Science.gov

Sample records for integral hybrid monte

  1. Variational path integral molecular dynamics and hybrid Monte Carlo algorithms using a fourth order propagator with applications to molecular systems

    NASA Astrophysics Data System (ADS)

    Kamibayashi, Yuki; Miura, Shinichi

    2016-08-01

    In the present study, variational path integral molecular dynamics and associated hybrid Monte Carlo (HMC) methods have been developed on the basis of a fourth order approximation of a density operator. To reveal various parameter dependence of physical quantities, we analytically solve one dimensional harmonic oscillators by the variational path integral; as a byproduct, we obtain the analytical expression of the discretized density matrix using the fourth order approximation for the oscillators. Then, we apply our methods to realistic systems like a water molecule and a para-hydrogen cluster. In the HMC, we adopt two level description to avoid the time consuming Hessian evaluation. For the systems examined in this paper, the HMC method is found to be about three times more efficient than the molecular dynamics method if appropriate HMC parameters are adopted; the advantage of the HMC method is suggested to be more evident for systems described by many body interaction.

  2. Extra Chance Generalized Hybrid Monte Carlo

    NASA Astrophysics Data System (ADS)

    Campos, Cédric M.; Sanz-Serna, J. M.

    2015-01-01

    We study a method, Extra Chance Generalized Hybrid Monte Carlo, to avoid rejections in the Hybrid Monte Carlo method and related algorithms. In the spirit of delayed rejection, whenever a rejection would occur, extra work is done to find a fresh proposal that, hopefully, may be accepted. We present experiments that clearly indicate that the additional work per sample carried out in the extra chance approach clearly pays in terms of the quality of the samples generated.

  3. The Rational Hybrid Monte Carlo algorithm

    NASA Astrophysics Data System (ADS)

    Clark, Michael

    2006-12-01

    The past few years have seen considerable progress in algorithmic development for the generation of gauge fields including the effects of dynamical fermions. The Rational Hybrid Monte Carlo (RHMC) algorithm, where Hybrid Monte Carlo is performed using a rational approximation in place the usual inverse quark matrix kernel is one of these developments. This algorithm has been found to be extremely beneficial in many areas of lattice QCD (chiral fermions, finite temperature, Wilson fermions etc.). We review the algorithm and some of these benefits, and we compare against other recent algorithm developements. We conclude with an update of the Berlin wall plot comparing costs of all popular fermion formulations.

  4. Multiple-time-stepping generalized hybrid Monte Carlo methods

    SciTech Connect

    Escribano, Bruno; Akhmatskaya, Elena; Reich, Sebastian; Azpiroz, Jon M.

    2015-01-01

    Performance of the generalized shadow hybrid Monte Carlo (GSHMC) method [1], which proved to be superior in sampling efficiency over its predecessors [2–4], molecular dynamics and hybrid Monte Carlo, can be further improved by combining it with multi-time-stepping (MTS) and mollification of slow forces. We demonstrate that the comparatively simple modifications of the method not only lead to better performance of GSHMC itself but also allow for beating the best performed methods, which use the similar force splitting schemes. In addition we show that the same ideas can be successfully applied to the conventional generalized hybrid Monte Carlo method (GHMC). The resulting methods, MTS-GHMC and MTS-GSHMC, provide accurate reproduction of thermodynamic and dynamical properties, exact temperature control during simulation and computational robustness and efficiency. MTS-GHMC uses a generalized momentum update to achieve weak stochastic stabilization to the molecular dynamics (MD) integrator. MTS-GSHMC adds the use of a shadow (modified) Hamiltonian to filter the MD trajectories in the HMC scheme. We introduce a new shadow Hamiltonian formulation adapted to force-splitting methods. The use of such Hamiltonians improves the acceptance rate of trajectories and has a strong impact on the sampling efficiency of the method. Both methods were implemented in the open-source MD package ProtoMol and were tested on a water and a protein systems. Results were compared to those obtained using a Langevin Molly (LM) method [5] on the same systems. The test results demonstrate the superiority of the new methods over LM in terms of stability, accuracy and sampling efficiency. This suggests that putting the MTS approach in the framework of hybrid Monte Carlo and using the natural stochasticity offered by the generalized hybrid Monte Carlo lead to improving stability of MTS and allow for achieving larger step sizes in the simulation of complex systems.

  5. GATE Monte Carlo simulations for variations of an integrated PET/MR hybrid imaging system based on the Biograph mMR model

    NASA Astrophysics Data System (ADS)

    Aklan, B.; Jakoby, B. W.; Watson, C. C.; Braun, H.; Ritt, P.; Quick, H. H.

    2015-06-01

    A simulation toolkit, GATE (Geant4 Application for Tomographic Emission), was used to develop an accurate Monte Carlo (MC) simulation of a fully integrated 3T PET/MR hybrid imaging system (Siemens Biograph mMR). The PET/MR components of the Biograph mMR were simulated in order to allow a detailed study of variations of the system design on the PET performance, which are not easy to access and measure on a real PET/MR system. The 3T static magnetic field of the MR system was taken into account in all Monte Carlo simulations. The validation of the MC model was carried out against actual measurements performed on the PET/MR system by following the NEMA (National Electrical Manufacturers Association) NU 2-2007 standard. The comparison of simulated and experimental performance measurements included spatial resolution, sensitivity, scatter fraction, and count rate capability. The validated system model was then used for two different applications. The first application focused on investigating the effect of an extension of the PET field-of-view on the PET performance of the PET/MR system. The second application deals with simulating a modified system timing resolution and coincidence time window of the PET detector electronics in order to simulate time-of-flight (TOF) PET detection. A dedicated phantom was modeled to investigate the impact of TOF on overall PET image quality. Simulation results showed that the overall divergence between simulated and measured data was found to be less than 10%. Varying the detector geometry showed that the system sensitivity and noise equivalent count rate of the PET/MR system increased progressively with an increasing number of axial detector block rings, as to be expected. TOF-based PET reconstructions of the modeled phantom showed an improvement in signal-to-noise ratio and image contrast to the conventional non-TOF PET reconstructions. In conclusion, the validated MC simulation model of an integrated PET/MR system with an overall

  6. Cluster hybrid Monte Carlo simulation algorithms.

    PubMed

    Plascak, J A; Ferrenberg, Alan M; Landau, D P

    2002-06-01

    We show that addition of Metropolis single spin flips to the Wolff cluster-flipping Monte Carlo procedure leads to a dramatic increase in performance for the spin-1/2 Ising model. We also show that adding Wolff cluster flipping to the Metropolis or heat bath algorithms in systems where just cluster flipping is not immediately obvious (such as the spin-3/2 Ising model) can substantially reduce the statistical errors of the simulations. A further advantage of these methods is that systematic errors introduced by the use of imperfect random-number generation may be largely healed by hybridizing single spin flips with cluster flipping.

  7. Cluster hybrid Monte Carlo simulation algorithms

    NASA Astrophysics Data System (ADS)

    Plascak, J. A.; Ferrenberg, Alan M.; Landau, D. P.

    2002-06-01

    We show that addition of Metropolis single spin flips to the Wolff cluster-flipping Monte Carlo procedure leads to a dramatic increase in performance for the spin-1/2 Ising model. We also show that adding Wolff cluster flipping to the Metropolis or heat bath algorithms in systems where just cluster flipping is not immediately obvious (such as the spin-3/2 Ising model) can substantially reduce the statistical errors of the simulations. A further advantage of these methods is that systematic errors introduced by the use of imperfect random-number generation may be largely healed by hybridizing single spin flips with cluster flipping.

  8. Hybrid algorithms in quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Kim, Jeongnim; Esler, Kenneth P.; McMinis, Jeremy; Morales, Miguel A.; Clark, Bryan K.; Shulenburger, Luke; Ceperley, David M.

    2012-12-01

    With advances in algorithms and growing computing powers, quantum Monte Carlo (QMC) methods have become a leading contender for high accuracy calculations for the electronic structure of realistic systems. The performance gain on recent HPC systems is largely driven by increasing parallelism: the number of compute cores of a SMP and the number of SMPs have been going up, as the Top500 list attests. However, the available memory as well as the communication and memory bandwidth per element has not kept pace with the increasing parallelism. This severely limits the applicability of QMC and the problem size it can handle. OpenMP/MPI hybrid programming provides applications with simple but effective solutions to overcome efficiency and scalability bottlenecks on large-scale clusters based on multi/many-core SMPs. We discuss the design and implementation of hybrid methods in QMCPACK and analyze its performance on current HPC platforms characterized by various memory and communication hierarchies.

  9. Path Integral Monte Carlo Methods for Fermions

    NASA Astrophysics Data System (ADS)

    Ethan, Ethan; Dubois, Jonathan; Ceperley, David

    2014-03-01

    In general, Quantum Monte Carlo methods suffer from a sign problem when simulating fermionic systems. This causes the efficiency of a simulation to decrease exponentially with the number of particles and inverse temperature. To circumvent this issue, a nodal constraint is often implemented, restricting the Monte Carlo procedure from sampling paths that cause the many-body density matrix to change sign. Unfortunately, this high-dimensional nodal surface is not a priori known unless the system is exactly solvable, resulting in uncontrolled errors. We will discuss two possible routes to extend the applicability of finite-temperatue path integral Monte Carlo. First we extend the regime where signful simulations are possible through a novel permutation sampling scheme. Afterwards, we discuss a method to variationally improve the nodal surface by minimizing a free energy during simulation. Applications of these methods will include both free and interacting electron gases, concluding with discussion concerning extension to inhomogeneous systems. Support from DOE DE-FG52-09NA29456, DE-AC52-07NA27344, LLNL LDRD 10- ERD-058, and the Lawrence Scholar program.

  10. Testing trivializing maps in the Hybrid Monte Carlo algorithm

    PubMed Central

    Engel, Georg P.; Schaefer, Stefan

    2011-01-01

    We test a recent proposal to use approximate trivializing maps in a field theory to speed up Hybrid Monte Carlo simulations. Simulating the CPN−1 model, we find a small improvement with the leading order transformation, which is however compensated by the additional computational overhead. The scaling of the algorithm towards the continuum is not changed. In particular, the effect of the topological modes on the autocorrelation times is studied. PMID:21969733

  11. A Classroom Note on Monte Carlo Integration.

    ERIC Educational Resources Information Center

    Kolpas, Sid

    1998-01-01

    The Monte Carlo method provides approximate solutions to a variety of mathematical problems by performing random sampling simulations with a computer. Presents a program written in Quick BASIC simulating the steps of the Monte Carlo method. (ASK)

  12. A Primer in Monte Carlo Integration Using Mathcad

    ERIC Educational Resources Information Center

    Hoyer, Chad E.; Kegerreis, Jeb S.

    2013-01-01

    The essentials of Monte Carlo integration are presented for use in an upper-level physical chemistry setting. A Mathcad document that aids in the dissemination and utilization of this information is described and is available in the Supporting Information. A brief outline of Monte Carlo integration is given, along with ideas and pedagogy for…

  13. Hybrid Monte Carlo/deterministic methods for radiation shielding problems

    NASA Astrophysics Data System (ADS)

    Becker, Troy L.

    For the past few decades, the most common type of deep-penetration (shielding) problem simulated using Monte Carlo methods has been the source-detector problem, in which a response is calculated at a single location in space. Traditionally, the nonanalog Monte Carlo methods used to solve these problems have required significant user input to generate and sufficiently optimize the biasing parameters necessary to obtain a statistically reliable solution. It has been demonstrated that this laborious task can be replaced by automated processes that rely on a deterministic adjoint solution to set the biasing parameters---the so-called hybrid methods. The increase in computational power over recent years has also led to interest in obtaining the solution in a region of space much larger than a point detector. In this thesis, we propose two methods for solving problems ranging from source-detector problems to more global calculations---weight windows and the Transform approach. These techniques employ sonic of the same biasing elements that have been used previously; however, the fundamental difference is that here the biasing techniques are used as elements of a comprehensive tool set to distribute Monte Carlo particles in a user-specified way. The weight window achieves the user-specified Monte Carlo particle distribution by imposing a particular weight window on the system, without altering the particle physics. The Transform approach introduces a transform into the neutron transport equation, which results in a complete modification of the particle physics to produce the user-specified Monte Carlo distribution. These methods are tested in a three-dimensional multigroup Monte Carlo code. For a basic shielding problem and a more realistic one, these methods adequately solved source-detector problems and more global calculations. Furthermore, they confirmed that theoretical Monte Carlo particle distributions correspond to the simulated ones, implying that these methods

  14. Exclusive Multiple Emission Cross Sections in the Hybrid Monte Carlo Pre-equilibrium Model and in EMPIRE-3.1

    NASA Astrophysics Data System (ADS)

    Carlson, B. V.; Brito, L.; Mega, D. F.; Capote, R.; Herman, M.; Rego, M. E.

    2014-04-01

    We discuss the general concept of exclusive emission cross sections and spectra and the exclusive spectra of the ENDF library. We briefly review the exclusive hybrid Monte Carlo simulation model and show how its exclusive cross sections can be integrated into the reaction code EMPIRE-3.1. We close by discussing several examples.

  15. Quantum photonics hybrid integration platform

    SciTech Connect

    Murray, E.; Floether, F. F.; Ellis, D. J. P.; Meany, T.; Bennett, A. J. Shields, A. J.; Lee, J. P.; Griffiths, J. P.; Jones, G. A. C.; Farrer, I.; Ritchie, D. A.

    2015-10-26

    Fundamental to integrated photonic quantum computing is an on-chip method for routing and modulating quantum light emission. We demonstrate a hybrid integration platform consisting of arbitrarily designed waveguide circuits and single-photon sources. InAs quantum dots (QD) embedded in GaAs are bonded to a SiON waveguide chip such that the QD emission is coupled to the waveguide mode. The waveguides are SiON core embedded in a SiO{sub 2} cladding. A tuneable Mach Zehnder interferometer (MZI) modulates the emission between two output ports and can act as a path-encoded qubit preparation device. The single-photon nature of the emission was verified using the on-chip MZI as a beamsplitter in a Hanbury Brown and Twiss measurement.

  16. Monte Carlo methods for multidimensional integration for European option pricing

    NASA Astrophysics Data System (ADS)

    Todorov, V.; Dimov, I. T.

    2016-10-01

    In this paper, we illustrate examples of highly accurate Monte Carlo and quasi-Monte Carlo methods for multiple integrals related to the evaluation of European style options. The idea is that the value of the option is formulated in terms of the expectation of some random variable; then the average of independent samples of this random variable is used to estimate the value of the option. First we obtain an integral representation for the value of the option using the risk neutral valuation formula. Then with an appropriations change of the constants we obtain a multidimensional integral over the unit hypercube of the corresponding dimensionality. Then we compare a specific type of lattice rules over one of the best low discrepancy sequence of Sobol for numerical integration. Quasi-Monte Carlo methods are compared with Adaptive and Crude Monte Carlo techniques for solving the problem. The four approaches are completely different thus it is a question of interest to know which one of them outperforms the other for evaluation multidimensional integrals in finance. Some of the advantages and disadvantages of the developed algorithms are discussed.

  17. Hybrid Monte Carlo-Deterministic Methods for Nuclear Reactor-Related Criticality Calculations

    SciTech Connect

    Edward W. Larson

    2004-02-17

    The overall goal of this project is to develop, implement, and test new Hybrid Monte Carlo-deterministic (or simply Hybrid) methods for the more efficient and more accurate calculation of nuclear engineering criticality problems. These new methods will make use of two (philosophically and practically) very different techniques - the Monte Carlo technique, and the deterministic technique - which have been developed completely independently during the past 50 years. The concept of this proposal is to merge these two approaches and develop fundamentally new computational techniques that enhance the strengths of the individual Monte Carlo and deterministic approaches, while minimizing their weaknesses.

  18. Multiple Time-Step Dual-Hamiltonian Hybrid Molecular Dynamics — Monte Carlo Canonical Propagation Algorithm

    PubMed Central

    Weare, Jonathan; Dinner, Aaron R.; Roux, Benoît

    2016-01-01

    A multiple time-step integrator based on a dual Hamiltonian and a hybrid method combining molecular dynamics (MD) and Monte Carlo (MC) is proposed to sample systems in the canonical ensemble. The Dual Hamiltonian Multiple Time-Step (DHMTS) algorithm is based on two similar Hamiltonians: a computationally expensive one that serves as a reference and a computationally inexpensive one to which the workload is shifted. The central assumption is that the difference between the two Hamiltonians is slowly varying. Earlier work has shown that such dual Hamiltonian multiple time-step schemes effectively precondition nonlinear differential equations for dynamics by reformulating them into a recursive root finding problem that can be solved by propagating a correction term through an internal loop, analogous to RESPA. Of special interest in the present context, a hybrid MD-MC version of the DHMTS algorithm is introduced to enforce detailed balance via a Metropolis acceptance criterion and ensure consistency with the Boltzmann distribution. The Metropolis criterion suppresses the discretization errors normally associated with the propagation according to the computationally inexpensive Hamiltonian, treating the discretization error as an external work. Illustrative tests are carried out to demonstrate the effectiveness of the method. PMID:26918826

  19. The Monte Carlo calculation of integral radiation dose in xeromammography.

    PubMed

    Dance, D R

    1980-01-01

    A Monte Carlo computer program has been developed for the computation of integral radiation dose to the breast in xeromammography. The results are given in terms of the integral dose per unit area of the breast per unit incident exposure. The calculations have been made for monoenergetic incident photons and the results integrated over a variety of X-ray spectra from both tungsten and molybdenum targets. This range incorporates qualities used in conventional and xeromammography. The program includes the selenium plate used in xeroradiography; the energy absorbed in this detector has also been investigated. The latter calculations have been used to predict relative values of exposure and of integral dose to the breast for xeromammograms taken at various radiation qualities. The results have been applied to recent work on the reduction of patient exposure in xeromammography by the addition of aluminium filters to the X-ray beam.

  20. Recent advances in PLC hybrid integration technology

    NASA Astrophysics Data System (ADS)

    Ogawa, Ikuo; Kitagawa, Takeshi

    2003-07-01

    Opto-electronic hybrid integraiton using a silica-based planar lightwave circuit (PLC) platform is an attractive way to realize the various kinds of opto-electronic components required for future photonic networks. This paper briefly introduces the concept and basic techniques used for PLC hybrid integration, and describes recent advances in this field. We also report on several high-performance optical devices that we recently developed using this technology.

  1. Path integral Monte Carlo on a lattice. II. Bound states

    NASA Astrophysics Data System (ADS)

    O'Callaghan, Mark; Miller, Bruce N.

    2016-07-01

    The equilibrium properties of a single quantum particle (qp) interacting with a classical gas for a wide range of temperatures that explore the system's behavior in the classical as well as in the quantum regime is investigated. Both the qp and the atoms are restricted to sites on a one-dimensional lattice. A path integral formalism developed within the context of the canonical ensemble is utilized, where the qp is represented by a closed, variable-step random walk on the lattice. Monte Carlo methods are employed to determine the system's properties. To test the usefulness of the path integral formalism, the Metropolis algorithm is employed to determine the equilibrium properties of the qp in the context of a square well potential, forcing the qp to occupy bound states. We consider a one-dimensional square well potential where all atoms on the lattice are occupied with one atom with an on-site potential except for a contiguous set of sites of various lengths centered at the middle of the lattice. Comparison of the potential energy, the energy fluctuations, and the correlation function are made between the results of the Monte Carlo simulations and the numerical calculations.

  2. Longitudinal development of extensive air showers: Hybrid code SENECA and full Monte Carlo

    NASA Astrophysics Data System (ADS)

    Ortiz, Jeferson A.; Medina-Tanco, Gustavo; de Souza, Vitor

    2005-06-01

    New experiments, exploring the ultra-high energy tail of the cosmic ray spectrum with unprecedented detail, are exerting a severe pressure on extensive air shower modelling. Detailed fast codes are in need in order to extract and understand the richness of information now available. Some hybrid simulation codes have been proposed recently to this effect (e.g., the combination of the traditional Monte Carlo scheme and system of cascade equations or pre-simulated air showers). In this context, we explore the potential of SENECA, an efficient hybrid tri-dimensional simulation code, as a valid practical alternative to full Monte Carlo simulations of extensive air showers generated by ultra-high energy cosmic rays. We extensively compare hybrid method with the traditional, but time consuming, full Monte Carlo code CORSIKA which is the de facto standard in the field. The hybrid scheme of the SENECA code is based on the simulation of each particle with the traditional Monte Carlo method at two steps of the shower development: the first step predicts the large fluctuations in the very first particle interactions at high energies while the second step provides a well detailed lateral distribution simulation of the final stages of the air shower. Both Monte Carlo simulation steps are connected by a cascade equation system which reproduces correctly the hadronic and electromagnetic longitudinal profile. We study the influence of this approach on the main longitudinal characteristics of proton, iron nucleus and gamma induced air showers and compare the predictions of the well known CORSIKA code using the QGSJET hadronic interaction model.

  3. Integrated approach for hybrid rocket technology development

    NASA Astrophysics Data System (ADS)

    Barato, Francesco; Bellomo, Nicolas; Pavarin, Daniele

    2016-11-01

    Hybrid rocket motors tend generally to be simple from a mechanical point of view but difficult to optimize because of their complex and still not well understood cross-coupled physics. This paper addresses the previous issue presenting the integrated approach established at University of Padua to develop hybrid rocket based systems. The methodology tightly combines together system analysis and design, numerical modeling from elementary to sophisticated CFD, and experimental testing done with incremental philosophy. As an example of the approach, the paper presents the experience done in the successful development of a hybrid rocket booster designed for rocket assisted take off operations. It is thought that following the proposed approach and selecting carefully the most promising applications it is possible to finally exploit the major advantages of hybrid rocket motors as safety, simplicity, low cost and reliability.

  4. Monte Carlo Simulations of Background Spectra in Integral Imager Detectors

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.; Colborn, B. L.; Dietz, K. L.; Ramsey, B. D.; Weisskopf, M. C.

    1998-01-01

    Predictions of the expected gamma-ray backgrounds in the ISGRI (CdTe) and PiCsIT (Csl) detectors on INTEGRAL due to cosmic-ray interactions and the diffuse gamma-ray background have been made using a coupled set of Monte Carlo radiation transport codes (HETC, FLUKA, EGS4, and MORSE) and a detailed, 3-D mass model of the spacecraft and detector assemblies. The simulations include both the prompt background component from induced hadronic and electromagnetic cascades and the delayed component due to emissions from induced radioactivity. Background spectra have been obtained with and without the use of active (BGO) shielding and charged particle rejection to evaluate the effectiveness of anticoincidence counting on background rejection.

  5. Fast sampling in the slow manifold: The momentum-enhanced hybrid Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Andricioaei, Ioan

    2005-03-01

    We will present a novel dynamic algorithm, the MEHMC method, which enhances sampling and at the same time yielding correct Boltzmann weighted statistical distributions. The gist of the MEHMC method is to use momentum averaging to identify the slow manifold and bias along this manifold the Maxwell distribution of momenta usually employed in Hybrid Monte Carlo. Several tests and applications are to exemplify the method.

  6. A hybrid multiscale kinetic Monte Carlo method for simulation of copper electrodeposition

    SciTech Connect

    Zheng Zheming; Stephens, Ryan M.; Braatz, Richard D.; Alkire, Richard C.; Petzold, Linda R.

    2008-05-01

    A hybrid multiscale kinetic Monte Carlo (HMKMC) method for speeding up the simulation of copper electrodeposition is presented. The fast diffusion events are simulated deterministically with a heterogeneous diffusion model which considers site-blocking effects of additives. Chemical reactions are simulated by an accelerated (tau-leaping) method for discrete stochastic simulation which adaptively selects exact discrete stochastic simulation for the appropriate reaction whenever that is necessary. The HMKMC method is seen to be accurate and highly efficient.

  7. CAD-based Monte Carlo Program for Integrated Simulation of Nuclear System SuperMC

    NASA Astrophysics Data System (ADS)

    Wu, Yican; Song, Jing; Zheng, Huaqing; Sun, Guangyao; Hao, Lijuan; Long, Pengcheng; Hu, Liqin

    2014-06-01

    Monte Carlo (MC) method has distinct advantages to simulate complicated nuclear systems and is envisioned as routine method for nuclear design and analysis in the future. High fidelity simulation with MC method coupled with multi-physical phenomenon simulation has significant impact on safety, economy and sustainability of nuclear systems. However, great challenges to current MC methods and codes prevent its application in real engineering project. SuperMC is a CAD-based Monte Carlo program for integrated simulation of nuclear system developed by FDS Team, China, making use of hybrid MC-deterministic method and advanced computer technologies. The design aim, architecture and main methodology of SuperMC were presented in this paper. SuperMC2.1, the latest version for neutron, photon and coupled neutron and photon transport calculation, has been developed and validated by using a series of benchmarking cases such as the fusion reactor ITER model and the fast reactor BN-600 model. SuperMC is still in its evolution process toward a general and routine tool for nuclear system. Warning, no authors found for 2014snam.conf06023.

  8. A Preliminary Study of In-House Monte Carlo Simulations: An Integrated Monte Carlo Verification System

    SciTech Connect

    Mukumoto, Nobutaka; Tsujii, Katsutomo; Saito, Susumu; Yasunaga, Masayoshi; Takegawa, Hidek; Yamamoto, Tokihiro; Numasaki, Hodaka; Teshima, Teruki

    2009-10-01

    Purpose: To develop an infrastructure for the integrated Monte Carlo verification system (MCVS) to verify the accuracy of conventional dose calculations, which often fail to accurately predict dose distributions, mainly due to inhomogeneities in the patient's anatomy, for example, in lung and bone. Methods and Materials: The MCVS consists of the graphical user interface (GUI) based on a computational environment for radiotherapy research (CERR) with MATLAB language. The MCVS GUI acts as an interface between the MCVS and a commercial treatment planning system to import the treatment plan, create MC input files, and analyze MC output dose files. The MCVS consists of the EGSnrc MC codes, which include EGSnrc/BEAMnrc to simulate the treatment head and EGSnrc/DOSXYZnrc to calculate the dose distributions in the patient/phantom. In order to improve computation time without approximations, an in-house cluster system was constructed. Results: The phase-space data of a 6-MV photon beam from a Varian Clinac unit was developed and used to establish several benchmarks under homogeneous conditions. The MC results agreed with the ionization chamber measurements to within 1%. The MCVS GUI could import and display the radiotherapy treatment plan created by the MC method and various treatment planning systems, such as RTOG and DICOM-RT formats. Dose distributions could be analyzed by using dose profiles and dose volume histograms and compared on the same platform. With the cluster system, calculation time was improved in line with the increase in the number of central processing units (CPUs) at a computation efficiency of more than 98%. Conclusions: Development of the MCVS was successful for performing MC simulations and analyzing dose distributions.

  9. Hybrid Monte Carlo/Molecular Dynamics Simulation of a Refractory Metal High Entropy Alloy

    NASA Astrophysics Data System (ADS)

    Widom, Michael; Huhn, W. P.; Maiti, S.; Steurer, W.

    2014-01-01

    The high entropy alloy containing refractory metals Mo-Nb-Ta-W has a body-centered cubic structure, which is not surprising given the complete mutual solubility in BCC solid solutions of all pairs of the constituent elements. However, first principles total energy calculations for the binaries reveal a set of distinct energy minimizing structures implying the likelihood of chemically ordered low-temperature phases. We apply a hybrid Monte Carlo and molecular dynamics method to evaluate the temperature-dependent chemical order. Monte Carlo species swaps allow for equilibration of the structure that cannot be achieved by conventional molecular dynamics. At 300 K (27 °C), a cesium-chloride ordering emerges between mixed (Nb,Ta) sites and mixed (Mo,W) sites. This order is lost at elevated temperatures.

  10. A Hybrid Method for Evaluating of Lightning Performance of Overhead Lines based on Monte Carlo Procedure

    NASA Astrophysics Data System (ADS)

    Shariatinasab, Reza; Tadayon, Pooya; Ametani, Akihiro

    2016-07-01

    This paper proposes a hybrid method for calculating lightning performance of overhead lines caused by direct strokes by combining Lattice diagram together with the Monte Carlo method. In order to go through this, firstly, the proper analytical relations for overvoltages calculation are established based on Lattice diagram. Then, the Monte Carlo procedure is applied to the obtained analytical relations. The aim of the presented method that will be called `ML method' is simply estimation of the lightning performance of the overhead lines and performing the risk analysis of power apparatus with retaining the acceptable accuracy. To confirm the accuracy, the calculated results of the presented ML method are compared with those calculated by the EMTP/ATP simulation.

  11. Using hybrid implicit Monte Carlo diffusion to simulate gray radiation hydrodynamics

    NASA Astrophysics Data System (ADS)

    Cleveland, Mathew A.; Gentile, Nick

    2015-06-01

    This work describes how to couple a hybrid Implicit Monte Carlo Diffusion (HIMCD) method with a Lagrangian hydrodynamics code to evaluate the coupled radiation hydrodynamics equations. This HIMCD method dynamically applies Implicit Monte Carlo Diffusion (IMD) [1] to regions of a problem that are opaque and diffusive while applying standard Implicit Monte Carlo (IMC) [2] to regions where the diffusion approximation is invalid. We show that this method significantly improves the computational efficiency as compared to a standard IMC/Hydrodynamics solver, when optically thick diffusive material is present, while maintaining accuracy. Two test cases are used to demonstrate the accuracy and performance of HIMCD as compared to IMC and IMD. The first is the Lowrie semi-analytic diffusive shock [3]. The second is a simple test case where the source radiation streams through optically thin material and heats a thick diffusive region of material causing it to rapidly expand. We found that HIMCD proves to be accurate, robust, and computationally efficient for these test problems.

  12. Using hybrid implicit Monte Carlo diffusion to simulate gray radiation hydrodynamics

    SciTech Connect

    Cleveland, Mathew A. Gentile, Nick

    2015-06-15

    This work describes how to couple a hybrid Implicit Monte Carlo Diffusion (HIMCD) method with a Lagrangian hydrodynamics code to evaluate the coupled radiation hydrodynamics equations. This HIMCD method dynamically applies Implicit Monte Carlo Diffusion (IMD) [1] to regions of a problem that are opaque and diffusive while applying standard Implicit Monte Carlo (IMC) [2] to regions where the diffusion approximation is invalid. We show that this method significantly improves the computational efficiency as compared to a standard IMC/Hydrodynamics solver, when optically thick diffusive material is present, while maintaining accuracy. Two test cases are used to demonstrate the accuracy and performance of HIMCD as compared to IMC and IMD. The first is the Lowrie semi-analytic diffusive shock [3]. The second is a simple test case where the source radiation streams through optically thin material and heats a thick diffusive region of material causing it to rapidly expand. We found that HIMCD proves to be accurate, robust, and computationally efficient for these test problems.

  13. Developing integrated patient pathways using hybrid simulation

    NASA Astrophysics Data System (ADS)

    Zulkepli, Jafri; Eldabi, Tillal

    2016-10-01

    Integrated patient pathways includes several departments, i.e. healthcare which includes emergency care and inpatient ward; intermediate care which patient(s) will stay for a maximum of two weeks and at the same time be assessed by assessment team to find the most suitable care; and social care. The reason behind introducing the intermediate care in western countries was to reduce the rate of patients that stays in the hospital especially for elderly patients. This type of care setting has been considered to be set up in some other countries including Malaysia. Therefore, to assess the advantages of introducing this type of integrated healthcare setting, we suggest develop the model using simulation technique. We argue that single simulation technique is not viable enough to represent this type of patient pathways. Therefore, we suggest develop this model using hybrid techniques, i.e. System Dynamics (SD) and Discrete Event Simulation (DES). Based on hybrid model result, we argued that the result is viable to be as references for decision making process.

  14. A hybrid phase-space and histogram source model for GPU-based Monte Carlo radiotherapy dose calculation

    NASA Astrophysics Data System (ADS)

    Townson, Reid W.; Zavgorodni, Sergei

    2014-12-01

    In GPU-based Monte Carlo simulations for radiotherapy dose calculation, source modelling from a phase-space source can be an efficiency bottleneck. Previously, this has been addressed using phase-space-let (PSL) sources, which provided significant efficiency enhancement. We propose that additional speed-up can be achieved through the use of a hybrid primary photon point source model combined with a secondary PSL source. A novel phase-space derived and histogram-based implementation of this model has been integrated into gDPM v3.0. Additionally, a simple method for approximately deriving target photon source characteristics from a phase-space that does not contain inheritable particle history variables (LATCH) has been demonstrated to succeed in selecting over 99% of the true target photons with only ~0.3% contamination (for a Varian 21EX 18 MV machine). The hybrid source model was tested using an array of open fields for various Varian 21EX and TrueBeam energies, and all cases achieved greater than 97% chi-test agreement (the mean was 99%) above the 2% isodose with 1% / 1 mm criteria. The root mean square deviations (RMSDs) were less than 1%, with a mean of 0.5%, and the source generation time was 4-5 times faster. A seven-field intensity modulated radiation therapy patient treatment achieved 95% chi-test agreement above the 10% isodose with 1% / 1 mm criteria, 99.8% for 2% / 2 mm, a RMSD of 0.8%, and source generation speed-up factor of 2.5. Presented as part of the International Workshop on Monte Carlo Techniques in Medical Physics

  15. Automatic mesh adaptivity for hybrid Monte Carlo/deterministic neutronics modeling of difficult shielding problems

    DOE PAGES

    Ibrahim, Ahmad M.; Wilson, Paul P.H.; Sawan, Mohamed E.; ...

    2015-06-30

    The CADIS and FW-CADIS hybrid Monte Carlo/deterministic techniques dramatically increase the efficiency of neutronics modeling, but their use in the accurate design analysis of very large and geometrically complex nuclear systems has been limited by the large number of processors and memory requirements for their preliminary deterministic calculations and final Monte Carlo calculation. Three mesh adaptivity algorithms were developed to reduce the memory requirements of CADIS and FW-CADIS without sacrificing their efficiency improvement. First, a macromaterial approach enhances the fidelity of the deterministic models without changing the mesh. Second, a deterministic mesh refinement algorithm generates meshes that capture as muchmore » geometric detail as possible without exceeding a specified maximum number of mesh elements. Finally, a weight window coarsening algorithm decouples the weight window mesh and energy bins from the mesh and energy group structure of the deterministic calculations in order to remove the memory constraint of the weight window map from the deterministic mesh resolution. The three algorithms were used to enhance an FW-CADIS calculation of the prompt dose rate throughout the ITER experimental facility. Using these algorithms resulted in a 23.3% increase in the number of mesh tally elements in which the dose rates were calculated in a 10-day Monte Carlo calculation and, additionally, increased the efficiency of the Monte Carlo simulation by a factor of at least 3.4. The three algorithms enabled this difficult calculation to be accurately solved using an FW-CADIS simulation on a regular computer cluster, eliminating the need for a world-class super computer.« less

  16. Automatic mesh adaptivity for hybrid Monte Carlo/deterministic neutronics modeling of difficult shielding problems

    SciTech Connect

    Ibrahim, Ahmad M.; Wilson, Paul P.H.; Sawan, Mohamed E.; Mosher, Scott W.; Peplow, Douglas E.; Wagner, John C.; Evans, Thomas M.; Grove, Robert E.

    2015-06-30

    The CADIS and FW-CADIS hybrid Monte Carlo/deterministic techniques dramatically increase the efficiency of neutronics modeling, but their use in the accurate design analysis of very large and geometrically complex nuclear systems has been limited by the large number of processors and memory requirements for their preliminary deterministic calculations and final Monte Carlo calculation. Three mesh adaptivity algorithms were developed to reduce the memory requirements of CADIS and FW-CADIS without sacrificing their efficiency improvement. First, a macromaterial approach enhances the fidelity of the deterministic models without changing the mesh. Second, a deterministic mesh refinement algorithm generates meshes that capture as much geometric detail as possible without exceeding a specified maximum number of mesh elements. Finally, a weight window coarsening algorithm decouples the weight window mesh and energy bins from the mesh and energy group structure of the deterministic calculations in order to remove the memory constraint of the weight window map from the deterministic mesh resolution. The three algorithms were used to enhance an FW-CADIS calculation of the prompt dose rate throughout the ITER experimental facility. Using these algorithms resulted in a 23.3% increase in the number of mesh tally elements in which the dose rates were calculated in a 10-day Monte Carlo calculation and, additionally, increased the efficiency of the Monte Carlo simulation by a factor of at least 3.4. The three algorithms enabled this difficult calculation to be accurately solved using an FW-CADIS simulation on a regular computer cluster, eliminating the need for a world-class super computer.

  17. A Monte Carlo Resampling Approach for the Calculation of Hybrid Classical and Quantum Free Energies.

    PubMed

    Cave-Ayland, Christopher; Skylaris, Chris-Kriton; Essex, Jonathan W

    2017-02-14

    Hybrid free energy methods allow estimation of free energy differences at the quantum mechanics (QM) level with high efficiency by performing sampling at the classical mechanics (MM) level. Various approaches to allow the calculation of QM corrections to classical free energies have been proposed. The single step free energy perturbation approach starts with a classically generated ensemble, a subset of structures of which are postprocessed to obtain QM energies for use with the Zwanzig equation. This gives an estimate of the free energy difference associated with the change from an MM to a QM Hamiltonian. Owing to the poor numerical properties of the Zwanzig equation, however, recent developments have produced alternative methods which aim to provide access to the properties of the true QM ensemble. Here we propose an approach based on the resampling of MM structural ensembles and application of a Monte Carlo acceptance test which in principle, can generate the exact QM ensemble or intermediate ensembles between the MM and QM states. We carry out a detailed comparison against the Zwanzig equation and recently proposed non-Boltzmann methods. As a test system we use a set of small molecule hydration free energies for which hybrid free energy calculations are performed at the semiempirical Density Functional Tight Binding level. Equivalent ensembles at this level of theory have also been generated allowing the reverse QM to MM perturbations to be performed along with a detailed analysis of the results. Additionally, a previously published nucleotide base pair data set simulated at the QM level using ab initio molecular dynamics is also considered. We provide a strong rationale for the use of the Monte Carlo Resampling and non-Boltzmann approaches by showing that configuration space overlaps can be estimated which provide useful diagnostic information regarding the accuracy of these hybrid approaches.

  18. Efficient hybrid non-equilibrium molecular dynamics--Monte Carlo simulations with symmetric momentum reversal.

    PubMed

    Chen, Yunjie; Roux, Benoît

    2014-09-21

    Hybrid schemes combining the strength of molecular dynamics (MD) and Metropolis Monte Carlo (MC) offer a promising avenue to improve the sampling efficiency of computer simulations of complex systems. A number of recently proposed hybrid methods consider new configurations generated by driving the system via a non-equilibrium MD (neMD) trajectory, which are subsequently treated as putative candidates for Metropolis MC acceptance or rejection. To obey microscopic detailed balance, it is necessary to alter the momentum of the system at the beginning and/or the end of the neMD trajectory. This strict rule then guarantees that the random walk in configurational space generated by such hybrid neMD-MC algorithm will yield the proper equilibrium Boltzmann distribution. While a number of different constructs are possible, the most commonly used prescription has been to simply reverse the momenta of all the particles at the end of the neMD trajectory ("one-end momentum reversal"). Surprisingly, it is shown here that the choice of momentum reversal prescription can have a considerable effect on the rate of convergence of the hybrid neMD-MC algorithm, with the simple one-end momentum reversal encountering particularly acute problems. In these neMD-MC simulations, different regions of configurational space end up being essentially isolated from one another due to a very small transition rate between regions. In the worst-case scenario, it is almost as if the configurational space does not constitute a single communicating class that can be sampled efficiently by the algorithm, and extremely long neMD-MC simulations are needed to obtain proper equilibrium probability distributions. To address this issue, a novel momentum reversal prescription, symmetrized with respect to both the beginning and the end of the neMD trajectory ("symmetric two-ends momentum reversal"), is introduced. Illustrative simulations demonstrate that the hybrid neMD-MC algorithm robustly yields a correct

  19. Generalized Metropolis acceptance criterion for hybrid non-equilibrium molecular dynamics—Monte Carlo simulations

    SciTech Connect

    Chen, Yunjie; Roux, Benoît

    2015-01-14

    A family of hybrid simulation methods that combines the advantages of Monte Carlo (MC) with the strengths of classical molecular dynamics (MD) consists in carrying out short non-equilibrium MD (neMD) trajectories to generate new configurations that are subsequently accepted or rejected via an MC process. In the simplest case where a deterministic dynamic propagator is used to generate the neMD trajectories, the familiar Metropolis acceptance criterion based on the change in the total energy ΔE, min[1,  exp( − βΔE)], guarantees that the hybrid algorithm will yield the equilibrium Boltzmann distribution. However, the functional form of the acceptance probability is more complex when the non-equilibrium switching process is generated via a non-deterministic stochastic dissipative propagator coupled to a heat bath. Here, we clarify the conditions under which the Metropolis criterion remains valid to rigorously yield a proper equilibrium Boltzmann distribution within hybrid neMD-MC algorithm.

  20. Lazy skip-lists: An algorithm for fast hybridization-expansion quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Sémon, P.; Yee, Chuck-Hou; Haule, Kristjan; Tremblay, A.-M. S.

    2014-08-01

    The solution of a generalized impurity model lies at the heart of electronic structure calculations with dynamical mean field theory. In the strongly correlated regime, the method of choice for solving the impurity model is the hybridization-expansion continuous-time quantum Monte Carlo (CT-HYB). Enhancements to the CT-HYB algorithm are critical for bringing new physical regimes within reach of current computational power. Taking advantage of the fact that the bottleneck in the algorithm is a product of hundreds of matrices, we present optimizations based on the introduction and combination of two concepts of more general applicability: (a) skip lists and (b) fast rejection of proposed configurations based on matrix bounds. Considering two very different test cases with d electrons, we find speedups of ˜25 up to ˜500 compared to the direct evaluation of the matrix product. Even larger speedups are likely with f electron systems and with clusters of correlated atoms.

  1. A novel hybrid scattering order-dependent variance reduction method for Monte Carlo simulations of radiative transfer in cloudy atmosphere

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Cui, Shengcheng; Yang, Jun; Gao, Haiyang; Liu, Chao; Zhang, Zhibo

    2017-03-01

    We present a novel hybrid scattering order-dependent variance reduction method to accelerate the convergence rate in both forward and backward Monte Carlo radiative transfer simulations involving highly forward-peaked scattering phase function. This method is built upon a newly developed theoretical framework that not only unifies both forward and backward radiative transfer in scattering-order-dependent integral equation, but also generalizes the variance reduction formalism in a wide range of simulation scenarios. In previous studies, variance reduction is achieved either by using the scattering phase function forward truncation technique or the target directional importance sampling technique. Our method combines both of them. A novel feature of our method is that all the tuning parameters used for phase function truncation and importance sampling techniques at each order of scattering are automatically optimized by the scattering order-dependent numerical evaluation experiments. To make such experiments feasible, we present a new scattering order sampling algorithm by remodeling integral radiative transfer kernel for the phase function truncation method. The presented method has been implemented in our Multiple-Scaling-based Cloudy Atmospheric Radiative Transfer (MSCART) model for validation and evaluation. The main advantage of the method is that it greatly improves the trade-off between numerical efficiency and accuracy order by order.

  2. Hybrid laser integration for silicon photonics platform

    NASA Astrophysics Data System (ADS)

    Yang, Shuyu

    Silicon photonics has attracted extensive attention in both academia and industry in recent years, as an enabling technology to address the exponentially increasing demands for communication bandwidth. It brings state-of-the-art complementary metal-oxide-semiconductor (CMOS) processing technology to the field of photonic integration. The high yield and uniformity of silicon devices make it possible to build complex photonic systems-on-chip in large production volumes. Cutting-edge device performance has been demonstrated on this platform, including high-speed modulators, photodetectors, and passive devices such as the Y-junction, waveguide crossing, and arrayed waveguide gratings. As the device library quickly matures, an integrated laser source for a transmitter remains missing from the design kit. I demonstrated hybrid external cavity lasers by integrating reflective optical semiconductor amplifiers and silicon photonics chips. The gain chip and silicon chip can be designed and optimized independently, which is a significant advantage compared to bonding an III-V film on top of the silicon chip. Advanced optoelectronics packaging processes can be leveraged for chip alignment. Tunable C-Band (near 1550 nm) lasers with 10 mW on-chip power and less than 220 kHz bandwidth are demonstrated. O-Band lasers (operating near 1310 nm) as well as successful data transmission at 10 Gb/s and 40 Gb/s using the hybrid laser as the light source are also demonstrated. I designed a single cavity, multi wavelength laser by utilizing a quantum dot SOA, Sagnac loop and micro-ring based silicon photonics half cavity. Four lasing peaks with less than 3 dB power non-uniformity were measured, as well as 4 x 10 Gb/s error free data transmission. In addition to my main focus on RSOA/Silicon external cavity lasers, I propose and demonstrate a novel germanium-assisted grating coupler with low loss on-and-off chip fiber coupling. A coupling efficiency of 76% at 1.55 microm and 40 nm 1 d

  3. a Study of Electron Transport in Small Semiconductor Devices: the Monte Carlo Trajectory Integral Method

    NASA Astrophysics Data System (ADS)

    Socha, John Bronn

    The first part of this thesis contains a historical perspective on the last five years of research in hot-electron transport in semiconductors. This perspective serves two purposes. First, it provides a motivation for the second part of this thesis, which deals with calculating the full velocity distribution function of hot electrons. And second, it points out many of the unsolved theoretical problems that might be solved with the techniques developed in the second part. The second part of this thesis contains a derivation of a new method for calculating velocity distribution functions. This method, the Monte Carlo trajectory integral, is well suited for calculating the time evolution of a distribution function in the presence of complicated scattering mechanisms, like scattering with acoustic and optical phonons, inter-valley scattering, Bragg reflections, and even electron-electron scattering. This method uses many of the techniques develped for Monte Carlo transport calculations, but unlike other Monte Carlo methods, the Monte Carlo trajectory integral has very good control over the variance of the calculated distribution function across the entire distribution function. Since the Monte Carlo trajectory integral only needs information on the distribution function at previous times, it is well suited to electron-electron scattering where the distribution function must be known before the scattering rate can be calculated. Finally, this thesis ends with an application of the Monte Carlo trajectory integral to electron transport in SiO(,2) in the presence of electric fields up to 12 MV/cm, and it includes a number of suggestions for applying the Monte Carlo trajectory integral to other experiments in both SiO(,2) and GaAs. The Monte Carlo trajectory integral should be of special interest when super-computers are more common since then there will be the computing resources to include electron-electron scattering. The high-field distribution functions calculated when

  4. Silicon hybrid wafer scale integration interconnect evaluation

    NASA Astrophysics Data System (ADS)

    Lyke, James C.

    1989-12-01

    The electrical characteristics of interconnections that have been proposed for use in silicon hybrid wafer scale integration (WSI) approaches were investigated. The study was based on a set of 5 inch test wafers, containing various interconnection structures previously designed at AFIT. Two test wafers used a special polyimide dielectric, while a third was composed of a benzocyclobutene (BCB). The investigated structures represented 10 cm length aluminum, coupled, stripline-like transmission lines. The metrics used included continuity measurements, ac measurement of the characteristic impedance and coupling levels, and pulsed-signal response measurements. Continuity results indicated transmission and leakage failures in all wafers, although the failure mechanisms were sometimes wafer-specific. The characteristic impedance measurement technique was flawed, but revealed interesting information concerning the driving-point impedances of the structures. Most coupled structures manifested coupling responses which were consistent in shape with theoretical estimates, but higher in magnitude by 10 to 20 dB. All structures revealed coupling levels lower than -25 dB. Despite correlation difficulties, the results implied that transmission line behavior is manifested in WSIC interconnections.

  5. Kinetic-MHD hybrid equilibrium model using a Monte-Carlo calculation of runaway electron distribution function

    NASA Astrophysics Data System (ADS)

    Matsuyama, Akinobu; Aiba, Nobuyuki; Yagi, Masatoshi

    2015-11-01

    An axisymmetric MHD equilibrium model is studied to allow the inclusion of both beam inertia and energy spectrum for runaway electron beam. Following kinetic-MHD hybrid approach, we evaluate the RE beam current from the integrals of the RE distribution function. The distribution function is here evaluated by a relativistic guiding-center trace code ETC-Rel, where we have implemented the effects of collisions, radiations, and exponential growth into the code. Because to directly treat the Dreicer mechanism in particle simulations is time consuming, the primary RE source is modeled by a Monte-Carlo weighing scheme taking into account the instantaneous generation rate. This paper applies ETC-Rel to the parametric study of the MHD equilibrium with different RE beam parameters. Kinetic effects on the MHD equilibrium appears, e.g., as enhanced Shafranov shifts due to the inertia of highly relativistic electrons. A kinetic modification to the equilibrium becomes significant if the contribution of the beam inertia - being increased with the total electron mass of multi-MeV RE populations - becomes large enough to affect the radial force balance. This work was supported in part by MEXT KAKENHI Grant No. 23561009 and 26820404.

  6. The integration of improved Monte Carlo compton scattering algorithms into the Integrated TIGER Series.

    SciTech Connect

    Quirk, Thomas, J., IV

    2004-08-01

    The Integrated TIGER Series (ITS) is a software package that solves coupled electron-photon transport problems. ITS performs analog photon tracking for energies between 1 keV and 1 GeV. Unlike its deterministic counterpart, the Monte Carlo calculations of ITS do not require a memory-intensive meshing of phase space; however, its solutions carry statistical variations. Reducing these variations is heavily dependent on runtime. Monte Carlo simulations must therefore be both physically accurate and computationally efficient. Compton scattering is the dominant photon interaction above 100 keV and below 5-10 MeV, with higher cutoffs occurring in lighter atoms. In its current model of Compton scattering, ITS corrects the differential Klein-Nishina cross sections (which assumes a stationary, free electron) with the incoherent scattering function, a function dependent on both the momentum transfer and the atomic number of the scattering medium. While this technique accounts for binding effects on the scattering angle, it excludes the Doppler broadening the Compton line undergoes because of the momentum distribution in each bound state. To correct for these effects, Ribbefor's relativistic impulse approximation (IA) will be employed to create scattering cross section differential in both energy and angle for each element. Using the parameterizations suggested by Brusa et al., scattered photon energies and angle can be accurately sampled at a high efficiency with minimal physical data. Two-body kinematics then dictates the electron's scattered direction and energy. Finally, the atomic ionization is relaxed via Auger emission or fluorescence. Future work will extend these improvements in incoherent scattering to compounds and to adjoint calculations.

  7. Hybrid integration process for the development of multisensor chips

    NASA Astrophysics Data System (ADS)

    Jin, Na; Liu, Weiguo

    A novel hybrid integration process had been developed for the integration of single crystal pyroelectric detector with readout IC based on a thinning and anisotropic conduction tape bonding technique. We report our recent progress in applying the hybrid integration process for the fabrication of a multisensor chip with thermal and sound detectors integrated. The sound detector in the multisensor chip is based on thinned single crystal quartz, while the thermal detector in the chip is making use of thinned PLZT ceramic wafer. A membrane transfer process (MTP) was applied for the thinning and integration of the single crystal and ceramic wafers.

  8. Wavelet-Monte Carlo Hybrid System for HLW Nuclide Migration Modeling and Sensitivity and Uncertainty Analysis

    SciTech Connect

    Nasif, Hesham; Neyama, Atsushi

    2003-02-26

    This paper presents results of an uncertainty and sensitivity analysis for performance of the different barriers of high level radioactive waste repositories. SUA is a tool to perform the uncertainty and sensitivity on the output of Wavelet Integrated Repository System model (WIRS), which is developed to solve a system of nonlinear partial differential equations arising from the model formulation of radionuclide transport through repository. SUA performs sensitivity analysis (SA) and uncertainty analysis (UA) on a sample output from Monte Carlo simulation. The sample is generated by WIRS and contains the values of the output values of the maximum release rate in the form of time series and values of the input variables for a set of different simulations (runs), which are realized by varying the model input parameters. The Monte Carlo sample is generated with SUA as a pure random sample or using Latin Hypercube sampling technique. Tchebycheff and Kolmogrov confidence bounds are compute d on the maximum release rate for UA and effective non-parametric statistics to rank the influence of the model input parameters SA. Based on the results, we point out parameters that have primary influences on the performance of the engineered barrier system of a repository. The parameters found to be key contributor to the release rate are selenium and Cesium distribution coefficients in both geosphere and major water conducting fault (MWCF), the diffusion depth and water flow rate in the excavation-disturbed zone (EDZ).

  9. Constant-pH Hybrid Nonequilibrium Molecular Dynamics–Monte Carlo Simulation Method

    PubMed Central

    2016-01-01

    A computational method is developed to carry out explicit solvent simulations of complex molecular systems under conditions of constant pH. In constant-pH simulations, preidentified ionizable sites are allowed to spontaneously protonate and deprotonate as a function of time in response to the environment and the imposed pH. The method, based on a hybrid scheme originally proposed by H. A. Stern (J. Chem. Phys.2007, 126, 164112), consists of carrying out short nonequilibrium molecular dynamics (neMD) switching trajectories to generate physically plausible configurations with changed protonation states that are subsequently accepted or rejected according to a Metropolis Monte Carlo (MC) criterion. To ensure microscopic detailed balance arising from such nonequilibrium switches, the atomic momenta are altered according to the symmetric two-ends momentum reversal prescription. To achieve higher efficiency, the original neMD–MC scheme is separated into two steps, reducing the need for generating a large number of unproductive and costly nonequilibrium trajectories. In the first step, the protonation state of a site is randomly attributed via a Metropolis MC process on the basis of an intrinsic pKa; an attempted nonequilibrium switch is generated only if this change in protonation state is accepted. This hybrid two-step inherent pKa neMD–MC simulation method is tested with single amino acids in solution (Asp, Glu, and His) and then applied to turkey ovomucoid third domain and hen egg-white lysozyme. Because of the simple linear increase in the computational cost relative to the number of titratable sites, the present method is naturally able to treat extremely large systems. PMID:26300709

  10. Constant-pH Hybrid Nonequilibrium Molecular Dynamics-Monte Carlo Simulation Method.

    PubMed

    Chen, Yunjie; Roux, Benoît

    2015-08-11

    A computational method is developed to carry out explicit solvent simulations of complex molecular systems under conditions of constant pH. In constant-pH simulations, preidentified ionizable sites are allowed to spontaneously protonate and deprotonate as a function of time in response to the environment and the imposed pH. The method, based on a hybrid scheme originally proposed by H. A. Stern (J. Chem. Phys. 2007, 126, 164112), consists of carrying out short nonequilibrium molecular dynamics (neMD) switching trajectories to generate physically plausible configurations with changed protonation states that are subsequently accepted or rejected according to a Metropolis Monte Carlo (MC) criterion. To ensure microscopic detailed balance arising from such nonequilibrium switches, the atomic momenta are altered according to the symmetric two-ends momentum reversal prescription. To achieve higher efficiency, the original neMD-MC scheme is separated into two steps, reducing the need for generating a large number of unproductive and costly nonequilibrium trajectories. In the first step, the protonation state of a site is randomly attributed via a Metropolis MC process on the basis of an intrinsic pKa; an attempted nonequilibrium switch is generated only if this change in protonation state is accepted. This hybrid two-step inherent pKa neMD-MC simulation method is tested with single amino acids in solution (Asp, Glu, and His) and then applied to turkey ovomucoid third domain and hen egg-white lysozyme. Because of the simple linear increase in the computational cost relative to the number of titratable sites, the present method is naturally able to treat extremely large systems.

  11. New hybrid voxelized/analytical primitive in Monte Carlo simulations for medical applications

    NASA Astrophysics Data System (ADS)

    Bert, Julien; Lemaréchal, Yannick; Visvikis, Dimitris

    2016-05-01

    Monte Carlo simulations (MCS) applied in particle physics play a key role in medical imaging and particle therapy. In such simulations, particles are transported through voxelized phantoms derived from predominantly patient CT images. However, such voxelized object representation limits the incorporation of fine elements, such as artificial implants from CAD modeling or anatomical and functional details extracted from other imaging modalities. In this work we propose a new hYbrid Voxelized/ANalytical primitive (YVAN) that combines both voxelized and analytical object descriptions within the same MCS, without the need to simultaneously run two parallel simulations, which is the current gold standard methodology. Given that YVAN is simply a new primitive object, it does not require any modifications on the underlying MC navigation code. The new proposed primitive was assessed through a first simple MCS. Results from the YVAN primitive were compared against an MCS using a pure analytical geometry and the layer mass geometry concept. A perfect agreement was found between these simulations, leading to the conclusion that the new hybrid primitive is able to accurately and efficiently handle phantoms defined by a mixture of voxelized and analytical objects. In addition, two application-based evaluation studies in coronary angiography and intra-operative radiotherapy showed that the use of YVAN was 6.5% and 12.2% faster than the layered mass geometry method, respectively, without any associated loss of accuracy. However, the simplification advantages and differences in computational time improvements obtained with YVAN depend on the relative proportion of the analytical and voxelized structures used in the simulation as well as the size and number of triangles used in the description of the analytical object meshes.

  12. Phase equilibria of molecular fluids via hybrid Monte Carlo Wang-Landau simulations: applications to benzene and n-alkanes.

    PubMed

    Desgranges, Caroline; Delhommelle, Jerome

    2009-06-28

    In recent years, powerful and accurate methods, based on a Wang-Landau sampling, have been developed to determine phase equilibria. However, while these methods have been extensively applied to study the phase behavior of model fluids, they have yet to be applied to molecular systems. In this work, we show how, by combining hybrid Monte Carlo simulations in the isothermal-isobaric ensemble with the Wang-Landau sampling method, we determine the vapor-liquid equilibria of various molecular fluids. More specifically, we present results obtained on rigid molecules, such as benzene, as well as on flexible chains of n-alkanes. The reliability of the method introduced in this work is assessed by demonstrating that our results are in excellent agreement with the results obtained in previous work on simple fluids, using either transition matrix or conventional Monte Carlo simulations with a Wang-Landau sampling, and on molecular fluids, using histogram reweighting or Gibbs ensemble Monte Carlo simulations.

  13. Implementation of hybrid Monte Carlo and molecular dynamics in nickel carbide production: recipe for graphene growth formation

    NASA Astrophysics Data System (ADS)

    Syuhada, Ibnu; Rosikhin, Ahmad; Marimpul, Rinaldo; Noor, Fatimah A.; Winata, Toto

    2017-02-01

    This study concerns hybrid Monte Carlo and molecular dynamics (MD/MC) methods involving a recipe for creating nickel carbide that can be applied to the graphene growth process. The time-stamped force-bias Monte Carlo (tfMC) method was used for taking care of the bond switching (BS) rate due to the concentration of carbon atoms in the nickel catalyst. It was found that the hybrid MD/MC method promotes the nickel carbide system to vibrational bond switching. This study also revealed that carbon atoms in metal catalyst are not spread randomly but rather prefer to gather in groups. This phenomenon is not caused by the BS rate only, but also by cohesive–adhesive competition between carbon and nickel atoms.

  14. Hybrid and monolithic integration of planar lightwave circuits (PLCs)

    NASA Astrophysics Data System (ADS)

    Chen, Ray T.

    2008-02-01

    In this paper, we review the status of monolithic and hybrid integration of planar lightwave circuits (PLCs). Building blocks needed for system integration based on polymeric materials, III-V semiconductor materials, LiNbO 3 and SOI on Silicon are summarized with pros and cons. Due to the maturity of silicon CMOS technology, silicon becomes the platform of choice for optical application specific integrated circuits (OASICs). However, the indirect bandgap of silicon makes the formation of electrically pumped silicon laser a remote plausibility which requires hybrid integration of laser sources made out of III-V compound semicouductor.

  15. Comparison of hybrid and pure Monte Carlo shower generators on an event by event basis

    NASA Astrophysics Data System (ADS)

    Allen, J.; Drescher, H.-J.; Farrar, G.

    SENECA is a hybrid air shower simulation written by H. Drescher that utilizes both Monte Carlo simulation and cascade equations. By using the cascade equations only in the high energy portion of the shower, where they are extremely accurate, SENECA is able to utilize the advantages in speed from the cascade equations yet still produce complete, three dimensional particle distributions at ground level. We present a comparison, on an event by event basis, of SENECA and CORSIKA, a well trusted MC simulation. By using the same first interaction in both SENECA and CORSIKA, the effect of the cascade equations can be studied within a single shower, rather than averages over many showers. Our study shows that for showers produced in this manner, SENECA agrees with CORSIKA to a very high accuracy as to densities, energies, and timing information for individual species of ground-level particles from both iron and proton primaries with energies between 1EeV and 100EeV. Used properly, SENECA produces ground particle distributions virtually indistinguishable from those of CORSIKA in a fraction of the time. For example, for a shower induced by a 40 EeV proton simulated with 10-6 thinning, SENECA is 10 times faster than CORSIKA.

  16. Optimized molecular reconstruction procedure combining hybrid reverse Monte Carlo and molecular dynamics

    SciTech Connect

    Bousige, Colin; Boţan, Alexandru; Coasne, Benoît; Ulm, Franz-Josef; Pellenq, Roland J.-M.

    2015-03-21

    We report an efficient atom-scale reconstruction method that consists of combining the Hybrid Reverse Monte Carlo algorithm (HRMC) with Molecular Dynamics (MD) in the framework of a simulated annealing technique. In the spirit of the experimentally constrained molecular relaxation technique [Biswas et al., Phys. Rev. B 69, 195207 (2004)], this modified procedure offers a refined strategy in the field of reconstruction techniques, with special interest for heterogeneous and disordered solids such as amorphous porous materials. While the HRMC method generates physical structures, thanks to the use of energy penalties, the combination with MD makes the method at least one order of magnitude faster than HRMC simulations to obtain structures of similar quality. Furthermore, in order to ensure the transferability of this technique, we provide rational arguments to select the various input parameters such as the relative weight ω of the energy penalty with respect to the structure optimization. By applying the method to disordered porous carbons, we show that adsorption properties provide data to test the global texture of the reconstructed sample but are only weakly sensitive to the presence of defects. In contrast, the vibrational properties such as the phonon density of states are found to be very sensitive to the local structure of the sample.

  17. Development of Subspace-based Hybrid Monte Carlo-Deterministric Algorithms for Reactor Physics Calculations

    SciTech Connect

    Abdel-Khalik, Hany S.; Zhang, Qiong

    2014-05-20

    The development of hybrid Monte-Carlo-Deterministic (MC-DT) approaches, taking place over the past few decades, have primarily focused on shielding and detection applications where the analysis requires a small number of responses, i.e. at the detector locations(s). This work further develops a recently introduced global variance reduction approach, denoted by the SUBSPACE approach is designed to allow the use of MC simulation, currently limited to benchmarking calculations, for routine engineering calculations. By way of demonstration, the SUBSPACE approach is applied to assembly level calculations used to generate the few-group homogenized cross-sections. These models are typically expensive and need to be executed in the order of 103 - 105 times to properly characterize the few-group cross-sections for downstream core-wide calculations. Applicability to k-eigenvalue core-wide models is also demonstrated in this work. Given the favorable results obtained in this work, we believe the applicability of the MC method for reactor analysis calculations could be realized in the near future.

  18. Monte Carlo Method for Solving the Fredholm Integral Equations of the Second Kind

    NASA Astrophysics Data System (ADS)

    ZhiMin, Hong; ZaiZai, Yan; JianRui, Chen

    2012-12-01

    This article is concerned with a numerical algorithm for solving approximate solutions of Fredholm integral equations of the second kind with random sampling. We use Simpson's rule for solving integral equations, which yields a linear system. The Monte Carlo method, based on the simulation of a finite discrete Markov chain, is employed to solve this linear system. To show the efficiency of the method, we use numerical examples. Results obtained by the present method indicate that the method is an effective alternate method.

  19. Color path-integral Monte Carlo simulations of quark-gluon plasma

    NASA Astrophysics Data System (ADS)

    Filinov, V. S.; Ivanov, Yu. B.; Bonitz, M.; Fortov, V. E.; Levashov, P. R.

    2012-02-01

    Thermodynamic properties of a strongly coupled quark-gluon plasma (QGP) of constituent quasiparticles are studied by a color path-integral Monte Carlo simulations (CPIMC). For our simulations we have presented QGP partition function in the form of color path integral with new relativistic measure instead of Gaussian one used in Feynman and Wiener path integrals. For integration over color variable we have also developed procedure of sampling color variables according to the group SU(3) Haar measure. It is shown that this method is able to reproduce the available quantum lattice chromodynamics (QCD) data.

  20. Hybrid quantum/classical path integral approach for simulation of hydrogen transfer reactions in enzymes.

    PubMed

    Wang, Qian; Hammes-Schiffer, Sharon

    2006-11-14

    A hybrid quantum/classical path integral Monte Carlo (QC-PIMC) method for calculating the quantum free energy barrier for hydrogen transfer reactions in condensed phases is presented. In this approach, the classical potential of mean force along a collective reaction coordinate is calculated using umbrella sampling techniques in conjunction with molecular dynamics trajectories propagated according to a mapping potential. The quantum contribution is determined for each configuration along the classical trajectory with path integral Monte Carlo calculations in which the beads move according to an effective mapping potential. This type of path integral calculation does not utilize the centroid constraint and can lead to more efficient sampling of the relevant region of conformational space than free-particle path integral sampling. The QC-PIMC method is computationally practical for large systems because the path integral sampling for the quantum nuclei is performed separately from the classical molecular dynamics sampling of the entire system. The utility of the QC-PIMC method is illustrated by an application to hydride transfer in the enzyme dihydrofolate reductase. A comparison of this method to the quantized classical path and grid-based methods for this system is presented.

  1. Hybrid method for fast Monte Carlo simulation of diffuse reflectance from a multilayered tissue model with tumor-like heterogeneities.

    PubMed

    Zhu, Caigang; Liu, Quan

    2012-01-01

    We present a hybrid method that combines a multilayered scaling method and a perturbation method to speed up the Monte Carlo simulation of diffuse reflectance from a multilayered tissue model with finite-size tumor-like heterogeneities. The proposed method consists of two steps. In the first step, a set of photon trajectory information generated from a baseline Monte Carlo simulation is utilized to scale the exit weight and exit distance of survival photons for the multilayered tissue model. In the second step, another set of photon trajectory information, including the locations of all collision events from the baseline simulation and the scaling result obtained from the first step, is employed by the perturbation Monte Carlo method to estimate diffuse reflectance from the multilayered tissue model with tumor-like heterogeneities. Our method is demonstrated to shorten simulation time by several orders of magnitude. Moreover, this hybrid method works for a larger range of probe configurations and tumor models than the scaling method or the perturbation method alone.

  2. Approximation of Integrals Via Monte Carlo Methods, With An Application to Calculating Radar Detection Probabilities

    DTIC Science & Technology

    2005-03-01

    synthetic aperature radar and radar detec- tion using both software modelling and mathematical analysis and techniques. vi DSTO–TR–1692 Contents 1...joined DSTO in 1990, where he has been part of research efforts in the areas of target radar cross section, digital signal processing, inverse ...Approximation of Integrals via Monte Carlo Methods, with an Application to Calculating Radar Detection Probabilities Graham V. Weinberg and Ross

  3. Permutation blocking path integral Monte Carlo approach to the uniform electron gas at finite temperature.

    PubMed

    Dornheim, Tobias; Schoof, Tim; Groth, Simon; Filinov, Alexey; Bonitz, Michael

    2015-11-28

    The uniform electron gas (UEG) at finite temperature is of high current interest due to its key relevance for many applications including dense plasmas and laser excited solids. In particular, density functional theory heavily relies on accurate thermodynamic data for the UEG. Until recently, the only existing first-principle results had been obtained for N = 33 electrons with restricted path integral Monte Carlo (RPIMC), for low to moderate density, rs=r¯/aB≳1. These data have been complemented by configuration path integral Monte Carlo (CPIMC) simulations for rs ≤ 1 that substantially deviate from RPIMC towards smaller rs and low temperature. In this work, we present results from an independent third method-the recently developed permutation blocking path integral Monte Carlo (PB-PIMC) approach [T. Dornheim et al., New J. Phys. 17, 073017 (2015)] which we extend to the UEG. Interestingly, PB-PIMC allows us to perform simulations over the entire density range down to half the Fermi temperature (θ = kBT/EF = 0.5) and, therefore, to compare our results to both aforementioned methods. While we find excellent agreement with CPIMC, where results are available, we observe deviations from RPIMC that are beyond the statistical errors and increase with density.

  4. ACCELERATING FUSION REACTOR NEUTRONICS MODELING BY AUTOMATIC COUPLING OF HYBRID MONTE CARLO/DETERMINISTIC TRANSPORT ON CAD GEOMETRY

    SciTech Connect

    Biondo, Elliott D; Ibrahim, Ahmad M; Mosher, Scott W; Grove, Robert E

    2015-01-01

    Detailed radiation transport calculations are necessary for many aspects of the design of fusion energy systems (FES) such as ensuring occupational safety, assessing the activation of system components for waste disposal, and maintaining cryogenic temperatures within superconducting magnets. Hybrid Monte Carlo (MC)/deterministic techniques are necessary for this analysis because FES are large, heavily shielded, and contain streaming paths that can only be resolved with MC. The tremendous complexity of FES necessitates the use of CAD geometry for design and analysis. Previous ITER analysis has required the translation of CAD geometry to MCNP5 form in order to use the AutomateD VAriaNce reducTion Generator (ADVANTG) for hybrid MC/deterministic transport. In this work, ADVANTG was modified to support CAD geometry, allowing hybrid (MC)/deterministic transport to be done automatically and eliminating the need for this translation step. This was done by adding a new ray tracing routine to ADVANTG for CAD geometries using the Direct Accelerated Geometry Monte Carlo (DAGMC) software library. This new capability is demonstrated with a prompt dose rate calculation for an ITER computational benchmark problem using both the Consistent Adjoint Driven Importance Sampling (CADIS) method an the Forward Weighted (FW)-CADIS method. The variance reduction parameters produced by ADVANTG are shown to be the same using CAD geometry and standard MCNP5 geometry. Significant speedups were observed for both neutrons (as high as a factor of 7.1) and photons (as high as a factor of 59.6).

  5. SU-E-T-117: Dose to Organs Outside of CT Scan Range- Monte Carlo and Hybrid Phantom Approach

    SciTech Connect

    Pelletier, C; Jung, J; Lee, C; Kim, J; Lee, C

    2014-06-01

    Purpose: Epidemiological study of second cancer risk for cancer survivors often requires the dose to normal tissues located outside the anatomy covered by radiological imaging, which is usually limited to tumor and organs at risk. We have investigated the feasibility of using whole body computational human phantoms for estimating out-of-field organ doses for patients treated by Intensity Modulated Radiation Therapy (IMRT). Methods: Identical 7-field IMRT prostate plans were performed using X-ray Voxel Monte Carlo (XVMC), a radiotherapy-specific Monte Carlo transport code, on the computed tomography (CT) images of the torso of an adult male patient (175 cm height, 66 kg weight) and an adult male hybrid computational phantom with the equivalent body size. Dose to the liver, right lung, and left lung were calculated and compared. Results: Considerable differences are seen between the doses calculated by XVMC for the patient CT and the hybrid phantom. One major contributing factor is the treatment method, deep inspiration breath hold (DIBH), used for this patient. This leads to significant differences in the organ position relative to the treatment isocenter. The transverse distances from the treatment isocenter to the inferior border of the liver, left lung, and right lung are 19.5cm, 29.5cm, and 30.0cm, respectively for the patient CT, compared with 24.3cm, 36.6cm, and 39.1cm, respectively, for the hybrid phantom. When corrected for the distance, the mean doses calculated using the hybrid phantom are within 28% of those calculated using the patient CT. Conclusion: This study showed that mean dose to the organs located in the missing CT coverage can be reconstructed by using whole body computational human phantoms within reasonable dosimetric uncertainty, however appropriate corrections may be necessary if the patient is treated with a technique that will significantly deform the size or location of the organs relative to the hybrid phantom.

  6. Time-dependent integral equations of neutron transport for calculating the kinetics of nuclear reactors by the Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Davidenko, V. D.; Zinchenko, A. S.; Harchenko, I. K.

    2016-12-01

    Integral equations for the shape functions in the adiabatic, quasi-static, and improved quasi-static approximations are presented. The approach to solving these equations by the Monte Carlo method is described.

  7. Hybrid III-V/silicon SOA for photonic integrated circuits

    NASA Astrophysics Data System (ADS)

    Kaspar, P.; Brenot, R.; Le Liepvre, A.; Accard, A.; Make, D.; Levaufre, G.; Girard, N.; Lelarge, F.; Duan, G.-H.; Olivier, S.; Jany, Christophe; Kopp, C.; Menezo, S.

    2014-11-01

    Silicon photonics has reached a considerable level of maturity, and the complexity of photonic integrated circuits (PIC) is steadily increasing. As the number of components in a PIC grows, loss management becomes more and more important. Integrated semiconductor optical amplifiers (SOA) will be crucial components in future photonic systems for loss compensation. In addition, there are specific applications, where SOAs can play a key role beyond mere loss compensation, such as modulated reflective SOAs in carrier distributed passive optical networks or optical gates in packet switching. It is, therefore, highly desirable to find a generic integration platform that includes the possibility of integrating SOAs on silicon. Various methods are currently being developed to integrate light emitters on silicon-on-insulator (SOI) waveguide circuits. Many of them use III-V materials for the hybrid integration on SOI. Various types of lasers have been demonstrated by several groups around the globe. In some of the integration approaches, SOAs can be implemented using essentially the same technology as for lasers. In this paper we will focus on SOA devices based on a hybrid integration approach where III-V material is bonded on SOI and a vertical optical mode transfer is used to couple light between SOI waveguides and guides formed in bonded III-V semiconductor layers. In contrast to evanescent coupling schemes, this mode transfer allows for a higher confinement factor in the gain material and thus for efficient light amplification over short propagation distances. We will outline the fabrication process of our hybrid components and present some of the most interesting results from a fabricated and packaged hybrid SOA.

  8. Quantum Mechanical Single Molecule Partition Function from PathIntegral Monte Carlo Simulations

    SciTech Connect

    Chempath, Shaji; Bell, Alexis T.; Predescu, Cristian

    2006-10-01

    An algorithm for calculating the partition function of a molecule with the path integral Monte Carlo method is presented. Staged thermodynamic perturbation with respect to a reference harmonic potential is utilized to evaluate the ratio of partition functions. Parallel tempering and a new Monte Carlo estimator for the ratio of partition functions are implemented here to achieve well converged simulations that give an accuracy of 0.04 kcal/mol in the reported free energies. The method is applied to various test systems, including a catalytic system composed of 18 atoms. Absolute free energies calculated by this method lead to corrections as large as 2.6 kcal/mol at 300 K for some of the examples presented.

