Sample records for integral parameter evaluation

  1. Resonance Parameter Adjustment Based on Integral Experiments

    DOE PAGES

    Sobes, Vladimir; Leal, Luiz; Arbanas, Goran; ...

    2016-06-02

    Our project seeks to allow coupling of differential and integral data evaluation in a continuous-energy framework and to use the generalized linear least-squares (GLLS) methodology in the TSURFER module of the SCALE code package to update the parameters of a resolved resonance region evaluation. We recognize that the GLLS methodology in TSURFER is identical to the mathematical description of a Bayesian update in SAMMY, the SAMINT code was created to use the mathematical machinery of SAMMY to update resolved resonance parameters based on integral data. Traditionally, SAMMY used differential experimental data to adjust nuclear data parameters. Integral experimental data, suchmore » as in the International Criticality Safety Benchmark Experiments Project, remain a tool for validation of completed nuclear data evaluations. SAMINT extracts information from integral benchmarks to aid the nuclear data evaluation process. Later, integral data can be used to resolve any remaining ambiguity between differential data sets, highlight troublesome energy regions, determine key nuclear data parameters for integral benchmark calculations, and improve the nuclear data covariance matrix evaluation. Moreover, SAMINT is not intended to bias nuclear data toward specific integral experiments but should be used to supplement the evaluation of differential experimental data. Using GLLS ensures proper weight is given to the differential data.« less

  2. [Integral evaluation of immune homeostasis in rockets liquidators and role of this evaluation for prophylaxis].

    PubMed

    2010-01-01

    Long-standing clinical and immunologic monitoring and integral evaluation of immune homeostasis (through generalized parameter) in personnel of Center for liquid-fuel rockets liquidation demonstrated diagnostically reliable immunity parameters that enable to forecast changes in the workers' health state. The authors defined boundary values of the generalized parameter to form risk groups for specific entities formation.

  3. Turbulent boundary layers over nonstationary plane boundaries

    NASA Technical Reports Server (NTRS)

    Roper, A. T.; Gentry, G. L., Jr.

    1978-01-01

    Methods of predicting integral parameters and skin friction coefficients of turbulent boundary layers developing over moving ground planes were evaluated. The three methods evaluated were: relative integral parameter method; relative power law method; and modified law of the wall method.

  4. Evaluating marginal likelihood with thermodynamic integration method and comparison with several other numerical methods

    DOE PAGES

    Liu, Peigui; Elshall, Ahmed S.; Ye, Ming; ...

    2016-02-05

    Evaluating marginal likelihood is the most critical and computationally expensive task, when conducting Bayesian model averaging to quantify parametric and model uncertainties. The evaluation is commonly done by using Laplace approximations to evaluate semianalytical expressions of the marginal likelihood or by using Monte Carlo (MC) methods to evaluate arithmetic or harmonic mean of a joint likelihood function. This study introduces a new MC method, i.e., thermodynamic integration, which has not been attempted in environmental modeling. Instead of using samples only from prior parameter space (as in arithmetic mean evaluation) or posterior parameter space (as in harmonic mean evaluation), the thermodynamicmore » integration method uses samples generated gradually from the prior to posterior parameter space. This is done through a path sampling that conducts Markov chain Monte Carlo simulation with different power coefficient values applied to the joint likelihood function. The thermodynamic integration method is evaluated using three analytical functions by comparing the method with two variants of the Laplace approximation method and three MC methods, including the nested sampling method that is recently introduced into environmental modeling. The thermodynamic integration method outperforms the other methods in terms of their accuracy, convergence, and consistency. The thermodynamic integration method is also applied to a synthetic case of groundwater modeling with four alternative models. The application shows that model probabilities obtained using the thermodynamic integration method improves predictive performance of Bayesian model averaging. As a result, the thermodynamic integration method is mathematically rigorous, and its MC implementation is computationally general for a wide range of environmental problems.« less

  5. [The functional state classification and evaluation of the stability level in mental loads based on the factor structure of heart rate variability parameters].

    PubMed

    Mashin, V A; Mashina, M N

    2004-12-01

    In the paper, outcomes of the researches devoted to factor analysis of heart rate variability parameters and definition of the most informative parameters for diagnostics of functional states and an evaluation of level of stability to mental loads, are presented. The factor structure of parameters, which unclude integral level of heart rate variability (1), balance between activity of vagus and brain cortical-limbic systems (2), integrated level of cardiovascular system functioning (3), is substantiated. Factor analysis outcomes have been used for construction of functional state classification, for their differential diagnostics, and for development and check of algorithm for evaluation of the stability level in mental loads.

  6. Uncertainty evaluation of nuclear reaction model parameters using integral and microscopic measurements. Covariances evaluation with CONRAD code

    NASA Astrophysics Data System (ADS)

    de Saint Jean, C.; Habert, B.; Archier, P.; Noguere, G.; Bernard, D.; Tommasi, J.; Blaise, P.

    2010-10-01

    In the [eV;MeV] energy range, modelling of the neutron induced reactions are based on nuclear reaction models having parameters. Estimation of co-variances on cross sections or on nuclear reaction model parameters is a recurrent puzzle in nuclear data evaluation. Major breakthroughs were asked by nuclear reactor physicists to assess proper uncertainties to be used in applications. In this paper, mathematical methods developped in the CONRAD code[2] will be presented to explain the treatment of all type of uncertainties, including experimental ones (statistical and systematic) and propagate them to nuclear reaction model parameters or cross sections. Marginalization procedure will thus be exposed using analytical or Monte-Carlo solutions. Furthermore, one major drawback found by reactor physicist is the fact that integral or analytical experiments (reactor mock-up or simple integral experiment, e.g. ICSBEP, …) were not taken into account sufficiently soon in the evaluation process to remove discrepancies. In this paper, we will describe a mathematical framework to take into account properly this kind of information.

  7. Iterative integral parameter identification of a respiratory mechanics model.

    PubMed

    Schranz, Christoph; Docherty, Paul D; Chiew, Yeong Shiong; Möller, Knut; Chase, J Geoffrey

    2012-07-18

    Patient-specific respiratory mechanics models can support the evaluation of optimal lung protective ventilator settings during ventilation therapy. Clinical application requires that the individual's model parameter values must be identified with information available at the bedside. Multiple linear regression or gradient-based parameter identification methods are highly sensitive to noise and initial parameter estimates. Thus, they are difficult to apply at the bedside to support therapeutic decisions. An iterative integral parameter identification method is applied to a second order respiratory mechanics model. The method is compared to the commonly used regression methods and error-mapping approaches using simulated and clinical data. The clinical potential of the method was evaluated on data from 13 Acute Respiratory Distress Syndrome (ARDS) patients. The iterative integral method converged to error minima 350 times faster than the Simplex Search Method using simulation data sets and 50 times faster using clinical data sets. Established regression methods reported erroneous results due to sensitivity to noise. In contrast, the iterative integral method was effective independent of initial parameter estimations, and converged successfully in each case tested. These investigations reveal that the iterative integral method is beneficial with respect to computing time, operator independence and robustness, and thus applicable at the bedside for this clinical application.

  8. Vitrification of neat semen alters sperm parameters and DNA integrity.

    PubMed

    Khalili, Mohammad Ali; Adib, Maryam; Halvaei, Iman; Nabi, Ali

    2014-05-06

    Our aim was to evaluate the effect of neat semen vitrification on human sperm vital parameters and DNA integrity in men with normal and abnormal sperm parameters. Semen samples were 17 normozoospermic samples and 17 specimens with abnormal sperm parameters. Semen analysis was performed according to World Health Organization (WHO) criteria. Then, the smear was provided from each sample and fixed for terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. Vitrification of neat semen was done by plunging cryoloops directly into liquid nitrogen and preserved for 7 days. The samples were warmed and re-evaluated for sperm parameters as well as DNA integrity. Besides, the correlation between sperm parameters and DNA fragmentation was assessed pre- and post vitrification. Cryopreserved spermatozoa showed significant decrease in sperm motility, viability and normal morphology after thawing in both normal and abnormal semen. Also, the rate of sperm DNA fragmentation was significantly higher after vitrification compared to fresh samples in normal (24.76 ± 5.03 and 16.41 ± 4.53, P = .002) and abnormal (34.29 ± 10.02 and 23.5 ± 8.31, P < .0001), respectively. There was negative correlation between sperm motility and sperm DNA integrity in both groups after vitrification. Vitrification of neat ejaculates has negative impact on sperm parameters as well as DNA integrity, particularly among abnormal semen subjects. It is, therefore, recommend to process semen samples and vitrify the sperm pellets.

  9. Investigation of epi-thermal shape-parameter needed for precision analysis of activation

    NASA Astrophysics Data System (ADS)

    Elmaghraby, Elsayed K.

    2017-06-01

    The present work aims to expose factors that alter the isotope's effective resonance energy and its resonance integral in order to have consistency between the experimental observation of integral experiments and the prediction of the reaction rate. The investigation is based on disclosing the interference among resonances in Breit-Wigner and Reich-Moore representations to make the investigation of the statistical nature of resonances possible. The shape-parameter influence on the isotope's behavior in epi-thermal neutron field was investigated in the range from -0.1 to 0.1. Evaluated resonance data given in Evaluated Nuclear Data Files (ENDF/B VII.1) and temperature-dependent cross-sections of Point2015 are used. Only resolved resonances are considered in the present assessment. Tabulated values of resonance integrals and effective resonance energies with their moments are given for the majority of ENDF's isotopes. The reported data can be used, directly, to compute the integral parameters for any value of shape-parameter without the need to use numerical software tools. Correlations among effective resonance energy, experimental level spacing and resonance integral are discussed.

  10. Equilibrium Noise in Ion Selective Field Effect Transistors.

    DTIC Science & Technology

    1982-07-21

    face. These parameters have been evaluated for several ion-selective membranes. DD I JAN ") 1473 EDITION or I Mov 09SIS OSSOLETE ONi 0102-LF-0146601...the "integrated circuit" noise on the processing parameters which were different for the two laboratories. This variability in the "integrated circuit...systems and is useful in the identification of the parameters limiting the performance of -11- these systems. In thermodynamic equilibrium, every

  11. Improved digital filters for evaluating Fourier and Hankel transform integrals

    USGS Publications Warehouse

    Anderson, Walter L.

    1975-01-01

    New algorithms are described for evaluating Fourier (cosine, sine) and Hankel (J0,J1) transform integrals by means of digital filters. The filters have been designed with extended lengths so that a variable convolution operation can be applied to a large class of integral transforms having the same system transfer function. A f' lagged-convolution method is also presented to significantly decrease the computation time when computing a series of like-transforms over a parameter set spaced the same as the filters. Accuracy of the new filters is comparable to Gaussian integration, provided moderate parameter ranges and well-behaved kernel functions are used. A collection of Fortran IV subprograms is included for both real and complex functions for each filter type. The algorithms have been successfully used in geophysical applications containing a wide variety of integral transforms

  12. Implementation of an Integrated On-Board Aircraft Engine Diagnostic Architecture

    NASA Technical Reports Server (NTRS)

    Armstrong, Jeffrey B.; Simon, Donald L.

    2012-01-01

    An on-board diagnostic architecture for aircraft turbofan engine performance trending, parameter estimation, and gas-path fault detection and isolation has been developed and evaluated in a simulation environment. The architecture incorporates two independent models: a realtime self-tuning performance model providing parameter estimates and a performance baseline model for diagnostic purposes reflecting long-term engine degradation trends. This architecture was evaluated using flight profiles generated from a nonlinear model with realistic fleet engine health degradation distributions and sensor noise. The architecture was found to produce acceptable estimates of engine health and unmeasured parameters, and the integrated diagnostic algorithms were able to perform correct fault isolation in approximately 70 percent of the tested cases

  13. Elevated Temperature Crack Propagation

    NASA Technical Reports Server (NTRS)

    Orange, Thomas W.

    1994-01-01

    This paper is a summary of two NASA contracts on high temperature fatigue crack propagation in metals. The first evaluated the ability of fairly simple nonlinear fracture parameters to correlate crack propagation. Hastelloy-X specimens were tested under isothermal and thermomechanical cycling at temperatures up to 980 degrees C (1800 degrees F). The most successful correlating parameter was the crack tip opening displacement derived from the J-integral. The second evaluated the ability of several path-independent integrals to correlate crack propagation behavior. Inconel 718 specimens were tested under isothermal, thermomechanical, temperature gradient, and creep conditions at temperatures up to 650 degrees C (1200 degrees F). The integrals formulated by Blackburn and by Kishimoto correlated the data reasonably well under all test conditions.

  14. Project for Integration of Pupils with Special Needs in Spain.

    ERIC Educational Resources Information Center

    Marchesi, Alvaro

    1986-01-01

    This paper analyzes a project approved by the Spanish government in 1985 to integrate special needs children into regular education. Outlined are characteristics of the Spanish educational system, parameters of practice in the integration project, and plans for the systematic evaluation of the integration project. (Author/JDD)

  15. A Computerized Library and Evaluation System for Integral Neutron Experiments.

    ERIC Educational Resources Information Center

    Hampel, Viktor E.; And Others

    A computerized library of references to integral neutron experiments has been developed at the Lawrence Radiation Laboratory at Livermore. This library serves as a data base for the systematic retrieval of documents describing diverse critical and bulk nuclear experiments. The evaluation and reduction of the physical parameters of the experiments…

  16. Simultaneous evaluation of superoxide content and mitochondrial membrane potential in stallion semen samples provides additional information about sperm quality.

    PubMed

    Johannisson, A; Figueiredo, M I; Al-Kass, Z; Morrell, J M

    2018-05-01

    An improved fertility prediction for stallions is of importance for equine breeding. Here, we investigate the potential of a combined staining of stallion spermatozoa for superoxide and mitochondrial membrane potential (MMP) for this purpose. Semen samples were analysed immediately after arrival at the laboratory, as well as after 24 h. Superoxide was measured by MitoSOXRed, while MMP was measured with JC-1. Menadione was used to stimulate superoxide production. In addition, other parameters of sperm quality, namely motility, membrane integrity, chromatin integrity, sperm kinematics and Hoechst 33258 exclusion were measured and correlated to superoxide production and MMP. Both bivariate correlations between measured parameters as well as multivariate analysis were performed. Measured values in the superoxide/MMP assay did not correlate with other parameters. However, there was a strong negative correlation (r = 0.96 after 0 h, r = 0.95 after 24 h) between membrane integrity and chromatin integrity. Moderate positive correlations were found between motility parameters and membrane integrity, as well as moderate negative correlations between motility parameters and chromatin integrity. The multivariate analysis revealed that membrane integrity, chromatin integrity and motility contributed to the first principal component, while the second was influenced by superoxide/MMP parameters as well as sperm kinematics. Storage of samples for 24 h decreased motility, chromatin integrity and membrane integrity. In conclusion, combined measurement of superoxide and MMP provides additional information not obtained by other assays of sperm quality. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Velocity time integral for right upper pulmonary vein in VLBW infants with patent ductus arteriosus.

    PubMed

    Lista, Gianluca; Bianchi, Silvia; Mannarino, Savina; Schena, Federico; Castoldi, Francesca; Stronati, Mauro; Mosca, Fabio

    2016-10-01

    Early diagnosis of significant patent ductus arteriosus reduces the risk of clinical worsening in very low birth weight infants. Echocardiographic patent ductus arteriosus shunt flow pattern can be used to predict significant patent ductus arteriosus. Pulmonary venous flow, expressed as vein velocity time integral, is correlated to ductus arteriosus closure. The aim of this study is to investigate the relationship between significant reductions in vein velocity time integral and non-significant patent ductus arteriosus in the first week of life. A multicenter, prospective, observational study was conducted to evaluate very low birth weight infants (<1500 g) on respiratory support. Echocardiography was used to evaluate vein velocity time integral on days 1 and 4 of life. The relationship between vein velocity time integral and other parameters was studied. In total, 98 very low birth weight infants on respiratory support were studied. On day 1 of life, vein velocity time integral was similar in patients with open or closed ductus. The mean vein velocity time integral significantly reduced in the first four days of life. On the fourth day of life, there was less of a reduction in patients with patent ductus compared to those with closed patent ductus arteriosus and the difference was significant. A significant reduction in vein velocity time integral in the first days of life is associated with ductus closure. This parameter correlates well with other echocardiographic parameters and may aid in the diagnosis and management of patent ductus arteriosus.

  18. The cryoprotective effect of trehalose supplementation on boar spermatozoa quality.

    PubMed

    Hu, J-H; Li, Q-W; Jiang, Z-L; Yang, H; Zhang, S-S; Zhao, H-W

    2009-08-01

    In order to improve boar sperm quality during frozen-thawed process, the influence of the presence of trehalose on success of cryopreservation of boar sperm were investigated. We evaluated freeze-thawing tolerance of boar spermatozoa in a base cooling extender with the addition of different trehalose concentrations (0, 25, 50, 100 and 200 mm), and try to determine the optimum concentration of trehalose. We chose sperm motility, mitochondrial activity, acrosome integrity and membrane integrity as parameters to evaluate cryopreservation capacity of boar spermatozoa. We obtained the best results for 100 mm trehalose-supplemented extenders, with values of 49.89% for motility, 44.69% for mitochondrial activity, 66.52% for acrosome integrity and 44.61% for membrane integrity, while freeze-thawing tolerance diminished significantly for 200 . The synergic effect of trehalose and glycerol resulted in better cryosurvival of boar spermatozoa than that of a single cryoprotectant. In conclusion, when trehalose-supplementation was added up to 100 mm, trehalose confers a greater cryoprotective capacity to the extender, and the sperm motility, mitochondrial activity, membrane integrity and acrosome integrity parameters were significantly improved during frozen-thawed process.

  19. Ultrasound Assessment of Human Meniscus.

    PubMed

    Viren, Tuomas; Honkanen, Juuso T; Danso, Elvis K; Rieppo, Lassi; Korhonen, Rami K; Töyräs, Juha

    2017-09-01

    The aim of the present study was to evaluate the applicability of ultrasound imaging to quantitative assessment of human meniscus in vitro. Meniscus samples (n = 26) were harvested from 13 knee joints of non-arthritic human cadavers. Subsequently, three locations (anterior, center and posterior) from each meniscus were imaged with two ultrasound transducers (frequencies 9 and 40 MHz), and quantitative ultrasound parameters were determined. Furthermore, partial-least-squares regression analysis was applied for ultrasound signal to determine the relations between ultrasound scattering and meniscus integrity. Significant correlations between measured and predicted meniscus compositions and mechanical properties were obtained (R 2  = 0.38-0.69, p < 0.05). The relationship between conventional ultrasound parameters and integrity of the meniscus was weaker. To conclude, ultrasound imaging exhibited a potential for evaluation of meniscus integrity. Higher ultrasound frequency combined with multivariate analysis of ultrasound backscattering was found to be the most sensitive for evaluation of meniscus integrity. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  20. Evaluation of Linking Methods for Placing Three-Parameter Logistic Item Parameter Estimates onto a One-Parameter Scale

    ERIC Educational Resources Information Center

    Karkee, Thakur B.; Wright, Karen R.

    2004-01-01

    Different item response theory (IRT) models may be employed for item calibration. Change of testing vendors, for example, may result in the adoption of a different model than that previously used with a testing program. To provide scale continuity and preserve cut score integrity, item parameter estimates from the new model must be linked to the…

  1. Defects level evaluation of LiTiZn ferrite ceramics using temperature dependence of initial permeability

    NASA Astrophysics Data System (ADS)

    Malyshev, A. V.; Petrova, A. B.; Sokolovskiy, A. N.; Surzhikov, A. P.

    2018-06-01

    The method for evaluating the integral defects level and chemical homogeneity of ferrite ceramics based on temperature dependence analysis of initial permeability is suggested. A phenomenological expression for the description of such dependence was suggested and an interpretation of its main parameters was given. It was shown, that the main criterion of the integral defects level of ferrite ceramics is relation of two parameters correlating with elastic stress value in a material. An indicator of structural perfection can be a maximum value of initial permeability close to Curie point as well. The temperature dependences of initial permeability have analyzed for samples sintered in laboratory conditions and for the ferrite industrial product. The proposed method allows controlling integral defects level of the soft ferrite products and has high sensitivity compare to typical X-ray methods.

  2. Integrating Consumer Requests Into Community Organized Programs

    ERIC Educational Resources Information Center

    Brown, Sanford M.

    1977-01-01

    The environmental health administrative problem of reducing and/or eliminating individual complaints or requests by integrating them with the planned community environmental health program is discussed. Four parameters are detailed: problem assessment, priority establishment, activity sequencing and the evaluation of program effectiveness. (BT)

  3. Novel scheme for rapid parallel parameter estimation of gravitational waves from compact binary coalescences

    NASA Astrophysics Data System (ADS)

    Pankow, C.; Brady, P.; Ochsner, E.; O'Shaughnessy, R.

    2015-07-01

    We introduce a highly parallelizable architecture for estimating parameters of compact binary coalescence using gravitational-wave data and waveform models. Using a spherical harmonic mode decomposition, the waveform is expressed as a sum over modes that depend on the intrinsic parameters (e.g., masses) with coefficients that depend on the observer dependent extrinsic parameters (e.g., distance, sky position). The data is then prefiltered against those modes, at fixed intrinsic parameters, enabling efficiently evaluation of the likelihood for generic source positions and orientations, independent of waveform length or generation time. We efficiently parallelize our intrinsic space calculation by integrating over all extrinsic parameters using a Monte Carlo integration strategy. Since the waveform generation and prefiltering happens only once, the cost of integration dominates the procedure. Also, we operate hierarchically, using information from existing gravitational-wave searches to identify the regions of parameter space to emphasize in our sampling. As proof of concept and verification of the result, we have implemented this algorithm using standard time-domain waveforms, processing each event in less than one hour on recent computing hardware. For most events we evaluate the marginalized likelihood (evidence) with statistical errors of ≲5 %, and even smaller in many cases. With a bounded runtime independent of the waveform model starting frequency, a nearly unchanged strategy could estimate neutron star (NS)-NS parameters in the 2018 advanced LIGO era. Our algorithm is usable with any noise curve and existing time-domain model at any mass, including some waveforms which are computationally costly to evolve.

  4. Numerical evaluation of multi-loop integrals for arbitrary kinematics with SecDec 2.0

    NASA Astrophysics Data System (ADS)

    Borowka, Sophia; Carter, Jonathon; Heinrich, Gudrun

    2013-02-01

    We present the program SecDec 2.0, which contains various new features. First, it allows the numerical evaluation of multi-loop integrals with no restriction on the kinematics. Dimensionally regulated ultraviolet and infrared singularities are isolated via sector decomposition, while threshold singularities are handled by a deformation of the integration contour in the complex plane. As an application, we present numerical results for various massive two-loop four-point diagrams. SecDec 2.0 also contains new useful features for the calculation of more general parameter integrals, related for example to phase space integrals. Program summaryProgram title: SecDec 2.0 Catalogue identifier: AEIR_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIR_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 156829 No. of bytes in distributed program, including test data, etc.: 2137907 Distribution format: tar.gz Programming language: Wolfram Mathematica, Perl, Fortran/C++. Computer: From a single PC to a cluster, depending on the problem. Operating system: Unix, Linux. RAM: Depending on the complexity of the problem Classification: 4.4, 5, 11.1. Catalogue identifier of previous version: AEIR_v1_0 Journal reference of previous version: Comput. Phys. Comm. 182(2011)1566 Does the new version supersede the previous version?: Yes Nature of problem: Extraction of ultraviolet and infrared singularities from parametric integrals appearing in higher order perturbative calculations in gauge theories. Numerical integration in the presence of integrable singularities (e.g., kinematic thresholds). Solution method: Algebraic extraction of singularities in dimensional regularization using iterated sector decomposition. This leads to a Laurent series in the dimensional regularization parameter ɛ, where the coefficients are finite integrals over the unit hypercube. Those integrals are evaluated numerically by Monte Carlo integration. The integrable singularities are handled by choosing a suitable integration contour in the complex plane, in an automated way. Reasons for new version: In the previous version the calculation of multi-scale integrals was restricted to the Euclidean region. Now multi-loop integrals with arbitrary physical kinematics can be evaluated. Another major improvement is the possibility of full parallelization. Summary of revisions: No restriction on the kinematics for multi-loop integrals. The integrand can be constructed from the topological cuts of the diagram. Possibility of full parallelization. Numerical integration of multi-loop integrals written in C++ rather than Fortran. Possibility to loop over ranges of parameters. Restrictions: Depending on the complexity of the problem, limited by memory and CPU time. The restriction that multi-scale integrals could only be evaluated at Euclidean points is superseded in version 2.0. Running time: Between a few minutes and several days, depending on the complexity of the problem. Test runs provided take only seconds.

  5. CONSIDERATIONS FOR INNOVATIVE REMEDIATION TECHNOLOGY EVALUATION SAMPLING PLANS

    EPA Science Inventory

    Field trials of innovative subsurface cleanup technologies require the use of integrated site characterization approaches to obtain critical design parameters, to evaluate pre-treatment contaminant distributions, and to assess process efficiency. This review focuses on the trans...

  6. Evaluation of an Integrated Read-Out Layer Prototype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abu-Ajamieh, Fayez

    2011-07-01

    This thesis presents evaluation results of an Integrated Read-out Layer (IRL), a proposed concept in scintillator-based calorimetry intended to meet the exceptional calorimetric requirements of the envisaged International Linear Collider (ILC). This study presents a full characterization of the prototype IRL, including exploration of relevant parameters, calibration performance, and the uniformity of response. The study represents proof of the IRL concept. Finally, proposed design enhancements are presented.

  7. Evaluation of an Integrated Read-Out Layer Prototype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abu-Ajamieh, Fayez; /NIU

    2011-08-18

    This thesis presents evaluation results of an Integrated Read-out Layer (IRL), a proposed concept in scintillator-based calorimetry intended to meet the exceptional calorimetric requirements of the envisaged International Linear Collider (ILC). This study presents a full characterization of the prototype IRL, including exploration of relevant parameters, calibration performance, and the uniformity of response. The study represents proof of the IRL concept. Finally, proposed design enhancements are presented.

  8. Monolithic microwave integrated circuits: Interconnections and packaging considerations

    NASA Astrophysics Data System (ADS)

    Bhasin, K. B.; Downey, A. N.; Ponchak, G. E.; Romanofsky, R. R.; Anzic, G.; Connolly, D. J.

    Monolithic microwave integrated circuits (MMIC's) above 18 GHz were developed because of important potential system benefits in cost reliability, reproducibility, and control of circuit parameters. The importance of interconnection and packaging techniques that do not compromise these MMIC virtues is emphasized. Currently available microwave transmission media are evaluated to determine their suitability for MMIC interconnections. An antipodal finline type of microstrip waveguide transition's performance is presented. Packaging requirements for MMIC's are discussed for thermal, mechanical, and electrical parameters for optimum desired performance.

  9. Monolithic microwave integrated circuits: Interconnections and packaging considerations

    NASA Technical Reports Server (NTRS)

    Bhasin, K. B.; Downey, A. N.; Ponchak, G. E.; Romanofsky, R. R.; Anzic, G.; Connolly, D. J.

    1984-01-01

    Monolithic microwave integrated circuits (MMIC's) above 18 GHz were developed because of important potential system benefits in cost reliability, reproducibility, and control of circuit parameters. The importance of interconnection and packaging techniques that do not compromise these MMIC virtues is emphasized. Currently available microwave transmission media are evaluated to determine their suitability for MMIC interconnections. An antipodal finline type of microstrip waveguide transition's performance is presented. Packaging requirements for MMIC's are discussed for thermal, mechanical, and electrical parameters for optimum desired performance.

  10. Finite-part integration of the generalized Stieltjes transform and its dominant asymptotic behavior for small values of the parameter. I. Integer orders

    NASA Astrophysics Data System (ADS)

    Tica, Christian D.; Galapon, Eric A.

    2018-02-01

    The paper addresses the exact evaluation of the generalized Stieltjes transform Sn[f ] =∫0∞f (x ) (ω+x ) -nd x of integral order n = 1, 2, 3, … about ω = 0 from which the asymptotic behavior of Sn[f] for small parameters ω is directly extracted. An attempt to evaluate the integral by expanding the integrand (ω + x)-n about ω = 0 and then naively integrating the resulting infinite series term by term leads to an infinite series whose terms are divergent integrals. Assigning values to the divergent integrals, say, by analytic continuation or by Hadamard's finite part is known to reproduce only some of the correct terms of the expansion but completely misses out a group of terms. Here we evaluate explicitly the generalized Stieltjes transform by means of finite-part integration recently introduced in Galapon [Proc. R. Soc. A 473, 20160567 (2017)]. It is shown that, when f(x) does not vanish or has zero of order m at the origin such that (n - m) ≥ 1, the dominant terms of Sn[f] as ω → 0 come from contributions arising from the poles and branch points of the complex valued function f(z)(ω + z)-n. These dominant terms are precisely the terms missed out by naive term by term integration. Furthermore, it is demonstrated how finite-part integration leads to new series representations of special functions by exploiting their known Stieltjes integral representations. Finally, the application of finite part integration in obtaining asymptotic expansions of the effective diffusivity in the limit of high Peclet number, the Green-Kubo formula for the self-diffusion coefficient, and the antisymmetric part of the diffusion tensor in the weak noise limit is discussed.

  11. The cryoprotective effect of trehalose supplementation on boar spermatozoa quality.

    PubMed

    Hu, Jian-Hong; Li, Qing-Wang; Li, Gang; Jiang, Zhong-Liang; Bu, Shu-hai; Yang, Hai; Wang, Li-Qiang

    2009-05-01

    In order to improve boar sperm quality during frozen-thawed process, the influence of the presence of trehalose on success of cryopreservation of boar sperm were investigated. We evaluated freeze-thawing tolerance of boar spermatozoa in a base cooling extender with the addition of different trehalose concentrations (0, 25, 50, 100 and 200mmol/l), and tried to determine the optimum concentration of trehalose. We chose sperm motility, acrosome integrity, membrane integrity and cryocapacitation as parameters to evaluate cryopreservation capacity of boar spermatozoa. We obtained the best results for 100mmol/l trehalose-supplemented extenders, with values of 49.89% for motility, 66.52% for acrosome integrity and 44.61% for membrane integrity, while freeze-thawing tolerance was diminished significantly for 200mmol/l of trehalose. Before and after capacitation, the CTC score for semen diluted by extender containing 100mmol/l trehalose was 3.68% and 43.82%, respectively. In conclusion, trehalose could confer a greater cryoprotective capacity to boar spermatozoa. Trehalose-supplementation with 100mmol/l concentration in basic extender could significantly improve sperm motility, membrane integrity and acrosome integrity parameters, and reduce boar spermatozoa cryocapacitation during the cryopreservation process.

  12. Study on Performance of Integration Control by Man and Machine in Stage of Final Approaching for Spaceship Rendezvous and Docking

    NASA Astrophysics Data System (ADS)

    Zhou, Qianxiang; Liu, Zhongqi

    With the development of manned space technology, space rendezvous and docking (RVD) technology will play a more and more important role. The astronauts’ participation in a final close period of man-machine combination control is an important way of RVD technology. Spacecraft RVD control involves control problem of a total of 12 degrees of freedom (location) and attitude which it relative to the inertial space the orbit. Therefore, in order to reduce the astronauts’ operation load and reduce the security requirements to the ground station and achieve an optimal performance of the whole man-machine system, it is need to study how to design the number of control parameters of astronaut or aircraft automatic control system. In this study, with the laboratory conditions on the ground, a method was put forward to develop an experimental system in which the performance evaluation of spaceship RVD integration control by man and machine could be completed. After the RVD precision requirements were determined, 26 male volunteers aged 20-40 took part in the performance evaluation experiments. The RVD integration control success rates and total thruster ignition time were chosen as evaluation indices. Results show that if less than three RVD parameters control tasks were finished by subject and the rest of parameters control task completed by automation, the RVD success rate would be larger than eighty-eight percent and the fuel consumption would be optimized. In addition, there were two subjects who finished the whole six RVD parameters control tasks by enough train. In conclusion, if the astronauts' role should be integrated into the RVD control, it was suitable for them to finish the heading, pitch and roll control in order to assure the man-machine system high performance. If astronauts were needed to finish all parameter control, two points should be taken into consideration, one was enough fuel and another was enough long operation time.

  13. Integrating uncertainties to the combined environmental and economic assessment of algal biorefineries: A Monte Carlo approach.

    PubMed

    Pérez-López, Paula; Montazeri, Mahdokht; Feijoo, Gumersindo; Moreira, María Teresa; Eckelman, Matthew J

    2018-06-01

    The economic and environmental performance of microalgal processes has been widely analyzed in recent years. However, few studies propose an integrated process-based approach to evaluate economic and environmental indicators simultaneously. Biodiesel is usually the single product and the effect of environmental benefits of co-products obtained in the process is rarely discussed. In addition, there is wide variation of the results due to inherent variability of some parameters as well as different assumptions in the models and limited knowledge about the processes. In this study, two standardized models were combined to provide an integrated simulation tool allowing the simultaneous estimation of economic and environmental indicators from a unique set of input parameters. First, a harmonized scenario was assessed to validate the joint environmental and techno-economic model. The findings were consistent with previous assessments. In a second stage, a Monte Carlo simulation was applied to evaluate the influence of variable and uncertain parameters in the model output, as well as the correlations between the different outputs. The simulation showed a high probability of achieving favorable environmental performance for the evaluated categories and a minimum selling price ranging from $11gal -1 to $106gal -1 . Greenhouse gas emissions and minimum selling price were found to have the strongest positive linear relationship, whereas eutrophication showed weak correlations with the other indicators (namely greenhouse gas emissions, cumulative energy demand and minimum selling price). Process parameters (especially biomass productivity and lipid content) were the main source of variation, whereas uncertainties linked to the characterization methods and economic parameters had limited effect on the results. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. [Information content of immunologic parameters in the evaluation of the effects of hazardous substances].

    PubMed

    Litovskaia, A V; Sadovskiĭ, V V; Vifleemskiĭ, A B

    1995-01-01

    Clinical and immunologic examination including 1 and 2 level tests covered 429 staffers of chemical enterprises and 1122 of those engaged into microbiological synthesis of proteins, both the groups exposed to some irritating gases and isocyanates. Using calculation of Kulbak's criterion, the studies selected informative parameters to diagnose immune disturbances caused by occupational hazards. For integral evaluation of immune state, the authors applied general immunologic parameter, meanings of which can serve as criteria for early diagnosis of various immune disorders and for definition of risk groups among industrial workers exposed to occupational biologic and chemical hazards.

  15. Determination of the Fracture Parameters in a Stiffened Composite Panel

    NASA Technical Reports Server (NTRS)

    Lin, Chung-Yi

    2000-01-01

    A modified J-integral, namely the equivalent domain integral, is derived for a three-dimensional anisotropic cracked solid to evaluate the stress intensity factor along the crack front using the finite element method. Based on the equivalent domain integral method with auxiliary fields, an interaction integral is also derived to extract the second fracture parameter, the T-stress, from the finite element results. The auxiliary fields are the two-dimensional plane strain solutions of monoclinic materials with the plane of symmetry at x(sub 3) = 0 under point loads applied at the crack tip. These solutions are expressed in a compact form based on the Stroh formalism. Both integrals can be implemented into a single numerical procedure to determine the distributions of stress intensity factor and T-stress components, T11, T13, and thus T33, along a three-dimensional crack front. The effects of plate thickness and crack length on the variation of the stress intensity factor and T-stresses through the thickness are investigated in detail for through-thickness center-cracked plates (isotropic and orthotropic) and orthotropic stiffened panels under pure mode-I loading conditions. For all the cases studied, T11 remains negative. For plates with the same dimensions, a larger size of crack yields larger magnitude of the normalized stress intensity factor and normalized T-stresses. The results in orthotropic stiffened panels exhibit an opposite trend in general. As expected, for the thicker panels, the fracture parameters evaluated through the thickness, except the region near the free surfaces, approach two-dimensional plane strain solutions. In summary, the numerical methods presented in this research demonstrate their high computational effectiveness and good numerical accuracy in extracting these fracture parameters from the finite element results in three-dimensional cracked solids.

  16. An Integrated Framework for Parameter-based Optimization of Scientific Workflows.

    PubMed

    Kumar, Vijay S; Sadayappan, P; Mehta, Gaurang; Vahi, Karan; Deelman, Ewa; Ratnakar, Varun; Kim, Jihie; Gil, Yolanda; Hall, Mary; Kurc, Tahsin; Saltz, Joel

    2009-01-01

    Data analysis processes in scientific applications can be expressed as coarse-grain workflows of complex data processing operations with data flow dependencies between them. Performance optimization of these workflows can be viewed as a search for a set of optimal values in a multi-dimensional parameter space. While some performance parameters such as grouping of workflow components and their mapping to machines do not a ect the accuracy of the output, others may dictate trading the output quality of individual components (and of the whole workflow) for performance. This paper describes an integrated framework which is capable of supporting performance optimizations along multiple dimensions of the parameter space. Using two real-world applications in the spatial data analysis domain, we present an experimental evaluation of the proposed framework.

  17. Neuroeconomics and public health

    PubMed Central

    Larsen, Torben

    2010-01-01

    Objective To design an economic evaluation strategy for general health promotion projects. Method Identification of key parameters of behavioral health from neuroeconomic studies. Results The Frontal Power of Concentration (C) is a quadripartite executive integrator depending on four key parameters: 1) The Limbic system originating ambivalent emotions (L). 2) Volition in the Prefrontal Cortex (c) controlling cognitive prediction and emotions with a view on Frontopolar long-term goals. 3) Semantic memories in the Temporal lobe (R). 4) An intuitive visuospatial sketchpad in the Parietal lobe (I). C aiming to minimize error between preferences and predictions is directly determined by the following equation including I as a stochastic knowledge component: C =Rc2/L +εI→ 1 Discussion All of the parameters of C are object to improvement by training: Cognitive predictions are improved by open-mindedness towards feedback (R).The effect of emotional regrets is reinforced by an appropriate level of fitness (c, L).Our imagination may be unfolded by in-depth-relaxation-procedures and visualization (I). Conclusion Economic evaluation of general public health should focus on the subset of separate and integrated interventions that directly affect the parameters of Formula C in individuals.

  18. The combination of kinetic and flow cytometric semen parameters as a tool to predict fertility in cryopreserved bull semen.

    PubMed

    Gliozzi, T M; Turri, F; Manes, S; Cassinelli, C; Pizzi, F

    2017-11-01

    Within recent years, there has been growing interest in the prediction of bull fertility through in vitro assessment of semen quality. A model for fertility prediction based on early evaluation of semen quality parameters, to exclude sires with potentially low fertility from breeding programs, would therefore be useful. The aim of the present study was to identify the most suitable parameters that would provide reliable prediction of fertility. Frozen semen from 18 Italian Holstein-Friesian proven bulls was analyzed using computer-assisted semen analysis (CASA) (motility and kinetic parameters) and flow cytometry (FCM) (viability, acrosomal integrity, mitochondrial function, lipid peroxidation, plasma membrane stability and DNA integrity). Bulls were divided into two groups (low and high fertility) based on the estimated relative conception rate (ERCR). Significant differences were found between fertility groups for total motility, active cells, straightness, linearity, viability and percentage of DNA fragmented sperm. Correlations were observed between ERCR and some kinetic parameters, and membrane instability and some DNA integrity indicators. In order to define a model with high relation between semen quality parameters and ERCR, backward stepwise multiple regression analysis was applied. Thus, we obtained a prediction model that explained almost half (R 2=0.47, P<0.05) of the variation in the conception rate and included nine variables: five kinetic parameters measured by CASA (total motility, active cells, beat cross frequency, curvilinear velocity and amplitude of lateral head displacement) and four parameters related to DNA integrity evaluated by FCM (degree of chromatin structure abnormality Alpha-T, extent of chromatin structure abnormality (Alpha-T standard deviation), percentage of DNA fragmented sperm and percentage of sperm with high green fluorescence representative of immature cells). A significant relationship (R 2=0.84, P<0.05) was observed between real and predicted fertility. Once the accuracy of fertility prediction has been confirmed, the model developed in the present study could be used by artificial insemination centers for bull selection or for elimination of poor fertility ejaculates.

  19. Evaluation of milk powder quality by protein oxidative modifications.

    PubMed

    Scheidegger, Dana; Radici, Paola M; Vergara-Roig, Víctor A; Bosio, Noelia S; Pesce, Silvia F; Pecora, Rolando P; Romano, José C P; Kivatinitz, Silvia C

    2013-06-01

    The objective of the present research was to evaluate commercially available milk powders according to their protein oxidative modifications and antioxidant capacity, and to evaluate if these characteristics are related to physical quality parameters such as dispersibility or stability during storage. Fifteen commercially processed spray-dried milk powders were evaluated: 6 whole milk powders (WMP), 4 skim milk powders (SMP), and 5 infant formula powders (IFP). Protein oxidative status was measured as protein carbonyl (PC) content, dityrosine content, and extent of protein polymerization. The level of PC was slightly lower in SMP than in WMP, whereas IFP had more than twice as much PC as WMP (2.8 ± 0.4, 2.1 ± 0.2, and 6.5 ± 1.3 nmol/mg of protein for WMP, SMP, and IFP, respectively). No differences were detected in dityrosine accumulation. Although all the possible pairs of parameters were tested for correlations, we found that 4 parameters were linked: PC, whey content, protein aggregate level, and dispersibility. After 9 mo of storage at -20°C or room temperature, all milk samples were analyzed to evaluate changes in protein oxidative status (PC, dityrosine, and protein integrity) and related parameters. Compared with the initial condition, PC increased in all tested samples after 9 mo of storage at -20°C or at room temperature. Stored milk powders had increased PC and decreased dispersibility compared with prestorage levels. Our results highlight the importance of protein oxidative status in milk powder and its relationship to other related quality parameters, such as protein integrity and dispersibility. Our findings suggest that the understanding of such relationships could help in developing quality differentiation for different types of milk powders in the product market. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. Numerical integration of asymptotic solutions of ordinary differential equations

    NASA Technical Reports Server (NTRS)

    Thurston, Gaylen A.

    1989-01-01

    Classical asymptotic analysis of ordinary differential equations derives approximate solutions that are numerically stable. However, the analysis also leads to tedious expansions in powers of the relevant parameter for a particular problem. The expansions are replaced with integrals that can be evaluated by numerical integration. The resulting numerical solutions retain the linear independence that is the main advantage of asymptotic solutions. Examples, including the Falkner-Skan equation from laminar boundary layer theory, illustrate the method of asymptotic analysis with numerical integration.

  1. Computation of Anisotropic Bi-Material Interfacial Fracture Parameters and Delamination Creteria

    NASA Technical Reports Server (NTRS)

    Chow, W-T.; Wang, L.; Atluri, S. N.

    1998-01-01

    This report documents the recent developments in methodologies for the evaluation of the integrity and durability of composite structures, including i) the establishment of a stress-intensity-factor based fracture criterion for bimaterial interfacial cracks in anisotropic materials (see Sec. 2); ii) the development of a virtual crack closure integral method for the evaluation of the mixed-mode stress intensity factors for a bimaterial interfacial crack (see Sec. 3). Analytical and numerical results show that the proposed fracture criterion is a better fracture criterion than the total energy release rate criterion in the characterization of the bimaterial interfacial cracks. The proposed virtual crack closure integral method is an efficient and accurate numerical method for the evaluation of mixed-mode stress intensity factors.

  2. Modulating Wnt Signaling Pathway to Enhance Allograft Integration in Orthopedic Trauma Treatment

    DTIC Science & Technology

    2013-10-01

    presented below. Quantitative output provides an extensive set of data but we have chosen to present the most relevant parameters that are reflected in...multiple parameters .  Most samples have been mechanically tested and data extracted for multiple parameters .  Histological evaluation of subset of...Sumner, D. R. Saline Irrigation Does Not Affect Bone Formation or Fixation Strength of Hydroxyapatite /Tricalcium Phosphate-Coated Implants in a Rat Model

  3. 3D Human cartilage surface characterization by optical coherence tomography.

    PubMed

    Brill, Nicolai; Riedel, Jörn; Schmitt, Robert; Tingart, Markus; Truhn, Daniel; Pufe, Thomas; Jahr, Holger; Nebelung, Sven

    2015-10-07

    Early diagnosis and treatment of cartilage degeneration is of high clinical interest. Loss of surface integrity is considered one of the earliest and most reliable signs of degeneration, but cannot currently be evaluated objectively. Optical Coherence Tomography (OCT) is an arthroscopically available light-based non-destructive real-time imaging technology that allows imaging at micrometre resolutions to millimetre depths. As OCT-based surface evaluation standards remain to be defined, the present study investigated the diagnostic potential of 3D surface profile parameters in the comprehensive evaluation of cartilage degeneration. To this end, 45 cartilage samples of different degenerative grades were obtained from total knee replacements (2 males, 10 females; mean age 63.8 years), cut to standard size and imaged using a spectral-domain OCT device (Thorlabs, Germany). 3D OCT datasets of 8  ×  8, 4  ×  4 and 1  ×  1 mm (width  ×  length) were obtained and pre-processed (image adjustments, morphological filtering). Subsequent automated surface identification algorithms were used to obtain the 3D primary profiles, which were then filtered and processed using established algorithms employing ISO standards. The 3D surface profile thus obtained was used to calculate a set of 21 3D surface profile parameters, i.e. height (e.g. Sa), functional (e.g. Sk), hybrid (e.g. Sdq) and segmentation-related parameters (e.g. Spd). Samples underwent reference histological assessment according to the Degenerative Joint Disease classification. Statistical analyses included calculation of Spearman's rho and assessment of inter-group differences using the Kruskal Wallis test. Overall, the majority of 3D surface profile parameters revealed significant degeneration-dependent differences and correlations with the exception of severe end-stage degeneration and were of distinct diagnostic value in the assessment of surface integrity. None of the 3D surface profile parameters investigated were capable of reliably differentiating healthy from early-degenerative cartilage, while scan area sizes considerably affected parameter values. In conclusion, cartilage surface integrity may be adequately assessed by 3D surface profile parameters, which should be used in combination for the comprehensive and thorough evaluation and overall improved diagnostic performance. OCT- and image-based surface assessment could become a valuable adjunct tool to standard arthroscopy.

  4. 3D Human cartilage surface characterization by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Brill, Nicolai; Riedel, Jörn; Schmitt, Robert; Tingart, Markus; Truhn, Daniel; Pufe, Thomas; Jahr, Holger; Nebelung, Sven

    2015-10-01

    Early diagnosis and treatment of cartilage degeneration is of high clinical interest. Loss of surface integrity is considered one of the earliest and most reliable signs of degeneration, but cannot currently be evaluated objectively. Optical Coherence Tomography (OCT) is an arthroscopically available light-based non-destructive real-time imaging technology that allows imaging at micrometre resolutions to millimetre depths. As OCT-based surface evaluation standards remain to be defined, the present study investigated the diagnostic potential of 3D surface profile parameters in the comprehensive evaluation of cartilage degeneration. To this end, 45 cartilage samples of different degenerative grades were obtained from total knee replacements (2 males, 10 females; mean age 63.8 years), cut to standard size and imaged using a spectral-domain OCT device (Thorlabs, Germany). 3D OCT datasets of 8  ×  8, 4  ×  4 and 1  ×  1 mm (width  ×  length) were obtained and pre-processed (image adjustments, morphological filtering). Subsequent automated surface identification algorithms were used to obtain the 3D primary profiles, which were then filtered and processed using established algorithms employing ISO standards. The 3D surface profile thus obtained was used to calculate a set of 21 3D surface profile parameters, i.e. height (e.g. Sa), functional (e.g. Sk), hybrid (e.g. Sdq) and segmentation-related parameters (e.g. Spd). Samples underwent reference histological assessment according to the Degenerative Joint Disease classification. Statistical analyses included calculation of Spearman’s rho and assessment of inter-group differences using the Kruskal Wallis test. Overall, the majority of 3D surface profile parameters revealed significant degeneration-dependent differences and correlations with the exception of severe end-stage degeneration and were of distinct diagnostic value in the assessment of surface integrity. None of the 3D surface profile parameters investigated were capable of reliably differentiating healthy from early-degenerative cartilage, while scan area sizes considerably affected parameter values. In conclusion, cartilage surface integrity may be adequately assessed by 3D surface profile parameters, which should be used in combination for the comprehensive and thorough evaluation and overall improved diagnostic performance. OCT- and image-based surface assessment could become a valuable adjunct tool to standard arthroscopy.

  5. WHAT ARE THE BEST MEANS TO ASSESS SITES AND MOVE TOWARD CLOSURE, USING APPROPRIATE SITE SPECIFIC RISK EVALUATIONS?

    EPA Science Inventory

    To facilitate evaluation of existing site characterization data, ORD has developed on-line tools and models that integrate data and models into innovative applications. Forty calculators have been developed in four groups: parameter estimators, models, scientific demos and unit ...

  6. Cost Sensitivity Analysis for Consolidated Interim Storage of Spent Fuel: Evaluating the Effect of Economic Environment Parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cumberland, Riley M.; Williams, Kent Alan; Jarrell, Joshua J.

    This report evaluates how the economic environment (i.e., discount rate, inflation rate, escalation rate) can impact previously estimated differences in lifecycle costs between an integrated waste management system with an interim storage facility (ISF) and a similar system without an ISF.

  7. Systems Analysis Of Advanced Coal-Based Power Plants

    NASA Technical Reports Server (NTRS)

    Ferrall, Joseph F.; Jennings, Charles N.; Pappano, Alfred W.

    1988-01-01

    Report presents appraisal of integrated coal-gasification/fuel-cell power plants. Based on study comparing fuel-cell technologies with each other and with coal-based alternatives and recommends most promising ones for research and development. Evaluates capital cost, cost of electricity, fuel consumption, and conformance with environmental standards. Analyzes sensitivity of cost of electricity to changes in fuel cost, to economic assumptions, and to level of technology. Recommends further evaluation of integrated coal-gasification/fuel-cell integrated coal-gasification/combined-cycle, and pulverized-coal-fired plants. Concludes with appendixes detailing plant-performance models, subsystem-performance parameters, performance goals, cost bases, plant-cost data sheets, and plant sensitivity to fuel-cell performance.

  8. Calculations of atmospheric refraction for spacecraft remote-sensing applications

    NASA Technical Reports Server (NTRS)

    Chu, W. P.

    1983-01-01

    Analytical solutions to the refraction integrals appropriate for ray trajectories along slant paths through the atmosphere are derived in this paper. This type of geometry is commonly encountered in remote-sensing applications utilizing an occultation technique. The solutions are obtained by evaluating higher-order terms from expansion of the refraction integral and are dependent on the vertical temperature distributions. Refraction parameters such as total refraction angles, air masses, and path lengths can be accurately computed. It is also shown that the method can be used for computing refraction parameters in astronomical refraction geometry for large zenith angles.

  9. Elevated temperature crack growth

    NASA Technical Reports Server (NTRS)

    Malik, S. N.; Vanstone, R. H.; Kim, K. S.; Laflen, J. H.

    1986-01-01

    It is necessary to relate the processes that control crack growth in the immediate vicinity of the crack tip to parameters that can be calculated from remote quantities, such as forces, stresses, or displacements. The most likely parameters appear to be certain path-independent (PI) integrals, several of which have already been proposed for application to high temperature inelastic problems. The ability of currently available PI-integrals to correlate fatigue crack propagation under conditions that simulate the engine combustor liner environment was determined. The utility of advanced fracture mechanics measurements will also be evaluated and determined during the course of the program.

  10. Sustainable and efficient pathways for bioenergy recovery from low-value process streams via bioelectrochemical systems in biorefineries

    DOE PAGES

    Borole, Abhijeet P.

    2015-08-25

    Conversion of biomass into bioenergy is possible via multiple pathways resulting in production of biofuels, bioproducts and biopower. Efficient and sustainable conversion of biomass, however, requires consideration of many environmental and societal parameters in order to minimize negative impacts. Integration of multiple conversion technologies and inclusion of upcoming alternatives such as bioelectrochemical systems can minimize these impacts and improve conservation of resources such as hydrogen, water and nutrients via recycle and reuse. This report outlines alternate pathways integrating microbial electrolysis in biorefinery schemes to improve energy efficiency while evaluating environmental sustainability parameters.

  11. Implementing reduced-risk integrated pest management in fresh-market cabbage: influence of sampling parameters, and validation of binomial sequential sampling plans for the cabbage looper (Lepidoptera Noctuidae).

    PubMed

    Burkness, Eric C; Hutchison, W D

    2009-10-01

    Populations of cabbage looper, Trichoplusiani (Lepidoptera: Noctuidae), were sampled in experimental plots and commercial fields of cabbage (Brasicca spp.) in Minnesota during 1998-1999 as part of a larger effort to implement an integrated pest management program. Using a resampling approach and the Wald's sequential probability ratio test, sampling plans with different sampling parameters were evaluated using independent presence/absence and enumerative data. Evaluations and comparisons of the different sampling plans were made based on the operating characteristic and average sample number functions generated for each plan and through the use of a decision probability matrix. Values for upper and lower decision boundaries, sequential error rates (alpha, beta), and tally threshold were modified to determine parameter influence on the operating characteristic and average sample number functions. The following parameters resulted in the most desirable operating characteristic and average sample number functions; action threshold of 0.1 proportion of plants infested, tally threshold of 1, alpha = beta = 0.1, upper boundary of 0.15, lower boundary of 0.05, and resampling with replacement. We found that sampling parameters can be modified and evaluated using resampling software to achieve desirable operating characteristic and average sample number functions. Moreover, management of T. ni by using binomial sequential sampling should provide a good balance between cost and reliability by minimizing sample size and maintaining a high level of correct decisions (>95%) to treat or not treat.

  12. Toward an integrative and predictive sperm quality analysis in Bos taurus.

    PubMed

    Yániz, J L; Soler, C; Alquézar-Baeta, C; Santolaria, P

    2017-06-01

    There is a need to develop more integrative sperm quality analysis methods, enabling researchers to evaluate different parameters simultaneously cell by cell. In this work, we present a new multi-parametric fluorescent test able to discriminate different sperm subpopulations based on their labeling pattern and motility characteristics. Cryopreserved semen samples from 20 Holstein bulls were used in the study. Analyses of sperm motility using computer-assisted sperm analysis (CASA-mot), membrane integrity by acridine orange-propidium iodide combination and multi-parametric by the ISAS ® 3Fun kit, were performed. The new method allows a clear discrimination of sperm subpopulations based on membrane and acrosomal integrity, motility and morphology. It was also possible to observe live spermatozoa showing signs of capacitation such as hyperactivated motility and changes in acrosomal structure. Sperm subpopulation with intact plasma membrane and acrosome showed a higher proportion of motile sperm than those with damaged acrosome or increased fluorescence intensity. Spermatozoa with intact plasmalemma and damaged acrosome were static or exhibit weak movement. Significant correlations among the different sperm quality parameters evaluated were also described. We concluded that the ISAS ® 3Fun is an integrated method that represents an advance in sperm quality analysis with the potential to improve fertility predictions. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Integrated biomarker response in catfish Hypostomus ancistroides by multivariate analysis in the Pirapó River, southern Brazil.

    PubMed

    Ghisi, Nédia C; Oliveira, Elton C; Mendonça Mota, Thais F; Vanzetto, Guilherme V; Roque, Aliciane A; Godinho, Jayson P; Bettim, Franciele Lima; Silva de Assis, Helena Cristina da; Prioli, Alberto J

    2016-10-01

    Aquatic pollutants produce multiple consequences in organisms, populations, communities and ecosystems, affecting the function of organs, reproductive state, population size, species survival and even biodiversity. In order to monitor the health of aquatic organisms, biomarkers have been used as effective tools in environmental risk assessment. The aim of this study is to evaluate, through a multivariate and integrative analysis, the response of the native species Hypostomus ancistroides over a pollution gradient in the main water supply body of northwestern Paraná state (Brazil). The condition factor, micronucleus test and erythrocyte nuclear abnormalities (ENA), comet assay, measurement of the cerebral and muscular enzyme acetylcholinesterase (AChE), and histopathological analysis of liver and gill were evaluated in fishes from three sites of the Pirapó River during the dry and rainy seasons. The multivariate general result showed that the interaction between the seasons and the sites was significant: there are variations in the rates of alterations in the biological parameters, depending on the time of year researched at each site. In general, the best results were observed for the site nearest the spring, and alterations in the parameters at the intermediate and downstream sites. In sum, the results of this study showed the necessity of a multivariate analysis, evaluating several biological parameters, to obtain an integrated response to the effects of the environmental pollutants on the organisms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Integrated Evaluation of Age-Related Changes in Structural and Functional Vascular Parameters Used to Assess Arterial Aging, Subclinical Atherosclerosis, and Cardiovascular Risk in Uruguayan Adults: CUiiDARTE Project

    PubMed Central

    Bia, Daniel; Zócalo, Yanina; Farro, Ignacio; Torrado, Juan; Farro, Federico; Florio, Lucía; Olascoaga, Alicia; Brum, Javier; Alallón, Walter; Negreira, Carlos; Lluberas, Ricardo; Armentano, Ricardo L.

    2011-01-01

    This work was carried out in a Uruguayan (South American) population to characterize aging-associated physiological arterial changes. Parameters markers of subclinical atherosclerosis and that associate age-related changes were evaluated in healthy people. A conservative approach was used and people with nonphysiological and pathological conditions were excluded. Then, we excluded subjects with (a) cardiovascular (CV) symptoms, (b) CV disease, (c) diabetes mellitus or renal failure, and (d) traditional CV risk factors (other than age and gender). Subjects (n = 388) were submitted to non-invasive vascular studies (gold-standard techniques), to evaluate (1) common (CCA), internal, and external carotid plaque prevalence, (2) CCA intima-media thickness and diameter, (3) CCA stiffness (percentual pulsatility, compliance, distensibility, and stiffness index), (4) aortic stiffness (carotid-femoral pulse wave velocity), and (5) peripheral and central pressure wave-derived parameters. Age groups: ≤20, 21–30, 31–40, 41–50, 51–60, 61–70, and 71–80 years old. Age-related structural and functional vascular parameters profiles were obtained and analyzed considering data from other populations. The work has the strength of being the first, in Latin America, that uses an integrative approach to characterize vascular aging-related changes. Data could be used to define vascular aging and abnormal or disease-related changes. PMID:22187622

  15. Integrated Evaluation of Age-Related Changes in Structural and Functional Vascular Parameters Used to Assess Arterial Aging, Subclinical Atherosclerosis, and Cardiovascular Risk in Uruguayan Adults: CUiiDARTE Project.

