial coefficients of the integrated form in terms of the polynomial coefficients of the differential form. The symmetries arising from multiplication and integration of Chebyshev polynomials are exploited in deriving a general recurrence equation from which can be derived all of the linear equations defining the Chebyshev coefficients. Procedures for deriving the general recurrence equation are specified in a precise algorithmic notation suitable for translation into any of the languages for symbolic computation. The method is algebraic and it can therefore be applied to differential equations containing indeterminates.

  15. An extension of integrable equations related to AKNS and WKI spectral problems and their reductions

    NASA Astrophysics Data System (ADS)

    Geng, Xian-Guo; Zhai, Yun-Yun

    2018-04-01

    Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 11501520 and 11331008) and the Outstanding Young Talent Research Fund of Zhengzhou University (Grant No. 1521315001).

  16. Atomic Physics Effects on Convergent, Child-Langmuir Ion Flow between Nearly Transparent Electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santarius, John F.; Emmert, Gilbert A.

    Research during this project at the University of Wisconsin Fusion Technology Institute (UW FTI) on ion and neutral flow through an arbitrary, monotonic potential difference created by nearly transparent electrodes accomplished the following: (1) developed and implemented an integral equation approach for atomic physics effects in helium plasmas; (2) extended the analysis to coupled integral equations that treat atomic and molecular deuterium ions and neutrals; (3) implemented the key deuterium and helium atomic and molecular cross sections; (4) added negative ion production and related cross sections; and (5) benchmarked the code against experimental results. The analysis and codes treat themore » species D0, D20, D+, D2+, D3+, D and, separately at present, He0 and He+. Extensions enhanced the analysis and related computer codes to include He++ ions plus planar and cylindrical geometries.« less

  17. Effective quadrature formula in solving linear integro-differential equations of order two

    NASA Astrophysics Data System (ADS)

    Eshkuvatov, Z. K.; Kammuji, M.; Long, N. M. A. Nik; Yunus, Arif A. M.

    2017-08-01

    In this note, we solve general form of Fredholm-Volterra integro-differential equations (IDEs) of order 2 with boundary condition approximately and show that proposed method is effective and reliable. Initially, IDEs is reduced into integral equation of the third kind by using standard integration techniques and identity between multiple and single integrals then truncated Legendre series are used to estimate the unknown function. For the kernel integrals, we have applied Gauss-Legendre quadrature formula and collocation points are chosen as the roots of the Legendre polynomials. Finally, reduce the integral equations of the third kind into the system of algebraic equations and Gaussian elimination method is applied to get approximate solutions. Numerical examples and comparisons with other methods reveal that the proposed method is very effective and dominated others in many cases. General theory of existence of the solution is also discussed.

  18. An integrable family of Monge-Ampère equations and their multi-Hamiltonian structure

    NASA Astrophysics Data System (ADS)

    Nutku, Y.; Sarioǧlu, Ö.

    1993-02-01

    We have identified a completely integrable family of Monge-Ampère equations through an examination of their Hamiltonian structure. Starting with a variational formulation of the Monge-Ampère equations we have constructed the first Hamiltonian operator through an application of Dirac's theory of constraints. The completely integrable class of Monge-Ampère equations are then obtained by solving the Jacobi identities for a sufficiently general form of the second Hamiltonian operator that is compatible with the first.

  19. Extremely Fast Numerical Integration of Ocean Surface Wave Dynamics

    DTIC Science & Technology

    2007-09-30

    sub-processor must be added as shown in the blue box of Fig. 1. We first consider the Kadomtsev - Petviashvili (KP) equation ηt + coηx +αηηx + βη ...analytic integration of the so-called “soliton equations ,” I have discovered how the GFT can be used to solved higher order equations for which study...analytical study and extremely fast numerical integration of the extended nonlinear Schroedinger equation for fully three dimensional wave motion

  20. On the symmetries of integrability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellon, M.; Maillard, J.M.; Viallet, C.

    1992-06-01

    In this paper the authors show that the Yang-Baxter equations for two-dimensional models admit as a group of symmetry the infinite discrete group A{sub 2}{sup (1)}. The existence of this symmetry explains the presence of a spectral parameter in the solutions of the equations. The authors show that similarly, for three-dimensional vertex models and the associated tetrahedron equations, there also exists an infinite discrete group of symmetry. Although generalizing naturally the previous one, it is a much bigger hyperbolic Coxeter group. The authors indicate how this symmetry can help to resolve the Yang-Baxter equations and their higher-dimensional generalizations and initiatemore » the study of three-dimensional vertex models. These symmetries are naturally represented as birational projective transformations. They may preserve non-trivial algebraic varieties, and lead to proper parametrizations of the models, be they integrable or not. The authors mention the relation existing between spin models and the Bose-Messner algebras of algebraic combinatorics. The authors' results also yield the generalization of the condition q{sup n} = 1 so often mentioned in the theory of quantum groups, when no q parameter is available.« less

  1. A General Theory of Unsteady Compressible Potential Aerodynamics

    NASA Technical Reports Server (NTRS)

    Morino, L.

    1974-01-01

    The general theory of potential aerodynamic flow around a lifting body having arbitrary shape and motion is presented. By using the Green function method, an integral representation for the potential is obtained for both supersonic and subsonic flow. Under small perturbation assumption, the potential at any point, P, in the field depends only upon the values of the potential and its normal derivative on the surface, sigma, of the body. Hence, if the point P approaches the surface of the body, the representation reduces to an integro-differential equation relating the potential and its normal derivative (which is known from the boundary conditions) on the surface sigma. For the important practical case of small harmonic oscillation around a rest position, the equation reduces to a two-dimensional Fredholm integral equation of second-type. It is shown that this equation reduces properly to the lifting surface theories as well as other classical mathematical formulas. The question of uniqueness is examined and it is shown that, for thin wings, the operator becomes singular as the thickness approaches zero. This fact may yield numerical problems for very thin wings.

  2. A first-order Green's function approach to supersonic oscillatory flow: A mixed analytic and numeric treatment

    NASA Technical Reports Server (NTRS)

    Freedman, M. I.; Sipcic, S.; Tseng, K.

    1985-01-01

    A frequency domain Green's Function Method for unsteady supersonic potential flow around complex aircraft configurations is presented. The focus is on the supersonic range wherein the linear potential flow assumption is valid. In this range the effects of the nonlinear terms in the unsteady supersonic compressible velocity potential equation are negligible and therefore these terms will be omitted. The Green's function method is employed in order to convert the potential flow differential equation into an integral one. This integral equation is then discretized, through standard finite element technique, to yield a linear algebraic system of equations relating the unknown potential to its prescribed co-normalwash (boundary condition) on the surface of the aircraft. The arbitrary complex aircraft configuration (e.g., finite-thickness wing, wing-body-tail) is discretized into hyperboloidal (twisted quadrilateral) panels. The potential and co-normalwash are assumed to vary linearly within each panel. The long range goal is to develop a comprehensive theory for unsteady supersonic potential aerodynamic which is capable of yielding accurate results even in the low supersonic (i.e., high transonic) range.

  3. Alternate Solution to Generalized Bernoulli Equations via an Integrating Factor: An Exact Differential Equation Approach

    ERIC Educational Resources Information Center

    Tisdell, C. C.

    2017-01-01

    Solution methods to exact differential equations via integrating factors have a rich history dating back to Euler (1740) and the ideas enjoy applications to thermodynamics and electromagnetism. Recently, Azevedo and Valentino presented an analysis of the generalized Bernoulli equation, constructing a general solution by linearizing the problem…

  4. Continuous properties of the data-to-solution map for a generalized μ-Camassa-Holm integrable equation

    NASA Astrophysics Data System (ADS)

    Yu, Shengqi

    2018-05-01

    This work studies a generalized μ-type integrable equation with both quadratic and cubic nonlinearities; the μ-Camassa-Holm and modified μ-Camassa-Holm equations are members of this family of equations. It has been shown that the Cauchy problem for this generalized μ-Camassa-Holm integrable equation is locally well-posed for initial data u0 ∈ Hs, s > 5/2. In this work, we further investigate the continuity properties to this equation. It is proved in this work that the data-to-solution map of the proposed equation is not uniformly continuous. It is also found that the solution map is Hölder continuous in the Hr-topology when 0 ≤ r < s with Hölder exponent α depending on both s and r.

  5. Linearly exact parallel closures for slab geometry

    NASA Astrophysics Data System (ADS)

    Ji, Jeong-Young; Held, Eric D.; Jhang, Hogun

    2013-08-01

    Parallel closures are obtained by solving a linearized kinetic equation with a model collision operator using the Fourier transform method. The closures expressed in wave number space are exact for time-dependent linear problems to within the limits of the model collision operator. In the adiabatic, collisionless limit, an inverse Fourier transform is performed to obtain integral (nonlocal) parallel closures in real space; parallel heat flow and viscosity closures for density, temperature, and flow velocity equations replace Braginskii's parallel closure relations, and parallel flow velocity and heat flow closures for density and temperature equations replace Spitzer's parallel transport relations. It is verified that the closures reproduce the exact linear response function of Hammett and Perkins [Phys. Rev. Lett. 64, 3019 (1990)] for Landau damping given a temperature gradient. In contrast to their approximate closures where the vanishing viscosity coefficient numerically gives an exact response, our closures relate the heat flow and nonvanishing viscosity to temperature and flow velocity (gradients).

  6. A New Formulation of Time Domain Boundary Integral Equation for Acoustic Wave Scattering in the Presence of a Uniform Mean Flow

    NASA Technical Reports Server (NTRS)

    Hu, Fang; Pizzo, Michelle E.; Nark, Douglas M.

    2017-01-01

    It has been well-known that under the assumption of a constant uniform mean flow, the acoustic wave propagation equation can be formulated as a boundary integral equation, in both the time domain and the frequency domain. Compared with solving partial differential equations, numerical methods based on the boundary integral equation have the advantage of a reduced spatial dimension and, hence, requiring only a surface mesh. However, the constant uniform mean flow assumption, while convenient for formulating the integral equation, does not satisfy the solid wall boundary condition wherever the body surface is not aligned with the uniform mean flow. In this paper, we argue that the proper boundary condition for the acoustic wave should not have its normal velocity be zero everywhere on the solid surfaces, as has been applied in the literature. A careful study of the acoustic energy conservation equation is presented that shows such a boundary condition in fact leads to erroneous source or sink points on solid surfaces not aligned with the mean flow. A new solid wall boundary condition is proposed that conserves the acoustic energy and a new time domain boundary integral equation is derived. In addition to conserving the acoustic energy, another significant advantage of the new equation is that it is considerably simpler than previous formulations. In particular, tangential derivatives of the solution on the solid surfaces are no longer needed in the new formulation, which greatly simplifies numerical implementation. Furthermore, stabilization of the new integral equation by Burton-Miller type reformulation is presented. The stability of the new formulation is studied theoretically as well as numerically by an eigenvalue analysis. Numerical solutions are also presented that demonstrate the stability of the new formulation.

  7. On a new semi-discrete integrable combination of Burgers and Sharma-Tasso-Olver equation

    NASA Astrophysics Data System (ADS)

    Zhao, Hai-qiong

    2017-02-01

    In this paper, a new semi-discrete integrable combination of Burgers and Sharma-Tasso-Olver equation is investigated. The underlying integrable structures like the Lax pair, the infinite number of conservation laws, the Darboux-Bäcklund transformation, and the solutions are presented in the explicit form. The theory of the semi-discrete equation including integrable properties yields the corresponding theory of the continuous counterpart in the continuous limit. Finally, numerical experiments are provided to demonstrate the effectiveness of the developed integrable semi-discretization algorithms.

  8. Calculation of Moment Matrix Elements for Bilinear Quadrilaterals and Higher-Order Basis Functions

    DTIC Science & Technology

    2016-01-06

    methods are known as boundary integral equation (BIE) methods and the present study falls into this category. The numerical solution of the BIE is...iterated integrals. The inner integral involves the product of the free-space Green’s function for the Helmholtz equation multiplied by an appropriate...Website: http://www.wipl-d.com/ 5. Y. Zhang and T. K. Sarkar, Parallel Solution of Integral Equation -Based EM Problems in the Frequency Domain. New

  9. A numerical solution for two-dimensional Fredholm integral equations of the second kind with kernels of the logarithmic potential form

    NASA Technical Reports Server (NTRS)

    Gabrielsen, R. E.; Uenal, A.

    1981-01-01

    Two dimensional Fredholm integral equations with logarithmic potential kernels are numerically solved. The explicit consequence of these solutions to their true solutions is demonstrated. The results are based on a previous work in which numerical solutions were obtained for Fredholm integral equations of the second kind with continuous kernels.

  10. Properties of the two-dimensional heterogeneous Lennard-Jones dimers: An integral equation study

    PubMed Central

    Urbic, Tomaz

    2016-01-01

    Structural and thermodynamic properties of a planar heterogeneous soft dumbbell fluid are examined using Monte Carlo simulations and integral equation theory. Lennard-Jones particles of different sizes are the building blocks of the dimers. The site-site integral equation theory in two dimensions is used to calculate the site-site radial distribution functions and the thermodynamic properties. Obtained results are compared to Monte Carlo simulation data. The critical parameters for selected types of dimers were also estimated and the influence of the Lennard-Jones parameters was studied. We have also tested the correctness of the site-site integral equation theory using different closures. PMID:27875894

  11. Interactions as intertwiners in 4D QFT

    NASA Astrophysics Data System (ADS)

    de Mello Koch, Robert; Ramgoolam, Sanjaye

    2016-03-01

    In a recent paper we showed that the correlators of free scalar field theory in four dimensions can be constructed from a two dimensional topological field theory based on so(4 , 2) equivariant maps (intertwiners). The free field result, along with recent results of Frenkel and Libine on equivariance properties of Feynman integrals, are developed further in this paper. We show that the coefficient of the log term in the 1-loop 4-point conformal integral is a projector in the tensor product of so(4 , 2) representations. We also show that the 1-loop 4-point integral can be written as a sum of four terms, each associated with the quantum equation of motion for one of the four external legs. The quantum equation of motion is shown to be related to equivariant maps involving indecomposable representations of so(4 , 2), a phenomenon which illuminates multiplet recombination. The harmonic expansion method for Feynman integrals is a powerful tool for arriving at these results. The generalization to other interactions and higher loops is discussed.

  12. Universal and integrable nonlinear evolution systems of equations in 2+1 dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maccari, A.

    1997-08-01

    Integrable systems of nonlinear partial differential equations (PDEs) are obtained from integrable equations in 2+1 dimensions, by means of a reduction method of broad applicability based on Fourier expansion and spatio{endash}temporal rescalings, which is asymptotically exact in the limit of weak nonlinearity. The integrability by the spectral transform is explicitly demonstrated, because the corresponding Lax pairs have been derived, applying the same reduction method to the Lax pair of the initial equation. These systems of nonlinear PDEs are likely to be of applicative relevance and have a {open_quotes}universal{close_quotes} character, inasmuch as they may be derived from a very large classmore » of nonlinear evolution equations with a linear dispersive part. {copyright} {ital 1997 American Institute of Physics.}« less

  13. On the coefficients of integrated expansions of Bessel polynomials

    NASA Astrophysics Data System (ADS)

    Doha, E. H.; Ahmed, H. M.

    2006-03-01

    A new formula expressing explicitly the integrals of Bessel polynomials of any degree and for any order in terms of the Bessel polynomials themselves is proved. Another new explicit formula relating the Bessel coefficients of an expansion for infinitely differentiable function that has been integrated an arbitrary number of times in terms of the coefficients of the original expansion of the function is also established. An application of these formulae for solving ordinary differential equations with varying coefficients is discussed.

  14. Comparison of various methods for mathematical analysis of the Foucault knife edge test pattern to determine optical imperfections

    NASA Technical Reports Server (NTRS)

    Gatewood, B. E.

    1971-01-01

    The linearized integral equation for the Foucault test of a solid mirror was solved by various methods: power series, Fourier series, collocation, iteration, and inversion integral. The case of the Cassegrain mirror was solved by a particular power series method, collocation, and inversion integral. The inversion integral method appears to be the best overall method for both the solid and Cassegrain mirrors. Certain particular types of power series and Fourier series are satisfactory for the Cassegrain mirror. Numerical integration of the nonlinear equation for selected surface imperfections showed that results start to deviate from those given by the linearized equation at a surface deviation of about 3 percent of the wavelength of light. Several possible procedures for calibrating and scaling the input data for the integral equation are described.

  15. Spacetimes with Killing tensors. [for Einstein-Maxwell fields with certain spinor indices

    NASA Technical Reports Server (NTRS)

    Hughston, L. P.; Sommers, P.

    1973-01-01

    The characteristics of the Killing equation and the Killing tensor are discussed. A conformal Killing tensor is of interest inasmuch as it gives rise to a quadratic first integral for null geodesic orbits. The Einstein-Maxwell equations are considered together with the Bianchi identity and the conformal Killing tensor. Two examples for the application of the considered relations are presented, giving attention to the charged Kerr solution and the charged C-metric.

  16. Zonal and meridional patterns of phytoplankton biomass and carbon fixation in the Equatorial Pacific Ocean, between 110°W and 140°W

    NASA Astrophysics Data System (ADS)

    Balch, W. M.; Poulton, A. J.; Drapeau, D. T.; Bowler, B. C.; Windecker, L. A.; Booth, E. S.

    2011-03-01

    Primary production (P prim) and calcification (C calc) were measured in the eastern and central Equatorial Pacific during December 2004 and September 2005, between 110°W and 140°W. The design of the field sampling allowed partitioning of P prim and total chlorophyll a (B) between large (>3 μm) and small (0.45-3 μm) phytoplankton cells. The station locations allowed discrimination of meridional and zonal patterns. The cruises coincided with a warm El Niño Southern Oscillation (ENSO) phase and ENSO-neutral phase, respectively, which proved to be the major factors relating to the patterns of productivity. Production and biomass of large phytoplankton generally covaried with that of small cells; large cells typically accounted for 20-30% of B and 20% of P prim. Elevated biomass and primary production of all size fractions were highest along the equator as well as at the convergence zone between the North Equatorial Counter Current and the South Equatorial Current. C calc by >0.4 μm cells was 2-3% of P prim by the same size fraction, for both cruises. Biomass-normalized P prim values were, on average, slightly higher during the warm-phase ENSO period, inconsistent with a "bottom-up" control mechanism (such as nutrient supply). Another source of variability along the equator was Tropical Instability Waves (TIWs). Zonal variance in integrated phytoplankton biomass (along the equator, between 110° and 140°) was almost the same as the meridional variance across it (between 4° N and 4° S). However, the zonal variance in integrated P prim was half the variance observed meridionally. The variance in integrated C calc along the equator was half that seen meridionally during the warm ENSO phase cruise whereas during the ENSO-neutral period, it was identical. No relation could be observed between the patterns of integrated carbon fixation (P prim or C calc) and integrated nutrients (nitrate, ammonium, silicate or dissolved iron). This suggests that the factors controlling integrated P prim or C calc are more complex than a simple bottom-up supply model and likely also will involve a top-down grazer-control component, as well. The carbon fixation within the Equatorial Pacific is well balanced with diatom and coccolithophore production contributing a relatively steady proportion of the total primary production. This maintains a steady balance between organic and inorganic production, relevant to the ballasting of organic matter and the export flux of carbon from this important upwelling region.

  17. Localization of the eigenvalues of linear integral equations with applications to linear ordinary differential equations.

    NASA Technical Reports Server (NTRS)

    Sloss, J. M.; Kranzler, S. K.

    1972-01-01

    The equivalence of a considered integral equation form with an infinite system of linear equations is proved, and the localization of the eigenvalues of the infinite system is expressed. Error estimates are derived, and the problems of finding upper bounds and lower bounds for the eigenvalues are solved simultaneously.

  18. Finite-volume spectra of the Lee-Yang model

    NASA Astrophysics Data System (ADS)

    Bajnok, Zoltan; el Deeb, Omar; Pearce, Paul A.

    2015-04-01

    We consider the non-unitary Lee-Yang minimal model in three different finite geometries: (i) on the interval with integrable boundary conditions labelled by the Kac labels ( r, s) = (1 , 1) , (1 , 2), (ii) on the circle with periodic boundary conditions and (iii) on the periodic circle including an integrable purely transmitting defect. We apply φ 1,3 integrable perturbations on the boundary and on the defect and describe the flow of the spectrum. Adding a Φ1,3 integrable perturbation to move off-criticality in the bulk, we determine the finite size spectrum of the massive scattering theory in the three geometries via Thermodynamic Bethe Ansatz (TBA) equations. We derive these integral equations for all excitations by solving, in the continuum scaling limit, the TBA functional equations satisfied by the transfer matrices of the associated A 4 RSOS lattice model of Forrester and Baxter in Regime III. The excitations are classified in terms of ( m, n) systems. The excited state TBA equations agree with the previously conjectured equations in the boundary and periodic cases. In the defect case, new TBA equations confirm previously conjectured transmission factors.

  19. The Green's matrix and the boundary integral equations for analysis of time-harmonic dynamics of elastic helical springs.

    PubMed

    Sorokin, Sergey V

    2011-03-01

    Helical springs serve as vibration isolators in virtually any suspension system. Various exact and approximate methods may be employed to determine the eigenfrequencies of vibrations of these structural elements and their dynamic transfer functions. The method of boundary integral equations is a meaningful alternative to obtain exact solutions of problems of the time-harmonic dynamics of elastic springs in the framework of Bernoulli-Euler beam theory. In this paper, the derivations of the Green's matrix, of the Somigliana's identities, and of the boundary integral equations are presented. The vibrational power transmission in an infinitely long spring is analyzed by means of the Green's matrix. The eigenfrequencies and the dynamic transfer functions are found by solving the boundary integral equations. In the course of analysis, the essential features and advantages of the method of boundary integral equations are highlighted. The reported analytical results may be used to study the time-harmonic motion in any wave guide governed by a system of linear differential equations in a single spatial coordinate along its axis. © 2011 Acoustical Society of America

  20. A finite-element analysis for steady and oscillatory subsonic flow around complex configurations

    NASA Technical Reports Server (NTRS)

    Chen, L. T.; Suciu, E. O.; Morino, L.

    1974-01-01

    The problem of potential subsonic flow around complex configurations is considered. The solution is given of an integral equation relating the values of the potential on the surface of the body to the values of the normal derivative, which is known from the boundary conditions. The surface of the body is divided into small (hyperboloidal quadrilateral) surface elements, which are described in terms of the Cartesian components of the four corner points. The values of the potential (and its normal derivative) within each element is assumed to be constant and equal to its value at the centroid of the element. The coefficients of the equation are given by source and doublet integrals over the surface elements. Closed form evaluations of the integrals are presented. The results obtained with the above formulation are compared with existing analytical and experimental results.

  1. Effect of dynamic disorder on charge transport along a pentacene chain

    NASA Astrophysics Data System (ADS)

    Böhlin, J.; Linares, M.; Stafström, S.

    2011-02-01

    The lattice equation of motion and a numerical solution of the time-dependent Schrödinger equation provide us with a microscopic picture of charge transport in highly ordered molecular crystals. We have chosen the pentacene single crystal as a model system, and we study charge transport as a function of phonon-mode time-dependent fluctuations in the intermolecular electron transfer integral. For comparison, we include similar fluctuations also in the intramolecular potentials. The variance in these energy quantities is closely related to the temperature of the system. The pentacene system is shown to be very sensitive to fluctuation in the intermolecular transfer integral, revealing a transition from adiabatic to nonadiabatic polaron transport for increasing temperatures. The extension of the polaron at temperatures above 200 K is limited by the electron localization length rather than the interplay between the electron transfer integral and the electron-phonon coupling strength.

  2. Nonzero solutions of nonlinear integral equations modeling infectious disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, L.R.; Leggett, R.W.

    1982-01-01

    Sufficient conditions to insure the existence of periodic solutions to the nonlinear integral equation, x(t) = ..integral../sup t//sub t-tau/f(s,x(s))ds, are given in terms of simple product and product integral inequalities. The equation can be interpreted as a model for the spread of infectious diseases (e.g., gonorrhea or any of the rhinovirus viruses) if x(t) is the proportion of infectives at time t and f(t,x(t)) is the proportion of new infectives per unit time.

  3. Numerical integration of asymptotic solutions of ordinary differential equations

    NASA Technical Reports Server (NTRS)

    Thurston, Gaylen A.

    1989-01-01

    Classical asymptotic analysis of ordinary differential equations derives approximate solutions that are numerically stable. However, the analysis also leads to tedious expansions in powers of the relevant parameter for a particular problem. The expansions are replaced with integrals that can be evaluated by numerical integration. The resulting numerical solutions retain the linear independence that is the main advantage of asymptotic solutions. Examples, including the Falkner-Skan equation from laminar boundary layer theory, illustrate the method of asymptotic analysis with numerical integration.

  4. Integrability in heavy quark effective theory

    NASA Astrophysics Data System (ADS)

    Braun, Vladimir M.; Ji, Yao; Manashov, Alexander N.

    2018-06-01

    It was found that renormalization group equations in the heavy-quark effective theory (HQET) for the operators involving one effective heavy quark and light degrees of freedom are completely integrable in some cases and are related to spin chain models with the Hamiltonian commuting with the nondiagonal entry C( u) of the monodromy matrix. In this work we provide a more complete mathematical treatment of such spin chains in the QISM framework. We also discuss the relation of integrable models that appear in the HQET context with the large-spin limit of integrable models in QCD with light quarks. We find that the conserved charges and the "ground state" wave functions in HQET models can be obtained from the light-quark counterparts in a certain scaling limit.

  5. Multistep integration formulas for the numerical integration of the satellite problem

    NASA Technical Reports Server (NTRS)

    Lundberg, J. B.; Tapley, B. D.

    1981-01-01

    The use of two Class 2/fixed mesh/fixed order/multistep integration packages of the PECE type for the numerical integration of the second order, nonlinear, ordinary differential equation of the satellite orbit problem. These two methods are referred to as the general and the second sum formulations. The derivation of the basic equations which characterize each formulation and the role of the basic equations in the PECE algorithm are discussed. Possible starting procedures are examined which may be used to supply the initial set of values required by the fixed mesh/multistep integrators. The results of the general and second sum integrators are compared to the results of various fixed step and variable step integrators.

  6. Direct linearizing transform for three-dimensional discrete integrable systems: the lattice AKP, BKP and CKP equations.

    PubMed

    Fu, Wei; Nijhoff, Frank W

    2017-07-01

    A unified framework is presented for the solution structure of three-dimensional discrete integrable systems, including the lattice AKP, BKP and CKP equations. This is done through the so-called direct linearizing transform, which establishes a general class of integral transforms between solutions. As a particular application, novel soliton-type solutions for the lattice CKP equation are obtained.

  7. Integrability of the Kruskal--Zabusky Discrete Equation by Multiscale Expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levi, Decio; Scimiterna, Christian

    2010-03-08

    In 1965 Kruskal and Zabusky in a very famous article in Physical Review Letters introduced the notion of 'soliton' to describe the interaction of solitary waves solutions of the Korteweg de Vries equation (KdV). To do so they introduced a discrete approximation to the KdV, the Kruskal-Zabusky equation (KZ). Here we analyze the KZ equation using the multiscale expansion and show that the equation is only A{sub 2} integrable.

  8. Integrability and Poisson Structures of Three Dimensional Dynamical Systems and Equations of Hydrodynamic Type

    NASA Astrophysics Data System (ADS)

    Gumral, Hasan

    Poisson structure of completely integrable 3 dimensional dynamical systems can be defined in terms of an integrable 1-form. We take advantage of this fact and use the theory of foliations in discussing the geometrical structure underlying complete and partial integrability. We show that the Halphen system can be formulated in terms of a flat SL(2,R)-valued connection and belongs to a non-trivial Godbillon-Vey class. On the other hand, for the Euler top and a special case of 3-species Lotka-Volterra equations which are contained in the Halphen system as limiting cases, this structure degenerates into the form of globally integrable bi-Hamiltonian structures. The globally integrable bi-Hamiltonian case is a linear and the sl_2 structure is a quadratic unfolding of an integrable 1-form in 3 + 1 dimensions. We complete the discussion of the Hamiltonian structure of 2-component equations of hydrodynamic type by presenting the Hamiltonian operators for Euler's equation and a continuum limit of Toda lattice. We present further infinite sequences of conserved quantities for shallow water equations and show that their generalizations by Kodama admit bi-Hamiltonian structure. We present a simple way of constructing the second Hamiltonian operators for N-component equations admitting some scaling properties. The Kodama reduction of the dispersionless-Boussinesq equations and the Lax reduction of the Benney moment equations are shown to be equivalent by a symmetry transformation. They can be cast into the form of a triplet of conservation laws which enable us to recognize a non-trivial scaling symmetry. The resulting bi-Hamiltonian structure generates three infinite sequences of conserved densities.

  9. Time-dependent integral equations of neutron transport for calculating the kinetics of nuclear reactors by the Monte Carlo method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidenko, V. D., E-mail: Davidenko-VD@nrcki.ru; Zinchenko, A. S., E-mail: zin-sn@mail.ru; Harchenko, I. K.

    2016-12-15

    Integral equations for the shape functions in the adiabatic, quasi-static, and improved quasi-static approximations are presented. The approach to solving these equations by the Monte Carlo method is described.

  10. Integral Equation Method for Electromagnetic Wave Propagation in Stratified Anisotropic Dielectric-Magnetic Materials

    NASA Astrophysics Data System (ADS)

    Shu, Wei-Xing; Fu, Na; Lü, Xiao-Fang; Luo, Hai-Lu; Wen, Shuang-Chun; Fan, Dian-Yuan

    2010-11-01

    We investigate the propagation of electromagnetic waves in stratified anisotropic dielectric-magnetic materials using the integral equation method (IEM). Based on the superposition principle, we use Hertz vector formulations of radiated fields to study the interaction of wave with matter. We derive in a new way the dispersion relation, Snell's law and reflection/transmission coefficients by self-consistent analyses. Moreover, we find two new forms of the generalized extinction theorem. Applying the IEM, we investigate the wave propagation through a slab and disclose the underlying physics, which are further verified by numerical simulations. The results lead to a unified framework of the IEM for the propagation of wave incident either from a medium or vacuum in stratified dielectric-magnetic materials.

  11. On the solution of integral equations with a generalized cauchy kernal

    NASA Technical Reports Server (NTRS)

    Kaya, A. C.; Erdogan, F.

    1986-01-01

    A certain class of singular integral equations that may arise from the mixed boundary value problems in nonhonogeneous materials is considered. The distinguishing feature of these equations is that in addition to the Cauchy singularity, the kernels contain terms that are singular only at the end points. In the form of the singular integral equations adopted, the density function is a potential or a displacement and consequently the kernal has strong singularities of the form (t-x)(-2), x(n-2) (t+x)(n), (n is = or 2, 0 x, t b). The complex function theory is used to determine the fundamental function of the problem for the general case and a simple numerical technique is described to solve the integral equation. Two examples from the theory of elasticity are then considered to show the application of the technique.

  12. Retrieve the Bethe states of quantum integrable models solved via the off-diagonal Bethe Ansatz

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Li, Yuan-Yuan; Cao, Junpeng; Yang, Wen-Li; Shi, Kangjie; Wang, Yupeng

    2015-05-01

    Based on the inhomogeneous T-Q relation constructed via the off-diagonal Bethe Ansatz, a systematic method for retrieving the Bethe-type eigenstates of integrable models without obvious reference state is developed by employing certain orthogonal basis of the Hilbert space. With the XXZ spin torus model and the open XXX spin- \\frac{1}{2} chain as examples, we show that for a given inhomogeneous T-Q relation and the associated Bethe Ansatz equations, the constructed Bethe-type eigenstate has a well-defined homogeneous limit.

  13. On the solution of integral equations with strongly singular kernels

    NASA Technical Reports Server (NTRS)

    Kaya, A. C.; Erdogan, F.

    1986-01-01

    Some useful formulas are developed to evaluate integrals having a singularity of the form (t-x) sup-m ,m greater than or equal 1. Interpreting the integrals with strong singularities in Hadamard sense, the results are used to obtain approximate solutions of singular integral equations. A mixed boundary value problem from the theory of elasticity is considered as an example. Particularly for integral equations where the kernel contains, in addition to the dominant term (t-x) sup -m , terms which become unbounded at the end points, the present technique appears to be extremely effective to obtain rapidly converging numerical results.

  14. On the solution of integral equations with strong ly singular kernels

    NASA Technical Reports Server (NTRS)

    Kaya, A. C.; Erdogan, F.

    1985-01-01

    In this paper some useful formulas are developed to evaluate integrals having a singularity of the form (t-x) sup-m, m or = 1. Interpreting the integrals with strong singularities in Hadamard sense, the results are used to obtain approximate solutions of singular integral equations. A mixed boundary value problem from the theory of elasticity is considered as an example. Particularly for integral equations where the kernel contains, in addition to the dominant term (t,x) sup-m, terms which become unbounded at the end points, the present technique appears to be extremely effective to obtain rapidly converging numerical results.

  15. On the solution of integral equations with strongly singular kernels

    NASA Technical Reports Server (NTRS)

    Kaya, A. C.; Erdogan, F.

    1987-01-01

    Some useful formulas are developed to evaluate integrals having a singularity of the form (t-x) sup-m, m greater than or equal 1. Interpreting the integrals with strong singularities in Hadamard sense, the results are used to obtain approximate solutions of singular integral equations. A mixed boundary value problem from the theory of elasticity is considered as an example. Particularly for integral equations where the kernel contains, in addition to the dominant term (t-x) sup-m, terms which become unbounded at the end points, the present technique appears to be extremely effective to obtain rapidly converging numerical results.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urbic, Tomaz, E-mail: tomaz.urbic@fkkt.uni-lj.si; Dias, Cristiano L.

    The thermodynamic and structural properties of the planar soft-sites dumbbell fluid are examined by Monte Carlo simulations and integral equation theory. The dimers are built of two Lennard-Jones segments. Site-site integral equation theory in two dimensions is used to calculate the site-site radial distribution functions for a range of elongations and densities and the results are compared with Monte Carlo simulations. The critical parameters for selected types of dimers were also estimated. We analyze the influence of the bond length on critical point as well as tested correctness of site-site integral equation theory with different closures. The integral equations canmore » be used to predict the phase diagram of dimers whose molecular parameters are known.« less

  17. Numerical techniques in radiative heat transfer for general, scattering, plane-parallel media

    NASA Technical Reports Server (NTRS)

    Sharma, A.; Cogley, A. C.

    1982-01-01

    The study of radiative heat transfer with scattering usually leads to the solution of singular Fredholm integral equations. The present paper presents an accurate and efficient numerical method to solve certain integral equations that govern radiative equilibrium problems in plane-parallel geometry for both grey and nongrey, anisotropically scattering media. In particular, the nongrey problem is represented by a spectral integral of a system of nonlinear integral equations in space, which has not been solved previously. The numerical technique is constructed to handle this unique nongrey governing equation as well as the difficulties caused by singular kernels. Example problems are solved and the method's accuracy and computational speed are analyzed.

  18. Generalization of Boundary-Layer Momentum-Integral Equations to Three-Dimensional Flows Including Those of Rotating System

    NASA Technical Reports Server (NTRS)

    Mager, Arthur

    1952-01-01

    The Navier-Stokes equations of motion and the equation of continuity are transformed so as to apply to an orthogonal curvilinear coordinate system rotating with a uniform angular velocity about an arbitrary axis in space. A usual simplification of these equations as consistent with the accepted boundary-layer theory and an integration of these equations through the boundary layer result in boundary-layer momentum-integral equations for three-dimensional flows that are applicable to either rotating or nonrotating fluid boundaries. These equations are simplified and an approximate solution in closed integral form is obtained for a generalized boundary-layer momentum-loss thickness and flow deflection at the wall in the turbulent case. A numerical evaluation of this solution carried out for data obtained in a curving nonrotating duct shows a fair quantitative agreement with the measures values. The form in which the equations are presented is readily adaptable to cases of steady, three-dimensional, incompressible boundary-layer flow like that over curved ducts or yawed wings; and it also may be used to describe the boundary-layer flow over various rotating surfaces, thus applying to turbomachinery, propellers, and helicopter blades.

  19. A multivariate variational objective analysis-assimilation method. Part 1: Development of the basic model

    NASA Technical Reports Server (NTRS)

    Achtemeier, Gary L.; Ochs, Harry T., III

    1988-01-01

    The variational method of undetermined multipliers is used to derive a multivariate model for objective analysis. The model is intended for the assimilation of 3-D fields of rawinsonde height, temperature and wind, and mean level temperature observed by satellite into a dynamically consistent data set. Relative measurement errors are taken into account. The dynamic equations are the two nonlinear horizontal momentum equations, the hydrostatic equation, and an integrated continuity equation. The model Euler-Lagrange equations are eleven linear and/or nonlinear partial differential and/or algebraic equations. A cyclical solution sequence is described. Other model features include a nonlinear terrain-following vertical coordinate that eliminates truncation error in the pressure gradient terms of the horizontal momentum equations and easily accommodates satellite observed mean layer temperatures in the middle and upper troposphere. A projection of the pressure gradient onto equivalent pressure surfaces removes most of the adverse impacts of the lower coordinate surface on the variational adjustment.

  20. Generalized Thomas-Fermi equations as the Lampariello class of Emden-Fowler equations

    NASA Astrophysics Data System (ADS)

    Rosu, Haret C.; Mancas, Stefan C.

    2017-04-01

    A one-parameter family of Emden-Fowler equations defined by Lampariello's parameter p which, upon using Thomas-Fermi boundary conditions, turns into a set of generalized Thomas-Fermi equations comprising the standard Thomas-Fermi equation for p = 1 is studied in this paper. The entire family is shown to be non integrable by reduction to the corresponding Abel equations whose invariants do not satisfy a known integrability condition. We also discuss the equivalent dynamical system of equations for the standard Thomas-Fermi equation and perform its phase-plane analysis. The results of the latter analysis are similar for the whole class.