  9. A hybrid Monte Carlo model for the energy response functions of X-ray photon counting detectors

    NASA Astrophysics Data System (ADS)

    Wu, Dufan; Xu, Xiaofei; Zhang, Li; Wang, Sen

    2016-09-01

    In photon counting computed tomography (CT), it is vital to know the energy response functions of the detector for noise estimation and system optimization. Empirical methods lack flexibility and Monte Carlo simulations require too much knowledge of the detector. In this paper, we proposed a hybrid Monte Carlo model for the energy response functions of photon counting detectors in X-ray medical applications. GEANT4 was used to model the energy deposition of X-rays in the detector. Then numerical models were used to describe the process of charge sharing, anti-charge sharing and spectral broadening, which were too complicated to be included in the Monte Carlo model. Several free parameters were introduced in the numerical models, and they could be calibrated from experimental measurements such as X-ray fluorescence from metal elements. The method was used to model the energy response function of an XCounter Flite X1 photon counting detector. The parameters of the model were calibrated with fluorescence measurements. The model was further tested against measured spectrums of a VJ X-ray source to validate its feasibility and accuracy.

  10. Two-dimensional hybrid Monte Carlo–fluid modelling of dc glow discharges: Comparison with fluid models, reliability, and accuracy

    SciTech Connect

    Eylenceoğlu, E.; Rafatov, I.; Kudryavtsev, A. A.

    2015-01-15

    Two-dimensional hybrid Monte Carlo–fluid numerical code is developed and applied to model the dc glow discharge. The model is based on the separation of electrons into two parts: the low energetic (slow) and high energetic (fast) electron groups. Ions and slow electrons are described within the fluid model using the drift-diffusion approximation for particle fluxes. Fast electrons, represented by suitable number of super particles emitted from the cathode, are responsible for ionization processes in the discharge volume, which are simulated by the Monte Carlo collision method. Electrostatic field is obtained from the solution of Poisson equation. The test calculations were carried out for an argon plasma. Main properties of the glow discharge are considered. Current-voltage curves, electric field reversal phenomenon, and the vortex current formation are developed and discussed. The results are compared to those obtained from the simple and extended fluid models. Contrary to reports in the literature, the analysis does not reveal significant advantages of existing hybrid methods over the extended fluid model.

  11. Integration of the feline radiation hybrid and linkage maps.

    PubMed

    Sun, S; Murphy, W J; Menotti-Raymond, M; O'Brien, S J

    2001-06-01

    The recent development of genome mapping resources for the domestic cat provides a unique opportunity to study comparative medicine in this companion animal which can inform and benefit both veterinary and human biomedical concerns. We describe here the integration and order comparison of the feline radiation hybrid (RH) map with the feline interspecies backcross (ISB) genetic linkage map, constructed by a backcross of F1 hybrids between domestic cat (Felis catus) and the Asian leopard cat (Prionailurus bengalensis). Of 253 microsatellite loci mapped in the ISB, 176 equivalently spaced markers were ordered among a framework of 424 Type I coding markers in the RH map. The integration of the RH and ISB maps resolves the orientation of multiple linkage groups and singleton loci from the ISB genetic map. This integrated map provides the foundation for gene mapping assessments in the domestic cat and in related species of the Felidae family.

  12. Integrated Hybrid System Architecture for Risk Analysis

    NASA Technical Reports Server (NTRS)

    Moynihan, Gary P.; Fonseca, Daniel J.; Ray, Paul S.

    2010-01-01

    A conceptual design has been announced of an expert-system computer program, and the development of a prototype of the program, intended for use as a project-management tool. The program integrates schedule and risk data for the purpose of determining the schedule applications of safety risks and, somewhat conversely, the effects of changes in schedules on changes on safety. It is noted that the design has been delivered to a NASA client and that it is planned to disclose the design in a conference presentation.

  13. Integrated Modelling of Iter Hybrid Scenarios with Eccd

    NASA Astrophysics Data System (ADS)

    Giruzzi, G.; Artaud, J. F.; Basiuk, V.; Garcia, J.; Imbeaux, F.; Schneider, M.

    2009-04-01

    ITER hybrid scenarios may require off-axis current drive in order to keep the safety factor above 1. In this type of applications, alignment of the current sources and self-consistency of current and temperature profiles are critical issues, which can only be addressed by integrated modelling. To this end, the CRONOS suite of codes has been applied to the simulation of these scenarios. Results of simulations of ITER hybrid scenarios assisted by ECCD, using the ITER equatorial launcher, for both co- and counter-ECCD, are presented.

  14. Golden Ratio Versus Pi as Random Sequence Sources for Monte Carlo Integration

    NASA Technical Reports Server (NTRS)

    Sen, S. K.; Agarwal, Ravi P.; Shaykhian, Gholam Ali

    2007-01-01

    We discuss here the relative merits of these numbers as possible random sequence sources. The quality of these sequences is not judged directly based on the outcome of all known tests for the randomness of a sequence. Instead, it is determined implicitly by the accuracy of the Monte Carlo integration in a statistical sense. Since our main motive of using a random sequence is to solve real world problems, it is more desirable if we compare the quality of the sequences based on their performances for these problems in terms of quality/accuracy of the output. We also compare these sources against those generated by a popular pseudo-random generator, viz., the Matlab rand and the quasi-random generator ha/ton both in terms of error and time complexity. Our study demonstrates that consecutive blocks of digits of each of these numbers produce a good random sequence source. It is observed that randomly chosen blocks of digits do not have any remarkable advantage over consecutive blocks for the accuracy of the Monte Carlo integration. Also, it reveals that pi is a better source of a random sequence than theta when the accuracy of the integration is concerned.

  15. An Integrated Hybrid Transportation Architecture for Human Mars Expeditions

    NASA Technical Reports Server (NTRS)

    Merrill, Raymond G.; Chai, Patrick R.; Qu, Min

    2015-01-01

    NASA's Human Spaceflight Architecture Team is developing a reusable hybrid transportation architecture that uses both chemical and electric propulsion systems on the same vehicle to send crew and cargo to Mars destinations such as Phobos, Deimos, the surface of Mars, and other orbits around Mars. By applying chemical and electrical propulsion where each is most effective, the hybrid architecture enables a series of Mars trajectories that are more fuel-efficient than an all chemical architecture without significant increases in flight times. This paper presents an integrated Hybrid in-space transportation architecture for piloted missions and delivery of cargo. A concept for a Mars campaign including orbital and Mars surface missions is described in detail including a system concept of operations and conceptual design. Specific constraints, margin, and pinch points are identified for the architecture and opportunities for critical path commercial and international collaboration are discussed.

  16. Polymer waveguide based hybrid opto-electric integration technology

    NASA Astrophysics Data System (ADS)

    Mao, Jinbin; Deng, Lingling; Jiang, Xiyan; Ren, Rong; Zhai, Yumeng; Wang, Jin

    2014-10-01

    While monolithic integration especially based on InP appears to be quite an expensive solution for optical devices, hybrid integration solutions using cheaper material platforms are considered powerful competitors because of the high freedom of design, yield optimization and relative cost-efficiency. Among them, the polymer planar-lightwave circuit (PLC) technology is regarded attractive as polymer offers the potential of fairly simple and low-cost fabrication, and of low-cost packaging. In our work, polymer PLC was fabricated by using the standard reactive ion etching (RIE) technique, while other active and passive devices can be integrated on the polymer PLC platform. Exemplary polymer waveguide devices was a 13-channel arrayed waveguide grating (AWG) chip, where the central channel cross-talk was below -30dB and the polarization dependent frequency shift was mitigated by inserting a half wave plate. An optical 900 hybrid was also realized with one 2×4 multi-mode interferometer (MMI). The excess insertion losses are below 4dB for the C-band, while the transmission imbalance is below 1.2dB. When such an optical hybrid was integrated vertically with mesa-type photodiodes, the responsivity of the individual PD was around 0.06 A/W, while the 3 dB bandwidth reaches 24 ~ 27 GHz, which is sufficient for 100Gbit/s receivers. Another example of the hybrid integration was to couple the polymer waveguides to fiber by applying fiber grooves, whose typical loss value was 0.2 dB per-facet over a broad spectral range from 1200-1600 nm.

  17. Novel hybrid GPU-CPU implementation of parallelized Monte Carlo parametric expectation maximization estimation method for population pharmacokinetic data analysis.

    PubMed

    Ng, C M

    2013-10-01

    The development of a population PK/PD model, an essential component for model-based drug development, is both time- and labor-intensive. A graphical-processing unit (GPU) computing technology has been proposed and used to accelerate many scientific computations. The objective of this study was to develop a hybrid GPU-CPU implementation of parallelized Monte Carlo parametric expectation maximization (MCPEM) estimation algorithm for population PK data analysis. A hybrid GPU-CPU implementation of the MCPEM algorithm (MCPEMGPU) and identical algorithm that is designed for the single CPU (MCPEMCPU) were developed using MATLAB in a single computer equipped with dual Xeon 6-Core E5690 CPU and a NVIDIA Tesla C2070 GPU parallel computing card that contained 448 stream processors. Two different PK models with rich/sparse sampling design schemes were used to simulate population data in assessing the performance of MCPEMCPU and MCPEMGPU. Results were analyzed by comparing the parameter estimation and model computation times. Speedup factor was used to assess the relative benefit of parallelized MCPEMGPU over MCPEMCPU in shortening model computation time. The MCPEMGPU consistently achieved shorter computation time than the MCPEMCPU and can offer more than 48-fold speedup using a single GPU card. The novel hybrid GPU-CPU implementation of parallelized MCPEM algorithm developed in this study holds a great promise in serving as the core for the next-generation of modeling software for population PK/PD analysis.

  18. Hybrid CMOS/Nanodevice Integrated Circuits Design and Fabrication

    DTIC Science & Technology

    2008-08-25

    This approach combines a semiconductor transistor system with a nanowire crossbar, with simple two-terminal nanodevices self-assembled at each...hybrid CMOS/nanodevice integrated circuits [10-12]. Such circuit combines a semiconductor transistors system with a nanowire crossbar, with simple two...both with and without embedded metallic clusters), self-assembled molecular monolayers, and thin chalcogenide and crystalline perovskite layers [20

  19. Graphene/Si CMOS Hybrid Hall Integrated Circuits

    NASA Astrophysics Data System (ADS)

    Huang, Le; Xu, Huilong; Zhang, Zhiyong; Chen, Chengying; Jiang, Jianhua; Ma, Xiaomeng; Chen, Bingyan; Li, Zishen; Zhong, Hua; Peng, Lian-Mao

    2014-07-01

    Graphene/silicon CMOS hybrid integrated circuits (ICs) should provide powerful functions which combines the ultra-high carrier mobility of graphene and the sophisticated functions of silicon CMOS ICs. But it is difficult to integrate these two kinds of heterogeneous devices on a single chip. In this work a low temperature process is developed for integrating graphene devices onto silicon CMOS ICs for the first time, and a high performance graphene/CMOS hybrid Hall IC is demonstrated. Signal amplifying/process ICs are manufactured via commercial 0.18 um silicon CMOS technology, and graphene Hall elements (GHEs) are fabricated on top of the passivation layer of the CMOS chip via a low-temperature micro-fabrication process. The sensitivity of the GHE on CMOS chip is further improved by integrating the GHE with the CMOS amplifier on the Si chip. This work not only paves the way to fabricate graphene/Si CMOS Hall ICs with much higher performance than that of conventional Hall ICs, but also provides a general method for scalable integration of graphene devices with silicon CMOS ICs via a low-temperature process.

  20. Graphene/Si CMOS hybrid hall integrated circuits.

    PubMed

    Huang, Le; Xu, Huilong; Zhang, Zhiyong; Chen, Chengying; Jiang, Jianhua; Ma, Xiaomeng; Chen, Bingyan; Li, Zishen; Zhong, Hua; Peng, Lian-Mao

    2014-07-07

    Graphene/silicon CMOS hybrid integrated circuits (ICs) should provide powerful functions which combines the ultra-high carrier mobility of graphene and the sophisticated functions of silicon CMOS ICs. But it is difficult to integrate these two kinds of heterogeneous devices on a single chip. In this work a low temperature process is developed for integrating graphene devices onto silicon CMOS ICs for the first time, and a high performance graphene/CMOS hybrid Hall IC is demonstrated. Signal amplifying/process ICs are manufactured via commercial 0.18 um silicon CMOS technology, and graphene Hall elements (GHEs) are fabricated on top of the passivation layer of the CMOS chip via a low-temperature micro-fabrication process. The sensitivity of the GHE on CMOS chip is further improved by integrating the GHE with the CMOS amplifier on the Si chip. This work not only paves the way to fabricate graphene/Si CMOS Hall ICs with much higher performance than that of conventional Hall ICs, but also provides a general method for scalable integration of graphene devices with silicon CMOS ICs via a low-temperature process.

  1. Monte carlo diffusion hybrid model for photon migration in a two-layer turbid medium in the frequency domain.

    PubMed

    Alexandrakis, G; Farrell, T J; Patterson, M S

    2000-05-01

    We propose a hybrid Monte Carlo (MC) diffusion model for calculating the spatially resolved reflectance amplitude and phase delay resulting from an intensity-modulated pencil beam vertically incident on a two-layer turbid medium. The model combines the accuracy of MC at radial distances near the incident beam with the computational efficiency afforded by a diffusion calculation at further distances. This results in a single forward calculation several hundred times faster than pure MC, depending primarily on model parameters. Model predictions are compared with MC data for two cases that span the extremes of physiologically relevant optical properties: skin overlying fat and skin overlying muscle, both in the presence of an exogenous absorber. It is shown that good agreement can be achieved for radial distances from 0.5 to 20 mm in both cases. However, in the skin-on-muscle case the choice of model parameters and the definition of the diffusion coefficient can lead to some interesting discrepancies.

  2. Path integrals and large deviations in stochastic hybrid systems

    NASA Astrophysics Data System (ADS)

    Bressloff, Paul C.; Newby, Jay M.

    2014-04-01

    We construct a path-integral representation of solutions to a stochastic hybrid system, consisting of one or more continuous variables evolving according to a piecewise-deterministic dynamics. The differential equations for the continuous variables are coupled to a set of discrete variables that satisfy a continuous-time Markov process, which means that the differential equations are only valid between jumps in the discrete variables. Examples of stochastic hybrid systems arise in biophysical models of stochastic ion channels, motor-driven intracellular transport, gene networks, and stochastic neural networks. We use the path-integral representation to derive a large deviation action principle for a stochastic hybrid system. Minimizing the associated action functional with respect to the set of all trajectories emanating from a metastable state (assuming that such a minimization scheme exists) then determines the most probable paths of escape. Moreover, evaluating the action functional along a most probable path generates the so-called quasipotential used in the calculation of mean first passage times. We illustrate the theory by considering the optimal paths of escape from a metastable state in a bistable neural network.

  3. Hybrid silicon free-space source with integrated beam steering

    NASA Astrophysics Data System (ADS)

    Doylend, J. K.; Heck, M. J. R.; Bovington, J. T.; Peters, J. D.; Davenport, M. L.; Coldren, L. A.; Bowers, J. E.

    2013-02-01

    Free-space beam steering using optical phase arrays are desirable as a means of implementing Light Detection and Ranging (LIDAR) and free-space communication links without the need for moving parts, thus alleviating vulnerabilities due to vibrations and inertial forces. Implementing such an approach in silicon photonic integrated circuits is particularly desirable in order to take advantage of established CMOS processing techniques while reducing both device size and packaging complexity. In this work we demonstrate a free-space diode laser together with beam steering implemented on-chip in a silicon photonic circuit. A waveguide phased array, surface gratings, a hybrid III-V/silicon laser and an array of hybrid III/V silicon amplifiers were fabricated on-chip in order to achieve a fully integrated steerable free-space optical source with no external optical inputs, thus eliminating the need for fiber coupling altogether. The chip was fabricated using a modified version of the hybrid silicon process developed at UCSB, with modifications in order to incorporate diodes within the waveguide layer as well as within the III-V gain layer. Beam steering across a 12° field of view with +/-0.3° accuracy and 1.8°x0.6° beam width was achieved, with background peaks suppressed 7 dB relative to the main lobe within the field of view for arbitrarily chosen beam directions.

  4. MASSCLEANCOLORS-MASS-DEPENDENT INTEGRATED COLORS FOR STELLAR CLUSTERS DERIVED FROM 30 MILLION MONTE CARLO SIMULATIONS

    SciTech Connect

    Popescu, Bogdan; Hanson, M. M. E-mail: margaret.hanson@uc.edu

    2010-04-10

    We present Monte Carlo models of open stellar clusters with the purpose of mapping out the behavior of integrated colors with mass and age. Our cluster simulation package allows for stochastic variations in the stellar mass function to evaluate variations in integrated cluster properties. We find that UBVK colors from our simulations are consistent with simple stellar population (SSP) models, provided the cluster mass is large, M {sub cluster} {>=} 10{sup 6} M {sub sun}. Below this mass, our simulations show two significant effects. First, the mean value of the distribution of integrated colors moves away from the SSP predictions and is less red, in the first 10{sup 7} to 10{sup 8} years in UBV colors, and for all ages in (V - K). Second, the 1{sigma} dispersion of observed colors increases significantly with lower cluster mass. We attribute the former to the reduced number of red luminous stars in most of the lower mass clusters and the latter to the increased stochastic effect of a few of these stars on lower mass clusters. This latter point was always assumed to occur, but we now provide the first public code able to quantify this effect. We are completing a more extensive database of magnitudes and colors as a function of stellar cluster age and mass that will allow the determination of the correlation coefficients among different bands, and improve estimates of cluster age and mass from integrated photometry.

  5. Path Integral Monte Carlo finite-temperature electronic structure of quantum dots

    NASA Astrophysics Data System (ADS)

    Leino, Markku; Rantala, Tapio T.

    2003-03-01

    Quantum Monte Carlo methods allow a straightforward procedure for evaluation of electronic structures with a proper treatment of electronic correlations. This can be done even at finite temperatures [1]. We apply the Path Integral Monte Carlo (PIMC) simulation method [2] for one and two electrons in a single and double quantum dots. With this approach we evaluate the electronic distributions and correlations, and finite temperature effects on those. Temperature increase broadens the one-electron distribution as expected. This effect is smaller for correlated electrons than for single ones. The simulated one and two electron distributions of a single and two coupled quantum dots are also compared to those from experiments and other theoretical (0 K) methods [3]. Computational capacity is found to become the limiting factor in simulations with increasing accuracy. This and other essential aspects of PIMC and its capability in this type of calculations are also discussed. [1] R.P. Feynman: Statistical Mechanics, Addison Wesley, 1972. [2] D.M. Ceperley, Rev.Mod.Phys. 67, 279 (1995). [3] M. Pi, A. Emperador and M. Barranco, Phys.Rev.B 63, 115316 (2001).

  6. An integrated Monte Carlo dosimetric verification system for radiotherapy treatment planning

    NASA Astrophysics Data System (ADS)

    Yamamoto, T.; Mizowaki, T.; Miyabe, Y.; Takegawa, H.; Narita, Y.; Yano, S.; Nagata, Y.; Teshima, T.; Hiraoka, M.

    2007-04-01

    An integrated Monte Carlo (MC) dose calculation system, MCRTV (Monte Carlo for radiotherapy treatment plan verification), has been developed for clinical treatment plan verification, especially for routine quality assurance (QA) of intensity-modulated radiotherapy (IMRT) plans. The MCRTV system consists of the EGS4/PRESTA MC codes originally written for particle transport through the accelerator, the multileaf collimator (MLC), and the patient/phantom, which run on a 28-CPU Linux cluster, and the associated software developed for the clinical implementation. MCRTV has an interface with a commercial treatment planning system (TPS) (Eclipse, Varian Medical Systems, Palo Alto, CA, USA) and reads the information needed for MC computation transferred in DICOM-RT format. The key features of MCRTV have been presented in detail in this paper. The phase-space data of our 15 MV photon beam from a Varian Clinac 2300C/D have been developed and several benchmarks have been performed under homogeneous and several inhomogeneous conditions (including water, aluminium, lung and bone media). The MC results agreed with the ionization chamber measurements to within 1% and 2% for homogeneous and inhomogeneous conditions, respectively. The MC calculation for a clinical prostate IMRT treatment plan validated the implementation of the beams and the patient/phantom configuration in MCRTV.

  7. Leveraging Gibbs Ensemble Molecular Dynamics and Hybrid Monte Carlo/Molecular Dynamics for Efficient Study of Phase Equilibria.

    PubMed

    Gartner, Thomas E; Epps, Thomas H; Jayaraman, Arthi

    2016-11-08

    We describe an extension of the Gibbs ensemble molecular dynamics (GEMD) method for studying phase equilibria. Our modifications to GEMD allow for direct control over particle transfer between phases and improve the method's numerical stability. Additionally, we found that the modified GEMD approach had advantages in computational efficiency in comparison to a hybrid Monte Carlo (MC)/MD Gibbs ensemble scheme in the context of the single component Lennard-Jones fluid. We note that this increase in computational efficiency does not compromise the close agreement of phase equilibrium results between the two methods. However, numerical instabilities in the GEMD scheme hamper GEMD's use near the critical point. We propose that the computationally efficient GEMD simulations can be used to map out the majority of the phase window, with hybrid MC/MD used as a follow up for conditions under which GEMD may be unstable (e.g., near-critical behavior). In this manner, we can capitalize on the contrasting strengths of these two methods to enable the efficient study of phase equilibria for systems that present challenges for a purely stochastic GEMC method, such as dense or low temperature systems, and/or those with complex molecular topologies.

  8. WORM ALGORITHM PATH INTEGRAL MONTE CARLO APPLIED TO THE 3He-4He II SANDWICH SYSTEM

    NASA Astrophysics Data System (ADS)

    Al-Oqali, Amer; Sakhel, Asaad R.; Ghassib, Humam B.; Sakhel, Roger R.

    2012-12-01

    We present a numerical investigation of the thermal and structural properties of the 3He-4He sandwich system adsorbed on a graphite substrate using the worm algorithm path integral Monte Carlo (WAPIMC) method [M. Boninsegni, N. Prokof'ev and B. Svistunov, Phys. Rev. E74, 036701 (2006)]. For this purpose, we have modified a previously written WAPIMC code originally adapted for 4He on graphite, by including the second 3He-component. To describe the fermions, a temperature-dependent statistical potential has been used. This has proven very effective. The WAPIMC calculations have been conducted in the millikelvin temperature regime. However, because of the heavy computations involved, only 30, 40 and 50 mK have been considered for the time being. The pair correlations, Matsubara Green's function, structure factor, and density profiles have been explored at these temperatures.

  9. Excitonic effects in two-dimensional semiconductors: Path integral Monte Carlo approach

    SciTech Connect

    Velizhanin, Kirill A.; Saxena, Avadh

    2015-11-01

    The most striking features of novel two-dimensional semiconductors (e.g., transition metal dichalcogenide monolayers or phosphorene) is a strong Coulomb interaction between charge carriers resulting in large excitonic effects. In particular, this leads to the formation of multicarrier bound states upon photoexcitation (e.g., excitons, trions, and biexcitons), which could remain stable at near-room temperatures and contribute significantly to the optical properties of such materials. In our work we have used the path integral Monte Carlo methodology to numerically study properties of multicarrier bound states in two-dimensional semiconductors. Specifically, we have accurately investigated and tabulated the dependence of single-exciton, trion, and biexciton binding energies on the strength of dielectric screening, including the limiting cases of very strong and very weak screening. Our results of this work are potentially useful in the analysis of experimental data and benchmarking of theoretical and computational models.

  10. Excitonic effects in two-dimensional semiconductors: Path integral Monte Carlo approach

    DOE PAGES

    Velizhanin, Kirill A.; Saxena, Avadh

    2015-11-01

    The most striking features of novel two-dimensional semiconductors (e.g., transition metal dichalcogenide monolayers or phosphorene) is a strong Coulomb interaction between charge carriers resulting in large excitonic effects. In particular, this leads to the formation of multicarrier bound states upon photoexcitation (e.g., excitons, trions, and biexcitons), which could remain stable at near-room temperatures and contribute significantly to the optical properties of such materials. In our work we have used the path integral Monte Carlo methodology to numerically study properties of multicarrier bound states in two-dimensional semiconductors. Specifically, we have accurately investigated and tabulated the dependence of single-exciton, trion, and biexcitonmore » binding energies on the strength of dielectric screening, including the limiting cases of very strong and very weak screening. Our results of this work are potentially useful in the analysis of experimental data and benchmarking of theoretical and computational models.« less

  11. Torsional path integral Monte Carlo method for the quantum simulation of large molecules

    NASA Astrophysics Data System (ADS)

    Miller, Thomas F.; Clary, David C.

    2002-05-01

    A molecular application is introduced for calculating quantum statistical mechanical expectation values of large molecules at nonzero temperatures. The Torsional Path Integral Monte Carlo (TPIMC) technique applies an uncoupled winding number formalism to the torsional degrees of freedom in molecular systems. The internal energy of the molecules ethane, n-butane, n-octane, and enkephalin are calculated at standard temperature using the TPIMC technique and compared to the expectation values obtained using the harmonic oscillator approximation and a variational technique. All studied molecules exhibited significant quantum mechanical contributions to their internal energy expectation values according to the TPIMC technique. The harmonic oscillator approximation approach to calculating the internal energy performs well for the molecules presented in this study but is limited by its neglect of both anharmonicity effects and the potential coupling of intramolecular torsions.

  12. Accelerating execution of the integrated TIGER series Monte Carlo radiation transport codes

    SciTech Connect

    Smith, L.M.; Hochstedler, R.D.

    1997-02-01

    Execution of the integrated TIGER series (ITS) of coupled electron/photon Monte Carlo radiation transport codes has been accelerated by modifying the FORTRAN source code for more efficient computation. Each member code of ITS was benchmarked and profiled with a specific test case that directed the acceleration effort toward the most computationally intensive subroutines. Techniques for accelerating these subroutines included replacing linear search algorithms with binary versions, replacing the pseudo-random number generator, reducing program memory allocation, and proofing the input files for geometrical redundancies. All techniques produced identical or statistically similar results to the original code. Final benchmark timing of the accelerated code resulted in speed-up factors of 2.00 for TIGER (the one-dimensional slab geometry code), 1.74 for CYLTRAN (the two-dimensional cylindrical geometry code), and 1.90 for ACCEPT (the arbitrary three-dimensional geometry code).

  13. Path Integral Monte Carlo and Density Functional Molecular Dynamics Simulations of Warm Dense Matter

    NASA Astrophysics Data System (ADS)

    Militzer, Burkhard; Driver, Kevin

    2011-10-01

    We analyze the applicability of two first-principles simulation techniques, path integral Monte Carlo (PIMC) and density functional molecular dynamics (DFT-MD), to study the regime of warm dense matter. We discuss the advantages as well as the limitations of each method and propose directions for future development. Results for dense, liquid helium, where both methods have been applied, demonstrate the range of each method's applicability. Comparison of the equations of state from simulations with analytical theories and free energy models show that DFT is useful for temperatures below 100000 K and then PIMC provides accurate results for all higher temperatures. We characterize the structure of the liquid in terms of pair correlation functions and study the closure of the band gap with increasing density and temperature. Finally, we discuss simulations of heavier elements and demonstrate the reliability are both methods in such cases with preliminary results.

  14. Hybrid two-chain simulation and integral equation theory : application to polyethylene liquids.

    SciTech Connect

    Huimin Li, David T. Wu; Curro, John G.; McCoy, John Dwane

    2006-02-01

    We present results from a hybrid simulation and integral equation approach to the calculation of polymer melt properties. The simulation consists of explicit Monte Carlo (MC) sampling of two polymer molecules, where the effect of the surrounding chains is accounted for by an HNC solvation potential. The solvation potential is determined from the Polymer Reference Interaction Site Model (PRISM) as a functional of the pair correlation function from simulation. This hybrid two-chain MC-PRISM approach was carried out on liquids of polyethylene chains of 24 and 66 CH{sub 2} units. The results are compared with MD simulation and self-consistent PRISM-PY theory under the same conditions, revealing that the two-chain calculation is close to MD, and able to overcome the defects of the PRISM-PY closure and predict more accurate structures of the liquid at both short and long range. The direct correlation function, for instance, has a tail at longer range which is consistent with MD simulation and avoids the short-range assumptions in PRISM-PY theory. As a result, the self-consistent two-chain MC-PRISM calculation predicts an isothermal compressibility closer to the MD results.

  15. Fermionic path-integral Monte Carlo results for the uniform electron gas at finite temperature.

    PubMed

    Filinov, V S; Fortov, V E; Bonitz, M; Moldabekov, Zh

    2015-03-01

    The uniform electron gas (UEG) at finite temperature has recently attracted substantial interest due to the experimental progress in the field of warm dense matter. To explain the experimental data, accurate theoretical models for high-density plasmas are needed that depend crucially on the quality of the thermodynamic properties of the quantum degenerate nonideal electrons and of the treatment of their interaction with the positive background. Recent fixed-node path-integral Monte Carlo (RPIMC) data are believed to be the most accurate for the UEG at finite temperature, but they become questionable at high degeneracy when the Brueckner parameter rs=a/aB--the ratio of the mean interparticle distance to the Bohr radius--approaches 1. The validity range of these simulations and their predictive capabilities for the UEG are presently unknown. This is due to the unknown quality of the used fixed nodes and of the finite-size scaling from N=33 simulated particles (per spin projection) to the macroscopic limit. To analyze these questions, we present alternative direct fermionic path integral Monte Carlo (DPIMC) simulations that are independent from RPIMC. Our simulations take into account quantum effects not only in the electron system but also in their interaction with the uniform positive background. Also, we use substantially larger particle numbers (up to three times more) and perform an extrapolation to the macroscopic limit. We observe very good agreement with RPIMC, for the polarized electron gas, up to moderate densities around rs=4, and larger deviations for the unpolarized case, for low temperatures. For higher densities (high electron degeneracy), rs≲1.5, both RPIMC and DPIMC are problematic due to the increased fermion sign problem.

  16. Hybrid integrated PDMS microfluidics with a silica capillary.

    PubMed

    Dimov, Ivan K; Riaz, Asif; Ducrée, Jens; Lee, Luke P

    2010-06-07

    To harness the properties of both PDMS and silica, we have demonstrated hybrid integrated PDMS microfluidic systems with fused silica capillaries. The hybrid integrated PDMS microfluidics and silica capillary (iPSC) modules exhibit a novel architecture and method for leakage free CE sample injection merely requiring a single high voltage source and one pair of electrodes. The use of the iPSC device is based on a modular approach which allows the capillary to be reused extensively whilst replacing the attached fluidic module for different experiments. Integrating fused silica capillaries with PDMS microfluidic modules allows the direct application of a wide variety of well established conventional CE protocols for separations of complex analytes. Furthermore it bears the potential for facile coupling to standard electro-spray ionization mass spectrometry (ESI-MS), letting users focus on the sample analysis rather than the development of new separation protocols. The fabrication of the iPSC module consists of a simple and quick three-step method that submerges a fused silica capillary in PDMS prepolymer. After cross linking the prepolymer and punching the inlets, the iPSC module layer can be mounted onto a microfluidic device for CE separation.

  17. Monte Carlo simulation and self-consistent integral equation theory for polymers in quenched random media.

    PubMed

    Sung, Bong June; Yethiraj, Arun

    2005-08-15

    The conformational properties and static structure of freely jointed hard-sphere chains in matrices composed of stationary hard spheres are studied using Monte Carlo simulations and integral equation theory. The simulations show that the chain size is a nonmonotonic function of the matrix density when the matrix spheres are the same size as the monomers. When the matrix spheres are of the order of the chain size the chain size decreases monotonically with increasing matrix volume fraction. The simulations are used to test the replica-symmetric polymer reference interaction site model (RSP) integral equation theory. When the simulation results for the intramolecular correlation functions are input into the theory, the agreement between theoretical predictions and simulation results for the pair-correlation functions is quantitative only at the highest fluid volume fractions and for small matrix sphere sizes. The RSP theory is also implemented in a self-consistent fashion, i.e., the intramolecular and intermolecular correlation functions are calculated self-consistently by combining a field theory with the integral equations. The theory captures qualitative trends observed in the simulations, such as the nonmonotonic dependence of the chain size on media fraction.

  18. High Voltage Dielectrophoretic and Magnetophoretic Hybrid Integrated Circuit / Microfluidic Chip

    PubMed Central

    Issadore, David; Franke, Thomas; Brown, Keith A.; Hunt, Thomas P.; Westervelt, Robert M.

    2010-01-01

    A hybrid integrated circuit (IC) / microfluidic chip is presented that independently and simultaneously traps and moves microscopic objects suspended in fluid using both electric and magnetic fields. This hybrid chip controls the location of dielectric objects, such as living cells and drops of fluid, on a 60 × 61 array of pixels that are 30 × 38 μm2 in size, each of which can be individually addressed with a 50 V peak-to-peak, DC to 10 MHz radio frequency voltage. These high voltage pixels produce electric fields above the chip’s surface with a magnitude , resulting in strong dielectrophoresis (DEP) forces . Underneath the array of DEP pixels there is a magnetic matrix that consists of two perpendicular sets of 60 metal wires running across the chip. Each wire can be sourced with 120 mA to trap and move magnetically susceptible objects using magnetophoresis (MP). The DEP pixel array and magnetic matrix can be used simultaneously to apply forces to microscopic objects, such as living cells or lipid vesicles, that are tagged with magnetic nanoparticles. The capabilities of the hybrid IC / microfluidic chip demonstrated in this paper provide important building blocks for a platform for biological and chemical applications. PMID:20625468

  19. Runoff prediction using an integrated hybrid modelling scheme

    NASA Astrophysics Data System (ADS)

    Remesan, Renji; Shamim, Muhammad Ali; Han, Dawei; Mathew, Jimson

    2009-06-01

    SummaryRainfall runoff is a very complicated process due to its nonlinear and multidimensional dynamics, and hence difficult to model. There are several options for a modeller to consider, for example: the type of input data to be used, the length of model calibration (training) data and whether or not the input data be treated as signals with different frequency bands so that they can be modelled separately. This paper describes a new hybrid modelling scheme to answer the above mentioned questions. The proposed methodology is based on a hybrid model integrating wavelet transformation, a modelling engine (Artificial Neural Network) and the Gamma Test. First, the Gamma Test is used to decide the required input data dimensions and its length. Second, the wavelet transformation decomposes the input signals into different frequency bands. Finally, a modelling engine (ANN in this study) is used to model the decomposed signals separately. The proposed scheme was tested using the Brue catchment, Southwest England, as a case study and has produced very positive results. The hybrid model outperforms all other models tested. This study has a wider implication in the hydrological modelling field since its general framework could be applied to other model combinations (e.g., model engine could be Support Vector Machines, neuro-fuzzy systems, or even a conceptual model. The signal decomposition could be carried out by Fourier transformation).

  20. High Voltage Dielectrophoretic and Magnetophoretic Hybrid Integrated Circuit / Microfluidic Chip.

    PubMed

    Issadore, David; Franke, Thomas; Brown, Keith A; Hunt, Thomas P; Westervelt, Robert M

    2009-12-01

    A hybrid integrated circuit (IC) / microfluidic chip is presented that independently and simultaneously traps and moves microscopic objects suspended in fluid using both electric and magnetic fields. This hybrid chip controls the location of dielectric objects, such as living cells and drops of fluid, on a 60 × 61 array of pixels that are 30 × 38 μm(2) in size, each of which can be individually addressed with a 50 V peak-to-peak, DC to 10 MHz radio frequency voltage. These high voltage pixels produce electric fields above the chip's surface with a magnitude , resulting in strong dielectrophoresis (DEP) forces . Underneath the array of DEP pixels there is a magnetic matrix that consists of two perpendicular sets of 60 metal wires running across the chip. Each wire can be sourced with 120 mA to trap and move magnetically susceptible objects using magnetophoresis (MP). The DEP pixel array and magnetic matrix can be used simultaneously to apply forces to microscopic objects, such as living cells or lipid vesicles, that are tagged with magnetic nanoparticles. The capabilities of the hybrid IC / microfluidic chip demonstrated in this paper provide important building blocks for a platform for biological and chemical applications.

  1. Radiation Transport for Explosive Outflows: A Multigroup Hybrid Monte Carlo Method

    NASA Astrophysics Data System (ADS)

    Wollaeger, Ryan T.; van Rossum, Daniel R.; Graziani, Carlo; Couch, Sean M.; Jordan, George C., IV; Lamb, Donald Q.; Moses, Gregory A.

    2013-12-01

    We explore Implicit Monte Carlo (IMC) and discrete diffusion Monte Carlo (DDMC) for radiation transport in high-velocity outflows with structured opacity. The IMC method is a stochastic computational technique for nonlinear radiation transport. IMC is partially implicit in time and may suffer in efficiency when tracking MC particles through optically thick materials. DDMC accelerates IMC in diffusive domains. Abdikamalov extended IMC and DDMC to multigroup, velocity-dependent transport with the intent of modeling neutrino dynamics in core-collapse supernovae. Densmore has also formulated a multifrequency extension to the originally gray DDMC method. We rigorously formulate IMC and DDMC over a high-velocity Lagrangian grid for possible application to photon transport in the post-explosion phase of Type Ia supernovae. This formulation includes an analysis that yields an additional factor in the standard IMC-to-DDMC spatial interface condition. To our knowledge the new boundary condition is distinct from others presented in prior DDMC literature. The method is suitable for a variety of opacity distributions and may be applied to semi-relativistic radiation transport in simple fluids and geometries. Additionally, we test the code, called SuperNu, using an analytic solution having static material, as well as with a manufactured solution for moving material with structured opacities. Finally, we demonstrate with a simple source and 10 group logarithmic wavelength grid that IMC-DDMC performs better than pure IMC in terms of accuracy and speed when there are large disparities between the magnitudes of opacities in adjacent groups. We also present and test our implementation of the new boundary condition.

  2. Extension of the Integrated Tiger Series (ITS) of electron-photon Monte Carlo codes to 100 GeV

    SciTech Connect

    Miller, S.G.

    1988-08-01

    Version 2.1 of the Integrated Tiger Series (ITS) of electron-photon Monte Carlo codes was modified to extend their ability to model interactions up to 100 GeV. Benchmarks against experimental results conducted at 10 and 15 GeV confirm the accuracy of the extended codes. 12 refs., 2 figs., 2 tabs.

  3. Hybrid polymer photonic crystal fiber with integrated chalcogenide glass nanofilms

    PubMed Central

    Markos, Christos; Kubat, Irnis; Bang, Ole

    2014-01-01

    The combination of chalcogenide glasses with polymer photonic crystal fibers (PCFs) is a difficult and challenging task due to their different thermo-mechanical material properties. Here we report the first experimental realization of a hybrid polymer-chalcogenide PCF with integrated As2S3 glass nanofilms at the inner surface of the air-channels of a poly-methyl-methacrylate (PMMA) PCF. The integrated high refractive index glass films introduce distinct antiresonant transmission bands in the 480–900 nm wavelength region. We demonstrate that the ultra-high Kerr nonlinearity of the chalcogenide glass makes the polymer PCF nonlinear and provides a possibility to shift the transmission band edges as much as 17 nm by changing the intensity. The proposed fabrication technique constitutes a new highway towards all-fiber nonlinear tunable devices based on polymer PCFs, which at the moment is not possible with any other fabrication method. PMID:25317501

  4. Hybrid Silicon Photonic Integration using Quantum Well Intermixing

    NASA Astrophysics Data System (ADS)

    Jain, Siddharth R.

    With the push for faster data transfer across all domains of telecommunication, optical interconnects are transitioning into shorter range applications such as in data centers and personal computing. Silicon photonics, with its economic advantages of leveraging well-established silicon manufacturing facilities, is considered the most promising approach to further scale down the cost and size of optical interconnects for chip-to-chip communication. Intrinsic properties of silicon however limit its ability to generate and modulate light, both of which are key to realizing on-chip optical data transfer. The hybrid silicon approach directly addresses this problem by using molecularly bonded III-V epitaxial layers on silicon for optical gain and absorption. This technology includes direct transfer of III-V wafer to a pre-patterned silicon-on-insulator wafer. Several discrete devices for light generation, modulation, amplification and detection have already been demonstrated on this platform. As in the case of electronics, multiple photonic elements can be integrated on a single chip to improve performance and functionality. However, scalable photonic integration requires the ability to control the bandgap for individual devices along with design changes to simplify fabrication. In the research presented here, quantum well intermixing is used as a technique to define multiple bandgaps for integration on the hybrid silicon platform. Implantation enhanced disordering is used to generate four bandgaps spread over 120+ nm. By combining these selectively intermixed III-V layers with pre-defined gratings and waveguides on silicon, we fabricate distributed feedback, distributed Bragg reflector, Fabry-Perot and mode-locked lasers along with photodetectors, electro-absorption modulators and other test structures, all on a single chip. We demonstrate a broadband laser source with continuous-wave operational lasers over a 200 nm bandwidth. Some of these lasers are integrated with

  5. Hybrid integrated optic modules for real-time signal processing

    NASA Technical Reports Server (NTRS)

    Tsai, C. S.

    1984-01-01

    The most recent progress on four relatively new hybrid integrated optic device modules in LiNbO3 waveguides and one in YIG/GGG waveguide that are currently being studied are discussed. The five hybrid modules include a time-integrating acoustooptic correlator, a channel waveguide acoustooptic frequency shifter/modulator, an electrooptic channel waveguide total internal reflection moculator/switch, an electrooptic analog-to-digital converter using a Fabry-Perot modulator array, and a noncollinear magnetooptic modulator using magnetostatic surface waves. All of these devices possess the desirable characteristics of very large bandwidth (GHz or higher), very small substrate size along the optical path (typically 1.5 cm or less), single-mode optical propagation, and low drive power requirement. The devices utilize either acoustooptic, electrooptic or magnetooptic effects in planar or channel waveguides and, therefore, act as efficient interface devices between a light wave and temporal signals. Major areas of application lie in wideband multichannel optical real-time signal processing and communications. Some of the specific applications include spectral analysis and correlation of radio frequency (RF) signals, fiber-optic sensing, optical computing and multiport switching/routing, and analog-to-digital conversion of wide RF signals.

  6. Monte Carlo simulation of small electron fields collimated by the integrated photon MLC

    NASA Astrophysics Data System (ADS)

    Mihaljevic, Josip; Soukup, Martin; Dohm, Oliver; Alber, Markus

    2011-02-01

    In this study, a Monte Carlo (MC)-based beam model for an ELEKTA linear accelerator was established. The beam model is based on the EGSnrc Monte Carlo code, whereby electron beams with nominal energies of 10, 12 and 15 MeV were considered. For collimation of the electron beam, only the integrated photon multi-leaf-collimators (MLCs) were used. No additional secondary or tertiary add-ons like applicators, cutouts or dedicated electron MLCs were included. The source parameters of the initial electron beam were derived semi-automatically from measurements of depth-dose curves and lateral profiles in a water phantom. A routine to determine the initial electron energy spectra was developed which fits a Gaussian spectrum to the most prominent features of depth-dose curves. The comparisons of calculated and measured depth-dose curves demonstrated agreement within 1%/1 mm. The source divergence angle of initial electrons was fitted to lateral dose profiles beyond the range of electrons, where the imparted dose is mainly due to bremsstrahlung produced in the scattering foils. For accurate modelling of narrow beam segments, the influence of air density on dose calculation was studied. The air density for simulations was adjusted to local values (433 m above sea level) and compared with the standard air supplied by the ICRU data set. The results indicate that the air density is an influential parameter for dose calculations. Furthermore, the default value of the BEAMnrc parameter 'skin depth' for the boundary crossing algorithm was found to be inadequate for the modelling of small electron fields. A higher value for this parameter eliminated discrepancies in too broad dose profiles and an increased dose along the central axis. The beam model was validated with measurements, whereby an agreement mostly within 3%/3 mm was found.

  7. Fractional volume integration in two-dimensional NMR spectra: CAKE, a Monte Carlo approach.

    PubMed

    Romano, Rocco; Paris, Debora; Acernese, Fausto; Barone, Fabrizio; Motta, Andrea

    2008-06-01

    Quantitative information from multi-dimensional NMR experiments can be obtained by peak volume integration. The standard procedure (selection of a region around the chosen peak and addition of all values) is often biased by poor peak definition because of peak overlap. Here we describe a simple method, called CAKE, for volume integration of (partially) overlapping peaks. Assuming the axial symmetry of two-dimensional NMR peaks, as it occurs in NOESY and TOCSY when Lorentz-Gauss transformation of the signals is carried out, CAKE estimates the peak volume by multiplying a volume fraction by a factor R. It represents a proportionality ratio between the total and the fractional volume, which is identified as a slice in an exposed region of the overlapping peaks. The volume fraction is obtained via Monte Carlo Hit-or-Miss technique, which proved to be the most efficient because of the small region and the limited number of points within the selected area. Tests on simulated and experimental peaks, with different degrees of overlap and signal-to-noise ratios, show that CAKE results in improved volume estimates. A main advantage of CAKE is that the volume fraction can be flexibly chosen so as to minimize the effect of overlap, frequently observed in two-dimensional spectra.

  8. An Event-Driven Hybrid Molecular Dynamics and Direct Simulation Monte Carlo Algorithm

    SciTech Connect

    Donev, A; Garcia, A L; Alder, B J

    2007-07-30

    A novel algorithm is developed for the simulation of polymer chains suspended in a solvent. The polymers are represented as chains of hard spheres tethered by square wells and interact with the solvent particles with hard core potentials. The algorithm uses event-driven molecular dynamics (MD) for the simulation of the polymer chain and the interactions between the chain beads and the surrounding solvent particles. The interactions between the solvent particles themselves are not treated deterministically as in event-driven algorithms, rather, the momentum and energy exchange in the solvent is determined stochastically using the Direct Simulation Monte Carlo (DSMC) method. The coupling between the solvent and the solute is consistently represented at the particle level, however, unlike full MD simulations of both the solvent and the solute, the spatial structure of the solvent is ignored. The algorithm is described in detail and applied to the study of the dynamics of a polymer chain tethered to a hard wall subjected to uniform shear. The algorithm closely reproduces full MD simulations with two orders of magnitude greater efficiency. Results do not confirm the existence of periodic (cycling) motion of the polymer chain.

  9. Monte Carlo method based QSAR modelling of natural lipase inhibitors using hybrid optimal descriptors.

    PubMed

    Kumar, A; Chauhan, S

    2017-03-08

    Obesity is one of the most provoking health burdens in the developed countries. One of the strategies to prevent obesity is the inhibition of pancreatic lipase enzyme. The aim of this study was to build QSAR models for natural lipase inhibitors by using the Monte Carlo method. The molecular structures were represented by the simplified molecular input line entry system (SMILES) notation and molecular graphs. Three sets - training, calibration and test set of three splits - were examined and validated. Statistical quality of all the described models was very good. The best QSAR model showed the following statistical parameters: r(2) = 0.864 and Q(2) = 0.836 for the test set and r(2) = 0.824 and Q(2) = 0.819 for the validation set. Structural attributes for increasing and decreasing the activity (expressed as pIC50) were also defined. Using defined structural attributes, the design of new potential lipase inhibitors is also presented. Additionally, a molecular docking study was performed for the determination of binding modes of designed molecules.

  10. High-Throughput Computation and the Applicability of Monte Carlo Integration in Fatigue Load Estimation of Floating Offshore Wind Turbines

    SciTech Connect

    Graf, Peter A.; Stewart, Gordon; Lackner, Matthew; Dykes, Katherine; Veers, Paul

    2016-05-01

    Long-term fatigue loads for floating offshore wind turbines are hard to estimate because they require the evaluation of the integral of a highly nonlinear function over a wide variety of wind and wave conditions. Current design standards involve scanning over a uniform rectangular grid of metocean inputs (e.g., wind speed and direction and wave height and period), which becomes intractable in high dimensions as the number of required evaluations grows exponentially with dimension. Monte Carlo integration offers a potentially efficient alternative because it has theoretical convergence proportional to the inverse of the square root of the number of samples, which is independent of dimension. In this paper, we first report on the integration of the aeroelastic code FAST into NREL's systems engineering tool, WISDEM, and the development of a high-throughput pipeline capable of sampling from arbitrary distributions, running FAST on a large scale, and postprocessing the results into estimates of fatigue loads. Second, we use this tool to run a variety of studies aimed at comparing grid-based and Monte Carlo-based approaches with calculating long-term fatigue loads. We observe that for more than a few dimensions, the Monte Carlo approach can represent a large improvement in computational efficiency, but that as nonlinearity increases, the effectiveness of Monte Carlo is correspondingly reduced. The present work sets the stage for future research focusing on using advanced statistical methods for analysis of wind turbine fatigue as well as extreme loads.

  11. Improved measurement scheme of the self energy in the worm-sampled hybridization-expansion quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Han, Mancheon; Lee, Choong-Ki; Choi, Hyoung Joon

    Hybridization-expansion continuous-time quantum Monte Carlo (CT-HYB) is a popular approach in real material researches because it allows to deal with non-density-density-type interaction. In the conventional CT-HYB, we measure Green's function and find the self energy from the Dyson equation. Because one needs to compute the inverse of the statistical data in this approach, obtained self energy is very sensitive to statistical noise. For that reason, the measurement is not reliable except for low frequencies. Such an error can be suppressed by measuring a special type of higher-order correlation function and is implemented for density-density-type interaction. With the help of the recently reported worm-sampling measurement, we developed an improved self energy measurement scheme which can be applied to any type of interactions. As an illustration, we calculated the self energy for the 3-orbital Hubbard-Kanamori-type Hamiltonian with our newly developed method. This work was supported by NRF of Korea (Grant No. 2011-0018306) and KISTI supercomputing center (Project No. KSC-2015-C3-039)

  12. Bayesian parameter inference by Markov chain Monte Carlo with hybrid fitness measures: theory and test in apoptosis signal transduction network.

    PubMed

    Murakami, Yohei; Takada, Shoji

    2013-01-01

    When model parameters in systems biology are not available from experiments, they need to be inferred so that the resulting simulation reproduces the experimentally known phenomena. For the purpose, Bayesian statistics with Markov chain Monte Carlo (MCMC) is a useful method. Conventional MCMC needs likelihood to evaluate a posterior distribution of acceptable parameters, while the approximate Bayesian computation (ABC) MCMC evaluates posterior distribution with use of qualitative fitness measure. However, none of these algorithms can deal with mixture of quantitative, i.e., likelihood, and qualitative fitness measures simultaneously. Here, to deal with this mixture, we formulated Bayesian formula for hybrid fitness measures (HFM). Then we implemented it to MCMC (MCMC-HFM). We tested MCMC-HFM first for a kinetic toy model with a positive feedback. Inferring kinetic parameters mainly related to the positive feedback, we found that MCMC-HFM reliably infer them using both qualitative and quantitative fitness measures. Then, we applied the MCMC-HFM to an apoptosis signal transduction network previously proposed. For kinetic parameters related to implicit positive feedbacks, which are important for bistability and irreversibility of the output, the MCMC-HFM reliably inferred these kinetic parameters. In particular, some kinetic parameters that have experimental estimates were inferred without using these data and the results were consistent with experiments. Moreover, for some parameters, the mixed use of quantitative and qualitative fitness measures narrowed down the acceptable range of parameters.

  13. Monte Carlo solution of the volume-integral equation of electromagnetic scattering

    NASA Astrophysics Data System (ADS)

    Peltoniemi, J.; Muinonen, K.

    2014-07-01

    Electromagnetic scattering is often the main physical process to be understood when interpreting the observations of asteroids, comets, and meteors. Modeling the scattering faces still many problems, and one needs to assess several different cases: multiple scattering and shadowing by the rough surface, multiple scattering inside a surface element, and single scattering by a small object. Our specific goal is to extend the electromagnetic techniques to larger and more complicated objects, and derive approximations taking into account the most important effects of waves. Here we experiment with Monte Carlo techniques: can they provide something new to solving the scattering problems? The electromagnetic wave equation in the presence of a scatterer of volume V and refractive index m, with an incident wave EE_0, including boundary conditions and the scattering condition at infinity, can be presented in the form of an integral equation EE(rr)(1+suski(rr) Q(ρ))-int_{V-V_ρ}ddrr' GG(rr-rr')suski(rr')EE(rr') =EE_0, where suski(rr)=m(rr)^2-1, Q(ρ)=-1/3+{cal O}(ρ^2)+{O'}(m^2ρ^2), {O}, and {O'} are some second- and higher-order corrections for the finite-size volume V_ρ of radius ρ around the singularity and GG is the dyadic Green's function of the form GG(RR)={exp(im kR)}/{4π R}[unittensor(1+{im}/{R}-{1}/{R^2})-RRRR(1+{3im}/{R}-{3}/{R^2})]. In general, this is solved by extending the internal field in terms of some simple basis functions, e.g., plane or spherical waves or a cubic grid, approximating the integrals in a clever way, and determining the goodness of the solution somehow, e.g., moments or least square. Whatever the choice, the solution usually converges nicely towards a correct enough solution when the scatterer is small and simple, and diverges when the scatterer becomes too complicated. With certain methods, one can reach larger scatterers faster, but the memory and CPU needs can be huge. Until today, all successful solutions are based on more or less

  14. Modeling Integrated Cellular Machinery Using Hybrid Petri-Boolean Networks

    PubMed Central

    Berestovsky, Natalie; Zhou, Wanding; Nagrath, Deepak; Nakhleh, Luay

    2013-01-01

    The behavior and phenotypic changes of cells are governed by a cellular circuitry that represents a set of biochemical reactions. Based on biological functions, this circuitry is divided into three types of networks, each encoding for a major biological process: signal transduction, transcription regulation, and metabolism. This division has generally enabled taming computational complexity dealing with the entire system, allowed for using modeling techniques that are specific to each of the components, and achieved separation of the different time scales at which reactions in each of the three networks occur. Nonetheless, with this division comes loss of information and power needed to elucidate certain cellular phenomena. Within the cell, these three types of networks work in tandem, and each produces signals and/or substances that are used by the others to process information and operate normally. Therefore, computational techniques for modeling integrated cellular machinery are needed. In this work, we propose an integrated hybrid model (IHM) that combines Petri nets and Boolean networks to model integrated cellular networks. Coupled with a stochastic simulation mechanism, the model simulates the dynamics of the integrated network, and can be perturbed to generate testable hypotheses. Our model is qualitative and is mostly built upon knowledge from the literature and requires fine-tuning of very few parameters. We validated our model on two systems: the transcriptional regulation of glucose metabolism in human cells, and cellular osmoregulation in S. cerevisiae. The model produced results that are in very good agreement with experimental data, and produces valid hypotheses. The abstract nature of our model and the ease of its construction makes it a very good candidate for modeling integrated networks from qualitative data. The results it produces can guide the practitioner to zoom into components and interconnections and investigate them using such more

  15. Modeling integrated cellular machinery using hybrid Petri-Boolean networks.

    PubMed

    Berestovsky, Natalie; Zhou, Wanding; Nagrath, Deepak; Nakhleh, Luay

    2013-01-01

    The behavior and phenotypic changes of cells are governed by a cellular circuitry that represents a set of biochemical reactions. Based on biological functions, this circuitry is divided into three types of networks, each encoding for a major biological process: signal transduction, transcription regulation, and metabolism. This division has generally enabled taming computational complexity dealing with the entire system, allowed for using modeling techniques that are specific to each of the components, and achieved separation of the different time scales at which reactions in each of the three networks occur. Nonetheless, with this division comes loss of information and power needed to elucidate certain cellular phenomena. Within the cell, these three types of networks work in tandem, and each produces signals and/or substances that are used by the others to process information and operate normally. Therefore, computational techniques for modeling integrated cellular machinery are needed. In this work, we propose an integrated hybrid model (IHM) that combines Petri nets and Boolean networks to model integrated cellular networks. Coupled with a stochastic simulation mechanism, the model simulates the dynamics of the integrated network, and can be perturbed to generate testable hypotheses. Our model is qualitative and is mostly built upon knowledge from the literature and requires fine-tuning of very few parameters. We validated our model on two systems: the transcriptional regulation of glucose metabolism in human cells, and cellular osmoregulation in S. cerevisiae. The model produced results that are in very good agreement with experimental data, and produces valid hypotheses. The abstract nature of our model and the ease of its construction makes it a very good candidate for modeling integrated networks from qualitative data. The results it produces can guide the practitioner to zoom into components and interconnections and investigate them using such more

  16. Hybrid Integrated Silicon Microfluidic Platform for Fluorescence Based Biodetection

    PubMed Central

    Chandrasekaran, Arvind; Acharya, Ashwin; You, Jian Liang; Soo, Kim Young; Packirisamy, Muthukumaran; Stiharu, Ion; Darveau, Andre

    2007-01-01

    The desideratum to develop a fully integrated Lab-on-a-chip device capable of rapid specimen detection for high throughput in-situ biomedical diagnoses and Point-of-Care testing applications has called for the integration of some of the novel technologies such as the microfluidics, microphotonics, immunoproteomics and Micro Electro Mechanical Systems (MEMS). In the present work, a silicon based microfluidic device has been developed for carrying out fluorescence based immunoassay. By hybrid attachment of the microfluidic device with a Spectrometer-on-chip, the feasibility of synthesizing an integrated Lab-on-a-chip type device for fluorescence based biosensing has been demonstrated. Biodetection using the microfluidic device has been carried out using antigen sheep IgG and Alexafluor-647 tagged antibody particles and the experimental results prove that silicon is a compatible material for the present application given the various advantages it offers such as cost-effectiveness, ease of bulk microfabrication, superior surface affinity to biomolecules, ease of disposability of the device etc., and is thus suitable for fabricating Lab-on-a-chip type devices.

  17. A path-integral Monte Carlo study of a small cluster: The Ar trimer

    NASA Astrophysics Data System (ADS)

    Pérez de Tudela, R.; Márquez-Mijares, M.; González-Lezana, T.; Roncero, O.; Miret-Artés, S.; Delgado-Barrio, G.; Villarreal, P.

    2010-06-01

    The Ar3 system has been studied between T =0 K and T =40 K by means of a path-integral Monte Carlo (PIMC) method. The behavior of the average energy in terms of the temperature has been explained by comparison with results obtained with the thermal averaged rovibrational spectra estimated via: (i) a quantum mechanical method based on distributed Gaussian functions for the interparticle distances and (ii) an analytical model which precisely accounts for the participation of the dissociative continua Ar2+Ar and Ar+Ar+Ar. Beyond T ˜20 K, the system explores floppier configurations than the rigid equilateral geometry, as linear and Ar-Ar2-like arrangements, and fragmentates around T ˜40 K. A careful investigation of the specific heat in terms of a confining radius in the PIMC calculation seems to discard a proper phase transition as in larger clusters, in apparent contradiction with previous reports of precise values for a liquid-gas transition. The onset of this noticeable change in the dynamics of the trimer occurs, however, at a remarkably low value of the temperature in comparison with Arn systems formed with more Ar atoms. Quantum mechanical effects are found of relevance at T ≤15 K, with both energies and radial distributions obtained with a quantum PIMC deviating from the corresponding classical results, thus precluding exclusively classical approaches for a precise description of the system at this low temperature range.

  18. Path Integral Monte Carlo Simulations of Warm Dense Plasmas with mid-Z Elements

    NASA Astrophysics Data System (ADS)

    Driver, Kevin; Soubiran, Francois; Zhang, Shuai; Militzer, Burkhard

    2016-10-01

    Theoretical studies of warm dense plasmas are crucial for improving our knowledge of giant planets, astrophysics, shock physics, and new plasma energy technologies, such as inertial confined fusion. Path integral Monte Carlo (PIMC) and density functional theory molecular dynamics (DFT-MD) provide consistent, first-principles descriptions of warm, dense matter over a wide range of density and temperature conditions. Here, we report simulation results for a variety of first- and second-row elements. DFT-MD algorithms are well-suited for low temperatures, while PIMC has been restricted to relatively high temperatures due to the free-particle approximation of the nodal surface. For heavier, second-row elements, we have developed a new, localized nodal surface, which allows us to treat bound states within the PIMC formalism. By combining PIMC and DFT-MD pressures and internal energies, we produce a coherent, first-principles equation of state, bridging the entire warm dense matter regime. Pair-correlation functions and the density of electronic states reveal an evolving plasma structure. The degree of ionization is affected by both temperature and density. Finally, shock Hugoniot curves show an increase in compression as the first and second shells are ionized. Funding provided by the DOE (DE-SC0010517). Computational resources provided by the NCAR/CISL, NERSC, and NASA.

  19. Path-integral Monte Carlo simulations for electronic dynamics on molecular chains. II. Transport across impurities

    NASA Astrophysics Data System (ADS)

    Mühlbacher, Lothar; Ankerhold, Joachim

    2005-05-01

    Electron transfer (ET) across molecular chains including an impurity is studied based on a recently improved real-time path-integral Monte Carlo (PIMC) approach [L. Mühlbacher, J. Ankerhold, and C. Escher, J. Chem. Phys. 121 12696 (2004)]. The reduced electronic dynamics is studied for various bridge lengths and defect site energies. By determining intersite hopping rates from PIMC simulations up to moderate times, the relaxation process in the extreme long-time limit is captured within a sequential transfer model. The total transfer rate is extracted and shown to be enhanced for certain defect site energies. Superexchange turns out to be relevant for extreme gap energies only and then gives rise to different dynamical signatures for high- and low-lying defects. Further, it is revealed that the entire bridge compound approaches a steady state on a much shorter time scale than that related to the total transfer. This allows for a simplified description of ET along donor-bridge-acceptor systems in the long-time range.

  20. Path integral Monte Carlo and density functional molecular dynamics simulations of hot, dense helium

    NASA Astrophysics Data System (ADS)

    Militzer, B.

    2009-04-01

    Two first-principles simulation techniques, path integral Monte Carlo (PIMC) and density functional molecular dynamics (DFT-MD), are applied to study hot, dense helium in the density-temperature range of 0.387-5.35gcm-3 and 500K-1.28×108K . One coherent equation of state is derived by combining DFT-MD data at lower temperatures with PIMC results at higher temperatures. Good agreement between both techniques is found in an intermediate-temperature range. For the highest temperatures, the PIMC results converge to the Debye-Hückel limiting law. In order to derive the entropy, a thermodynamically consistent free-energy fit is used that reproduces the internal energies and pressure derived from the first-principles simulations. The equation of state is presented in the form of a table as well as a fit and is compared with different free-energy models. Pair-correlation functions and the electronic density of states are discussed. Shock Hugoniot curves are compared with recent laser shock-wave experiments.

  1. Integration of conflict into integrative taxonomy: fitting hybridization in species delimitation of Mesocarabus (Coleoptera: Carabidae).

    PubMed

    Andújar, C; Arribas, P; Ruiz, C; Serrano, J; Gómez-Zurita, J

    2014-09-01

    In species differentiation, characters may not diverge synchronously, and there are also processes that shuffle character states in lineages descendant from a common ancestor. Species are thus expected to show some degree of incongruence among characters; therefore, taxonomic delimitation can benefit from integrative approaches and objective strategies that account for character conflict. We illustrate the potential of exploiting conflict for species delimitation in a study case of ground beetles of the subgenus Carabus (Mesocarabus), where traditional taxonomy does not accurately delimit species. The molecular phylogenies of four mitochondrial and three nuclear genes, cladistic analysis of the aedeagus, ecological niche divergence and morphometry of pronotal shape in more than 500 specimens of Mesocarabus show that these characters are not fully congruent. For these data, a three-step operational strategy is proposed for species delimitation by (i) delineating candidate species based on the integration of incongruence among conclusive lines of evidence, (ii) corroborating candidate species with inconclusive lines of evidence and (iii) refining a final species proposal based on an integrated characterization of candidate species based on the evolutionary analysis of incongruence. This procedure provided a general understanding of the reticulate process of hybridization and introgression acting on Mesocarabus and generated the hypothesis of seven Mesocarabus species, including two putative hybrid lineages. Our work emphasizes the importance of incorporating critical analyses of character and phylogenetic conflict to infer both the evolutionary history and species boundaries through an integrative taxonomic approach.

  2. Hybrid automated reliability predictor integrated work station (HiREL)

    NASA Technical Reports Server (NTRS)

    Bavuso, Salvatore J.

    1991-01-01

    The Hybrid Automated Reliability Predictor (HARP) integrated reliability (HiREL) workstation tool system marks another step toward the goal of producing a totally integrated computer aided design (CAD) workstation design capability. Since a reliability engineer must generally graphically represent a reliability model before he can solve it, the use of a graphical input description language increases productivity and decreases the incidence of error. The captured image displayed on a cathode ray tube (CRT) screen serves as a documented copy of the model and provides the data for automatic input to the HARP reliability model solver. The introduction of dependency gates to a fault tree notation allows the modeling of very large fault tolerant system models using a concise and visually recognizable and familiar graphical language. In addition to aiding in the validation of the reliability model, the concise graphical representation presents company management, regulatory agencies, and company customers a means of expressing a complex model that is readily understandable. The graphical postprocessor computer program HARPO (HARP Output) makes it possible for reliability engineers to quickly analyze huge amounts of reliability/availability data to observe trends due to exploratory design changes.

  3. Integration of variable-rate OWC with OFDM-PON for hybrid optical access based on adaptive envelope modulation

    NASA Astrophysics Data System (ADS)

    Chen, Chen; Zhong, Wen-De; Wu, Dehao

    2016-12-01

    In this paper, we investigate an integrated optical wireless communication (OWC) and orthogonal frequency division multiplexing based passive optical network (OFDM-PON) system for hybrid wired and wireless optical access, based on an adaptive envelope modulation technique. Both the outdoor and indoor wireless communications are considered in the integrated system. The data for wired access is carried by a conventional OFDM signal, while the data for wireless access is carried by an M-ary pulse amplitude modulation (M-PAM) signal which is modulated onto the envelope of a phase-modulated OFDM signal. By adaptively modulating the wireless M-PAM signal onto the envelope of the wired phase-modulated constant envelope OFDM (CE-OFDM) signal, hybrid wired and wireless optical access can be seamlessly integrated and variable-rate optical wireless transmission can also be achieved. Analytical bit-error-rate (BER) expressions are derived for both the CE-OFDM signal with M-PAM overlay and the overlaid unipolar M-PAM signal, which are verified by Monte Carlo simulations. The BER performances of wired access, indoor OWC wireless access and outdoor OWC wireless access are evaluated. Moreover, variable-rate indoor and outdoor optical wireless access based on the adaptive envelope modulation technique is also discussed.

  4. Hybrid integration platform based on silica-on-silicon planar lightwave circuit

    NASA Astrophysics Data System (ADS)

    Lin, Wenhua; Sun, C. Jacob; Schmidt, Kevin M.

    2007-02-01

    While silica waveguide PLC products have been deployed in various systems and applications, hybrid integration of semiconductor opto-electronic devices on silica-based planar lightwave circuit (PLC) has become the mainstream platform for small form factor, low-cost and high volume integrated transceiver modules. One of the main benefits of hybrid integration is the wafer-scale process, which greatly reduces chip/module size and assembly cost. This paper reviews the development of this technology, and as an example, presents a hybrid integrated transmitter with four wavelengths on silica PLC chip for LX4 and 10GbE applications.

  5. Integrated TIGER Series of Coupled Electron/Photon Monte Carlo Transport Codes System.

    SciTech Connect

    VALDEZ, GREG D.

    2012-11-30

    Version: 00 Distribution is restricted to US Government Agencies and Their Contractors Only. The Integrated Tiger Series (ITS) is a powerful and user-friendly software package permitting state-of-the-art Monte Carlo solution of linear time-independent coupled electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields of arbitrary spatial dependence. The goal has been to simultaneously maximize operational simplicity and physical accuracy. Through a set of preprocessor directives, the user selects one of the many ITS codes. The ease with which the makefile system is applied combines with an input scheme based on order-independent descriptive keywords that makes maximum use of defaults and internal error checking to provide experimentalists and theorists alike with a method for the routine but rigorous solution of sophisticated radiation transport problems. Physical rigor is provided by employing accurate cross sections, sampling distributions, and physical models for describing the production and transport of the electron/photon cascade from 1.0 GeV down to 1.0 keV. The availability of source code permits the more sophisticated user to tailor the codes to specific applications and to extend the capabilities of the codes to more complex applications. Version 6, the latest version of ITS, contains (1) improvements to the ITS 5.0 codes, and (2) conversion to Fortran 95. The general user friendliness of the software has been enhanced through memory allocation to reduce the need for users to modify and recompile the code.

  6. Comparison of symbolic and numerical integration methods for an assumed-stress hybrid shell element

    NASA Technical Reports Server (NTRS)

    Rengarajan, Govind; Knight, Norman F., Jr.; Aminpour, Mohammad A.

    1993-01-01

    Hybrid shell elements have long been regarded with reserve by the commercial finite element developers despite the high degree of reliability and accuracy associated with such formulations. The fundamental reason is the inherent higher computational cost of the hybrid approach as compared to the displacement-based formulations. However, a noteworthy factor in favor of hybrid elements is that numerical integration to generate element matrices can be entirely avoided by the use of symbolic integration. In this paper, the use of the symbolic computational approach is presented for an assumed-stress hybrid shell element with drilling degrees of freedom and the significant time savings achieved is demonstrated through an example.

  7. Polymer planar lightwave circuit based hybrid-integrated coherent receiver for advanced modulation signals

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Han, Yang; Liang, Zhongcheng; Chen, Yongjin

    2012-11-01

    Applying coherent detection technique to advanced modulation formats makes it possible to electronically compensate the signal impairments. A key issue for a successful deployment of coherent detection technique is the availability of cost-efficient and compact integrated receivers, which are composed of an optical 90° hybrid mixer and four photodiodes (PDs). In this work, three different types of optical hybrids are fabricated with polymer planar lightwave circuit (PLC), and hybridly integrated with four vertical backside illuminated III-V PDs. Their performances, such as the insertion loss, the transmission imbalance, the polarization dependence and the phase deviation of 90° hybrid will be discussed.

  8. [The economic solution for integrating radiology and surgery: hybrid OR].

    PubMed

    Freitag, T; Langer, S

    2012-10-01

    Currently, interventional (angiographically-guided) therapies have become more and more important in cardiovascular medicine. Hybrid procedures in hybrid operating rooms (ORs) have now become major topics at national and international meetings. A few hospitals have already implemented the project "hybrid OR", in some institutions the system is still in the planning stage. The aim of our article is to present the hospital management point of view, and thus, to focus on the economic and logistic issues from planning through to implementation.

  9. Integrated Cost and Schedule using Monte Carlo Simulation of a CPM Model - 12419

    SciTech Connect

    Hulett, David T.; Nosbisch, Michael R.

    2012-07-01

    This discussion of the recommended practice (RP) 57R-09 of AACE International defines the integrated analysis of schedule and cost risk to estimate the appropriate level of cost and schedule contingency reserve on projects. The main contribution of this RP is to include the impact of schedule risk on cost risk and hence on the need for cost contingency reserves. Additional benefits include the prioritizing of the risks to cost, some of which are risks to schedule, so that risk mitigation may be conducted in a cost-effective way, scatter diagrams of time-cost pairs for developing joint targets of time and cost, and probabilistic cash flow which shows cash flow at different levels of certainty. Integrating cost and schedule risk into one analysis based on the project schedule loaded with costed resources from the cost estimate provides both: (1) more accurate cost estimates than if the schedule risk were ignored or incorporated only partially, and (2) illustrates the importance of schedule risk to cost risk when the durations of activities using labor-type (time-dependent) resources are risky. Many activities such as detailed engineering, construction or software development are mainly conducted by people who need to be paid even if their work takes longer than scheduled. Level-of-effort resources, such as the project management team, are extreme examples of time-dependent resources, since if the project duration exceeds its planned duration the cost of these resources will increase over their budgeted amount. The integrated cost-schedule risk analysis is based on: - A high quality CPM schedule with logic tight enough so that it will provide the correct dates and critical paths during simulation automatically without manual intervention. - A contingency-free estimate of project costs that is loaded on the activities of the schedule. - Resolves inconsistencies between cost estimate and schedule that often creep into those documents as project execution proceeds

  10. Hybrid integrated photonic components based on a polymer platform

    NASA Astrophysics Data System (ADS)

    Eldada, Louay A.

    2003-06-01

    We report on a polymer-on-silicon optical bench platform that enables the hybrid integration of elemental passive and active optical functions. Planar polymer circuits are produced photolithographically, and slots are formed in them for the insertion of chips and films of a variety of materials. The polymer circuits provide interconnects, static routing elements such as couplers, taps, and multi/demultiplexers, as well as thermo-optically dynamic elements such as switches, variable optical attenuators, and tunable notch filters. Crystal-ion-sliced thin films of lithium niobate are inserted in the polymer circuit for polarization control or for electro-optic modulation. Films of yttrium iron garnet and neodymium iron boron magnets are inserted in order to magneto-optically achieve non-reciprocal operation for isolation and circulation. Indium phosphide and gallium arsenide chips are inserted for light generation, amplification, and detection, as well as wavelength conversion. The functions enabled by this multi-material platform span the range of the building blocks needed in optical circuits, while using the highest-performance material system for each function. We demonstrated complex-functionality photonic components based on this technology, including a metro ring node module and a tunable optical transmitter. The metro ring node chip includes switches, variable optical attenuators, taps, and detectors; it enables optical add/drop multiplexing, power monitoring, and automatic load balancing, and it supports shared and dedicated protection protocols in two-fiber metro ring optical networks. The tunable optical transmitter chip includes a tunable external cavity laser, an isolator, and a high-speed modulator.

  11. Hybrid diagnostic system: beacon-based exception analysis for multimissions - Livingstone integration

    NASA Technical Reports Server (NTRS)

    Park, Han G.; Cannon, Howard; Bajwa, Anupa; Mackey, Ryan; James, Mark; Maul, William

    2004-01-01

    This paper describes the initial integration of a hybrid reasoning system utilizing a continuous domain feature-based detector, Beacon-based Exceptions Analysis for Multimissions (BEAM), and a discrete domain model-based reasoner, Livingstone.