    PubMed

    Bia, Daniel; Zócalo, Yanina; Farro, Ignacio; Torrado, Juan; Farro, Federico; Florio, Lucía; Olascoaga, Alicia; Brum, Javier; Alallón, Walter; Negreira, Carlos; Lluberas, Ricardo; Armentano, Ricardo L

    2011-01-01

    This work was carried out in a Uruguayan (South American) population to characterize aging-associated physiological arterial changes. Parameters markers of subclinical atherosclerosis and that associate age-related changes were evaluated in healthy people. A conservative approach was used and people with nonphysiological and pathological conditions were excluded. Then, we excluded subjects with (a) cardiovascular (CV) symptoms, (b) CV disease, (c) diabetes mellitus or renal failure, and (d) traditional CV risk factors (other than age and gender). Subjects (n = 388) were submitted to non-invasive vascular studies (gold-standard techniques), to evaluate (1) common (CCA), internal, and external carotid plaque prevalence, (2) CCA intima-media thickness and diameter, (3) CCA stiffness (percentual pulsatility, compliance, distensibility, and stiffness index), (4) aortic stiffness (carotid-femoral pulse wave velocity), and (5) peripheral and central pressure wave-derived parameters. Age groups: ≤20, 21-30, 31-40, 41-50, 51-60, 61-70, and 71-80 years old. Age-related structural and functional vascular parameters profiles were obtained and analyzed considering data from other populations. The work has the strength of being the first, in Latin America, that uses an integrative approach to characterize vascular aging-related changes. Data could be used to define vascular aging and abnormal or disease-related changes.

  16. Evaluating performances of simplified physically based landslide susceptibility models.

    NASA Astrophysics Data System (ADS)

    Capparelli, Giovanna; Formetta, Giuseppe; Versace, Pasquale

    2015-04-01

    Rainfall induced shallow landslides cause significant damages involving loss of life and properties. Prediction of shallow landslides susceptible locations is a complex task that involves many disciplines: hydrology, geotechnical science, geomorphology, and statistics. Usually to accomplish this task two main approaches are used: statistical or physically based model. This paper presents a package of GIS based models for landslide susceptibility analysis. It was integrated in the NewAge-JGrass hydrological model using the Object Modeling System (OMS) modeling framework. The package includes three simplified physically based models for landslides susceptibility analysis (M1, M2, and M3) and a component for models verifications. It computes eight goodness of fit indices (GOF) by comparing pixel-by-pixel model results and measurements data. Moreover, the package integration in NewAge-JGrass allows the use of other components such as geographic information system tools to manage inputs-output processes, and automatic calibration algorithms to estimate model parameters. The system offers the possibility to investigate and fairly compare the quality and the robustness of models and models parameters, according a procedure that includes: i) model parameters estimation by optimizing each of the GOF index separately, ii) models evaluation in the ROC plane by using each of the optimal parameter set, and iii) GOF robustness evaluation by assessing their sensitivity to the input parameter variation. This procedure was repeated for all three models. The system was applied for a case study in Calabria (Italy) along the Salerno-Reggio Calabria highway, between Cosenza and Altilia municipality. The analysis provided that among all the optimized indices and all the three models, Average Index (AI) optimization coupled with model M3 is the best modeling solution for our test case. This research was funded by PON Project No. 01_01503 "Integrated Systems for Hydrogeological Risk Monitoring, Early Warning and Mitigation Along the Main Lifelines", CUP B31H11000370005, in the framework of the National Operational Program for "Research and Competitiveness" 2007-2013.

  17. Effects of amyloid and small vessel disease on white matter network disruption.

    PubMed

    Kim, Hee Jin; Im, Kiho; Kwon, Hunki; Lee, Jong Min; Ye, Byoung Seok; Kim, Yeo Jin; Cho, Hanna; Choe, Yearn Seong; Lee, Kyung Han; Kim, Sung Tae; Kim, Jae Seung; Lee, Jae Hong; Na, Duk L; Seo, Sang Won

    2015-01-01

    There is growing evidence that the human brain is a large scale complex network. The structural network is reported to be disrupted in cognitively impaired patients. However, there have been few studies evaluating the effects of amyloid and small vessel disease (SVD) markers, the common causes of cognitive impairment, on structural networks. Thus, we evaluated the association between amyloid and SVD burdens and structural networks using diffusion tensor imaging (DTI). Furthermore, we determined if network parameters predict cognitive impairments. Graph theoretical analysis was applied to DTI data from 232 cognitively impaired patients with varying degrees of amyloid and SVD burdens. All patients underwent Pittsburgh compound-B (PiB) PET to detect amyloid burden, MRI to detect markers of SVD, including the volume of white matter hyperintensities and the number of lacunes, and detailed neuropsychological testing. The whole-brain network was assessed by network parameters of integration (shortest path length, global efficiency) and segregation (clustering coefficient, transitivity, modularity). PiB retention ratio was not associated with any white matter network parameters. Greater white matter hyperintensity volumes or lacunae numbers were significantly associated with decreased network integration (increased shortest path length, decreased global efficiency) and increased network segregation (increased clustering coefficient, increased transitivity, increased modularity). Decreased network integration or increased network segregation were associated with poor performances in attention, language, visuospatial, memory, and frontal-executive functions. Our results suggest that SVD alters white matter network integration and segregation, which further predicts cognitive dysfunction.

  18. Recurrence formulas for fully exponentially correlated four-body wave functions

    NASA Astrophysics Data System (ADS)

    Harris, Frank E.

    2009-03-01

    Formulas are presented for the recursive generation of four-body integrals in which the integrand consists of arbitrary integer powers (≥-1) of all the interparticle distances rij , multiplied by an exponential containing an arbitrary linear combination of all the rij . These integrals are generalizations of those encountered using Hylleraas basis functions and include all that are needed to make energy computations on the Li atom and other four-body systems with a fully exponentially correlated Slater-type basis of arbitrary quantum numbers. The only quantities needed to start the recursion are the basic four-body integral first evaluated by Fromm and Hill plus some easily evaluated three-body “boundary” integrals. The computational labor in constructing integral sets for practical computations is less than when the integrals are generated using explicit formulas obtained by differentiating the basic integral with respect to its parameters. Computations are facilitated by using a symbolic algebra program (MAPLE) to compute array index pointers and present syntactically correct FORTRAN source code as output; in this way it is possible to obtain error-free high-speed evaluations with minimal effort. The work can be checked by verifying sum rules the integrals must satisfy.

  19. A PICTORIAL PRESENTATION OF ESOPHAGEAL HIGH RESOLUTION MANOMETRY CURRENT PARAMETERS.

    PubMed

    Lafraia, Fernanda M; Herbella, Fernando A M; Kalluf, Julia R; Patti, Marco G

    2017-01-01

    High resolution manometry is the current technology used to the study of esophageal motility and is replacing conventional manometry in important centers for esophageal motility with parameters used on esophageal motility, following the Chicago Classification. This classification unifies high resolution manometry interpretation and classifies esophageal disorders. This review shows, in a pictorial presentation, the new parameters established by the Chicago Classification, version 3.0, aimed to allow an easy comprehension and interpretation of high resolution manometry. Esophageal manometries performed by the authors were reviewed to select illustrative tracings representing Chicago Classification parameters. The parameters are: Esophagogastric Morphology, that classifies this junction according to its physiology and anatomy; Integrated Relaxation Pressure, that measures the lower esophageal sphincter relaxation; Distal Contractile Integral, that evaluates the contraction vigor of each wave; and, Distal Latency, that measures the peristalsis velocity from the beginning of the swallow to the epiphrenic ampulla. Clinical applications of these new concepts is still under evaluation. Mostrar, de forma pictórica, os novos parâmetros compilados na versão 3.0 da Classificação de Chicago, buscando facilitar a compreensão e interpretação da manometria de alta resolução. Foram revistas as manometrias da casuística dos autores e selecionados os traçados representativos dos parâmetros da Classificação de Chicago. Entre os parâmetros apresentados foram considerados a Morfologia da Transição Gastroesofágica, que classifica o segmento de acordo com sua fisiologia e anatomia; a Integral da Pressão de Relaxamento, que mede o relaxamento do esfíncter esofagiano inferior; a Integral Contrátil Distal, que avalia o vigor contrátil da onda peristáltica; e, a Latência Distal, que mede o tempo da peristalse, desde o início da deglutição até a ampola epifrênica. A aplicabilidade clínica desses novos conceitos ainda está sendo estudada.

  20. Methotrexate Reduces DNA Integrity in Sperm From Men With Inflammatory Bowel Disease.

    PubMed

    Ley, Dana; Jones, Jeffrey; Parrish, John; Salih, Sana; Caldera, Freddy; Tirado, Edna; Leader, Benjamin; Saha, Sumona

    2018-06-01

    There are few data on the effects of methotrexate on reproductive capacity in men with inflammatory bowel diseases (IBDs). We performed a case-control study to determine the effects of methotrexate on sperm quality and genetic integrity. We compared sperm samples from 7 men with IBD who had been exposed to methotrexate for at least 3 months with sperm samples collected from 1912 age-matched men at fertility centers (controls) where sperm parameters would be expected to be worse than those of the general population. Sperm were evaluated by basic semen analysis and advanced sperm integrity testing. In samples from men with IBD, all basic semen analysis parameters were within normal limits. However, these samples had reduced sperm integrity, based on significant increases in levels of DNA fragmentation and damage from oxidative stress compared with controls. Our findings indicate that methotrexate can reduce DNA integrity in sperm and cause damage via oxidative stress. Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.

  1. Evaluation of the biophysical limitations on photosynthesis of four varietals of Brassica rapa

    NASA Astrophysics Data System (ADS)

    Pleban, J. R.; Mackay, D. S.; Aston, T.; Ewers, B.; Weinig, C.

    2014-12-01

    Evaluating performance of agricultural varietals can support the identification of genotypes that will increase yield and can inform management practices. The biophysical limitations of photosynthesis are amongst the key factors that necessitate evaluation. This study evaluated how four biophysical limitations on photosynthesis, stomatal response to vapor pressure deficit, maximum carboxylation rate by Rubisco (Ac), rate of photosynthetic electron transport (Aj) and triose phosphate use (At) vary between four Brassica rapa genotypes. Leaf gas exchange data was used in an ecophysiological process model to conduct this evaluation. The Terrestrial Regional Ecosystem Exchange Simulator (TREES) integrates the carbon uptake and utilization rate limiting factors for plant growth. A Bayesian framework integrated in TREES here used net A as the target to estimate the four limiting factors for each genotype. As a first step the Bayesian framework was used for outlier detection, with data points outside the 95% confidence interval of model estimation eliminated. Next parameter estimation facilitated the evaluation of how the limiting factors on A different between genotypes. Parameters evaluated included maximum carboxylation rate (Vcmax), quantum yield (ϕJ), the ratio between Vc-max and electron transport rate (J), and trios phosphate utilization (TPU). Finally, as trios phosphate utilization has been shown to not play major role in the limiting A in many plants, the inclusion of At in models was evaluated using deviance information criteria (DIC). The outlier detection resulted in a narrowing in the estimated parameter distributions allowing for greater differentiation of genotypes. Results show genotypes vary in the how limitations shape assimilation. The range in Vc-max , a key parameter in Ac, was 203.2 - 223.9 umol m-2 s-1 while the range in ϕJ, a key parameter in AJ, was 0.463 - 0.497 umol m-2 s-1. The added complexity of the TPU limitation did not improve model performance in the genotypes assessed based on DIC. By identifying how varietals differ in their biophysical limitations on photosynthesis genotype selection can be informed for agricultural goals. Further work aims at applying this approach to a fifth limiting factor on photosynthesis, mesophyll conductance.

  2. Simulation modeling for stratified breast cancer screening - a systematic review of cost and quality of life assumptions.

    PubMed

    Arnold, Matthias

    2017-12-02

    The economic evaluation of stratified breast cancer screening gains momentum, but produces also very diverse results. Systematic reviews so far focused on modeling techniques and epidemiologic assumptions. However, cost and utility parameters received only little attention. This systematic review assesses simulation models for stratified breast cancer screening based on their cost and utility parameters in each phase of breast cancer screening and care. A literature review was conducted to compare economic evaluations with simulation models of personalized breast cancer screening. Study quality was assessed using reporting guidelines. Cost and utility inputs were extracted, standardized and structured using a care delivery framework. Studies were then clustered according to their study aim and parameters were compared within the clusters. Eighteen studies were identified within three study clusters. Reporting quality was very diverse in all three clusters. Only two studies in cluster 1, four studies in cluster 2 and one study in cluster 3 scored high in the quality appraisal. In addition to the quality appraisal, this review assessed if the simulation models were consistent in integrating all relevant phases of care, if utility parameters were consistent and methodological sound and if cost were compatible and consistent in the actual parameters used for screening, diagnostic work up and treatment. Of 18 studies, only three studies did not show signs of potential bias. This systematic review shows that a closer look into the cost and utility parameter can help to identify potential bias. Future simulation models should focus on integrating all relevant phases of care, using methodologically sound utility parameters and avoiding inconsistent cost parameters.

  3. Integral electrical characteristics and local plasma parameters of a RF ion thruster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masherov, P. E.; Riaby, V. A., E-mail: riaby2001@yahoo.com; Godyak, V. A.

    2016-02-15

    Comprehensive diagnostics has been carried out for a RF ion thruster based on inductively coupled plasma (ICP) source with an external flat antenna coil enhanced by ferrite core. The ICP was confined within a cylindrical chamber with low aspect ratio to minimize plasma loss to the chamber wall. Integral diagnostics of the ICP electrical parameters (RF power balance and coil current) allowed for evaluation of the antenna coils, matching networks, and eddy current loss and the true RF power deposited to plasma. Spatially resolved electron energy distribution functions, plasma density, electron temperatures, and plasma potentials were measured with movable Langmuirmore » probes.« less

  4. Analysis of a turbulent boundary layer over a moving ground plane

    NASA Technical Reports Server (NTRS)

    Roper, A. T.; Gentry, G. L., Jr.

    1972-01-01

    Four methods of predicting the integral and friction parameters for a turbulent boundary layer over a moving ground plane were evaluated by using test information obtained in 76.2- by 50.8-centimeter tunnel. The tunnel was operated in the open sidewall configuration. These methods are (1) relative integral parameter method, (2) modified power law method, (3) relative power law method, and (4) modified law of the wall method. The modified law of the wall method predicts a more rapid decrease in skin friction with an increase in the ratio of belt velocity to free steam velocity than do methods (1) and (3).

  5. Skyshine line-beam response functions for 20- to 100-MeV photons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brockhoff, R.C.; Shultis, J.K.; Faw, R.E.

    1996-06-01

    The line-beam response function, needed for skyshine analyses based on the integral line-beam method, was evaluated with the MCNP Monte Carlo code for photon energies from 20 to 100 MeV and for source-to-detector distances out to 1,000 m. These results are compared with point-kernel results, and the effects of bremsstrahlung and positron transport in the air are found to be important in this energy range. The three-parameter empirical formula used in the integral line-beam skyshine method was fit to the MCNP results, and values of these parameters are reported for various source energies and angles.

  6. Modulatory effects of alpha-lipoic acid (ALA) administration on insulin sensitivity in obese PCOS patients.

    PubMed

    Genazzani, A D; Shefer, K; Della Casa, D; Prati, A; Napolitano, A; Manzo, A; Despini, G; Simoncini, T

    2018-05-01

    To evaluate the efficacy of alpha-lipoic acid (ALA) administration on hormonal and metabolic parameters of obese PCOS patients. A group of 32 obese PCOS patients were selected after informed consent. 20 patients referred to have first grade relatives with diabetes type I or II. Hormonal and metabolic parameters as well as OGTT were evaluated before and after 12 weeks of ALA integrative administration (400 mg per os every day). ALA administration significantly decreased insulin, glucose, BMI and HOMA index. Hyperinsulinemia and insulin response to OGTT decreased both as maximal response (Δmax) and as AUC. PCOS with diabetes relatives showed the decrease also of triglyceride and GOT. Interestingly in all PCOS no changes occurred on all hormonal parameters involved in reproduction such as LH, FSH, and androstenedione. ALA integrative administration at a low dosage as 400 mg daily improved the metabolic impairment of all PCOS patients especially in those PCOS with familiar diabetes who have a higher grade of risk of NAFLD and predisposition to diabetes.

  7. Evaluation and integration of existing methods for computational prediction of allergens

    PubMed Central

    2013-01-01

    Background Allergy involves a series of complex reactions and factors that contribute to the development of the disease and triggering of the symptoms, including rhinitis, asthma, atopic eczema, skin sensitivity, even acute and fatal anaphylactic shock. Prediction and evaluation of the potential allergenicity is of importance for safety evaluation of foods and other environment factors. Although several computational approaches for assessing the potential allergenicity of proteins have been developed, their performance and relative merits and shortcomings have not been compared systematically. Results To evaluate and improve the existing methods for allergen prediction, we collected an up-to-date definitive dataset consisting of 989 known allergens and massive putative non-allergens. The three most widely used allergen computational prediction approaches including sequence-, motif- and SVM-based (Support Vector Machine) methods were systematically compared using the defined parameters and we found that SVM-based method outperformed the other two methods with higher accuracy and specificity. The sequence-based method with the criteria defined by FAO/WHO (FAO: Food and Agriculture Organization of the United Nations; WHO: World Health Organization) has higher sensitivity of over 98%, but having a low specificity. The advantage of motif-based method is the ability to visualize the key motif within the allergen. Notably, the performances of the sequence-based method defined by FAO/WHO and motif eliciting strategy could be improved by the optimization of parameters. To facilitate the allergen prediction, we integrated these three methods in a web-based application proAP, which provides the global search of the known allergens and a powerful tool for allergen predication. Flexible parameter setting and batch prediction were also implemented. The proAP can be accessed at http://gmobl.sjtu.edu.cn/proAP/main.html. Conclusions This study comprehensively evaluated sequence-, motif- and SVM-based computational prediction approaches for allergens and optimized their parameters to obtain better performance. These findings may provide helpful guidance for the researchers in allergen-prediction. Furthermore, we integrated these methods into a web application proAP, greatly facilitating users to do customizable allergen search and prediction. PMID:23514097

  8. Evaluation and integration of existing methods for computational prediction of allergens.

    PubMed

    Wang, Jing; Yu, Yabin; Zhao, Yunan; Zhang, Dabing; Li, Jing

    2013-01-01

    Allergy involves a series of complex reactions and factors that contribute to the development of the disease and triggering of the symptoms, including rhinitis, asthma, atopic eczema, skin sensitivity, even acute and fatal anaphylactic shock. Prediction and evaluation of the potential allergenicity is of importance for safety evaluation of foods and other environment factors. Although several computational approaches for assessing the potential allergenicity of proteins have been developed, their performance and relative merits and shortcomings have not been compared systematically. To evaluate and improve the existing methods for allergen prediction, we collected an up-to-date definitive dataset consisting of 989 known allergens and massive putative non-allergens. The three most widely used allergen computational prediction approaches including sequence-, motif- and SVM-based (Support Vector Machine) methods were systematically compared using the defined parameters and we found that SVM-based method outperformed the other two methods with higher accuracy and specificity. The sequence-based method with the criteria defined by FAO/WHO (FAO: Food and Agriculture Organization of the United Nations; WHO: World Health Organization) has higher sensitivity of over 98%, but having a low specificity. The advantage of motif-based method is the ability to visualize the key motif within the allergen. Notably, the performances of the sequence-based method defined by FAO/WHO and motif eliciting strategy could be improved by the optimization of parameters. To facilitate the allergen prediction, we integrated these three methods in a web-based application proAP, which provides the global search of the known allergens and a powerful tool for allergen predication. Flexible parameter setting and batch prediction were also implemented. The proAP can be accessed at http://gmobl.sjtu.edu.cn/proAP/main.html. This study comprehensively evaluated sequence-, motif- and SVM-based computational prediction approaches for allergens and optimized their parameters to obtain better performance. These findings may provide helpful guidance for the researchers in allergen-prediction. Furthermore, we integrated these methods into a web application proAP, greatly facilitating users to do customizable allergen search and prediction.

  9. The Modular Modeling System (MMS): A toolbox for water- and environmental-resources management

    USGS Publications Warehouse

    Leavesley, G.H.; Markstrom, S.L.; Viger, R.J.; Hay, L.E.; ,

    2005-01-01

    The increasing complexity of water- and environmental-resource problems require modeling approaches that incorporate knowledge from a broad range of scientific and software disciplines. To address this need, the U.S. Geological Survey (USGS) has developed the Modular Modeling System (MMS). MMS is an integrated system of computer software for model development, integration, and application. Its modular design allows a high level of flexibility and adaptability to enable modelers to incorporate their own software into a rich array of built-in models and modeling tools. These include individual process models, tightly coupled models, loosely coupled models, and fully- integrated decision support systems. A geographic information system (GIS) interface, the USGS GIS Weasel, has been integrated with MMS to enable spatial delineation and characterization of basin and ecosystem features, and to provide objective parameter-estimation methods for models using available digital data. MMS provides optimization and sensitivity-analysis tools to analyze model parameters and evaluate the extent to which uncertainty in model parameters affects uncertainty in simulation results. MMS has been coupled with the Bureau of Reclamation object-oriented reservoir and river-system modeling framework, RiverWare, to develop models to evaluate and apply optimal resource-allocation and management strategies to complex, operational decisions on multipurpose reservoir systems and watersheds. This decision support system approach has been developed, tested, and implemented in the Gunnison, Yakima, San Joaquin, Rio Grande, and Truckee River basins of the western United States. MMS is currently being coupled with the U.S. Forest Service model SIMulating Patterns and Processes at Landscape Scales (SIMPPLLE) to assess the effects of alternative vegetation-management strategies on a variety of hydrological and ecological responses. Initial development and testing of the MMS-SIMPPLLE integration is being conducted on the Colorado Plateau region of the western United Sates.

  10. Heating efficiency evaluation with mimicking plasma conditions of integrated fast-ignition experiment.

    PubMed

    Fujioka, Shinsuke; Johzaki, Tomoyuki; Arikawa, Yasunobu; Zhang, Zhe; Morace, Alessio; Ikenouchi, Takahito; Ozaki, Tetsuo; Nagai, Takahiro; Abe, Yuki; Kojima, Sadaoki; Sakata, Shohei; Inoue, Hiroaki; Utsugi, Masaru; Hattori, Shoji; Hosoda, Tatsuya; Lee, Seung Ho; Shigemori, Keisuke; Hironaka, Youichiro; Sunahara, Atsushi; Sakagami, Hitoshi; Mima, Kunioki; Fujimoto, Yasushi; Yamanoi, Kohei; Norimatsu, Takayoshi; Tokita, Shigeki; Nakata, Yoshiki; Kawanaka, Junji; Jitsuno, Takahisa; Miyanaga, Noriaki; Nakai, Mitsuo; Nishimura, Hiroaki; Shiraga, Hiroyuki; Nagatomo, Hideo; Azechi, Hiroshi

    2015-06-01

    A series of experiments were carried out to evaluate the energy-coupling efficiency from heating laser to a fuel core in the fast-ignition scheme of laser-driven inertial confinement fusion. Although the efficiency is determined by a wide variety of complex physics, from intense laser plasma interactions to the properties of high-energy density plasmas and the transport of relativistic electron beams (REB), here we simplify the physics by breaking down the efficiency into three measurable parameters: (i) energy conversion ratio from laser to REB, (ii) probability of collision between the REB and the fusion fuel core, and (iii) fraction of energy deposited in the fuel core from the REB. These three parameters were measured with the newly developed experimental platform designed for mimicking the plasma conditions of a realistic integrated fast-ignition experiment. The experimental results indicate that the high-energy tail of REB must be suppressed to heat the fuel core efficiently.

  11. [Evaluation of hydrocarbon-oxidizing bacteria in port water and of health risks related to harbour activities: port of Otranto (Italy)].

    PubMed

    De Donno, Antonella; Bagordo, Francesco; Rollo, Maria Concetta; Quattrocchi, Manuela; Campa, Annamaria; Guido, Marcello

    2006-01-01

    The aim of this study was to evaluate the water quality of the port of Otranto (Italy), through a combined approach which integrates monitoring of traditional microbiological parameters and studying the dynamics of some autochthonous bacterial communities. The fecal contamination indicators, total coliforms, fecal coliforms, and fecal streptococci were measured to evaluate the sanitary aspects, while the presence of organic matter was considered as a parameter strictly related to dumping. In addition, being the port of Otranto especially exposed to hydrocarbon pollution, hydrocarbon-oxidizing bacteria were evaluated. Fecal contamination indicators were consistently found to be below the threshold values set by the Italian legislative decree N. 470/82 for bathing waters, indicating a good microbiological quality of these waters. A higher density of hydrocarbon-oxidizing bacteria was found at mooring and craft transit areas. This parameter was therefore found to be useful for evaluating port water hydrocarbon pollution.

  12. Quantitative evaluation of learning and memory trace in studies of mnemotropic effects of immunotropic drugs.

    PubMed

    Kiseleva, N M; Novoseletskaya, A V; Voevodina, Ye B; Kozlov, I G; Inozemtsev, A N

    2012-12-01

    Apart from restoration of disordered immunological parameters, tactivin and derinat exhibit a pronounced effect on the higher integrative functions of the brain. Experiments on Wistar rats have shown that these drugs accelerated conditioning of food and defense responses. New methods for quantitative evaluation of memory trace consolidation are proposed.

  13. Measures of GCM Performance as Functions of Model Parameters Affecting Clouds and Radiation

    NASA Astrophysics Data System (ADS)

    Jackson, C.; Mu, Q.; Sen, M.; Stoffa, P.

    2002-05-01

    This abstract is one of three related presentations at this meeting dealing with several issues surrounding optimal parameter and uncertainty estimation of model predictions of climate. Uncertainty in model predictions of climate depends in part on the uncertainty produced by model approximations or parameterizations of unresolved physics. Evaluating these uncertainties is computationally expensive because one needs to evaluate how arbitrary choices for any given combination of model parameters affects model performance. Because the computational effort grows exponentially with the number of parameters being investigated, it is important to choose parameters carefully. Evaluating whether a parameter is worth investigating depends on two considerations: 1) does reasonable choices of parameter values produce a large range in model response relative to observational uncertainty? and 2) does the model response depend non-linearly on various combinations of model parameters? We have decided to narrow our attention to selecting parameters that affect clouds and radiation, as it is likely that these parameters will dominate uncertainties in model predictions of future climate. We present preliminary results of ~20 to 30 AMIPII style climate model integrations using NCAR's CCM3.10 that show model performance as functions of individual parameters controlling 1) critical relative humidity for cloud formation (RHMIN), and 2) boundary layer critical Richardson number (RICR). We also explore various definitions of model performance that include some or all observational data sources (surface air temperature and pressure, meridional and zonal winds, clouds, long and short-wave cloud forcings, etc...) and evaluate in a few select cases whether the model's response depends non-linearly on the parameter values we have selected.

  14. All-Optical Wavelength-Path Service With Quality Assurance by Multilayer Integration System

    NASA Astrophysics Data System (ADS)

    Yagi, Mikio; Tanaka, Shinya; Satomi, Shuichi; Ryu, Shiro; Asano, Shoichiro

    2006-09-01

    In the future all-optical network controlled by generalized multiprotocol label switching (GMPLS), the wavelength path between end nodes will change dynamically. This inevitably means that the fiber parameters along the wavelength path will also vary. This variation in fiber parameters influences the signal quality of high-speed-transmission system (bit rates over 40 Gb/s). Therefore, at a path setup, the fiber-parameter effect should be adequately compensated. Moreover, the path setup must be completed fast enough to meet the network-application demands. To realize the rapid setup of adequate paths, a multilayer integration system for all-optical wavelength-path quality assurance is proposed. This multilayer integration system is evaluated in a field trial. In the trial, the GMPLS control plane, measurement plane, and data plane coordinated to maintain the quality of a 40-Gb/s wavelength path that would otherwise be degraded by the influence of chromatic dispersion. It is also demonstrated that the multilayer integration system can assure the signal quality in the face of not only chromatic dispersion but also degradation in the optical signal-to-noise ratio by the use of a 2R regeneration system. Our experiments confirm that the proposed multilayer integration system is an essential part of future all-optical networks.

  15. Model-data integration for developing the Cropland Carbon Monitoring System (CCMS)

    NASA Astrophysics Data System (ADS)

    Jones, C. D.; Bandaru, V.; Pnvr, K.; Jin, H.; Reddy, A.; Sahajpal, R.; Sedano, F.; Skakun, S.; Wagle, P.; Gowda, P. H.; Hurtt, G. C.; Izaurralde, R. C.

    2017-12-01

    The Cropland Carbon Monitoring System (CCMS) has been initiated to improve regional estimates of carbon fluxes from croplands in the conterminous United States through integration of terrestrial ecosystem modeling, use of remote-sensing products and publically available datasets, and development of improved landscape and management databases. In order to develop these improved carbon flux estimates, experimental datasets are essential for evaluating the skill of estimates, characterizing the uncertainty of these estimates, characterizing parameter sensitivities, and calibrating specific modeling components. Experiments were sought that included flux tower measurement of CO2 fluxes under production of major agronomic crops. Currently data has been collected from 17 experiments comprising 117 site-years from 12 unique locations. Calibration of terrestrial ecosystem model parameters using available crop productivity and net ecosystem exchange (NEE) measurements resulted in improvements in RMSE of NEE predictions of between 3.78% to 7.67%, while improvements in RMSE for yield ranged from -1.85% to 14.79%. Model sensitivities were dominated by parameters related to leaf area index (LAI) and spring growth, demonstrating considerable capacity for model improvement through development and integration of remote-sensing products. Subsequent analyses will assess the impact of such integrated approaches on skill of cropland carbon flux estimates.

  16. Estimation of bio-signal based on human motion for integrated visualization of daily-life.

    PubMed

    Umetani, Tomohiro; Matsukawa, Tsuyoshi; Yokoyama, Kiyoko

    2007-01-01

    This paper describes a method for the estimation of bio-signals based on human motion in daily life for an integrated visualization system. The recent advancement of computers and measurement technology has facilitated the integrated visualization of bio-signals and human motion data. It is desirable to obtain a method to understand the activities of muscles based on human motion data and evaluate the change in physiological parameters according to human motion for visualization applications. We suppose that human motion is generated by the activities of muscles reflected from the brain to bio-signals such as electromyograms. This paper introduces a method for the estimation of bio-signals based on neural networks. This method can estimate the other physiological parameters based on the same procedure. The experimental results show the feasibility of the proposed method.

  17. Design of geometric phase measurement in EAST Tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lan, T.; Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031; Liu, H. Q., E-mail: hqliu@ipp.ac.cn

    2016-07-15

    The optimum scheme for geometric phase measurement in EAST Tokamak is proposed in this paper. The theoretical values of geometric phase for the probe beams of EAST Polarimeter-Interferometer (POINT) system are calculated by path integration in parameter space. Meanwhile, the influences of some controllable parameters on geometric phase are evaluated. The feasibility and challenge of distinguishing geometric effect in the POINT signal are also assessed in detail.

  18. The insertion torque-depth curve integral as a measure of implant primary stability: An in vitro study on polyurethane foam blocks.

    PubMed

    Di Stefano, Danilo Alessio; Arosio, Paolo; Gastaldi, Giorgio; Gherlone, Enrico

    2017-07-08

    Recent research has shown that dynamic parameters correlate with insertion energy-that is, the total work needed to place an implant into its site-might convey more reliable information concerning immediate implant primary stability at insertion than the commonly used insertion torque (IT), the reverse torque (RT), or the implant stability quotient (ISQ). Yet knowledge on these dynamic parameters is still limited. The purpose of this in vitro study was to evaluate whether an energy-related parameter, the torque-depth curve integral (I), could be a reliable measure of primary stability. This was done by assessing if (I) measurement was operator-independent, by investigating its correlation with other known primary stability parameters (IT, RT, or ISQ) by quantifying the (I) average error and correlating (I), IT, RT, and ISQ variations with bone density. Five operators placed 200 implants in polyurethane foam blocks of different densities using a micromotor that calculated the (I) during implant placement. Primary implant stability was assessed by measuring the ISQ, IT, and RT. ANOVA tests were used to evaluate whether measurements were operator independent (P>.05 in all cases). A correlation analysis was performed between (I) and IT, ISQ, and RT. The (I) average error was calculated and compared with that of the other parameters by ANOVA. (I)-density, IT-density, ISQ-density, and RT-density plots were drawn, and their slopes were compared by ANCOVA. The (I) measurements were operator independent and correlated with IT, ISQ, and RT. The average error of these parameters was not significantly different (P>.05 in all cases). The (I)-density, IT-density, ISQ-density, and RT-density curves were linear in the 0.16 to 0.49 g/cm³ range, with the (I)-density curves having a significantly greater slope than those regarding the other parameters (P≤.001 in all cases). The torque-depth curve integral (I) provides a reliable assessment of primary stability and shows a greater sensitivity to density variations than other known primary stability parameters. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  19. The Quality of Methods Reporting in Parasitology Experiments

    PubMed Central

    Flórez-Vargas, Oscar; Bramhall, Michael; Noyes, Harry; Cruickshank, Sheena; Stevens, Robert; Brass, Andy

    2014-01-01

    There is a growing concern both inside and outside the scientific community over the lack of reproducibility of experiments. The depth and detail of reported methods are critical to the reproducibility of findings, but also for making it possible to compare and integrate data from different studies. In this study, we evaluated in detail the methods reporting in a comprehensive set of trypanosomiasis experiments that should enable valid reproduction, integration and comparison of research findings. We evaluated a subset of other parasitic (Leishmania, Toxoplasma, Plasmodium, Trichuris and Schistosoma) and non-parasitic (Mycobacterium) experimental infections in order to compare the quality of method reporting more generally. A systematic review using PubMed (2000–2012) of all publications describing gene expression in cells and animals infected with Trypanosoma spp was undertaken based on PRISMA guidelines; 23 papers were identified and included. We defined a checklist of essential parameters that should be reported and have scored the number of those parameters that are reported for each publication. Bibliometric parameters (impact factor, citations and h-index) were used to look for association between Journal and Author status and the quality of method reporting. Trichuriasis experiments achieved the highest scores and included the only paper to score 100% in all criteria. The mean of scores achieved by Trypanosoma articles through the checklist was 65.5% (range 32–90%). Bibliometric parameters were not correlated with the quality of method reporting (Spearman's rank correlation coefficient <−0.5; p>0.05). Our results indicate that the quality of methods reporting in experimental parasitology is a cause for concern and it has not improved over time, despite there being evidence that most of the assessed parameters do influence the results. We propose that our set of parameters be used as guidelines to improve the quality of the reporting of experimental infection models as a pre-requisite for integrating and comparing sets of data. PMID:25076044

  20. The quality of methods reporting in parasitology experiments.

    PubMed

    Flórez-Vargas, Oscar; Bramhall, Michael; Noyes, Harry; Cruickshank, Sheena; Stevens, Robert; Brass, Andy

    2014-01-01

    There is a growing concern both inside and outside the scientific community over the lack of reproducibility of experiments. The depth and detail of reported methods are critical to the reproducibility of findings, but also for making it possible to compare and integrate data from different studies. In this study, we evaluated in detail the methods reporting in a comprehensive set of trypanosomiasis experiments that should enable valid reproduction, integration and comparison of research findings. We evaluated a subset of other parasitic (Leishmania, Toxoplasma, Plasmodium, Trichuris and Schistosoma) and non-parasitic (Mycobacterium) experimental infections in order to compare the quality of method reporting more generally. A systematic review using PubMed (2000-2012) of all publications describing gene expression in cells and animals infected with Trypanosoma spp was undertaken based on PRISMA guidelines; 23 papers were identified and included. We defined a checklist of essential parameters that should be reported and have scored the number of those parameters that are reported for each publication. Bibliometric parameters (impact factor, citations and h-index) were used to look for association between Journal and Author status and the quality of method reporting. Trichuriasis experiments achieved the highest scores and included the only paper to score 100% in all criteria. The mean of scores achieved by Trypanosoma articles through the checklist was 65.5% (range 32-90%). Bibliometric parameters were not correlated with the quality of method reporting (Spearman's rank correlation coefficient <-0.5; p>0.05). Our results indicate that the quality of methods reporting in experimental parasitology is a cause for concern and it has not improved over time, despite there being evidence that most of the assessed parameters do influence the results. We propose that our set of parameters be used as guidelines to improve the quality of the reporting of experimental infection models as a pre-requisite for integrating and comparing sets of data.

  1. Evaluation of hazard and integrity monitor functions for integrated alerting and notification using a sensor simulation framework

    NASA Astrophysics Data System (ADS)

    Bezawada, Rajesh; Uijt de Haag, Maarten

    2010-04-01

    This paper discusses the results of an initial evaluation study of hazard and integrity monitor functions for use with integrated alerting and notification. The Hazard and Integrity Monitor (HIM) (i) allocates information sources within the Integrated Intelligent Flight Deck (IIFD) to required functionality (like conflict detection and avoidance) and determines required performance of these information sources as part of that function; (ii) monitors or evaluates the required performance of the individual information sources and performs consistency checks among various information sources; (iii) integrates the information to establish tracks of potential hazards that can be used for the conflict probes or conflict prediction for various time horizons including the 10, 5, 3, and <3 minutes used in our scenario; (iv) detects and assesses the class of the hazard and provide possible resolutions. The HIM monitors the operation-dependent performance parameters related to the potential hazards in a manner similar to the Required Navigation Performance (RNP). Various HIM concepts have been implemented and evaluated using a previously developed sensor simulator/synthesizer. Within the simulation framework, various inputs to the IIFD and its subsystems are simulated, synthesized from actual collected data, or played back from actual flight test sensor data. The framework and HIM functions are implemented in SimulinkR, a modeling language developed by The MathworksTM. This modeling language allows for test and evaluation of various sensor and communication link configurations as well as the inclusion of feedback from the pilot on the performance of the aircraft.

  2. Experimental and computational correlation of fracture parameters KIc, JIc, and GIc for unimodular and bimodular graphite components

    NASA Astrophysics Data System (ADS)

    Bhushan, Awani; Panda, S. K.

    2018-05-01

    The influence of bimodularity (different stress ∼ strain behaviour in tension and compression) on fracture behaviour of graphite specimens has been studied with fracture toughness (KIc), critical J-integral (JIc) and critical strain energy release rate (GIc) as the characterizing parameter. Bimodularity index (ratio of tensile Young's modulus to compression Young's modulus) of graphite specimens has been obtained from the normalized test data of tensile and compression experimentation. Single edge notch bend (SENB) testing of pre-cracked specimens from the same lot have been carried out as per ASTM standard D7779-11 to determine the peak load and critical fracture parameters KIc, GIc and JIc using digital image correlation technology of crack opening displacements. Weibull weakest link theory has been used to evaluate the mean peak load, Weibull modulus and goodness of fit employing two parameter least square method (LIN2), biased (MLE2-B) and unbiased (MLE2-U) maximum likelihood estimator. The stress dependent elasticity problem of three-dimensional crack progression behaviour for the bimodular graphite components has been solved as an iterative finite element procedure. The crack characterizing parameters critical stress intensity factor and critical strain energy release rate have been estimated with the help of Weibull distribution plot between peak loads versus cumulative probability of failure. Experimental and Computational fracture parameters have been compared qualitatively to describe the significance of bimodularity. The bimodular influence on fracture behaviour of SENB graphite has been reflected on the experimental evaluation of GIc values only, which has been found to be different from the calculated JIc values. Numerical evaluation of bimodular 3D J-integral value is found to be close to the GIc value whereas the unimodular 3D J-value is nearer to the JIc value. The significant difference between the unimodular JIc and bimodular GIc indicates that GIc should be considered as the standard fracture parameter for bimodular brittle specimens.

  3. Assessment of beating parameters in human induced pluripotent stem cells enables quantitative in vitro screening for cardiotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirenko, Oksana, E-mail: oksana.sirenko@moldev.com; Cromwell, Evan F., E-mail: evan.cromwell@moldev.com; Crittenden, Carole

    2013-12-15

    Human induced pluripotent stem cell (iPSC)-derived cardiomyocytes show promise for screening during early drug development. Here, we tested a hypothesis that in vitro assessment of multiple cardiomyocyte physiological parameters enables predictive and mechanistically-interpretable evaluation of cardiotoxicity in a high-throughput format. Human iPSC-derived cardiomyocytes were exposed for 30 min or 24 h to 131 drugs, positive (107) and negative (24) for in vivo cardiotoxicity, in up to 6 concentrations (3 nM to 30 uM) in 384-well plates. Fast kinetic imaging was used to monitor changes in cardiomyocyte function using intracellular Ca{sup 2+} flux readouts synchronous with beating, and cell viability. Amore » number of physiological parameters of cardiomyocyte beating, such as beat rate, peak shape (amplitude, width, raise, decay, etc.) and regularity were collected using automated data analysis. Concentration–response profiles were evaluated using logistic modeling to derive a benchmark concentration (BMC) point-of-departure value, based on one standard deviation departure from the estimated baseline in vehicle (0.3% dimethyl sulfoxide)-treated cells. BMC values were used for cardiotoxicity classification and ranking of compounds. Beat rate and several peak shape parameters were found to be good predictors, while cell viability had poor classification accuracy. In addition, we applied the Toxicological Prioritization Index (ToxPi) approach to integrate and display data across many collected parameters, to derive “cardiosafety” ranking of tested compounds. Multi-parameter screening of beating profiles allows for cardiotoxicity risk assessment and identification of specific patterns defining mechanism-specific effects. These data and analysis methods may be used widely for compound screening and early safety evaluation in drug development. - Highlights: • Induced pluripotent stem cell-derived cardiomyocytes are promising in vitro models. • We tested if evaluation of cardiotoxicity is possible in a high-throughput format. • The assay shows benefits of automated data integration across multiple parameters. • Quantitative assessment of concentration–response is possible using iPSCs. • Multi-parametric screening allows for cardiotoxicity risk assessment.« less

  4. LS-DYNA Simulation of Hemispherical-punch Stamping Process Using an Efficient Algorithm for Continuum Damage Based Elastoplastic Constitutive Equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salajegheh, Nima; Abedrabbo, Nader; Pourboghrat, Farhang

    An efficient integration algorithm for continuum damage based elastoplastic constitutive equations is implemented in LS-DYNA. The isotropic damage parameter is defined as the ratio of the damaged surface area over the total cross section area of the representative volume element. This parameter is incorporated into the integration algorithm as an internal variable. The developed damage model is then implemented in the FEM code LS-DYNA as user material subroutine (UMAT). Pure stretch experiments of a hemispherical punch are carried out for copper sheets and the results are compared against the predictions of the implemented damage model. Evaluation of damage parameters ismore » carried out and the optimized values that correctly predicted the failure in the sheet are reported. Prediction of failure in the numerical analysis is performed through element deletion using the critical damage value. The set of failure parameters which accurately predict the failure behavior in copper sheets compared to experimental data is reported as well.« less

  5. Identification of Linear and Nonlinear Sensory Processing Circuits from Spiking Neuron Data.

    PubMed

    Florescu, Dorian; Coca, Daniel

    2018-03-01

    Inferring mathematical models of sensory processing systems directly from input-output observations, while making the fewest assumptions about the model equations and the types of measurements available, is still a major issue in computational neuroscience. This letter introduces two new approaches for identifying sensory circuit models consisting of linear and nonlinear filters in series with spiking neuron models, based only on the sampled analog input to the filter and the recorded spike train output of the spiking neuron. For an ideal integrate-and-fire neuron model, the first algorithm can identify the spiking neuron parameters as well as the structure and parameters of an arbitrary nonlinear filter connected to it. The second algorithm can identify the parameters of the more general leaky integrate-and-fire spiking neuron model, as well as the parameters of an arbitrary linear filter connected to it. Numerical studies involving simulated and real experimental recordings are used to demonstrate the applicability and evaluate the performance of the proposed algorithms.

  6. Integrating retention soil filters into urban hydrologic models - Relevant processes and important parameters

    NASA Astrophysics Data System (ADS)

    Bachmann-Machnik, Anna; Meyer, Daniel; Waldhoff, Axel; Fuchs, Stephan; Dittmer, Ulrich

    2018-04-01

    Retention Soil Filters (RSFs), a form of vertical flow constructed wetlands specifically designed for combined sewer overflow (CSO) treatment, have proven to be an effective tool to mitigate negative impacts of CSOs on receiving water bodies. Long-term hydrologic simulations are used to predict the emissions from urban drainage systems during planning of stormwater management measures. So far no universally accepted model for RSF simulation exists. When simulating hydraulics and water quality in RSFs, an appropriate level of detail must be chosen for reasonable balancing between model complexity and model handling, considering the model input's level of uncertainty. The most crucial parameters determining the resultant uncertainties of the integrated sewer system and filter bed model were identified by evaluating a virtual drainage system with a Retention Soil Filter for CSO treatment. To determine reasonable parameter ranges for RSF simulations, data of 207 events from six full-scale RSF plants in Germany were analyzed. Data evaluation shows that even though different plants with varying loading and operation modes were examined, a simple model is sufficient to assess relevant suspended solids (SS), chemical oxygen demand (COD) and NH4 emissions from RSFs. Two conceptual RSF models with different degrees of complexity were assessed. These models were developed based on evaluation of data from full scale RSF plants and column experiments. Incorporated model processes are ammonium adsorption in the filter layer and degradation during subsequent dry weather period, filtration of SS and particulate COD (XCOD) to a constant background concentration and removal of solute COD (SCOD) by a constant removal rate during filter passage as well as sedimentation of SS and XCOD in the filter overflow. XCOD, SS and ammonium loads as well as ammonium concentration peaks are discharged primarily via RSF overflow not passing through the filter bed. Uncertainties of the integrated simulation of the sewer system and RSF model mainly originate from the model parameters of the hydrologic sewer system model.

  7. Ground Albedo Neutron Sensing (GANS) method for measurements of soil moisture in cropped fields

    NASA Astrophysics Data System (ADS)

    Andres Rivera Villarreyes, Carlos; Baroni, Gabriele; Oswald, Sascha E.

    2013-04-01

    Measurement of soil moisture at the plot or hill-slope scale is an important link between local vadose zone hydrology and catchment hydrology. However, so far only few methods are on the way to close this gap between point measurements and remote sensing. This study evaluates the applicability of the Ground Albedo Neutron Sensing (GANS) for integral quantification of seasonal soil moisture in the root zone at the scale of a field or small watershed, making use of the crucial role of hydrogen as neutron moderator relative to other landscape materials. GANS measurements were performed at two locations in Germany under different vegetative situations and seasonal conditions. Ground albedo neutrons were measured at (i) a lowland Bornim farmland (Brandenburg) cropped with sunflower in 2011 and winter rye in 2012, and (ii) a mountainous farmland catchment (Schaefertal, Harz Mountains) since middle 2011. At both sites depth profiles of soil moisture were measured at several locations in parallel by frequency domain reflectometry (FDR) for comparison and calibration. Initially, calibration parameters derived from a previous study with corn cover were tested under sunflower and winter rye periods at the same farmland. GANS soil moisture based on these parameters showed a large discrepancy compared to classical soil moisture measurements. Therefore, two new calibration approaches and four different ways of integration the soil moisture profile to an integral value for GANS were evaluated in this study. This included different sets of calibration parameters based on different growing periods of sunflower. New calibration parameters showed a good agreement with FDR network during sunflower period (RMSE = 0.023 m3 m-3), but they underestimated soil moisture in the winter rye period. The GANS approach resulted to be highly affected by temporal changes of biomass and crop types which suggest the need of neutron corrections for long-term observations with crop rotation. Finally, Bornim sunflower parameters were transferred to Schaefertal catchment for further evaluation. This study proves GANS potential to close the measurement gap between point scale and remote sensing scale; however, its calibration needs to be adapted for vegetation in cropped fields.

  8. Time-varying volatility in Malaysian stock exchange: An empirical study using multiple-volatility-shift fractionally integrated model

    NASA Astrophysics Data System (ADS)

    Cheong, Chin Wen

    2008-02-01

    This article investigated the influences of structural breaks on the fractionally integrated time-varying volatility model in the Malaysian stock markets which included the Kuala Lumpur composite index and four major sectoral indices. A fractionally integrated time-varying volatility model combined with sudden changes is developed to study the possibility of structural change in the empirical data sets. Our empirical results showed substantial reduction in fractional differencing parameters after the inclusion of structural change during the Asian financial and currency crises. Moreover, the fractionally integrated model with sudden change in volatility performed better in the estimation and specification evaluations.

  9. EFFECT OF SOLID MEDIUM DURING COOLED STORAGE ON STALLION SPERM PARAMETERS.

    PubMed

    Santos, F C; Corcini, C D; Costa, V G; Gheller, S M; Nogueira, C E; da Rosa Curcio, B; Varel, A S

    2015-01-01

    Solid storage medium prevents cellular sedimentation, reduces metabolic demand via limiting movement, and avoids the modification of an extender composition in the sedimentary microenvironment. It has been proven to prolong spermatozoa viability in mammalians. This experiment aims to evaluate the effect of cool storage in solid phase extender on stallion sperms. Semen was collected from 10 Crioulo stallions (n=30) and submitted to treatments: control group (semen extender) and groups with gelatin addition in different concentrations (semen extender + 1%, 2% and 3%). Seminal analyses included motility, mitochondrial functionality, plasma membrane integrity, DNA and acrosome at 0; 24; 48 and 72 hours during cooled storage at 5 degree C. Motility, mitochondrial functionality, plasma membrane and acrosome integrity declined during storage time, with no statistical difference between treatments. DNA integrity did not significantly change during storage period. Solid medium was not harmful and did not improved stallion sperm parameters during cooled storage.

  10. Mining method selection by integrated AHP and PROMETHEE method.

    PubMed

    Bogdanovic, Dejan; Nikolic, Djordje; Ilic, Ivana

    2012-03-01

    Selecting the best mining method among many alternatives is a multicriteria decision making problem. The aim of this paper is to demonstrate the implementation of an integrated approach that employs AHP and PROMETHEE together for selecting the most suitable mining method for the "Coka Marin" underground mine in Serbia. The related problem includes five possible mining methods and eleven criteria to evaluate them. Criteria are accurately chosen in order to cover the most important parameters that impact on the mining method selection, such as geological and geotechnical properties, economic parameters and geographical factors. The AHP is used to analyze the structure of the mining method selection problem and to determine weights of the criteria, and PROMETHEE method is used to obtain the final ranking and to make a sensitivity analysis by changing the weights. The results have shown that the proposed integrated method can be successfully used in solving mining engineering problems.

  11. ASRM test report: Autoclave cure process development

    NASA Technical Reports Server (NTRS)

    Nachbar, D. L.; Mitchell, Suzanne

    1992-01-01

    ASRM insulated segments will be autoclave cured following insulation pre-form installation and strip wind operations. Following competitive bidding, Aerojet ASRM Division (AAD) Purchase Order 100142 was awarded to American Fuel Cell and Coated Fabrics Company, Inc. (Amfuel), Magnolia, AR, for subcontracted insulation autoclave cure process development. Autoclave cure process development test requirements were included in Task 3 of TM05514, Manufacturing Process Development Specification for Integrated Insulation Characterization and Stripwind Process Development. The test objective was to establish autoclave cure process parameters for ASRM insulated segments. Six tasks were completed to: (1) evaluate cure parameters that control acceptable vulcanization of ASRM Kevlar-filled EPDM insulation material; (2) identify first and second order impact parameters on the autoclave cure process; and (3) evaluate insulation material flow-out characteristics to support pre-form configuration design.

  12. Data Processing Algorithm for Diagnostics of Combustion Using Diode Laser Absorption Spectrometry.

    PubMed

    Mironenko, Vladimir R; Kuritsyn, Yuril A; Liger, Vladimir V; Bolshov, Mikhail A

    2018-02-01

    A new algorithm for the evaluation of the integral line intensity for inferring the correct value for the temperature of a hot zone in the diagnostic of combustion by absorption spectroscopy with diode lasers is proposed. The algorithm is based not on the fitting of the baseline (BL) but on the expansion of the experimental and simulated spectra in a series of orthogonal polynomials, subtracting of the first three components of the expansion from both the experimental and simulated spectra, and fitting the spectra thus modified. The algorithm is tested in the numerical experiment by the simulation of the absorption spectra using a spectroscopic database, the addition of white noise, and the parabolic BL. Such constructed absorption spectra are treated as experimental in further calculations. The theoretical absorption spectra were simulated with the parameters (temperature, total pressure, concentration of water vapor) close to the parameters used for simulation of the experimental data. Then, spectra were expanded in the series of orthogonal polynomials and first components were subtracted from both spectra. The value of the correct integral line intensities and hence the correct temperature evaluation were obtained by fitting of the thus modified experimental and simulated spectra. The dependence of the mean and standard deviation of the evaluation of the integral line intensity on the linewidth and the number of subtracted components (first two or three) were examined. The proposed algorithm provides a correct estimation of temperature with standard deviation better than 60 K (for T = 1000 K) for the line half-width up to 0.6 cm -1 . The proposed algorithm allows for obtaining the parameters of a hot zone without the fitting of usually unknown BL.

  13. On the performance of exponential integrators for problems in magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Einkemmer, Lukas; Tokman, Mayya; Loffeld, John

    2017-02-01

    Exponential integrators have been introduced as an efficient alternative to explicit and implicit methods for integrating large stiff systems of differential equations. Over the past decades these methods have been studied theoretically and their performance was evaluated using a range of test problems. While the results of these investigations showed that exponential integrators can provide significant computational savings, the research on validating this hypothesis for large scale systems and understanding what classes of problems can particularly benefit from the use of the new techniques is in its initial stages. Resistive magnetohydrodynamic (MHD) modeling is widely used in studying large scale behavior of laboratory and astrophysical plasmas. In many problems numerical solution of MHD equations is a challenging task due to the temporal stiffness of this system in the parameter regimes of interest. In this paper we evaluate the performance of exponential integrators on large MHD problems and compare them to a state-of-the-art implicit time integrator. Both the variable and constant time step exponential methods of EPIRK-type are used to simulate magnetic reconnection and the Kevin-Helmholtz instability in plasma. Performance of these methods, which are part of the EPIC software package, is compared to the variable time step variable order BDF scheme included in the CVODE (part of SUNDIALS) library. We study performance of the methods on parallel architectures and with respect to magnitudes of important parameters such as Reynolds, Lundquist, and Prandtl numbers. We find that the exponential integrators provide superior or equal performance in most circumstances and conclude that further development of exponential methods for MHD problems is warranted and can lead to significant computational advantages for large scale stiff systems of differential equations such as MHD.

  14. The safe use of Doliocarpus dentatus in the gestational period: Absence of changes in maternal reproductive performance, embryo-fetal development and DNA integrity.

    PubMed

    Ishikawa, Raissa Borges; Vani, Juliana Miron; das Neves, Silvia Cordeiro; Rabacow, Ana Paula Maluf; Kassuya, Cândida Aparecida Leite; Croda, Júlio; Cardoso, Claudia Andrea Lima; Monreal, Antônio Carlos Duenhas Ferreira; Antoniolli, Andreia Conceição Milan Brochado; Cunha-Laura, Andréa Luiza; Oliveira, Rodrigo Juliano

    2018-05-10

    Doliocarpus dentatus (Dilleniaceae) is commonly used in Brazil for the treatment of inflammatory process pain and urinary retention. Previous studies of our group have demonstrated the anti-inflammatory and antimycobacterial action of the ethanolic extract of Doliocarpus dentatus (EEDd) as well as the safety of its use. we investigated the effects of EEDd on reproductive performance, fetal development and DNA integrity in pregnant female Swiss mice. thirty female Swiss mice were divided into three experimental groups (n = 10): control group treated with 1% tween-80 and EEDd1 and EEDd2 groups treated with EEDd at doses of 100 and 1000 mg/kg, respectively. The treatment occurred by oral gavage throughout the gestational period. At the end of pregnancy, parameters related to reproductive performance, embryofoetal development and DNA integrity was evaluated. both doses of the extract tested did not alter the reproductive parameters, did not present significant differences in the embryofetal development when compared to the control group and also did not induce the formation of micronuclei. the EEDd do not alter the reproductive parameters, embryofetal development and DNA integrity, ensuring its safe use during pregnancy. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Glutathione in combination with trehalose has supplementary beneficial effects on cryopreserved red deer (cervus elaphus) sperm.

    PubMed

    Wang, Yan; Dong, Shude

    2017-01-01

    In this study, we evaluated the effects of glutathione in combination with trehalose addition to semen extenders on the quality parameters of frozen-thawed red deer (cervus elaphus) spermatozoa. The semen samples collected from six mature red deer once a week were diluted with Tris-egg yolk-based extenders. The diluted semen samples were supplemented with glutathione (8 mmol L -1 ) and or trehalose (5%, w/v), cryopreserved, thawed and then subjected to sperm quality parameter evaluation. Both glutathione and trehalose addition to the extender significantly improved progressive motility, acrosome integrity, membrane integrity, superoxide dismutase and glutathione peroxidase activity and decreased percentage abnormality and sperm malondialdehyde level compared with the control group (P<.05). Moreover, glutathione in combination with trehalose addition to semen extenders had higher efficiency compared with the glutathione or trehalose addition alone (P<.05). Therefore, glutathione in combination with trehalose could be a promising cryoprotectant for red deer sperm. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Improving information retrieval in functional analysis.

    PubMed

    Rodriguez, Juan C; González, Germán A; Fresno, Cristóbal; Llera, Andrea S; Fernández, Elmer A

    2016-12-01

    Transcriptome analysis is essential to understand the mechanisms regulating key biological processes and functions. The first step usually consists of identifying candidate genes; to find out which pathways are affected by those genes, however, functional analysis (FA) is mandatory. The most frequently used strategies for this purpose are Gene Set and Singular Enrichment Analysis (GSEA and SEA) over Gene Ontology. Several statistical methods have been developed and compared in terms of computational efficiency and/or statistical appropriateness. However, whether their results are similar or complementary, the sensitivity to parameter settings, or possible bias in the analyzed terms has not been addressed so far. Here, two GSEA and four SEA methods and their parameter combinations were evaluated in six datasets by comparing two breast cancer subtypes with well-known differences in genetic background and patient outcomes. We show that GSEA and SEA lead to different results depending on the chosen statistic, model and/or parameters. Both approaches provide complementary results from a biological perspective. Hence, an Integrative Functional Analysis (IFA) tool is proposed to improve information retrieval in FA. It provides a common gene expression analytic framework that grants a comprehensive and coherent analysis. Only a minimal user parameter setting is required, since the best SEA/GSEA alternatives are integrated. IFA utility was demonstrated by evaluating four prostate cancer and the TCGA breast cancer microarray datasets, which showed its biological generalization capabilities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Transforming parts of a differential equations system to difference equations as a method for run-time savings in NONMEM.