  1. Evaluation of atomic pressure in the multiple time-step integration algorithm.

    PubMed

    Andoh, Yoshimichi; Yoshii, Noriyuki; Yamada, Atsushi; Okazaki, Susumu

    2017-04-15

    In molecular dynamics (MD) calculations, reduction in calculation time per MD loop is essential. A multiple time-step (MTS) integration algorithm, the RESPA (Tuckerman and Berne, J. Chem. Phys. 1992, 97, 1990-2001), enables reductions in calculation time by decreasing the frequency of time-consuming long-range interaction calculations. However, the RESPA MTS algorithm involves uncertainties in evaluating the atomic interaction-based pressure (i.e., atomic pressure) of systems with and without holonomic constraints. It is not clear which intermediate forces and constraint forces in the MTS integration procedure should be used to calculate the atomic pressure. In this article, we propose a series of equations to evaluate the atomic pressure in the RESPA MTS integration procedure on the basis of its equivalence to the Velocity-Verlet integration procedure with a single time step (STS). The equations guarantee time-reversibility even for the system with holonomic constrants. Furthermore, we generalize the equations to both (i) arbitrary number of inner time steps and (ii) arbitrary number of force components (RESPA levels). The atomic pressure calculated by our equations with the MTS integration shows excellent agreement with the reference value with the STS, whereas pressures calculated using the conventional ad hoc equations deviated from it. Our equations can be extended straightforwardly to the MTS integration algorithm for the isothermal NVT and isothermal-isobaric NPT ensembles. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sechin, Ivan, E-mail: shnbuz@gmail.com, E-mail: zotov@mi.ras.ru; ITEP, B. Cheremushkinskaya Str. 25, Moscow 117218; Zotov, Andrei, E-mail: shnbuz@gmail.com, E-mail: zotov@mi.ras.ru

    In this paper we propose versions of the associative Yang-Baxter equation and higher order R-matrix identities which can be applied to quantum dynamical R-matrices. As is known quantum non-dynamical R-matrices of Baxter-Belavin type satisfy this equation. Together with unitarity condition and skew-symmetry it provides the quantum Yang-Baxter equation and a set of identities useful for different applications in integrable systems. The dynamical R-matrices satisfy the Gervais-Neveu-Felder (or dynamical Yang-Baxter) equation. Relation between the dynamical and non-dynamical cases is described by the IRF (interaction-round-a-face)-Vertex transformation. An alternative approach to quantum (semi-)dynamical R-matrices and related quantum algebras was suggested by Arutyunov, Chekhov,more » and Frolov (ACF) in their study of the quantum Ruijsenaars-Schneider model. The purpose of this paper is twofold. First, we prove that the ACF elliptic R-matrix satisfies the associative Yang-Baxter equation with shifted spectral parameters. Second, we directly prove a simple relation of the IRF-Vertex type between the Baxter-Belavin and the ACF elliptic R-matrices predicted previously by Avan and Rollet. It provides the higher order R-matrix identities and an explanation of the obtained equations through those for non-dynamical R-matrices. As a by-product we also get an interpretation of the intertwining transformation as matrix extension of scalar theta function likewise R-matrix is interpreted as matrix extension of the Kronecker function. Relations to the Gervais-Neveu-Felder equation and identities for the Felder’s elliptic R-matrix are also discussed.« less

  3. Resonance line polarization and the Hanle effect in optically thick media. I - Formulation for the two-level atom

    NASA Astrophysics Data System (ADS)

    Landi Degl'Innocenti, E.; Bommier, V.; Sahal-Brechot, S.

    1990-08-01

    A general formalism is presented to describe resonance line polarization for a two-level atom in an optically thick, three-dimensional medium embedded in an arbitrary varying magnetic field and irradiated by an arbitrary radiation field. The magnetic field is supposed sufficiently small to induce a Zeeman splitting much smaller than the typical line width. By neglecting atomic polarization in the lower level and stimulated emission, an integral equation is derived for the multipole moments of the density matrix of the upper level. This equation shows how the multipole moments at any assigned point of the medium are coupled to the multipole moments relative at a different point as a consequence of the propagation of polarized radiation between the two points. The equation also accounts for the effect of the magnetic field, described by a kernel locally connecting multipole moments of the same rank, and for the role of inelastic and elastic (or depolarizing) collisions. After having given its formal derivation for the general case, the integral equation is particularized to the one-dimensional and two-dimensional cases. For the one-dimensional case of a plane parallel atmosphere, neglecting both the magnetic field and depolarizing collisions, the equation here derived reduces to a previous one given by Rees (1978).

  4. Some Exact Solutions of a Nonintegrable Toda-type Equation

    NASA Astrophysics Data System (ADS)

    Kim, Chanju

    2018-05-01

    We study a Toda-type equation with two scalar fields which is not integrable and construct two families of exact solutions which are expressed in terms of rational functions. The equation appears in U(1) Chern-Simons theories coupled to two nonrelativistic matter fields with opposite charges. One family of solutions is a trivial embedding of Liouville-type solutions. The other family is obtained by transforming the equation into the Taubes vortex equation on the hyperbolic space. Though the Taubes equation is not integrable, a trivial vacuum solution provides nontrivial solutions to the original Toda-type equation.

  5. Algorithms and physical parameters involved in the calculation of model stellar atmospheres

    NASA Astrophysics Data System (ADS)

    Merlo, D. C.

    This contribution summarizes the Doctoral Thesis presented at Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba for the degree of PhD in Astronomy. We analyze some algorithms and physical parameters involved in the calculation of model stellar atmospheres, such as atomic partition functions, functional relations connecting gaseous and electronic pressure, molecular formation, temperature distribution, chemical compositions, Gaunt factors, atomic cross-sections and scattering sources, as well as computational codes for calculating models. Special attention is paid to the integration of hydrostatic equation. We compare our results with those obtained by other authors, finding reasonable agreement. We make efforts on the implementation of methods that modify the originally adopted temperature distribution in the atmosphere, in order to obtain constant energy flux throughout. We find limitations and we correct numerical instabilities. We integrate the transfer equation solving directly the integral equation involving the source function. As a by-product, we calculate updated atomic partition functions of the light elements. Also, we discuss and enumerate carefully selected formulae for the monochromatic absorption and dispersion of some atomic and molecular species. Finally, we obtain a flexible code to calculate model stellar atmospheres.

  6. Painlevé equations, elliptic integrals and elementary functions

    NASA Astrophysics Data System (ADS)

    Żołądek, Henryk; Filipuk, Galina

    2015-02-01

    The six Painlevé equations can be written in the Hamiltonian form, with time dependent Hamilton functions. We present a rather new approach to this result, leading to rational Hamilton functions. By a natural extension of the phase space one gets corresponding autonomous Hamiltonian systems with two degrees of freedom. We realize the Bäcklund transformations of the Painlevé equations as symplectic birational transformations in C4 and we interpret the cases with classical solutions as the cases of partial integrability of the extended Hamiltonian systems. We prove that the extended Hamiltonian systems do not have any additional algebraic first integral besides the known special cases of the third and fifth Painlevé equations. We also show that the original Painlevé equations admit the first integrals expressed in terms of the elementary functions only in the special cases mentioned above. In the proofs we use equations in variations with respect to a parameter and Liouville's theory of elementary functions.

  7. A nodal domain theorem for integrable billiards in two dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samajdar, Rhine; Jain, Sudhir R., E-mail: srjain@barc.gov.in

    Eigenfunctions of integrable planar billiards are studied — in particular, the number of nodal domains, ν of the eigenfunctions with Dirichlet boundary conditions are considered. The billiards for which the time-independent Schrödinger equation (Helmholtz equation) is separable admit trivial expressions for the number of domains. Here, we discover that for all separable and non-separable integrable billiards, ν satisfies certain difference equations. This has been possible because the eigenfunctions can be classified in families labelled by the same value of mmodkn, given a particular k, for a set of quantum numbers, m,n. Further, we observe that the patterns in a familymore » are similar and the algebraic representation of the geometrical nodal patterns is found. Instances of this representation are explained in detail to understand the beauty of the patterns. This paper therefore presents a mathematical connection between integrable systems and difference equations. - Highlights: • We find that the number of nodal domains of eigenfunctions of integrable, planar billiards satisfy a class of difference equations. • The eigenfunctions labelled by quantum numbers (m,n) can be classified in terms of mmodkn. • A theorem is presented, realising algebraic representations of geometrical patterns exhibited by the domains. • This work presents a connection between integrable systems and difference equations.« less

  8. Oblique scattering from radially inhomogeneous dielectric cylinders: An exact Volterra integral equation formulation

    NASA Astrophysics Data System (ADS)

    Tsalamengas, John L.

    2018-07-01

    We study plane-wave electromagnetic scattering by radially and strongly inhomogeneous dielectric cylinders at oblique incidence. The method of analysis relies on an exact reformulation of the underlying field equations as a first-order 4 × 4 system of differential equations and on the ability to restate the associated initial-value problem in the form of a system of coupled linear Volterra integral equations of the second kind. The integral equations so derived are discretized via a sophisticated variant of the Nyström method. The proposed method yields results accurate up to machine precision without relying on approximations. Numerical results and case studies ably demonstrate the efficiency and high accuracy of the algorithms.

  9. Estimation of Planetary Wave Parameters from the Data of the 1981 Ocean Acoustic Tomography Experiment.

    DTIC Science & Technology

    1985-10-01

    can monitor a larger region and provide a larger database with fewer moorings, and its averaging (integrating) process can filter out undesirable small...as the eikonal equation, relating o to the perturbed sound-speed field Z+6c and the flow field v during ,*.. a transmission by .= (c*-v VO) 2 /(F+6c...should consult Spiesberger et al. (1980) for ray identifications. Ugincius (1970) solved the eikonal equation using the method of -. characteristics

  10. N=2 supersymmetric a=4-Korteweg-de Vries hierarchy derived via Gardner's deformation of Kaup-Boussinesq equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hussin, V.; Kiselev, A. V.; Krutov, A. O.

    2010-08-15

    We consider the problem of constructing Gardner's deformations for the N=2 supersymmetric a=4-Korteweg-de Vries (SKdV) equation; such deformations yield recurrence relations between the super-Hamiltonians of the hierarchy. We prove the nonexistence of supersymmetry-invariant deformations that retract to Gardner's formulas for the Korteweg-de Vries (KdV) with equation under the component reduction. At the same time, we propose a two-step scheme for the recursive production of the integrals of motion for the N=2, a=4-SKdV. First, we find a new Gardner's deformation of the Kaup-Boussinesq equation, which is contained in the bosonic limit of the superhierarchy. This yields the recurrence relation between themore » Hamiltonians of the limit, whence we determine the bosonic super-Hamiltonians of the full N=2, a=4-SKdV hierarchy. Our method is applicable toward the solution of Gardner's deformation problems for other supersymmetric KdV-type systems.« less

  11. Chiral higher spin theories and self-duality

    NASA Astrophysics Data System (ADS)

    Ponomarev, Dmitry

    2017-12-01

    We study recently proposed chiral higher spin theories — cubic theories of interacting massless higher spin fields in four-dimensional flat space. We show that they are naturally associated with gauge algebras, which manifest themselves in several related ways. Firstly, the chiral higher spin equations of motion can be reformulated as the self-dual Yang-Mills equations with the associated gauge algebras instead of the usual colour gauge algebra. We also demonstrate that the chiral higher spin field equations, similarly to the self-dual Yang-Mills equations, feature an infinite algebra of hidden symmetries, which ensures their integrability. Secondly, we show that off-shell amplitudes in chiral higher spin theories satisfy the generalised BCJ relations with the usual colour structure constants replaced by the structure constants of higher spin gauge algebras. We also propose generalised double copy procedures featuring higher spin theory amplitudes. Finally, using the light-cone deformation procedure we prove that the structure of the Lagrangian that leads to all these properties is universal and follows from Lorentz invariance.

  12. Dressing method and quadratic bundles related to symmetric spaces. Vanishing boundary conditions

    NASA Astrophysics Data System (ADS)

    Valchev, T. I.

    2016-02-01

    We consider quadratic bundles related to Hermitian symmetric spaces of the type SU(m + n)/S(U(m) × U(n)). The simplest representative of the corresponding integrable hierarchy is given by a multi-component Kaup-Newell derivative nonlinear Schrödinger equation which serves as a motivational example for our general considerations. We extensively discuss how one can apply Zakharov-Shabat's dressing procedure to derive reflectionless potentials obeying zero boundary conditions. Those could be used for one to construct fast decaying solutions to any nonlinear equation belonging to the same hierarchy. One can distinguish between generic soliton type solutions and rational solutions.

  13. Analysis and synthesis of distributed-lumped-active networks by digital computer

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The use of digital computational techniques in the analysis and synthesis of DLA (distributed lumped active) networks is considered. This class of networks consists of three distinct types of elements, namely, distributed elements (modeled by partial differential equations), lumped elements (modeled by algebraic relations and ordinary differential equations), and active elements (modeled by algebraic relations). Such a characterization is applicable to a broad class of circuits, especially including those usually referred to as linear integrated circuits, since the fabrication techniques for such circuits readily produce elements which may be modeled as distributed, as well as the more conventional lumped and active ones.

  14. BPS counting for knots and combinatorics on words

    NASA Astrophysics Data System (ADS)

    Kucharski, Piotr; Sułkowski, Piotr

    2016-11-01

    We discuss relations between quantum BPS invariants defined in terms of a product decomposition of certain series, and difference equations (quantum A-polynomials) that annihilate such series. We construct combinatorial models whose structure is encoded in the form of such difference equations, and whose generating functions (Hilbert-Poincaré series) are solutions to those equations and reproduce generating series that encode BPS invariants. Furthermore, BPS invariants in question are expressed in terms of Lyndon words in an appropriate language, thereby relating counting of BPS states to the branch of mathematics referred to as combinatorics on words. We illustrate these results in the framework of colored extremal knot polynomials: among others we determine dual quantum extremal A-polynomials for various knots, present associated combinatorial models, find corresponding BPS invariants (extremal Labastida-Mariño-Ooguri-Vafa invariants) and discuss their integrality.

  15. Entropy, extremality, euclidean variations, and the equations of motion

    NASA Astrophysics Data System (ADS)

    Dong, Xi; Lewkowycz, Aitor

    2018-01-01

    We study the Euclidean gravitational path integral computing the Rényi entropy and analyze its behavior under small variations. We argue that, in Einstein gravity, the extremality condition can be understood from the variational principle at the level of the action, without having to solve explicitly the equations of motion. This set-up is then generalized to arbitrary theories of gravity, where we show that the respective entanglement entropy functional needs to be extremized. We also extend this result to all orders in Newton's constant G N , providing a derivation of quantum extremality. Understanding quantum extremality for mixtures of states provides a generalization of the dual of the boundary modular Hamiltonian which is given by the bulk modular Hamiltonian plus the area operator, evaluated on the so-called modular extremal surface. This gives a bulk prescription for computing the relative entropies to all orders in G N . We also comment on how these ideas can be used to derive an integrated version of the equations of motion, linearized around arbitrary states.

  16. Higher Order Time Integration Schemes for the Unsteady Navier-Stokes Equations on Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Jothiprasad, Giridhar; Mavriplis, Dimitri J.; Caughey, David A.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    The efficiency gains obtained using higher-order implicit Runge-Kutta schemes as compared with the second-order accurate backward difference schemes for the unsteady Navier-Stokes equations are investigated. Three different algorithms for solving the nonlinear system of equations arising at each timestep are presented. The first algorithm (NMG) is a pseudo-time-stepping scheme which employs a non-linear full approximation storage (FAS) agglomeration multigrid method to accelerate convergence. The other two algorithms are based on Inexact Newton's methods. The linear system arising at each Newton step is solved using iterative/Krylov techniques and left preconditioning is used to accelerate convergence of the linear solvers. One of the methods (LMG) uses Richardson's iterative scheme for solving the linear system at each Newton step while the other (PGMRES) uses the Generalized Minimal Residual method. Results demonstrating the relative superiority of these Newton's methods based schemes are presented. Efficiency gains as high as 10 are obtained by combining the higher-order time integration schemes with the more efficient nonlinear solvers.

  17. On the Milankovitch orbital elements for perturbed Keplerian motion

    NASA Astrophysics Data System (ADS)

    Rosengren, Aaron J.; Scheeres, Daniel J.

    2014-03-01

    We consider sets of natural vectorial orbital elements of the Milankovitch type for perturbed Keplerian motion. These elements are closely related to the two vectorial first integrals of the unperturbed two-body problem; namely, the angular momentum vector and the Laplace-Runge-Lenz vector. After a detailed historical discussion of the origin and development of such elements, nonsingular equations for the time variations of these sets of elements under perturbations are established, both in Lagrangian and Gaussian form. After averaging, a compact, elegant, and symmetrical form of secular Milankovitch-like equations is obtained, which reminds of the structure of canonical systems of equations in Hamiltonian mechanics. As an application of this vectorial formulation, we analyze the motion of an object orbiting about a planet (idealized as a point mass moving in a heliocentric elliptical orbit) and subject to solar radiation pressure acceleration (obeying an inverse-square law). We show that the corresponding secular problem is integrable and we give an explicit closed-form solution.

  18. Variational methods for direct/inverse problems of atmospheric dynamics and chemistry

    NASA Astrophysics Data System (ADS)

    Penenko, Vladimir; Penenko, Alexey; Tsvetova, Elena

    2013-04-01

    We present a variational approach for solving direct and inverse problems of atmospheric hydrodynamics and chemistry. It is important that the accurate matching of numerical schemes has to be provided in the chain of objects: direct/adjoint problems - sensitivity relations - inverse problems, including assimilation of all available measurement data. To solve the problems we have developed a new enhanced set of cost-effective algorithms. The matched description of the multi-scale processes is provided by a specific choice of the variational principle functionals for the whole set of integrated models. Then all functionals of variational principle are approximated in space and time by splitting and decomposition methods. Such approach allows us to separately consider, for example, the space-time problems of atmospheric chemistry in the frames of decomposition schemes for the integral identity sum analogs of the variational principle at each time step and in each of 3D finite-volumes. To enhance the realization efficiency, the set of chemical reactions is divided on the subsets related to the operators of production and destruction. Then the idea of the Euler's integrating factors is applied in the frames of the local adjoint problem technique [1]-[3]. The analytical solutions of such adjoint problems play the role of integrating factors for differential equations describing atmospheric chemistry. With their help, the system of differential equations is transformed to the equivalent system of integral equations. As a result we avoid the construction and inversion of preconditioning operators containing the Jacobi matrixes which arise in traditional implicit schemes for ODE solution. This is the main advantage of our schemes. At the same time step but on the different stages of the "global" splitting scheme, the system of atmospheric dynamic equations is solved. For convection - diffusion equations for all state functions in the integrated models we have developed the monotone and stable discrete-analytical numerical schemes [1]-[3] conserving the positivity of the chemical substance concentrations and possessing the properties of energy and mass balance that are postulated in the general variational principle for integrated models. All algorithms for solution of transport, diffusion and transformation problems are direct (without iterations). The work is partially supported by the Programs No 4 of Presidium RAS and No 3 of Mathematical Department of RAS, by RFBR project 11-01-00187 and Integrating projects of SD RAS No 8 and 35. Our studies are in the line with the goals of COST Action ES1004. References Penenko V., Tsvetova E. Discrete-analytical methods for the implementation of variational principles in environmental applications// Journal of computational and applied mathematics, 2009, v. 226, 319-330. Penenko A.V. Discrete-analytic schemes for solving an inverse coefficient heat conduction problem in a layered medium with gradient methods// Numerical Analysis and Applications, 2012, V. 5, pp 326-341. V. Penenko, E. Tsvetova. Variational methods for constructing the monotone approximations for atmospheric chemistry models //Numerical Analysis and Applications, 2013 (in press).

  19. Solving Ordinary Differential Equations

    NASA Technical Reports Server (NTRS)

    Krogh, F. T.

    1987-01-01

    Initial-value ordinary differential equation solution via variable order Adams method (SIVA/DIVA) package is collection of subroutines for solution of nonstiff ordinary differential equations. There are versions for single-precision and double-precision arithmetic. Requires fewer evaluations of derivatives than other variable-order Adams predictor/ corrector methods. Option for direct integration of second-order equations makes integration of trajectory problems significantly more efficient. Written in FORTRAN 77.

  20. FAST TRACK COMMUNICATION: On the Liouvillian solution of second-order linear differential equations and algebraic invariant curves

    NASA Astrophysics Data System (ADS)

    Man, Yiu-Kwong

    2010-10-01

    In this communication, we present a method for computing the Liouvillian solution of second-order linear differential equations via algebraic invariant curves. The main idea is to integrate Kovacic's results on second-order linear differential equations with the Prelle-Singer method for computing first integrals of differential equations. Some examples on using this approach are provided.

  1. On the solution of integral equations with a generalized cauchy kernel

    NASA Technical Reports Server (NTRS)

    Kaya, A. C.; Erdogan, F.

    1986-01-01

    In this paper a certain class of singular integral equations that may arise from the mixed boundary value problems in nonhomogeneous materials is considered. The distinguishing feature of these equations is that in addition to the Cauchy singularity, the kernels contain terms that are singular only at the end points. In the form of the singular integral equations adopted, the density function is a potential or a displacement and consequently the kernel has strong singularities of the form (t-x) sup-2, x sup n-2 (t+x) sup n, (n or = 2, 0x,tb). The complex function theory is used to determine the fundamental function of the problem for the general case and a simple numerical technique is described to solve the integral equation. Two examples from the theory of elasticity are then considered to show the application of the technique.

  2. An exterior Poisson solver using fast direct methods and boundary integral equations with applications to nonlinear potential flow

    NASA Technical Reports Server (NTRS)

    Young, D. P.; Woo, A. C.; Bussoletti, J. E.; Johnson, F. T.

    1986-01-01

    A general method is developed combining fast direct methods and boundary integral equation methods to solve Poisson's equation on irregular exterior regions. The method requires O(N log N) operations where N is the number of grid points. Error estimates are given that hold for regions with corners and other boundary irregularities. Computational results are given in the context of computational aerodynamics for a two-dimensional lifting airfoil. Solutions of boundary integral equations for lifting and nonlifting aerodynamic configurations using preconditioned conjugate gradient are examined for varying degrees of thinness.

  3. Davidenko’s Method for the Solution of Nonlinear Operator Equations.

    DTIC Science & Technology

    NONLINEAR DIFFERENTIAL EQUATIONS, NUMERICAL INTEGRATION), OPERATORS(MATHEMATICS), BANACH SPACE , MAPPING (TRANSFORMATIONS), NUMERICAL METHODS AND PROCEDURES, INTEGRALS, SET THEORY, CONVERGENCE, MATRICES(MATHEMATICS)

  4. The non-autonomous YdKN equation and generalized symmetries of Boll equations

    NASA Astrophysics Data System (ADS)

    Gubbiotti, G.; Scimiterna, C.; Levi, D.

    2017-05-01

    In this paper, we study the integrability of a class of nonlinear non-autonomous quad graph equations compatible around the cube introduced by Boll in the framework of the generalized Adler, Bobenko, and Suris (ABS) classification. We show that all these equations possess three-point generalized symmetries which are subcases of either the Yamilov discretization of the Krichever-Novikov equation or of its non-autonomous extension. We also prove that all those symmetries are integrable as they pass the algebraic entropy test.

  5. Solving the Hamilton-Jacobi equation for general relativity

    NASA Astrophysics Data System (ADS)

    Parry, J.; Salopek, D. S.; Stewart, J. M.

    1994-03-01

    We demonstrate a systematic method for solving the Hamilton-Jacobi equation for general relativity with the inclusion of matter fields. The generating functional is expanded in a series of spatial gradients. Each term is manifestly invariant under reparametrizations of the spatial coordinates (``gauge invariant''). At each order we solve the Hamiltonian constraint using a conformal transformation of the three-metric as well as a line integral in superspace. This gives a recursion relation for the generating functional which then may be solved to arbitrary order simply by functionally differentiating previous orders. At fourth order in spatial gradients we demonstrate solutions for irrotational dust as well as for a scalar field. We explicitly evolve the three-metric to the same order. This method can be used to derive the Zel'dovich approximation for general relativity.

  6. Development and application of a local linearization algorithm for the integration of quaternion rate equations in real-time flight simulation problems

    NASA Technical Reports Server (NTRS)

    Barker, L. E., Jr.; Bowles, R. L.; Williams, L. H.

    1973-01-01

    High angular rates encountered in real-time flight simulation problems may require a more stable and accurate integration method than the classical methods normally used. A study was made to develop a general local linearization procedure of integrating dynamic system equations when using a digital computer in real-time. The procedure is specifically applied to the integration of the quaternion rate equations. For this application, results are compared to a classical second-order method. The local linearization approach is shown to have desirable stability characteristics and gives significant improvement in accuracy over the classical second-order integration methods.

  7. Solving Simple Kinetics without Integrals

    ERIC Educational Resources Information Center

    de la Pen~a, Lisandro Herna´ndez

    2016-01-01

    The solution of simple kinetic equations is analyzed without referencing any topic from differential equations or integral calculus. Guided by the physical meaning of the rate equation, a systematic procedure is used to generate an approximate solution that converges uniformly to the exact solution in the case of zero, first, and second order…

  8. Unsteady free surface flow in porous media: One-dimensional model equations including vertical effects and seepage face

    NASA Astrophysics Data System (ADS)

    Di Nucci, Carmine

    2018-05-01

    This note examines the two-dimensional unsteady isothermal free surface flow of an incompressible fluid in a non-deformable, homogeneous, isotropic, and saturated porous medium (with zero recharge and neglecting capillary effects). Coupling a Boussinesq-type model for nonlinear water waves with Darcy's law, the two-dimensional flow problem is solved using one-dimensional model equations including vertical effects and seepage face. In order to take into account the seepage face development, the system equations (given by the continuity and momentum equations) are completed by an integral relation (deduced from the Cauchy theorem). After testing the model against data sets available in the literature, some numerical simulations, concerning the unsteady flow through a rectangular dam (with an impermeable horizontal bottom), are presented and discussed.

  9. A Jacobi collocation approximation for nonlinear coupled viscous Burgers' equation

    NASA Astrophysics Data System (ADS)

    Doha, Eid H.; Bhrawy, Ali H.; Abdelkawy, Mohamed A.; Hafez, Ramy M.

    2014-02-01

    This article presents a numerical approximation of the initial-boundary nonlinear coupled viscous Burgers' equation based on spectral methods. A Jacobi-Gauss-Lobatto collocation (J-GL-C) scheme in combination with the implicit Runge-Kutta-Nyström (IRKN) scheme are employed to obtain highly accurate approximations to the mentioned problem. This J-GL-C method, based on Jacobi polynomials and Gauss-Lobatto quadrature integration, reduces solving the nonlinear coupled viscous Burgers' equation to a system of nonlinear ordinary differential equation which is far easier to solve. The given examples show, by selecting relatively few J-GL-C points, the accuracy of the approximations and the utility of the approach over other analytical or numerical methods. The illustrative examples demonstrate the accuracy, efficiency, and versatility of the proposed algorithm.

  10. Generalized Legendre transformations and symmetries of the WDVV equations

    NASA Astrophysics Data System (ADS)

    Strachan, Ian A. B.; Stedman, Richard

    2017-03-01

    The Witten-Dijkgraaf-Verlinde-Verlinde (or WDVV) equations, as one would expect from an integrable system, has many symmetries, both continuous and discrete. One class—the so-called Legendre transformations—were introduced by Dubrovin. They are a discrete set of symmetries between the stronger concept of a Frobenius manifold, and are generated by certain flat vector fields. In this paper this construction is generalized to the case where the vector field (called here the Legendre field) is non-flat but satisfies a certain set of defining equations. One application of this more general theory is to generate the induced symmetry between almost-dual Frobenius manifolds whose underlying Frobenius manifolds are related by a Legendre transformation. This also provides a map between rational and trigonometric solutions of the WDVV equations.

  11. Extended nonlinear Schrödinger equation with higher-order odd and even terms and its rogue wave solutions.

    PubMed

    Ankiewicz, Adrian; Wang, Yan; Wabnitz, Stefan; Akhmediev, Nail

    2014-01-01

    We consider an extended nonlinear Schrödinger equation with higher-order odd (third order) and even (fourth order) terms with variable coefficients. The resulting equation has soliton solutions and approximate rogue wave solutions. We present these solutions up to second order. Moreover, specific constraints on the parameters of higher-order terms provide integrability of the resulting equation, providing a corresponding Lax pair. Particular cases of this equation are the Hirota and the Lakshmanan-Porsezian-Daniel equations. The resulting integrable equation admits exact rogue wave solutions. In particular cases, mentioned above, these solutions are reduced to the rogue wave solutions of the corresponding equations.

  12. Chapman-Enskog expansion for the Vicsek model of self-propelled particles

    NASA Astrophysics Data System (ADS)

    Ihle, Thomas

    2016-08-01

    Using the standard Vicsek model, I show how the macroscopic transport equations can be systematically derived from microscopic collision rules. The approach starts with the exact evolution equation for the N-particle probability distribution and, after making the mean-field assumption of molecular chaos, leads to a multi-particle Enskog-type equation. This equation is treated by a non-standard Chapman-Enskog expansion to extract the macroscopic behavior. The expansion includes terms up to third order in a formal expansion parameter ɛ, and involves a fast time scale. A self-consistent closure of the moment equations is presented that leads to a continuity equation for the particle density and a Navier-Stokes-like equation for the momentum density. Expressions for all transport coefficients in these macroscopic equations are given explicitly in terms of microscopic parameters of the model. The transport coefficients depend on specific angular integrals which are evaluated asymptotically in the limit of infinitely many collision partners, using an analogy to a random walk. The consistency of the Chapman-Enskog approach is checked by an independent calculation of the shear viscosity using a Green-Kubo relation.

  13. Breather management in the derivative nonlinear Schrödinger equation with variable coefficients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Wei-Ping, E-mail: zhongwp6@126.com; Texas A&M University at Qatar, P.O. Box 23874 Doha; Belić, Milivoj

    2015-04-15

    We investigate breather solutions of the generalized derivative nonlinear Schrödinger (DNLS) equation with variable coefficients, which is used in the description of femtosecond optical pulses in inhomogeneous media. The solutions are constructed by means of the similarity transformation, which reduces a particular form of the generalized DNLS equation into the standard one, with constant coefficients. Examples of bright and dark breathers of different orders, that ride on finite backgrounds and may be related to rogue waves, are presented. - Highlights: • Exact solutions of a generalized derivative NLS equation are obtained. • The solutions are produced by means of amore » transformation to the usual integrable equation. • The validity of the solutions is verified by comparing them to numerical counterparts. • Stability of the solutions is checked by means of direct simulations. • The model applies to the propagation of ultrashort pulses in optical media.« less

  14. Exact solution of the hidden Markov processes.

    PubMed

    Saakian, David B

    2017-11-01

    We write a master equation for the distributions related to hidden Markov processes (HMPs) and solve it using a functional equation. Thus the solution of HMPs is mapped exactly to the solution of the functional equation. For a general case the latter can be solved only numerically. We derive an exact expression for the entropy of HMPs. Our expression for the entropy is an alternative to the ones given before by the solution of integral equations. The exact solution is possible because actually the model can be considered as a generalized random walk on a one-dimensional strip. While we give the solution for the two second-order matrices, our solution can be easily generalized for the L values of the Markov process and M values of observables: We should be able to solve a system of L functional equations in the space of dimension M-1.

  15. Exact solution of the hidden Markov processes

    NASA Astrophysics Data System (ADS)

    Saakian, David B.

    2017-11-01

    We write a master equation for the distributions related to hidden Markov processes (HMPs) and solve it using a functional equation. Thus the solution of HMPs is mapped exactly to the solution of the functional equation. For a general case the latter can be solved only numerically. We derive an exact expression for the entropy of HMPs. Our expression for the entropy is an alternative to the ones given before by the solution of integral equations. The exact solution is possible because actually the model can be considered as a generalized random walk on a one-dimensional strip. While we give the solution for the two second-order matrices, our solution can be easily generalized for the L values of the Markov process and M values of observables: We should be able to solve a system of L functional equations in the space of dimension M -1 .

  16. Scattering of electromagnetic plane wave from a perfect electric conducting strip placed at interface of topological insulator-chiral medium

    NASA Astrophysics Data System (ADS)

    Shoukat, Sobia; Naqvi, Qaisar A.

    2016-12-01

    In this manuscript, scattering from a perfect electric conducting strip located at planar interface of topological insulator (TI)-chiral medium is investigated using the Kobayashi Potential method. Longitudinal components of electric and magnetic vector potential in terms of unknown weighting function are considered. Use of related set of boundary conditions yields two algebraic equations and four dual integral equations (DIEs). Integrand of two DIEs are expanded in terms of the characteristic functions with expansion coefficients which must satisfy, simultaneously, the discontinuous property of the Weber-Schafheitlin integrals, required edge and boundary conditions. The resulting expressions are then combined with algebraic equations to express the weighting function in terms of expansion coefficients, these expansion coefficients are then substituted in remaining DIEs. The projection is applied using the Jacobi polynomials. This treatment yields matrix equation for expansion coefficients which is solved numerically. These unknown expansion coefficients are used to find the scattered field. The far zone scattering width is investigated with respect to different parameters of the geometry, i.e, chirality of chiral medium, angle of incidence, size of the strip. Significant effects of different parameters including TI parameter on the scattering width are noted.

  17. Compacton solutions in a class of generalized fifth-order Korteweg-de Vries equations.

    PubMed

    Cooper, F; Hyman, J M; Khare, A

    2001-08-01

    Solitons play a fundamental role in the evolution of general initial data for quasilinear dispersive partial differential equations, such as the Korteweg-de Vries (KdV), nonlinear Schrödinger, and the Kadomtsev-Petviashvili equations. These integrable equations have linear dispersion and the solitons have infinite support. We have derived and investigate a new KdV-like Hamiltonian partial differential equation from a four-parameter Lagrangian where the nonlinear dispersion gives rise to solitons with compact support (compactons). The new equation does not seem to be integrable and only mass, momentum, and energy seem to be conserved; yet, the solitons display almost the same modal decompositions and structural stability observed in integrable partial differential equations. The compactons formed from arbitrary initial data, are nonlinearly self-stabilizing, and maintain their coherence after multiple collisions. The robustness of these compactons and the inapplicability of the inverse scattering tools, that worked so well for the KdV equation, make it clear that there is a fundamental mechanism underlying the processes beyond integrability. We have found explicit formulas for multiple classes of compact traveling wave solutions. When there are more than one compacton solution for a particular set of parameters, the wider compacton is the minimum of a reduced Hamiltonian and is the only one that is stable.

  18. Integral equation approach to time-dependent kinematic dynamos in finite domains

    NASA Astrophysics Data System (ADS)

    Xu, Mingtian; Stefani, Frank; Gerbeth, Gunter

    2004-11-01

    The homogeneous dynamo effect is at the root of cosmic magnetic field generation. With only a very few exceptions, the numerical treatment of homogeneous dynamos is carried out in the framework of the differential equation approach. The present paper tries to facilitate the use of integral equations in dynamo research. Apart from the pedagogical value to illustrate dynamo action within the well-known picture of the Biot-Savart law, the integral equation approach has a number of practical advantages. The first advantage is its proven numerical robustness and stability. The second and perhaps most important advantage is its applicability to dynamos in arbitrary geometries. The third advantage is its intimate connection to inverse problems relevant not only for dynamos but also for technical applications of magnetohydrodynamics. The paper provides the first general formulation and application of the integral equation approach to time-dependent kinematic dynamos, with stationary dynamo sources, in finite domains. The time dependence is restricted to the magnetic field, whereas the velocity or corresponding mean-field sources of dynamo action are supposed to be stationary. For the spherically symmetric α2 dynamo model it is shown how the general formulation is reduced to a coupled system of two radial integral equations for the defining scalars of the poloidal and toroidal field components. The integral equation formulation for spherical dynamos with general stationary velocity fields is also derived. Two numerical examples—the α2 dynamo model with radially varying α and the Bullard-Gellman model—illustrate the equivalence of the approach with the usual differential equation method. The main advantage of the method is exemplified by the treatment of an α2 dynamo in rectangular domains.

  19. Integrated Force Method Solution to Indeterminate Structural Mechanics Problems

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Hopkins, Dale A.; Halford, Gary R.

    2004-01-01

    Strength of materials problems have been classified into determinate and indeterminate problems. Determinate analysis primarily based on the equilibrium concept is well understood. Solutions of indeterminate problems required additional compatibility conditions, and its comprehension was not exclusive. A solution to indeterminate problem is generated by manipulating the equilibrium concept, either by rewriting in the displacement variables or through the cutting and closing gap technique of the redundant force method. Compatibility improvisation has made analysis cumbersome. The authors have researched and understood the compatibility theory. Solutions can be generated with equal emphasis on the equilibrium and compatibility concepts. This technique is called the Integrated Force Method (IFM). Forces are the primary unknowns of IFM. Displacements are back-calculated from forces. IFM equations are manipulated to obtain the Dual Integrated Force Method (IFMD). Displacement is the primary variable of IFMD and force is back-calculated. The subject is introduced through response variables: force, deformation, displacement; and underlying concepts: equilibrium equation, force deformation relation, deformation displacement relation, and compatibility condition. Mechanical load, temperature variation, and support settling are equally emphasized. The basic theory is discussed. A set of examples illustrate the new concepts. IFM and IFMD based finite element methods are introduced for simple problems.

  20. A boundary integral approach to the scattering of nonplanar acoustic waves by rigid bodies

    NASA Technical Reports Server (NTRS)

    Gallman, Judith M.; Myers, M. K.; Farassat, F.

    1990-01-01

    The acoustic scattering of an incident wave by a rigid body can be described by a singular Fredholm integral equation of the second kind. This equation is derived by solving the wave equation using generalized function theory, Green's function for the wave equation in unbounded space, and the acoustic boundary condition for a perfectly rigid body. This paper will discuss the derivation of the wave equation, its reformulation as a boundary integral equation, and the solution of the integral equation by the Galerkin method. The accuracy of the Galerkin method can be assessed by applying the technique outlined in the paper to reproduce the known pressure fields that are due to various point sources. From the analysis of these simpler cases, the accuracy of the Galerkin solution can be inferred for the scattered pressure field caused by the incidence of a dipole field on a rigid sphere. The solution by the Galerkin technique can then be applied to such problems as a dipole model of a propeller whose pressure field is incident on a rigid cylinder. This is the groundwork for modeling the scattering of rotating blade noise by airplane fuselages.

  1. The fluid-dynamic paradigm of the dust-acoustic soliton

    NASA Astrophysics Data System (ADS)

    McKenzie, J. F.

    2002-06-01

    In most studies, the properties of dust-acoustic solitons are derived from the first integral of the Poisson equation, in which the shape of the pseudopotential determines both the conditions in which a soliton may exist and its amplitude. Here this first integral is interpreted as conservation of total momentum, which, along with the Bernoulli-like energy equations for each species, may be cast as the structure equation for the dust (or heavy-ion) speed in the wave. In this fluid-dynamic picture, the significance of the sonic points of each species becomes apparent. In the wave, the heavy-ion (or dust) flow speed is supersonic (relative to its sound speed), whereas the protons and electrons are subsonic (relative to their sound speeds), and the dust flow is driven towards its sonic point. It is this last feature that limits the strength (amplitude) of the wave, since the equilibrium point (the centre of the wave) must be reached before the dust speed becomes sonic. The wave is characterized by a compression in the heavies and a compression (rarefaction) in the electrons and a rarefaction (compression) in the protons if the heavies have positive (negative) charge, and the corresponding potential is a hump (dip). These features are elucidated by an exact analytical soliton, in a special case, which provides the fully nonlinear counterpoint to the weakly nonlinear sech2-type solitons associated with the Korteweg de Vries equation, and indicates the parameter regimes in which solitons may exist.

  2. Generalized Functions for the Fractional Calculus

    NASA Technical Reports Server (NTRS)

    Lorenzo, Carl F.; Hartley, Tom T.

    1999-01-01

    Previous papers have used two important functions for the solution of fractional order differential equations, the Mittag-Leffler functionE(sub q)[at(exp q)](1903a, 1903b, 1905), and the F-function F(sub q)[a,t] of Hartley & Lorenzo (1998). These functions provided direct solution and important understanding for the fundamental linear fractional order differential equation and for the related initial value problem (Hartley and Lorenzo, 1999). This paper examines related functions and their Laplace transforms. Presented for consideration are two generalized functions, the R-function and the G-function, useful in analysis and as a basis for computation in the fractional calculus. The R-function is unique in that it contains all of the derivatives and integrals of the F-function. The R-function also returns itself on qth order differ-integration. An example application of the R-function is provided. A further generalization of the R-function, called the G-function brings in the effects of repeated and partially repeated fractional poles.