  12. Integration of hybrid wireless networks in cloud services oriented enterprise information systems

    NASA Astrophysics Data System (ADS)

    Li, Shancang; Xu, Lida; Wang, Xinheng; Wang, Jue

    2012-05-01

    This article presents a hybrid wireless network integration scheme in cloud services-based enterprise information systems (EISs). With the emerging hybrid wireless networks and cloud computing technologies, it is necessary to develop a scheme that can seamlessly integrate these new technologies into existing EISs. By combining the hybrid wireless networks and computing in EIS, a new framework is proposed, which includes frontend layer, middle layer and backend layers connected to IP EISs. Based on a collaborative architecture, cloud services management framework and process diagram are presented. As a key feature, the proposed approach integrates access control functionalities within the hybrid framework that provide users with filtered views on available cloud services based on cloud service access requirements and user security credentials. In future work, we will implement the proposed framework over SwanMesh platform by integrating the UPnP standard into an enterprise information system.

  13. Path-Integral Monte Carlo Study on a Droplet of a Dipolar Bose-Einstein Condensate Stabilized by Quantum Fluctuation

    NASA Astrophysics Data System (ADS)

    Saito, Hiroki

    2016-05-01

    Motivated by recent experiments [H. Kadau et al., http://doi.org/10.1038/nature16485, Nature (London) 530, 194 (2016); I. Ferrier-Barbut et al., http://arxiv.org/abs/1601.03318, arXiv:1601.03318] and theoretical prediction (F. Wächtler and L. Santos, http://arxiv.org/abs/1601.04501, arXiv:1601.04501), the ground state of a dysprosium Bose-Einstein condensate with strong dipole-dipole interaction is studied by the path-integral Monte Carlo method. It is shown that quantum fluctuation can stabilize the condensate against dipolar collapse.

  14. Streamline Integration using MPI-Hybrid Parallelism on a Large Multi-Core Architecture

    SciTech Connect

    Camp, David; Garth, Christoph; Childs, Hank; Pugmire, Dave; Joy, Kenneth I.

    2010-11-01

    Streamline computation in a very large vector field data set represents a significant challenge due to the non-local and datadependentnature of streamline integration. In this paper, we conduct a study of the performance characteristics of hybrid parallel programmingand execution as applied to streamline integration on a large, multicore platform. With multi-core processors now prevalent in clustersand supercomputers, there is a need to understand the impact of these hybrid systems in order to make the best implementation choice.We use two MPI-based distribution approaches based on established parallelization paradigms, parallelize-over-seeds and parallelize-overblocks,and present a novel MPI-hybrid algorithm for each approach to compute streamlines. Our findings indicate that the work sharing betweencores in the proposed MPI-hybrid parallel implementation results in much improved performance and consumes less communication andI/O bandwidth than a traditional, non-hybrid distributed implementation.

  15. Path-integral Monte Carlo method for the local Z2 Berry phase.

    PubMed

    Motoyama, Yuichi; Todo, Synge

    2013-02-01

    We present a loop cluster algorithm Monte Carlo method for calculating the local Z(2) Berry phase of the quantum spin models. The Berry connection, which is given as the inner product of two ground states with different local twist angles, is expressed as a Monte Carlo average on the worldlines with fixed spin configurations at the imaginary-time boundaries. The "complex weight problem" caused by the local twist is solved by adopting the meron cluster algorithm. We present the results of simulation on the antiferromagnetic Heisenberg model on an out-of-phase bond-alternating ladder to demonstrate that our method successfully detects the change in the valence bond pattern at the quantum phase transition point. We also propose that the gauge-fixed local Berry connection can be an effective tool to estimate precisely the quantum critical point.

  16. Incorporation of the electron energy equation into the hybrid Monte Carlo - fluid model for glow discharge: the applicability and reliability of the model

    NASA Astrophysics Data System (ADS)

    Eylenceoglu, Ender; Rafatov, Ismail; Kudryavtsev, Anatoly

    2016-09-01

    A modification of the conventional hybrid Monte Carlo - fluid model for glow discharge, which incorporates the electron energy equation, is considered. In the proposed model electrons are separated into two groups, namely, high energetic fast and low energetic slow (bulk) electrons. Density profiles of ions, slow electrons, and meta-stable particles are determined from the solution of corresponding continuity equations. Fast electrons, which are responsible for ionization and excitation events in the discharge, are simulated by the Monte-Carlo method. The temperature profile for slow electrons is obtained from the solution of the energy balance equation. The transport (mobility and diffusion) coefficients as well as the reaction rates for slow electrons are determined as functions of the electron temperature. Test calculations are carried out for the direct current glow discharge in argon within two-dimensional geometry. Comparison of the computed results with those obtained from the conventional fluid and hybrid models and the experimental data is done, the applicability and reliability of the proposed model is studied in details.

  17. Hybrid function method for solving Fredholm and Volterra integral equations of the second kind

    NASA Astrophysics Data System (ADS)

    Hsiao, Chun-Hui

    2009-08-01

    Numerical solutions of Fredholm and Volterra integral equations of the second kind via hybrid functions, are proposed in this paper. Based upon some useful properties of hybrid functions, integration of the cross product, a special product matrix and a related coefficient matrix with optimal order, are applied to solve these integral equations. The main characteristic of this technique is to convert an integral equation into an algebraic; hence, the solution procedures are either reduced or simplified accordingly. The advantages of hybrid functions are that the values of n and m are adjustable as well as being able to yield more accurate numerical solutions than the piecewise constant orthogonal function, for the solutions of integral equations. We propose that the available optimal values of n and m can minimize the relative errors of the numerical solutions. The high accuracy and the wide applicability of the hybrid function approach will be demonstrated with numerical examples. The hybrid function method is superior to other piecewise constant orthogonal functions [W.F. Blyth, R.L. May, P. Widyaningsih, Volterra integral equations solved in Fredholm form using Walsh functions, Anziam J. 45 (E) (2004) C269-C282; M.H. Reihani, Z. Abadi, Rationalized Haar functions method for solving Fredholm and Volterra integral equations, J. Comp. Appl. Math. 200 (2007) 12-20] for these problems.

  18. Optimization strategy integrity for watershed agricultural non-point source pollution control based on Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Gong, Y.; Yu, Y. J.; Zhang, W. Y.

    2016-08-01

    This study has established a set of methodological systems by simulating loads and analyzing optimization strategy integrity for the optimization of watershed non-point source pollution control. First, the source of watershed agricultural non-point source pollution is divided into four aspects, including agricultural land, natural land, livestock breeding, and rural residential land. Secondly, different pollution control measures at the source, midway and ending stages are chosen. Thirdly, the optimization effect of pollution load control in three stages are simulated, based on the Monte Carlo simulation. The method described above is applied to the Ashi River watershed in Heilongjiang Province of China. Case study results indicate that the combined three types of control measures can be implemented only if the government promotes the optimized plan and gradually improves implementation efficiency. This method for the optimization strategy integrity for watershed non-point source pollution control has significant reference value.

  19. A hybrid approach to device integration on a genetic analysis platform

    NASA Astrophysics Data System (ADS)

    Brennan, Des; Jary, Dorothee; Kurg, Ants; Berik, Evgeny; Justice, John; Aherne, Margaret; Macek, Milan; Galvin, Paul

    2012-10-01

    Point-of-care (POC) systems require significant component integration to implement biochemical protocols associated with molecular diagnostic assays. Hybrid platforms where discrete components are combined in a single platform are a suitable approach to integration, where combining multiple device fabrication steps on a single substrate is not possible due to incompatible or costly fabrication steps. We integrate three devices each with a specific system functionality: (i) a silicon electro-wetting-on-dielectric (EWOD) device to move and mix sample and reagent droplets in an oil phase, (ii) a polymer microfluidic chip containing channels and reservoirs and (iii) an aqueous phase glass microarray for fluorescence microarray hybridization detection. The EWOD device offers the possibility of fully integrating on-chip sample preparation using nanolitre sample and reagent volumes. A key challenge is sample transfer from the oil phase EWOD device to the aqueous phase microarray for hybridization detection. The EWOD device, waveguide performance and functionality are maintained during the integration process. An on-chip biochemical protocol for arrayed primer extension (APEX) was implemented for single nucleotide polymorphism (SNiP) analysis. The prepared sample is aspirated from the EWOD oil phase to the aqueous phase microarray for hybridization. A bench-top instrumentation system was also developed around the integrated platform to drive the EWOD electrodes, implement APEX sample heating and image the microarray after hybridization.

  20. The Integration of Psychomotor Skills in a Hybrid-PBL Dental Curriculum: The Clinical Clerkships.

    ERIC Educational Resources Information Center

    Walton, Joanne N.; MacNeil, M. A. J.; Harrison, Rosamund L.; Clark, D. Christopher

    1998-01-01

    Describes the restructuring of clinical clerkships at the University of British Columbia (Canada) dental school as part of a new, hybrid, problem-based learning (PBL) curriculum, focusing on strategies for integrating development of psychomotor skills. Methods of achieving both horizontal and vertical integration of competencies through grouping…

  1. Hybrid Molecular Dynamics-Monte Carlo Simulations for the properties of a dense and dilute hard-sphere gas in a microchannel

    NASA Astrophysics Data System (ADS)

    Nedea, S. V.; Frijns, A. J. H.; van Steenhoven, A. A.; Markvoort, A. J.; Hilbers, P. A. J.

    2005-05-01

    We present a hybrid method to study the properties of hard-sphere gas molecules confined between two hard walls of a microchannel. The coupling between Molecular Dynamics(MD) and Monte Carlo(MC) simulations is introduced in order to combine the advantages of the MD and MC simulations, by performing MD near the boundaries for the accuracy of the interactions with the wall, and MC in the bulk because of the low computational cost. The effect of different gas densities, starting from a rarefied gas (reduced density η=πna3/6=0.001, where n=number density, a=molecular diameter) to a dense hard-sphere gas (η=0.25), is investigated. We characterize the influence of different η's and size of molecules on the equilibrium properties of the gas in a microchannel. The effect of the particle size on the simulation results, which is very small in case of a dilute gas, is increasing with η. Comparisons between MD, MC and hybrid MD-MC simulation results are done, and comparisons between MD, MC, and hybrid MD-MC computational costs are outlined.

  2. Streamline Integration Using MPI-Hybrid Parallelism on a Large Multicore Architecture

    SciTech Connect

    Garth, Christoph

    2011-01-01

    Streamline computation in a very large vector field data set represents a significant challenge due to the nonlocal and data-dependent nature of streamline integration. In this paper, we conduct a study of the performance characteristics of hybrid parallel programming and execution as applied to streamline integration on a large, multicore platform. With multicore processors now prevalent in clusters and supercomputers, there is a need to understand the impact of these hybrid systems in order to make the best implementation choice. We use two MPI-based distribution approaches based on established parallelization paradigms, parallelize over seeds and parallelize over blocks, and present a novel MPI-hybrid algorithm for each approach to compute streamlines. Our findings indicate that the work sharing between cores in the proposed MPI-hybrid parallel implementation results in much improved performance and consumes less communication and I/O bandwidth than a traditional, nonhybrid distributed implementation.

  3. Metal-dielectric hybrid surfaces as integrated optoelectronic interfaces

    DOEpatents

    Narasimhan, Vijay K.; Hymel, Thomas M.; Lai, Ruby A.; Cui, Yi

    2017-01-03

    An optoelectronic device has a hybrid metal-dielectric optoelectronic interface including an array of nanoscale dielectric resonant elements (e.g., nanopillars), and a metal film disposed between the dielectric resonant elements and below a top surface of the resonant elements such that the dielectric resonant elements protrude through the metal film. The device may also include an anti-reflection coating. The device may further include a metal film layer on each of the dielectric resonant elements.

  4. Combination of the pair density approximation and the Takahashi–Imada approximation for path integral Monte Carlo simulations

    SciTech Connect

    Zillich, Robert E.

    2015-11-15

    We construct an accurate imaginary time propagator for path integral Monte Carlo simulations for heterogeneous systems consisting of a mixture of atoms and molecules. We combine the pair density approximation, which is highly accurate but feasible only for the isotropic interactions between atoms, with the Takahashi–Imada approximation for general interactions. We present finite temperature simulations results for energy and structure of molecules–helium clusters X{sup 4}He{sub 20} (X=HCCH and LiH) which show a marked improvement over the Trotter approximation which has a 2nd-order time step bias. We show that the 4th-order corrections of the Takahashi–Imada approximation can also be applied perturbatively to a 2nd-order simulation.

  5. Direct orientation sampling of diatomic molecules for path integral Monte Carlo calculation of fully quantum virial coefficients

    NASA Astrophysics Data System (ADS)

    Subramanian, Ramachandran; Schultz, Andrew J.; Kofke, David A.

    2017-03-01

    We develop an orientation sampling algorithm for rigid diatomic molecules, which allows direct generation of rings of images used for path-integral calculation of nuclear quantum effects. The algorithm treats the diatomic molecule as two independent atoms as opposed to one (quantum) rigid rotor. Configurations are generated according to a solvable approximate distribution that is corrected via the acceptance decision of the Monte Carlo trial. Unlike alternative methods that treat the systems as a quantum rotor, this atom-based approach is better suited for generalization to multi-atomic (more than two atoms) and flexible molecules. We have applied this algorithm in combination with some of the latest ab initio potentials of rigid H2 to compute fully quantum second virial coefficients, for which we observe excellent agreement with both experimental and simulation data from the literature.

  6. Ultra-efficient 10 Gb/s hybrid integrated silicon photonic transmitter and receiver.

    PubMed

    Zheng, Xuezhe; Patil, Dinesh; Lexau, Jon; Liu, Frankie; Li, Guoliang; Thacker, Hiren; Luo, Ying; Shubin, Ivan; Li, Jieda; Yao, Jin; Dong, Po; Feng, Dazeng; Asghari, Mehdi; Pinguet, Thierry; Mekis, Attila; Amberg, Philip; Dayringer, Michael; Gainsley, Jon; Moghadam, Hesam Fathi; Alon, Elad; Raj, Kannan; Ho, Ron; Cunningham, John E; Krishnamoorthy, Ashok V

    2011-03-14

    Using low parasitic microsolder bumping, we hybrid integrated efficient photonic devices from different platforms with advanced 40 nm CMOS VLSI circuits to build ultra-low power silicon photonic transmitters and receivers for potential applications in high performance inter/intra-chip interconnects. We used a depletion racetrack ring modulator with improved electro-optic efficiency to allow stepper optical photo lithography for reduced fabrication complexity. Integrated with a low power cascode 2 V CMOS driver, the hybrid silicon photonic transmitter achieved better than 7 dB extinction ratio for 10 Gbps operation with a record low power consumption of 1.35 mW. A received power penalty of about 1 dB was measured for a BER of 10(-12) compared to an off-the-shelf lightwave LiNOb3 transmitter, which comes mostly from the non-perfect extinction ratio. Similarly, a Ge waveguide detector fabricated using 130 nm SOI CMOS process was integrated with low power VLSI circuits using hybrid bonding. The all CMOS hybrid silicon photonic receiver achieved sensitivity of -17 dBm for a BER of 10(-12) at 10 Gbps, consuming an ultra-low power of 3.95 mW (or 395 fJ/bit in energy efficiency). The scalable hybrid integration enables continued photonic device improvements by leveraging advanced CMOS technologies with maximum flexibility, which is critical for developing ultra-low power high performance photonic interconnects for future computing systems.

  7. Hybrid-integrated coherent receiver using silica-based planar lightwave circuit technology

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Hoi; Choe, Joong-Seon; Choi, Kwang-Seong; Youn, Chun-Ju; Kim, Duk-Jun; Jang, Sun-Hyok; Kwon, Yong-Hwan; Nam, Eun-Soo

    2011-12-01

    A hybrid-integrated coherent receiver module has been achieved using flip-chip bonding technology, consisting of a silica-based 90°-hybrid planar lightwave circuit (PLC) platform, a spot-size converter integrated waveguide photodiode (SSC-WG-PD), and a dual-channel transimpedance amplifier (TIA). The receiver module shows error-free operation up to 40Gb/s and OSNR sensitivity of 11.5 dB for BER = 10-3 at 25 Gb/s.

  8. ITS Version 6 : the integrated TIGER series of coupled electron/photon Monte Carlo transport codes.

    SciTech Connect

    Franke, Brian Claude; Kensek, Ronald Patrick; Laub, Thomas William

    2008-04-01

    ITS is a powerful and user-friendly software package permitting state-of-the-art Monte Carlo solution of lineartime-independent coupled electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields of arbitrary spatial dependence. Our goal has been to simultaneously maximize operational simplicity and physical accuracy. Through a set of preprocessor directives, the user selects one of the many ITS codes. The ease with which the makefile system is applied combines with an input scheme based on order-independent descriptive keywords that makes maximum use of defaults and internal error checking to provide experimentalists and theorists alike with a method for the routine but rigorous solution of sophisticated radiation transport problems. Physical rigor is provided by employing accurate cross sections, sampling distributions, and physical models for describing the production and transport of the electron/photon cascade from 1.0 GeV down to 1.0 keV. The availability of source code permits the more sophisticated user to tailor the codes to specific applications and to extend the capabilities of the codes to more complex applications. Version 6, the latest version of ITS, contains (1) improvements to the ITS 5.0 codes, and (2) conversion to Fortran 90. The general user friendliness of the software has been enhanced through memory allocation to reduce the need for users to modify and recompile the code.

  9. Monte Carlo ray-tracing simulations of luminescent solar concentrators for building integrated photovoltaics

    NASA Astrophysics Data System (ADS)

    Leow, Shin Woei; Corrado, Carley; Osborn, Melissa; Carter, Sue A.

    2013-09-01

    Luminescent solar concentrators (LSCs) have the ability to receive light from a wide range of angles, concentrating the captured light onto small photo active areas. This enables greater incorporation of LSCs into building designs as windows, skylights and wall claddings in addition to rooftop installations of current solar panels. Using relatively cheap luminescent dyes and acrylic waveguides to effect light concentration onto lesser photovoltaic (PV) cells, there is potential for this technology to approach grid price parity. We employ a panel design in which the front facing PV cells collect both direct and concentrated light ensuring a gain factor greater than one. This also allows for flexibility in determining the placement and percentage coverage of PV cells during the design process to balance reabsorption losses against the power output and level of light concentration desired. To aid in design optimization, a Monte-Carlo ray tracing program was developed to study the transport of photons and loss mechanisms in LSC panels. The program imports measured absorption/emission spectra and transmission coefficients as simulation parameters with interactions of photons in the panel determined by comparing calculated probabilities with random number generators. LSC panels with multiple dyes or layers can also be simulated. Analysis of the results reveals optimal panel dimensions and PV cell layouts for maximum power output for a given dye concentration, absorbtion/emission spectrum and quantum efficiency.

  10. A hybrid digital{endash}analog long pulse integrator

    SciTech Connect

    Strait, E.J.; Broesch, J.D.; Snider, R.T.; Walker, M.L.

    1997-01-01

    A digital{endash}analog integrator has been developed for use with inductive magnetic sensors in long-pulse tokamaks. Continuous compensation of input offsets is accomplished by alternating analog-to-digital convertor samples from the sensor and a dummy load, while a RC network provides passive integration between samples. Typically a sampling rate of 10 kHz is used. In operational tests on the DIII-D tokamak, digital and analog integration of tokamak data show good agreement. The output drift error during a 1200 s integration interval corresponds to a few percent of the anticipated signal for poloidal field probes in International Thermonuclear Experimental Reactor, and bench tests suggest that the error can be reduced further. {copyright} {ital 1997 American Institute of Physics.}

  11. A hybrid digital-analog long pulse integrator

    NASA Astrophysics Data System (ADS)

    Strait, E. J.; Broesch, J. D.; Snider, R. T.; Walker, M. L.

    1997-01-01

    A digital-analog integrator has been developed for use with inductive magnetic sensors in long-pulse tokamaks. Continuous compensation of input offsets is accomplished by alternating analog-to-digital convertor samples from the sensor and a dummy load, while a RC network provides passive integration between samples. Typically a sampling rate of 10 kHz is used. In operational tests on the DIII-D tokamak, digital and analog integration of tokamak data show good agreement. The output drift error during a 1200 s integration interval corresponds to a few percent of the anticipated signal for poloidal field probes in International Thermonuclear Experimental Reactor, and bench tests suggest that the error can be reduced further.

  12. Design of integrated hybrid silicon waveguide optical gyroscope.

    PubMed

    Srinivasan, Sudharsanan; Moreira, Renan; Blumenthal, Daniel; Bowers, John E

    2014-10-20

    We propose and analyze a novel highly integrated optical gyroscope using low loss silicon nitride waveguides. By integrating the active optical components on chip, we show the possibility of reaching a detection limit on the order of 19°/hr/√Hz in an area smaller than 10 cm(2). This study examines a number of parameters, including the dependence of sensitivity on sensor area.

  13. A hybrid multiscale Monte Carlo algorithm (HyMSMC) to cope with disparity in time scales and species populations in intracellular networks

    PubMed Central

    Samant, Asawari; Ogunnaike, Babatunde A; Vlachos, Dionisios G

    2007-01-01

    Background The fundamental role that intrinsic stochasticity plays in cellular functions has been shown via numerous computational and experimental studies. In the face of such evidence, it is important that intracellular networks are simulated with stochastic algorithms that can capture molecular fluctuations. However, separation of time scales and disparity in species population, two common features of intracellular networks, make stochastic simulation of such networks computationally prohibitive. While recent work has addressed each of these challenges separately, a generic algorithm that can simultaneously tackle disparity in time scales and population scales in stochastic systems is currently lacking. In this paper, we propose the hybrid, multiscale Monte Carlo (HyMSMC) method that fills in this void. Results The proposed HyMSMC method blends stochastic singular perturbation concepts, to deal with potential stiffness, with a hybrid of exact and coarse-grained stochastic algorithms, to cope with separation in population sizes. In addition, we introduce the computational singular perturbation (CSP) method as a means of systematically partitioning fast and slow networks and computing relaxation times for convergence. We also propose a new criteria of convergence of fast networks to stochastic low-dimensional manifolds, which further accelerates the algorithm. Conclusion We use several prototype and biological examples, including a gene expression model displaying bistability, to demonstrate the efficiency, accuracy and applicability of the HyMSMC method. Bistable models serve as stringent tests for the success of multiscale MC methods and illustrate limitations of some literature methods. PMID:17524148

  14. Hybrid Integrated Label-Free Chemical and Biological Sensors

    PubMed Central

    Mehrabani, Simin; Maker, Ashley J.; Armani, Andrea M.

    2014-01-01

    Label-free sensors based on electrical, mechanical and optical transduction methods have potential applications in numerous areas of society, ranging from healthcare to environmental monitoring. Initial research in the field focused on the development and optimization of various sensor platforms fabricated from a single material system, such as fiber-based optical sensors and silicon nanowire-based electrical sensors. However, more recent research efforts have explored designing sensors fabricated from multiple materials. For example, synthetic materials and/or biomaterials can also be added to the sensor to improve its response toward analytes of interest. By leveraging the properties of the different material systems, these hybrid sensing devices can have significantly improved performance over their single-material counterparts (better sensitivity, specificity, signal to noise, and/or detection limits). This review will briefly discuss some of the methods for creating these multi-material sensor platforms and the advances enabled by this design approach. PMID:24675757

  15. Hybrid integrated label-free chemical and biological sensors.

    PubMed

    Mehrabani, Simin; Maker, Ashley J; Armani, Andrea M

    2014-03-26

    Label-free sensors based on electrical, mechanical and optical transduction methods have potential applications in numerous areas of society, ranging from healthcare to environmental monitoring. Initial research in the field focused on the development and optimization of various sensor platforms fabricated from a single material system, such as fiber-based optical sensors and silicon nanowire-based electrical sensors. However, more recent research efforts have explored designing sensors fabricated from multiple materials. For example, synthetic materials and/or biomaterials can also be added to the sensor to improve its response toward analytes of interest. By leveraging the properties of the different material systems, these hybrid sensing devices can have significantly improved performance over their single-material counterparts (better sensitivity, specificity, signal to noise, and/or detection limits). This review will briefly discuss some of the methods for creating these multi-material sensor platforms and the advances enabled by this design approach.

  16. Hybrid-integrated prism array optoelectronic targeting system

    NASA Astrophysics Data System (ADS)

    Chang, C. C.; Chang, H. C.; Tang, L. C.; Young, W. K.; Wang, J. C.; Huang, K. L.

    2005-11-01

    This investigation proposes a cost-effective, compact, and robust optoelectronic targeting system for measuring ballistic impact velocity and the distribution of projectile motion. The major elements of this system are four photo-gates hybridized by compound one-dimensional prism array and analog/digital electronic components. The number of light sources and photodetectors used in a photo-gate was reduced to one pair of light source and photodetector. The average velocity and location of the projectile are determined according to the measured time intervals ( ˜10 -8 s) passing each pair. The system can accurately measure the velocity of a bullet as it leaves a gun barrel, as well as the velocity at specific points along the trajectory outside the firearm. Additionally, the system uses a widespread low-powered laser pointer as a light source. Compared with other optoelectronic targeting systems that use high-powered lasers, the proposed system is both economical and safe.

  17. Extraction of diffuse correlation spectroscopy flow index by integration of Nth-order linear model with Monte Carlo simulation

    SciTech Connect

    Shang, Yu; Lin, Yu; Yu, Guoqiang; Li, Ting; Chen, Lei; Toborek, Michal

    2014-05-12

    Conventional semi-infinite solution for extracting blood flow index (BFI) from diffuse correlation spectroscopy (DCS) measurements may cause errors in estimation of BFI (αD{sub B}) in tissues with small volume and large curvature. We proposed an algorithm integrating Nth-order linear model of autocorrelation function with the Monte Carlo simulation of photon migrations in tissue for the extraction of αD{sub B}. The volume and geometry of the measured tissue were incorporated in the Monte Carlo simulation, which overcome the semi-infinite restrictions. The algorithm was tested using computer simulations on four tissue models with varied volumes/geometries and applied on an in vivo stroke model of mouse. Computer simulations shows that the high-order (N ≥ 5) linear algorithm was more accurate in extracting αD{sub B} (errors < ±2%) from the noise-free DCS data than the semi-infinite solution (errors: −5.3% to −18.0%) for different tissue models. Although adding random noises to DCS data resulted in αD{sub B} variations, the mean values of errors in extracting αD{sub B} were similar to those reconstructed from the noise-free DCS data. In addition, the errors in extracting the relative changes of αD{sub B} using both linear algorithm and semi-infinite solution were fairly small (errors < ±2.0%) and did not rely on the tissue volume/geometry. The experimental results from the in vivo stroke mice agreed with those in simulations, demonstrating the robustness of the linear algorithm. DCS with the high-order linear algorithm shows the potential for the inter-subject comparison and longitudinal monitoring of absolute BFI in a variety of tissues/organs with different volumes/geometries.

  18. Quantum partition functions of composite particles in a hydrogen-helium plasma via path integral Monte Carlo

    SciTech Connect

    Wendland, D.; Ballenegger, V.; Alastuey, A.

    2014-11-14

    We compute two- and three-body cluster functions that describe contributions of composite entities, like hydrogen atoms, ions H{sup −}, H{sub 2}{sup +}, and helium atoms, and also charge-charge and atom-charge interactions, to the equation of state of a hydrogen-helium mixture at low density. A cluster function has the structure of a truncated virial coefficient and behaves, at low temperatures, like a usual partition function for the composite entity. Our path integral Monte Carlo calculations use importance sampling to sample efficiently the cluster partition functions even at low temperatures where bound state contributions dominate. We also employ a new and efficient adaptive discretization scheme that allows one not only to eliminate Coulomb divergencies in discretized path integrals, but also to direct the computational effort where particles are close and thus strongly interacting. The numerical results for the two-body function agree with the analytically known quantum second virial coefficient. The three-body cluster functions are compared at low temperatures with familiar partition functions for composite entities.

  19. Quantum partition functions of composite particles in a hydrogen-helium plasma via path integral Monte Carlo

    NASA Astrophysics Data System (ADS)

    Wendland, D.; Ballenegger, V.; Alastuey, A.

    2014-11-01

    We compute two- and three-body cluster functions that describe contributions of composite entities, like hydrogen atoms, ions H-, H_2^+, and helium atoms, and also charge-charge and atom-charge interactions, to the equation of state of a hydrogen-helium mixture at low density. A cluster function has the structure of a truncated virial coefficient and behaves, at low temperatures, like a usual partition function for the composite entity. Our path integral Monte Carlo calculations use importance sampling to sample efficiently the cluster partition functions even at low temperatures where bound state contributions dominate. We also employ a new and efficient adaptive discretization scheme that allows one not only to eliminate Coulomb divergencies in discretized path integrals, but also to direct the computational effort where particles are close and thus strongly interacting. The numerical results for the two-body function agree with the analytically known quantum second virial coefficient. The three-body cluster functions are compared at low temperatures with familiar partition functions for composite entities.

  20. Path-integral Monte Carlo simulations for electronic dynamics on molecular chains. I. Sequential hopping and super exchange

    NASA Astrophysics Data System (ADS)

    Mühlbacher, Lothar; Ankerhold, Joachim; Escher, Charlotte

    2004-12-01

    An improved real-time quantum Monte Carlo procedure is presented and applied to describe the electronic transfer dynamics along molecular chains. The model consists of discrete electronic sites coupled to a thermal environment which is integrated out exactly within the path integral formulation. The approach is numerically exact and its results reduce to known analytical findings (Marcus theory, golden rule) in proper limits. Special attention is paid to the role of superexchange and sequential hopping at lower temperatures in symmetric donor-bridge-acceptor systems. In contrast to previous approximate studies, superexchange turns out to play a significant role only for extremely high-lying bridges where the transfer is basically frozen or for extremely low temperatures where for weaker dissipation a description in terms of rate constants is no longer feasible. For bridges with increasing length an algebraic decrease of the yield is found for short as well as for long bridges. The approach can be extended to electronic systems with more complicated topologies including impurities and in presence of external time-dependent forces.

  1. Efficient ethanol recovery from fermentation broths with integrated distillation-vapor permeation hybrid process

    EPA Science Inventory

    The energy demand of distillation-molecular sieve systems for ethanol recovery/dehydration can be significant, particularly for dilute solutions. An alternative hybrid process integrating vapor stripping (like a beer still) with vapor compression and a vapor permeation membrane s...

  2. Integrated nanophotonic frequency shifter on the silicon-organic hybrid (SOH) platform for laser vibrometry

    SciTech Connect

    Lauermann, M.; Weimann, C.; Palmer, R.; Schindler, P. C.; Koeber, S.; Freude, W. Koos, C.; Rembe, C.

    2014-05-27

    We demonstrate a waveguide-based frequency shifter on the silicon photonic platform, enabling frequency shifts up to 10 GHz. The device is realized by silicon-organic hybrid (SOH) integration. Temporal shaping of the drive signal allows the suppression of spurious side-modes by more than 23 dB.

  3. Conceptual Integration of Hybridization by Algerian Students Intending to Teach Physical Sciences

    ERIC Educational Resources Information Center

    Salah, Hazzi; Dumon, Alain

    2011-01-01

    This work aims to assess the difficulties encountered by students of the Ecole Normale Superieure of Kouba (Algeria) intending to teach physical science in the integration of the hybridization of atomic orbitals. It is a concept that they should use in describing the formation of molecular orbitals ([sigma] and [pi]) in organic chemistry and gaps…

  4. Draft of M2 Report on Integration of the Hybrid Hydride Model into INL's MBM Framework for Review

    SciTech Connect

    Tikare, Veena; Weck, Philippe F.; Schultz, Peter A.; Clark, Blythe; Glazoff, Michael; Homer, Eric

    2014-07-01

    This report documents the development, demonstration and validation of a mesoscale, microstructural evolution model for simulation of zirconium hydride {delta}-ZrH{sub 1.5} precipitation in the cladding of used nuclear fuels that may occur during long-term dry storage. While the Zr-based claddings are manufactured free of any hydrogen, they absorb hydrogen during service, in the reactor by a process commonly termed ‘hydrogen pick-up’. The precipitation and growth of zirconium hydrides during dry storage is one of the most likely fuel rod integrity failure mechanisms either by embrittlement or delayed hydride cracking of the cladding. While the phenomenon is well documented and identified as a potential key failure mechanism during long-term dry storage (NUREG/CR-7116), the ability to actually predict the formation of hydrides is poor. The model being documented in this work is a computational capability for the prediction of hydride formation in different claddings of used nuclear fuels. This work supports the Used Fuel Disposition Research and Development Campaign in assessing the structural engineering performance of the cladding during and after long-term dry storage. This document demonstrates a basic hydride precipitation model that is built on a recently developed hybrid Potts-phase field model that combines elements of Potts-Monte Carlo and the phase-field models. The model capabilities are demonstrated along with the incorporation of the starting microstructure, thermodynamics of the Zr-H system and the hydride formation mechanism.

  5. Chemically Integrated Inorganic-Graphene Two-Dimensional Hybrid Materials for Flexible Energy Storage Devices.

    PubMed

    Peng, Lele; Zhu, Yue; Li, Hongsen; Yu, Guihua

    2016-12-01

    State-of-the-art energy storage devices are capable of delivering reasonably high energy density (lithium ion batteries) or high power density (supercapacitors). There is an increasing need for these power sources with not only superior electrochemical performance, but also exceptional flexibility. Graphene has come on to the scene and advancements are being made in integration of various electrochemically active compounds onto graphene or its derivatives so as to utilize their flexibility. Many innovative synthesis techniques have led to novel graphene-based hybrid two-dimensional nanostructures. Here, the chemically integrated inorganic-graphene hybrid two-dimensional materials and their applications for energy storage devices are examined. First, the synthesis and characterization of different kinds of inorganic-graphene hybrid nanostructures are summarized, and then the most relevant applications of inorganic-graphene hybrid materials in flexible energy storage devices are reviewed. The general design rules of using graphene-based hybrid 2D materials for energy storage devices and their current limitations and future potential to advance energy storage technologies are also discussed.

  6. Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-performance integrated energy storage

    PubMed Central

    El-Kady, Maher F.; Ihns, Melanie; Li, Mengping; Hwang, Jee Youn; Mousavi, Mir F.; Chaney, Lindsay; Lech, Andrew T.; Kaner, Richard B.

    2015-01-01

    Supercapacitors now play an important role in the progress of hybrid and electric vehicles, consumer electronics, and military and space applications. There is a growing demand in developing hybrid supercapacitor systems to overcome the energy density limitations of the current generation of carbon-based supercapacitors. Here, we demonstrate 3D high-performance hybrid supercapacitors and microsupercapacitors based on graphene and MnO2 by rationally designing the electrode microstructure and combining active materials with electrolytes that operate at high voltages. This results in hybrid electrodes with ultrahigh volumetric capacitance of over 1,100 F/cm3. This corresponds to a specific capacitance of the constituent MnO2 of 1,145 F/g, which is close to the theoretical value of 1,380 F/g. The energy density of the full device varies between 22 and 42 Wh/l depending on the device configuration, which is superior to those of commercially available double-layer supercapacitors, pseudocapacitors, lithium-ion capacitors, and hybrid supercapacitors tested under the same conditions and is comparable to that of lead acid batteries. These hybrid supercapacitors use aqueous electrolytes and are assembled in air without the need for expensive “dry rooms” required for building today’s supercapacitors. Furthermore, we demonstrate a simple technique for the fabrication of supercapacitor arrays for high-voltage applications. These arrays can be integrated with solar cells for efficient energy harvesting and storage systems. PMID:25831542

  7. A Hybrid Monte Carlo Method Based Artificial Neural Networks Approach for Rock Boundaries Identification: A Case Study from the KTB Bore Hole

    NASA Astrophysics Data System (ADS)

    Maiti, Saumen; Tiwari, R. K.

    2009-11-01

    Identification of rock boundaries and structural features from well log response is a fundamental problem in geological field studies. However, in a complex geologic situation, such as in the presence of crystalline rocks where metamorphisms lead to facies changes, it is not easy to discern accurate information from well log data using conventional artificial neural network (ANN) methods. Moreover inferences drawn by such methods are also found to be ambiguous because of the strong overlapping of well log signals, which are generally tainted with deceptive noise. Here, we have developed an alternative ANN approach based on Bayesian statistics using the concept of Hybrid Monte Carlo (HMC)/Markov Chain Monte Carlo (MCMC) inversion scheme for modeling the German Continental Deep Drilling Program (KTB) well log data. MCMC algorithm draws an independent and identically distributed (i.i.d) sample by Markov Chain simulation technique from posterior probability distribution using the principle of statistical mechanics in Hamiltonian dynamics. In this algorithm, each trajectory is updated by approximating the Hamiltonian differential equations through a leapfrog discrimination scheme. We examined the stability and efficiency of the HMC-based approach on “noisy” data assorted with different levels of colored noise. We also perform uncertainty analysis by estimating standard deviation (STD) error map of a posteriori covariance matrix at the network output of three types of lithofacies over the entire length of the litho section of KTB. Our analyses demonstrate that the HMC-based approach renders robust means for classification of complex lithofacies successions from the KTB borehole noisy signals, and hence may provide a useful guide for understanding the crustal inhomogeneity and structural discontinuity in many other tectonically critical and complex regions.

  8. Towards an expansive hybrid psychology: integrating theories of the mediated mind.

    PubMed

    Brinkmann, Svend

    2011-03-01

    This article develops an integrative theory of the mind by examining how the mind, understood as a set of skills and dispositions, depends upon four sources of mediators. Harré's hybrid psychology is taken as a meta-theoretical starting point, but is expanded significantly by including the four sources of mediators that are the brain, the body, social practices and technological artefacts. It is argued that the mind is normative in the sense that mental processes do not simply happen, but can be done more or less well, and thus are subject to normative appraisal. The expanded hybrid psychology is meant to assist in integrating theoretical perspectives and research interests that are often thought of as incompatible, among them neuroscience, phenomenology of the body, social practice theory and technology studies. A main point of the article is that these perspectives each are necessary for an integrative approach to the human mind.

  9. Outcome of the First wwPDB Hybrid/Integrative Methods Task Force Workshop.

    PubMed

    Sali, Andrej; Berman, Helen M; Schwede, Torsten; Trewhella, Jill; Kleywegt, Gerard; Burley, Stephen K; Markley, John; Nakamura, Haruki; Adams, Paul; Bonvin, Alexandre M J J; Chiu, Wah; Peraro, Matteo Dal; Di Maio, Frank; Ferrin, Thomas E; Grünewald, Kay; Gutmanas, Aleksandras; Henderson, Richard; Hummer, Gerhard; Iwasaki, Kenji; Johnson, Graham; Lawson, Catherine L; Meiler, Jens; Marti-Renom, Marc A; Montelione, Gaetano T; Nilges, Michael; Nussinov, Ruth; Patwardhan, Ardan; Rappsilber, Juri; Read, Randy J; Saibil, Helen; Schröder, Gunnar F; Schwieters, Charles D; Seidel, Claus A M; Svergun, Dmitri; Topf, Maya; Ulrich, Eldon L; Velankar, Sameer; Westbrook, John D

    2015-07-07

    Structures of biomolecular systems are increasingly computed by integrative modeling that relies on varied types of experimental data and theoretical information. We describe here the proceedings and conclusions from the first wwPDB Hybrid/Integrative Methods Task Force Workshop held at the European Bioinformatics Institute in Hinxton, UK, on October 6 and 7, 2014. At the workshop, experts in various experimental fields of structural biology, experts in integrative modeling and visualization, and experts in data archiving addressed a series of questions central to the future of structural biology. How should integrative models be represented? How should the data and integrative models be validated? What data should be archived? How should the data and models be archived? What information should accompany the publication of integrative models?

  10. Heterogeneously integrated 2.0 μm CW hybrid silicon lasers at room temperature.

    PubMed

    Spott, Alexander; Davenport, Michael; Peters, Jon; Bovington, Jock; Heck, Martijn J R; Stanton, Eric J; Vurgaftman, Igor; Meyer, Jerry; Bowers, John

    2015-04-01

    Here we experimentally demonstrate room temperature, continuous-wave (CW), 2.0 μm wavelength lasers heterogeneously integrated on silicon. Molecular wafer bonding of InP to Si is employed. These hybrid silicon lasers operate CW up to 35°C and emit up to 4.2 mW of single-facet CW power at room temperature. III-V tapers transfer light from a hybrid III-V/silicon optical mode into a Si waveguide mode. These lasers enable the realization of a number of sensing and detection applications in compact silicon photonic systems.

  11. Monte Carlo simulation of simultaneous radiation detection in the hybrid tomography system ClearPET-XPAD3/CT

    NASA Astrophysics Data System (ADS)

    Dávila, H. Olaya; Sevilla, A. C.; Castro, H. F.; Martínez, S. A.

    2016-07-01

    Using the Geant4 based simulation framework SciFW1, a detailed simulation was performed for a detector array in the hybrid tomography prototype for small animals called ClearPET / XPAD, which was built in the Centre de Physique des Particules de Marseille. The detector system consists of an array of phoswich scintillation detectors: LSO (Lutetium Oxy-ortosilicate doped with cerium Lu2SiO5:Ce) and LuYAP (Lutetium Ortoaluminate of Yttrium doped with cerium Lu0.7Y0.3AlO3:Ce) for Positron Emission Tomography (PET) and hybrid pixel detector XPAD for Computed Tomography (CT). Simultaneous acquisition of deposited energy and the corresponding time - position for each recorded event were analyzed, independently, for both detectors. interference between detection modules for PET and CT. Information about amount of radiation reaching each phoswich crystal and XPAD detector using a phantom in order to study the effectiveness by radiation attenuation and influence the positioning of the radioactive source 22Na was obtained. The simulation proposed will improve distribution of detectors rings and interference values will be taken into account in the new versions of detectors.

  12. Characterization and Monte Carlo simulation of single ion Geiger mode avalanche diodes integrated with a quantum dot nanostructure

    NASA Astrophysics Data System (ADS)

    Sharma, Peter; Abraham, J. B. S.; Ten Eyck, G.; Childs, K. D.; Bielejec, E.; Carroll, M. S.

    Detection of single ion implantation within a nanostructure is necessary for the high yield fabrication of implanted donor-based quantum computing architectures. Single ion Geiger mode avalanche (SIGMA) diodes with a laterally integrated nanostructure capable of forming a quantum dot were fabricated and characterized using photon pulses. The detection efficiency of this design was measured as a function of wavelength, lateral position, and for varying delay times between the photon pulse and the overbias detection window. Monte Carlo simulations based only on the random diffusion of photo-generated carriers and the geometrical placement of the avalanche region agrees qualitatively with device characterization. Based on these results, SIGMA detection efficiency appears to be determined solely by the diffusion of photo-generated electron-hole pairs into a buried avalanche region. Device performance is then highly dependent on the uniformity of the underlying silicon substrate and the proximity of photo-generated carriers to the silicon-silicon dioxide interface, which are the most important limiting factors for reaching the single ion detection limit with SIGMA detectors. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  13. Monte Carlo Simulations of Luminescent Solar Concentrators with Front-Facing Photovoltaic Cells for Building Integrated Photovoltaics

    NASA Astrophysics Data System (ADS)

    Leow, Shin; Corrado, Carley; Osborn, Melissa; Carter, Sue

    2013-03-01

    Luminescent solar concentrators (LSCs) have the ability to receive light from a wide range of angles and concentrate the captured light on to small photo active areas. This enables LSCs to be integrated more extensively into buildings as windows and wall claddings on top of roof installations. LSCs with front facing PV cells collect both direct and concentrated light ensuring a gain factor greater than one. It also allows for flexibility in determining the placement and percentage coverage of PV cells when designing panels to balance reabsorption losses, power output and the level of concentration desired. A Monte-Carlo ray tracing program was developed to study the transport of photons and loss mechanisms in LSC panels and aid in design optimization. The program imports measured absorption/emission spectra and transmission coefficients as simulation parameters. Interactions of photons with the LSC panel are determined by comparing calculated probabilities with random number generators. Simulation results reveal optimal panel dimensions and PV cell layouts to achieve maximum power output.

  14. Path Integral Monte Carlo Study Confirms a Highly Ordered Snowball in 4He Nanodroplets Doped with an Ar+ Ion

    NASA Astrophysics Data System (ADS)

    Tramonto, F.; Salvestrini, P.; Nava, M.; Galli, D. E.

    2015-07-01

    By means of the Path Integral Monte Carlo method, we have performed a detailed microscopic study of 4He nanodroplets doped with an argon ion, Ar, at K. We have computed density profiles, energies, dissociation energies, and characterized the local order around the ion for nanodroplets with a number of 4He atoms ranging from 10 to 64 and also 128. We have found the formation of a stable solid structure around the ion, a "snowball", consisting of three concentric shells in which the 4He atoms are placed at the vertices of platonic solids: the first inner shell is an icosahedron (12 atoms); the second one is a dodecahedron with 20 atoms placed on the faces of the icosahedron of the first shell; the third shell is again an icosahedron composed of 12 atoms placed on the faces of the dodecahedron of the second shell. The "magic numbers" implied by this structure, 12, 32, and 44 helium atoms, have been observed in a recent experimental study (Bartl et al., J Phys Chem A 118:8050, 2014) of these complexes; the dissociation energy curve computed in the present work shows jumps in correspondence with those found in the nanodroplets abundance distribution measured in that experiment, strengthening the agreement between theory and experiment. The same structures were predicted in Galli et al. (J Phys Chem A 115:7300, 2011) in a study regarding Na+@4He when ; a comparison between Ar+@4He and Na+@4He complexes is also presented.

  15. Finite temperature path integral Monte Carlo simulations of structural and dynamical properties of ArN-CO2 clusters

    NASA Astrophysics Data System (ADS)

    Wang, Lecheng; Xie, Daiqian

    2012-08-01

    We report finite temperature quantum mechanical simulations of structural and dynamical properties of ArN-CO2 clusters using a path integral Monte Carlo algorithm. The simulations are based on a newly developed analytical Ar-CO2 interaction potential obtained by fitting ab initio results to an anisotropic two-dimensional Morse/Long-range function. The calculated distributions of argon atoms around the CO2 molecule in ArN-CO2 clusters with different sizes are consistent to the previous studies of the configurations of the clusters. A first-order perturbation theory is used to quantitatively predict the CO2 vibrational frequency shift in different clusters. The first-solvation shell is completed at N = 17. Interestingly, our simulations for larger ArN-CO2 clusters showed several different structures of the argon shell around the doped CO2 molecule. The observed two distinct peaks (2338.8 and 2344.5 cm-1) in the υ3 band of CO2 may be due to the different arrangements of argon atoms around the dopant molecule.

  16. Path integral Monte Carlo simulation of global and local superfluidity in liquid 4He reservoirs separated by nanoscale apertures

    NASA Astrophysics Data System (ADS)

    Volkoff, Tyler; Kwon, Yongkyung; Whaley, K. Birgitta

    2016-10-01

    We present a path integral Monte Carlo study of the global superfluid fraction and local superfluid density in cylindrically symmetric reservoirs of liquid 4He separated by nanoaperture arrays. The superfluid response to both translations along the axis of symmetry (longitudinal response) and rotations about the cylinder axis (transverse response) are computed, together with radial and axial density distributions that reveal the microscopic inhomogeneity arising from the combined effects of the confining external potential and the 4He-4He interatomic potentials. We make a microscopic determination of the length scale of decay of superfluidity at the radial boundaries of the system by analyzing the local superfluid density distribution to extract a displacement length that quantifies the superfluid mass displacement away from the boundary. We find that the longitudinal superfluid response is reduced in reservoirs separated by a septum containing sufficiently small apertures compared to a cylinder with no intervening aperture array, for all temperatures below Tλ. For a single aperture in the septum, a significant drop in the longitudinal superfluid response is seen when the aperture diameter is made smaller than twice the empirical temperature-dependent 4He healing length, consistent with the formation of a weak link between the reservoirs. Increasing the diameter of a single aperture or the number of apertures in the array results in an increase of the superfluid density toward the expected bulk value.

  17. Integrated Chemical Systems: The Simultaneous Formation of Hybrid Nanocomposites of Iron Oxide and Organo Silsesquioxanes

    SciTech Connect

    Zhao, L; Clapsaddle, B; Jr., J S; Schaefer, D; Shea, K

    2004-10-15

    A sol-gel approach for the synthesis of hybrid nanocomposites of iron oxide and bridged polysilsesquioxanes has been established. The procedures allow for the simultaneous formation of iron oxide and polysilsesquioxane networks in monolithic xerogels and aerogels. These hybrid nanocomposites are synthesized from FeCl{sub 3} {center_dot} 6H{sub 2}O and functionalized silsesquioxane monomers in a one-pot reaction using epoxides as a gelation agent. The porosity and microstructure of the materials has been determined by nitrogen porosimetry, electron microscopy and ultra small angle X-ray scattering (USAXS). The hybrid nanocomposites exhibit a uniform dispersion of both components with no evidence for phase separation at length scales > 5 nm. At this limit of resolution it is not possible to distinguish between two independent interpenetrating networks integrated at molecular length scales or a random copolymer or mixtures of both.

  18. Comparative Monte Carlo study on the performance of integration- and list-mode detector configurations for carbon ion computed tomography

    NASA Astrophysics Data System (ADS)

    Meyer, Sebastian; Gianoli, Chiara; Magallanes, Lorena; Kopp, Benedikt; Tessonnier, Thomas; Landry, Guillaume; Dedes, George; Voss, Bernd; Parodi, Katia

    2017-02-01

    Ion beam therapy offers the possibility of a highly conformal tumor-dose distribution; however, this technique is extremely sensitive to inaccuracies in the treatment procedures. Ambiguities in the conversion of Hounsfield units of the treatment planning x-ray CT to relative stopping power (RSP) can cause uncertainties in the estimated ion range of up to several millimeters. Ion CT (iCT) represents a favorable solution allowing to directly assess the RSP. In this simulation study we investigate the performance of the integration-mode configuration for carbon iCT, in comparison with a single-particle approach under the same set-up. The experimental detector consists of a stack of 61 air-filled parallel-plate ionization chambers, interleaved with 3 mm thick PMMA absorbers. By means of Monte Carlo simulations, this design was applied to acquire iCTs of phantoms of tissue-equivalent materials. An optimization of the acquisition parameters was performed to reduce the dose exposure, and the implications of a reduced absorber thickness were assessed. In order to overcome limitations of integration-mode detection in the presence of lateral tissue heterogeneities a dedicated post-processing method using a linear decomposition of the detector signal was developed and its performance was compared to the list-mode acquisition. For the current set-up, the phantom dose could be reduced to below 30 mGy with only minor image quality degradation. By using the decomposition method a correct identification of the components and a RSP accuracy improvement of around 2.0% was obtained. The comparison of integration- and list-mode indicated a slightly better image quality of the latter, with an average median RSP error below 1.8% and 1.0%, respectively. With a decreased absorber thickness a reduced RSP error was observed. Overall, these findings support the potential of iCT for low dose RSP estimation, showing that integration-mode detectors with dedicated post-processing strategies

  19. Comparative Monte Carlo study on the performance of integration- and list-mode detector configurations for carbon ion computed tomography.

    PubMed

    Meyer, Sebastian; Gianoli, Chiara; Magallanes, Lorena; Kopp, Benedikt; Tessonnier, Thomas; Landry, Guillaume; Dedes, George; Voss, Bernd; Parodi, Katia

    2017-02-07

    Ion beam therapy offers the possibility of a highly conformal tumor-dose distribution; however, this technique is extremely sensitive to inaccuracies in the treatment procedures. Ambiguities in the conversion of Hounsfield units of the treatment planning x-ray CT to relative stopping power (RSP) can cause uncertainties in the estimated ion range of up to several millimeters. Ion CT (iCT) represents a favorable solution allowing to directly assess the RSP. In this simulation study we investigate the performance of the integration-mode configuration for carbon iCT, in comparison with a single-particle approach under the same set-up. The experimental detector consists of a stack of 61 air-filled parallel-plate ionization chambers, interleaved with 3 mm thick PMMA absorbers. By means of Monte Carlo simulations, this design was applied to acquire iCTs of phantoms of tissue-equivalent materials. An optimization of the acquisition parameters was performed to reduce the dose exposure, and the implications of a reduced absorber thickness were assessed. In order to overcome limitations of integration-mode detection in the presence of lateral tissue heterogeneities a dedicated post-processing method using a linear decomposition of the detector signal was developed and its performance was compared to the list-mode acquisition. For the current set-up, the phantom dose could be reduced to below 30 mGy with only minor image quality degradation. By using the decomposition method a correct identification of the components and a RSP accuracy improvement of around 2.0% was obtained. The comparison of integration- and list-mode indicated a slightly better image quality of the latter, with an average median RSP error below 1.8% and 1.0%, respectively. With a decreased absorber thickness a reduced RSP error was observed. Overall, these findings support the potential of iCT for low dose RSP estimation, showing that integration-mode detectors with dedicated post-processing strategies

  20. Color path-integral Monte-Carlo simulations of quark-gluon plasma: Thermodynamic and transport properties

    NASA Astrophysics Data System (ADS)

    Filinov, V. S.; Ivanov, Yu. B.; Fortov, V. E.; Bonitz, M.; Levashov, P. R.

    2013-03-01

    Based on the quasiparticle model of the quark-gluon plasma (QGP), a color quantum path-integral Monte-Carlo (PIMC) method for the calculation of thermodynamic properties and—closely related to the latter—a Wigner dynamics method for calculation of transport properties of the QGP are formulated. The QGP partition function is presented in the form of a color path integral with a new relativistic measure instead of the Gaussian one traditionally used in the Feynman-Wiener path integral. A procedure of sampling color variables according to the SU(3) group Haar measure is developed for integration over the color variable. It is shown that the PIMC method is able to reproduce the lattice QCD equation of state at zero baryon chemical potential at realistic model parameters (i.e., quasiparticle masses and coupling constant) and also yields valuable insight into the internal structure of the QGP. Our results indicate that the QGP reveals quantum liquidlike(rather than gaslike) properties up to the highest considered temperature of 525 MeV. The pair distribution functions clearly reflect the existence of gluon-gluon bound states, i.e., glueballs, at temperatures just above the phase transition, while mesonlike qq¯ bound states are not found. The calculated self-diffusion coefficient agrees well with some estimates of the heavy-quark diffusion constant available from recent lattice data and also with an analysis of heavy-quark quenching in experiments on ultrarelativistic heavy-ion collisions, however, appreciably exceeds other estimates. The lattice and heavy-quark-quenching results on the heavy-quark diffusion are still rather diverse. The obtained results for the shear viscosity are in the range of those deduced from an analysis of the experimental elliptic flow in ultrarelativistic heavy-ions collisions, i.e., in terms the viscosity-to-entropy ratio, 1/4π≲η/S<2.5/4π, in the temperature range from 170 to 440 MeV.

  1. lordif: An R Package for Detecting Differential Item Functioning Using Iterative Hybrid Ordinal Logistic Regression/Item Response Theory and Monte Carlo Simulations

    PubMed Central

    Choi, Seung W.; Gibbons, Laura E.; Crane, Paul K.

    2011-01-01

    Logistic regression provides a flexible framework for detecting various types of differential item functioning (DIF). Previous efforts extended the framework by using item response theory (IRT) based trait scores, and by employing an iterative process using group–specific item parameters to account for DIF in the trait scores, analogous to purification approaches used in other DIF detection frameworks. The current investigation advances the technique by developing a computational platform integrating both statistical and IRT procedures into a single program. Furthermore, a Monte Carlo simulation approach was incorporated to derive empirical criteria for various DIF statistics and effect size measures. For purposes of illustration, the procedure was applied to data from a questionnaire of anxiety symptoms for detecting DIF associated with age from the Patient–Reported Outcomes Measurement Information System. PMID:21572908

  2. A Programmable MicroFluidic Processor: Integrated and Hybrid Solutions

    SciTech Connect

    Rose, K A

    2002-05-10

    The Programmable Fluidic Processor (PFP), a device conceived of by researchers at MD Anderson Cancer Center, is a reconfigurable and programmable bio-chemical analysis system designed for handheld operation in a variety of applications. Unlike most microfluidic systems which utilize channels to control fluids, the PFP device is a droplet-based system. The device is based on dielectrophoresis; a fluid transport phenomenon that utilizes mismatched polarizability between a droplet and its medium to induce droplet mobility. In the device, sample carrying droplets are polarized by an array of electrodes, individually addressable by subsurface microelectronics. My research focused on the development of a polymer-based microfluidic injection system for injecting these droplets onto the electrode array. The first of two device generations fabricated at LLNL was designed using extensive research and modeling performed by MD Anderson and Coventor. Fabricating the first generation required several iterations and design changes in order to generate an acceptable device for testing. Difficulties in planar fabrication of the fluidic system and a narrow channel design necessitated these changes. The second generation device incorporated modifications of the previous generation and improved on deficiencies discovered during experimentation with the initial device. Extensive modeling of the injection channels and fluid storage chamber also aided in redesigning the device's microfluidic system. A micromolding technique with interlocking features enabled precise alignments and dimensional control, critical requirements for device optimization. Fabrication of a final device will be fully integrated with the polymer-based microfluidics bonded directly to the silicon-based microelectronics. The optimized design and process flow developed in the trial generations will readily transfer to this approach.

  3. Optimization of hybrid antireflection structure integrating surface texturing and multi-layer interference coating

    NASA Astrophysics Data System (ADS)

    Kubota, Shigeru; Kanomata, Kensaku; Suzuki, Takahiko; Hirose, Fumihiko

    2014-10-01

    The antireflection structure (ARS) for solar cells is categorized to mainly two different techniques, i.e., the surface texturing and the single or multi-layer antireflection interference coating. In this study, we propose a novel hybrid ARS, which integrates moth eye texturing and multi-layer coat, for application to organic photovoltaics (OPVs). Using optical simulations based on the finite-difference time-domain (FDTD) method, we conduct nearly global optimization of the geometric parameters characterizing the hybrid ARS. The proposed optimization algorithm consists of two steps: in the first step, we optimize the period and height of moth eye array, in the absence of multi-layer coating. In the second step, we optimize the whole structure of hybrid ARS by using the solution obtained by the first step as the starting search point. The methods of the simple grid search and the Hooke and Jeeves pattern search are used for global and local searches, respectively. In addition, we study the effects of deviations in the geometric parameters of hybrid ARS from their optimized values. The design concept of hybrid ARS is highly beneficial for broadband light trapping in OPVs.

  4. A multiply-add engine with monolithically integrated 3D memristor crossbar/CMOS hybrid circuit.

    PubMed

    Chakrabarti, B; Lastras-Montaño, M A; Adam, G; Prezioso, M; Hoskins, B; Cheng, K-T; Strukov, D B

    2017-02-14

    Silicon (Si) based complementary metal-oxide semiconductor (CMOS) technology has been the driving force of the information-technology revolution. However, scaling of CMOS technology as per Moore's law has reached a serious bottleneck. Among the emerging technologies memristive devices can be promising for both memory as well as computing applications. Hybrid CMOS/memristor circuits with CMOL (CMOS + "Molecular") architecture have been proposed to combine the extremely high density of the memristive devices with the robustness of CMOS technology, leading to terabit-scale memory and extremely efficient computing paradigm. In this work, we demonstrate a hybrid 3D CMOL circuit with 2 layers of memristive crossbars monolithically integrated on a pre-fabricated CMOS substrate. The integrated crossbars can be fully operated through the underlying CMOS circuitry. The memristive devices in both layers exhibit analog switching behavior with controlled tunability and stable multi-level operation. We perform dot-product operations with the 2D and 3D memristive crossbars to demonstrate the applicability of such 3D CMOL hybrid circuits as a multiply-add engine. To the best of our knowledge this is the first demonstration of a functional 3D CMOL hybrid circuit.

  5. A multiply-add engine with monolithically integrated 3D memristor crossbar/CMOS hybrid circuit

    NASA Astrophysics Data System (ADS)

    Chakrabarti, B.; Lastras-Montaño, M. A.; Adam, G.; Prezioso, M.; Hoskins, B.; Cheng, K.-T.; Strukov, D. B.

    2017-02-01

    Silicon (Si) based complementary metal-oxide semiconductor (CMOS) technology has been the driving force of the information-technology revolution. However, scaling of CMOS technology as per Moore’s law has reached a serious bottleneck. Among the emerging technologies memristive devices can be promising for both memory as well as computing applications. Hybrid CMOS/memristor circuits with CMOL (CMOS + “Molecular”) architecture have been proposed to combine the extremely high density of the memristive devices with the robustness of CMOS technology, leading to terabit-scale memory and extremely efficient computing paradigm. In this work, we demonstrate a hybrid 3D CMOL circuit with 2 layers of memristive crossbars monolithically integrated on a pre-fabricated CMOS substrate. The integrated crossbars can be fully operated through the underlying CMOS circuitry. The memristive devices in both layers exhibit analog switching behavior with controlled tunability and stable multi-level operation. We perform dot-product operations with the 2D and 3D memristive crossbars to demonstrate the applicability of such 3D CMOL hybrid circuits as a multiply-add engine. To the best of our knowledge this is the first demonstration of a functional 3D CMOL hybrid circuit.

  6. A multiply-add engine with monolithically integrated 3D memristor crossbar/CMOS hybrid circuit

    PubMed Central

    Chakrabarti, B.; Lastras-Montaño, M. A.; Adam, G.; Prezioso, M.; Hoskins, B.; Cheng, K.-T.; Strukov, D. B.

    2017-01-01

    Silicon (Si) based complementary metal-oxide semiconductor (CMOS) technology has been the driving force of the information-technology revolution. However, scaling of CMOS technology as per Moore’s law has reached a serious bottleneck. Among the emerging technologies memristive devices can be promising for both memory as well as computing applications. Hybrid CMOS/memristor circuits with CMOL (CMOS + “Molecular”) architecture have been proposed to combine the extremely high density of the memristive devices with the robustness of CMOS technology, leading to terabit-scale memory and extremely efficient computing paradigm. In this work, we demonstrate a hybrid 3D CMOL circuit with 2 layers of memristive crossbars monolithically integrated on a pre-fabricated CMOS substrate. The integrated crossbars can be fully operated through the underlying CMOS circuitry. The memristive devices in both layers exhibit analog switching behavior with controlled tunability and stable multi-level operation. We perform dot-product operations with the 2D and 3D memristive crossbars to demonstrate the applicability of such 3D CMOL hybrid circuits as a multiply-add engine. To the best of our knowledge this is the first demonstration of a functional 3D CMOL hybrid circuit. PMID:28195239

  7. Overview of ERA Integrated Technology Demonstration (ITD) 51A Ultra-High Bypass (UHB) Integration for Hybrid Wing Body (HWB)

    NASA Technical Reports Server (NTRS)

    Flamm, Jeffrey D.; James, Kevin D.; Bonet, John T.

    2016-01-01

    The NASA Environmentally Responsible Aircraft Project (ERA) was a ve year project broken into two phases. In phase II, high N+2 Technical Readiness Level demonstrations were grouped into Integrated Technology Demonstrations (ITD). This paper describes the work done on ITD-51A: the Vehicle Systems Integration, Engine Airframe Integration Demonstration. Refinement of a Hybrid Wing Body (HWB) aircraft from the possible candidates developed in ERA Phase I was continued. Scaled powered, and unpowered wind- tunnel testing, with and without acoustics, in the NASA LARC 14- by 22-foot Subsonic Tunnel, the NASA ARC Unitary Plan Wind Tunnel, and the 40- by 80-foot test section of the National Full-Scale Aerodynamics Complex (NFAC) in conjunction with very closely coupled Computational Fluid Dynamics was used to demonstrate the fuel burn and acoustic milestone targets of the ERA Project.

  8. Rapid microarray processing using a disposable hybridization chamber with an integrated micropump.

    PubMed

    Rupp, Jochen; Schmidt, Manuela; Münch, Susanne; Cavalar, Markus; Steller, Ulf; Steigert, Jürgen; Stumber, Michael; Dorrer, Christian; Rothacher, Peter; Zengerle, Roland; Daub, Martina

    2012-04-07

    We present a disposable microarray hybridization chamber with an integrated micropump to speed up diffusion based reaction kinetics by generating convective flow. The time-to-result for the hybridization reaction was reduced from 60 min (standard protocol) down to 15 min for a commercially available microarray. The integrated displacement micropump is pneumatically actuated. It includes two active microvalves and is designed for low-cost, high volume manufacturing. The setup is made out of two microstructured polymer parts realized in polycarbonate (PC) separated by a 25 μm thermoplastic elastomer (TPE) membrane. Pump rate can be controlled between 0.3 μl s(-1) and 5.7 μl s(-1) at actuation frequencies between 0.2 Hz and 8.0 Hz, respectively.

  9. The hybrid photonic planar integrated receiver with a polymer optical waveguide

    NASA Astrophysics Data System (ADS)

    Busek, Karel; Jerábek, Vitezslav; Armas Arciniega, Julio; Prajzler, Václav

    2008-11-01

    This article describes design of the photonic receiver composed of the system polymer planar waveguides, InGaAs p-i-n photodiode and integrated HBT amplifier on a low loss composite substrate. The photonic receiver was the main part of the hybrid integrated microwave optoelectronic transceiver TRx (transciever TRx) for the optical networks PON (passive optical networks) with FTTH (fiber-to-the-home) topology. In this article are presented the research results of threedimensional field between output facet of a optical waveguide and p-i-n photodiode. In terms of our research, there was optimized the optical coupling among the facet waveguide and pi-n photodiode and the electrical coupling among p-i-n photodiode and input of HBT amplifier. The hybrid planar lightwave circuit (PLC) of the transceiver TRx will be composed from a two parts - polymer optical waveguide including VHGT filter section and a optoelectronic microwave section.

  10. SU-E-CAMPUS-I-02: Estimation of the Dosimetric Error Caused by the Voxelization of Hybrid Computational Phantoms Using Triangle Mesh-Based Monte Carlo Transport

    SciTech Connect

    Lee, C; Badal, A

    2014-06-15

    Purpose: Computational voxel phantom provides realistic anatomy but the voxel structure may result in dosimetric error compared to real anatomy composed of perfect surface. We analyzed the dosimetric error caused from the voxel structure in hybrid computational phantoms by comparing the voxel-based doses at different resolutions with triangle mesh-based doses. Methods: We incorporated the existing adult male UF/NCI hybrid phantom in mesh format into a Monte Carlo transport code, penMesh that supports triangle meshes. We calculated energy deposition to selected organs of interest for parallel photon beams with three mono energies (0.1, 1, and 10 MeV) in antero-posterior geometry. We also calculated organ energy deposition using three voxel phantoms with different voxel resolutions (1, 5, and 10 mm) using MCNPX2.7. Results: Comparison of organ energy deposition between the two methods showed that agreement overall improved for higher voxel resolution, but for many organs the differences were small. Difference in the energy deposition for 1 MeV, for example, decreased from 11.5% to 1.7% in muscle but only from 0.6% to 0.3% in liver as voxel resolution increased from 10 mm to 1 mm. The differences were smaller at higher energies. The number of photon histories processed per second in voxels were 6.4×10{sup 4}, 3.3×10{sup 4}, and 1.3×10{sup 4}, for 10, 5, and 1 mm resolutions at 10 MeV, respectively, while meshes ran at 4.0×10{sup 4} histories/sec. Conclusion: The combination of hybrid mesh phantom and penMesh was proved to be accurate and of similar speed compared to the voxel phantom and MCNPX. The lowest voxel resolution caused a maximum dosimetric error of 12.6% at 0.1 MeV and 6.8% at 10 MeV but the error was insignificant in some organs. We will apply the tool to calculate dose to very thin layer tissues (e.g., radiosensitive layer in gastro intestines) which cannot be modeled by voxel phantoms.

  11. Enhanced Sampling of an Atomic Model with Hybrid Nonequilibrium Molecular Dynamics-Monte Carlo Simulations Guided by a Coarse-Grained Model.

    PubMed

    Chen, Yunjie; Roux, Benoît

    2015-08-11

    Molecular dynamics (MD) trajectories based on a classical equation of motion provide a straightforward, albeit somewhat inefficient approach, to explore and sample the configurational space of a complex molecular system. While a broad range of techniques can be used to accelerate and enhance the sampling efficiency of classical simulations, only algorithms that are consistent with the Boltzmann equilibrium distribution yield a proper statistical mechanical computational framework. Here, a multiscale hybrid algorithm relying simultaneously on all-atom fine-grained (FG) and coarse-grained (CG) representations of a system is designed to improve sampling efficiency by combining the strength of nonequilibrium molecular dynamics (neMD) and Metropolis Monte Carlo (MC). This CG-guided hybrid neMD-MC algorithm comprises six steps: (1) a FG configuration of an atomic system is dynamically propagated for some period of time using equilibrium MD; (2) the resulting FG configuration is mapped onto a simplified CG model; (3) the CG model is propagated for a brief time interval to yield a new CG configuration; (4) the resulting CG configuration is used as a target to guide the evolution of the FG system; (5) the FG configuration (from step 1) is driven via a nonequilibrium MD (neMD) simulation toward the CG target; (6) the resulting FG configuration at the end of the neMD trajectory is then accepted or rejected according to a Metropolis criterion before returning to step 1. A symmetric two-ends momentum reversal prescription is used for the neMD trajectories of the FG system to guarantee that the CG-guided hybrid neMD-MC algorithm obeys microscopic detailed balance and rigorously yields the equilibrium Boltzmann distribution. The enhanced sampling achieved with the method is illustrated with a model system with hindered diffusion and explicit-solvent peptide simulations. Illustrative tests indicate that the method can yield a speedup of about 80 times for the model system and up

  12. Using a hybrid Monte Carlo/Genetic Algorithm Slip Estimator to produce high resolution models of paleoearthquakes from geodetic data

    NASA Astrophysics Data System (ADS)

    Lindsay, A.; McCloskey, J.; Nalbant, S. S.; Simao, N.; Murphy, S.; NicBhloscaidh, M.; Steacy, S.

    2013-12-01

    Identifying fault sections where slip deficits have accumulated may provide a means for understanding sequences of large megathrust earthquakes. Stress accumulated during the interseismic period on locked sections of an active fault is stored as potential slip. Where this potential slip remains unreleased during earthquakes, a slip deficit can be said to have accrued. Analysis of the spatial distribution of slip during antecedent events along the fault will show where the locked plate has spent its stored slip and indicate where the potential for large events remains. The location of recent earthquakes and their distribution of slip can be estimated instrumentally. To develop the idea of long-term slip-deficit modelling it is necessary to constrain the size and distribution of slip for pre-instrumental events dating back hundreds of years covering more than one ';seismic cycle'. This requires the exploitation of proxy sources of data. Coral microatolls, growing in the intertidal zone of the outer island arc of the Sunda trench, present the possibility of producing high resolution reconstructions of slip for a number of pre-instrumental earthquakes. Their growth is influenced by tectonic flexing of the continental plate beneath them allows them to act as long term geodetic recorders. However, the sparse distribution of data available using coral geodesy results in a under determined problem with non-unique solutions. Instead of producing one definite model satisfying the observed corals displacements, a Monte Carlo Slip Estimator based on a Genetic Algorithm (MCSE-GA) accelerating the rate of convergence is used to identify a suite of models consistent with the data. Successive iterations of the MCSE-GA sample different displacements at each coral location, from within the spread of associated uncertainties, producing a catalog of models from the full range of possibilities. The suite of best slip distributions are weighted according to their fitness and stacked to

  13. Hybrid Waveguides and Heterodyne Detectors Integrated Optics for 10 Micron Wavelengths

    DTIC Science & Technology

    1975-02-28

    waveguide 10 dB directional coupler for single-ended operation. A fully integrated approach in a balanced configuration Msing two detectors and hybrid...oscillator power requirements as is established practice in the Microwave art. The balanced configuration illustrated in Figure 3 requires a...Semiconductors. Cambridge University Press, 1961. 20. M. DiDomenico and 0. Svelto, "Solid-State Photodetection : A Comparison Between Photodlodes

  14. Broadband silicon optical modulator using a graphene-integrated hybrid plasmonic waveguide.

    PubMed

    Shin, Jin-Soo; Kim, Jin Tae

    2015-09-11

    Graphene is an excellent electronic and photonic material for developing electronic-photonic integrated circuits in Si-based semiconductor devices with ultra wide operational bandwidth. As an extended application, here we propose a broadband silicon optical modulator using a graphene-integrated hybrid plasmonic waveguide, and investigate the optical characteristics numerically at a wavelength of 1.55 μm. The optical device is based on the surface plasmon polariton absorption of graphene. By electrically tuning the graphene's refractive index as low as that of a noble metal, the hybrid plasmonic waveguide supports a strongly confined highly lossy hybrid long-range surface plasmon polariton strip mode, and hence light coupled from an input waveguide experiences significant power attenuation as it propagates along the waveguide. Over the entire C-band from 1.530 to 1.565 μm wavelengths, the on/off extinction ratio is larger than 13.7 dB. This modulator has the potential to play a key role in realizing graphene-Si waveguide-based integrated photonic devices.

  15. Integrated ion sensor device applications based on printed hybrid material systems (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    List-Kratochvil, Emil J. W.

    2016-09-01

    Comfortable, wearable sensors and computers will enhance every person's awareness of his or her health condition, environment, chemical pollutants, potential hazards, and information of interest. In agriculture and in the food industry there is a need for a constant control of the condition and needs of plants, animals, and farm products. Yet many of these applications depend upon the development of novel, cheap devices and sensors that are easy to implement and to integrate. Organic semiconductors as well as several inorganic materials and hybrid material systems have proven to combine a number of intriguing optical and electronic properties with simple processing methods. As it will be reviewed in this contribution, these materials are believed to find their application in printed electronic devices allowing for the development of smart disposable devices in food-, health-, and environmental monitoring, diagnostics and control, possibly integrated into arrays of sensor elements for multi-parameter detection. In this contribution we review past and recent achievements in the field. Followed by a brief introduction, we will focus on two topics being on the agenda recently: a) the use of electrolyte-gated organic field-effect transistor (EGOFET) and ion-selective membrane based sensors for in-situ sensing of ions and biological substances and b) the development of hybrid material based resistive switches and their integration into fully functional, printed hybrid crossbar sensor array structures.

  16. Stratified flow over a backward-facing step: hybrid solution by integral transforms

    NASA Astrophysics Data System (ADS)

    Ramos, R.; Perez Guerrero, J. S.; Cotta, R. M.

    2001-01-01

    The generalized integral transform technique (GITT) is employed in the hybrid numerical-analytical solution of the stratified backward-facing step flow problem, with automatic global accuracy control towards a user-prescribed accuracy target. The present paper is aimed at extending the available database on benchmark results in heat and fluid flow, which were progressively obtained through integral transforms, for the co-validation of more flexible fully discrete approaches. Numerical results are presented for the situations more frequently encountered in the literature Copyright

  17. Nuclear Hybrid Energy Systems Initial Integrated Case Study Development and Analysis

    SciTech Connect

    Harrison, Thomas J.; Greenwood, Michael Scott

    2016-12-01

    The US Department of Energy Office of Nuclear Energy established the Nuclear Hybrid Energy System (NHES) project to develop a systematic, rigorous, technically accurate set of methods to model, analyze, and optimize the integration of dispatchable nuclear, fossil, and electric storage with an industrial customer. Ideally, the optimized integration of these systems will provide economic and operational benefits to the overall system compared to independent operation, and it will enhance the stability and responsiveness of the grid as intermittent, nondispatchable, renewable resources provide a greater share of grid power.