    PubMed

    Petersson, K J F; Friberg, L E; Karlsson, M O

    2010-10-01

    Computer models of biological systems grow more complex as computing power increase. Often these models are defined as differential equations and no analytical solutions exist. Numerical integration is used to approximate the solution; this can be computationally intensive, time consuming and be a large proportion of the total computer runtime. The performance of different integration methods depend on the mathematical properties of the differential equations system at hand. In this paper we investigate the possibility of runtime gains by calculating parts of or the whole differential equations system at given time intervals, outside of the differential equations solver. This approach was tested on nine models defined as differential equations with the goal to reduce runtime while maintaining model fit, based on the objective function value. The software used was NONMEM. In four models the computational runtime was successfully reduced (by 59-96%). The differences in parameter estimates, compared to using only the differential equations solver were less than 12% for all fixed effects parameters. For the variance parameters, estimates were within 10% for the majority of the parameters. Population and individual predictions were similar and the differences in OFV were between 1 and -14 units. When computational runtime seriously affects the usefulness of a model we suggest evaluating this approach for repetitive elements of model building and evaluation such as covariate inclusions or bootstraps.

  18. Effect of different concentrations of soybean lecithin and virgin coconut oil in Tris-based extender on the quality of chilled and frozen-thawed bull semen

    PubMed Central

    Tarig, A. A.; Wahid, H.; Rosnina, Y.; Yimer, N.; Goh, Y. M.; Baiee, F. H.; Khumran, A. M.; Salman, H.; Assi, M. A.; Ebrahimi, M.

    2017-01-01

    Aim: The objective of this study was to evaluate the effects of different concentrations of soybean lecithin (SL) and virgin coconut oil (VCO) in Tris-based extender on chilled and frozen-thawed bull semen quality parameters. Materials and Methods: A total of 24 ejaculates were collected from four bulls via an electroejaculator. Semen samples were diluted with 2% VCO in Tris-based extender which consists of various concentrations of SL (1, 1.25, 1.5, and 1.75%). A 20% egg yolk in Tris used as a positive control (C+). The diluted semen samples were divided into two fractions; one for chilling which were stored at 4°C for 24, 72, and 144 h before evaluated for semen quality parameters. The second fraction used for freezing was chilled for 3 h at 4°C, packed into 0.25 mL straws and then cryopreserved in liquid nitrogen. The samples were then evaluated after 7 and 14 days. Chilled and frozen semen samples were thawed at 37°C and assessed for general motility using computer-assisted semen analysis, viability, acrosome integrity and morphology (eosin-nigrosin stain), membrane integrity, and lipid peroxidation using thiobarbituric acid reaction test. Results: The results showed that all the quality parameters assessed were significantly (p<0.05) improved at 1.5% SL concentration in chilled semen. Treatment groups of 1, 1.25, 1.5, and 1.75% SL were higher in quality parameters than the control group (C+) in chilled semen. However, all the quality parameters in frozen-thawed semen were significantly higher in the C+ than the treated groups. Conclusion: In conclusion, supplementation of 1.5% SL in 2% VCO Tris-based extender enhanced the chilled bull semen. However, there was no marked improvement in the frozen-thawed quality parameters after treatment. PMID:28717321

  19. Effect of different concentrations of soybean lecithin and virgin coconut oil in Tris-based extender on the quality of chilled and frozen-thawed bull semen.

    PubMed

    Tarig, A A; Wahid, H; Rosnina, Y; Yimer, N; Goh, Y M; Baiee, F H; Khumran, A M; Salman, H; Assi, M A; Ebrahimi, M

    2017-06-01

    The objective of this study was to evaluate the effects of different concentrations of soybean lecithin (SL) and virgin coconut oil (VCO) in Tris-based extender on chilled and frozen-thawed bull semen quality parameters. A total of 24 ejaculates were collected from four bulls via an electroejaculator. Semen samples were diluted with 2% VCO in Tris-based extender which consists of various concentrations of SL (1, 1.25, 1.5, and 1.75%). A 20% egg yolk in Tris used as a positive control (C+). The diluted semen samples were divided into two fractions; one for chilling which were stored at 4°C for 24, 72, and 144 h before evaluated for semen quality parameters. The second fraction used for freezing was chilled for 3 h at 4°C, packed into 0.25 mL straws and then cryopreserved in liquid nitrogen. The samples were then evaluated after 7 and 14 days. Chilled and frozen semen samples were thawed at 37°C and assessed for general motility using computer-assisted semen analysis, viability, acrosome integrity and morphology (eosin-nigrosin stain), membrane integrity, and lipid peroxidation using thiobarbituric acid reaction test. The results showed that all the quality parameters assessed were significantly (p<0.05) improved at 1.5% SL concentration in chilled semen. Treatment groups of 1, 1.25, 1.5, and 1.75% SL were higher in quality parameters than the control group (C+) in chilled semen. However, all the quality parameters in frozen-thawed semen were significantly higher in the C+ than the treated groups. In conclusion, supplementation of 1.5% SL in 2% VCO Tris-based extender enhanced the chilled bull semen. However, there was no marked improvement in the frozen-thawed quality parameters after treatment.

  20. Techniques for control of long-term reliability of complex integrated circuits. I - Reliability assurance by test vehicle qualification.

    NASA Technical Reports Server (NTRS)

    Van Vonno, N. W.

    1972-01-01

    Development of an alternate approach to the conventional methods of reliability assurance for large-scale integrated circuits. The product treated is a large-scale T squared L array designed for space applications. The concept used is that of qualification of product by evaluation of the basic processing used in fabricating the product, providing an insight into its potential reliability. Test vehicles are described which enable evaluation of device characteristics, surface condition, and various parameters of the two-level metallization system used. Evaluation of these test vehicles is performed on a lot qualification basis, with the lot consisting of one wafer. Assembled test vehicles are evaluated by high temperature stress at 300 C for short time durations. Stressing at these temperatures provides a rapid method of evaluation and permits a go/no go decision to be made on the wafer lot in a timely fashion.

  1. First Conclusions of the WPEC/Subgroup-22 Nuclear Data for Improved LEU-LWR Reactivity Predictions

    NASA Astrophysics Data System (ADS)

    Courcelle, Arnaud

    2005-05-01

    This paper is a summary of a collective work in the framework of the Working Party in International Nuclear Data Evaluation and Co-operation (WPEC) to investigate the reasons for systematic reactivity underprediction of thermal LEU-LWR (Low-Enriched Uranium, Light-Water Reactor). This keff underprediction (≈ -500 pcm) is observed with the most recent nuclear data libraries (ENDF/B-VI.8, JENDL3.3 and JEFF3.0) This report reviews the evaluation work performed at several laboratories [Oak Ridge National Laboratory (ORNL), Los Alamos National Laboratory (LANL), Commissariat a l'énergie atomique de Bruyeres-Le-Chatel (CEA-BRC), International Atomic Energy Agency (IAEA)] as well as the integral tests (mainly at LANL, Knoll Atomic Power Laboratory (KAPL), Bettis Atomic Power Laboratory (BAPL), Nuclear Research and Consultancy Group NRG-Petten, CEA and IAEA) of the successive versions of the new evaluated files. The present status of the work can be summarized as follows: • Improved evaluations of 238U inelastic data proposed by LANL and CEA-BRC were tested against integral benchmarks and partially improve the reactivity prediction. • The thermal capture cross-section of 238U has been revised, and a new evaluation of 238U resonance parameters, up to 20 keV, is in progress at ORNL. Integral tests have ensured that the modifications of 238U capture cross-section in the thermal and resolved range were still compatible with 238U integral measurements (238U capture rate ratios measured in critical facilities and 239Pu build-up prediction in a depleted pressurized water reactor (PWR) assembly). It is demonstrated that the combination of the new inelastic data (LANL or BRC) with the preliminary ORNL resonance parameter set gives a good correction of the reactivity under-estimation. The provisional conclusions of this collective work are expected to contribute toward the improvement of the future versions of nuclear data libraries.

  2. Influence of everyday bolus consistencies in different body positions on high-resolution esophageal pressure topography (HREPT) parameters.

    PubMed

    Hasan, Y; Go, J; Hashmi, S M; Valestin, J; Schey, R

    2015-04-01

    The standard protocol for esophageal manometry involves placing the patient in the supine position with head turned to left (supine head left [SHL]) while evaluating liquid bolus swallows. Routinely, semisolid or solid boluses are not evaluated. Currently, the daily American diet includes up to 40% solid or semisolid texture. Thus far, the data on the effect of different bolus on high-resolution esophageal pressure topography (HREPT) parameters are scarce. This study aims to evaluate the effect of every day bolus consistencies in different body positions on HREPT variables. HREPT was performed on healthy volunteers with a modified protocol including liquid swallows in the SHL position followed by applesauce (semisolid), cracker (solid), and marshmallow (soft solid) in three different positions (SHL, sitting, and standing). A total of 38 healthy adult subjects (22 males and 16 females, median age = 27, and mean body mass index = 25) were evaluated. The resting upper esophageal sphincter pressure was significantly different while subjects swallowed crackers, applesauce, and marshmallows in most positions compared with liquid SHL (P < 0.05). The lower esophageal sphincter, contractile front velocity, and distal contractile integral pressures did not differ in all different consistencies compared with SHL. The integrated relaxation period was significantly higher with solid bolus compared with liquid bolus only in SHL position. The intrabolus pressure was significantly different with solid and soft solid boluses in all postures compared to liquid SHL. The American diet consistency affects upper esophageal sphincter pressure and partially integrated relaxation period and intrabolus pressure in various positions. Semisolid bolus swallows do not cause substantial pressure changes and are safe for evaluation and maintaining adequate caloric intake in patients with dysphagia who cannot tolerate solids. © 2014 International Society for Diseases of the Esophagus.

  3. Design integration for minimal energy and cost

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halldane, J.E.

    The authors present requirements for creating alternative energy conserving designs including energy management and architectural, plumbing, mechanical, electrical, electronic and optical design. Parameters of power, energy, life cycle costs and benefit for resource for an evaluation by the interested parties are discussed. They present an analysis of power systems through a seasonal power distribution diagram. An analysis of cost systems includes capital cost from the power components, annual costs from the utility energy use, and finance costs with loans, taxes, settlement and design fees. Equations are transposed to the evaluative parameter and are uniquely explicit with consistent symbols, parameter definitions,more » dual and balanced units, unit conversions, criteria for operation, incorporated constants for rapid calculations, references to data in the handbook, other common terms, and instrumentation for the measurement. Each component equation has a key power diagram.« less

  4. A New Approach for Resolving Conflicts in Actionable Behavioral Rules

    PubMed Central

    Zhu, Dan; Zeng, Daniel

    2014-01-01

    Knowledge is considered actionable if users can take direct actions based on such knowledge to their advantage. Among the most important and distinctive actionable knowledge are actionable behavioral rules that can directly and explicitly suggest specific actions to take to influence (restrain or encourage) the behavior in the users' best interest. However, in mining such rules, it often occurs that different rules may suggest the same actions with different expected utilities, which we call conflicting rules. To resolve the conflicts, a previous valid method was proposed. However, inconsistency of the measure for rule evaluating may hinder its performance. To overcome this problem, we develop a new method that utilizes rule ranking procedure as the basis for selecting the rule with the highest utility prediction accuracy. More specifically, we propose an integrative measure, which combines the measures of the support and antecedent length, to evaluate the utility prediction accuracies of conflicting rules. We also introduce a tunable weight parameter to allow the flexibility of integration. We conduct several experiments to test our proposed approach and evaluate the sensitivity of the weight parameter. Empirical results indicate that our approach outperforms those from previous research. PMID:25162054

  5. Modulating Wnt Signaling Pathway to Enhance Allograft Integration in Orthopedic Trauma Treatment

    DTIC Science & Technology

    2014-04-01

    Quantitative output provides an extensive set of data but we have chosen to present the most relevant parameters that are reflected in the following...have been harvested.  All harvested samples have been scanned by µCT and evaluated for multiple parameters .  All samples have been mechanically... Hydroxyapatite /Tricalcium Phosphate-Coated Implants in a Rat Model. J.Biomed.Mater.Res.B Appl.Biomater. 2005;74(2):712-7. 4. De Ranieri, A., Virdi, A. S

  6. A Descriptive Evaluation of Long-Term Treatment Integrity

    ERIC Educational Resources Information Center

    Arkoosh, Maire Kathryn; Derby, K. Mark; Wacker, David P.; Berg, Wendy; McLaughlin, T. F.; Barretto, Anjali

    2007-01-01

    The validity of selecting treatment contingencies on the basis of the results obtained through functional analysis is well documented. However, a number of second-generation questions have emerged: For example, what are the parameters required to achieve desired treatment outcomes? More specifically, what is the degree of treatment integrity…

  7. Development of photosynthetic response curves and their integration into a decision-support tool for floriculture growers

    USDA-ARS?s Scientific Manuscript database

    Irradiance, CO2, and temperature are critical inputs for photosynthesis and crop growth. They are also environmental parameters which growers can control in protected horticulture production systems. We evaluated the photosynthetic response of 13 herbaceous ornamentals (Begonia × hiemalis, Begonia...

  8. Integrated water system simulation by considering hydrological and biogeochemical processes: model development, with parameter sensitivity and autocalibration

    NASA Astrophysics Data System (ADS)

    Zhang, Y. Y.; Shao, Q. X.; Ye, A. Z.; Xing, H. T.; Xia, J.

    2016-02-01

    Integrated water system modeling is a feasible approach to understanding severe water crises in the world and promoting the implementation of integrated river basin management. In this study, a classic hydrological model (the time variant gain model: TVGM) was extended to an integrated water system model by coupling multiple water-related processes in hydrology, biogeochemistry, water quality, and ecology, and considering the interference of human activities. A parameter analysis tool, which included sensitivity analysis, autocalibration and model performance evaluation, was developed to improve modeling efficiency. To demonstrate the model performances, the Shaying River catchment, which is the largest highly regulated and heavily polluted tributary of the Huai River basin in China, was selected as the case study area. The model performances were evaluated on the key water-related components including runoff, water quality, diffuse pollution load (or nonpoint sources) and crop yield. Results showed that our proposed model simulated most components reasonably well. The simulated daily runoff at most regulated and less-regulated stations matched well with the observations. The average correlation coefficient and Nash-Sutcliffe efficiency were 0.85 and 0.70, respectively. Both the simulated low and high flows at most stations were improved when the dam regulation was considered. The daily ammonium-nitrogen (NH4-N) concentration was also well captured with the average correlation coefficient of 0.67. Furthermore, the diffuse source load of NH4-N and the corn yield were reasonably simulated at the administrative region scale. This integrated water system model is expected to improve the simulation performances with extension to more model functionalities, and to provide a scientific basis for the implementation in integrated river basin managements.

  9. Assessment of BTEX-induced health risk under multiple uncertainties at a petroleum-contaminated site: An integrated fuzzy stochastic approach

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaodong; Huang, Guo H.

    2011-12-01

    Groundwater pollution has gathered more and more attention in the past decades. Conducting an assessment of groundwater contamination risk is desired to provide sound bases for supporting risk-based management decisions. Therefore, the objective of this study is to develop an integrated fuzzy stochastic approach to evaluate risks of BTEX-contaminated groundwater under multiple uncertainties. It consists of an integrated interval fuzzy subsurface modeling system (IIFMS) and an integrated fuzzy second-order stochastic risk assessment (IFSOSRA) model. The IIFMS is developed based on factorial design, interval analysis, and fuzzy sets approach to predict contaminant concentrations under hybrid uncertainties. Two input parameters (longitudinal dispersivity and porosity) are considered to be uncertain with known fuzzy membership functions, and intrinsic permeability is considered to be an interval number with unknown distribution information. A factorial design is conducted to evaluate interactive effects of the three uncertain factors on the modeling outputs through the developed IIFMS. The IFSOSRA model can systematically quantify variability and uncertainty, as well as their hybrids, presented as fuzzy, stochastic and second-order stochastic parameters in health risk assessment. The developed approach haw been applied to the management of a real-world petroleum-contaminated site within a western Canada context. The results indicate that multiple uncertainties, under a combination of information with various data-quality levels, can be effectively addressed to provide supports in identifying proper remedial efforts. A unique contribution of this research is the development of an integrated fuzzy stochastic approach for handling various forms of uncertainties associated with simulation and risk assessment efforts.

  10. Space shuttle aps propellant thermal conditioner study

    NASA Technical Reports Server (NTRS)

    Fulton, D. L.

    1973-01-01

    An analytical and experimental effort was completed to evaluate a baffle type thermal conditioner for superheating O2 and H2 at supercritical pressures. The thermal conditioner consisted of a heat exchanger and an integral reactor (gas generator) operating on O2/H2 propellants. Primary emphasis was placed on the hydrogen conditioner with some effort on the oxygen conditioner and a study completed of alternate concepts for use in conditioning oxygen. A hydrogen conditioner was hot fire tested under a range of conditions to establish ignition, heat exchange and response parameters. A parallel technology task was completed to further evaluate the integral reactor and heat exchanger with the side mounted electrical spark igniter.

  11. SU-E-T-113: Dose Distribution Using Respiratory Signals and Machine Parameters During Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imae, T; Haga, A; Saotome, N

    Purpose: Volumetric modulated arc therapy (VMAT) is a rotational intensity-modulated radiotherapy (IMRT) technique capable of acquiring projection images during treatment. Treatment plans for lung tumors using stereotactic body radiotherapy (SBRT) are calculated with planning computed tomography (CT) images only exhale phase. Purpose of this study is to evaluate dose distribution by reconstructing from only the data such as respiratory signals and machine parameters acquired during treatment. Methods: Phantom and three patients with lung tumor underwent CT scans for treatment planning. They were treated by VMAT while acquiring projection images to derive their respiratory signals and machine parameters including positions ofmore » multi leaf collimators, dose rates and integrated monitor units. The respiratory signals were divided into 4 and 10 phases and machine parameters were correlated with the divided respiratory signals based on the gantry angle. Dose distributions of each respiratory phase were calculated from plans which were reconstructed from the respiratory signals and the machine parameters during treatment. The doses at isocenter, maximum point and the centroid of target were evaluated. Results and Discussion: Dose distributions during treatment were calculated using the machine parameters and the respiratory signals detected from projection images. Maximum dose difference between plan and in treatment distribution was −1.8±0.4% at centroid of target and dose differences of evaluated points between 4 and 10 phases were no significant. Conclusion: The present method successfully evaluated dose distribution using respiratory signals and machine parameters during treatment. This method is feasible to verify the actual dose for moving target.« less

  12. Calculated Effects of Body Shape on the Bow-Shock Overpressures in the Far Field of Bodies in Supersonic Flow

    NASA Technical Reports Server (NTRS)

    Lansing, Donald L.

    1960-01-01

    A theory for the supersonic flow about bodies in uniform flight in a homogeneous medium is reviewed and an integral which expresses the effect of body shape upon the flow parameters in the far field is reduced to a form which may be readily evaluated for arbitrary body shapes. This expression is then used to investigate the effect of nose angle, fineness ratio, and location of maximum body cross section upon the far-field pressure jump across the bow-shock of slender bodies. Curves are presented showing the variation of the shock strength with each of these parameters. It is found that, for a wide variety of shapes having equal fineness ratios, the integral has nearly a constant value.

  13. An improved cryopreservation method for porcine buccal mucosa in ex vivo drug permeation studies using Franz diffusion cells.

    PubMed

    Amores, Sonia; Domenech, José; Colom, Helena; Calpena, Ana C; Clares, Beatriz; Gimeno, Álvaro; Lauroba, Jacinto

    2014-08-18

    The use of isolated animal models to assess percutaneous absorption of molecules is frequently reported. The porcine buccal mucosa has been proposed as a substitute for the buccal mucosa barrier on ex vivo permeability studies avoiding unnecessary sacrifice of animals. But it is not always easy to obtain fresh buccal mucosa. Consequently, human and porcine buccal mucosa is sometimes frozen and stored in liquid nitrogen, but this procedure is not always feasible. One cheaper and simpler alternative is to freeze the buccal mucosa of freshly slaughtered pigs in a mechanical freezer, using DMSO and albumin as cryoprotective agents. This study compared the ex vivo permeability parameters of propranolol hydrochloride through porcine buccal mucosa using a Franz diffusion cell system and HPLC as detection method. The freezing effects on drug permeability parameters were evaluated. Equally histological studies were performed. Furthermore, the use of the parameter transmucosal water loss (TMWL) as an indicator of the buccal mucosa integrity was evaluated just as transepidermal water loss (TEWL) is utilized for skin integrity. The results showed no difference between fresh and frozen mucosal flux, permeability coefficient or lag time of propranolol. However, statistical significant difference in TMWL between fresh and frozen mucosa was observed. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Effects of zeolite supplementation on parameters of intestinal barrier integrity, inflammation, redoxbiology and performance in aerobically trained subjects.

    PubMed

    Lamprecht, Manfred; Bogner, Simon; Steinbauer, Kurt; Schuetz, Burkhard; Greilberger, Joachim F; Leber, Bettina; Wagner, Bernhard; Zinser, Erwin; Petek, Thomas; Wallner-Liebmann, Sandra; Oberwinkler, Tanja; Bachl, Norbert; Schippinger, Gert

    2015-01-01

    Zeolites are crystalline compounds with microporous structures of Si-tetrahedrons. In the gut, these silicates could act as adsorbents, ion-exchangers, catalysts, detergents or anti-diarrheic agents. This study evaluated whether zeolite supplementation affects biomarkers of intestinal wall permeability and parameters of oxidation and inflammation in aerobically trained individuals, and whether it could improve their performance. In a randomized, double-blinded, placebo controlled trial, 52 endurance trained men and women, similar in body fat, non-smokers, 20-50 years, received 1.85 g of zeolite per day for 12 weeks. Stool samples for determination of intestinal wall integrity biomarkers were collected. From blood, markers of redox biology, inflammation, and DNA damage were determined at the beginning and the end of the study. In addition, VO2max and maximum performance were evaluated at baseline and after 12 weeks of treatment. For statistical analyses a 2-factor ANOVA was used. At baseline both groups showed slightly increased stool zonulin concentrations above normal. After 12 weeks with zeolite zonulin was significantly (p < 0.05) decreased in the supplemented group. IL-10 increased tendentially (p < 0.1) in the zeolite group. There were no significant changes observed in the other measured parameters. Twelve weeks of zeolite supplementation exerted beneficial effects on intestinal wall integrity as indicated via decreased concentrations of the tight junction modulator zonulin. This was accompanied by mild anti-inflammatory effects in this cohort of aerobically trained subjects. Further research is needed to explore mechanistic explanations for the observations in this study.

  15. Application of experimental design in geothermal resources assessment of Ciwidey-Patuha, West Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Ashat, Ali; Pratama, Heru Berian

    2017-12-01

    The successful Ciwidey-Patuha geothermal field size assessment required integration data analysis of all aspects to determined optimum capacity to be installed. Resources assessment involve significant uncertainty of subsurface information and multiple development scenarios from these field. Therefore, this paper applied the application of experimental design approach to the geothermal numerical simulation of Ciwidey-Patuha to generate probabilistic resource assessment result. This process assesses the impact of evaluated parameters affecting resources and interacting between these parameters. This methodology have been successfully estimated the maximum resources with polynomial function covering the entire range of possible values of important reservoir parameters.

  16. Controlled Ecological Life Support Systems (CELSS) physiochemical waste management systems evaluation

    NASA Technical Reports Server (NTRS)

    Oleson, M.; Slavin, T.; Liening, F.; Olson, R. L.

    1986-01-01

    Parametric data for six waste management subsystems considered for use on the Space Station are compared, i.e.: (1) dry incineration; (2) wet oxidation; (3) supercritical water oxidation; (4) vapor compression distillation; (5) thermoelectric integrated membrane evaporation system; and (6) vapor phase catalytic ammonia removal. The parameters selected for comparison are on-orbit weight and volume, resupply and return to Earth logistics, power consumption, and heat rejection. Trades studies are performed on subsystem parameters derived from the most recent literature. The Boeing Engineering Trade Study (BETS), an environmental control and life support system (ECLSS) trade study computer program developed by Boeing Aerospace Company, is used to properly size the subsystems under study. The six waste treatment subsystems modeled in this program are sized to process the wastes for a 90-day Space Station mission with an 8-person crew, and an emergency supply period of 28 days. The resulting subsystem parameters are compared not only on an individual subsystem level but also as part of an integrated ECLSS.

  17. Strategic planning for the International Space Station

    NASA Technical Reports Server (NTRS)

    Griner, Carolyn S.

    1990-01-01

    The concept for utilization and operations planning for the International Space Station Freedom was developed in a NASA Space Station Operations Task Force in 1986. Since that time the concept has been further refined to definitize the process and products required to integrate the needs of the international user community with the operational capabilities of the Station in its evolving configuration. The keystone to the process is the development of individual plans by the partners, with the parameters and formats common to the degree that electronic communications techniques can be effectively utilized, while maintaining the proper level and location of configuration control. The integration, evaluation, and verification of the integrated plan, called the Consolidated Operations and Utilization Plan (COUP), is being tested in a multilateral environment to prove out the parameters, interfaces, and process details necessary to produce the first COUP for Space Station in 1991. This paper will describe the concept, process, and the status of the multilateral test case.

  18. Structure simulation with calculated NMR parameters - integrating COSMOS into the CCPN framework.

    PubMed

    Schneider, Olaf; Fogh, Rasmus H; Sternberg, Ulrich; Klenin, Konstantin; Kondov, Ivan

    2012-01-01

    The Collaborative Computing Project for NMR (CCPN) has build a software framework consisting of the CCPN data model (with APIs) for NMR related data, the CcpNmr Analysis program and additional tools like CcpNmr FormatConverter. The open architecture allows for the integration of external software to extend the abilities of the CCPN framework with additional calculation methods. Recently, we have carried out the first steps for integrating our software Computer Simulation of Molecular Structures (COSMOS) into the CCPN framework. The COSMOS-NMR force field unites quantum chemical routines for the calculation of molecular properties with a molecular mechanics force field yielding the relative molecular energies. COSMOS-NMR allows introducing NMR parameters as constraints into molecular mechanics calculations. The resulting infrastructure will be made available for the NMR community. As a first application we have tested the evaluation of calculated protein structures using COSMOS-derived 13C Cα and Cβ chemical shifts. In this paper we give an overview of the methodology and a roadmap for future developments and applications.

  19. Variational path integral molecular dynamics and hybrid Monte Carlo algorithms using a fourth order propagator with applications to molecular systems

    NASA Astrophysics Data System (ADS)

    Kamibayashi, Yuki; Miura, Shinichi

    2016-08-01

    In the present study, variational path integral molecular dynamics and associated hybrid Monte Carlo (HMC) methods have been developed on the basis of a fourth order approximation of a density operator. To reveal various parameter dependence of physical quantities, we analytically solve one dimensional harmonic oscillators by the variational path integral; as a byproduct, we obtain the analytical expression of the discretized density matrix using the fourth order approximation for the oscillators. Then, we apply our methods to realistic systems like a water molecule and a para-hydrogen cluster. In the HMC, we adopt two level description to avoid the time consuming Hessian evaluation. For the systems examined in this paper, the HMC method is found to be about three times more efficient than the molecular dynamics method if appropriate HMC parameters are adopted; the advantage of the HMC method is suggested to be more evident for systems described by many body interaction.

  20. Evaluation of diaphragmatic mobility following intra-abdominal sub-diaphragmatic fixation of a double-layered mesh in rats.

    PubMed

    Ioannis, Tzanoglou; George, Sakorafas; Nikolaos, Kostomitsopoulos; George, Mantziaras; Charalampos, Patraleksis; Nikolaos, Danias; Spyridon, Stergiopoulos; Michael, Safioleas

    2016-04-01

    To evaluate the tissue integration of a double-sided mesh after fixation in diaphragm and to study the diaphragmatic mobility by ultrasound. Twenty male Wistar rats were used. The animals were assigned into two equal groups according to the day of euthanasia. The animals were anesthetized and a 1.5 x 1.5 cm of double-layer mesh was inserted between the diaphragm and the liver. For the evaluation of the diaphragm mobility a sonographic method was used. Measurements on specific breathing parameters were taking place. Pathological evaluation took place after the animal's euthanasia. Extra-hepatic granuloma was not differentiated overtime, (χ2=0.04, p>0.05). Neither fibrosis was significantly differentiated, (χ2=0.04, p>0.05). Intra-hepatic granuloma was significantly differentiated overtime, (χ2=10.21, p<0.05). Concerning Te parameter, means were significantly differentiated over time, F (3, 30) = 5.12, (p<0.01). Ttot parameter, it was differentiated over time, F (3, 8)=4.79, (p<0.05). IR parameter was also longitudinally differentiated, F (3, 30)=3.73, (p<0.05). The measurements suggest a transient malfunction of diaphragmatic mobility despite the fact that inflammatory reaction, fibrosis and extra-hepatic granuloma were not significantly differentiated with the passage of time.

  1. Automated Storm Tracking and the Lightning Jump Algorithm Using GOES-R Geostationary Lightning Mapper (GLM) Proxy Data.

    PubMed

    Schultz, Elise V; Schultz, Christopher J; Carey, Lawrence D; Cecil, Daniel J; Bateman, Monte

    2016-01-01

    This study develops a fully automated lightning jump system encompassing objective storm tracking, Geostationary Lightning Mapper proxy data, and the lightning jump algorithm (LJA), which are important elements in the transition of the LJA concept from a research to an operational based algorithm. Storm cluster tracking is based on a product created from the combination of a radar parameter (vertically integrated liquid, VIL), and lightning information (flash rate density). Evaluations showed that the spatial scale of tracked features or storm clusters had a large impact on the lightning jump system performance, where increasing spatial scale size resulted in decreased dynamic range of the system's performance. This framework will also serve as a means to refine the LJA itself to enhance its operational applicability. Parameters within the system are isolated and the system's performance is evaluated with adjustments to parameter sensitivity. The system's performance is evaluated using the probability of detection (POD) and false alarm ratio (FAR) statistics. Of the algorithm parameters tested, sigma-level (metric of lightning jump strength) and flash rate threshold influenced the system's performance the most. Finally, verification methodologies are investigated. It is discovered that minor changes in verification methodology can dramatically impact the evaluation of the lightning jump system.

  2. Automated Storm Tracking and the Lightning Jump Algorithm Using GOES-R Geostationary Lightning Mapper (GLM) Proxy Data

    NASA Technical Reports Server (NTRS)

    Schultz, Elise; Schultz, Christopher Joseph; Carey, Lawrence D.; Cecil, Daniel J.; Bateman, Monte

    2016-01-01

    This study develops a fully automated lightning jump system encompassing objective storm tracking, Geostationary Lightning Mapper proxy data, and the lightning jump algorithm (LJA), which are important elements in the transition of the LJA concept from a research to an operational based algorithm. Storm cluster tracking is based on a product created from the combination of a radar parameter (vertically integrated liquid, VIL), and lightning information (flash rate density). Evaluations showed that the spatial scale of tracked features or storm clusters had a large impact on the lightning jump system performance, where increasing spatial scale size resulted in decreased dynamic range of the system's performance. This framework will also serve as a means to refine the LJA itself to enhance its operational applicability. Parameters within the system are isolated and the system's performance is evaluated with adjustments to parameter sensitivity. The system's performance is evaluated using the probability of detection (POD) and false alarm ratio (FAR) statistics. Of the algorithm parameters tested, sigma-level (metric of lightning jump strength) and flash rate threshold influenced the system's performance the most. Finally, verification methodologies are investigated. It is discovered that minor changes in verification methodology can dramatically impact the evaluation of the lightning jump system.

  3. Automated Storm Tracking and the Lightning Jump Algorithm Using GOES-R Geostationary Lightning Mapper (GLM) Proxy Data

    PubMed Central

    SCHULTZ, ELISE V.; SCHULTZ, CHRISTOPHER J.; CAREY, LAWRENCE D.; CECIL, DANIEL J.; BATEMAN, MONTE

    2017-01-01

    This study develops a fully automated lightning jump system encompassing objective storm tracking, Geostationary Lightning Mapper proxy data, and the lightning jump algorithm (LJA), which are important elements in the transition of the LJA concept from a research to an operational based algorithm. Storm cluster tracking is based on a product created from the combination of a radar parameter (vertically integrated liquid, VIL), and lightning information (flash rate density). Evaluations showed that the spatial scale of tracked features or storm clusters had a large impact on the lightning jump system performance, where increasing spatial scale size resulted in decreased dynamic range of the system’s performance. This framework will also serve as a means to refine the LJA itself to enhance its operational applicability. Parameters within the system are isolated and the system’s performance is evaluated with adjustments to parameter sensitivity. The system’s performance is evaluated using the probability of detection (POD) and false alarm ratio (FAR) statistics. Of the algorithm parameters tested, sigma-level (metric of lightning jump strength) and flash rate threshold influenced the system’s performance the most. Finally, verification methodologies are investigated. It is discovered that minor changes in verification methodology can dramatically impact the evaluation of the lightning jump system. PMID:29303164

  4. Estimation of Ecosystem Parameters of the Community Land Model with DREAM: Evaluation of the Potential for Upscaling Net Ecosystem Exchange

    NASA Astrophysics Data System (ADS)

    Hendricks Franssen, H. J.; Post, H.; Vrugt, J. A.; Fox, A. M.; Baatz, R.; Kumbhar, P.; Vereecken, H.

    2015-12-01

    Estimation of net ecosystem exchange (NEE) by land surface models is strongly affected by uncertain ecosystem parameters and initial conditions. A possible approach is the estimation of plant functional type (PFT) specific parameters for sites with measurement data like NEE and application of the parameters at other sites with the same PFT and no measurements. This upscaling strategy was evaluated in this work for sites in Germany and France. Ecosystem parameters and initial conditions were estimated with NEE-time series of one year length, or a time series of only one season. The DREAM(zs) algorithm was used for the estimation of parameters and initial conditions. DREAM(zs) is not limited to Gaussian distributions and can condition to large time series of measurement data simultaneously. DREAM(zs) was used in combination with the Community Land Model (CLM) v4.5. Parameter estimates were evaluated by model predictions at the same site for an independent verification period. In addition, the parameter estimates were evaluated at other, independent sites situated >500km away with the same PFT. The main conclusions are: i) simulations with estimated parameters reproduced better the NEE measurement data in the verification periods, including the annual NEE-sum (23% improvement), annual NEE-cycle and average diurnal NEE course (error reduction by factor 1,6); ii) estimated parameters based on seasonal NEE-data outperformed estimated parameters based on yearly data; iii) in addition, those seasonal parameters were often also significantly different from their yearly equivalents; iv) estimated parameters were significantly different if initial conditions were estimated together with the parameters. We conclude that estimated PFT-specific parameters improve land surface model predictions significantly at independent verification sites and for independent verification periods so that their potential for upscaling is demonstrated. However, simulation results also indicate that possibly the estimated parameters mask other model errors. This would imply that their application at climatic time scales would not improve model predictions. A central question is whether the integration of many different data streams (e.g., biomass, remotely sensed LAI) could solve the problems indicated here.

  5. Subsonic flight test evaluation of a propulsion system parameter estimation process for the F100 engine

    NASA Technical Reports Server (NTRS)

    Orme, John S.; Gilyard, Glenn B.

    1992-01-01

    Integrated engine-airframe optimal control technology may significantly improve aircraft performance. This technology requires a reliable and accurate parameter estimator to predict unmeasured variables. To develop this technology base, NASA Dryden Flight Research Facility (Edwards, CA), McDonnell Aircraft Company (St. Louis, MO), and Pratt & Whitney (West Palm Beach, FL) have developed and flight-tested an adaptive performance seeking control system which optimizes the quasi-steady-state performance of the F-15 propulsion system. This paper presents flight and ground test evaluations of the propulsion system parameter estimation process used by the performance seeking control system. The estimator consists of a compact propulsion system model and an extended Kalman filter. The extended Laman filter estimates five engine component deviation parameters from measured inputs. The compact model uses measurements and Kalman-filter estimates as inputs to predict unmeasured propulsion parameters such as net propulsive force and fan stall margin. The ability to track trends and estimate absolute values of propulsion system parameters was demonstrated. For example, thrust stand results show a good correlation, especially in trends, between the performance seeking control estimated and measured thrust.

  6. Elevated temperature crack growth

    NASA Technical Reports Server (NTRS)

    Kim, K. S.; Vanstone, R. H.

    1992-01-01

    The purpose of this program was to extend the work performed in the base program (CR 182247) into the regime of time-dependent crack growth under isothermal and thermal mechanical fatigue (TMF) loading, where creep deformation also influences the crack growth behavior. The investigation was performed in a two-year, six-task, combined experimental and analytical program. The path-independent integrals for application to time-dependent crack growth were critically reviewed. The crack growth was simulated using a finite element method. The path-independent integrals were computed from the results of finite-element analyses. The ability of these integrals to correlate experimental crack growth data were evaluated under various loading and temperature conditions. The results indicate that some of these integrals are viable parameters for crack growth prediction at elevated temperatures.

  7. Elevated temperature crack growth

    NASA Technical Reports Server (NTRS)

    Kim, K. S.; Vanstone, R. H.; Malik, S. N.; Laflen, J. H.

    1988-01-01

    A study was performed to examine the applicability of path-independent (P-I) integrals to crack growth problems in hot section components of gas turbine aircraft engines. Alloy 718 was used and the experimental parameters included combined temperature and strain cycling, thermal gradients, elastic-plastic strain levels, and mean strains. A literature review was conducted of proposed P-I integrals, and those capable of analyzing hot section component problems were selected and programmed into the postprocessor of a finite element code. Detailed elastic-plastic finite element analyses were conducted to simulate crack growth and crack closure of the test specimen, and to evaluate the P-I integrals. It was shown that the selected P-I integrals are very effective for predicting crack growth for isothermal conditions.

  8. Computation of type curves for flow to partially penetrating wells in water-table aquifers

    USGS Publications Warehouse

    Moench, Allen F.

    1993-01-01

    Evaluation of Neuman's analytical solution for flow to a well in a homogeneous, anisotropic, water-table aquifer commonly requires large amounts of computation time and can produce inaccurate results for selected combinations of parameters. Large computation times occur because the integrand of a semi-infinite integral involves the summation of an infinite series. Each term of the series requires evaluation of the roots of equations, and the series itself is sometimes slowly convergent. Inaccuracies can result from lack of computer precision or from the use of improper methods of numerical integration. In this paper it is proposed to use a method of numerical inversion of the Laplace transform solution, provided by Neuman, to overcome these difficulties. The solution in Laplace space is simpler in form than the real-time solution; that is, the integrand of the semi-infinite integral does not involve an infinite series or the need to evaluate roots of equations. Because the integrand is evaluated rapidly, advanced methods of numerical integration can be used to improve accuracy with an overall reduction in computation time. The proposed method of computing type curves, for which a partially documented computer program (WTAQ1) was written, was found to reduce computation time by factors of 2 to 20 over the time needed to evaluate the closed-form, real-time solution.

  9. Position uncertainty distribution for articulated arm coordinate measuring machine based on simplified definite integration

    NASA Astrophysics Data System (ADS)

    You, Xu; Zhi-jian, Zong; Qun, Gao

    2018-07-01

    This paper describes a methodology for the position uncertainty distribution of an articulated arm coordinate measuring machine (AACMM). First, a model of the structural parameter uncertainties was established by statistical method. Second, the position uncertainty space volume of the AACMM in a certain configuration was expressed using a simplified definite integration method based on the structural parameter uncertainties; it was then used to evaluate the position accuracy of the AACMM in a certain configuration. Third, the configurations of a certain working point were calculated by an inverse solution, and the position uncertainty distribution of a certain working point was determined; working point uncertainty can be evaluated by the weighting method. Lastly, the position uncertainty distribution in the workspace of the ACCMM was described by a map. A single-point contrast test of a 6-joint AACMM was carried out to verify the effectiveness of the proposed method, and it was shown that the method can describe the position uncertainty of the AACMM and it was used to guide the calibration of the AACMM and the choice of AACMM’s accuracy area.

  10. G-189A analytical simulation of the integrated waste management-water system using radioisotopes for thermal energy

    NASA Technical Reports Server (NTRS)

    Coggi, J. V.; Loscutoff, A. V.; Barker, R. S.

    1973-01-01

    An analytical simulation of the RITE-Integrated Waste Management and Water Recovery System using radioisotopes for thermal energy was prepared for the NASA-Manned Space Flight Center (MSFC). The RITE system is the most advanced concept water-waste management system currently under development and has undergone extended duration testing. It has the capability of disposing of nearly all spacecraft wastes including feces and trash and of recovering water from usual waste water sources: urine, condensate, wash water, etc. All of the process heat normally used in the system is produced from low penalty radioisotope heat sources. The analytical simulation was developed with the G189A computer program. The objective of the simulation was to obtain an analytical simulation which can be used to (1) evaluate the current RITE system steady state and transient performance during normal operating conditions, and also during off normal operating conditions including failure modes; and (2) evaluate the effects of variations in component design parameters and vehicle interface parameters on system performance.

  11. Evaluation of laminar flow control system concepts for subsonic commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A study was conducted to evaluate alternatives in the design of laminar flow control (LFC) subsonic commercial transport aircraft for operation in the 1980's period. Analyses were conducted to select mission parameters and define optimum aircraft configurational parameters for the selected mission, defined by a passenger payload of 400 and a design range of 12,038 km (6500 n mi). The baseline aircraft developed for this mission was used as a vehicle for the evaluation and development of alternative LFC system concepts. Alternatives were evaluated in the areas of aerodynamics structures, materials, LFC systems, leading-edge region cleaning and integration of auxiliary systems. Based on these evaluations, concept in each area were selected for further development and testing and ultimate incorporation in the final study aircraft. Relative to a similarly-optimized advanced technology turbulent transport, the final LFC configuration is approximately equal in direct operating cost but provides decreases of 8.2% in gross weight and 21.7% in fuel consumption.

  12. A GPU-Accelerated Parameter Interpolation Thermodynamic Integration Free Energy Method.

    PubMed

    Giese, Timothy J; York, Darrin M

    2018-03-13

    There has been a resurgence of interest in free energy methods motivated by the performance enhancements offered by molecular dynamics (MD) software written for specialized hardware, such as graphics processing units (GPUs). In this work, we exploit the properties of a parameter-interpolated thermodynamic integration (PI-TI) method to connect states by their molecular mechanical (MM) parameter values. This pathway is shown to be better behaved for Mg 2+ → Ca 2+ transformations than traditional linear alchemical pathways (with and without soft-core potentials). The PI-TI method has the practical advantage that no modification of the MD code is required to propagate the dynamics, and unlike with linear alchemical mixing, only one electrostatic evaluation is needed (e.g., single call to particle-mesh Ewald) leading to better performance. In the case of AMBER, this enables all the performance benefits of GPU-acceleration to be realized, in addition to unlocking the full spectrum of features available within the MD software, such as Hamiltonian replica exchange (HREM). The TI derivative evaluation can be accomplished efficiently in a post-processing step by reanalyzing the statistically independent trajectory frames in parallel for high throughput. We also show how one can evaluate the particle mesh Ewald contribution to the TI derivative evaluation without needing to perform two reciprocal space calculations. We apply the PI-TI method with HREM on GPUs in AMBER to predict p K a values in double stranded RNA molecules and make comparison with experiments. Convergence to under 0.25 units for these systems required 100 ns or more of sampling per window and coupling of windows with HREM. We find that MM charges derived from ab initio QM/MM fragment calculations improve the agreement between calculation and experimental results.

  13. Verification of the effects of Schumann frequency range electromagnetic fields on the human cardiovascular system

    NASA Astrophysics Data System (ADS)

    Tuzhilkin, D. A.; Borodin, A. S.

    2017-11-01

    The results of the study of variations in the electromagnetic background parameters of the Schumann resonator frequency range and the variability indices of the human heart period during its free activity are presented on the basis of 24-hour synchronous monitoring data. It is shown that the integral evaluation of the conjugacy of the heart rate variability indices from the Schumann resonance parameters is extremely weak. In this case, the differential evaluation of this dependence with separation into characteristic time intervals of the day, characterized by different motor activity of the subjects, becomes significantly higher. The number of volunteers whose conjugacy is characterized by a strong correlation in some cases reaches 35 percent of the sample.

  14. Developments in Sensitivity Methodologies and the Validation of Reactor Physics Calculations

    DOE PAGES

    Palmiotti, Giuseppe; Salvatores, Massimo

    2012-01-01

    The sensitivity methodologies have been a remarkable story when adopted in the reactor physics field. Sensitivity coefficients can be used for different objectives like uncertainty estimates, design optimization, determination of target accuracy requirements, adjustment of input parameters, and evaluations of the representativity of an experiment with respect to a reference design configuration. A review of the methods used is provided, and several examples illustrate the success of the methodology in reactor physics. A new application as the improvement of nuclear basic parameters using integral experiments is also described.

  15. Method Development for Container Closure Integrity Evaluation via Headspace Gas Ingress by Using Frequency Modulation Spectroscopy.

    PubMed

    Victor, Ken G; Levac, Lauren; Timmins, Michael; Veale, James

    2017-01-01

    USP <1207.1> Section 3.5 states that "A deterministic leak test method having the ability to detect leaks at the product's maximum allowable leakage limit is preferred when establishing the inherent integrity of a container-closure system." Ideally, container closure integrity of parenteral packaging would be evaluated by measuring a physical property that is sensitive to the presence of any package defect that breaches package integrity by increasing its leakage above its maximum allowable leakage limit. The primary goals of the work presented herein were to demonstrate the viability of the nondestructive, deterministic method known as laser-based gas headspace analysis for evaluating container closure integrity and to provide a physical model for predicting leak rates for a variety of container volumes, headspace conditions, and defect sizes. The results demonstrate that laser-based headspace analysis provides sensitive, accurate, and reproducible measurements of the gas ingress into glass vial-stopper package assemblies that are under either diffusive or effusive leak conditions. Two different types of positive controls were examined. First, laser-drilled micro-holes in thin metal disks that were crimped on top of 15R glass vials served as positive controls with a well-characterized defect geometry. For these, a strong correlation was observed between the measured ingress parameter and the size of the defect for both diffusive and effusive conditions. Second, laser-drilled holes in the wall of glass vials served as controls that more closely simulate real-world defects. Due to their complex defect geometries, their diffusive and effusive ingress parameters did not necessarily correlate; this is an important observation that has significant implications for standardizing the characterization of container defects. Regardless, laser-based headspace analysis could readily differentiate positive and negative controls for all leak conditions, and the results provide a guide for method development of container closure integrity tests. LAY ABSTRACT: The new USP 39 <1207>, "Package Integrity Evaluation-Sterile Products", states in section 3.4.1: "tracer gas tests performed using … laser-based gas headspace analysis [have] been shown to be sensitive enough to quantitatively analyze leakage through the smallest leak paths found to pose the smallest chance of liquid leakage or microbial ingress in rigid packaging." In addition, USP <1207> also states that "for such methods, the limit of detection can be mathematically predicted on the basis of gas flow kinetics." Using the above statements as a foundation, this paper presents a theoretical basis for predicting the gas ingress through well-defined defects in product vials sealed under a variety of headspace conditions. These calculated predictions were experimentally validated by comparing them to measurements of changes in the headspace oxygen content or total pressure for several different positive controls using laser-based headspace analysis. The results demonstrated that laser-based headspace analysis can, by readily differentiating between negative controls and positive controls with a range of defect sizes on the micron scale, be used to assess container closure integrity. The work also demontrated that caution must be used when attempting to correlate a leak rate to an idealized defect-size parameter. © PDA, Inc. 2017.

  16. Direct Adaptive Aircraft Control Using Dynamic Cell Structure Neural Networks

    NASA Technical Reports Server (NTRS)

    Jorgensen, Charles C.

    1997-01-01

    A Dynamic Cell Structure (DCS) Neural Network was developed which learns topology representing networks (TRNS) of F-15 aircraft aerodynamic stability and control derivatives. The network is integrated into a direct adaptive tracking controller. The combination produces a robust adaptive architecture capable of handling multiple accident and off- nominal flight scenarios. This paper describes the DCS network and modifications to the parameter estimation procedure. The work represents one step towards an integrated real-time reconfiguration control architecture for rapid prototyping of new aircraft designs. Performance was evaluated using three off-line benchmarks and on-line nonlinear Virtual Reality simulation. Flight control was evaluated under scenarios including differential stabilator lock, soft sensor failure, control and stability derivative variations, and air turbulence.

  17. A novel integrated approach for path following and directional stability control of road vehicles after a tire blow-out

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Chen, Hong; Guo, Konghui; Cao, Dongpu

    2017-09-01

    The path following and directional stability are two crucial problems when a road vehicle experiences a tire blow-out or sudden tire failure. Considering the requirement of rapid road vehicle motion control during a tire blow-out, this article proposes a novel linearized decoupling control procedure with three design steps for a class of second order multi-input-multi-output non-affine system. The evaluating indicators for controller performance are presented and a performance related control parameter distribution map is obtained based on the stochastic algorithm which is an innovation for non-blind parameter adjustment in engineering implementation. The analysis on the robustness of the proposed integrated controller is also performed. The simulation studies for a range of driving conditions are conducted, to demonstrate the effectiveness of the proposed controller.

  18. Rapid integrated water quality evaluation of Mahisagar river using benthic macroinvertebrates.

    PubMed

    Bhadrecha, M H; Khatri, Nitasha; Tyagi, Sanjiv

    2016-04-01

    The water quality of Mahisagar river, near Galteshwar in Kheda district of Gujarat, India, was assessed through a rapid integrated technique by physicochemical parameters as well as benthic macroinvertebrates. Physicochemical parameters retrieved were pH, color, conductivity, total solids, total suspended solids, total dissolved solids, chlorides, total hardness, calcium hardness, magnesium hardness, alkalinity, turbidity, ammoniacal nitrogen, chemical oxygen demand, biochemical oxygen demand, dissolved oxygen, sulfates, and nitrates. The biological indices calculated were BMWP (Bio Monitoring Working Party) score or saprobic score and sequential comparison index or diversity score. In total, 37 families were encountered along the studied river stretch. The findings indicate that the water quality of Mahisagar river at sampled locations is “slightly polluted.” Moreover, the results of physicochemical analysis are also in consonance with the biological water quality criteria developed by Central Pollution Control Board.

  19. TAMEE: data management and analysis for tissue microarrays.

    PubMed

    Thallinger, Gerhard G; Baumgartner, Kerstin; Pirklbauer, Martin; Uray, Martina; Pauritsch, Elke; Mehes, Gabor; Buck, Charles R; Zatloukal, Kurt; Trajanoski, Zlatko

    2007-03-07

    With the introduction of tissue microarrays (TMAs) researchers can investigate gene and protein expression in tissues on a high-throughput scale. TMAs generate a wealth of data calling for extended, high level data management. Enhanced data analysis and systematic data management are required for traceability and reproducibility of experiments and provision of results in a timely and reliable fashion. Robust and scalable applications have to be utilized, which allow secure data access, manipulation and evaluation for researchers from different laboratories. TAMEE (Tissue Array Management and Evaluation Environment) is a web-based database application for the management and analysis of data resulting from the production and application of TMAs. It facilitates storage of production and experimental parameters, of images generated throughout the TMA workflow, and of results from core evaluation. Database content consistency is achieved using structured classifications of parameters. This allows the extraction of high quality results for subsequent biologically-relevant data analyses. Tissue cores in the images of stained tissue sections are automatically located and extracted and can be evaluated using a set of predefined analysis algorithms. Additional evaluation algorithms can be easily integrated into the application via a plug-in interface. Downstream analysis of results is facilitated via a flexible query generator. We have developed an integrated system tailored to the specific needs of research projects using high density TMAs. It covers the complete workflow of TMA production, experimental use and subsequent analysis. The system is freely available for academic and non-profit institutions from http://genome.tugraz.at/Software/TAMEE.

  20. Protective effects of chebulic acid on alveolar epithelial damage induced by urban particulate matter.

    PubMed

    Lee, Kyung-Won; Nam, Mi-Hyun; Lee, Hee-Ra; Hong, Chung-Oui; Lee, Kwang-Won

    2017-07-19

    Chebulic acid (CA) isolated from T. chebula, which has been reported for treating asthma, as a potent anti-oxidant resources. Exposure to ambient urban particulate matter (UPM) considered as a risk for cardiopulmonary vascular dysfunction. To investigate the protective effect of CA against UPM-mediated collapse of the pulmonary alveolar epithelial (PAE) cell (NCI-H441), barrier integrity parameters, and their elements were evaluated in PAE. CA was acquired from the laboratory previous reports. UPM was obtained from the National Institutes of Standards and Technology, and these were collected in St. Louis, MO, over a 24-month period and used as a standard reference. To confirm the protection of PAE barrier integrity, paracellular permeability and the junctional molecules were estimated with determination of transepithelial electrical resistance, Western Blotting, RT-PCR, and fluorescent staining. UPM aggravated the generation of reactive oxygen species (ROS) in PAE and also decreased mRNA and protein levels of junction molecules and barrier integrity in NCI-H441. However, CA repressed the ROS in PAE, also improved barrier integrity by protecting the junctional parameters in NCI-H411. These data showed that CA resulted in decreased UPM-induced ROS formation, and the protected the integrity of the tight junctions against UPM exposure to PAE barrier.

  1. Platform of integrated tools to support environmental studies and management of dredging activities.

    PubMed

    Feola, Alessandra; Lisi, Iolanda; Salmeri, Andrea; Venti, Francesco; Pedroncini, Andrea; Gabellini, Massimo; Romano, Elena

    2016-01-15

    Dredging activities can cause environmental impacts due to, among other, the increase of the Suspended Solid Concentration (SSC) and their subsequent dispersion and deposition (DEP) far from the dredging point. The dynamics of the resulting dredging plume can strongly differ in spatial and temporal evolution. This evolution, for both conventional mechanical and hydraulic dredges, depends on the different mechanisms of sediment release in water column and the site-specific environmental conditions. Several numerical models are currently in use to simulate the dredging plume dynamics. Model results can be analysed to study dispersion and advection processes at different depths and distances from the dredging source. Usually, scenarios with frequent and extreme meteomarine conditions are chosen and extreme values of parameters (i.e. maximum intensity or total duration) are evaluated for environmental assessment. This paper presents a flexible, consistent and integrated methodological approach. Statistical parameters and indexes are derived from the analysis of SSC and DEP simulated time-series to numerically estimate their spatial (vertical and horizontal) and seasonal variability, thereby allowing a comparison of the effects of hydraulic and mechanical dredges. Events that exceed defined thresholds are described in term of magnitude, duration and frequency. A new integrated index combining these parameters, SSCnum, is proposed for environmental assessment. Maps representing the proposed parameters allow direct comparison of effects due to different (mechanical and hydraulic) dredges at progressive distances from the dredging zone. Results can contribute towards identification and assessment of the potential environmental effects of a proposed dredging project. A suitable evaluation of alternative technical choices, appropriate mitigation, management and monitoring measure is allowed in this framework. Environmental Risk Assessment and Decision Support Systems (DSS) may take advantage of the proposed tool. The approach is applied to a hypothetical dredging project in the Augusta Harbour (Eastern coast of Sicily Island-Italy). Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. [Need for integration and working conditions of locum anaesthesiologists in community hospitals of a French administrative area].

    PubMed

    Lieutaud, T

    2013-06-01

    To evaluate the need for locum anaesthetic coverage and the practical consequences (integration, working conditions, quality and safety) arising during the first 5 days of work, when a temporary position is accepted. MEASURED PARAMETERS: 1) Telephone enquiry of administrative services of community hospitals (CH) in one French administrative area (Rhône-Alpes) about their need for locum anaesthetists; 2) if a position was offered, it was accepted when the participation to on-call duties was delayed after the first 5 days of work; 3) during the working period, the following characteristics were assessed: integration of the locum anesthesiologist among team members, comparison of practice patterns to national guidelines; 4) data from the Platines-website of the French Ministry of Health were used to quantify indicators of activity and size of the hospitals and search for correlations between these parameters and working conditions of the locum anaesthetist. Of the 32 CH questioned, 28 were looking for temporary anaesthetic work force but only 11 (35%) accepted a 5-day period before participation to on-call duties and 17 refused this integration period. Four CH declared not to be looking for temporary work force. Characteristics of integration of the locum anaesthetist and standards of work were very different among centers. No hospital administration had a strategy for evaluation of recruited locums. Temporary work force in anaesthesia is widely required in CH of the Rhône-Alpes area but this practice had not been formalised. No recruitment strategy was observable. This questions about the institutions' requirements for anaesthetic services in French public hospitals. Copyright © 2013 Société française d’anesthésie et de réanimation (Sfar). Published by Elsevier SAS. All rights reserved.

  3. Modeling Nitrogen Dynamics in a Waste Stabilization Pond System Using Flexible Modeling Environment with MCMC.

    PubMed

    Mukhtar, Hussnain; Lin, Yu-Pin; Shipin, Oleg V; Petway, Joy R

    2017-07-12

    This study presents an approach for obtaining realization sets of parameters for nitrogen removal in a pilot-scale waste stabilization pond (WSP) system. The proposed approach was designed for optimal parameterization, local sensitivity analysis, and global uncertainty analysis of a dynamic simulation model for the WSP by using the R software package Flexible Modeling Environment (R-FME) with the Markov chain Monte Carlo (MCMC) method. Additionally, generalized likelihood uncertainty estimation (GLUE) was integrated into the FME to evaluate the major parameters that affect the simulation outputs in the study WSP. Comprehensive modeling analysis was used to simulate and assess nine parameters and concentrations of ON-N, NH₃-N and NO₃-N. Results indicate that the integrated FME-GLUE-based model, with good Nash-Sutcliffe coefficients (0.53-0.69) and correlation coefficients (0.76-0.83), successfully simulates the concentrations of ON-N, NH₃-N and NO₃-N. Moreover, the Arrhenius constant was the only parameter sensitive to model performances of ON-N and NH₃-N simulations. However, Nitrosomonas growth rate, the denitrification constant, and the maximum growth rate at 20 °C were sensitive to ON-N and NO₃-N simulation, which was measured using global sensitivity.

  4. General Multimechanism Reversible-Irreversible Time-Dependent Constitutive Deformation Model Being Developed

    NASA Technical Reports Server (NTRS)

    Saleeb, A. F.; Arnold, Steven M.

    2001-01-01

    Since most advanced material systems (for example metallic-, polymer-, and ceramic-based systems) being currently researched and evaluated are for high-temperature airframe and propulsion system applications, the required constitutive models must account for both reversible and irreversible time-dependent deformations. Furthermore, since an integral part of continuum-based computational methodologies (be they microscale- or macroscale-based) is an accurate and computationally efficient constitutive model to describe the deformation behavior of the materials of interest, extensive research efforts have been made over the years on the phenomenological representations of constitutive material behavior in the inelastic analysis of structures. From a more recent and comprehensive perspective, the NASA Glenn Research Center in conjunction with the University of Akron has emphasized concurrently addressing three important and related areas: that is, 1) Mathematical formulation; 2) Algorithmic developments for updating (integrating) the external (e.g., stress) and internal state variables; 3) Parameter estimation for characterizing the model. This concurrent perspective to constitutive modeling has enabled the overcoming of the two major obstacles to fully utilizing these sophisticated time-dependent (hereditary) constitutive models in practical engineering analysis. These obstacles are: 1) Lack of efficient and robust integration algorithms; 2) Difficulties associated with characterizing the large number of required material parameters, particularly when many of these parameters lack obvious or direct physical interpretations.