  3. Quantum Wronskian approach to six-point gluon scattering amplitudes at strong coupling

    NASA Astrophysics Data System (ADS)

    Hatsuda, Yasuyuki; Ito, Katsushi; Satoh, Yuji; Suzuki, Junji

    2014-08-01

    We study the six-point gluon scattering amplitudes in = 4 super Yang-Mills theory at strong coupling based on the twisted ℤ4-symmetric integrable model. The lattice regularization allows us to derive the associated thermodynamic Bethe ansatz (TBA) equations as well as the functional relations among the Q-/T-/Y-functions. The quantum Wronskian relation for the Q-/T-functions plays an important role in determining a series of the expansion coefficients of the T-/Y-functions around the UV limit, including the dependence on the twist parameter. Studying the CFT limit of the TBA equations, we derive the leading analytic expansion of the remainder function for the general kinematics around the limit where the dual Wilson loops become regular-polygonal. We also compare the rescaled remainder functions at strong coupling with those at two, three and four loops, and find that they are close to each other along the trajectories parameterized by the scale parameter of the integrable model.

  4. GENERIC Integrators: Structure Preserving Time Integration for Thermodynamic Systems

    NASA Astrophysics Data System (ADS)

    Öttinger, Hans Christian

    2018-04-01

    Thermodynamically admissible evolution equations for non-equilibrium systems are known to possess a distinct mathematical structure. Within the GENERIC (general equation for the non-equilibrium reversible-irreversible coupling) framework of non-equilibrium thermodynamics, which is based on continuous time evolution, we investigate the possibility of preserving all the structural elements in time-discretized equations. Our approach, which follows Moser's [1] construction of symplectic integrators for Hamiltonian systems, is illustrated for the damped harmonic oscillator. Alternative approaches are sketched.

  5. The application of the integral equation theory to study the hydrophobic interaction

    PubMed Central

    Mohorič, Tomaž; Urbic, Tomaz; Hribar-Lee, Barbara

    2014-01-01

    The Wertheim's integral equation theory was tested against newly obtained Monte Carlo computer simulations to describe the potential of mean force between two hydrophobic particles. An excellent agreement was obtained between the theoretical and simulation results. Further, the Wertheim's integral equation theory with polymer Percus-Yevick closure qualitatively correctly (with respect to the experimental data) describes the solvation structure under conditions where the simulation results are difficult to obtain with good enough accuracy. PMID:24437891

  6. Algorithms For Integrating Nonlinear Differential Equations

    NASA Technical Reports Server (NTRS)

    Freed, A. D.; Walker, K. P.

    1994-01-01

    Improved algorithms developed for use in numerical integration of systems of nonhomogenous, nonlinear, first-order, ordinary differential equations. In comparison with integration algorithms, these algorithms offer greater stability and accuracy. Several asymptotically correct, thereby enabling retention of stability and accuracy when large increments of independent variable used. Accuracies attainable demonstrated by applying them to systems of nonlinear, first-order, differential equations that arise in study of viscoplastic behavior, spread of acquired immune-deficiency syndrome (AIDS) virus and predator/prey populations.

  7. Solving differential equations for Feynman integrals by expansions near singular points

    NASA Astrophysics Data System (ADS)

    Lee, Roman N.; Smirnov, Alexander V.; Smirnov, Vladimir A.

    2018-03-01

    We describe a strategy to solve differential equations for Feynman integrals by powers series expansions near singular points and to obtain high precision results for the corresponding master integrals. We consider Feynman integrals with two scales, i.e. non-trivially depending on one variable. The corresponding algorithm is oriented at situations where canonical form of the differential equations is impossible. We provide a computer code constructed with the help of our algorithm for a simple example of four-loop generalized sunset integrals with three equal non-zero masses and two zero masses. Our code gives values of the master integrals at any given point on the real axis with a required accuracy and a given order of expansion in the regularization parameter ɛ.

  8. Ion Streaming Instabilities in Pair Ion Plasma and Localized Structure with Non-Thermal Electrons

    NASA Astrophysics Data System (ADS)

    Nasir Khattak, M.; Mushtaq, A.; Qamar, A.

    2015-12-01

    Pair ion plasma with a fraction of non-thermal electrons is considered. We investigate the effects of the streaming motion of ions on linear and nonlinear properties of unmagnetized, collisionless plasma by using the fluid model. A dispersion relation is derived, and the growth rate of streaming instabilities with effect of streaming motion of ions and non-thermal electrons is calculated. A qausi-potential approach is adopted to study the characteristics of ion acoustic solitons. An energy integral equation involving Sagdeev potential is derived during this process. The presence of the streaming term in the energy integral equation affects the structure of the solitary waves significantly along with non-thermal electrons. Possible application of the work to the space and laboratory plasmas are highlighted.

  9. Steady/unsteady aerodynamic analysis of wings at subsonic, sonic and supersonic Mach numbers using a 3D panel method

    NASA Astrophysics Data System (ADS)

    Cho, Jeonghyun; Han, Cheolheui; Cho, Leesang; Cho, Jinsoo

    2003-08-01

    This paper treats the kernel function of an integral equation that relates a known or prescribed upwash distribution to an unknown lift distribution for a finite wing. The pressure kernel functions of the singular integral equation are summarized for all speed range in the Laplace transform domain. The sonic kernel function has been reduced to a form, which can be conveniently evaluated as a finite limit from both the subsonic and supersonic sides when the Mach number tends to one. Several examples are solved including rectangular wings, swept wings, a supersonic transport wing and a harmonically oscillating wing. Present results are given with other numerical data, showing continuous results through the unit Mach number. Computed results are in good agreement with other numerical results.

  10. Frequency modulation at a moving material interface and a conservation law for wave number. [acoustic wave reflection and transmission

    NASA Technical Reports Server (NTRS)

    Kleinstein, G. G.; Gunzburger, M. D.

    1976-01-01

    An integral conservation law for wave numbers is considered. In order to test the validity of the proposed conservation law, a complete solution for the reflection and transmission of an acoustic wave impinging normally on a material interface moving at a constant speed is derived. The agreement between the frequency condition thus deduced from the dynamic equations of motion and the frequency condition derived from the jump condition associated with the integral equation supports the proposed law as a true conservation law. Additional comparisons such as amplitude discontinuities and Snells' law in a moving media further confirm the stated proposition. Results are stated concerning frequency and wave number relations across a shock front as predicted by the proposed conservation law.

  11. A numerical scheme to solve unstable boundary value problems

    NASA Technical Reports Server (NTRS)

    Kalnay-Rivas, E.

    1977-01-01

    The considered scheme makes it possible to determine an unstable steady state solution in cases in which, because of lack of symmetry, such a solution cannot be obtained analytically, and other time integration or relaxation schemes, because of instability, fail to converge. The iterative solution of a single complex equation is discussed and a nonlinear system of equations is considered. Described applications of the scheme are related to a steady state solution with shear instability, an unstable nonlinear Ekman boundary layer, and the steady state solution of a baroclinic atmosphere with asymmetric forcing. The scheme makes use of forward and backward time integrations of the original spatial differential operators and of an approximation of the adjoint operators. Only two computations of the time derivative per iteration are required.

  12. Minimal string theories and integrable hierarchies

    NASA Astrophysics Data System (ADS)

    Iyer, Ramakrishnan

    Well-defined, non-perturbative formulations of the physics of string theories in specific minimal or superminimal model backgrounds can be obtained by solving matrix models in the double scaling limit. They provide us with the first examples of completely solvable string theories. Despite being relatively simple compared to higher dimensional critical string theories, they furnish non-perturbative descriptions of interesting physical phenomena such as geometrical transitions between D-branes and fluxes, tachyon condensation and holography. The physics of these theories in the minimal model backgrounds is succinctly encoded in a non-linear differential equation known as the string equation, along with an associated hierarchy of integrable partial differential equations (PDEs). The bosonic string in (2,2m-1) conformal minimal model backgrounds and the type 0A string in (2,4 m) superconformal minimal model backgrounds have the Korteweg-de Vries system, while type 0B in (2,4m) backgrounds has the Zakharov-Shabat system. The integrable PDE hierarchy governs flows between backgrounds with different m. In this thesis, we explore this interesting connection between minimal string theories and integrable hierarchies further. We uncover the remarkable role that an infinite hierarchy of non-linear differential equations plays in organizing and connecting certain minimal string theories non-perturbatively. We are able to embed the type 0A and 0B (A,A) minimal string theories into this single framework. The string theories arise as special limits of a rich system of equations underpinned by an integrable system known as the dispersive water wave hierarchy. We find that there are several other string-like limits of the system, and conjecture that some of them are type IIA and IIB (A,D) minimal string backgrounds. We explain how these and several other string-like special points arise and are connected. In some cases, the framework endows the theories with a non-perturbative definition for the first time. Notably, we discover that the Painleve IV equation plays a key role in organizing the string theory physics, joining its siblings, Painleve I and II, whose roles have previously been identified in this minimal string context. We then present evidence that the conjectured type II theories have smooth non-perturbative solutions, connecting two perturbative asymptotic regimes, in a 't Hooft limit. Our technique also demonstrates evidence for new minimal string theories that are not apparent in a perturbative analysis.

  13. Contact interaction of thin-walled elements with an elastic layer and an infinite circular cylinder under torsion

    NASA Astrophysics Data System (ADS)

    Kanetsyan, E. G.; Mkrtchyan, M. S.; Mkhitaryan, S. M.

    2018-04-01

    We consider a class of contact torsion problems on interaction of thin-walled elements shaped as an elastic thin washer – a flat circular plate of small height – with an elastic layer, in particular, with a half-space, and on interaction of thin cylindrical shells with a solid elastic cylinder, infinite in both directions. The governing equations of the physical models of elastic thin washers and thin circular cylindrical shells under torsion are derived from the exact equations of mathematical theory of elasticity using the Hankel and Fourier transforms. Within the framework of the accepted physical models, the solution of the contact problem between an elastic washer and an elastic layer is reduced to solving the Fredholm integral equation of the first kind with a kernel representable as a sum of the Weber–Sonin integral and some integral regular kernel, while solving the contact problem between a cylindrical shell and solid cylinder is reduced to a singular integral equation (SIE). An effective method for solving the governing integral equations of these problems are specified.

  14. Comparison of numerical techniques for integration of stiff ordinary differential equations arising in combustion chemistry

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, K.

    1984-01-01

    The efficiency and accuracy of several algorithms recently developed for the efficient numerical integration of stiff ordinary differential equations are compared. The methods examined include two general-purpose codes, EPISODE and LSODE, and three codes (CHEMEQ, CREK1D, and GCKP84) developed specifically to integrate chemical kinetic rate equations. The codes are applied to two test problems drawn from combustion kinetics. The comparisons show that LSODE is the fastest code currently available for the integration of combustion kinetic rate equations. An important finding is that an interactive solution of the algebraic energy conservation equation to compute the temperature does not result in significant errors. In addition, this method is more efficient than evaluating the temperature by integrating its time derivative. Significant reductions in computational work are realized by updating the rate constants (k = at(supra N) N exp(-E/RT) only when the temperature change exceeds an amount delta T that is problem dependent. An approximate expression for the automatic evaluation of delta T is derived and is shown to result in increased efficiency.

  15. Lie-Hamilton systems on the plane: Properties, classification and applications

    NASA Astrophysics Data System (ADS)

    Ballesteros, A.; Blasco, A.; Herranz, F. J.; de Lucas, J.; Sardón, C.

    2015-04-01

    We study Lie-Hamilton systems on the plane, i.e. systems of first-order differential equations describing the integral curves of a t-dependent vector field taking values in a finite-dimensional real Lie algebra of planar Hamiltonian vector fields with respect to a Poisson structure. We start with the local classification of finite-dimensional real Lie algebras of vector fields on the plane obtained in González-López, Kamran, and Olver (1992) [23] and we interpret their results as a local classification of Lie systems. By determining which of these real Lie algebras consist of Hamiltonian vector fields relative to a Poisson structure, we provide the complete local classification of Lie-Hamilton systems on the plane. We present and study through our results new Lie-Hamilton systems of interest which are used to investigate relevant non-autonomous differential equations, e.g. we get explicit local diffeomorphisms between such systems. We also analyse biomathematical models, the Milne-Pinney equations, second-order Kummer-Schwarz equations, complex Riccati equations and Buchdahl equations.

  16. Differential equations for loop integrals in Baikov representation

    NASA Astrophysics Data System (ADS)

    Bosma, Jorrit; Larsen, Kasper J.; Zhang, Yang

    2018-05-01

    We present a proof that differential equations for Feynman loop integrals can always be derived in Baikov representation without involving dimension-shift identities. We moreover show that in a large class of two- and three-loop diagrams it is possible to avoid squared propagators in the intermediate steps of setting up the differential equations.

  17. Monograph - The Numerical Integration of Ordinary Differential Equations.

    ERIC Educational Resources Information Center

    Hull, T. E.

    The materials presented in this monograph are intended to be included in a course on ordinary differential equations at the upper division level in a college mathematics program. These materials provide an introduction to the numerical integration of ordinary differential equations, and they can be used to supplement a regular text on this…

  18. An Analytical Comparison of the Acoustic Analogy and Kirchhoff Formulation for Moving Surfaces

    NASA Technical Reports Server (NTRS)

    Brentner, Kenneth S.; Farassat, F.

    1997-01-01

    The Lighthill acoustic analogy, as embodied in the Ffowcs Williams-Hawkings (FW-H) equation, is compared with the Kirchhoff formulation for moving surfaces. A comparison of the two governing equations reveals that the main Kirchhoff advantage (namely nonlinear flow effects are included in the surface integration) is also available to the FW-H method if the integration surface used in the FW-H equation is not assumed impenetrable. The FW-H equation is analytically superior for aeroacoustics because it is based upon the conservation laws of fluid mechanics rather than the wave equation. This means that the FW-H equation is valid even if the integration surface is in the nonlinear region. This is demonstrated numerically in the paper. The Kirchhoff approach can lead to substantial errors if the integration surface is not positioned in the linear region. These errors may be hard to identify. Finally, new metrics based on the Sobolev norm are introduced which may be used to compare input data for both quadrupole noise calculations and Kirchhoff noise predictions.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanna, T.; Vijayajayanthi, M.; Lakshmanan, M.

    The bright soliton solutions of the mixed coupled nonlinear Schroedinger equations with two components (2-CNLS) with linear self- and cross-coupling terms have been obtained by identifying a transformation that transforms the corresponding equation to the integrable mixed 2-CNLS equations. The study on the collision dynamics of bright solitons shows that there exists periodic energy switching, due to the coupling terms. This periodic energy switching can be controlled by the new type of shape changing collisions of bright solitons arising in a mixed 2-CNLS system, characterized by intensity redistribution, amplitude dependent phase shift, and relative separation distance. We also point outmore » that this system exhibits large periodic intensity switching even with very small linear self-coupling strengths.« less

  20. Calculation of turbulent boundary layers with heat transfer and pressure gradient utilizing a compressibility transformation. Part 3: Computer program manual

    NASA Technical Reports Server (NTRS)

    Schneider, J.; Boccio, J.

    1972-01-01

    A computer program is described capable of determining the properties of a compressible turbulent boundary layer with pressure gradient and heat transfer. The program treats the two-dimensional problem assuming perfect gas and Crocco integral energy solution. A compressibility transformation is applied to the equation for the conservation of mass and momentum, which relates this flow to a low speed constant property flow with simultaneous mass transfer and pressure gradient. The resulting system of describing equations consists of eight ordinary differential equations which are solved numerically. For Part 1, see N72-12226; for Part 2, see N72-15264.

  1. Apparatus and method for determining solids circulation rate

    DOEpatents

    Ludlow, J Christopher [Morgantown, WV; Spenik, James L [Morgantown, WV

    2012-02-14

    The invention relates to a method of determining bed velocity and solids circulation rate in a standpipe experiencing a moving packed bed flow, such as the in the standpipe section of a circulating bed fluidized reactor The method utilizes in-situ measurement of differential pressure over known axial lengths of the standpipe in conjunction with in-situ gas velocity measurement for a novel application of Ergun equations allowing determination of standpipe void fraction and moving packed bed velocity. The method takes advantage of the moving packed bed property of constant void fraction in order to integrate measured parameters into simultaneous solution of Ergun-based equations and conservation of mass equations across multiple sections of the standpipe.

  2. Numerical quadrature methods for integrals of singular periodic functions and their application to singular and weakly singular integral equations

    NASA Technical Reports Server (NTRS)

    Sidi, A.; Israeli, M.

    1986-01-01

    High accuracy numerical quadrature methods for integrals of singular periodic functions are proposed. These methods are based on the appropriate Euler-Maclaurin expansions of trapezoidal rule approximations and their extrapolations. They are used to obtain accurate quadrature methods for the solution of singular and weakly singular Fredholm integral equations. Such periodic equations are used in the solution of planar elliptic boundary value problems, elasticity, potential theory, conformal mapping, boundary element methods, free surface flows, etc. The use of the quadrature methods is demonstrated with numerical examples.

  3. Introduction to the thermodynamic Bethe ansatz

    NASA Astrophysics Data System (ADS)

    van Tongeren, Stijn J.

    2016-08-01

    We give a pedagogical introduction to the thermodynamic Bethe ansatz, a method that allows us to describe the thermodynamics of integrable models whose spectrum is found via the (asymptotic) Bethe ansatz. We set the stage by deriving the Fermi-Dirac distribution and associated free energy of free electrons, and then in a similar though technically more complicated fashion treat the thermodynamics of integrable models, focusing first on the one-dimensional Bose gas with delta function interaction as a clean pedagogical example, secondly the XXX spin chain as an elementary (lattice) model with prototypical complicating features in the form of bound states, and finally the {SU}(2) chiral Gross-Neveu model as a field theory example. Throughout this discussion we emphasize the central role of particle and hole densities, whose relations determine the model under consideration. We then discuss tricks that allow us to use the same methods to describe the exact spectra of integrable field theories on a circle, in particular the chiral Gross-Neveu model. We moreover discuss the simplification of TBA equations to Y systems, including the transition back to integral equations given sufficient analyticity data, in simple examples.

  4. Path integral Monte Carlo ground state approach: formalism, implementation, and applications

    NASA Astrophysics Data System (ADS)

    Yan, Yangqian; Blume, D.

    2017-11-01

    Monte Carlo techniques have played an important role in understanding strongly correlated systems across many areas of physics, covering a wide range of energy and length scales. Among the many Monte Carlo methods applicable to quantum mechanical systems, the path integral Monte Carlo approach with its variants has been employed widely. Since semi-classical or classical approaches will not be discussed in this review, path integral based approaches can for our purposes be divided into two categories: approaches applicable to quantum mechanical systems at zero temperature and approaches applicable to quantum mechanical systems at finite temperature. While these two approaches are related to each other, the underlying formulation and aspects of the algorithm differ. This paper reviews the path integral Monte Carlo ground state (PIGS) approach, which solves the time-independent Schrödinger equation. Specifically, the PIGS approach allows for the determination of expectation values with respect to eigen states of the few- or many-body Schrödinger equation provided the system Hamiltonian is known. The theoretical framework behind the PIGS algorithm, implementation details, and sample applications for fermionic systems are presented.

  5. A Corresponding Lie Algebra of a Reductive homogeneous Group and Its Applications

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-Feng; Wu, Li-Xin; Rui, Wen-Juan

    2015-05-01

    With the help of a Lie algebra of a reductive homogeneous space G/K, where G is a Lie group and K is a resulting isotropy group, we introduce a Lax pair for which an expanding (2+1)-dimensional integrable hierarchy is obtained by applying the binormial-residue representation (BRR) method, whose Hamiltonian structure is derived from the trace identity for deducing (2+1)-dimensional integrable hierarchies, which was proposed by Tu, et al. We further consider some reductions of the expanding integrable hierarchy obtained in the paper. The first reduction is just right the (2+1)-dimensional AKNS hierarchy, the second-type reduction reveals an integrable coupling of the (2+1)-dimensional AKNS equation (also called the Davey-Stewartson hierarchy), a kind of (2+1)-dimensional Schrödinger equation, which was once reobtained by Tu, Feng and Zhang. It is interesting that a new (2+1)-dimensional integrable nonlinear coupled equation is generated from the reduction of the part of the (2+1)-dimensional integrable coupling, which is further reduced to the standard (2+1)-dimensional diffusion equation along with a parameter. In addition, the well-known (1+1)-dimensional AKNS hierarchy, the (1+1)-dimensional nonlinear Schrödinger equation are all special cases of the (2+1)-dimensional expanding integrable hierarchy. Finally, we discuss a few discrete difference equations of the diffusion equation whose stabilities are analyzed by making use of the von Neumann condition and the Fourier method. Some numerical solutions of a special stationary initial value problem of the (2+1)-dimensional diffusion equation are obtained and the resulting convergence and estimation formula are investigated. Supported by the Innovation Team of Jiangsu Province hosted by China University of Mining and Technology (2014), the National Natural Science Foundation of China under Grant No. 11371361, the Fundamental Research Funds for the Central Universities (2013XK03), and the Natural Science Foundation of Shandong Province under Grant No. ZR2013AL016

  6. Equations of motion of slung-load systems, including multilift systems

    NASA Technical Reports Server (NTRS)

    Cicolani, Luigi S.; Kanning, Gerd

    1992-01-01

    General simulation equations are derived for the rigid body motion of slung-load systems. This work is motivated by an interest in trajectory control for slung loads carried by two or more helicopters. An approximation of these systems consists of several rigid bodies connected by straight-line cables or links. The suspension can be assumed elastic or inelastic. Equations for the general system are obtained from the Newton-Euler rigid-body equations with the introduction of generalized velocity coordinates. Three forms are obtained: two generalize previous case-specific results for single-helicopter systems with elastic and inelastic suspensions, respectively; and the third is a new formulation for inelastic suspensions. The latter is derived from the elastic suspension equations by choosing the generalized coordinates so that motion induced by cable stretching is separated from motion with invariant cable lengths, and by then nulling the stretching coordinates to get a relation for the suspension forces. The result is computationally more efficient than the conventional formulation, is readily integrated with the elastic suspension formulation, and is easily applied to the complex dual-lift and multilift systems. Results are given for two-helicopter systems; three configurations are included and these can be integrated in a single simulation. Equations are also given for some single-helicopter systems, for comparison with the previous literature, and for a multilift system. Equations for degenerate-body approximations (point masses, rigid rods) are also formulated and results are given for dual-lift and multilift systems. Finally, linearlized equations of motion are given for general slung-load systems are presented along with results for the two-helicopter system with a spreader bar.

  7. The use of simple inflow- and storage-based heuristics equations to represent reservoir behavior in California for investigating human impacts on the water cycle

    NASA Astrophysics Data System (ADS)

    Solander, K.; David, C. H.; Reager, J. T.; Famiglietti, J. S.

    2013-12-01

    The ability to reasonably replicate reservoir behavior in terms of storage and outflow is important for studying the potential human impacts on the terrestrial water cycle. Developing a simple method for this purpose could facilitate subsequent integration in a land surface or global climate model. This study attempts to simulate monthly reservoir outflow and storage using a simple, temporally-varying set of heuristics equations with input consisting of in situ records of reservoir inflow and storage. Equations of increasing complexity relative to the number of parameters involved were tested. Only two parameters were employed in the final equations used to predict outflow and storage in an attempt to best mimic seasonal reservoir behavior while still preserving model parsimony. California reservoirs were selected for model development due to the high level of data availability and intensity of water resource management in this region relative to other areas. Calibration was achieved using observations from eight major reservoirs representing approximately 41% of the 107 largest reservoirs in the state. Parameter optimization was accomplished using the minimum RMSE between observed and modeled storage and outflow as the main objective function. Initial results obtained for a multi-reservoir average of the correlation coefficient between observed and modeled storage (resp. outflow) is of 0.78 (resp. 0.75). These results combined with the simplicity of the equations being used show promise for integration into a land surface or a global climate model. This would be invaluable for evaluations of reservoir management impacts on the flow regime and associated ecosystems as well as on the climate at both regional and global scales.

  8. Solving the hypersingular boundary integral equation in three-dimensional acoustics using a regularization relationship.

    PubMed

    Yan, Zai You; Hung, Kin Chew; Zheng, Hui

    2003-05-01

    Regularization of the hypersingular integral in the normal derivative of the conventional Helmholtz integral equation through a double surface integral method or regularization relationship has been studied. By introducing the new concept of discretized operator matrix, evaluation of the double surface integrals is reduced to calculate the product of two discretized operator matrices. Such a treatment greatly improves the computational efficiency. As the number of frequencies to be computed increases, the computational cost of solving the composite Helmholtz integral equation is comparable to that of solving the conventional Helmholtz integral equation. In this paper, the detailed formulation of the proposed regularization method is presented. The computational efficiency and accuracy of the regularization method are demonstrated for a general class of acoustic radiation and scattering problems. The radiation of a pulsating sphere, an oscillating sphere, and a rigid sphere insonified by a plane acoustic wave are solved using the new method with curvilinear quadrilateral isoparametric elements. It is found that the numerical results rapidly converge to the corresponding analytical solutions as finer meshes are applied.

  9. Reply to "Comment on 'Defocusing complex short-pulse equation and its multi-dark-soliton solution' ".

    PubMed

    Feng, Bao-Feng; Ling, Liming; Zhu, Zuonong

    2017-08-01

    Our paper [Phys. Rev. E 93, 052227 (2016)PREHBM2470-004510.1103/PhysRevE.93.052227], proposing an integrable model for the propagation of ultrashort pulses, has recently received a Comment by Youssoufa et al. [Phys. Rev. E 96, 026201 (2017)10.1103/PhysRevE.96.026201] about a possible flaw in its derivation. We point out that their claim is incorrect since we have stated explicitly that a term is neglected to derive our model equation in our paper. Furthermore, the integrable model is validated by comparing with the normalized Maxwell equation and other known integrable models. Moreover, we show that a similar approximation has to be performed in deriving the same integrable equation as explained in the Comment.

  10. A new aerodynamic integral equation based on an acoustic formula in the time domain

    NASA Technical Reports Server (NTRS)

    Farassat, F.

    1984-01-01

    An aerodynamic integral equation for bodies moving at transonic and supersonic speeds is presented. Based on a time-dependent acoustic formula for calculating the noise emanating from the outer portion of a propeller blade travelling at high speed (the Ffowcs Williams-Hawking formulation), the loading terms and a conventional thickness source terms are retained. Two surface and three line integrals are employed to solve an equation for the loading noise. The near-field term is regularized using the collapsing sphere approach to obtain semiconvergence on the blade surface. A singular integral equation is thereby derived for the unknown surface pressure, and is amenable to numerical solutions using Galerkin or collocation methods. The technique is useful for studying the nonuniform inflow to the propeller.

  11. Classical integrable defects as quasi Bäcklund transformations

    NASA Astrophysics Data System (ADS)

    Doikou, Anastasia

    2016-10-01

    We consider the algebraic setting of classical defects in discrete and continuous integrable theories. We derive the ;equations of motion; on the defect point via the space-like and time-like description. We then exploit the structural similarity of these equations with the discrete and continuous Bäcklund transformations. And although these equations are similar they are not exactly the same to the Bäcklund transformations. We also consider specific examples of integrable models to demonstrate our construction, i.e. the Toda chain and the sine-Gordon model. The equations of the time (space) evolution of the defect (discontinuity) degrees of freedom for these models are explicitly derived.

  12. Analytical expressions for the correlation function of a hard sphere dimer fluid

    NASA Astrophysics Data System (ADS)

    Kim, Soonho; Chang, Jaeeon; Kim, Hwayong

    A closed form expression is given for the correlation function of a hard sphere dimer fluid. A set of integral equations is obtained from Wertheim's multidensity Ornstein-Zernike integral equation theory with Percus-Yevick approximation. Applying the Laplace transformation method to the integral equations and then solving the resulting equations algebraically, the Laplace transforms of the individual correlation functions are obtained. By the inverse Laplace transformation, the radial distribution function (RDF) is obtained in closed form out to 3D (D is the segment diameter). The analytical expression for the RDF of the hard dimer should be useful in developing the perturbation theory of dimer fluids.

  13. Analytical expression for the correlation function of a hard sphere chain fluid

    NASA Astrophysics Data System (ADS)

    Chang, Jaeeon; Kim, Hwayong

    A closed form expression is given for the correlation function of flexible hard sphere chain fluid. A set of integral equations obtained from Wertheim's multidensity Ornstein-Zernike integral equation theory with the polymer Percus-Yevick ideal chain approximation is considered. Applying the Laplace transformation method to the integral equations and then solving the resulting equations algebraically, the Laplace transforms of individual correlation functions are obtained. By inverse Laplace transformation the inter- and intramolecular radial distribution functions (RDFs) are obtained in closed forms up to 3D(D is segment diameter). These analytical expressions for the RDFs would be useful in developing the perturbation theory of chain fluids.

  14. Simulation of RF-fields in a fusion device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Witte, Dieter; Bogaert, Ignace; De Zutter, Daniel

    2009-11-26

    In this paper the problem of scattering off a fusion plasma is approached from the point of view of integral equations. Using the volume equivalence principle an integral equation is derived which describes the electromagnetic fields in a plasma. The equation is discretized with MoM using conforming basis functions. This reduces the problem to solving a dense matrix equation. This can be done iteratively. Each iteration can be sped up using FFTs.

  15. On the conservation laws and solutions of a (2+1) dimensional KdV-mKdV equation of mathematical physics

    NASA Astrophysics Data System (ADS)

    Motsepa, Tanki; Masood Khalique, Chaudry

    2018-05-01

    In this paper, we study a (2+1) dimensional KdV-mKdV equation, which models many physical phenomena of mathematical physics. This equation has two integral terms in it. By an appropriate substitution, we convert this equation into two partial differential equations, which do not have integral terms and are equivalent to the original equation. We then work with the system of two equations and obtain its exact travelling wave solutions in form of Jacobi elliptic functions. Furthermore, we employ the multiplier method to construct conservation laws for the system. Finally, we revert the results obtained into the original variables of the (2+1) dimensional KdV-mKdV equation.

  16. An improved two-dimensional depth-integrated flow equation for rough-walled fractures

    NASA Astrophysics Data System (ADS)

    Mallikamas, Wasin; Rajaram, Harihar

    2010-08-01

    We present the development of an improved 2-D flow equation for rough-walled fractures. Our improved equation accounts for the influence of midsurface tortuosity and the fact that the aperture normal to the midsurface is in general smaller than the vertical aperture. It thus improves upon the well-known Reynolds equation that is widely used for modeling flow in fractures. Unlike the Reynolds equation, our approach begins from the lubrication approximation applied in an inclined local coordinate system tangential to the fracture midsurface. The local flow equation thus obtained is rigorously transformed to an arbitrary global Cartesian coordinate system, invoking the concepts of covariant and contravariant transformations for vectors defined on surfaces. Unlike previously proposed improvements to the Reynolds equation, our improved flow equation accounts for tortuosity both along and perpendicular to a flow path. Our approach also leads to a well-defined anisotropic local transmissivity tensor relating the representations of the flux and head gradient vectors in a global Cartesian coordinate system. We show that the principal components of the transmissivity tensor and the orientation of its principal axes depend on the directional local midsurface slopes. In rough-walled fractures, the orientations of the principal axes of the local transmissivity tensor will vary from point to point. The local transmissivity tensor also incorporates the influence of the local normal aperture, which is uniquely defined at each point in the fracture. Our improved flow equation is a rigorous statement of mass conservation in any global Cartesian coordinate system. We present three examples of simple geometries to compare our flow equation to analytical solutions obtained using the exact Stokes equations: an inclined parallel plate, and circumferential and axial flows in an incomplete annulus. The effective transmissivities predicted by our flow equation agree very well with values obtained using the exact Stokes equations in all these cases. We discuss potential limitations of our depth-integrated equation, which include the neglect of convergence/divergence and the inaccuracies implicit in any depth-averaging process near sharp corners where the wall and midsurface curvatures are large.

  17. New integrable model of propagation of the few-cycle pulses in an anisotropic microdispersed medium

    NASA Astrophysics Data System (ADS)

    Sazonov, S. V.; Ustinov, N. V.

    2018-03-01

    We investigate the propagation of the few-cycle electromagnetic pulses in the anisotropic microdispersed medium. The effects of the anisotropy and spatial dispersion of the medium are created by the two sorts of the two-level atoms. The system of the material equations describing an evolution of the states of the atoms and the wave equations for the ordinary and extraordinary components of the pulses is derived. By applying the approximation of the sudden excitation to exclude the material variables, we reduce this system to the single nonlinear wave equation that generalizes the modified sine-Gordon equation and the Rabelo-Fokas equation. It is shown that this equation is integrable by means of the inverse scattering transformation method if an additional restriction on the parameters is imposed. The multisoliton solutions of this integrable generalization are constructed and investigated.

  18. Hierarchies of Manakov-Santini Type by Means of Rota-Baxter and Other Identities

    NASA Astrophysics Data System (ADS)

    Szablikowski, Błażej

    2016-02-01

    The Lax-Sato approach to the hierarchies of Manakov-Santini type is formalized in order to extend it to a more general class of integrable systems. For this purpose some linear operators are introduced, which must satisfy some integrability conditions, one of them is the Rota-Baxter identity. The theory is illustrated by means of the algebra of Laurent series, the related hierarchies are classified and examples, also new, of Manakov-Santini type systems are constructed, including those that are related to the dispersionless modified Kadomtsev-Petviashvili equation and so called dispersionless r-th systems.

  19. The rotational motion of an earth orbiting gyroscope according to the Einstein theory of general relativity

    NASA Technical Reports Server (NTRS)

    Hoots, F. R.; Fitzpatrick, P. M.

    1979-01-01

    The classical Poisson equations of rotational motion are used to study the attitude motions of an earth orbiting, rapidly spinning gyroscope perturbed by the effects of general relativity (Einstein theory). The center of mass of the gyroscope is assumed to move about a rotating oblate earth in an evolving elliptic orbit which includes all first-order oblateness effects produced by the earth. A method of averaging is used to obtain a transformation of variables, for the nonresonance case, which significantly simplifies the Poisson differential equations of motion of the gyroscope. Long-term solutions are obtained by an exact analytical integration of the simplified transformed equations. These solutions may be used to predict both the orientation of the gyroscope and the motion of its rotational angular momentum vector as viewed from its center of mass. The results are valid for all eccentricities and all inclinations not near the critical inclination.

  20. A numerical relativity scheme for cosmological simulations

    NASA Astrophysics Data System (ADS)

    Daverio, David; Dirian, Yves; Mitsou, Ermis

    2017-12-01

    Cosmological simulations involving the fully covariant gravitational dynamics may prove relevant in understanding relativistic/non-linear features and, therefore, in taking better advantage of the upcoming large scale structure survey data. We propose a new 3  +  1 integration scheme for general relativity in the case where the matter sector contains a minimally-coupled perfect fluid field. The original feature is that we completely eliminate the fluid components through the constraint equations, thus remaining with a set of unconstrained evolution equations for the rest of the fields. This procedure does not constrain the lapse function and shift vector, so it holds in arbitrary gauge and also works for arbitrary equation of state. An important advantage of this scheme is that it allows one to define and pass an adaptation of the robustness test to the cosmological context, at least in the case of pressureless perfect fluid matter, which is the relevant one for late-time cosmology.

  1. First integrals and parametric solutions of third-order ODEs admitting {\\mathfrak{sl}(2, {R})}

    NASA Astrophysics Data System (ADS)

    Ruiz, A.; Muriel, C.

    2017-05-01

    A complete set of first integrals for any third-order ordinary differential equation admitting a Lie symmetry algebra isomorphic to sl(2, {R}) is explicitly computed. These first integrals are derived from two linearly independent solutions of a linear second-order ODE, without additional integration. The general solution in parametric form can be obtained by using the computed first integrals. The study includes a parallel analysis of the four inequivalent realizations of sl(2, {R}) , and it is applied to several particular examples. These include the generalized Chazy equation, as well as an example of an equation which admits the most complicated of the four inequivalent realizations.

  2. The ε-form of the differential equations for Feynman integrals in the elliptic case

    NASA Astrophysics Data System (ADS)

    Adams, Luise; Weinzierl, Stefan

    2018-06-01

    Feynman integrals are easily solved if their system of differential equations is in ε-form. In this letter we show by the explicit example of the kite integral family that an ε-form can even be achieved, if the Feynman integrals do not evaluate to multiple polylogarithms. The ε-form is obtained by a (non-algebraic) change of basis for the master integrals.

  3. Distribution theory for Schrödinger’s integral equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lange, Rutger-Jan, E-mail: rutger-jan.lange@cantab.net

    2015-12-15

    Much of the literature on point interactions in quantum mechanics has focused on the differential form of Schrödinger’s equation. This paper, in contrast, investigates the integral form of Schrödinger’s equation. While both forms are known to be equivalent for smooth potentials, this is not true for distributional potentials. Here, we assume that the potential is given by a distribution defined on the space of discontinuous test functions. First, by using Schrödinger’s integral equation, we confirm a seminal result by Kurasov, which was originally obtained in the context of Schrödinger’s differential equation. This hints at a possible deeper connection between bothmore » forms of the equation. We also sketch a generalisation of Kurasov’s [J. Math. Anal. Appl. 201(1), 297–323 (1996)] result to hypersurfaces. Second, we derive a new closed-form solution to Schrödinger’s integral equation with a delta prime potential. This potential has attracted considerable attention, including some controversy. Interestingly, the derived propagator satisfies boundary conditions that were previously derived using Schrödinger’s differential equation. Third, we derive boundary conditions for “super-singular” potentials given by higher-order derivatives of the delta potential. These boundary conditions cannot be incorporated into the normal framework of self-adjoint extensions. We show that the boundary conditions depend on the energy of the solution and that probability is conserved. This paper thereby confirms several seminal results and derives some new ones. In sum, it shows that Schrödinger’s integral equation is a viable tool for studying singular interactions in quantum mechanics.« less

  4. A boundary integral approach in primitive variables for free surface flows

    NASA Astrophysics Data System (ADS)

    Casciola, C.; Piva, R.

    The boundary integral formulation, very efficient for free surface potential flows, was considered for its possible extension to rotational flows either inviscid or viscous. We first analyze a general formulation for unsteady Navier-Stokes equations in primitive variables, which reduces to a representation for the Euler equations in the limiting case of Reynolds infinity. A first simplified model for rotational flows, obtained by decoupling kinematics and dynamics, reduces the integral equations to a known kinematical form whose mathematical and numerical properties have been studied. The dynamics equations to complete the model are obtained for the free surface and the wake. A simple and efficient scheme for the study of the non linear evolution of the wave system and its interaction with the body wake is presented. A steady state version for the calculation of the wave resistance is also reported. A second model was proposed for the simulation of rotational separated regions, by coupling the integral equations in velocity with an integral equation for the vorticity at the body boundary. The same procedure may be extended to include the diffusion of the vorticity in the flowfield. The vortex shedding from a cylindrical body in unsteady motion is discussed, as a first application of the model.

  5. Adaptive focusing of laser radiation onto a rough reflecting surface through the turbulent and nonlinear atmosphere

    NASA Astrophysics Data System (ADS)

    Vorontsov, Mikhail A.; Kolosov, Valeriy V.