  18. A Massively Parallel Hybrid Dusty-Gasdynamics and Kinetic Direct Simulation Monte Carlo Model for Planetary Applications

    NASA Technical Reports Server (NTRS)

    Combi, Michael R.

    2004-01-01

    In order to understand the global structure, dynamics, and physical and chemical processes occurring in the upper atmospheres, exospheres, and ionospheres of the Earth, the other planets, comets and planetary satellites and their interactions with their outer particles and fields environs, it is often necessary to address the fundamentally non-equilibrium aspects of the physical environment. These are regions where complex chemistry, energetics, and electromagnetic field influences are important. Traditional approaches are based largely on hydrodynamic or magnetohydrodynamic (MHD) formulations and are very important and highly useful. However, these methods often have limitations in rarefied physical regimes where the molecular collision rates and ion gyrofrequencies are small and where interactions with ionospheres and upper neutral atmospheres are important. At the University of Michigan we have an established base of experience and expertise in numerical simulations based on particle codes which address these physical regimes. The Principal Investigator, Dr. Michael Combi, has over 20 years of experience in the development of particle-kinetic and hybrid kinetichydrodynamics models and their direct use in data analysis. He has also worked in ground-based and space-based remote observational work and on spacecraft instrument teams. His research has involved studies of cometary atmospheres and ionospheres and their interaction with the solar wind, the neutral gas clouds escaping from Jupiter s moon Io, the interaction of the atmospheres/ionospheres of Io and Europa with Jupiter s corotating magnetosphere, as well as Earth s ionosphere. This report describes our progress during the year. The contained in section 2 of this report will serve as the basis of a paper describing the method and its application to the cometary coma that will be continued under a research and analysis grant that supports various applications of theoretical comet models to understanding the

  19. Path integral Monte Carlo simulations of H2 adsorbed to lithium-doped benzene: A model for hydrogen storage materials

    NASA Astrophysics Data System (ADS)

    Lindoy, Lachlan P.; Kolmann, Stephen J.; D'Arcy, Jordan H.; Crittenden, Deborah L.; Jordan, Meredith J. T.

    2015-11-01

    Finite temperature quantum and anharmonic effects are studied in H2-Li+-benzene, a model hydrogen storage material, using path integral Monte Carlo (PIMC) simulations on an interpolated potential energy surface refined over the eight intermolecular degrees of freedom based upon M05-2X/6-311+G(2df,p) density functional theory calculations. Rigid-body PIMC simulations are performed at temperatures ranging from 77 K to 150 K, producing both quantum and classical probability density histograms describing the adsorbed H2. Quantum effects broaden the histograms with respect to their classical analogues and increase the expectation values of the radial and angular polar coordinates describing the location of the center-of-mass of the H2 molecule. The rigid-body PIMC simulations also provide estimates of the change in internal energy, ΔUads, and enthalpy, ΔHads, for H2 adsorption onto Li+-benzene, as a function of temperature. These estimates indicate that quantum effects are important even at room temperature and classical results should be interpreted with caution. Our results also show that anharmonicity is more important in the calculation of U and H than coupling—coupling between the intermolecular degrees of freedom becomes less important as temperature increases whereas anharmonicity becomes more important. The most anharmonic motions in H2-Li+-benzene are the "helicopter" and "ferris wheel" H2 rotations. Treating these motions as one-dimensional free and hindered rotors, respectively, provides simple corrections to standard harmonic oscillator, rigid rotor thermochemical expressions for internal energy and enthalpy that encapsulate the majority of the anharmonicity. At 150 K, our best rigid-body PIMC estimates for ΔUads and ΔHads are -13.3 ± 0.1 and -14.5 ± 0.1 kJ mol-1, respectively.

  20. A new approach to integrate GPU-based Monte Carlo simulation into inverse treatment plan optimization for proton therapy.

    PubMed

    Li, Yongbao; Tian, Zhen; Song, Ting; Wu, Zhaoxia; Liu, Yaqiang; Jiang, Steve; Jia, Xun

    2017-01-07

    Monte Carlo (MC)-based spot dose calculation is highly desired for inverse treatment planning in proton therapy because of its accuracy. Recent studies on biological optimization have also indicated the use of MC methods to compute relevant quantities of interest, e.g. linear energy transfer. Although GPU-based MC engines have been developed to address inverse optimization problems, their efficiency still needs to be improved. Also, the use of a large number of GPUs in MC calculation is not favorable for clinical applications. The previously proposed adaptive particle sampling (APS) method can improve the efficiency of MC-based inverse optimization by using the computationally expensive MC simulation more effectively. This method is more efficient than the conventional approach that performs spot dose calculation and optimization in two sequential steps. In this paper, we propose a computational library to perform MC-based spot dose calculation on GPU with the APS scheme. The implemented APS method performs a non-uniform sampling of the particles from pencil beam spots during the optimization process, favoring those from the high intensity spots. The library also conducts two computationally intensive matrix-vector operations frequently used when solving an optimization problem. This library design allows a streamlined integration of the MC-based spot dose calculation into an existing proton therapy inverse planning process. We tested the developed library in a typical inverse optimization system with four patient cases. The library achieved the targeted functions by supporting inverse planning in various proton therapy schemes, e.g. single field uniform dose, 3D intensity modulated proton therapy, and distal edge tracking. The efficiency was 41.6  ±  15.3% higher than the use of a GPU-based MC package in a conventional calculation scheme. The total computation time ranged between 2 and 50 min on a single GPU card depending on the problem size.

  1. Identification of Critical Molecular Components in a Multiscale Cancer Model Based on the Integration of Monte Carlo, Resampling, and ANOVA.

    PubMed

    Wang, Zhihui; Bordas, Veronika; Deisboeck, Thomas S

    2011-01-01

    To date, parameters defining biological properties in multiscale disease models are commonly obtained from a variety of sources. It is thus important to examine the influence of parameter perturbations on system behavior, rather than to limit the model to a specific set of parameters. Such sensitivity analysis can be used to investigate how changes in input parameters affect model outputs. However, multiscale cancer models require special attention because they generally take longer to run than does a series of signaling pathway analysis tasks. In this article, we propose a global sensitivity analysis method based on the integration of Monte Carlo, resampling, and analysis of variance. This method provides solutions to (1) how to render the large number of parameter variation combinations computationally manageable, and (2) how to effectively quantify the sampling distribution of the sensitivity index to address the inherent computational intensity issue. We exemplify the feasibility of this method using a two-dimensional molecular-microscopic agent-based model previously developed for simulating non-small cell lung cancer; in this model, an epidermal growth factor (EGF)-induced, EGF receptor-mediated signaling pathway was implemented at the molecular level. Here, the cross-scale effects of molecular parameters on two tumor growth evaluation measures, i.e., tumor volume and expansion rate, at the microscopic level are assessed. Analysis finds that ERK, a downstream molecule of the EGF receptor signaling pathway, has the most important impact on regulating both measures. The potential to apply this method to therapeutic target discovery is discussed.

  2. A new approach to integrate GPU-based Monte Carlo simulation into inverse treatment plan optimization for proton therapy

    NASA Astrophysics Data System (ADS)

    Li, Yongbao; Tian, Zhen; Song, Ting; Wu, Zhaoxia; Liu, Yaqiang; Jiang, Steve; Jia, Xun

    2017-01-01

    Monte Carlo (MC)-based spot dose calculation is highly desired for inverse treatment planning in proton therapy because of its accuracy. Recent studies on biological optimization have also indicated the use of MC methods to compute relevant quantities of interest, e.g. linear energy transfer. Although GPU-based MC engines have been developed to address inverse optimization problems, their efficiency still needs to be improved. Also, the use of a large number of GPUs in MC calculation is not favorable for clinical applications. The previously proposed adaptive particle sampling (APS) method can improve the efficiency of MC-based inverse optimization by using the computationally expensive MC simulation more effectively. This method is more efficient than the conventional approach that performs spot dose calculation and optimization in two sequential steps. In this paper, we propose a computational library to perform MC-based spot dose calculation on GPU with the APS scheme. The implemented APS method performs a non-uniform sampling of the particles from pencil beam spots during the optimization process, favoring those from the high intensity spots. The library also conducts two computationally intensive matrix-vector operations frequently used when solving an optimization problem. This library design allows a streamlined integration of the MC-based spot dose calculation into an existing proton therapy inverse planning process. We tested the developed library in a typical inverse optimization system with four patient cases. The library achieved the targeted functions by supporting inverse planning in various proton therapy schemes, e.g. single field uniform dose, 3D intensity modulated proton therapy, and distal edge tracking. The efficiency was 41.6  ±  15.3% higher than the use of a GPU-based MC package in a conventional calculation scheme. The total computation time ranged between 2 and 50 min on a single GPU card depending on the problem size.

  3. Monolithically integrated 20-channel optical add/drop multiplexer subsystem with hybrid-integrated 40-channel photodetector array

    NASA Astrophysics Data System (ADS)

    Schumacher, Andreas B.; Krabe, Detlef; Dieckroeger, Jens; Spott, Thorsten; Kraeker, Tobias; Martins, Evely; Zavrsnik, Miha; Schneider, Hartmut W.; Baumann, Ingo

    2003-03-01

    We built a 20 channel, 200 GHz, fully reconfigurable optical add-/drop multiplexer with integrated variable optical attenuators and power monitor diodes. A single planar lightwave circuit chip contains demultiplexer, switch array, attenuators and multiplexers. It also serves as an "optical motherboard" for a hybrid, flip-chip assembly containing four 10-channel photo detector arrays. A thermal management concept which considers both microscopic and macroscopic aspects of the device was developed. The final device exhibits an insertion loss of 9 dB from "in"- to "through"-port, a 1 dB bandwidth of >50 GHz and switch extinction ratios in excess of 40 dB.

  4. A microfluidic microprocessor: controlling biomimetic containers and cells using hybrid integrated circuit/microfluidic chips.

    PubMed

    Issadore, David; Franke, Thomas; Brown, Keith A; Westervelt, Robert M

    2010-11-07

    We present an integrated platform for performing biological and chemical experiments on a chip based on standard CMOS technology. We have developed a hybrid integrated circuit (IC)/microfluidic chip that can simultaneously control thousands of living cells and pL volumes of fluid, enabling a wide variety of chemical and biological tasks. Taking inspiration from cellular biology, phospholipid bilayer vesicles are used as robust picolitre containers for reagents on the chip. The hybrid chip can be programmed to trap, move, and porate individual living cells and vesicles and fuse and deform vesicles using electric fields. The IC spatially patterns electric fields in a microfluidic chamber using 128 × 256 (32,768) 11 × 11 μm(2) metal pixels, each of which can be individually driven with a radio frequency (RF) voltage. The chip's basic functions can be combined in series to perform complex biological and chemical tasks and can be performed in parallel on the chip's many pixels for high-throughput operations. The hybrid chip operates in two distinct modes, defined by the frequency of the RF voltage applied to the pixels: Voltages at MHz frequencies are used to trap, move, and deform objects using dielectrophoresis and voltages at frequencies below 1 kHz are used for electroporation and electrofusion. This work represents an important step towards miniaturizing the complex chemical and biological experiments used for diagnostics and research onto automated and inexpensive chips.

  5. Optimal integration strategies for a syngas fuelled SOFC and gas turbine hybrid

    NASA Astrophysics Data System (ADS)

    Zhao, Yingru; Sadhukhan, Jhuma; Lanzini, Andrea; Brandon, Nigel; Shah, Nilay

    This article aims to develop a thermodynamic modelling and optimization framework for a thorough understanding of the optimal integration of fuel cell, gas turbine and other components in an ambient pressure SOFC-GT hybrid power plant. This method is based on the coupling of a syngas-fed SOFC model and an associated irreversible GT model, with an optimization algorithm developed using MATLAB to efficiently explore the range of possible operating conditions. Energy and entropy balance analysis has been carried out for the entire system to observe the irreversibility distribution within the plant and the contribution of different components. Based on the methodology developed, a comprehensive parametric analysis has been performed to explore the optimum system behavior, and predict the sensitivity of system performance to the variations in major design and operating parameters. The current density, operating temperature, fuel utilization and temperature gradient of the fuel cell, as well as the isentropic efficiencies and temperature ratio of the gas turbine cycle, together with three parameters related to the heat transfer between subsystems are all set to be controllable variables. Other factors affecting the hybrid efficiency have been further simulated and analysed. The model developed is able to predict the performance characteristics of a wide range of hybrid systems potentially sizing from 2000 to 2500 W m -2 with efficiencies varying between 50% and 60%. The analysis enables us to identify the system design tradeoffs, and therefore to determine better integration strategies for advanced SOFC-GT systems.

  6. Analysis of dpa rates in the HFIR reactor vessel using a hybrid Monte Carlo/deterministic method

    SciTech Connect

    Blakeman, Edward

    2016-01-01

    The Oak Ridge High Flux Isotope Reactor (HFIR), which began full-power operation in 1966, provides one of the highest steady-state neutron flux levels of any research reactor in the world. An ongoing vessel integrity analysis program to assess radiation-induced embrittlement of the HFIR reactor vessel requires the calculation of neutron and gamma displacements per atom (dpa), particularly at locations near the beam tube nozzles, where radiation streaming effects are most pronounced. In this study we apply the Forward-Weighted Consistent Adjoint Driven Importance Sampling (FW-CADIS) technique in the ADVANTG code to develop variance reduction parameters for use in the MCNP radiation transport code. We initially evaluated dpa rates for dosimetry capsule locations, regions in the vicinity of the HB-2 beamline, and the vessel beltline region. We then extended the study to provide dpa rate maps using three-dimensional cylindrical mesh tallies that extend from approximately 12 below to approximately 12 above the axial extent of the core. The mesh tally structures contain over 15,000 mesh cells, providing a detailed spatial map of neutron and photon dpa rates at all locations of interest. Relative errors in the mesh tally cells are typically less than 1%.

  7. Path-integral methods for analyzing the effects of fluctuations in stochastic hybrid neural networks.

    PubMed

    Bressloff, Paul C

    2015-01-01

    We consider applications of path-integral methods to the analysis of a stochastic hybrid model representing a network of synaptically coupled spiking neuronal populations. The state of each local population is described in terms of two stochastic variables, a continuous synaptic variable and a discrete activity variable. The synaptic variables evolve according to piecewise-deterministic dynamics describing, at the population level, synapses driven by spiking activity. The dynamical equations for the synaptic currents are only valid between jumps in spiking activity, and the latter are described by a jump Markov process whose transition rates depend on the synaptic variables. We assume a separation of time scales between fast spiking dynamics with time constant [Formula: see text] and slower synaptic dynamics with time constant τ. This naturally introduces a small positive parameter [Formula: see text], which can be used to develop various asymptotic expansions of the corresponding path-integral representation of the stochastic dynamics. First, we derive a variational principle for maximum-likelihood paths of escape from a metastable state (large deviations in the small noise limit [Formula: see text]). We then show how the path integral provides an efficient method for obtaining a diffusion approximation of the hybrid system for small ϵ. The resulting Langevin equation can be used to analyze the effects of fluctuations within the basin of attraction of a metastable state, that is, ignoring the effects of large deviations. We illustrate this by using the Langevin approximation to analyze the effects of intrinsic noise on pattern formation in a spatially structured hybrid network. In particular, we show how noise enlarges the parameter regime over which patterns occur, in an analogous fashion to PDEs. Finally, we carry out a [Formula: see text]-loop expansion of the path integral, and use this to derive corrections to voltage-based mean-field equations, analogous

  8. Analysis of dpa Rates in the HFIR Reactor Vessel using a Hybrid Monte Carlo/Deterministic Method

    NASA Astrophysics Data System (ADS)

    Risner, J. M.; Blakeman, E. D.

    2016-02-01

    The Oak Ridge High Flux Isotope Reactor (HFIR), which began full-power operation in 1966, provides one of the highest steady-state neutron flux levels of any research reactor in the world. An ongoing vessel integrity analysis program to assess radiation-induced embrittlement of the HFIR reactor vessel requires the calculation of neutron and gamma displacements per atom (dpa), particularly at locations near the beam tube nozzles, where radiation streaming effects are most pronounced. In this study we apply the Forward-Weighted Consistent Adjoint Driven Importance Sampling (FW-CADIS) technique in the ADVANTG code to develop variance reduction parameters for use in the MCNP radiation transport code. We initially evaluated dpa rates for dosimetry capsule locations, regions in the vicinity of the HB-2 beamline, and the vessel beltline region. We then extended the study to provide dpa rate maps using three-dimensional cylindrical mesh tallies that extend from approximately 12 in. below to approximately 12 in. above the height of the core. The mesh tally structures contain over 15,000 mesh cells, providing a detailed spatial map of neutron and photon dpa rates at all locations of interest. Relative errors in the mesh tally cells are typically less than 1%. Notice: This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC0500OR22725 with the US Department of Energy. The US Government retains and the publisher, by accepting the article for publication, acknowledges that the US Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for the US Government purposes.

  9. Integration of rapid DNA hybridization and capillary zone electrophoresis using bidirectional isotachophoresis.

    PubMed

    Bahga, Supreet S; Han, Crystal M; Santiago, Juan G

    2013-01-07

    We present a method for rapid, sequence-specific detection of multiple DNA fragments by integrating isotachophoresis (ITP) based DNA hybridization and capillary zone electrophoresis (CZE) using bidirectional ITP. Our method leverages the high preconcentration ability of ITP to accelerate slow, second-order DNA hybridization kinetics, and the high resolving power of CZE to separate and identify reaction products. We demonstrate the speed and sensitivity of our assay by detecting 5 pM, 39 nt ssDNA target within 3 min, using a molecular beacon probe. We also demonstrate the feasibility of our assay for multiplexed detection of multiple-length ssDNA targets by simultaneously detecting 39 and 90 nt ssDNA targets.

  10. Performance analysis of an OTEC plant and a desalination plant using an integrated hybrid cycle

    SciTech Connect

    Uehara, Haruo; Miyara, Akio; Ikegami, Yasuyuki; Nakaoka, Tsutomu

    1996-05-01

    A performance analysis of an OTEC plant using an integrated hybrid cycle (I-H OTEC Cycle) has been conducted. The I-H OTEC cycle is a combination of a closed-cycle OTEC plant and a spray flash desalination plant. In an I-H OTEC cycle, warm sea water evaporates the liquid ammonia in the OTEC evaporator, then enters the flash chamber and evaporates itself. The evaporated steam enters the desalination condenser and is condensed by the cold sea water passed through the OTEC condenser. The optimization of the I-H OTEC cycle is analyzed by the method of steepest descent. The total heat transfer area of heat exchangers per net power is used as an objective function. Numerical results are reported for a 10 MW I-H OTEC cycle with plate-type heat exchangers and ammonia as working fluid. The results are compared with those of a joint hybrid OTEC cycle (J-H OTEC Cycle).

  11. Heterogeneous biomedical database integration using a hybrid strategy: a p53 cancer research database.

    PubMed

    Bichutskiy, Vadim Y; Colman, Richard; Brachmann, Rainer K; Lathrop, Richard H

    2007-02-20

    Complex problems in life science research give rise to multidisciplinary collaboration, and hence, to the need for heterogeneous database integration. The tumor suppressor p53 is mutated in close to 50% of human cancers, and a small drug-like molecule with the ability to restore native function to cancerous p53 mutants is a long-held medical goal of cancer treatment. The Cancer Research DataBase (CRDB) was designed in support of a project to find such small molecules. As a cancer informatics project, the CRDB involved small molecule data, computational docking results, functional assays, and protein structure data. As an example of the hybrid strategy for data integration, it combined the mediation and data warehousing approaches. This paper uses the CRDB to illustrate the hybrid strategy as a viable approach to heterogeneous data integration in biomedicine, and provides a design method for those considering similar systems. More efficient data sharing implies increased productivity, and, hopefully, improved chances of success in cancer research. (Code and database schemas are freely downloadable, http://www.igb.uci.edu/research/research.html.).

  12. Remote power delivery for hybrid integrated bio-implantable electrical stimulation system

    NASA Astrophysics Data System (ADS)

    Gaddam, Venkat R.; Yernagula, Jagadish; Anantha, Raghavendra R.; Kona, Satish; Kopparthi, Sunitha; Chamakura, A.; Ajmera, Pratul K.; Srivastava, Ashok

    2005-05-01

    In this work, a remote power delivery system to charge rechargeable batteries that power a Bio-implanted Electrical Stimulation System (BESS) is first described. A loosely coupled inductive transmitter and receiver system has been used to power a bio-implanted gastric pacer. The receiver coil, rechargeable batteries, battery charging chip and the chip containing stimulation circuitry form a hybrid integrated microsystem. A design methodology for this Remote Power Delivery System (RPDS) is proposed. The BESS chip is also designed for electrical stimulation. It is a special IC chip which takes power from the rechargeable batteries and provides output pulses of 9.9 V amplitude at a frequency of 103 Hz and a duty cycle of 5%. The BESS chip contains a battery switching circuit and a pulse conditioning circuit which first provides pulses of 3 V amplitude. It also has an internal charge pump and a pulse booster circuit to boost the pulse amplitude to 9.9 V. Hybrid packaging is considered for integrating the implantable electrical stimulation circuitry and the remote power delivery system. Screen printed interconnects are used to integrate the BESS chip, the battery charging chip, discrete components and the receiver circuit of the RPDS.

  13. Integrated hybrid polystyrene-polydimethylsiloxane device for monitoring cellular release with microchip electrophoresis and electrochemical detection

    PubMed Central

    Johnson, Alicia S.; Mehl, Benjamin T.; Martin, R. Scott

    2015-01-01

    In this work, a polystyrene (PS)-polydimethylsiloxane (PDMS) hybrid device was developed to enable the integration of cell culture with analysis by microchip electrophoresis and electrochemical detection. It is shown that this approach combines the fundamental advantages of PDMS devices (the ability to integrate pumps and valves) and PS devices (the ability to permanently embed fluidic tubing and electrodes). The embedded fused-silica capillary enables high temporal resolution measurements from off-chip cell culture dishes and the embedded electrodes provide close to real-time analysis of small molecule neurotransmitters. A novel surface treatment for improved (reversible) adhesion between PS and PDMS is described using a chlorotrimethylsilane stamping method. It is demonstrated that a Pd decoupler is efficient at handling the high current (and cathodic hydrogen production) resulting from use of high ionic strength buffers needed for cellular analysis; thus allowing an electrophoretic separation and in-channel detection. The separation of norepinephrine (NE) and dopamine (DA) in highly conductive biological buffers was optimized using a mixed surfactant system. This PS-PDMS hybrid device integrates multiple processes including continuous sampling from a cell culture dish, on-chip pump and valving technologies, microchip electrophoresis, and electrochemical detection to monitor neurotransmitter release from PC 12 cells. PMID:25663849

  14. Sole means navigation and integrity through hybrid Loran-C and NAVSTAR GPS

    NASA Technical Reports Server (NTRS)

    Vangraas, Frank

    1990-01-01

    A sole means navigation system does not only call for integrity, but also for coverage, reliability, availability and accuracy. Even though ground monitored GPS will provide integrity, availability is still not sufficient. One satellite outage can affect a large service area for several hours per day. The same holds for differential GPS; a total satellite outage cannot be corrected for. To obtain sufficient coverage, extra measurements are needed, either in the form of extra GPS satellites (expensive) or through redundant measurements from other systems. LORAN-C is available and will, hybridized with GPS, result in a system that has the potential to satisfy the requirements for a sole means navigation system for use in the continental United States. Assumptions are made about the qualification sole means, mainly based on current sole means systems such as VOR/DME. In order to allow for system design that will satisfy sole means requirements, it is recommended that a definition of a sole means navigation system be established. This definition must include requirements for availability, reliability, and integrity currently not specified. In addition to the definition of a sole means navigation system, certification requirements must be established for hybrid navigation systems. This will allow for design and production of a new generation of airborne navigation systems that will reduce overall system costs and simplify training procedures.

  15. Integration of multisensor hybrid reasoners to support personal autonomy in the smart home.

    PubMed

    Valero, Miguel Ángel; Bravo, José; Chamizo, Juan Manuel García; López-de-Ipiña, Diego

    2014-09-17

    The deployment of the Ambient Intelligence (AmI) paradigm requires designing and integrating user-centered smart environments to assist people in their daily life activities. This research paper details an integration and validation of multiple heterogeneous sensors with hybrid reasoners that support decision making in order to monitor personal and environmental data at a smart home in a private way. The results innovate on knowledge-based platforms, distributed sensors, connected objects, accessibility and authentication methods to promote independent living for elderly people. TALISMAN+, the AmI framework deployed, integrates four subsystems in the smart home: (i) a mobile biomedical telemonitoring platform to provide elderly patients with continuous disease management; (ii) an integration middleware that allows context capture from heterogeneous sensors to program environment's reaction; (iii) a vision system for intelligent monitoring of daily activities in the home; and (iv) an ontologies-based integrated reasoning platform to trigger local actions and manage private information in the smart home. The framework was integrated in two real running environments, the UPM Accessible Digital Home and MetalTIC house, and successfully validated by five experts in home care, elderly people and personal autonomy.

  16. Integration of Multisensor Hybrid Reasoners to Support Personal Autonomy in the Smart Home

    PubMed Central

    Valero, Miguel Ángel; Bravo, José; Chamizo, Juan Manuel García; López-de-Ipiña, Diego

    2014-01-01

    The deployment of the Ambient Intelligence (AmI) paradigm requires designing and integrating user-centered smart environments to assist people in their daily life activities. This research paper details an integration and validation of multiple heterogeneous sensors with hybrid reasoners that support decision making in order to monitor personal and environmental data at a smart home in a private way. The results innovate on knowledge-based platforms, distributed sensors, connected objects, accessibility and authentication methods to promote independent living for elderly people. TALISMAN+, the AmI framework deployed, integrates four subsystems in the smart home: (i) a mobile biomedical telemonitoring platform to provide elderly patients with continuous disease management; (ii) an integration middleware that allows context capture from heterogeneous sensors to program environment's reaction; (iii) a vision system for intelligent monitoring of daily activities in the home; and (iv) an ontologies-based integrated reasoning platform to trigger local actions and manage private information in the smart home. The framework was integrated in two real running environments, the UPM Accessible Digital Home and MetalTIC house, and successfully validated by five experts in home care, elderly people and personal autonomy. PMID:25232910

  17. Cascaded all-optical operations in a hybrid integrated 80-Gb/s logic circuit.

    PubMed

    LeGrange, J D; Dinu, M; Sochor, T; Bollond, P; Kasper, A; Cabot, S; Johnson, G S; Kang, I; Grant, A; Kay, J; Jaques, J

    2014-06-02

    We demonstrate logic functionalities in a high-speed all-optical logic circuit based on differential Mach-Zehnder interferometers with semiconductor optical amplifiers as the nonlinear optical elements. The circuit, implemented by hybrid integration of the semiconductor optical amplifiers on a planar lightwave circuit platform fabricated in silica glass, can be flexibly configured to realize a variety of Boolean logic gates. We present both simulations and experimental demonstrations of cascaded all-optical operations for 80-Gb/s on-off keyed data.

  18. Narrow linewidth hybrid integrated external cavity diode laser for precision applications

    NASA Astrophysics Data System (ADS)

    Wei, Fang; Sun, Guangwei; Zhang, Li; Chen, Gaoting; Xin, Guofeng; Chen, Dijun; Cai, Haiwen

    2016-11-01

    A butterfly-packaged narrow-linewidth hybrid integrated external cavity diode laser module based on the polarization maintaining fiber Bragg grating is reported. The module emits at the wavelength of 1550 nm and provides 21 GHz of continuous tunability. It produces >= 20 mW of polarization maintaining fiber-coupled output power with intrinsic Lorentz linewidth <= 3 kHz and RIN <=140 dB/√Hz@100 kHz. To qualify the reliability of the laser module under harsh environmental conditions, random vibration test and high-low temperature cycling test are carried out, and no degradation of the power current characteristic is observed.

  19. On the feasibility of through-wafer optical interconnects for hybrid wafer-scale-integrated architectures

    NASA Astrophysics Data System (ADS)

    Hornak, L. A.; Tewksbury, S. K.

    1987-07-01

    A method, compatible with VLSI processing, is described which makes it possible to fabricate vertical through-wafer optical interconnects for hybrid multiwafer wafer-scale-integrated (WSI) architectures. Using optical devices operating at wavelengths beyond the Si absorption cutoff, a low-loss through-the-wafer propagation between WSI circuit planes can be achieved over the distances of about 1 mm with the interstitial Si wafers as part of the interconnect 'free-space' transmission medium. VLSI-process-compatible SiO2 Fresnel phase-reversal zone plate arrays were fabricated. Initial results show that a 400-percent improvement in optical power coupling through the wafer was obtained.

  20. Organic–Inorganic Eu3+/Tb3+ codoped hybrid films for temperature mapping in integrated circuits

    PubMed Central

    Brites, Carlos D. S.; Lima, Patrícia P.; Silva, Nuno J. O.; Millán, Angel; Amaral, Vitor S.; Palacio, Fernando; Carlos, Luís D.

    2013-01-01

    The continuous decrease on the geometric size of electronic devices and integrated circuits generates higher local power densities and localized heating problems that cannot be characterized by conventional thermographic techniques. Here, a self-referencing intensity-based molecular thermometer involving a di-ureasil organic-inorganic hybrid thin film co-doped with Eu3+ and Tb3+ tris (β-diketonate) chelates is used to obtain the temperature map of a FR4 printed wiring board with spatio-temporal resolutions of 0.42 μm/4.8 ms. PMID:24790938

  1. All-fiber hybrid photon-plasmon circuits: integrating nanowire plasmonics with fiber optics.

    PubMed

    Li, Xiyuan; Li, Wei; Guo, Xin; Lou, Jingyi; Tong, Limin

    2013-07-01

    We demonstrate all-fiber hybrid photon-plasmon circuits by integrating Ag nanowires with optical fibers. Relying on near-field coupling, we realize a photon-to-plasmon conversion efficiency up to 92% in a fiber-based nanowire plasmonic probe. Around optical communication band, we assemble an all-fiber resonator and a Mach-Zehnder interferometer (MZI) with Q-factor of 6 × 10(6) and extinction ratio up to 30 dB, respectively. Using the MZI, we demonstrate fiber-compatible plasmonic sensing with high sensitivity and low optical power.

  2. Microfluidic chip integrating high throughput continuous-flow PCR and DNA hybridization for bacteria analysis.

    PubMed

    Jiang, Xiran; Shao, Ning; Jing, Wenwen; Tao, Shengce; Liu, Sixiu; Sui, Guodong

    2014-05-01

    Rapid identification of clinical pathogens is the initial and essential step for antimicrobial therapy. Herein, we successfully developed a microfluidic device which combines high-throughput continuous-flow PCR and DNA hybridization for the detection of various bacterial pathogens. Universal primers were designed based on the conserved regions of bacterial 16S ribosomal DNA (16S rDNA), and specific probes were designed from a variable region of 16S rDNA within the amplicon sequences. In the chip operation, after the continuous flow PCR was achieved in the first microfluidic chip, the product was directly introduced into a hybridization chip integrated with microarray containing the immobilized DNA probes. The target-probe hybridization was completed within 1h at 55 °C, and fluorescence signals were obtained as the readout. The presented device is simple, versatile and with less sample consumption compared with traditional instruments. It can perform high-throughput bacteria detections continuously in a single assay, which makes it a promising platform for clinical bacteria identifications.

  3. A hybrid approach to protein folding problem integrating constraint programming with local search

    PubMed Central

    2010-01-01

    Background The protein folding problem remains one of the most challenging open problems in computational biology. Simplified models in terms of lattice structure and energy function have been proposed to ease the computational hardness of this optimization problem. Heuristic search algorithms and constraint programming are two common techniques to approach this problem. The present study introduces a novel hybrid approach to simulate the protein folding problem using constraint programming technique integrated within local search. Results Using the face-centered-cubic lattice model and 20 amino acid pairwise interactions energy function for the protein folding problem, a constraint programming technique has been applied to generate the neighbourhood conformations that are to be used in generic local search procedure. Experiments have been conducted for a few small and medium sized proteins. Results have been compared with both pure constraint programming approach and local search using well-established local move set. Substantial improvements have been observed in terms of final energy values within acceptable runtime using the hybrid approach. Conclusion Constraint programming approaches usually provide optimal results but become slow as the problem size grows. Local search approaches are usually faster but do not guarantee optimal solutions and tend to stuck in local minima. The encouraging results obtained on the small proteins show that these two approaches can be combined efficiently to obtain better quality solutions within acceptable time. It also encourages future researchers on adopting hybrid techniques to solve other hard optimization problems. PMID:20122212

  4. A hybrid simulation approach for integrating safety behavior into construction planning: An earthmoving case study.

    PubMed

    Goh, Yang Miang; Askar Ali, Mohamed Jawad

    2016-08-01

    One of the key challenges in improving construction safety and health is the management of safety behavior. From a system point of view, workers work unsafely due to system level issues such as poor safety culture, excessive production pressure, inadequate allocation of resources and time and lack of training. These systemic issues should be eradicated or minimized during planning. However, there is a lack of detailed planning tools to help managers assess the impact of their upstream decisions on worker safety behavior. Even though simulation had been used in construction planning, the review conducted in this study showed that construction safety management research had not been exploiting the potential of simulation techniques. Thus, a hybrid simulation framework is proposed to facilitate integration of safety management considerations into construction activity simulation. The hybrid framework consists of discrete event simulation (DES) as the core, but heterogeneous, interactive and intelligent (able to make decisions) agents replace traditional entities and resources. In addition, some of the cognitive processes and physiological aspects of agents are captured using system dynamics (SD) approach. The combination of DES, agent-based simulation (ABS) and SD allows a more "natural" representation of the complex dynamics in construction activities. The proposed hybrid framework was demonstrated using a hypothetical case study. In addition, due to the lack of application of factorial experiment approach in safety management simulation, the case study demonstrated sensitivity analysis and factorial experiment to guide future research.

  5. Sensing and actuating capabilities of a shape memory polymer composite integrated with hybrid filler

    NASA Astrophysics Data System (ADS)

    Lu, Haibao; Yu, Kai; Liu, Yanju; Leng, Jinsong

    2010-06-01

    In this paper, hybrid fillers, including carbon black (CB) and chopped short carbon fibers (SCF), are integrated into a styrene-based shape memory polymer (SMP) with sensing and actuating capabilities. The hybrid filler is expected to transform insulating SMP into conducting. Static mechanical properties of the SMP composites containing various filler concentrations of hybrid filler reinforcement are studied first, and it is theoretically and experimentally confirmed that the mechanical properties are significantly improved by a factor of filler content of SCF. The excellent electrical properties of this novel type of SMP composite are determined by a four-point-probe method. As a consequence, the sensing properties of SMP composite filled with 5 wt% CB and 2 wt% SCF are characterized by functions of temperature and strain. These two experimental results both aid the use of SMP composites as sensors that respond to changes in temperature or mechanical loads. On the other hand, the actuating capability of SMP composites is also validated and demonstrated. The dynamic mechanical analysis result reveals that the output strength of SMP composites is improved with an increase in filler content of SCF. The actuating capability of SMP composites is subsequently demonstrated in a series of photographs.

  6. Towards integration of PET/MR hybrid imaging into radiation therapy treatment planning

    SciTech Connect

    Paulus, Daniel H.; Thorwath, Daniela; Schmidt, Holger; Quick, Harald H.

    2014-07-15

    Purpose: Multimodality imaging has become an important adjunct of state-of-the-art radiation therapy (RT) treatment planning. Recently, simultaneous PET/MR hybrid imaging has become clinically available and may also contribute to target volume delineation and biological individualization in RT planning. For integration of PET/MR hybrid imaging into RT treatment planning, compatible dedicated RT devices are required for accurate patient positioning. In this study, prototype RT positioning devices intended for PET/MR hybrid imaging are introduced and tested toward PET/MR compatibility and image quality. Methods: A prototype flat RT table overlay and two radiofrequency (RF) coil holders that each fix one flexible body matrix RF coil for RT head/neck imaging have been evaluated within this study. MR image quality with the RT head setup was compared to the actual PET/MR setup with a dedicated head RF coil. PET photon attenuation and CT-based attenuation correction (AC) of the hardware components has been quantitatively evaluated by phantom scans. Clinical application of the new RT setup in PET/MR imaging was evaluated in anin vivo study. Results: The RT table overlay and RF coil holders are fully PET/MR compatible. MR phantom and volunteer imaging with the RT head setup revealed high image quality, comparable to images acquired with the dedicated PET/MR head RF coil, albeit with 25% reduced SNR. Repositioning accuracy of the RF coil holders was below 1 mm. PET photon attenuation of the RT table overlay was calculated to be 3.8% and 13.8% for the RF coil holders. With CT-based AC of the devices, the underestimation error was reduced to 0.6% and 0.8%, respectively. Comparable results were found within the patient study. Conclusions: The newly designed RT devices for hybrid PET/MR imaging are PET and MR compatible. The mechanically rigid design and the reproducible positioning allow for straightforward CT-based AC. The systematic evaluation within this study provides the

  7. Effect of surface corrugation on low temperature phases of adsorbed (p-H2)7: A quantum path integral Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Cruz, Anthony; López, Gustavo E.

    2014-04-01

    By using path integral Monte Carlo simulations coupled to Replica Exchange algorithms, various phases of (p-H2)7 physically adsorbed on a model graphite surface were identified at low temperatures. At T=0.5 K, the expected superfluid phase was observed for flat and slightly corrugated surfaces. At intermediate and high corrugations, a "supersolid" phase in C7/16 registry and a solid phase in C1/3 registry were observed, respectively. At higher temperatures, the superfluid is converted to a fluid and the "supersolid" to a solid.

  8. Integration Issues of Cells into Battery Packs for Plug-in and Hybrid Electric Vehicles: Preprint

    SciTech Connect

    Pesaran, A. A.; Kim, G. H.; Keyser, M.

    2009-05-01

    The main barriers to increased market share of hybrid electric vehicles (HEVs) and commercialization of plug-in HEVs are the cost, safety, and life of lithium ion batteries. Significant effort is being directed to address these issues for lithium ion cells. However, even the best cells may not perform as well when integrated into packs for vehicles because of the environment in which vehicles operate. This paper discusses mechanical, electrical, and thermal integration issues and vehicle interface issues that could impact the cost, life, and safety of the system. It also compares the advantages and disadvantages of using many small cells versus a few large cells and using prismatic cells versus cylindrical cells.

  9. Integrating DNA strand displacement circuitry to the nonlinear hybridization chain reaction.

    PubMed

    Zhang, Zhuo; Fan, Tsz Wing; Hsing, I-Ming

    2017-02-23

    Programmable and modular attributes of DNA molecules allow one to develop versatile sensing platforms that can be operated isothermally and enzyme-free. In this work, we present an approach to integrate upstream DNA strand displacement circuits that can be turned on by a sequence-specific microRNA analyte with a downstream nonlinear hybridization chain reaction for a cascading hyperbranched nucleic acid assembly. This system provides a two-step amplification strategy for highly sensitive detection of the miRNA analyte, conducive for multiplexed detection. Multiple miRNA analytes were tested with our integrated circuitry using the same downstream signal amplification setting, showing the decoupling of nonlinear self-assembly with the analyte sequence. Compared with the reported methods, our signal amplification approach provides an additional control module for higher-order DNA self-assembly and could be developed into a promising platform for the detection of critical nucleic-acid based biomarkers.

  10. Integration of plug-in hybrid electric vehicles (PHEV) with grid connected residential photovoltaic energy systems

    NASA Astrophysics Data System (ADS)

    Nagarajan, Adarsh; Shireen, Wajiha

    2013-06-01

    This paper proposes an approach for integrating Plug-In Hybrid Electric Vehicles (PHEV) to an existing residential photovoltaic system, to control and optimize the power consumption of residential load. Control involves determining the source from which residential load will be catered, where as optimization of power flow reduces the stress on the grid. The system built to achieve the goal is a combination of the existing residential photovoltaic system, PHEV, Power Conditioning Unit (PCU), and a controller. The PCU involves two DC-DC Boost Converters and an inverter. This paper emphasizes on developing the controller logic and its implementation in order to accommodate the flexibility and benefits of the proposed integrated system. The proposed controller logic has been simulated using MATLAB SIMULINK and further implemented using Digital Signal Processor (DSP) microcontroller, TMS320F28035, from Texas Instruments

  11. Silicon hybrid Wafer Scale Integration (WSI) used to fabricate a Hilbert transform integrated circuit module

    NASA Astrophysics Data System (ADS)

    Gaughan, Daniel J.

    1990-12-01

    This research was performed in order to develop a superior processing schedule for fabricating wafer-scale integration (WSI) circuit modules. This technology allows the design of circuitry that spans the entire surface of a silicon substrate wafer. The circuit element employed in this research was the Hilbert transform, a digital phase-shifting circuit. The transform was incorporated into a three integrated circuit (IC) die package that consisted of a mechanically supportive silicon wafer, three IC die, and a planarizing silicon wafer. The die were epoxied into this wafer using a Teflon block as a flat, and the combination was epoxied onto the substrate wafer, forming the IC module. The original design goals of this research were to keep the IC die and wafer planar and to electrically characterize of the module's interconnections. The first goal was met; the resultant process uses a low temperature (50 C) cure to achieve die-to-wafer planarity of within 5 microns. The second was not met due to the inability to pattern the chosen photosensitive dielectric material. Recommendations for further research included the need to use a stable non-stick surface as a epoxy cure fixture and the need to investigate the photopatternable dielectric material.

  12. Integrating Hybrid Life Cycle Assessment with Multiobjective Optimization: A Modeling Framework.

    PubMed

    Yue, Dajun; Pandya, Shyama; You, Fengqi

    2016-02-02

    By combining life cycle assessment (LCA) with multiobjective optimization (MOO), the life cycle optimization (LCO) framework holds the promise not only to evaluate the environmental impacts for a given product but also to compare different alternatives and identify both ecologically and economically better decisions. Despite the recent methodological developments in LCA, most LCO applications are developed upon process-based LCA, which results in system boundary truncation and underestimation of the true impact. In this study, we propose a comprehensive LCO framework that seamlessly integrates MOO with integrated hybrid LCA. It quantifies both direct and indirect environmental impacts and incorporates them into the decision making process in addition to the more traditional economic criteria. The proposed LCO framework is demonstrated through an application on sustainable design of a potential bioethanol supply chain in the UK. Results indicate that the proposed hybrid LCO framework identifies a considerable amount of indirect greenhouse gas emissions (up to 58.4%) that are essentially ignored in process-based LCO. Among the biomass feedstock options considered, using woody biomass for bioethanol production would be the most preferable choice from a climate perspective, while the mixed use of wheat and wheat straw as feedstocks would be the most cost-effective one.

  13. Acceleration of Monte Carlo simulation of photon migration in complex heterogeneous media using Intel many-integrated core architecture.

    PubMed

    Gorshkov, Anton V; Kirillin, Mikhail Yu

    2015-08-01

    Over two decades, the Monte Carlo technique has become a gold standard in simulation of light propagation in turbid media, including biotissues. Technological solutions provide further advances of this technique. The Intel Xeon Phi coprocessor is a new type of accelerator for highly parallel general purpose computing, which allows execution of a wide range of applications without substantial code modification. We present a technical approach of porting our previously developed Monte Carlo (MC) code for simulation of light transport in tissues to the Intel Xeon Phi coprocessor. We show that employing the accelerator allows reducing computational time of MC simulation and obtaining simulation speed-up comparable to GPU. We demonstrate the performance of the developed code for simulation of light transport in the human head and determination of the measurement volume in near-infrared spectroscopy brain sensing.

  14. Hybrid integrated biological-solid-state system powered with adenosine triphosphate

    NASA Astrophysics Data System (ADS)

    Roseman, Jared M.; Lin, Jianxun; Ramakrishnan, Siddharth; Rosenstein, Jacob K.; Shepard, Kenneth L.

    2015-12-01

    There is enormous potential in combining the capabilities of the biological and the solid state to create hybrid engineered systems. While there have been recent efforts to harness power from naturally occurring potentials in living systems in plants and animals to power complementary metal-oxide-semiconductor integrated circuits, here we report the first successful effort to isolate the energetics of an electrogenic ion pump in an engineered in vitro environment to power such an artificial system. An integrated circuit is powered by adenosine triphosphate through the action of Na+/K+ adenosine triphosphatases in an integrated in vitro lipid bilayer membrane. The ion pumps (active in the membrane at numbers exceeding 2 × 106 mm-2) are able to sustain a short-circuit current of 32.6 pA mm-2 and an open-circuit voltage of 78 mV, providing for a maximum power transfer of 1.27 pW mm-2 from a single bilayer. Two series-stacked bilayers provide a voltage sufficient to operate an integrated circuit with a conversion efficiency of chemical to electrical energy of 14.9%.

  15. Hybrid integrated biological–solid-state system powered with adenosine triphosphate

    PubMed Central

    Roseman, Jared M.; Lin, Jianxun; Ramakrishnan, Siddharth; Rosenstein, Jacob K.; Shepard, Kenneth L.

    2015-01-01

    There is enormous potential in combining the capabilities of the biological and the solid state to create hybrid engineered systems. While there have been recent efforts to harness power from naturally occurring potentials in living systems in plants and animals to power complementary metal-oxide-semiconductor integrated circuits, here we report the first successful effort to isolate the energetics of an electrogenic ion pump in an engineered in vitro environment to power such an artificial system. An integrated circuit is powered by adenosine triphosphate through the action of Na+/K+ adenosine triphosphatases in an integrated in vitro lipid bilayer membrane. The ion pumps (active in the membrane at numbers exceeding 2 × 106 mm−2) are able to sustain a short-circuit current of 32.6 pA mm−2 and an open-circuit voltage of 78 mV, providing for a maximum power transfer of 1.27 pW mm−2 from a single bilayer. Two series-stacked bilayers provide a voltage sufficient to operate an integrated circuit with a conversion efficiency of chemical to electrical energy of 14.9%. PMID:26638983

  16. Hybrid integration of synthesized dielectric image waveguides in substrate integrated circuit technology and its millimeter wave applications

    NASA Astrophysics Data System (ADS)

    Patrovsky, Andreas

    This thesis deals with a novel type of integrated dielectric waveguide which is synthesized on a planar grounded substrate by perforation of the zones adjacent to a guiding channel in the center. The resulting Substrate Integrated Image Guide (SIIG) not only allows for low-loss guidance of electromagnetic waves in a similar way as the standard image guide, but also meets the requirements of low cost and ease of integration. A first objective was the detailed analysis of the propagation properties of fundamental and higher order modes in this waveguide structure, regarding attenuation, dispersion behavior, bandwidth, leakage effects, and the impact of fabrication tolerances. For this purpose, specifically adapted techniques of analysis are presented, since established methods for the conventional image guide can not be applied to the more complex periodic SIIG. Commercial electromagnetic full-wave software is used along with a dual-line approach involving a subsequent extraction of the propagation constant from simulated S-parameters. Alternatively, the solution of the eigenmode problem of a single SIIG unit cell also performs the task. Both techniques are in good agreement and provide accurate results, which is supported by measurements on laser-fabricated prototypes. It is shown that the achievable attenuation is much lower than in the standard integrated technologies and that losses mainly depend on the chosen dielectric material. As a consequence, the SIIG also is an attractive technology for applications beyond the mmW band, i. e. in the terahertz range. Design recommendations for the geometric parameters of the SIIG are discussed and a simplified equivalent model with homogeneous dielectric regions is introduced to speed up the design of passive components. Low-loss transitions between dissimilar waveguide structures are indispensable key components for a hybrid integrated platform. In order to enable the connection of standard measurement equipment in the W

  17. A Fast and Scalable Radiation Hybrid Map Construction and Integration Strategy

    PubMed Central

    Agarwala, Richa; Applegate, David L.; Maglott, Donna; Schuler, Gregory D.; Schäffer, Alejandro A.

    2000-01-01

    This paper describes a fast and scalable strategy for constructing a radiation hybrid (RH) map from data on different RH panels. The maps on each panel are then integrated to produce a single RH map for the genome. Recurring problems in using maps from several sources are that the maps use different markers, the maps do not place the overlapping markers in same order, and the objective functions for map quality are incomparable. We use methods from combinatorial optimization to develop a strategy that addresses these issues. We show that by the standard objective functions of obligate chromosome breaks and maximum likelihood, software for the traveling salesman problem produces RH maps with better quality much more quickly than using software specifically tailored for RH mapping. We use known algorithms for the longest common subsequence problem as part of our map integration strategy. We demonstrate our methods by reconstructing and integrating maps for markers typed on the Genebridge 4 (GB4) and the Stanford G3 panels publicly available from the RH database. We compare map quality of our integrated map with published maps for GB4 panel and G3 panel by considering whether markers occur in the same order on a map and in DNA sequence contigs submitted to GenBank. We find that all of the maps are inconsistent with the sequence data for at least 50% of the contigs, but our integrated maps are more consistent. The map integration strategy not only scales to multiple RH maps but also to any maps that have comparable criteria for measuring map quality. Our software improves on current technology for doing RH mapping in areas of computation time and algorithms for considering a large number of markers for mapping. The essential impediments to producing dense high-quality RH maps are data quality and panel size, not computation. PMID:10720576

  18. Optical, mechanical and electronic design and integration of POMM, a polarimeter for the Observatoire du mont Mégantic

    NASA Astrophysics Data System (ADS)

    Leclerc, Melanie R.; Côté, Patrice; Duchesne, François; Bastien, Pierre; Hernandez, Olivier; Colonna d'Istria, Pierre; Demers, Mathieu; Girard, Marc; Savard, Maxime; Lemieux, Dany; Thibault, Simon; Brousseau, Denis

    2014-08-01

    A polarimeter, to observe exoplanets in the visible and infrared, was built for the "Observatoire du Mont Mégantic" (OMM) to replace an existing instrument and reach 10-6 precision, a factor 100 improvement. The optical and mechanical designs are presented, with techniques used to precisely align the optical components and rotation axes to achieve the targeted precision. A photo-elastic modulator (PEM) and a lock-in amplifier are used to measure the polarization. The typical signal is a high DC superimposed to a very faint sinusoidal oscillation. Custom electronics was developed to measure the AC and DC amplitudes, and characterization results are presented.

  19. Automatic on-chip RNA-DNA hybridization assay with integrated phase change microvalves

    NASA Astrophysics Data System (ADS)

    Weng, Xuan; Jiang, Hai; Wang, Junsheng; Chen, Shu; Cao, Honghe; Li, Dongqing

    2012-07-01

    An RNA-DNA hybridization assay microfluidic chip integrated with electrothermally actuated phase change microvalves for detecting pathogenic bacteria is presented in this paper. In order to realize the sequential loading and washing processes required in such an assay, gravity-based pressure-driven flow and phase-change microvalves were used in the microfluidic chip. Paraffin wax was used as the phase change material in the valves and thin film heaters were used to electrothermally actuate microvalves. Light absorption measured by a photodetector to determine the concentrations of the samples. The automatic control of the complete assay was implemented by a self-coded LabVIEW program. To examine the performance of this chip, Salmonella was used as a sample pathogen. Significantly, reduction in reagent/sample consumption (up to 20 folds) was achieved by this on-chip assay, compared with using the commercial test kit following the same protocol in conventional labs. The experimental results show that the quantitative detection can be obtained in approximately 26 min, and the detection limit is as low as 103 CFU ml-1. This RNA-DNA hybridization assay microfluidic chip shows an excellent potential in the development of a portable device for point-of-testing applications.

  20. Towards the development of a hybrid-integrated chip interferometer for online surface profile measurements.

    PubMed

    Kumar, P; Martin, H; Jiang, X

    2016-06-01

    Non-destructive testing and online measurement of surface features are pressing demands in manufacturing. Thus optical techniques are gaining importance for characterization of complex engineering surfaces. Harnessing integrated optics for miniaturization of interferometry systems onto a silicon wafer and incorporating a compact optical probe would enable the development of a handheld sensor for embedded metrology applications. In this work, we present the progress in the development of a hybrid photonics based metrology sensor device for online surface profile measurements. The measurement principle along with test and measurement results of individual components has been presented. For non-contact measurement, a spectrally encoded lateral scanning probe based on the laser scanning microscopy has been developed to provide fast measurement with lateral resolution limited to the diffraction limit. The probe demonstrates a lateral resolution of ∼3.6 μm while high axial resolution (sub-nanometre) is inherently achieved by interferometry. Further the performance of the hybrid tuneable laser and the scanning probe was evaluated by measuring a standard step height sample of 100 nm.

  1. Transcap: A new integrated hybrid supercapacitor and electrolyte-gated transistor device (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Santato, Clara

    2015-10-01

    The boom in multifunctional, flexible, and portable electronics and the increasing need of low-energy cost and autonomy for applications ranging from wireless sensor networks for smart environments to biomedical applications are triggering research efforts towards the development of self-powered sustainable electronic devices. Within this context, the coupling of electronic devices (e.g. sensors, transistors) with small size energy storage systems (e.g. micro-batteries or micro-supercapacitors) is actively pursued. Micro-electrochemical supercapacitors are attracting much attention in electronics for their capability of delivering short power pulses with high stability over repeated charge/discharge cycling. For their high specific pseudocapacitance, electronically conducting polymers are well known as positive materials for hybrid supercapacitors featuring high surface carbon negative electrodes. The processability of both polymer and carbon is of great relevance for the development of flexible miniaturised devices. Electronically conducting polymers are even well known to feature an electronic conductivity that depends on their oxidation (p-doped state) and that it is modulated by the polymer potential. This property and the related pseudocapacitive response make polymer very attracting channel materials for electrolyte-gated (EG) transistors. Here, we propose a novel concept of "Trans-capacitor", an integrated device that exhibits the storage properties of a polymer/carbon hybrid supercapacitor and the low-voltage operation of an electrolyte-gated transistor.

  2. Turbine Powered Simulator Calibration and Testing for Hybrid Wing Body Powered Airframe Integration

    NASA Technical Reports Server (NTRS)

    Shea, Patrick R.; Flamm, Jeffrey D.; Long, Kurtis R.; James, Kevin D.; Tompkins, Daniel M.; Beyar, Michael D.

    2016-01-01

    Propulsion airframe integration testing on a 5.75% scale hybrid wing body model us- ing turbine powered simulators was completed at the National Full-Scale Aerodynamics Complex 40- by 80-foot test section. Four rear control surface con gurations including a no control surface de ection con guration were tested with the turbine powered simulator units to investigate how the jet exhaust in uenced the control surface performance as re- lated to the resultant forces and moments on the model. Compared to ow-through nacelle testing on the same hybrid wing body model, the control surface e ectiveness was found to increase with the turbine powered simulator units operating. This was true for pitching moment, lift, and drag although pitching moment was the parameter of greatest interest for this project. With the turbine powered simulator units operating, the model pitching moment was seen to increase when compared to the ow-through nacelle con guration indicating that the center elevon and vertical tail control authority increased with the jet exhaust from the turbine powered simulator units.

  3. Erbium-doped zinc-oxide waveguide amplifiers for hybrid photonic integrated circuits

    NASA Astrophysics Data System (ADS)

    O'Neal, Lawrence; Anthony, Deion; Bonner, Carl; Geddis, Demetris

    2016-02-01

    CMOS logic circuits have entered the sub-100nm regime, and research is on-going to investigate the quantum effects that are apparent at this dimension. To avoid some of the constraints imposed by fabrication, entropy, energy, and interference considerations for nano-scale devices, many have begun designing hybrid and/or photonic integrated circuits. These circuits consist of transistors, light emitters, photodetectors, and electrical and optical waveguides. As attenuation is a limiting factor in any communications system, it is advantageous to integrate a signal amplifier. There are numerous examples of electrical amplifiers, but in order to take advantage of the benefits provided by optically integrated systems, optical amplifiers are necessary. The erbium doped fiber amplifier is an example of an optical amplifier which is commercially available now, but the distance between the amplifier and the device benefitting from amplification can be decreased and provide greater functionality by providing local, on-chip amplification. Zinc oxide is an attractive material due to its electrical and optical properties. Its wide bandgap (≍3.4 eV) and high refractive index (≍2) make it an excellent choice for integrated optics systems. Moreover, erbium doped zinc oxide (Er:ZnO) is a suitable candidate for optical waveguide amplifiers because of its compatibility with semiconductor processing technology, 1.54 μm luminescence, transparency, low resistivity, and amplification characteristics. This research presents the characterization of radio frequency magnetron sputtered Er:ZnO, the design and fabrication of integrated waveguide amplifiers, and device analysis.

  4. Hybrid-integrated optical acceleration seismometer and its digital processing system

    NASA Astrophysics Data System (ADS)

    En, De; Chen, Caihe; Cui, Yuming; Tang, Donglin; Liang, Zhengxi; Gao, Hongyu

    2005-02-01

    Hybrid-integrated Optical acceleration seismometer and its digital signal processing system are researched and developed. The simple system figure of the seismometer is given. The principle of the seismometer is explicated. The seismometer is composed of a seismic mass,Integrated Optical Chips and a set of Michelson interferometer light path. The Michelson Integrated Optical Chips are critical parts among the sensor elements. The simple figure of the digital signal processing system is given. As an advanced quality digital signal processing (DSP) chip equipped with necessary circuits has been used in its digital signal processing system, a high accurate detection of the acceleration signal has been achieved and the environmental interference signal has been effectively compensated. Test results indicate that the accelerometer has better frequency response well above the resonant frequency, and the output signal is in correspondence with the input signal. The accelerometer also has better frequency response under the resonant frequency. At last, the curve of Seismometer frequency response is given.

  5. A novel integrated 4-DOF radial hybrid magnetic bearing for MSCMG

    NASA Astrophysics Data System (ADS)

    Jinji, Sun; Ziyan, Ju; Weitao, Han; Gang, Liu

    2017-01-01

    This paper proposes a novel integrated radial hybrid magnetic bearing (RHMB) for application with the small-sized magnetically suspended control moment gyroscope (MSCMG), which can control four degrees of freedom (4-DOFs), including two radial translational DOFs and two radial tilting DOFs, and provide the axial passive resilience. The configuration and working principle of the RHMB are introduced. Mathematical models of radial force, axial resilience and moment are established by using equivalent magnetic circuit method (EMCM), from which the radial force-radial displacement, radial force-current relationships are derived, as well as axial resilience-axial displacement, moment-tilting angle and moment-current. Finite element method (FEM) is also applied to analyze the performance and characteristics of the RHMB. The analysis results are in good agreement with that calculated by the EMCM, which is helpful in designing, optimizing and controlling the RHMB. The comparisons between the performances of the integrated 4-DOF RHMB and the traditional 4-DOF RHMB are made. The contrast results indicate that the proposed integrated 4-DOF RHMB possesses better performance compared to the traditional structure, such as copper loss, current stiffness, and tilting current stiffness.

  6. Silicon-hybrid wafer-scale integration achieved with multilevel aluminum interconnects

    NASA Astrophysics Data System (ADS)

    Takahashi, Grant L.; Kolesar, Edward S.

    A silicon-hybrid wafer-scale integration (WSI) technique has been developed to interconnect complementary metal-oxide semiconductor (CMOS) circuits. Electrical performance tests and processing diagnostics reveal that the interconnect design is very promising. The wafer-scale integrated circuit was fabricated by mounting two CMOS integrated circuit dies into etched wells and then planarizing the surface of the silicon wafer substrate. Next the wafer's surface was coated with a photosensitive polyimide and patterned with vias to accommodate the interconnecting conductors. The CMOS dies were two-bit shift registers and were electrically interconnected with aluminum conductors using conventional silicon processing techniques. A diagnostic evaluation was accomplished to determine the electrical continuity of the conductors and via contacts. When compared to a complementary wire-bonded interconnect scheme, the silicon WSI technology was found to be the superior performer at 1-MHz operating frequencies. Discontinuous interconnects were evaluated, and the failures were identified to occur at the severe topographical steps encountered on the substrate wafer's surface.

  7. Bidirectional Data Injection Operation of Hybrid Integrated SOA MZI All-Optical Wavelength Converter

    NASA Astrophysics Data System (ADS)

    Hattori, Masaharu; Nishimura, Kohsuke; Inohara, Ryo; Usami, Masashi

    2007-02-01

    A bidirectional data signal input scheme of a semiconductor optical amplifier Mach Zehnder interferometer (SOA MZI) wavelength converter was proposed and experimentally verified for a nonreturn-to-zero (NRZ)-format signal. Theoretical analyses reveal that it is possible to mitigate the patterning effect induced by cross-gain modulation (XGM) by utilizing the difference of the ratio between the XGM and cross-phase modulation on the injection directions of data signals. A hybrid integrated SOA MZI all-optical wavelength converter, in which the coupling loss between the SOA and the silica waveguide was as small as 1 dB owing to a unique active alignment technique, was used for the experiment. We have verified the superior characteristics of the proposed operation scheme for the first time. Error-free wavelength-conversion operation for an NRZ signal at 40 Gb/s was confirmed.

  8. A hybrid design methodology for structuring an Integrated Environmental Management System (IEMS) for shipping business.

    PubMed

    Celik, Metin

    2009-03-01

    The International Safety Management (ISM) Code defines a broad framework for the safe management and operation of merchant ships, maintaining high standards of safety and environmental protection. On the other hand, ISO 14001:2004 provides a generic, worldwide environmental management standard that has been utilized by several industries. Both the ISM Code and ISO 14001:2004 have the practical goal of establishing a sustainable Integrated Environmental Management System (IEMS) for shipping businesses. This paper presents a hybrid design methodology that shows how requirements from both standards can be combined into a single execution scheme. Specifically, the Analytic Hierarchy Process (AHP) and Fuzzy Axiomatic Design (FAD) are used to structure an IEMS for ship management companies. This research provides decision aid to maritime executives in order to enhance the environmental performance in the shipping industry.

  9. A Hybrid Integrated-Circuit/Microfluidic Device for Positioning, Porating and Fusing Individual Cells

    NASA Astrophysics Data System (ADS)

    Floryan, Caspar; Issadore, David; Westervelt, Robert

    2010-03-01

    Here we report a hybrid integrated-circuit/microfluidic device which can position, porate and fuse individual cells. Existing electroporation and fusion devices can only act on cells in bulk. Our device consists of a microarray of electrode pixels^1 and a grounded conducting plate. Cells were positioned with dielectrophoretic forces induced by the pixels and porated or fused with voltage pulses which caused a dielectric breakdown of the cell membrane. The device positioned cells with 10μm precision and porated or fused them with high yields. It is programmable and mass-parallelization on a single device enables bulk applications. ^1 T. Hunt, D. Issadore, R. Westervelt, Lab on a Chip, 2008, 8, 81-87.

  10. Silicon hybrid wafer scale integration interconnect performance evaluation at RF frequencies

    NASA Astrophysics Data System (ADS)

    Lyke, James C., Jr.; Kolesar, Edward S., Jr.

    The RF electrical characteristics of hybrid wafer scale integration (WSI) interconnections on silicon-polyimide-aluminum and silicon-benzocyclobutene-aluminum substrates have been evaluated. The silicon wafer substrates were five in in diameter, and each contained an identical set of 200 photolithographically patterned dielectric and aluminum interconnect test structures. The aluminum conductors were 2.5-microns thick, and half of the test structure conductors were 10-microns wide, while the remainder were 25-microns wide. Measurements between 5 kHz and 220 MHz confirmed the expected transmission line behavior manifested by the longer interconnections. The coupling levels in the 400 line/cm density structures are low, but nevertheless significant, especially when digital logic applications requiring low-noise margins are anticipated. More important were the attenuation effects manifested by the longer aluminum interconnections when they were combined with low-impedence matched terminations.

  11. Applications integration in a hybrid cloud computing environment: modelling and platform

    NASA Astrophysics Data System (ADS)

    Li, Qing; Wang, Ze-yuan; Li, Wei-hua; Li, Jun; Wang, Cheng; Du, Rui-yang

    2013-08-01

    With the development of application services providers and cloud computing, more and more small- and medium-sized business enterprises use software services and even infrastructure services provided by professional information service companies to replace all or part of their information systems (ISs). These information service companies provide applications, such as data storage, computing processes, document sharing and even management information system services as public resources to support the business process management of their customers. However, no cloud computing service vendor can satisfy the full functional IS requirements of an enterprise. As a result, enterprises often have to simultaneously use systems distributed in different clouds and their intra enterprise ISs. Thus, this article presents a framework to integrate applications deployed in public clouds and intra ISs. A run-time platform is developed and a cross-computing environment process modelling technique is also developed to improve the feasibility of ISs under hybrid cloud computing environments.

  12. Integrated karyotyping of sorghum by in situ hybridization of landed BACs.

    PubMed

    Kim, Jeong-Soon; Childs, Kevin L; Islam-Faridi, M Nurul; Menz, Monica A; Klein, Robert R; Klein, Patricia E; Price, H James; Mullet, John E; Stelly, David M

    2002-04-01

    The reliability of genome analysis and proficiency of genetic manipulation are increased by assignment of linkage groups to specific chromosomes, placement of centromeres, and orientation with respect to telomeres. We have endeavored to establish means to enable these steps in sorghum (Sorghum bicolor (L.) Moench), the genome of which contains ca. 780 Mbp spread across n = 10 chromosomes. Our approach relies on fluorescence in situ hybridization (FISH) and integrated structural genomic resources, including large-insert genomic clones in bacterial artificial chromosome (BAC) libraries. To develop robust FISH probes, we selected sorghum BACs by association with molecular markers that map near the ends of linkage groups, in regions inferred to be high in recombination. Overall, we selected 22 BACs that encompass the 10 linkage groups. As a prelude to development of a multiprobe FISH cocktail, we evaluated BAC-derived probes individually and in small groups. Biotin- and digoxygenin-labeled probes were made directly from the BAC clones and hybridized in situ to chromosomes without using suppressive unlabelled C0t-1 DNA. Based on FISH-signal strength and the relative degree of background signal, we judged 19 BAC-derived probes to be satisfactory. Based on their relative position, and collective association with all 10 linkage groups, we chose 17 of the 19 BACs to develop a 17-locus probe cocktail for dual-color detection. FISH of the cocktail allowed simultaneous identification of all 10 chromosomes. The results indicate that linkage and physical maps of sorghum allow facile selection of BAC clones according to position and FISH-signal quality. This capability will enable development of a high-quality molecular cytogenetic map and an integrated genomics system for sorghum, without need of chromosome flow sorting or microdissection. Moreover, transgeneric FISH experiments suggest that the sorghum system might be applicable to other Gramineae.

  13. High-performance hybrid complementary logic inverter through monolithic integration of a MEMS switch and an oxide TFT.

    PubMed

    Song, Yong-Ha; Ahn, Sang-Joon Kenny; Kim, Min-Wu; Lee, Jeong-Oen; Hwang, Chi-Sun; Pi, Jae-Eun; Ko, Seung-Deok; Choi, Kwang-Wook; Park, Sang-Hee Ko; Yoon, Jun-Bo

    2015-03-25

    A hybrid complementary logic inverter consisting of a microelectromechanical system switch as a promising alternative for the p-type oxide thin film transistor (TFT) and an n-type oxide TFT is presented for ultralow power integrated circuits. These heterogeneous microdevices are monolithically integrated. The resulting logic device shows a distinctive voltage transfer characteristic curve, very low static leakage, zero-short circuit current, and exceedingly high voltage gain.

  14. Novel Hybrid of LS-SVM and Kalman Filter for GPS/INS Integration

    NASA Astrophysics Data System (ADS)

    Xu, Zhenkai; Li, Yong; Rizos, Chris; Xu, Xiaosu

    Integration of Global Positioning System (GPS) and Inertial Navigation System (INS) technologies can overcome the drawbacks of the individual systems. One of the advantages is that the integrated solution can provide continuous navigation capability even during GPS outages. However, bridging the GPS outages is still a challenge when Micro-Electro-Mechanical System (MEMS) inertial sensors are used. Methods being currently explored by the research community include applying vehicle motion constraints, optimal smoother, and artificial intelligence (AI) techniques. In the research area of AI, the neural network (NN) approach has been extensively utilised up to the present. In an NN-based integrated system, a Kalman filter (KF) estimates position, velocity and attitude errors, as well as the inertial sensor errors, to output navigation solutions while GPS signals are available. At the same time, an NN is trained to map the vehicle dynamics with corresponding KF states, and to correct INS measurements when GPS measurements are unavailable. To achieve good performance it is critical to select suitable quality and an optimal number of samples for the NN. This is sometimes too rigorous a requirement which limits real world application of NN-based methods.The support vector machine (SVM) approach is based on the structural risk minimisation principle, instead of the minimised empirical error principle that is commonly implemented in an NN. The SVM can avoid local minimisation and over-fitting problems in an NN, and therefore potentially can achieve a higher level of global performance. This paper focuses on the least squares support vector machine (LS-SVM), which can solve highly nonlinear and noisy black-box modelling problems. This paper explores the application of the LS-SVM to aid the GPS/INS integrated system, especially during GPS outages. The paper describes the principles of the LS-SVM and of the KF hybrid method, and introduces the LS-SVM regression algorithm. Field

  15. Design and testing of a simulation framework for dosimetric motion studies integrating an anthropomorphic computational phantom into four-dimensional Monte Carlo.

    PubMed

    Riboldi, M; Chen, G T Y; Baroni, G; Paganetti, H; Seco, J

    2008-12-01

    We have designed a simulation framework for motion studies in radiation therapy by integrating the anthropomorphic NCAT phantom into a 4D Monte Carlo dose calculation engine based on DPM. Representing an artifact-free environment, the system can be used to identify class solutions as a function of geometric and dosimetric parameters. A pilot dynamic conformal study for three lesions ( approximately 2.0 cm) in the right lung was performed (70 Gy prescription dose). Tumor motion changed as a function of tumor location, according to the anthropomorphic deformable motion model. Conformal plans were simulated with 0 to 2 cm margin for the aperture, with additional 0.5 cm for beam penumbra. The dosimetric effects of intensity modulated radiotherapy (IMRT) vs. conformal treatments were compared in a static case. Results show that the Monte Carlo simulation framework can model tumor tracking in deformable anatomy with high accuracy, providing absolute doses for IMRT and conformal radiation therapy. A target underdosage of up to 3.67 Gy (lower lung) was highlighted in the composite dose distribution mapped at exhale. Such effects depend on tumor location and treatment margin and are affected by lung deformation and ribcage motion. In summary, the complexity in the irradiation of moving targets has been reduced to a controlled simulation environment, where several treatment options can be accurately modeled and quantified The implemented tools will be utilized for extensive motion study in lung/liver irradiation.

  16. Electric-drive tractability indicator integrated in hybrid electric vehicle tachometer

    DOEpatents

    Tamai, Goro; Zhou, Jing; Weslati, Feisel

    2014-09-02

    An indicator, system and method of indicating electric drive usability in a hybrid electric vehicle. A tachometer is used that includes a display having an all-electric drive portion and a hybrid drive portion. The all-electric drive portion and the hybrid drive portion share a first boundary which indicates a minimum electric drive usability and a beginning of hybrid drive operation of the vehicle. The indicated level of electric drive usability is derived from at least one of a percent battery discharge, a percent maximum torque provided by the electric drive, and a percent electric drive to hybrid drive operating cost for the hybrid electric vehicle.

  17. Hybrid integration of III-V semiconductor lasers on silicon waveguides using optofluidic microbubble manipulation.

    PubMed

    Jung, Youngho; Shim, Jaeho; Kwon, Kyungmook; You, Jong-Bum; Choi, Kyunghan; Yu, Kyoungsik

    2016-07-19

    Optofluidic manipulation mechanisms have been successfully applied to micro/nano-scale assembly and handling applications in biophysics, electronics, and photonics. Here, we extend the laser-based optofluidic microbubble manipulation technique to achieve hybrid integration of compound semiconductor microdisk lasers on the silicon photonic circuit platform. The microscale compound semiconductor block trapped on the microbubble surface can be precisely assembled on a desired position using photothermocapillary convective flows induced by focused laser beam illumination. Strong light absorption within the micro-scale compound semiconductor object allows real-time and on-demand microbubble generation. After the assembly process, we verify that electromagnetic radiation from the optically-pumped InGaAsP microdisk laser can be efficiently coupled to the single-mode silicon waveguide through vertical evanescent coupling. Our simple and accurate microbubble-based manipulation technique may provide a new pathway for realizing high precision fluidic assembly schemes for heterogeneously integrated photonic/electronic platforms as well as microelectromechanical systems.

  18. Hybrid integration of III-V semiconductor lasers on silicon waveguides using optofluidic microbubble manipulation

    NASA Astrophysics Data System (ADS)

    Jung, Youngho; Shim, Jaeho; Kwon, Kyungmook; You, Jong-Bum; Choi, Kyunghan; Yu, Kyoungsik

    2016-07-01

    Optofluidic manipulation mechanisms have been successfully applied to micro/nano-scale assembly and handling applications in biophysics, electronics, and photonics. Here, we extend the laser-based optofluidic microbubble manipulation technique to achieve hybrid integration of compound semiconductor microdisk lasers on the silicon photonic circuit platform. The microscale compound semiconductor block trapped on the microbubble surface can be precisely assembled on a desired position using photothermocapillary convective flows induced by focused laser beam illumination. Strong light absorption within the micro-scale compound semiconductor object allows real-time and on-demand microbubble generation. After the assembly process, we verify that electromagnetic radiation from the optically-pumped InGaAsP microdisk laser can be efficiently coupled to the single-mode silicon waveguide through vertical evanescent coupling. Our simple and accurate microbubble-based manipulation technique may provide a new pathway for realizing high precision fluidic assembly schemes for heterogeneously integrated photonic/electronic platforms as well as microelectromechanical systems.

  19. Waveguide design and fabrication of trench for hybrid integrated optic devices

    NASA Astrophysics Data System (ADS)

    Jung, Suntae; Song, Jeong Hwan; Kim, Kyoung-Youm; Oh, Yunkyung

    2005-03-01

    The hybrid integration of passive and optoelectronic devices has been widely researched. One of the main applications of this technique is for the fiber to the home (FTTH) network. In bi-directional transceivers, integrated WDM filters have been used to separate or combine the optical signals. Thin film filter (TFF) embedded waveguide type is effective for an application requiring wide bandwidth and low loss. Although the insertion loss of TFF itself is quite low, significant loss occurs at the trench and it depends on the geometrical structure and fabrication errors of the trench waveguide. The conventional sawing method and deep reactive ion etching technique were used for trench fabrication. In the case of using DRIE process, fabrication error was reduced and position error of the trench was controlled within 1um. This method could also enhance the platform design flexibility. To reduce the coupling loss between input and reflection waveguides with high tolerance of filter position, a few mode waveguide and horn waveguide were proposed. The insertion losses of transmission and reflection were less than 0.5dB and 0.7dB respectively. The 1dB tolerance of filter position was improved to be nearly twice than that of the conventional waveguide.