  5. Direct Sensor Orientation of a Land-Based Mobile Mapping System

    PubMed Central

    Rau, Jiann-Yeou; Habib, Ayman F.; Kersting, Ana P.; Chiang, Kai-Wei; Bang, Ki-In; Tseng, Yi-Hsing; Li, Yu-Hua

    2011-01-01

    A land-based mobile mapping system (MMS) is flexible and useful for the acquisition of road environment geospatial information. It integrates a set of imaging sensors and a position and orientation system (POS). The positioning quality of such systems is highly dependent on the accuracy of the utilized POS. This limitation is the major drawback due to the elevated cost associated with high-end GPS/INS units, particularly the inertial system. The potential accuracy of the direct sensor orientation depends on the architecture and quality of the GPS/INS integration process as well as the validity of the system calibration (i.e., calibration of the individual sensors as well as the system mounting parameters). In this paper, a novel single-step procedure using integrated sensor orientation with relative orientation constraint for the estimation of the mounting parameters is introduced. A comparative analysis between the proposed single-step and the traditional two-step procedure is carried out. Moreover, the estimated mounting parameters using the different methods are used in a direct geo-referencing procedure to evaluate their performance and the feasibility of the implemented system. Experimental results show that the proposed system using single-step system calibration method can achieve high 3D positioning accuracy. PMID:22164015

  6. A Novel INS and Doppler Sensors Calibration Method for Long Range Underwater Vehicle Navigation

    PubMed Central

    Tang, Kanghua; Wang, Jinling; Li, Wanli; Wu, Wenqi

    2013-01-01

    Since the drifts of Inertial Navigation System (INS) solutions are inevitable and also grow over time, a Doppler Velocity Log (DVL) is used to aid the INS to restrain its error growth. Therefore, INS/DVL integration is a common approach for Autonomous Underwater Vehicle (AUV) navigation. The parameters including the scale factor of DVL and misalignments between INS and DVL are key factors which limit the accuracy of the INS/DVL integration. In this paper, a novel parameter calibration method is proposed. An iterative implementation of the method is designed to reduce the error caused by INS initial alignment. Furthermore, a simplified INS/DVL integration scheme is employed. The proposed method is evaluated with both river trial and sea trial data sets. Using 0.03°/h(1σ) ring laser gyroscopes, 5 × 10−5 g(1σ) quartz accelerometers and DVL with accuracy 0.5% V ± 0.5 cm/s, INS/DVL integrated navigation can reach an accuracy of about 1‰ of distance travelled (CEP) in a river trial and 2‰ of distance travelled (CEP) in a sea trial. PMID:24169542

  7. NEMA image quality phantom measurements and attenuation correction in integrated PET/MR hybrid imaging.

    PubMed

    Ziegler, Susanne; Jakoby, Bjoern W; Braun, Harald; Paulus, Daniel H; Quick, Harald H

    2015-12-01

    In integrated PET/MR hybrid imaging the evaluation of PET performance characteristics according to the NEMA standard NU 2-2007 is challenging because of incomplete MR-based attenuation correction (AC) for phantom imaging. In this study, a strategy for CT-based AC of the NEMA image quality (IQ) phantom is assessed. The method is systematically evaluated in NEMA IQ phantom measurements on an integrated PET/MR system. NEMA IQ measurements were performed on the integrated 3.0 Tesla PET/MR hybrid system (Biograph mMR, Siemens Healthcare). AC of the NEMA IQ phantom was realized by an MR-based and by a CT-based method. The suggested CT-based AC uses a template μ-map of the NEMA IQ phantom and a phantom holder for exact repositioning of the phantom on the systems patient table. The PET image quality parameters contrast recovery, background variability, and signal-to-noise ratio (SNR) were determined and compared for both phantom AC methods. Reconstruction parameters of an iterative 3D OP-OSEM reconstruction were optimized for highest lesion SNR in NEMA IQ phantom imaging. Using a CT-based NEMA IQ phantom μ-map on the PET/MR system is straightforward and allowed performing accurate NEMA IQ measurements on the hybrid system. MR-based AC was determined to be insufficient for PET quantification in the tested NEMA IQ phantom because only photon attenuation caused by the MR-visible phantom filling but not the phantom housing is considered. Using the suggested CT-based AC, the highest SNR in this phantom experiment for small lesions (<= 13 mm) was obtained with 3 iterations, 21 subsets and 4 mm Gaussian filtering. This study suggests CT-based AC for the NEMA IQ phantom when performing PET NEMA IQ measurements on an integrated PET/MR hybrid system. The superiority of CT-based AC for this phantom is demonstrated by comparison to measurements using MR-based AC. Furthermore, optimized PET image reconstruction parameters are provided for the highest lesion SNR in NEMA IQ phantom measurements.

  8. Rotor Wake Vortex Definition: Initial Evaluation of 3-C PIV Results of the Hart-II Study

    NASA Technical Reports Server (NTRS)

    Burley, Casey L.; Brooks, Thomas F.; vanderWall, Berend; Richard, Hughes; Raffel, Markus; Beaumier, Philippe; Delrieux, Yves; Lim, Joon W.; Yu, Yung H.; Tung, Chee

    2002-01-01

    An initial evaluation is made of extensive three-component (3C) particle image velocimetry (PIV) measurements within the wake across a rotor disk plane. The model is a 40 percent scale BO-105 helicopter main rotor in forward flight simulation. This study is part of the HART II test program conducted in the German-Dutch Wind Tunnel (DNW). Included are wake vortex field measurements over the advancing and retreating sides of the rotor operating at a typical descent landing condition important for impulsive blade-vortex interaction (BVI) noise. Also included are advancing side results for rotor angle variations from climb to steep descent. Using detailed PIV vector maps of the vortex fields, methods of extracting key vortex parameters are examined and a new method was developed and evaluated. An objective processing method, involving a center-of-vorticity criterion and a vorticity 'disk' integration, was used to determine vortex core size, strength, core velocity distribution characteristics, and unsteadiness. These parameters are mapped over the rotor disk and offer unique physical insight for these parameters of importance for rotor noise and vibration prediction.

  9. Model selection on solid ground: Rigorous comparison of nine ways to evaluate Bayesian model evidence

    PubMed Central

    Schöniger, Anneli; Wöhling, Thomas; Samaniego, Luis; Nowak, Wolfgang

    2014-01-01

    Bayesian model selection or averaging objectively ranks a number of plausible, competing conceptual models based on Bayes' theorem. It implicitly performs an optimal trade-off between performance in fitting available data and minimum model complexity. The procedure requires determining Bayesian model evidence (BME), which is the likelihood of the observed data integrated over each model's parameter space. The computation of this integral is highly challenging because it is as high-dimensional as the number of model parameters. Three classes of techniques to compute BME are available, each with its own challenges and limitations: (1) Exact and fast analytical solutions are limited by strong assumptions. (2) Numerical evaluation quickly becomes unfeasible for expensive models. (3) Approximations known as information criteria (ICs) such as the AIC, BIC, or KIC (Akaike, Bayesian, or Kashyap information criterion, respectively) yield contradicting results with regard to model ranking. Our study features a theory-based intercomparison of these techniques. We further assess their accuracy in a simplistic synthetic example where for some scenarios an exact analytical solution exists. In more challenging scenarios, we use a brute-force Monte Carlo integration method as reference. We continue this analysis with a real-world application of hydrological model selection. This is a first-time benchmarking of the various methods for BME evaluation against true solutions. Results show that BME values from ICs are often heavily biased and that the choice of approximation method substantially influences the accuracy of model ranking. For reliable model selection, bias-free numerical methods should be preferred over ICs whenever computationally feasible. PMID:25745272

  10. Towards systematic evaluation of crop model outputs for global land-use models

    NASA Astrophysics Data System (ADS)

    Leclere, David; Azevedo, Ligia B.; Skalský, Rastislav; Balkovič, Juraj; Havlík, Petr

    2016-04-01

    Land provides vital socioeconomic resources to the society, however at the cost of large environmental degradations. Global integrated models combining high resolution global gridded crop models (GGCMs) and global economic models (GEMs) are increasingly being used to inform sustainable solution for agricultural land-use. However, little effort has yet been done to evaluate and compare the accuracy of GGCM outputs. In addition, GGCM datasets require a large amount of parameters whose values and their variability across space are weakly constrained: increasing the accuracy of such dataset has a very high computing cost. Innovative evaluation methods are required both to ground credibility to the global integrated models, and to allow efficient parameter specification of GGCMs. We propose an evaluation strategy for GGCM datasets in the perspective of use in GEMs, illustrated with preliminary results from a novel dataset (the Hypercube) generated by the EPIC GGCM and used in the GLOBIOM land use GEM to inform on present-day crop yield, water and nutrient input needs for 16 crops x 15 management intensities, at a spatial resolution of 5 arc-minutes. We adopt the following principle: evaluation should provide a transparent diagnosis of model adequacy for its intended use. We briefly describe how the Hypercube data is generated and how it articulates with GLOBIOM in order to transparently identify the performances to be evaluated, as well as the main assumptions and data processing involved. Expected performances include adequately representing the sub-national heterogeneity in crop yield and input needs: i) in space, ii) across crop species, and iii) across management intensities. We will present and discuss measures of these expected performances and weight the relative contribution of crop model, input data and data processing steps in performances. We will also compare obtained yield gaps and main yield-limiting factors against the M3 dataset. Next steps include iterative improvement of parameter assumptions and evaluation of implications of GGCM performances for intended use in the IIASA EPIC-GLOBIOM model cluster. Our approach helps targeting future efforts at improving GGCM accuracy and would achieve highest efficiency if combined with traditional field-scale evaluation and sensitivity analysis.

  11. Experimental investigation of laminar flow of viscous oil through a circular tube having integral axial corrugation roughness and fitted with twisted tapes with oblique teeth

    NASA Astrophysics Data System (ADS)

    Pal, Sagnik; Saha, Sujoy Kumar

    2015-08-01

    The experimental friction factor and Nusselt number data for laminar flow of viscous oil through a circular duct having integral axial corrugation roughness and fitted with twisted tapes with oblique teeth have been presented. Predictive friction factor and Nusselt number correlations have also been presented. The thermohydraulic performance has been evaluated. The major findings of this experimental investigation are that the twisted tapes with oblique teeth in combination with integral axial corrugation roughness perform significantly better than the individual enhancement technique acting alone for laminar flow through a circular duct up to a certain value of fin parameter.

  12. THE RELATIVE IMPORTANCE OF THE VADOSE ZONE IN MULTIMEDIA RISK ASSESSMENT MODELING APPLIED AT A NATIONAL SCALE: AN ANALYSIS OF BENZENE USING 3MRA

    EPA Science Inventory

    Evaluating uncertainty and parameter sensitivity in environmental models can be a difficult task, even for low-order, single-media constructs driven by a unique set of site-specific data. The challenge of examining ever more complex, integrated, higher-order models is a formidab...

  13. Calculating Lyapunov Exponents: Applying Products and Evaluating Integrals

    ERIC Educational Resources Information Center

    McCartney, Mark

    2010-01-01

    Two common examples of one-dimensional maps (the tent map and the logistic map) are generalized to cases where they have more than one control parameter. In the case of the tent map, this still allows the global Lyapunov exponent to be found analytically, and permits various properties of the resulting global Lyapunov exponents to be investigated…

  14. Improving the Accuracy of Urban Environmental Quality Assessment Using Geographically-Weighted Regression Techniques.

    PubMed

    Faisal, Kamil; Shaker, Ahmed

    2017-03-07

    Urban Environmental Quality (UEQ) can be treated as a generic indicator that objectively represents the physical and socio-economic condition of the urban and built environment. The value of UEQ illustrates a sense of satisfaction to its population through assessing different environmental, urban and socio-economic parameters. This paper elucidates the use of the Geographic Information System (GIS), Principal Component Analysis (PCA) and Geographically-Weighted Regression (GWR) techniques to integrate various parameters and estimate the UEQ of two major cities in Ontario, Canada. Remote sensing, GIS and census data were first obtained to derive various environmental, urban and socio-economic parameters. The aforementioned techniques were used to integrate all of these environmental, urban and socio-economic parameters. Three key indicators, including family income, higher level of education and land value, were used as a reference to validate the outcomes derived from the integration techniques. The results were evaluated by assessing the relationship between the extracted UEQ results and the reference layers. Initial findings showed that the GWR with the spatial lag model represents an improved precision and accuracy by up to 20% with respect to those derived by using GIS overlay and PCA techniques for the City of Toronto and the City of Ottawa. The findings of the research can help the authorities and decision makers to understand the empirical relationships among environmental factors, urban morphology and real estate and decide for more environmental justice.

  15. Improving the Accuracy of Urban Environmental Quality Assessment Using Geographically-Weighted Regression Techniques

    PubMed Central

    Faisal, Kamil; Shaker, Ahmed

    2017-01-01

    Urban Environmental Quality (UEQ) can be treated as a generic indicator that objectively represents the physical and socio-economic condition of the urban and built environment. The value of UEQ illustrates a sense of satisfaction to its population through assessing different environmental, urban and socio-economic parameters. This paper elucidates the use of the Geographic Information System (GIS), Principal Component Analysis (PCA) and Geographically-Weighted Regression (GWR) techniques to integrate various parameters and estimate the UEQ of two major cities in Ontario, Canada. Remote sensing, GIS and census data were first obtained to derive various environmental, urban and socio-economic parameters. The aforementioned techniques were used to integrate all of these environmental, urban and socio-economic parameters. Three key indicators, including family income, higher level of education and land value, were used as a reference to validate the outcomes derived from the integration techniques. The results were evaluated by assessing the relationship between the extracted UEQ results and the reference layers. Initial findings showed that the GWR with the spatial lag model represents an improved precision and accuracy by up to 20% with respect to those derived by using GIS overlay and PCA techniques for the City of Toronto and the City of Ottawa. The findings of the research can help the authorities and decision makers to understand the empirical relationships among environmental factors, urban morphology and real estate and decide for more environmental justice. PMID:28272334

  16. Quantitative EEG features selection in the classification of attention and response control in the children and adolescents with attention deficit hyperactivity disorder.

    PubMed

    Bashiri, Azadeh; Shahmoradi, Leila; Beigy, Hamid; Savareh, Behrouz A; Nosratabadi, Masood; N Kalhori, Sharareh R; Ghazisaeedi, Marjan

    2018-06-01

    Quantitative EEG gives valuable information in the clinical evaluation of psychological disorders. The purpose of the present study is to identify the most prominent features of quantitative electroencephalography (QEEG) that affect attention and response control parameters in children with attention deficit hyperactivity disorder. The QEEG features and the Integrated Visual and Auditory-Continuous Performance Test ( IVA-CPT) of 95 attention deficit hyperactivity disorder subjects were preprocessed by Independent Evaluation Criterion for Binary Classification. Then, the importance of selected features in the classification of desired outputs was evaluated using the artificial neural network. Findings uncovered the highest rank of QEEG features in each IVA-CPT parameters related to attention and response control. Using the designed model could help therapists to determine the existence or absence of defects in attention and response control relying on QEEG.

  17. On the Response of the Special Sensor Microwave/Imager to the Marine Environment: Implications for Atmospheric Parameter Retrievals. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Petty, Grant W.

    1990-01-01

    A reasonably rigorous basis for understanding and extracting the physical information content of Special Sensor Microwave/Imager (SSM/I) satellite images of the marine environment is provided. To this end, a comprehensive algebraic parameterization is developed for the response of the SSM/I to a set of nine atmospheric and ocean surface parameters. The brightness temperature model includes a closed-form approximation to microwave radiative transfer in a non-scattering atmosphere and fitted models for surface emission and scattering based on geometric optics calculations for the roughened sea surface. The combined model is empirically tuned using suitable sets of SSM/I data and coincident surface observations. The brightness temperature model is then used to examine the sensitivity of the SSM/I to realistic variations in the scene being observed and to evaluate the theoretical maximum precision of global SSM/I retrievals of integrated water vapor, integrated cloud liquid water, and surface wind speed. A general minimum-variance method for optimally retrieving geophysical parameters from multichannel brightness temperature measurements is outlined, and several global statistical constraints of the type required by this method are computed. Finally, a unified set of efficient statistical and semi-physical algorithms is presented for obtaining fields of surface wind speed, integrated water vapor, cloud liquid water, and precipitation from SSM/I brightness temperature data. Features include: a semi-physical method for retrieving integrated cloud liquid water at 15 km resolution and with rms errors as small as approximately 0.02 kg/sq m; a 3-channel statistical algorithm for integrated water vapor which was constructed so as to have improved linear response to water vapor and reduced sensitivity to precipitation; and two complementary indices of precipitation activity (based on 37 GHz attenuation and 85 GHz scattering, respectively), each of which are relatively insensitive to variations in other environmental parameters.

  18. Distributed sensor architecture for intelligent control that supports quality of control and quality of service.

    PubMed

    Poza-Lujan, Jose-Luis; Posadas-Yagüe, Juan-Luis; Simó-Ten, José-Enrique; Simarro, Raúl; Benet, Ginés

    2015-02-25

    This paper is part of a study of intelligent architectures for distributed control and communications systems. The study focuses on optimizing control systems by evaluating the performance of middleware through quality of service (QoS) parameters and the optimization of control using Quality of Control (QoC) parameters. The main aim of this work is to study, design, develop, and evaluate a distributed control architecture based on the Data-Distribution Service for Real-Time Systems (DDS) communication standard as proposed by the Object Management Group (OMG). As a result of the study, an architecture called Frame-Sensor-Adapter to Control (FSACtrl) has been developed. FSACtrl provides a model to implement an intelligent distributed Event-Based Control (EBC) system with support to measure QoS and QoC parameters. The novelty consists of using, simultaneously, the measured QoS and QoC parameters to make decisions about the control action with a new method called Event Based Quality Integral Cycle. To validate the architecture, the first five Braitenberg vehicles have been implemented using the FSACtrl architecture. The experimental outcomes, demonstrate the convenience of using jointly QoS and QoC parameters in distributed control systems.

  19. Distributed Sensor Architecture for Intelligent Control that Supports Quality of Control and Quality of Service

    PubMed Central

    Poza-Lujan, Jose-Luis; Posadas-Yagüe, Juan-Luis; Simó-Ten, José-Enrique; Simarro, Raúl; Benet, Ginés

    2015-01-01

    This paper is part of a study of intelligent architectures for distributed control and communications systems. The study focuses on optimizing control systems by evaluating the performance of middleware through quality of service (QoS) parameters and the optimization of control using Quality of Control (QoC) parameters. The main aim of this work is to study, design, develop, and evaluate a distributed control architecture based on the Data-Distribution Service for Real-Time Systems (DDS) communication standard as proposed by the Object Management Group (OMG). As a result of the study, an architecture called Frame-Sensor-Adapter to Control (FSACtrl) has been developed. FSACtrl provides a model to implement an intelligent distributed Event-Based Control (EBC) system with support to measure QoS and QoC parameters. The novelty consists of using, simultaneously, the measured QoS and QoC parameters to make decisions about the control action with a new method called Event Based Quality Integral Cycle. To validate the architecture, the first five Braitenberg vehicles have been implemented using the FSACtrl architecture. The experimental outcomes, demonstrate the convenience of using jointly QoS and QoC parameters in distributed control systems. PMID:25723145

  20. Estimation and Identifiability of Model Parameters in Human Nociceptive Processing Using Yes-No Detection Responses to Electrocutaneous Stimulation.

    PubMed

    Yang, Huan; Meijer, Hil G E; Buitenweg, Jan R; van Gils, Stephan A

    2016-01-01

    Healthy or pathological states of nociceptive subsystems determine different stimulus-response relations measured from quantitative sensory testing. In turn, stimulus-response measurements may be used to assess these states. In a recently developed computational model, six model parameters characterize activation of nerve endings and spinal neurons. However, both model nonlinearity and limited information in yes-no detection responses to electrocutaneous stimuli challenge to estimate model parameters. Here, we address the question whether and how one can overcome these difficulties for reliable parameter estimation. First, we fit the computational model to experimental stimulus-response pairs by maximizing the likelihood. To evaluate the balance between model fit and complexity, i.e., the number of model parameters, we evaluate the Bayesian Information Criterion. We find that the computational model is better than a conventional logistic model regarding the balance. Second, our theoretical analysis suggests to vary the pulse width among applied stimuli as a necessary condition to prevent structural non-identifiability. In addition, the numerically implemented profile likelihood approach reveals structural and practical non-identifiability. Our model-based approach with integration of psychophysical measurements can be useful for a reliable assessment of states of the nociceptive system.

  1. Lead exposure reduces sperm quality and DNA integrity in mice.

    PubMed

    Li, Cuiling; Zhao, Kai; Zhang, Huiping; Liu, Lili; Xiong, Fei; Wang, Kunyu; Chen, Biao

    2018-05-01

    Toxicity of lead on male reproductive functions has raised wide public concern as environmental lead contamination remains common worldwide. Conflicting and controversial data are available regarding effects of lead on male fertility. More importantly, our knowledge on effects of lead on sperm DNA integrity is significantly limited. Thus, further studies should focus on this issue. In the current study, adult male mice were exposed to a series of lead acetate concentrations in drinking water for six weeks. Following administration, lead levels in blood, testicles, and epididymis were measured, and potential changes in morphology of testis and epididymis due to lead exposure were identified. We also analyzed sperm parameters, including sperm density, viability, motility, and morphology, to evaluate quality of sperm collected from epididymis. Especially, hypothetical influence of lead on sperm DNA integrity was also evaluated by terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling, alkaline comet assay, and sperm chromatin structure assay. Lead exposure possibly exerted no effect on growth of mice because these animals acquired similar body weight gain during the experimental period. However, high lead concentrations (0.5% and 1%) in drinking water affected sperm motility and increased percentage of spermatozoa with abnormal morphology. In groups treated with 0.25%, 0.5%, and 1% lead acetate, percentages of sperm cells showing DNA breaks and chromatin structure damage significantly increased. Altogether, lead exposure not only exhibits adverse effects on sperm physiological parameters, but also impairs DNA structure and integrity. These effects may lead to significant decline in male fertility. © 2018 Wiley Periodicals, Inc.

  2. Molecular andrology as related to sperm DNA fragmentation/sperm chromatin biotechnology.

    PubMed

    Shafik, A; Shafik, A A; Shafik, I; El Sibai, O

    2006-01-01

    Genetic male infertility occurs throughout the life cycle from genetic traits carried by the sperm, to fertilization and post-fertilization genome alterations, and subsequent developmental changes in the blastocyst and fetus as well as errors in meiosis and abnormalities in spermatogenesis/spermatogenesis. Genes encoding proteins for normal development include SRY, SOX9, INSL3 and LGR8. Genetic abnormalities affect spermatogenesis whereas polymorphisms affect receptor affinity and hormone bioactivity. Transgenic animal models, the human genome project, and other techniques have identified numerous genes related to male fertility. Several techniques have been developed to measure the amount of sperm DNA damage in an effort to identify more objective parameters for evaluation of infertile men. The integrity of sperm DNA influences a couple's fertility and helps predict the chances of pregnancy and its successful outcome. The available tests of sperm DNA damage require additional large-scale clinical trials before their integration into routine clinical practice. The physiological/molecular integrity of sperm DNA is a novel parameter of semen quality and a potential fertility predictor. Although DNA integrity assessment appears to be a logical biomarker of sperm quality, it is not being assessed as a routine part of semen analysis by clinical andrologists. Extensive investigation has been conducted for the comparative evaluation of these techniques. However, some of these techniques require expensive instrumentation for optimal and unbiased analysis, are labor intensive, or require the use of enzymes whose activity and accessibility to DNA breaks may be irregular. Thus, these techniques are recommended for basic research rather than for routine andrology laboratories.

  3. Analysis of water sorption isotherms of amorphous food materials by solution thermodynamics with relevance to glass transition: evaluation of plasticizing effect of water by the thermodynamic parameters.

    PubMed

    Shimazaki, Eriko; Tashiro, Akiko; Kumagai, Hitomi; Kumagai, Hitoshi

    2017-04-01

    Relation between the thermodynamic parameters obtained from water sorption isotherms and the degree of reduction in the glass transition temperature (T g ), accompanied by water sorption, was quantitatively studied. Two well-known glassy food materials namely, wheat gluten and maltodextrin were used as samples. The difference between the chemical potential of water in a solution and that of pure water ([Formula: see text]), the difference between the chemical potential of solid in a solution and that of a pure solid ([Formula: see text]), and the change in the integral Gibbs free energy ([Formula: see text]) were obtained by analyzing the water sorption isotherms using solution thermodynamics. The parameter [Formula: see text] correlated well with ΔT g (≡T g  - T g0 ; where T g0 is the glass transition temperature of dry material), which had been taken to be an index of plasticizing effect. This indicates that plasticizing effect of water on foods can be evaluated through the parameter [Formula: see text].

  4. Transport Properties for Combustion Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, N.J.; Bastein, L.; Price, P.N.

    This review examines current approximations and approaches that underlie the evaluation of transport properties for combustion modeling applications. Discussed in the review are: the intermolecular potential and its descriptive molecular parameters; various approaches to evaluating collision integrals; supporting data required for the evaluation of transport properties; commonly used computer programs for predicting transport properties; the quality of experimental measurements and their importance for validating or rejecting approximations to property estimation; the interpretation of corresponding states; combination rules that yield pair molecular potential parameters for unlike species from like species parameters; and mixture approximations. The insensitivity of transport properties to intermolecularmore » forces is noted, especially the non-uniqueness of the supporting potential parameters. Viscosity experiments of pure substances and binary mixtures measured post 1970 are used to evaluate a number of approximations; the intermediate temperature range 1 < T* < 10, where T* is kT/{var_epsilon}, is emphasized since this is where rich data sets are available. When suitable potential parameters are used, errors in transport property predictions for pure substances and binary mixtures are less than 5 %, when they are calculated using the approaches of Kee et al.; Mason, Kestin, and Uribe; Paul and Warnatz; or Ern and Giovangigli. Recommendations stemming from the review include (1) revisiting the supporting data required by the various computational approaches, and updating the data sets with accurate potential parameters, dipole moments, and polarizabilities; (2) characterizing the range of parameter space over which the fit to experimental data is good, rather than the current practice of reporting only the parameter set that best fits the data; (3) looking for improved combining rules, since existing rules were found to under-predict the viscosity in most cases; (4) performing more transport property measurements for mixtures that include radical species, an important but neglected area; (5) using the TRANLIB approach for treating polar molecules and (6) performing more accurate measurements of the molecular parameters used to evaluate the molecular heat capacity, since it affects thermal conductivity, which is important in predicting flame development.« less

  5. Collisional evolution - an analytical study for the non steady-state mass distribution.

    NASA Astrophysics Data System (ADS)

    Vieira Martins, R.

    1999-05-01

    To study the collisional evolution of asteroidal groups one can use an analytical solution for the self-similar collision cascades. This solution is suitable to study the steady-state mass distribution of the collisional fragmentation. However, out of the steady-state conditions, this solution is not satisfactory for some values of the collisional parameters. In fact, for some values for the exponent of the mass distribution power law of an asteroidal group and its relation to the exponent of the function which describes "how rocks break" the author arrives at singular points for the equation which describes the collisional evolution. These singularities appear since some approximations are usually made in the laborious evaluation of many integrals that appear in the analytical calculations. They concern the cutoff for the smallest and the largest bodies. These singularities set some restrictions to the study of the analytical solution for the collisional equation. To overcome these singularities the author performed an algebraic computation considering the smallest and the largest bodies and he obtained the analytical expressions for the integrals that describe the collisional evolution without restriction on the parameters. However, the new distribution is more sensitive to the values of the collisional parameters. In particular the steady-state solution for the differential mass distribution has exponents slightly different from 11/6 for the usual parameters in the asteroid belt. The sensitivity of this distribution with respect to the parameters is analyzed for the usual values in the asteroidal groups. With an expression for the mass distribution without singularities, one can evaluate also its time evolution. The author arrives at an analytical expression given by a power series of terms constituted by a small parameter multiplied by the mass to an exponent, which depends on the initial power law distribution. This expression is a formal solution for the equation which describes the collisional evolution.

  6. Associative memory of phase-coded spatiotemporal patterns in leaky Integrate and Fire networks.

    PubMed

    Scarpetta, Silvia; Giacco, Ferdinando

    2013-04-01

    We study the collective dynamics of a Leaky Integrate and Fire network in which precise relative phase relationship of spikes among neurons are stored, as attractors of the dynamics, and selectively replayed at different time scales. Using an STDP-based learning process, we store in the connectivity several phase-coded spike patterns, and we find that, depending on the excitability of the network, different working regimes are possible, with transient or persistent replay activity induced by a brief signal. We introduce an order parameter to evaluate the similarity between stored and recalled phase-coded pattern, and measure the storage capacity. Modulation of spiking thresholds during replay changes the frequency of the collective oscillation or the number of spikes per cycle, keeping preserved the phases relationship. This allows a coding scheme in which phase, rate and frequency are dissociable. Robustness with respect to noise and heterogeneity of neurons parameters is studied, showing that, since dynamics is a retrieval process, neurons preserve stable precise phase relationship among units, keeping a unique frequency of oscillation, even in noisy conditions and with heterogeneity of internal parameters of the units.

  7. To Spray or Not to Spray: A Decision Analysis of Coffee Berry Borer in Hawaii

    PubMed Central

    2017-01-01

    Integrated pest management strategies were adopted to combat the coffee berry borer (CBB) after its arrival in Hawaii in 2010. A decision tree framework is used to model the CBB integrated pest management recommendations, for potential use by growers and to assist in developing and evaluating management strategies and policies. The model focuses on pesticide spraying (spray/no spray) as the most significant pest management decision within each period over the entire crop season. The main result from the analysis suggests the most important parameter to maximize net benefit is to ensure a low initial infestation level. A second result looks at the impact of a subsidy for the cost of pesticides and shows a typical farmer receives a positive net benefit of $947.17. Sensitivity analysis of parameters checks the robustness of the model and further confirms the importance of a low initial infestation level vis-a-vis any level of subsidy. The use of a decision tree is shown to be an effective method for understanding integrated pest management strategies and solutions. PMID:29065464

  8. Assessment of pesticides removal using two-stage Integrated Aerobic Treatment Plant (IATP) by Bacillus sp. isolated from agricultural field.

    PubMed

    Geed, S R; Shrirame, B S; Singh, R S; Rai, B N

    2017-10-01

    The biodegradation of synthetic wastewater containing Atrazine, Malathion and Parathion was studied in two stage Integrated Aerobic Treatment Plant using Bacillus sp. (consortia) isolated from agricultural field. The influent stream containing these pesticides with initial COD of 1232mg/L were fed to first reactor and treated effluent of first reactor was fed to second reactor. The maximum removal of pesticides in IATP was found to be greater than 90%. The various process parameters such as pH, DO, Redox potential and BOD 5 /COD were monitored during the treatment. The degradation of pesticides and its metabolites in the treated effluent were confirmed by GC-MS. Kinetic parameters such as first order rate constant (K obs ), cell yield (Y X/C ) and decay coefficients (K dp ) were evaluated and found to be 0.00425 per hr, 0.696mg of COD/mg MLSS and 0.0010 per hr respectively. This integrated process was found more effective than physico-chemical treatment of pesticides. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Evaluating integration of inland bathymetry in the U.S. Geological Survey 3D Elevation Program, 2014

    USGS Publications Warehouse

    Miller-Corbett, Cynthia

    2016-09-01

    Inland bathymetry survey collections, survey data types, features, sources, availability, and the effort required to integrate inland bathymetric data into the U.S. Geological Survey 3D Elevation Program are assessed to help determine the feasibility of integrating three-dimensional water feature elevation data into The National Map. Available data from wading, acoustic, light detection and ranging, and combined technique surveys are provided by the U.S. Geological Survey, National Oceanic and Atmospheric Administration, U.S. Army Corps of Engineers, and other sources. Inland bathymetric data accessed through Web-hosted resources or contacts provide useful baseline parameters for evaluating survey types and techniques used for collection and processing, and serve as a basis for comparing survey methods and the quality of results. Historically, boat-mounted acoustic surveys have provided most inland bathymetry data. Light detection and ranging techniques that are beneficial in areas hard to reach by boat, that can collect dense data in shallow water to provide comprehensive coverage, and that can be cost effective for surveying large areas with good water clarity are becoming more common; however, optimal conditions and techniques for collecting and processing light detection and ranging inland bathymetry surveys are not yet well defined.Assessment of site condition parameters important for understanding inland bathymetry survey issues and results, and an evaluation of existing inland bathymetry survey coverage are proposed as steps to develop criteria for implementing a useful and successful inland bathymetry survey plan in the 3D Elevation Program. These survey parameters would also serve as input for an inland bathymetry survey data baseline. Integration and interpolation techniques are important factors to consider in developing a robust plan; however, available survey data are usually in a triangulated irregular network format or other format compatible with the 3D Elevation Program so that data can be integrated with a minimal level of effort. Geomorphic site conditions are known to affect the success and accuracy of light detection and ranging and other bathymetric surveys, and a baseline that includes geomorphic data is recommended to help in evaluation of limitations imposed by geomorphology for surveys completed in the variable physiographic provinces across the United States. The geographic distribution for existing surveys identifies regions where inland bathymetry data have been collected and, conversely, where little or no survey data seem to be available to provide hydrologic and hydraulic information. This distribution, in conjunction with local to regional data needs to characterize and monitor river and lake resources, provides another important set of criteria to propose and guide acquisition of new bathymetry data for the 3D Elevation Program. An initial evaluation of needs can be based on the importance of water resources that provide primary water supplies for communities, agriculture, energy, and ecological systems; the importance of flood plain analyses; and projected population growth across the United States.

  10. A new method to calculate the beam charge for an integrating current transformer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu Yuchi; Han Dan; Zhu Bin

    2012-09-15

    The integrating current transformer (ICT) is a magnetic sensor widely used to precisely measure the charge of an ultra-short-pulse charged particle beam generated by traditional accelerators and new laser-plasma particle accelerators. In this paper, we present a new method to calculate the beam charge in an ICT based on circuit analysis. The output transfer function shows an invariable signal profile for an ultra-short electron bunch, so the function can be used to evaluate the signal quality and calculate the beam charge through signal fitting. We obtain a set of parameters in the output function from a standard signal generated bymore » an ultra-short electron bunch (about 1 ps in duration) at a radio frequency linear electron accelerator at Tsinghua University. These parameters can be used to obtain the beam charge by signal fitting with excellent accuracy.« less

  11. Surface characteristics modeling and performance evaluation of urban building materials using LiDAR data.

    PubMed

    Li, Xiaolu; Liang, Yu

    2015-05-20

    Analysis of light detection and ranging (LiDAR) intensity data to extract surface features is of great interest in remote sensing research. One potential application of LiDAR intensity data is target classification. A new bidirectional reflectance distribution function (BRDF) model is derived for target characterization of rough and smooth surfaces. Based on the geometry of our coaxial full-waveform LiDAR system, the integration method is improved through coordinate transformation to establish the relationship between the BRDF model and intensity data of LiDAR. A series of experiments using typical urban building materials are implemented to validate the proposed BRDF model and integration method. The fitting results show that three parameters extracted from the proposed BRDF model can distinguish the urban building materials from perspectives of roughness, specular reflectance, and diffuse reflectance. A comprehensive analysis of these parameters will help characterize surface features in a physically rigorous manner.

  12. [Interconnection of stress and physical development processes in young persons].

    PubMed

    Barbarash, N A; Kuvshinkov, D Iu; Tul'chinskiĭ, M Ia

    2003-01-01

    The physical development (PD) rates, constitutional peculiarities and an integral level of different manifestations of stress-reactivity (SR) were evaluated in 201 students of Medical Academy (73 males and 138 females), aged 17-21; the above parameters were tested by the color method of Luscher, by Teylor's anxiety assessment, by "Individual Minute" measurements, by the iridoscopic count of iris nervous rings, by the "Mathematical Count" technique and by calculating the index of regulatory systems' tension according to the heart rate variability. The highest total SR index, including the SR cardiac manifestations was found in youth to correlate with the lowest PD index. The integral SR level correlated, in youth, inversely with the PD parameters. Such relations are more pronounced in individuals of the abdominal somatic type. The mechanisms and biological significance of SR correlations with the processes of growth and development are under discussion.

  13. Sparking-out optimization while surface grinding aluminum alloy 1933T2 parts using fuzzy logic

    NASA Astrophysics Data System (ADS)

    Soler, Ya I.; Salov, V. M.; Kien Nguyen, Chi

    2018-03-01

    The article presents the results of a search for optimal sparing-out strokes when surface grinding aluminum parts by high-porous wheels Norton of black silicon carbide 37C80K12VP using fuzzy logic. The topography of grinded surface is evaluated according to the following parameters: roughness – Ra, Rmax, Sm; indicators of flatness deviation – EFEmax, EFEa, EFEq; microhardness HV, each of these parameters is represented by two measures of position and dispersion. The simulation results of fuzzy logic in the Matlab medium establish that during the grinding of alloy 1933T2, the best integral performance evaluation of sparking-out was given to two double-strokes (d=0.827) and the worst – to three ones (d=0.405).

  14. An Adaptive Control Technology for Safety of a GTM-like Aircraft

    NASA Technical Reports Server (NTRS)

    Matsutani, Megumi; Crespo, Luis G.; Annaswamy, Anuradha; Jang, Jinho

    2010-01-01

    An adaptive control architecture for safe performance of a transport aircraft subject to various adverse conditions is proposed and verified in this report. This architecture combines a nominal controller based on a Linear Quadratic Regulator with integral action, and an adaptive controller that accommodates actuator saturation and bounded disturbances. The effectiveness of the baseline controller and its adaptive augmentation are evaluated using a stand-alone control veri fication methodology. Case studies that pair individual parameter uncertainties with critical flight maneuvers are studied. The resilience of the controllers is determined by evaluating the degradation in closed-loop performance resulting from increasingly larger deviations in the uncertain parameters from their nominal values. Symmetric and asymmetric actuator failures, flight upsets, and center of gravity displacements, are some of the uncertainties considered.

  15. Integration of paper spray ionization high-field asymmetric waveform ion mobility spectrometry for forensic applications.

    PubMed

    Tsai, Chia-Wei; Tipple, Christopher A; Yost, Richard A

    2018-04-15

    Paper spray ionization (PSI) is an attractive ambient ionization source for mass spectrometry (MS) since it allows the combination of surface sampling and ionization. The minimal sample preparation inherent in this approach greatly reduces the time needed for analysis. However, the ions generated from interfering compounds in the sample and the paper substrate may interfere with the analyte ions. Therefore, the integration of PSI with high-field asymmetric ion mobility spectrometry (FAIMS) is of significant interest since it should reduce the background ions entering the mass analyzer without complicating the analysis or increasing analysis time. Here we demonstrate the integration of PSI with FAIMS/MS and its potential for analysis of samples of forensic interest. In this work, the parameters that can influence the integration, including sampling and ionization by paper spray, the FAIMS separation of analytes from each other and background interferences, and the length of time that a usable signal can be observed for explosives on paper, were evaluated with the integrated system. In the negative ion analysis of 2,4,6-trinitrotoluene (TNT), pentaerythritol tetranitrate (PETN), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), and 1,3,5-trinitroperhydro-1,3,5-triazine (RDX), amounts as low as 1 ng on paper were readily observed. The successful positive ion separation of a set of illicit drugs including heroin, methamphetamine, and cocaine was also achieved. In addition, the positive ion analysis of the chemical warfare agent simulants dimethyl methylphosphonate (DMMP) and diisopropyl methylphosphonate (DIMP) was evaluated. The integration of PSI-FAIMS/MS was demonstrated for the analyses of explosives in negative ion mode and for illicit drugs and CW simulants in positive mode. Paper background ions that could interfere with these analyses were separated by FAIMS. The compensation voltage of an ion obtained by FAIMS provided an additional identification parameter to be combined with the mass spectrum for each analyte. Copyright © 2018 John Wiley & Sons, Ltd.

  16. LANDSAT-4 band 6 data evaluation

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The radiometric integrity of the LANDSAT-D thematic mapper (TM) thermal infrared channel (band 6) data was evaluated to develop improved radiometric preprocessing calibration techniques for removal of atmospheric effects. Primary data analysis was spent in evaluating the line to line and detector to detector variation in the thermal infrared data. The data studied was in the core area of Lake Ontario where very stable temperatures were expected. The detectors and the scan direction were taken as separate parameters and an analysis of variance was conducted. The data indicate that significant variability exists both between detectors and between scan directions.

  17. Optimization of drug loading to improve physical stability of paclitaxel-loaded long-circulating liposomes.

    PubMed

    Kannan, Vinayagam; Balabathula, Pavan; Divi, Murali K; Thoma, Laura A; Wood, George C

    2015-01-01

    The effect of formulation and process parameters on drug loading and physical stability of paclitaxel-loaded long-circulating liposomes was evaluated. The liposomes were prepared by hydration-extrusion method. The formulation parameters such as total lipid content, cholesterol content, saturated-unsaturated lipid ratio, drug-lipid ratio and process parameters such as extrusion pressure and number of extrusion cycles were studied and their impact on drug loading and physical stability was evaluated. A proportionate increase in drug loading was observed with increase in the total phospholipid content. Cholesterol content and saturated lipid content in the bilayer showed a negative influence on drug loading. The short-term stability evaluation of liposomes prepared with different drug-lipid ratios demonstrated that 1:60 as the optimum drug-lipid ratio to achieve a loading of 1-1.3 mg/mL without the risk of physical instability. The vesicle size decreased with an increase in the extrusion pressure and number of extrusion cycles, but no significant trends were observed for drug loading with changes in process pressure or number of cycles. The optimization of formulation and process parameters led to a physically stable formulation of paclitaxel-loaded long-circulating liposomes that maintain size, charge and integrity during storage.

  18. Role of IAC in large space systems thermal analysis

    NASA Technical Reports Server (NTRS)

    Jones, G. K.; Skladany, J. T.; Young, J. P.

    1982-01-01

    Computer analysis programs to evaluate critical coupling effects that can significantly influence spacecraft system performance are described. These coupling effects arise from the varied parameters of the spacecraft systems, environments, and forcing functions associated with disciplines such as thermal, structures, and controls. Adverse effects can be expected to significantly impact system design aspects such as structural integrity, controllability, and mission performance. One such needed design analysis capability is a software system that can integrate individual discipline computer codes into a highly user-oriented/interactive-graphics-based analysis capability. The integrated analysis capability (IAC) system can be viewed as: a core framework system which serves as an integrating base whereby users can readily add desired analysis modules and as a self-contained interdisciplinary system analysis capability having a specific set of fully integrated multidisciplinary analysis programs that deal with the coupling of thermal, structures, controls, antenna radiation performance, and instrument optical performance disciplines.

  19. Star clusters: age, metallicity and extinction from integrated spectra

    NASA Astrophysics Data System (ADS)

    González Delgado, Rosa M.; Cid Fernandes, Roberto

    2010-01-01

    Integrated optical spectra of star clusters in the Magellanic Clouds and a few Galactic globular clusters are fitted using high-resolution spectral models for single stellar populations. The goal is to estimate the age, metallicity and extinction of the clusters, and evaluate the degeneracies among these parameters. Several sets of evolutionary models that were computed with recent high-spectral-resolution stellar libraries (MILES, GRANADA, STELIB), are used as inputs to the starlight code to perform the fits. The comparison of the results derived from this method and previous estimates available in the literature allow us to evaluate the pros and cons of each set of models to determine star cluster properties. In addition, we quantify the uncertainties associated with the age, metallicity and extinction determinations resulting from variance in the ingredients for the analysis.

  20. Data integration for inference about spatial processes: A model-based approach to test and account for data inconsistency

    PubMed Central

    Pedrini, Paolo; Bragalanti, Natalia; Groff, Claudio

    2017-01-01

    Recently-developed methods that integrate multiple data sources arising from the same ecological processes have typically utilized structured data from well-defined sampling protocols (e.g., capture-recapture and telemetry). Despite this new methodological focus, the value of opportunistic data for improving inference about spatial ecological processes is unclear and, perhaps more importantly, no procedures are available to formally test whether parameter estimates are consistent across data sources and whether they are suitable for integration. Using data collected on the reintroduced brown bear population in the Italian Alps, a population of conservation importance, we combined data from three sources: traditional spatial capture-recapture data, telemetry data, and opportunistic data. We developed a fully integrated spatial capture-recapture (SCR) model that included a model-based test for data consistency to first compare model estimates using different combinations of data, and then, by acknowledging data-type differences, evaluate parameter consistency. We demonstrate that opportunistic data lend itself naturally to integration within the SCR framework and highlight the value of opportunistic data for improving inference about space use and population size. This is particularly relevant in studies of rare or elusive species, where the number of spatial encounters is usually small and where additional observations are of high value. In addition, our results highlight the importance of testing and accounting for inconsistencies in spatial information from structured and unstructured data so as to avoid the risk of spurious or averaged estimates of space use and consequently, of population size. Our work supports the use of a single modeling framework to combine spatially-referenced data while also accounting for parameter consistency. PMID:28973034

  1. Extended Kalman Filter framework for forecasting shoreline evolution

    USGS Publications Warehouse

    Long, Joseph; Plant, Nathaniel G.

    2012-01-01

    A shoreline change model incorporating both long- and short-term evolution is integrated into a data assimilation framework that uses sparse observations to generate an updated forecast of shoreline position and to estimate unobserved geophysical variables and model parameters. Application of the assimilation algorithm provides quantitative statistical estimates of combined model-data forecast uncertainty which is crucial for developing hazard vulnerability assessments, evaluation of prediction skill, and identifying future data collection needs. Significant attention is given to the estimation of four non-observable parameter values and separating two scales of shoreline evolution using only one observable morphological quantity (i.e. shoreline position).

  2. A Simulation Modeling Approach Method Focused on the Refrigerated Warehouses Using Design of Experiment

    NASA Astrophysics Data System (ADS)

    Cho, G. S.

    2017-09-01

    For performance optimization of Refrigerated Warehouses, design parameters are selected based on the physical parameters such as number of equipment and aisles, speeds of forklift for ease of modification. This paper provides a comprehensive framework approach for the system design of Refrigerated Warehouses. We propose a modeling approach which aims at the simulation optimization so as to meet required design specifications using the Design of Experiment (DOE) and analyze a simulation model using integrated aspect-oriented modeling approach (i-AOMA). As a result, this suggested method can evaluate the performance of a variety of Refrigerated Warehouses operations.

  3. Sobol Sensitivity Analysis: A Tool to Guide the Development and Evaluation of Systems Pharmacology Models

    PubMed Central

    Trame, MN; Lesko, LJ

    2015-01-01

    A systems pharmacology model typically integrates pharmacokinetic, biochemical network, and systems biology concepts into a unifying approach. It typically consists of a large number of parameters and reaction species that are interlinked based upon the underlying (patho)physiology and the mechanism of drug action. The more complex these models are, the greater the challenge of reliably identifying and estimating respective model parameters. Global sensitivity analysis provides an innovative tool that can meet this challenge. CPT Pharmacometrics Syst. Pharmacol. (2015) 4, 69–79; doi:10.1002/psp4.6; published online 25 February 2015 PMID:27548289

  4. Two-year evaluation indicates zirconia bridges acceptable alternative to PFMs.

    PubMed

    Perry, Ronald D; Kugel, Gerard; Sharma, Shradha; Ferreira, Susana; Magnuson, Britta

    2012-01-01

    The aim of this in-vivo study was to evaluate the 2-year clinical performance of zirconia computer-aided design/computer-aided manufacturing (CAD/CAM)-generated bridges. A total of 16 three- or four-unit Lava zirconia bridges were done on 15 subjects. The bridges were cemented using RelyX™ Unicem Self-Adhesive Universal Resin Cement. Evaluation was done at 6-month, 1-year, and 2-year recall visits. Evaluation criteria were color stability and matching, marginal integrity, marginal discoloration, incidence of caries, changes in restoration-tooth interface, changes in surface texture, postoperative sensitivity, maintenance of periodontal health, changes in proximal and opposing teeth, and maintenance of anatomic form. In each of these parameters, the bridges were rated in one of three possible categories: "A" (alpha)--ideal; "B" (bravo)--acceptable; and "C" (charlie)--unacceptable. After 2 years, 100% of the bridges were rated "A" for color stability and matching, marginal discoloration, incidence of caries, changes in restoration-tooth interface, changes in surface texture, postoperative sensitivity, and change in proximal or opposing teeth. In the parameter of marginal integrity, 6.25% of the bridges were rated "B;" the remaining 93.75% were rated "A." Maintenance of periodontal health was rated "B" for 6.25% of the bridges and "A" for 93.75%. At 2 years, 12.5% of the bridges rated "C" in maintenance of anatomic form and 87.5% rated "A." The overall clinical outcome was that the CAD/CAM-generated zirconia bridges were clinically acceptable.

  5. Bayes Factor Covariance Testing in Item Response Models.

    PubMed

    Fox, Jean-Paul; Mulder, Joris; Sinharay, Sandip

    2017-12-01

    Two marginal one-parameter item response theory models are introduced, by integrating out the latent variable or random item parameter. It is shown that both marginal response models are multivariate (probit) models with a compound symmetry covariance structure. Several common hypotheses concerning the underlying covariance structure are evaluated using (fractional) Bayes factor tests. The support for a unidimensional factor (i.e., assumption of local independence) and differential item functioning are evaluated by testing the covariance components. The posterior distribution of common covariance components is obtained in closed form by transforming latent responses with an orthogonal (Helmert) matrix. This posterior distribution is defined as a shifted-inverse-gamma, thereby introducing a default prior and a balanced prior distribution. Based on that, an MCMC algorithm is described to estimate all model parameters and to compute (fractional) Bayes factor tests. Simulation studies are used to show that the (fractional) Bayes factor tests have good properties for testing the underlying covariance structure of binary response data. The method is illustrated with two real data studies.

  6. Evaluation of multifunctional imaging parameters in gastro-oesophageal cancer using F-18-FDG-PET/CT with integrated perfusion CT.

    PubMed

    Sah, Bert-Ram; Leissing, Christian A; Delso, Gaspar; Ter Voert, Edwin E; Krieg, Stefan; Leibl, Sebastian; Schneider, Paul M; Reiner, Cäcilia S; Hüllner, Martin W; Veit-Haibach, Patrick

    2018-05-10

    Positron emission tomography (PET) / computed tomography (CT) is among the most frequently used imaging modalities for initial staging of gastro-oesophageal (GE) cancer, whereas CT-perfusion (CTP) provides different multiparametric information. This proof of concept study compares CTP- and PET-parameters in patients with GE cancer to evaluate correlations and a possible prognostic value of a combined PET/CTP imaging procedure. A total of 31 patients with F-18-FDG-PET/CT and CTP studies were prospectively analysed. Patients had adenocarcinoma (n = 22) and oesophageal squamous cell carcinoma (SCC, n = 9). Imaging was performed before start of treatment. CTP parameters [blood flow (BF), blood volume (BV), mean transit time (MTT)] and metabolic parameters [(maximum and mean standardised uptake values and standard deviation (SUVmax, SUVmean, SUVsd), metabolic tumour volume (MTV) and tumour lesion glycolysis (TLG)], as well as flow metabolic product [FMP (BF × SUVmax)] were determined and their relationship was compared. Additionally their association to clinical parameters (differentiation grading, staging, HER2-status, follow-up status) and to histopathological regression (post-neoadjuvant regression grading) was evaluated. Correlation between parameters of both modalities was significant between MTT and MTV (r = 0.375, p = 0.038); no other significant correlation was found. Patients with complete histopathological regression showed significantly lower BF and BV than patients with nearly complete or partial response. TLG and regression grading showed significant correlation with staging. All other quantitative parameters for CTP and PET data did not correlate significantly with histopathological regression grading, differentiation or staging. The combination of PET and CTP parameters (FMP) showed no significant prognostic value. Significant correlations were only found between MTT and MTV, which indicates a possible perfusional/metabolic coupling. Therefore, pre-therapeutic CTP and PET- parameters provide complementary information about the pre-therapeutic tumour status and are not interchangeable. Only CTP parameters might be able to predict complete histopathological regression. On the other hand, only PET parameters are correlated with staging.

  7. Assessing the Impact of Model Parameter Uncertainty in Simulating Grass Biomass Using a Hybrid Carbon Allocation Strategy

    NASA Astrophysics Data System (ADS)

    Reyes, J. J.; Adam, J. C.; Tague, C.

    2016-12-01

    Grasslands play an important role in agricultural production as forage for livestock; they also provide a diverse set of ecosystem services including soil carbon (C) storage. The partitioning of C between above and belowground plant compartments (i.e. allocation) is influenced by both plant characteristics and environmental conditions. The objectives of this study are to 1) develop and evaluate a hybrid C allocation strategy suitable for grasslands, and 2) apply this strategy to examine the importance of various parameters related to biogeochemical cycling, photosynthesis, allocation, and soil water drainage on above and belowground biomass. We include allocation as an important process in quantifying the model parameter uncertainty, which identifies the most influential parameters and what processes may require further refinement. For this, we use the Regional Hydro-ecologic Simulation System, a mechanistic model that simulates coupled water and biogeochemical processes. A Latin hypercube sampling scheme was used to develop parameter sets for calibration and evaluation of allocation strategies, as well as parameter uncertainty analysis. We developed the hybrid allocation strategy to integrate both growth-based and resource-limited allocation mechanisms. When evaluating the new strategy simultaneously for above and belowground biomass, it produced a larger number of less biased parameter sets: 16% more compared to resource-limited and 9% more compared to growth-based. This also demonstrates its flexible application across diverse plant types and environmental conditions. We found that higher parameter importance corresponded to sub- or supra-optimal resource availability (i.e. water, nutrients) and temperature ranges (i.e. too hot or cold). For example, photosynthesis-related parameters were more important at sites warmer than the theoretical optimal growth temperature. Therefore, larger values of parameter importance indicate greater relative sensitivity in adequately representing the relevant process to capture limiting resources or manage atypical environmental conditions. These results may inform future experimental work by focusing efforts on quantifying specific parameters under various environmental conditions or across diverse plant functional types.

  8. Wound construction in manual small incision cataract surgery

    PubMed Central

    Haldipurkar, S S; Shikari, Hasanain T; Gokhale, Vishwanath

    2009-01-01

    The basis of manual small incision cataract surgery is the tunnel construction for entry to the anterior chamber. The parameters important for the structural integrity of the tunnel are the self-sealing property of the tunnel, the location of the wound on the sclera with respect to the limbus, and the shape of the wound. Cataract surgery has gone beyond just being a means to get the lens out of the eye. Postoperative astigmatism plays an important role in the evaluation of final outcome of surgery. Astigmatic consideration, hence, forms an integral part of incisional considerations prior to surgery. PMID:19075401

  9. Groundwater assessment in Salboni Block, West Bengal (India) using remote sensing, geographical information system and multi-criteria decision analysis techniques

    NASA Astrophysics Data System (ADS)

    Jha, Madan K.; Chowdary, V. M.; Chowdhury, Alivia

    2010-11-01

    An approach is presented for the evaluation of groundwater potential using remote sensing, geographic information system, geoelectrical, and multi-criteria decision analysis techniques. The approach divides the available hydrologic and hydrogeologic data into two groups, exogenous (hydrologic) and endogenous (subsurface). A case study in Salboni Block, West Bengal (India), uses six thematic layers of exogenous parameters and four thematic layers of endogenous parameters. These thematic layers and their features were assigned suitable weights which were normalized by analytic hierarchy process and eigenvector techniques. The layers were then integrated using ArcGIS software to generate two groundwater potential maps. The hydrologic parameters-based groundwater potential zone map indicated that the `good' groundwater potential zone covers 27.14% of the area, the `moderate' zone 45.33%, and the `poor' zone 27.53%. A comparison of this map with the groundwater potential map based on subsurface parameters revealed that the hydrologic parameters-based map accurately delineates groundwater potential zones in about 59% of the area, and hence it is dependable to a certain extent. More than 80% of the study area has moderate-to-poor groundwater potential, which necessitates efficient groundwater management for long-term water security. Overall, the integrated technique is useful for the assessment of groundwater resources at a basin or sub-basin scale.

  10. System-Integrated Finite Element Analysis of a Full-Scale Helicopter Crash Test with Deployable Energy Absorbers

    NASA Technical Reports Server (NTRS)

    Annett, Martin S.; Polanco, Michael A.

    2010-01-01

    A full-scale crash test of an MD-500 helicopter was conducted in December 2009 at NASA Langley's Landing and Impact Research facility (LandIR). The MD-500 helicopter was fitted with a composite honeycomb Deployable Energy Absorber (DEA) and tested under vertical and horizontal impact velocities of 26-ft/sec and 40-ft/sec, respectively. The objectives of the test were to evaluate the performance of the DEA concept under realistic crash conditions and to generate test data for validation of a system integrated finite element model. In preparation for the full-scale crash test, a series of sub-scale and MD-500 mass simulator tests was conducted to evaluate the impact performances of various components, including a new crush tube and the DEA blocks. Parameters defined within the system integrated finite element model were determined from these tests. The objective of this paper is to summarize the finite element models developed and analyses performed, beginning with pre-test predictions and continuing through post-test validation.

  11. Optimization of processing parameters of UAV integral structural components based on yield response

    NASA Astrophysics Data System (ADS)

    Chen, Yunsheng

    2018-05-01

    In order to improve the overall strength of unmanned aerial vehicle (UAV), it is necessary to optimize the processing parameters of UAV structural components, which is affected by initial residual stress in the process of UAV structural components processing. Because machining errors are easy to occur, an optimization model for machining parameters of UAV integral structural components based on yield response is proposed. The finite element method is used to simulate the machining parameters of UAV integral structural components. The prediction model of workpiece surface machining error is established, and the influence of the path of walking knife on residual stress of UAV integral structure is studied, according to the stress of UAV integral component. The yield response of the time-varying stiffness is analyzed, and the yield response and the stress evolution mechanism of the UAV integral structure are analyzed. The simulation results show that this method is used to optimize the machining parameters of UAV integral structural components and improve the precision of UAV milling processing. The machining error is reduced, and the deformation prediction and error compensation of UAV integral structural parts are realized, thus improving the quality of machining.

  12. Learning from the experience: preliminary results of integration experiments within PRE-EARTHQUAKES EU-FP7 Project.

    NASA Astrophysics Data System (ADS)

    Tramutoli, V.; Inan, S.; Jakowski, N.; Pulinets, S.; Romanov, A.; Filizzola, C.; Shagimuratov, I.; Pergola, N.; Genzano, N.; Lisi, M.; Alparslan, E.; Wilken, V.; Tsybulia, K.; Romanov, A.; Paciello, R.; Balasco, M.; Zakharenkova, I.; Ouzounov, D.; Papadopoulos, G. A.; Parrot, M.