    2004-12-01

    Target-in-the-loop (TIL) wave propagation geometry represents perhaps the most challenging case for adaptive optics applications that are related with maximization of irradiance power density on extended remotely located surfaces in the presence of dynamically changing refractive index inhomogeneities in the propagation medium. We introduce a TIL propagation model that uses a combination of the parabolic equation describing outgoing wave propagation, and the equation describing evolution of the mutual coherence function (MCF) for the backscattered (returned) wave. The resulting evolution equation for the MCF is further simplified by the use of the smooth refractive index approximation. This approximation enables derivation of the transport equation for the returned wave brightness function, analyzed here using method characteristics (brightness function trajectories). The equations for the brightness function trajectories (ray equations) can be efficiently integrated numerically. We also consider wavefront sensors that perform sensing of speckle-averaged characteristics of the wavefront phase (TIL sensors). Analysis of the wavefront phase reconstructed from Shack-Hartmann TIL sensor measurements shows that an extended target introduces a phase modulation (target-induced phase) that cannot be easily separated from the atmospheric turbulence-related phase aberrations. We also show that wavefront sensing results depend on the extended target shape, surface roughness, and the outgoing beam intensity distribution on the target surface.

  6. Analysis of wave propagation and wavefront sensing in target-in-the-loop beam control systems

    NASA Astrophysics Data System (ADS)

    Vorontsov, Mikhail A.; Kolosov, Valeri V.

    2004-10-01

    Target-in-the-loop (TIL) wave propagation geometry represents perhaps the most challenging case for adaptive optics applications that are related with maximization of irradiance power density on extended remotely located surfaces in the presence of dynamically changing refractive index inhomogeneities in the propagation medium. We introduce a TIL propagation model that uses a combination of the parabolic equation describing outgoing wave propagation, and the equation describing evolution of the mutual intensity function (MIF) for the backscattered (returned) wave. The resulting evolution equation for the MIF is further simplified by the use of the smooth refractive index approximation. This approximation enables derivation of the transport equation for the returned wave brightness function, analyzed here using method characteristics (brightness function trajectories). The equations for the brightness function trajectories (ray equations) can be efficiently integrated numerically. We also consider wavefront sensors that perform sensing of speckle-averaged characteristics of the wavefront phase (TIL sensors). Analysis of the wavefront phase reconstructed from Shack-Hartmann TIL sensor measurements shows that an extended target introduces a phase modulation (target-induced phase) that cannot be easily separated from the atmospheric turbulence-related phase aberrations. We also show that wavefront sensing results depend on the extended target shape, surface roughness, and the outgoing beam intensity distribution on the target surface.

  7. Chordwise and compressibility corrections to slender-wing theory

    NASA Technical Reports Server (NTRS)

    Lomax, Harvard; Sluder, Loma

    1952-01-01

    Corrections to slender-wing theory are obtained by assuming a spanwise distribution of loading and determining the chordwise variation which satisfies the appropriate integral equation. Such integral equations are set up in terms of the given vertical induced velocity on the center line or, depending on the type of wing plan form, its average value across the span at a given chord station. The chordwise distribution is then obtained by solving these integral equations. Results are shown for flat-plate rectangular, and triangular wings.

  8. The ATOMFT integrator - Using Taylor series to solve ordinary differential equations

    NASA Technical Reports Server (NTRS)

    Berryman, Kenneth W.; Stanford, Richard H.; Breckheimer, Peter J.

    1988-01-01

    This paper discusses the application of ATOMFT, an integration package based on Taylor series solution with a sophisticated user interface. ATOMFT has the capabilities to allow the implementation of user defined functions and the solution of stiff and algebraic equations. Detailed examples, including the solutions to several astrodynamics problems, are presented. Comparisons with its predecessor ATOMCC and other modern integrators indicate that ATOMFT is a fast, accurate, and easy method to use to solve many differential equation problems.

  9. Parameterizing microphysical effects on variances and covariances of moisture and heat content using a multivariate probability density function: a study with CLUBB (tag MVCS)

    DOE PAGES

    Griffin, Brian M.; Larson, Vincent E.

    2016-11-25

    Microphysical processes, such as the formation, growth, and evaporation of precipitation, interact with variability and covariances (e.g., fluxes) in moisture and heat content. For instance, evaporation of rain may produce cold pools, which in turn may trigger fresh convection and precipitation. These effects are usually omitted or else crudely parameterized at subgrid scales in weather and climate models.A more formal approach is pursued here, based on predictive, horizontally averaged equations for the variances, covariances, and fluxes of moisture and heat content. These higher-order moment equations contain microphysical source terms. The microphysics terms can be integrated analytically, given a suitably simplemore » warm-rain microphysics scheme and an approximate assumption about the multivariate distribution of cloud-related and precipitation-related variables. Performing the integrations provides exact expressions within an idealized context.A large-eddy simulation (LES) of a shallow precipitating cumulus case is performed here, and it indicates that the microphysical effects on (co)variances and fluxes can be large. In some budgets and altitude ranges, they are dominant terms. The analytic expressions for the integrals are implemented in a single-column, higher-order closure model. Interactive single-column simulations agree qualitatively with the LES. The analytic integrations form a parameterization of microphysical effects in their own right, and they also serve as benchmark solutions that can be compared to non-analytic integration methods.« less

  10. Matrix algorithms for solving (in)homogeneous bound state equations

    PubMed Central

    Blank, M.; Krassnigg, A.

    2011-01-01

    In the functional approach to quantum chromodynamics, the properties of hadronic bound states are accessible via covariant integral equations, e.g. the Bethe–Salpeter equation for mesons. In particular, one has to deal with linear, homogeneous integral equations which, in sophisticated model setups, use numerical representations of the solutions of other integral equations as part of their input. Analogously, inhomogeneous equations can be constructed to obtain off-shell information in addition to bound-state masses and other properties obtained from the covariant analogue to a wave function of the bound state. These can be solved very efficiently using well-known matrix algorithms for eigenvalues (in the homogeneous case) and the solution of linear systems (in the inhomogeneous case). We demonstrate this by solving the homogeneous and inhomogeneous Bethe–Salpeter equations and find, e.g. that for the calculation of the mass spectrum it is as efficient or even advantageous to use the inhomogeneous equation as compared to the homogeneous. This is valuable insight, in particular for the study of baryons in a three-quark setup and more involved systems. PMID:21760640

  11. Efficiently and easily integrating differential equations with JiTCODE, JiTCDDE, and JiTCSDE

    NASA Astrophysics Data System (ADS)

    Ansmann, Gerrit

    2018-04-01

    We present a family of Python modules for the numerical integration of ordinary, delay, or stochastic differential equations. The key features are that the user enters the derivative symbolically and it is just-in-time-compiled, allowing the user to efficiently integrate differential equations from a higher-level interpreted language. The presented modules are particularly suited for large systems of differential equations such as those used to describe dynamics on complex networks. Through the selected method of input, the presented modules also allow almost complete automatization of the process of estimating regular as well as transversal Lyapunov exponents for ordinary and delay differential equations. We conceptually discuss the modules' design, analyze their performance, and demonstrate their capabilities by application to timely problems.

  12. Rapprochement in Late Adolescent Separation-Individuation: A Structural Equations Approach.

    ERIC Educational Resources Information Center

    Quintana, Stephen M.; Lapsley, Daniel K.

    1990-01-01

    Attempted to integrate indices of connection and individuality into a single, positively related construct. College students (n=101) responded to measures of parenting style, individuation, and ego identity. Results suggest that parental control restricts successful individuation but that adjustment on individuation indices predicts advanced…

  13. Asymptotic integration algorithms for first-order ODEs with application to viscoplasticity

    NASA Technical Reports Server (NTRS)

    Freed, Alan D.; Yao, Minwu; Walker, Kevin P.

    1992-01-01

    When constructing an algorithm for the numerical integration of a differential equation, one must first convert the known ordinary differential equation (ODE), which is defined at a point, into an ordinary difference equation (O(delta)E), which is defined over an interval. Asymptotic, generalized, midpoint, and trapezoidal, O(delta)E algorithms are derived for a nonlinear first order ODE written in the form of a linear ODE. The asymptotic forward (typically underdamped) and backward (typically overdamped) integrators bound these midpoint and trapezoidal integrators, which tend to cancel out unwanted numerical damping by averaging, in some sense, the forward and backward integrations. Viscoplasticity presents itself as a system of nonlinear, coupled first-ordered ODE's that are mathematically stiff, and therefore, difficult to numerically integrate. They are an excellent application for the asymptotic integrators. Considering a general viscoplastic structure, it is demonstrated that one can either integrate the viscoplastic stresses or their associated eigenstrains.

  14. Exponential integrators in time-dependent density-functional calculations

    NASA Astrophysics Data System (ADS)

    Kidd, Daniel; Covington, Cody; Varga, Kálmán

    2017-12-01

    The integrating factor and exponential time differencing methods are implemented and tested for solving the time-dependent Kohn-Sham equations. Popular time propagation methods used in physics, as well as other robust numerical approaches, are compared to these exponential integrator methods in order to judge the relative merit of the computational schemes. We determine an improvement in accuracy of multiple orders of magnitude when describing dynamics driven primarily by a nonlinear potential. For cases of dynamics driven by a time-dependent external potential, the accuracy of the exponential integrator methods are less enhanced but still match or outperform the best of the conventional methods tested.

  15. Calibration of diatom-pH-alkalinity methodology for the interpretation of the sedimentary record in Emerald Lake Integrated watershed study. Final report, 6 May 1985-10 October 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holmes, R.W.

    1986-10-10

    The present study was designed to establish quantitative relationships between lake air-equilibrated pH, alkalinity, and diatoms occurring in the surface sediments in high-elevation Sierra Nevada Lakes. These relationships provided the necessary information to develop predictive equations relating lake pH to the composition of surface-sediment diatom assemblages in 27 study lakes. Using the Hustedt diatom pH classification system, Index B of Renberg and Hellberg, and multiple linear regression analysis, two equations were developed which predict lake pH from the relative abundance of sediment diatoms occurring in each of four diatom pH groupings.

  16. The integrated Michaelis-Menten rate equation: déjà vu or vu jàdé?

    PubMed

    Goličnik, Marko

    2013-08-01

    A recent article of Johnson and Goody (Biochemistry, 2011;50:8264-8269) described the almost-100-years-old paper of Michaelis and Menten. Johnson and Goody translated this classic article and presented the historical perspective to one of incipient enzyme-reaction data analysis, including a pioneering global fit of the integrated rate equation in its implicit form to the experimental time-course data. They reanalyzed these data, although only numerical techniques were used to solve the model equations. However, there is also the still little known algebraic rate-integration equation in a closed form that enables direct fitting of the data. Therefore, in this commentary, I briefly present the integral solution of the Michaelis-Menten rate equation, which has been largely overlooked for three decades. This solution is expressed in terms of the Lambert W function, and I demonstrate here its use for global nonlinear regression curve fitting, as carried out with the original time-course dataset of Michaelis and Menten.

  17. The Boundary Integral Equation Method for Porous Media Flow

    NASA Astrophysics Data System (ADS)

    Anderson, Mary P.

    Just as groundwater hydrologists are breathing sighs of relief after the exertions of learning the finite element method, a new technique has reared its nodes—the boundary integral equation method (BIEM) or the boundary equation method (BEM), as it is sometimes called. As Liggett and Liu put it in the preface to The Boundary Integral Equation Method for Porous Media Flow, “Lately, the Boundary Integral Equation Method (BIEM) has emerged as a contender in the computation Derby.” In fact, in July 1984, the 6th International Conference on Boundary Element Methods in Engineering will be held aboard the Queen Elizabeth II, en route from Southampton to New York. These conferences are sponsored by the Department of Civil Engineering at Southampton College (UK), whose members are proponents of BIEM. The conferences have featured papers on applications of BIEM to all aspects of engineering, including flow through porous media. Published proceedings are available, as are textbooks on application of BIEM to engineering problems. There is even a 10-minute film on the subject.

  18. An analysis of the flow field near the fuel injection location in a gas core reactor.

    NASA Technical Reports Server (NTRS)

    Weinstein, H.; Murty, B. G. K.; Porter, R. W.

    1971-01-01

    An analytical study is presented which shows the effects of large energy release and the concurrent high acceleration of inner stream fluid on the coaxial flow field in a gas core reactor. The governing equations include the assumptions of only radial radiative transport of energy represented as an energy diffusion term in the Euler equations. The method of integral relations is used to obtain the numerical solution. Results show that the rapidly accelerating, heat generating inner stream actually shrinks in radius as it expands axially.

  19. Numerical integration of ordinary differential equations of various orders

    NASA Technical Reports Server (NTRS)

    Gear, C. W.

    1969-01-01

    Report describes techniques for the numerical integration of differential equations of various orders. Modified multistep predictor-corrector methods for general initial-value problems are discussed and new methods are introduced.

  20. Neglected transport equations: extended Rankine-Hugoniot conditions and J -integrals for fracture

    NASA Astrophysics Data System (ADS)

    Davey, K.; Darvizeh, R.

    2016-09-01

    Transport equations in integral form are well established for analysis in continuum fluid dynamics but less so for solid mechanics. Four classical continuum mechanics transport equations exist, which describe the transport of mass, momentum, energy and entropy and thus describe the behaviour of density, velocity, temperature and disorder, respectively. However, one transport equation absent from the list is particularly pertinent to solid mechanics and that is a transport equation for movement, from which displacement is described. This paper introduces the fifth transport equation along with a transport equation for mechanical energy and explores some of the corollaries resulting from the existence of these equations. The general applicability of transport equations to discontinuous physics is discussed with particular focus on fracture mechanics. It is well established that bulk properties can be determined from transport equations by application of a control volume methodology. A control volume can be selected to be moving, stationary, mass tracking, part of, or enclosing the whole system domain. The flexibility of transport equations arises from their ability to tolerate discontinuities. It is insightful thus to explore the benefits derived from the displacement and mechanical energy transport equations, which are shown to be beneficial for capturing the physics of fracture arising from a displacement discontinuity. Extended forms of the Rankine-Hugoniot conditions for fracture are established along with extended forms of J -integrals.

  1. Local thermodynamics and the generalized Gibbs-Duhem equation in systems with long-range interactions.

    PubMed

    Latella, Ivan; Pérez-Madrid, Agustín

    2013-10-01

    The local thermodynamics of a system with long-range interactions in d dimensions is studied using the mean-field approximation. Long-range interactions are introduced through pair interaction potentials that decay as a power law in the interparticle distance. We compute the local entropy, Helmholtz free energy, and grand potential per particle in the microcanonical, canonical, and grand canonical ensembles, respectively. From the local entropy per particle we obtain the local equation of state of the system by using the condition of local thermodynamic equilibrium. This local equation of state has the form of the ideal gas equation of state, but with the density depending on the potential characterizing long-range interactions. By volume integration of the relation between the different thermodynamic potentials at the local level, we find the corresponding equation satisfied by the potentials at the global level. It is shown that the potential energy enters as a thermodynamic variable that modifies the global thermodynamic potentials. As a result, we find a generalized Gibbs-Duhem equation that relates the potential energy to the temperature, pressure, and chemical potential. For the marginal case where the power of the decaying interaction potential is equal to the dimension of the space, the usual Gibbs-Duhem equation is recovered. As examples of the application of this equation, we consider spatially uniform interaction potentials and the self-gravitating gas. We also point out a close relationship with the thermodynamics of small systems.

  2. A Tensor-Train accelerated solver for integral equations in complex geometries

    NASA Astrophysics Data System (ADS)

    Corona, Eduardo; Rahimian, Abtin; Zorin, Denis

    2017-04-01

    We present a framework using the Quantized Tensor Train (QTT) decomposition to accurately and efficiently solve volume and boundary integral equations in three dimensions. We describe how the QTT decomposition can be used as a hierarchical compression and inversion scheme for matrices arising from the discretization of integral equations. For a broad range of problems, computational and storage costs of the inversion scheme are extremely modest O (log ⁡ N) and once the inverse is computed, it can be applied in O (Nlog ⁡ N) . We analyze the QTT ranks for hierarchically low rank matrices and discuss its relationship to commonly used hierarchical compression techniques such as FMM and HSS. We prove that the QTT ranks are bounded for translation-invariant systems and argue that this behavior extends to non-translation invariant volume and boundary integrals. For volume integrals, the QTT decomposition provides an efficient direct solver requiring significantly less memory compared to other fast direct solvers. We present results demonstrating the remarkable performance of the QTT-based solver when applied to both translation and non-translation invariant volume integrals in 3D. For boundary integral equations, we demonstrate that using a QTT decomposition to construct preconditioners for a Krylov subspace method leads to an efficient and robust solver with a small memory footprint. We test the QTT preconditioners in the iterative solution of an exterior elliptic boundary value problem (Laplace) formulated as a boundary integral equation in complex, multiply connected geometries.

  3. Feynman path integral application on deriving black-scholes diffusion equation for european option pricing

    NASA Astrophysics Data System (ADS)

    Utama, Briandhika; Purqon, Acep

    2016-08-01

    Path Integral is a method to transform a function from its initial condition to final condition through multiplying its initial condition with the transition probability function, known as propagator. At the early development, several studies focused to apply this method for solving problems only in Quantum Mechanics. Nevertheless, Path Integral could also apply to other subjects with some modifications in the propagator function. In this study, we investigate the application of Path Integral method in financial derivatives, stock options. Black-Scholes Model (Nobel 1997) was a beginning anchor in Option Pricing study. Though this model did not successfully predict option price perfectly, especially because its sensitivity for the major changing on market, Black-Scholes Model still is a legitimate equation in pricing an option. The derivation of Black-Scholes has a high difficulty level because it is a stochastic partial differential equation. Black-Scholes equation has a similar principle with Path Integral, where in Black-Scholes the share's initial price is transformed to its final price. The Black-Scholes propagator function then derived by introducing a modified Lagrange based on Black-Scholes equation. Furthermore, we study the correlation between path integral analytical solution and Monte-Carlo numeric solution to find the similarity between this two methods.

  4. An integral equation-based numerical solver for Taylor states in toroidal geometries

    NASA Astrophysics Data System (ADS)

    O'Neil, Michael; Cerfon, Antoine J.

    2018-04-01

    We present an algorithm for the numerical calculation of Taylor states in toroidal and toroidal-shell geometries using an analytical framework developed for the solution to the time-harmonic Maxwell equations. Taylor states are a special case of what are known as Beltrami fields, or linear force-free fields. The scheme of this work relies on the generalized Debye source representation of Maxwell fields and an integral representation of Beltrami fields which immediately yields a well-conditioned second-kind integral equation. This integral equation has a unique solution whenever the Beltrami parameter λ is not a member of a discrete, countable set of resonances which physically correspond to spontaneous symmetry breaking. Several numerical examples relevant to magnetohydrodynamic equilibria calculations are provided. Lastly, our approach easily generalizes to arbitrary geometries, both bounded and unbounded, and of varying genus.

  5. Efficient Approaches for Evaluating the Planar Microstrip Green's Function and its Applications to the Analysis of Microstrip Antennas.

    NASA Astrophysics Data System (ADS)

    Barkeshli, Sina

    A relatively simple and efficient closed form asymptotic representation of the microstrip dyadic surface Green's function is developed. The large parameter in this asymptotic development is proportional to the lateral separation between the source and field points along the planar microstrip configuration. Surprisingly, this asymptotic solution remains accurate even for very small (almost two tenths of a wavelength) lateral separation of the source and field points. The present asymptotic Green's function will thus allow a very efficient calculation of the currents excited on microstrip antenna patches/feed lines and monolithic millimeter and microwave integrated circuit (MIMIC) elements based on a moment method (MM) solution of an integral equation for these currents. The kernal of the latter integral equation is the present asymptotic form of the microstrip Green's function. It is noted that the conventional Sommerfeld integral representation of the microstrip surface Green's function is very poorly convergent when used in this MM formulation. In addition, an efficient exact steepest descent path integral form employing a radially propagating representation of the microstrip dyadic Green's function is also derived which exhibits a relatively faster convergence when compared to the conventional Sommerfeld integral representation. The same steepest descent form could also be obtained by deforming the integration contour of the conventional Sommerfeld representation; however, the radially propagating integral representation exhibits better convergence properties for laterally separated source and field points even before the steepest descent path of integration is used. Numerical results based on the efficient closed form asymptotic solution for the microstrip surface Green's function developed in this work are presented for the mutual coupling between a pair of dipoles on a single layer grounded dielectric slab. The accuracy of the latter calculations is confirmed by comparison with results based on an exact integral representation for that Green's function.

  6. PREFACE Integrability and nonlinear phenomena Integrability and nonlinear phenomena

    NASA Astrophysics Data System (ADS)

    Gómez-Ullate, David; Lombardo, Sara; Mañas, Manuel; Mazzocco, Marta; Nijhoff, Frank; Sommacal, Matteo

    2010-10-01

    Back in 1967, Clifford Gardner, John Greene, Martin Kruskal and Robert Miura published a seminal paper in Physical Review Letters which was to become a cornerstone in the theory of integrable systems. In 2006, the authors of this paper received the AMS Steele Prize. In this award the AMS pointed out that `In applications of mathematics, solitons and their descendants (kinks, anti-kinks, instantons, and breathers) have entered and changed such diverse fields as nonlinear optics, plasma physics, and ocean, atmospheric, and planetary sciences. Nonlinearity has undergone a revolution: from a nuisance to be eliminated, to a new tool to be exploited.' From this discovery the modern theory of integrability bloomed, leading scientists to a deep understanding of many nonlinear phenomena which is by no means reachable by perturbation methods or other previous tools from linear theories. Nonlinear phenomena appear everywhere in nature, their description and understanding is therefore of great interest both from the theoretical and applicative point of view. If a nonlinear phenomenon can be represented by an integrable system then we have at our disposal a variety of tools to achieve a better mathematical description of the phenomenon. This special issue is largely dedicated to investigations of nonlinear phenomena which are related to the concept of integrability, either involving integrable systems themselves or because they use techniques from the theory of integrability. The idea of this special issue originated during the 18th edition of the Nonlinear Evolution Equations and Dynamical Systems (NEEDS) workshop, held at Isola Rossa, Sardinia, Italy, 16-23 May 2009 (http://needs-conferences.net/2009/). The issue benefits from the occasion offered by the meeting, in particular by its mini-workshops programme, and contains invited review papers and contributed papers. It is worth pointing out that there was an open call for papers and all contributions were peer reviewed according to the standards of the journal. The selection of papers in this issue aims to bring together recent developments and findings, even though it consists of only a fraction of the impressive developments in recent years which have affected a broad range of fields, including the theory of special functions, quantum integrable systems, numerical analysis, cellular automata, representations of quantum groups, symmetries of difference equations, discrete geometry, among others. The special issue begins with four review papers: Integrable models in nonlinear optics and soliton solutions Degasperis [1] reviews integrable models in nonlinear optics. He presents a number of approximate models which are integrable and illustrates the links between the mathematical and applicative aspects of the theory of integrable dynamical systems. In particular he discusses the recent impact of boomeronic-type wave equations on applications arising in the context of the resonant interaction of three waves. Hamiltonian PDEs: deformations, integrability, solutions Dubrovin [2] presents classification results for systems of nonlinear Hamiltonian partial differential equations (PDEs) in one spatial dimension. In particular he uses a perturbative approach to the theory of integrability of these systems and discusses their solutions. He conjectures universality of the critical behaviour for the solutions, where the notion of universality refers to asymptotic independence of the structure of solutions (at the point of gradient catastrophe) from the choice of generic initial data as well as from the choice of a generic PDE. KP solitons in shallow water Kodama [3] presents a survey of recent studies on soliton solutions of the Kadomtsev-Petviashvili (KP) equation. A large variety of exact soliton solutions of the KP equation are presented and classified. The study includes numerical analysis of the stability of the found solution as well as numerical simulations of the initial value problems which indicate that a certain class of initial waves approach asymptotically these exact solutions of the KP equation. The author discusses an application of the theory to the problem of the resonant interaction of solitary waves appearing in the reflection of an obliquely incident wave onto a vertical wall, known as the Mach reflection problem in shallow water. A beautiful explanation of the problem was presented in a swimming pool experiment during NEEDS 2009. Smooth and peaked solitons of the CH equation Holm and Ivanov [4] discuss the relations between smooth and peaked soliton solutions for the Camassa-Holm (CH) shallow water wave equation in one spatial dimension. They first present the derivation of the soliton solution for the CH equation by means of inverse scattering transform (IST); the solution is obtained in a form that admits the peakon limit. The canonical Hamiltonian formulation of the CH equation in action-angle variables is recovered using the scattering data. The authors review some of the geometric properties of the CH equation and conclude their review with the higher dimensional generalization of the dispersionless CH equation, known as EPDiff. They also consider the possible extensions of their approach in three open problems. Regular contributions to this issue cover a wide range of topics related to integrable systems. Let us briefly illustrate some of the topics covered by this issue. One of the main topics is the study of hierarchies of integrable equations. The multifaceted idea of integrability of a particular PDE includes an approach whose aim is to find an infinite set of independent conserved quantities, much in the spirit of Liouville integrability in classical mechanics. The existence of these conserved quantities in involution, or of the corresponding infinite set of commuting symmetries, leads to an infinite set of commuting flows; i.e., to the construction of a hierarchy of compatible PDEs with respect to an infinite set of times. Obviously one can generalize or adapt this construction to different settings like the integro-differential, discrete or super-symmetric ones. The emphasis is usually to find auxiliary linear systems defining an infinite set of linear commuting flows whose solutions, if some asymptotic conditions are imposed, are named wave or Baker-Akhiezer functions. These linear flows determine the so called Lax equations, another infinite set of commuting equations whose compatibility leads to the so called Zakharov-Shabat system. An alternative description of the hierarchies is achieved with the use of the bilinear equations directly linked with the tau-function description of the hierarchy. There are two paradigmatic integrable hierarchies, namely the KP and 2-dimensional Toda lattice (2DTL). These hierarchies are treated within this volume in three contributions. In particular, Takasaki [5] reconsiders the extended Toda hierarchy of Carlet, Dubrovin and Zhang in the light of Ogawa's 2 + 1D extension of the 1D Toda hierarchy. It turns out that the former may be thought of as some sort of dimensional reduction of the latter. This explains the structure of the bilinear formalism proposed by Milanov. Carlet and Manas [6] study the 2-component KP and 2D Toda hierarchies and solve explicitly several implicit constraints present in the usual Lax formulation of the hierarchy, thus identifying a set of free dependent variables for such hierarchies. Finally, the KP hierarchy is considered in the paper by Lin et al [7], which explores the extended flows of a q-deformed modified KP hierarchy leading to the introduction of self-consistent sources. By a combination of the dressing method and the method of variation of constants, the authors are able through a dressing approach to find a scheme for the construction of solutions of the corresponding integrable equations with self-consistent sources. The study of dispersionless integrable hierarchies is an active field of research, and this special issue includes two papers devoted to the subject. Konopelchenko et al [8] describe critical and degenerate critical points of a scalar function which obeys the Euler-Poisson-Darboux equation in terms of the hodograph solutions of the dispersionless coupled Korteweg-de Vries hierarchies. Finally, Bogdanov [9] considers 2-component integrable generalizations of the dispersionless 2D Toda lattice hierarchy connected with non-Hamiltonian vector fields, similar to the Manakov-Santini hierarchy generalizing the dKP hierarchy. He presents the simplest 2-component generalization of the dispersionless 2DTL equation, being its differential reduction analogous to the Dunajski interpolating system. Some papers in the issue are concerned with methods to construct solutions of integrable systems, while others place more emphasis on studying properties of specific solutions of applicative interest. Among the first approach, the paper by Kaup and van Gorder [10] describes perturbation theory applied to the Inverse Scattering Transform in 3x eigenvalue problems of Zakharov-Shabat's type. Schiebold [11] studies a projection method to construct solutions of the Ablowitz-Kaup-Newell-Segur (AKNS) system, which enables her to write explicit N-soliton solutions in closed form. An example of the second kind is the paper by Biondini and Wang [12], who study in detail the behaviour of line soliton solutions of the 2DTL, describing their directions and amplitudes and also the richness of their interactions, which include resonant soliton interactions and web structure. An important field of study in integrable systems relates to the singularity structure of the solutions to nonlinear equations. When all movable singularities are poles, the system is said to have the Painleve property. The solutions may be multivalued but they can be analytically continued to meromorphic functions on the universal cover of the punctured Riemann sphere (the punctures being the fixed singularities) and the spectral curve is an affine algebraic curve. Benes and Previato [13] study the connection between the Painleve property and algebras of differential operators, extending an approach initiated by Flaschka. Solutions to some integrable systems can be constructed in terms of analytic objects associated to a spectral algebraic curve. It is therefore of interest to study the Riemann surfaces of algebraic functions, a program illustrated in the paper by Braden and Northover [14], who have implemented some algorithms for this purpose in a popular symbolic computation software. In the paper by Zhilinski [15], the critical points of the energy momentum map in classical Hamiltonian problems with nontrivial monodromy are shown to form regular lattices. The quantum mechanical counterpart has similar lattices for the joint spectrum of the commuting observables. Some examples are given in which these points form special geometric patterns. Claeys [16] uses analytic techniques and Riemann-Hilbert problems to study the asymptotic behaviour when x and t tend to infinity of a solution to the second member of the Painleve I hierarchy, which arises in multicritical string model theory and random matrix theory. This solution is conjectured to describe the universal asymptotics for Hamiltonian perturbations of hyperbolic equations near the point of gradient catastrophe for the unperturbed equation. Darboux and Backlund transformations were born more than a century ago in the context of the geometric theory of surfaces. In the past few decades they have become a useful element in the theory of integrability, with applications in different guises. Typically, they appear in dressing methods that show how to construct new interesting solutions from known simple ones. A few of the contributed papers to the issue make use of these transformations as one of their fundamental objects. Liu et al [17] use iterated Darboux transformations to construct compact representations of the multi-soliton solutions to the derivative nonlinear Schroedinger (DNLS) equation. Ragnisco and Zullo [18] construct Backlund transformations for the trigonometric classical Gaudin magnet in the partially anisotropic (xxz) case, identifying the subcase of transformations that preserve the real character of the variables. The recently discovered exceptional polynomials are complete polynomial systems that satisfy Sturm-Liouville problems but differ from the classical families of Hermite, Laguerre and Jacobi. Gomez-Ullate et al [19] prove that the families of exceptional orthogonal polynomials known to date can be obtained from the classical ones via a Darboux transformation, which becomes a useful tool to derive some of their properties. Integrability in the context of classical mechanics is associated to the existence of a sufficient number of conserved quantities, which allows sometimes an explicit integration of the equations of motion. This is the case for the motion of the Chaplygin sleigh, a rigid body motion on a fluid with nonholonomic constraints studied in the paper by Fedorov and Garcia-Naranjo [20], who derive explicit solutions and study their asymptotic behaviour. In connection with classical mechanics, some techniques of KAM theory have been used by Procesi [21] to derive normal forms for the NLS equation in its Hamiltonian formulation and prove existence and stability of quasi-periodic solutions in the case of periodic boundary conditions. Algebraic and group theoretic aspects of integrability are covered in a number of papers in the issue. The quest for symmetries of a system of differential equations usually allows us to reduce the order or the number of equations or to find special solutions possesing that symmetry, but algebraic aspects of integrable systems encompass a wide and rich spectrum of techniques, as evidenced by the following contributions. Muriel and Romero [22] perform a systematic study of all second order nonlinear ODEs that are linearizable by generalized Sundman and point transformations, showing that the two classes are inequivalent and providing an explicit characterization thereof. Lie algebras are also prominent in the work of Gerdjikov et al [23], where a class of integrable PDEs associated to symmetric spaces is studied in detail. In their approach, systems of nonlinear integrable PDEs are obtained as reductions of generic integrable systems corresponding to Lax operators with matrix coefficients. The reduction here is carried out using a reduction group which reflects symmetries of the Lax operator. These symmetries allow also a characterization of the corresponding Riemann-Hilbert data. Habibullin [24] employs algebraic techniques to study discrete chains of differential-difference equations that are Darboux integrable, i.e. that admit a certain number of nontrivial first integrals. Musso [25] provides a unified algebraic framework for the rational, trigonometric and elliptic Gaudin models. The results are achieved using a generalization of the Gaudin algebras and of the so-called coproduct method. Odesskii and Sokolov [26] present a classification of all infinite (1+1)-dimensional hydrodynamic-type chains of shift one. They establish a one-to-one correspondence between integrable chains and infinite triangular Gibbons-Tsarev (GT) systems and thus reduce the classification problem to a description of all GT-systems. In Korff's paper [27] we find a study of various algebraic and combinatorial structures that emerge in the statistical vertex model with infinite spin, an integrable model associated to a certain quantum affine algebra. In the crystal limit, this model is connected with the WZNW model in conformal field theory. The motivation for some of the submitted contributions arises also from field theories in theoretical physics. Ferreira et al [28] construct soliton solutions with non-zero topological charges to the Skyrme-Faddeev model in Yang-Mills theory. Using techniques of differential geometry and complex analysis, Manton and Rink [29] explore vortex solutions on hyperbolic surfaces extending an approach by Witten. These solutions can be interpreted as self-dual SU(2) Yang-Mills fields on R4. Shah and Woodhouse [30] use the Penrose-Ward correspondence from twistor theory to relate generalized anti self-duality equations to certain isomonodromic problems whose solutions are expressed in terms of generalized hypergeometric functions. Applications of integrable systems and nonlinear phenomena in other fields are also present in some of the papers. Kanna et al [31] study the collision of soliton solutions to coherently coupled NLS equations using a variant of the Hirota bilinearization method. Their results have applications in pulse shaping in nonlinear optics. Calogero et al [32] present examples of systems of ODEs with quadratic nonlinearities that could describe rate equations in chemical dynamics. They derive explicit conditions on the parameters of the problem for which the solutions are periodic and isochronous. Ablowitz and Haut [33] study the motion of large amplitude water waves with surface tension using asymptotic expansions and providing a comparison with experimental results. This issue is the result of the collaboration of many individuals. We would like to thank the editors and staff of the Journal of Physics A: Mathematical and Theoretical for their enthusiastic support and efficient help during the preparation of this issue. A key factor has been the work of many anonymous referees who performed careful analysis and scrutiny of the research papers submitted to this issue, often making remarks which helped to improve their quality and readability. They carried out dedicated, altruistic work with a very high standard and this issue would not exist without their contribution. Finally, we would like to thank the authors who responded to our open call, sending us their most recent results and sharing with us the enthusiasm and interest for this fascinating field of research. We hope that this collection of papers will provide a good overview for anyone interested in recent developments in the field of integrability and nonlinear phenomena. [1] Integrable models in nonlinear optics and soliton solutions Degasperis A [2] Hamiltonian PDEs: deformations, integrability, solutions Dubrovin B [3] Smooth and peaked solitons of the CH equation Holm D D and Ivanov R I [4] KP solitons in shallow water Kodama Y [5] Two extensions of 1D Toda hierarchy Takasaki K [6] On the Lax representation of the 2-component KP and 2D Toda hierarchies Guido Carlet and Manuel Manas [7] The q-deformed mKP hierarchy with self-consistent sources, Wronskian solutions and solitons Lin R L, Peng H and Manas M [8] Hodograph solutions of the dispersionless coupled KdV hierarchies, critical points and the Euler-Poisson-Darboux equation Konopelchenko B, Martinez Alonso L and E Medina [9] Non-Hamiltonian generalizations of the dispersionless 2DTL hierarchy Bogdanov L V [10] Squared eigenfunctions and the perturbation theory for the nondegenerate N x N operator: a general outline Kaup D J and Van Gorder R A [11] The noncommutative AKNS system: projection to matrix systems, countable superposition and soliton-like solutions Schiebold C [12] On the soliton solutions of the two-dimensional Toda lattice Biondini G and Wang D [13] Differential algebra of the Painleve property Benes G N and Previato E [14] Klein's curve Braden H W and Northover T P [15] Quantum monodromy and pattern formation Zhilinskii B [16] A symptotics for a special solution to the second member of the Painleve I hierarchy Claeys T [17] Darboux transformation for a two-component derivative nonlinear Schroedinger equation Ling L and Liu Q P [18] Backlund transformations as exact integrable time discretizations for the trigonometric Gaudin model Ragnisco O and Zullo F [19] Exceptional orthogonal polynomials and the Darboux transformation Gomez-Ullate D, Kamran N and Milson R [20] The hydrodynamic Chaplygin sleigh Fedorov Y N and Garcia-Naranjo L C [21] A normal form for beam and non-local nonlinear Schroedinger equations Procesi M [22] Nonlocal transformations and linearization of second-order ordinary differential equations Muriel and Romero J L [23] Reductions of integrable equations on A.III-type symmetric spaces Gerdjikov V S, Mikhailov A V and Valchev T I [24] On Darboux-integrable semi-discrete chains Habibullin I, Zheltukhina N and Sakieva A [25] Loop coproducts, Gaudin models and Poisson coalgebras Musso F [26] Classification of integrable hydrodynamic chains Odesskii A V and Sokolov V V [27] Noncommutative Schur polynomials and the crystal limit of the Uq sl(2)-vertex model Korff C [28] Axially symmetric soliton solutions in a Skyrme-Faddeev-type model with Gies's extension Ferreira L A, Sawado N and Toda K [29] Vortices on hyperbolic surfaces Manton N S and Rink N A [30] Multivariate hypergeometric cascades, isomonodromy problems and Ward ansatze Shah M R and Woodhouse N J M [31] Coherently coupled bright optical solitons and their collisions Kanna T, Vijayajayanthi M and Lakshmanan M [32] Isochronous rate equations describing chemical reactions Calogero F, Leyvraz F and Sommacal M [33] Asymptotic expansions for solitary gravity-capillary waves in two and three dimensions Ablowitz M J and Haut T S

  7. Symmetric and arbitrarily high-order Birkhoff-Hermite time integrators and their long-time behaviour for solving nonlinear Klein-Gordon equations

    NASA Astrophysics Data System (ADS)

    Liu, Changying; Iserles, Arieh; Wu, Xinyuan

    2018-03-01

    The Klein-Gordon equation with nonlinear potential occurs in a wide range of application areas in science and engineering. Its computation represents a major challenge. The main theme of this paper is the construction of symmetric and arbitrarily high-order time integrators for the nonlinear Klein-Gordon equation by integrating Birkhoff-Hermite interpolation polynomials. To this end, under the assumption of periodic boundary conditions, we begin with the formulation of the nonlinear Klein-Gordon equation as an abstract second-order ordinary differential equation (ODE) and its operator-variation-of-constants formula. We then derive a symmetric and arbitrarily high-order Birkhoff-Hermite time integration formula for the nonlinear abstract ODE. Accordingly, the stability, convergence and long-time behaviour are rigorously analysed once the spatial differential operator is approximated by an appropriate positive semi-definite matrix, subject to suitable temporal and spatial smoothness. A remarkable characteristic of this new approach is that the requirement of temporal smoothness is reduced compared with the traditional numerical methods for PDEs in the literature. Numerical results demonstrate the advantage and efficiency of our time integrators in comparison with the existing numerical approaches.

  8. Soliton solution and gauge equivalence for an integrable nonlocal complex modified Korteweg-de Vries equation

    NASA Astrophysics Data System (ADS)

    Ma, Li-Yuan; Shen, Shou-Feng; Zhu, Zuo-Nong

    2017-10-01

    In this paper, we prove that an integrable nonlocal complex modified Korteweg-de Vries (mKdV) equation introduced by Ablowitz and Musslimani [Nonlinearity 29, 915-946 (2016)] is gauge equivalent to a spin-like model. From the gauge equivalence, one can see that there exists significant difference between the nonlocal complex mKdV equation and the classical complex mKdV equation. Through constructing the Darboux transformation for nonlocal complex mKdV equation, a variety of exact solutions including dark soliton, W-type soliton, M-type soliton, and periodic solutions are derived.