  20. Hybrid integration of III-V semiconductor lasers on silicon waveguides using optofluidic microbubble manipulation

    PubMed Central

    Jung, Youngho; Shim, Jaeho; Kwon, Kyungmook; You, Jong-Bum; Choi, Kyunghan; Yu, Kyoungsik

    2016-01-01

    Optofluidic manipulation mechanisms have been successfully applied to micro/nano-scale assembly and handling applications in biophysics, electronics, and photonics. Here, we extend the laser-based optofluidic microbubble manipulation technique to achieve hybrid integration of compound semiconductor microdisk lasers on the silicon photonic circuit platform. The microscale compound semiconductor block trapped on the microbubble surface can be precisely assembled on a desired position using photothermocapillary convective flows induced by focused laser beam illumination. Strong light absorption within the micro-scale compound semiconductor object allows real-time and on-demand microbubble generation. After the assembly process, we verify that electromagnetic radiation from the optically-pumped InGaAsP microdisk laser can be efficiently coupled to the single-mode silicon waveguide through vertical evanescent coupling. Our simple and accurate microbubble-based manipulation technique may provide a new pathway for realizing high precision fluidic assembly schemes for heterogeneously integrated photonic/electronic platforms as well as microelectromechanical systems. PMID:27431769

  1. Path integral Monte Carlo determination of the fourth-order virial coefficient for unitary two-component Fermi gas with zero-range interactions

    NASA Astrophysics Data System (ADS)

    Yan, Yangqian; Blume, D.

    2016-05-01

    The unitary equal-mass Fermi gas with zero-range interactions constitutes a paradigmatic model system that is relevant to atomic, condensed matter, nuclear, particle, and astro physics. This work determines the fourth-order virial coefficient b4 of such a strongly-interacting Fermi gas using a customized ab inito path integral Monte Carlo (PIMC) algorithm. In contrast to earlier theoretical results, which disagreed on the sign and magnitude of b4, our b4 agrees with the experimentally determined value, thereby resolving an ongoing literature debate. Utilizing a trap regulator, our PIMC approach determines the fourth-order virial coefficient by directly sampling the partition function. An on-the-fly anti-symmetrization avoids the Thomas collapse and, combined with the use of the exact two-body zero-range propagator, establishes an efficient general means to treat small Fermi systems with zero-range interactions. We gratefully acknowledge support by the NSF.

  2. Path-Integral Monte Carlo Determination of the Fourth-Order Virial Coefficient for a Unitary Two-Component Fermi Gas with Zero-Range Interactions

    NASA Astrophysics Data System (ADS)

    Yan, Yangqian; Blume, D.

    2016-06-01

    The unitary equal-mass Fermi gas with zero-range interactions constitutes a paradigmatic model system that is relevant to atomic, condensed matter, nuclear, particle, and astrophysics. This work determines the fourth-order virial coefficient b4 of such a strongly interacting Fermi gas using a customized ab initio path-integral Monte Carlo (PIMC) algorithm. In contrast to earlier theoretical results, which disagreed on the sign and magnitude of b4 , our b4 agrees within error bars with the experimentally determined value, thereby resolving an ongoing literature debate. Utilizing a trap regulator, our PIMC approach determines the fourth-order virial coefficient by directly sampling the partition function. An on-the-fly antisymmetrization avoids the Thomas collapse and, combined with the use of the exact two-body zero-range propagator, establishes an efficient general means to treat small Fermi systems with zero-range interactions.

  3. Integrated analysis of phenome, genome, and transcriptome of hybrid rice uncovered multiple heterosis-related loci for yield increase

    PubMed Central

    Li, Dayong; Huang, Zhiyuan; Song, Shuhui; Xin, Yeyun; Mao, Donghai; Lv, Qiming; Zhou, Ming; Tian, Dongmei; Tang, Mingfeng; Wu, Qi; Liu, Xue; Chen, Tingting; Song, Xianwei; Fu, Xiqin; Zhao, Bingran; Liang, Chengzhi; Li, Aihong; Liu, Guozhen; Li, Shigui; Hu, Songnian; Cao, Xiaofeng; Yu, Jun; Yuan, Longping; Chen, Caiyan; Zhu, Lihuang

    2016-01-01

    Hybrid rice is the dominant form of rice planted in China, and its use has extended worldwide since the 1970s. It offers great yield advantages and has contributed greatly to the world’s food security. However, the molecular mechanisms underlying heterosis have remained a mystery. In this study we integrated genetics and omics analyses to determine the candidate genes for yield heterosis in a model two-line rice hybrid system, Liang-you-pei 9 (LYP9) and its parents. Phenomics study revealed that the better parent heterosis (BPH) of yield in hybrid is not ascribed to BPH of all the yield components but is specific to the BPH of spikelet number per panicle (SPP) and paternal parent heterosis (PPH) of effective panicle number (EPN). Genetic analyses then identified multiple quantitative trait loci (QTLs) for these two components. Moreover, a number of differentially expressed genes and alleles in the hybrid were mapped by transcriptome profiling to the QTL regions as possible candidate genes. In parallel, a major QTL for yield heterosis, rice heterosis 8 (RH8), was found to be the DTH8/Ghd8/LHD1 gene. Based on the shared allelic heterozygosity of RH8 in many hybrid rice cultivars, a common mechanism for yield heterosis in the present commercial hybrid rice is proposed. PMID:27663737

  4. Integrated analysis of phenome, genome, and transcriptome of hybrid rice uncovered multiple heterosis-related loci for yield increase.

    PubMed

    Li, Dayong; Huang, Zhiyuan; Song, Shuhui; Xin, Yeyun; Mao, Donghai; Lv, Qiming; Zhou, Ming; Tian, Dongmei; Tang, Mingfeng; Wu, Qi; Liu, Xue; Chen, Tingting; Song, Xianwei; Fu, Xiqin; Zhao, Bingran; Liang, Chengzhi; Li, Aihong; Liu, Guozhen; Li, Shigui; Hu, Songnian; Cao, Xiaofeng; Yu, Jun; Yuan, Longping; Chen, Caiyan; Zhu, Lihuang

    2016-10-11

    Hybrid rice is the dominant form of rice planted in China, and its use has extended worldwide since the 1970s. It offers great yield advantages and has contributed greatly to the world's food security. However, the molecular mechanisms underlying heterosis have remained a mystery. In this study we integrated genetics and omics analyses to determine the candidate genes for yield heterosis in a model two-line rice hybrid system, Liang-you-pei 9 (LYP9) and its parents. Phenomics study revealed that the better parent heterosis (BPH) of yield in hybrid is not ascribed to BPH of all the yield components but is specific to the BPH of spikelet number per panicle (SPP) and paternal parent heterosis (PPH) of effective panicle number (EPN). Genetic analyses then identified multiple quantitative trait loci (QTLs) for these two components. Moreover, a number of differentially expressed genes and alleles in the hybrid were mapped by transcriptome profiling to the QTL regions as possible candidate genes. In parallel, a major QTL for yield heterosis, rice heterosis 8 (RH8), was found to be the DTH8/Ghd8/LHD1 gene. Based on the shared allelic heterozygosity of RH8 in many hybrid rice cultivars, a common mechanism for yield heterosis in the present commercial hybrid rice is proposed.

  5. Cultivating Curiosity: Integrating Hybrid Teaching in Courses in Human Behavior in the Social Environment

    ERIC Educational Resources Information Center

    Rodriguez-Keyes, Elizabeth; Schneider, Dana A.

    2013-01-01

    This study illustrates an experience of implementing a hybrid model for teaching human behavior in the social environment in an urban university setting. Developing a hybrid model in a BSW program arose out of a desire to reach students in a different way. Designed to promote curiosity and active learning, this particular hybrid model has students…

  6. Advanced Hybrid Spacesuit Concept Featuring Integrated Open Loop and Closed Loop Ventilation Systems

    NASA Technical Reports Server (NTRS)

    Daniel, Brian A.; Fitzpatrick, Garret R.; Gohmert, Dustin M.; Ybarra, Rick M.; Dub, Mark O.

    2013-01-01

    A document discusses the design and prototype of an advanced spacesuit concept that integrates the capability to function seamlessly with multiple ventilation system approaches. Traditionally, spacesuits are designed to operate both dependently and independently of a host vehicle environment control and life support system (ECLSS). Spacesuits that operate independent of vehicle-provided ECLSS services must do so with equipment selfcontained within or on the spacesuit. Suits that are dependent on vehicle-provided consumables must remain physically connected to and integrated with the vehicle to operate properly. This innovation is the design and prototype of a hybrid spacesuit approach that configures the spacesuit to seamlessly interface and integrate with either type of vehicular systems, while still maintaining the ability to function completely independent of the vehicle. An existing Advanced Crew Escape Suit (ACES) was utilized as the platform from which to develop the innovation. The ACES was retrofitted with selected components and one-off items to achieve the objective. The ventilation system concept was developed and prototyped/retrofitted to an existing ACES. Components were selected to provide suit connectors, hoses/umbilicals, internal breathing system ducting/ conduits, etc. The concept utilizes a lowpressure- drop, high-flow ventilation system that serves as a conduit from the vehicle supply into the suit, up through a neck seal, into the breathing helmet cavity, back down through the neck seal, out of the suit, and returned to the vehicle. The concept also utilizes a modified demand-based breathing system configured to function seamlessly with the low-pressure-drop closed-loop ventilation system.

  7. Second-generation integrated genetic linkage/radiation hybrid maps of the domestic cat (Felis catus).

    PubMed

    Menotti-Raymond, M; David, V A; Roelke, M E; Chen, Z Q; Menotti, K A; Sun, S; Schäffer, A A; Tomlin, J F; Agarwala, R; O'Brien, S J; Murphy, W J

    2003-01-01

    We report construction of second-generation integrated genetic linkage and radiation hybrid (RH) maps in the domestic cat (Felis catus) that exhibit a high level of marker concordance and provide near-full genome coverage. A total of 864 markers, including 585 coding loci (type I markers) and 279 polymorphic microsatellite loci (type II markers), are now mapped in the cat genome. We generated the genetic linkage map utilizing a multigeneration interspecies backcross pedigree between the domestic cat and the Asian leopard cat (Prionailurus bengalensis). Eighty-one type I markers were integrated with 247 type II markers from a first-generation map to generate a map of 328 loci (320 autosomal and 8 X-linked) distributed in 47 linkage groups, with an average intermarker spacing of 8 cM. Genome coverage spans approximately 2,650 cM, allowing an estimate for the genetic length of the sex-averaged map as 3,300 cM. The 834-locus second-generation domestic cat RH map was generated from the incorporation of 579 type I and 255 type II loci. Type I markers were added using targeted selection to cover either genomic regions underrepresented in the first-generation map or to refine breakpoints in human/feline synteny. The integrated linkage and RH maps reveal approximately 110 conserved segments ordered between the human and feline genomes, and provide extensive anchored reference marker homologues that connect to the more gene dense human and mouse sequence maps, suitable for positional cloning applications.

  8. A hybrid lightwave transmission system based on light injection/optoelectronic feedback techniques and fiber-VLLC integration

    NASA Astrophysics Data System (ADS)

    Tsai, Wen-Shing; Lu, Hai-Han; Li, Chung-Yi; Chen, Bo-Rui; Lin, Hung-Hsien; Lin, Dai-Hua

    2016-04-01

    A hybrid lightwave transmission system based on light injection/optoelectronic feedback techniques and fiber-visible laser light communication (VLLC) integration is proposed and experimentally demonstrated. To be the first one of its kind in employing light injection and optoelectronic feedback techniques in a fiber-VLLC integration lightwave transmission system, the light is successfully directly modulated with Community Access Television (CATV), 16-QAM, and 16-QAM-OFDM signals. Over a 40 km SMF and a 10 m free-space VLLC transport, good performances of carrier-to-noise ratio (CNR)/composite second-order (CSO)/composite triple-beat (CTB)/bit error rate (BER) are achieved for CATV/16-QAM/16-QAM-OFDM signals transmission. Such a hybrid lightwave transmission system would be very useful since it can provide broadband integrated services including CATV, Internet, and telecommunication services over both distribute fiber and in-building networks.

  9. Design and construction of a VHGT-attached WDM-type triplex transceiver module using polymer PLC hybrid integration technology

    NASA Astrophysics Data System (ADS)

    Jerábek, Vitezslav; Hüttel, Ivan; Prajzler, Václav; Busek, K.; Seliger, P.

    2008-11-01

    We report about design and construction of the bidirectional transceiver TRx module for subscriber part of the passive optical network PON for a fiber to the home FTTH topology. The TRx module consists of a epoxy novolak resin polymer planar lightwave circuit (PLC) hybrid integration technology with volume holographic grating triplex filter VHGT, surface-illuminated photodetectors and spot-size converted Fabry-Pérot laser diode in SMD package. The hybrid PLC has composed from a two parts-polymer optical waveguide including VHGT filter section and a optoelectronic microwave section. The both parts are placed on the composite substrate.

  10. Effective crustal permeability controls fault evolution: An integrated structural, mineralogical and isotopic study in granitic gneiss, Monte Rosa, northern Italy

    NASA Astrophysics Data System (ADS)

    Lawther, Susan E. M.; Dempster, Tim J.; Shipton, Zoe K.; Boyce, Adrian J.

    2016-10-01

    Two dextral faults within granitic gneiss in the Monte Rosa nappe, northern Italy reveal key differences in their evolution controlled by evolving permeability and water/rock reactions. The comparison reveals that identical host rock lithologies develop radically different mineralogies within the fault zones, resulting in fundamentally different deformation histories. Oxygen and hydrogen isotope analyses coupled to microstructural characterisation show that infiltration of meteoric water occurred into both fault zones. The smaller Virgin Fault shows evidence of periodic closed system behaviour, which promoted the growth of hydrothermal K-feldspar, whilst the more open system behaviour of the adjacent Ciao Ciao Fault generated a weaker muscovite-rich fault core, which promoted a step change in fault evolution. Effective crustal permeability is a vital control on fault evolution and, coupled to the temperature (i.e. depth) at which key mineral transformations occur, is probably a more significant factor than host rock strength in controlling fault development. The study suggests that whether a fault in granitic basement grows into a large structure may be largely controlled by the initial hydrological properties of the host rocks. Small faults exposed at the surface may therefore be evolutionary "dead-ends" that typically do not represent the early stages in the development of larger faults.

  11. ITS version 5.0 : the integrated TIGER series of coupled electron/photon Monte Carlo transport codes.

    SciTech Connect

    Franke, Brian Claude; Kensek, Ronald Patrick; Laub, Thomas William

    2004-06-01

    ITS is a powerful and user-friendly software package permitting state of the art Monte Carlo solution of linear time-independent couple electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields of arbitrary spatial dependence. Our goal has been to simultaneously maximize operational simplicity and physical accuracy. Through a set of preprocessor directives, the user selects one of the many ITS codes. The ease with which the makefile system is applied combines with an input scheme based on order-independent descriptive keywords that makes maximum use of defaults and internal error checking to provide experimentalists and theorists alike with a method for the routine but rigorous solution of sophisticated radiation transport problems. Physical rigor is provided by employing accurate cross sections, sampling distributions, and physical models for describing the production and transport of the electron/photon cascade from 1.0 GeV down to 1.0 keV. The availability of source code permits the more sophisticated user to tailor the codes to specific applications and to extend the capabilities of the codes to more complex applications. Version 5.0, the latest version of ITS, contains (1) improvements to the ITS 3.0 continuous-energy codes, (2)multigroup codes with adjoint transport capabilities, and (3) parallel implementations of all ITS codes. Moreover the general user friendliness of the software has been enhanced through increased internal error checking and improved code portability.

  12. Integration and evaluation of automated Monte Carlo simulations in the clinical practice of scanned proton and carbon ion beam therapy.

    PubMed

    Bauer, J; Sommerer, F; Mairani, A; Unholtz, D; Farook, R; Handrack, J; Frey, K; Marcelos, T; Tessonnier, T; Ecker, S; Ackermann, B; Ellerbrock, M; Debus, J; Parodi, K

    2014-08-21

    Monte Carlo (MC) simulations of beam interaction and transport in matter are increasingly considered as essential tools to support several aspects of radiation therapy. Despite the vast application of MC to photon therapy and scattered proton therapy, clinical experience in scanned ion beam therapy is still scarce. This is especially the case for ions heavier than protons, which pose additional issues like nuclear fragmentation and varying biological effectiveness. In this work, we present the evaluation of a dedicated framework which has been developed at the Heidelberg Ion Beam Therapy Center to provide automated FLUKA MC simulations of clinical patient treatments with scanned proton and carbon ion beams. Investigations on the number of transported primaries and the dimension of the geometry and scoring grids have been performed for a representative class of patient cases in order to provide recommendations on the simulation settings, showing that recommendations derived from the experience in proton therapy cannot be directly translated to the case of carbon ion beams. The MC results with the optimized settings have been compared to the calculations of the analytical treatment planning system (TPS), showing that regardless of the consistency of the two systems (in terms of beam model in water and range calculation in different materials) relevant differences can be found in dosimetric quantities and range, especially in the case of heterogeneous and deep seated treatment sites depending on the ion beam species and energies, homogeneity of the traversed tissue and size of the treated volume. The analysis of typical TPS speed-up approximations highlighted effects which deserve accurate treatment, in contrast to adequate beam model simplifications for scanned ion beam therapy. In terms of biological dose calculations, the investigation of the mixed field components in realistic anatomical situations confirmed the findings of previous groups so far reported only in

  13. Bio-hybrid integrated system for wide-spectrum solar energy harvesting

    DOE PAGES

    Martin, Kathleen; Erdman, Matthew; Quintana, Hope; ...

    2014-03-07

    An integrated hybrid photovoltaic-thermoelectric system has been developed using multiple layers of organic photosensitizers on inorganic semiconductors in order to efficiently convert UV-visible and IR energy into electricity. The hot anode of n-type ZnO nanowires was fabricated using a thermal process on pre-seeded layer and results to be crystalline with a transmittance up to 92 % and a bandgap of 3.32 eV. The visible-UV light-active organic layer was deposited between the anode and cathode at room temperature using a layer-by-layer deposition onto ITO and ZnO and Bi2Te3 nanowires from aqueous solution. The organic layer, a cooperative binary ionic (CBI) solidmore » is composed of oppositely charged porphyrin metal (Zn(II) and Sn(IV)(OH–)2) derivatives that are separately water soluble, but when combined form a virtually insoluble solid. The electron donor/acceptor properties (energy levels, band gaps) of the solid can be controlled by the choice of metals and the nature of the peripheral substituent groups of the porphyrin ring. The highly thermoelectric structure, which acts as a cold cathode, is composed of p-type Bi2Te3 nanowires with a thermoelectric efficiency (ZT) between ~0.7 to 1, values that are twice that expected for bulk Bi2Te3. Lastly, efficiency of the integrated device, was found to be 35 at 0.2 suns illumination and thermoelectric properties are enhanced by the charge transfer between the CBI and the Bi2Te3 is presented in terms of photo- and thermogenerated current and advantages of the low cost fabrication process is discussed.« less

  14. Bio-hybrid integrated system for wide-spectrum solar energy harvesting

    NASA Astrophysics Data System (ADS)

    Martin, Kathleen; Erdman, Matthew; Quintana, Hope; Shelnutt, John; Nogan, John; Swartzentruber, B.; Martinez, Julio; Lavrova, Olga; Busani, Tito

    2014-03-01

    An integrated hybrid photovoltaic-thermoelectric system has been developed using multiple layers of organic photosensitizers on inorganic semiconductors in order to efficiently convert UV-visible and IR energy into electricity. The hot anode of n-type ZnO nanowires was fabricated using a thermal process on pre-seeded layer and results to be crystalline with a transmittance up to 92 % and a bandgap of 3.32 eV. The visible-UV light-active organic layer was deposited between the anode and cathode at room temperature using a layer-by-layer deposition onto ITO and ZnO and Bi2Te3 nanowires from aqueous solution. The organic layer, a cooperative binary ionic (CBI) solid is composed of oppositely charged porphyrin metal (Zn(II) and Sn(IV)(OH-)2) derivatives that are separately water soluble, but when combined form a virtually insoluble solid. The electron donor/acceptor properties (energy levels, band gaps) of the solid can be controlled by the choice of metals and the nature of the peripheral substituent groups of the porphyrin ring. The highly thermoelectric structure, which acts as a cold cathode, is composed of p-type Bi2Te3 nanowires with a thermoelectric efficiency (ZT) between ~0.7 to 1, values that are twice that expected for bulk Bi2Te3. Efficiency of the integrated device, was found to be 35 at 0.2 suns illumination and thermoelectric properties are enhanced by the charge transfer between the CBI and the Bi2Te3 is presented in terms of photo- and thermogenerated current and advantages of the low cost fabrication process is discussed.

  15. Bio-hybrid integrated system for wide-spectrum solar energy harvesting

    SciTech Connect

    Martin, Kathleen; Erdman, Matthew; Quintana, Hope; Shelnutt, John; Nogan, John; Swartzentruber, B.; Martinez, Julio; Lavrova, Olga; Busani, Tito

    2014-03-07

    An integrated hybrid photovoltaic-thermoelectric system has been developed using multiple layers of organic photosensitizers on inorganic semiconductors in order to efficiently convert UV-visible and IR energy into electricity. The hot anode of n-type ZnO nanowires was fabricated using a thermal process on pre-seeded layer and results to be crystalline with a transmittance up to 92 % and a bandgap of 3.32 eV. The visible-UV light-active organic layer was deposited between the anode and cathode at room temperature using a layer-by-layer deposition onto ITO and ZnO and Bi2Te3 nanowires from aqueous solution. The organic layer, a cooperative binary ionic (CBI) solid is composed of oppositely charged porphyrin metal (Zn(II) and Sn(IV)(OH–)2) derivatives that are separately water soluble, but when combined form a virtually insoluble solid. The electron donor/acceptor properties (energy levels, band gaps) of the solid can be controlled by the choice of metals and the nature of the peripheral substituent groups of the porphyrin ring. The highly thermoelectric structure, which acts as a cold cathode, is composed of p-type Bi2Te3 nanowires with a thermoelectric efficiency (ZT) between ~0.7 to 1, values that are twice that expected for bulk Bi2Te3. Lastly, efficiency of the integrated device, was found to be 35 at 0.2 suns illumination and thermoelectric properties are enhanced by the charge transfer between the CBI and the Bi2Te3 is presented in terms of photo- and thermogenerated current and advantages of the low cost fabrication process is discussed.

  16. Local and nonlocal optically induced transparency effects in graphene-silicon hybrid nanophotonic integrated circuits.

    PubMed

    Yu, Longhai; Zheng, Jiajiu; Xu, Yang; Dai, Daoxin; He, Sailing

    2014-11-25

    Graphene is well-known as a two-dimensional sheet of carbon atoms arrayed in a honeycomb structure. It has some unique and fascinating properties, which are useful for realizing many optoelectronic devices and applications, including transistors, photodetectors, solar cells, and modulators. To enhance light-graphene interactions and take advantage of its properties, a promising approach is to combine a graphene sheet with optical waveguides, such as silicon nanophotonic wires considered in this paper. Here we report local and nonlocal optically induced transparency (OIT) effects in graphene-silicon hybrid nanophotonic integrated circuits. A low-power, continuous-wave laser is used as the pump light, and the power required for producing the OIT effect is as low as ∼0.1 mW. The corresponding power density is several orders lower than that needed for the previously reported saturated absorption effect in graphene, which implies a mechanism involving light absorption by the silicon and photocarrier transport through the silicon-graphene junction. The present OIT effect enables low power, all-optical, broadband control and sensing, modulation and switching locally and nonlocally.

  17. Chip-integrated plasmonic Schottky photodetection based on hybrid silicon waveguides

    NASA Astrophysics Data System (ADS)

    Lu, Hua; Gu, Min

    2017-03-01

    We numerically and theoretically investigate the plasmonic Schottky photodetection in a novel hybrid silicon-on-insulator waveguide system, which consists of the silicon waveguides and detection area with the metal stripes and doped silicon film on the silicon dioxide substrate. The results illustrate that the fundamental TE mode in the silicon waveguide can be effectively coupled into the metal/silicon waveguide with the excitation of surface plasmon polaritons (SPPs). The coupling is suppressed for the TM mode due to the mismatch between the electric field distributions of the TM and SPP modes. It is found that the coupling efficiency from the TE to SPP mode is dependent on the width and height of the silicon waveguide and can significantly approach 36.1%. The ultracompact configuration yields a high responsivity of 21.7 mA/W and low dark current of 0.45 μA for the photodetection at the communication wavelength. The plasmonic Schottky photodetector could find favorable applications in the chip-integrated optical interconnects and signal processing.

  18. Integrated Multi-Color Light Emitting Device Made with Hybrid Crystal Structure

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Choi, Sang Hyouk (Inventor)

    2016-01-01

    An integrated hybrid crystal Light Emitting Diode ("LED") display device that may emit red, green, and blue colors on a single wafer. The various embodiments may provide double-sided hetero crystal growth with hexagonal wurtzite III-Nitride compound semiconductor on one side of (0001) c-plane sapphire media and cubic zinc-blended III-V or II-VI compound semiconductor on the opposite side of c-plane sapphire media. The c-plane sapphire media may be a bulk single crystalline c-plane sapphire wafer, a thin free standing c-plane sapphire layer, or crack-and-bonded c-plane sapphire layer on any substrate. The bandgap energies and lattice constants of the compound semiconductor alloys may be changed by mixing different amounts of ingredients of the same group into the compound semiconductor. The bandgap energy and lattice constant may be engineered by changing the alloy composition within the cubic group IV, group III-V, and group II-VI semiconductors and within the hexagonal III-Nitrides.

  19. An integrated hybrid microfluidic device for oviposition-based chemical screening of adult Drosophila melanogaster.

    PubMed

    Leung, Jacob C K; Hilliker, Arthur J; Rezai, Pouya

    2016-02-21

    Chemical screening using Drosophila melanogaster (the fruit fly) is vital in drug discovery, agricultural, and toxicological applications. Oviposition (egg laying) on chemically-doped agar plates is an important read-out metric used to quantitatively assess the biological fitness and behavioral responses of Drosophila. Current oviposition-based chemical screening studies are inaccurate, labor-intensive, time-consuming, and inflexible due to the manual chemical doping of agar. In this paper, we have developed a novel hybrid agar-polydimethylsiloxane (PDMS) microfluidic device for single- and multi-concentration chemical dosing and on-chip oviposition screening of free-flying adult stage Drosophila. To achieve this, we have devised a novel technique to integrate agar with PDMS channels using ice as a sacrificial layer. Subsequently, we have conducted single-chemical toxicity and multiple choice chemical preference assays on adult Drosophila melanogaster using zinc and acetic acid at various concentrations. Our device has enabled us to 1) demonstrate that Drosophila is capable of sensing the concentration of different chemicals on a PDMS-agar microfluidic device, which plays significant roles in determining oviposition site selection and 2) investigate whether oviposition preference differs between single- and multi-concentration chemical environments. This device may be used to study fundamental and applied biological questions in Drosophila and other egg laying insects. It can also be extended in design to develop sophisticated and dynamic chemical dosing and high-throughput screening platforms in the future that are not easily achievable with the existing oviposition screening techniques.

  20. Integration and optimization of the gas removal system for hybrid-cycle OTEC power plants

    SciTech Connect

    Rabas, T.J.; Panchal, C.B.; Stevens, H.C. )

    1990-02-01

    A preliminary design of the noncondensible gas removal system for a 10 mWe, land-based hybrid-cycle OTEC power plant has been developed and is presented herein. This gas removal system is very different from that used for conventional power plants because of the substantially larger and continuous noncondensible gas flow rates and lower condenser pressure levels which predicate the need for higher-efficiency components. Previous OTEC studies discussed the need for multiple high-efficiency compressors with intercoolers; however, no previous design effort was devoted to the details of the intercoolers, integration and optimization of the intercoolers with the compressors, and the practical design constraints and feasibility issues of these components. The resulting gas removal system design uses centrifugal (radial) compressors with matrix-type crossflow aluminum heat exchangers as intercoolers. Once-through boiling of ammonia is used as the heat sink for the cooling and condensing of the steam-gas mixture. A computerized calculation method was developed for the performance analysis and subsystem optimization. For a specific number of compressor units and the stream arrangement, the method is used to calculate the dimensions, speeds, power requirements, and costs of all the components.

  1. The parylene-aluminum multilayer interconnection system for wafer scale integration and wafer scale hybrid packaging

    NASA Astrophysics Data System (ADS)

    Majid, N.; Dabral, S.; McDonald, J. F.

    1989-03-01

    Polyimides have been considered as interlayer dielectrics for wafer scale integration (WSI) and wafer scale hybrid packaging (WSHP). However, high temperature curing steps for polyimide lead to large stresses in polyimide films. This is due to differing thermal expansion coefficients of the metal conductor, insulator and substrate materials causing yield and reliability problems. Polyimides also require the use of solvents, and tend to outgas during subsequent processing. They tend to absorb moisture with resulting degradation of dielectric constants. Also, the spin on method used to apply and planarize polyimide layers exhibits nonuniformity of thickness on large wafers. In this paper we examine parylene (Poly-p-xylylene) and some of its derivatives as possible interlayer dielectrics due to some of their attractive features. Parylene has a low dielectric constant. It can be vapor deposited at low temperatures and in vacuum. It is also highly resistant to corrosion and is a clear, transparent material with possible use for optical interconnections. This paper studies the reactive ion etching properties for polyimides and parylenes in an oxygen containing plasma under identical conditions. The etching rates of the parylenes and polyimides have been compared. The surface properties of these polymers are examined. Further, the film growth properties of aluminum deposited on the etched surfaces using the ionized cluster beam are investigated.

  2. Photo-crosslinkable hybrid material with improved aging stability for integrated optics

    NASA Astrophysics Data System (ADS)

    Kusevic, Maja; Maaninen, Arto; Hiltunen, Jussi; Hiltunen, Marianne; Tuominen, Jarkko; Karioja, Pentti

    2004-08-01

    In the last decade, the processing of the waveguide structures on various substrates under mild conditions has been an appealing aim. The lithographic patterning of organic-inorganic hybrid materials processed by means of sol-gel technology allows the production of waveguides and other optical components. We describe the synthesis of a new, photo-patternable, organically modified material with an improved ageing stability. Synthesis step does not involve widely used zirconia precursors, but it retains the same possibility of altering the refractive index by tailoring of the material composition. Refractive index values varied from 1.4700 to 1.5100. Measured birefringence values meet the requirements of most integrated planar optic applications. The synthesized material is compatible with silicon, glass and plastic substrates. Material was analyzed using 29Si NMR techniques. The processed slab waveguides were characterized by using the prism coupling technique at various wavelengths. The attenuation in the waveguide was determined by the cut-back method, and it was found to be less than 0.5dB/cm at the wavelength of 830 nm. The morphology of the microstructures was measured by using the interferometer equipment. Slab waveguides rms values were in order of only 2 nm.

  3. A Monte Carlo Approach to Modeling the Breakup of the Space Launch System EM-1 Core Stage with an Integrated Blast and Fragment Catalogue

    NASA Technical Reports Server (NTRS)

    Richardson, Erin; Hays, M. J.; Blackwood, J. M.; Skinner, T.

    2014-01-01

    The Liquid Propellant Fragment Overpressure Acceleration Model (L-FOAM) is a tool developed by Bangham Engineering Incorporated (BEi) that produces a representative debris cloud from an exploding liquid-propellant launch vehicle. Here it is applied to the Core Stage (CS) of the National Aeronautics and Space Administration (NASA) Space Launch System (SLS launch vehicle). A combination of Probability Density Functions (PDF) based on empirical data from rocket accidents and applicable tests, as well as SLS specific geometry are combined in a MATLAB script to create unique fragment catalogues each time L-FOAM is run-tailored for a Monte Carlo approach for risk analysis. By accelerating the debris catalogue with the BEi blast model for liquid hydrogen / liquid oxygen explosions, the result is a fully integrated code that models the destruction of the CS at a given point in its trajectory and generates hundreds of individual fragment catalogues with initial imparted velocities. The BEi blast model provides the blast size (radius) and strength (overpressure) as probabilities based on empirical data and anchored with analytical work. The coupling of the L-FOAM catalogue with the BEi blast model is validated with a simulation of the Project PYRO S-IV destruct test. When running a Monte Carlo simulation, L-FOAM can accelerate all catalogues with the same blast (mean blast, 2 s blast, etc.), or vary the blast size and strength based on their respective probabilities. L-FOAM then propagates these fragments until impact with the earth. Results from L-FOAM include a description of each fragment (dimensions, weight, ballistic coefficient, type and initial location on the rocket), imparted velocity from the blast, and impact data depending on user desired application. LFOAM application is for both near-field (fragment impact to escaping crew capsule) and far-field (fragment ground impact footprint) safety considerations. The user is thus able to use statistics from a Monte Carlo

  4. Integrating molecular, phenotypic and environmental data to elucidate patterns of crocodile hybridization in Belize.

    PubMed

    Hekkala, Evon R; Platt, Steven G; Thorbjarnarson, John B; Rainwater, Thomas R; Tessler, Michael; Cunningham, Seth W; Twomey, Christopher; Amato, George

    2015-09-01

    The genus Crocodylus comprises 12 currently recognized species, many of which can be difficult to differentiate phenotypically. Interspecific hybridization among crocodiles is known to occur in captivity and has been documented between some species in the wild. The identification of hybrid individuals is of importance for management and monitoring of crocodilians, many of which are Convention on International Trade in Endangered Species (CITES) listed. In this study, both mitochondrial and nuclear DNA markers were evaluated for their use in confirming a suspected hybrid zone between American crocodile (Crocodylus acutus) and Morelet's crocodile (Crocodylus moreletii) populations in southern Belize where individuals and nests exhibiting atypical phenotypic features had previously been observed. Patterns observed in both phenotypic and molecular data indicate possible behavioural and ecological characteristics associated with hybridization events. The results of the combined analyses found that the majority of suspected hybrid samples represent crosses between female C. acutus and male C. moreletii. Phenotypic data could statistically identify hybrids, although morphological overlap between hybrids and C. moreletii reduced reliability of identification based solely on field characters. Ecologically, C. acutus was exclusively found in saline waters, whereas hybrids and C. moreletii were largely absent in these conditions. A hypothesized correlation between unidirectional hybridization and destruction of C. acutus breeding habitats warrants additional research.

  5. Integrating molecular, phenotypic and environmental data to elucidate patterns of crocodile hybridization in Belize

    PubMed Central

    Hekkala, Evon R.; Platt, Steven G.; Thorbjarnarson, John B.; Rainwater, Thomas R.; Tessler, Michael; Cunningham, Seth W.; Twomey, Christopher; Amato, George

    2015-01-01

    The genus Crocodylus comprises 12 currently recognized species, many of which can be difficult to differentiate phenotypically. Interspecific hybridization among crocodiles is known to occur in captivity and has been documented between some species in the wild. The identification of hybrid individuals is of importance for management and monitoring of crocodilians, many of which are Convention on International Trade in Endangered Species (CITES) listed. In this study, both mitochondrial and nuclear DNA markers were evaluated for their use in confirming a suspected hybrid zone between American crocodile (Crocodylus acutus) and Morelet’s crocodile (Crocodylus moreletii) populations in southern Belize where individuals and nests exhibiting atypical phenotypic features had previously been observed. Patterns observed in both phenotypic and molecular data indicate possible behavioural and ecological characteristics associated with hybridization events. The results of the combined analyses found that the majority of suspected hybrid samples represent crosses between female C. acutus and male C. moreletii. Phenotypic data could statistically identify hybrids, although morphological overlap between hybrids and C. moreletii reduced reliability of identification based solely on field characters. Ecologically, C. acutus was exclusively found in saline waters, whereas hybrids and C. moreletii were largely absent in these conditions. A hypothesized correlation between unidirectional hybridization and destruction of C. acutus breeding habitats warrants additional research. PMID:26473062

  6. HiRel: Hybrid Automated Reliability Predictor (HARP) integrated reliability tool system, (version 7.0). Volume 2: HARP tutorial

    NASA Technical Reports Server (NTRS)

    Rothmann, Elizabeth; Dugan, Joanne Bechta; Trivedi, Kishor S.; Mittal, Nitin; Bavuso, Salvatore J.

    1994-01-01

    The Hybrid Automated Reliability Predictor (HARP) integrated Reliability (HiRel) tool system for reliability/availability prediction offers a toolbox of integrated reliability/availability programs that can be used to customize the user's application in a workstation or nonworkstation environment. The Hybrid Automated Reliability Predictor (HARP) tutorial provides insight into HARP modeling techniques and the interactive textual prompting input language via a step-by-step explanation and demonstration of HARP's fault occurrence/repair model and the fault/error handling models. Example applications are worked in their entirety and the HARP tabular output data are presented for each. Simple models are presented at first with each succeeding example demonstrating greater modeling power and complexity. This document is not intended to present the theoretical and mathematical basis for HARP.

  7. Quantum Gibbs ensemble Monte Carlo

    SciTech Connect

    Fantoni, Riccardo; Moroni, Saverio

    2014-09-21

    We present a path integral Monte Carlo method which is the full quantum analogue of the Gibbs ensemble Monte Carlo method of Panagiotopoulos to study the gas-liquid coexistence line of a classical fluid. Unlike previous extensions of Gibbs ensemble Monte Carlo to include quantum effects, our scheme is viable even for systems with strong quantum delocalization in the degenerate regime of temperature. This is demonstrated by an illustrative application to the gas-superfluid transition of {sup 4}He in two dimensions.

  8. Project Integration Office for the electric and hybrid vehicle R and D program. Eighth progress report, March 1982

    SciTech Connect

    Not Available

    1982-04-19

    The Project Integration Office (PIO) was established to assist the US DOE with the direction and coordination of its multiple electric vehicle and hybrid electric vehicle research programs in order to get the maximum payoff from these research efforts. In addition, the PIO performs objective independent technical and economic studies, analyses and modeling, and maintains a technical information liaison service to facilitate information exchange between the program participants and industry. Progress in each of these activities is reported. (LCL)

  9. A High-Capacity Adenoviral Hybrid Vector System Utilizing the Hyperactive Sleeping Beauty Transposase SB100X for Enhanced Integration.

    PubMed

    Boehme, Philip; Zhang, Wenli; Solanki, Manish; Ehrke-Schulz, Eric; Ehrhardt, Anja

    2016-07-19

    For efficient delivery of required genetic elements we utilized high-capacity adenoviral vectors in the past allowing high transgene capacities of up to 36 kb. Previously we explored the hyperactive Sleeping Beauty (SB) transposase (HSB5) for somatic integration from the high-capacity adenoviral vectors genome. To further improve this hybrid vector system we hypothesized that the previously described hyperactive SB transposase SB100X will result in significantly improved efficacies after transduction of target cells. Plasmid based delivery of the SB100X system revealed significantly increased integration efficiencies compared with the previously published hyperactive SB transposase HSB5. After optimizing experimental setups for high-capacity adenoviral vectors-based delivery of the SB100X system we observed up to eightfold and 100-fold increased integration efficiencies compared with the previously published hyperactive SB transposase HSB5 and the inactive transposase mSB, respectively. Furthermore, transposon copy numbers per cell were doubled with SB100X compared with HSB5 when using the identical multiplicity of infection. We believe that this improved hybrid vector system represents a valuable tool for achieving stabilized transgene expression in cycling cells and for treatment of numerous genetic disorders. Especially for in vivo approaches this improved adenoviral hybrid vector system will be advantageous because it may potentially allow reduction of the applied viral dose.

  10. A High-Capacity Adenoviral Hybrid Vector System Utilizing the Hyperactive Sleeping Beauty Transposase SB100X for Enhanced Integration.

    PubMed

    Boehme, Philip; Zhang, Wenli; Solanki, Manish; Ehrke-Schulz, Eric; Ehrhardt, Anja

    2016-01-01

    For efficient delivery of required genetic elements we utilized high-capacity adenoviral vectors in the past allowing high transgene capacities of up to 36 kb. Previously we explored the hyperactive Sleeping Beauty (SB) transposase (HSB5) for somatic integration from the high-capacity adenoviral vectors genome. To further improve this hybrid vector system we hypothesized that the previously described hyperactive SB transposase SB100X will result in significantly improved efficacies after transduction of target cells. Plasmid based delivery of the SB100X system revealed significantly increased integration efficiencies compared with the previously published hyperactive SB transposase HSB5. After optimizing experimental setups for high-capacity adenoviral vectors-based delivery of the SB100X system we observed up to eightfold and 100-fold increased integration efficiencies compared with the previously published hyperactive SB transposase HSB5 and the inactive transposase mSB, respectively. Furthermore, transposon copy numbers per cell were doubled with SB100X compared with HSB5 when using the identical multiplicity of infection. We believe that this improved hybrid vector system represents a valuable tool for achieving stabilized transgene expression in cycling cells and for treatment of numerous genetic disorders. Especially for in vivo approaches this improved adenoviral hybrid vector system will be advantageous because it may potentially allow reduction of the applied viral dose.

  11. Precision measurement of the top quark mass in the lepton + jets channel using a matrix element method with Quasi-Monte Carlo integration

    SciTech Connect

    Lujan, Paul Joseph

    2009-12-01

    This thesis presents a measurement of the top quark mass obtained from p$\\bar{p}$ collisions at √s = 1.96 TeV at the Fermilab Tevatron using the CDF II detector. The measurement uses a matrix element integration method to calculate a t$\\bar{t}$ likelihood, employing a Quasi-Monte Carlo integration, which enables us to take into account effects due to finite detector angular resolution and quark mass effects. We calculate a t$\\bar{t}$ likelihood as a 2-D function of the top pole mass mt and ΔJES, where ΔJES parameterizes the uncertainty in our knowledge of the jet energy scale; it is a shift applied to all jet energies in units of the jet-dependent systematic error. By introducing ΔJES into the likelihood, we can use the information contained in W boson decays to constrain ΔJES and reduce error due to this uncertainty. We use a neural network discriminant to identify events likely to be background, and apply a cut on the peak value of individual event likelihoods to reduce the effect of badly reconstructed events. This measurement uses a total of 4.3 fb-1 of integrated luminosity, requiring events with a lepton, large ET, and exactly four high-energy jets in the pseudorapidity range |η| < 2.0, of which at least one must be tagged as coming from a b quark. In total, we observe 738 events before and 630 events after applying the likelihood cut, and measure mt = 172.6 ± 0.9 (stat.) ± 0.7 (JES) ± 1.1 (syst.) GeV/c2, or mt = 172.6 ± 1.6 (tot.) GeV/c2.

  12. Thermodynamics of hydrogen adsorption in slit-like carbon nanopores at 77 K. Classical versus path-integral Monte Carlo simulations.

    PubMed

    Kowalczyk, Piotr; Gauden, Piotr A; Terzyk, Artur P; Bhatia, Suresh K

    2007-03-27

    Hydrogen in slit-like carbon nanopores at 77 K represents a quantum fluid in strong confinement. We have used path-integral grand canonical Monte Carlo and classical grand canonical Monte Carlo simulations for the investigation of the "quantumness" of hydrogen at 77 K adsorbed in slit-like carbon nanopores up to 1 MPa. We find that classical simulations overpredict the hydrogen uptake in carbon nanopores due to neglect of the quantum delocalization. Such disagreement of both simulation methods depends on the slit-like carbon pore size. However, the differences between the final uptakes of hydrogen computed from both classical and quantum simulations are not large due to a similar effective size of quantum/classical hydrogen molecules in carbon nanospaces. For both types of molecular simulations, the volumetric density of stored energy in optimal carbon nanopores exceeds 6.4 MJ dm(-3) (i.e., 45 kg m(-3); Department of Energy target for 2010). In contrast to the hydrogen adsorption isotherms, we found a large reduction of isosteric enthalpy of adsorption computed from the quantum Feynman's path-integral simulations in comparison to the classical values at 77 K and pressures up to 1 MPa. Depression of the quantum isosteric enthalpy of adsorption depends on the slit-like carbon pore size. For the narrow pores (pore width H in [0.59-0.7] nm), the reduction of the quantum isosteric enthalpy of adsorption at zero coverage is around 50% in comparison to the classical one. We observed new phenomena called, by us, the quantum confinement-inducing polymer shrinking. In carbon nanospaces, the quantum cyclic polymers shrink, in comparison to its bulk-phase counterpart, due to a strong confinement effect. At considered storage conditions, this complex phenomenon depends on the size of the slit-like carbon nanopore and the density of hydrogen volumetric energy. For the smallest nanopores and a low density of hydrogen volumetric energy, the reduction of the polymer effective size

  13. Hybrid materials science: a promised land for the integrative design of multifunctional materials

    NASA Astrophysics Data System (ADS)

    Nicole, Lionel; Laberty-Robert, Christel; Rozes, Laurence; Sanchez, Clément

    2014-05-01

    For more than 5000 years, organic-inorganic composite materials created by men via skill and serendipity have been part of human culture and customs. The concept of ``hybrid organic-inorganic'' nanocomposites exploded in the second half of the 20th century with the expansion of the so-called ``chimie douce'' which led to many collaborations between a large set of chemists, physicists and biologists. Consequently, the scientific melting pot of these very different scientific communities created a new pluridisciplinary school of thought. Today, the tremendous effort of basic research performed in the last twenty years allows tailor-made multifunctional hybrid materials with perfect control over composition, structure and shape. Some of these hybrid materials have already entered the industrial market. Many tailor-made multiscale hybrids are increasingly impacting numerous fields of applications: optics, catalysis, energy, environment, nanomedicine, etc. In the present feature article, we emphasize several fundamental and applied aspects of the hybrid materials field: bioreplication, mesostructured thin films, Lego-like chemistry designed hybrid nanocomposites, and advanced hybrid materials for energy. Finally, a few commercial applications of hybrid materials will be presented.

  14. Integrating Quality Matters into Hybrid Course Design: A Principles of Marketing Case Study

    ERIC Educational Resources Information Center

    Young, Mark R.

    2014-01-01

    Previous research supports the idea that the success of hybrid or online delivery modes is more a function of course design than delivery media. This article describes a case study of a hybrid Principles of Marketing course that implemented a comprehensive redesign based on design principles espoused by the Quality Matters Program, a center for…

  15. Hybrid materials science: a promised land for the integrative design of multifunctional materials.

    PubMed

    Nicole, Lionel; Laberty-Robert, Christel; Rozes, Laurence; Sanchez, Clément

    2014-06-21

    For more than 5000 years, organic-inorganic composite materials created by men via skill and serendipity have been part of human culture and customs. The concept of "hybrid organic-inorganic" nanocomposites exploded in the second half of the 20th century with the expansion of the so-called "chimie douce" which led to many collaborations between a large set of chemists, physicists and biologists. Consequently, the scientific melting pot of these very different scientific communities created a new pluridisciplinary school of thought. Today, the tremendous effort of basic research performed in the last twenty years allows tailor-made multifunctional hybrid materials with perfect control over composition, structure and shape. Some of these hybrid materials have already entered the industrial market. Many tailor-made multiscale hybrids are increasingly impacting numerous fields of applications: optics, catalysis, energy, environment, nanomedicine, etc. In the present feature article, we emphasize several fundamental and applied aspects of the hybrid materials field: bioreplication, mesostructured thin films, Lego-like chemistry designed hybrid nanocomposites, and advanced hybrid materials for energy. Finally, a few commercial applications of hybrid materials will be presented.

  16. Efficient Organic/Inorganic Hybrid Solar Cell Integrating Polymer Nanowires and Inorganic Nanotetrapods.

    PubMed

    Xu, Weizhe; Tan, Furui; Liu, Xiansheng; Zhang, Weifeng; Qu, Shengchun; Wang, Zhijie; Wang, Zhanguo

    2017-12-01

    Constructing a highly efficient bulk-heterojunction is of critical importance to the hybrid organic/inorganic solar cells. Here in this work, we introduce a novel hybrid architecture containing P3HT nanowire and CdSe nanotetrapod as bicontinuous charge channels for holes and electrons, respectively. Compared to the traditionally applied P3HT molecules, the well crystallized P3HT nanowires qualify an enhanced light absorption at the long wavelength as well as strengthened charge carrier transport in the hybrid active layer. Accordingly, based on efficient dissociation of photogenerated excitons, the interpercolation of these two nano-building blocks allows a photovoltaic conversion efficiency of 1.7% in the hybrid solar cell, up to 42% enhancement compared to the reference solar cell with traditional P3HT molecules as electron donor. Our work provides a promising hybrid structure for efficient organic/inorganic bulk-heterojunction solar cells.

  17. Efficient Organic/Inorganic Hybrid Solar Cell Integrating Polymer Nanowires and Inorganic Nanotetrapods

    NASA Astrophysics Data System (ADS)

    Xu, Weizhe; Tan, Furui; Liu, Xiansheng; Zhang, Weifeng; Qu, Shengchun; Wang, Zhijie; Wang, Zhanguo

    2017-01-01

    Constructing a highly efficient bulk-heterojunction is of critical importance to the hybrid organic/inorganic solar cells. Here in this work, we introduce a novel hybrid architecture containing P3HT nanowire and CdSe nanotetrapod as bicontinuous charge channels for holes and electrons, respectively. Compared to the traditionally applied P3HT molecules, the well crystallized P3HT nanowires qualify an enhanced light absorption at the long wavelength as well as strengthened charge carrier transport in the hybrid active layer. Accordingly, based on efficient dissociation of photogenerated excitons, the interpercolation of these two nano-building blocks allows a photovoltaic conversion efficiency of 1.7% in the hybrid solar cell, up to 42% enhancement compared to the reference solar cell with traditional P3HT molecules as electron donor. Our work provides a promising hybrid structure for efficient organic/inorganic bulk-heterojunction solar cells.

  18. Hybrid Environmental Control System Integrated Modeling Trade Study Analysis for Commercial Aviation

    NASA Astrophysics Data System (ADS)

    Parrilla, Javier

    Current industry trends demonstrate aircraft electrification will be part of future platforms in order to achieve higher levels of efficiency in various vehicle level sub-systems. However electrification requires a substantial change in aircraft design that is not suitable for re-winged or re-engined applications as some aircraft manufacturers are opting for today. Thermal limits arise as engine cores progressively get smaller and hotter to improve overall engine efficiency, while legacy systems still demand a substantial amount of pneumatic, hydraulic and electric power extraction. The environmental control system (ECS) provides pressurization, ventilation and air conditioning in commercial aircraft, making it the main heat sink for all aircraft loads with exception of the engine. To mitigate the architecture thermal limits in an efficient manner, the form in which the ECS interacts with the engine will have to be enhanced as to reduce the overall energy consumed and achieve an energy optimized solution. This study examines a tradeoff analysis of an electric ECS by use of a fully integrated Numerical Propulsion Simulation System (NPSS) model that is capable of studying the interaction between the ECS and the engine cycle deck. It was found that a peak solution lays in a hybrid ECS where it utilizes the correct balance between a traditional pneumatic and a fully electric system. This intermediate architecture offers a substantial improvement in aircraft fuel consumptions due to a reduced amount of waste heat and customer bleed in exchange for partial electrification of the air-conditions pack which is a viable option for re-winged applications.

  19. Hybrid nanowire ion-to-electron transducers for integrated bioelectronic circuitry (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Carrad, Damon J.; Mostert, Bernard; Meredith, Paul; Micolich, Adam P.

    2016-09-01

    A key task in bioelectronics is the transduction between ionic/protonic signals and electronic signals at high fidelity. This is a considerable challenge since the two carrier types exhibit intrinsically different physics. We present our work on a new class of organic-inorganic transducing interface utilising semiconducting InAs and GaAs nanowires directly gated with a proton transporting hygroscopic polymer consisting of undoped polyethylene oxide (PEO) patterned to nanoscale dimensions by a newly developed electron-beam lithography process [1]. Remarkably, we find our undoped PEO polymer electrolyte gate dielectric [2] gives equivalent electrical performance to the more traditionally used LiClO4-doped PEO [3], with an ionic conductivity three orders of magnitude higher than previously reported for undoped PEO [4]. The observed behaviour is consistent with proton conduction in PEO. We attribute our undoped PEO-based devices' performance to the small external surface and high surface-to-volume ratio of both the nanowire conducting channel and patterned PEO dielectric in our devices, as well as the enhanced hydration afforded by device processing and atmospheric conditions. In addition to studying the basic transducing mechanisms, we also demonstrate high-fidelity ionic to electronic conversion of a.c. signals at frequencies up to 50 Hz. Moreover, by combining complementary n- and p-type transducers we demonstrate functional hybrid ionic-electronic circuits can achieve logic (NOT operation), and with some further engineering of the nanowire contacts, potentially also amplification. Our device structures have significant potential to be scaled towards realising integrated bioelectronic circuitry. [1] D.J. Carrad et al., Nano Letters 14, 94 (2014). [2] D.J. Carrad et al., Manuscript in preparation (2016). [3] S.H. Kim et al., Advanced Materials 25, 1822 (2013). [4] S.K. Fullerton-Shirey et al., Macromolecules 42, 2142 (2009).

  20. Interspecific hybridization between the cultivated potato Solanum tuberosum subspecies tuberosum L. and the wild species S. circaeifolium subsp. circaeifolium Bitter exhibiting resistance to Phytophthora infestans (Mont.) de Bary and Globodera pallida (Stone) Behrens : 2. Sexual hybrids.

    PubMed

    Louwes, K M; Hoekstra, R; Mattheij, W M

    1992-07-01

    Crossability between the diploid species S. circaeifolium subsp. circaeifolium (crc) and other diploid species, primarily diploid S. tuberosum subsp. tuberosum (tbr-2x), was studied. Forty-seven hybrids were obtained from crosses between crc as female parent and tbr-2x and some other species from series Tuberosa as male parents. Of these hybrids 17% were diploids; the other 83% were triploids, probably carrying two genomes of crc. Female fertility was sufficient to obtain offspring from backcrosses with the cultivated parent. Pollen stainability of the f1 varied, and micro-pollen as well as unreduced pollen occurred. During meiosis of the diploids and triploids a rather high proportion of univalents was found, and in the triploids on average two or three trivalents per cell were found. All hybrids were resistant to Globodera pallida pathotypes 2 and 3, and 75% of the tested genotypes were highly resistant to Phytophthora infestans. Solanidine, tomatidine, tomatidenol, and demissidine glycosides were found in tubers of the hybrids. Comparisons with somatic hybrids between crc and tbr-2x are made. It is concluded that crc is a valuable Solanum species that can and should be included in potato breeding programs.

  1. General polarizability and hyperpolarizability estimators for the path-integral Monte Carlo method applied to small atoms, ions, and molecules at finite temperatures

    NASA Astrophysics Data System (ADS)

    Tiihonen, Juha; Kylänpää, Ilkka; Rantala, Tapio T.

    2016-09-01

    The nonlinear optical properties of matter have a broad relevance and many methods have been invented to compute them from first principles. However, the effects of electronic correlation, finite temperature, and breakdown of the Born-Oppenheimer approximation have turned out to be challenging and tedious to model. Here we propose a straightforward approach and derive general field-free polarizability and hyperpolarizability estimators for the path-integral Monte Carlo method. The estimators are applied to small atoms, ions, and molecules with one or two electrons. With the adiabatic, i.e., Born-Oppenheimer, approximation we obtain accurate tensorial ground state polarizabilities, while the nonadiabatic simulation adds in considerable rovibrational effects and thermal coupling. In both cases, the 0 K, or ground-state, limit is in excellent agreement with the literature. Furthermore, we report here the internal dipole moment of PsH molecule, the temperature dependence of the polarizabilities of H-, and the average dipole polarizabilities and the ground-state hyperpolarizabilities of HeH+ and H 3 + .

  2. Optical properties measurement of laser coagulated tissues with double integrating sphere and inverse Monte Carlo technique in the wavelength range from 350 to 2100 nm

    NASA Astrophysics Data System (ADS)

    Honda, Norihiro; Nanjo, Takuya; Ishii, Katsunori; Awazu, Kunio

    2012-03-01

    In laser medicine, the accurate knowledge about the optical properties (absorption coefficient; μa, scattering coefficient; μs, anisotropy factor; g) of laser irradiated tissues is important for the prediction of light propagation in tissues, since the efficacy of laser treatment depends on the photon propagation within the irradiated tissues. Thus, it is likely that the optical properties of tissues at near-ultraviolet, visible and near-infrared wavelengths will be more important due to more biomedical applications of lasers will be developed. For improvement of the laser induced thermotherapy, the optical property change during laser treatment should be considered in the wide wavelength range. For estimation of the optical properties of the biological tissues, the optical properties measurement system with a double integrating sphere setup and an inverse Monte Carlo technique was developed. The optical properties of chicken muscle tissue were measured in the native state and after laser coagulation using the optical properties measurement system in the wavelength range from 350 to 2100 nm. A CO2 laser was used for laser coagulation. After laser coagulation, the reduced scattering coefficient of the tissue increased. And, the optical penetration depth decreased. For improvement of the treatment depth during laser coagulation, a quantitative procedure using the treated tissue optical properties for determination of the irradiation power density following light penetration decrease might be important in clinic.

  3. A New Control Method to Mitigate Power Fluctuations for Grid Integrated PV/Wind Hybrid Power System Using Ultracapacitors

    NASA Astrophysics Data System (ADS)

    Jayalakshmi, N. S.; Gaonkar, D. N.

    2016-08-01

    The output power obtained from solar-wind hybrid system fluctuates with changes in weather conditions. These power fluctuations cause adverse effects on the voltage, frequency and transient stability of the utility grid. In this paper, a control method is presented for power smoothing of grid integrated PV/wind hybrid system using ultracapacitors in a DC coupled structure. The power fluctuations of hybrid system are mitigated and smoothed power is supplied to the utility grid. In this work both photovoltaic (PV) panels and the wind generator are controlled to operate at their maximum power point. The grid side inverter control strategy presented in this paper maintains DC link voltage constant while injecting power to the grid at unity power factor considering different operating conditions. Actual solar irradiation and wind speed data are used in this study to evaluate the performance of the developed system using MATLAB/Simulink software. The simulation results show that output power fluctuations of solar-wind hybrid system can be significantly mitigated using the ultracapacitor based storage system.

  4. Adaptive control paradigm for photovoltaic and solid oxide fuel cell in a grid-integrated hybrid renewable energy system

    PubMed Central

    Khan, Laiq

    2017-01-01

    The hybrid power system (HPS) is an emerging power generation scheme due to the plentiful availability of renewable energy sources. Renewable energy sources are characterized as highly intermittent in nature due to meteorological conditions, while the domestic load also behaves in a quite uncertain manner. In this scenario, to maintain the balance between generation and load, the development of an intelligent and adaptive control algorithm has preoccupied power engineers and researchers. This paper proposes a Hermite wavelet embedded NeuroFuzzy indirect adaptive MPPT (maximum power point tracking) control of photovoltaic (PV) systems to extract maximum power and a Hermite wavelet incorporated NeuroFuzzy indirect adaptive control of Solid Oxide Fuel Cells (SOFC) to obtain a swift response in a grid-connected hybrid power system. A comprehensive simulation testbed for a grid-connected hybrid power system (wind turbine, PV cells, SOFC, electrolyzer, battery storage system, supercapacitor (SC), micro-turbine (MT) and domestic load) is developed in Matlab/Simulink. The robustness and superiority of the proposed indirect adaptive control paradigm are evaluated through simulation results in a grid-connected hybrid power system testbed by comparison with a conventional PI (proportional and integral) control system. The simulation results verify the effectiveness of the proposed control paradigm. PMID:28329015

  5. Adaptive control paradigm for photovoltaic and solid oxide fuel cell in a grid-integrated hybrid renewable energy system.

    PubMed

    Mumtaz, Sidra; Khan, Laiq

    2017-01-01

    The hybrid power system (HPS) is an emerging power generation scheme due to the plentiful availability of renewable energy sources. Renewable energy sources are characterized as highly intermittent in nature due to meteorological conditions, while the domestic load also behaves in a quite uncertain manner. In this scenario, to maintain the balance between generation and load, the development of an intelligent and adaptive control algorithm has preoccupied power engineers and researchers. This paper proposes a Hermite wavelet embedded NeuroFuzzy indirect adaptive MPPT (maximum power point tracking) control of photovoltaic (PV) systems to extract maximum power and a Hermite wavelet incorporated NeuroFuzzy indirect adaptive control of Solid Oxide Fuel Cells (SOFC) to obtain a swift response in a grid-connected hybrid power system. A comprehensive simulation testbed for a grid-connected hybrid power system (wind turbine, PV cells, SOFC, electrolyzer, battery storage system, supercapacitor (SC), micro-turbine (MT) and domestic load) is developed in Matlab/Simulink. The robustness and superiority of the proposed indirect adaptive control paradigm are evaluated through simulation results in a grid-connected hybrid power system testbed by comparison with a conventional PI (proportional and integral) control system. The simulation results verify the effectiveness of the proposed control paradigm.

  6. An Improved Solution for Integrated Array Optics in Quasi-Optical mm and Submm Receivers: the Hybrid Antenna

    NASA Technical Reports Server (NTRS)

    Buttgenbach, Thomas H.

    1993-01-01

    The hybrid antenna discussed here is defined as a dielectric lens-antenna as a special case of an extended hemi-spherical dielectric lens that is operated in the diffraction limited regime. It is a modified version of the planar antenna on a lens scheme developed by Rutledge. The dielectric lens-antenna is fed by a planar-structure antenna, which is mounted on the flat side of the dielectric lens-antenna using it as a substrate, and the combination is termed a hybrid antenna. Beam pattern and aperture efficiency measurements were made at millimeter and submillimeter wavelengths as a function of extension of the hemi- spherical lens and different lens sizes. An optimum extension distance is found experimentally and numerically for which excellent beam patterns and simultaneously high aperture efficiencies can be achieved. At 115 GHz the aperture efficiency was measured to be (76 4 +/- 6) % for a diffraction limited beam with sidelobes below -17 dB. Results of a single hybrid antenna with an integrated Superconductor-Insulator-Superconductor (SIS) detector and a broad-band matching structure at submillimeter wavelengths are presented. The hybrid antenna is diffraction limited, space efficient in an array due to its high aperture efficiency, and is easily mass produced, thus being well suited for focal plane heterodyne receiver arrays.

  7. INS/GPS/LiDAR Integrated Navigation System for Urban and Indoor Environments Using Hybrid Scan Matching Algorithm.

    PubMed

    Gao, Yanbin; Liu, Shifei; Atia, Mohamed M; Noureldin, Aboelmagd

    2015-09-15

    This paper takes advantage of the complementary characteristics of Global Positioning System (GPS) and Light Detection and Ranging (LiDAR) to provide periodic corrections to Inertial Navigation System (INS) alternatively in different environmental conditions. In open sky, where GPS signals are available and LiDAR measurements are sparse, GPS is integrated with INS. Meanwhile, in confined outdoor environments and indoors, where GPS is unreliable or unavailable and LiDAR measurements are rich, LiDAR replaces GPS to integrate with INS. This paper also proposes an innovative hybrid scan matching algorithm that combines the feature-based scan matching method and Iterative Closest Point (ICP) based scan matching method. The algorithm can work and transit between two modes depending on the number of matched line features over two scans, thus achieving efficiency and robustness concurrently. Two integration schemes of INS and LiDAR with hybrid scan matching algorithm are implemented and compared. Real experiments are performed on an Unmanned Ground Vehicle (UGV) for both outdoor and indoor environments. Experimental results show that the multi-sensor integrated system can remain sub-meter navigation accuracy during the whole trajectory.

  8. INS/GPS/LiDAR Integrated Navigation System for Urban and Indoor Environments Using Hybrid Scan Matching Algorithm

    PubMed Central

    Gao, Yanbin; Liu, Shifei; Atia, Mohamed M.; Noureldin, Aboelmagd

    2015-01-01

    This paper takes advantage of the complementary characteristics of Global Positioning System (GPS) and Light Detection and Ranging (LiDAR) to provide periodic corrections to Inertial Navigation System (INS) alternatively in different environmental conditions. In open sky, where GPS signals are available and LiDAR measurements are sparse, GPS is integrated with INS. Meanwhile, in confined outdoor environments and indoors, where GPS is unreliable or unavailable and LiDAR measurements are rich, LiDAR replaces GPS to integrate with INS. This paper also proposes an innovative hybrid scan matching algorithm that combines the feature-based scan matching method and Iterative Closest Point (ICP) based scan matching method. The algorithm can work and transit between two modes depending on the number of matched line features over two scans, thus achieving efficiency and robustness concurrently. Two integration schemes of INS and LiDAR with hybrid scan matching algorithm are implemented and compared. Real experiments are performed on an Unmanned Ground Vehicle (UGV) for both outdoor and indoor environments. Experimental results show that the multi-sensor integrated system can remain sub-meter navigation accuracy during the whole trajectory. PMID:26389906

  9. Integration of Computed Tomography and Three-Dimensional Echocardiography for Hybrid Three-Dimensional Printing in Congenital Heart Disease.

    PubMed

    Gosnell, Jordan; Pietila, Todd; Samuel, Bennett P; Kurup, Harikrishnan K N; Haw, Marcus P; Vettukattil, Joseph J

    2016-12-01

    Three-dimensional (3D) printing is an emerging technology aiding diagnostics, education, and interventional, and surgical planning in congenital heart disease (CHD). Three-dimensional printing has been derived from computed tomography, cardiac magnetic resonance, and 3D echocardiography. However, individually the imaging modalities may not provide adequate visualization of complex CHD. The integration of the strengths of two or more imaging modalities has the potential to enhance visualization of cardiac pathomorphology. We describe the feasibility of hybrid 3D printing from two imaging modalities in a patient with congenitally corrected transposition of the great arteries (L-TGA). Hybrid 3D printing may be useful as an additional tool for cardiologists and cardiothoracic surgeons in planning interventions in children and adults with CHD.

  10. Integration of V2H/V2G Hybrid System for Demand Response in Distribution Network

    SciTech Connect

    Wang, Yubo; Sheikh, Omar; Hu, Boyang; Chu, Chi-Cheng; Gadh, Rajit

    2014-11-03

    Integration of Electrical Vehicles (EVs) with power grid not only brings new challenges for load management, but also opportunities for distributed storage and generation in distribution network. With the introduction of Vehicle-to-Home (V2H) and Vehicle-to-Grid (V2G), EVs can help stabilize the operation of power grid. This paper proposed and implemented a hybrid V2H/V2G system with commercialized EVs, which is able to support both islanded AC/DC load and the power grid with one single platform. Standard industrial communication protocols are implemented for a seamless respond to remote Demand Respond (DR) signals. Simulation and implementation are carried out to validate the proposed design. Simulation and implementation results showed that the hybrid system is capable of support critical islanded DC/AC load and quickly respond to the remote DR signal for V2G within 1.5kW of power range.

  11. Numerical simulation of particulate flows using a hybrid of finite difference and boundary integral methods

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Amitabh; Kesarkar, Tejas

    2016-10-01

    A combination of finite difference (FD) and boundary integral (BI) methods is used to formulate an efficient solver for simulating unsteady Stokes flow around particles. The two-dimensional (2D) unsteady Stokes equation is being solved on a Cartesian grid using a second order FD method, while the 2D steady Stokes equation is being solved near the particle using BI method. The two methods are coupled within the viscous boundary layer, a few FD grid cells away from the particle, where solutions from both FD and BI methods are valid. We demonstrate that this hybrid method can be used to accurately solve for the flow around particles with irregular shapes, even though radius of curvature of the particle surface is not resolved by the FD grid. For dilute particle concentrations, we construct a virtual envelope around each particle and solve the BI problem for the flow field located between the envelope and the particle. The BI solver provides velocity boundary condition to the FD solver at "boundary" nodes located on the FD grid, adjacent to the particles, while the FD solver provides the velocity boundary condition to the BI solver at points located on the envelope. The coupling between FD method and BI method is implicit at every time step. This method allows us to formulate an O (N ) scheme for dilute suspensions, where N is the number of particles. For semidilute suspensions, where particles may cluster, an envelope formation method has been formulated and implemented, which enables solving the BI problem for each individual particle cluster, allowing efficient simulation of hydrodynamic interaction between particles even when they are in close proximity. The method has been validated against analytical results for flow around a periodic array of cylinders and for Jeffrey orbit of a moving ellipse in shear flow. Simulation of multiple force-free irregular shaped particles in the presence of shear in a 2D slit flow has been conducted to demonstrate the robustness of

  12. Numerical simulation of particulate flows using a hybrid of finite difference and boundary integral methods.

    PubMed

    Bhattacharya, Amitabh; Kesarkar, Tejas

    2016-10-01

    A combination of finite difference (FD) and boundary integral (BI) methods is used to formulate an efficient solver for simulating unsteady Stokes flow around particles. The two-dimensional (2D) unsteady Stokes equation is being solved on a Cartesian grid using a second order FD method, while the 2D steady Stokes equation is being solved near the particle using BI method. The two methods are coupled within the viscous boundary layer, a few FD grid cells away from the particle, where solutions from both FD and BI methods are valid. We demonstrate that this hybrid method can be used to accurately solve for the flow around particles with irregular shapes, even though radius of curvature of the particle surface is not resolved by the FD grid. For dilute particle concentrations, we construct a virtual envelope around each particle and solve the BI problem for the flow field located between the envelope and the particle. The BI solver provides velocity boundary condition to the FD solver at "boundary" nodes located on the FD grid, adjacent to the particles, while the FD solver provides the velocity boundary condition to the BI solver at points located on the envelope. The coupling between FD method and BI method is implicit at every time step. This method allows us to formulate an O(N) scheme for dilute suspensions, where N is the number of particles. For semidilute suspensions, where particles may cluster, an envelope formation method has been formulated and implemented, which enables solving the BI problem for each individual particle cluster, allowing efficient simulation of hydrodynamic interaction between particles even when they are in close proximity. The method has been validated against analytical results for flow around a periodic array of cylinders and for Jeffrey orbit of a moving ellipse in shear flow. Simulation of multiple force-free irregular shaped particles in the presence of shear in a 2D slit flow has been conducted to demonstrate the robustness of

  13. Monte Carlo simulation of the dose response of a novel 2D silicon diode array for use in hybrid MRI–LINAC systems

    SciTech Connect

    Gargett, Maegan Rosenfeld, Anatoly; Oborn, Brad; Metcalfe, Peter

    2015-02-15

    Purpose: MRI-guided radiation therapy systems (MRIgRT) are being developed to improve online imaging during treatment delivery. At present, the operation of single point dosimeters and an ionization chamber array have been characterized in such systems. This work investigates a novel 2D diode array, named “magic plate,” for both single point calibration and 2D positional performance, the latter being a key element of modern radiotherapy techniques that will be delivered by these systems. Methods: GEANT4 Monte Carlo methods have been employed to study the dose response of a silicon diode array to 6 MV photon beams, in the presence of in-line and perpendicularly aligned uniform magnetic fields. The array consists of 121 silicon diodes (dimensions 1.5 × 1.5 × 0.38 mm{sup 3}) embedded in kapton substrate with 1 cm pitch, spanning a 10 × 10 cm{sup 2} area in total. A geometrically identical, water equivalent volume was simulated concurrently for comparison. The dose response of the silicon diode array was assessed for various photon beam field shapes and sizes, including an IMRT field, at 1 T. The dose response was further investigated at larger magnetic field strengths (1.5 and 3 T) for a 4 × 4 cm{sup 2} photon field size. Results: The magic plate diode array shows excellent correspondence (< ± 1%) to water dose in the in-line orientation, for all beam arrangements and magnetic field strengths investigated. The perpendicular orientation, however, exhibits a dose shift with respect to water at the high-dose-gradient beam edge of jaw-defined fields [maximum (4.3 ± 0.8)% over-response, maximum (1.8 ± 0.8)% under-response on opposing side for 1 T, uncertainty 1σ]. The trend is not evident in areas with in-field dose gradients typical of IMRT dose maps. Conclusions: A novel 121 pixel silicon diode array detector has been characterized by Monte Carlo simulation for its performance inside magnetic fields representative of current prototype and proposed MRI

  14. Hybrid CATV/MMW/BB lightwave transmission system based on fiber-wired/fiber-wireless/fiber-VLLC integrations.

    PubMed

    Li, Chung-Yi; Lu, Hai-Han; Lu, Ting-Chieh; Chu, Chien-An; Chen, Bo-Rui; Lin, Chun-Yu; Peng, Peng-Chun

    2015-12-14

    A hybrid lightwave transmission system for cable television (CATV)/millimeter-wave (MMW)/baseband (BB) signal transmission based on fiber-wired/fiber-wireless/fiber-visible laser light communication (VLLC) integrations is proposed and demonstrated. For down-link transmission, the light is intensity-modulated with 50-550 MHz CATV signal and optically promoted from 25 GHz radio frequency (RF) signal to 10 Gbps/50 GHz and 20 Gbps/100 GHz MMW data signals based on fiber-wired and fiber-wireless integrations. Good performances of carrier-to-noise ratio (CNR), composite second-order (CSO), composite triple-beat (CTB), and bit error rate (BER) are obtained over a 40-km single-mode fiber (SMF) and a 10-m RF wireless transport. For up-link transmission, the light is successfully intensity-remodulated with 5-Gbps BB data stream based on fiber-VLLC integration. Good BER performance is achieved over a 40-km SMF and a 10-m free-space VLLC transport. Such a hybrid CATV/MMW/BB lightwave transmission system is an attractive alternative, it gives the benefits of a communication link for broader bandwidth and higher transmission rate.

  15. A hybrid approach to survival model building using integration of clinical and molecular information in censored data.