    2012-04-01

    PRE-EARTHQUAKES (Processing Russian and European EARTH observations for earthQUAKE precursors Studies) EU-FP7 project is devoted to demonstrate - integrating different observational data, comparing and improving different data analysis methods - how it is possible to progressively increase reliability of short term seismic risk assessment. Three main testing area were selected (Italy, Turkey and Sakhalin ) in order to concentrate observations and integration efforts starting with a learning phase on selected event in the past devoted to identify the most suitable parameters, observations technologies, data analysis algorithms. To this aim events offering major possibilities (variety) of integration were particularly considered - Abruzzo EQ (April 6th 2009 Mw 6.3) for Italy, Elazig EQ (March 8th 2010 Mw 6.1) for Turkey and Nevelsk EQ (August 2nd 2007 Mw 6.2) for Sakhalin - without excluding other significant events occurred during 2011 like the ones of Tōhoku in Japan and Van in Turkey. For these events, different ground (80 radon and 29 spring water stations in Turkey region, 2 magneto-telluric in Italy) and satellite (18 different systems) based observations, 11 data analysis methods, for 7 measured parameters, have been compared and integrated. Results achieved by applying a validation/confutation approach devoted to evaluate the presence/absence of anomalous space-time transients in single and/or integrated observation time-series will be discussed also in comparison with results independently achieved by other authors.

  13. Integrity monitoring of IGS products

    NASA Technical Reports Server (NTRS)

    Zumberge, James F.; Plag, H. -P.

    2005-01-01

    The IGS has successfully produced precise GPS and GLONASS transmitter parameters, coordinates of IGS tracking stations, Earth rotation parameters, and atmospheric parameters. In this paper we discuss the concepts of integrity monitoring, system monitoring, and performance assessment, all in the context of IGS products. We report on a recent survey of IGS product users, and propose an integrity strategy for the IGS.

  14. A modeling framework for integrated harvest and habitat management of North American waterfowl: Case-study of northern pintail metapopulation dynamics

    USGS Publications Warehouse

    Mattsson, Brady J.; Runge, M.C.; Devries, J.H.; Boomer, G.S.; Eadie, J.M.; Haukos, D.A.; Fleskes, J.P.; Koons, D.N.; Thogmartin, W.E.; Clark, R.G.

    2012-01-01

    We developed and evaluated the performance of a metapopulation model enabling managers to examine, for the first time, the consequences of alternative management strategies involving habitat conditions and hunting on both harvest opportunity and carrying capacity (i.e., equilibrium population size in the absence of harvest) for migratory waterfowl at a continental scale. Our focus is on the northern pintail (Anas acuta; hereafter, pintail), which serves as a useful model species to examine the potential for integrating waterfowl harvest and habitat management in North America. We developed submodel structure capturing important processes for pintail populations during breeding, fall migration, winter, and spring migration while encompassing spatial structure representing three core breeding areas and two core nonbreeding areas. A number of continental-scale predictions from our baseline parameterization (e.g., carrying capacity of 5.5 million, equilibrium population size of 2.9 million and harvest rate of 12% at maximum sustained yield [MSY]) were within 10% of those from the pintail harvest strategy under current use by the U.S. Fish and Wildlife Service. To begin investigating the interaction of harvest and habitat management, we examined equilibrium population conditions for pintail at the continental scale across a range of harvest rates while perturbing model parameters to represent: (1) a 10% increase in breeding habitat quality in the Prairie Pothole population (PR); and (2) a 10% increase in nonbreeding habitat quantity along in the Gulf Coast (GC). Based on our model and analysis, a greater increase in carrying capacity and sustainable harvest was seen when increasing a proxy for habitat quality in the Prairie Pothole population. This finding and underlying assumptions must be critically evaluated, however, before specific management recommendations can be made. To make such recommendations, we require (1) extended, refined submodels with additional parameters linking influences of habitat management and environmental conditions to key life-history parameters; (2) a formal sensitivity analysis of the revised model; (3) an integrated population model that incorporates empirical data for estimating key vital rates; and (4) cost estimates for changing these additional parameters through habitat management efforts. We foresee great utility in using an integrated modeling approach to predict habitat and harvest management influences on continental-scale population responses while explicitly considering putative effects of climate change. Such a model could be readily adapted for management of many habitat-limited species.

  15. Atomic Calculations with a One-Parameter, Single Integral Method.

    ERIC Educational Resources Information Center

    Baretty, Reinaldo; Garcia, Carmelo

    1989-01-01

    Presents an energy function E(p) containing a single integral and one variational parameter, alpha. Represents all two-electron integrals within the local density approximation as a single integral. Identifies this as a simple treatment for use in an introductory quantum mechanics course. (MVL)

  16. Challenges in studying the effects of scientific societies on research integrity.

    PubMed

    Levine, Felice J; Iutcovich, Joyce M

    2003-04-01

    Beyond impressionistic observations, little is known about the role and influence of scientific societies on research conduct. Acknowledging that the influence of scientific societies is not easily disentangled from other factors that shape norms and practices, this article addresses how best to study the promotion of research integrity generally as well as the role and impact of scientific societies as part of that process. In setting forth the parameters of a research agenda, the article addresses four issues: (1) how to conceptualize research on scientific societies and research integrity; (2) challenges and complexities in undertaking basic research; (3) strategies for undertaking basic research that is attentive to individual, situational, organizational, and environmental levels of analysis; and (4) the need for evaluation research as integral to programmatic change and to assessment of the impact of activities by scientific societies.

  17. Work Capacity of the Bladder During Voiding: A Novel Method to Evaluate Bladder Contractile Function and Bladder Outlet Obstruction

    PubMed Central

    Liu, Ning; Man, Li-Bo; He, Feng; Huang, Guang-Lin; Zhou, Ning; Zhu, Xiao-Fei

    2015-01-01

    Background: Work in voiding (WIV) of the bladder may be used to evaluate bladder status throughout urination rather than at a single time point. Few studies, however, have assessed WIV owing to the complexity of its calculations. We have developed a method of calculating work capacity of the bladder while voiding and analyzed the associations of bladder work parameters with bladder contractile function and bladder outlet obstruction (BOO). Methods: The study retrospectively evaluated 160 men and 23 women, aged >40 years and with a detrusor pressure at maximal flow rate (Pdet Qmax) of ≥40 cmH2O in men, who underwent urodynamic testing. The bladder power integration method was used to calculate WIV; WIV per second (WIV/t) and WIV per liter of urine voided (WIV/v) were also calculated. In men, the relationships between these work capacity parameters and Pdet Qmax and Abrams-Griffiths (AG) number were determined using linear-by-linear association tests, and relationships between work capacity parameters and BOO grade were investigated using Spearman's association test. Results: The mean WIV was 1.15 ± 0.78 J and 1.30 ± 0.88 J, mean WIV/t was 22.95 ± 14.45 mW and 23.78 ± 17.02 mW, and mean WIV/v was 5.59 ± 2.32 J/L and 2.83 ± 1.87 J/L in men and women, respectively. In men, WIV/v showed significant positive associations with Pdet Qmax (r = 0.845, P = 0.000), AG number (r = 0.814, P = 0.000), and Schafer class (r = 0.726, P = 0.000). Conversely, WIV and WIV/t showed no associations with Pdet Qmax or AG number. In patients with BOO (Schafer class > II), WIV/v correlated positively with increasing BOO grade. Conclusions: WIV can be calculated from simple urodynamic parameters using the bladder power integration method. WIV/v may be a marker of BOO grade, and the bladder contractile function can be evaluated by WIV and WIV/t. PMID:26668148

  18. Thermodynamic properties of liquid Au–Cu–Sn alloys determined from electromotive force measurements

    PubMed Central

    Guo, Zhongnan; Hindler, Michael; Yuan, Wenxia; Mikula, Adolf

    2011-01-01

    The thermodynamic properties of the ternary Au–Cu–Sn system were determined with the electromotive force (EMF) method using a liquid electrolyte. Three different cross-sections with constant Au:Cu ratios of 3:1, 1:1, and 1:3 were applied to measure the thermodynamic properties of the ternary system in the temperature range between the liquidus temperature of the alloys and 1023 K. The partial free energies of Sn in liquid Au–Cu–Sn alloys were obtained from EMF data. The integral Gibbs free energy and the integral enthalpy at 900 K were calculated by Gibbs–Duhem integration. The ternary interaction parameters were evaluated using the Redlich–Kister–Muggianu polynomial. PMID:22039311

  19. Data assimilation using a GPU accelerated path integral Monte Carlo approach

    NASA Astrophysics Data System (ADS)

    Quinn, John C.; Abarbanel, Henry D. I.

    2011-09-01

    The answers to data assimilation questions can be expressed as path integrals over all possible state and parameter histories. We show how these path integrals can be evaluated numerically using a Markov Chain Monte Carlo method designed to run in parallel on a graphics processing unit (GPU). We demonstrate the application of the method to an example with a transmembrane voltage time series of a simulated neuron as an input, and using a Hodgkin-Huxley neuron model. By taking advantage of GPU computing, we gain a parallel speedup factor of up to about 300, compared to an equivalent serial computation on a CPU, with performance increasing as the length of the observation time used for data assimilation increases.

  20. Numerical simulation for heat transfer performance in unsteady flow of Williamson fluid driven by a wedge-geometry

    NASA Astrophysics Data System (ADS)

    Hamid, Aamir; Hashim; Khan, Masood

    2018-06-01

    The main concern of this communication is to investigate the two-layer flow of a non-Newtonian rheological fluid past a wedge-shaped geometry. One remarkable aspect of this article is the mathematical formulation for two-dimensional flow of Williamson fluid by incorporating the effect of infinite shear rate viscosity. The impacts of heat transfer mechanism on time-dependent flow field are further studied. At first, we employ the suitable non-dimensional variables to transmute the time-dependent governing flow equations into a system of non-linear ordinary differential equations. The converted conservation equations are numerically integrated subject to physically suitable boundary conditions with the aid of Runge-Kutta Fehlberg integration procedure. The effects of involved pertinent parameters, such as, moving wedge parameter, wedge angle parameter, local Weissenberg number, unsteadiness parameter and Prandtl number on the non-dimensional velocity and temperature distributions have been evaluated. In addition, the numerical values of the local skin friction coefficient and the local Nusselt number are compared and presented through tables. The outcomes of this study indicate that the rate of heat transfer increases with the growth of both wedge angle parameter and unsteadiness parameter. Moreover, a substantial rise in the fluid velocity is observed with enhancement in the viscosity ratio parameter while an opposite trend is true for the non-dimensional temperature field. A comparison is presented between the current study and already published works and results found to be in outstanding agreement. Finally, the main findings of this article are highlighted in the last section.

  1. Modeling Nitrogen Dynamics in a Waste Stabilization Pond System Using Flexible Modeling Environment with MCMC

    PubMed Central

    Mukhtar, Hussnain; Lin, Yu-Pin; Shipin, Oleg V.; Petway, Joy R.

    2017-01-01

    This study presents an approach for obtaining realization sets of parameters for nitrogen removal in a pilot-scale waste stabilization pond (WSP) system. The proposed approach was designed for optimal parameterization, local sensitivity analysis, and global uncertainty analysis of a dynamic simulation model for the WSP by using the R software package Flexible Modeling Environment (R-FME) with the Markov chain Monte Carlo (MCMC) method. Additionally, generalized likelihood uncertainty estimation (GLUE) was integrated into the FME to evaluate the major parameters that affect the simulation outputs in the study WSP. Comprehensive modeling analysis was used to simulate and assess nine parameters and concentrations of ON-N, NH3-N and NO3-N. Results indicate that the integrated FME-GLUE-based model, with good Nash–Sutcliffe coefficients (0.53–0.69) and correlation coefficients (0.76–0.83), successfully simulates the concentrations of ON-N, NH3-N and NO3-N. Moreover, the Arrhenius constant was the only parameter sensitive to model performances of ON-N and NH3-N simulations. However, Nitrosomonas growth rate, the denitrification constant, and the maximum growth rate at 20 °C were sensitive to ON-N and NO3-N simulation, which was measured using global sensitivity. PMID:28704958

  2. Additional deleterious effects of alcohol consumption on sperm parameters and DNA integrity in diabetic mice.

    PubMed

    Pourentezari, M; Talebi, A R; Mangoli, E; Anvari, M; Rahimipour, M

    2016-06-01

    The aim of this study was to survey the impact of alcohol consumption on sperm parameters and DNA integrity in experimentally induced diabetic mice. A total of 32 adult male mice were divided into four groups: mice of group 1 served as control fed on basal diet, group 2 received streptozotocin (STZ) (200 mg kg(-1) , single dose, intraperitoneal) and basal diet, group 3 received alcohol (10 mg kg(-1) , water soluble) and basal diet, and group 4 received STZ and alcohol for 35 days. The cauda epididymidis of each mouse was dissected and placed in 1 ml of pre-warm Ham's F10 culture medium for 30 min. The swim-out spermatozoa were analysed for count, motility, morphology and viability. Sperm chromatin quality was evaluated with aniline blue, toluidine blue, acridine orange and chromomycin A3 staining. The results showed that all sperm parameters had significant differences (P < 0.05), also when sperm chromatin was assessed with cytochemical tests. There were significant differences (P < 0.001) between the groups. According to our results, alcohol and diabetes can cause abnormalities in sperm parameters and chromatin quality. In addition, alcohol consumption in diabetic mice can intensify sperm chromatin/DNA damage. © 2015 Blackwell Verlag GmbH.

  3. Assessing the combined effects of urbanisation and climate change on the river water quality in an integrated urban wastewater system in the UK.

    PubMed

    Astaraie-Imani, Maryam; Kapelan, Zoran; Fu, Guangtao; Butler, David

    2012-12-15

    Climate change and urbanisation are key factors affecting the future of water quality and quantity in urbanised catchments and are associated with significant uncertainty. The work reported in this paper is an evaluation of the combined and relative impacts of climate change and urbanisation on the receiving water quality in the context of an Integrated Urban Wastewater System (IUWS) in the UK. The impacts of intervening system operational control parameters are also investigated. Impact is determined by a detailed modelling study using both local and global sensitivity analysis methods together with correlation analysis. The results obtained from the case-study analysed clearly demonstrate that climate change combined with increasing urbanisation is likely to lead to worsening river water quality in terms of both frequency and magnitude of breaching threshold dissolved oxygen and ammonium concentrations. The results obtained also reveal the key climate change and urbanisation parameters that have the largest negative impact as well as the most responsive IUWS operational control parameters including major dependencies between all these parameters. This information can be further utilised to adapt future IUWS operation and/or design which, in turn, should make these systems more resilient to future climate and urbanisation changes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. GPHMM: an integrated hidden Markov model for identification of copy number alteration and loss of heterozygosity in complex tumor samples using whole genome SNP arrays

    PubMed Central

    Li, Ao; Liu, Zongzhi; Lezon-Geyda, Kimberly; Sarkar, Sudipa; Lannin, Donald; Schulz, Vincent; Krop, Ian; Winer, Eric; Harris, Lyndsay; Tuck, David

    2011-01-01

    There is an increasing interest in using single nucleotide polymorphism (SNP) genotyping arrays for profiling chromosomal rearrangements in tumors, as they allow simultaneous detection of copy number and loss of heterozygosity with high resolution. Critical issues such as signal baseline shift due to aneuploidy, normal cell contamination, and the presence of GC content bias have been reported to dramatically alter SNP array signals and complicate accurate identification of aberrations in cancer genomes. To address these issues, we propose a novel Global Parameter Hidden Markov Model (GPHMM) to unravel tangled genotyping data generated from tumor samples. In contrast to other HMM methods, a distinct feature of GPHMM is that the issues mentioned above are quantitatively modeled by global parameters and integrated within the statistical framework. We developed an efficient EM algorithm for parameter estimation. We evaluated performance on three data sets and show that GPHMM can correctly identify chromosomal aberrations in tumor samples containing as few as 10% cancer cells. Furthermore, we demonstrated that the estimation of global parameters in GPHMM provides information about the biological characteristics of tumor samples and the quality of genotyping signal from SNP array experiments, which is helpful for data quality control and outlier detection in cohort studies. PMID:21398628

  5. Molecular radiotherapy: the NUKFIT software for calculating the time-integrated activity coefficient.

    PubMed

    Kletting, P; Schimmel, S; Kestler, H A; Hänscheid, H; Luster, M; Fernández, M; Bröer, J H; Nosske, D; Lassmann, M; Glatting, G

    2013-10-01

    Calculation of the time-integrated activity coefficient (residence time) is a crucial step in dosimetry for molecular radiotherapy. However, available software is deficient in that it is either not tailored for the use in molecular radiotherapy and/or does not include all required estimation methods. The aim of this work was therefore the development and programming of an algorithm which allows for an objective and reproducible determination of the time-integrated activity coefficient and its standard error. The algorithm includes the selection of a set of fitting functions from predefined sums of exponentials and the choice of an error model for the used data. To estimate the values of the adjustable parameters an objective function, depending on the data, the parameters of the error model, the fitting function and (if required and available) Bayesian information, is minimized. To increase reproducibility and user-friendliness the starting values are automatically determined using a combination of curve stripping and random search. Visual inspection, the coefficient of determination, the standard error of the fitted parameters, and the correlation matrix are provided to evaluate the quality of the fit. The functions which are most supported by the data are determined using the corrected Akaike information criterion. The time-integrated activity coefficient is estimated by analytically integrating the fitted functions. Its standard error is determined assuming Gaussian error propagation. The software was implemented using MATLAB. To validate the proper implementation of the objective function and the fit functions, the results of NUKFIT and SAAM numerical, a commercially available software tool, were compared. The automatic search for starting values was successfully tested for reproducibility. The quality criteria applied in conjunction with the Akaike information criterion allowed the selection of suitable functions. Function fit parameters and their standard error estimated by using SAAM numerical and NUKFIT showed differences of <1%. The differences for the time-integrated activity coefficients were also <1% (standard error between 0.4% and 3%). In general, the application of the software is user-friendly and the results are mathematically correct and reproducible. An application of NUKFIT is presented for three different clinical examples. The software tool with its underlying methodology can be employed to objectively and reproducibly estimate the time integrated activity coefficient and its standard error for most time activity data in molecular radiotherapy.

  6. Optomechanical integrated simulation of Mars medium resolution lens with large field of view

    NASA Astrophysics Data System (ADS)

    Yang, Wenqiang; Xu, Guangzhou; Yang, Jianfeng; Sun, Yi

    2017-10-01

    The lens of Mars detector is exposed to solar radiation and space temperature for long periods of time during orbit, so that the ambient temperature of the optical system is in a dynamic state. The optical and mechanical change caused by heat will lead to camera's visual axis drift and the wavefront distortion. The surface distortion of the optical lens includes the displacement of the rigid body and the distortion of the surface shape. This paper used the calculation method based on the integrated optomechanical analysis, to explore the impact of thermodynamic load on image quality. Through the analysis software, established a simulation model of the lens structure. The shape distribution and the surface characterization parameters of the lens in some temperature ranges were analyzed and compared. the PV / RMS value, deformation cloud of the lens surface and quality evaluation of imaging was achieved. This simulation has been successfully measured the lens surface shape and shape distribution under the load which is difficult to measure on the experimental conditions. The integrated simulation method of the optical machine can obtain the change of the optical parameters brought by the temperature load. It shows that the application of Integrated analysis has play an important role in guiding the designing the lens.

  7. Integration and Analysis of Neighbor Discovery and Link Quality Estimation in Wireless Sensor Networks

    PubMed Central

    Radi, Marjan; Dezfouli, Behnam; Abu Bakar, Kamalrulnizam; Abd Razak, Shukor

    2014-01-01

    Network connectivity and link quality information are the fundamental requirements of wireless sensor network protocols to perform their desired functionality. Most of the existing discovery protocols have only focused on the neighbor discovery problem, while a few number of them provide an integrated neighbor search and link estimation. As these protocols require a careful parameter adjustment before network deployment, they cannot provide scalable and accurate network initialization in large-scale dense wireless sensor networks with random topology. Furthermore, performance of these protocols has not entirely been evaluated yet. In this paper, we perform a comprehensive simulation study on the efficiency of employing adaptive protocols compared to the existing nonadaptive protocols for initializing sensor networks with random topology. In this regard, we propose adaptive network initialization protocols which integrate the initial neighbor discovery with link quality estimation process to initialize large-scale dense wireless sensor networks without requiring any parameter adjustment before network deployment. To the best of our knowledge, this work is the first attempt to provide a detailed simulation study on the performance of integrated neighbor discovery and link quality estimation protocols for initializing sensor networks. This study can help system designers to determine the most appropriate approach for different applications. PMID:24678277

  8. Variance Reduction Factor of Nuclear Data for Integral Neutronics Parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiba, G., E-mail: go_chiba@eng.hokudai.ac.jp; Tsuji, M.; Narabayashi, T.

    We propose a new quantity, a variance reduction factor, to identify nuclear data for which further improvements are required to reduce uncertainties of target integral neutronics parameters. Important energy ranges can be also identified with this variance reduction factor. Variance reduction factors are calculated for several integral neutronics parameters. The usefulness of the variance reduction factors is demonstrated.

  9. Data assimilation in integrated hydrological modelling in the presence of observation bias

    NASA Astrophysics Data System (ADS)

    Rasmussen, J.; Madsen, H.; Jensen, K. H.; Refsgaard, J. C.

    2015-08-01

    The use of bias-aware Kalman filters for estimating and correcting observation bias in groundwater head observations is evaluated using both synthetic and real observations. In the synthetic test, groundwater head observations with a constant bias and unbiased stream discharge observations are assimilated in a catchment scale integrated hydrological model with the aim of updating stream discharge and groundwater head, as well as several model parameters relating to both stream flow and groundwater modeling. The Colored Noise Kalman filter (ColKF) and the Separate bias Kalman filter (SepKF) are tested and evaluated for correcting the observation biases. The study found that both methods were able to estimate most of the biases and that using any of the two bias estimation methods resulted in significant improvements over using a bias-unaware Kalman Filter. While the convergence of the ColKF was significantly faster than the convergence of the SepKF, a much larger ensemble size was required as the estimation of biases would otherwise fail. Real observations of groundwater head and stream discharge were also assimilated, resulting in improved stream flow modeling in terms of an increased Nash-Sutcliffe coefficient while no clear improvement in groundwater head modeling was observed. Both the ColKF and the SepKF tended to underestimate the biases, which resulted in drifting model behavior and sub-optimal parameter estimation, but both methods provided better state updating and parameter estimation than using a bias-unaware filter.

  10. Data assimilation in integrated hydrological modelling in the presence of observation bias

    NASA Astrophysics Data System (ADS)

    Rasmussen, Jørn; Madsen, Henrik; Høgh Jensen, Karsten; Refsgaard, Jens Christian

    2016-05-01

    The use of bias-aware Kalman filters for estimating and correcting observation bias in groundwater head observations is evaluated using both synthetic and real observations. In the synthetic test, groundwater head observations with a constant bias and unbiased stream discharge observations are assimilated in a catchment-scale integrated hydrological model with the aim of updating stream discharge and groundwater head, as well as several model parameters relating to both streamflow and groundwater modelling. The coloured noise Kalman filter (ColKF) and the separate-bias Kalman filter (SepKF) are tested and evaluated for correcting the observation biases. The study found that both methods were able to estimate most of the biases and that using any of the two bias estimation methods resulted in significant improvements over using a bias-unaware Kalman filter. While the convergence of the ColKF was significantly faster than the convergence of the SepKF, a much larger ensemble size was required as the estimation of biases would otherwise fail. Real observations of groundwater head and stream discharge were also assimilated, resulting in improved streamflow modelling in terms of an increased Nash-Sutcliffe coefficient while no clear improvement in groundwater head modelling was observed. Both the ColKF and the SepKF tended to underestimate the biases, which resulted in drifting model behaviour and sub-optimal parameter estimation, but both methods provided better state updating and parameter estimation than using a bias-unaware filter.

  11. Computer-assisted sperm analysis of fresh epididymal cat spermatozoa and the impact of cool storage (4 degrees C) on sperm quality.

    PubMed

    Filliers, M; Rijsselaere, T; Bossaert, P; De Causmaecker, V; Dewulf, J; Pope, C E; Van Soom, A

    2008-12-01

    Epididymal cat sperm is commonly used for in vitro fertilization. Because of the high variability in preparation protocols and methods of evaluation, sperm quality may vary considerably between experiments and laboratories. The aims of the present study were (1) to describe an epididymal sperm preparation protocol to produce clean, highly motile samples using density gradient centrifugation, (2) to provide reference values of computer-assisted semen analysis (CASA) parameters of fresh epididymal cat sperm after density gradient centrifugation and (3) to investigate the effect of cool storage on various spermatozoa characteristics. After slicing the epididymides, viable and motile sperm cells were isolated using Percoll centrifugation. Sperm motility parameters were subsequently assessed using CASA in experiment 1. In experiment 2, fresh (day 0) sperm samples were evaluated for motility parameters (HTR) and stained for assessment of acrosomal status (FITC-PSA), morphology (eosin/nigrosin (E/N)), membrane integrity (E/N and SYBR((R))14-PI) and DNA fragmentation (TUNEL). After addition of a Tris-glucose-citrate diluent containing 20% egg yolk, samples were cooled to 4 degrees C and reassessed on d1, d3, d5, d7 and d10. Cool storage impaired most motility and velocity parameters: MOT, PMOT, VAP, VSL, VCL, BCF, RAPID and the percentage of normal spermatozoa showed a decrease over time (P<0.05) as compared to fresh samples. In contrast, STR, ALH, membrane integrity, DNA fragmentation and the percentage of acrosome intact spermatozoa were not affected by cool storage. However, the influence of cool storage of cat spermatozoa on subsequent in vitro embryo development and quality after IVF requires further investigation.

  12. Effect of transfection and co-incubation of bovine sperm with exogenous DNA on sperm quality and functional parameters for its use in sperm-mediated gene transfer.

    PubMed

    Arias, María Elena; Sánchez-Villalba, Esther; Delgado, Andrea; Felmer, Ricardo

    2017-02-01

    Sperm-mediated gene transfer (SMGT) is based on the capacity of sperm to bind exogenous DNA and transfer it into the oocyte during fertilization. In bovines, the progress of this technology has been slow due to the poor reproducibility and efficiency of the production of transgenic embryos. The aim of the present study was to evaluate the effects of different sperm transfection systems on the quality and functional parameters of sperm. Additionally, the ability of sperm to bind and incorporate exogenous DNA was assessed. These analyses were carried out by flow cytometry and confocal fluorescence microscopy, and motility parameters were also evaluated by computer-assisted sperm analysis (CASA). Transfection was carried out using complexes of plasmid DNA with Lipofectamine, SuperFect and TurboFect for 0.5, 1, 2 or 4 h. The results showed that all of the transfection treatments promoted sperm binding and incorporation of exogenous DNA, similar to sperm incorporation of DNA alone, without affecting the viability. Nevertheless, the treatments and incubation times significantly affected the motility parameters, although no effect on the integrity of DNA or the levels of reactive oxygen species (ROS) was observed. Additionally, we observed that transfection using SuperFect and TurboFect negatively affected the acrosome integrity, and TurboFect affected the mitochondrial membrane potential of sperm. In conclusion, we demonstrated binding and incorporation of exogenous DNA by sperm after transfection and confirmed the capacity of sperm to spontaneously incorporate exogenous DNA. These findings will allow the establishment of the most appropriate method [intracytoplasmic sperm injection (ICSI) or in vitro fertilization (IVF)] of generating transgenic embryos via SMGT based on the fertilization capacity of transfected sperm.

  13. Effect of season and age on Indian red jungle fowl (Gallus gallus murghi) semen characteristics: A 4-year retrospective study.

    PubMed

    Rakha, B A; Ansari, M S; Akhter, S; Blesbois, E

    2017-09-01

    The reproductive potential of the adult males is expected to vary with age/season and largely differ not only in closely related avian species but even in subspecies, breeds and/or strains of the same species. Thus, it is pre-requisite to have knowledge of seminal parameters to achieve maximum production potential of at-risk species for ex situ in vitro conservation programs. A 4-year study was designed to evaluate the effect of age and season (spring, summer, autumn and winter) on semen characteristics of Indian red jungle fowl (Gallus gallus murghi) in a retrospective manner. Semen ejaculates (n = 1148) were regularly collected from eight adult cocks 6 to 54 months of age. Quantitative and qualitative semen parameters viz; volume (μL), concentration (1 × 10 9  mL -1 ), total sperm number per ejaculate (1 × 10 9  mL -1 ), motility (%), viability (%), plasma membrane integrity (%), acrosome integrity (%) and semen quality factor were recorded. A chronological increasing trend with age of most sperm quantitative and qualitative traits (semen volume, sperm concentration, total sperm number per ejaculate, plasma membrane integrity, viability, acrosomal integrity and semen quality factor) was observed. The highest values were observed at four years of age (P < 0.05) with the exception of sperm motility that was not affected by the age. Spring was the best season for sperm parameters viz; volume, motility, plasma membrane integrity, viability and acrosomal integrity (P < 0.05), however a remarkable sperm production was noticed all over the year. It is concluded that Indian red jungle fowl exhibits an evolution of sperm production that greatly differs in many points from other fowl sub-species. It is suggested that semen ejaculates of highest quality achieved for semen banking at the age of four year in the spring season. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Satellite Remote Sensing is Key to Water Cycle Integrator

    NASA Astrophysics Data System (ADS)

    Koike, T.

    2016-12-01

    To promote effective multi-sectoral, interdisciplinary collaboration based on coordinated and integrated efforts, the Global Earth Observation System of Systems (GEOSS) is now developing a "GEOSS Water Cycle Integrator (WCI)", which integrates "Earth observations", "modeling", "data and information", "management systems" and "education systems". GEOSS/WCI sets up "work benches" by which partners can share data, information and applications in an interoperable way, exchange knowledge and experiences, deepen mutual understanding and work together effectively to ultimately respond to issues of both mitigation and adaptation. (A work bench is a virtual geographical or phenomenological space where experts and managers collaborate to use information to address a problem within that space). GEOSS/WCI enhances the coordination of efforts to strengthen individual, institutional and infrastructure capacities, especially for effective interdisciplinary coordination and integration. GEOSS/WCI archives various satellite data to provide various hydrological information such as cloud, rainfall, soil moisture, or land-surface snow. These satellite products were validated using land observation in-situ data. Water cycle models can be developed by coupling in-situ and satellite data. River flows and other hydrological parameters can be simulated and validated by in-situ data. Model outputs from weather-prediction, seasonal-prediction, and climate-prediction models are archived. Some of these model outputs are archived on an online basis, but other models, e.g., climate-prediction models are archived on an offline basis. After models are evaluated and biases corrected, the outputs can be used as inputs into the hydrological models for predicting the hydrological parameters. Additionally, we have already developed a data-assimilation system by combining satellite data and the models. This system can improve our capability to predict hydrological phenomena. The WCI can provide better predictions of the hydrological parameters for integrated water resources management (IWRM) and also assess the impact of climate change and calculate adaptation needs.

  15. Aescin-based topical formulation to prevent foot wounds and ulcerations in diabetic microangiopathy.

    PubMed

    Hu, S; Belcaro, G; Dugall, M; Hosoi, M; Togni, S; Maramaldi, G; Giacomelli, L

    2016-10-01

    Impairment of the peripheral microcirculation in diabetic patients often leads to severe complications in the lower extremities, such as foot infections and ulcerations. In this study, a novel aescin-based formulation has been evaluated as a potential approach to prevent skin breaks and ulcerations by improving the peripheral microcirculation and skin hydration. In this registry study, 63 patients with moderate diabetic microangiopathy were recruited. Informed participants freely decided to follow either a standard management (SM) to prevent diabetic foot diseases (n = 31) or SM associated with topical application of the aescin-based cream (n = 32). Peripheral microcirculatory parameters such as resting skin flux, venoarteriolar response and transcutaneous gas tension were evaluated at inclusion and after 8 weeks. In addition, several skin parameters of the foot area, such as integrity (as number of skin breaks/patients), hydration and content of dead cells were assessed at the defined observational study periods. Improvements in cutaneous peripheral microcirculation parameters were observed at 8 weeks in both groups; however, a remarkable and significant beneficial effect resulted to be exerted by the aescin-based cream treatment. In fact, the microcirculatory parameters evaluated significantly improved in the standard management + aescin-based cream group, compared with baseline and with the standard management group. Similar findings were reported for skin parameters of the foot area. The topical formulation containing aescin could represent a valid approach to manage skin wounds and prevent skin ulcerations in patients affected by moderate diabetic microangiopathy.

  16. Path integrals with higher order actions: Application to realistic chemical systems

    NASA Astrophysics Data System (ADS)

    Lindoy, Lachlan P.; Huang, Gavin S.; Jordan, Meredith J. T.

    2018-02-01

    Quantum thermodynamic parameters can be determined using path integral Monte Carlo (PIMC) simulations. These simulations, however, become computationally demanding as the quantum nature of the system increases, although their efficiency can be improved by using higher order approximations to the thermal density matrix, specifically the action. Here we compare the standard, primitive approximation to the action (PA) and three higher order approximations, the Takahashi-Imada action (TIA), the Suzuki-Chin action (SCA) and the Chin action (CA). The resulting PIMC methods are applied to two realistic potential energy surfaces, for H2O and HCN-HNC, both of which are spectroscopically accurate and contain three-body interactions. We further numerically optimise, for each potential, the SCA parameter and the two free parameters in the CA, obtaining more significant improvements in efficiency than seen previously in the literature. For both H2O and HCN-HNC, accounting for all required potential and force evaluations, the optimised CA formalism is approximately twice as efficient as the TIA formalism and approximately an order of magnitude more efficient than the PA. The optimised SCA formalism shows similar efficiency gains to the CA for HCN-HNC but has similar efficiency to the TIA for H2O at low temperature. In H2O and HCN-HNC systems, the optimal value of the a1 CA parameter is approximately 1/3 , corresponding to an equal weighting of all force terms in the thermal density matrix, and similar to previous studies, the optimal α parameter in the SCA was ˜0.31. Importantly, poor choice of parameter significantly degrades the performance of the SCA and CA methods. In particular, for the CA, setting a1 = 0 is not efficient: the reduction in convergence efficiency is not offset by the lower number of force evaluations. We also find that the harmonic approximation to the CA parameters, whilst providing a fourth order approximation to the action, is not optimal for these realistic potentials: numerical optimisation leads to better approximate cancellation of the fifth order terms, with deviation between the harmonic and numerically optimised parameters more marked in the more quantum H2O system. This suggests that numerically optimising the CA or SCA parameters, which can be done at high temperature, will be important in fully realising the efficiency gains of these formalisms for realistic potentials.

  17. Evaluation of Laminar Flow Control System Concepts for Subsonic Commercial Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Sturgeon, R. F.

    1980-01-01

    Alternatives in the design of laminar flow control (LFC) subsonic commerical transport aircraft for opeation in the 1980's period were studied. Analyses were conducted to select mission parameters and define optimum aircraft configurational parameters for the selected mission, defined by a passenger payload of 400 and a design range of 12, 038 km (6500 n mi). The baseline aircraft developed for this mission was used as a vehicle for the evaluation and development of alternative LFC system concepts. Alternatices in the areas of aerodynamics, structures and materials, LFC systems, leading-edge region cleaning, and integration of auxiliary systems were studied. Relative to a similarly-optimized advanced technology turbulent transport, the final LFC configuration is approximately equal in DOC but provides descreases of 8.2% in gross weight and 21.7% in fuel consumption.

  18. A parameter optimization tool for evaluating the physical consistency of the plot-scale water budget of the integrated eco-hydrological model GEOtop in complex terrain

    NASA Astrophysics Data System (ADS)

    Bertoldi, Giacomo; Cordano, Emanuele; Brenner, Johannes; Senoner, Samuel; Della Chiesa, Stefano; Niedrist, Georg

    2017-04-01

    In mountain regions, the plot- and catchment-scale water and energy budgets are controlled by a complex interplay of different abiotic (i.e. topography, geology, climate) and biotic (i.e. vegetation, land management) controlling factors. When integrated, physically-based eco-hydrological models are used in mountain areas, there are a large number of parameters, topographic and boundary conditions that need to be chosen. However, data on soil and land-cover properties are relatively scarce and do not reflect the strong variability at the local scale. For this reason, tools for uncertainty quantification and optimal parameters identification are essential not only to improve model performances, but also to identify most relevant parameters to be measured in the field and to evaluate the impact of different assumptions for topographic and boundary conditions (surface, lateral and subsurface water and energy fluxes), which are usually unknown. In this contribution, we present the results of a sensitivity analysis exercise for a set of 20 experimental stations located in the Italian Alps, representative of different conditions in terms of topography (elevation, slope, aspect), land use (pastures, meadows, and apple orchards), soil type and groundwater influence. Besides micrometeorological parameters, each station provides soil water content at different depths, and in three stations (one for each land cover) eddy covariance fluxes. The aims of this work are: (I) To present an approach for improving calibration of plot-scale soil moisture and evapotranspiration (ET). (II) To identify the most sensitive parameters and relevant factors controlling temporal and spatial differences among sites. (III) Identify possible model structural deficiencies or uncertainties in boundary conditions. Simulations have been performed with the GEOtop 2.0 model, which is a physically-based, fully distributed integrated eco-hydrological model that has been specifically designed for mountain regions, since it considers the effect of topography on radiation and water fluxes and integrates a snow module. A new automatic sensitivity and optimization tool based on the Particle Swarm Optimization theory has been developed, available as R package on https://github.com/EURAC-Ecohydro/geotopOptim2. The model, once calibrated for soil and vegetation parameters, predicts the plot-scale temporal SMC dynamics of SMC and ET with a RMSE of about 0.05 m3/m3 and 40 W/m2, respectively. However, the model tends to underestimate ET during summer months over apple orchards. Results show how most sensitive parameters are both soil and canopy structural properties. However, ranking is affected by the choice of the target function and local topographic conditions. In particular, local slope/aspect influences results in stations located over hillslopes, but with marked seasonal differences. Results for locations in the valley floor are strongly controlled by the choice of the bottom water flux boundary condition. The poorer model performances in simulating ET over apple orchards could be explained by a model structural deficiency in representing the stomatal control on vapor pressure deficit for this particular type of vegetation. The results of this sensitivity could be extended to other physically distributed models, and also provide valuable insights for optimizing new experimental designs.

  19. Quality by design case study: an integrated multivariate approach to drug product and process development.

    PubMed

    Huang, Jun; Kaul, Goldi; Cai, Chunsheng; Chatlapalli, Ramarao; Hernandez-Abad, Pedro; Ghosh, Krishnendu; Nagi, Arwinder

    2009-12-01

    To facilitate an in-depth process understanding, and offer opportunities for developing control strategies to ensure product quality, a combination of experimental design, optimization and multivariate techniques was integrated into the process development of a drug product. A process DOE was used to evaluate effects of the design factors on manufacturability and final product CQAs, and establish design space to ensure desired CQAs. Two types of analyses were performed to extract maximal information, DOE effect & response surface analysis and multivariate analysis (PCA and PLS). The DOE effect analysis was used to evaluate the interactions and effects of three design factors (water amount, wet massing time and lubrication time), on response variables (blend flow, compressibility and tablet dissolution). The design space was established by the combined use of DOE, optimization and multivariate analysis to ensure desired CQAs. Multivariate analysis of all variables from the DOE batches was conducted to study relationships between the variables and to evaluate the impact of material attributes/process parameters on manufacturability and final product CQAs. The integrated multivariate approach exemplifies application of QbD principles and tools to drug product and process development.

  20. Integrated Analytical Evaluation and Optimization of Model Parameters against Preprocessed Measurement Data

    DTIC Science & Technology

    1989-06-23

    Iterations .......................... 86 3.2 Comparison between MACH and POLAR ......................... 90 3.3 Flow Chart for VSTS Algorithm...The most recent changes are: a) development of the VSTS (velocity space topology search) algorithm for calculating particle densities b) extension...with simple analytic models. The largest modification of the MACH code was the implementation of the VSTS procedure, which constituted a complete

  1. Development and Calibration of a System-Integrated Rotorcraft Finite Element Model for Impact Scenarios

    NASA Technical Reports Server (NTRS)

    Annett, Martin S.; Horta, Lucas G.; Jackson, Karen E.; Polanco, Michael A.; Littell, Justin D.

    2012-01-01

    Two full-scale crash tests of an MD-500 helicopter were conducted in 2009 and 2010 at NASA Langley's Landing and Impact Research Facility in support of NASA s Subsonic Rotary Wing Crashworthiness Project. The first crash test was conducted to evaluate the performance of an externally mounted composite deployable energy absorber (DEA) under combined impact conditions. In the second crash test, the energy absorber was removed to establish baseline loads that are regarded as severe but survivable. The presence of this energy absorbing device reduced the peak impact acceleration levels by a factor of three. Accelerations and kinematic data collected from the crash tests were compared to a system-integrated finite element model of the test article developed in parallel with the test program. In preparation for the full-scale crash test, a series of sub-scale and MD-500 mass simulator tests were conducted to evaluate the impact performances of various components and subsystems, including new crush tubes and the DEA blocks. Parameters defined for the system-integrated finite element model were determined from these tests. Results from 19 accelerometers placed throughout the airframe were compared to finite element model responses. The model developed for the purposes of predicting acceleration responses from the first crash test was inadequate when evaluating more severe conditions seen in the second crash test. A newly developed model calibration approach that includes uncertainty estimation, parameter sensitivity, impact shape orthogonality, and numerical optimization was used to calibrate model results for the full-scale crash test without the DEA. This combination of heuristic and quantitative methods identified modeling deficiencies, evaluated parameter importance, and proposed required model changes. The multidimensional calibration techniques presented here are particularly effective in identifying model adequacy. Acceleration results for the calibrated model were compared to test results and the original model results. There was a noticeable improvement in the pilot and copilot region, a slight improvement in the occupant model response, and an over-stiffening effect in the passenger region. One lesson learned was that this approach should be adopted early on, in combination with the building-block approaches that are customarily used, for model development and pretest predictions. Complete crash simulations with validated finite element models can be used to satisfy crash certification requirements, potentially reducing overall development costs.

  2. Integrated approach to colorectal anastomotic leakage: Communication, infection and healing disturbances

    PubMed Central

    Sparreboom, Cloë L; Wu, Zhou-Qiao; Ji, Jia-Fu; Lange, Johan F

    2016-01-01

    Colorectal anastomotic leakage (CAL) remains a major complication after colorectal surgery. Despite all efforts during the last decades, the incidence of CAL has not decreased. In this review, we summarize the available strategies regarding prevention, prediction and intervention of CAL and categorize them into three categories: communication, infection and healing disturbances. These three major factors actively interact during the onset of CAL. We aim to provide an integrated approach to CAL based on its etiology. The intraoperative air leak test, intraoperative endoscopy, radiological examinations and stoma construction mainly aim to detect and to prevent communication between the intra- and extra-luminal content. Other strategies including postoperative drainage, antibiotics, and infectious-parameter evaluation are intended to detect and prevent anastomotic or peritoneal infection. Most currently available interventions for CAL focus on the control of communication and infection, while strategies targeting the healing disturbances such as lifestyle changes, oxygen therapy and evaluation of metabolic biomarkers still lack wide clinical application. This simplified categorization may contribute to an integrated understanding of CAL. We strongly believe that this integrated approach should be taken into consideration during clinical practice. An integrated approach to CAL could contribute to a better understanding of the etiology of CAL and eventually better patient outcome. PMID:27621570

  3. Development of probabilistic multimedia multipathway computer codes.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, C.; LePoire, D.; Gnanapragasam, E.

    2002-01-01

    The deterministic multimedia dose/risk assessment codes RESRAD and RESRAD-BUILD have been widely used for many years for evaluation of sites contaminated with residual radioactive materials. The RESRAD code applies to the cleanup of sites (soils) and the RESRAD-BUILD code applies to the cleanup of buildings and structures. This work describes the procedure used to enhance the deterministic RESRAD and RESRAD-BUILD codes for probabilistic dose analysis. A six-step procedure was used in developing default parameter distributions and the probabilistic analysis modules. These six steps include (1) listing and categorizing parameters; (2) ranking parameters; (3) developing parameter distributions; (4) testing parameter distributionsmore » for probabilistic analysis; (5) developing probabilistic software modules; and (6) testing probabilistic modules and integrated codes. The procedures used can be applied to the development of other multimedia probabilistic codes. The probabilistic versions of RESRAD and RESRAD-BUILD codes provide tools for studying the uncertainty in dose assessment caused by uncertain input parameters. The parameter distribution data collected in this work can also be applied to other multimedia assessment tasks and multimedia computer codes.« less

  4. Optimizing Parameters of Axial Pressure-Compounded Ultra-Low Power Impulse Turbines at Preliminary Design

    NASA Astrophysics Data System (ADS)

    Kalabukhov, D. S.; Radko, V. M.; Grigoriev, V. A.

    2018-01-01

    Ultra-low power turbine drives are used as energy sources in auxiliary power systems, energy units, terrestrial, marine, air and space transport within the confines of shaft power N td = 0.01…10 kW. In this paper we propose a new approach to the development of surrogate models for evaluating the integrated efficiency of multistage ultra-low power impulse turbine with pressure stages. This method is based on the use of existing mathematical models of ultra-low power turbine stage efficiency and mass. It has been used in a method for selecting the rational parameters of two-stage axial ultra-low power turbine. The article describes the basic features of an algorithm for two-stage turbine parameters optimization and for efficiency criteria evaluating. Pledged mathematical models are intended for use at the preliminary design of turbine drive. The optimization method was tested at preliminary design of an air starter turbine. Validation was carried out by comparing the results of optimization calculations and numerical gas-dynamic simulation in the Ansys CFX package. The results indicate a sufficient accuracy of used surrogate models for axial two-stage turbine parameters selection

  5. Analysis of the methods for assessing socio-economic development level of urban areas

    NASA Astrophysics Data System (ADS)

    Popova, Olga; Bogacheva, Elena

    2017-01-01

    The present paper provides a targeted analysis of current approaches (ratings) in the assessment of socio-economic development of urban areas. The survey focuses on identifying standardized methodologies to area assessment techniques formation that will result in developing the system of intelligent monitoring, dispatching, building management, scheduling and effective management of an administrative-territorial unit. This system is characterized by complex hierarchical structure, including tangible and intangible properties (parameters, attributes). Investigating the abovementioned methods should increase the administrative-territorial unit's attractiveness for investors and residence. The research aims at studying methods for evaluating socio-economic development level of the Russian Federation territories. Experimental and theoretical territory estimating methods were revealed. Complex analysis of the characteristics of the areas was carried out and evaluation parameters were determined. Integral indicators (resulting rating criteria values) as well as the overall rankings (parameters, characteristics) were analyzed. The inventory of the most widely used partial indicators (parameters, characteristics) of urban areas was revealed. The resulting criteria of rating values homogeneity were verified and confirmed by determining the root mean square deviation, i.e. divergence of indices. The principal shortcomings of assessment methodologies were revealed. The assessment methods with enhanced effectiveness and homogeneity were proposed.

  6. Sensitivity of a Cumulus Parameterization Scheme to Precipitation Production Representation and Its Impact on a Heavy Rain Event over Korea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Ji-Young; Hong, Song-You; Sunny Lim, Kyo-Sun

    The sensitivity of a cumulus parameterization scheme (CPS) to a representation of precipitation production is examined. To do this, the parameter that determines the fraction of cloud condensate converted to precipitation in the simplified Arakawa–Schubert (SAS) convection scheme is modified following the results from a cloud-resolving simulation. While the original conversion parameter is assumed to be constant, the revised parameter includes a temperature dependency above the freezing level, whichleadstolessproductionoffrozenprecipitating condensate with height. The revised CPS has been evaluated for a heavy rainfall event over Korea as well as medium-range forecasts using the Global/Regional Integrated Model system (GRIMs). The inefficient conversionmore » of cloud condensate to convective precipitation at colder temperatures generally leads to a decrease in pre-cipitation, especially in the category of heavy rainfall. The resultant increase of detrained moisture induces moistening and cooling at the top of clouds. A statistical evaluation of the medium-range forecasts with the revised precipitation conversion parameter shows an overall improvement of the forecast skill in precipitation and large-scale fields, indicating importance of more realistic representation of microphysical processes in CPSs.« less

  7. Surgical stent planning: simulation parameter study for models based on DICOM standards.

    PubMed

    Scherer, S; Treichel, T; Ritter, N; Triebel, G; Drossel, W G; Burgert, O

    2011-05-01

    Endovascular Aneurysm Repair (EVAR) can be facilitated by a realistic simulation model of stent-vessel-interaction. Therefore, numerical feasibility and integrability in the clinical environment was evaluated. The finite element method was used to determine necessary simulation parameters for stent-vessel-interaction in EVAR. Input variables and result data of the simulation model were examined for their standardization using DICOM supplements. The study identified four essential parameters for the stent-vessel simulation: blood pressure, intima constitution, plaque occurrence and the material properties of vessel and plaque. Output quantities such as radial force of the stent and contact pressure between stent/vessel can help the surgeon to evaluate implant fixation and sealing. The model geometry can be saved with DICOM "Surface Segmentation" objects and the upcoming "Implant Templates" supplement. Simulation results can be stored using the "Structured Report". A standards-based general simulation model for optimizing stent-graft selection may be feasible. At present, there are limitations due to specification of individual vessel material parameters and for simulating the proximal fixation of stent-grafts with hooks. Simulation data with clinical relevance for documentation and presentation can be stored using existing or new DICOM extensions.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noel, Camille E.; Gutti, VeeraRajesh; Bosch, Walter

    Purpose: To quantify the potential impact of the Integrating the Healthcare Enterprise–Radiation Oncology Quality Assurance with Plan Veto (QAPV) on patient safety of external beam radiation therapy (RT) operations. Methods and Materials: An institutional database of events (errors and near-misses) was used to evaluate the ability of QAPV to prevent clinically observed events. We analyzed reported events that were related to Digital Imaging and Communications in Medicine RT plan parameter inconsistencies between the intended treatment (on the treatment planning system) and the delivered treatment (on the treatment machine). Critical Digital Imaging and Communications in Medicine RT plan parameters were identified.more » Each event was scored for importance using the Failure Mode and Effects Analysis methodology. Potential error occurrence (frequency) was derived according to the collected event data, along with the potential event severity, and the probability of detection with and without the theoretical implementation of the QAPV plan comparison check. Failure Mode and Effects Analysis Risk Priority Numbers (RPNs) with and without QAPV were compared to quantify the potential benefit of clinical implementation of QAPV. Results: The implementation of QAPV could reduce the RPN values for 15 of 22 (71%) of evaluated parameters, with an overall average reduction in RPN of 68 (range, 0-216). For the 6 high-risk parameters (>200), the average reduction in RPN value was 163 (range, 108-216). The RPN value reduction for the intermediate-risk (200 > RPN > 100) parameters was (0-140). With QAPV, the largest RPN value for “Beam Meterset” was reduced from 324 to 108. The maximum reduction in RPN value was for Beam Meterset (216, 66.7%), whereas the maximum percentage reduction was for Cumulative Meterset Weight (80, 88.9%). Conclusion: This analysis quantifies the value of the Integrating the Healthcare Enterprise–Radiation Oncology QAPV implementation in clinical workflow. We demonstrate that although QAPV does not provide a comprehensive solution for error prevention in RT, it can have a significant impact on a subset of the most severe clinically observed events.« less

  9. [Occupational microclimate. Results and prospects of research].

    PubMed

    Afanas'eva, R F; Bessonova, N A; Burmistrova, O V; Burmistrov, V M; Losik, T K

    2013-01-01

    The article covers results of studies conducted over last 15 years and aimed to elaboration of requirements to integral parameters of microclimate at workplace, its evaluation and regulation, prophylactic measures against body overcooling and overheating. The authors present methods to evaluate combined effects of physical factors (noise, vibration, microclimate) and to assess microclimate with consideration of factors determining body thermal load (energy expenditure, duration of stay at workplace, heat insulation of clothes and thermo-physical parameters of its materials). Mathematic models of forecasting cold and heat stress are presented, as well as requirements to heat insulation for individual protective means against cold and methods to calculate it. Regimens of work in heating and cooling conditions are specified. The authors set directions for further studies to define regulation requirements to microclimate on basis of studied patterns of body heat state formation, its evaluation criteria, epidemiologic studies results, specified prophylactic measures against overheating and overcooling with consideration of adaptation, sex, thermo-physical characteristics of individual protective means (special clothes, footwear, gauntlets, headwear).

  10. Evaluating agricultural nonpoint-source pollution using integrated geographic information systems and hydrologic/water quality model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tim, U.S.; Jolly, R.

    1994-01-01

    Considerable progress has been made in developing physically based, distributed parameter, hydrologic/water quality (HIWQ) models for planning and control of nonpoint-source pollution. The widespread use of these models is often constrained by the excessive and time-consuming input data demands and the lack of computing efficiencies necessary for iterative simulation of alternative management strategies. Recent developments in geographic information systems (GIS) provide techniques for handling large amounts of spatial data for modeling nonpoint-source pollution problems. Because a GIS can be used to combine information from several sources to form an array of model input data and to examine any combinations ofmore » spatial input/output data, it represents a highly effective tool for HiWQ modeling. This paper describes the integration of a distributed-parameter model (AGNPS) with a GIS (ARC/INFO) to examine nonpoint sources of pollution in an agricultural watershed. The ARC/INFO GIS provided the tools to generate and spatially organize the disparate data to support modeling, while the AGNPS model was used to predict several water quality variables including soil erosion and sedimentation within a watershed. The integrated system was used to evaluate the effectiveness of several alternative management strategies in reducing sediment pollution in a 417-ha watershed located in southern Iowa. The implementation of vegetative filter strips and contour buffer (grass) strips resulted in a 41 and 47% reduction in sediment yield at the watershed outlet, respectively. In addition, when the integrated system was used, the combination of the above management strategies resulted in a 71% reduction in sediment yield. In general, the study demonstrated the utility of integrating a simulation model with GIS for nonpoini-source pollution control and planning. Such techniques can help characterize the diffuse sources of pollution at the landscape level. 52 refs., 6 figs., 1 tab.« less

  11. Fusion yield: Guderley model and Tsallis statistics

    NASA Astrophysics Data System (ADS)

    Haubold, H. J.; Kumar, D.

    2011-02-01

    The reaction rate probability integral is extended from Maxwell-Boltzmann approach to a more general approach by using the pathway model introduced by Mathai in 2005 (A pathway to matrix-variate gamma and normal densities. Linear Algebr. Appl. 396, 317-328). The extended thermonuclear reaction rate is obtained in the closed form via a Meijer's G-function and the so-obtained G-function is represented as a solution of a homogeneous linear differential equation. A physical model for the hydrodynamical process in a fusion plasma-compressed and laser-driven spherical shock wave is used for evaluating the fusion energy integral by integrating the extended thermonuclear reaction rate integral over the temperature. The result obtained is compared with the standard fusion yield obtained by Haubold and John in 1981 (Analytical representation of the thermonuclear reaction rate and fusion energy production in a spherical plasma shock wave. Plasma Phys. 23, 399-411). An interpretation for the pathway parameter is also given.

  12. Study of periodic motions of a satellite with a magnetic damper

    NASA Technical Reports Server (NTRS)

    Sadov, Y. A.; Teterin, A. D.

    1979-01-01

    The motion of a satellite with a magnetic damper in the plane of a circular polar orbit is studied. The asymptotics of periodic solutions are constructed for a satellite close to axisymmetric and the radius of convergence is evaluated for the power series obtained. In a broad range of values of parameters, a periodic solution is obtained by numerical integration of equations of motion of the satellite. The asymptotics of a bifurcated curve obtained (the curve on which origin of a pair of periodic solutions occurs) in the space of the parameters agrees well with the results of numerical computation with all physical values of these parameters. A breakdown is made of the space of the initial data of phase variables in the field of effect of different types of periodic motion.

  13. Relative mass distributions of neutron-rich thermally fissile nuclei within a statistical model

    NASA Astrophysics Data System (ADS)

    Kumar, Bharat; Kannan, M. T. Senthil; Balasubramaniam, M.; Agrawal, B. K.; Patra, S. K.

    2017-09-01

    We study the binary mass distribution for the recently predicted thermally fissile neutron-rich uranium and thorium nuclei using a statistical model. The level density parameters needed for the study are evaluated from the excitation energies of the temperature-dependent relativistic mean field formalism. The excitation energy and the level density parameter for a given temperature are employed in the convolution integral method to obtain the probability of the particular fragmentation. As representative cases, we present the results for the binary yields of 250U and 254Th. The relative yields are presented for three different temperatures: T =1 , 2, and 3 MeV.

  14. Evaluation of pulsed streamer corona experiments to determine the O* radical yield

    NASA Astrophysics Data System (ADS)

    van Heesch, E. J. M.; Winands, G. J. J.; Pemen, A. J. M.

    2008-12-01

    The production of O* radicals in air by a pulsed streamer plasma is studied by integration of a large set of precise experimental data and the chemical kinetics of ozone production. The measured data comprise ozone production, plasma energy, streamer volume, streamer length, streamer velocity, humidity and gas-flow rate. Instead of entering input parameters into a kinetic model to calculate the end products the opposite strategy is followed. Since the amount of end-products (ozone) is known from the measurements the model had to be applied in the reverse direction to determine the input parameters, i.e. the O* radical concentration.

  15. Assessment of Material Solutions of Multi-level Garage Structure Within Integrated Life Cycle Design Process

    NASA Astrophysics Data System (ADS)

    Wałach, Daniel; Sagan, Joanna; Gicala, Magdalena

    2017-10-01

    The paper presents an environmental and economic analysis of the material solutions of multi-level garage. The construction project approach considered reinforced concrete structure under conditions of use of ordinary concrete and high-performance concrete (HPC). Using of HPC allowed to significant reduction of reinforcement steel, mainly in compression elements (columns) in the construction of the object. The analysis includes elements of the methodology of integrated lice cycle design (ILCD). By making multi-criteria analysis based on established weight of the economic and environmental parameters, three solutions have been evaluated and compared within phase of material production (information modules A1-A3).

  16. A stochastic regulator for integrated communication and control systems. I - Formulation of control law. II - Numerical analysis and simulation

    NASA Technical Reports Server (NTRS)

    Liou, Luen-Woei; Ray, Asok

    1991-01-01

    A state feedback control law for integrated communication and control systems (ICCS) is formulated by using the dynamic programming and optimality principle on a finite-time horizon. The control law is derived on the basis of a stochastic model of the plant which is augmented in state space to allow for the effects of randomly varying delays in the feedback loop. A numerical procedure for synthesizing the control parameters is then presented, and the performance of the control law is evaluated by simulating the flight dynamics model of an advanced aircraft. Finally, recommendations for future work are made.

  17. Recent Updates to the Arnold Mirror Modeler and Integration into the Evolving NASA Overall Design System for Large Space-Based Optical Systems

    NASA Technical Reports Server (NTRS)

    Arnold, William R.