  9. Solvability of a Nonlinear Integral Equation in Dynamical String Theory

    NASA Astrophysics Data System (ADS)

    Khachatryan, A. Kh.; Khachatryan, Kh. A.

    2018-04-01

    We investigate an integral equation of the convolution type with a cubic nonlinearity on the entire real line. This equation has a direct application in open-string field theory and in p-adic string theory and describes nonlocal interactions. We prove that there exists a one-parameter family of bounded monotonic solutions and calculate the limits of solutions constructed at infinity.

  10. Modelling gas dynamics in 1D ducts with abrupt area change

    NASA Astrophysics Data System (ADS)

    Menina, R.; Saurel, R.; Zereg, M.; Houas, L.

    2011-09-01

    Most gas dynamic computations in industrial ducts are done in one dimension with cross-section-averaged Euler equations. This poses a fundamental difficulty as soon as geometrical discontinuities are present. The momentum equation contains a non-conservative term involving a surface pressure integral, responsible for momentum loss. Definition of this integral is very difficult from a mathematical standpoint as the flow may contain other discontinuities (shocks, contact discontinuities). From a physical standpoint, geometrical discontinuities induce multidimensional vortices that modify the surface pressure integral. In the present paper, an improved 1D flow model is proposed. An extra energy (or entropy) equation is added to the Euler equations expressing the energy and turbulent pressure stored in the vortices generated by the abrupt area variation. The turbulent energy created by the flow-area change interaction is determined by a specific estimate of the surface pressure integral. Model's predictions are compared with 2D-averaged results from numerical solution of the Euler equations. Comparison with shock tube experiments is also presented. The new 1D-averaged model improves the conventional cross-section-averaged Euler equations and is able to reproduce the main flow features.

  11. Theory and observation of electromagnetic ion cyclotron triggered emissions in the magnetosphere

    NASA Astrophysics Data System (ADS)

    Omura, Yoshiharu; Pickett, Jolene; Grison, Benjamin; Santolik, Ondrej; Dandouras, Iannis; Engebretson, Mark; Décréau, Pierrette M. E.; Masson, Arnaud

    2010-07-01

    We develop a nonlinear wave growth theory of electromagnetic ion cyclotron (EMIC) triggered emissions observed in the inner magnetosphere. We first derive the basic wave equations from Maxwell's equations and the momentum equations for the electrons and ions. We then obtain equations that describe the nonlinear dynamics of resonant protons interacting with an EMIC wave. The frequency sweep rate of the wave plays an important role in forming the resonant current that controls the wave growth. Assuming an optimum condition for the maximum growth rate as an absolute instability at the magnetic equator and a self-sustaining growth condition for the wave propagating from the magnetic equator, we obtain a set of ordinary differential equations that describe the nonlinear evolution of a rising tone emission generated at the magnetic equator. Using the physical parameters inferred from the wave, particle, and magnetic field data measured by the Cluster spacecraft, we determine the dispersion relation for the EMIC waves. Integrating the differential equations numerically, we obtain a solution for the time variation of the amplitude and frequency of a rising tone emission at the equator. Assuming saturation of the wave amplitude, as is found in the observations, we find good agreement between the numerical solutions and the wave spectrum of the EMIC triggered emissions.

  12. Spheroidal Integral Equations for Geodetic Inversion of Geopotential Gradients

    NASA Astrophysics Data System (ADS)

    Novák, Pavel; Šprlák, Michal

    2018-03-01

    The static Earth's gravitational field has traditionally been described in geodesy and geophysics by the gravitational potential (geopotential for short), a scalar function of 3-D position. Although not directly observable, geopotential functionals such as its first- and second-order gradients are routinely measured by ground, airborne and/or satellite sensors. In geodesy, these observables are often used for recovery of the static geopotential at some simple reference surface approximating the actual Earth's surface. A generalized mathematical model is represented by a surface integral equation which originates in solving Dirichlet's boundary-value problem of the potential theory defined for the harmonic geopotential, spheroidal boundary and globally distributed gradient data. The mathematical model can be used for combining various geopotential gradients without necessity of their re-sampling or prior continuation in space. The model extends the apparatus of integral equations which results from solving boundary-value problems of the potential theory to all geopotential gradients observed by current ground, airborne and satellite sensors. Differences between spherical and spheroidal formulations of integral kernel functions of Green's kind are investigated. Estimated differences reach relative values at the level of 3% which demonstrates the significance of spheroidal approximation for flattened bodies such as the Earth. The observation model can be used for combined inversion of currently available geopotential gradients while exploring their spectral and stochastic characteristics. The model would be even more relevant to gravitational field modelling of other bodies in space with more pronounced spheroidal geometry than that of the Earth.

  13. Reliable and efficient a posteriori error estimation for adaptive IGA boundary element methods for weakly-singular integral equations

    PubMed Central

    Feischl, Michael; Gantner, Gregor; Praetorius, Dirk

    2015-01-01

    We consider the Galerkin boundary element method (BEM) for weakly-singular integral equations of the first-kind in 2D. We analyze some residual-type a posteriori error estimator which provides a lower as well as an upper bound for the unknown Galerkin BEM error. The required assumptions are weak and allow for piecewise smooth parametrizations of the boundary, local mesh-refinement, and related standard piecewise polynomials as well as NURBS. In particular, our analysis gives a first contribution to adaptive BEM in the frame of isogeometric analysis (IGABEM), for which we formulate an adaptive algorithm which steers the local mesh-refinement and the multiplicity of the knots. Numerical experiments underline the theoretical findings and show that the proposed adaptive strategy leads to optimal convergence. PMID:26085698

  14. Electromagnetic beam diffraction by a finite lamellar structure: an aperiodic coupled-wave method.

    PubMed

    Guizal, Brahim; Barchiesi, Dominique; Felbacq, Didier

    2003-12-01

    We have developed a new formulation of the coupled-wave method (CWM) to handle aperiodic lamellar structures, and it will be referred to as the aperiodic coupled-wave method (ACWM). The space is still divided into three regions, but the fields are written by use of their Fourier integrals instead of the Fourier series. In the modulated region the relative permittivity is represented by its Fourier transform, and then a set of integro-differential equations is derived. Discretizing the last system leads to a set of ordinary differential equations that is reduced to an eigenvalue problem, as is usually done in the CWM. To assess the method, we compare our results with three independent formalisms: the Rayleigh perturbation method for small samples, the volume integral method, and the finite-element method.

  15. BHR equations re-derived with immiscible particle effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwarzkopf, John Dennis; Horwitz, Jeremy A.

    2015-05-01

    Compressible and variable density turbulent flows with dispersed phase effects are found in many applications ranging from combustion to cloud formation. These types of flows are among the most challenging to simulate. While the exact equations governing a system of particles and fluid are known, computational resources limit the scale and detail that can be simulated in this type of problem. Therefore, a common method is to simulate averaged versions of the flow equations, which still capture salient physics and is relatively less computationally expensive. Besnard developed such a model for variable density miscible turbulence, where ensemble-averaging was applied tomore » the flow equations to yield a set of filtered equations. Besnard further derived transport equations for the Reynolds stresses, the turbulent mass flux, and the density-specific volume covariance, to help close the filtered momentum and continuity equations. We re-derive the exact BHR closure equations which include integral terms owing to immiscible effects. Physical interpretations of the additional terms are proposed along with simple models. The goal of this work is to extend the BHR model to allow for the simulation of turbulent flows where an immiscible dispersed phase is non-trivially coupled with the carrier phase.« less

  16. Applying integrals of motion to the numerical solution of differential equations

    NASA Technical Reports Server (NTRS)

    Vezewski, D. J.

    1980-01-01

    A method is developed for using the integrals of systems of nonlinear, ordinary, differential equations in a numerical integration process to control the local errors in these integrals and reduce the global errors of the solution. The method is general and can be applied to either scalar or vector integrals. A number of example problems, with accompanying numerical results, are used to verify the analysis and support the conjecture of global error reduction.

  17. Sixth-Order Lie Group Integrators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forest, E.

    1990-03-01

    In this paper we present the coefficients of several 6th order symplectic integrator of the type developed by R. Ruth. To get these results we fully exploit the connection with Lie groups. This integrator, as well as all the explicit integrators of Ruth, may be used in any equation where some sort of Lie bracket is preserved. In fact, if the Lie operator governing the equation of motion is separable into two solvable parts, the Ruth integrators can be used.

  18. Applying integrals of motion to the numerical solution of differential equations

    NASA Technical Reports Server (NTRS)

    Jezewski, D. J.

    1979-01-01

    A method is developed for using the integrals of systems of nonlinear, ordinary differential equations in a numerical integration process to control the local errors in these integrals and reduce the global errors of the solution. The method is general and can be applied to either scaler or vector integrals. A number of example problems, with accompanying numerical results, are used to verify the analysis and support the conjecture of global error reduction.

  19. Solutions to Kuessner's integral equation in unsteady flow using local basis functions

    NASA Technical Reports Server (NTRS)

    Fromme, J. A.; Halstead, D. W.

    1975-01-01

    The computational procedure and numerical results are presented for a new method to solve Kuessner's integral equation in the case of subsonic compressible flow about harmonically oscillating planar surfaces with controls. Kuessner's equation is a linear transformation from pressure to normalwash. The unknown pressure is expanded in terms of prescribed basis functions and the unknown basis function coefficients are determined in the usual manner by satisfying the given normalwash distribution either collocationally or in the complex least squares sense. The present method of solution differs from previous ones in that the basis functions are defined in a continuous fashion over a relatively small portion of the aerodynamic surface and are zero elsewhere. This method, termed the local basis function method, combines the smoothness and accuracy of distribution methods with the simplicity and versatility of panel methods. Predictions by the local basis function method for unsteady flow are shown to be in excellent agreement with other methods. Also, potential improvements to the present method and extensions to more general classes of solutions are discussed.

  20. Electromagnetic scattering of large structures in layered earths using integral equations

    NASA Astrophysics Data System (ADS)

    Xiong, Zonghou; Tripp, Alan C.

    1995-07-01

    An electromagnetic scattering algorithm for large conductivity structures in stratified media has been developed and is based on the method of system iteration and spatial symmetry reduction using volume electric integral equations. The method of system iteration divides a structure into many substructures and solves the resulting matrix equation using a block iterative method. The block submatrices usually need to be stored on disk in order to save computer core memory. However, this requires a large disk for large structures. If the body is discretized into equal-size cells it is possible to use the spatial symmetry relations of the Green's functions to regenerate the scattering impedance matrix in each iteration, thus avoiding expensive disk storage. Numerical tests show that the system iteration converges much faster than the conventional point-wise Gauss-Seidel iterative method. The numbers of cells do not significantly affect the rate of convergency. Thus the algorithm effectively reduces the solution of the scattering problem to an order of O(N2), instead of O(N3) as with direct solvers.

  1. Gaussian-windowed frame based method of moments formulation of surface-integral-equation for extended apertures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shlivinski, A., E-mail: amirshli@ee.bgu.ac.il; Lomakin, V., E-mail: vlomakin@eng.ucsd.edu

    2016-03-01

    Scattering or coupling of electromagnetic beam-field at a surface discontinuity separating two homogeneous or inhomogeneous media with different propagation characteristics is formulated using surface integral equation, which are solved by the Method of Moments with the aid of the Gabor-based Gaussian window frame set of basis and testing functions. The application of the Gaussian window frame provides (i) a mathematically exact and robust tool for spatial-spectral phase-space formulation and analysis of the problem; (ii) a system of linear equations in a transmission-line like form relating mode-like wave objects of one medium with mode-like wave objects of the second medium; (iii)more » furthermore, an appropriate setting of the frame parameters yields mode-like wave objects that blend plane wave properties (as if solving in the spectral domain) with Green's function properties (as if solving in the spatial domain); and (iv) a representation of the scattered field with Gaussian-beam propagators that may be used in many large (in terms of wavelengths) systems.« less

  2. Extension of the KLI approximation toward the exact optimized effective potential.

    PubMed

    Iafrate, G J; Krieger, J B

    2013-03-07

    The integral equation for the optimized effective potential (OEP) is utilized in a compact form from which an accurate OEP solution for the spin-unrestricted exchange-correlation potential, Vxcσ, is obtained for any assumed orbital-dependent exchange-correlation energy functional. The method extends beyond the Krieger-Li-Iafrate (KLI) approximation toward the exact OEP result. The compact nature of the OEP equation arises by replacing the integrals involving the Green's function terms in the traditional OEP equation by an equivalent first-order perturbation theory wavefunction often referred to as the "orbital shift" function. Significant progress is then obtained by solving the equation for the first order perturbation theory wavefunction by use of Dalgarno functions which are determined from well known methods of partial differential equations. The use of Dalgarno functions circumvents the need to explicitly address the Green's functions and the associated problems with "sum over states" numerics; as well, the Dalgarno functions provide ease in dealing with inherent singularities arising from the origin and the zeros of the occupied orbital wavefunctions. The Dalgarno approach for finding a solution to the OEP equation is described herein, and a detailed illustrative example is presented for the special case of a spherically symmetric exchange-correlation potential. For the case of spherical symmetry, the relevant Dalgarno function is derived by direct integration of the appropriate radial equation while utilizing a user friendly method which explicitly treats the singular behavior at the origin and at the nodal singularities arising from the zeros of the occupied states. The derived Dalgarno function is shown to be an explicit integral functional of the exact OEP Vxcσ, thus allowing for the reduction of the OEP equation to a self-consistent integral equation for the exact exchange-correlation potential; the exact solution to this integral equation can be determined by iteration with the natural zeroth order correction given by the KLI exchange-correlation potential. Explicit analytic results are provided to illustrate the first order iterative correction beyond the KLI approximation. The derived correction term to the KLI potential explicitly involves spatially weighted products of occupied orbital densities in any assumed orbital-dependent exchange-correlation energy functional; as well, the correction term is obtained with no adjustable parameters. Moreover, if the equation for the exact optimized effective potential is further iterated, one can obtain the OEP as accurately as desired.

  3. Extension of the KLI approximation toward the exact optimized effective potential

    NASA Astrophysics Data System (ADS)

    Iafrate, G. J.; Krieger, J. B.

    2013-03-01

    The integral equation for the optimized effective potential (OEP) is utilized in a compact form from which an accurate OEP solution for the spin-unrestricted exchange-correlation potential, Vxcσ, is obtained for any assumed orbital-dependent exchange-correlation energy functional. The method extends beyond the Krieger-Li-Iafrate (KLI) approximation toward the exact OEP result. The compact nature of the OEP equation arises by replacing the integrals involving the Green's function terms in the traditional OEP equation by an equivalent first-order perturbation theory wavefunction often referred to as the "orbital shift" function. Significant progress is then obtained by solving the equation for the first order perturbation theory wavefunction by use of Dalgarno functions which are determined from well known methods of partial differential equations. The use of Dalgarno functions circumvents the need to explicitly address the Green's functions and the associated problems with "sum over states" numerics; as well, the Dalgarno functions provide ease in dealing with inherent singularities arising from the origin and the zeros of the occupied orbital wavefunctions. The Dalgarno approach for finding a solution to the OEP equation is described herein, and a detailed illustrative example is presented for the special case of a spherically symmetric exchange-correlation potential. For the case of spherical symmetry, the relevant Dalgarno function is derived by direct integration of the appropriate radial equation while utilizing a user friendly method which explicitly treats the singular behavior at the origin and at the nodal singularities arising from the zeros of the occupied states. The derived Dalgarno function is shown to be an explicit integral functional of the exact OEP Vxcσ, thus allowing for the reduction of the OEP equation to a self-consistent integral equation for the exact exchange-correlation potential; the exact solution to this integral equation can be determined by iteration with the natural zeroth order correction given by the KLI exchange-correlation potential. Explicit analytic results are provided to illustrate the first order iterative correction beyond the KLI approximation. The derived correction term to the KLI potential explicitly involves spatially weighted products of occupied orbital densities in any assumed orbital-dependent exchange-correlation energy functional; as well, the correction term is obtained with no adjustable parameters. Moreover, if the equation for the exact optimized effective potential is further iterated, one can obtain the OEP as accurately as desired.

  4. Efficient Solution of Three-Dimensional Problems of Acoustic and Electromagnetic Scattering by Open Surfaces

    NASA Technical Reports Server (NTRS)

    Turc, Catalin; Anand, Akash; Bruno, Oscar; Chaubell, Julian

    2011-01-01

    We present a computational methodology (a novel Nystrom approach based on use of a non-overlapping patch technique and Chebyshev discretizations) for efficient solution of problems of acoustic and electromagnetic scattering by open surfaces. Our integral equation formulations (1) Incorporate, as ansatz, the singular nature of open-surface integral-equation solutions, and (2) For the Electric Field Integral Equation (EFIE), use analytical regularizes that effectively reduce the number of iterations required by iterative linear-algebra solution based on Krylov-subspace iterative solvers.

  5. ΛCDM Cosmology for Astronomers

    NASA Astrophysics Data System (ADS)

    Condon, J. J.; Matthews, A. M.

    2018-07-01

    The homogeneous, isotropic, and flat ΛCDM universe favored by observations of the cosmic microwave background can be described using only Euclidean geometry, locally correct Newtonian mechanics, and the basic postulates of special and general relativity. We present simple derivations of the most useful equations connecting astronomical observables (redshift, flux density, angular diameter, brightness, local space density, ...) with the corresponding intrinsic properties of distant sources (lookback time, distance, spectral luminosity, linear size, specific intensity, source counts, ...). We also present an analytic equation for lookback time that is accurate within 0.1% for all redshifts z. The exact equation for comoving distance is an elliptic integral that must be evaluated numerically, but we found a simple approximation with errors <0.2% for all redshifts up to z ≈ 50.

  6. A Potential Function Derivation of a Constitutive Equation for Inelastic Material Response

    NASA Technical Reports Server (NTRS)

    Stouffer, D. C.; Elfoutouh, N. A.

    1983-01-01

    Physical and thermodynamic concepts are used to develop a potential function for application to high temperature polycrystalline material response. Inherent in the formulation is a differential relationship between the potential function and constitutive equation in terms of the state variables. Integration of the differential relationship produces a state variable evolution equation that requires specification of the initial value of the state variable and its time derivative. It is shown that the initial loading rate, which is directly related to the initial hardening rate, can significantly influence subsequent material response. This effect is consistent with observed material behavior on the macroscopic and microscopic levels, and may explain the wide scatter in response often found in creep testing.

  7. Numerical Solution of the Gyrokinetic Poisson Equation in TEMPEST

    NASA Astrophysics Data System (ADS)

    Dorr, Milo; Cohen, Bruce; Cohen, Ronald; Dimits, Andris; Hittinger, Jeffrey; Kerbel, Gary; Nevins, William; Rognlien, Thomas; Umansky, Maxim; Xiong, Andrew; Xu, Xueqiao

    2006-10-01

    The gyrokinetic Poisson (GKP) model in the TEMPEST continuum gyrokinetic edge plasma code yields the electrostatic potential due to the charge density of electrons and an arbitrary number of ion species including the effects of gyroaveraging in the limit kρ1. The TEMPEST equations are integrated as a differential algebraic system involving a nonlinear system solve via Newton-Krylov iteration. The GKP preconditioner block is inverted using a multigrid preconditioned conjugate gradient (CG) algorithm. Electrons are treated as kinetic or adiabatic. The Boltzmann relation in the adiabatic option employs flux surface averaging to maintain neutrality within field lines and is solved self-consistently with the GKP equation. A decomposition procedure circumvents the near singularity of the GKP Jacobian block that otherwise degrades CG convergence.

  8. Nonlocal Reformulations of Water and Internal Waves and Asymptotic Reductions

    NASA Astrophysics Data System (ADS)

    Ablowitz, Mark J.

    2009-09-01

    Nonlocal reformulations of the classical equations of water waves and two ideal fluids separated by a free interface, bounded above by either a rigid lid or a free surface, are obtained. The kinematic equations may be written in terms of integral equations with a free parameter. By expressing the pressure, or Bernoulli, equation in terms of the surface/interface variables, a closed system is obtained. An advantage of this formulation, referred to as the nonlocal spectral (NSP) formulation, is that the vertical component is eliminated, thus reducing the dimensionality and fixing the domain in which the equations are posed. The NSP equations and the Dirichlet-Neumann operators associated with the water wave or two-fluid equations can be related to each other and the Dirichlet-Neumann series can be obtained from the NSP equations. Important asymptotic reductions obtained from the two-fluid nonlocal system include the generalizations of the Benney-Luke and Kadomtsev-Petviashvili (KP) equations, referred to as intermediate-long wave (ILW) generalizations. These 2+1 dimensional equations possess lump type solutions. In the water wave problem high-order asymptotic series are obtained for two and three dimensional gravity-capillary solitary waves. In two dimensions, the first term in the asymptotic series is the well-known hyperbolic secant squared solution of the KdV equation; in three dimensions, the first term is the rational lump solution of the KP equation.

  9. Integrability of systems of two second-order ordinary differential equations admitting four-dimensional Lie algebras

    PubMed Central

    Gazizov, R. K.

    2017-01-01

    We suggest an algorithm for integrating systems of two second-order ordinary differential equations with four symmetries. In particular, if the admitted transformation group has two second-order differential invariants, the corresponding system can be integrated by quadratures using invariant representation and the operator of invariant differentiation. Otherwise, the systems reduce to partially uncoupled forms and can also be integrated by quadratures. PMID:28265184

  10. Integrability of systems of two second-order ordinary differential equations admitting four-dimensional Lie algebras.

    PubMed

    Gainetdinova, A A; Gazizov, R K

    2017-01-01

    We suggest an algorithm for integrating systems of two second-order ordinary differential equations with four symmetries. In particular, if the admitted transformation group has two second-order differential invariants, the corresponding system can be integrated by quadratures using invariant representation and the operator of invariant differentiation. Otherwise, the systems reduce to partially uncoupled forms and can also be integrated by quadratures.

  11. Differential Galois theory and non-integrability of planar polynomial vector fields

    NASA Astrophysics Data System (ADS)

    Acosta-Humánez, Primitivo B.; Lázaro, J. Tomás; Morales-Ruiz, Juan J.; Pantazi, Chara

    2018-06-01

    We study a necessary condition for the integrability of the polynomials vector fields in the plane by means of the differential Galois Theory. More concretely, by means of the variational equations around a particular solution it is obtained a necessary condition for the existence of a rational first integral. The method is systematic starting with the first order variational equation. We illustrate this result with several families of examples. A key point is to check whether a suitable primitive is elementary or not. Using a theorem by Liouville, the problem is equivalent to the existence of a rational solution of a certain first order linear equation, the Risch equation. This is a classical problem studied by Risch in 1969, and the solution is given by the "Risch algorithm". In this way we point out the connection of the non integrability with some higher transcendent functions, like the error function.

  12. A Systematic Kernel Function Procedure for Determining Aerodynamic Forces on Oscillating or Steady Finite Wings at Subsonic Speeds

    NASA Technical Reports Server (NTRS)

    Watkins, Charles E.; Woolston, Donald S.; Cunningham, Herbert J.

    1959-01-01

    Details are given of a numerical solution of the integral equation which relates oscillatory or steady lift and downwash distributions in subsonic flow. The procedure has been programmed for the IBM 704 electronic data processing machine and yields the pressure distribution and some of its integrated properties for a given Mach number and frequency and for several modes of oscillation in from 3 to 4 minutes, results of several applications are presented.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ko, L.F.

    Calculations for the two-point correlation functions in the scaling limit for two statistical models are presented. In Part I, the Ising model with a linear defect is studied for T < T/sub c/ and T > T/sub c/. The transfer matrix method of Onsager and Kaufman is used. The energy-density correlation is given by functions related to the modified Bessel functions. The dispersion expansion for the spin-spin correlation functions are derived. The dominant behavior for large separations at T not equal to T/sub c/ is extracted. It is shown that these expansions lead to systems of Fredholm integral equations. Inmore » Part II, the electric correlation function of the eight-vertex model for T < T/sub c/ is studied. The eight vertex model decouples to two independent Ising models when the four spin coupling vanishes. To first order in the four-spin coupling, the electric correlation function is related to a three-point function of the Ising model. This relation is systematically investigated and the full dispersion expansion (to first order in four-spin coupling) is obtained. The results is a new kind of structure which, unlike those of many solvable models, is apparently not expressible in terms of linear integral equations.« less

  14. Complex quantum Hamilton-Jacobi equation with Bohmian trajectories: Application to the photodissociation dynamics of NOCl

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, Chia-Chun, E-mail: ccchou@mx.nthu.edu.tw

    2014-03-14

    The complex quantum Hamilton-Jacobi equation-Bohmian trajectories (CQHJE-BT) method is introduced as a synthetic trajectory method for integrating the complex quantum Hamilton-Jacobi equation for the complex action function by propagating an ensemble of real-valued correlated Bohmian trajectories. Substituting the wave function expressed in exponential form in terms of the complex action into the time-dependent Schrödinger equation yields the complex quantum Hamilton-Jacobi equation. We transform this equation into the arbitrary Lagrangian-Eulerian version with the grid velocity matching the flow velocity of the probability fluid. The resulting equation describing the rate of change in the complex action transported along Bohmian trajectories is simultaneouslymore » integrated with the guidance equation for Bohmian trajectories, and the time-dependent wave function is readily synthesized. The spatial derivatives of the complex action required for the integration scheme are obtained by solving one moving least squares matrix equation. In addition, the method is applied to the photodissociation of NOCl. The photodissociation dynamics of NOCl can be accurately described by propagating a small ensemble of trajectories. This study demonstrates that the CQHJE-BT method combines the considerable advantages of both the real and the complex quantum trajectory methods previously developed for wave packet dynamics.« less

  15. A novel approach to solve nonlinear Fredholm integral equations of the second kind.

    PubMed

    Li, Hu; Huang, Jin

    2016-01-01

    In this paper, we present a novel approach to solve nonlinear Fredholm integral equations of the second kind. This algorithm is constructed by the integral mean value theorem and Newton iteration. Convergence and error analysis of the numerical solutions are given. Moreover, Numerical examples show the algorithm is very effective and simple.

  16. A Note on ;New Hierarchies of Integrable Lattice Equations and Associated Properties: Darboux Transformation Conservation Laws and Integrable Coupling; [Rep. Math. Phys. 67 (2011), 259

    NASA Astrophysics Data System (ADS)

    Xu, Xi-Xiang

    2016-12-01

    We prove that two new hierarchies of integrable lattice equations in [Rep. Math. Phys.67 (2011), 259] can be respectively changed into the famous relativistic Toda lattice hierarchies in the polynomial and the rational forms by means of a simple transformation.

  17. Proceedings of the 1993 Scientific Conference on Obscuration and Aerosol Research Held in Aberdeen Proving Ground on 22-24 Jun 1993

    DTIC Science & Technology

    1994-03-01

    equation (4.1.27) is not a finite rank integral equation, it suggests that an approxi- mate finite rank integral equation Pf" = Pg + APL(K~p) Pfa 4 \\PNPfa...Harry Salem Richard Farrell Mark Seaver Dennis F Flanigan George Sehmel David Freund Jungshik Shin Robert H Frickel Orazio I Sindoni Edward Fry Michael

  18. Variational iteration method — a promising technique for constructing equivalent integral equations of fractional order

    NASA Astrophysics Data System (ADS)

    Wang, Yi-Hong; Wu, Guo-Cheng; Baleanu, Dumitru

    2013-10-01

    The variational iteration method is newly used to construct various integral equations of fractional order. Some iterative schemes are proposed which fully use the method and the predictor-corrector approach. The fractional Bagley-Torvik equation is then illustrated as an example of multi-order and the results show the efficiency of the variational iteration method's new role.

  19. Local recovery of lithospheric stress tensor from GOCE gravitational tensor

    NASA Astrophysics Data System (ADS)

    Eshagh, Mehdi

    2017-04-01

    The sublithospheric stress due to mantle convection can be computed from gravity data and propagated through the lithosphere by solving the boundary-value problem of elasticity for the Earth's lithosphere. In this case, a full tensor of stress can be computed at any point inside this elastic layer. Here, we present mathematical foundations for recovering such a tensor from gravitational tensor measured at satellite altitudes. The mathematical relations will be much simpler in this way than the case of using gravity data as no derivative of spherical harmonics (SHs) or Legendre polynomials is involved in the expressions. Here, new relations between the SH coefficients of the stress and gravitational tensor elements are presented. Thereafter, integral equations are established from them to recover the elements of stress tensor from those of the gravitational tensor. The integrals have no closed-form kernels, but they are easy to invert and their spatial truncation errors are reducible. The integral equations are used to invert the real data of the gravity field and steady-state ocean circulation explorer mission (GOCE), in 2009 November, over the South American plate and its surroundings to recover the stress tensor at a depth of 35 km. The recovered stress fields are in good agreement with the tectonic and geological features of the area.

  20. Boundary regularized integral equation formulation of the Helmholtz equation in acoustics.

    PubMed

    Sun, Qiang; Klaseboer, Evert; Khoo, Boo-Cheong; Chan, Derek Y C

    2015-01-01

    A boundary integral formulation for the solution of the Helmholtz equation is developed in which all traditional singular behaviour in the boundary integrals is removed analytically. The numerical precision of this approach is illustrated with calculation of the pressure field owing to radiating bodies in acoustic wave problems. This method facilitates the use of higher order surface elements to represent boundaries, resulting in a significant reduction in the problem size with improved precision. Problems with extreme geometric aspect ratios can also be handled without diminished precision. When combined with the CHIEF method, uniqueness of the solution of the exterior acoustic problem is assured without the need to solve hypersingular integrals.

  1. Boundary regularized integral equation formulation of the Helmholtz equation in acoustics

    PubMed Central

    Sun, Qiang; Klaseboer, Evert; Khoo, Boo-Cheong; Chan, Derek Y. C.

    2015-01-01

    A boundary integral formulation for the solution of the Helmholtz equation is developed in which all traditional singular behaviour in the boundary integrals is removed analytically. The numerical precision of this approach is illustrated with calculation of the pressure field owing to radiating bodies in acoustic wave problems. This method facilitates the use of higher order surface elements to represent boundaries, resulting in a significant reduction in the problem size with improved precision. Problems with extreme geometric aspect ratios can also be handled without diminished precision. When combined with the CHIEF method, uniqueness of the solution of the exterior acoustic problem is assured without the need to solve hypersingular integrals. PMID:26064591

  2. Integrability of the one dimensional Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Combot, Thierry

    2018-02-01

    We present a definition of integrability for the one-dimensional Schrödinger equation, which encompasses all known integrable systems, i.e., systems for which the spectrum can be explicitly computed. For this, we introduce the class of rigid functions, built as Liouvillian functions, but containing all solutions of rigid differential operators in the sense of Katz, and a notion of natural of boundary conditions. We then make a complete classification of rational integrable potentials. Many new integrable cases are found, some of them physically interesting.

  3. Fractional calculus in hydrologic modeling: A numerical perspective

    PubMed Central

    Benson, David A.; Meerschaert, Mark M.; Revielle, Jordan

    2013-01-01

    Fractional derivatives can be viewed either as handy extensions of classical calculus or, more deeply, as mathematical operators defined by natural phenomena. This follows the view that the diffusion equation is defined as the governing equation of a Brownian motion. In this paper, we emphasize that fractional derivatives come from the governing equations of stable Lévy motion, and that fractional integration is the corresponding inverse operator. Fractional integration, and its multi-dimensional extensions derived in this way, are intimately tied to fractional Brownian (and Lévy) motions and noises. By following these general principles, we discuss the Eulerian and Lagrangian numerical solutions to fractional partial differential equations, and Eulerian methods for stochastic integrals. These numerical approximations illuminate the essential nature of the fractional calculus. PMID:23524449

  4. Traveling wave solutions to a reaction-diffusion equation

    NASA Astrophysics Data System (ADS)

    Feng, Zhaosheng; Zheng, Shenzhou; Gao, David Y.

    2009-07-01

    In this paper, we restrict our attention to traveling wave solutions of a reaction-diffusion equation. Firstly we apply the Divisor Theorem for two variables in the complex domain, which is based on the ring theory of commutative algebra, to find a quasi-polynomial first integral of an explicit form to an equivalent autonomous system. Then through this first integral, we reduce the reaction-diffusion equation to a first-order integrable ordinary differential equation, and a class of traveling wave solutions is obtained accordingly. Comparisons with the existing results in the literature are also provided, which indicates that some analytical results in the literature contain errors. We clarify the errors and instead give a refined result in a simple and straightforward manner.

  5. Improving multilevel Monte Carlo for stochastic differential equations with application to the Langevin equation

    PubMed Central

    Müller, Eike H.; Scheichl, Rob; Shardlow, Tony

    2015-01-01

    This paper applies several well-known tricks from the numerical treatment of deterministic differential equations to improve the efficiency of the multilevel Monte Carlo (MLMC) method for stochastic differential equations (SDEs) and especially the Langevin equation. We use modified equations analysis as an alternative to strong-approximation theory for the integrator, and we apply this to introduce MLMC for Langevin-type equations with integrators based on operator splitting. We combine this with extrapolation and investigate the use of discrete random variables in place of the Gaussian increments, which is a well-known technique for the weak approximation of SDEs. We show that, for small-noise problems, discrete random variables can lead to an increase in efficiency of almost two orders of magnitude for practical levels of accuracy. PMID:27547075

  6. Soliton solutions for ABS lattice equations: I. Cauchy matrix approach

    NASA Astrophysics Data System (ADS)

    Nijhoff, Frank; Atkinson, James; Hietarinta, Jarmo

    2009-10-01

    In recent years there have been new insights into the integrability of quadrilateral lattice equations, i.e. partial difference equations which are the natural discrete analogues of integrable partial differential equations in 1+1 dimensions. In the scalar (i.e. single-field) case, there now exist classification results by Adler, Bobenko and Suris (ABS) leading to some new examples in addition to the lattice equations 'of KdV type' that were known since the late 1970s and early 1980s. In this paper, we review the construction of soliton solutions for the KdV-type lattice equations and use those results to construct N-soliton solutions for all lattice equations in the ABS list except for the elliptic case of Q4, which is left to a separate treatment.

  7. Improving multilevel Monte Carlo for stochastic differential equations with application to the Langevin equation.

    PubMed

    Müller, Eike H; Scheichl, Rob; Shardlow, Tony

    2015-04-08

    This paper applies several well-known tricks from the numerical treatment of deterministic differential equations to improve the efficiency of the multilevel Monte Carlo (MLMC) method for stochastic differential equations (SDEs) and especially the Langevin equation. We use modified equations analysis as an alternative to strong-approximation theory for the integrator, and we apply this to introduce MLMC for Langevin-type equations with integrators based on operator splitting. We combine this with extrapolation and investigate the use of discrete random variables in place of the Gaussian increments, which is a well-known technique for the weak approximation of SDEs. We show that, for small-noise problems, discrete random variables can lead to an increase in efficiency of almost two orders of magnitude for practical levels of accuracy.

  8. Reaction formulation for radiation and scattering from plates, corner reflectors and dielectric-coated cylinders

    NASA Technical Reports Server (NTRS)

    Wang, N. N.

    1974-01-01

    The reaction concept is employed to formulate an integral equation for radiation and scattering from plates, corner reflectors, and dielectric-coated conducting cylinders. The surface-current density on the conducting surface is expanded with subsectional bases. The dielectric layer is modeled with polarization currents radiating in free space. Maxwell's equation and the boundary conditions are employed to express the polarization-current distribution in terms of the surface-current density on the conducting surface. By enforcing reaction tests with an array of electric test sources, the moment method is employed to reduce the integral equation to a matrix equation. Inversion of the matrix equation yields the current distribution, and the scattered field is then obtained by integrating the current distribution. The theory, computer program and numerical results are presented for radiation and scattering from plates, corner reflectors, and dielectric-coated conducting cylinders.

  9. Non-autonomous multi-rogue waves for spin-1 coupled nonlinear Gross-Pitaevskii equation and management by external potentials.

    PubMed

    Li, Li; Yu, Fajun

    2017-09-06

    We investigate non-autonomous multi-rogue wave solutions in a three-component(spin-1) coupled nonlinear Gross-Pitaevskii(GP) equation with varying dispersions, higher nonlinearities, gain/loss and external potentials. The similarity transformation allows us to relate certain class of multi-rogue wave solutions of the spin-1 coupled nonlinear GP equation to the solutions of integrable coupled nonlinear Schrödinger(CNLS) equation. We study the effect of time-dependent quadratic potential on the profile and dynamic of non-autonomous rogue waves. With certain requirement on the backgrounds, some non-autonomous multi-rogue wave solutions exhibit the different shapes with two peaks and dip in bright-dark rogue waves. Then, the managements with external potential and dynamic behaviors of these solutions are investigated analytically. The results could be of interest in such diverse fields as Bose-Einstein condensates, nonlinear fibers and super-fluids.

  10. Exact Solutions, Symmetry Reductions, Painlevé Test and Bäcklund Transformations of A Coupled KdV Equation

    NASA Astrophysics Data System (ADS)

    Min-Hui, XU; Man, JIA

    2017-10-01

    A coupled KdV equation is studied in this manuscript. The exact solutions, such as the periodic wave solutions and solitary wave solutions by means of the deformation and mapping approach from the solutions of the nonlinear ϕ 4 model are given. Using the symmetry theory, the Lie point symmetries and symmetry reductions of the coupled KdV equation are presented. The results show that the coupled KdV equation possesses infinitely many symmetries and may be considered as an integrable system. Also, the Painlevé test shows the coupled KdV equation possesses Painlevé property. The Bäcklund transformations of the coupled KdV equation related to Painlevé property and residual symmetry are shown. Supported by the National Natural Science Foundation of China under Grant Nos. 11675084 and 11435005, Ningbo Natural Science Foundation under Grant No. 2015A610159 and granted by the Opening Project of Zhejiang Provincial Top Key Discipline of Physics Sciences in Ningbo University under Grant No. xkzwl1502, and the authors are sponsored by K. C. Wong Magna Fund in Ningbo University

  11. Group invariant solutions of the Ernst equation of general relativity theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pryse, P.V.

    The local symmetry group of the Ernst Equation for stationary, axisymmetric, vacuum space-time manifolds is computed by application of the method of Olver. Several implicit solutions of the equation are found by use of this group. Each of these solutions is given in terms of a function defined as a solution of an ordinary differential equation. One of these equations is integrated by quadratures by use of its own local symmetry group, the result being three explicit solutions of the Ernst Equation. For one of these solutions the metric of the space-time manifold is constructed and studied. The solutions hasmore » a ring curvature singularity and it is asymptotically flat in the sense that the curvature invariants approach zero at spatial infinity. The timelike and null geodesics on the symmetry axis and in the plane of the ring singularity are described. The test particles following these geodesics are seen to be repelled by the ring, which suggests the interpretation of this solution as representing the exterior gravitational field of a rotating ring of matter with negative gravitational mass.« less

  12. Elliptic Euler-Poisson-Darboux equation, critical points and integrable systems

    NASA Astrophysics Data System (ADS)

    Konopelchenko, B. G.; Ortenzi, G.

    2013-12-01

    The structure and properties of families of critical points for classes of functions W(z,{\\overline{z}}) obeying the elliptic Euler-Poisson-Darboux equation E(1/2, 1/2) are studied. General variational and differential equations governing the dependence of critical points in variational (deformation) parameters are found. Explicit examples of the corresponding integrable quasi-linear differential systems and hierarchies are presented. There are the extended dispersionless Toda/nonlinear Schrödinger hierarchies, the ‘inverse’ hierarchy and equations associated with the real-analytic Eisenstein series E(\\beta ,{\\overline{\\beta }};1/2) among them. The specific bi-Hamiltonian structure of these equations is also discussed.