    PubMed

    Choi, Ickwon; Kattan, Michael W; Wells, Brian J; Yu, Changhong

    2012-01-01

    In medical society, the prognostic models, which use clinicopathologic features and predict prognosis after a certain treatment, have been externally validated and used in practice. In recent years, most research has focused on high dimensional genomic data and small sample sizes. Since clinically similar but molecularly heterogeneous tumors may produce different clinical outcomes, the combination of clinical and genomic information, which may be complementary, is crucial to improve the quality of prognostic predictions. However, there is a lack of an integrating scheme for clinic-genomic models due to the P ≥ N problem, in particular, for a parsimonious model. We propose a methodology to build a reduced yet accurate integrative model using a hybrid approach based on the Cox regression model, which uses several dimension reduction techniques, L₂ penalized maximum likelihood estimation (PMLE), and resampling methods to tackle the problem. The predictive accuracy of the modeling approach is assessed by several metrics via an independent and thorough scheme to compare competing methods. In breast cancer data studies on a metastasis and death event, we show that the proposed methodology can improve prediction accuracy and build a final model with a hybrid signature that is parsimonious when integrating both types of variables.

  16. Integration of new hybrid flat concentrating solar modules into the experimental photovoltaic power plant TISO

    NASA Astrophysics Data System (ADS)

    Camani, M.; Ceppi, P.; Salvade, G.; Spinedi, C.

    The first part of the experimental, utility interactive photovoltaic plant TISO started operation on May 1982 with an array field of flat plate modules (10 kW peak) and a dedicated inverter unit. During the spring of 1983, a new hybrid flat concentrating array, with a peak electrical power of 3.1 kW and a thermal maximum output of 30 kW, was added to the installation. A high efficiency inverter unit with maximum power tracking feeds back the produced power to the utility lines. Heat is recuperated from the hybrid absorbers by forced water circulation. Some experiences and first operation results are presented.

  17. TH-C-12A-10: Surface Dose Enhancement Using Novel Hybrid Electron and Photon Low-Z Therapy Beams: Monte Carlo Simulation

    SciTech Connect

    Parsons, C; Parsons, D; Robar, J; Kelly, R

    2014-06-15

    Purpose: The introduction of the TrueBeam linac platform provides access to an in-air target assembly making it possible to apply novel treatments using multiple target designs. One such novel treatment uses multiple low-Z targets to enhance surface dose replacing the use of synthetic tissue equivalent material (bolus). This treatment technique will decrease the common dosimetric and set up errors prevalent in using physical treatment accessories like bolus. The groundwork for a novel treatment beam used to enhance surface dose to within 80-100% of the dose at dmax by utilizing low-Z (Carbon) targets of various percent CSDA range thickness operated at 2.5–4 MeV used in conjunction with a clinical 6 MV beam is presented herein. Methods: A standard Monte Carlo model of a Varian Clinac accelerator was developed to manufacturers specifications. Simulations were performed using Be, C, AL, and C, as potential low-Z targets, placed in the secondary target position. The results determined C to be the target material of choice. Simulations of 15, 30 and 60% CSDA range C beams were propagated through slab phantoms. The resulting PDDs were weighted and combined with a standard 6 MV treatment beam. Versions of the experimental targets were installed into a 2100C Clinac and the models were validated. Results: Carbon was shown to be the low-Z material of choice for this project. Using combinations of 15, 30, 60% CSDA beams operated at 2.5 and 4 MeV in combination with a standard 6 MV treatment beam the surface dose was shown to be enhanced to within 80–100% the dose at dmax. Conclusion: The modeled low-Z beams were successfully validated using machined versions of the targets. Water phantom measurements and slab phantom simulations show excellent correlation. Patient simulations are now underway to compare the use of bolus with the proposed novel beams. NSERC.

  18. A novel integrated thermal-/membrane-based solar energy-driven hybrid desalination system: Concept description and simulation results.

    PubMed

    Kim, Young-Deuk; Thu, Kyaw; Ng, Kim Choon; Amy, Gary L; Ghaffour, Noreddine

    2016-09-01

    In this paper, a hybrid desalination system consisting of vacuum membrane distillation (VMD) and adsorption desalination (AD) units, designated as VMD-AD cycle, is proposed. The synergetic integration of the VMD and AD is demonstrated where a useful effect of the AD cycle is channelled to boost the operation of the VMD process, namely the low vacuum environment to maintain the high pressure gradient across the microporous hydrophobic membrane. A solar-assisted multi-stage VMD-AD hybrid desalination system with temperature modulating unit is first designed, and its performance is then examined with a mathematical model of each component in the system and compared with the VMD-only system with temperature modulating and heat recovery units. The total water production and water recovery ratio of a solar-assisted 24-stage VMD-AD hybrid system are found to be about 21% and 23% higher, respectively, as compared to the VMD-only system. For the solar-assisted 24-stage VMD-AD desalination system having 150 m(2) of evacuated-tube collectors and 10 m(3) seawater storage tanks, both annual collector efficiency and solar fraction are close to 60%.

  19. A high-resolution cat radiation hybrid and integrated FISH mapping resource for phylogenomic studies across Felidae.

    PubMed

    Davis, Brian W; Raudsepp, Terje; Pearks Wilkerson, Alison J; Agarwala, Richa; Schäffer, Alejandro A; Houck, Marlys; Chowdhary, Bhanu P; Murphy, William J

    2009-04-01

    We describe the construction of a high-resolution radiation hybrid (RH) map of the domestic cat genome, which includes 2662 markers, translating to an estimated average intermarker distance of 939 kilobases (kb). Targeted marker selection utilized the recent feline 1.9x genome assembly, concentrating on regions of low marker density on feline autosomes and the X chromosome, in addition to regions flanking interspecies chromosomal breakpoints. Average gap (breakpoint) size between cat-human ordered conserved segments is less than 900 kb. The map was used for a fine-scale comparison of conserved syntenic blocks with the human and canine genomes. Corroborative fluorescence in situ hybridization (FISH) data were generated using 129 domestic cat BAC clones as probes, providing independent confirmation of the long-range correctness of the map. Cross-species hybridization of BAC probes on divergent felids from the genera Profelis (serval) and Panthera (snow leopard) provides further evidence for karyotypic conservation within felids, and demonstrates the utility of such probes for future studies of chromosome evolution within the cat family and in related carnivores. The integrated map constitutes a comprehensive framework for identifying genes controlling feline phenotypes of interest, and to aid in assembly of a higher coverage feline genome sequence.

  20. Embodied energy of construction materials: integrating human and capital energy into an IO-based hybrid model.

    PubMed

    Dixit, Manish K; Culp, Charles H; Fernandez-Solis, Jose L

    2015-02-03

    Buildings alone consume approximately 40% of the annual global energy and contribute indirectly to the increasing concentration of atmospheric carbon. The total life cycle energy use of a building is composed of embodied and operating energy. Embodied energy includes all energy required to manufacture and transport building materials, and construct, maintain, and demolish a building. For a systemic energy and carbon assessment of buildings, it is critical to use a whole life cycle approach, which takes into account the embodied as well as operating energy. Whereas the calculation of a building's operating energy is straightforward, there is a lack of a complete embodied energy calculation method. Although an input-output-based (IO-based) hybrid method could provide a complete and consistent embodied energy calculation, there are unresolved issues, such as an overdependence on price data and exclusion of the energy of human labor and capital inputs. This paper proposes a method for calculating and integrating the energy of labor and capital input into an IO-based hybrid method. The results demonstrate that the IO-based hybrid method can provide relatively complete results. Also, to avoid errors, the total amount of human and capital energy should not be excluded from the calculation.

  1. Compact monolithically-integrated hybrid (de)multiplexer based on silicon-on-insulator nanowires for PDM-WDM systems.

    PubMed

    Chen, Sitao; Shi, Yaocheng; He, Sailing; Dai, Daoxin

    2015-05-18

    A compact silicon hybrid (de)multiplexer is designed and demonstrated by integrating a single bi-directional AWG with a polarization diversity circuit, which consists of an ultra-short polarization-beam splitter (PBS) based on a bent coupler and a polarization rotator (PR) based on a silicon-on-insulator nanowire with a cut corner. The present hybrid (de)multiplexer can operate for both TE- and TM- polarizations and thus is available for PDM-WDM systems. An 18-channel hybrid (de)multiplexer is realized with 9 wavelengths as an example. The wavelength-channel spacing is 400GHz (i.e., Δλ(ch) = 3.2nm) and the footprint of the device is about 530μm × 210μm. The channel crosstalk is about -13dB and the total excess loss is about 7dB. The excess loss increases by about 1~2dB due to the cascaded polarization diversity circuit in comparison with a single bi-directional AWG.

  2. Excitation functions of heavy residues produced in the 14N+103Rh reaction up to 400 MeV: Analysis of the pre-equilibrium mechanism with the hybrid Monte Carlo simulation model

    NASA Astrophysics Data System (ADS)

    Acharya, J.; Mukherjee, S.; Steyn, G. F.; Singh, N. L.; Chatterjee, A.

    2016-02-01

    The excitation functions of heavy residues, produced in the interaction of 14N with 103Rh, have been measured over the projectile energy region from a threshold up to 400 MeV by means of the activation method in conjunction with γ-ray spectroscopy. Cross sections for 15 reaction residues are presented, namely, 104Cd, Ag-105103, Pd-10199, 97,99,101Rh, Ru,9795, and Tc-9694. The experimental data are compared with theoretical model predictions using the hybrid Monte Carlo simulation model as implemented in the recently released alice2014 code. The theory assumes that the dominant pre-equilibrium mechanism includes multinucleon and cluster emissions in the initial stages of the interaction between the projectile and the target nucleus. Overall, the theoretical predictions provide a satisfactory agreement with the trend of the present experimental results for most of the observed reaction residues. This provides strong evidence that the underlying reaction mechanisms in the code are appropriately described. Overall, the Obninsk level densities give the best results in the present study.

  3. HybridRanker: Integrating network topology and biomedical knowledge to prioritize cancer candidate genes.

    PubMed

    Razaghi-Moghadam, Zahra; Abdollahi, Razieh; Goliaei, Sama; Ebrahimi, Morteza

    2016-12-01

    In the past few years, many researches have been conducted on identifying and prioritizing disease-related genes with the goal of achieving significant improvements in treatment and drug discovery. Both experimental and computational approaches have been exploited in recent studies to explore disease-susceptible genes. The experimental methods for identification of these genes are usually time-consuming and expensive. As a result, a substantial number of these studies have shown interest in utilizing computational techniques, commonly known as gene prioritization methods. From a conceptual point of view, these methods combine various sources of information about a particular disease of interest and then use it to discover and prioritize candidate disease genes. In this paper, we propose a gene prioritization method (HybridRanker), which exploits network topological features, as well as several biomedical data sources to identify candidate disease genes. In this approach, the genes are characterized using both local and global features of a protein-protein interaction (PPI) network. Furthermore, to obtain improved results for a particular disease of interest, HybridRanker incorporates data from diseases with similar symptoms and also from its comorbid diseases. We applied this new approach to identify and prioritize candidate disease genes of colorectal cancer (CRC) and the efficiency of HybridRanker was confirmed by leave-one-out cross-validation test. Moreover, in comparison with several well-known prioritization methods, HybridRanker shows higher performance in terms of different criteria.

  4. Hybrid MCDA Methods to Integrate Multiple Ecosystem Services in Forest Management Planning: A Critical Review

    NASA Astrophysics Data System (ADS)

    Uhde, Britta; Andreas Hahn, W.; Griess, Verena C.; Knoke, Thomas

    2015-08-01

    Multi-criteria decision analysis (MCDA) is a decision aid frequently used in the field of forest management planning. It includes the evaluation of multiple criteria such as the production of timber and non-timber forest products and tangible as well as intangible values of ecosystem services (ES). Hence, it is beneficial compared to those methods that take a purely financial perspective. Accordingly, MCDA methods are increasingly popular in the wide field of sustainability assessment. Hybrid approaches allow aggregating MCDA and, potentially, other decision-making techniques to make use of their individual benefits and leading to a more holistic view of the actual consequences that come with certain decisions. This review is providing a comprehensive overview of hybrid approaches that are used in forest management planning. Today, the scientific world is facing increasing challenges regarding the evaluation of ES and the trade-offs between them, for example between provisioning and regulating services. As the preferences of multiple stakeholders are essential to improve the decision process in multi-purpose forestry, participatory and hybrid approaches turn out to be of particular importance. Accordingly, hybrid methods show great potential for becoming most relevant in future decision making. Based on the review presented here, the development of models for the use in planning processes should focus on participatory modeling and the consideration of uncertainty regarding available information.

  5. A modified seventh order two step hybrid method for the numerical integration of oscillatory problems

    NASA Astrophysics Data System (ADS)

    Kalogiratou, Z.; Monovasilis, Th.; Simos, T. E.

    2016-12-01

    In this work we consider trigonometrically fitted two step hybrid methods for the numerical solution of second-order initial value problems. We follow the approach of Simos and derive trigonometrically fitting conditions for methods with five stages. As an example we modify a seventh order method and apply to three well known oscillatory problems.

  6. Development of integrated fuel cell hybrid power source for electric forklift

    NASA Astrophysics Data System (ADS)

    Keränen, T. M.; Karimäki, H.; Viitakangas, J.; Vallet, J.; Ihonen, J.; Hyötylä, P.; Uusalo, H.; Tingelöf, T.

    A hybrid drivetrain comprising a 16 kW polymer electrolyte membrane fuel cell system, ultracapacitor modules and a lead-acid battery was constructed and experimentally tested in a real counterweight forklift application. A scaled-down version of the hybrid system was assembled and tested in a controlled laboratory environment using a controllable resistive load. The control loops were operating in an in-house developed embedded system. The software is designed for building generic control applications, and the source code has been released as open source and made available on the internet. The hybrid drivetrain supplied the required 50 kW peak power in a typical forklift work cycle consisting of both loaded and unloaded driving, and lifting of a 2.4 tonne load. Load variations seen by the fuel cell were a fraction of the total current drawn by the forklift, with the average fuel cell power being 55% of nominal rating. A simple fuel cell hybrid model was also developed to further study the effects of energy storage dimensioning. Simulation results indicate that while a battery alone significantly reduces the load variations of the fuel cell, an ultracapacitor reduces them even further. Furthermore, a relatively small ultracapacitor is enough to achieve most of the potential benefit.

  7. Hybrid MCDA Methods to Integrate Multiple Ecosystem Services in Forest Management Planning: A Critical Review.

    PubMed

    Uhde, Britta; Hahn, W Andreas; Griess, Verena C; Knoke, Thomas

    2015-08-01

    Multi-criteria decision analysis (MCDA) is a decision aid frequently used in the field of forest management planning. It includes the evaluation of multiple criteria such as the production of timber and non-timber forest products and tangible as well as intangible values of ecosystem services (ES). Hence, it is beneficial compared to those methods that take a purely financial perspective. Accordingly, MCDA methods are increasingly popular in the wide field of sustainability assessment. Hybrid approaches allow aggregating MCDA and, potentially, other decision-making techniques to make use of their individual benefits and leading to a more holistic view of the actual consequences that come with certain decisions. This review is providing a comprehensive overview of hybrid approaches that are used in forest management planning. Today, the scientific world is facing increasing challenges regarding the evaluation of ES and the trade-offs between them, for example between provisioning and regulating services. As the preferences of multiple stakeholders are essential to improve the decision process in multi-purpose forestry, participatory and hybrid approaches turn out to be of particular importance. Accordingly, hybrid methods show great potential for becoming most relevant in future decision making. Based on the review presented here, the development of models for the use in planning processes should focus on participatory modeling and the consideration of uncertainty regarding available information.

  8. Error in Monte Carlo, quasi-error in Quasi-Monte Carlo

    NASA Astrophysics Data System (ADS)

    Kleiss, Ronald; Lazopoulos, Achilleas

    2006-07-01

    While the Quasi-Monte Carlo method of numerical integration achieves smaller integration error than standard Monte Carlo, its use in particle physics phenomenology has been hindered by the absence of a reliable way to estimate that error. The standard Monte Carlo error estimator relies on the assumption that the points are generated independently of each other and, therefore, fails to account for the error improvement advertised by the Quasi-Monte Carlo method. We advocate the construction of an estimator of stochastic nature, based on the ensemble of pointsets with a particular discrepancy value. We investigate the consequences of this choice and give some first empirical results on the suggested estimators.

  9. An integrated hybrid interference and absorption filter for fluorescence detection in lab-on-a-chip devices.

    PubMed

    Richard, Charles; Renaudin, Alan; Aimez, Vincent; Charette, Paul G

    2009-05-21

    We present a hybrid optical filter design that combines interference and absorbing components for enhanced fluorescence detection in miniaturized highly-integrated lab-on-a-chip devices. The filter is designed in such a way that the advantages of each technology are used to offset the disadvantages of the other. The filter is fabricated with microfabrication compatible processes and materials for monolithic integration with microelectronics and microfluidics devices. The particular embodiment of the filter described herein is designed to discriminate fluorescence emission at 650 nm from excitation at 532 nm. The 9-layer interference filter component is fabricated with alternating TiO(2) and SiO(2) thin-film layers and has an attenuation of -12.6 dB at 532 nm and -0.76 dB at 650 nm. The absorbing filter component is fabricated using a dyed photopolymer (KMPR + Orasol Red) having an attenuation of -32.6 dB at 532 nm and -1.28 dB at 650 nm. The total rejection ratio of the hybrid filter is 43 dB. The filter exhibits very low autofluorescence and performs equally well at off-axis incidence angles.

  10. Arsenic removal from contaminated groundwater by membrane-integrated hybrid plant: optimization and control using Visual Basic platform.

    PubMed

    Chakrabortty, S; Sen, M; Pal, P

    2014-03-01

    A simulation software (ARRPA) has been developed in Microsoft Visual Basic platform for optimization and control of a novel membrane-integrated arsenic separation plant in the backdrop of absence of such software. The user-friendly, menu-driven software is based on a dynamic linearized mathematical model, developed for the hybrid treatment scheme. The model captures the chemical kinetics in the pre-treating chemical reactor and the separation and transport phenomena involved in nanofiltration. The software has been validated through extensive experimental investigations. The agreement between the outputs from computer simulation program and the experimental findings are excellent and consistent under varying operating conditions reflecting high degree of accuracy and reliability of the software. High values of the overall correlation coefficient (R (2) = 0.989) and Willmott d-index (0.989) are indicators of the capability of the software in analyzing performance of the plant. The software permits pre-analysis, manipulation of input data, helps in optimization and exhibits performance of an integrated plant visually on a graphical platform. Performance analysis of the whole system as well as the individual units is possible using the tool. The software first of its kind in its domain and in the well-known Microsoft Excel environment is likely to be very useful in successful design, optimization and operation of an advanced hybrid treatment plant for removal of arsenic from contaminated groundwater.

  11. The Feasibility Study of a Hybrid Coplanar Arc Technique Versus Hybrid Intensity-modulated Radiotherapy in Treatment of Early-stage Left-sided Breast Cancer with Simultaneous-integrated Boost

    PubMed Central

    Chen, Yuan-Gui; Li, An-Chuan; Li, Wen-Yao; Huang, Miao-Yun; Li, Xiao-Bo; Chen, Ming-Qiu; Zhang, Mutian; Xu, Ben-Hua

    2017-01-01

    This study demonstrated the feasibility and advantages of a hybrid, volumetric arc therapy technique that used two 90° coplanar arcs and two three-dimensional conformal tangential beams in the simultaneous-integrated boost radiotherapy of left-sided breast cancer after breast-conserving surgery. A total of nine patients with stage I, left-sided breast cancer who underwent breast-conserving surgery were selected for this retrospective study. For each patient, a hybrid arc plan was generated and then compared with two hybrid intensity-modulated radiotherapy plans. All plans were optimized using the same objectives and dose constraints. The prescription dose was 50.4 Gy to the planning target volume with simultaneous boost to 60 Gy to the expanded gross target volume in 28 fractions. The differences among these hybrid plans were analyzed by the Kolmogorov–Smirnov test or the Wilcoxon rank sum test. The hybrid arc plans achieved the clinical requirements of target dose coverage and normal tissue (NT) dose constraints. It was found that the hybrid arc plans showed advantages in the conformity index of the expanded gross target volume, the V5 of the heart, the D2 of the left ventricle, and the D2 and V50.4 of NTs. The average beam-on time and monitor units of the hybrid arc plans were significantly lower (P < 0.001).

  12. Monte Carlo Benchmark

    SciTech Connect

    2010-10-20

    The "Monte Carlo Benchmark" (MCB) is intended to model the computatiional performance of Monte Carlo algorithms on parallel architectures. It models the solution of a simple heuristic transport equation using a Monte Carlo technique. The MCB employs typical features of Monte Carlo algorithms such as particle creation, particle tracking, tallying particle information, and particle destruction. Particles are also traded among processors using MPI calls.

  13. Integration, Testing, and Validation of a Small Hybrid-Electric Remotely-Piloted Aircraft

    DTIC Science & Technology

    2012-03-22

    Parallel hybrid system configuration [34] 15 Finally, the split power configuration uses planetary gears to keep the electric motor in- line with...the use of a planetary gear instead of a clutch. For example, the Toyota Prius, which entered the US market in 2001 and topped 1,000,000 sales in...Boulder is also working on an HE-RPA utilizing planetary gearing [39]. Thus far, they have tested the planetary gearing system using two electric motors

  14. A practical hybrid model of application, integration, and competencies at interactive table conferences in histology (ITCH).

    PubMed

    Ettarh, Rajunor

    2016-05-06

    Significant changes have been implemented in the way undergraduate medical education is structured. One of the challenges for component courses such as histology in medical and dental curricula is to restructure and deliver training within new frameworks. This article describes the process of aligning the purpose and experience in histology laboratory to the goal of applying knowledge gained to team-based medical practice at Tulane University School of Medicine. Between 2011 and 2015, 711 medical students took either a traditional laboratory-based histology course (353 students) or a team-based hybrid histology course with active learning in laboratory (358 students). The key difference was in the laboratory component of the hybrid course - interactive table conferences in histology-during which students developed new competencies by working in teams, reviewing images, solving problems by applying histology concepts, and sharing learning. Content, faculty and online resources for microscopy were the same in both courses. More student-student and student-faculty interactions were evident during the hybrid course but student evaluation ratings and grades showed reductions following introduction of table conferences when compared to previous ratings. However, outcomes at National Board of Medical Examiners(®) (NBME(®) ) Subject Examination in Histology and Cell Biology showed significant improvement (72.4 ± 9.04 and 76.44 ± 9.36 for percent correct answers, traditional and hybrid courses, respectively, P < 0.0001). This model of table conferences to augment the traditional histology laboratory experience exemplifies the extent that restructuring enhancements can be used in currently taught courses in the undergraduate medical curriculum. Anat Sci Educ 9: 286-294. © 2016 American Association of Anatomists.

  15. Energy performance of an integrated bio-and-thermal hybrid system for lignocellulosic biomass waste treatment.

    PubMed

    Kan, Xiang; Yao, Zhiyi; Zhang, Jingxin; Tong, Yen Wah; Yang, Wenming; Dai, Yanjun; Wang, Chi-Hwa

    2017-03-01

    Lignocellulosic biomass waste, a heterogeneous complex of biodegradables and non-biodegradables, accounts for large proportion of municipal solid waste. Due to limitation of single-stage treatment, a two-stage hybrid AD-gasification system was proposed in this work, in which AD acted as pre-treatment to convert biodegradables into biogas followed by gasification converting solid residue into syngas. Energy performance of single and two-stage systems treating 3 typical lignocellulosic wastes was studied using both experimental and numerical methods. In comparison with conventional single-stage gasification treatment, this hybrid system could significantly improve the quality of produced gas for all selected biomass wastes and show its potential in enhancing total gas energy production by a maximum value of 27% for brewer's spent grain treatment at an organic loading rate (OLR) of 3gVS/L/day. The maximum overall efficiency of the hybrid system for horticultural waste treatment was 75.2% at OLR of 11.3gVS/L/day, 5.5% higher than conventional single-stage system.

  16. Fluorescent In Situ Hybridization to Detect Transgene Integration into Plant Genomes

    NASA Astrophysics Data System (ADS)

    Schwarzacher, Trude

    Fluorescent chromosome analysis technologies have advanced our understanding of genome organization during the last 30 years and have enabled the investigation of DNA organization and structure as well as the evolution of chromosomes. Fluorescent chromosome staining allows even small chromosomes to be visualized, characterized by their composition and morphology, and counted. Aneuploidies and polyploidies can be established for species, breeding lines, and individuals, including changes occurring during hybridization or tissue culture and transformation protocols. Fluorescent in situ hybridization correlates molecular information of a DNA sequence with its physical location on chromosomes and genomes. It thus allows determination of the physical position of sequences and often is the only means to determine the abundance and distribution of DNA sequences that are difficult to map with any other molecular method or would require segregation analysis, in particular multicopy or repetitive DNA. Equally, it is often the best way to establish the incorporation of transgenes, their numbers, and physical organization along chromosomes. This chapter presents protocols for probe and chromosome preparation, fluorescent in situ hybridization, chromosome staining, and the analysis of results.

  17. Alleviating liver failure conditions using an integrated hybrid cryogel based cellular bioreactor as a bioartificial liver support

    PubMed Central

    Damania, Apeksha; Hassan, Mohsin; Shirakigawa, Nana; Mizumoto, Hiroshi; Kumar, Anupam; Sarin, Shiv K.; Ijima, Hiroyuki; Kamihira, Masamichi; Kumar, Ashok

    2017-01-01

    Conventionally, some bioartificial liver devices are used with separate plasmapheresis unit to separate out plasma from whole blood and adsorbent column to detoxify plasma before it passes through a hepatocytes-laden bioreactor. We aim to develop a hybrid bioreactor that integrates the separate modules in one compact design improving the efficacy of the cryogel based bioreactor as a bioartificial liver support. A plasma separation membrane and an activated carbon cloth are placed over a HepG2-loaded cryogel scaffold in a three-chambered bioreactor design. This bioreactor is consequently connected extracorporeally to a rat model of acute liver failure for 3 h and major biochemical parameters studied. Bilirubin and aspartate transaminase showed a percentage decrease of 20–60% in the integrated bioreactor as opposed to 5–15% in the conventional setup. Urea and ammonia levels which showed negligible change in the conventional setup increase (40%) and decrease (18%), respectively in the integrated system. Also, an overall increase of 5% in human albumin in rat plasma indicated bioreactor functionality in terms of synthetic functions. These results were corroborated by offline evaluation of patient plasma. Hence, integrating the plasmapheresis and adsorbent units with the bioreactor module in one compact design improves the efficacy of the bioartificial liver device. PMID:28079174

  18. Path integral Monte Carlo simulations of H{sub 2} adsorbed to lithium-doped benzene: A model for hydrogen storage materials

    SciTech Connect

    Lindoy, Lachlan P.; Kolmann, Stephen J.; D’Arcy, Jordan H.; Jordan, Meredith J. T.; Crittenden, Deborah L.

    2015-11-21

    Finite temperature quantum and anharmonic effects are studied in H{sub 2}–Li{sup +}-benzene, a model hydrogen storage material, using path integral Monte Carlo (PIMC) simulations on an interpolated potential energy surface refined over the eight intermolecular degrees of freedom based upon M05-2X/6-311+G(2df,p) density functional theory calculations. Rigid-body PIMC simulations are performed at temperatures ranging from 77 K to 150 K, producing both quantum and classical probability density histograms describing the adsorbed H{sub 2}. Quantum effects broaden the histograms with respect to their classical analogues and increase the expectation values of the radial and angular polar coordinates describing the location of the center-of-mass of the H{sub 2} molecule. The rigid-body PIMC simulations also provide estimates of the change in internal energy, ΔU{sub ads}, and enthalpy, ΔH{sub ads}, for H{sub 2} adsorption onto Li{sup +}-benzene, as a function of temperature. These estimates indicate that quantum effects are important even at room temperature and classical results should be interpreted with caution. Our results also show that anharmonicity is more important in the calculation of U and H than coupling—coupling between the intermolecular degrees of freedom becomes less important as temperature increases whereas anharmonicity becomes more important. The most anharmonic motions in H{sub 2}–Li{sup +}-benzene are the “helicopter” and “ferris wheel” H{sub 2} rotations. Treating these motions as one-dimensional free and hindered rotors, respectively, provides simple corrections to standard harmonic oscillator, rigid rotor thermochemical expressions for internal energy and enthalpy that encapsulate the majority of the anharmonicity. At 150 K, our best rigid-body PIMC estimates for ΔU{sub ads} and ΔH{sub ads} are −13.3 ± 0.1 and −14.5 ± 0.1 kJ mol{sup −1}, respectively.

  19. Method for producing a hybridization of detector array and integrated circuit for readout

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Grunthaner, Frank J. (Inventor)

    1993-01-01

    A process is explained for fabricating a detector array in a layer of semiconductor material on one substrate and an integrated readout circuit in a layer of semiconductor material on a separate substrate in order to select semiconductor material for optimum performance of each structure, such as GaAs for the detector array and Si for the integrated readout circuit. The detector array layer is lifted off its substrate, laminated on the metallized surface on the integrated surface, etched with reticulating channels to the surface of the integrated circuit, and provided with interconnections between the detector array pixels and the integrated readout circuit through the channels. The adhesive material for the lamination is selected to be chemically stable to provide electrical and thermal insulation and to provide stress release between the two structures fabricated in semiconductor materials that may have different coefficients of thermal expansion.

  20. Cost-effective monolithic and hybrid integration for metro and long-haul applications

    NASA Astrophysics Data System (ADS)

    Clayton, Rick; Carter, Andy; Betty, Ian; Simmons, Timothy

    2003-12-01

    Today's telecommunication market is characterized by conservative business practices: tight management of costs, low risk investing and incremental upgrades, rather than the more freewheeling approach taken a few years ago. Optimizing optical components for the current and near term market involves substantial integration, but within particular bounds. The emphasis on evolution, in particular, has led to increased standardization of functions and so created extensive opportunities for integrated product offerings. The same standardization that enables commercially successful integrated functions also changes the competitive environment, and changes the emphasis for component development; shifting the innovation priority from raw performance to delivering the most effective integrated products. This paper will discuss, with specific examples from our transmitter, receiver and passives product families, our understanding of the issues based on extensive experience in delivering high end integrated products to the market, and the direction it drives optical components.

  1. Hybrid neural network fraction integral terminal sliding mode control of an Inchworm robot manipulator

    NASA Astrophysics Data System (ADS)

    Rahmani, Mehran; Ghanbari, Ahmad; Ettefagh, Mir Mohammad

    2016-12-01

    This paper proposes a control scheme based on the fraction integral terminal sliding mode control and adaptive neural network. It deals with the system model uncertainties and the disturbances to improve the control performance of the Inchworm robot manipulator. A fraction integral terminal sliding mode control applies to the Inchworm robot manipulator to obtain the initial stability. Also, an adaptive neural network is designed to approximate the system uncertainties and unknown disturbances to reduce chattering phenomena. The weight matrix of the proposed adaptive neural network can be updated online, according to the current state error information. The stability of the proposed control method is proved by Lyapunov theory. The performance of the adaptive neural network fraction integral terminal sliding mode control is compared with three other conventional controllers such as sliding mode control, integral terminal sliding mode control and fraction integral terminal sliding mode control. Simulation results show the effectiveness of the proposed control method.

  2. A critical evaluation of secondary cancer risk models applied to Monte Carlo dose distributions of 2-dimensional, 3-dimensional conformal and hybrid intensity-modulated radiation therapy for breast cancer

    NASA Astrophysics Data System (ADS)

    Joosten, A.; Bochud, F.; Moeckli, R.

    2014-08-01

    The comparison of radiotherapy techniques regarding secondary cancer risk has yielded contradictory results possibly stemming from the many different approaches used to estimate risk. The purpose of this study was to make a comprehensive evaluation of different available risk models applied to detailed whole-body dose distributions computed by Monte Carlo for various breast radiotherapy techniques including conventional open tangents, 3D conformal wedged tangents and hybrid intensity modulated radiation therapy (IMRT). First, organ-specific linear risk models developed by the International Commission on Radiological Protection (ICRP) and the Biological Effects of Ionizing Radiation (BEIR) VII committee were applied to mean doses for remote organs only and all solid organs. Then, different general non-linear risk models were applied to the whole body dose distribution. Finally, organ-specific non-linear risk models for the lung and breast were used to assess the secondary cancer risk for these two specific organs. A total of 32 different calculated absolute risks resulted in a broad range of values (between 0.1% and 48.5%) underlying the large uncertainties in absolute risk calculation. The ratio of risk between two techniques has often been proposed as a more robust assessment of risk than the absolute risk. We found that the ratio of risk between two techniques could also vary substantially considering the different approaches to risk estimation. Sometimes the ratio of risk between two techniques would range between values smaller and larger than one, which then translates into inconsistent results on the potential higher risk of one technique compared to another. We found however that the hybrid IMRT technique resulted in a systematic reduction of risk compared to the other techniques investigated even though the magnitude of this reduction varied substantially with the different approaches investigated. Based on the epidemiological data available, a reasonable

  3. Electronic integration of fuel cell and battery system in novel hybrid vehicle

    NASA Astrophysics Data System (ADS)

    Fisher, Peter; Jostins, John; Hilmansen, Stuart; Kendall, Kevin

    2012-12-01

    The objective of this work was to integrate a lithium ion battery pack, together with its management system, into a hydrogen fuel cell drive train contained in a lightweight city car. Electronic units were designed to link the drive train components using conventional circuitry. These were built, tested and shown to perform according to the design. These circuits allowed start-up of battery management system, motor controller, fuel cell warm-up and torque monitoring. After assembling the fuel cell and battery in the vehicle, full system tests were performed. Analysis of results from vehicle demonstrations showed operation was satisfactory. The conclusion was that the electronic integration was successful, but the design needed optimisation and fine tuning. Eight vehicles were then fitted with the electronically integrated fuel cell-battery power pack. Trials were then started to test the integration more fully, with a duration of 12 months from 2011 to 2012 in the CABLED project.

  4. A hybrid FDTD-Rayleigh integral computational method for the simulation of the ultrasound measurement of proximal femur.

    PubMed

    Cassereau, Didier; Nauleau, Pierre; Bendjoudi, Aniss; Minonzio, Jean-Gabriel; Laugier, Pascal; Bossy, Emmanuel; Grimal, Quentin

    2014-07-01

    The development of novel quantitative ultrasound (QUS) techniques to measure the hip is critically dependent on the possibility to simulate the ultrasound propagation. One specificity of hip QUS is that ultrasounds propagate through a large thickness of soft tissue, which can be modeled by a homogeneous fluid in a first approach. Finite difference time domain (FDTD) algorithms have been widely used to simulate QUS measurements but they are not adapted to simulate ultrasonic propagation over long distances in homogeneous media. In this paper, an hybrid numerical method is presented to simulate hip QUS measurements. A two-dimensional FDTD simulation in the vicinity of the bone is coupled to the semi-analytic calculation of the Rayleigh integral to compute the wave propagation between the probe and the bone. The method is used to simulate a setup dedicated to the measurement of circumferential guided waves in the cortical compartment of the femoral neck. The proposed approach is validated by comparison with a full FDTD simulation and with an experiment on a bone phantom. For a realistic QUS configuration, the computation time is estimated to be sixty times less with the hybrid method than with a full FDTD approach.

  5. Integrated hybrid vibration isolator with feedforward compensation for fast high-precision positioning X/Y tables

    NASA Astrophysics Data System (ADS)

    Yan, T. H.; Pu, H. Y.; Chen, X. D.; Li, Q.; Xu, C.

    2010-06-01

    The design, realization and control technologies of a high-performance hybrid microvibration isolator for ultra-high-precision high-speed moving X/Y tables are presented in this paper—the novel isolator with integrated passive-active high level of damping. The passive damping was implemented using air-springs in both vertical and horizontal directions, with parallel linear motors in two directions to realize the active damping and the positioning functions. It is an actual hybrid isolation system because its air-spring can also be controlled through the pneumatic loop. The isolation servo system also has fast positioning capability via the feedforward compensation for the moving tables. Compared with the conventional filtered reference type control algorithms that rely on the assumption for the adaptive filter and the controlled system, in which the disturbance is estimated from the residual signal, the feedforward compensation here shows high effectiveness of vibration isolation and high-precision positioning performance for its platform. The performance of feedforward compensation has been enhanced via an efficient state estimation adaptive algorithm, the fast Kalman filter. Finally, experimental demonstration has been shown for the prototype system and the results have verified the effectiveness of the proposed isolator system design and the adaptive control algorithm for substantially enhanced damping of the platform system with the moving X/Y tables.

  6. Integrative self-assembly of functional hybrid nanoconstructs by inorganic wrapping of single biomolecules, biomolecule arrays and organic supramolecular assemblies

    NASA Astrophysics Data System (ADS)

    Patil, Avinash J.; Li, Mei; Mann, Stephen

    2013-07-01

    Synthesis of functional hybrid nanoscale objects has been a core focus of the rapidly progressing field of nanomaterials science. In particular, there has been significant interest in the integration of evolutionally optimized biological systems such as proteins, DNA, virus particles and cells with functional inorganic building blocks to construct mesoscopic architectures and nanostructured materials. However, in many cases the fragile nature of the biomolecules seriously constrains their potential applications. As a consequence, there is an on-going quest for the development of novel strategies to modulate the thermal and chemical stabilities, and performance of biomolecules under adverse conditions. This feature article highlights new methods of ``inorganic molecular wrapping'' of single or multiple protein molecules, individual double-stranded DNA helices, lipid bilayer vesicles and self-assembled organic dye superstructures using inorganic building blocks to produce bio-inorganic nanoconstructs with core-shell type structures. We show that spatial isolation of the functional biological nanostructures as ``armour-plated'' enzyme molecules or polynucleotide strands not only maintains their intact structure and biochemical properties, but also enables the fabrication of novel hybrid nanomaterials for potential applications in diverse areas of bionanotechnology.

  7. Integrated pyrolucite fluidized bed-membrane hybrid process for improved iron and manganese control in drinking water.

    PubMed

    Dashtban Kenari, Seyedeh Laleh; Barbeau, Benoit

    2017-04-15

    Newly developed ceramic membrane technologies offer numerous advantages over the conventional polymeric membranes. This work proposes a new configuration, an integrated pyrolucite fluidized bed (PFB)-ceramic MF/UF hybrid process, for improved iron and manganese control in drinking water. A pilot-scale study was undertaken to evaluate the performance of this process with respect to iron and manganese control as well as membrane fouling. In addition, the fouling of commercially available ceramic membranes in conventional preoxidation-MF/UF process was compared with the hybrid process configuration. In this regard, a series of experiments were conducted under different influent water quality and operating conditions. Fouling mechanisms and reversibility were analyzed using blocking law and resistance-in-series models. The results evidenced that the flux rate and the concentration of calcium and humic acids in the feed water have a substantial impact on the filtration behavior of both membranes. The model for constant flux compressible cake formation well described the rise in transmembrane pressure. The compressibility of the filter cake substantially increased in the presence of 2 mg/L humic acids. The presence of calcium ions caused significant aggregation of manganese dioxide and humic acid which severely impacted the extent of membrane fouling. The PFB pretreatment properly alleviated membrane fouling by removing more than 75% and 95% of iron and manganese, respectively.

  8. A nanoelectronic nose: a hybrid nanowire/carbon nanotube sensor array with integrated micromachined hotplates for sensitive gas discrimination

    NASA Astrophysics Data System (ADS)

    Chen, Po-Chiang; Ishikawa, Fumiaki N.; Chang, Hsiao-Kang; Ryu, Koungmin; Zhou, Chongwu

    2009-03-01

    A novel hybrid chemical sensor array composed of individual In2O3 nanowires, SnO2 nanowires, ZnO nanowires, and single-walled carbon nanotubes with integrated micromachined hotplates for sensitive gas discrimination was demonstrated. Key features of our approach include the integration of nanowire and carbon nanotube sensors, precise control of the sensor temperature using the micromachined hotplates, and the use of principal component analysis for pattern recognition. This sensor array was exposed to important industrial gases such as hydrogen, ethanol and nitrogen dioxide at different concentrations and sensing temperatures, and an excellent selectivity was obtained to build up an interesting 'smell-print' library of these gases. Principal component analysis of the sensing results showed great discrimination of those three tested chemicals, and in-depth analysis revealed clear improvement of selectivity by the integration of carbon nanotube sensors. This nanoelectronic nose approach has great potential for detecting and discriminating between a wide variety of gases, including explosive ones and nerve agents.

  9. A family of time-staggered schemes for integrating hybrid DPD models for polymers: Algorithms and applications

    SciTech Connect

    Symeonidis, Vasileios; Karniadakis, George Em . E-mail: gk@dam.brown.edu

    2006-10-10

    We propose new schemes for integrating the stochastic differential equations of dissipative particle dynamics (DPD) in simulations of dilute polymer solutions. The hybrid DPD models consist of hard potentials that describe the microscopic dynamics of polymers and soft potentials that describe the mesoscopic dynamics of the solvent. In particular, we develop extensions to the velocity-Verlet and Lowe's approaches - two representative DPD time-integrators - following a subcycling procedure whereby the solvent is advanced with a timestep much larger than the one employed in the polymer time-integration. The introduction of relaxation parameters allows optimization studies for accuracy while maintaining the low computational complexity of standard DPD algorithms. We demonstrate through equilibrium simulations that a 10-fold gain in efficiency can be obtained with the time-staggered algorithms without loss of accuracy compared to the non-staggered schemes. We then apply the new approach to investigate the scaling response of polymers in equilibrium as well as the dynamics of {lambda}-phage DNA molecules subjected to shear.

  10. A family of time-staggered schemes for integrating hybrid DPD models for polymers: Algorithms and applications

    NASA Astrophysics Data System (ADS)

    Symeonidis, Vasileios; Karniadakis, George Em

    2006-10-01

    We propose new schemes for integrating the stochastic differential equations of dissipative particle dynamics (DPD) in simulations of dilute polymer solutions. The hybrid DPD models consist of hard potentials that describe the microscopic dynamics of polymers and soft potentials that describe the mesoscopic dynamics of the solvent. In particular, we develop extensions to the velocity-Verlet and Lowe's approaches - two representative DPD time-integrators - following a subcycling procedure whereby the solvent is advanced with a timestep much larger than the one employed in the polymer time-integration. The introduction of relaxation parameters allows optimization studies for accuracy while maintaining the low computational complexity of standard DPD algorithms. We demonstrate through equilibrium simulations that a 10-fold gain in efficiency can be obtained with the time-staggered algorithms without loss of accuracy compared to the non-staggered schemes. We then apply the new approach to investigate the scaling response of polymers in equilibrium as well as the dynamics of λ-phage DNA molecules subjected to shear.

  11. Ship-in-a-bottle integration by hybrid femtosecond laser technology for fabrication of true 3D biochips

    NASA Astrophysics Data System (ADS)

    Sima, Felix; Wu, Dong; Xu, Jian; Midorikawa, Katsumi; Sugioka, Koji

    2015-03-01

    We propose herein the "ship-in-a-bottle" integration of three-dimensional (3D) polymeric sinusoidal ridges inside photosensitive glass microfluidic channel by a hybrid subtractive - additive femtosecond laser processing method. It consists of Femtosecond Laser Assisted Wet Etching (FLAE) of a photosensitive Foturan glass followed by Two-Photon Polymerization (TPP) of a SU-8 negative epoxy-resin. Both subtractive and additive processes are carried out using the same set-up with the change of laser focusing objective only. A 522 nm wavelength of the second harmonic generation from an amplified femtosecond Yb-fiber laser (FCPA µJewel D-400, IMRA America, 1045 nm; pulse width 360 fs, repetition rate 200 kHz) was employed for irradiation. The new method allows lowering the size limit of 3D objects created inside channels to smaller details down to the dimensions of a cell, and improve the structure stability. Sinusoidal periodic patterns and ridges are of great use as base scaffolds for building up new structures on their top or for modulating cell migration, guidance and orientation while created interspaces can be exploited for microfluidic applications. The glass microchannel offers robustness and appropriate dynamic flow conditions for cellular studies while the integrated patterns are reducing the size of structure to the level of cells responsiveness. Taking advantage of the ability to directly fabricate 3D complex shapes, both glass channels and polymeric integrated patterns enable us to 3D spatially design biochips for specific applications.

  12. Sticker-type ECG/PPG concurrent monitoring system hybrid integration of CMOS SoC and organic sensor device.

    PubMed

    Lee, Yongsu; Lee, Hyeonwoo; Yoo, Seunghyup; Yoo, Hoi-Jun; Yongsu Lee; Hyeonwoo Lee; Seunghyup Yoo; Hoi-Jun Yoo; Yoo, Seunghyup; Lee, Yongsu; Yoo, Hoi-Jun; Lee, Hyeonwoo

    2016-08-01

    The sticker-type sensor system is proposed targeting ECG/PPG concurrent monitoring for cardiovascular diseases. The stickers are composed of two types: Hub and Sensor-node (SN) sticker. Low-power CMOS SoC for measuring ECG and PPG signal is hybrid integrated with organic light emitting diodes (OLEDs) and organic photo detector (OPD). The sticker has only 2g weight and only consumes 141μW. The optical calibration loop is adopted for maintaining SNR of PPG signal higher than 30dB. The pulse arrival time (PAT) and SpO2 value can be extracted from various body parts and verified comparing with the reference device from 20 people in-vivo experiments.

  13. Highly integrated hybrid process with ceramic ultrafiltration-membrane for advanced treatment of drinking water: a pilot study.

    PubMed

    Guo, Jianning; Wang, Lingyun; Zhu, Jia; Zhang, Jianguo; Sheng, Deyang; Zhang, Xihui

    2013-01-01

    This article presents a highly integrated hybrid process for the advanced treatment of drinking water in dealing with the micro-polluted raw water. A flat sheet ceramic membrane with the pore size of 50∼60 nm for ultrafiltration (UF) is used to integrate coagulation and ozonation together. At the same time, biological activated carbon filtration (BAC) is used to remove the ammonia and organic pollutants in raw water. A pilot study in the scale of 120 m(3)/d has been conducted in Southern China. The mainly-analyzed parameters include turbidity, particle counts, ammonia, total organic carbon (TOC), UV254, biological dissolved organic carbon (BDOC), dissolved oxygen (DO) as well as trans-membrane pressure (TMP). The experiments demonstrated that ceramic UF-membrane was able to remove most of turbidity and suspended particulate matters. The final effluent turbidity reached to 0.14 NTU on average. BAC was effective in removing ammonia and organic matters. Dissolved oxygen (DO) is necessary for the biodegradation of ammonia at high concentration. The removal efficiencies reached to 90% for ammonia with the initial concentration of 3.6 mg/L and 76% for TOC with the initial concentration of 3.8 mg/L. Ozonation can alter the molecular structure of organics in terms of UV254, reduce membrane fouling, and extend the operation circle. It is believed the hybrid treatment process developed in this article can achieve high performance with less land occupation and lower cost compared with the conventional processes. It is especially suitable for the developing countries in order to obtain high-quality drinking water in a cost-effective way.

  14. Integrated optical sensor using hybrid plasmonics for lab on chip applications

    NASA Astrophysics Data System (ADS)

    Zaki, Aya O.; Kirah, Khaled; Swillam, Mohamed A.

    2016-08-01

    We propose a novel, compact plasmonic sensing structure based on a metal-insulator-metal waveguide hybridly-coupled to a rectangular side cavity. The structure has been numerically investigated using the finite-difference time-domain method. Transmission spectra obtained from numerical simulations are used to analyze the sensing characteristics of the structure. The effects of the geometrical parameters on transmission and sensing of the structure are studied. With optimum design, sensitivity can reach as high as 1500 nm per refractive-index unit around the resonance wavelength of 1550 nm with a cavity area of 1 μm2. The proposed structure can potentially be applied in on-chip pressure and gas micro-sensors.

  15. The prescribing clinical health psychologist: a hybrid skill set in the new era of integrated healthcare.

    PubMed

    McGuinness, Kevin M

    2012-12-01

    The prescribing clinical health psychologist brings together in one individual a combination of skills to create a hybrid profession that can add value to any healthcare organization. This article addresses the high demand for mental health services and the inequitable distribution of mental health practitioners across the nation. The close link between physical and mental health and evidence that individuals in psychological distress often enter the mental health system via primary care medical clinics is offered as background to a discussion of the author's work as a commissioned officer of the U.S. Public Health Service assigned to the Chaparral Medical Center of La Clinica de Familia, Inc. near the U.S.-Mexico border. The prescribing clinical health psychologist in primary care medical settings is described as a valuable asset to the future of professional psychology.

  16. A hybrid approach for integrated healthcare cooperative purchasing and supply chain configuration.

    PubMed

    Rego, Nazaré; Claro, João; Pinho de Sousa, Jorge

    2014-12-01

    This paper presents an innovative and flexible approach for recommending the number, size and composition of purchasing groups, for a set of hospitals willing to cooperate, while minimising their shared supply chain costs. This approach makes the financial impact of the various cooperation alternatives transparent to the group and the individual participants, opening way to a negotiation process concerning the allocation of the cooperation costs and gains. The approach was developed around a hybrid Variable Neighbourhood Search (VNS)/Tabu Search metaheuristic, resulting in a flexible tool that can be applied to purchasing groups with different characteristics, namely different operative and market circumstances, and to supply chains with different topologies and atypical cost characteristics. Preliminary computational results show the potential of the approach in solving a broad range of problems.

  17. Evaluation of two-center Coulomb and hybrid integrals over complete orthonormal sets of Ψα-ETO using auxiliary functions.

    PubMed

    Guseinov, Israfil I; Sahin, Ercan

    2011-04-01

    By the use of ellipsoidal coordinates, the two-center Coulomb and hybrid integrals over complete orthonormal sets of Ψα-ETO exponential type orbitals arising in ab initio calculations of molecules are evaluated, where α = 1,0, -1, -2, ...,. These integrals are expressed through the auxiliary functions Q(ns)(q) and G(-ns)(q). The comparison is made with some values of integrals for Slater type orbitals the computation results of which are in good agreement with those obtained in the literature. The relationships obtained are valid for the arbitrary quantum numbers, screening constants and location of orbitals. Closed form expressions for two-center Coulomb and hybrid integrals for 1s and 2s orbitals with α = 1 are also presented. As an example of application, the Hartree-Fock-Roothaan calculations for the ground state of H(2) molecule are carried out with α = 1 and α = 0.

  18. Radiation hardness assessment of the charge-integrating hybrid pixel detector JUNGFRAU 1.0 for photon science

    SciTech Connect

    Jungmann-Smith, J. H. Bergamaschi, A.; Brückner, M.; Dinapoli, R.; Greiffenberg, D.; Jaggi, A.; Maliakal, D.; Mayilyan, D.; Mezza, D.; Mozzanica, A.; Ramilli, M.; Ruder, Ch.; Schädler, L.; Schmitt, B.; Shi, X.; Tinti, G.; Cartier, S.; Medjoubi, K.

    2015-12-15

    JUNGFRAU (adJUstiNg Gain detector FoR the Aramis User station) is a two-dimensional hybrid pixel detector for photon science applications in free electron lasers, particularly SwissFEL, and synchrotron light sources. JUNGFRAU is an automatic gain switching, charge-integrating detector which covers a dynamic range of more than 10{sup 4} photons of an energy of 12 keV with a good linearity, uniformity of response, and spatial resolving power. The JUNGFRAU 1.0 application-specific integrated circuit (ASIC) features a 256 × 256 pixel matrix of 75 × 75 μm{sup 2} pixels and is bump-bonded to a 320 μm thick Si sensor. Modules of 2 × 4 chips cover an area of about 4 × 8 cm{sup 2}. Readout rates in excess of 2 kHz enable linear count rate capabilities of 20 MHz (at 12 keV) and 50 MHz (at 5 keV). The tolerance of JUNGFRAU to radiation is a key issue to guarantee several years of operation at free electron lasers and synchrotrons. The radiation hardness of JUNGFRAU 1.0 is tested with synchrotron radiation up to 10 MGy of delivered dose. The effect of radiation-induced changes on the noise, baseline, gain, and gain switching is evaluated post-irradiation for both the ASIC and the hybridized assembly. The bare JUNGFRAU 1.0 chip can withstand doses as high as 10 MGy with minor changes to its noise and a reduction in the preamplifier gain. The hybridized assembly, in particular the sensor, is affected by the photon irradiation which mainly shows as an increase in the leakage current. Self-healing of the system is investigated during a period of 11 weeks after the delivery of the radiation dose. Annealing radiation-induced changes by bake-out at 100 °C is investigated. It is concluded that the JUNGFRAU 1.0 pixel is sufficiently radiation-hard for its envisioned applications at SwissFEL and synchrotron beam lines.

  19. Whole-body hybrid imaging concept for the integration of PET/MR into radiation therapy treatment planning

    NASA Astrophysics Data System (ADS)

    Paulus, Daniel H.; Oehmigen, Mark; Grueneisen, Johannes; Umutlu, Lale; Quick, Harald H.

    2016-05-01

    Modern radiation therapy (RT) treatment planning is based on multimodality imaging. With the recent availability of whole-body PET/MR hybrid imaging new opportunities arise to improve target volume delineation in RT treatment planning. This, however, requires dedicated RT equipment for reproducible patient positioning on the PET/MR system, which has to be compatible with MR and PET imaging. A prototype flat RT table overlay, radiofrequency (RF) coil holders for head imaging, and RF body bridges for body imaging were developed and tested towards PET/MR system integration. Attenuation correction (AC) of all individual RT components was performed by generating 3D CT-based template models. A custom-built program for μ-map generation assembles all AC templates depending on the presence and position of each RT component. All RT devices were evaluated in phantom experiments with regards to MR and PET imaging compatibility, attenuation correction, PET quantification, and position accuracy. The entire RT setup was then evaluated in a first PET/MR patient study on five patients at different body regions. All tested devices are PET/MR compatible and do not produce visible artifacts or disturb image quality. The RT components showed a repositioning accuracy of better than 2 mm. Photon attenuation of  -11.8% in the top part of the phantom was observable, which was reduced to  -1.7% with AC using the μ-map generator. Active lesions of 3 subjects were evaluated in terms of SUVmean and an underestimation of  -10.0% and  -2.4% was calculated without and with AC of the RF body bridges, respectively. The new dedicated RT equipment for hybrid PET/MR imaging enables acquisitions in all body regions. It is compatible with PET/MR imaging and all hardware components can be corrected in hardware AC by using the suggested μ-map generator. These developments provide the technical and methodological basis for integration of PET/MR hybrid imaging into RT planning.

  20. Whole-body hybrid imaging concept for the integration of PET/MR into radiation therapy treatment planning.

    PubMed

    Paulus, Daniel H; Oehmigen, Mark; Grüneisen, Johannes; Umutlu, Lale; Quick, Harald H

    2016-05-07

    Modern radiation therapy (RT) treatment planning is based on multimodality imaging. With the recent availability of whole-body PET/MR hybrid imaging new opportunities arise to improve target volume delineation in RT treatment planning. This, however, requires dedicated RT equipment for reproducible patient positioning on the PET/MR system, which has to be compatible with MR and PET imaging. A prototype flat RT table overlay, radiofrequency (RF) coil holders for head imaging, and RF body bridges for body imaging were developed and tested towards PET/MR system integration. Attenuation correction (AC) of all individual RT components was performed by generating 3D CT-based template models. A custom-built program for μ-map generation assembles all AC templates depending on the presence and position of each RT component. All RT devices were evaluated in phantom experiments with regards to MR and PET imaging compatibility, attenuation correction, PET quantification, and position accuracy. The entire RT setup was then evaluated in a first PET/MR patient study on five patients at different body regions. All tested devices are PET/MR compatible and do not produce visible artifacts or disturb image quality. The RT components showed a repositioning accuracy of better than 2 mm. Photon attenuation of  -11.8% in the top part of the phantom was observable, which was reduced to  -1.7% with AC using the μ-map generator. Active lesions of 3 subjects were evaluated in terms of SUVmean and an underestimation of  -10.0% and  -2.4% was calculated without and with AC of the RF body bridges, respectively. The new dedicated RT equipment for hybrid PET/MR imaging enables acquisitions in all body regions. It is compatible with PET/MR imaging and all hardware components can be corrected in hardware AC by using the suggested μ-map generator. These developments provide the technical and methodological basis for integration of PET/MR hybrid imaging into RT planning.

  1. Radiation hardness assessment of the charge-integrating hybrid pixel detector JUNGFRAU 1.0 for photon science

    NASA Astrophysics Data System (ADS)

    Jungmann-Smith, J. H.; Bergamaschi, A.; Brückner, M.; Cartier, S.; Dinapoli, R.; Greiffenberg, D.; Jaggi, A.; Maliakal, D.; Mayilyan, D.; Medjoubi, K.; Mezza, D.; Mozzanica, A.; Ramilli, M.; Ruder, Ch.; Schädler, L.; Schmitt, B.; Shi, X.; Tinti, G.

    2015-12-01

    JUNGFRAU (adJUstiNg Gain detector FoR the Aramis User station) is a two-dimensional hybrid pixel detector for photon science applications in free electron lasers, particularly SwissFEL, and synchrotron light sources. JUNGFRAU is an automatic gain switching, charge-integrating detector which covers a dynamic range of more than 104 photons of an energy of 12 keV with a good linearity, uniformity of response, and spatial resolving power. The JUNGFRAU 1.0 application-specific integrated circuit (ASIC) features a 256 × 256 pixel matrix of 75 × 75 μm2 pixels and is bump-bonded to a 320 μm thick Si sensor. Modules of 2 × 4 chips cover an area of about 4 × 8 cm2. Readout rates in excess of 2 kHz enable linear count rate capabilities of 20 MHz (at 12 keV) and 50 MHz (at 5 keV). The tolerance of JUNGFRAU to radiation is a key issue to guarantee several years of operation at free electron lasers and synchrotrons. The radiation hardness of JUNGFRAU 1.0 is tested with synchrotron radiation up to 10 MGy of delivered dose. The effect of radiation-induced changes on the noise, baseline, gain, and gain switching is evaluated post-irradiation for both the ASIC and the hybridized assembly. The bare JUNGFRAU 1.0 chip can withstand doses as high as 10 MGy with minor changes to its noise and a reduction in the preamplifier gain. The hybridized assembly, in particular the sensor, is affected by the photon irradiation which mainly shows as an increase in the leakage current. Self-healing of the system is investigated during a period of 11 weeks after the delivery of the radiation dose. Annealing radiation-induced changes by bake-out at 100 °C is investigated. It is concluded that the JUNGFRAU 1.0 pixel is sufficiently radiation-hard for its envisioned applications at SwissFEL and synchrotron beam lines.

  2. Radiation hardness assessment of the charge-integrating hybrid pixel detector JUNGFRAU 1.0 for photon science.

    PubMed

    Jungmann-Smith, J H; Bergamaschi, A; Brückner, M; Cartier, S; Dinapoli, R; Greiffenberg, D; Jaggi, A; Maliakal, D; Mayilyan, D; Medjoubi, K; Mezza, D; Mozzanica, A; Ramilli, M; Ruder, Ch; Schädler, L; Schmitt, B; Shi, X; Tinti, G

    2015-12-01

    JUNGFRAU (adJUstiNg Gain detector FoR the Aramis User station) is a two-dimensional hybrid pixel detector for photon science applications in free electron lasers, particularly SwissFEL, and synchrotron light sources. JUNGFRAU is an automatic gain switching, charge-integrating detector which covers a dynamic range of more than 10(4) photons of an energy of 12 keV with a good linearity, uniformity of response, and spatial resolving power. The JUNGFRAU 1.0 application-specific integrated circuit (ASIC) features a 256 × 256 pixel matrix of 75 × 75 μm(2) pixels and is bump-bonded to a 320 μm thick Si sensor. Modules of 2 × 4 chips cover an area of about 4 × 8 cm(2). Readout rates in excess of 2 kHz enable linear count rate capabilities of 20 MHz (at 12 keV) and 50 MHz (at 5 keV). The tolerance of JUNGFRAU to radiation is a key issue to guarantee several years of operation at free electron lasers and synchrotrons. The radiation hardness of JUNGFRAU 1.0 is tested with synchrotron radiation up to 10 MGy of delivered dose. The effect of radiation-induced changes on the noise, baseline, gain, and gain switching is evaluated post-irradiation for both the ASIC and the hybridized assembly. The bare JUNGFRAU 1.0 chip can withstand doses as high as 10 MGy with minor changes to its noise and a reduction in the preamplifier gain. The hybridized assembly, in particular the sensor, is affected by the photon irradiation which mainly shows as an increase in the leakage current. Self-healing of the system is investigated during a period of 11 weeks after the delivery of the radiation dose. Annealing radiation-induced changes by bake-out at 100 °C is investigated. It is concluded that the JUNGFRAU 1.0 pixel is sufficiently radiation-hard for its envisioned applications at SwissFEL and synchrotron beam lines.

  3. Hybrid graphene/silicon integrated optical isolators with photonic spin-orbit interaction

    NASA Astrophysics Data System (ADS)

    Ma, Jingwen; Xi, Xiang; Yu, Zejie; Sun, Xiankai

    2016-04-01

    Optical isolators are an important building block in photonic computation and communication. In traditional optics, isolators are realized with magneto-optical garnets. However, it remains challenging to incorporate such materials on an integrated platform because of the difficulty in material growth and bulky device footprint. Here, we propose an ultracompact integrated isolator by exploiting graphene's magneto-optical property on a silicon-on-insulator platform. The photonic nonreciprocity is achieved because the cyclotrons in graphene experiencing different optical spins exhibit different responses to counterpropagating light. Taking advantage of cavity resonance effects, we have numerically optimized a device design, which shows excellent isolation performance with the extinction ratio over 45 dB and the insertion loss around 12 dB at a wavelength near 1.55 μm. Featuring graphene's CMOS compatibility and substantially reduced device footprint, our proposal sheds light on monolithic integration of nonreciprocal photonic devices.

  4. Multiparameter Evaluation of the Heterogeneity of Circulating Tumor Cells Using Integrated RNA In Situ Hybridization and Immunocytochemical Analysis

    PubMed Central

    Wu, Yongqi; Park, Kyoung-Joo Jenny; Deighan, Clayton; Amaya, Peter; Miller, Brandon; Pan, Quintin; Zborowski, Maciej; Lustberg, Maryam; Chalmers, Jeffery

    2016-01-01

    Circulating tumor cells (CTCs) are routinely identified as cytokeratin (CK)-positive, epithelial cell adhesion molecule (EpCAM)-positive, and CD45-negative and are enriched based on EpCAM. However, there are a number of methodological challenges regarding both isolation and characterization of these rare CTCs including downregulation or absence of EpCAM in a variety of solid tumors leading to the omission of subpopulations of CTCs, difficulties in analyzing RNA and protein targets in CTCs due to the rarity of these cells, and low levels of targets and technological limitations of visualizing the targets of interest on each individual cell. Building on our previous CTC research on CD45-based negative magnetic separation and four-color fluorescent immunocytochemical (ICC) staining, RNA in situ hybridization (ISH) was applied to fluorescently target mRNA sequences corresponding to tumor-related genes at the single CTC level. Multiple categories of markers are targeted including CK, human epidermal growth factor receptor family markers, Hedgehog pathway markers, human papillomavirus markers, and protein arginine methyltransferase 5. In addition, an integrated method of RNA ISH and fluorescent ICC staining was developed to visualize CTCs on both mRNA and protein levels. The robustness of the integrated co-ICC and RNA ISH staining was demonstrated by a series of tests on representative tumor markers of different categories. The integrated staining can incorporate the advantages of both RNA ISH and fluorescent ICC staining and provide more intense signals and more specific bindings. With this integrated staining methodology, distinct staining patterns were applied in this report to facilitate the searching and characterization of rare subgroups of CTCs. These results support the existence of diverse groups of CTCs at both protein and mRNA transcript levels and provide an analytical tool for the research on CTCs of rare subgroups. PMID:27878106

  5. Monte Carlo Example Programs

    SciTech Connect

    Kalos, M.

    2006-05-09

    The Monte Carlo example programs VARHATOM and DMCATOM are two small, simple FORTRAN programs that illustrate the use of the Monte Carlo Mathematical technique for calculating the ground state energy of the hydrogen atom.

  6. Using Integrated Course Design to Build Student Communities of Practice in a Hybrid Course

    ERIC Educational Resources Information Center

    Fayne, Harriet R.

    2009-01-01

    In this article, the author describes how she used integrated course design to design a course that would help special education teachers satisfy the "Highly Qualified Teacher" (HQT) requirement established by No Child Left Behind (NCLB) in the area of English/language arts. The approach she chose was based on principles advanced by Fink…

  7. Development of an Integrated GIS and Land Use Planning Course: Impacts of Hybrid Instructional Methods

    ERIC Educational Resources Information Center

    Kamruzzaman, M.

    2014-01-01

    This study reports an action research undertaken at Queensland University of Technology. It evaluates the effectiveness of the integration of geographic information systems (GIS) within the substantive domains of an existing land use planning course in 2011. Using student performance, learning experience survey, and questionnaire survey data, it…

  8. Modelling personal exposure to particulate air pollution: an assessment of time-integrated activity modelling, Monte Carlo simulation & artificial neural network approaches.

    PubMed

    McCreddin, A; Alam, M S; McNabola, A

    2015-01-01

    An experimental assessment of personal exposure to PM10 in 59 office workers was carried out in Dublin, Ireland. 255 samples of 24-h personal exposure were collected in real time over a 28 month period. A series of modelling techniques were subsequently assessed for their ability to predict 24-h personal exposure to PM10. Artificial neural network modelling, Monte Carlo simulation and time-activity based models were developed and compared. The results of the investigation showed that using the Monte Carlo technique to randomly select concentrations from statistical distributions of exposure concentrations in typical microenvironments encountered by office workers produced the most accurate results, based on 3 statistical measures of model performance. The Monte Carlo simulation technique was also shown to have the greatest potential utility over the other techniques, in terms of predicting personal exposure without the need for further monitoring data. Over the 28 month period only a very weak correlation was found between background air quality and personal exposure measurements, highlighting the need for accurate models of personal exposure in epidemiological studies.

  9. Cubic PdNP-based air-breathing cathodes integrated in glucose hybrid biofuel cells

    NASA Astrophysics Data System (ADS)

    Faggion Junior, D.; Haddad, R.; Giroud, F.; Holzinger, M.; Maduro de Campos, C. E.; Acuña, J. J. S.; Domingos, J. B.; Cosnier, S.

    2016-05-01

    Cubic Pd nanoparticles (PdNPs) were synthesized using ascorbic acid as a reducing agent and were evaluated for the catalytic oxygen reduction reaction. PdNPs were confined with multiwalled carbon nanotube (MWCNT) dispersions to form black suspensions and these inks were dropcast onto glassy carbon electrodes. Different nanoparticle sizes were synthesized and investigated upon oxygen reduction capacities (onset potential and electrocatalytic current densities) under O2 saturated conditions at varying pH values. Strong evidence of O2 diffusion limitation was demonstrated. In order to overcome oxygen concentration and diffusion limitations in solution, we used a gas diffusion layer to create a PdNP-based air-breathing cathode, which delivered -1.5 mA cm-2 at 0.0 V with an onset potential of 0.4 V. This air-breathing cathode was combined with a specially designed phenanthrolinequinone/glucose dehydrogenase-based anode to form a complete glucose/O2 hybrid bio-fuel cell providing an open circuit voltage of 0.554 V and delivering a maximal power output of 184 +/- 21 μW cm-2 at 0.19 V and pH 7.0.Cubic Pd nanoparticles (PdNPs) were synthesized using ascorbic acid as a reducing agent and were evaluated for the catalytic oxygen reduction reaction. PdNPs were confined with multiwalled carbon nanotube (MWCNT) dispersions to form black suspensions and these inks were dropcast onto glassy carbon electrodes. Different nanoparticle sizes were synthesized and investigated upon oxygen reduction capacities (onset potential and electrocatalytic current densities) under O2 saturated conditions at varying pH values. Strong evidence of O2 diffusion limitation was demonstrated. In order to overcome oxygen concentration and diffusion limitations in solution, we used a gas diffusion layer to create a PdNP-based air-breathing cathode, which delivered -1.5 mA cm-2 at 0.0 V with an onset potential of 0.4 V. This air-breathing cathode was combined with a specially designed phenanthrolinequinone

  10. Integration of genetic and physical maps of the Primula vulgaris S locus and localization by chromosome in situ hybridization.

    PubMed

    Li, Jinhong; Webster, Margaret A; Wright, Jonathan; Cocker, Jonathan M; Smith, Matthew C; Badakshi, Farah; Heslop-Harrison, Pat; Gilmartin, Philip M

    2015-10-01

    Heteromorphic flower development in Primula is controlled by the S locus. The S locus genes, which control anther position, pistil length and pollen size in pin and thrum flowers, have not yet been characterized. We have integrated S-linked genes, marker sequences and mutant phenotypes to create a map of the P. vulgaris S locus region that will facilitate the identification of key S locus genes. We have generated, sequenced and annotated BAC sequences spanning the S locus, and identified its chromosomal location. We have employed a combination of classical genetics and three-point crosses with molecular genetic analysis of recombinants to generate the map. We have characterized this region by Illumina sequencing and bioinformatic analysis, together with chromosome in situ hybridization. We present an integrated genetic and physical map across the P. vulgaris S locus flanked by phenotypic and DNA sequence markers. BAC contigs encompass a 1.5-Mb genomic region with 1 Mb of sequence containing 82 S-linked genes anchored to overlapping BACs. The S locus is located close to the centromere of the largest metacentric chromosome pair. These data will facilitate the identification of the genes that orchestrate heterostyly in Primula and enable evolutionary analyses of the S locus.

  11. A mitochondrial retroplasmid integrates into mitochondrial DNA by a novel mechanism involving the synthesis of a hybrid cDNA and homologous recombination.

    PubMed Central

    Chiang, C C; Kennell, J C; Wanner, L A; Lambowitz, A M

    1994-01-01

    The Mauriceville and Varkud mitochondrial plasmids of Neurospora spp. are closely related, small circular DNAs that propagate via an RNA intermediate and reverse transcription. Although the plasmids ordinarily replicate autonomously, they can also integrate into mitochondrial DNA (mtDNA), yielding defective mtDNAs that in some cases cause senescence. To investigate the integration mechanism, we analyzed four cases in which the Varkud plasmid integrated into the mitochondrial small rRNA gene, three in wild-type subcultures and one in a senescent mutant. Our analysis suggests that the integrations occurred by the plasmid reverse transcriptase template switching between the plasmid transcript and internal sequences in the mitochondrial small rRNA to yield hybrid cDNAs that circularized and recombined homologously with the mtDNA. The integrated plasmid sequences are transcribed, presumably from the mitochondrial small rRNA promoters, resulting in hybrid RNAs containing the 5' segment of the mitochondrial small rRNA linked head-to-tail to the full-length plasmid transcript. Analysis of additional senescent mutants revealed three cases in which the plasmid used the same mechanism to integrate at other locations in the mtDNA. In these cases, circular variant plasmids that had incorporated a mitochondrial tRNA or tRNA-like sequence by template switching integrated by homologous recombination at the site of the corresponding tRNA or tRNA-like sequence in mtDNA. This simple integration mechanism involving template switching to generate a hybrid cDNA that integrates homologously could have been used by primitive retroelements prior to the acquisition of a specialized integration machinery. Images PMID:7523850

  12. Integration of organic LEDs with inorganic LEDs for a hybrid lighting system

    NASA Astrophysics Data System (ADS)

    Kong, H. J.; Park, J. W.; Kim, Y. M.

    2013-01-01

    We demonstrate that a surface-emitting hybrid light source can be realized by a combination of organic and inorganic light-emitting devices (LEDs). To this end, a blue inorganic LED bar is deployed at one side of a transparent light guide plate (LGP), and a yellow organic LED (OLED) is in contact with the rear surface of the LGP. In such a configuration, it is found that the overall luminance is almost equivalent to the sum of the luminances measured from each light source, and the overall luminance uniformity is determined mainly by the luminance uniformity of the OLED panel at high luminances. We have achieved a white color showing the Commission Internationale d'Eclairage (CIE) chromaticity coordinates of (x = 0.34, y = 0.33), the power efficiency of 9.3 lm/W, the luminance uniformity of 63% at the luminance of 3100 cd m-2, the color rendering index as high as 89.3, and the correlated color temperature finely tunable within the range between 3000 and 8000 K. Such a system facilitates color tuning by adjusting their luminous intensities and hence the implementation of the emotional lighting system.

  13. Integrating climate change criteria in reforestation projects using a hybrid decision-support system

    NASA Astrophysics Data System (ADS)

    Curiel-Esparza, Jorge; Gonzalez-Utrillas, Nuria; Canto-Perello, Julian; Martin-Utrillas, Manuel

    2015-09-01

    The selection of appropriate species in a reforestation project has always been a complex decision-making problem in which, due mostly to government policies and other stakeholders, not only economic criteria but also other environmental issues interact. Climate change has not usually been taken into account in traditional reforestation decision-making strategies and management procedures. Moreover, there is a lack of agreement on the percentage of each one of the species in reforestation planning, which is usually calculated in a discretionary way. In this context, an effective multicriteria technique has been developed in order to improve the process of selecting species for reforestation in the Mediterranean region of Spain. A hybrid Delphi-AHP methodology is proposed, which includes a consistency analysis in order to reduce random choices. As a result, this technique provides an optimal percentage distribution of the appropriate species to be used in reforestation planning. The highest values of the weight given for each subcriteria corresponded to FR (fire forest response) and PR (pests and diseases risk), because of the increasing importance of the impact of climate change in the forest. However, CB (conservation of biodiversitiy) was in the third position in line with the aim of reforestation. Therefore, the most suitable species were Quercus faginea (19.75%) and Quercus ilex (19.35%), which offer a good balance between all the factors affecting the success and viability of reforestation.

  14. Hybrid routing technique for a fault-tolerant, integrated information network

    NASA Technical Reports Server (NTRS)

    Meredith, B. D.

    1986-01-01

    The evolutionary growth of the space station and the diverse activities onboard are expected to require a hierarchy of integrated, local area networks capable of supporting data, voice, and video communications. In addition, fault-tolerant network operation is necessary to protect communications between critical systems attached to the net and to relieve the valuable human resources onboard the space station of time-critical data system repair tasks. A key issue for the design of the fault-tolerant, integrated network is the development of a robust routing algorithm which dynamically selects the optimum communication paths through the net. A routing technique is described that adapts to topological changes in the network to support fault-tolerant operation and system evolvability.