    2015-01-01

    Since last year, a number of expanded capabilities have been added to the modeler. The support the integration with thermal modeling, the program can now produce simplified thermal models with the same geometric parameters as the more detailed dynamic and even more refined stress models. The local mesh refinement and mesh improvement tools have been expanded and more user friendly. The goal is to provide a means of evaluating both monolithic and segmented mirrors to the same level of fidelity and loading conditions at reasonable man-power efforts. The paper will demonstrate most of these new capabilities.

  18. Λ scattering equations

    NASA Astrophysics Data System (ADS)

    Gomez, Humberto

    2016-06-01

    The CHY representation of scattering amplitudes is based on integrals over the moduli space of a punctured sphere. We replace the punctured sphere by a double-cover version. The resulting scattering equations depend on a parameter Λ controlling the opening of a branch cut. The new representation of scattering amplitudes possesses an enhanced redundancy which can be used to fix, modulo branches, the location of four punctures while promoting Λ to a variable. Via residue theorems we show how CHY formulas break up into sums of products of smaller (off-shell) ones times a propagator. This leads to a powerful way of evaluating CHY integrals of generic rational functions, which we call the Λ algorithm.

  19. Recent Updates to the Arnold Mirror Modeler and Integration into the Evolving NASA Overall Design System for Large Space Based Optical Systems

    NASA Technical Reports Server (NTRS)

    Arnold, William R., Sr.

    2015-01-01

    Since last year, a number of expanded capabilities have been added to the modeler. The support the integration with thermal modeling, the program can now produce simplified thermal models with the same geometric parameters as the more detailed dynamic and even more refined stress models. The local mesh refinement and mesh improvement tools have been expanded and more user friendly. The goal is to provide a means of evaluating both monolithic and segmented mirrors to the same level of fidelity and loading conditions at reasonable man-power efforts. The paper will demonstrate most of these new capabilities.

  20. Quadrotor trajectory tracking using PID cascade control

    NASA Astrophysics Data System (ADS)

    Idres, M.; Mustapha, O.; Okasha, M.

    2017-12-01

    Quadrotors have been applied to collect information for traffic, weather monitoring, surveillance and aerial photography. In order to accomplish their mission, quadrotors have to follow specific trajectories. This paper presents proportional-integral-derivative (PID) cascade control of a quadrotor for path tracking problem when velocity and acceleration are small. It is based on near hover controller for small attitude angles. The integral of time-weighted absolute error (ITAE) criterion is used to determine the PID gains as a function of quadrotor modeling parameters. The controller is evaluated in three-dimensional environment in Simulink. Overall, the tracking performance is found to be excellent for small velocity condition.

  1. On the Use of a Signal Quality Index Applying at Tracking Stage Level to Assist the RAIM System of a GNSS Receiver.

    PubMed

    Berardo, Mattia; Lo Presti, Letizia

    2016-07-02

    In this work, a novel signal processing method is proposed to assist the Receiver Autonomous Integrity Monitoring (RAIM) module used in a receiver of Global Navigation Satellite Systems (GNSS) to improve the integrity of the estimated position. The proposed technique represents an evolution of the Multipath Distance Detector (MPDD), thanks to the introduction of a Signal Quality Index (SQI), which is both a metric able to evaluate the goodness of the signal, and a parameter used to improve the performance of the RAIM modules. Simulation results show the effectiveness of the proposed method.

  2. Shuttle cryogenic supply system optimization study. Volume 3: Technical report, section 10, 11 and 12

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The evaluation of candidate cryogenic fuel systems for space shuttle vehicles is discussed. A set of guidelines was used to establish a matrix of possible combinations for the integration of potential cryogenic systems. The various concepts and combinations which resulted from the integration efforts are described. The parameters which were considered in developing the matrix are: (1) storage of cryogenic materials, (2) fuel lines, (3) tank pressure control, (4) thermal control, (5) fluid control, and (6) fluid conditioning. Block diagrams and drawings of the candidate systems are provided. Performance predictions for the systems are outlined in tables of data.

  3. Evaluation of Neutron-induced Cross Sections and their Related Covariances with Physical Constraints

    NASA Astrophysics Data System (ADS)

    De Saint Jean, C.; Archier, P.; Privas, E.; Noguère, G.; Habert, B.; Tamagno, P.

    2018-02-01

    Nuclear data, along with numerical methods and the associated calculation schemes, continue to play a key role in reactor design, reactor core operating parameters calculations, fuel cycle management and criticality safety calculations. Due to the intensive use of Monte-Carlo calculations reducing numerical biases, the final accuracy of neutronic calculations increasingly depends on the quality of nuclear data used. This paper gives a broad picture of all ingredients treated by nuclear data evaluators during their analyses. After giving an introduction to nuclear data evaluation, we present implications of using the Bayesian inference to obtain evaluated cross sections and related uncertainties. In particular, a focus is made on systematic uncertainties appearing in the analysis of differential measurements as well as advantages and drawbacks one may encounter by analyzing integral experiments. The evaluation work is in general done independently in the resonance and in the continuum energy ranges giving rise to inconsistencies in evaluated files. For future evaluations on the whole energy range, we call attention to two innovative methods used to analyze several nuclear reaction models and impose constraints. Finally, we discuss suggestions for possible improvements in the evaluation process to master the quantification of uncertainties. These are associated with experiments (microscopic and integral), nuclear reaction theories and the Bayesian inference.

  4. Integration of Harvest and Time-to-Event Data Used to Estimate Demographic Parameters for White-tailed Deer

    NASA Astrophysics Data System (ADS)

    Norton, Andrew S.

    An integral component of managing game species is an understanding of population dynamics and relative abundance. Harvest data are frequently used to estimate abundance of white-tailed deer. Unless harvest age-structure is representative of the population age-structure and harvest vulnerability remains constant from year to year, these data alone are of limited value. Additional model structure and auxiliary information has accommodated this shortcoming. Specifically, integrated age-at-harvest (AAH) state-space population models can formally combine multiple sources of data, and regularization via hierarchical model structure can increase flexibility of model parameters. I collected known fates data, which I evaluated and used to inform trends in survival parameters for an integrated AAH model. I used temperature and snow depth covariates to predict survival outside of the hunting season, and opening weekend temperature and percent of corn harvest covariates to predict hunting season survival. When auxiliary empirical data were unavailable for the AAH model, moderately informative priors provided sufficient information for convergence and parameter estimates. The AAH model was most sensitive to errors in initial abundance, but this error was calibrated after 3 years. Among vital rates, the AAH model was most sensitive to reporting rates (percentage of mortality during the hunting season related to harvest). The AAH model, using only harvest data, was able to track changing abundance trends due to changes in survival rates even when prior models did not inform these changes (i.e. prior models were constant when truth varied). I also compared AAH model results with estimates from the Wisconsin Department of Natural Resources (WIDNR). Trends in abundance estimates from both models were similar, although AAH model predictions were systematically higher than WIDNR estimates in the East study area. When I incorporated auxiliary information (i.e. integrated AAH model) about survival outside the hunting season from known fates data, predicted trends appeared more closely related to what was expected. Disagreements between the AAH model and WIDNR estimates in the East were likely related to biased predictions for reporting and survival rates from the AAH model.

  5. Structural reliability methods: Code development status

    NASA Astrophysics Data System (ADS)

    Millwater, Harry R.; Thacker, Ben H.; Wu, Y.-T.; Cruse, T. A.

    1991-05-01

    The Probabilistic Structures Analysis Method (PSAM) program integrates state of the art probabilistic algorithms with structural analysis methods in order to quantify the behavior of Space Shuttle Main Engine structures subject to uncertain loadings, boundary conditions, material parameters, and geometric conditions. An advanced, efficient probabilistic structural analysis software program, NESSUS (Numerical Evaluation of Stochastic Structures Under Stress) was developed as a deliverable. NESSUS contains a number of integrated software components to perform probabilistic analysis of complex structures. A nonlinear finite element module NESSUS/FEM is used to model the structure and obtain structural sensitivities. Some of the capabilities of NESSUS/FEM are shown. A Fast Probability Integration module NESSUS/FPI estimates the probability given the structural sensitivities. A driver module, PFEM, couples the FEM and FPI. NESSUS, version 5.0, addresses component reliability, resistance, and risk.

  6. Structural reliability methods: Code development status

    NASA Technical Reports Server (NTRS)

    Millwater, Harry R.; Thacker, Ben H.; Wu, Y.-T.; Cruse, T. A.

    1991-01-01

    The Probabilistic Structures Analysis Method (PSAM) program integrates state of the art probabilistic algorithms with structural analysis methods in order to quantify the behavior of Space Shuttle Main Engine structures subject to uncertain loadings, boundary conditions, material parameters, and geometric conditions. An advanced, efficient probabilistic structural analysis software program, NESSUS (Numerical Evaluation of Stochastic Structures Under Stress) was developed as a deliverable. NESSUS contains a number of integrated software components to perform probabilistic analysis of complex structures. A nonlinear finite element module NESSUS/FEM is used to model the structure and obtain structural sensitivities. Some of the capabilities of NESSUS/FEM are shown. A Fast Probability Integration module NESSUS/FPI estimates the probability given the structural sensitivities. A driver module, PFEM, couples the FEM and FPI. NESSUS, version 5.0, addresses component reliability, resistance, and risk.

  7. Micro-structural integrity of dental enamel subjected to two tooth whitening regimes.

    PubMed

    Tanaka, Reina; Shibata, Yo; Manabe, Atsufumi; Miyazaki, Takashi

    2010-04-01

    Colour modification of tooth enamel has proven successful, but it is unclear how various bleaching applications affect micro-structural integrity of the whitened enamel. To investigate the internal structural integrity of human intact tooth enamel with the application of two commonly used whitening regimes (in-office power bleaching with 35% hydrogen peroxide and home bleaching with 10% carbamide peroxide), evaluations were performed on teeth of identical colour classification. After the bleaching applications, the enamel mineral density was quantified and visualised with micro-computed tomography. The micro-structural differences between the whitened tooth enamel samples were distinctive, though the colour parameter changes within the samples were equivalent. Home bleaching achieved colour modification by demineralisation, whereas in-office bleaching depended on redistribution of the minerals after treatment and subsequent enhanced mineralisation.

  8. Evaluation of cryopreserved stallion semen from Tori and Estonian breeds using CASA and flow cytometry.

    PubMed

    Kavak, A; Johannisson, A; Lundeheim, N; Rodriguez-Martinez, H; Aidnik, M; Einarsson, S

    2003-04-15

    Methods to evaluate the quality of frozen-thawed stallion semen are still needed, particularly those considering the sperm function. The present study evaluated sperm motility, membrane and acrosome integrity and the capacitation status of frozen-thawed spermatozoa from seven Tori and six Estonian breed stallions by way of computer assisted sperm analysis (CASA), a triple fluorophore stain combination and Merocyanine 540, respectively, the latter ones using flow cytometry. Two ejaculates from each stallion were cryopreserved using the Hannover method in 0.5 ml plastic straws. Two straws per ejaculate per stallion were thawed at 37 degrees C for 30s. Motility was analysed with CASA immediately after thawing, while for flow cytometry spermatozoa were cleansed by 70:40% Percoll discontinuous density gradient separation before analysed for sperm viability, acrosome integrity (stained with SNARF, PI and FITC-PSA) and capacitation status (stained with Merocyanine 540/Yo-Pro-1). Results (as least square means) were as follows: the motility of frozen-thawed semen was 43.4% for Tori stallions and 42.3% for Estonian stallions (P>0.05). After Percoll separation 79.3% of the spermatozoa from Tori stallions had intact acrosomes and 1.7% of them showed early signs of capacitation. The same parameters for Estonian stallions were 84.5 and 2.3%, respectively. There were no statistically significant differences between breeds or ejaculates within breed for any evaluated parameter. We conclude that triple staining and flow cytometry are valuable techniques to evaluate frozen-thawed stallion spermatozoa, and that no differences in quality of frozen semen were registered between Tori and Estonian breed stallions, allowing implementation of this technology in the Estonian horse population.

  9. Experimental Research on Selective Laser Melting AlSi10Mg Alloys: Process, Densification and Performance

    NASA Astrophysics Data System (ADS)

    Chen, Zhen; Wei, Zhengying; Wei, Pei; Chen, Shenggui; Lu, Bingheng; Du, Jun; Li, Junfeng; Zhang, Shuzhe

    2017-12-01

    In this work, a set of experiments was designed to investigate the effect of process parameters on the relative density of the AlSi10Mg parts manufactured by SLM. The influence of laser scan speed v, laser power P and hatch space H, which were considered as the dominant parameters, on the powder melting and densification behavior was also studied experimentally. In addition, the laser energy density was introduced to evaluate the combined effect of the above dominant parameters, so as to control the SLM process integrally. As a result, a high relative density (> 97%) was obtained by SLM at an optimized laser energy density of 3.5-5.5 J/mm2. Moreover, a parameter-densification map was established to visually select the optimum process parameters for the SLM-processed AlSi10Mg parts with elevated density and required mechanical properties. The results provide an important experimental guidance for obtaining AlSi10Mg components with full density and gradient functional porosity by SLM.

  10. Parameter Prediction of Hydraulic Fracture for Tight Reservoir Based on Micro-Seismic and History Matching

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Ma, Xiaopeng; Li, Yanlai; Wu, Haiyang; Cui, Chenyu; Zhang, Xiaoming; Zhang, Hao; Yao, Jun

    Hydraulic fracturing is an important measure for the development of tight reservoirs. In order to describe the distribution of hydraulic fractures, micro-seismic diagnostic was introduced into petroleum fields. Micro-seismic events may reveal important information about static characteristics of hydraulic fracturing. However, this method is limited to reflect the distribution area of the hydraulic fractures and fails to provide specific parameters. Therefore, micro-seismic technology is integrated with history matching to predict the hydraulic fracture parameters in this paper. Micro-seismic source location is used to describe the basic shape of hydraulic fractures. After that, secondary modeling is considered to calibrate the parameters information of hydraulic fractures by using DFM (discrete fracture model) and history matching method. In consideration of fractal feature of hydraulic fracture, fractal fracture network model is established to evaluate this method in numerical experiment. The results clearly show the effectiveness of the proposed approach to estimate the parameters of hydraulic fractures.

  11. State orthogonality, boson bunching parameter and bosonic enhancement factor

    NASA Astrophysics Data System (ADS)

    Marchewka, Avi; Granot, Er'el

    2016-04-01

    It is emphasized that the bunching parameter β ≡ p B / p D , i.e. the ratio between the probability to measure two bosons and two distinguishable particles at the same state, is a constant of motion and depends only on the overlap between the initial wavefunctions. This ratio is equal to β = 2 / (1 + I 2), where I is the overlap integral between the initial wavefunctions. That is, only when the initial wavefunctions are orthogonal this ratio is equal to 2, however, this bunching ratio can be reduced to 1, when the two wavefunctions are identical. This simple equation explains the experimental evidences of a beam splitter. A straightforward conclusion is that by measuring the local bunching parameter β (at any point in space and time) it is possible to evaluate a global parameter I (the overlap between the initial wavefunctions). The bunching parameter is then generalized to arbitrary number of particles, and in an analogy to the two-particles scenario, the well-known bosonic enhancement appears only when all states are orthogonal.

  12. An Analysis of Methanol and Hydrogen Production via High-Temperature Electrolysis Using the Sodium Cooled Advanced Fast Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shannon M. Bragg-Sitton; Richard D. Boardman; Robert S. Cherry

    2014-03-01

    Integration of an advanced, sodium-cooled fast spectrum reactor into nuclear hybrid energy system (NHES) architectures is the focus of the present study. A techno-economic evaluation of several conceptual system designs was performed for the integration of a sodium-cooled Advanced Fast Reactor (AFR) with the electric grid in conjunction with wind-generated electricity. Cases in which excess thermal and electrical energy would be reapportioned within an integrated energy system to a chemical plant are presented. The process applications evaluated include hydrogen production via high temperature steam electrolysis and methanol production via steam methane reforming to produce carbon monoxide and hydrogen which feedmore » a methanol synthesis reactor. Three power cycles were considered for integration with the AFR, including subcritical and supercritical Rankine cycles and a modified supercritical carbon dioxide modified Brayton cycle. The thermal efficiencies of all of the modeled power conversions units were greater than 40%. A thermal efficiency of 42% was adopted in economic studies because two of the cycles either performed at that level or could potentially do so (subcritical Rankine and S-CO2 Brayton). Each of the evaluated hybrid architectures would be technically feasible but would demonstrate a different internal rate of return (IRR) as a function of multiple parameters; all evaluated configurations showed a positive IRR. As expected, integration of an AFR with a chemical plant increases the IRR when “must-take” wind-generated electricity is added to the energy system. Additional dynamic system analyses are recommended to draw detailed conclusions on the feasibility and economic benefits associated with AFR-hybrid energy system operation.« less

  13. Error in the determination of the deformed shape of prismatic beams using the double integration of curvature

    NASA Astrophysics Data System (ADS)

    Sigurdardottir, Dorotea H.; Stearns, Jett; Glisic, Branko

    2017-07-01

    The deformed shape is a consequence of loading the structure and it is defined by the shape of the centroid line of the beam after deformation. The deformed shape is a universal parameter of beam-like structures. It is correlated with the curvature of the cross-section; therefore, any unusual behavior that affects the curvature is reflected through the deformed shape. Excessive deformations cause user discomfort, damage to adjacent structural members, and may ultimately lead to issues in structural safety. However, direct long-term monitoring of the deformed shape in real-life settings is challenging, and an alternative is indirect determination of the deformed shape based on curvature monitoring. The challenge of the latter is an accurate evaluation of error in the deformed shape determination, which is directly correlated with the number of sensors needed to achieve the desired accuracy. The aim of this paper is to study the deformed shape evaluated by numerical double integration of the monitored curvature distribution along the beam, and create a method to predict the associated errors and suggest the number of sensors needed to achieve the desired accuracy. The error due to the accuracy in the curvature measurement is evaluated within the scope of this work. Additionally, the error due to the numerical integration is evaluated. This error depends on the load case (i.e., the shape of the curvature diagram), the magnitude of curvature, and the density of the sensor network. The method is tested on a laboratory specimen and a real structure. In a laboratory setting, the double integration is in excellent agreement with the beam theory solution which was within the predicted error limits of the numerical integration. Consistent results are also achieved on a real structure—Streicker Bridge on Princeton University campus.

  14. Estimating the kinetic parameters of activated sludge storage using weighted non-linear least-squares and accelerating genetic algorithm.

    PubMed

    Fang, Fang; Ni, Bing-Jie; Yu, Han-Qing

    2009-06-01

    In this study, weighted non-linear least-squares analysis and accelerating genetic algorithm are integrated to estimate the kinetic parameters of substrate consumption and storage product formation of activated sludge. A storage product formation equation is developed and used to construct the objective function for the determination of its production kinetics. The weighted least-squares analysis is employed to calculate the differences in the storage product concentration between the model predictions and the experimental data as the sum of squared weighted errors. The kinetic parameters for the substrate consumption and the storage product formation are estimated to be the maximum heterotrophic growth rate of 0.121/h, the yield coefficient of 0.44 mg CODX/mg CODS (COD, chemical oxygen demand) and the substrate half saturation constant of 16.9 mg/L, respectively, by minimizing the objective function using a real-coding-based accelerating genetic algorithm. Also, the fraction of substrate electrons diverted to the storage product formation is estimated to be 0.43 mg CODSTO/mg CODS. The validity of our approach is confirmed by the results of independent tests and the kinetic parameter values reported in literature, suggesting that this approach could be useful to evaluate the product formation kinetics of mixed cultures like activated sludge. More importantly, as this integrated approach could estimate the kinetic parameters rapidly and accurately, it could be applied to other biological processes.

  15. Design and evaluation of precise current integrator for scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Raczkowski, Kamil; Piasecki, Tomasz; Rudek, Maciej; Gotszalk, Teodor

    2017-03-01

    Several of the scanning probe microscopy (SPM) techniques, such as the scanning tunnelling microscopy (STM) or conductive atomic force microscopy (C-AFM), rely on precise measurements of current flowing between the investigated sample and the conductive nanoprobe. The parameters of current-to-voltage converter (CVC), which should detect current in the picompere range, are of utmost importance to those systems as they determine the microscopes’ measuring capabilities. That was the motivation for research on the precise current integrator (PCI), described in this paper, which could be used as the CVC in the C-AFM systems. The main design goal of the PCI was to provide a small and versatile device with the sub-picoampere level resolution with high dynamic range in the order of nanoamperes. The PCI was based on the integrating amplifier (Texas Instruments DDC112) paired with a STM32F4 microcontroller unit (MCU).The gain and bandwidth of the PCI might be easily changed by varying the integration time and the feedback capacitance. Depending on these parameters it was possible to obtain for example the 2.15 pA resolution at 688 nA range with 1 kHz bandwidth or 7.4 fA resolution at 0.98 nA range with 10 Hz bandwidth. The measurement of sinusoidal current with 28 fA amplitude was also presented. The PCI was integrated with the C-AFM system and used in the highly ordered pyrolytic graphite (HOPG) and graphene samples imaging.

  16. Assessing Hydrologic Impacts of Land Configuration Changes Using an Integrated Hydrologic Model at the Rocky Flats Environmental Technology Site, Colorado

    NASA Astrophysics Data System (ADS)

    Prucha, R. H.; Dayton, C. S.; Hawley, C. M.

    2002-12-01

    The Rocky Flats Environmental Technology Site (RFETS) in Golden, Colorado, a former Department of Energy nuclear weapons manufacturing facility, is currently undergoing closure. The natural semi-arid interaction between surface and subsurface flow at RFETS is complex and complicated by the industrial modifications to the flow system. Using a substantial site data set, a distributed parameter, fully-integrated hydrologic model was developed to assess the hydrologic impact of different hypothetical site closure configurations on the current flow system and to better understand the integrated hydrologic behavior of the system. An integrated model with this level of detail has not been previously developed in a semi-arid area, and a unique, but comprehensive, approach was required to calibrate and validate the model. Several hypothetical scenarios were developed to simulate hydrologic effects of modifying different aspects of the site. For example, some of the simulated modifications included regrading the current land surface, changing the existing surface channel network, removing subsurface trenches and gravity drain flow systems, installing a slurry wall and geotechnical cover, changing the current vegetative cover, and converting existing buildings and pavement to permeable soil areas. The integrated flow model was developed using a rigorous physically-based code so that realistic design parameters can simulate these changes. This code also permitted evaluation of changes to complex integrated hydrologic system responses that included channelized and overland flow, pond levels, unsaturated zone storage, groundwater heads and flow directions, and integrated water balances for key areas. Results generally show that channel flow offsite decreases substantially for different scenarios, while groundwater heads generally increase within the reconfigured industrial area most of which is then discharged as evapotranspiration. These changes have significant implications to site closure and operation.

  17. Extended study on the influence of z-value(s) of single and multicomponent time-temperature integrators on the accuracy of quantitative thermal process assessment.

    PubMed

    Guiavarc'h, Yann P; van Loey, Ann M; Hendrickx, Marc E

    2005-02-01

    The possibilities and limitations of single- and multicomponent time-temperature integrators (TTIs) for evaluating the impact of thermal processes on a target food attribute with a Ztarget value different from the zTTI value(s) of the TTI is far from sufficiently documented. In this study, several thousand time-temperature profiles were generated by heat transfer simulations based on a wide range of product and process thermal parameters and considering a Ztarget value of 10 degrees C and a reference temperature of 121.1 degrees C, both currently used to assess the safety of food sterilization processes. These simulations included 15 different Ztarget=10 degrees CF121.1 degrees C values in the range 3 to 60 min. The integration of the time-temperature profiles with ZTTI values of 5.5 to 20.5 degrees C in steps of 1 degrees C allowed generation of a large database containing for each combination of product and process parameters the correction factor to apply to the process value FmultiTTI, which was derived from a single- or multicomponent TTI, to obtain the target process value 10 degrees CF121.1 degrees C. The table and the graph results clearly demonstrated that multicomponent TTIs with z-values close to 10 degrees C can be used as an extremely efficient approach when a single-component TTI with a z-value of 10 degrees C is not available. In particular, a two-component TTI with z1 and z2 values respectively above and below the Ztarget value (10 degrees C in this study) would be the best option for the development of a TTI to assess the safety of sterilized foods. Whatever process and product parameters are used, such a TTI allows proper evaluation of the process value 10 degrees CF121.1 degrees C.

  18. Scenarios and performance measures for advanced ISDN satellite design and experiments

    NASA Technical Reports Server (NTRS)

    Pepin, Gerard R.

    1991-01-01

    Described here are the contemplated input and expected output for the Interim Service Integrated Services Digital Network (ISDN) Satellite (ISIS) and Full Service ISDN Satellite (FSIS) Models. The discrete event simulations of these models are presented with specific scenarios that stress ISDN satellite parameters. Performance measure criteria are presented for evaluating the advanced ISDN communication satellite designs of the NASA Satellite Communications Research (SCAR) Program.

  19. Pulse-firing winner-take-all networks

    NASA Technical Reports Server (NTRS)

    Meador, Jack L.

    1991-01-01

    Winner-take-all (WTA) neural networks using pulse-firing processing elements are introduced. In the pulse-firing WTA (PWTA) networks described, input and activation signal shunting is controlled by one shared lateral inhibition signal. This organization yields an O(n) area complexity that is convenient for integrated circuit implementation. Appropriately specified network parameters allow for the accurate continuous evaluation of inputs using a signal representation compatible with established pulse-firing neural network implementations.

  20. Enhancing shelf life of litchi (Litchi chinensis) fruit through integrated approach of surface coating and gamma irradiation

    NASA Astrophysics Data System (ADS)

    Pandey, Neha; Joshi, Sanjay Kumar; Singh, C. P.; Kumar, Surendra; Rajput, Sanjay; Khandal, R. K.

    2013-04-01

    India and China account for 91% of the world's litchi (Litchi chinensis) production. Although India is the second largest producer of litchi, its contribution to export is insignificant. Litchi being non-climacteric fruit possesses poor shelf life and fruit quality declines rapidly after harvest. Present investigation was an attempt to enhance shelf life of litchi fruit var. rose scented with integrated treatments of 1% NaCl solution, 2% wax solution and gamma radiation. Out of all, 1% NaCl coated+irradiated samples, proved out to be the best with enhanced shelf life of 24 days at 4 °C (shelf life at ambient temperature without any treatment being 3-4 days). Various biochemical parameters were tested and organoleptic evaluation was done to judge the acceptability of the stored litchi samples. TSS, vitamin C, total & reducing sugar content was found in range of 14.17-15.42°Bx; 35.67-57.88 mg/100 gm pulp weight, 12.44-14.06% and 9.41-11.91%. Organoleptic evaluation for different parameters ranged from 5.92 to 7.72 (fair-good) at 24th day of storage. Radiation dose of 1 kGy was found to be the only effective dose in which enhanced shelf life was achieved without any deterioration of various quality attributes.

  1. Performance evaluation of vinasse treatment plant integrated with physico-chemical methods.

    PubMed

    Ojha, Sanjay Kumar; Mishra, Snehasish; Kumar, Satish; Mohanty, Shakti Shankar; Sarkar, Biplab; Singh, Monika; Chaudhury, Gautam Roy

    2015-11-01

    With an objective to assess environmental management criteria of a vinasse treatment plant (VTP) and to evaluate the critical environmental parameters, a study was undertaken in a multi-product (packaged apple juice, distillery, brewery, packaged drinking water) brewery-cum-distillery unit. The facility with a volumetric loading rate of 11-15 kg COD m(-3).day, 3.6-4.5 h hydraulic retention time and 20 g l(-1) VSS had a scientifically managed technically sound effluent treatment system. While the water quality parameters were found within the acceptable limits, there was 99.07% reduction in BOD, from 43140.0 to 398.0 mg l(-1) and 98.61% reduction in COD from 98003.0 to 1357.0 mg l(-1). There was appreciable improvement in mixed liquor suspended solids (MLSS), mixed liquorvolatile suspended solids (MLVSS) and sludge volume index (SVI). A striking feature was the integrated aerobic-anaerobic highly efficient Up-flow Anaerobic Sludge Blanket (UASB) treatment for biodegradation and energy production that reduced energy and space needs, producing utilisable end-products and net savings on the operational cost. The end-point waste management included terminal products such as fertile sludge, cattle feed supplement, recyclable water and biogas. Vast lagoons with combined aerobic-anaerobic approaches, biogasification unit, sludge recovery, remediated irrigable water were the notable attributes.

  2. Förster resonance energy transfer, absorption and emission spectra in multichromophoric systems. III. Exact stochastic path integral evaluation.

    PubMed

    Moix, Jeremy M; Ma, Jian; Cao, Jianshu

    2015-03-07

    A numerically exact path integral treatment of the absorption and emission spectra of open quantum systems is presented that requires only the straightforward solution of a stochastic differential equation. The approach converges rapidly enabling the calculation of spectra of large excitonic systems across the complete range of system parameters and for arbitrary bath spectral densities. With the numerically exact absorption and emission operators, one can also immediately compute energy transfer rates using the multi-chromophoric Förster resonant energy transfer formalism. Benchmark calculations on the emission spectra of two level systems are presented demonstrating the efficacy of the stochastic approach. This is followed by calculations of the energy transfer rates between two weakly coupled dimer systems as a function of temperature and system-bath coupling strength. It is shown that the recently developed hybrid cumulant expansion (see Paper II) is the only perturbative method capable of generating uniformly reliable energy transfer rates and emission spectra across a broad range of system parameters.

  3. A new basis set for molecular bending degrees of freedom.

    PubMed

    Jutier, Laurent

    2010-07-21

    We present a new basis set as an alternative to Legendre polynomials for the variational treatment of bending vibrational degrees of freedom in order to highly reduce the number of basis functions. This basis set is inspired from the harmonic oscillator eigenfunctions but is defined for a bending angle in the range theta in [0:pi]. The aim is to bring the basis functions closer to the final (ro)vibronic wave functions nature. Our methodology is extended to complicated potential energy surfaces, such as quasilinearity or multiequilibrium geometries, by using several free parameters in the basis functions. These parameters allow several density maxima, linear or not, around which the basis functions will be mainly located. Divergences at linearity in integral computations are resolved as generalized Legendre polynomials. All integral computations required for the evaluation of molecular Hamiltonian matrix elements are given for both discrete variable representation and finite basis representation. Convergence tests for the low energy vibronic states of HCCH(++), HCCH(+), and HCCS are presented.

  4. Finite-Element Analysis of Crack Arrest Properties of Fiber Reinforced Composites Application in Semi-Elliptical Cracked Pipelines

    NASA Astrophysics Data System (ADS)

    Wang, Linyuan; Song, Shulei; Deng, Hongbo; Zhong, Kai

    2018-04-01

    In nowadays, repair method using fiber reinforced composites as the mainstream pipe repair technology, it can provide security for X100 high-grade steel energy long-distance pipelines in engineering. In this paper, analysis of cracked X100 high-grade steel pipe was conducted, simulation analysis was made on structure of pipes and crack arresters (CAs) to obtain the J-integral value in virtue of ANSYS Workbench finite element software and evaluation on crack arrest effects was done through measured elastic-plastic fracture mechanics parameter J-integral and the crack arrest coefficient K, in a bid to summarize effect laws of composite CAs and size of pipes and cracks for repairing CAs. The results indicate that the K value is correlated with laying angle λ, laying length L2/D1, laying thickness T1/T2of CAs, crack depth c/T1 and crack length a/c, and calculate recommended parameters for repairing fiber reinforced composite CAs in terms of two different crack forms.

  5. Therapeutic whole-body hypothermia reduces mortality in severe traumatic brain injury if the cooling index is sufficiently high: meta-analyses of the effect of single cooling parameters and their integrated measure.

    PubMed

    Olah, Emoke; Poto, Laszlo; Hegyi, Peter; Szabo, Imre; Hartmann, Petra; Solymar, Margit; Petervari, Erika; Balasko, Marta; Habon, Tamas; Rumbus, Zoltan; Tenk, Judit; Rostas, Ildiko; Weinberg, Jordan; Romanovsky, Andrej A; Garami, Andras

    2018-04-21

    Therapeutic hypothermia was investigated repeatedly as a tool to improve the outcome of severe traumatic brain injury (TBI), but previous clinical trials and meta-analyses found contradictory results. We aimed to determine the effectiveness of therapeutic whole-body hypothermia on the mortality of adult patients with severe TBI by using a novel approach of meta-analysis. We searched the PubMed, EMBASE, and Cochrane Library databases from inception to February 2017. The identified human studies were evaluated regarding statistical, clinical, and methodological designs to ensure inter-study homogeneity. We extracted data on TBI severity, body temperature, mortality, and cooling parameters; then we calculated the cooling index, an integrated measure of therapeutic hypothermia. Forest plot of all identified studies showed no difference in the outcome of TBI between cooled and not cooled patients, but inter-study heterogeneity was high. On the contrary, by meta-analysis of RCTs which were homogenous with regards to statistical, clinical designs and precisely reported the cooling protocol, we showed decreased odds ratio for mortality in therapeutic hypothermia compared to no cooling. As independent factors, milder and longer cooling, and rewarming at < 0.25°C/h were associated with better outcome. Therapeutic hypothermia was beneficial only if the cooling index (measure of combination of cooling parameters) was sufficiently high. We conclude that high methodological and statistical inter-study heterogeneity could underlie the contradictory results obtained in previous studies. By analyzing methodologically homogenous studies, we show that cooling improves the outcome of severe TBI and this beneficial effect depends on certain cooling parameters and on their integrated measure, the cooling index.

  6. Robust and Accurate Image-Based Georeferencing Exploiting Relative Orientation Constraints

    NASA Astrophysics Data System (ADS)

    Cavegn, S.; Blaser, S.; Nebiker, S.; Haala, N.

    2018-05-01

    Urban environments with extended areas of poor GNSS coverage as well as indoor spaces that often rely on real-time SLAM algorithms for camera pose estimation require sophisticated georeferencing in order to fulfill our high requirements of a few centimeters for absolute 3D point measurement accuracies. Since we focus on image-based mobile mapping, we extended the structure-from-motion pipeline COLMAP with georeferencing capabilities by integrating exterior orientation parameters from direct sensor orientation or SLAM as well as ground control points into bundle adjustment. Furthermore, we exploit constraints for relative orientation parameters among all cameras in bundle adjustment, which leads to a significant robustness and accuracy increase especially by incorporating highly redundant multi-view image sequences. We evaluated our integrated georeferencing approach on two data sets, one captured outdoors by a vehicle-based multi-stereo mobile mapping system and the other captured indoors by a portable panoramic mobile mapping system. We obtained mean RMSE values for check point residuals between image-based georeferencing and tachymetry of 2 cm in an indoor area, and 3 cm in an urban environment where the measurement distances are a multiple compared to indoors. Moreover, in comparison to a solely image-based procedure, our integrated georeferencing approach showed a consistent accuracy increase by a factor of 2-3 at our outdoor test site. Due to pre-calibrated relative orientation parameters, images of all camera heads were oriented correctly in our challenging indoor environment. By performing self-calibration of relative orientation parameters among respective cameras of our vehicle-based mobile mapping system, remaining inaccuracies from suboptimal test field calibration were successfully compensated.

  7. Assessment of SWE data assimilation for ensemble streamflow predictions

    NASA Astrophysics Data System (ADS)

    Franz, Kristie J.; Hogue, Terri S.; Barik, Muhammad; He, Minxue

    2014-11-01

    An assessment of data assimilation (DA) for Ensemble Streamflow Prediction (ESP) using seasonal water supply hindcasting in the North Fork of the American River Basin (NFARB) and the National Weather Service (NWS) hydrologic forecast models is undertaken. Two parameter sets, one from the California Nevada River Forecast Center (RFC) and one from the Differential Evolution Adaptive Metropolis (DREAM) algorithm, are tested. For each parameter set, hindcasts are generated using initial conditions derived with and without the inclusion of a DA scheme that integrates snow water equivalent (SWE) observations. The DREAM-DA scenario uses an Integrated Uncertainty and Ensemble-based data Assimilation (ICEA) framework that also considers model and parameter uncertainty. Hindcasts are evaluated using deterministic and probabilistic forecast verification metrics. In general, the impact of DA on the skill of the seasonal water supply predictions is mixed. For deterministic (ensemble mean) predictions, the Percent Bias (PBias) is improved with integration of the DA. DREAM-DA and the RFC-DA have the lowest biases and the RFC-DA has the lowest Root Mean Squared Error (RMSE). However, the RFC and DREAM-DA have similar RMSE scores. For the probabilistic predictions, the RFC and DREAM have the highest Continuous Ranked Probability Skill Scores (CRPSS) and the RFC has the best discrimination for low flows. Reliability results are similar between the non-DA and DA tests and the DREAM and DREAM-DA have better reliability than the RFC and RFC-DA for forecast dates February 1 and later. Despite producing improved streamflow simulations in previous studies, the hindcast analysis suggests that the DA method tested may not result in obvious improvements in streamflow forecasts. We advocate that integration of hindcasting and probabilistic metrics provides more rigorous insight on model performance for forecasting applications, such as in this study.

  8. Evaluation of decadal predictions using a satellite simulator for the Special Sensor Microwave Imager (SSM/I)

    NASA Astrophysics Data System (ADS)

    Spangehl, Thomas; Schröder, Marc; Bodas-Salcedo, Alejandro; Glowienka-Hense, Rita; Hense, Andreas; Hollmann, Rainer; Dietzsch, Felix

    2017-04-01

    Decadal climate predictions are commonly evaluated focusing on geophysical parameters such as temperature, precipitation or wind speed using observational datasets and reanalysis. Alternatively, satellite based radiance measurements combined with satellite simulator techniques to deduce virtual satellite observations from the numerical model simulations can be used. The latter approach enables an evaluation in the instrument's parameter space and has the potential to reduce uncertainties on the reference side. Here we present evaluation methods focusing on forward operator techniques for the Special Sensor Microwave Imager (SSM/I). The simulator is developed as an integrated part of the CFMIP Observation Simulator Package (COSP). On the observational side the SSM/I and SSMIS Fundamental Climate Data Record (FCDR) released by CM SAF (http://dx.doi.org/10.5676/EUM_SAF_CM/FCDR_MWI/V002) is used, which provides brightness temperatures for different channels and covers the period from 1987 to 2013. The simulator is applied to hindcast simulations performed within the MiKlip project (http://fona-miklip.de) which is funded by the BMBF (Federal Ministry of Education and Research in Germany). Probabilistic evaluation results are shown based on a subset of the hindcast simulations covering the observational period.

  9. Polarimetric passive remote sensing of periodic surfaces

    NASA Technical Reports Server (NTRS)

    Veysoglu, Murat E.; Yueh, H. A.; Shin, R. T.; Kong, J. A.

    1991-01-01

    The concept of polarimetry in active remote sensing is extended to passive remote sensing. The potential use of the third and fourth Stokes parameters U and V, which play an important role in polarimetric active remote sensing, is demonstrated for passive remote sensing. It is shown that, by the use of the reciprocity principle, the polarimetric parameters of passive remote sensing can be obtained through the solution of the associated direct scattering problem. These ideas are applied to study polarimetric passive remote sensing of periodic surfaces. The solution of the direct scattering problem is obtained by an integral equation formulation which involves evaluation of periodic Green's functions and normal derivative of those on the surface. Rapid evaluation of the slowly convergent series associated with these functions is observed to be critical for the feasibility of the method. New formulas, which are rapidly convergent, are derived for the calculation of these series. The study has shown that the brightness temperature of the Stokes parameter U can be significant in passive remote sensing. Values as high as 50 K are observed for certain configurations.

  10. An information theoretic approach to use high-fidelity codes to calibrate low-fidelity codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Allison, E-mail: lewis.allison10@gmail.com; Smith, Ralph; Williams, Brian

    For many simulation models, it can be prohibitively expensive or physically infeasible to obtain a complete set of experimental data to calibrate model parameters. In such cases, one can alternatively employ validated higher-fidelity codes to generate simulated data, which can be used to calibrate the lower-fidelity code. In this paper, we employ an information-theoretic framework to determine the reduction in parameter uncertainty that is obtained by evaluating the high-fidelity code at a specific set of design conditions. These conditions are chosen sequentially, based on the amount of information that they contribute to the low-fidelity model parameters. The goal is tomore » employ Bayesian experimental design techniques to minimize the number of high-fidelity code evaluations required to accurately calibrate the low-fidelity model. We illustrate the performance of this framework using heat and diffusion examples, a 1-D kinetic neutron diffusion equation, and a particle transport model, and include initial results from the integration of the high-fidelity thermal-hydraulics code Hydra-TH with a low-fidelity exponential model for the friction correlation factor.« less

  11. Analysis of LDPE-ZnO-clay nanocomposites using novel cumulative rheological parameters

    NASA Astrophysics Data System (ADS)

    Kracalik, Milan

    2017-05-01

    Polymer nanocomposites exhibit complex rheological behaviour due to physical and also possibly chemical interactions between individual phases. Up to now, rheology of dispersive polymer systems has been usually described by evaluation of viscosity curve (shear thinning phenomenon), storage modulus curve (formation of secondary plateau) or plotting information about dumping behaviour (e.g. Van Gurp-Palmen-plot, comparison of loss factor tan δ). On the contrary to evaluation of damping behaviour, values of cot δ were calculated and called as "storage factor", analogically to loss factor. Then values of storage factor were integrated over specific frequency range and called as "cumulative storage factor". In this contribution, LDPE-ZnO-clay nanocomposites with different dispersion grades (physical networks) have been prepared and characterized by both conventional as well as novel analysis approach. Next to cumulative storage factor, further cumulative rheological parameters like cumulative complex viscosity, cumulative complex modulus or cumulative storage modulus have been introduced.

  12. Two-dimensional and Doppler echocardiographic findings in healthy non-sedated red-eared slider terrapins (Trachemys scripta elegans).

    PubMed

    Poser, H; Russello, G; Zanella, A; Bellini, L; Gelli, D

    2011-12-01

    Echocardiographic evaluation was performed in six healthy young adult non-sedated terrapins (Trachemys scripta elegans). The best imaging quality was obtained through the right cervical window. Base-apex inflow and outflow views were recorded, ventricular size, ventricular wall thickness and ventricular outflow tract were measured, and fractional shortening was calculated. Pulsed-wave Doppler interrogation enabled the diastolic biphasic atrio-ventricular flow and the systolic ventricular outflow patterns to be recorded. The following Doppler-derived functional parameters were calculated: early diastolic (E) and late diastolic (A) wave peak velocities, E/A ratio, ventricular outflow systolic peak and mean velocities and gradients, Velocity-Time Integral, acceleration and deceleration times, and Ejection Time. For each parameter the mean, standard deviation and 95% confidence interval were calculated. Echocardiography resulted as a useful and easy-to-perform diagnostic tool in this poorly known species that presents difficulties during evaluation.

  13. Iterative matrix algorithm for high precision temperature and force decoupling in multi-parameter FBG sensing.

    PubMed

    Hopf, Barbara; Dutz, Franz J; Bosselmann, Thomas; Willsch, Michael; Koch, Alexander W; Roths, Johannes

    2018-04-30

    A new iterative matrix algorithm has been applied to improve the precision of temperature and force decoupling in multi-parameter FBG sensing. For the first time, this evaluation technique allows the integration of nonlinearities in the sensor's temperature characteristic and the temperature dependence of the sensor's force sensitivity. Applied to a sensor cable consisting of two FBGs in fibers with 80 µm and 125 µm cladding diameter installed in a 7 m-long coiled PEEK capillary, this technique significantly reduced the uncertainties in friction-compensated temperature measurements. In the presence of high friction-induced forces of up to 1.6 N the uncertainties in temperature evaluation were reduced from several degrees Celsius if using a standard linear matrix approach to less than 0.5°C if using the iterative matrix approach in an extended temperature range between -35°C and 125°C.

  14. Pressure sensitivity analysis of fiber Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Mrad, Nezih; Sridharan, Vasant; Kazemi, Alex

    2014-09-01

    Recent development in fiber optic sensing technology has mainly focused on discrete sensing, particularly, sensing systems with potential multiplexing and multi-parameter capabilities. Bragg grating fiber optic sensors have emerged as the non-disputed champion for multiplexing and simultaneous multi-parameter sensing for emerging high value structural components, advanced processing and manufacturing capabilities and increased critical infrastructure resilience applications. Although the number of potential applications for this sensing technology is large and spans the domains of medicine, manufacturing, aerospace, and public safety; critical issues such as fatigue life, sensitivity, accuracy, embeddability, material/sensor interface integrity, and universal demodulation systems still need to be addressed. The purpose of this paper is to primarily evaluate Commercial-Of-The-Shelf (COTS) Fiber Bragg Grating (FBG) sensors' sensitivity to pressure, often neglected in several applications. The COTS fiber sensitivity to pressure is further evaluated for two types of coatings (Polyimide and Acrylate), and different arrangements (arrayed and single).

  15. Modelling and tuning for a time-delayed vibration absorber with friction

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoxu; Xu, Jian; Ji, Jinchen

    2018-06-01

    This paper presents an integrated analytical and experimental study to the modelling and tuning of a time-delayed vibration absorber (TDVA) with friction. In system modelling, this paper firstly applies the method of averaging to obtain the frequency response function (FRF), and then uses the derived FRF to evaluate the fitness of different friction models. After the determination of the system model, this paper employs the obtained FRF to evaluate the vibration absorption performance with respect to tunable parameters. A significant feature of the TDVA with friction is that its stability is dependent on the excitation parameters. To ensure the stability of the time-delayed control, this paper defines a sufficient condition for stability estimation. Experimental measurements show that the dynamic response of the TDVA with friction can be accurately predicted and the time-delayed control can be precisely achieved by using the modelling and tuning technique provided in this paper.

  16. A new integrated instrumental approach to autonomic nervous system assessment.

    PubMed

    Corazza, I; Barletta, G; Guaraldi, P; Cecere, A; Calandra-Buonaura, G; Altini, E; Zannoli, R; Cortelli, P

    2014-11-01

    The autonomic nervous system (ANS) regulates involuntary body functions and is commonly evaluated by measuring reflex responses of systolic and diastolic blood pressure (BP) and heart rate (HR) to physiological and pharmacological stimuli. However, BP and HR values may not sufficient be to explain specific ANS events and other parameters like the electrocardiogram (ECG), BP waves, the respiratory rate and the electroencephalogram (EEG) are mandatory. Although ANS behaviour and its response to stimuli are well-known, their clinical evaluation is often based on individual medical training and experience. As a result, ANS laboratories have been customized, making it impossible to standardize procedures and share results with colleagues. The aim of our study was to build a powerful versatile instrument easy-to-use in clinical practice to standardize procedures and allow a cross-analysis of all the parameters of interest for ANS evaluation. The new ANScovery System developed by neurologists and technicians is a two-step device: (1) integrating physiological information from different already existing commercial modules, making it possible to cross-analyse, store and share data; (2) standardizing procedures by an innovative tutor monitor able to guide the patient throughout ANS testing. The daily use of the new ANScovery System in clinical practice has proved it is a versatile easy to use instrument. Standardization of the manoeuvres and step-by-step guidance throughout the procedure avoid repetitions and allow intra and inter-patient data comparison. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. [Effects of occupational exposure to pesticides on semen quality of workers in an agricultural community of Merida state, Venezuela].

    PubMed

    Miranda-Contreras, Leticia; Cruz, Ibis; Osuna, Jesús A; Gómez-Pérez, Roald; Berrueta, Lisbeth; Salmen, Siham; Colmenares, Melisa; Barreto, Silvio; Balza, Alirio; Morales, Yasmin; Zavala, Leisalba; Labarca, Emilitza; García, Nelly; Sanchez, Beluardi; Contreras, Carlos A; Andrade, Henry

    2015-06-01

    Numerous studies report adverse effects of pesticides on male reproductive health. The objectives of this study were to investigate whether there is a relationship between occupational exposure to pesticides and semen quality, and to determine whether chronic exposure to pesticides differentially affects semen quality in men of different ages. A comparative study of 64 farmers and 64 control men was performed. The farmers were interviewed to determine their occupational history and particularly, activities that may involve exposure to pesticides. Semen parameters were evaluated and a comparative analysis of semen variables between exposed and control groups, as well as between age groups: 18-29, 30-37 and 38-60 years was done. Significant alterations of some semen parameters in the exposed group were found, such as: decreases in sperm concentration, slow progressive motility and sperm membrane integrity; at the same time, increases in eosin Y positive and sperm DNA fragmentation index. The results obtained by age groups showed significant differences between exposed and control groups for the parameters of membrane integrity, eosin Y positive and sperm DNA fragmentation index, being the exposed group between 18-29 years that showed the highest altered cases of these parameters. Our results prove that occupational pesticide exposure is associated with alterations in sperm quality, creating a risk to farm workers in their reproductive capacity.

  18. Role of "the frame cycle time" in portal dose imaging using an aS500-II EPID.

    PubMed

    Al Kattar Elbalaa, Zeina; Foulquier, Jean Noel; Orthuon, Alexandre; Elbalaa, Hanna; Touboul, Emmanuel

    2009-09-01

    This paper evaluates the role of an acquisition parameter, the frame cycle time "FCT", in the performance of an aS500-II EPID. The work presented rests on the study of the Varian EPID aS500-II and the image acquisition system 3 (IAS3). We are interested in integrated acquisition using asynchronous mode. For better understanding the image acquisition operation, we investigated the influence of the "frame cycle time" on the speed of acquisition, the pixel value of the averaged gray-scale frame and the noise, using 6 and 15MV X-ray beams and dose rates of 1-6Gy/min on 2100 C/D Linacs. In the integrated mode not synchronized to beam pulses, only one parameter the frame cycle time "FCT" influences the pixel value. The pixel value of the averaged gray-scale frame is proportional to this parameter. When the FCT <55ms (speed of acquisition V(f/s)>18 frames/s), the speed of acquisition becomes unstable and leads to a fluctuation of the portal dose response. A timing instability and saturation are detected when the dose per frame exceeds 1.53MU/frame. Rules were deduced to avoid saturation and to optimize this dosimetric mode. The choice of the acquisition parameter is essential for the accurate portal dose imaging.

  19. Methods and Issues for the Combined Use of Integral Experiments and Covariance Data: Results of a NEA International Collaborative Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmiotti, Giuseppe; Salvatores, Massimo

    2014-04-01

    The Working Party on International Nuclear Data Evaluation Cooperation (WPEC) of the Nuclear Science Committee under the Nuclear Energy Agency (NEA/OECD) established a Subgroup (called “Subgroup 33”) in 2009 on “Methods and issues for the combined use of integral experiments and covariance data.” The first stage was devoted to producing the description of different adjustment methodologies and assessing their merits. A detailed document related to this first stage has been issued. Nine leading organizations (often with a long and recognized expertise in the field) have contributed: ANL, CEA, INL, IPPE, JAEA, JSI, NRG, IRSN and ORNL. In the second stagemore » a practical benchmark exercise was defined in order to test the reliability of the nuclear data adjustment methodology. A comparison of the results obtained by the participants and major lessons learned in the exercise are discussed in the present paper that summarizes individual contributions which often include several original developments not reported separately. The paper provides the analysis of the most important results of the adjustment of the main nuclear data of 11 major isotopes in a 33-group energy structure. This benchmark exercise was based on a set of 20 well defined integral parameters from 7 fast assembly experiments. The exercise showed that using a common shared set of integral experiments but different starting evaluated libraries and/or different covariance matrices, there is a good convergence of trends for adjustments. Moreover, a significant reduction of the original uncertainties is often observed. Using the a–posteriori covariance data, there is a strong reduction of the uncertainties of integral parameters for reference reactor designs, mainly due to the new correlations in the a–posteriori covariance matrix. Furthermore, criteria have been proposed and applied to verify the consistency of differential and integral data used in the adjustment. Finally, recommendations are given for an appropriate use of sensitivity analysis methods and indications for future work are provided.« less

  20. Sinabro: A Smartphone-Integrated Opportunistic Electrocardiogram Monitoring System

    PubMed Central

    Kwon, Sungjun; Lee, Dongseok; Kim, Jeehoon; Lee, Youngki; Kang, Seungwoo; Seo, Sangwon; Park, Kwangsuk

    2016-01-01

    In our preliminary study, we proposed a smartphone-integrated, unobtrusive electrocardiogram (ECG) monitoring system, Sinabro, which monitors a user’s ECG opportunistically during daily smartphone use without explicit user intervention. The proposed system also monitors ECG-derived features, such as heart rate (HR) and heart rate variability (HRV), to support the pervasive healthcare apps for smartphones based on the user’s high-level contexts, such as stress and affective state levels. In this study, we have extended the Sinabro system by: (1) upgrading the sensor device; (2) improving the feature extraction process; and (3) evaluating extensions of the system. We evaluated these extensions with a good set of algorithm parameters that were suggested based on empirical analyses. The results showed that the system could capture ECG reliably and extract highly accurate ECG-derived features with a reasonable rate of data drop during the user’s daily smartphone use. PMID:26978364

  1. Sinabro: A Smartphone-Integrated Opportunistic Electrocardiogram Monitoring System.

    PubMed

    Kwon, Sungjun; Lee, Dongseok; Kim, Jeehoon; Lee, Youngki; Kang, Seungwoo; Seo, Sangwon; Park, Kwangsuk

    2016-03-11

    In our preliminary study, we proposed a smartphone-integrated, unobtrusive electrocardiogram (ECG) monitoring system, Sinabro, which monitors a user's ECG opportunistically during daily smartphone use without explicit user intervention. The proposed system also monitors ECG-derived features, such as heart rate (HR) and heart rate variability (HRV), to support the pervasive healthcare apps for smartphones based on the user's high-level contexts, such as stress and affective state levels. In this study, we have extended the Sinabro system by: (1) upgrading the sensor device; (2) improving the feature extraction process; and (3) evaluating extensions of the system. We evaluated these extensions with a good set of algorithm parameters that were suggested based on empirical analyses. The results showed that the system could capture ECG reliably and extract highly accurate ECG-derived features with a reasonable rate of data drop during the user's daily smartphone use.

  2. Integrated risk assessment and screening analysis of drinking water safety of a conventional water supply system.

    PubMed

    Sun, F; Chen, J; Tong, Q; Zeng, S

    2007-01-01

    Management of drinking water safety is changing towards an integrated risk assessment and risk management approach that includes all processes in a water supply system from catchment to consumers. However, given the large number of water supply systems in China and the cost of implementing such a risk assessment procedure, there is a necessity to first conduct a strategic screening analysis at a national level. An integrated methodology of risk assessment and screening analysis is thus proposed to evaluate drinking water safety of a conventional water supply system. The violation probability, indicating drinking water safety, is estimated at different locations of a water supply system in terms of permanganate index, ammonia nitrogen, turbidity, residual chlorine and trihalomethanes. Critical parameters with respect to drinking water safety are then identified, based on which an index system is developed to prioritize conventional water supply systems in implementing a detailed risk assessment procedure. The evaluation results are represented as graphic check matrices for the concerned hazards in drinking water, from which the vulnerability of a conventional water supply system is characterized.

  3. A joint-space numerical model of metabolic energy expenditure for human multibody dynamic system.

    PubMed

    Kim, Joo H; Roberts, Dustyn

    2015-09-01

    Metabolic energy expenditure (MEE) is a critical performance measure of human motion. In this study, a general joint-space numerical model of MEE is derived by integrating the laws of thermodynamics and principles of multibody system dynamics, which can evaluate MEE without the limitations inherent in experimental measurements (phase delays, steady state and task restrictions, and limited range of motion) or muscle-space models (complexities and indeterminacies from excessive DOFs, contacts and wrapping interactions, and reliance on in vitro parameters). Muscle energetic components are mapped to the joint space, in which the MEE model is formulated. A constrained multi-objective optimization algorithm is established to estimate the model parameters from experimental walking data also used for initial validation. The joint-space parameters estimated directly from active subjects provide reliable MEE estimates with a mean absolute error of 3.6 ± 3.6% relative to validation values, which can be used to evaluate MEE for complex non-periodic tasks that may not be experimentally verifiable. This model also enables real-time calculations of instantaneous MEE rate as a function of time for transient evaluations. Although experimental measurements may not be completely replaced by model evaluations, predicted quantities can be used as strong complements to increase reliability of the results and yield unique insights for various applications. Copyright © 2015 John Wiley & Sons, Ltd.

  4. Integration of Andrographis paniculata as Potential Medicinal Plant in Chir Pine (Pinus roxburghii Sarg.) Plantation of North-Western Himalaya

    PubMed Central

    Sanwal, Chandra Shekher; Bhardwaj, S. D.

    2016-01-01

    The integration of Andrographis paniculata under Pinus roxburghii (Chir pine) plantation has been studied to evaluate the growth and yield for its economic viability and conservation. It was grown on three topographical aspects, namely, northern, north-western, and western, at a spacing of 30 cm × 30 cm, followed by three tillage depths, namely, minimum (0 cm), medium (up to 10 cm), and deep (up to 15 cm) tillage. The growth parameters, namely, plant height and number of branches per plant, were recorded as significantly higher on western aspect and lowest on northern aspect except for leaf area index which was found nonsignificant. However under all tillage practices all the growth parameters in both understorey and open conditions were found to be nonsignificant except for plant height which was found to be significantly highest under deep tillage and lowest under minimum tillage. The study of net returns for Andrographis paniculata revealed that it had positive average annual returns even in understorey conditions which indicate its possible economic viability under integration of Chir pine plantations. Hence net returns can be enhanced by integrating Andrographis paniculata and this silvimedicinal system can be suggested which will help utilizing an unutilized part of land and increase total productivity from such lands besides conservation of the A. paniculata in situ. PMID:27563482

  5. Nonlinear Optical Properties of Organic and Polymeric Thin Film Materials of Potential for Microgravity Processing Studies

    NASA Technical Reports Server (NTRS)

    Abdeldayem, Hossin; Frazier, Donald O.; Paley, Mark S.; Penn, Benjamin; Witherow, William K.; Bank, Curtis; Shields, Angela; Hicks, Rosline; Ashley, Paul R.

    1996-01-01

    In this paper, we will take a closer look at the state of the art of polydiacetylene, and metal-free phthalocyanine films, in view of the microgravity impact on their optical properties, their nonlinear optical properties and their potential advantages for integrated optics. These materials have many attractive features with regard to their use in integrated optical circuits and optical switching. Thin films of these materials processed in microgravity environment show enhanced optical quality and better molecular alignment than those processed in unit gravity. Our studies of these materials indicate that microgravity can play a major role in integrated optics technology. Polydiacetylene films are produced by UV irradiation of monomer solution through an optical window. This novel technique of forming polydiacetylene thin films has been modified for constructing sophisticated micro-structure integrated optical patterns using a pre-programmed UV-Laser beam. Wave guiding through these thin films by the prism coupler technique has been demonstrated. The third order nonlinear parameters of these films have been evaluated. Metal-free phthalocyanine films of good optical quality are processed in our laboratories by vapor deposition technique. Initial studies on these films indicate that they have excellent chemical, laser, and environmental stability. They have large nonlinear optical parameters and show intrinsic optical bistability. This bistability is essential for optical logic gates and optical switching applications. Waveguiding and device making investigations of these materials are underway.