  13. Series: Utilization of Differential Equations and Methods for Solving Them in Medical Physics (4).

    PubMed

    Murase, Kenya

    2016-01-01

    Partial differential equations are often used in the field of medical physics. In this (final) issue, the methods for solving the partial differential equations were introduced, which include separation of variables, integral transform (Fourier and Fourier-sine transforms), Green's function, and series expansion methods. Some examples were also introduced, in which the integral transform and Green's function methods were applied to solving Pennes' bioheat transfer equation and the Fourier series expansion method was applied to Navier-Stokes equation for analyzing the wall shear stress in blood vessels.Finally, the author hopes that this series will be helpful for people who engage in medical physics.

  14. Recent advances in computational-analytical integral transforms for convection-diffusion problems

    NASA Astrophysics Data System (ADS)

    Cotta, R. M.; Naveira-Cotta, C. P.; Knupp, D. C.; Zotin, J. L. Z.; Pontes, P. C.; Almeida, A. P.

    2017-10-01

    An unifying overview of the Generalized Integral Transform Technique (GITT) as a computational-analytical approach for solving convection-diffusion problems is presented. This work is aimed at bringing together some of the most recent developments on both accuracy and convergence improvements on this well-established hybrid numerical-analytical methodology for partial differential equations. Special emphasis is given to novel algorithm implementations, all directly connected to enhancing the eigenfunction expansion basis, such as a single domain reformulation strategy for handling complex geometries, an integral balance scheme in dealing with multiscale problems, the adoption of convective eigenvalue problems in formulations with significant convection effects, and the direct integral transformation of nonlinear convection-diffusion problems based on nonlinear eigenvalue problems. Then, selected examples are presented that illustrate the improvement achieved in each class of extension, in terms of convergence acceleration and accuracy gain, which are related to conjugated heat transfer in complex or multiscale microchannel-substrate geometries, multidimensional Burgers equation model, and diffusive metal extraction through polymeric hollow fiber membranes. Numerical results are reported for each application and, where appropriate, critically compared against the traditional GITT scheme without convergence enhancement schemes and commercial or dedicated purely numerical approaches.

  15. Soil Eroison, T Values, and Sustainability: A Review and Exercise.

    ERIC Educational Resources Information Center

    Beach, Timothy; Gersmehl, Philip

    1993-01-01

    Reviews issues related to soil erosion and soil loss tolerance in the United States. Describes an instructional plan in which students estimate soil loses in three geographical regions using the Universal Soil Loss Equation (USLE). Recommends integrating the geography of soil erosion with broader conceptual questions in physical geography. (CFR)

  16. A wideband fast multipole boundary element method for half-space/plane-symmetric acoustic wave problems

    NASA Astrophysics Data System (ADS)

    Zheng, Chang-Jun; Chen, Hai-Bo; Chen, Lei-Lei

    2013-04-01

    This paper presents a novel wideband fast multipole boundary element approach to 3D half-space/plane-symmetric acoustic wave problems. The half-space fundamental solution is employed in the boundary integral equations so that the tree structure required in the fast multipole algorithm is constructed for the boundary elements in the real domain only. Moreover, a set of symmetric relations between the multipole expansion coefficients of the real and image domains are derived, and the half-space fundamental solution is modified for the purpose of applying such relations to avoid calculating, translating and saving the multipole/local expansion coefficients of the image domain. The wideband adaptive multilevel fast multipole algorithm associated with the iterative solver GMRES is employed so that the present method is accurate and efficient for both lowand high-frequency acoustic wave problems. As for exterior acoustic problems, the Burton-Miller method is adopted to tackle the fictitious eigenfrequency problem involved in the conventional boundary integral equation method. Details on the implementation of the present method are described, and numerical examples are given to demonstrate its accuracy and efficiency.

  17. A Bifurcation Problem for a Nonlinear Partial Differential Equation of Parabolic Type,

    DTIC Science & Technology

    NONLINEAR DIFFERENTIAL EQUATIONS, INTEGRATION), (*PARTIAL DIFFERENTIAL EQUATIONS, BOUNDARY VALUE PROBLEMS), BANACH SPACE , MAPPING (TRANSFORMATIONS), SET THEORY, TOPOLOGY, ITERATIONS, STABILITY, THEOREMS

  18. Weyl relativity: a novel approach to Weyl's ideas

    NASA Astrophysics Data System (ADS)

    Barceló, Carlos; Carballo-Rubio, Raúl; Garay, Luis J.

    2017-06-01

    In this paper we revisit the motivation and construction of a unified theory of gravity and electromagnetism, following Weyl's insights regarding the appealing potential connection between the gauge invariance of electromagnetism and the conformal invariance of the gravitational field. We highlight that changing the local symmetry group of spacetime permits to construct a theory in which these two symmetries are combined into a putative gauge symmetry but with second-order field equations and non-trivial mass scales, unlike the original higher-order construction by Weyl. We prove that the gravitational field equations are equivalent to the (trace-free) Einstein field equations, ensuring their compatibility with known tests of general relativity. As a corollary, the effective cosmological constant is rendered radiatively stable due to Weyl invariance. A novel phenomenological consequence characteristic of this construction, potentially relevant for cosmological observations, is the existence of an energy scale below which effects associated with the non-integrability of spacetime distances, and an effective mass for the electromagnetic field, appear simultaneously (as dual manifestations of the use of Weyl connections). We explain how former criticisms against Weyl's ideas lose most of their power in its present reincarnation, which we refer to as Weyl relativity, as it represents a Weyl-invariant, unified description of both the Einstein and Maxwell field equations.

  19. Weyl relativity: a novel approach to Weyl's ideas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barceló, Carlos; Carballo-Rubio, Raúl; Garay, Luis J., E-mail: carlos@iaa.es, E-mail: raul.carballo-rubio@uct.ac.za, E-mail: luisj.garay@ucm.es

    In this paper we revisit the motivation and construction of a unified theory of gravity and electromagnetism, following Weyl's insights regarding the appealing potential connection between the gauge invariance of electromagnetism and the conformal invariance of the gravitational field. We highlight that changing the local symmetry group of spacetime permits to construct a theory in which these two symmetries are combined into a putative gauge symmetry but with second-order field equations and non-trivial mass scales, unlike the original higher-order construction by Weyl. We prove that the gravitational field equations are equivalent to the (trace-free) Einstein field equations, ensuring their compatibilitymore » with known tests of general relativity. As a corollary, the effective cosmological constant is rendered radiatively stable due to Weyl invariance. A novel phenomenological consequence characteristic of this construction, potentially relevant for cosmological observations, is the existence of an energy scale below which effects associated with the non-integrability of spacetime distances, and an effective mass for the electromagnetic field, appear simultaneously (as dual manifestations of the use of Weyl connections). We explain how former criticisms against Weyl's ideas lose most of their power in its present reincarnation, which we refer to as Weyl relativity, as it represents a Weyl-invariant, unified description of both the Einstein and Maxwell field equations.« less

  20. Higher-order time integration of Coulomb collisions in a plasma using Langevin equations

    DOE PAGES

    Dimits, A. M.; Cohen, B. I.; Caflisch, R. E.; ...

    2013-02-08

    The extension of Langevin-equation Monte-Carlo algorithms for Coulomb collisions from the conventional Euler-Maruyama time integration to the next higher order of accuracy, the Milstein scheme, has been developed, implemented, and tested. This extension proceeds via a formulation of the angular scattering directly as stochastic differential equations in the two fixed-frame spherical-coordinate velocity variables. Results from the numerical implementation show the expected improvement [O(Δt) vs. O(Δt 1/2)] in the strong convergence rate both for the speed |v| and angular components of the scattering. An important result is that this improved convergence is achieved for the angular component of the scattering ifmore » and only if the “area-integral” terms in the Milstein scheme are included. The resulting Milstein scheme is of value as a step towards algorithms with both improved accuracy and efficiency. These include both algorithms with improved convergence in the averages (weak convergence) and multi-time-level schemes. The latter have been shown to give a greatly reduced cost for a given overall error level when compared with conventional Monte-Carlo schemes, and their performance is improved considerably when the Milstein algorithm is used for the underlying time advance versus the Euler-Maruyama algorithm. A new method for sampling the area integrals is given which is a simplification of an earlier direct method and which retains high accuracy. Lastly, this method, while being useful in its own right because of its relative simplicity, is also expected to considerably reduce the computational requirements for the direct conditional sampling of the area integrals that is needed for adaptive strong integration.« less

  1. Integral Equations and Scattering Solutions for a Square-Well Potential.

    ERIC Educational Resources Information Center

    Bagchi, B.; Seyler, R. G.

    1979-01-01

    Derives Green's functions and integral equations for scattering solutions subject to a variety of boundary conditions. Exact solutions are obtained for the case of a finite spherical square-well potential, and properties of these solutions are discussed. (Author/HM)

  2. Controllable optical rogue waves via nonlinearity management.

    PubMed

    Yang, Zhengping; Zhong, Wei-Ping; Belić, Milivoj; Zhang, Yiqi

    2018-03-19

    Using a similarity transformation, we obtain analytical solutions to a class of nonlinear Schrödinger (NLS) equations with variable coefficients in inhomogeneous Kerr media, which are related to the optical rogue waves of the standard NLS equation. We discuss the dynamics of such optical rogue waves via nonlinearity management, i.e., by selecting the appropriate nonlinearity coefficients and integration constants, and presenting the solutions. In addition, we investigate higher-order rogue waves by suitably adjusting the nonlinearity coefficient and the rogue wave parameters, which could help in realizing complex but controllable optical rogue waves in properly engineered fibers and other photonic materials.

  3. On the use of co-ordinate stretching in the numeral computation of high frequency scattering. [of jet engine noise by fuselage

    NASA Technical Reports Server (NTRS)

    Bayliss, A.

    1978-01-01

    The scattering of the sound of a jet engine by an airplane fuselage is modeled by solving the axially symmetric Helmholtz equation exterior to a long thin ellipsoid. The integral equation method based on the single layer potential formulation is used. A family of coordinate systems on the body is introduced and an algorithm is presented to determine the optimal coordinate system. Numerical results verify that the optimal choice enables the solution to be computed with a grid that is coarse relative to the wavelength.

  4. Evaluation of geopotential and luni-solar perturbations by a recursive algorithm

    NASA Technical Reports Server (NTRS)

    Giacaglia, G. E. O.

    1975-01-01

    The disturbing functions due to the geopotential and Luni-solar attractions are linear and bilinear forms in spherical harmonics. Making use of recurrence relations for the solid spherical harmonics and their derivatives, recurrence formulas are obtained for high degree terms as function of lower degree for any term of those disturbing functions and their derivative with respect to any element. The equations obtained are effective when a numerical integration of the equations of motion is appropriate. In analytical theories, they provide a fast way of obtaining high degree terms starting from initial very simple functions.

  5. Scale matters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Margolin, L. G.

    The applicability of Navier–Stokes equations is limited to near-equilibrium flows in which the gradients of density, velocity and energy are small. Here I propose an extension of the Chapman–Enskog approximation in which the velocity probability distribution function (PDF) is averaged in the coordinate phase space as well as the velocity phase space. I derive a PDF that depends on the gradients and represents a first-order generalization of local thermodynamic equilibrium. I then integrate this PDF to derive a hydrodynamic model. Finally, I discuss the properties of that model and its relation to the discrete equations of computational fluid dynamics.

  6. Scale matters

    DOE PAGES

    Margolin, L. G.

    2018-03-19

    The applicability of Navier–Stokes equations is limited to near-equilibrium flows in which the gradients of density, velocity and energy are small. Here I propose an extension of the Chapman–Enskog approximation in which the velocity probability distribution function (PDF) is averaged in the coordinate phase space as well as the velocity phase space. I derive a PDF that depends on the gradients and represents a first-order generalization of local thermodynamic equilibrium. I then integrate this PDF to derive a hydrodynamic model. Finally, I discuss the properties of that model and its relation to the discrete equations of computational fluid dynamics.

  7. The statistical theory of the fracture of fragile bodies. Part 2: The integral equation method

    NASA Technical Reports Server (NTRS)

    Kittl, P.

    1984-01-01

    It is demonstrated how with the aid of a bending test, the Weibull fracture risk function can be determined - without postulating its analytical form - by resolving an integral equation. The respective solutions for rectangular and circular section beams are given. In the first case the function is expressed as an algorithm and in the second, in the form of series. Taking into account that the cumulative fracture probability appearing in the solution to the integral equation must be continuous and monotonically increasing, any case of fabrication or selection of samples can be treated.

  8. Covariant Hamiltonian tetrad approach to numerical relativity

    NASA Astrophysics Data System (ADS)

    Hamilton, Andrew J. S.

    2017-12-01

    A Hamiltonian approach to the equations of general relativity is proposed using the powerful mathematical language of multivector-valued differential forms. In the approach, the gravitational coordinates are the 12 spatial components of the line interval (the vierbein) including their antisymmetric parts, and their 12 conjugate momenta. A feature of the proposed formalism is that it allows Lorentz gauge freedoms to be imposed on the Lorentz connections rather than on the vierbein, which may facilitate numerical integration in some challenging problems. The 40 Hamilton's equations comprise 12 +12 =24 equations of motion, ten constraint equations (first class constraints, which must be arranged on the initial hypersurface of constant time, but which are guaranteed thereafter by conservation laws), and six identities (second class constraints). The six identities define a trace-free spatial tensor that is the gravitational analog of the magnetic field of electromagnetism. If the gravitational magnetic field is promoted to an independent field satisfying its own equation of motion, then the system becomes the Wahlquist-Estabrook-Buchman-Bardeen (WEBB) system, which is known to be strongly hyperbolic. Some other approaches, including Arnowitt-Deser-Misner, Baumgarte-Shapiro-Shibata-Nakamura, WEBB, and loop quantum gravity, are translated into the language of multivector-valued forms, bringing out their underlying mathematical structure.

  9. Rotordynamic coefficients for stepped labyrinth gas seals

    NASA Technical Reports Server (NTRS)

    Scharrer, Joseph K.

    1989-01-01

    The basic equations are derived for compressible flow in a stepped labyrinth gas seal. The flow is assumed to be completely turbulent in the circumferential direction where the friction factor is determined by the Blasius relation. Linearized zeroth and first-order perturbation equations are developed for small motion about a centered position by an expansion in the eccentricity ratio. The zeroth-order pressure distribution is found by satisfying the leakage equation while the circumferential velocity distribution is determined by satisfying the momentum equations. The first order equations are solved by a separation of variables solution. Integration of the resultant pressure distribution along and around the seal defines the reaction force developed by the seal and the corresponding dynamic coefficients. The results of this analysis are presented in the form of a parametric study, since there are no known experimental data for the rotordynamic coefficients of stepped labyrinth gas seals. The parametric study investigates the relative rotordynamic stability of convergent, straight and divergent stepped labyrinth gas seals. The results show that, generally, the divergent seal is more stable, rotordynamically, than the straight or convergent seals. The results also show that the teeth-on-stator seals are not always more stable, rotordynamically, then the teeth-on-rotor seals as was shown by experiment by Childs and Scharrer (1986b) for a 15 tooth seal.

  10. Asian International Students at an Australian University: Mapping the Paths between Integrative Motivation, Competence in L2 Communication, Cross-Cultural Adaptation and Persistence with Structural Equation Modelling

    ERIC Educational Resources Information Center

    Yu, Baohua

    2013-01-01

    This study examined the interrelationships of integrative motivation, competence in second language (L2) communication, sociocultural adaptation, academic adaptation and persistence of international students at an Australian university. Structural equation modelling demonstrated that the integrative motivation of international students has a…

  11. Development of volume equations using data obtained by upper stem dendrometry with Monte Carlo integration: preliminary results for eastern redcedar

    Treesearch

    Thomas B. Lynch; Rodney E. Will; Rider Reynolds

    2013-01-01

    Preliminary results are given for development of an eastern redcedar (Juniperus virginiana) cubic-volume equation based on measurements of redcedar sample tree stem volume using dendrometry with Monte Carlo integration. Monte Carlo integration techniques can be used to provide unbiased estimates of stem cubic-foot volume based on upper stem diameter...

  12. Kranc: a Mathematica package to generate numerical codes for tensorial evolution equations

    NASA Astrophysics Data System (ADS)

    Husa, Sascha; Hinder, Ian; Lechner, Christiane

    2006-06-01

    We present a suite of Mathematica-based computer-algebra packages, termed "Kranc", which comprise a toolbox to convert certain (tensorial) systems of partial differential evolution equations to parallelized C or Fortran code for solving initial boundary value problems. Kranc can be used as a "rapid prototyping" system for physicists or mathematicians handling very complicated systems of partial differential equations, but through integration into the Cactus computational toolkit we can also produce efficient parallelized production codes. Our work is motivated by the field of numerical relativity, where Kranc is used as a research tool by the authors. In this paper we describe the design and implementation of both the Mathematica packages and the resulting code, we discuss some example applications, and provide results on the performance of an example numerical code for the Einstein equations. Program summaryTitle of program: Kranc Catalogue identifier: ADXS_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXS_v1_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computer for which the program is designed and others on which it has been tested: General computers which run Mathematica (for code generation) and Cactus (for numerical simulations), tested under Linux Programming language used: Mathematica, C, Fortran 90 Memory required to execute with typical data: This depends on the number of variables and gridsize, the included ADM example requires 4308 KB Has the code been vectorized or parallelized: The code is parallelized based on the Cactus framework. Number of bytes in distributed program, including test data, etc.: 1 578 142 Number of lines in distributed program, including test data, etc.: 11 711 Nature of physical problem: Solution of partial differential equations in three space dimensions, which are formulated as an initial value problem. In particular, the program is geared towards handling very complex tensorial equations as they appear, e.g., in numerical relativity. The worked out examples comprise the Klein-Gordon equations, the Maxwell equations, and the ADM formulation of the Einstein equations. Method of solution: The method of numerical solution is finite differencing and method of lines time integration, the numerical code is generated through a high level Mathematica interface. Restrictions on the complexity of the program: Typical numerical relativity applications will contain up to several dozen evolution variables and thousands of source terms, Cactus applications have shown scaling up to several thousand processors and grid sizes exceeding 500 3. Typical running time: This depends on the number of variables and the grid size: the included ADM example takes approximately 100 seconds on a 1600 MHz Intel Pentium M processor. Unusual features of the program: based on Mathematica and Cactus

  13. PREFACE: Symmetries and integrability of difference equations Symmetries and integrability of difference equations

    NASA Astrophysics Data System (ADS)

    Levi, Decio; Olver, Peter; Thomova, Zora; Winternitz, Pavel

    2009-11-01

    The concept of integrability was introduced in classical mechanics in the 19th century for finite dimensional continuous Hamiltonian systems. It was extended to certain classes of nonlinear differential equations in the second half of the 20th century with the discovery of the inverse scattering transform and the birth of soliton theory. Also at the end of the 19th century Lie group theory was invented as a powerful tool for obtaining exact analytical solutions of large classes of differential equations. Together, Lie group theory and integrability theory in its most general sense provide the main tools for solving nonlinear differential equations. Like differential equations, difference equations play an important role in physics and other sciences. They occur very naturally in the description of phenomena that are genuinely discrete. Indeed, they may actually be more fundamental than differential equations if space-time is actually discrete at very short distances. On the other hand, even when treating continuous phenomena described by differential equations it is very often necessary to resort to numerical methods. This involves a discretization of the differential equation, i.e. a replacement of the differential equation by a difference one. Given the well developed and understood techniques of symmetry and integrability for differential equations a natural question to ask is whether it is possible to develop similar techniques for difference equations. The aim is, on one hand, to obtain powerful methods for solving `integrable' difference equations and to establish practical integrability criteria, telling us when the methods are applicable. On the other hand, Lie group methods can be adapted to solve difference equations analytically. Finally, integrability and symmetry methods can be combined with numerical methods to obtain improved numerical solutions of differential equations. The origin of the SIDE meetings goes back to the early 1990s and the first meeting with the name `Symmetries and Integrability of Discrete Equations (SIDE)' was held in Estérel, Québec, Canada. This was organized by D Levi, P Winternitz and L Vinet. After the success of the first meeting the scientific community decided to hold bi-annual SIDE meetings. They were held in 1996 at the University of Kent (UK), 1998 in Sabaudia (Italy), 2000 at the University of Tokyo (Japan), 2002 in Giens (France), 2004 in Helsinki (Finland) and in 2006 at the University of Melbourne (Australia). In 2008 the SIDE 8 meeting was again organized near Montreal, in Ste-Adèle, Québec, Canada. The SIDE 8 International Advisory Committee (also the SIDE steering committee) consisted of Frank Nijhoff, Alexander Bobenko, Basil Grammaticos, Jarmo Hietarinta, Nalini Joshi, Decio Levi, Vassilis Papageorgiou, Junkichi Satsuma, Yuri Suris, Claude Vialet and Pavel Winternitz. The local organizing committee consisted of Pavel Winternitz, John Harnad, Véronique Hussin, Decio Levi, Peter Olver and Luc Vinet. Financial support came from the Centre de Recherches Mathématiques in Montreal and the National Science Foundation (through the University of Minnesota). Proceedings of the first three SIDE meetings were published in the LMS Lecture Note series. Since 2000 the emphasis has been on publishing selected refereed articles in response to a general call for papers issued after the conference. This allows for a wider author base, since the call for papers is not restricted to conference participants. The SIDE topics thus are represented in special issues of Journal of Physics A: Mathematical and General 34 (48) and Journal of Physics A: Mathematical and Theoretical, 40 (42) (SIDE 4 and SIDE 7, respectively), Journal of Nonlinear Mathematical Physics 10 (Suppl. 2) and 12 (Suppl. 2) (SIDE 5 and SIDE 6 respectively). The SIDE 8 meeting was organized around several topics and the contributions to this special issue reflect the diversity presented during the meeting. The papers presented at the SIDE 8 meeting were organized into the following special sessions: geometry of discrete and continuous Painlevé equations; continuous symmetries of discrete equations—theory and computational applications; algebraic aspects of discrete equations; singularity confinement, algebraic entropy and Nevanlinna theory; discrete differential geometry; discrete integrable systems and isomonodromy transformations; special functions as solutions of difference and q-difference equations. This special issue of the journal is organized along similar lines. The first three articles are topical review articles appearing in alphabetical order (by first author). The article by Doliwa and Nieszporski describes the Darboux transformations in a discrete setting, namely for the discrete second order linear problem. The article by Grammaticos, Halburd, Ramani and Viallet concentrates on the integrability of the discrete systems, in particular they describe integrability tests for difference equations such as singularity confinement, algebraic entropy (growth and complexity), and analytic and arithmetic approaches. The topical review by Konopelchenko explores the relationship between the discrete integrable systems and deformations of associative algebras. All other articles are presented in alphabetical order (by first author). The contributions were solicited from all participants as well as from the general scientific community. The contributions published in this special issue can be loosely grouped into several overlapping topics, namely: •Geometry of discrete and continuous Painlevé equations (articles by Spicer and Nijhoff and by Lobb and Nijhoff). •Continuous symmetries of discrete equations—theory and applications (articles by Dorodnitsyn and Kozlov; Levi, Petrera and Scimiterna; Scimiterna; Ste-Marie and Tremblay; Levi and Yamilov; Rebelo and Winternitz). •Yang--Baxter maps (article by Xenitidis and Papageorgiou). •Algebraic aspects of discrete equations (articles by Doliwa and Nieszporski; Konopelchenko; Tsarev and Wolf). •Singularity confinement, algebraic entropy and Nevanlinna theory (articles by Grammaticos, Halburd, Ramani and Viallet; Grammaticos, Ramani and Tamizhmani). •Discrete integrable systems and isomonodromy transformations (article by Dzhamay). •Special functions as solutions of difference and q-difference equations (articles by Atakishiyeva, Atakishiyev and Koornwinder; Bertola, Gekhtman and Szmigielski; Vinet and Zhedanov). •Other topics (articles by Atkinson; Grünbaum Nagai, Kametaka and Watanabe; Nagiyev, Guliyeva and Jafarov; Sahadevan and Uma Maheswari; Svinin; Tian and Hu; Yao, Liu and Zeng). This issue is the result of the collaboration of many individuals. We would like to thank the authors who contributed and everyone else involved in the preparation of this special issue.

  14. Solving modal equations of motion with initial conditions using MSC/NASTRAN DMAP. Part 1: Implementing exact mode superposition

    NASA Technical Reports Server (NTRS)

    Abdallah, Ayman A.; Barnett, Alan R.; Ibrahim, Omar M.; Manella, Richard T.

    1993-01-01

    Within the MSC/NASTRAN DMAP (Direct Matrix Abstraction Program) module TRD1, solving physical (coupled) or modal (uncoupled) transient equations of motion is performed using the Newmark-Beta or mode superposition algorithms, respectively. For equations of motion with initial conditions, only the Newmark-Beta integration routine has been available in MSC/NASTRAN solution sequences for solving physical systems and in custom DMAP sequences or alters for solving modal systems. In some cases, one difficulty with using the Newmark-Beta method is that the process of selecting suitable integration time steps for obtaining acceptable results is lengthy. In addition, when very small step sizes are required, a large amount of time can be spent integrating the equations of motion. For certain aerospace applications, a significant time savings can be realized when the equations of motion are solved using an exact integration routine instead of the Newmark-Beta numerical algorithm. In order to solve modal equations of motion with initial conditions and take advantage of efficiencies gained when using uncoupled solution algorithms (like that within TRD1), an exact mode superposition method using MSC/NASTRAN DMAP has been developed and successfully implemented as an enhancement to an existing coupled loads methodology at the NASA Lewis Research Center.

  15. Matrix Methods for Solving Hartree-Fock Equations in Atomic Structure Calculations and Line Broadening

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gomez, Thomas; Nagayama, Taisuke; Fontes, Chris

    Atomic structure of N-electron atoms is often determined by solving the Hartree-Fock equations, which are a set of integro-differential equations. The integral part of the Hartree-Fock equations treats electron exchange, but the Hartree-Fock equations are not often treated as an integro-differential equation. The exchange term is often approximated as an inhomogeneous or an effective potential so that the Hartree-Fock equations become a set of ordinary differential equations (which can be solved using the usual shooting methods). Because the Hartree-Fock equations are an iterative-refinement method, the inhomogeneous term relies on the previous guess of the wavefunction. In addition, there are numericalmore » complications associated with solving inhomogeneous differential equations. This work uses matrix methods to solve the Hartree-Fock equations as an integro-differential equation. It is well known that a derivative operator can be expressed as a matrix made of finite-difference coefficients; energy eigenvalues and eigenvectors can be obtained by using linear-algebra packages. The integral (exchange) part of the Hartree-Fock equation can be approximated as a sum and written as a matrix. The Hartree-Fock equations can be solved as a matrix that is the sum of the differential and integral matrices. We compare calculations using this method against experiment and standard atomic structure calculations. This matrix method can also be used to solve for free-electron wavefunctions, thus improving how the atoms and free electrons interact. Here, this technique is important for spectral line broadening in two ways: it improves the atomic structure calculations, and it improves the motion of the plasma electrons that collide with the atom.« less

  16. Matrix Methods for Solving Hartree-Fock Equations in Atomic Structure Calculations and Line Broadening

    DOE PAGES

    Gomez, Thomas; Nagayama, Taisuke; Fontes, Chris; ...

    2018-04-23

    Atomic structure of N-electron atoms is often determined by solving the Hartree-Fock equations, which are a set of integro-differential equations. The integral part of the Hartree-Fock equations treats electron exchange, but the Hartree-Fock equations are not often treated as an integro-differential equation. The exchange term is often approximated as an inhomogeneous or an effective potential so that the Hartree-Fock equations become a set of ordinary differential equations (which can be solved using the usual shooting methods). Because the Hartree-Fock equations are an iterative-refinement method, the inhomogeneous term relies on the previous guess of the wavefunction. In addition, there are numericalmore » complications associated with solving inhomogeneous differential equations. This work uses matrix methods to solve the Hartree-Fock equations as an integro-differential equation. It is well known that a derivative operator can be expressed as a matrix made of finite-difference coefficients; energy eigenvalues and eigenvectors can be obtained by using linear-algebra packages. The integral (exchange) part of the Hartree-Fock equation can be approximated as a sum and written as a matrix. The Hartree-Fock equations can be solved as a matrix that is the sum of the differential and integral matrices. We compare calculations using this method against experiment and standard atomic structure calculations. This matrix method can also be used to solve for free-electron wavefunctions, thus improving how the atoms and free electrons interact. Here, this technique is important for spectral line broadening in two ways: it improves the atomic structure calculations, and it improves the motion of the plasma electrons that collide with the atom.« less

  17. Numerical time-domain electromagnetics based on finite-difference and convolution

    NASA Astrophysics Data System (ADS)

    Lin, Yuanqu

    Time-domain methods posses a number of advantages over their frequency-domain counterparts for the solution of wideband, nonlinear, and time varying electromagnetic scattering and radiation phenomenon. Time domain integral equation (TDIE)-based methods, which incorporate the beneficial properties of integral equation method, are thus well suited for solving broadband scattering problems for homogeneous scatterers. Widespread adoption of TDIE solvers has been retarded relative to other techniques by their inefficiency, inaccuracy and instability. Moreover, two-dimensional (2D) problems are especially problematic, because 2D Green's functions have infinite temporal support, exacerbating these difficulties. This thesis proposes a finite difference delay modeling (FDDM) scheme for the solution of the integral equations of 2D transient electromagnetic scattering problems. The method discretizes the integral equations temporally using first- and second-order finite differences to map Laplace-domain equations into the Z domain before transforming to the discrete time domain. The resulting procedure is unconditionally stable because of the nature of the Laplace- to Z-domain mapping. The first FDDM method developed in this thesis uses second-order Lagrange basis functions with Galerkin's method for spatial discretization. The second application of the FDDM method discretizes the space using a locally-corrected Nystrom method, which accelerates the precomputation phase and achieves high order accuracy. The Fast Fourier Transform (FFT) is applied to accelerate the marching-on-time process in both methods. While FDDM methods demonstrate impressive accuracy and stability in solving wideband scattering problems for homogeneous scatterers, they still have limitations in analyzing interactions between several inhomogenous scatterers. Therefore, this thesis devises a multi-region finite-difference time-domain (MR-FDTD) scheme based on domain-optimal Green's functions for solving sparsely-populated problems. The scheme uses a discrete Green's function (DGF) on the FDTD lattice to truncate the local subregions, and thus reduces reflection error on the local boundary. A continuous Green's function (CGF) is implemented to pass the influence of external fields into each FDTD region which mitigates the numerical dispersion and anisotropy of standard FDTD. Numerical results will illustrate the accuracy and stability of the proposed techniques.

  18. Two Optical Atmospheric Remote Sensing Techniques and AN Associated Analytic Solution to a Class of Integral Equations

    NASA Astrophysics Data System (ADS)

    Manning, Robert Michael

    This work concerns itself with the analysis of two optical remote sensing methods to be used to obtain parameters of the turbulent atmosphere pertinent to stochastic electromagnetic wave propagation studies, and the well -posed solution to a class of integral equations that are central to the development of these remote sensing methods. A remote sensing technique is theoretically developed whereby the temporal frequency spectrum of the scintillations of a stellar source or a point source within the atmosphere, observed through a variable radius aperture, is related to the space-time spectrum of atmospheric scintillation. The key to this spectral remote sensing method is the spatial filtering performed by a finite aperture. The entire method is developed without resorting to a priori information such as results from stochastic wave propagation theory. Once the space-time spectrum of the scintillations is obtained, an application of known results of atmospheric wave propagation theory and simple geometric considerations are shown to yield such important information such as the spectrum of atmospheric turbulence, the cross-wind velocity, and the path profile of the atmospheric refractive index structure parameter. A method is also developed to independently verify the Taylor frozen flow hypothesis. The success of the spectral remote sensing method relies on the solution to a Fredholm integral equation of the first kind. An entire class of such equations, that are peculiar to inverse diffraction problems, is studied and a well-posed solution (in the sense of Hadamard) is obtained and probed. Conditions of applicability are derived and shown not to limit the useful operating range of the spectral remote sensing method. The general integral equation solution obtained is then applied to another remote sensing problem having to do with the characterization of the particle size distribution to atmospheric aerosols and hydrometeors. By measuring the diffraction pattern in the focal plane of a lens created by the passage of a laser beam through a distribution of particles, it is shown that the particle-size distribution of the particles can be obtained. An intermediate result of the analysis also gives the total volume concentration of the particles.

  19. Evaluating Feynman integrals by the hypergeometry

    NASA Astrophysics Data System (ADS)

    Feng, Tai-Fu; Chang, Chao-Hsi; Chen, Jian-Bin; Gu, Zhi-Hua; Zhang, Hai-Bin

    2018-02-01

    The hypergeometric function method naturally provides the analytic expressions of scalar integrals from concerned Feynman diagrams in some connected regions of independent kinematic variables, also presents the systems of homogeneous linear partial differential equations satisfied by the corresponding scalar integrals. Taking examples of the one-loop B0 and massless C0 functions, as well as the scalar integrals of two-loop vacuum and sunset diagrams, we verify our expressions coinciding with the well-known results of literatures. Based on the multiple hypergeometric functions of independent kinematic variables, the systems of homogeneous linear partial differential equations satisfied by the mentioned scalar integrals are established. Using the calculus of variations, one recognizes the system of linear partial differential equations as stationary conditions of a functional under some given restrictions, which is the cornerstone to perform the continuation of the scalar integrals to whole kinematic domains numerically with the finite element methods. In principle this method can be used to evaluate the scalar integrals of any Feynman diagrams.

  20. A note on the velocity derivative flatness factor in decaying HIT

    NASA Astrophysics Data System (ADS)

    Djenidi, L.; Danaila, L.; Antonia, R. A.; Tang, S.

    2017-05-01

    We develop an analytical expression for the velocity derivative flatness factor, F, in decaying homogenous and isotropic turbulence (HIT) starting with the transport equation of the third-order moment of the velocity increment and assuming self-preservation. This expression, fully consistent with the Navier-Stokes equations, relates F to the product between the second-order pressure derivative (∂2p /∂x2) and second-order moment of the longitudinal velocity derivative ((∂u/∂x ) 2), highlighting the role the pressure plays in the scaling of the fourth-order moment of the longitudinal velocity derivative. It is also shown that F has an upper bound which follows the integral of k*4Ep*(k* ) where Ep and k are the pressure spectrum and the wavenumber, respectively (the symbol * represents the Kolmogorov normalization). Direct numerical simulations of forced HIT suggest that this integral converges toward a constant as the Reynolds number increases.

  1. Analytic study of a rolling sphere on a rough surface

    NASA Astrophysics Data System (ADS)

    Florea, Olivia A.; Rosca, Ileana C.

    2016-11-01

    In this paper it is realized an analytic study of the rolling's sphere on a rough horizontal plane under the action of its own gravity. The necessities of integration of the system of dynamical equations of motion lead us to find a reference system where the motion equations should be transformed into simpler expressions and which, in the presence of some significant hypothesis to permit the application of some original methods of analytical integration. In technical applications, the bodies may have a free rolling motion or a motion constrained by geometrical relations in assemblies of parts and machine parts. This study involves a lot of investigations in the field of tribology and of applied dynamics accompanied by experiments. Multiple recordings of several trajectories of the sphere, as well as their treatment of images, also followed by statistical processing experimental data allowed highlighting a very good agreement between the theoretical findings and experimental results.

  2. Scaling and scale invariance of conservation laws in Reynolds transport theorem framework

    NASA Astrophysics Data System (ADS)

    Haltas, Ismail; Ulusoy, Suleyman

    2015-07-01

    Scale invariance is the case where the solution of a physical process at a specified time-space scale can be linearly related to the solution of the processes at another time-space scale. Recent studies investigated the scale invariance conditions of hydrodynamic processes by applying the one-parameter Lie scaling transformations to the governing equations of the processes. Scale invariance of a physical process is usually achieved under certain conditions on the scaling ratios of the variables and parameters involved in the process. The foundational axioms of hydrodynamics are the conservation laws, namely, conservation of mass, conservation of linear momentum, and conservation of energy from continuum mechanics. They are formulated using the Reynolds transport theorem. Conventionally, Reynolds transport theorem formulates the conservation equations in integral form. Yet, differential form of the conservation equations can also be derived for an infinitesimal control volume. In the formulation of the governing equation of a process, one or more than one of the conservation laws and, some times, a constitutive relation are combined together. Differential forms of the conservation equations are used in the governing partial differential equation of the processes. Therefore, differential conservation equations constitute the fundamentals of the governing equations of the hydrodynamic processes. Applying the one-parameter Lie scaling transformation to the conservation laws in the Reynolds transport theorem framework instead of applying to the governing partial differential equations may lead to more fundamental conclusions on the scaling and scale invariance of the hydrodynamic processes. This study will investigate the scaling behavior and scale invariance conditions of the hydrodynamic processes by applying the one-parameter Lie scaling transformation to the conservation laws in the Reynolds transport theorem framework.

  3. On the Formulation of Weakly Singular Displacement/Traction Integral Equations; and Their Solution by the MLPG Method

    NASA Technical Reports Server (NTRS)

    Atluri, Satya N.; Shen, Shengping

    2002-01-01

    In this paper, a very simple method is used to derive the weakly singular traction boundary integral equation based on the integral relationships for displacement gradients. The concept of the MLPG method is employed to solve the integral equations, especially those arising in solid mechanics. A moving Least Squares (MLS) interpolation is selected to approximate the trial functions in this paper. Five boundary integral Solution methods are introduced: direct solution method; displacement boundary-value problem; traction boundary-value problem; mixed boundary-value problem; and boundary variational principle. Based on the local weak form of the BIE, four different nodal-based local test functions are selected, leading to four different MLPG methods for each BIE solution method. These methods combine the advantages of the MLPG method and the boundary element method.

  4. The geometric approach to sets of ordinary differential equations and Hamiltonian dynamics

    NASA Technical Reports Server (NTRS)

    Estabrook, F. B.; Wahlquist, H. D.

    1975-01-01

    The calculus of differential forms is used to discuss the local integration theory of a general set of autonomous first order ordinary differential equations. Geometrically, such a set is a vector field V in the space of dependent variables. Integration consists of seeking associated geometric structures invariant along V: scalar fields, forms, vectors, and integrals over subspaces. It is shown that to any field V can be associated a Hamiltonian structure of forms if, when dealing with an odd number of dependent variables, an arbitrary equation of constraint is also added. Families of integral invariants are an immediate consequence. Poisson brackets are isomorphic to Lie products of associated CT-generating vector fields. Hamilton's variational principle follows from the fact that the maximal regular integral manifolds of a closed set of forms must include the characteristics of the set.

  5. Virtual Levels and Role Models: N-Level Structural Equations Model of Reciprocal Ratings Data.

    PubMed

    Mehta, Paras D

    2018-01-01

    A general latent variable modeling framework called n-Level Structural Equations Modeling (NL-SEM) for dependent data-structures is introduced. NL-SEM is applicable to a wide range of complex multilevel data-structures (e.g., cross-classified, switching membership, etc.). Reciprocal dyadic ratings obtained in round-robin design involve complex set of dependencies that cannot be modeled within Multilevel Modeling (MLM) or Structural Equations Modeling (SEM) frameworks. The Social Relations Model (SRM) for round robin data is used as an example to illustrate key aspects of the NL-SEM framework. NL-SEM introduces novel constructs such as 'virtual levels' that allows a natural specification of latent variable SRMs. An empirical application of an explanatory SRM for personality using xxM, a software package implementing NL-SEM is presented. Results show that person perceptions are an integral aspect of personality. Methodological implications of NL-SEM for the analyses of an emerging class of contextual- and relational-SEMs are discussed.