  15. Hybrid integration approach of VCSELs for miniaturized optical deflection of microparticles

    NASA Astrophysics Data System (ADS)

    Bergmann, Anna; Khan, Niazul Islam; Martos Calahorro, Jose Antonio; Wahl, Dietmar; Michalzik, Rainer

    2012-06-01

    In recent years, optical manipulation has gained increasing interest, especially in combination with microfluidics. This combination offers promising tools for a fast and cost-effective sample analysis and manipulation. The contamination-free handling of micrometer-sized particles without any mechanical contact is an attractive tool for biology and medicine. VCSELs (vertical-cavity surface-emitting lasers) are an excellent choice for the trapping lasers, offering the opportunity of parallel particle manipulation by using two-dimensional VCSEL arrays, and of miniaturization by means of integration. In this paper, we present two novel concepts for the realization of the so-called integrated optical trap, resembling a strongly miniaturized version of the typically bulky setup of an optical trap. For this purpose, AlGaAs-GaAs-based VCSEL arrays with a very small device pitch were fabricated. We show the realization of integration-ready particle manipulation devices, both with top-emitting and with bottom-emitting densely packed VCSEL arrays. The smallest pitch of 18 μm is achieved with bottom-emitting VCSEL arrays, having mesa diameters of only 16 μm.

  16. Design of a plasmonic-organic hybrid slot waveguide integrated with a bowtie-antenna for terahertz wave detection

    NASA Astrophysics Data System (ADS)

    Zhang, Xingyu; Chung, Chi-Jui; Subbaraman, Harish; Pan, Zeyu; Chen, Chin-Ta; Chen, Ray T.

    2016-03-01

    Electromagnetic (EM) wave detection over a large spectrum has recently attracted significant amount of attention. Traditional electronic EM wave sensors use large metallic probes which distort the field to be measured and also have strict limitations on the detectable RF bandwidth. To address these problems, integrated photonic EM wave sensors have been developed to provide high sensitivity and broad bandwidth. Previously we demonstrated a compact, broadband, and sensitive integrated photonic EM wave sensor, consisting of an organic electro-optic (EO) polymer refilled silicon slot photonic crystal waveguide (PCW) modulator integrated with a gold bowtie antenna, to detect the X band of the electromagnetic spectrum. However, due to the relative large RC constant of the silicon PCW, such EM wave sensors can only work up to tens of GHz. In this work, we present a detailed design and discussion of a new generation of EM wave sensors based on EO polymer refilled plasmonic slot waveguides in conjunction with bowtie antennas to cover a wider electromagnetic spectrum from 1 GHz up to 10THz, including the range of microwave, millimeter wave and even terahertz waves. This antennacoupled plasmonic-organic hybrid (POH) structure is designed to provide an ultra-small RC constant, a large overlap between plasmonic mode and RF field, and strong electric field enhancement, as well as negligible field perturbation. A taper is designed to bridge silicon strip waveguide to plasmonic slot waveguide. Simulation results show that our device can have an EM wave sensing ability up to 10 THz. To the best of our knowledge, this is the first POH device for photonic terahertz wave detection.

  17. High quality proton beams from hybrid integrated laser-driven ion acceleration systems

    NASA Astrophysics Data System (ADS)

    Sinigardi, Stefano; Turchetti, Giorgio; Rossi, Francesco; Londrillo, Pasquale; Giove, Dario; De Martinis, Carlo; Bolton, Paul R.

    2014-03-01

    We consider a hybrid acceleration scheme for protons where the laser generated beam is selected in energy and angle and injected into a compact linac, which raises the energy from 30 to 60 MeV. The laser acceleration regime is TNSA and the energy spectrum is determined by the cutoff energy and proton temperature. The dependence of the spectrum on the target properties and the incidence angle is investigated with 2D PIC simulations. We base our work on widely available technologies and on laser with a short pulse, having in mind a facility whose cost is approximately 15 M €. Using a recent experiment as the reference, we choose the laser pulse and target so that the energy spectrum obtained from the 3D PIC simulation is close to the one observed, whose cutoff energy was estimated to be over 50 MeV. Laser accelerated protons in the TNSA regime have wide energy spectrum and broad divergence. In this paper we compare three transport lines, designed to perform energy selection and beam collimation. They are based on a solenoid, a quadruplet of permanent magnetic quadrupoles and a chicane. To increase the maximum available energy, which is actually seen as an upper limit due to laser properties and available targets, we propose to inject protons into a small linac for post-acceleration. The number of selected and injected protons is the highest with the solenoid and lower by one and two orders of magnitude with the quadrupoles and the chicane respectively. Even though only the solenoid enables achieving to reach a final intensity at the threshold required for therapy with the highest beam quality, the other systems will be very likely used in the first experiments. Realistic start-to-end simulations, as the ones reported here, are relevant for the design of such experiments.

  18. Hybrid information privacy system: integration of chaotic neural network and RSA coding

    NASA Astrophysics Data System (ADS)

    Hsu, Ming-Kai; Willey, Jeff; Lee, Ting N.; Szu, Harold H.

    2005-03-01

    Electronic mails are adopted worldwide; most are easily hacked by hackers. In this paper, we purposed a free, fast and convenient hybrid privacy system to protect email communication. The privacy system is implemented by combining private security RSA algorithm with specific chaos neural network encryption process. The receiver can decrypt received email as long as it can reproduce the specified chaos neural network series, so called spatial-temporal keys. The chaotic typing and initial seed value of chaos neural network series, encrypted by the RSA algorithm, can reproduce spatial-temporal keys. The encrypted chaotic typing and initial seed value are hidden in watermark mixed nonlinearly with message media, wrapped with convolution error correction codes for wireless 3rd generation cellular phones. The message media can be an arbitrary image. The pattern noise has to be considered during transmission and it could affect/change the spatial-temporal keys. Since any change/modification on chaotic typing or initial seed value of chaos neural network series is not acceptable, the RSA codec system must be robust and fault-tolerant via wireless channel. The robust and fault-tolerant properties of chaos neural networks (CNN) were proved by a field theory of Associative Memory by Szu in 1997. The 1-D chaos generating nodes from the logistic map having arbitrarily negative slope a = p/q generating the N-shaped sigmoid was given first by Szu in 1992. In this paper, we simulated the robust and fault-tolerance properties of CNN under additive noise and pattern noise. We also implement a private version of RSA coding and chaos encryption process on messages.

  19. Dynamic modeling, experimental evaluation, optimal design and control of integrated fuel cell system and hybrid energy systems for building demands

    NASA Astrophysics Data System (ADS)

    Nguyen, Gia Luong Huu

    Fuel cells can produce electricity with high efficiency, low pollutants, and low noise. With the advent of fuel cell technologies, fuel cell systems have since been demonstrated as reliable power generators with power outputs from a few watts to a few megawatts. With proper equipment, fuel cell systems can produce heating and cooling, thus increased its overall efficiency. To increase the acceptance from electrical utilities and building owners, fuel cell systems must operate more dynamically and integrate well with renewable energy resources. This research studies the dynamic performance of fuel cells and the integration of fuel cells with other equipment in three levels: (i) the fuel cell stack operating on hydrogen and reformate gases, (ii) the fuel cell system consisting of a fuel reformer, a fuel cell stack, and a heat recovery unit, and (iii) the hybrid energy system consisting of photovoltaic panels, fuel cell system, and energy storage. In the first part, this research studied the steady-state and dynamic performance of a high temperature PEM fuel cell stack. Collaborators at Aalborg University (Aalborg, Denmark) conducted experiments on a high temperature PEM fuel cell short stack at steady-state and transients. Along with the experimental activities, this research developed a first-principles dynamic model of a fuel cell stack. The dynamic model developed in this research was compared to the experimental results when operating on different reformate concentrations. Finally, the dynamic performance of the fuel cell stack for a rapid increase and rapid decrease in power was evaluated. The dynamic model well predicted the performance of the well-performing cells in the experimental fuel cell stack. The second part of the research studied the dynamic response of a high temperature PEM fuel cell system consisting of a fuel reformer, a fuel cell stack, and a heat recovery unit with high thermal integration. After verifying the model performance with the

  20. Free-space coherent optical communication with orbital angular, momentum multiplexing/demultiplexing using a hybrid 3D photonic integrated circuit.

    PubMed

    Guan, Binbin; Scott, Ryan P; Qin, Chuan; Fontaine, Nicolas K; Su, Tiehui; Ferrari, Carlo; Cappuzzo, Mark; Klemens, Fred; Keller, Bob; Earnshaw, Mark; Yoo, S J B

    2014-01-13

    We demonstrate free-space space-division-multiplexing (SDM) with 15 orbital angular momentum (OAM) states using a three-dimensional (3D) photonic integrated circuit (PIC). The hybrid device consists of a silica planar lightwave circuit (PLC) coupled to a 3D waveguide circuit to multiplex/demultiplex OAM states. The low excess loss hybrid device is used in individual and two simultaneous OAM states multiplexing and demultiplexing link experiments with a 20 Gb/s, 1.67 b/s/Hz quadrature phase shift keyed (QPSK) signal, which shows error-free performance for 379,960 tested bits for all OAM states.

  1. Hybrid Pixel-Based Method for Cardiac Ultrasound Fusion Based on Integration of PCA and DWT

    PubMed Central

    Sulaiman, Puteri Suhaiza; Wirza, Rahmita; Dimon, Mohd Zamrin; Khalid, Fatimah; Moosavi Tayebi, Rohollah

    2015-01-01

    Medical image fusion is the procedure of combining several images from one or multiple imaging modalities. In spite of numerous attempts in direction of automation ventricle segmentation and tracking in echocardiography, due to low quality images with missing anatomical details or speckle noises and restricted field of view, this problem is a challenging task. This paper presents a fusion method which particularly intends to increase the segment-ability of echocardiography features such as endocardial and improving the image contrast. In addition, it tries to expand the field of view, decreasing impact of noise and artifacts and enhancing the signal to noise ratio of the echo images. The proposed algorithm weights the image information regarding an integration feature between all the overlapping images, by using a combination of principal component analysis and discrete wavelet transform. For evaluation, a comparison has been done between results of some well-known techniques and the proposed method. Also, different metrics are implemented to evaluate the performance of proposed algorithm. It has been concluded that the presented pixel-based method based on the integration of PCA and DWT has the best result for the segment-ability of cardiac ultrasound images and better performance in all metrics. PMID:26089965

  2. Field Test and Performance Verification: Integrated Active Desiccant Rooftop Hybrid System Installed in a School - Final Report: Phase 4A

    SciTech Connect

    Fischer, J

    2005-12-21

    This report summarizes the results of a field verification pilot site investigation that involved the installation of a hybrid integrated active desiccant/vapor-compression rooftop heating, ventilation, and air-conditioning (HVAC) unit at an elementary school in the Atlanta Georgia area. For years, the school had experienced serious humidity and indoor air quality (IAQ) problems that had resulted in occupant complaints and microbial (mold) remediation. The outdoor air louvers of the original HVAC units had been closed in an attempt to improve humidity control within the space. The existing vapor compression variable air volume system was replaced by the integrated active desiccant rooftop (IADR) system that was described in detail in an Oak Ridge National Laboratory (ORNL) report published in 2004 (Fischer and Sand 2004). The IADR system and all space conditions have been monitored remotely for more than a year. The hybrid system was able to maintain both the space temperature and humidity as desired while delivering the outdoor air ventilation rate required by American Society of Heating, Refrigerating and Air-Conditioning Engineers Standard 62. The performance level of the IADR unit and the overall system energy efficiency was measured and found to be very high. A comprehensive IAQ investigation was completed by the Georgia Tech Research Institute before and after the system retrofit. Before-and-after data resulting from this investigation confirmed a significant improvement in IAQ, humidity control, and occupant comfort. These observations were reported by building occupants and are echoed in a letter to ORNL from the school district energy manager. The IADR system was easily retrofitted in place of the original rooftop system using a custom curb adapter. All work was completed in-house by the school's maintenance staff over one weekend. A subsequent cost analysis completed for the school district by the design engineer of record concluded that the IADR system

  3. Propulsion Airframe Aeroacoustic Integration Effects for a Hybrid Wing Body Aircraft Configuration

    NASA Technical Reports Server (NTRS)

    Czech, Michael J.; Thomas, Russell H; Elkoby, Ronen

    2012-01-01

    An extensive experimental investigation was performed to study the propulsion airframe aeroacoustic effects of a high bypass ratio engine for a hybrid wing body aircraft configuration where the engine is installed above the wing. The objective was to provide an understanding of the jet noise shielding effectiveness as a function of engine gas condition and location as well as nozzle configuration. A 4.7% scale nozzle of a bypass ratio seven engine was run at characteristic cycle points under static and forward flight conditions. The effect of the pylon and its orientation on jet noise was also studied as a function of bypass ratio and cycle condition. The addition of a pylon yielded significant spectral changes lowering jet noise by up to 4 dB at high polar angles and increasing it by 2 to 3 dB at forward angles. In order to assess jet noise shielding, a planform representation of the airframe model, also at 4.7% scale was traversed such that the jet nozzle was positioned from downstream of to several diameters upstream of the airframe model trailing edge. Installations at two fan diameters upstream of the wing trailing edge provided only limited shielding in the forward arc at high frequencies for both the axisymmetric and a conventional round nozzle with pylon. This was consistent with phased array measurements suggesting that the high frequency sources are predominantly located near the nozzle exit and, consequently, are amenable to shielding. The mid to low frequency sources were observed further downstream and shielding was insignificant. Chevrons were designed and used to impact the distribution of sources with the more aggressive design showing a significant upstream migration of the sources in the mid frequency range. Furthermore, the chevrons reduced the low frequency source levels and the typical high frequency increase due to the application of chevron nozzles was successfully shielded. The pylon was further modified with a technology that injects air

  4. A 10Gb/s transimpedance amplifier for hybrid integration of a Ge PIN waveguide photodiode

    NASA Astrophysics Data System (ADS)

    Polzer, A.; Gaberl, W.; Swoboda, R.; Zimmermann, H.; Fedeli, J.-M.; Vivien, L.

    2010-05-01

    The presented paper describes a 10 Gbps optical receiver. The transimpedance amplifier (TIA) is realized in standard 0.35 μm SiGe BiCMOS technology. The main novelty of the presented design - investigated in the European Community project HELIOS - is the hybrid connection of the optical detector. The used Germanium photodetector will be directly mounted onto the receiver. A model of the relevant parasitics of the photodetector itself and the novel connection elements (micropads, metal vias and metal lines) is described. Based on this photodetector model an optical receiver circuit was optimized for maximum sensitivity at data rates in the range of 10 Gbps. The design combines a TIA and two limiting amplifier stages followed by a 50 Ω CML-style logic-level output driver. To minimize power supply noise and substrate noise, a fully differential design is used. A dummy TIA provides a symmetrical input signal reference and a control loop is used to compensate the offset levels. The TIA is built around a common-emitter stage and features a feedback resistor of 4.2 Ω. The total transimpedance of the complete receiver chain is in the range of 275 kΩ. The value of the active feedback resistor can be reduced via an external control voltage to adapt the design to different overall gain requirements. The two limiting amplifier stages are realized as differential amplifiers with voltage followers. The output buffer is implemented with cascode differential amplifiers. The output buffer is capable of driving a differential 50Ω output with a calculated output swing of 800mVp-p. Simulations show an overall bandwidth of 7.2 GHz. The lower cutoff frequency is below 60 kHz. The equivalent input noise current is 408 nA. With an estimated total photodiode responsivity of 0.5 A/W this allows a sensitivity of around - 23.1 dBm (BER = 10-9). The device operates from a single 3.3 V power supply and the TIAs and the limiting amplifier consume 32 mA.

  5. Propulsion Airframe Aeroacoustic Integration Effects for a Hybrid Wing Body Aircraft Configuration

    NASA Technical Reports Server (NTRS)

    Czech, Michael J.; Thomas, Russell H.; Elkoby, Ronen

    2010-01-01

    An extensive experimental investigation was performed to study the propulsion airframe aeroacoustic effects of a high bypass ratio engine for a hybrid wing body aircraft configuration where the engine is installed above the wing. The objective was to provide an understanding of the jet noise shielding effectiveness as a function of engine gas condition and location as well as nozzle configuration. A 4.7% scale nozzle of a bypass ratio seven engine was run at characteristic cycle points under static and forward flight conditions. The effect of the pylon and its orientation on jet noise was also studied as a function of bypass ratio and cycle condition. The addition of a pylon yielded significant spectral changes lowering jet noise by up to 4dB at high polar angles and increasing it by 2 to 3dB at forward angles. In order to assess jet noise shielding, a planform representation of the airframe model, also at 4.7% scale was traversed relative to the jet nozzle from downstream to several diameters upstream of the wing trailing edge. Installations at two fan diameters upstream of the wing trailing edge provided only limited shielding in the forward arc at high frequencies for both the axisymmetric and a conventional round nozzle with pylon. This was consistent with phased array measurements suggesting that the high frequency sources are predominantly located near the nozzle exit and, consequently, are amenable to shielding. The mid to low frequencies sources were observed further downstream and shielding was insignificant. Chevrons were designed and used to impact the distribution of sources with the more aggressive design showing a significant upstream migration of the sources in the mid frequency range. Furthermore, the chevrons reduced the low frequency source levels and the typical high frequency increase due to the application of chevron nozzles was successfully shielded. The pylon was further modified with a technology that injects air through the shelf of the

  6. A hybrid dielectrophoretic and hydrophoretic microchip for particle sorting using integrated prefocusing and sorting steps.

    PubMed

    Yan, Sheng; Zhang, Jun; Yuan, Yuan; Lovrecz, George; Alici, Gursel; Du, Haiping; Zhu, Yonggang; Li, Weihua

    2015-01-01

    This work explores dielectrophoresis (DEP)-active hydrophoresis in sorting particles and cells. The device consists of prefocusing region and sorting region with great potential to be integrated into advanced lab-on-a-chip bioanalysis devices. Particles or cells can be focused in the prefocusing region and then sorted in the sorting region. The DEP-active hydrophoretic sorting is not only based on size but also on dielectric properties of the particles or cells of interest without any labelling. A mixture of 3 and 10 μm particles were sorted and collected from corresponding outlets with high separation efficiency. According to the different dielectric properties of viable and nonviable Chinese Hamster Ovary (CHO) cells at the medium conductivity of 0.03 S/m, the viable CHO cells were focused well and sorted from cell sample with a high purity.

  7. Hybrid Nanowire Ion-to-Electron Transducers for Integrated Bioelectronic Circuitry.

    PubMed

    Carrad, D J; Mostert, A B; Ullah, A R; Burke, A M; Joyce, H J; Tan, H H; Jagadish, C; Krogstrup, P; Nygård, J; Meredith, P; Micolich, A P

    2017-02-08

    A key task in the emerging field of bioelectronics is the transduction between ionic/protonic and electronic signals at high fidelity. This is a considerable challenge since the two carrier types exhibit intrinsically different physics and are best supported by very different materials types-electronic signals in inorganic semiconductors and ionic/protonic signals in organic or bio-organic polymers, gels, or electrolytes. Here we demonstrate a new class of organic-inorganic transducing interface featuring semiconducting nanowires electrostatically gated using a solid proton-transporting hygroscopic polymer. This model platform allows us to study the basic transducing mechanisms as well as deliver high fidelity signal conversion by tapping into and drawing together the best candidates from traditionally disparate realms of electronic materials research. By combining complementary n- and p-type transducers we demonstrate functional logic with significant potential for scaling toward high-density integrated bioelectronic circuitry.

  8. Numerical simulation of Stokes flow around particles via a hybrid Finite Difference-Boundary Integral scheme

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Amitabh

    2013-11-01

    An efficient algorithm for simulating Stokes flow around particles is presented here, in which a second order Finite Difference method (FDM) is coupled to a Boundary Integral method (BIM). This method utilizes the strong points of FDM (i.e. localized stencil) and BIM (i.e. accurate representation of particle surface). Specifically, in each iteration, the flow field away from the particles is solved on a Cartesian FDM grid, while the traction on the particle surface (given the the velocity of the particle) is solved using BIM. The two schemes are coupled by matching the solution in an intermediate region between the particle and surrounding fluid. We validate this method by solving for flow around an array of cylinders, and find good agreement with Hasimoto's (J. Fluid Mech. 1959) analytical results.

  9. Integrating heuristic evaluation with cognitive walkthrough: development of a hybrid usability inspection method.

    PubMed

    Kushniruk, Andre W; Monkman, Helen; Tuden, Danica; Bellwood, Paule; Borycki, Elizabeth M

    2015-01-01

    Developing more usable healthcare information systems has become an important goal in health informatics. Although methods from usability engineering have appeared and been effectively applied in the design and evaluation of healthcare systems, there continues to be reports of deployment of unusable systems and issues with adoption of healthcare IT worldwide. In this paper we propose a new cost-effective usability engineering approach for healthcare IT that integrates two of the major usability inspection approaches (heuristic evaluation and cognitive walkthrough) into one combined approach that leverages the advantages of both heuristic evaluation and cognitive walkthrough. The approach will be described as will a pilot application of the method in evaluating the usability of a well-known electronic health record system. Implications and future work will also be described.

  10. Iterative acceleration methods for Monte Carlo and deterministic criticality calculations

    SciTech Connect

    Urbatsch, T.J.

    1995-11-01

    If you have ever given up on a nuclear criticality calculation and terminated it because it took so long to converge, you might find this thesis of interest. The author develops three methods for improving the fission source convergence in nuclear criticality calculations for physical systems with high dominance ratios for which convergence is slow. The Fission Matrix Acceleration Method and the Fission Diffusion Synthetic Acceleration (FDSA) Method are acceleration methods that speed fission source convergence for both Monte Carlo and deterministic methods. The third method is a hybrid Monte Carlo method that also converges for difficult problems where the unaccelerated Monte Carlo method fails. The author tested the feasibility of all three methods in a test bed consisting of idealized problems. He has successfully accelerated fission source convergence in both deterministic and Monte Carlo criticality calculations. By filtering statistical noise, he has incorporated deterministic attributes into the Monte Carlo calculations in order to speed their source convergence. He has used both the fission matrix and a diffusion approximation to perform unbiased accelerations. The Fission Matrix Acceleration method has been implemented in the production code MCNP and successfully applied to a real problem. When the unaccelerated calculations are unable to converge to the correct solution, they cannot be accelerated in an unbiased fashion. A Hybrid Monte Carlo method weds Monte Carlo and a modified diffusion calculation to overcome these deficiencies. The Hybrid method additionally possesses reduced statistical errors.

  11. A hybrid optical switch architecture to integrate IP into optical networks to provide flexible and intelligent bandwidth on demand for cloud computing

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Hall, Trevor J.

    2013-12-01

    The Internet is entering an era of cloud computing to provide more cost effective, eco-friendly and reliable services to consumer and business users. As a consequence, the nature of the Internet traffic has been fundamentally transformed from a pure packet-based pattern to today's predominantly flow-based pattern. Cloud computing has also brought about an unprecedented growth in the Internet traffic. In this paper, a hybrid optical switch architecture is presented to deal with the flow-based Internet traffic, aiming to offer flexible and intelligent bandwidth on demand to improve fiber capacity utilization. The hybrid optical switch is capable of integrating IP into optical networks for cloud-based traffic with predictable performance, for which the delay performance of the electronic module in the hybrid optical switch architecture is evaluated through simulation.

  12. Integrating Remote Sensing Data, Hybrid-Cloud Computing, and Event Notifications for Advanced Rapid Imaging & Analysis (Invited)

    NASA Astrophysics Data System (ADS)

    Hua, H.; Owen, S. E.; Yun, S.; Lundgren, P.; Fielding, E. J.; Agram, P.; Manipon, G.; Stough, T. M.; Simons, M.; Rosen, P. A.; Wilson, B. D.; Poland, M. P.; Cervelli, P. F.; Cruz, J.

    2013-12-01

    Space-based geodetic measurement techniques such as Interferometric Synthetic Aperture Radar (InSAR) and Continuous Global Positioning System (CGPS) are now important elements in our toolset for monitoring earthquake-generating faults, volcanic eruptions, hurricane damage, landslides, reservoir subsidence, and other natural and man-made hazards. Geodetic imaging's unique ability to capture surface deformation with high spatial and temporal resolution has revolutionized both earthquake science and volcanology. Continuous monitoring of surface deformation and surface change before, during, and after natural hazards improves decision-making from better forecasts, increased situational awareness, and more informed recovery. However, analyses of InSAR and GPS data sets are currently handcrafted following events and are not generated rapidly and reliably enough for use in operational response to natural disasters. Additionally, the sheer data volumes needed to handle a continuous stream of InSAR data sets also presents a bottleneck. It has been estimated that continuous processing of InSAR coverage of California alone over 3-years would reach PB-scale data volumes. Our Advanced Rapid Imaging and Analysis for Monitoring Hazards (ARIA-MH) science data system enables both science and decision-making communities to monitor areas of interest with derived geodetic data products via seamless data preparation, processing, discovery, and access. We will present our findings on the use of hybrid-cloud computing to improve the timely processing and delivery of geodetic data products, integrating event notifications from USGS to improve the timely processing for response, as well as providing browse results for quick looks with other tools for integrative analysis.

  13. Detection of Pulmonary Nodules in CT Images Based on Fuzzy Integrated Active Contour Model and Hybrid Parametric Mixture Model

    PubMed Central

    Li, Bin; Chen, Kan; Tian, Lianfang; Yeboah, Yao; Ou, Shanxing

    2013-01-01

    The segmentation and detection of various types of nodules in a Computer-aided detection (CAD) system present various challenges, especially when (1) the nodule is connected to a vessel and they have very similar intensities; (2) the nodule with ground-glass opacity (GGO) characteristic possesses typical weak edges and intensity inhomogeneity, and hence it is difficult to define the boundaries. Traditional segmentation methods may cause problems of boundary leakage and “weak” local minima. This paper deals with the above mentioned problems. An improved detection method which combines a fuzzy integrated active contour model (FIACM)-based segmentation method, a segmentation refinement method based on Parametric Mixture Model (PMM) of juxta-vascular nodules, and a knowledge-based C-SVM (Cost-sensitive Support Vector Machines) classifier, is proposed for detecting various types of pulmonary nodules in computerized tomography (CT) images. Our approach has several novel aspects: (1) In the proposed FIACM model, edge and local region information is incorporated. The fuzzy energy is used as the motivation power for the evolution of the active contour. (2) A hybrid PMM Model of juxta-vascular nodules combining appearance and geometric information is constructed for segmentation refinement of juxta-vascular nodules. Experimental results of detection for pulmonary nodules show desirable performances of the proposed method. PMID:23690876

  14. A compact frequency-domain photon migration system for integration into commercial hybrid small animal imaging scanners for fluorescence tomography

    PubMed Central

    Darne, Chinmay D.; Lu, Yujie; Tan, I-Chih; Zhu, Banghe; Rasmussen, John C.; Smith, Anne M.; Yan, Shikui; Sevick-Muraca, Eva M

    2012-01-01

    The work presented herein describes system design and performance evaluation of a miniaturized near-infrared fluorescence (NIRF) frequency-domain photon migration (FDPM) system with non-contact excitation and homodyne detection capability for small animal fluorescence tomography. The FDPM system was developed specifically for incorporation into a Siemens microPET/CT commercial scanner for hybrid small animal imaging, but could be adapted to other systems. Operating at 100 MHz, the system noise was minimized and the associated amplitude and phase errors were characterized to be ±0.7% and ±0.3°, respectively. To demonstrate the tomographic ability, a commercial mouse-shaped phantom with 50 μM IRDye800CW and 68Ga containing inclusion was used to associate PET and NIRF tomography. 3-D mesh generation and anatomical referencing was accomplished through CT. A simplified spherical harmonics approximation (SP3) algorithm, for efficient prediction of light propagation in small animals, was tailored to incorporate FDPM approach. Finally, PET-NIRF target co-localization accuracy was analyzed in vivo with a dual-labeled imaging agent targeting orthotopic growth of human prostate cancer. The results obtained validate the integration of time-dependent fluorescence tomography system within a commercial microPET/CT scanner for multimodality small animal imaging. PMID:23171509

  15. Detection of pulmonary nodules in CT images based on fuzzy integrated active contour model and hybrid parametric mixture model.

    PubMed

    Li, Bin; Chen, Kan; Tian, Lianfang; Yeboah, Yao; Ou, Shanxing

    2013-01-01

    The segmentation and detection of various types of nodules in a Computer-aided detection (CAD) system present various challenges, especially when (1) the nodule is connected to a vessel and they have very similar intensities; (2) the nodule with ground-glass opacity (GGO) characteristic possesses typical weak edges and intensity inhomogeneity, and hence it is difficult to define the boundaries. Traditional segmentation methods may cause problems of boundary leakage and "weak" local minima. This paper deals with the above mentioned problems. An improved detection method which combines a fuzzy integrated active contour model (FIACM)-based segmentation method, a segmentation refinement method based on Parametric Mixture Model (PMM) of juxta-vascular nodules, and a knowledge-based C-SVM (Cost-sensitive Support Vector Machines) classifier, is proposed for detecting various types of pulmonary nodules in computerized tomography (CT) images. Our approach has several novel aspects: (1) In the proposed FIACM model, edge and local region information is incorporated. The fuzzy energy is used as the motivation power for the evolution of the active contour. (2) A hybrid PMM Model of juxta-vascular nodules combining appearance and geometric information is constructed for segmentation refinement of juxta-vascular nodules. Experimental results of detection for pulmonary nodules show desirable performances of the proposed method.

  16. A compact frequency-domain photon migration system for integration into commercial hybrid small animal imaging scanners for fluorescence tomography

    NASA Astrophysics Data System (ADS)

    Darne, Chinmay D.; Lu, Yujie; Tan, I.-Chih; Zhu, Banghe; Rasmussen, John C.; Smith, Anne M.; Yan, Shikui; Sevick-Muraca, Eva M.

    2012-12-01

    The work presented herein describes the system design and performance evaluation of a miniaturized near-infrared fluorescence (NIRF) frequency-domain photon migration (FDPM) system with non-contact excitation and homodyne detection capability for small animal fluorescence tomography. The FDPM system was developed specifically for incorporation into a Siemens micro positron emission tomography/computed tomography (microPET/CT) commercial scanner for hybrid small animal imaging, but could be adapted to other systems. Operating at 100 MHz, the system noise was minimized and the associated amplitude and phase errors were characterized to be ±0.7% and ±0.3°, respectively. To demonstrate the tomographic ability, a commercial mouse-shaped phantom with 50 µM IRDye800CW and 68Ga containing inclusion was used to associate PET and NIRF tomography. Three-dimensional mesh generation and anatomical referencing was accomplished through CT. A third-order simplified spherical harmonics approximation (SP3) algorithm, for efficient prediction of light propagation in small animals, was tailored to incorporate the FDPM approach. Finally, the PET-NIRF target co-localization accuracy was analyzed in vivo with a dual-labeled imaging agent targeting orthotopic growth of human prostate cancer. The obtained results validate the integration of time-dependent fluorescence tomography system within a commercial microPET/CT scanner for multimodality small animal imaging.

  17. A compact frequency-domain photon migration system for integration into commercial hybrid small animal imaging scanners for fluorescence tomography.

    PubMed

    Darne, Chinmay D; Lu, Yujie; Tan, I-Chih; Zhu, Banghe; Rasmussen, John C; Smith, Anne M; Yan, Shikui; Sevick-Muraca, Eva M

    2012-12-21

    The work presented herein describes the system design and performance evaluation of a miniaturized near-infrared fluorescence (NIRF) frequency-domain photon migration (FDPM) system with non-contact excitation and homodyne detection capability for small animal fluorescence tomography. The FDPM system was developed specifically for incorporation into a Siemens micro positron emission tomography/computed tomography (microPET/CT) commercial scanner for hybrid small animal imaging, but could be adapted to other systems. Operating at 100 MHz, the system noise was minimized and the associated amplitude and phase errors were characterized to be ±0.7% and ±0.3°, respectively. To demonstrate the tomographic ability, a commercial mouse-shaped phantom with 50 µM IRDye800CW and ⁶⁸Ga containing inclusion was used to associate PET and NIRF tomography. Three-dimensional mesh generation and anatomical referencing was accomplished through CT. A third-order simplified spherical harmonics approximation (SP₃) algorithm, for efficient prediction of light propagation in small animals, was tailored to incorporate the FDPM approach. Finally, the PET-NIRF target co-localization accuracy was analyzed in vivo with a dual-labeled imaging agent targeting orthotopic growth of human prostate cancer. The obtained results validate the integration of time-dependent fluorescence tomography system within a commercial microPET/CT scanner for multimodality small animal imaging.

  18. Efficient Nitrogen Doping of Single-Layer Graphene Accompanied by Negligible Defect Generation for Integration into Hybrid Semiconductor Heterostructures.

    PubMed

    Sarau, George; Heilmann, Martin; Bashouti, Muhammad; Latzel, Michael; Tessarek, Christian; Christiansen, Silke

    2017-03-22

    While doping enables application-specific tailoring of graphene properties, it can also produce high defect densities that degrade the beneficial features. In this work, we report efficient nitrogen doping of ∼11 atom % without virtually inducing new structural defects in the initial, large-area, low defect, and transferred single-layer graphene. To shed light on this remarkable high-doping-low-disorder relationship, a unique experimental strategy consisting of analyzing the changes in doping, strain, and defect density after each important step during the doping procedure was employed. Complementary micro-Raman mapping, X-ray photoelectron spectroscopy, and optical microscopy revealed that effective cleaning of the graphene surface assists efficient nitrogen incorporation accompanied by mild compressive strain resulting in negligible defect formation in the doped graphene lattice. These original results are achieved by separating the growth of graphene from its doping. Moreover, the high doping level occurred simultaneously with the epitaxial growth of n-GaN micro- and nanorods on top of graphene, leading to the flow of higher currents through the graphene/n-GaN rod interface. Our approach can be extended toward integrating graphene into other technologically relevant hybrid semiconductor heterostructures and obtaining an ohmic contact at their interfaces by adjusting the doping level in graphene.

  19. Real-time hybrid simulation of a complex bridge model with MR dampers using the convolution integral method

    NASA Astrophysics Data System (ADS)

    Jiang, Zhaoshuo; Jig Kim, Sung; Plude, Shelley; Christenson, Richard

    2013-10-01

    Magneto-rheological (MR) fluid dampers can be used to reduce the traffic induced vibration in highway bridges and protect critical structural components from fatigue. Experimental verification is needed to verify the applicability of the MR dampers for this purpose. Real-time hybrid simulation (RTHS), where the MR dampers are physically tested and dynamically linked to a numerical model of the highway bridge and truck traffic, provides an efficient and effective means to experimentally examine the efficacy of MR dampers for fatigue protection of highway bridges. In this paper a complex highway bridge model with 263 178 degrees-of-freedom under truck loading is tested using the proposed convolution integral (CI) method of RTHS for a semiactive structural control strategy employing two large-scale 200 kN MR dampers. The formation of RTHS using the CI method is first presented, followed by details of the various components in the RTHS and a description of the implementation of the CI method for this particular test. The experimental results confirm the practicability of the CI method for conducting RTHS of complex systems.

  20. Design and Integration for High Performance Robotic Systems Based on Decomposition and Hybridization Approaches

    PubMed Central

    Zhang, Dan; Wei, Bin

    2017-01-01

    Currently, the uses of robotics are limited with respect to performance capabilities. Improving the performance of robotic mechanisms is and still will be the main research topic in the next decade. In this paper, design and integration for improving performance of robotic systems are achieved through three different approaches, i.e., structure synthesis design approach, dynamic balancing approach, and adaptive control approach. The purpose of robotic mechanism structure synthesis design is to propose certain mechanism that has better kinematic and dynamic performance as compared to the old ones. For the dynamic balancing design approach, it is normally accomplished based on employing counterweights or counter-rotations. The potential issue is that more weight and inertia will be included in the system. Here, reactionless based on the reconfiguration concept is put forward, which can address the mentioned problem. With the mechanism reconfiguration, the control system needs to be adapted thereafter. One way to address control system adaptation is by applying the “divide and conquer” methodology. It entails modularizing the functionalities: breaking up the control functions into small functional modules, and from those modules assembling the control system according to the changing needs of the mechanism. PMID:28075360

  1. Monte Carlo fundamentals

    SciTech Connect

    Brown, F.B.; Sutton, T.M.

    1996-02-01

    This report is composed of the lecture notes from the first half of a 32-hour graduate-level course on Monte Carlo methods offered at KAPL. These notes, prepared by two of the principle developers of KAPL`s RACER Monte Carlo code, cover the fundamental theory, concepts, and practices for Monte Carlo analysis. In particular, a thorough grounding in the basic fundamentals of Monte Carlo methods is presented, including random number generation, random sampling, the Monte Carlo approach to solving transport problems, computational geometry, collision physics, tallies, and eigenvalue calculations. Furthermore, modern computational algorithms for vector and parallel approaches to Monte Carlo calculations are covered in detail, including fundamental parallel and vector concepts, the event-based algorithm, master/slave schemes, parallel scaling laws, and portability issues.

  2. A Multi-Level Grid Interactive Bi-directional AC/DC-DC/AC Converter and a Hybrid Battery/Ultra-capacitor Energy Storage System with Integrated Magnetics for Plug-in Hybrid Electric Vehicles

    SciTech Connect

    Onar, Omer C

    2011-01-01

    This study presents a bi-directional multi-level power electronic interface for the grid interactions of plug-in hybrid electric vehicles (PHEVs) as well as a novel bi-directional power electronic converter for the combined operation of battery/ultracapacitor hybrid energy storage systems (ESS). The grid interface converter enables beneficial vehicle-to-grid (V2G) interactions in a high power quality and grid friendly manner; i.e, the grid interface converter ensures that all power delivered to/from grid has unity power factor and almost zero current harmonics. The power electronic converter that provides the combined operation of battery/ultra-capacitor system reduces the size and cost of the conventional ESS hybridization topologies while reducing the stress on the battery, prolonging the battery lifetime, and increasing the overall vehicle performance and efficiency. The combination of hybrid ESS is provided through an integrated magnetic structure that reduces the size and cost of the inductors of the ESS converters. Simulation and experimental results are included as prove of the concept presenting the different operation modes of the proposed converters.

  3. Integrated Markov Chain Monte Carlo (MCMC) analysis of primordial non-Gaussianity (f{sub NL}) in the recent CMB data

    SciTech Connect

    Kim, Jaiseung

    2011-04-01

    We have made a Markov Chain Monte Carlo (MCMC) analysis of primordial non-Gaussianity (f{sub NL}) using the WMAP bispectrum and power spectrum. In our analysis, we have simultaneously constrained f{sub NL} and cosmological parameters so that the uncertainties of cosmological parameters can properly propagate into the f{sub NL} estimation. Investigating the parameter likelihoods deduced from MCMC samples, we find slight deviation from Gaussian shape, which makes a Fisher matrix estimation less accurate. Therefore, we have estimated the confidence interval of f{sub NL} by exploring the parameter likelihood without using the Fisher matrix. We find that the best-fit values of our analysis make a good agreement with other results, but the confidence interval is slightly different.

  4. An integrated closed-tube 2-plex PCR amplification and hybridization assay with switchable lanthanide luminescence based spatial detection.

    PubMed

    Lahdenperä, Susanne; Spangar, Anni; Lempainen, Anna-Maija; Joki, Laura; Soukka, Tero

    2015-06-21

    Switchable lanthanide luminescence is a binary probe technology that inherently enables a high signal modulation in separation-free detection of DNA targets. A luminescent lanthanide complex is formed only when the two probes hybridize adjacently to their target DNA. We have now further adapted this technology for the first time in the integration of a 2-plex polymerase chain reaction (PCR) amplification and hybridization-based solid-phase detection of the amplification products of the Staphylococcus aureus gyrB gene and an internal amplification control (IAC). The assay was performed in a sealed polypropylene PCR chip containing a flat-bottom reaction chamber with two immobilized capture probe spots. The surface of the reaction chamber was functionalized with NHS-PEG-azide and alkyne-modified capture probes for each amplicon, labeled with a light harvesting antenna ligand, and covalently attached as spots to the azide-modified reaction chamber using a copper(i)-catalyzed azide-alkyne cycloaddition. Asymmetric duplex-PCR was then performed with no template, one template or both templates present and with a europium ion carrier chelate labeled probe for each amplicon in the reaction. After amplification europium fluorescence was measured by scanning the reaction chamber as a 10 × 10 raster with 0.6 mm resolution in time-resolved mode. With this assay we were able to co-amplify and detect the amplification products of the gyrB target from 100, 1000 and 10,000 copies of isolated S. aureus DNA together with the amplification products from the initial 5000 copies of the synthetic IAC template in the same sealed reaction chamber. The addition of 10,000 copies of isolated non-target Escherichia coli DNA in the same reaction with 5000 copies of the synthetic IAC template did not interfere with the amplification or detection of the IAC. The dynamic range of the assay for the synthetic S. aureus gyrB target was three orders of magnitude and the limit of detection of 8 p

  5. Intraply Hybrid Composite Design

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.

    1986-01-01

    Several theoretical approaches combined in program. Intraply hybrid composites investigated theoretically and experimentally at Lewis Research Center. Theories developed during investigations and corroborated by attendant experiments used to develop computer program identified as INHYD (Intraply Hybrid Composite Design). INHYD includes several composites micromechanics theories, intraply hybrid composite theories, and integrated hygrothermomechanical theory. Equations from theories used by program as appropriate for user's specific applications.

  6. Dynamic Gain Equalizer Using Hybrid Integrated Silica-Based Planar Lightwave Circuits With LiNbO3 Phase Shifter Array

    NASA Astrophysics Data System (ADS)

    Maru, Koichi; Chiba, Takafumi; Tanaka, Kotaro; Himi, Susumu; Uetsuka, Hisato

    2006-01-01

    This paper proposes a dynamic gain equalizer (DGE) using hybrid integrated silica-based planar lightwave circuits (PLCs) with a LiNbO3 (LN) phase shifter array to achieve a DGE that offers both excellent optical performance and control of the phase shifters. The structure consists of two PLCs having arrayed-waveguide gratings (AWGs) and couplers directly attached to the LN phase shifter array at its end faces. To reduce polarization-dependent characteristics, a polarization diversity technique using a polarization beam splitter (PBS) and a circulator was employed. To reduce polarization-dependent loss (PDL) due to the reflected light at the PLC-LN interfaces, tilted waveguides from the normal direction to the interfaces were introduced, and the relation between PDL and power reflectivity was theoretically investigated. A hybrid integrated DGE using super-high-Delta PLCs and a 25-channel electrooptic (EO) phase shifter array was demonstrated. The PDL was effectively suppressed with the introduced polarization diversity technique, and the measured spectra were in good agreement with designed profiles. These results indicate that the proposed hybrid integrated DGE offers good performance and controllability for practical applications.

  7. Multiscale Monte Carlo equilibration: Pure Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Endres, Michael G.; Brower, Richard C.; Detmold, William; Orginos, Kostas; Pochinsky, Andrew V.

    2015-12-01

    We present a multiscale thermalization algorithm for lattice gauge theory, which enables efficient parallel generation of uncorrelated gauge field configurations. The algorithm combines standard Monte Carlo techniques with ideas drawn from real space renormalization group and multigrid methods. We demonstrate the viability of the algorithm for pure Yang-Mills gauge theory for both heat bath and hybrid Monte Carlo evolution, and show that it ameliorates the problem of topological freezing up to controllable lattice spacing artifacts.

  8. Assessment and Evaluation of an Integrated Hybrid Anaerobic-Aerobic Sewage Treatment System for the Removal of Enteric Viruses.

    PubMed

    El-Senousy, Waled Morsy; Abou-Elela, Sohair Imam

    2017-02-14

    The capability of a cost-effective and a small size decentralized pilot wastewater treatment plant (WWTP) to remove enteric viruses such as rotavirus, norovirus genogroup I (GGI), norovirus genogroup II (GGII), Hepatitis E virus (HEV), and adenovirus was studied. This pilot plant is an integrated hybrid anaerobic/aerobic setup which consisted of anaerobic sludge blanket (UASB), biological aerated filter (BAF), and inclined plate settler (IPS). Both the UASB and BAF are packed with a non-woven polyester fabric (NWPF). Results indicated that the overall log10 reductions of enteric viruses' genome copies through the whole system were 3.1 ± 1, 3.3 ± 0.5, and 2.6 ± 0.9 log10 for rotavirus, norovirus GGI, and adenovirus, respectively. Reduction efficiency for both norovirus GGII and HEV after the different treatment steps could not be calculated because there were no significant numbers of positive samples for both viruses. The overall reduction of rotavirus infectious units through the whole system was 2.2 ± 0.8 log10 reduction which is very close to the overall log10 reduction of adenovirus infectious units through the whole system which was 2.1 ± 0.8 log10 reduction. There was no considerable difference in the removal efficiency for different rotavirus G and P types. Adenovirus 41 was the only type detected in the all positive samples. Although the pilot WWTP investigated is cost effective, has a small footprint, does not need a long distance network pipes, and easy to operate, its efficiency to remove enteric viruses is comparable with the conventional centralized WWTPs.

  9. Discrete diffusion Monte Carlo for frequency-dependent radiative transfer

    SciTech Connect

    Densmore, Jeffrey D; Kelly, Thompson G; Urbatish, Todd J

    2010-11-17

    Discrete Diffusion Monte Carlo (DDMC) is a technique for increasing the efficiency of Implicit Monte Carlo radiative-transfer simulations. In this paper, we develop an extension of DDMC for frequency-dependent radiative transfer. We base our new DDMC method on a frequency-integrated diffusion equation for frequencies below a specified threshold. Above this threshold we employ standard Monte Carlo. With a frequency-dependent test problem, we confirm the increased efficiency of our new DDMC technique.

  10. Direct Comparisons among Fast Off-Lattice Monte Carlo Simulations, Integral Equation Theories, and Gaussian Fluctuation Theory for Disordered Symmetric Diblock Copolymers

    NASA Astrophysics Data System (ADS)

    Yang, Delian; Zong, Jing; Wang, Qiang

    2012-02-01

    Based on the same model system of symmetric diblock copolymers as discrete Gaussian chains with soft, finite-range repulsions as commonly used in dissipative-particle dynamics simulations, we directly compare, without any parameter-fitting, the thermodynamic and structural properties of the disordered phase obtained from fast off-lattice Monte Carlo (FOMC) simulations^1, reference interaction site model (RISM) and polymer reference interaction site model (PRISM) theories, and Gaussian fluctuation theory. The disordered phase ranges from homopolymer melts (i.e., where the Flory-Huggins parameter χ=0) all the way to the order-disorder transition point determined in FOMC simulations, and the compared quantities include the internal energy, entropy, Helmholtz free energy, excess pressure, constant-volume heat capacity, chain/block dimensions, and various structure factors and correlation functions in the system. Our comparisons unambiguously and quantitatively reveal the consequences of various theoretical approximations and the validity of these theories in describing the fluctuations/correlations in disordered diblock copolymers. [1] Q. Wang and Y. Yin, J. Chem. Phys., 130, 104903 (2009).

  11. Bayesian adaptive Markov chain Monte Carlo estimation of genetic parameters.

    PubMed

    Mathew, B; Bauer, A M; Koistinen, P; Reetz, T C; Léon, J; Sillanpää, M J

    2012-10-01

    Accurate and fast estimation of genetic parameters that underlie quantitative traits using mixed linear models with additive and dominance effects is of great importance in both natural and breeding populations. Here, we propose a new fast adaptive Markov chain Monte Carlo (MCMC) sampling algorithm for the estimation of genetic parameters in the linear mixed model with several random effects. In the learning phase of our algorithm, we use the hybrid Gibbs sampler to learn the covariance structure of the variance components. In the second phase of the algorithm, we use this covariance structure to formulate an effective proposal distribution for a Metropolis-Hastings algorithm, which uses a likelihood function in which the random effects have been integrated out. Compared with the hybrid Gibbs sampler, the new algorithm had better mixing properties and was approximately twice as fast to run. Our new algorithm was able to detect different modes in the posterior distribution. In addition, the posterior mode estimates from the adaptive MCMC method were close to the REML (residual maximum likelihood) estimates. Moreover, our exponential prior for inverse variance components was vague and enabled the estimated mode of the posterior variance to be practically zero, which was in agreement with the support from the likelihood (in the case of no dominance). The method performance is illustrated using simulated data sets with replicates and field data in barley.

  12. Comparison of internal dose estimates obtained using organ-level, voxel S value, and Monte Carlo techniques

    SciTech Connect

    Grimes, Joshua; Celler, Anna

    2014-09-15

    Purpose: The authors’ objective was to compare internal dose estimates obtained using the Organ Level Dose Assessment with Exponential Modeling (OLINDA/EXM) software, the voxel S value technique, and Monte Carlo simulation. Monte Carlo dose estimates were used as the reference standard to assess the impact of patient-specific anatomy on the final dose estimate. Methods: Six patients injected with{sup 99m}Tc-hydrazinonicotinamide-Tyr{sup 3}-octreotide were included in this study. A hybrid planar/SPECT imaging protocol was used to estimate {sup 99m}Tc time-integrated activity coefficients (TIACs) for kidneys, liver, spleen, and tumors. Additionally, TIACs were predicted for {sup 131}I, {sup 177}Lu, and {sup 90}Y assuming the same biological half-lives as the {sup 99m}Tc labeled tracer. The TIACs were used as input for OLINDA/EXM for organ-level dose calculation and voxel level dosimetry was performed using the voxel S value method and Monte Carlo simulation. Dose estimates for {sup 99m}Tc, {sup 131}I, {sup 177}Lu, and {sup 90}Y distributions were evaluated by comparing (i) organ-level S values corresponding to each method, (ii) total tumor and organ doses, (iii) differences in right and left kidney doses, and (iv) voxelized dose distributions calculated by Monte Carlo and the voxel S value technique. Results: The S values for all investigated radionuclides used by OLINDA/EXM and the corresponding patient-specific S values calculated by Monte Carlo agreed within 2.3% on average for self-irradiation, and differed by as much as 105% for cross-organ irradiation. Total organ doses calculated by OLINDA/EXM and the voxel S value technique agreed with Monte Carlo results within approximately ±7%. Differences between right and left kidney doses determined by Monte Carlo were as high as 73%. Comparison of the Monte Carlo and voxel S value dose distributions showed that each method produced similar dose volume histograms with a minimum dose covering 90% of the volume (D90

  13. ITS version 5.0 :the integrated TIGER series of coupled electron/Photon monte carlo transport codes with CAD geometry.

    SciTech Connect

    Franke, Brian Claude; Kensek, Ronald Patrick; Laub, Thomas William

    2005-09-01

    ITS is a powerful and user-friendly software package permitting state-of-the-art Monte Carlo solution of linear time-independent coupled electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields of arbitrary spatial dependence. Our goal has been to simultaneously maximize operational simplicity and physical accuracy. Through a set of preprocessor directives, the user selects one of the many ITS codes. The ease with which the makefile system is applied combines with an input scheme based on order-independent descriptive keywords that makes maximum use of defaults and internal error checking to provide experimentalists and theorists alike with a method for the routine but rigorous solution of sophisticated radiation transport problems. Physical rigor is provided by employing accurate cross sections, sampling distributions, and physical models for describing the production and transport of the electron/photon cascade from 1.0 GeV down to 1.0 keV. The availability of source code permits the more sophisticated user to tailor the codes to specific applications and to extend the capabilities of the codes to more complex applications. Version 5.0, the latest version of ITS, contains (1) improvements to the ITS 3.0 continuous-energy codes, (2) multigroup codes with adjoint transport capabilities, (3) parallel implementations of all ITS codes, (4) a general purpose geometry engine for linking with CAD or other geometry formats, and (5) the Cholla facet geometry library. Moreover, the general user friendliness of the software has been enhanced through increased internal error checking and improved code portability.

  14. Desiccant-Based Combined Systems: Integrated Active Desiccant Rooftop Hybrid System Development and Testing Final Report- Phase 4

    SciTech Connect

    Fischer, J

    2005-05-06

    This report summarizes the results of a research and development (R&D) program to design and optimize an active desiccant-vapor compression hybrid rooftop system. The primary objective was to combine the strengths of both technologies to produce a compact, high-performing, energy-efficient system that could accommodate any percentage of outdoor air and deliver essentially any required combination of temperature and humidity, or sensible heat ratio (SHR). In doing so, such a product would address the significant challenges imposed on the performance capabilities of conventional packaged rooftop equipment by standards 62 and 90.1 of the American Society of Heating, Refrigerating and Air-Conditioning Engineers. The body of work completed as part of this program built upon previous R&D efforts supported by the U.S. Department of Energy and summarized by the Phase 3b report ''Active Desiccant Dehumidification Module Integration with Rooftop Packaged HVAC Units'' (Fischer and Sand 2002), in addition to Fischer, Hallstrom, and Sand 2000; Fischer 2000; and Fischer and Sand 2004. All initial design objectives established for this development program were successfully achieved. The performance flexibility desired was accomplished by a down-sized active desiccant wheel that processes only a portion of the supply airflow, which is pre-conditioned by a novel vapor compression cycle. Variable-speed compressors are used to deliver the capacity control required by a system handling a high percentage of outdoor air. An integrated direct digital control system allows for control capabilities not generally offered by conventional packaged rooftop systems. A 3000-cfm prototype system was constructed and tested in the SEMCO engineering test laboratory in Columbia, MO, and was found to operate in an energy-efficient fashion relative to more conventional systems. Most important, the system offered the capability to independently control the supply air temperature and humidity content to

  15. Integrated core-SOL-divertor modelling for ITER including impurity: effect of tungsten on fusion performance in H-mode and hybrid scenario

    NASA Astrophysics Data System (ADS)

    Zagórski, R.; Voitsekhovitch, I.; Ivanova-Stanik, I.; Köchl, F.; Belo, P.; Fable, E.; Garcia, J.; Garzotti, L.; Hobirk, J.; Hogeweij, G. M. D.; Joffrin, E.; Litaudon, X.; Polevoi, A. R.; Telesca, G.; contributors, JET

    2015-05-01

    The compatibility of two operational constraints—operation above the L-H power threshold and at low power to divertor—is examined for ITER long pulse H-mode and hybrid scenarios in integrated core-scrape off layer (SOL)-divertor modelling including impurities (intrinsic Be, He, W and seeded Ne). The core thermal, particle and momentum transport is simulated with the GLF23 transport model tested in the self-consistent simulations of temperatures, density and toroidal rotation velocity in JET hybrid discharges and extrapolated to ITER. The beneficial effect of toroidal rotation velocity on fusion gain is shown. The sensitivity studies with respect to operational (separatrix and pedestal density, Ne gas puff) and unknown physics (W convective velocity and perpendicular diffusion in SOL as well as W prompt re-deposition) parameters are performed to determine their influence on the operational window and fusion gain.

  16. A virtual photon source model of an Elekta linear accelerator with integrated mini MLC for Monte Carlo based IMRT dose calculation.

    PubMed

    Sikora, M; Dohm, O; Alber, M

    2007-08-07

    A dedicated, efficient Monte Carlo (MC) accelerator head model for intensity modulated stereotactic radiosurgery treatment planning is needed to afford a highly accurate simulation of tiny IMRT fields. A virtual source model (VSM) of a mini multi-leaf collimator (MLC) (the Elekta Beam Modulator (EBM)) is presented, allowing efficient generation of particles even for small fields. The VSM of the EBM is based on a previously published virtual photon energy fluence model (VEF) (Fippel et al 2003 Med. Phys. 30 301) commissioned with large field measurements in air and in water. The original commissioning procedure of the VEF, based on large field measurements only, leads to inaccuracies for small fields. In order to improve the VSM, it was necessary to change the VEF model by developing (1) a method to determine the primary photon source diameter, relevant for output factor calculations, (2) a model of the influence of the flattening filter on the secondary photon spectrum and (3) a more realistic primary photon spectrum. The VSM model is used to generate the source phase space data above the mini-MLC. Later the particles are transmitted through the mini-MLC by a passive filter function which significantly speeds up the time of generation of the phase space data after the mini-MLC, used for calculation of the dose distribution in the patient. The improved VSM model was commissioned for 6 and 15 MV beams. The results of MC simulation are in very good agreement with measurements. Less than 2% of local difference between the MC simulation and the diamond detector measurement of the output factors in water was achieved. The X, Y and Z profiles measured in water with an ion chamber (V = 0.125 cm(3)) and a diamond detector were used to validate the models. An overall agreement of 2%/2 mm for high dose regions and 3%/2 mm in low dose regions between measurement and MC simulation for field sizes from 0.8 x 0.8 cm(2) to 16 x 21 cm(2) was achieved. An IMRT plan film verification

  17. Integrating Actionable User-defined Faceted Rules into the Hybrid Science Data System for Advanced Rapid Imaging & Analysis

    NASA Astrophysics Data System (ADS)

    Manipon, G. J. M.; Hua, H.; Owen, S. E.; Sacco, G. F.; Agram, P. S.; Moore, A. W.; Yun, S. H.; Fielding, E. J.; Lundgren, P.; Rosen, P. A.; Webb, F.; Liu, Z.; Smith, A. T.; Wilson, B. D.; Simons, M.; Poland, M. P.; Cervelli, P. F.

    2014-12-01

    The Hybrid Science Data System (HySDS) scalably powers the ingestion, metadata extraction, cataloging, high-volume data processing, and publication of the geodetic data products for the Advanced Rapid Imaging & Analysis for Monitoring Hazard (ARIA-MH) project at JPL. HySDS uses a heterogeneous set of worker nodes from private & public clouds as well as virtual & bare-metal machines to perform every aspect of the traditional science data system. For our science data users, the forefront of HySDS is the facet search interface, FacetView, which allows them to browse, filter, and access the published products. Users are able to explore the collection of product metadata information and apply multiple filters to constrain the result set down to their particular interests. It allows them to download these faceted products for further analysis and generation of derived products. However, we have also employed a novel approach to faceting where it is also used to apply constraints for custom monitoring of products, system resources, and triggers for automated data processing. The power of the facet search interface is well documented across various domains and its usefulness is rooted in the current state of existence of metadata. However, user needs usually extend beyond what is currently present in the data system. A user interested in synthetic aperture radar (SAR) data over Kilauea will download them from FacetView but would also want email notification of future incoming scenes. The user may even want that data pushed to a remote workstation for automated processing. Better still, these future products could trigger HySDS to run the user's analysis on its array of worker nodes, on behalf of the user, and ingest the resulting derived products. We will present our findings in integrating an ancillary, user-defined, system-driven processing system for HySDS that allows users to define faceted rules based on facet constraints and triggers actions when new SAR data

  18. Dual-facet coupling of SOA array on 4-μm silicon-on-insulator implementing a hybrid integrated SOA-MZI wavelength converter

    NASA Astrophysics Data System (ADS)

    Alexoudi, T.; Fitsios, D.; Kanellos, G. T.; Pleros, N.; Tekin, T.; Cherchi, M.; Ylinen, S.; Harjanne, M.; Kapulainen, M.; Aalto, T.

    2014-03-01

    Hybrid integration on Silicon-on-Insulator (SOI) has emerged as a practical solution for compact and high-performance Photonic Integrated Circuits (PICs). It aims at combining the cost-effectiveness and CMOS-compatibility benefits of the low-loss SOI waveguide platform with the versatile active optical functions that can be realized by III-V photonic materials. The utilization of SOI, as an integration board, with μm-scale dimensions allows for an excellent optical mode matching between silicon rib waveguides and active chips, allowing for minimal-loss coupling of the pre-fabricated IIIV components. While dual-facet coupling as well as III-V multi-element array bonding should be employed to enable enhanced active on-chip functions, so far only single side SOA bonding has been reported. In the present communication, we present a novel integration scheme that flip-chip bonds a 6-SOA array on 4-μm thick SOI technology by coupling both lateral SOA facets to the waveguides, and report on the experimental results of wavelength conversion operation of a dual-element Semiconductor Optical Amplifier - Mach Zehnder Interferometer (SOA-MZI) circuit. Thermocompression bonding was applied to integrate the pre-fabricated SOAs on SOI, with vertical and horizontal alignment performed successfully at both SOA facets. The demonstrated device has a footprint of 8.2mm x 0.3mm and experimental evaluation revealed a 12Gb/s wavelength conversion operation capability with only 0.8dB power penalty for the first SOA-MZI-on-SOI circuit and a 10Gb/s wavelength conversion operation capability with 2 dB power penalty for the second SOA-MZI circuit. Our experiments show how dual facet integration can significantly increase the level of optical functionalities achievable by flip-chip hybrid technology and pave the way for more advanced and more densely PICs.

  19. A hybrid approach to monthly streamflow forecasting: Integrating hydrological model outputs into a Bayesian artificial neural network

    NASA Astrophysics Data System (ADS)

    Humphrey, Greer B.; Gibbs, Matthew S.; Dandy, Graeme C.; Maier, Holger R.

    2016-09-01

    Monthly streamflow forecasts are needed to support water resources decision making in the South East of South Australia, where baseflow represents a significant proportion of the total streamflow and soil moisture and groundwater are important predictors of runoff. To address this requirement, the utility of a hybrid monthly streamflow forecasting approach is explored, whereby simulated soil moisture from the GR4J conceptual rainfall-runoff model is used to represent initial catchment conditions in a Bayesian artificial neural network (ANN) statistical forecasting model. To assess the performance of this hybrid forecasting method, a comparison is undertaken of the relative performances of the Bayesian ANN, the GR4J conceptual model and the hybrid streamflow forecasting approach for producing 1-month ahead streamflow forecasts at three key locations in the South East of South Australia. Particular attention is paid to the quantification of uncertainty in each of the forecast models and the potential for reducing forecast uncertainty by using the hybrid approach is considered. Case study results suggest that the hybrid models developed in this study are able to take advantage of the complementary strengths of both the ANN models and the GR4J conceptual models. This was particularly the case when forecasting high flows, where the hybrid models were shown to outperform the two individual modelling approaches in terms of the accuracy of the median forecasts, as well as reliability and resolution of the forecast distributions. In addition, the forecast distributions generated by the hybrid models were up to 8 times more precise than those based on climatology; thus, providing a significant improvement on the information currently available to decision makers.

  20. Evidence that the proliferation stage of micropropagation procedure is determinant in the expression of banana streak virus integrated into the genome of the FHIA 21 hybrid (Musa AAAB).

    PubMed

    Dallot, S; Acuña, P; Rivera, C; Ramírez, P; Côte, F; Lockhart, B E; Caruana, M L

    2001-01-01

    Banana streak virus (BSV) is causing increasing concern in almost every producing area of banana and plantain (Musa spp.) worldwide. This situation appeared partially linked to some breeding lines and micropropagated hybrids. A complete BSV sequence integrated into the genome of a triploid plantain has been recently characterised and it has been hypothesised that it could give rise to infectious virus via recombination. In this study, we evaluated the effect of a routine micropropagation procedure on the expression of BSV in the FHIA 21 tetraploid hybrid. The widespread presence of integrated sequences and the absence of episomal BSV in thirty FHIA 21 "mother plants" selected for micropropagation were first confirmed by specific PCR and IC-PCR tests. The proliferation stage of the procedure, characterised by an intensive production of neoformed buds, appeared determinant in BSV expression whereas the rooting and acclimatisation stages had little or no effect. The duration in culture and the way of subdividing the clumps of proliferation influenced greatly the percentage of episomal BSV infections, reaching 58% of infected micropropagated lines after six in vitro subcultures. These data suggest that the expression of episomal BSV observed during the in vitro procedure is correlated with the presence of an integrated form.

  1. Fast evaluation of solid harmonic Gaussian integrals for local resolution-of-the-identity methods and range-separated hybrid functionals

    NASA Astrophysics Data System (ADS)

    Golze, Dorothea; Benedikter, Niels; Iannuzzi, Marcella; Wilhelm, Jan; Hutter, Jürg

    2017-01-01

    An integral scheme for the efficient evaluation of two-center integrals over contracted solid harmonic Gaussian functions is presented. Integral expressions are derived for local operators that depend on the position vector of one of the two Gaussian centers. These expressions are then used to derive the formula for three-index overlap integrals where two of the three Gaussians are located at the same center. The efficient evaluation of the latter is essential for local resolution-of-the-identity techniques that employ an overlap metric. We compare the performance of our integral scheme to the widely used Cartesian Gaussian-based method of Obara and Saika (OS). Non-local interaction potentials such as standard Coulomb, modified Coulomb, and Gaussian-type operators, which occur in range-separated hybrid functionals, are also included in the performance tests. The speed-up with respect to the OS scheme is up to three orders of magnitude for both integrals and their derivatives. In particular, our method is increasingly efficient for large angular momenta and highly contracted basis sets.

  2. Taxonomist’s Nightmare … Evolutionist’s Delight †: An Integrative Approach Resolves Species Limits in Jumping Bristletails Despite Widespread Hybridization and Parthenogenesis

    PubMed Central

    Dejaco, Thomas; Gassner, Melitta; Arthofer, Wolfgang; Schlick-Steiner, Birgit C.; Steiner, Florian M.

    2016-01-01

    Accurate species delimitation is fundamental to biology. Traditionally, species were delimited based on morphological characters, sometimes leading to taxonomic uncertainty in morphologically conserved taxa. Recently, multiple taxonomically challenging cases have benefited from integrative taxonomy—an approach that highlights congruence among different disciplines and invokes evolutionary explanations for incongruence, acknowledging that different methods can mirror different stages of the speciation continuum. Here, we used a cohesive protocol for integrative taxonomy to revise species limits in 20 nominal species and 4 morphospecies of an ancestrally wingless insect group, the jumping bristletail genus Machilis from the European Eastern Alps. Even though morphologically conserved, several small-scale endemic species have been described from the Eastern Alps based on variation in hypodermal pigmentation patterns—a highly questionable character. As valuable as these endemics are for conservation, they have never been verified by alternative methods. Using traditional morphometrics, mitochondrial DNA, ribosomal DNA, and amplified fragment-length polymorphism markers, we identify six nominal species as taxonomic junior synonyms (Machilis alpicola Janetschek, 1953 syn. n. under M. vagans Wygodzinsky, 1941; M. ladensis Janetschek, 1950 syn. n., M. robusta Wygodzinsky, 1941 syn. n., and M. vicina Wygodzinsky, 1941 syn. n. under M. inermis Wygodzinsky, 1941; M. aleamaculata Wygodzinsky, 1941 syn. n. under M. montana Wygodzinsky, 1941; M. pulchra Janetschek, 1950 syn. n. under M. helleri Verhoeff, 1910) and describe two new species (Machilis cryptoglacialis sp. n. and Machilis albida sp. n.), one uncovered from morphological crypsis and one never sampled before. Building on numerous cases of incongruence among data sources, we further shed light on complex evolutionary histories including hybrid speciation, historical and recent hybridization, and ongoing speciation

  3. Photodissociation of Cl 2 in helium clusters: an application of hybrid method of quantum wavepacket dynamics and path integral centroid molecular dynamics

    NASA Astrophysics Data System (ADS)

    Takayanagi, Toshiyuki; Shiga, Motoyuki

    2003-04-01

    The photodissociation dynamics of Cl 2 embedded in helium clusters is studied by numerical simulation with an emphasis on the effect of quantum character of helium motions. The simulation is based on the hybrid model in which Cl-Cl internuclear dynamics is treated in a wavepacket technique, while the helium motions are described by a path integral centroid molecular dynamics approach. It is found that the cage effect largely decreases when the helium motion is treated quantum mechanically. The mechanism is affected not only by the zero-point vibration in the helium solvation structure, but also by the quantum dynamics of helium.

  4. Advances in the modeling of single electron transistors for the design of integrated circuit.

    PubMed

    Chi, Yaqing; Sui, Bingcai; Yi, Xun; Fang, Liang; Zhou, Hailiang

    2010-09-01

    Single electron transistor (SET) has become a promising candidate for the key device of logic circuit in the near future. The advances of recent 5 years in the modeling of SETs are reviewed for the simulation of SET/hybrid CMOS-SET integrated circuit. Three dominating SET models, Monte Carlo model, master equation model and macro model, are analyzed, tested and compared on their principles, characteristics, applicability and development trend. The Monte Carlo model is suitable for SET structure research and simulation of small scale SET circuit, while the analytical model based on combination with master equation and macro model is suitable to simulate the SET circuit at balanceable efficiency and accuracy.

  5. Hybrid support vector regression and autoregressive integrated moving average models improved by particle swarm optimization for property crime rates forecasting with economic indicators.

    PubMed

    Alwee, Razana; Shamsuddin, Siti Mariyam Hj; Sallehuddin, Roselina

    2013-01-01

    Crimes forecasting is an important area in the field of criminology. Linear models, such as regression and econometric models, are commonly applied in crime forecasting. However, in real crimes data, it is common that the data consists of both linear and nonlinear components. A single model may not be sufficient to identify all the characteristics of the data. The purpose of this study is to introduce a hybrid model that combines support vector regression (SVR) and autoregressive integrated moving average (ARIMA) to be applied in crime rates forecasting. SVR is very robust with small training data and high-dimensional problem. Meanwhile, ARIMA has the ability to model several types of time series. However, the accuracy of the SVR model depends on values of its parameters, while ARIMA is not robust to be applied to small data sets. Therefore, to overcome this problem, particle swarm optimization is used to estimate the parameters of the SVR and ARIMA models. The proposed hybrid model is used to forecast the property crime rates of the United State based on economic indicators. The experimental results show that the proposed hybrid model is able to produce more accurate forecasting results as compared to the individual models.

  6. A Novel Integrated Magnetic Structure Based DC/DC Converter for Hybrid Battery/Ultracapacitor Energy Storage Systems

    SciTech Connect

    Onar, Omer C

    2012-01-01

    This manuscript focuses on a novel actively controlled hybrid magnetic battery/ultracapacitor based energy storage system (ESS) for vehicular propulsion systems. A stand-alone battery system might not be sufficient to satisfy peak power demand and transient load variations in hybrid and plug-in hybrid electric vehicles (HEV, PHEV). Active battery/ultracapacitor hybrid ESS provides a better solution in terms of efficient power management and control flexibility. Moreover, the voltage of the battery pack can be selected to be different than that of the ultracapacitor, which will result in flexibility of design as well as cost and size reduction of the battery pack. In addition, the ultracapacitor bank can supply or recapture a large burst of power and it can be used with high C-rates. Hence, the battery is not subjected to supply peak and sharp power variations, and the stress on the battery will be reduced and the battery lifetime would be increased. Utilizing ultracapacitor results in effective capturing of the braking energy, especially in sudden braking conditions.

  7. Quantum Monte Carlo applied to solids

    SciTech Connect

    Shulenburger, Luke; Mattsson, Thomas R.

    2013-12-01

    We apply diffusion quantum Monte Carlo to a broad set of solids, benchmarking the method by comparing bulk structural properties (equilibrium volume and bulk modulus) to experiment and density functional theory (DFT) based theories. The test set includes materials with many different types of binding including ionic, metallic, covalent, and van der Waals. We show that, on average, the accuracy is comparable to or better than that of DFT when using the new generation of functionals, including one hybrid functional and two dispersion corrected functionals. The excellent performance of quantum Monte Carlo on solids is promising for its application to heterogeneous systems and high-pressure/high-density conditions. Important to the results here is the application of a consistent procedure with regards to the several approximations that are made, such as finite-size corrections and pseudopotential approximations. This test set allows for any improvements in these methods to be judged in a systematic way.

  8. HiRel: Hybrid Automated Reliability Predictor (HARP) integrated reliability tool system, (version 7.0). Volume 1: HARP introduction and user's guide

    NASA Technical Reports Server (NTRS)

    Bavuso, Salvatore J.; Rothmann, Elizabeth; Dugan, Joanne Bechta; Trivedi, Kishor S.; Mittal, Nitin; Boyd, Mark A.; Geist, Robert M.; Smotherman, Mark D.

    1994-01-01

    The Hybrid Automated Reliability Predictor (HARP) integrated Reliability (HiRel) tool system for reliability/availability prediction offers a toolbox of integrated reliability/availability programs that can be used to customize the user's application in a workstation or nonworkstation environment. HiRel consists of interactive graphical input/output programs and four reliability/availability modeling engines that provide analytical and simulative solutions to a wide host of reliable fault-tolerant system architectures and is also applicable to electronic systems in general. The tool system was designed to be compatible with most computing platforms and operating systems, and some programs have been beta tested, within the aerospace community for over 8 years. Volume 1 provides an introduction to the HARP program. Comprehensive information on HARP mathematical models can be found in the references.

  9. Detection and chromosomal assignment of SV40-DNA integration in Chinese hamster cell lines by chromosome sorting and dot blot hybridization.

    PubMed

    Hutter, K J; Klefenz, H; Goerttler, K

    1990-01-01

    A combination of cytometric (chromosome sorting), molecular (dot blot hybridization using radio-active and/or biotinylated DNA probes) and cytogenetic (G-banding) evaluation is described which allows the rapid identification of single copy and repetitive viral integrates and their assignment to chromosome groups or even individual chromosomes. In the case of Chinese hamster cell line CO 631 it could be demonstrated that SV40 DNA was solely integrated into a submetacentric marker chromosome. Such a cytometric/molecular/cytogenetic "identogram" may prove to be a useful tool in many areas of cell and tumor biology. Furthermore, amounts of chromosomes sufficient for analysis as well as subsequent cloning experiments can be accumulated.

  10. Fiber-wireless integrated mobile backhaul network based on a hybrid millimeter-wave and free-space-optics architecture with an adaptive diversity combining technique.

    PubMed

    Zhang, Junwen; Wang, Jing; Xu, Yuming; Xu, Mu; Lu, Feng; Cheng, Lin; Yu, Jianjun; Chang, Gee-Kung

    2016-05-01

    We propose and experimentally demonstrate a novel fiber-wireless integrated mobile backhaul network based on a hybrid millimeter-wave (MMW) and free-space-optics (FSO) architecture using an adaptive combining technique. Both 60 GHz MMW and FSO links are demonstrated and fully integrated with optical fibers in a scalable and cost-effective backhaul system setup. Joint signal processing with an adaptive diversity combining technique (ADCT) is utilized at the receiver side based on a maximum ratio combining algorithm. Mobile backhaul transportation of 4-Gb/s 16 quadrature amplitude modulation frequency-division multiplexing (QAM-OFDM) data is experimentally demonstrated and tested under various weather conditions synthesized in the lab. Performance improvement in terms of reduced error vector magnitude (EVM) and enhanced link reliability are validated under fog, rain, and turbulence conditions.

  11. Quasi-Monte Carlo methods for lattice systems: A first look

    NASA Astrophysics Data System (ADS)

    Jansen, K.; Leovey, H.; Ammon, A.; Griewank, A.; Müller-Preussker, M.

    2014-03-01

    Carlo, and especially Markov chain-Monte Carlo methods like the Metropolis or the hybrid Monte Carlo algorithm have been used to calculate approximate solutions of the path integral. These algorithms often lead to the undesired effect of autocorrelation in the samples of observables and suffer in any case from the slow asymptotic error behavior proportional to N, if N is the number of samples. Solution method: This program applies the quasi-Monte Carlo approach and the reweighting technique (respectively the weighted uniform sampling method) to generate uncorrelated samples of observables of the anharmonic oscillator with an improved asymptotic error behavior. Unusual features: The application of the quasi-Monte Carlo approach is quite revolutionary in the field of lattice field theories. Running time: The running time depends directly on the number of samples N and dimensions d. On modern computers a run with up to N=216=65536 (including 9 replica runs) and d=100 should not take much longer than one minute.