  6. Two-part models with stochastic processes for modelling longitudinal semicontinuous data: Computationally efficient inference and modelling the overall marginal mean.

    PubMed

    Yiu, Sean; Tom, Brian Dm

    2017-01-01

    Several researchers have described two-part models with patient-specific stochastic processes for analysing longitudinal semicontinuous data. In theory, such models can offer greater flexibility than the standard two-part model with patient-specific random effects. However, in practice, the high dimensional integrations involved in the marginal likelihood (i.e. integrated over the stochastic processes) significantly complicates model fitting. Thus, non-standard computationally intensive procedures based on simulating the marginal likelihood have so far only been proposed. In this paper, we describe an efficient method of implementation by demonstrating how the high dimensional integrations involved in the marginal likelihood can be computed efficiently. Specifically, by using a property of the multivariate normal distribution and the standard marginal cumulative distribution function identity, we transform the marginal likelihood so that the high dimensional integrations are contained in the cumulative distribution function of a multivariate normal distribution, which can then be efficiently evaluated. Hence, maximum likelihood estimation can be used to obtain parameter estimates and asymptotic standard errors (from the observed information matrix) of model parameters. We describe our proposed efficient implementation procedure for the standard two-part model parameterisation and when it is of interest to directly model the overall marginal mean. The methodology is applied on a psoriatic arthritis data set concerning functional disability.

  7. ‘tripleint_cc’: A program for 2-centre variational leptonic Coulomb potential matrix elements using Hylleraas-type trial functions, with a performance optimization study

    NASA Astrophysics Data System (ADS)

    Plummer, M.; Armour, E. A. G.; Todd, A. C.; Franklin, C. P.; Cooper, J. N.

    2009-12-01

    We present a program used to calculate intricate three-particle integrals for variational calculations of solutions to the leptonic Schrödinger equation with two nuclear centres in which inter-leptonic distances (electron-electron and positron-electron) are included directly in the trial functions. The program has been used so far in calculations of He-H¯ interactions and positron H 2 scattering, however the precisely defined integrals are applicable to other situations. We include a summary discussion of how the program has been optimized from a 'legacy'-type code to a more modern high-performance code with a performance improvement factor of up to 1000. Program summaryProgram title: tripleint.cc Catalogue identifier: AEEV_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEV_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 12 829 No. of bytes in distributed program, including test data, etc.: 91 798 Distribution format: tar.gz Programming language: Fortran 95 (fixed format) Computer: Modern PC (tested on AMD processor) [1], IBM Power5 [2] Cray XT4 [3], similar Operating system: Red Hat Linux [1], IBM AIX [2], UNICOS [3] Has the code been vectorized or parallelized?: Serial (multi-core shared memory may be needed for some large jobs) RAM: Dependent on parameter sizes and option to use intermediate I/O. Estimates for practical use: 0.5-2 GBytes (with intermediate I/O); 1-4 GBytes (all-memory: the preferred option). Classification: 2.4, 2.6, 2.7, 2.9, 16.5, 16.10, 20 Nature of problem: The 'tripleint.cc' code evaluates three-particle integrals needed in certain variational (in particular: Rayleigh-Ritz and generalized-Kohn) matrix elements for solution of the Schrödinger equation with two fixed centres (the solutions may then be used in subsequent dynamic nuclear calculations). Specifically the integrals are defined by Eq. (16) in the main text and contain terms proportional to r×r/r,i≠j,i≠k,j≠k, with r the distance between leptons i and j. The article also briefly describes the performance optimizations used to increase the speed of evaluation of the integrals enough to allow detailed testing and mapping of the effect of varying non-linear parameters in the variational trial functions. Solution method: Each integral is solved using prolate spheroidal coordinates and series expansions (with cut-offs) of the many-lepton expressions. 1-d integrals and sub-integrals are solved analytically by various means (the program automatically chooses the most accurate of the available methods for each set of parameters and function arguments), while two of the three integrations over the prolate spheroidal coordinates ' λ' are carried out numerically. Many similar integrals with identical non-linear variational parameters may be calculated with one call of the code. Restrictions: There are limits to the number of points for the numerical integrations, to the cut-off variable itaumax for the many-lepton series expansions, and to the maximum powers of Slater-like input functions. For runs near the limit of the cut-off variable and with certain small-magnitude values of variational non-linear parameters, the code can require large amounts of memory (an option using some intermediate I/O is included to offset this). Unusual features: In addition to the program, we also present a summary description of the techniques and ideology used to optimize the code, together with accuracy tests and indications of performance improvement. Running time: The test runs take 1-15 minutes on HPCx [2] as indicated in Section 5 of the main text. A practical run with 729 integrals, 40 quadrature points per dimension and itaumax = 8 took 150 minutes on a PC (e.g., [1]): a similar run with 'medium' accuracy, e.g. for parameter optimization (see Section 2 of the main text), with 30 points per dimension and itaumax = 6 took 35 minutes. References:PC: Memory: 2.72 GB, CPU: AMD Opteron 246 dual-core, 2×2 GHz, OS: GNU/Linux, kernel: Linux 2.6.9-34.0.2.ELsmp. HPCx, IBM eServer 575 running IBM AIX, http://www.hpcx.ac.uk/ (visited May 2009). HECToR, CRAY XT4 running UNICOS/lc, http://www.hector.ac.uk/ (visited May 2009).

  8. A framework for different levels of integration of computational models into web-based virtual patients.

    PubMed

    Kononowicz, Andrzej A; Narracott, Andrew J; Manini, Simone; Bayley, Martin J; Lawford, Patricia V; McCormack, Keith; Zary, Nabil

    2014-01-23

    Virtual patients are increasingly common tools used in health care education to foster learning of clinical reasoning skills. One potential way to expand their functionality is to augment virtual patients' interactivity by enriching them with computational models of physiological and pathological processes. The primary goal of this paper was to propose a conceptual framework for the integration of computational models within virtual patients, with particular focus on (1) characteristics to be addressed while preparing the integration, (2) the extent of the integration, (3) strategies to achieve integration, and (4) methods for evaluating the feasibility of integration. An additional goal was to pilot the first investigation of changing framework variables on altering perceptions of integration. The framework was constructed using an iterative process informed by Soft System Methodology. The Virtual Physiological Human (VPH) initiative has been used as a source of new computational models. The technical challenges associated with development of virtual patients enhanced by computational models are discussed from the perspectives of a number of different stakeholders. Concrete design and evaluation steps are discussed in the context of an exemplar virtual patient employing the results of the VPH ARCH project, as well as improvements for future iterations. The proposed framework consists of four main elements. The first element is a list of feasibility features characterizing the integration process from three perspectives: the computational modelling researcher, the health care educationalist, and the virtual patient system developer. The second element included three integration levels: basic, where a single set of simulation outcomes is generated for specific nodes in the activity graph; intermediate, involving pre-generation of simulation datasets over a range of input parameters; advanced, including dynamic solution of the model. The third element is the description of four integration strategies, and the last element consisted of evaluation profiles specifying the relevant feasibility features and acceptance thresholds for specific purposes. The group of experts who evaluated the virtual patient exemplar found higher integration more interesting, but at the same time they were more concerned with the validity of the result. The observed differences were not statistically significant. This paper outlines a framework for the integration of computational models into virtual patients. The opportunities and challenges of model exploitation are discussed from a number of user perspectives, considering different levels of model integration. The long-term aim for future research is to isolate the most crucial factors in the framework and to determine their influence on the integration outcome.

  9. A Framework for Different Levels of Integration of Computational Models Into Web-Based Virtual Patients

    PubMed Central

    Narracott, Andrew J; Manini, Simone; Bayley, Martin J; Lawford, Patricia V; McCormack, Keith; Zary, Nabil

    2014-01-01

    Background Virtual patients are increasingly common tools used in health care education to foster learning of clinical reasoning skills. One potential way to expand their functionality is to augment virtual patients’ interactivity by enriching them with computational models of physiological and pathological processes. Objective The primary goal of this paper was to propose a conceptual framework for the integration of computational models within virtual patients, with particular focus on (1) characteristics to be addressed while preparing the integration, (2) the extent of the integration, (3) strategies to achieve integration, and (4) methods for evaluating the feasibility of integration. An additional goal was to pilot the first investigation of changing framework variables on altering perceptions of integration. Methods The framework was constructed using an iterative process informed by Soft System Methodology. The Virtual Physiological Human (VPH) initiative has been used as a source of new computational models. The technical challenges associated with development of virtual patients enhanced by computational models are discussed from the perspectives of a number of different stakeholders. Concrete design and evaluation steps are discussed in the context of an exemplar virtual patient employing the results of the VPH ARCH project, as well as improvements for future iterations. Results The proposed framework consists of four main elements. The first element is a list of feasibility features characterizing the integration process from three perspectives: the computational modelling researcher, the health care educationalist, and the virtual patient system developer. The second element included three integration levels: basic, where a single set of simulation outcomes is generated for specific nodes in the activity graph; intermediate, involving pre-generation of simulation datasets over a range of input parameters; advanced, including dynamic solution of the model. The third element is the description of four integration strategies, and the last element consisted of evaluation profiles specifying the relevant feasibility features and acceptance thresholds for specific purposes. The group of experts who evaluated the virtual patient exemplar found higher integration more interesting, but at the same time they were more concerned with the validity of the result. The observed differences were not statistically significant. Conclusions This paper outlines a framework for the integration of computational models into virtual patients. The opportunities and challenges of model exploitation are discussed from a number of user perspectives, considering different levels of model integration. The long-term aim for future research is to isolate the most crucial factors in the framework and to determine their influence on the integration outcome. PMID:24463466

  10. Geo-Engineering through Internet Informatics (GEMINI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watney, W. Lynn; Doveton, John H.; Victorine, John R.

    GEMINI will resolve reservoir parameters that control well performance; characterize subtle reservoir properties important in understanding and modeling hydrocarbon pore volume and fluid flow; expedite recognition of bypassed, subtle, and complex oil and gas reservoirs at regional and local scale; differentiate commingled reservoirs; build integrated geologic and engineering model based on real-time, iterate solutions to evaluate reservoir management options for improved recovery; provide practical tools to assist the geoscientist, engineer, and petroleum operator in making their tasks more efficient and effective; enable evaluations to be made at different scales, ranging from individual well, through lease, field, to play and regionmore » (scalable information infrastructure); and provide training and technology transfer to evaluate capabilities of the client.« less

  11. Self-organization comprehensive real-time state evaluation model for oil pump unit on the basis of operating condition classification and recognition

    NASA Astrophysics Data System (ADS)

    Liang, Wei; Yu, Xuchao; Zhang, Laibin; Lu, Wenqing

    2018-05-01

    In oil transmission station, the operating condition (OC) of an oil pump unit sometimes switches accordingly, which will lead to changes in operating parameters. If not taking the switching of OCs into consideration while performing a state evaluation on the pump unit, the accuracy of evaluation would be largely influenced. Hence, in this paper, a self-organization Comprehensive Real-Time State Evaluation Model (self-organization CRTSEM) is proposed based on OC classification and recognition. However, the underlying model CRTSEM is built through incorporating the advantages of Gaussian Mixture Model (GMM) and Fuzzy Comprehensive Evaluation Model (FCEM) first. That is to say, independent state models are established for every state characteristic parameter according to their distribution types (i.e. the Gaussian distribution and logistic regression distribution). Meanwhile, Analytic Hierarchy Process (AHP) is utilized to calculate the weights of state characteristic parameters. Then, the OC classification is determined by the types of oil delivery tasks, and CRTSEMs of different standard OCs are built to constitute the CRTSEM matrix. On the other side, the OC recognition is realized by a self-organization model that is established on the basis of Back Propagation (BP) model. After the self-organization CRTSEM is derived through integration, real-time monitoring data can be inputted for OC recognition. At the end, the current state of the pump unit can be evaluated by using the right CRTSEM. The case study manifests that the proposed self-organization CRTSEM can provide reasonable and accurate state evaluation results for the pump unit. Besides, the assumption that the switching of OCs will influence the results of state evaluation is also verified.

  12. Evaluation of antibacterial properties of novel phthalocyanines against Escherichia coli--comparison of analytical methods.

    PubMed

    Mikula, Premysl; Kalhotka, Libor; Jancula, Daniel; Zezulka, Stepan; Korinkova, Radka; Cerny, Jiri; Marsalek, Blahoslav; Toman, Petr

    2014-09-05

    We analyzed antibacterial effects of several novel phthalocyanines against Escherichia coli and evaluated the suitability of flow cytometry for the detection of antibacterial effects of phthalocyanines in comparison with routinely used cultivation. After 3h of exposure under cool white light eight cationic phthalocyanines showed very high antibacterial activity in the concentration of 2.00 mg L(-1) and four of them were even efficient in the concentration of 0.20 mg L(-1). Antibacterial activity of neutral and anionic compounds was considerably lower or even negligible. No antibacterial effect was detected when bacteria were exposed without illumination. Binding affinity to bacterial cells was found to represent an important parameter influencing phthalocyanine antibacterial activity that can be modified by total charge of peripheral substituents and by the presence of suitable functional groups inside them. Agglomeration of cells observed in suspensions treated with a higher concentration of certain cationic phthalocyanines (the strongest binders to bacterial membrane) affected cytometric measurements of total cell counts, thus without appropriate pretreatment of the sample before analysis this parameter seems not to be fully valid in the evaluation of phthalocyanine antibacterial activity. Cytometric measurement of cell membrane integrity appears to be a suitable and even more sensitive parameter than cultivation. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Skylab program earth resouces experiment package. Volume 4: Sensor performance evaluation (S193 R/S). [radiometer/scatterometer

    NASA Technical Reports Server (NTRS)

    Kenney, G. P.

    1975-01-01

    The results of the sensor performance evaluation of the 13.9 GHz radiometer/scatterometer, which was part of the earth resources experiment package on Skylab. Findings are presented in the areas of housekeeping parameters, antenna gain and scanning performance, dynamic range, linearity, precision, resolution, stability, integration time, and transmitter output. Supplementary analyses covering performance anomalies, data stream peculiarities, aircraft sensor data comparisons, scatterometer saturation characteristics, and RF heating effects are reported. Results of the evaluation show that instrument performance was generally as expected, but capability degradations were observed to result from three major anomalies. Conclusions are drawn from the evaluation results, and recommendations for improving the effectiveness of a future program are offered. An addendum describes the special evaluation techniques developed and applied in the sensor performance evaluation tasks.

  14. NLSCIDNT user's guide maximum likehood parameter identification computer program with nonlinear rotorcraft model

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A nonlinear, maximum likelihood, parameter identification computer program (NLSCIDNT) is described which evaluates rotorcraft stability and control coefficients from flight test data. The optimal estimates of the parameters (stability and control coefficients) are determined (identified) by minimizing the negative log likelihood cost function. The minimization technique is the Levenberg-Marquardt method, which behaves like the steepest descent method when it is far from the minimum and behaves like the modified Newton-Raphson method when it is nearer the minimum. Twenty-one states and 40 measurement variables are modeled, and any subset may be selected. States which are not integrated may be fixed at an input value, or time history data may be substituted for the state in the equations of motion. Any aerodynamic coefficient may be expressed as a nonlinear polynomial function of selected 'expansion variables'.

  15. Static internal performance evaluation of several thrust reversing concepts for 2D-CD nozzles

    NASA Technical Reports Server (NTRS)

    Rowe, R. K.; Duss, D. J.; Leavitt, L. D.

    1984-01-01

    Recent performance testing of the two-dimensional convergent-divergent (2D-CD) nozzle has established the concept as a viable alternative to the axisymmetric nozzle for advanced technology aircraft. This type of exhaust system also offers potential integration and performance advantages in the areas of thrust reversing and vectoring over axi-symmetric nozzles. These advantages include the practical integration of thrust reversers which operate not only to reduce landing roll but also operate in-flight for enhanced maneuvering and thrust spoiling. To date there is a very limited data base available from which criteria can be developed for the design and evaluation of this type of thrust reverser system. For this reason, a static scale model test was conducted in which five different thrust reverser designs were evaluated. Each of the five models had varying performance/integration requirements which dictated the five different designs. Some of the parameters investigated in this test included; variable angle external cascade vanes, fixed angle internal cascade vanes, variable position inner doors, external slider doors and internal slider valves. In addition, normal force and yawing moment generation was investigated using the thrust reverser system. Selected results from this test will be presented and discussed in this paper.

  16. MeltMan: Optimization, Evaluation, and Universal Application of a qPCR System Integrating the TaqMan qPCR and Melting Analysis into a Single Assay

    PubMed Central

    Nagy, Alexander; Černíková, Lenka; Vitásková, Eliška; Křivda, Vlastimil; Dán, Ádám; Dirbáková, Zuzana; Jiřincová, Helena; Procházka, Bohumír; Sedlák, Kamil; Havlíčková, Martina

    2016-01-01

    In the present work, we optimised and evaluated a qPCR system integrating 6-FAM (6-carboxyfluorescein)-labelled TaqMan probes and melting analysis using the SYTO 82 (S82) DNA binding dye in a single reaction. We investigated the influence of the S82 on various TaqMan and melting analysis parameters and defined its optimal concentration. In the next step, the method was evaluated in 36 different TaqMan assays with a total of 729 paired reactions using various DNA and RNA templates, including field specimens. In addition, the melting profiles of interest were correlated with the electrophoretic patterns. We proved that the S82 is fully compatible with the FAM-TaqMan system. Further, the advantages of this approach in routine diagnostic TaqMan qPCR were illustrated with practical examples. These included solving problems with flat or other atypical amplification curves or even false negativity as a result of probe binding failure. Our data clearly show that the integration of the TaqMan qPCR and melting analysis into a single assay provides an additional control option as well as the opportunity to perform more complex analyses, get more data from the reactions, and obtain analysis results with higher confidence. PMID:27031831

  17. Big data integration for regional hydrostratigraphic mapping

    NASA Astrophysics Data System (ADS)

    Friedel, M. J.

    2013-12-01

    Numerical models provide a way to evaluate groundwater systems, but determining the hydrostratigraphic units (HSUs) used in devising these models remains subjective, nonunique, and uncertain. A novel geophysical-hydrogeologic data integration scheme is proposed to constrain the estimation of continuous HSUs. First, machine-learning and multivariate statistical techniques are used to simultaneously integrate borehole hydrogeologic (lithology, hydraulic conductivity, aqueous field parameters, dissolved constituents) and geophysical (gamma, spontaneous potential, and resistivity) measurements. Second, airborne electromagnetic measurements are numerically inverted to obtain subsurface resistivity structure at randomly selected locations. Third, the machine-learning algorithm is trained using the borehole hydrostratigraphic units and inverted airborne resistivity profiles. The trained machine-learning algorithm is then used to estimate HSUs at independent resistivity profile locations. We demonstrate efficacy of the proposed approach to map the hydrostratigraphy of a heterogeneous surficial aquifer in northwestern Nebraska.

  18. Combining the bi-Yang-Baxter deformation, the Wess-Zumino term and TsT transformations in one integrable σ-model

    NASA Astrophysics Data System (ADS)

    Delduc, F.; Hoare, B.; Kameyama, T.; Magro, M.

    2017-10-01

    A multi-parameter integrable deformation of the principal chiral model is presented. The Yang-Baxter and bi-Yang-Baxter σ-models, the principal chiral model plus a Wess-Zumino term and the TsT transformation of the principal chiral model are all recovered when the appropriate deformation parameters vanish. When the Lie group is SU(2), we show that this four-parameter integrable deformation of the SU(2) principal chiral model corresponds to the Lukyanov model.

  19. A data-model integration approach toward improved understanding on wetland functions and hydrological benefits at the catchment scale

    NASA Astrophysics Data System (ADS)

    Yeo, I. Y.; Lang, M.; Lee, S.; Huang, C.; Jin, H.; McCarty, G.; Sadeghi, A.

    2017-12-01

    The wetland ecosystem plays crucial roles in improving hydrological function and ecological integrity for the downstream water and the surrounding landscape. However, changing behaviours and functioning of wetland ecosystems are poorly understood and extremely difficult to characterize. Improved understanding on hydrological behaviours of wetlands, considering their interaction with surrounding landscapes and impacts on downstream waters, is an essential first step toward closing the knowledge gap. We present an integrated wetland-catchment modelling study that capitalizes on recently developed inundation maps and other geospatial data. The aim of the data-model integration is to improve spatial prediction of wetland inundation and evaluate cumulative hydrological benefits at the catchment scale. In this paper, we highlight problems arising from data preparation, parameterization, and process representation in simulating wetlands within a distributed catchment model, and report the recent progress on mapping of wetland dynamics (i.e., inundation) using multiple remotely sensed data. We demonstrate the value of spatially explicit inundation information to develop site-specific wetland parameters and to evaluate model prediction at multi-spatial and temporal scales. This spatial data-model integrated framework is tested using Soil and Water Assessment Tool (SWAT) with improved wetland extension, and applied for an agricultural watershed in the Mid-Atlantic Coastal Plain, USA. This study illustrates necessity of spatially distributed information and a data integrated modelling approach to predict inundation of wetlands and hydrologic function at the local landscape scale, where monitoring and conservation decision making take place.

  20. Heat pump evaluation for Space Station ATCS evolution

    NASA Technical Reports Server (NTRS)

    Ames, Brian E.; Petete, Patricia A.

    1991-01-01

    A preliminary feasibility assessment of the application of a vapor compression heat pump to the Active Thermal Control System (ATCS) of SSF is presented. This paper focuses on the methodology of raising the surface temperature of the radiators for improved heat rejection. Some of the effects of the vapor compression cycle on SSF examined include heat pump integration into ATCS, constraints on the heat pump operating parameters, and heat pump performance enhancements.

  1. Theoretical Study of the Statistical Properties of Single- and Double-Pass M-Mode Er3+-Ti:LiNbO3 Straight Waveguide Amplifiers

    NASA Astrophysics Data System (ADS)

    Puscas, Liliana A.; Galatus, Ramona V.; Puscas, Niculae N.

    In this article, we report a theoretical study concerning some statistical parameters which characterize the single- and double-pass Er3+-doped Ti:LiNbO3 M-mode straight waveguides. For the derivation and the evaluation of the Fano factor, the statistical fluctuation and the spontaneous emission factor we used a quasi two-level model in the small gain approximation and the unsaturated regime. The simulation results show the evolution of these parameters under various pump regimes and waveguide lengths. The obtained results can be used for the design of complex rare earth-doped integrated circuits.

  2. Application of a central composite design to evaluate the influence of colouring agents in lipstick formulation.

    PubMed

    Zibetti, F M; Cardoso, A C A; Desmarais, G C; de Almeida, K B; do Nascimento, L M; Rolim, L F; Rocha, M S; Duarte, N G D; Azevedo, P H R A; Araújo, J L; Mourão, S C; Falcão, D Q

    2016-10-01

    The aim of this study was to evaluate by central composite design the influence of colouring agents in lipstick colour, expressed by L*, a*, b* parameters (CIELab system) where L* indicates lightness, and a* and b* are the chromaticity coordinates. The a* indicates colour direction from red to green and b* from yellow to blue. Lipsticks were formulated as described by (Recent Adv. Prosp. Potent Med. Plants, 2009 and 39). The combined effect of three variables (dye, pigment and opacifier) was evaluated by different formulations in a central composite design. Colour parameters (L*, a*, b*) were analysed by reflectance spectrophotometry. Lipsticks were characterized by visual analyses and melting point. All formulations were integrate and homogeneous. The pigments and dye do not influence in colour transfer neither in melting point of lipsticks. On the other hand, results indicated that variables studied show influence only in parameter b*, whereas for L* and a* values there was no significant difference (P < 0.05). It was possible to verify that only the colour parameter b* was influenced by the variation in colouring agent's concentrations in lipstick formulation, leading to the production of the colour ranging between violet and light red. Such results are useful for developing new lipstick formulations to obtain the desired colour in the final product. © 2016 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  3. Expected value based fuzzy programming approach to solve integrated supplier selection and inventory control problem with fuzzy demand

    NASA Astrophysics Data System (ADS)

    Sutrisno; Widowati; Sunarsih; Kartono

    2018-01-01

    In this paper, a mathematical model in quadratic programming with fuzzy parameter is proposed to determine the optimal strategy for integrated inventory control and supplier selection problem with fuzzy demand. To solve the corresponding optimization problem, we use the expected value based fuzzy programming. Numerical examples are performed to evaluate the model. From the results, the optimal amount of each product that have to be purchased from each supplier for each time period and the optimal amount of each product that have to be stored in the inventory for each time period were determined with minimum total cost and the inventory level was sufficiently closed to the reference level.

  4. FracFit: A Robust Parameter Estimation Tool for Anomalous Transport Problems

    NASA Astrophysics Data System (ADS)

    Kelly, J. F.; Bolster, D.; Meerschaert, M. M.; Drummond, J. D.; Packman, A. I.

    2016-12-01

    Anomalous transport cannot be adequately described with classical Fickian advection-dispersion equations (ADE). Rather, fractional calculus models may be used, which capture non-Fickian behavior (e.g. skewness and power-law tails). FracFit is a robust parameter estimation tool based on space- and time-fractional models used to model anomalous transport. Currently, four fractional models are supported: 1) space fractional advection-dispersion equation (sFADE), 2) time-fractional dispersion equation with drift (TFDE), 3) fractional mobile-immobile equation (FMIE), and 4) tempered fractional mobile-immobile equation (TFMIE); additional models may be added in the future. Model solutions using pulse initial conditions and continuous injections are evaluated using stable distribution PDFs and CDFs or subordination integrals. Parameter estimates are extracted from measured breakthrough curves (BTCs) using a weighted nonlinear least squares (WNLS) algorithm. Optimal weights for BTCs for pulse initial conditions and continuous injections are presented, facilitating the estimation of power-law tails. Two sample applications are analyzed: 1) continuous injection laboratory experiments using natural organic matter and 2) pulse injection BTCs in the Selke river. Model parameters are compared across models and goodness-of-fit metrics are presented, assisting model evaluation. The sFADE and time-fractional models are compared using space-time duality (Baeumer et. al., 2009), which links the two paradigms.

  5. Reliability of a new biokinetic model of zirconium in internal dosimetry: part II, parameter sensitivity analysis.

    PubMed

    Li, Wei Bo; Greiter, Matthias; Oeh, Uwe; Hoeschen, Christoph

    2011-12-01

    The reliability of biokinetic models is essential for the assessment of internal doses and a radiation risk analysis for the public and occupational workers exposed to radionuclides. In the present study, a method for assessing the reliability of biokinetic models by means of uncertainty and sensitivity analysis was developed. In the first part of the paper, the parameter uncertainty was analyzed for two biokinetic models of zirconium (Zr); one was reported by the International Commission on Radiological Protection (ICRP), and one was developed at the Helmholtz Zentrum München-German Research Center for Environmental Health (HMGU). In the second part of the paper, the parameter uncertainties and distributions of the Zr biokinetic models evaluated in Part I are used as the model inputs for identifying the most influential parameters in the models. Furthermore, the most influential model parameter on the integral of the radioactivity of Zr over 50 y in source organs after ingestion was identified. The results of the systemic HMGU Zr model showed that over the first 10 d, the parameters of transfer rates between blood and other soft tissues have the largest influence on the content of Zr in the blood and the daily urinary excretion; however, after day 1,000, the transfer rate from bone to blood becomes dominant. For the retention in bone, the transfer rate from blood to bone surfaces has the most influence out to the endpoint of the simulation; the transfer rate from blood to the upper larger intestine contributes a lot in the later days; i.e., after day 300. The alimentary tract absorption factor (fA) influences mostly the integral of radioactivity of Zr in most source organs after ingestion.

  6. Non-electrical-power temperature-time integrating sensor for RFID based on microfluidics

    NASA Astrophysics Data System (ADS)

    Schneider, Mike; Hoffmann, Martin

    2011-06-01

    The integration of RFID tags into packages offers the opportunity to combine logistic advantages of the technology with monitoring different parameters from inside the package at the same time. An essential demand for enhanced product safety especially in pharmacy or food industry is the monitoring of the time-temperature-integral. Thus, completely passive time-temperature-integrators (TTI) requiring no battery, microprocessor nor data logging devices are developed. TTI representing the sterilization process inside an autoclave system is a demanding challenge: a temperature of at least 120 °C have to be maintained over 45 minutes to assure that no unwanted organism remains. Due to increased temperature, the viscosity of a fluid changes and thus the speed of the fluid inside the channel increases. The filled length of the channel represents the time temperature integral affecting the system. Measurements as well as simulations allow drawing conclusions about the influence of the geometrical parameters of the system and provide the possibility of adaptation. Thus a completely passive sensor element for monitoring an integral parameter with waiving of external electrical power supply and data processing technology is demonstrated. Furthermore, it is shown how to adjust the specific TTI parameters of the sensor to different applications and needs by modifying the geometrical parameters of the system.

  7. Analysis of surface integrity of grinded gears using Barkhausen noise analysis and x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Vrkoslavová, Lucie; Louda, Petr; Malec, Jiři

    2014-02-01

    The contribution is focused to present results of study grinded gears made of 18CrNiMo7-6 steel used in the wind power plant for support (service) purposes. These gears were case-hardened due to standard hard case and soft core formation. This heat treatment increases wear resistance and fatigue strength of machine parts. During serial production some troubles with surface integrity have occurred. When solving complex problems lots of samples were prepared. For grinding of gears were used different parameters of cutting speed, number of material removal and lots from different subsuppliers. Material characterization was carried out using Barkhausen noise analysis (BNA) device; X-ray diffraction (XRD) measurement of surface residual stresses was done as well. Depth profile of measured characteristics, e.g. magnetoelastic parameter and residual stress was obtained by step by step layers' removing using electrolytic etching. BNA software Viewscan was used to measure magnetizing frequency sweep (MFS) and magnetizing voltage sweep (MVS). Scanning of Magnetoelastic parameter (MP) endwise individual teeth were also carried out with Viewscan. These measurements were done to find problematic surface areas after grinding such as thermal damaged locations. Plots of the hardness and thickness of case-hardened layer on cross sections were measurered as well. Evaluation of structure of subsurface case-hardened layer and core was made on etched metallographic patterns. The aim of performed measurements was to find correlation between conditions of grinding, residual stresses and structural and magnetoelastic parameters. Based on correlation of measured values and technological parameters optimizing the production of gears will be done.

  8. Integrating satellite actual evapotranspiration patterns into distributed model parametrization and evaluation for a mesoscale catchment

    NASA Astrophysics Data System (ADS)

    Demirel, M. C.; Mai, J.; Stisen, S.; Mendiguren González, G.; Koch, J.; Samaniego, L. E.

    2016-12-01

    Distributed hydrologic models are traditionally calibrated and evaluated against observations of streamflow. Spatially distributed remote sensing observations offer a great opportunity to enhance spatial model calibration schemes. For that it is important to identify the model parameters that can change spatial patterns before the satellite based hydrologic model calibration. Our study is based on two main pillars: first we use spatial sensitivity analysis to identify the key parameters controlling the spatial distribution of actual evapotranspiration (AET). Second, we investigate the potential benefits of incorporating spatial patterns from MODIS data to calibrate the mesoscale Hydrologic Model (mHM). This distributed model is selected as it allows for a change in the spatial distribution of key soil parameters through the calibration of pedo-transfer function parameters and includes options for using fully distributed daily Leaf Area Index (LAI) directly as input. In addition the simulated AET can be estimated at the spatial resolution suitable for comparison to the spatial patterns observed using MODIS data. We introduce a new dynamic scaling function employing remotely sensed vegetation to downscale coarse reference evapotranspiration. In total, 17 parameters of 47 mHM parameters are identified using both sequential screening and Latin hypercube one-at-a-time sampling methods. The spatial patterns are found to be sensitive to the vegetation parameters whereas streamflow dynamics are sensitive to the PTF parameters. The results of multi-objective model calibration show that calibration of mHM against observed streamflow does not reduce the spatial errors in AET while they improve only the streamflow simulations. We will further examine the results of model calibration using only multi spatial objective functions measuring the association between observed AET and simulated AET maps and another case including spatial and streamflow metrics together.

  9. Simultaneous state-parameter estimation supports the evaluation of data assimilation performance and measurement design for soil-water-atmosphere-plant system

    NASA Astrophysics Data System (ADS)

    Hu, Shun; Shi, Liangsheng; Zha, Yuanyuan; Williams, Mathew; Lin, Lin

    2017-12-01

    Improvements to agricultural water and crop managements require detailed information on crop and soil states, and their evolution. Data assimilation provides an attractive way of obtaining these information by integrating measurements with model in a sequential manner. However, data assimilation for soil-water-atmosphere-plant (SWAP) system is still lack of comprehensive exploration due to a large number of variables and parameters in the system. In this study, simultaneous state-parameter estimation using ensemble Kalman filter (EnKF) was employed to evaluate the data assimilation performance and provide advice on measurement design for SWAP system. The results demonstrated that a proper selection of state vector is critical to effective data assimilation. Especially, updating the development stage was able to avoid the negative effect of ;phenological shift;, which was caused by the contrasted phenological stage in different ensemble members. Simultaneous state-parameter estimation (SSPE) assimilation strategy outperformed updating-state-only (USO) assimilation strategy because of its ability to alleviate the inconsistency between model variables and parameters. However, the performance of SSPE assimilation strategy could deteriorate with an increasing number of uncertain parameters as a result of soil stratification and limited knowledge on crop parameters. In addition to the most easily available surface soil moisture (SSM) and leaf area index (LAI) measurements, deep soil moisture, grain yield or other auxiliary data were required to provide sufficient constraints on parameter estimation and to assure the data assimilation performance. This study provides an insight into the response of soil moisture and grain yield to data assimilation in SWAP system and is helpful for soil moisture movement and crop growth modeling and measurement design in practice.

  10. The use of complimentary assays to evaluate the enrichment of human sperm quality in asthenoteratozoospermic and teratozoospermic samples processed with Annexin-V magnetic activated cell sorting.

    PubMed

    Delbes, G; Herrero, M B; Troeung, E-T; Chan, P T K

    2013-09-01

    Sperm chromatin integrity may affect the outcomes of assisted reproductive technology (ART). Developing a clinically reliable strategy to enrich sperm samples with high chromatin quality spermatozoa prior to sperm banking or use in ART would thus be advantageous. The objectives of this study were to: (i) assess the sperm chromatin quality in men with different categories of semen parameters; and (ii) evaluate the extents of Annexin-V magnetic-activated cell sorting (MACS) technology coupled with differential density gradient centrifugation (DGC) in improving sperm chromatin quality. Three categories of men from couples attending a university-based fertility clinic were recruited based on their semen parameters: normozoospermic (n = 13), asthenoteratozoospermic (n = 17) and teratozoospermic (n = 12). For each patient, spermatozoa in semen samples were processed first by DGC to enrich the motility and further by MACS to remove spermatozoa showing apoptotic features. The yield and enrichment of sperm quality was evaluated at each step with conventional semen parameters in conjunction with a combination of five complementary assays, to assess sperm maturity, chromatin structure, compaction and DNA integrity (Hyaluronic Binding Assay, SCSA, chromomycine A3 staining and TUNEL and COMET assays). Our results demonstrated that, compared with normozoospermic samples, raw asthenoteratozoospermic and teratozoospermic samples had a higher proportion of spermatozoa containing DNA breaks, but only asthenoteratozoospermic exhibited altered chromatin structure and decreased binding to hyaluronic acid. Interestingly, the DGC appeared to select for more mature spermatozoa with high DNA compaction. More importantly, in all categories of semen samples, Annexin-V MACS allows enrichment of spermatozoa with good chromatin quality as measured by the TUNEL and SCSA. Because effective treatment modalities to improve sperm DNA damage are limited, our results suggest a potential clinical value of MACS as a mean to enhance sperm quality that may improve assisted reproductive outcomes. © 2013 American Society of Andrology and European Academy of Andrology.

  11. Optimization of Recycled Glass Fibre-Reinforced Plastics Gear via Integration of the Taguchi Method and Grey Relational Analysis

    NASA Astrophysics Data System (ADS)

    Mizamzul Mehat, Nik; Syuhada Zakarria, Noor; Kamaruddin, Shahrul

    2018-03-01

    The increase in demand for industrial gears has resulted in the increase in usage of plastic-matrix composites particularly glass fibre-reinforced plastics as the gear materials. The usage of these synthetic fibers is to enhance the mechanical strength and the thermal resistance of the plastic gears. Nevertheless, the production of large quantities of these synthetic fibre-reinforced composites poses a serious threat to the ecosystem. Comprehending to this fact, the present work aimed at investigating the effects of incorporating recycled glass fibre-reinforced plastics in various compositions particularly on dimensional stability and mechanical properties of gear produced with diverse injection moulding processing parameters setting. The integration of Grey relational analysis (GRA) and Taguchi method was adopted to evaluate the influence of recycled glass fibre-reinforced plastics and variation in processing parameters on gear quality. From the experimental results, the blending ratio was found as the most influential parameter of 56.0% contribution in both improving tensile properties as well as in minimizing shrinkage, followed by mould temperature of 24.1% contribution and cooling time of 10.6% contribution. The results obtained from the aforementioned work are expected to contribute to accessing the feasibility of using recycled glass fibre-reinforced plastics especially for gear application.

  12. Advanced Ceramic Technology for Space Applications at NASA MSFC

    NASA Technical Reports Server (NTRS)

    Alim, Mohammad A.

    2003-01-01

    The ceramic processing technology using conventional methods is applied to the making of the state-of-the-art ceramics known as smart ceramics or intelligent ceramics or electroceramics. The sol-gel and wet chemical processing routes are excluded in this investigation considering economic aspect and proportionate benefit of the resulting product. The use of ceramic ingredients in making coatings or devices employing vacuum coating unit is also excluded in this investigation. Based on the present information it is anticipated that the conventional processing methods provide identical performing ceramics when compared to that processed by the chemical routes. This is possible when sintering temperature, heating and cooling ramps, peak temperature (sintering temperature), soak-time (hold-time), etc. are considered as variable parameters. In addition, optional calcination step prior to the sintering operation remains as a vital variable parameter. These variable parameters constitute a sintering profile to obtain a sintered product. Also it is possible to obtain identical products for more than one sintering profile attributing to the calcination step in conjunction with the variables of the sintering profile. Overall, the state-of-the-art ceramic technology is evaluated for potential thermal and electrical insulation coatings, microelectronics and integrated circuits, discrete and integrated devices, etc. applications in the space program.

  13. Real-time Retrieving Atmospheric Parameters from Multi-GNSS Constellations

    NASA Astrophysics Data System (ADS)

    Li, X.; Zus, F.; Lu, C.; Dick, G.; Ge, M.; Wickert, J.; Schuh, H.

    2016-12-01

    The multi-constellation GNSS (e.g. GPS, GLONASS, Galileo, and BeiDou) bring great opportunities and challenges for real-time retrieval of atmospheric parameters for supporting numerical weather prediction (NWP) nowcasting or severe weather event monitoring. In this study, the observations from different GNSS are combined together for atmospheric parameter retrieving based on the real-time precise point positioning technique. The atmospheric parameters retrieved from multi-GNSS observations, including zenith total delay (ZTD), integrated water vapor (IWV), horizontal gradient (especially high-resolution gradient estimates) and slant total delay (STD), are carefully analyzed and evaluated by using the VLBI, radiosonde, water vapor radiometer and numerical weather model to independently validate the performance of individual GNSS and also demonstrate the benefits of multi-constellation GNSS for real-time atmospheric monitoring. Numerous results show that the multi-GNSS processing can provide real-time atmospheric products with higher accuracy, stronger reliability and better distribution, which would be beneficial for atmospheric sounding systems, especially for nowcasting of extreme weather.

  14. Method calibration of the model 13145 infrared target projectors

    NASA Astrophysics Data System (ADS)

    Huang, Jianxia; Gao, Yuan; Han, Ying

    2014-11-01

    The SBIR Model 13145 Infrared Target Projectors ( The following abbreviation Evaluation Unit ) used for characterizing the performances of infrared imaging system. Test items: SiTF, MTF, NETD, MRTD, MDTD, NPS. Infrared target projectors includes two area blackbodies, a 12 position target wheel, all reflective collimator. It provide high spatial frequency differential targets, Precision differential targets imaged by infrared imaging system. And by photoelectricity convert on simulate signal or digital signal. Applications software (IR Windows TM 2001) evaluate characterizing the performances of infrared imaging system. With regards to as a whole calibration, first differently calibration for distributed component , According to calibration specification for area blackbody to calibration area blackbody, by means of to amend error factor to calibration of all reflective collimator, radiance calibration of an infrared target projectors using the SR5000 spectral radiometer, and to analyze systematic error. With regards to as parameter of infrared imaging system, need to integrate evaluation method. According to regulation with -GJB2340-1995 General specification for military thermal imaging sets -testing parameters of infrared imaging system, the results compare with results from Optical Calibration Testing Laboratory . As a goal to real calibration performances of the Evaluation Unit.

  15. Proposal of a framework for evaluating military surveillance systems for early detection of outbreaks on duty areas

    PubMed Central

    Meynard, Jean-Baptiste; Chaudet, Herve; Green, Andrew D; Jefferson, Henry L; Texier, Gaetan; Webber, Daniel; Dupuy, Bruce; Boutin, Jean-Paul

    2008-01-01

    Background In recent years a wide variety of epidemiological surveillance systems have been developed to provide early identification of outbreaks of infectious disease. Each system has had its own strengths and weaknesses. In 2002 a Working Group of the Centers for Disease Control and Prevention (CDC) produced a framework for evaluation, which proved suitable for many public health surveillance systems. However this did not easily adapt to the military setting, where by necessity a variety of different parameters are assessed, different constraints placed on the systems, and different objectives required. This paper describes a proposed framework for evaluation of military syndromic surveillance systems designed to detect outbreaks of disease on operational deployments. Methods The new framework described in this paper was developed from the cumulative experience of British and French military syndromic surveillance systems. The methods included a general assessment framework (CDC), followed by more specific methods of conducting evaluation. These included Knowledge/Attitude/Practice surveys (KAP surveys), technical audits, ergonomic studies, simulations and multi-national exercises. A variety of military constraints required integration into the evaluation. Examples of these include the variability of geographical conditions in the field, deployment to areas without prior knowledge of naturally-occurring disease patterns, the differences in field sanitation between locations and over the length of deployment, the mobility of military forces, turnover of personnel, continuity of surveillance across different locations, integration with surveillance systems from other nations working alongside each other, compatibility with non-medical information systems, and security. Results A framework for evaluation has been developed that can be used for military surveillance systems in a staged manner consisting of initial, intermediate and final evaluations. For each stage of the process parameters for assessment have been defined and methods identified. Conclusion The combined experiences of French and British syndromic surveillance systems developed for use in deployed military forces has allowed the development of a specific evaluation framework. The tool is suitable for use by all nations who wish to evaluate syndromic surveillance in their own military forces. It could also be useful for civilian mobile systems or for national security surveillance systems. PMID:18447944

  16. Integrated modelling of crop production and nitrate leaching with the Daisy model.

    PubMed

    Manevski, Kiril; Børgesen, Christen D; Li, Xiaoxin; Andersen, Mathias N; Abrahamsen, Per; Hu, Chunsheng; Hansen, Søren

    2016-01-01

    An integrated modelling strategy was designed and applied to the Soil-Vegetation-Atmosphere Transfer model Daisy for simulation of crop production and nitrate leaching under pedo-climatic and agronomic environment different than that of model original parameterisation. The points of significance and caution in the strategy are: •Model preparation should include field data in detail due to the high complexity of the soil and the crop processes simulated with process-based model, and should reflect the study objectives. Inclusion of interactions between parameters in a sensitivity analysis results in better account for impacts on outputs of measured variables.•Model evaluation on several independent data sets increases robustness, at least on coarser time scales such as month or year. It produces a valuable platform for adaptation of the model to new crops or for the improvement of the existing parameters set. On daily time scale, validation for highly dynamic variables such as soil water transport remains challenging. •Model application is demonstrated with relevance for scientists and regional managers. The integrated modelling strategy is applicable for other process-based models similar to Daisy. It is envisaged that the strategy establishes model capability as a useful research/decision-making, and it increases knowledge transferability, reproducibility and traceability.

  17. Mechanical integrity of a carbon nanotube/copper-based through-silicon via for 3D integrated circuits: a multi-scale modeling approach.

    PubMed

    Awad, Ibrahim; Ladani, Leila

    2015-12-04

    Carbon nanotube (CNT)/copper (Cu) composite material is proposed to replace Cu-based through-silicon vias (TSVs) in micro-electronic packages. The proposed material is believed to offer extraordinary mechanical and electrical properties and the presence of CNTs in Cu is believed to overcome issues associated with miniaturization of Cu interconnects, such as electromigration. This study introduces a multi-scale modeling of the proposed TSV in order to evaluate its mechanical integrity under mechanical and thermo-mechanical loading conditions. Molecular dynamics (MD) simulation was used to determine CNT/Cu interface adhesion properties. A cohesive zone model (CZM) was found to be most appropriate to model the interface adhesion, and CZM parameters at the nanoscale were determined using MD simulation. CZM parameters were then used in the finite element analysis in order to understand the mechanical and thermo-mechanical behavior of composite TSV at micro-scale. From the results, CNT/Cu separation does not take place prior to plastic deformation of Cu in bending, and separation does not take place when standard thermal cycling is applied. Further investigation is recommended in order to alleviate the increased plastic deformation in Cu at the CNT/Cu interface in both loading conditions.

  18. Computational Algorithms or Identification of Distributed Parameter Systems

    DTIC Science & Technology

    1993-04-24

    delay-differential equations, Volterra integral equations, and partial differential equations with memory terms . In particular we investigated a...tested for estimating parameters in a Volterra integral equation arising from a viscoelastic model of a flexible structure with Boltzmann damping. In...particular, one of the parameters identified was the order of the derivative in Volterra integro-differential equations containing fractional

  19. Extensions of different type parameterized inequalities for generalized [Formula: see text]-preinvex mappings via k-fractional integrals.

    PubMed

    Zhang, Yao; Du, Ting-Song; Wang, Hao; Shen, Yan-Jun; Kashuri, Artion

    2018-01-01

    The authors discover a general k -fractional integral identity with multi-parameters for twice differentiable functions. By using this integral equation, the authors derive some new bounds on Hermite-Hadamard's and Simpson's inequalities for generalized [Formula: see text]-preinvex functions through k -fractional integrals. By taking the special parameter values for various suitable choices of function h , some interesting results are also obtained.

  20. Radioisotope penile plethysmography: A technique for evaluating corpora cavernosal blood flow during early tumescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwartz, A.N.; Graham, M.M.; Ferency, G.F.

    1989-04-01

    Radioisotope penile plethysmography is a nuclear medicine technique which assists in the evaluation of patients with erectile dysfunction. This technique attempts to noninvasively quantitate penile corpora cavernosal blood flow during early penile tumescence using technetium-99m-labeled red blood cells. Penile images and counts were acquired in a steady-state blood-pool phase prior to and after the administration of intracorporal papaverine. Penile counts, images, and time-activity curves were computer analyzed in order to determine peak corporal flow and volume changes. Peak corporal flow rates were compared to arterial integrity (determined by angiography) and venosinusoidal corporal leak (determined by cavernosometry). Peak corporal flow correlatedmore » well with arterial integrity (r = 0.91) but did not correlate with venosinusoidal leak parameters (r = 0.01). This report focuses on the methodology and the assumptions which form the foundation of this technique. The strong correlation of peak corporal flow and angiography suggests that radioisotope penile plethysmography could prove useful in the evaluation of arterial inflow disorders in patients with erectile dysfunction.« less

  1. An Acute Retinal Model for Evaluating Blood Retinal Barrier Breach and Potential Drugs for Treatment.

    PubMed

    Wu, Hao; Rodriguez, Ana R; Spur, Bernd W; Venkataraman, Venkat

    2016-09-13

    A low-cost, easy-to-use and powerful model system is established to evaluate potential treatments that could ameliorate blood retinal barrier breach. An inflammatory factor, histamine, is demonstrated to compromise vessel integrity in the cultured retina through positive staining of IgG outside of the blood vessels. The effects of histamine itself and those of candidate drugs for potential treatments, such as lipoxin A4, are assessed using three parameters: blood vessel leakage via IgG immunostaining, activation of Müller cells via GFAP staining and change in neuronal dendrites through staining for MAP2. Furthermore, the layered organization of the retina allows a detailed analysis of the processes of Müller and ganglion cells, such as changes in width and continuity. While the data presented is with swine retinal culture, the system is applicable to multiple species. Thus, the model provides a reliable tool to investigate the early effects of compromised retinal vessel integrity on different cell types and also to evaluate potential drug candidates for treatment.

  2. Engine monitoring display study

    NASA Technical Reports Server (NTRS)

    Hornsby, Mary E.

    1992-01-01

    The current study is part of a larger NASA effort to develop displays for an engine-monitoring system to enable the crew to monitor engine parameter trends more effectively. The objective was to evaluate the operational utility of adding three types of information to the basic Boeing Engine Indicating and Crew Alerting System (EICAS) display formats: alphanumeric alerting messages for engine parameters whose values exceed caution or warning limits; alphanumeric messages to monitor engine parameters that deviate from expected values; and a graphic depiction of the range of expected values for current conditions. Ten training and line pilots each flew 15 simulated flight scenarios with five variants of the basic EICAS format; these variants included different combinations of the added information. The pilots detected engine problems more quickly when engine alerting messages were included in the display; adding a graphic depiction of the range of expected values did not affect detection speed. The pilots rated both types of alphanumeric messages (alert and monitor parameter) as more useful and easier to interpret than the graphic depiction. Integrating engine parameter messages into the EICAS alerting system appears to be both useful and preferred.

  3. Advanced integrated life support system update

    NASA Technical Reports Server (NTRS)

    Whitley, Phillip E.

    1994-01-01

    The Advanced Integrated Life Support System Program (AILSS) is an advanced development effort to integrate the life support and protection requirements using the U.S. Navy's fighter/attack mission as a starting point. The goal of AILSS is to optimally mate protection from altitude, acceleration, chemical/biological agent, thermal environment (hot, cold, and cold water immersion) stress as well as mission enhancement through improved restraint, night vision, and head-mounted reticules and displays to ensure mission capability. The primary emphasis to date has been to establish garment design requirements and tradeoffs for protection. Here the garment and the human interface are treated as a system. Twelve state-off-the-art concepts from government and industry were evaluated for design versus performance. On the basis of a combination of centrifuge, thermal manikin data, thermal modeling, and mobility studies, some key design parameters have been determined. Future efforts will concentrate on the integration of protection through garment design and the use of a single layer, multiple function concept to streamline the garment system.

  4. "Usability of data integration and visualization software for multidisciplinary pediatric intensive care: a human factors approach to assessing technology".

    PubMed

    Lin, Ying Ling; Guerguerian, Anne-Marie; Tomasi, Jessica; Laussen, Peter; Trbovich, Patricia

    2017-08-14

    Intensive care clinicians use several sources of data in order to inform decision-making. We set out to evaluate a new interactive data integration platform called T3™ made available for pediatric intensive care. Three primary functions are supported: tracking of physiologic signals, displaying trajectory, and triggering decisions, by highlighting data or estimating risk of patient instability. We designed a human factors study to identify interface usability issues, to measure ease of use, and to describe interface features that may enable or hinder clinical tasks. Twenty-two participants, consisting of bedside intensive care physicians, nurses, and respiratory therapists, tested the T3™ interface in a simulation laboratory setting. Twenty tasks were performed with a true-to-setting, fully functional, prototype, populated with physiological and therapeutic intervention patient data. Primary data visualization was time series and secondary visualizations were: 1) shading out-of-target values, 2) mini-trends with exaggerated maxima and minima (sparklines), and 3) bar graph of a 16-parameter indicator. Task completion was video recorded and assessed using a use error rating scale. Usability issues were classified in the context of task and type of clinician. A severity rating scale was used to rate potential clinical impact of usability issues. Time series supported tracking a single parameter but partially supported determining patient trajectory using multiple parameters. Visual pattern overload was observed with multiple parameter data streams. Automated data processing using shading and sparklines was often ignored but the 16-parameter data reduction algorithm, displayed as a persistent bar graph, was visually intuitive. However, by selecting or automatically processing data, triggering aids distorted the raw data that clinicians use regularly. Consequently, clinicians could not rely on new data representations because they did not know how they were established or derived. Usability issues, observed through contextual use, provided directions for tangible design improvements of data integration software that may lessen use errors and promote safe use. Data-driven decision making can benefit from iterative interface redesign involving clinician-users in simulated environments. This study is a first step in understanding how software can support clinicians' decision making with integrated continuous monitoring data. Importantly, testing of similar platforms by all the different disciplines who may become clinician users is a fundamental step necessary to understand the impact on clinical outcomes of decision aids.

  5. Study to investigate and evaluate means of optimizing the radar function. [systems engineering of pulse radar for the space shuttle

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The investigations for a rendezvous radar system design and an integrated radar/communication system design are presented. Based on these investigations, system block diagrams are given and system parameters are optimized for the noncoherent pulse and coherent pulse Doppler radar modulation types. Both cooperative (transponder) and passive radar operation are examined including the optimization of the corresponding transponder design for the cooperative mode of operation.

  6. Fabrication, test and demonstration of critical environment monitoring system

    NASA Technical Reports Server (NTRS)

    Heimendinger, K. W.

    1972-01-01

    Design and performance of an analytical system for the evaluation of certain environmental constituents in critical environmental areas of the Quality Reliability and Assurance Laboratory are reported. Developed was a self-contained, integrated, minimum sized unit that detects, interrogates, and records those parameters of the environment dictated for control in large storage facilities, clean rooms, temporarily curtained enclosures, and special working benches. The system analyzes humidity, temperature, hydrocarbons particle size, and particle count within prescribed clean areas.

  7. Force Management Methods Task II. Volume III. Attack/Fighter/Trainer Aircraft Evaluation of Potential Improved Methods

    DTIC Science & Technology

    1980-11-01

    structural manager. The designation "ASIMISH is used in the subsequent discussions to avoid the impression that a new organization must be created to...mission changes on the structural integrity of the airframe. New maintenance action schedules are created to conform with the operational realities of... created to further divide this information. In fact, the ASIP maintenance action parameters and data for the A-7D ( and other airplanes) is being

  8. Interconnection network architectures based on integrated orbital angular momentum emitters

    NASA Astrophysics Data System (ADS)

    Scaffardi, Mirco; Zhang, Ning; Malik, Muhammad Nouman; Lazzeri, Emma; Klitis, Charalambos; Lavery, Martin; Sorel, Marc; Bogoni, Antonella

    2018-02-01

    Novel architectures for two-layer interconnection networks based on concentric OAM emitters are presented. A scalability analysis is done in terms of devices characteristics, power budget and optical signal to noise ratio by exploiting experimentally measured parameters. The analysis shows that by exploiting optical amplifications, the proposed interconnection networks can support a number of ports higher than 100. The OAM crosstalk induced-penalty, evaluated through an experimental characterization, do not significantly affect the interconnection network performance.

  9. Discovery of Dinaciclib (SCH 727965): A Potent and Selective Inhibitor of Cyclin-Dependent Kinases

    PubMed Central

    2010-01-01

    Inhibition of cyclin-dependent kinases (CDKs) has emerged as an attractive strategy for the development of novel oncology therapeutics. Herein is described the utilization of an in vivo screening approach with integrated efficacy and tolerability parameters to identify candidate CDK inhibitors with a suitable balance of activity and tolerability. This approach has resulted in the identification of SCH 727965, a potent and selective CDK inhibitor that is currently undergoing clinical evaluation. PMID:24900195

  10. Discovery of Dinaciclib (SCH 727965): A Potent and Selective Inhibitor of Cyclin-Dependent Kinases.

    PubMed

    Paruch, Kamil; Dwyer, Michael P; Alvarez, Carmen; Brown, Courtney; Chan, Tin-Yau; Doll, Ronald J; Keertikar, Kerry; Knutson, Chad; McKittrick, Brian; Rivera, Jocelyn; Rossman, Randall; Tucker, Greg; Fischmann, Thierry; Hruza, Alan; Madison, Vincent; Nomeir, Amin A; Wang, Yaolin; Kirschmeier, Paul; Lees, Emma; Parry, David; Sgambellone, Nicole; Seghezzi, Wolfgang; Schultz, Lesley; Shanahan, Frances; Wiswell, Derek; Xu, Xiaoying; Zhou, Quiao; James, Ray A; Paradkar, Vidyadhar M; Park, Haengsoon; Rokosz, Laura R; Stauffer, Tara M; Guzi, Timothy J

    2010-08-12

    Inhibition of cyclin-dependent kinases (CDKs) has emerged as an attractive strategy for the development of novel oncology therapeutics. Herein is described the utilization of an in vivo screening approach with integrated efficacy and tolerability parameters to identify candidate CDK inhibitors with a suitable balance of activity and tolerability. This approach has resulted in the identification of SCH 727965, a potent and selective CDK inhibitor that is currently undergoing clinical evaluation.

  11. Evaluation of TaqMan qPCR System Integrating Two Identically Labelled Hydrolysis Probes in Single Assay

    PubMed Central

    Nagy, Alexander; Vitásková, Eliška; Černíková, Lenka; Křivda, Vlastimil; Jiřincová, Helena; Sedlák, Kamil; Horníčková, Jitka; Havlíčková, Martina

    2017-01-01

    Ongoing evolution of viral pathogens is a significant issue in diagnostic virology employing TaqMan qPCR/RT-qPCR. Specific concerns are related to false negativity due to probe binding failure. One option for compensating for such deficiency is to integrate a second identically labelled probe in the assay. However, how this alteration influences the reaction parameters has not been comprehensively demonstrated. In the present study, we evaluate a TaqMan protocol using two identically labelled hydrolysis probes (simple, LNA (locked-nucleic-acid)) and MGB (minor-groove-binder) modified probes and combinations thereof in a single assay. Our results based on a synthetic amplicon suggest that the second probe does not compromise the TaqMan qPCR/RT-qPCR parameters, which repeatedly and reproducibly remained comparable to those of the corresponding single-probe assays, irrespective of the relative probe orientation, whether opposite or tandem, and probe modifications or combinations thereof. On the other hand, the second probe additively contributed to the overall fluorescence signal. The utility of the dual-probe approach was demonstrated on practical examples by using field specimens. We hope that the present study might serve as a theoretical basis for the development or improvement of TaqMan qPCR/RT-qPCR assays for the detection of highly variable nucleic acid templates. PMID:28120891

  12. Sperm quality and DNA damage in men from Jilin Province, China, who are occupationally exposed to ionizing radiation.