  6. High-order solution methods for grey discrete ordinates thermal radiative transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maginot, Peter G., E-mail: maginot1@llnl.gov; Ragusa, Jean C., E-mail: jean.ragusa@tamu.edu; Morel, Jim E., E-mail: morel@tamu.edu

    This work presents a solution methodology for solving the grey radiative transfer equations that is both spatially and temporally more accurate than the canonical radiative transfer solution technique of linear discontinuous finite element discretization in space with implicit Euler integration in time. We solve the grey radiative transfer equations by fully converging the nonlinear temperature dependence of the material specific heat, material opacities, and Planck function. The grey radiative transfer equations are discretized in space using arbitrary-order self-lumping discontinuous finite elements and integrated in time with arbitrary-order diagonally implicit Runge–Kutta time integration techniques. Iterative convergence of the radiation equation ismore » accelerated using a modified interior penalty diffusion operator to precondition the full discrete ordinates transport operator.« less

  7. High-order solution methods for grey discrete ordinates thermal radiative transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maginot, Peter G.; Ragusa, Jean C.; Morel, Jim E.

    This paper presents a solution methodology for solving the grey radiative transfer equations that is both spatially and temporally more accurate than the canonical radiative transfer solution technique of linear discontinuous finite element discretization in space with implicit Euler integration in time. We solve the grey radiative transfer equations by fully converging the nonlinear temperature dependence of the material specific heat, material opacities, and Planck function. The grey radiative transfer equations are discretized in space using arbitrary-order self-lumping discontinuous finite elements and integrated in time with arbitrary-order diagonally implicit Runge–Kutta time integration techniques. Iterative convergence of the radiation equation ismore » accelerated using a modified interior penalty diffusion operator to precondition the full discrete ordinates transport operator.« less

  8. High-order solution methods for grey discrete ordinates thermal radiative transfer

    DOE PAGES

    Maginot, Peter G.; Ragusa, Jean C.; Morel, Jim E.

    2016-09-29

    This paper presents a solution methodology for solving the grey radiative transfer equations that is both spatially and temporally more accurate than the canonical radiative transfer solution technique of linear discontinuous finite element discretization in space with implicit Euler integration in time. We solve the grey radiative transfer equations by fully converging the nonlinear temperature dependence of the material specific heat, material opacities, and Planck function. The grey radiative transfer equations are discretized in space using arbitrary-order self-lumping discontinuous finite elements and integrated in time with arbitrary-order diagonally implicit Runge–Kutta time integration techniques. Iterative convergence of the radiation equation ismore » accelerated using a modified interior penalty diffusion operator to precondition the full discrete ordinates transport operator.« less

  9. AKNS hierarchy, Darboux transformation and conservation laws of the 1D nonautonomous nonlinear Schroedinger equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao Dun; Center for Interdisciplinary Studies, Lanzhou University, Lanzhou 730000; Zhang Yujuan

    2011-04-15

    By constructing nonisospectral Ablowitz-Kaup-Newell-Segur (AKNS) hierarchy, we investigate the nonautonomous nonlinear Schroedinger (NLS) equations which have been used to describe the Feshbach resonance management in matter-wave solitons in Bose-Einstein condensate and the dispersion and nonlinearity managements for optical solitons. It is found that these equations are some special cases of a new integrable model of nonlocal nonautonomous NLS equations. Based on the Lax pairs, the Darboux transformation and conservation laws are explored. It is shown that the local external potentials would break down the classical infinite number of conservation laws. The result indicates that the integrability of the nonautonomous NLSmore » systems may be nontrivial in comparison to the conventional concept of integrability in the canonical case.« less

  10. Particle connectedness and cluster formation in sequential depositions of particles: integral-equation theory.

    PubMed

    Danwanichakul, Panu; Glandt, Eduardo D

    2004-11-15

    We applied the integral-equation theory to the connectedness problem. The method originally applied to the study of continuum percolation in various equilibrium systems was modified for our sequential quenching model, a particular limit of an irreversible adsorption. The development of the theory based on the (quenched-annealed) binary-mixture approximation includes the Ornstein-Zernike equation, the Percus-Yevick closure, and an additional term involving the three-body connectedness function. This function is simplified by introducing a Kirkwood-like superposition approximation. We studied the three-dimensional (3D) system of randomly placed spheres and 2D systems of square-well particles, both with a narrow and with a wide well. The results from our integral-equation theory are in good accordance with simulation results within a certain range of densities.

  11. Particle connectedness and cluster formation in sequential depositions of particles: Integral-equation theory

    NASA Astrophysics Data System (ADS)

    Danwanichakul, Panu; Glandt, Eduardo D.

    2004-11-01

    We applied the integral-equation theory to the connectedness problem. The method originally applied to the study of continuum percolation in various equilibrium systems was modified for our sequential quenching model, a particular limit of an irreversible adsorption. The development of the theory based on the (quenched-annealed) binary-mixture approximation includes the Ornstein-Zernike equation, the Percus-Yevick closure, and an additional term involving the three-body connectedness function. This function is simplified by introducing a Kirkwood-like superposition approximation. We studied the three-dimensional (3D) system of randomly placed spheres and 2D systems of square-well particles, both with a narrow and with a wide well. The results from our integral-equation theory are in good accordance with simulation results within a certain range of densities.

  12. Theoretical Investigation of Thermo-Mechanical Behavior of Carbon Nanotube-Based Composites Using the Integral Transform Method

    NASA Technical Reports Server (NTRS)

    Pawloski, Janice S.

    2001-01-01

    This project uses the integral transform technique to model the problem of nanotube behavior as an axially symmetric system of shells. Assuming that the nanotube behavior can be described by the equations of elasticity, we seek a stress function x which satisfies the biharmonic equation: del(exp 4) chi = [partial deriv(r(exp 2)) + partial deriv(r) + partial deriv(z(exp 2))] chi = 0. The method of integral transformations is used to transform the differential equation. The symmetry with respect to the z-axis indicates that we only need to consider the sine transform of the stress function: X(bar)(r,zeta) = integral(from 0 to infinity) chi(r,z)sin(zeta,z) dz.

  13. All Source Sensor Integration Using an Extended Kalman Filter

    DTIC Science & Technology

    2012-03-22

    Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 All...Positioning System . . . . . . . . . . . . . . . . . . 1 ASPN All Source Positioning Navigation . . . . . . . . . . . . . . 2 DARPA Defense Advanced...equations are developed for sensor preprocessed mea- 1 surements, and these navigation equations are not dependent upon the integrating filter. That is

  14. Multi-Hamiltonian structure of Plebanski's second heavenly equation

    NASA Astrophysics Data System (ADS)

    Neyzi, F.; Nutku, Y.; Sheftel, M. B.

    2005-09-01

    We show that Plebanski's second heavenly equation, when written as a first-order nonlinear evolutionary system, admits multi-Hamiltonian structure. Therefore by Magri's theorem it is a completely integrable system. Thus it is an example of a completely integrable system in four dimensions.

  15. Time-dependent spectral renormalization method

    NASA Astrophysics Data System (ADS)

    Cole, Justin T.; Musslimani, Ziad H.

    2017-11-01

    The spectral renormalization method was introduced by Ablowitz and Musslimani (2005) as an effective way to numerically compute (time-independent) bound states for certain nonlinear boundary value problems. In this paper, we extend those ideas to the time domain and introduce a time-dependent spectral renormalization method as a numerical means to simulate linear and nonlinear evolution equations. The essence of the method is to convert the underlying evolution equation from its partial or ordinary differential form (using Duhamel's principle) into an integral equation. The solution sought is then viewed as a fixed point in both space and time. The resulting integral equation is then numerically solved using a simple renormalized fixed-point iteration method. Convergence is achieved by introducing a time-dependent renormalization factor which is numerically computed from the physical properties of the governing evolution equation. The proposed method has the ability to incorporate physics into the simulations in the form of conservation laws or dissipation rates. This novel scheme is implemented on benchmark evolution equations: the classical nonlinear Schrödinger (NLS), integrable PT symmetric nonlocal NLS and the viscous Burgers' equations, each of which being a prototypical example of a conservative and dissipative dynamical system. Numerical implementation and algorithm performance are also discussed.

  16. Numerical integration of KPZ equation with restrictions

    NASA Astrophysics Data System (ADS)

    Torres, M. F.; Buceta, R. C.

    2018-03-01

    In this paper, we introduce a novel integration method of Kardar–Parisi–Zhang (KPZ) equation. It is known that if during the discrete integration of the KPZ equation the nearest-neighbor height-difference exceeds a critical value, instabilities appear and the integration diverges. One way to avoid these instabilities is to replace the KPZ nonlinear-term by a function of the same term that depends on a single adjustable parameter which is able to control pillars or grooves growing on the interface. Here, we propose a different integration method which consists of directly limiting the value taken by the KPZ nonlinearity, thereby imposing a restriction rule that is applied in each integration time-step, as if it were the growth rule of a restricted discrete model, e.g. restricted-solid-on-solid (RSOS). Taking the discrete KPZ equation with restrictions to its dimensionless version, the integration depends on three parameters: the coupling constant g, the inverse of the time-step k, and the restriction constant ε which is chosen to eliminate divergences while keeping all the properties of the continuous KPZ equation. We study in detail the conditions in the parameters’ space that avoid divergences in the 1-dimensional integration and reproduce the scaling properties of the continuous KPZ with a particular parameter set. We apply the tested methodology to the d-dimensional case (d = 3, 4 ) with the purpose of obtaining the growth exponent β, by establishing the conditions of the coupling constant g under which we recover known values reached by other authors, particularly for the RSOS model. This method allows us to infer that d  =  4 is not the critical dimension of the KPZ universality class, where the strong-coupling phase disappears.

  17. Integrability in AdS/CFT correspondence: quasi-classical analysis

    NASA Astrophysics Data System (ADS)

    Gromov, Nikolay

    2009-06-01

    In this review, we consider a quasi-classical method applicable to integrable field theories which is based on a classical integrable structure—the algebraic curve. We apply it to the Green-Schwarz superstring on the AdS5 × S5 space. We show that the proposed method reproduces perfectly the earlier results obtained by expanding the string action for some simple classical solutions. The construction is explicitly covariant and is not based on a particular parameterization of the fields and as a result is free from ambiguities. On the other hand, the finite size corrections in some particularly important scaling limit are studied in this paper for a system of Bethe equations. For the general superalgebra \\su(N|K) , the result for the 1/L corrections is obtained. We find an integral equation which describes these corrections in a closed form. As an application, we consider the conjectured Beisert-Staudacher (BS) equations with the Hernandez-Lopez dressing factor where the finite size corrections should reproduce quasi-classical results around a general classical solution. Indeed, we show that our integral equation can be interpreted as a sum of all physical fluctuations and thus prove the complete one-loop consistency of the BS equations. We demonstrate that any local conserved charge (including the AdS energy) computed from the BS equations is indeed given at one loop by the sum of the charges of fluctuations with an exponential precision for large S5 angular momentum of the string. As an independent result, the BS equations in an \\su(2) sub-sector were derived from Zamolodchikovs's S-matrix. The paper is based on the author's PhD thesis.

  18. Elimination of secular terms from the differential equations for the elements of perturbed two-body motion

    NASA Technical Reports Server (NTRS)

    Bond, Victor R.; Fraietta, Michael F.

    1991-01-01

    In 1961, Sperling linearized and regularized the differential equations of motion of the two-body problem by changing the independent variable from time to fictitious time by Sundman's transformation (r = dt/ds) and by embedding the two-body energy integral and the Laplace vector. In 1968, Burdet developed a perturbation theory which was uniformly valid for all types of orbits using a variation of parameters approach on the elements which appeared in Sperling's equations for the two-body solution. In 1973, Bond and Hanssen improved Burdet's set of differential equations by embedding the total energy (which is a constant when the potential function is explicitly dependent upon time.) The Jacobian constant was used as an element to replace the total energy in a reformulation of the differential equations of motion. In the process, another element which is proportional to a component of the angular momentum was introduced. Recently trajectories computed during numerical studies of atmospheric entry from circular orbits and low thrust beginning in near-circular orbits exhibited numerical instability when solved by the method of Bond and Gottlieb (1989) for long time intervals. It was found that this instability was due to secular terms which appear on the righthand sides of the differential equations of some of the elements. In this paper, this instability is removed by the introduction of another vector integral called the delta integral (which replaces the Laplace Vector) and another scalar integral which removes the secular terms. The introduction of these integrals requires a new derivation of the differential equations for most of the elements. For this rederivation, the Lagrange method of variation of parameters is used, making the development more concise. Numerical examples of this improvement are presented.

  19. Viewpoint on ISA TR84.0.02--simplified methods and fault tree analysis.

    PubMed

    Summers, A E

    2000-01-01

    ANSI/ISA-S84.01-1996 and IEC 61508 require the establishment of a safety integrity level for any safety instrumented system or safety related system used to mitigate risk. Each stage of design, operation, maintenance, and testing is judged against this safety integrity level. Quantitative techniques can be used to verify whether the safety integrity level is met. ISA-dTR84.0.02 is a technical report under development by ISA, which discusses how to apply quantitative analysis techniques to safety instrumented systems. This paper discusses two of those techniques: (1) Simplified equations and (2) Fault tree analysis.

  20. Useful integral function and its application in thermal radiation calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, S.L.; Rhee, K.T.

    1983-07-01

    In applying the Planck formula for computing the energy radiated from an isothermal source, the emissivity of the source must be found. This emissivity is expressed in terms of its spectral emissivity. This spectral emissivity of an isothermal volume with a given optical length containing radiating gases and/or soot, is computed through a relation (Sparrow and Cess, 1978) that contains the optical length and the spectral volume absorption coefficient. An exact solution is then offered to the equation that results from introducing the equation for the spectral emissivity into the equation for the emissivity. The function obtained is shown tomore » be useful in computing the spectral emissivity of an isothermal volume containing either soot or gaseous species, or both. Examples are presented.« less

  1. Relationships among supervisor feedback environment, work-related stressors, and employee deviance.

    PubMed

    Peng, Jei-Chen; Tseng, Mei-Man; Lee, Yin-Ling

    2011-03-01

    Previous research has demonstrated that the employee deviance imposes enormous costs on organizational performance and productivity. Similar research supports the positive effect of favorable supervisor feedback on employee job performance. In light of such, it is important to understand the interaction between supervisor feedback environment and employee deviant behavior to streamline organization operations. The purposes of this study were to explore how the supervisor feedback environment influences employee deviance and to examine the mediating role played by work-related stressors. Data were collected from 276 subordinate-supervisor dyads at a regional hospital in Yilan. Structural equation modeling analyses were conducted to test hypotheses. Structural equation modeling analysis results show that supervisor feedback environment negatively related to interpersonal and organizational deviance. Moreover, work-related stressors were found to partially mediate the relationship between supervisor feedback environment and employee deviance. Study findings suggest that when employees (nurses in this case) perceive an appropriate supervisor-provided feedback environment, their deviance is suppressed because of the related reduction in work-related stressors. Thus, to decrease deviant behavior, organizations may foster supervisor integration of disseminated knowledge such as (a) how to improve employees' actual performance, (b) how to effectively clarify expected performance, and (c) how to improve continuous performance feedback. If supervisors absorb this integrated feedback knowledge, they should be in a better position to enhance their own daily interactions with nurses and reduce nurses' work-related stress and, consequently, decrease deviant behavior.

  2. PREFACE: Nonlinearity and Geometry: connections with integrability Nonlinearity and Geometry: connections with integrability

    NASA Astrophysics Data System (ADS)

    Cieslinski, Jan L.; Ferapontov, Eugene V.; Kitaev, Alexander V.; Nimmo, Jonathan J. C.

    2009-10-01

    Geometric ideas are present in many areas of modern theoretical physics and they are usually associated with the presence of nonlinear phenomena. Integrable nonlinear systems play a prime role both in geometry itself and in nonlinear physics. One can mention general relativity, exact solutions of the Einstein equations, string theory, Yang-Mills theory, instantons, solitons in nonlinear optics and hydrodynamics, vortex dynamics, solvable models of statistical physics, deformation quantization, and many others. Soliton theory now forms a beautiful part of mathematics with very strong physical motivations and numerous applications. Interactions between mathematics and physics associated with integrability issues are very fruitful and stimulating. For instance, spectral theories of linear quantum mechanics turned out to be crucial for studying nonlinear integrable systems. The modern theory of integrable nonlinear partial differential and difference equations, or the `theory of solitons', is deeply rooted in the achievements of outstanding geometers of the end of the 19th and the beginning of the 20th century, such as Luigi Bianchi (1856-1928) and Jean Gaston Darboux (1842-1917). Transformations of surfaces and explicit constructions developed by `old' geometers were often rediscovered or reinterpreted in a modern framework. The great progress of recent years in so-called discrete geometry is certainly due to strong integrable motivations. A very remarkable feature of the results of the classical integrable geometry is the quite natural (although nontrivial) possibility of their discretization. This special issue is dedicated to Jean Gaston Darboux and his pioneering role in the development of the geometric ideas of modern soliton theory. The most famous aspects of his work are probably Darboux transformations and triply orthogonal systems of surfaces, whose role in modern mathematical physics cannot be overestimated. Indeed, Darboux transformations play a central role in soliton theory unifying continuous, discrete and quantum integrable systems. Triply orthogonal coordinates proved to be of prime importance for the modern theory of Hamiltonian systems of hydrodynamic type and differential-geometric Poisson brackets, culminating in the construction of the rich and beautiful theory of Frobenius manifolds. The idea for this special issue developed out of the Second Workshop on Nonlinearity and Geometry, a successful conference held in the Mathematical Research and Conference Center at Będlewo, Poland, 13-19 April 2008 (http://wmii.uwm.edu.pl/˜doliwa/WNG-DD.html). However, there was an open call for papers for this issue and all contributions were peer reviewed according to the standards of the journal and taking into account their relevance to the subject of the planned issue. Among the 30 listed authors, 16 attended the conference and the remaining 14 submitted their papers in answer to this open call. The First School on Nolinearity and Geometry (`Bianchi Days') was organized by Antoni Sym and his students in 1995 at the Physics Faculty of Warsaw University, Poland. The proceedings of the workshop, edited by Daniel Wójcik and Jan Cieśliński, were published by Polish Scientific Publishers PWN (Warsaw, 1998). The Second Workshop (`Darboux Days') was organized in 2008 by Adam Doliwa and his coworkers, under the Honorary Chair of Antoni Sym, as a Banach Center Conference. Both workshops gathered around 50 participants. The purpose of these meetings was to bring together researchers with diverse backgrounds (e.g., mathematical physics and differential geometry), and to review the state of the art at the border between the two subjects: geometric inspirations in soliton theory and applications of soliton techniques in geometry. The format was designed to allow substantial time for interaction and research. The invited lectures were longer, intended to present the current trends and open problems in the fields, and to be accessible to younger researchers. It is not out of place to recall that earlier the Institute of Theoretical of Physics of Warsaw University organized two, now legendary, Jadwisin Soliton Workshops (1977 and 1979); see the short note in Physica D: Nonlinear Phenomena (1980 vol. 1, issue 1, pp 159-163) written by Antoni Sym who was deeply engaged in the organization of these conferences. In scale and scope both Jadwisin workshops preceded a series of very successful NEEDS conferences. Among the celebrated participants of the Jadwisin meeetings one can find names of great importance for the history of soliton theory: Martin Kruskal, Norman Zabuski, Mark Ablowitz, David Kaup, Allan Newell, Vladimir Zakharov, Sergei Manakov, Francesco Calogero, Antonio Degasperis and Ryogo Hirota. This special issue begins with an introductory historical article in which Antoni Sym presents the most important ideas in the scientific biography of Gaston Darboux. We encourage the readers discover the greatest (scientific!) love of Darboux. This is followed by five review papers. M Błaszak and B M Szablikowski discuss the general R-matrix formalism for the construction of integrable systems with infinitely many degrees of freedom. The general theory is applied to several infinite-dimensional Lie algebras leading to new examples of dispersionless and dispersive (soliton) integrable field systems in 1+1 and 2+1 dimensions. J L Cieśliński presents the Darboux-Bäcklund transformation for 1+1-dimensional integrable systems of PDEs. He compares existing approaches to the construction of multisoliton Darboux matrices, discusses the nonisospectral case and presents some new results on the linear and bilinear invariants of the Darboux-Bäcklund transformation. M Dunajski presents twistor theory as a geometric tool for solving nonlinear differential equations. Many soliton equations admit twistor interpretation in terms of holomophic vector bundles. A different approach is provided for dispersionless equations. Some integrable systems still await successful application of the twistor approach. This review, although concerned with advanced differential geometry, is quite elementary and self-contained. F Nijhoff, J Atkinson and J Hietarinta review the construction of soliton solutions for the KdV type lattice equations and derive N-soliton solutions for all lattice equations in the Adler-Bobenko-Suris list except for the generic elliptic case. The same problem is addressed in the contribution by J Hietarinta and D J Zhang based on the more traditional direct Hirota method. This leads to Casoratians and bilinear difference equations. Regular contributions include the following. H Baran and M Marvan launch a project to classify integrable classes of surfaces based on a novel deformation procedure of the equations of the embedding. This leads to a remarkable new integrable equation describing a class of Weingarten surfaces which seems to be overlooked in the literature. A Doliwa shows that the τ-function of the quadrilateral lattice can be identified with the Fredholm determinant of the integral equation inverting the nonlocal problem. This result is expected because its continuous counterpart (the case of conjugate nets, Darboux equations and the multicomponent KP hierarchy) is already known. Here one can find an explicit proof. P Gaillard and V B Matveev consider special reductions of the generic Darboux-Crum dressing procedure, leading to new formulas for Darboux-Pöschl-Teller potentials, their difference deformations and the related eigenfunctions. A Gouberman and K Leschke develop the theory of (generalized) Darboux transformations for conformal immersions of a Riemann surface into the 4-sphere. Applying this construction to the Clifford torus, they obtain a family of Willmore tori parametrized by Pythagorean triples. V Kiselev and J W van de Leur construct compatible nontrivial finite deformations of the Lie algebra structure in the symmetry algebra of the 3-component dispersionless Boussinesq-type system. T E Kouloukas and V G Papageorgiou introduce a family of nonparametric Yang-Baxter maps obtained by re-factorization of matrix polynomials of first degree. These maps are Poisson with respect to the Sklyanin bracket, and their degenerations are connected to known integrable systems on quad-graphs. S V Manakov and P M Santini apply a novel version of the inverse scattering transform based on Lax pairs in multidimensional commuting vector fields to the heavenly and Pavlov equations, establishing that their localized solutions evolve without breaking, and constructing the long-time behaviour of the corresponding Cauchy problems. Discretizations of integrable geometric models depend heavily on the coordinates used. M Nieszporski and A Sym show how to discretize Bianchi surfaces (associated with an elliptic version of the Ernst equation) in arbitrary parametrization. C Rogers and A Szereszewski study the Bäcklund transformation for L-isothermic surfaces in the original Bianchi formulation. They establish a connection between this transformation and a nonhomogeneous linear Schrödinger equation and construct a class of generalized Dupin cyclides. W K Schief, A Szereszewski and C Rogers study a classical system of equilibrium equations for shell membranes. Various examples of viable membrane geometries lead to remarkable geometric configurations such as generalized Dupin cyclides and L-minimal surfaces. A Sergyeyev constructs infinite hierarchies of nonlocal higher symmetries for the oriented associativity equations using the spectral problem. The hierarchies in question generalize those constructed by Chen, Kontsevich and Schwarz for the WDVV equations. J Shiraishi and Y Tutiya study an integro-differential equation which generalizes the periodic intermediate long wave equation. The kernel of the singular integral involved is a second order difference of the Weierstrass ζ-function. Using Sato's formulation, the authors demonstrate the integrability of the equation in question, and construct some special solutions. P H van der Kamp discusses general aspects of the Cauchy and Goursat problems for lattice equations focusing on their well-posedness, as well as on periodic and travelling wave reductions. We would like to express sincere thanks to all contributors, editorial staff and all involved in compiling this special issue. Jan L Cieśliński, Eugene V Ferapontov, Alexander V Kitaev and Jonathan J C Nimmo Guest Editors

  3. Analysis of network motifs in cellular regulation: Structural similarities, input-output relations and signal integration.

    PubMed

    Straube, Ronny

    2017-12-01

    Much of the complexity of regulatory networks derives from the necessity to integrate multiple signals and to avoid malfunction due to cross-talk or harmful perturbations. Hence, one may expect that the input-output behavior of larger networks is not necessarily more complex than that of smaller network motifs which suggests that both can, under certain conditions, be described by similar equations. In this review, we illustrate this approach by discussing the similarities that exist in the steady state descriptions of a simple bimolecular reaction, covalent modification cycles and bacterial two-component systems. Interestingly, in all three systems fundamental input-output characteristics such as thresholds, ultrasensitivity or concentration robustness are described by structurally similar equations. Depending on the system the meaning of the parameters can differ ranging from protein concentrations and affinity constants to complex parameter combinations which allows for a quantitative understanding of signal integration in these systems. We argue that this approach may also be extended to larger regulatory networks. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Dispersion analysis of leaky guided waves in fluid-loaded waveguides of generic shape.

    PubMed

    Mazzotti, M; Marzani, A; Bartoli, I

    2014-01-01

    A fully coupled 2.5D formulation is proposed to compute the dispersive parameters of waveguides with arbitrary cross-section immersed in infinite inviscid fluids. The discretization of the waveguide is performed by means of a Semi-Analytical Finite Element (SAFE) approach, whereas a 2.5D BEM formulation is used to model the impedance of the surrounding infinite fluid. The kernels of the boundary integrals contain the fundamental solutions of the space Fourier-transformed Helmholtz equation, which governs the wave propagation process in the fluid domain. Numerical difficulties related to the evaluation of singular integrals are avoided by using a regularization procedure. To improve the numerical stability of the discretized boundary integral equations for the external Helmholtz problem, the so called CHIEF method is used. The discrete wave equation results in a nonlinear eigenvalue problem in the complex axial wavenumbers that is solved at the frequencies of interest by means of a contour integral algorithm. In order to separate physical from non-physical solutions and to fulfill the requirement of holomorphicity of the dynamic stiffness matrix inside the complex wavenumber contour, the phase of the radial bulk wavenumber is uniquely defined by enforcing the Snell-Descartes law at the fluid-waveguide interface. Three numerical applications are presented. The computed dispersion curves for a circular bar immersed in oil are in agreement with those extracted using the Global Matrix Method. Novel results are presented for viscoelastic steel bars of square and L-shaped cross-section immersed in water. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Does the supersymmetric integrability imply the integrability of Bosonic sector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popowicz, Ziemowit

    2010-03-08

    The answer is no. This is demonstrated for two equations that belong to the supersymmetric Manin-Radul N = 1 Kadomtsev-Petviashvili (MRSKP) hierarchy. The first one is the N = 1 supersymmetric Sawada-Kotera equation recently considered by Tian and Liu. We define the bi-Hamiltonian structure for this equation which however does not reduce in the bosonic limit to the known bi-Hamiltonian structure. The second equation is obtained from the Lax operator of the fifth order in the supersymmetric derivatives which in the bosonic sector reduces to the system of interacted two KdV equations discovered by Drinfeld and Sokolov in 1981 andmore » later rediscovered by Sakovich and Foursov.« less

  6. Solution of steady and unsteady transonic-vortex flows using Euler and full-potential equations

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.; Chuang, Andrew H.; Hu, Hong

    1989-01-01

    Two methods are presented for inviscid transonic flows: unsteady Euler equations in a rotating frame of reference for transonic-vortex flows and integral solution of full-potential equation with and without embedded Euler domains for transonic airfoil flows. The computational results covered: steady and unsteady conical vortex flows; 3-D steady transonic vortex flow; and transonic airfoil flows. The results are in good agreement with other computational results and experimental data. The rotating frame of reference solution is potentially efficient as compared with the space fixed reference formulation with dynamic gridding. The integral equation solution with embedded Euler domain is computationally efficient and as accurate as the Euler equations.

  7. Connectivity as an alternative to boundary integral equations: Construction of bases

    PubMed Central

    Herrera, Ismael; Sabina, Federico J.

    1978-01-01

    In previous papers Herrera developed a theory of connectivity that is applicable to the problem of connecting solutions defined in different regions, which occurs when solving partial differential equations and many problems of mechanics. In this paper we explain how complete connectivity conditions can be used to replace boundary integral equations in many situations. We show that completeness is satisfied not only in steady-state problems such as potential, reduced wave equation and static and quasi-static elasticity, but also in time-dependent problems such as heat and wave equations and dynamical elasticity. A method to obtain bases of connectivity conditions, which are independent of the regions considered, is also presented. PMID:16592522

  8. Subprograms for integrating the equations of motion of satellites. FORTRAN 4

    NASA Technical Reports Server (NTRS)

    Prokhorenko, V. I.

    1980-01-01

    The subprograms for the formation of the right members of the equations of motion of artificial Earth satellites (AES), integration of systems of differential equations by Adams' method, and the calculation of the values of various functions from the AES parameters of motion are described. These subprograms are written in the FORTRAN 4 language and constitute an essential part of the package of applied programs for the calculation of navigational parameters AES.

  9. Student Solution Manual for Essential Mathematical Methods for the Physical Sciences

    NASA Astrophysics Data System (ADS)

    Riley, K. F.; Hobson, M. P.

    2011-02-01

    1. Matrices and vector spaces; 2. Vector calculus; 3. Line, surface and volume integrals; 4. Fourier series; 5. Integral transforms; 6. Higher-order ODEs; 7. Series solutions of ODEs; 8. Eigenfunction methods; 9. Special functions; 10. Partial differential equations; 11. Solution methods for PDEs; 12. Calculus of variations; 13. Integral equations; 14. Complex variables; 15. Applications of complex variables; 16. Probability; 17. Statistics.

  10. Essential Mathematical Methods for the Physical Sciences

    NASA Astrophysics Data System (ADS)

    Riley, K. F.; Hobson, M. P.

    2011-02-01

    1. Matrices and vector spaces; 2. Vector calculus; 3. Line, surface and volume integrals; 4. Fourier series; 5. Integral transforms; 6. Higher-order ODEs; 7. Series solutions of ODEs; 8. Eigenfunction methods; 9. Special functions; 10. Partial differential equations; 11. Solution methods for PDEs; 12. Calculus of variations; 13. Integral equations; 14. Complex variables; 15. Applications of complex variables; 16. Probability; 17. Statistics; Appendices; Index.

  11. Fractional Diffusion Processes: Probability Distributions and Continuous Time Random Walk

    NASA Astrophysics Data System (ADS)

    Gorenflo, R.; Mainardi, F.

    A physical-mathematical approach to anomalous diffusion may be based on generalized diffusion equations (containing derivatives of fractional order in space or/and time) and related random walk models. By the space-time fractional diffusion equation we mean an evolution equation obtained from the standard linear diffusion equation by replacing the second-order space derivative with a Riesz-Feller derivative of order alpha in (0,2] and skewness theta (\\verttheta\\vertlemin \\{alpha ,2-alpha \\}), and the first-order time derivative with a Caputo derivative of order beta in (0,1] . The fundamental solution (for the Cauchy problem) of the fractional diffusion equation can be interpreted as a probability density evolving in time of a peculiar self-similar stochastic process. We view it as a generalized diffusion process that we call fractional diffusion process, and present an integral representation of the fundamental solution. A more general approach to anomalous diffusion is however known to be provided by the master equation for a continuous time random walk (CTRW). We show how this equation reduces to our fractional diffusion equation by a properly scaled passage to the limit of compressed waiting times and jump widths. Finally, we describe a method of simulation and display (via graphics) results of a few numerical case studies.

  12. General pulsed-field gradient signal attenuation expression based on a fractional integral modified-Bloch equation

    NASA Astrophysics Data System (ADS)

    Lin, Guoxing

    2018-10-01

    Anomalous diffusion has been investigated in many polymer and biological systems. The analysis of PFG anomalous diffusion relies on the ability to obtain the signal attenuation expression. However, the general analytical PFG signal attenuation expression based on the fractional derivative has not been previously reported. Additionally, the reported modified-Bloch equations for PFG anomalous diffusion in the literature yielded different results due to their different forms. Here, a new integral type modified-Bloch equation based on the fractional derivative for PFG anomalous diffusion is proposed, which is significantly different from the conventional differential type modified-Bloch equation. The merit of the integral type modified-Bloch equation is that the original properties of the contributions from linear or nonlinear processes remain unchanged at the instant of the combination. From the modified-Bloch equation, the general solutions are derived, which includes the finite gradient pulse width (FGPW) effect. The numerical evaluation of these PFG signal attenuation expressions can be obtained either by the Adomian decomposition, or a direct integration method that is fast and practicable. The theoretical results agree with the continuous-time random walk (CTRW) simulations performed in this paper. Additionally, the relaxation effect in PFG anomalous diffusion is found to be different from that in PFG normal diffusion. The new modified-Bloch equations and their solutions provide a fundamental tool to analyze PFG anomalous diffusion in nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI).

  13. Solution of differential equations by application of transformation groups

    NASA Technical Reports Server (NTRS)

    Driskell, C. N., Jr.; Gallaher, L. J.; Martin, R. H., Jr.

    1968-01-01

    Report applies transformation groups to the solution of systems of ordinary differential equations and partial differential equations. Lies theorem finds an integrating factor for appropriate invariance group or groups can be found and can be extended to partial differential equations.

  14. On the solubility of certain classes of non-linear integral equations in p-adic string theory

    NASA Astrophysics Data System (ADS)

    Khachatryan, Kh. A.

    2018-04-01

    We study classes of non-linear integral equations that have immediate application to p-adic mathematical physics and to cosmology. We prove existence and uniqueness theorems for non-trivial solutions in the space of bounded functions.

  15. Addendum to "Free energies from integral equation theories: enforcing path independence".

    PubMed

    Kast, Stefan M

    2006-01-01

    The variational formalism developed for the analysis of the path dependence of free energies from integral equation theories [S. M. Kast, Phys. Rev. E 67, 041203 (2003)] is extended in order to allow for the three-dimensional treatment of arbitrarily shaped solutes.

  16. Numerical analysis of composite STEEL-CONCRETE SECTIONS using integral equation of Volterra

    NASA Astrophysics Data System (ADS)

    Partov, Doncho; Kantchev, Vesselin

    2011-09-01

    The paper presents analysis of the stress and deflections changes due to creep in statically determinate composite steel-concrete beam. The mathematical model involves the equation of equilibrium, compatibility and constitutive relationship, i.e. an elastic law for the steel part and an integral-type creep law of Boltzmann — Volterra for the concrete part. On the basis of the theory of the viscoelastic body of Arutyunian-Trost-Bažant for determining the redistribution of stresses in beam section between concrete plate and steel beam with respect to time "t", two independent Volterra integral equations of the second kind have been derived. Numerical method based on linear approximation of the singular kernal function in the integral equation is presented. Example with the model proposed is investigated. The creep functions is suggested by the model CEB MC90-99 and the "ACI 209R-92 model. The elastic modulus of concrete E c (t) is assumed to be constant in time `t'. The obtained results from the both models are compared.

  17. Algebraic integrability: a survey.

    PubMed

    Vanhaecke, Pol

    2008-03-28

    We give a concise introduction to the notion of algebraic integrability. Our exposition is based on examples and phenomena, rather than on detailed proofs of abstract theorems. We mainly focus on algebraic integrability in the sense of Adler-van Moerbeke, where the fibres of the momentum map are affine parts of Abelian varieties; as it turns out, most examples from classical mechanics are of this form. Two criteria are given for such systems (Kowalevski-Painlevé and Lyapunov) and each is illustrated in one example. We show in the case of a relatively simple example how one proves algebraic integrability, starting from the differential equations for the integrable vector field. For Hamiltonian systems that are algebraically integrable in the generalized sense, two examples are given, which illustrate the non-compact analogues of Abelian varieties which typically appear in such systems.

  18. The Application of a Boundary Integral Equation Method to the Prediction of Ducted Fan Engine Noise

    NASA Technical Reports Server (NTRS)

    Dunn, M. H.; Tweed, J.; Farassat, F.

    1999-01-01

    The prediction of ducted fan engine noise using a boundary integral equation method (BIEM) is considered. Governing equations for the BIEM are based on linearized acoustics and describe the scattering of incident sound by a thin, finite-length cylindrical duct in the presence of a uniform axial inflow. A classical boundary value problem (BVP) is derived that includes an axisymmetric, locally reacting liner on the duct interior. Using potential theory, the BVP is recast as a system of hypersingular boundary integral equations with subsidiary conditions. We describe the integral equation derivation and solution procedure in detail. The development of the computationally efficient ducted fan noise prediction program TBIEM3D, which implements the BIEM, and its utility in conducting parametric noise reduction studies are discussed. Unlike prediction methods based on spinning mode eigenfunction expansions, the BIEM does not require the decomposition of the interior acoustic field into its radial and axial components which, for the liner case, avoids the solution of a difficult complex eigenvalue problem. Numerical spectral studies are presented to illustrate the nexus between the eigenfunction expansion representation and BIEM results. We demonstrate BIEM liner capability by examining radiation patterns for several cases of practical interest.

  19. Yang-Baxter maps, discrete integrable equations and quantum groups

    NASA Astrophysics Data System (ADS)

    Bazhanov, Vladimir V.; Sergeev, Sergey M.

    2018-01-01

    For every quantized Lie algebra there exists a map from the tensor square of the algebra to itself, which by construction satisfies the set-theoretic Yang-Baxter equation. This map allows one to define an integrable discrete quantum evolution system on quadrilateral lattices, where local degrees of freedom (dynamical variables) take values in a tensor power of the quantized Lie algebra. The corresponding equations of motion admit the zero curvature representation. The commuting Integrals of Motion are defined in the standard way via the Quantum Inverse Problem Method, utilizing Baxter's famous commuting transfer matrix approach. All elements of the above construction have a meaningful quasi-classical limit. As a result one obtains an integrable discrete Hamiltonian evolution system, where the local equation of motion are determined by a classical Yang-Baxter map and the action functional is determined by the quasi-classical asymptotics of the universal R-matrix of the underlying quantum algebra. In this paper we present detailed considerations of the above scheme on the example of the algebra Uq (sl (2)) leading to discrete Liouville equations, however the approach is rather general and can be applied to any quantized Lie algebra.

  20. A new method for true and spurious eigensolutions of arbitrary cavities using the combined Helmholtz exterior integral equation formulation method.

    PubMed

    Chen, I L; Chen, J T; Kuo, S R; Liang, M T

    2001-03-01

    Integral equation methods have been widely used to solve interior eigenproblems and exterior acoustic problems (radiation and scattering). It was recently found that the real-part boundary element method (BEM) for the interior problem results in spurious eigensolutions if the singular (UT) or the hypersingular (LM) equation is used alone. The real-part BEM results in spurious solutions for interior problems in a similar way that the singular integral equation (UT method) results in fictitious solutions for the exterior problem. To solve this problem, a Combined Helmholtz Exterior integral Equation Formulation method (CHEEF) is proposed. Based on the CHEEF method, the spurious solutions can be filtered out if additional constraints from the exterior points are chosen carefully. Finally, two examples for the eigensolutions of circular and rectangular cavities are considered. The optimum numbers and proper positions for selecting the points in the exterior domain are analytically studied. Also, numerical experiments were designed to verify the analytical results. It is worth pointing out that the nodal line of radiation mode of a circle can be rotated due to symmetry, while the nodal line of the rectangular is on a fixed position.