  12. A PDMS/paper/glass hybrid microfluidic biochip integrated with aptamer-functionalized graphene oxide nano-biosensors for one-step multiplexed pathogen detection.

    PubMed

    Zuo, Peng; Li, XiuJun; Dominguez, Delfina C; Ye, Bang-Ce

    2013-10-07

    Infectious pathogens often cause serious public health concerns throughout the world. There is an increasing demand for simple, rapid and sensitive approaches for multiplexed pathogen detection. In this paper we have developed a polydimethylsiloxane (PDMS)/paper/glass hybrid microfluidic system integrated with aptamer-functionalized graphene oxide (GO) nano-biosensors for simple, one-step, multiplexed pathogen detection. The paper substrate used in this hybrid microfluidic system facilitated the integration of aptamer biosensors on the microfluidic biochip, and avoided complicated surface treatment and aptamer probe immobilization in a PDMS or glass-only microfluidic system. Lactobacillus acidophilus was used as a bacterium model to develop the microfluidic platform with a detection limit of 11.0 cfu mL(-1). We have also successfully extended this method to the simultaneous detection of two infectious pathogens - Staphylococcus aureus and Salmonella enterica. This method is simple and fast. The one-step 'turn on' pathogen assay in a ready-to-use microfluidic device only takes ~10 min to complete on the biochip. Furthermore, this microfluidic device has great potential in rapid detection of a wide variety of different other bacterial and viral pathogens.

  13. Composite Hybrid Cluster Built from the Integration of Polyoxometalate and a Metal Halide Cluster: Synthetic Strategy, Structure, and Properties.

    PubMed

    Li, Xin-Xiong; Ma, Xiang; Zheng, Wen-Xu; Qi, Yan-Jie; Zheng, Shou-Tian; Yang, Guo-Yu

    2016-09-06

    A step-by-step synthetic strategy, setting up a bridge between the polyoxometalate (POM) and metal halide cluster (MHC) systems, is demonstrated to construct an unprecedented composite hybrid cluster built up from one high-nuclearity cationic MHC [Cu8I6](2+) and eight Anderson-type anionic POMs [HCrMo6O18(OH)6](2-) cross-linked by a tripodal alcohol derivative.

  14. Monte Carlo Reliability Analysis.

    DTIC Science & Technology

    1987-10-01

    to Stochastic Processes , Prentice-Hall, Englewood Cliffs, NJ, 1975. (5) R. E. Barlow and F. Proscham, Statistical TheorX of Reliability and Life...Lewis and Z. Tu, "Monte Carlo Reliability Modeling by Inhomogeneous ,Markov Processes, Reliab. Engr. 16, 277-296 (1986). (4) E. Cinlar, Introduction

  15. Design of energy-efficient MRF-based clutches with defined fail-safe behavior for integration in hybrid powertrains

    NASA Astrophysics Data System (ADS)

    Erbis, Vadim; Hegger, Christian; Güth, Dirk; Maas, Jürgen

    2015-04-01

    Drag losses in the powertrain are a serious deficiency for any energy-efficient application, especially for hybrid electrical vehicles. A promising approach for fulfilling requirements like efficiency, wear, safety and dynamics is the use of an innovative MRF-based clutch design for the transmission of power that is based on magnetorheological fluids (MRF). MRF are smart fluids with the particular characteristics of changing their apparent viscosity significantly under influence of the magnetic field. Their characteristics are fast switching times and a smooth torque control in the powertrain. In this paper, a novel clutch concept is investigated that facilitates the controlled movement of the MRF from an active torque-transmitting region into an inactive region of the shear gap. This concept enables a complete disengagement of the fluid engaging surfaces in a way that viscous drag torque can be eliminated. Therefore, a simulation based design for such MRF-based clutches is used to design the required magnetic excitation systems for enabling a well-defined safety behavior by the fluid control. Based on this approach, an MRF-based clutch is developed in detail which provides a loss-reduced alternative to conventional disengagement devices in the powertrain. The presented MRF-based clutch enables a investigation of different systems in one design by changing the magnetic excitation. Especially, different possibilities for the fail-safe behavior of the MRF-based clutch are considered to ensure a well-defined condition in electrical or hybrid powertrains in case of a system failure.

  16. Hybridization of the Vector Finite Element Method with the Boundary Integral Method for the Solution of Finite Arrays of Cavity-Backed Slot Antennas

    NASA Astrophysics Data System (ADS)

    Polycarpou, A. C.

    2009-10-01

    The vector finite element method (FEM) is hybridized with the boundary integral (BI) method to solve for the radiation characteristics of a cavity-backed slot (CBS) antenna. The hybridization of the two methods is made possible at the aperture of the antenna separating the cavity interior and the half-space exterior region above an infinite conducting ground plane. Having to solve for a finite array of CBS antennas requires an excessive amount of memory, in order to store the system matrix, and considerable CPU time for the solution of the resulting linear system of equations. Increasing the number of array elements results in a non-linear increase in the number of unknowns, thus making the solution of the linear system impossible. In this paper, we adopt array domain decomposition (ADD) and by taking advantage of the repetitive features of the array, we can reduce the memory requirements to a minimum. In addition, we introduce stationary and non-stationary iteration techniques, with or without preconditioning, to solve the system of linear equations in an efficient manner. Singular value decomposition (SVD) is also used in order to further reduce memory requirements and speed-up matrix-vector multiplications that are inherent in either type of iterative techniques. Computational statistics and comparisons between stationary and non-stationary techniques are presented and discussed.

  17. An efficient hybrid MLFMA-FFT solver for the volume integral equation in case of sparse 3D inhomogeneous dielectric scatterers

    SciTech Connect

    Zaeytijd, J. de Bogaert, I.; Franchois, A.

    2008-07-01

    Electromagnetic scattering problems involving inhomogeneous objects can be numerically solved by applying a Method of Moments discretization to the volume integral equation. For electrically large problems, the iterative solution of the resulting linear system is expensive, both computationally and in memory use. In this paper, a hybrid MLFMA-FFT method is presented, which combines the fast Fourier transform (FFT) method and the High Frequency Multilevel Fast Multipole Algorithm (MLFMA) in order to reduce the cost of the matrix-vector multiplications needed in the iterative solver. The method represents the scatterers within a set of possibly disjoint identical cubic subdomains, which are meshed using a uniform cubic grid. This specific mesh allows for the application of FFTs to calculate the near interactions in the MLFMA and reduces the memory cost considerably, since the aggregation and disaggregation matrices of the MLFMA can be reused. Additional improvements to the general MLFMA framework, such as an extention of the FFT interpolation scheme of Sarvas et al. from the scalar to the vectorial case in combination with a more economical representation of the radiation patterns on the lowest level in vector spherical harmonics, are proposed and the choice of the subdomain size is discussed. The hybrid method performs better in terms of speed and memory use on large sparse configurations than both the FFT method and the HF MLFMA separately and it has lower memory requirements on general large problems. This is illustrated on a number of representative numerical test cases.

  18. Mitochondrial-bacterial hybrids of BamA/Tob55 suggest variable requirements for the membrane integration of β-barrel proteins

    PubMed Central

    Pfitzner, Anna-Katharina; Steblau, Nadja; Ulrich, Thomas; Oberhettinger, Philipp; Autenrieth, Ingo B.; Schütz, Monika; Rapaport, Doron

    2016-01-01

    β-Barrel proteins are found in the outer membrane (OM) of Gram-negative bacteria, chloroplasts and mitochondria. The assembly of these proteins into the corresponding OM is facilitated by a dedicated protein complex that contains a central conserved β-barrel protein termed BamA in bacteria and Tob55/Sam50 in mitochondria. BamA and Tob55 consist of a membrane-integral C-terminal domain that forms a β-barrel pore and a soluble N-terminal portion comprised of one (in Tob55) or five (in BamA) polypeptide transport-associated (POTRA) domains. Currently the functional significance of this difference and whether the homology between BamA and Tob55 can allow them to replace each other are unclear. To address these issues we constructed hybrid Tob55/BamA proteins with differently configured N-terminal POTRA domains. We observed that constructs harboring a heterologous C-terminal domain could not functionally replace the bacterial BamA or the mitochondrial Tob55 demonstrating species-specific requirements. Interestingly, the various hybrid proteins in combination with the bacterial chaperones Skp or SurA supported to a variable extent the assembly of bacterial β-barrel proteins into the mitochondrial OM. Collectively, our findings suggest that the membrane assembly of various β-barrel proteins depends to a different extent on POTRA domains and periplasmic chaperones. PMID:27982054

  19. Competitive RNA-RNA hybridization-based integrated nanostructured-disposable electrode for highly sensitive determination of miRNAs in cancer cells.

    PubMed

    Zouari, M; Campuzano, S; Pingarrón, J M; Raouafi, N

    2017-05-15

    A new method for the detection of miRNAs making use of a competitive RNA/RNA hybridization configuration is described in this work. A biotinylated miRNA (biotin-miRNA) of identical sequence to that of the target miRNA is mixed with the samples to be analyzed allowing competition to be accomplished with the target miRNA for a thiolated RNA probe assembled onto a gold nanoparticles (AuNPs) modified screen-printed electrode. After labeling the hybridized biotin-miRNA with streptavidin-HRP conjugates, amperometric detection at -0.20V was carried out using the H2O2/hydroquinone (HQ) system. The decrease in the amperometric response was proportional to the concentration of model target miRNA-21 in the 100 fM to 25.0 pM range. The integrated sensor provided a very low detection limit (25 fM, 0.25 attomol in 10μL sample) for miRNA-21 without any amplification step, a complete discrimination against single nucleotide mismatched sequences under practical conditions and high storage stability. The usefulness of the developed method was demonstrated by determining the endogenous levels of the mature target miRNA in total RNA (RNAt) extracted from cancerous and non-cancerous cells.

  20. The Monte Carlo Method of Evaluating Integrals

    DTIC Science & Technology

    1975-02-01

    order to give the reader some idea of what is involved, as well as some guidance to the literature, we have included a brief appendix on this subject...as Cartesian coordinates in an N- dlitensional hyperspace . Any point in this hyperspace specifies through the values of its coordinates a...numbered in order from right to left. Let Q be defined as the set of all points (x-.x«,... ,0 in the N-dimensional configuration space which cto satisfy

  1. Integration

    ERIC Educational Resources Information Center

    Kalyn, Brenda

    2006-01-01

    Integrated learning is an exciting adventure for both teachers and students. It is not uncommon to observe the integration of academic subjects such as math, science, and language arts. However, educators need to recognize that movement experiences in physical education also can be linked to academic curricula and, may even lead the…

  2. Fundamentals of Monte Carlo

    SciTech Connect

    Wollaber, Allan Benton

    2016-06-16

    This is a powerpoint presentation which serves as lecture material for the Parallel Computing summer school. It goes over the fundamentals of the Monte Carlo calculation method. The material is presented according to the following outline: Introduction (background, a simple example: estimating π), Why does this even work? (The Law of Large Numbers, The Central Limit Theorem), How to sample (inverse transform sampling, rejection), and An example from particle transport.

  3. Monte Carlo eikonal scattering

    NASA Astrophysics Data System (ADS)

    Gibbs, W. R.; Dedonder, J. P.

    2012-08-01

    Background: The eikonal approximation is commonly used to calculate heavy-ion elastic scattering. However, the full evaluation has only been done (without the use of Monte Carlo techniques or additional approximations) for α-α scattering.Purpose: Develop, improve, and test the Monte Carlo eikonal method for elastic scattering over a wide range of nuclei, energies, and angles.Method: Monte Carlo evaluation is used to calculate heavy-ion elastic scattering for heavy nuclei including the center-of-mass correction introduced in this paper and the Coulomb interaction in terms of a partial-wave expansion. A technique for the efficient expansion of the Glauber amplitude in partial waves is developed.Results: Angular distributions are presented for a number of nuclear pairs over a wide energy range using nucleon-nucleon scattering parameters taken from phase-shift analyses and densities from independent sources. We present the first calculations of the Glauber amplitude, without further approximation, and with realistic densities for nuclei heavier than helium. These densities respect the center-of-mass constraints. The Coulomb interaction is included in these calculations.Conclusion: The center-of-mass and Coulomb corrections are essential. Angular distributions can be predicted only up to certain critical angles which vary with the nuclear pairs and the energy, but we point out that all critical angles correspond to a momentum transfer near 1 fm-1.

  4. Addressing recent docking challenges: A hybrid strategy to integrate template-based and free protein-protein docking.

    PubMed

    Yan, Yumeng; Wen, Zeyu; Wang, Xinxiang; Huang, Sheng-You

    2017-03-01

    Protein-protein docking is an important computational tool for predicting protein-protein interactions. With the rapid development of proteomics projects, more and more experimental binding information ranging from mutagenesis data to three-dimensional structures of protein complexes are becoming available. Therefore, how to appropriately incorporate the biological information into traditional ab initio docking has been an important issue and challenge in the field of protein-protein docking. To address these challenges, we have developed a Hybrid DOCKing protocol of template-based and template-free approaches, referred to as HDOCK. The basic procedure of HDOCK is to model the structures of individual components based on the template complex by a template-based method if a template is available; otherwise, the component structures will be modeled based on monomer proteins by regular homology modeling. Then, the complex structure of the component models is predicted by traditional protein-protein docking. With the HDOCK protocol, we have participated in the CPARI experiment for rounds 28-35. Out of the 25 CASP-CAPRI targets for oligomer modeling, our HDOCK protocol predicted correct models for 16 targets, ranking one of the top algorithms in this challenge. Our docking method also made correct predictions on other CAPRI challenges such as protein-peptide binding for 6 out of 8 targets and water predictions for 2 out of 2 targets. The advantage of our hybrid docking approach over pure template-based docking was further confirmed by a comparative evaluation on 20 CASP-CAPRI targets. Proteins 2017; 85:497-512. © 2016 Wiley Periodicals, Inc.

  5. Improved geometry representations for Monte Carlo radiation transport.

    SciTech Connect

    Martin, Matthew Ryan

    2004-08-01

    ITS (Integrated Tiger Series) permits a state-of-the-art Monte Carlo solution of linear time-integrated coupled electron/photon radiation transport problems with or without the presence of macroscopic electric and magnetic fields of arbitrary spatial dependence. ITS allows designers to predict product performance in radiation environments.

  6. Integrating Emerging Topics through Online Team Design in a Hybrid Communication Networks Course: Interaction Patterns and Impact of Prior Knowledge

    ERIC Educational Resources Information Center

    Reisslein, Jana; Seeling, Patrick; Reisslein, Martin

    2005-01-01

    An important challenge in the introductory communication networks course in electrical and computer engineering curricula is to integrate emerging topics, such as wireless Internet access and network security, into the already content-intensive course. At the same time it is essential to provide students with experiences in online collaboration,…

  7. A fully coupled Monte Carlo/discrete ordinates solution to the neutron transport equation. Final report

    SciTech Connect

    Filippone, W.L.; Baker, R.S.

    1990-12-31

    The neutron transport equation is solved by a hybrid method that iteratively couples regions where deterministic (S{sub N}) and stochastic (Monte Carlo) methods are applied. Unlike previous hybrid methods, the Monte Carlo and S{sub N} regions are fully coupled in the sense that no assumption is made about geometrical separation or decoupling. The hybrid method provides a new means of solving problems involving both optically thick and optically thin regions that neither Monte Carlo nor S{sub N} is well suited for by themselves. The fully coupled Monte Carlo/S{sub N} technique consists of defining spatial and/or energy regions of a problem in which either a Monte Carlo calculation or an S{sub N} calculation is to be performed. The Monte Carlo region may comprise the entire spatial region for selected energy groups, or may consist of a rectangular area that is either completely or partially embedded in an arbitrary S{sub N} region. The Monte Carlo and S{sub N} regions are then connected through the common angular boundary fluxes, which are determined iteratively using the response matrix technique, and volumetric sources. The hybrid method has been implemented in the S{sub N} code TWODANT by adding special-purpose Monte Carlo subroutines to calculate the response matrices and volumetric sources, and linkage subrountines to carry out the interface flux iterations. The common angular boundary fluxes are included in the S{sub N} code as interior boundary sources, leaving the logic for the solution of the transport flux unchanged, while, with minor modifications, the diffusion synthetic accelerator remains effective in accelerating S{sub N} calculations. The special-purpose Monte Carlo routines used are essentially analog, with few variance reduction techniques employed. However, the routines have been successfully vectorized, with approximately a factor of five increase in speed over the non-vectorized version.

  8. Electron Beam/Optical Hybrid Lithography For The Production Of Gallium Arsenide Monolithic Microwave Integrated Circuits (Mimics)

    NASA Astrophysics Data System (ADS)

    Nagarajan, Rao M.; Rask, Steven D.

    1988-06-01

    A hybrid lithography technique is described in which selected levels are fabricated by high resolution direct write electron beam lithography and all other levels are fabricated optically. This technique permits subhalf micron geometries and the site-by-site alignment for each field written by electron beam lithography while still maintaining the high throughput possible with optical lithography. The goal is to improve throughput and reduce overall cost of fabricating MIMIC GaAS chips without compromising device performance. The lithography equipment used for these experiments is the Cambridge Electron beam vector scan system EBMF 6.4 capable of achieving ultra high current densities with a beam of circular cross section and a gaussian intensity profile operated at 20 kev. The optical aligner is a Karl Suss Contact aligner. The flexibility of the Cambridge electron beam system is matched to the less flexible Karl Suss contact aligner. The lithography related factors, such as image placement, exposure and process related analyses, which influence overlay, pattern quality and performance, are discussed. A process chip containing 3.2768mm fields in an eleven by eleven array was used for alignment evaluation on a 3" semi-insulating GaAS wafer. Each test chip contained five optical verniers and four Prometrix registration marks per field along with metal bumps for alignment marks. The process parameters for these chips are identical to those of HEMT/epi-MESFET ohmic contact and gate layer processes. These layers were used to evaluate the overlay accuracy because of their critical alignment and dimensional control requirements. Two cases were examined: (1) Electron beam written gate layers aligned to optically imaged ohmic contact layers and (2) Electron beam written gate layers aligned to electron beam written ohmic contact layers. The effect of substrate charging by the electron beam is also investigated. The resulting peak overlay error accuracies are: (1) Electron

  9. Physical and organizational provision for installation, regulatory requirements and implementation of a simultaneous hybrid PET/MR-imaging system in an integrated research and clinical setting.

    PubMed

    Sattler, Bernhard; Jochimsen, Thies; Barthel, Henryk; Sommerfeld, Kerstin; Stumpp, Patrick; Hoffmann, Karl-Titus; Gutberlet, Matthias; Villringer, Arno; Kahn, Thomas; Sabri, Osama

    2013-02-01

    The implementation of hybrid imaging systems requires thorough and anticipatory planning at local and regional levels. For installation of combined positron emission and magnetic resonance imaging systems (PET/MRI), a number of physical and constructional provisions concerning shielding of electromagnetic fields (RF- and high-field) as well as handling of radionuclides have to be met, the latter of which includes shielding for the emitted 511 keV gamma rays. Based on our experiences with a SIEMENS Biograph mMR system, a step-by-step approach is required to allow a trouble-free installation. In this article, we present a proposal for a standardized step-by-step plan to accomplish the installation of a combined PET/MRI system. Moreover, guidelines for the smooth operation of combined PET/MRI in an integrated research and clinical setting will be proposed. Overall, the most important preconditions for the successful implementation of PET/MRI in an integrated research and clinical setting is the interdisciplinary target-oriented cooperation between nuclear medicine, radiology, and all referring and collaborating institutions at all levels of interaction (personnel, imaging protocols, reporting, selection of the data transfer and communication methods).

  10. HiRel: Hybrid Automated Reliability Predictor (HARP) integrated reliability tool system, (version 7.0). Volume 4: HARP Output (HARPO) graphics display user's guide

    NASA Technical Reports Server (NTRS)

    Sproles, Darrell W.; Bavuso, Salvatore J.

    1994-01-01

    The Hybrid Automated Reliability Predictor (HARP) integrated Reliability (HiRel) tool system for reliability/availability prediction offers a toolbox of integrated reliability/availability programs that can be used to customize the user's application in a workstation or nonworkstation environment. HiRel consists of interactive graphical input/output programs and four reliability/availability modeling engines that provide analytical and simulative solutions to a wide host of highly reliable fault-tolerant system architectures and is also applicable to electronic systems in general. The tool system was designed at the outset to be compatible with most computing platforms and operating systems and some programs have been beta tested within the aerospace community for over 8 years. This document is a user's guide for the HiRel graphical postprocessor program HARPO (HARP Output). HARPO reads ASCII files generated by HARP. It provides an interactive plotting capability that can be used to display alternate model data for trade-off analyses. File data can also be imported to other commercial software programs.

  11. Fermentative production of poly (γ-glutamic acid) from renewable carbon source and downstream purification through a continuous membrane-integrated hybrid process.

    PubMed

    Kumar, Ramesh; Pal, Parimal

    2015-02-01

    Experimental investigations were carried out on continuous and direct production of poly-(γ-glutamic acid) in a hybrid reactor system that integrated conventional fermentative production step with membrane-based downstream separation and purification. Novelty of the integrated system lies in high degree of purity, conversion, yield and productivity of poly-(γ-glutamic acid) through elimination of substrate-product inhibitions of traditional batch production system. This new system is compact, flexible, eco-friendly and largely fouling-free ensuring steady and continuous production of poly-(γ-glutamic acid) directly from a renewable carbon source at the rate of 0.91 g/L/h. Cross-flow microfiltration membrane modules ensured almost complete separation and recycle of cells without much fouling problem. Well-screened ultrafiltration membrane module helped to concentrate poly-(γ-glutamic acid) while ensuring recovery and recycle of 96% unconverted carbon source resulting in yield of 0.6g/g along with high product purity.

  12. HiRel: Hybrid Automated Reliability Predictor (HARP) integrated reliability tool system, (version 7.0). Volume 3: HARP Graphics Oriented (GO) input user's guide

    NASA Technical Reports Server (NTRS)

    Bavuso, Salvatore J.; Rothmann, Elizabeth; Mittal, Nitin; Koppen, Sandra Howell

    1994-01-01

    The Hybrid Automated Reliability Predictor (HARP) integrated Reliability (HiRel) tool system for reliability/availability prediction offers a toolbox of integrated reliability/availability programs that can be used to customize the user's application in a workstation or nonworkstation environment. HiRel consists of interactive graphical input/output programs and four reliability/availability modeling engines that provide analytical and simulative solutions to a wide host of highly reliable fault-tolerant system architectures and is also applicable to electronic systems in general. The tool system was designed at the outset to be compatible with most computing platforms and operating systems, and some programs have been beta tested within the aerospace community for over 8 years. This document is a user's guide for the HiRel graphical preprocessor Graphics Oriented (GO) program. GO is a graphical user interface for the HARP engine that enables the drawing of reliability/availability models on a monitor. A mouse is used to select fault tree gates or Markov graphical symbols from a menu for drawing.

  13. Multipoint-likelihood maximization mapping on 4 segregating populations to achieve an integrated framework map for QTL analysis in pot azalea (Rhododendron simsii hybrids)

    PubMed Central

    2010-01-01

    Background Azalea (Rhododendron simsii hybrids) is the most important flowering pot plant produced in Belgium, being exported world-wide. In the breeding program, flower color is the main feature for selection, only in later stages cultivation related plant quality traits are evaluated. As a result, plants with attractive flowering are kept too long in the breeding cycle. The inheritance of flower color has been well studied; information on the heritability of cultivation related quality traits is lacking. For this purpose, QTL mapping in diverse genetic backgrounds appeared to be a must and therefore 4 mapping populations were made and analyzed. Results An integrated framework map on four individual linkage maps in Rhododendron simsii hybrids was constructed. For genotyping, mainly dominant scored AFLP (on average 364 per population) and MYB-based markers (15) were combined with co-dominant SSR (23) and EST markers (12). Linkage groups were estimated in JoinMap. A consensus grouping for the 4 mapping populations was made and applied in each individual mapping population. Finally, 16 stable linkage groups were set for the 4 populations; the azalea chromosome number being 13. A combination of regression mapping (JoinMap) and multipoint-likelihood maximization (Carthagène) enabled the construction of 4 maps and their alignment. A large portion of loci (43%) was common to at least two populations and could therefore serve as bridging markers. The different steps taken for map optimization and integration into a reference framework map for QTL mapping are discussed. Conclusions This is the first map of azalea up to our knowledge. AFLP and SSR markers are used as a reference backbone and functional markers (EST and MYB) were added as candidate genes for QTL analysis. The alignment of the 4 maps on the basis of framework markers will facilitate in turn the alignment of QTL regions detected in each of the populations. The approach we took is thoroughly different than the

  14. Knowledge extraction algorithm for variances handling of CP using integrated hybrid genetic double multi-group cooperative PSO and DPSO.

    PubMed

    Du, Gang; Jiang, Zhibin; Diao, Xiaodi; Yao, Yang

    2012-04-01

    Although the clinical pathway (CP) predefines predictable standardized care process for a particular diagnosis or procedure, many variances may still unavoidably occur. Some key index parameters have strong relationship with variances handling measures of CP. In real world, these problems are highly nonlinear in nature so that it's hard to develop a comprehensive mathematic model. In this paper, a rule extraction approach based on combing hybrid genetic double multi-group cooperative particle swarm optimization algorithm (PSO) and discrete PSO algorithm (named HGDMCPSO/DPSO) is developed to discovery the previously unknown and potentially complicated nonlinear relationship between key parameters and variances handling measures of CP. Then these extracted rules can provide abnormal variances handling warning for medical professionals. Three numerical experiments on Iris of UCI data sets, Wisconsin breast cancer data sets and CP variances data sets of osteosarcoma preoperative chemotherapy are used to validate the proposed method. When compared with the previous researches, the proposed rule extraction algorithm can obtain the high prediction accuracy, less computing time, more stability and easily comprehended by users, thus it is an effective knowledge extraction tool for CP variances handling.

  15. Hybrid Electrodes by In-Situ Integration of Graphene and Carbon-Nanotubes in Polypyrrole for Supercapacitors

    PubMed Central

    Aphale, Ashish; Maisuria, Krushangi; Mahapatra, Manoj K.; Santiago, Angela; Singh, Prabhakar; Patra, Prabir

    2015-01-01

    Supercapacitors also known as electrochemical capacitors, that store energy via either Faradaic or non-Faradaic processes, have recently grown popularity mainly because they complement, and can even replace, conventional energy storage systems in variety of applications. Supercapacitor performance can be improved significantly by developing new nanocomposite electrodes which utilizes both the energy storage processes simultaneously. Here we report, fabrication of the freestanding hybrid electrodes, by incorporating graphene and carbon nanotubes (CNT) in pyrrole monomer via its in-situ polymerization. At the scan rate of 5 mV s−1, the specific capacitance of the polypyrrole-CNT-graphene (PCG) electrode film was 453 F g−1 with ultrahigh energy and power density of 62.96 W h kg−1 and 566.66 W kg−1 respectively, as shown in the Ragone plot. A nanofibrous membrane was electrospun and effectively used as a separator in the supercapacitor. Four supercapacitors were assembled in series to demonstrate the device performance by lighting a 2.2 V LED. PMID:26395922

  16. Hybrid polylingual object model: an efficient and seamless integration of Java and native components on the Dalvik virtual machine.

    PubMed

    Huang, Yukun; Chen, Rong; Wei, Jingbo; Pei, Xilong; Cao, Jing; Prakash Jayaraman, Prem; Ranjan, Rajiv

    2014-01-01

    JNI in the Android platform is often observed with low efficiency and high coding complexity. Although many researchers have investigated the JNI mechanism, few of them solve the efficiency and the complexity problems of JNI in the Android platform simultaneously. In this paper, a hybrid polylingual object (HPO) model is proposed to allow a CAR object being accessed as a Java object and as vice in the Dalvik virtual machine. It is an acceptable substitute for JNI to reuse the CAR-compliant components in Android applications in a seamless and efficient way. The metadata injection mechanism is designed to support the automatic mapping and reflection between CAR objects and Java objects. A prototype virtual machine, called HPO-Dalvik, is implemented by extending the Dalvik virtual machine to support the HPO model. Lifespan management, garbage collection, and data type transformation of HPO objects are also handled in the HPO-Dalvik virtual machine automatically. The experimental result shows that the HPO model outweighs the standard JNI in lower overhead on native side, better executing performance with no JNI bridging code being demanded.

  17. Scalable integration of Li5FeO4 towards robust, high-performance lithium-ion hybrid capacitors.

    PubMed

    Park, Min-Sik; Lim, Young-Geun; Hwang, Soo Min; Kim, Jung Ho; Kim, Jeom-Soo; Dou, Shi Xue; Cho, Jaephil; Kim, Young-Jun

    2014-11-01

    Lithium-ion hybrid capacitors have attracted great interest due to their high specific energy relative to conventional electrical double-layer capacitors. Nevertheless, the safety issue still remains a drawback for lithium-ion capacitors in practical operational environments because of the use of metallic lithium. Herein, single-phase Li5FeO4 with an antifluorite structure that acts as an alternative lithium source (instead of metallic lithium) is employed and its potential use for lithium-ion capacitors is verified. Abundant Li(+) amounts can be extracted from Li5FeO4 incorporated in the positive electrode and efficiently doped into the negative electrode during the first electrochemical charging. After the first Li(+) extraction, Li(+) does not return to the Li5FeO4 host structure and is steadily involved in the electrochemical reactions of the negative electrode during subsequent cycling. Various electrochemical and structural analyses support its superior characteristics for use as a promising lithium source. This versatile approach can yield a sufficient Li(+)-doping efficiency of >90% and improved safety as a result of the removal of metallic lithium from the cell.

  18. Multi-format all-optical processing based on a large-scale, hybridly integrated photonic circuit.

    PubMed

    Bougioukos, M; Kouloumentas, Ch; Spyropoulou, M; Giannoulis, G; Kalavrouziotis, D; Maziotis, A; Bakopoulos, P; Harmon, R; Rogers, D; Harrison, J; Poustie, A; Maxwell, G; Avramopoulos, H

    2011-06-06

    We investigate through numerical studies and experiments the performance of a large scale, silica-on-silicon photonic integrated circuit for multi-format regeneration and wavelength-conversion. The circuit encompasses a monolithically integrated array of four SOAs inside two parallel Mach-Zehnder structures, four delay interferometers and a large number of silica waveguides and couplers. Exploiting phase-incoherent techniques, the circuit is capable of processing OOK signals at variable bit rates, DPSK signals at 22 or 44 Gb/s and DQPSK signals at 44 Gbaud. Simulation studies reveal the wavelength-conversion potential of the circuit with enhanced regenerative capabilities for OOK and DPSK modulation formats and acceptable quality degradation for DQPSK format. Regeneration of 22 Gb/s OOK signals with amplified spontaneous emission (ASE) noise and DPSK data signals degraded with amplitude, phase and ASE noise is experimentally validated demonstrating a power penalty improvement up to 1.5 dB.

  19. Monte Carlo fluorescence microtomography

    NASA Astrophysics Data System (ADS)

    Cong, Alexander X.; Hofmann, Matthias C.; Cong, Wenxiang; Xu, Yong; Wang, Ge

    2011-07-01

    Fluorescence microscopy allows real-time monitoring of optical molecular probes for disease characterization, drug development, and tissue regeneration. However, when a biological sample is thicker than 1 mm, intense scattering of light would significantly degrade the spatial resolution of fluorescence microscopy. In this paper, we develop a fluorescence microtomography technique that utilizes the Monte Carlo method to image fluorescence reporters in thick biological samples. This approach is based on an l0-regularized tomography model and provides an excellent solution. Our studies on biomimetic tissue scaffolds have demonstrated that the proposed approach is capable of localizing and quantifying the distribution of optical molecular probe accurately and reliably.

  20. Hydrogen production by the solar-powered hybrid sulfur process: Analysis of the integration of the CSP and chemical plants in selected scenarios

    NASA Astrophysics Data System (ADS)

    Liberatore, Raffaele; Lanchi, Michela; Turchetti, Luca

    2016-05-01

    The Hybrid Sulfur (HyS) is a water splitting process for hydrogen production powered with high temperature nuclear heat and electric power; among the numerous thermo-chemical and thermo-electro-chemical cycles proposed in the literature, such cycle is considered to have a particularly high potential also if powered by renewable energy. SOL2HY2 (Solar to Hydrogen Hybrid Cycles) is a 3 year research project, co-funded by the Fuel Cells and Hydrogen Joint Undertaking (FCH JU). A significant part of the project activities are devoted to the analysis and optimization of the integration of the solar power plant with the chemical, hydrogen production plant. This work reports a part of the results obtained in such research activity. The analysis presented in this work builds on previous process simulations used to determine the energy requirements of the hydrogen production plant in terms of electric power, medium (<550°C) and high (>550°C) temperature heat. For the supply of medium temperature (MT) heat, a parabolic trough CSP plant using molten salts as heat transfer and storage medium is considered. A central receiver CSP (Concentrated Solar Power) plant is considered to provide high temperature (HT) heat, which is only needed for sulfuric acid decomposition. Finally, electric power is provided by a power block included in the MT solar plant and/or drawn from the grid, depending on the scenario considered. In particular, the analysis presented here focuses on the medium temperature CSP plant, possibly combined with a power block. Different scenarios were analysed by considering plants with different combinations of geographical location and sizing criteria.

  1. Hybrid polymer waveguide characterization for microoptical tools with integrated laser diode chips for optogenetic applications at 430 nm and 650 nm

    NASA Astrophysics Data System (ADS)

    Schwaerzle, Michael; Nehlich, Julian; Schwarz, Ulrich T.; Paul, Oliver; Ruther, Patrick

    2016-03-01

    Appropriate micro-optical tools are required to exploit the key advantages of optogenetics in neuroscience, i.e. optical stimulation and inhibition of neural tissue at high spatial as well as temporal resolutions, providing cell specificity and the opportunity to simultaneously record electrophysiological signals. Besides the need for minimally invasive probes mandatory for a reduced tissue damage, highly flexible or wireless interfaces are demanded for experiments with freely behaving animals. Both these technical system requirements are achieved by integrating miniaturized waveguides for light transmission combined with bare laser diode (LD) chips integrated directly into neural probes. This paper describes a system concept using integrated, side emitting LD chips directly coupled to miniaturized waveguides implemented on silicon (Si) substrates. It details the fabrication, assembly, and optical as well as electrical characterization of waveguides (WG) made from the hybrid polymer Ormorcere. The WGs were photolithographically patterned to have a cross-section of 20x15 μm2. Bare LD chips are flip-chip bonded to electroplated gold (Au) pads with +/-5 μm accuracy relative to the WG facets. Transmitted radiant fluxes for blue (430 nm, (Al,In)GaN) and red (650 nm, AlGaInP) LDs are measured to be 150 μW (ID = 35 mA, 5% duty cycle) and 4.35 μW (ID = 225 mA, 0.5% duty cycle), respectively. This corresponds to an efficiency of the coupled and transmitted light of 44% for the red LDs. Long term measurements for 24 h using these systems with red LDs showed a decrease of the radiant flux of about 4% caused by LD aging at stable WG transmission properties. WGs immersed into Ringer's solution showed no significant change of their optical transmission properties after four weeks of exposure to the ionic solution.

  2. Integrated annotation and analysis of in situ hybridization images using the ImAnno system: application to the ear and sensory organs of the fetal mouse.

    PubMed

    Romand, Raymond; Ripp, Raymond; Poidevin, Laetitia; Boeglin, Marcel; Geffers, Lars; Dollé, Pascal; Poch, Olivier

    2015-01-01

    An in situ hybridization (ISH) study was performed on 2000 murine genes representing around 10% of the protein-coding genes present in the mouse genome using data generated by the EURExpress consortium. This study was carried out in 25 tissues of late gestation embryos (E14.5), with a special emphasis on the developing ear and on five distinct developing sensory organs, including the cochlea, the vestibular receptors, the sensory retina, the olfactory organ, and the vibrissae follicles. The results obtained from an analysis of more than 11,000 micrographs have been integrated in a newly developed knowledgebase, called ImAnno. In addition to managing the multilevel micrograph annotations performed by human experts, ImAnno provides public access to various integrated databases and tools. Thus, it facilitates the analysis of complex ISH gene expression patterns, as well as functional annotation and interaction of gene sets. It also provides direct links to human pathways and diseases. Hierarchical clustering of expression patterns in the 25 tissues revealed three main branches corresponding to tissues with common functions and/or embryonic origins. To illustrate the integrative power of ImAnno, we explored the expression, function and disease traits of the sensory epithelia of the five presumptive sensory organs. The study identified 623 genes (out of 2000) concomitantly expressed in the five embryonic epithelia, among which many (∼12%) were involved in human disorders. Finally, various multilevel interaction networks were characterized, highlighting differential functional enrichments of directly or indirectly interacting genes. These analyses exemplify an under-represention of "sensory" functions in the sensory gene set suggests that E14.5 is a pivotal stage between the developmental stage and the functional phase that will be fully reached only after birth.

  3. Integrated Annotation and Analysis of In Situ Hybridization Images Using the ImAnno System: Application to the Ear and Sensory Organs of the Fetal Mouse

    PubMed Central

    Romand, Raymond; Ripp, Raymond; Poidevin, Laetitia; Boeglin, Marcel; Geffers, Lars; Dollé, Pascal; Poch, Olivier

    2015-01-01

    An in situ hybridization (ISH) study was performed on 2000 murine genes representing around 10% of the protein-coding genes present in the mouse genome using data generated by the EURExpress consortium. This study was carried out in 25 tissues of late gestation embryos (E14.5), with a special emphasis on the developing ear and on five distinct developing sensory organs, including the cochlea, the vestibular receptors, the sensory retina, the olfactory organ, and the vibrissae follicles. The results obtained from an analysis of more than 11,000 micrographs have been integrated in a newly developed knowledgebase, called ImAnno. In addition to managing the multilevel micrograph annotations performed by human experts, ImAnno provides public access to various integrated databases and tools. Thus, it facilitates the analysis of complex ISH gene expression patterns, as well as functional annotation and interaction of gene sets. It also provides direct links to human pathways and diseases. Hierarchical clustering of expression patterns in the 25 tissues revealed three main branches corresponding to tissues with common functions and/or embryonic origins. To illustrate the integrative power of ImAnno, we explored the expression, function and disease traits of the sensory epithelia of the five presumptive sensory organs. The study identified 623 genes (out of 2000) concomitantly expressed in the five embryonic epithelia, among which many (∼12%) were involved in human disorders. Finally, various multilevel interaction networks were characterized, highlighting differential functional enrichments of directly or indirectly interacting genes. These analyses exemplify an under-represention of "sensory" functions in the sensory gene set suggests that E14.5 is a pivotal stage between the developmental stage and the functional phase that will be fully reached only after birth. PMID:25706271

  4. Investigation of 40Gb/s WDM multi-casting using a hybrid integrated Mach-Zehnder interferometer

    NASA Astrophysics Data System (ADS)

    Reading-Picopoulos, Dimitri; Penty, Richard V.; White, Ian H.

    2006-10-01

    All-optical multi-casting permits the establishment of high-quality, high-bandwidth point-to-multipoint applications in metropolitan area networks by diffusing an incoming data carrying wavelength onto a number of outgoing wavelengths. With the proliferation of hybrid Wavelength Division Multiplex (WDM)/Optical Time Division Multiplex (OTDM) networks, the ability to perform high-speed broadcasting of OTDM signals at multiple wavelengths will prove an efficient method in the dissemination of information over WDM. Current approaches to WDM multi-casting involve the execution of multiple cycles of optical-electronic-optical conversion, thus necessitating the use of costly high-speed electronics and optoelectronics. All-optical multi-casting would therefore remove such constraints while concurrently providing for a higher level of network transparency thereby improving network management and performance. To date, the issue has most promisingly been addressed through the manipulation of nonlinear phenomena within semiconductor optical amplifiers (SOA). The demonstrations so far however, have exhibited either low conversion efficiency or operating speed constraint or a complicated setup. All-optical Mach-Zehnder interferometer (MZI) approaches are therefore particularly attractive as they are not limited by the aforementioned constraints, while still offering a low switching power requirement at high-speed and a high level of integratability. In this paper we present a detailed model replicating a 40Gb/s experimental setup in order to investigate the operational limit of the MZI when employed in WDM multi-casting. Through simulation we examine the factors determining the constraints imposed on the maximum number of output multi-cast channels that can be achieved using such a device and establish its suitability as a next-generation all-optical multi-caster.

  5. A hybrid feature selection algorithm integrating an extreme learning machine for landslide susceptibility modeling of Mt. Woomyeon, South Korea

    NASA Astrophysics Data System (ADS)

    Vasu, Nikhil N.; Lee, Seung-Rae

    2016-06-01

    An ever-increasing trend of extreme rainfall events in South Korea owing to climate change is causing shallow landslides and debris flows in mountains that cover 70% of the total land area of the nation. These catastrophic, gravity-driven processes cost the government several billion KRW (South Korean Won) in losses in addition to fatalities every year. The most common type of landslide observed is the shallow landslide, which occurs at 1-3 m depth, and may mobilize into more catastrophic flow-type landslides. Hence, to predict potential landslide areas, susceptibility maps are developed in a geographical information system (GIS) environment utilizing available morphological, hydrological, geotechnical, and geological data. Landslide susceptibility models were developed using 163 landslide points and an equal number of nonlandslide points in Mt. Woomyeon, Seoul, and 23 landslide conditioning factors. However, because not all of the factors contribute to the determination of the spatial probability for landslide initiation, and a simple filter or wrapper-based approach is not efficient in identifying all of the relevant features, a feedback-loop-based hybrid algorithm was implemented in conjunction with a learning scheme called an extreme learning machine, which is based on a single-layer, feed-forward network. Validation of the constructed susceptibility model was conducted using a testing set of landslide inventory data through a prediction rate curve. The model selected 13 relevant conditioning factors out of the initial 23; and the resulting susceptibility map shows a success rate of 85% and a prediction rate of 89.45%, indicating a good performance, in contrast to the low success and prediction rate of 69.19% and 56.19%, respectively, as obtained using a wrapper technique.

  6. On-chip hybrid photonic-plasmonic light concentrator for nanofocusing in an integrated silicon photonics platform.

    PubMed

    Luo, Ye; Chamanzar, Maysamreza; Apuzzo, Aniello; Salas-Montiel, Rafael; Nguyen, Kim Ngoc; Blaize, Sylvain; Adibi, Ali

    2015-02-11

    The enhancement and confinement of electromagnetic radiation to nanometer scale have improved the performances and decreased the dimensions of optical sources and detectors for several applications including spectroscopy, medical applications, and quantum information. Realization of on-chip nanofocusing devices compatible with silicon photonics platform adds a key functionality and provides opportunities for sensing, trapping, on-chip signal processing, and communications. Here, we discuss the design, fabrication, and experimental demonstration of light nanofocusing in a hybrid plasmonic-photonic nanotaper structure. We discuss the physical mechanisms behind the operation of this device, the coupling mechanisms, and how to engineer the energy transfer from a propagating guided mode to a trapped plasmonic mode at the apex of the plasmonic nanotaper with minimal radiation loss. Optical near-field measurements and Fourier modal analysis carried out using a near-field scanning optical microscope (NSOM) show a tight nanofocusing of light in this structure to an extremely small spot of 0.00563(λ/(2n(rmax)))(3) confined in 3D and an exquisite power input conversion of 92%. Our experiments also verify the mode selectivity of the device (low transmission of a TM-like input mode and high transmission of a TE-like input mode). A large field concentration factor (FCF) of about 4.9 is estimated from our NSOM measurement with a radius of curvature of about 20 nm at the apex of the nanotaper. The agreement between our theory and experimental results reveals helpful insights about the operation mechanism of the device, the interplay of the modes, and the gradual power transfer to the nanotaper apex.

  7. a Nonlinear Hybrid and VR Stepping Motor Analysis via AN Integrated Finite Element and Lumped Parameter Modeling Technique

    NASA Astrophysics Data System (ADS)

    Huard, Steven Roger

    The work involves the magnetic modeling of a variable reluctance and a hybrid stepping motor. The model combines two traditional methods for creating a magnetic model. Nonlinear two dimensional finite element analysis is combined with nonlinear lumped element modeling to create a three dimension lumped model. The two dimensional finite element analysis is used to numerically calculate the effective reluctance function of the motor tooth region. After the finite element analysis is completed, a two terminal tooth region reluctance element that is a function of both rotor angle and tooth region flux density results. The two terminal lumped element is then used to represent the tooth region of the motor in a lumped parameter model. The process by which the tooth region finite element field solution is transformed into the two terminal lumped reluctance is a new modeling approach; and, it is the foundation of the modeling method in this dissertation. Torque, back EMF, and inductance are some of the more important motor parameters predicted by the modeling method. The model predictions are compared to experimental data in the dissertation. The final motor parameter predictions from the model correlated quite well with experimental data. Also included in the dissertation is a unique derivation which defines the constraints that a region must satisfy such that a general three dimensional region of non-homogenous material can be modeled as a two terminal lumped reluctance element. The final restrictions imposed on the general three dimensional region are quite liberal. A method for solving any arbitrarily connected network of nonlinear lumped reluctances and sources is shown in detail. The method was developed specifically for use in this dissertation research, however, it is general enough to be applied to a wide variety of lumped element magnetic problems. The method explains how a Newton-Raphson iteration loop can be used to solve the nonlinear matrix equation created

  8. A hybrid electron and photon IMRT planning technique that lowers normal tissue integral patient dose using standard hardware

    SciTech Connect

    Rosca, Florin

    2012-06-15

    Purpose: To present a mixed electron and photon IMRT planning technique using electron beams with an energy range of 6-22 MeV and standard hardware that minimizes integral dose to patients for targets as deep as 7.5 cm. Methods: Ten brain cases, two lung, a thyroid, an abdominal, and a parotid case were planned using two planning techniques: a photon-only IMRT (IMRT) versus a mixed modality treatment (E + IMRT) that includes an enface electron beam and a photon IMRT portion that ensures a uniform target coverage. The electron beam is delivered using a regular cutout placed in an electron cone. The electron energy was chosen to provide a good trade-off between minimizing integral dose and generating a uniform, deliverable plan. The authors choose electron energies that cover the deepest part of PTV with the 65%-70% isodose line. The normal tissue integral dose, the dose for ring structures around the PTV, and the volumes of the 75%, 50%, and 25% isosurfaces were used to compare the dose distributions generated by the two planning techniques. Results: The normal tissue integral dose was lowered by about 20% by the E + IMRT plans compared to the photon-only IMRT ones for most studied cases. With the exception of lungs, the dose reduction associated to the E + IMRT plans was more pronounced further away from the target. The average dose ratio delivered to the 0-2 cm and the 2-4 cm ring structures for brain patients for the two planning techniques were 89.6% and 70.8%, respectively. The enhanced dose sparing away from the target for the brain patients can also be observed in the ratio of the 75%, 50%, and 25% isodose line volumes for the two techniques, which decreases from 85.5% to 72.6% and further to 65.1%, respectively. For lungs, the lateral electron beams used in the E + IMRT plans were perpendicular to the mostly anterior/posterior photon beams, generating much more conformal plans. Conclusions: The authors proved that even using the existing electron delivery

  9. 10 Gb/s Reconfigurable Optical Logic Gate Using a Single Hybrid-Integrated SOA-MZI

    NASA Astrophysics Data System (ADS)

    Martinez, J. M.; Ramos, F.; Martí, J.

    A novel reconfigurable Boolean device based on a single Mach-Zehnder interferometer with semiconductor optical amplifiers is demonstrated at 10 Gb/s using intensity return-to-zero modulated signals. The experimental results show that the device can be dynamically reconfigured to operate as a logic XOR, AND, OR, and NOT gate using optical switches. By properly adjusting the input powers, an extinction ratio higher than 10 dB may be obtained. The potential of integration of this architecture makes it an interesting approach in photonic computing and optical signal processing.

  10. Experimental evaluation of incorporating digital and analog integrated circuit die on a common substrate utilizing silicon-hybrid wafer-scale integration technology

    NASA Astrophysics Data System (ADS)

    Reamy, Philip C.

    1992-03-01

    The objective of this research effort was to investigate the implementation of analog circuits in a wafer scale integration system. A test circuit composed of analog and digital subsystems was designed and tested through simulation. IC die containing this test circuit were utilized in the WSI system fabrication. Preliminary investigations were conducted to evaluate the potential improvements to the IC die mounting procedure, a key step in fabricating functional WSI systems. These investigations demonstrated a procedure which produced repeatable results in achieving acceptable planarization of IC die and host substrate surfaces. These investigations also demonstrated the successful application of a barrier coating material to prevent adhesion between the IC die adhesive and the reference flat during the IC die mounting procedure. An evaluation of candidate polyimides to be used as the interlevel dielectric in the WSI systems was also performed. Test samples for each of the WSI configurations were fabricated and tested for electrical continuity. Additional electrical characterization measurements were conducted on two of the test samples.

  11. WEB Services Networks and Technological Hybrids — The Integration Challenges of WAN Distributed Computing for ASP Providers

    NASA Astrophysics Data System (ADS)

    Mroczkiewicz, Pawel

    A necessity of integration of both information systems and office software existing in organizations has had a long history. The beginning of this kind of solutions reaches back to the old generation of network protocols called EDI (Electronic Data Interchange) and EDIFACT standard, which was initiated in 1988 and has dynamically evolved ever since (S. Michalski, M. Suskiewicz, 1995). The mentioned protocol was usually used for converting documents into natural formats processed by applications. It caused problems with binary files and, furthermore, the communication mechanisms had to be modified each time new documents or applications were added. When we compare EDI with the previously used communication mechanisms, EDI was a great step forward as it was the first, big scale attempt to define standards of data interchange between the applications in business transactions (V. Leyland, 1995, p. 47).

  12. Multiscale Monte Carlo equilibration: Pure Yang-Mills theory

    SciTech Connect

    Endres, Michael G.; Brower, Richard C.; Orginos, Kostas; Detmold, William; Pochinsky, Andrew V.

    2015-12-29

    In this study, we present a multiscale thermalization algorithm for lattice gauge theory, which enables efficient parallel generation of uncorrelated gauge field configurations. The algorithm combines standard Monte Carlo techniques with ideas drawn from real space renormalization group and multigrid methods. We demonstrate the viability of the algorithm for pure Yang-Mills gauge theory for both heat bath and hybrid Monte Carlo evolution, and show that it ameliorates the problem of topological freezing up to controllable lattice spacing artifacts.

  13. MCMini: Monte Carlo on GPGPU

    SciTech Connect

    Marcus, Ryan C.

    2012-07-25

    MCMini is a proof of concept that demonstrates the possibility for Monte Carlo neutron transport using OpenCL with a focus on performance. This implementation, written in C, shows that tracing particles and calculating reactions on a 3D mesh can be done in a highly scalable fashion. These results demonstrate a potential path forward for MCNP or other Monte Carlo codes.

  14. Analytical insights into the partially integrated transport modeling method for hybrid Reynolds averaged Navier-Stokes equations-large eddy simulations of turbulent flows

    NASA Astrophysics Data System (ADS)

    Chaouat, Bruno; Schiestel, Roland

    2012-08-01

    The basis of the partially integrated transport modeling (PITM) method was introduced by Schiestel and Dejoan ["Towards a new partially integrated transport model for coarse grid and unsteady turbulent flow simulations," Theor. Comput. Fluid Dyn. 18, 443 (2005)], 10.1007/s00162-004-0155-z and Chaouat and Schiestel ["A new partially integrated transport model for subgrid-scale stresses and dissipation rate for turbulent developing flows," Phys. Fluids 17, 065106 (2005)], 10.1063/1.1928607. This method provides a continuous approach for hybrid RANS-LES (Reynolds averaged Navier-Stokes equations-large eddy simulations) simulations with seamless coupling between RANS and LES regions. The main ingredient of the method is the new dissipation-rate equation that can be applied as a subfilter scale turbulence model. Then, it becomes easy to convert almost any usual RANS transport model into a subfilter scale model. In particular, the method can be applied to two equation models and to stress transport models as well. In the derivation of the method, the partial integration technique allows to keep a link between the spectral space and the physical space of the resulting model. The physical turbulent processes involving the production, dissipation, and flux transfer of the turbulent energy are introduced in the equations. The present work, after recalling the main building steps of the PITM method, brings further insight into the physical interpretation of the method, its underlying hypotheses and its internal acting mechanisms. In particular, the finiteness of the coefficients used in the dissipation-rate equation is discussed in detail from a theoretical point of view. Then, we consider the analytical example of self-similar turbulent flow for analyzing the dissipation-rate equation. From an analytical solution obtained by Taylor series expansions taking into account the Kovasznay hypothesis for evaluating the transfer term, we compute the functional coefficients c

  15. Frost in Charitum Montes

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-387, 10 June 2003

    This is a Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) wide angle view of the Charitum Montes, south of Argyre Planitia, in early June 2003. The seasonal south polar frost cap, composed of carbon dioxide, has been retreating southward through this area since spring began a month ago. The bright features toward the bottom of this picture are surfaces covered by frost. The picture is located near 57oS, 43oW. North is at the top, south is at the bottom. Sunlight illuminates the scene from the upper left. The area shown is about 217 km (135 miles) wide.

  16. TRISO Fuel Performance: Modeling, Integration into Mainstream Design Studies, and Application to a Thorium-fueled Fusion-Fission Hybrid Blanket

    SciTech Connect

    Powers, Jeffrey James

    2011-11-30

    This study focused on creating a new tristructural isotropic (TRISO) coated particle fuel performance model and demonstrating the integration of this model into an existing system of neutronics and heat transfer codes, creating a user-friendly option for including fuel performance analysis within system design optimization and system-level trade-off studies. The end product enables both a deeper understanding and better overall system performance of nuclear energy systems limited or greatly impacted by TRISO fuel performance. A thorium-fueled hybrid fusion-fission Laser Inertial Fusion Energy (LIFE) blanket design was used for illustrating the application of this new capability and demonstrated both the importance of integrating fuel performance calculations into mainstream design studies and the impact that this new integrated analysis had on system-level design decisions. A new TRISO fuel performance model named TRIUNE was developed and verified and validated during this work with a novel methodology established for simulating the actual lifetime of a TRISO particle during repeated passes through a pebble bed. In addition, integrated self-consistent calculations were performed for neutronics depletion analysis, heat transfer calculations, and then fuel performance modeling for a full parametric study that encompassed over 80 different design options that went through all three phases of analysis. Lastly, side studies were performed that included a comparison of thorium and depleted uranium (DU) LIFE blankets as well as some uncertainty quantification work to help guide future experimental work by assessing what material properties in TRISO fuel performance modeling are most in need of improvement. A recommended thorium-fueled hybrid LIFE engine design was identified with an initial fuel load of 20MT of thorium, 15% TRISO packing within the graphite fuel pebbles, and a 20cm neutron multiplier layer with beryllium pebbles in flibe molten salt coolant. It operated

  17. Automatic 3D Building Model Generation by Integrating LiDAR and Aerial Images Using a Hybrid Approach

    NASA Astrophysics Data System (ADS)

    Kwak, Eunju

    The development of sensor technologies and the increase in user requirements have resulted in many different approaches for efficient building model generation. Three-dimensional building models are important in various applications, such as disaster management and urban planning. Despite this importance, generation of these models lacks economical and reliable techniques which take advantage of the available multi-sensory data from single and multiple platforms. Therefore, this research develops a framework for fully-automated building model generation by integrating data-driven and model-driven methods as well as exploiting the advantages of images and LiDAR datasets. The building model generation starts by employing LiDAR data for building detection and approximate boundary determination. The generated building boundaries are then integrated into a model-based image processing strategy, because LiDAR derived planes show irregular boundaries due to the nature of LiDAR point acquisition. The focus of the research is generating models for the buildings with right-angled-corners, which can be described with a collection of rectangles (e.g., L-shape, T-shape, U-shape, gable roofs, and more complex building shapes which are combinations of the aforementioned shapes), under the assumption that the majority of the buildings in urban areas belong to this category. Therefore, by applying the Minimum Bounding Rectangle (MBR) algorithm recursively, the LiDAR boundaries are decomposed into sets of rectangles for further processing. At the same time the quality of the MBRs are examined to verify that the buildings, from which the boundaries are generated, are buildings with right-angled-corners. These rectangles are preliminary model primitives. The parameters that define the model primitives are adjusted using detected edges in the imagery through the least-squares adjustment procedure, i.e., model-based image fitting. The level of detail in the final Digital Building Model

  18. Stimuli-responsive hybrid nanocarriers developed by controllable integration of hyperbranched PEI with mesoporous silica nanoparticles for sustained intracellular siRNA delivery

    PubMed Central

    Prabhakar, Neeraj; Zhang, Jixi; Desai, Diti; Casals, Eudald; Gulin-Sarfraz, Tina; Näreoja, Tuomas; Westermarck, Jukka; Rosenholm, Jessica M

    2016-01-01

    Small interfering RNA (siRNA) is a highly potent drug in gene-based therapy with the challenge being to deliver it in a sustained manner. The combination of mesoporous silica nanoparticles (MSNs) and polycations in the confined pore space allows for incorporation and controlled release of therapeutic siRNA payloads. We hereby constructed MSNs with expanded mesopores and pore-surface-hyperbranched poly(ethyleneimine) (PEI) tethered with redox-cleavable linkers that could carry a high payload of siRNA (120 mg·g−1). The developed nanocarriers were efficiently taken up by cancer cells and were subsequently able to escape to the cytoplasm from the endosomes, most likely owing to the integrated PEI. Triggered by the intracellular redox conditions, the siRNA was sustainably released inside the cells over a period of several days. Functionality of siRNAs was demonstrated by using cell-killing siRNA as cargo. Despite not being the aim of the developed system, in vitro experiments using cell-killing siRNAs showed that the efficacy of siRNA transfection was comparable to the commercial in vitro transfection agent Lipofectamine. Consequently, the developed MSN-based delivery system offers a potential approach to hybrid nanocarriers for more efficient and long-term siRNA delivery and, in a longer perspective, in vivo gene silencing for RNA interference (RNAi) therapy. PMID:27994460

  19. Structure of an E. coli integral membrane sulfurtransferase and its structural transition upon SCN‑ binding defined by EPR-based hybrid method

    NASA Astrophysics Data System (ADS)

    Ling, Shenglong; Wang, Wei; Yu, Lu; Peng, Junhui; Cai, Xiaoying; Xiong, Ying; Hayati, Zahra; Zhang, Longhua; Zhang, Zhiyong; Song, Likai; Tian, Changlin

    2016-01-01

    Electron paramagnetic resonance (EPR)-based hybrid experimental and computational approaches were applied to determine the structure of a full-length E. coli integral membrane sulfurtransferase, dimeric YgaP, and its structural and dynamic changes upon ligand binding. The solution NMR structures of the YgaP transmembrane domain (TMD) and cytosolic catalytic rhodanese domain were reported recently, but the tertiary fold of full-length YgaP was not yet available. Here, systematic site-specific EPR analysis defined a helix-loop-helix secondary structure of the YagP-TMD monomers using mobility, accessibility and membrane immersion measurements. The tertiary folds of dimeric YgaP-TMD and full-length YgaP in detergent micelles were determined through inter- and intra-monomer distance mapping and rigid-body computation. Further EPR analysis demonstrated the tight packing of the two YgaP second transmembrane helices upon binding of the catalytic product SCN‑, which provides insight into the thiocyanate exportation mechanism of YgaP in the E. coli membrane.

  20. 2.5-Gb/s hybridly-integrated tunable external cavity laser using a superluminescent diode and a polymer Bragg reflector.

    PubMed

    Yoon, Ki-Hong; Oh, Su Hwan; Kim, Ki Soo; Kwon, O-Kyun; Oh, Dae Kon; Noh, Young-Ouk; Lee, Hyung-Jong

    2010-03-15

    We presented a hybridly-integrated tunable external cavity laser with 0.8 nm mode spacing 16 channels operating in the direct modulation of 2.5-Gbps for a low-cost source of a WDM-PON system. The tunable laser was fabricated by using a superluminescent diode (SLD) and a polymer Bragg reflector. The maximum output power and the power slope efficiency of the tunable laser were 10.3 mW and 0.132 mW/mA, respectively, at the SLD current of 100 mA and the temperature of 25 degrees C. The directly-modulated tunable laser successfully provided 2.5-Gbps transmissions through 20-km standard single mode fiber. The power penalty of the tunable laser was less than 0.8 dB for 16 channels after a 20-km transmission. The power penalty variation was less than 1.4 dB during the blue-shifted wavelength tuning.

  1. Stimuli-responsive hybrid nanocarriers developed by controllable integration of hyperbranched PEI with mesoporous silica nanoparticles for sustained intracellular siRNA delivery.

    PubMed

    Prabhakar, Neeraj; Zhang, Jixi; Desai, Diti; Casals, Eudald; Gulin-Sarfraz, Tina; Näreoja, Tuomas; Westermarck, Jukka; Rosenholm, Jessica M

    Small interfering RNA (siRNA) is a highly potent drug in gene-based therapy with the challenge being to deliver it in a sustained manner. The combination of mesoporous silica nanoparticles (MSNs) and polycations in the confined pore space allows for incorporation and controlled release of therapeutic siRNA payloads. We hereby constructed MSNs with expanded mesopores and pore-surface-hyperbranched poly(ethyleneimine) (PEI) tethered with redox-cleavable linkers that could carry a high payload of siRNA (120 mg·g(-1)). The developed nanocarriers were efficiently taken up by cancer cells and were subsequently able to escape to the cytoplasm from the endosomes, most likely owing to the integrated PEI. Triggered by the intracellular redox conditions, the siRNA was sustainably released inside the cells over a period of several days. Functionality of siRNAs was demonstrated by using cell-killing siRNA as cargo. Despite not being the aim of the developed system, in vitro experiments using cell-killing siRNAs showed that the efficacy of siRNA transfection was comparable to the commercial in vitro transfection agent Lipofectamine. Consequently, the developed MSN-based delivery system offers a potential approach to hybrid nanocarriers for more efficient and long-term siRNA delivery and, in a longer perspective, in vivo gene silencing for RNA interference (RNAi) therapy.

  2. Structure of an E. coli integral membrane sulfurtransferase and its structural transition upon SCN− binding defined by EPR-based hybrid method

    PubMed Central

    Ling, Shenglong; Wang, Wei; Yu, Lu; Peng, Junhui; Cai, Xiaoying; Xiong, Ying; Hayati, Zahra; Zhang, Longhua; Zhang, Zhiyong; Song, Likai; Tian, Changlin

    2016-01-01

    Electron paramagnetic resonance (EPR)-based hybrid experimental and computational approaches were applied to determine the structure of a full-length E. coli integral membrane sulfurtransferase, dimeric YgaP, and its structural and dynamic changes upon ligand binding. The solution NMR structures of the YgaP transmembrane domain (TMD) and cytosolic catalytic rhodanese domain were reported recently, but the tertiary fold of full-length YgaP was not yet available. Here, systematic site-specific EPR analysis defined a helix-loop-helix secondary structure of the YagP-TMD monomers using mobility, accessibility and membrane immersion measurements. The tertiary folds of dimeric YgaP-TMD and full-length YgaP in detergent micelles were determined through inter- and intra-monomer distance mapping and rigid-body computation. Further EPR analysis demonstrated the tight packing of the two YgaP second transmembrane helices upon binding of the catalytic product SCN−, which provides insight into the thiocyanate exportation mechanism of YgaP in the E. coli membrane. PMID:26817826

  3. High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms.

    PubMed

    Santis, Christos Theodoros; Steger, Scott T; Vilenchik, Yaakov; Vasilyev, Arseny; Yariv, Amnon

    2014-02-25

    The semiconductor laser (SCL) is the principal light source powering the worldwide optical fiber network. The ever-increasing demand for data is causing the network to migrate to phase-coherent modulation formats, which place strict requirements on the temporal coherence of the light source that no longer can be met by current SCLs. This failure can be traced directly to the canonical laser design, in which photons are both generated and stored in the same, optically lossy, III-V material. This leads to an excessive and large amount of noisy spontaneous emission commingling with the laser mode, thereby degrading its coherence. High losses also decrease the amount of stored optical energy in the laser cavity, magnifying the effect of each individual spontaneous emission event on the phase of the laser field. Here, we propose a new design paradigm for the SCL. The keys to this paradigm are the deliberate removal of stored optical energy from the lossy III-V material by concentrating it in a passive, low-loss material and the incorporation of a very high-Q resonator as an integral (i.e., not externally coupled) part of the laser cavity. We demonstrate an SCL with a spectral linewidth of 18 kHz in the telecom band around 1.55 μm, achieved using a single-mode silicon resonator with Q of 10(6).

  4. Carbon-Nanotube-Supported Bio-Inspired Nickel Catalyst and Its Integration in Hybrid Hydrogen/Air Fuel Cells.

    PubMed

    Gentil, Solène; Lalaoui, Noémie; Dutta, Arnab; Nedellec, Yannig; Cosnier, Serge; Shaw, Wendy J; Artero, Vincent; Le Goff, Alan

    2017-02-06

    A biomimetic nickel bis-diphosphine complex incorporating the amino acid arginine in the outer coordination sphere was immobilized on modified carbon nanotubes (CNTs) through electrostatic interactions. The functionalized redox nanomaterial exhibits reversible electrocatalytic activity for the H2 /2 H(+) interconversion from pH 0 to 9, with catalytic preference for H2 oxidation at all pH values. The high activity of the complex over a wide pH range allows us to integrate this bio-inspired nanomaterial either in an enzymatic fuel cell together with a multicopper oxidase at the cathode, or in a proton exchange membrane fuel cell (PEMFC) using Pt/C at the cathode. The Ni-based PEMFC reaches 14 mW cm(-2) , only six-times-less as compared to full-Pt conventional PEMFC. The Pt-free enzyme-based fuel cell delivers ≈2 mW cm(-2) , a new efficiency record for a hydrogen biofuel cell with base metal catalysts.

  5. SU-E-T-451: Hybrid-VMAT: A Novel Technique Combining VMAT and 3D in Planning Whole Breast Radiotherapy with a Simultaneously-Integrated Boost (WBRT+SIB)

    SciTech Connect

    Guida, K; Qamar, K; Thompson, M

    2015-06-15

    Purpose: The RTOG 1005 trial offered a hypofractionated arm in delivering WBRT+SIB. Traditionally, treatments were planned at our institution using field-in-field (FiF) tangents with a concurrent 3D conformal boost. With the availability of VMAT, it is possible that a hybrid VMAT-3D planning technique could provide another avenue in treating WBRT+SIB. Methods: A retrospective study of nine patients previously treated using RTOG 1005 guidelines was performed to compare FiF+3D plans with the hybrid technique. A combination of static tangents and partial VMAT arcs were used in base-dose optimization. The hybrid plans were optimized to deliver 4005cGy to the breast PTVeval and 4800cGy to the lumpectomy PTVeval over 15 fractions. Plans were optimized to meet the planning goals dictated by RTOG 1005. Results: Hybrid plans yielded similar coverage of breast and lumpectomy PTVs (average D95 of 4013cGy compared to 3990cGy for conventional), while reducing the volume of high dose within the breast; the average D30 and D50 for the hybrid technique were 4517cGy and 4288cGy, compared to 4704cGy and 4377cGy for conventional planning. Hybrid plans increased conformity as well, yielding CI95% values of 1.22 and 1.54 for breast and lumpectomy PTVeval volumes; in contrast, conventional plans averaged 1.49 and 2.27, respectively. The nearby organs at risk (OARs) received more low dose with the hybrid plans due to low dose spray from the partial arcs, but all hybrid plans did meet the acceptable constraints, at a minimum, from the protocol. Treatment planning time was also reduced, as plans were inversely optimized (VMAT) rather than forward optimized. Conclusion: Hybrid-VMAT could be a solution in delivering WB+SIB, as plans yield very conformal treatment plans and maintain clinical standards in OAR sparing. For treating breast cancer patients with a simultaneously-integrated boost, Hybrid-VMAT offers superiority in dosimetric conformity and planning time as compared to FIF

  6. Wormhole Hamiltonian Monte Carlo

    PubMed Central

    Lan, Shiwei; Streets, Jeffrey; Shahbaba, Babak

    2015-01-01

    In machine learning and statistics, probabilistic inference involving multimodal distributions is quite difficult. This is especially true in high dimensional problems, where most existing algorithms cannot easily move from one mode to another. To address this issue, we propose a novel Bayesian inference approach based on Markov Chain Monte Carlo. Our method can effectively sample from multimodal distributions, especially when the dimension is high and the modes are isolated. To this end, it exploits and modifies the Riemannian geometric properties of the target distribution to create wormholes connecting modes in order to facilitate moving between them. Further, our proposed method uses the regeneration technique in order to adapt the algorithm by identifying new modes and updating the network of wormholes without affecting the stationary distribution. To find new modes, as opposed to redis-covering those previously identified, we employ a novel mode searching algorithm that explores a residual energy function obtained by subtracting an approximate Gaussian mixture density (based on previously discovered modes) from the target density function. PMID:25861551

  7. Wormhole Hamiltonian Monte Carlo.

    PubMed

    Lan, Shiwei; Streets, Jeffrey; Shahbaba, Babak

    2014-07-31

    In machine learning and statistics, probabilistic inference involving multimodal distributions is quite difficult. This is especially true in high dimensional problems, where most existing algorithms cannot easily move from one mode to another. To address this issue, we propose a novel Bayesian inference approach based on Markov Chain Monte Carlo. Our method can effectively sample from multimodal distributions, especially when the dimension is high and the modes are isolated. To this end, it exploits and modifies the Riemannian geometric properties of the target distribution to create wormholes connecting modes in order to facilitate moving between them. Further, our proposed method uses the regeneration technique in order to adapt the algorithm by identifying new modes and updating the network of wormholes without affecting the stationary distribution. To find new modes, as opposed to redis-covering those previously identified, we employ a novel mode searching algorithm that explores a residual energy function obtained by subtracting an approximate Gaussian mixture density (based on previously discovered modes) from the target density function.

  8. Bayesian internal dosimetry calculations using Markov Chain Monte Carlo.

    PubMed

    Miller, G; Martz, H F; Little, T T; Guilmette, R

    2002-01-01

    A new numerical method for solving the inverse problem of internal dosimetry is described. The new method uses Markov Chain Monte Carlo and the Metropolis algorithm. Multiple intake amounts, biokinetic types, and times of intake are determined from bioassay data by integrating over the Bayesian posterior distribution. The method appears definitive, but its application requires a large amount of computing time.

  9. Isotropic Monte Carlo Grain Growth

    SciTech Connect

    Mason, J.

    2013-04-25

    IMCGG performs Monte Carlo simulations of normal grain growth in metals on a hexagonal grid in two dimensions with periodic boundary conditions. This may be performed with either an isotropic or a misorientation - and incliantion-dependent grain boundary energy.

  10. A robust hybrid model integrating enhanced inputs based extreme learning machine with PLSR (PLSR-EIELM) and its application to intelligent measurement.

    PubMed

    He, Yan-Lin; Geng, Zhi-Qiang; Xu, Yuan; Zhu, Qun-Xiong

    2015-09-01

    In this paper, a robust hybrid model integrating an enhanced inputs based extreme learning machine with the partial least square regression (PLSR-EIELM) was proposed. The proposed PLSR-EIELM model can overcome two main flaws in the extreme learning machine (ELM), i.e. the intractable problem in determining the optimal number of the hidden layer neurons and the over-fitting phenomenon. First, a traditional extreme learning machine (ELM) is selected. Second, a method of randomly assigning is applied to the weights between the input layer and the hidden layer, and then the nonlinear transformation for independent variables can be obtained from the output of the hidden layer neurons. Especially, the original input variables are regarded as enhanced inputs; then the enhanced inputs and the nonlinear transformed variables are tied together as the whole independent variables. In this way, the PLSR can be carried out to identify the PLS components not only from the nonlinear transformed variables but also from the original input variables, which can remove the correlation among the whole independent variables and the expected outputs. Finally, the optimal relationship model of the whole independent variables with the expected outputs can be achieved by using PLSR. Thus, the PLSR-EIELM model is developed. Then the PLSR-EIELM model served as an intelligent measurement tool for the key variables of the Purified Terephthalic Acid (PTA) process and the High Density Polyethylene (HDPE) process. The experimental results show that the predictive accuracy of PLSR-EIELM is stable, which indicate that PLSR-EIELM has good robust character. Moreover, compared with ELM, PLSR, hierarchical ELM (HELM), and PLSR-ELM, PLSR-EIELM can achieve much smaller predicted relative errors in these two applications.

  11. Constraining pre-eruptive magma conditions and unrest timescales during the Monte Nuovo eruption (1538 ad; Campi Flegrei, Southern Italy): integrating textural and CSD results from experimental and natural trachy-phonolites

    NASA Astrophysics Data System (ADS)

    Arzilli, Fabio; Piochi, Monica; Mormone, Angela; Agostini, Claudia; Carroll, Michael R.

    2016-10-01

    We present crystallization experiments representing a broad range of growth conditions of alkali feldspar and sodalite in a trachy-phonolite magma composition during later stages of evolution. Our results include (i) textural data and mineral assemblages of synthetic samples; (ii) feldspar nucleation kinetics and growth rate estimates; and (iii) textural data, mineral abundances, and crystal size distribution measurements on samples representative of the Monte Nuovo eruption (1538 ad), the last eruption of Campi Flegrei, Southern Italy. Experiments reproduced the texture and feldspar content of natural products indicating that kinetic data can provide insights into processes within the volcanic system shortly before and during this small-magnitude eruption and, particularly, about magma ascent timescale. We suggest that the groundmass crystallization of Monte Nuovo magma started between 4 and 7 km depth (˜100-200 MPa) at a temperature between 825 and 840 °C (close to the liquidus of alkali feldspar). The crystallization kinetics of alkali feldspar and the absence of sodalite in most of the natural samples indicate that magma ascent rate increased in the shallow part of the conduit from about 3 km depth to the quenching level (possibly fragmentation point; ˜30 MPa), during the first phases of the eruption. The crystallization time of the magma requires that it ascended from pre-eruptive storage to the quenching level in several hours to a few days. We also observe that a small decrease in pressure can induce a dramatic increase in crystallinity, with associated rheological changes, leading to changes in the eruption style, and such changes could occur on times