  1. AdS/CFT and local renormalization group with gauge fields

    NASA Astrophysics Data System (ADS)

    Kikuchi, Ken; Sakai, Tadakatsu

    2016-03-01

    We revisit a study of local renormalization group (RG) with background gauge fields incorporated using the AdS/CFT correspondence. Starting with a (d+1)-dimensional bulk gravity coupled to scalars and gauge fields, we derive a local RG equation from a flow equation by working in the Hamilton-Jacobi formulation of the bulk theory. The Gauss's law constraint associated with gauge symmetry plays an important role. RG flows of the background gauge fields are governed by vector β-functions, and some of their interesting properties are known to follow. We give a systematic rederivation of them on the basis of the flow equation. Fixing an ambiguity of local counterterms in such a manner that is natural from the viewpoint of the flow equation, we determine all the coefficients uniquely appearing in the trace of the stress tensor for d=4. A relation between a choice of schemes and a virial current is discussed. As a consistency check, these are found to satisfy the integrability conditions of local RG transformations. From these results, we are led to a proof of a holographic c-theorem by determining a full family of schemes where a trace anomaly coefficient is related with a holographic c-function.

  2. The instanton method and its numerical implementation in fluid mechanics

    NASA Astrophysics Data System (ADS)

    Grafke, Tobias; Grauer, Rainer; Schäfer, Tobias

    2015-08-01

    A precise characterization of structures occurring in turbulent fluid flows at high Reynolds numbers is one of the last open problems of classical physics. In this review we discuss recent developments related to the application of instanton methods to turbulence. Instantons are saddle point configurations of the underlying path integrals. They are equivalent to minimizers of the related Freidlin-Wentzell action and known to be able to characterize rare events in such systems. While there is an impressive body of work concerning their analytical description, this review focuses on the question on how to compute these minimizers numerically. In a short introduction we present the relevant mathematical and physical background before we discuss the stochastic Burgers equation in detail. We present algorithms to compute instantons numerically by an efficient solution of the corresponding Euler-Lagrange equations. A second focus is the discussion of a recently developed numerical filtering technique that allows to extract instantons from direct numerical simulations. In the following we present modifications of the algorithms to make them efficient when applied to two- or three-dimensional (2D or 3D) fluid dynamical problems. We illustrate these ideas using the 2D Burgers equation and the 3D Navier-Stokes equations.

  3. Dynamic response and stability of a gas-lubricated Rayleigh-step pad

    NASA Technical Reports Server (NTRS)

    Cheng, C.; Cheng, H. S.

    1973-01-01

    The quasi-static, pressure characteristics of a gas-lubricated thrust bearing with shrouded, Rayleigh-step pads are determined for a time-varying film thickness. The axial response of the thrust bearing to an axial forcing function or an axial rotor disturbance is investigated by treating the gas film as a spring having nonlinear restoring and damping forces. These forces are related to the film thickness by a power relation. The nonlinear equation of motion in the axial mode is solved by the Ritz-Galerkin method as well as the direct, numerical integration. Results of the nonlinear response by both methods are compared with the response based on the linearized equation. Further, the gas-film instability of an infinitely wide Rayleigh step thrust pad is determined by solving the transient Reynolds equation coupled with the equation of the motion of the pad. Results show that the Rayleigh-step geometry is very stable for bearing number A up to 50. The stability threshold is shown to exist only for ultrahigh values of Lambda equal to or greater than 100, where the stability can be achieved by making the mass heavier than the critical mass.

  4. A review on the systematic formulation of 3-D multiparameter full waveform inversion in viscoelastic medium

    NASA Astrophysics Data System (ADS)

    Yang, Pengliang; Brossier, Romain; Métivier, Ludovic; Virieux, Jean

    2016-10-01

    In this paper, we study 3-D multiparameter full waveform inversion (FWI) in viscoelastic media based on the generalized Maxwell/Zener body including arbitrary number of attenuation mechanisms. We present a frequency-domain energy analysis to establish the stability condition of a full anisotropic viscoelastic system, according to zero-valued boundary condition and the elastic-viscoelastic correspondence principle: the real-valued stiffness matrix becomes a complex-valued one in Fourier domain when seismic attenuation is taken into account. We develop a least-squares optimization approach to linearly relate the quality factor with the anelastic coefficients by estimating a set of constants which are independent of the spatial coordinates, which supplies an explicit incorporation of the parameter Q in the general viscoelastic wave equation. By introducing the Lagrangian multipliers into the matrix expression of the wave equation with implicit time integration, we build a systematic formulation of multiparameter FWI for full anisotropic viscoelastic wave equation, while the equivalent form of the state and adjoint equation with explicit time integration is available to be resolved efficiently. In particular, this formulation lays the foundation for the inversion of the parameter Q in the time domain with full anisotropic viscoelastic properties. In the 3-D isotropic viscoelastic settings, the anelastic coefficients and the quality factors using bulk and shear moduli parametrization can be related to the counterparts using P and S velocity. Gradients with respect to any other parameter of interest can be found by chain rule. Pioneering numerical validations as well as the real applications of this most generic framework will be carried out to disclose the potential of viscoelastic FWI when adequate high-performance computing resources and the field data are available.

  5. A complete and partial integrability technique of the Lorenz system

    NASA Astrophysics Data System (ADS)

    Bougoffa, Lazhar; Al-Awfi, Saud; Bougouffa, Smail

    2018-06-01

    In this paper we deal with the well-known nonlinear Lorenz system that describes the deterministic chaos phenomenon. We consider an interesting problem with time-varying phenomena in quantum optics. Then we establish from the motion equations the passage to the Lorenz system. Furthermore, we show that the reduction to the third order non linear equation can be performed. Therefore, the obtained differential equation can be analytically solved in some special cases and transformed to Abel, Dufing, Painlevé and generalized Emden-Fowler equations. So, a motivating technique that permitted a complete and partial integrability of the Lorenz system is presented.

  6. Compactness and robustness: Applications in the solution of integral equations for chemical kinetics and electromagnetic scattering

    NASA Astrophysics Data System (ADS)

    Zhou, Yajun

    This thesis employs the topological concept of compactness to deduce robust solutions to two integral equations arising from chemistry and physics: the inverse Laplace problem in chemical kinetics and the vector wave scattering problem in dielectric optics. The inverse Laplace problem occurs in the quantitative understanding of biological processes that exhibit complex kinetic behavior: different subpopulations of transition events from the "reactant" state to the "product" state follow distinct reaction rate constants, which results in a weighted superposition of exponential decay modes. Reconstruction of the rate constant distribution from kinetic data is often critical for mechanistic understandings of chemical reactions related to biological macromolecules. We devise a "phase function approach" to recover the probability distribution of rate constants from decay data in the time domain. The robustness (numerical stability) of this reconstruction algorithm builds upon the continuity of the transformations connecting the relevant function spaces that are compact metric spaces. The robust "phase function approach" not only is useful for the analysis of heterogeneous subpopulations of exponential decays within a single transition step, but also is generalizable to the kinetic analysis of complex chemical reactions that involve multiple intermediate steps. A quantitative characterization of the light scattering is central to many meteoro-logical, optical, and medical applications. We give a rigorous treatment to electromagnetic scattering on arbitrarily shaped dielectric media via the Born equation: an integral equation with a strongly singular convolution kernel that corresponds to a non-compact Green operator. By constructing a quadratic polynomial of the Green operator that cancels out the kernel singularity and satisfies the compactness criterion, we reveal the universality of a real resonance mode in dielectric optics. Meanwhile, exploiting the properties of compact operators, we outline the geometric and physical conditions that guarantee a robust solution to the light scattering problem, and devise an asymptotic solution to the Born equation of electromagnetic scattering for arbitrarily shaped dielectric in a non-perturbative manner.

  7. Open groups of constraints. Integrating arbitrary involutions

    NASA Astrophysics Data System (ADS)

    Batalin, Igor; Marnelius, Robert

    1998-11-01

    A new type of quantum master equation is presented which is expressed in terms of a recently introduced quantum antibracket. The equation involves only two operators: an extended nilpotent BFV-BRST charge and an extended ghost charge. It is proposed to determine the generalized quantum Maurer-Cartan equations for arbitrary open groups. These groups are the integration of constraints in arbitrary involutions. The only condition for this is that the constraint operators may be embedded in an odd nilpotent operator, the BFV-BRST charge. The proposal is verified at the quasigroup level. The integration formulas are also used to construct a generating operator for quantum antibrackets of operators in arbitrary involutions.

  8. Pseudodynamic systems approach based on a quadratic approximation of update equations for diffuse optical tomography.

    PubMed

    Biswas, Samir Kumar; Kanhirodan, Rajan; Vasu, Ram Mohan; Roy, Debasish

    2011-08-01

    We explore a pseudodynamic form of the quadratic parameter update equation for diffuse optical tomographic reconstruction from noisy data. A few explicit and implicit strategies for obtaining the parameter updates via a semianalytical integration of the pseudodynamic equations are proposed. Despite the ill-posedness of the inverse problem associated with diffuse optical tomography, adoption of the quadratic update scheme combined with the pseudotime integration appears not only to yield higher convergence, but also a muted sensitivity to the regularization parameters, which include the pseudotime step size for integration. These observations are validated through reconstructions with both numerically generated and experimentally acquired data.

  9. A study of numerical methods of solution of the equations of motion of a controlled satellite under the influence of gravity gradient torque

    NASA Technical Reports Server (NTRS)

    Thompson, J. F.; Mcwhorter, J. C.; Siddiqi, S. A.; Shanks, S. P.

    1973-01-01

    Numerical methods of integration of the equations of motion of a controlled satellite under the influence of gravity-gradient torque are considered. The results of computer experimentation using a number of Runge-Kutta, multi-step, and extrapolation methods for the numerical integration of this differential system are presented, and particularly efficient methods are noted. A large bibliography of numerical methods for initial value problems for ordinary differential equations is presented, and a compilation of Runge-Kutta and multistep formulas is given. Less common numerical integration techniques from the literature are noted for further consideration.

  10. A numerical scheme to solve unstable boundary value problems

    NASA Technical Reports Server (NTRS)

    Kalnay Derivas, E.

    1975-01-01

    A new iterative scheme for solving boundary value problems is presented. It consists of the introduction of an artificial time dependence into a modified version of the system of equations. Then explicit forward integrations in time are followed by explicit integrations backwards in time. The method converges under much more general conditions than schemes based in forward time integrations (false transient schemes). In particular it can attain a steady state solution of an elliptical system of equations even if the solution is unstable, in which case other iterative schemes fail to converge. The simplicity of its use makes it attractive for solving large systems of nonlinear equations.

  11. Integrable discretisations for a class of nonlinear Schrödinger equations on Grassmann algebras

    NASA Astrophysics Data System (ADS)

    Grahovski, Georgi G.; Mikhailov, Alexander V.

    2013-12-01

    Integrable discretisations for a class of coupled (super) nonlinear Schrödinger (NLS) type of equations are presented. The class corresponds to a Lax operator with entries in a Grassmann algebra. Elementary Darboux transformations are constructed. As a result, Grassmann generalisations of the Toda lattice and the NLS dressing chain are obtained. The compatibility (Bianchi commutativity) of these Darboux transformations leads to integrable Grassmann generalisations of the difference Toda and NLS equations. The resulting systems will have discrete Lax representations provided by the set of two consistent elementary Darboux transformations. For the two discrete systems obtained, initial value and initial-boundary problems are formulated.

  12. Saturation behavior: a general relationship described by a simple second-order differential equation.

    PubMed

    Kepner, Gordon R

    2010-04-13

    The numerous natural phenomena that exhibit saturation behavior, e.g., ligand binding and enzyme kinetics, have been approached, to date, via empirical and particular analyses. This paper presents a mechanism-free, and assumption-free, second-order differential equation, designed only to describe a typical relationship between the variables governing these phenomena. It develops a mathematical model for this relation, based solely on the analysis of the typical experimental data plot and its saturation characteristics. Its utility complements the traditional empirical approaches. For the general saturation curve, described in terms of its independent (x) and dependent (y) variables, a second-order differential equation is obtained that applies to any saturation phenomena. It shows that the driving factor for the basic saturation behavior is the probability of the interactive site being free, which is described quantitatively. Solving the equation relates the variables in terms of the two empirical constants common to all these phenomena, the initial slope of the data plot and the limiting value at saturation. A first-order differential equation for the slope emerged that led to the concept of the effective binding rate at the active site and its dependence on the calculable probability the interactive site is free. These results are illustrated using specific cases, including ligand binding and enzyme kinetics. This leads to a revised understanding of how to interpret the empirical constants, in terms of the variables pertinent to the phenomenon under study. The second-order differential equation revealed the basic underlying relations that describe these saturation phenomena, and the basic mathematical properties of the standard experimental data plot. It was shown how to integrate this differential equation, and define the common basic properties of these phenomena. The results regarding the importance of the slope and the new perspectives on the empirical constants governing the behavior of these phenomena led to an alternative perspective on saturation behavior kinetics. Their essential commonality was revealed by this analysis, based on the second-order differential equation.

  13. The aerodynamics of propellers and rotors using an acoustic formulation in the time domain

    NASA Technical Reports Server (NTRS)

    Long, L. N.

    1983-01-01

    The aerodynamics of propellers and rotors is especially complicated because of the highly three-dimensional and compressible nature of the flow field. However, in linearized theory the problem is governed by the wave equation, and a numerically-efficient integral formulation can be derived. This reduces the problem from one in space to one over a surface. Many such formulations exist in the aeroacoustics literature, but these become singular integral equations if one naively tries to use them to predict surface pressures, i.e., for aerodynamics. The present paper illustrates how one must interpret these equations in order to obtain nonambiguous results. After the regularized form of the integral equation is derived, a method for solving it numerically is described. This preliminary computer code uses Legendre-Gaussian quadrature to solve the equation. Numerical results are compared to experimental results for ellipsoids, wings, and rotors, including effects due to lift. Compressibility and the farfield boundary conditions are satisfied automatically using this method.

  14. Numerical solution of the quantum Lenard-Balescu equation for a non-degenerate one-component plasma

    DOE PAGES

    Scullard, Christian R.; Belt, Andrew P.; Fennell, Susan C.; ...

    2016-09-01

    We present a numerical solution of the quantum Lenard-Balescu equation using a spectral method, namely an expansion in Laguerre polynomials. This method exactly conserves both particles and kinetic energy and facilitates the integration over the dielectric function. To demonstrate the method, we solve the equilibration problem for a spatially homogeneous one-component plasma with various initial conditions. Unlike the more usual Landau/Fokker-Planck system, this method requires no input Coulomb logarithm; the logarithmic terms in the collision integral arise naturally from the equation along with the non-logarithmic order-unity terms. The spectral method can also be used to solve the Landau equation andmore » a quantum version of the Landau equation in which the integration over the wavenumber requires only a lower cutoff. We solve these problems as well and compare them with the full Lenard-Balescu solution in the weak-coupling limit. Finally, we discuss the possible generalization of this method to include spatial inhomogeneity and velocity anisotropy.« less

  15. K(m, n) equations with fifth order symmetries and their integrability

    NASA Astrophysics Data System (ADS)

    Tian, Kai

    2018-03-01

    For K(m, n) equation ut =Dx3(un) + αDx(um) , all non-degenerate (n ≠ 0) cases admitting fifth order symmetries are identified, including K(m1, 1), K(m2 , - 1 / 2) and K(m3 , - 2) , where m1 = 0 , 1 , 2 , 3 , m2 = - 1 / 2 , 0 , 1 , 3 / 2 and m3 = - 2 , - 1 , 0 , 1 . For five less studied cases, namely K(0 , - 2) , K(- 1 , - 2) , K(- 2 , - 2) , K(- 1 / 2 , - 1 / 2) and K(3 / 2 , - 1 / 2) , bi-Hamiltonian structures are established through their invertible links with some famous integrable equations. Hence, all cases, having fifth order symmetries, of K(m, n) equation are integrable in the bi-Hamiltonian sense. As an interesting observation, their Hamiltonian operators are linearly combinations of Dx, Dx3 , uDx +Dx u and Dx u Dx-1uDx, basic ingredients in the bi-Hamiltonian theory of Korteweg-de Vries and modified Korteweg-de Vries equations.

  16. Some boundary-value problems for anisotropic quarter plane

    NASA Astrophysics Data System (ADS)

    Arkhypenko, K. M.; Kryvyi, O. F.

    2018-04-01

    To solve the mixed boundary-value problems of the anisotropic elasticity for the anisotropic quarter plane, a method based on the use of the space of generalized functions {\\Im }{\\prime }({\\text{R}}+2) with slow growth properties was developed. The two-dimensional integral Fourier transform was used to construct the system of fundamental solutions for the anisotropic quarter plane in this space and a system of eight boundary integral relations was obtained, which allows one to reduce the mixed boundary-value problems for the anisotropic quarter plane directly to systems of singular integral equations with fixed singularities. The exact solutions of these systems were found by using the integral Mellin transform. The asymptotic behavior of solutions was investigated at the vertex of the quarter plane.

  17. A parallel second-order adaptive mesh algorithm for incompressible flow in porous media.

    PubMed

    Pau, George S H; Almgren, Ann S; Bell, John B; Lijewski, Michael J

    2009-11-28

    In this paper, we present a second-order accurate adaptive algorithm for solving multi-phase, incompressible flow in porous media. We assume a multi-phase form of Darcy's law with relative permeabilities given as a function of the phase saturation. The remaining equations express conservation of mass for the fluid constituents. In this setting, the total velocity, defined to be the sum of the phase velocities, is divergence free. The basic integration method is based on a total-velocity splitting approach in which we solve a second-order elliptic pressure equation to obtain a total velocity. This total velocity is then used to recast component conservation equations as nonlinear hyperbolic equations. Our approach to adaptive refinement uses a nested hierarchy of logically rectangular grids with simultaneous refinement of the grids in both space and time. The integration algorithm on the grid hierarchy is a recursive procedure in which coarse grids are advanced in time, fine grids are advanced multiple steps to reach the same time as the coarse grids and the data at different levels are then synchronized. The single-grid algorithm is described briefly, but the emphasis here is on the time-stepping procedure for the adaptive hierarchy. Numerical examples are presented to demonstrate the algorithm's accuracy and convergence properties and to illustrate the behaviour of the method.

  18. Matrix De Rham Complex and Quantum A-infinity algebras

    NASA Astrophysics Data System (ADS)

    Barannikov, S.

    2014-04-01

    I establish the relation of the non-commutative BV-formalism with super-invariant matrix integration. In particular, the non-commutative BV-equation, defining the quantum A ∞-algebras, introduced in Barannikov (Modular operads and non-commutative Batalin-Vilkovisky geometry. IMRN, vol. 2007, rnm075. Max Planck Institute for Mathematics 2006-48, 2007), is represented via de Rham differential acting on the supermatrix spaces related with Bernstein-Leites simple associative algebras with odd trace q( N), and gl( N| N). I also show that the matrix Lagrangians from Barannikov (Noncommutative Batalin-Vilkovisky geometry and matrix integrals. Isaac Newton Institute for Mathematical Sciences, Cambridge University, 2006) are represented by equivariantly closed differential forms.

  19. Integral equation methods for computing likelihoods and their derivatives in the stochastic integrate-and-fire model.

    PubMed

    Paninski, Liam; Haith, Adrian; Szirtes, Gabor

    2008-02-01

    We recently introduced likelihood-based methods for fitting stochastic integrate-and-fire models to spike train data. The key component of this method involves the likelihood that the model will emit a spike at a given time t. Computing this likelihood is equivalent to computing a Markov first passage time density (the probability that the model voltage crosses threshold for the first time at time t). Here we detail an improved method for computing this likelihood, based on solving a certain integral equation. This integral equation method has several advantages over the techniques discussed in our previous work: in particular, the new method has fewer free parameters and is easily differentiable (for gradient computations). The new method is also easily adaptable for the case in which the model conductance, not just the input current, is time-varying. Finally, we describe how to incorporate large deviations approximations to very small likelihoods.

  20. Special discontinuities in nonlinearly elastic media

    NASA Astrophysics Data System (ADS)

    Chugainova, A. P.

    2017-06-01

    Solutions of a nonlinear hyperbolic system of equations describing weakly nonlinear quasitransverse waves in a weakly anisotropic elastic medium are studied. The influence of small-scale processes of dissipation and dispersion is investigated. The small-scale processes determine the structure of discontinuities (shocks) and a set of discontinuities with a stationary structure. Among the discontinuities with a stationary structure, there are special ones that, in addition to relations following from conservation laws, satisfy additional relations required for the existence of their structure. In the phase plane, the structure of such discontinuities is represented by an integral curve joining two saddles. Special discontinuities lead to nonunique self-similar solutions of the Riemann problem. Asymptotics of non-self-similar problems for equations with dissipation and dispersion are found numerically. These asymptotics correspond to self-similar solutions of the problems.

  1. Hamiltonian structure of real Monge - Ampère equations

    NASA Astrophysics Data System (ADS)

    Nutku, Y.

    1996-06-01

    The variational principle for the real homogeneous Monge - Ampère equation in two dimensions is shown to contain three arbitrary functions of four variables. There exist two different specializations of this variational principle where the Lagrangian is degenerate and furthermore contains an arbitrary function of two variables. The Hamiltonian formulation of these degenerate Lagrangian systems requires the use of Dirac's theory of constraints. As in the case of most completely integrable systems the constraints are second class and Dirac brackets directly yield the Hamiltonian operators. Thus the real homogeneous Monge - Ampère equation in two dimensions admits two classes of infinitely many Hamiltonian operators, namely a family of local, as well as another family non-local Hamiltonian operators and symplectic 2-forms which depend on arbitrary functions of two variables. The simplest non-local Hamiltonian operator corresponds to the Kac - Moody algebra of vector fields and functions on the unit circle. Hamiltonian operators that belong to either class are compatible with each other but between classes there is only one compatible pair. In the case of real Monge - Ampère equations with constant right-hand side this compatible pair is the only pair of Hamiltonian operators that survives. Then the complete integrability of all these real Monge - Ampère equations follows by Magri's theorem. Some of the remarkable properties we have obtained for the Hamiltonian structure of the real homogeneous Monge - Ampère equation in two dimensions turn out to be generic to the real homogeneous Monge - Ampère equation and the geodesic flow for the complex homogeneous Monge - Ampère equation in arbitrary number of dimensions. Hence among all integrable nonlinear evolution equations in one space and one time dimension, the real homogeneous Monge - Ampère equation is distinguished as one that retains its character as an integrable system in multiple dimensions.

  2. AN INTEGRAL EQUATION REPRESENTATION OF WIDE-BAND ELECTROMAGNETIC SCATTERING BY THIN SHEETS

    EPA Science Inventory

    An efficient, accurate numerical modeling scheme has been developed, based on the integral equation solution to compute electromagnetic (EM) responses of thin sheets over a wide frequency band. The thin-sheet approach is useful for simulating the EM response of a fracture system ...

  3. On the mechanics of stress analysis of fiber-reinforced composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, V.G.

    A general mathematical formulation is developed for the three-dimensional inclusion and inhomogeneity problems, which are practically important in many engineering applications such as fiber pullout of reinforced composites, load transfer behavior in the stiffened structural components, and material defects and impurities existing in engineering materials. First, the displacement field (Green's function) for an elastic solid subjected to various distributions of ring loading is derived in closed form using the Papkovich-Neuber displacement potentials and the Hankel transforms. The Green's functions are used to derive the displacement and stress fields due to a finite cylindrical inclusion of prescribed dilatational eigenstrain such asmore » thermal expansion caused by an internal heat source. Unlike an elliptical inclusion, the interior stress field in the cylindrical inclusion is not uniform. Next, the three-dimensional inhomogeneity problem of a cylindrical fiber embedded in an infinite matrix of different material properties is considered to study load transfer of a finite fiber to an elastic medium. By using the equivalent inclusion method, the fiber is modeled as an inclusion with distributed eigenstrains of unknown strength, and the inhomogeneity problem can be treated as an equivalent inclusion problem. The eigenstrains are determined to simulate the disturbance due to the existing fiber. The equivalency of elastic field between inhomogeneity and inclusion problems leads to a set of integral equations. To solve the integral equations, the inclusion domain is discretized into a finite number of sub-inclusions with uniform eigenstrains, and the integral equations are reduced to a set of algebraic equations. The distributions of eigenstrains, interior stress field and axial force along the fiber are presented for various fiber lengths and the ratio of material properties of the fiber relative to the matrix.« less

  4. Kinetic electron model for plasma thruster plumes

    NASA Astrophysics Data System (ADS)

    Merino, Mario; Mauriño, Javier; Ahedo, Eduardo

    2018-03-01

    A paraxial model of an unmagnetized, collisionless plasma plume expanding into vacuum is presented. Electrons are treated kinetically, relying on the adiabatic invariance of their radial action integral for the integration of Vlasov's equation, whereas ions are treated as a cold species. The quasi-2D plasma density, self-consistent electric potential, and electron pressure, temperature, and heat fluxes are analyzed. In particular, the model yields the collisionless cooling of electrons, which differs from the Boltzmann relation and the simple polytropic laws usually employed in fluid and hybrid PIC/fluid plume codes.

  5. Separation of variables in the special diagonal Hamilton-Jacobi equation: Application to the dynamical problem of a particle constrained on a moving surface

    NASA Technical Reports Server (NTRS)

    Blanchard, D. L.; Chan, F. K.

    1973-01-01

    For a time-dependent, n-dimensional, special diagonal Hamilton-Jacobi equation a necessary and sufficient condition for the separation of variables to yield a complete integral of the form was established by specifying the admissible forms in terms of arbitrary functions. A complete integral was then expressed in terms of these arbitrary functions and also the n irreducible constants. As an application of the results obtained for the two-dimensional Hamilton-Jacobi equation, analysis was made for a comparatively wide class of dynamical problems involving a particle moving in Euclidean three-dimensional space under the action of external forces but constrained on a moving surface. All the possible cases in which this equation had a complete integral of the form were obtained and these are tubulated for reference.

  6. Impressed sources and fields in the volume-integral-equation formulation of electromagnetic scattering by a finite object: A tutorial

    NASA Astrophysics Data System (ADS)

    Mishchenko, Michael I.; Yurkin, Maxim A.

    2018-07-01

    Although free space cannot generate electromagnetic waves, the majority of existing accounts of frequency-domain electromagnetic scattering by particles and particle groups are based on the postulate of existence of an impressed incident field, usually in the form of a plane wave. In this tutorial we discuss how to account for the actual existence of impressed source currents rather than impressed incident fields. Specifically, we outline a self-consistent theoretical formalism describing electromagnetic scattering by an arbitrary finite object in the presence of arbitrarily distributed impressed currents, some of which can be far removed from the object and some can reside in its vicinity, including inside the object. To make the resulting formalism applicable to a wide range of scattering-object morphologies, we use the framework of the volume integral equation formulation of electromagnetic scattering, couple it with the notion of the transition operator, and exploit the fundamental symmetry property of this operator. Among novel results, this tutorial includes a streamlined proof of fundamental symmetry (reciprocity) relations, a simplified derivation of the Foldy equations, and an explicit analytical expression for the transition operator of a multi-component scattering object.

  7. Finite element formulation of fluctuating hydrodynamics for fluids filled with rigid particles using boundary fitted meshes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Corato, M., E-mail: marco.decorato@unina.it; Slot, J.J.M., E-mail: j.j.m.slot@tue.nl; Hütter, M., E-mail: m.huetter@tue.nl

    In this paper, we present a finite element implementation of fluctuating hydrodynamics with a moving boundary fitted mesh for treating the suspended particles. The thermal fluctuations are incorporated into the continuum equations using the Landau and Lifshitz approach [1]. The proposed implementation fulfills the fluctuation–dissipation theorem exactly at the discrete level. Since we restrict the equations to the creeping flow case, this takes the form of a relation between the diffusion coefficient matrix and friction matrix both at the particle and nodal level of the finite elements. Brownian motion of arbitrarily shaped particles in complex confinements can be considered withinmore » the present formulation. A multi-step time integration scheme is developed to correctly capture the drift term required in the stochastic differential equation (SDE) describing the evolution of the positions of the particles. The proposed approach is validated by simulating the Brownian motion of a sphere between two parallel plates and the motion of a spherical particle in a cylindrical cavity. The time integration algorithm and the fluctuating hydrodynamics implementation are then applied to study the diffusion and the equilibrium probability distribution of a confined circle under an external harmonic potential.« less

  8. Acoustic 3D modeling by the method of integral equations

    NASA Astrophysics Data System (ADS)

    Malovichko, M.; Khokhlov, N.; Yavich, N.; Zhdanov, M.

    2018-02-01

    This paper presents a parallel algorithm for frequency-domain acoustic modeling by the method of integral equations (IE). The algorithm is applied to seismic simulation. The IE method reduces the size of the problem but leads to a dense system matrix. A tolerable memory consumption and numerical complexity were achieved by applying an iterative solver, accompanied by an effective matrix-vector multiplication operation, based on the fast Fourier transform (FFT). We demonstrate that, the IE system matrix is better conditioned than that of the finite-difference (FD) method, and discuss its relation to a specially preconditioned FD matrix. We considered several methods of matrix-vector multiplication for the free-space and layered host models. The developed algorithm and computer code were benchmarked against the FD time-domain solution. It was demonstrated that, the method could accurately calculate the seismic field for the models with sharp material boundaries and a point source and receiver located close to the free surface. We used OpenMP to speed up the matrix-vector multiplication, while MPI was used to speed up the solution of the system equations, and also for parallelizing across multiple sources. The practical examples and efficiency tests are presented as well.

  9. Noncollisional kinetic model for non-neutral plasmas in a Penning trap: General properties and stationary solutions

    NASA Astrophysics Data System (ADS)

    Coppa, G. G.; Ricci, Paolo

    2002-10-01

    This work deals with a noncollisional kinetic model for non-neutral plasmas in a Penning trap. Using the spatial coordinates r, θ, z and the axial velocity vz as phase-space variables, a kinetic model is developed starting from the kinetic equation for the distribution function f(r,θ,z,vz,t). In order to reduce the complexity of the model, the kinetic equations are integrated along the axial direction by assuming an ergodic distribution in the phase space (z,vz) for particles of the same axial energy ɛ and the same planar position. In this way, a kinetic equation for the z-integrated electron distribution F(r,θ,ɛ,t) is obtained taking into account implicitly the three-dimensionality of the problem. The general properties of the model are discussed, in particular the conservation laws. The model is also related to the fluid model that was introduced by Finn et al. [Phys. Plasmas 6, 3744 (1999); Phys. Rev. Lett. 84, 2401 (2000)] and developed by Coppa et al. [Phys. Plasmas 8, 1133 (2001)]. Finally, numerical investigations are presented regarding the stationary solutions of the model.

  10. A new approximation of Fermi-Dirac integrals of order 1/2 for degenerate semiconductor devices

    NASA Astrophysics Data System (ADS)

    AlQurashi, Ahmed; Selvakumar, C. R.

    2018-06-01

    There had been tremendous growth in the field of Integrated circuits (ICs) in the past fifty years. Scaling laws mandated both lateral and vertical dimensions to be reduced and a steady increase in doping densities. Most of the modern semiconductor devices have invariably heavily doped regions where Fermi-Dirac Integrals are required. Several attempts have been devoted to developing analytical approximations for Fermi-Dirac Integrals since numerical computations of Fermi-Dirac Integrals are difficult to use in semiconductor devices, although there are several highly accurate tabulated functions available. Most of these analytical expressions are not sufficiently suitable to be employed in semiconductor device applications due to their poor accuracy, the requirement of complicated calculations, and difficulties in differentiating and integrating. A new approximation has been developed for the Fermi-Dirac integrals of the order 1/2 by using Prony's method and discussed in this paper. The approximation is accurate enough (Mean Absolute Error (MAE) = 0.38%) and easy enough to be used in semiconductor device equations. The new approximation of Fermi-Dirac Integrals is applied to a more generalized Einstein Relation which is an important relation in semiconductor devices.

  11. Liouvillian integrability of gravitating static isothermal fluid spheres

    NASA Astrophysics Data System (ADS)

    Iacono, Roberto; Llibre, Jaume

    2014-10-01

    We examine the integrability properties of the Einstein field equations for static, spherically symmetric fluid spheres, complemented with an isothermal equation of state, ρ = np. In this case, Einstein's equations can be reduced to a nonlinear, autonomous second order ordinary differential equation (ODE) for m/R (m is the mass inside the radius R) that has been solved analytically only for n = -1 and n = -3, yielding the cosmological solutions by De Sitter and Einstein, respectively, and for n = -5, case for which the solution can be derived from the De Sitter's one using a symmetry of Einstein's equations. The solutions for these three cases are of Liouvillian type, since they can be expressed in terms of elementary functions. Here, we address the question of whether Liouvillian solutions can be obtained for other values of n. To do so, we transform the second order equation into an equivalent autonomous Lotka-Volterra quadratic polynomial differential system in {R}^2, and characterize the Liouvillian integrability of this system using Darboux theory. We find that the Lotka-Volterra system possesses Liouvillian first integrals for n = -1, -3, -5, which descend from the existence of invariant algebraic curves of degree one, and for n = -6, a new solvable case, associated to an invariant algebraic curve of higher degree (second). For any other value of n, eventual first integrals of the Lotka-Volterra system, and consequently of the second order ODE for the mass function must be non-Liouvillian. This makes the existence of other solutions of the isothermal fluid sphere problem with a Liouvillian metric quite unlikely.

  12. Development of computational methods for unsteady aerodynamics at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Yates, E. Carson, Jr.; Whitlow, Woodrow, Jr.

    1987-01-01

    The current scope, recent progress, and plans for research and development of computational methods for unsteady aerodynamics at the NASA Langley Research Center are reviewed. Both integral equations and finite difference methods for inviscid and viscous flows are discussed. Although the great bulk of the effort has focused on finite difference solution of the transonic small perturbation equation, the integral equation program is given primary emphasis here because it is less well known.

  13. Development of computational methods for unsteady aerodynamics at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Yates, E. Carson, Jr.; Whitlow, Woodrow, Jr.

    1987-01-01

    The current scope, recent progress, and plans for research and development of computational methods for unsteady aerodynamics at the NASA Langley Research Center are reviewed. Both integral-equations and finite-difference method for inviscid and viscous flows are discussed. Although the great bulk of the effort has focused on finite-difference solution of the transonic small-perturbation equation, the integral-equation program is given primary emphasis here because it is less well known.

  14. Equation for the Nakanishi Weight Function Using the Inverse Stieltjes Transform

    NASA Astrophysics Data System (ADS)

    Karmanov, V. A.; Carbonell, J.; Frederico, T.

    2018-05-01

    The bound state Bethe-Salpeter amplitude was expressed by Nakanishi in terms of a smooth weight function g. By using the generalized Stieltjes transform, we derive an integral equation for the Nakanishi function g for a bound state case. It has the standard form g= \\hat{V} g, where \\hat{V} is a two-dimensional integral operator. The prescription for obtaining the kernel V starting with the kernel K of the Bethe-Salpeter equation is given.

  15. Solving the hypersingular boundary integral equation for the Burton and Miller formulation.

    PubMed

    Langrenne, Christophe; Garcia, Alexandre; Bonnet, Marc

    2015-11-01

    This paper presents an easy numerical implementation of the Burton and Miller (BM) formulation, where the hypersingular Helmholtz integral is regularized by identities from the associated Laplace equation and thus needing only the evaluation of weakly singular integrals. The Helmholtz equation and its normal derivative are combined directly with combinations at edge or corner collocation nodes not used when the surface is not smooth. The hypersingular operators arising in this process are regularized and then evaluated by an indirect procedure based on discretized versions of the Calderón identities linking the integral operators for associated Laplace problems. The method is valid for acoustic radiation and scattering problems involving arbitrarily shaped three-dimensional bodies. Unlike other approaches using direct evaluation of hypersingular integrals, collocation points still coincide with mesh nodes, as is usual when using conforming elements. Using higher-order shape functions (with the boundary element method model size kept fixed) reduces the overall numerical integration effort while increasing the solution accuracy. To reduce the condition number of the resulting BM formulation at low frequencies, a regularized version α = ik/(k(2 )+ λ) of the classical BM coupling factor α = i/k is proposed. Comparisons with the combined Helmholtz integral equation Formulation method of Schenck are made for four example configurations, two of them featuring non-smooth surfaces.

  16. Metrisability of Painlevé equations

    NASA Astrophysics Data System (ADS)

    Contatto, Felipe; Dunajski, Maciej

    2018-02-01

    We solve the metrisability problem for the six Painlevé equations, and more generally for all 2nd order ordinary differential equations with the Painlevé property, and determine for which of these equations their integral curves are geodesics of a (pseudo) Riemannian metric on a surface.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manjunath, Naren; Samajdar, Rhine; Jain, Sudhir R., E-mail: srjain@barc.gov.in

    Recently, the nodal domain counts of planar, integrable billiards with Dirichlet boundary conditions were shown to satisfy certain difference equations in Samajdar and Jain (2014). The exact solutions of these equations give the number of domains explicitly. For complete generality, we demonstrate this novel formulation for three additional separable systems and thus extend the statement to all integrable billiards.

  18. UXO Discrimination in Cases with Overlapping Signatures

    DTIC Science & Technology

    2007-03-07

    13. APPENDIX B: HFE -BIEM ..........................................................................................................290 - 7...First principals numerical solutions developed were a Hybrid Finite Element – Boundary Integral Equation Method ( HFE -BIEM) body of revolution (BOR...attacks, namely the Method of Auxiliary Sources (MAS) and the Hybrid Finite Element – Boundary Integral Equation Method ( HFE -BIEM). These work

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, Chia-Chun, E-mail: ccchou@mx.nthu.edu.tw

    The Schrödinger–Langevin equation with linear dissipation is integrated by propagating an ensemble of Bohmian trajectories for the ground state of quantum systems. Substituting the wave function expressed in terms of the complex action into the Schrödinger–Langevin equation yields the complex quantum Hamilton–Jacobi equation with linear dissipation. We transform this equation into the arbitrary Lagrangian–Eulerian version with the grid velocity matching the flow velocity of the probability fluid. The resulting equation is simultaneously integrated with the trajectory guidance equation. Then, the computational method is applied to the harmonic oscillator, the double well potential, and the ground vibrational state of methyl iodide.more » The excellent agreement between the computational and the exact results for the ground state energies and wave functions shows that this study provides a synthetic trajectory approach to the ground state of quantum systems.« less

  20. Schrödinger–Langevin equation with quantum trajectories for photodissociation dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, Chia-Chun, E-mail: ccchou@mx.nthu.edu.tw

    The Schrödinger–Langevin equation is integrated to study the wave packet dynamics of quantum systems subject to frictional effects by propagating an ensemble of quantum trajectories. The equations of motion for the complex action and quantum trajectories are derived from the Schrödinger–Langevin equation. The moving least squares approach is used to evaluate the spatial derivatives of the complex action required for the integration of the equations of motion. Computational results are presented and analyzed for the evolution of a free Gaussian wave packet, a two-dimensional barrier model, and the photodissociation dynamics of NOCl. The absorption spectrum of NOCl obtained from themore » Schrödinger–Langevin equation displays a redshift when frictional effects increase. This computational result agrees qualitatively with the experimental results in the solution-phase photochemistry of NOCl.« less

Top