    PubMed

    Zhou, D D; Hao, J L; Guo, K M; Lu, C W; Liu, X D

    2016-03-22

    Long-term radiation exposure affects human health. Ionizing radiation has long been known to raise the risk of cancer. In addition to high doses of radiation, low-dose ionizing radiation might increase the risk of cardiovascular disease, lens opacity, and some other non-cancerous diseases. Low- and high-dose exposures to ionizing radiation elicit different signaling events at the molecular level, and may involve different response mechanisms. The health risks arising from exposure to low doses of ionizing radiation should be re-evaluated. Health workers exposed to ionizing radiation experience low-dose radiation and have an increased risk of hematological malignancies. Reproductive function is sensitive to changes in the physical environment, including ionizing radiation. However, data is scarce regarding the association between occupational radiation exposure and risk to human fertility. Sperm DNA integrity is a functional parameter of male fertility evaluation. Hence, we aimed to report sperm quality and DNA damage in men from Jilin Province, China, who were occupationally exposed to ionizing radiation. Sperm motility and normal morphology were significantly lower in the exposed compared with the non-exposed men. There was no statistically significant difference in sperm concentration between exposed and non-exposed men. The sperm DNA fragmentation index was significantly higher in the exposed than the non-exposed men. Chronic long-term exposure to low doses of ionizing radiation could affect sperm motility, normal morphology, and the sperm DNA fragmentation index in the Chinese population. Sperm quality and DNA integrity are functional parameters that could be used to evaluate occupational exposure to ionizing radiation.

  13. Integration of Mahalanobis-Taguchi system and traditional cost accounting for remanufacturing crankshaft

    NASA Astrophysics Data System (ADS)

    Abu, M. Y.; Norizan, N. S.; Rahman, M. S. Abd

    2018-04-01

    Remanufacturing is a sustainability strategic planning which transforming the end of life product to as new performance with their warranty is same or better than the original product. In order to quantify the advantages of this strategy, all the processes must implement the optimization to reach the ultimate goal and reduce the waste generated. The aim of this work is to evaluate the criticality of parameters on the end of life crankshaft based on Taguchi’s orthogonal array. Then, estimate the cost using traditional cost accounting by considering the critical parameters. By implementing the optimization, the remanufacturer obviously produced lower cost and waste during production with higher potential to gain the profit. Mahalanobis-Taguchi System was proven as a powerful method of optimization that revealed the criticality of parameters. When subjected the method to the MAN engine model, there was 5 out of 6 crankpins were critical which need for grinding process while no changes happened to the Caterpillar engine model. Meanwhile, the cost per unit for MAN engine model was changed from MYR1401.29 to RM1251.29 while for Caterpillar engine model have no changes due to the no changes on criticality of parameters consideration. Therefore, by integrating the optimization and costing through remanufacturing process, a better decision can be achieved after observing the potential profit will be gained. The significant of output demonstrated through promoting sustainability by reducing re-melting process of damaged parts to ensure consistent benefit of return cores.

  14. Diffusional interaction behavior of NSAIDs in lipid bilayer membrane using molecular dynamics (MD) simulation: Aspirin and Ibuprofen.

    PubMed

    Sodeifian, Gholamhossein; Razmimanesh, Fariba

    2018-05-10

    In this research, for the first time, molecular dynamics (MD) method was used to simulate aspirin and ibuprofen at various concentrations and in neutral and charged states. Effects of the concentration (dosage), charge state, and existence of an integral protein in the membrane on the diffusion rate of drug molecules into lipid bilayer membrane were investigated on 11 systems, for which the parameters indicating diffusion rate and those affecting the rate were evaluated. Considering the diffusion rate, a suitable score was assigned to each system, based on which, analysis of variance (ANOVA) was performed. By calculating the effect size of the indicative parameters and total scores, an optimum system with the highest diffusion rate was determined. Consequently, diffusion rate controlling parameters were obtained: the drug-water hydrogen bond in protein-free systems and protein-drug hydrogen bond in the systems containing protein.

  15. Remote measurement of surface roughness, surface reflectance, and body reflectance with LiDAR.

    PubMed

    Li, Xiaolu; Liang, Yu

    2015-10-20

    Light detection and ranging (LiDAR) intensity data are attracting increasing attention because of the great potential for use of such data in a variety of remote sensing applications. To fully investigate the data potential for target classification and identification, we carried out a series of experiments with typical urban building materials and employed our reconstructed built-in-lab LiDAR system. Received intensity data were analyzed on the basis of the derived bidirectional reflectance distribution function (BRDF) model and the established integration method. With an improved fitting algorithm, parameters involved in the BRDF model can be obtained to depict the surface characteristics. One of these parameters related to surface roughness was converted to a most used roughness parameter, the arithmetical mean deviation of the roughness profile (Ra), which can be used to validate the feasibility of the BRDF model in surface characterizations and performance evaluations.

  16. Quality Assurance with Plan Veto: reincarnation of a record and verify system and its potential value.

    PubMed

    Noel, Camille E; Gutti, Veerarajesh; Bosch, Walter; Mutic, Sasa; Ford, Eric; Terezakis, Stephanie; Santanam, Lakshmi

    2014-04-01

    To quantify the potential impact of the Integrating the Healthcare Enterprise-Radiation Oncology Quality Assurance with Plan Veto (QAPV) on patient safety of external beam radiation therapy (RT) operations. An institutional database of events (errors and near-misses) was used to evaluate the ability of QAPV to prevent clinically observed events. We analyzed reported events that were related to Digital Imaging and Communications in Medicine RT plan parameter inconsistencies between the intended treatment (on the treatment planning system) and the delivered treatment (on the treatment machine). Critical Digital Imaging and Communications in Medicine RT plan parameters were identified. Each event was scored for importance using the Failure Mode and Effects Analysis methodology. Potential error occurrence (frequency) was derived according to the collected event data, along with the potential event severity, and the probability of detection with and without the theoretical implementation of the QAPV plan comparison check. Failure Mode and Effects Analysis Risk Priority Numbers (RPNs) with and without QAPV were compared to quantify the potential benefit of clinical implementation of QAPV. The implementation of QAPV could reduce the RPN values for 15 of 22 (71%) of evaluated parameters, with an overall average reduction in RPN of 68 (range, 0-216). For the 6 high-risk parameters (>200), the average reduction in RPN value was 163 (range, 108-216). The RPN value reduction for the intermediate-risk (200 > RPN > 100) parameters was (0-140). With QAPV, the largest RPN value for "Beam Meterset" was reduced from 324 to 108. The maximum reduction in RPN value was for Beam Meterset (216, 66.7%), whereas the maximum percentage reduction was for Cumulative Meterset Weight (80, 88.9%). This analysis quantifies the value of the Integrating the Healthcare Enterprise-Radiation Oncology QAPV implementation in clinical workflow. We demonstrate that although QAPV does not provide a comprehensive solution for error prevention in RT, it can have a significant impact on a subset of the most severe clinically observed events. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. The Active Fault Parameters for Time-Dependent Earthquake Hazard Assessment in Taiwan

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Cheng, C.; Lin, P.; Shao, K.; Wu, Y.; Shih, C.

    2011-12-01

    Taiwan is located at the boundary between the Philippine Sea Plate and the Eurasian Plate, with a convergence rate of ~ 80 mm/yr in a ~N118E direction. The plate motion is so active that earthquake is very frequent. In the Taiwan area, disaster-inducing earthquakes often result from active faults. For this reason, it's an important subject to understand the activity and hazard of active faults. The active faults in Taiwan are mainly located in the Western Foothills and the Eastern longitudinal valley. Active fault distribution map published by the Central Geological Survey (CGS) in 2010 shows that there are 31 active faults in the island of Taiwan and some of which are related to earthquake. Many researchers have investigated these active faults and continuously update new data and results, but few people have integrated them for time-dependent earthquake hazard assessment. In this study, we want to gather previous researches and field work results and then integrate these data as an active fault parameters table for time-dependent earthquake hazard assessment. We are going to gather the seismic profiles or earthquake relocation of a fault and then combine the fault trace on land to establish the 3D fault geometry model in GIS system. We collect the researches of fault source scaling in Taiwan and estimate the maximum magnitude from fault length or fault area. We use the characteristic earthquake model to evaluate the active fault earthquake recurrence interval. In the other parameters, we will collect previous studies or historical references and complete our parameter table of active faults in Taiwan. The WG08 have done the time-dependent earthquake hazard assessment of active faults in California. They established the fault models, deformation models, earthquake rate models, and probability models and then compute the probability of faults in California. Following these steps, we have the preliminary evaluated probability of earthquake-related hazards in certain faults in Taiwan. By accomplishing active fault parameters table in Taiwan, we would apply it in time-dependent earthquake hazard assessment. The result can also give engineers a reference for design. Furthermore, it can be applied in the seismic hazard map to mitigate disasters.

  18. Clinical assessment and three-dimensional movement analysis: An integrated approach for upper limb evaluation in children with unilateral cerebral palsy

    PubMed Central

    Ortibus, Els; Simon-Martinez, Cristina; Desloovere, Kaat; Molenaers, Guy; Klingels, Katrijn; Feys, Hilde

    2017-01-01

    Introduction The clinical application of upper limb (UL) three-dimensional movement analysis (3DMA) in children with unilateral cerebral palsy (uCP) remains challenging, despite its benefits compared to conventional clinical scales. Moreover, knowledge on UL movement pathology and how this relates to clinical parameters remains scarce. Therefore, we investigated UL kinematics across different manual ability classification system (MACS) levels and explored the relation between clinical and kinematic parameters in children with uCP. Patients and methods Fifty children (MACS: I = 15, II = 26, III = 9) underwent an UL evaluation of sensorimotor impairments (grip force, muscle strength, muscle tone, two-point discrimination, stereognosis), bimanual performance (Assisting Hand Assessment, AHA), unimanual capacity (Melbourne Assessment 2, MA2) and UL-3DMA during hand-to-head, hand-to-mouth and reach-to-grasp tasks. Global parameters (Arm Profile Score (APS), duration, (timing of) maximum velocity, trajectory straightness) and joint specific parameters (angles at task endpoint, ROM and Arm Variable Scores (AVS)) were extracted. The APS and AVS refer respectively to the total amount of movement pathology and movement deviations of wrist, elbow, shoulder, scapula and trunk. Results Longer movement durations and increased APS were found with higher MACS-levels (p<0.001). Increased APS was also associated with more severe sensorimotor impairments (r = -0.30-(-0.73)) and with lower AHA and MA2-scores (r = -0.50-(-0.86)). For the joint specific parameters, stronger movement deviations distally were significantly associated with increased muscle weakness (r = -0.32-(-0.74)) and muscle tone (r = 0.33-(-0.61)); proximal movement deviations correlated only with muscle weakness (r = -0.35–0.59). Regression analysis exposed grip force as the most important predictor for the variability in APS (p<0.002). Conclusion We found increased movement pathology with increasing MACS-levels and demonstrated the adverse impact of especially muscle weakness. The lower correlations suggest that 3DMA provides additional information regarding UL motor function, particularly for the proximal joints. Integrating both methods seems clinically meaningful to obtain a comprehensive representation of all aspects of a child’s UL functioning. PMID:28671953

  19. Clinical assessment and three-dimensional movement analysis: An integrated approach for upper limb evaluation in children with unilateral cerebral palsy.

    PubMed

    Mailleux, Lisa; Jaspers, Ellen; Ortibus, Els; Simon-Martinez, Cristina; Desloovere, Kaat; Molenaers, Guy; Klingels, Katrijn; Feys, Hilde

    2017-01-01

    The clinical application of upper limb (UL) three-dimensional movement analysis (3DMA) in children with unilateral cerebral palsy (uCP) remains challenging, despite its benefits compared to conventional clinical scales. Moreover, knowledge on UL movement pathology and how this relates to clinical parameters remains scarce. Therefore, we investigated UL kinematics across different manual ability classification system (MACS) levels and explored the relation between clinical and kinematic parameters in children with uCP. Fifty children (MACS: I = 15, II = 26, III = 9) underwent an UL evaluation of sensorimotor impairments (grip force, muscle strength, muscle tone, two-point discrimination, stereognosis), bimanual performance (Assisting Hand Assessment, AHA), unimanual capacity (Melbourne Assessment 2, MA2) and UL-3DMA during hand-to-head, hand-to-mouth and reach-to-grasp tasks. Global parameters (Arm Profile Score (APS), duration, (timing of) maximum velocity, trajectory straightness) and joint specific parameters (angles at task endpoint, ROM and Arm Variable Scores (AVS)) were extracted. The APS and AVS refer respectively to the total amount of movement pathology and movement deviations of wrist, elbow, shoulder, scapula and trunk. Longer movement durations and increased APS were found with higher MACS-levels (p<0.001). Increased APS was also associated with more severe sensorimotor impairments (r = -0.30-(-0.73)) and with lower AHA and MA2-scores (r = -0.50-(-0.86)). For the joint specific parameters, stronger movement deviations distally were significantly associated with increased muscle weakness (r = -0.32-(-0.74)) and muscle tone (r = 0.33-(-0.61)); proximal movement deviations correlated only with muscle weakness (r = -0.35-0.59). Regression analysis exposed grip force as the most important predictor for the variability in APS (p<0.002). We found increased movement pathology with increasing MACS-levels and demonstrated the adverse impact of especially muscle weakness. The lower correlations suggest that 3DMA provides additional information regarding UL motor function, particularly for the proximal joints. Integrating both methods seems clinically meaningful to obtain a comprehensive representation of all aspects of a child's UL functioning.

  20. Preliminary simulation of an advanced, hingless rotor XV-15 tilt-rotor aircraft

    NASA Technical Reports Server (NTRS)

    Mcveigh, M. A.

    1976-01-01

    The feasibility of the tilt-rotor concept was verified through investigation of the performance, stability and handling qualities of the XV-15 tilt rotor. The rotors were replaced by advanced-technology fiberglass/composite hingless rotors of larger diameter, combined with an advanced integrated fly-by-wire control system. A parametric simulation model of the HRXV-15 was developed, model was used to define acceptable preliminary ranges of primary and secondary control schedules as functions of the flight parameters, to evaluate performance, flying qualities and structural loads, and to have a Boeing-Vertol pilot conduct a simulated flight test evaluation of the aircraft.

  1. Phase transition in conjugated oligomers suspended in chloroform

    NASA Astrophysics Data System (ADS)

    Dwivedi, Shikha; Kumar, Anupam; Yadav, S. N. S.; Mishra, Pankaj

    2015-08-01

    Density functional theory (DFT) has been used to investigate the isotropic-nematic (I-N) phase transition in a system of high aspect ratio conjugated oligomers suspended in chloroform. The interaction between the oligomers is modeled using Gay-Berne potential in which effect of solvent is implicit. Percus-Yevick integral equation theory has been used to evaluate the pair correlation functions of the fluid phase at several temperatures and densities. These pair correlation function has been used in the DFT to evaluate the I-N freezing parameters. Highly oriented nematic is found to stabilize at low density. The results obtained are in qualitative agreement with the simulation and are verifiable.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, D.L.; Simonen, F.A.; Strosnider, J. Jr.

    The VISA (Vessel Integrity Simulation Analysis) code was developed as part of the NRC staff evaluation of pressurized thermal shock. VISA uses Monte Carlo simulation to evaluate the failure probability of a pressurized water reactor (PWR) pressure vessel subjected to a pressure and thermal transient specified by the user. Linear elastic fracture mechanics are used to model crack initiation and propagation. parameters for initial crack size, copper content, initial RT/sub NDT/, fluence, crack-initiation fracture toughness, and arrest fracture toughness are treated as random variables. This report documents the version of VISA used in the NRC staff report (Policy Issue frommore » J.W. Dircks to NRC Commissioners, Enclosure A: NRC Staff Evaluation of Pressurized Thermal Shock, November 1982, SECY-82-465) and includes a user's guide for the code.« less

  3. Combined Use of Integral Experiments and Covariance Data

    NASA Astrophysics Data System (ADS)

    Palmiotti, G.; Salvatores, M.; Aliberti, G.; Herman, M.; Hoblit, S. D.; McKnight, R. D.; Obložinský, P.; Talou, P.; Hale, G. M.; Hiruta, H.; Kawano, T.; Mattoon, C. M.; Nobre, G. P. A.; Palumbo, A.; Pigni, M.; Rising, M. E.; Yang, W.-S.; Kahler, A. C.

    2014-04-01

    In the frame of a US-DOE sponsored project, ANL, BNL, INL and LANL have performed a joint multidisciplinary research activity in order to explore the combined use of integral experiments and covariance data with the objective to both give quantitative indications on possible improvements of the ENDF evaluated data files and to reduce at the same time crucial reactor design parameter uncertainties. Methods that have been developed in the last four decades for the purposes indicated above have been improved by some new developments that benefited also by continuous exchanges with international groups working in similar areas. The major new developments that allowed significant progress are to be found in several specific domains: a) new science-based covariance data; b) integral experiment covariance data assessment and improved experiment analysis, e.g., of sample irradiation experiments; c) sensitivity analysis, where several improvements were necessary despite the generally good understanding of these techniques, e.g., to account for fission spectrum sensitivity; d) a critical approach to the analysis of statistical adjustments performance, both a priori and a posteriori; e) generalization of the assimilation method, now applied for the first time not only to multigroup cross sections data but also to nuclear model parameters (the "consistent" method). This article describes the major results obtained in each of these areas; a large scale nuclear data adjustment, based on the use of approximately one hundred high-accuracy integral experiments, will be reported along with a significant example of the application of the new "consistent" method of data assimilation.

  4. The use of subjective rating of exertion in Ergonomics.

    PubMed

    Capodaglio, P

    2002-01-01

    In Ergonomics, the use of psychophysical methods for subjectively evaluating work tasks and determining acceptable loads has become more common. Daily activities at the work site are studied not only with physiological methods but also with perceptual estimation and production methods. The psychophysical methods are of special interest in field studies of short-term work tasks for which valid physiological measurements are difficult to obtain. The perceived exertion, difficulty and fatigue that a person experiences in a certain work situation is an important sign of a real or objective load. Measurement of the physical load with physiological parameters is not sufficient since it does not take into consideration the particular difficulty of the performance or the capacity of the individual. It is often difficult from technical and biomechanical analyses to understand the seriousness of a difficulty that a person experiences. Physiological determinations give important information, but they may be insufficient due to the technical problems in obtaining relevant but simple measurements for short-term activities or activities involving special movement patterns. Perceptual estimations using Borg's scales give important information because the severity of a task's difficulty depends on the individual doing the work. Observation is the most simple and used means to assess job demands. Other evaluations integrating observation are the followings: indirect estimation of energy expenditure based on prediction equations or direct measurement of oxygen consumption; measurements of forces, angles and biomechanical parameters; measurements of physiological and neurophysiological parameters during tasks. It is recommended that determinations of performances of occupational activities assess rating of perceived exertion and integrate these measurements of intensity levels with those of activity's type, duration and frequency. A better estimate of the degree of physical activity of individuals thus can be obtained.

  5. Evaluating Snow Data Assimilation Framework for Streamflow Forecasting Applications Using Hindcast Verification

    NASA Astrophysics Data System (ADS)

    Barik, M. G.; Hogue, T. S.; Franz, K. J.; He, M.

    2012-12-01

    Snow water equivalent (SWE) estimation is a key factor in producing reliable streamflow simulations and forecasts in snow dominated areas. However, measuring or predicting SWE has significant uncertainty. Sequential data assimilation, which updates states using both observed and modeled data based on error estimation, has been shown to reduce streamflow simulation errors but has had limited testing for forecasting applications. In the current study, a snow data assimilation framework integrated with the National Weather System River Forecasting System (NWSRFS) is evaluated for use in ensemble streamflow prediction (ESP). Seasonal water supply ESP hindcasts are generated for the North Fork of the American River Basin (NFARB) in northern California. Parameter sets from the California Nevada River Forecast Center (CNRFC), the Differential Evolution Adaptive Metropolis (DREAM) algorithm and the Multistep Automated Calibration Scheme (MACS) are tested both with and without sequential data assimilation. The traditional ESP method considers uncertainty in future climate conditions using historical temperature and precipitation time series to generate future streamflow scenarios conditioned on the current basin state. We include data uncertainty analysis in the forecasting framework through the DREAM-based parameter set which is part of a recently developed Integrated Uncertainty and Ensemble-based data Assimilation framework (ICEA). Extensive verification of all tested approaches is undertaken using traditional forecast verification measures, including root mean square error (RMSE), Nash-Sutcliffe efficiency coefficient (NSE), volumetric bias, joint distribution, rank probability score (RPS), and discrimination and reliability plots. In comparison to the RFC parameters, the DREAM and MACS sets show significant improvement in volumetric bias in flow. Use of assimilation improves hindcasts of higher flows but does not significantly improve performance in the mid flow and low flow categories.

  6. Thermal Design and Characterization of Heterogeneously Integrated InGaP/GaAs HBTs

    DOE PAGES

    Choi, Sukwon; Peake, Gregory M.; Keeler, Gordon A.; ...

    2016-04-21

    Flip-chip heterogeneously integrated n-p-n InGaP/GaAs heterojunction bipolar transistors (HBTs) with integrated thermal management on wide-bandgap AlN substrates followed by GaAs substrate removal are demonstrated. Without thermal management, substrate removal after integration significantly aggravates self-heating effects, causing poor I–V characteristics due to excessive device self-heating. An electrothermal codesign scheme is demonstrated that involves simulation (design), thermal characterization, fabrication, and evaluation. Thermoreflectance thermal imaging, electrical-temperature sensitive parameter-based thermometry, and infrared thermography were utilized to assess the junction temperature rise in HBTs under diverse configurations. In order to reduce the thermal resistance of integrated devices, passive cooling schemes assisted by structural modification, i.e.,more » positioning indium bump heat sinks between the devices and the carrier, were employed. By implementing thermal heat sinks in close proximity to the active region of flip-chip integrated HBTs, the junction-to-baseplate thermal resistance was reduced over a factor of two, as revealed by junction temperature measurements and improvement of electrical performance. In conclusion, the suggested heterogeneous integration method accounts for not only electrical but also thermal requirements providing insight into realization of advanced and robust III–V/Si heterogeneously integrated electronics.« less

  7. Effect of nitric oxide on boar sperm motility, membrane integrity, and acrosomal status during semen storage.

    PubMed

    Jovicić, M; Pintus, E; Fenclova, T; Simonik, O; Chmelikova, E; Ros-Santaella, J L; Sedmikova, M

    2018-03-01

    Nitric oxide (NO) is a major gasotransmitter involved in several physiological processes of male reproduction. There is, nevertheless, little information concerning the role of NO during semen storage. The aim of this study was to evaluate the effect of NO on boar semen stored at 17oC for 72 h. For this purporse, sperm samples were treated with 0.625, 1.25, 2.5, 5, and 10 mM aminoguanidine (AG) or Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME), a selective and non-selective NO synthase (NOS) inhibitor, respectively. Moreover, sodium nitroprusside (SNP), a NO donor, was used at the dose of 18.75, 37.5, 75, and 150 μM. Sperm motility, membrane integrity, and acrosomal status were evaluated at 0, 4, 24, 48, and 72 h of semen storage. A significant increase of the amplitude of lateral sperm head displacement (ALH), and both curvilinear and straight-line velocity (VCL and VSL, respectively) was observed at 72 h of semen storage in samples treated with 0.625 mM AG, probably because of the antioxidant properties of this NOS inhibitor. Contrarily, 0.625 mM L-NAME showed no effect on boar sperm parameters during the entire period of semen storage. Moreover, AG and L-NAME at 10 mM negatively affected sperm kinetics and acrosome integrity, which may provide further support to the notion that low NO levels are necessary for a normal sperm function. The concentrations of SNP used in this study had mostly no or negative effects on boar sperm parameters during semen storage. In conclusion, the results from this study increase the understanding of the role of NO on boar sperm physiology. Copyright© by the Polish Academy of Sciences.

  8. Application of digital mapping technology to the display of hydrologic information; a proof-of-concept test in the Fox-Wolf River Basin, Wisconsin

    USGS Publications Warehouse

    Moore, G.K.; Baten, L.G.; Allord, G.J.; Robinove, C.J.

    1983-01-01

    The Fox-Wolf River basin in east-central Wisconsin was selected to test concepts for a water-resources information system using digital mapping technology. This basin of 16,800 sq km is typical of many areas in the country. Fifty digital data sets were included in the Fox-Wolf information system. Many data sets were digitized from 1:500,000 scale maps and overlays. Some thematic data were acquired from WATSTORE and other digital data files. All data were geometrically transformed into a Lambert Conformal Conic map projection and converted to a raster format with a 1-km resolution. The result of this preliminary processing was a group of spatially registered, digital data sets in map form. Parameter evaluation, areal stratification, data merging, and data integration were used to achieve the processing objectives and to obtain analysis results for the Fox-Wolf basin. Parameter evaluation includes the visual interpretation of single data sets and digital processing to obtain new derived data sets. In the areal stratification stage, masks were used to extract from one data set all features that are within a selected area on another data set. Most processing results were obtained by data merging. Merging is the combination of two or more data sets into a composite product, in which the contribution of each original data set is apparent and can be extracted from the composite. One processing result was also obtained by data integration. Integration is the combination of two or more data sets into a single new product, from which the original data cannot be separated or calculated. (USGS)

  9. MS overline -on-shell quark mass relation up to four loops in QCD and a general SU (N ) gauge group

    NASA Astrophysics Data System (ADS)

    Marquard, Peter; Smirnov, Alexander V.; Smirnov, Vladimir A.; Steinhauser, Matthias; Wellmann, David

    2016-10-01

    We compute the relation between heavy quark masses defined in the modified minimal subtraction and the on-shell schemes. Detailed results are presented for all coefficients of the SU (Nc) color factors. The reduction of the four-loop on-shell integrals is performed for a general QCD gauge parameter. Altogether there are about 380 master integrals. Some of them are computed analytically, others with high numerical precision using Mellin-Barnes representations, and the rest numerically with the help of FIESTA. We discuss in detail the precise numerical evaluation of the four-loop master integrals. Updated relations between various short-distance masses and the MS ¯ quark mass to next-to-next-to-next-to-leading order accuracy are provided for the charm, bottom and top quarks. We discuss the dependence on the renormalization and factorization scale.

  10. Evaluation of robot-assisted gait training using integrated biofeedback in neurologic disorders.

    PubMed

    Stoller, Oliver; Waser, Marco; Stammler, Lukas; Schuster, Corina

    2012-04-01

    Neurological disorders lead to walking disabilities, which are often treated using robot-assisted gait training (RAGT) devices such as the driven gait-orthosis Lokomat. A novel integrated biofeedback system was developed to facilitate therapeutically desirable activities during walking. The aim of this study was to evaluate the feasibility to detect changes during RAGT by using this novel biofeedback approach in a clinical setting for patients with central neurological disorders. 84 subjects (50 men and 34 women, mean age of 58 ± 13 years) were followed over 8 RAGT sessions. Outcome measures were biofeedback values as weighted averages of torques measured in the joint drives and independent parameters such as guidance force, walking speed, patient coefficient, session duration, time between sessions and total treatment time. Joint segmented analysis showed significant trends for decreasing hip flexion activity (p ≤.003) and increasing knee extension activity (p ≤.001) during RAGT sessions with an intercorrelation of r=-.43 (p ≤.001). Further associations among independent variables were not statistically significant. This is the first study that evaluates the Lokomat integrated biofeedback system in different neurological disorders in a clinical setting. Results suggest that this novel biofeedback approach used in this study is not able to detect progress during RAGT. These findings should be taken into account when refining existing or developing new biofeedback strategies in RAGT relating to appropriate systems to evaluate progress and support therapist feedback in clinical settings. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Reexamination of the calculation of two-center, two-electron integrals over Slater-type orbitals. II. Neumann expansion of the exchange integrals

    NASA Astrophysics Data System (ADS)

    Lesiuk, Michał; Moszynski, Robert

    2014-12-01

    In this paper we consider the calculation of two-center exchange integrals over Slater-type orbitals (STOs). We apply the Neumann expansion of the Coulomb interaction potential and consider calculation of all basic quantities which appear in the resulting expression. Analytical closed-form equations for all auxiliary quantities have already been known but they suffer from large digital erosion when some of the parameters are large or small. We derive two differential equations which are obeyed by the most difficult basic integrals. Taking them as a starting point, useful series expansions for small parameter values or asymptotic expansions for large parameter values are systematically derived. The resulting expansions replace the corresponding analytical expressions when the latter introduce significant cancellations. Additionally, we reconsider numerical integration of some necessary quantities and present a new way to calculate the integrand with a controlled precision. All proposed methods are combined to lead to a general, stable algorithm. We perform extensive numerical tests of the introduced expressions to verify their validity and usefulness. Advances reported here provide methodology to compute two-electron exchange integrals over STOs for a broad range of the nonlinear parameters and large angular momenta.

  12. Automated Gravimetric Calibration to Optimize the Accuracy and Precision of TECAN Freedom EVO Liquid Handler

    PubMed Central

    Bessemans, Laurent; Jully, Vanessa; de Raikem, Caroline; Albanese, Mathieu; Moniotte, Nicolas; Silversmet, Pascal; Lemoine, Dominique

    2016-01-01

    High-throughput screening technologies are increasingly integrated into the formulation development process of biopharmaceuticals. The performance of liquid handling systems is dependent on the ability to deliver accurate and precise volumes of specific reagents to ensure process quality. We have developed an automated gravimetric calibration procedure to adjust the accuracy and evaluate the precision of the TECAN Freedom EVO liquid handling system. Volumes from 3 to 900 µL using calibrated syringes and fixed tips were evaluated with various solutions, including aluminum hydroxide and phosphate adjuvants, β-casein, sucrose, sodium chloride, and phosphate-buffered saline. The methodology to set up liquid class pipetting parameters for each solution was to split the process in three steps: (1) screening of predefined liquid class, including different pipetting parameters; (2) adjustment of accuracy parameters based on a calibration curve; and (3) confirmation of the adjustment. The run of appropriate pipetting scripts, data acquisition, and reports until the creation of a new liquid class in EVOware was fully automated. The calibration and confirmation of the robotic system was simple, efficient, and precise and could accelerate data acquisition for a wide range of biopharmaceutical applications. PMID:26905719

  13. Design of a telemetry system based on wireless power transmission for physiological parameter monitoring

    NASA Astrophysics Data System (ADS)

    Jia, Zhiwei; Yan, Guozheng; Zhu, Bingquan

    2015-04-01

    An implanted telemetry system for experimental animals with or without anaesthesia can be used to continuously monitor physiological parameters. This system is significant not only in the study of organisms but also in the evaluation of drug efficacy, artificial organs, and auxiliary devices. The system is composed of a miniature electronic capsule, a wireless power transmission module, a data-recording device, and a processing module. An electrocardiograph, a temperature sensor, and a pressure sensor are integrated in the miniature electronic capsule, in which the signals are transmitted in vitro by wireless communication after filtering, amplification, and A/D sampling. To overcome the power shortage of batteries, a wireless power transmission module based on electromagnetic induction was designed. The transmitting coil of a rectangular-section solenoid and a 3D receiving coil are proposed according to stability and safety constraints. Experiments show that at least 150 mW of power could pick up on the load in a volume of Φ10.5 mm × 11 mm, with a transmission efficiency of 2.56%. Vivisection experiments verified the feasibility of the integrated radio-telemetry system.

  14. Assessing variance components in multilevel linear models using approximate Bayes factors: A case study of ethnic disparities in birthweight

    PubMed Central

    Saville, Benjamin R.; Herring, Amy H.; Kaufman, Jay S.

    2013-01-01

    Racial/ethnic disparities in birthweight are a large source of differential morbidity and mortality worldwide and have remained largely unexplained in epidemiologic models. We assess the impact of maternal ancestry and census tract residence on infant birth weights in New York City and the modifying effects of race and nativity by incorporating random effects in a multilevel linear model. Evaluating the significance of these predictors involves the test of whether the variances of the random effects are equal to zero. This is problematic because the null hypothesis lies on the boundary of the parameter space. We generalize an approach for assessing random effects in the two-level linear model to a broader class of multilevel linear models by scaling the random effects to the residual variance and introducing parameters that control the relative contribution of the random effects. After integrating over the random effects and variance components, the resulting integrals needed to calculate the Bayes factor can be efficiently approximated with Laplace’s method. PMID:24082430

  15. Direct Parametric Image Reconstruction in Reduced Parameter Space for Rapid Multi-Tracer PET Imaging.

    PubMed

    Cheng, Xiaoyin; Li, Zhoulei; Liu, Zhen; Navab, Nassir; Huang, Sung-Cheng; Keller, Ulrich; Ziegler, Sibylle; Shi, Kuangyu

    2015-02-12

    The separation of multiple PET tracers within an overlapping scan based on intrinsic differences of tracer pharmacokinetics is challenging, due to limited signal-to-noise ratio (SNR) of PET measurements and high complexity of fitting models. In this study, we developed a direct parametric image reconstruction (DPIR) method for estimating kinetic parameters and recovering single tracer information from rapid multi-tracer PET measurements. This is achieved by integrating a multi-tracer model in a reduced parameter space (RPS) into dynamic image reconstruction. This new RPS model is reformulated from an existing multi-tracer model and contains fewer parameters for kinetic fitting. Ordered-subsets expectation-maximization (OSEM) was employed to approximate log-likelihood function with respect to kinetic parameters. To incorporate the multi-tracer model, an iterative weighted nonlinear least square (WNLS) method was employed. The proposed multi-tracer DPIR (MTDPIR) algorithm was evaluated on dual-tracer PET simulations ([18F]FDG and [11C]MET) as well as on preclinical PET measurements ([18F]FLT and [18F]FDG). The performance of the proposed algorithm was compared to the indirect parameter estimation method with the original dual-tracer model. The respective contributions of the RPS technique and the DPIR method to the performance of the new algorithm were analyzed in detail. For the preclinical evaluation, the tracer separation results were compared with single [18F]FDG scans of the same subjects measured 2 days before the dual-tracer scan. The results of the simulation and preclinical studies demonstrate that the proposed MT-DPIR method can improve the separation of multiple tracers for PET image quantification and kinetic parameter estimations.

  16. An improved swarm optimization for parameter estimation and biological model selection.

    PubMed

    Abdullah, Afnizanfaizal; Deris, Safaai; Mohamad, Mohd Saberi; Anwar, Sohail

    2013-01-01

    One of the key aspects of computational systems biology is the investigation on the dynamic biological processes within cells. Computational models are often required to elucidate the mechanisms and principles driving the processes because of the nonlinearity and complexity. The models usually incorporate a set of parameters that signify the physical properties of the actual biological systems. In most cases, these parameters are estimated by fitting the model outputs with the corresponding experimental data. However, this is a challenging task because the available experimental data are frequently noisy and incomplete. In this paper, a new hybrid optimization method is proposed to estimate these parameters from the noisy and incomplete experimental data. The proposed method, called Swarm-based Chemical Reaction Optimization, integrates the evolutionary searching strategy employed by the Chemical Reaction Optimization, into the neighbouring searching strategy of the Firefly Algorithm method. The effectiveness of the method was evaluated using a simulated nonlinear model and two biological models: synthetic transcriptional oscillators, and extracellular protease production models. The results showed that the accuracy and computational speed of the proposed method were better than the existing Differential Evolution, Firefly Algorithm and Chemical Reaction Optimization methods. The reliability of the estimated parameters was statistically validated, which suggests that the model outputs produced by these parameters were valid even when noisy and incomplete experimental data were used. Additionally, Akaike Information Criterion was employed to evaluate the model selection, which highlighted the capability of the proposed method in choosing a plausible model based on the experimental data. In conclusion, this paper presents the effectiveness of the proposed method for parameter estimation and model selection problems using noisy and incomplete experimental data. This study is hoped to provide a new insight in developing more accurate and reliable biological models based on limited and low quality experimental data.

  17. Fracture mechanics criteria for turbine engine hot section components

    NASA Technical Reports Server (NTRS)

    Meyers, G. J.

    1982-01-01

    The application of several fracture mechanics data correlation parameters to predicting the crack propagation life of turbine engine hot section components was evaluated. An engine survey was conducted to determine the locations where conventional fracture mechanics approaches may not be adequate to characterize cracking behavior. Both linear and nonlinear fracture mechanics analyses of a cracked annular combustor liner configuration were performed. Isothermal and variable temperature crack propagation tests were performed on Hastelloy X combustor liner material. The crack growth data was reduced using the stress intensity factor, the strain intensity factor, the J integral, crack opening displacement, and Tomkins' model. The parameter which showed the most effectiveness in correlation high temperature and variable temperature Hastelloy X crack growth data was crack opening displacement.

  18. Note: Simple hysteresis parameter inspector for camera module with liquid lens

    NASA Astrophysics Data System (ADS)

    Chen, Po-Jui; Liao, Tai-Shan; Hwang, Chi-Hung

    2010-05-01

    A method to inspect hysteresis parameter is presented in this article. The hysteresis of whole camera module with liquid lens can be measured rather than a single lens merely. Because the variation in focal length influences image quality, we propose utilizing the sharpness of images which is captured from camera module for hysteresis evaluation. Experiments reveal that the profile of sharpness hysteresis corresponds to the characteristic of contact angle of liquid lens. Therefore, it can infer that the hysteresis of camera module is induced by the contact angle of liquid lens. An inspection process takes only 20 s to complete. Thus comparing with other instruments, this inspection method is more suitable to integrate into the mass production lines for online quality assurance.

  19. The Contribution of GIS to Display and Analyze the Water Quality Data Collected by a Wireless Sensor Network: Case of Bouregreg Catchment, Morocco

    NASA Astrophysics Data System (ADS)

    Boubakri, S.; Rhinane, H.

    2017-11-01

    The monitoring of water quality is, in most cases, managed in the laboratory and not on real time bases. Besides this process being lengthy, it doesn't provide the required specifications to describe the evolution of the quality parameters that are of interest. This study presents the integration of Geographic Information Systems (GIS) with wireless sensor networks (WSN) aiming to create a system able to detect the parameters like temperature, salinity and conductivity in a Moroccan catchment scale and transmit information to the support station. This Information is displayed and evaluated in a GIS using maps and spatial dashboard to monitor the water quality in real time.

  20. Modeling landscape evapotranspiration by integrating land surface phenology and a water balance algorithm

    USGS Publications Warehouse

    Senay, Gabriel B.

    2008-01-01

    The main objective of this study is to present an improved modeling technique called Vegetation ET (VegET) that integrates commonly used water balance algorithms with remotely sensed Land Surface Phenology (LSP) parameter to conduct operational vegetation water balance modeling of rainfed systems at the LSP’s spatial scale using readily available global data sets. Evaluation of the VegET model was conducted using Flux Tower data and two-year simulation for the conterminous US. The VegET model is capable of estimating actual evapotranspiration (ETa) of rainfed crops and other vegetation types at the spatial resolution of the LSP on a daily basis, replacing the need to estimate crop- and region-specific crop coefficients.

  1. Observation of emission process in hydrogen-like nitrogen Z-pinch discharge with time integrated soft X-ray spectrum pinhole image

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakai, Y.; Kumai, H.; Nakanishi, Y.

    2013-02-15

    The emission spectra of hydrogen-like nitrogen Balmer at the wavelength of 13.4 nm in capillary Z-pinch discharge plasma are experimentally examined. Ionization to fully strip nitrogen at the pinch maximum, and subsequent rapid expansion cooling are required to establish the population inversion between the principal quantum number of n = 2 and n = 3. The ionization and recombination processes with estimated plasma parameters are evaluated by utilizing a time integrated spectrum pinhole image containing radial spatial information. A cylindrical capillary plasma is pinched by a triangular pulsed current with peak amplitude of 50 kA and pulse width of 50more » ns.« less

  2. The Research on Lucalibration of GF-4 Satellite

    NASA Astrophysics Data System (ADS)

    Qi, W.; Tan, W.

    2018-04-01

    Starting from the lunar observation requirements of the GF-4 satellite, the main index such as the resolution, the imaging field, the reflect radiance and the imaging integration time are analyzed combined with the imaging features and parameters of this camera. The analysis results show that the lunar observation of GF-4 satellite has high resolution, wide field which can image the whole moon, the radiance of the pupil which is reflected by the moon is within the dynamic range of the camera, and the lunar image quality can be guaranteed better by setting up a reasonable integration time. At the same time, the radiation transmission model of the lunar radiation calibration is trace and the radiation degree is evaluated.

  3. Techno-economic analysis of biofuel production considering logistic configurations.

    PubMed

    Li, Qi; Hu, Guiping

    2016-04-01

    In the study, a techno-economic analysis method considering logistic configurations is proposed. The economic feasibility of a low temperature biomass gasification pathway and an integrated pathway with fast pyrolysis and bio-oil gasification are evaluated and compared with the proposed method in Iowa. The results show that both pathways are profitable, biomass gasification pathway could achieve an Internal Rate of Return (IRR) of 10.00% by building a single biorefinery and integrated bio-oil gasification pathway could achieve an IRR of 3.32% by applying decentralized supply chain structure. A Monte-Carlo simulation considering interactions among parameters is also proposed and conducted, which indicates that both pathways are at high risk currently. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Development of Advanced Czochralski Growth Process to produce low cost 150 KG silicon ingots from a single crucible for technology readiness

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The modified CG2000 crystal grower construction, installation, and machine check-out was completed. The process development check-out proceeded with several dry runs and one growth run. Several machine calibrations and functional problems were discovered and corrected. Several exhaust gas analysis system alternatives were evaluated and an integrated system approved and ordered. A contract presentation was made at the Project Integration Meeting at JPL, including cost-projections using contract projected throughput and machine parameters. Several growth runs on a development CG200 RC grower show that complete neck, crown, and body automated growth can be achieved with only one operator input. Work continued for melt level, melt temperature, and diameter sensor development.

  5. Desensitized Optimal Filtering and Sensor Fusion Toolkit

    NASA Technical Reports Server (NTRS)

    Karlgaard, Christopher D.

    2015-01-01

    Analytical Mechanics Associates, Inc., has developed a software toolkit that filters and processes navigational data from multiple sensor sources. A key component of the toolkit is a trajectory optimization technique that reduces the sensitivity of Kalman filters with respect to model parameter uncertainties. The sensor fusion toolkit also integrates recent advances in adaptive Kalman and sigma-point filters for non-Gaussian problems with error statistics. This Phase II effort provides new filtering and sensor fusion techniques in a convenient package that can be used as a stand-alone application for ground support and/or onboard use. Its modular architecture enables ready integration with existing tools. A suite of sensor models and noise distribution as well as Monte Carlo analysis capability are included to enable statistical performance evaluations.

  6. Seismic Hazard Assessment for a Characteristic Earthquake Scenario: Probabilistic-Deterministic Method

    NASA Astrophysics Data System (ADS)

    mouloud, Hamidatou

    2016-04-01

    The objective of this paper is to analyze the seismic activity and the statistical treatment of seismicity catalog the Constantine region between 1357 and 2014 with 7007 seismic event. Our research is a contribution to improving the seismic risk management by evaluating the seismic hazard in the North-East Algeria. In the present study, Earthquake hazard maps for the Constantine region are calculated. Probabilistic seismic hazard analysis (PSHA) is classically performed through the Cornell approach by using a uniform earthquake distribution over the source area and a given magnitude range. This study aims at extending the PSHA approach to the case of a characteristic earthquake scenario associated with an active fault. The approach integrates PSHA with a high-frequency deterministic technique for the prediction of peak and spectral ground motion parameters in a characteristic earthquake. The method is based on the site-dependent evaluation of the probability of exceedance for the chosen strong-motion parameter. We proposed five sismotectonique zones. Four steps are necessary: (i) identification of potential sources of future earthquakes, (ii) assessment of their geological, geophysical and geometric, (iii) identification of the attenuation pattern of seismic motion, (iv) calculation of the hazard at a site and finally (v) hazard mapping for a region. In this study, the procedure of the earthquake hazard evaluation recently developed by Kijko and Sellevoll (1992) is used to estimate seismic hazard parameters in the northern part of Algeria.

  7. Comparison and optimization of radar-based hail detection algorithms in Slovenia

    NASA Astrophysics Data System (ADS)

    Stržinar, Gregor; Skok, Gregor

    2018-05-01

    Four commonly used radar-based hail detection algorithms are evaluated and optimized in Slovenia. The algorithms are verified against ground observations of hail at manned stations in the period between May and August, from 2002 to 2010. The algorithms are optimized by determining the optimal values of all possible algorithm parameters. A number of different contingency-table-based scores are evaluated with a combination of Critical Success Index and frequency bias proving to be the best choice for optimization. The best performance indexes are given by Waldvogel and the severe hail index, followed by vertically integrated liquid and maximum radar reflectivity. Using the optimal parameter values, a hail frequency climatology map for the whole of Slovenia is produced. The analysis shows that there is a considerable variability of hail occurrence within the Republic of Slovenia. The hail frequency ranges from almost 0 to 1.7 hail days per year with an average value of about 0.7 hail days per year.

  8. Respiratory parameters at varied altitudes in intermittent mining work.

    PubMed

    Bacaloni, Alessandro; Zamora Saà, Margarita Cecilia; Sinibaldi, Federica; Steffanina, Alessia; Insogna, Susanna

    2018-01-07

    Workers in the mining industry in altitude are subjected to several risk factors, e.g., airborne silica and low barometric pressure. The aim of this study has been to assess the risks for this work category, evaluating single risk factors as airborne silica, altitude and work shift, and relating them with cardiovascular and ventilatory parameters. Healthy miners employed in a mining company, Chile, working at varied altitudes, and subjected to unusual work shifts, were evaluated. Cardiovascular and respiratory parameters were investigated. Exposure to airborne silica was evaluated and compared to currently binding exposure limits. At varied altitudes and work shifts, alterations emerged in haemoglobin, ventilation and respiratory parameters, related to employment duration, due to compensatory mechanisms for hypoxia. Haemoglobin increased with altitude, saturation fell down under 90% in the highest mines. The multiple linear regression analysis showed a direct relationship, in the higher mine, between years of exposure to altitude and increased forced vital capacity percent (FVC%), and forced expiratory volume in 1 s (FEV1). An inverse relationship emerged between forced vital capacity (FVC) and years of exposure to airborne silica. In the workplace Mina Subterrànea (MT-3600), statistically significant inverse relationship emerged between the Tiffeneau index and body weight. The working conditions in the mining industry in altitude appeared to be potentially pathogenic; further investigations should be realized integrating risk assessment protocols even in consideration of their undeniable unconventionality. Int J Occup Med Environ Health 2018;31(2):129-138. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  9. The partial coherence modulation transfer function in testing lithography lens

    NASA Astrophysics Data System (ADS)

    Huang, Jiun-Woei

    2018-03-01

    Due to the lithography demanding high performance in projection of semiconductor mask to wafer, the lens has to be almost free in spherical and coma aberration, thus, in situ optical testing for diagnosis of lens performance has to be established to verify the performance and to provide the suggesting for further improvement of the lens, before the lens has been build and integrated with light source. The measurement of modulation transfer function of critical dimension (CD) is main performance parameter to evaluate the line width of semiconductor platform fabricating ability for the smallest line width of producing tiny integrated circuits. Although the modulation transfer function (MTF) has been popularly used to evaluation the optical system, but in lithography, the contrast of each line-pair is in one dimension or two dimensions, analytically, while the lens stand along in the test bench integrated with the light source coherent or near coherent for the small dimension near the optical diffraction limit, the MTF is not only contributed by the lens, also by illumination of platform. In the study, the partial coherence modulation transfer function (PCMTF) for testing a lithography lens is suggested by measuring MTF in the high spatial frequency of in situ lithography lens, blended with the illumination of partial and in coherent light source. PCMTF can be one of measurement to evaluate the imperfect lens of lithography lens for further improvement in lens performance.

  10. GGOS and the EOP - the key role of SLR for a stable estimation of highly accurate Earth orientation parameters

    NASA Astrophysics Data System (ADS)

    Bloßfeld, Mathis; Panzetta, Francesca; Müller, Horst; Gerstl, Michael

    2016-04-01

    The GGOS vision is to integrate geometric and gravimetric observation techniques to estimate consistent geodetic-geophysical parameters. In order to reach this goal, the common estimation of station coordinates, Stokes coefficients and Earth Orientation Parameters (EOP) is necessary. Satellite Laser Ranging (SLR) provides the ability to study correlations between the different parameter groups since the observed satellite orbit dynamics are sensitive to the above mentioned geodetic parameters. To decrease the correlations, SLR observations to multiple satellites have to be combined. In this paper, we compare the estimated EOP of (i) single satellite SLR solutions and (ii) multi-satellite SLR solutions. Therefore, we jointly estimate station coordinates, EOP, Stokes coefficients and orbit parameters using different satellite constellations. A special focus in this investigation is put on the de-correlation of different geodetic parameter groups due to the combination of SLR observations. Besides SLR observations to spherical satellites (commonly used), we discuss the impact of SLR observations to non-spherical satellites such as, e.g., the JASON-2 satellite. The goal of this study is to discuss the existing parameter interactions and to present a strategy how to obtain reliable estimates of station coordinates, EOP, orbit parameter and Stokes coefficients in one common adjustment. Thereby, the benefits of a multi-satellite SLR solution are evaluated.

  11. Evaluation for the ecological quality status of coastal waters in East China Sea using fuzzy integrated assessment method.

    PubMed

    Wu, H Y; Chen, K L; Chen, Z H; Chen, Q H; Qiu, Y P; Wu, J C; Zhang, J F

    2012-03-01

    This research presented an evaluation for the ecological quality status (EcoQS) of three semi-enclosed coastal areas using fuzzy integrated assessment method (FIAM). With this method, the hierarchy structure was clarified by an index system of 11 indicators selected from biotic elements and physicochemical elements, and the weight vector of index system was calculated with Delphi-Analytic Hierarchy Process (AHP) procedure. Then, the FIAM was used to achieve an EcoQS assessment. As a result of assessment, most of the sampling stations demonstrated a clear gradient in EcoQS, ranging from high to poor status. Among the four statuses, high and good, owning a ratio of 55.9% and 26.5%, respectively, were two dominant statuses for three bays, especially for Sansha Bay and Luoyuan Bay. The assessment results were found consistent with the pressure information and parameters obtained at most stations. In addition, the sources of uncertainty in classification of EcoQS were also discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Performance of ZnO based piezo-generators under controlled compression

    NASA Astrophysics Data System (ADS)

    Tao, Ran; Parmar, Mitesh; Ardila, Gustavo; Oliveira, Paulo; Marques, Daniel; Montès, Laurent; Mouis, Mireille

    2017-06-01

    This paper reports on the fabrication and characterization of ZnO based vertically integrated nanogenerator (VING) devices under controlled compression. The basic NG structure is a composite material integrating hydrothermally grown vertical piezoelectric zinc oxide (ZnO) nanowires (NWs) into a dielectric matrix (PMMA). A specific characterization set-up has been developed to control the applied compression and the perpendicularity of the applied force on the devices. The role of different fabrication parameters has been evaluated experimentally and compared with previously reported theoretical models, including the thickness of the top PMMA layer and the density of the NWs array in the matrix. Finally, the performance of the VING structure has been evaluated experimentally for different resistive loads obtaining a power density of 85 μW cm-3 considering only the active layer of the device. This has been compared to the performance of a commercial bulk layer of PZT (25 μW cm-3) under the same applied force of 5 N.

  13. Nuclear Electric Vehicle Optimization Toolset (NEVOT): Integrated System Design Using Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Tinker, Michael L.; Steincamp, James W.; Stewart, Eric T.; Patton, Bruce W.; Pannell, William P.; Newby, Ronald L.; Coffman, Mark E.; Qualls, A. L.; Bancroft, S.; Molvik, Greg

    2003-01-01

    The Nuclear Electric Vehicle Optimization Toolset (NEVOT) optimizes the design of all major Nuclear Electric Propulsion (NEP) vehicle subsystems for a defined mission within constraints and optimization parameters chosen by a user. The tool uses a Genetic Algorithm (GA) search technique to combine subsystem designs and evaluate the fitness of the integrated design to fulfill a mission. The fitness of an individual is used within the GA to determine its probability of survival through successive generations in which the designs with low fitness are eliminated and replaced with combinations or mutations of designs with higher fitness. The program can find optimal solutions for different sets of fitness metrics without modification and can create and evaluate vehicle designs that might never be conceived of through traditional design techniques. It is anticipated that the flexible optimization methodology will expand present knowledge of the design trade-offs inherent in designing nuclear powered space vehicles and lead to improved NEP designs.

  14. LS-DYNA Analysis of a Full-Scale Helicopter Crash Test

    NASA Technical Reports Server (NTRS)

    Annett, Martin S.

    2010-01-01

    A full-scale crash test of an MD-500 helicopter was conducted in December 2009 at NASA Langley's Landing and Impact Research facility (LandIR). The MD-500 helicopter was fitted with a composite honeycomb Deployable Energy Absorber (DEA) and tested under vertical and horizontal impact velocities of 26 ft/sec and 40 ft/sec, respectively. The objectives of the test were to evaluate the performance of the DEA concept under realistic crash conditions and to generate test data for validation of a system integrated LS-DYNA finite element model. In preparation for the full-scale crash test, a series of sub-scale and MD-500 mass simulator tests was conducted to evaluate the impact performances of various components, including a new crush tube and the DEA blocks. Parameters defined within the system integrated finite element model were determined from these tests. The objective of this paper is to summarize the finite element models developed and analyses performed, beginning with pre-test and continuing through post test validation.

  15. Semi-quantitative analysis of salivary gland scintigraphy in Sjögren's syndrome diagnosis: a first-line tool.

    PubMed

    Angusti, Tiziana; Pilati, Emanuela; Parente, Antonella; Carignola, Renato; Manfredi, Matteo; Cauda, Simona; Pizzigati, Elena; Dubreuil, Julien; Giammarile, Francesco; Podio, Valerio; Skanjeti, Andrea

    2017-09-01

    The aim of this study was the assessment of semi-quantified salivary gland dynamic scintigraphy (SGdS) parameters independently and in an integrated way in order to predict primary Sjögren's syndrome (pSS). Forty-six consecutive patients (41 females; age 61 ± 11 years) with sicca syndrome were studied by SGdS after injection of 200 MBq of pertechnetate. In sixteen patients, pSS was diagnosed, according to American-European Consensus Group criteria (AECGc). Semi-quantitative parameters (uptake (UP) and excretion fraction (EF)) were obtained for each gland. ROC curves were used to determine the best cut-off value. The area under the curve (AUC) was used to estimate the accuracy of each semi-quantitative analysis. To assess the correlation between scintigraphic results and disease severity, semi-quantitative parameters were plotted versus Sjögren's syndrome disease activity index (ESSDAI). A nomogram was built to perform an integrated evaluation of all the scintigraphic semi-quantitative data. Both UP and EF of salivary glands were significantly lower in pSS patients compared to those in non-pSS (p < 0.001). ROC curve showed significantly large AUC for both the parameters (p < 0.05). Parotid UP and submandibular EF, assessed by univariated and multivariate logistic regression, showed a significant and independent correlation with pSS diagnosis (p value <0.05). No correlation was found between SGdS semi-quantitative parameters and ESSDAI. The proposed nomogram accuracy was 87%. SGdS is an accurate and reproducible tool for the diagnosis of pSS. ESSDAI was not shown to be correlated with SGdS data. SGdS should be the first-line imaging technique in patients with suspected pSS.

  16. Some Aspects of Psychophysiological Support of Crew Member's Performance Reliability in Space Flight

    NASA Astrophysics Data System (ADS)

    Nechaev, A. P.; Myasnikov, V. I.; Stepanova, S. I.; Isaev, G. F.; Bronnikov, S. V.

    The history of cosmonautics demonstrates many instances in which only crewmembers' intervention allowed critical situations to be resolved, or catastrophes to be prevented. However, during "crew-spacecraft" system operation human is exposed by influence of numerous flight factors, and beforehand it is very difficult to predict their effects on his functional state and work capacity. So, the incidents are known when unfavorable alterations of crewmember's psychophysiological state (PPS) provoked errors in task performance. The objective of the present investigation was to substantiate the methodological approach directed to increase reliability of a crewmember performance (human error prevention) by means of management of his/her PPS. The specific aims of the investigation were: 1) to evaluate the statistical significance of the interrelation between crew errors (CE) and crewmember's PPS, and 2) to develop the way of PPS management. At present, there is no conventional method to assess combined effect of flight conditions (microgravity, confinement, psychosocial factors, etc.) on crewmembers' PPS. For this purpose experts of the Medical Support Group (psychoneurologists and psychologists) at the Moscow Mission Control Center analyze information received during radio and TV contacts with crew. Peculiarities of behavior, motor activity, sleep, speech, mood, emotional reactions, well-being and sensory sphere, trend of dominant interests and volitional acts, signs of deprivation phenomena are considered as separate indicators of crewmember's PPS. The set of qualitative symptoms reflecting PPS alterations and corresponding to them ratings (in arbitrary units) was empirically stated for each indicator. It is important to emphasize that symptoms characterizing more powerful PPS alterations have higher ratings. Quantitative value of PPS integral parameter is calculating by adding up the ratings of all separate indicators over a day, a week, or other temporal interval (in the present investigation - over a week). As a result of processing the data collected during 14 "Mir" station Missions, the significant dependence of CE frequency on value of PPS integral parameter has been established. This dependence demonstrates growth of CE frequency with aggravation of crewmembers' PPS. Additionally, a significant positive correlation between PPS integral parameter and crew work-rest schedule (WRS) intensity has been also found (r=0.71, p<0.05). The WRS intensity was characterized by sleep-wake phase shifts and surplus workload (separate indicators) and quantitative evaluations of both separate and integral indicators were calculated by analogy with psychophysiological parameters. These findings form the basis of the approach to PPS crewmember's management by reduction of the WRS intensity (eliminating separate flight tasks, night work, etc.). Utilization of the approach makes it possible to decrease CE quantity by means of normalization of crewmembers functional state.

  17. Electron transmission through a class of anthracene aldehyde molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petreska, Irina, E-mail: irina.petreska@pmf.ukim.mk; Ohanesjan, Vladimir, E-mail: ohanesjan.vladimir@gmail.com; Pejov, Ljupco, E-mail: ljupcop@pmf.ukim.mk

    2016-03-25

    Transmission of electrons via metal-molecule-metal junctions, involving rotor-stator anthracene aldehyde molecules is investigated. Two model barriers having input parameters evaluated from accurate ab initio calculations are proposed and the transmission coefficients are obtained by using the quasiclassical approximation. Transmission coefficients further enter in the integral for the net current, utilizing Simmons’ method. Conformational dependence of the tunneling processes is evident and the presence of the side groups enhances the functionality of the future single-molecule based electronic devices.

  18. F101 Central Integrated Test Subsystem Evaluation.

    DTIC Science & Technology

    1980-02-01

    These sensors are for fan rpm, core rpm, nozzle position, turbine blade temperature, engine exhaust gas tem- perature, lube oil pressure, lube oil...condition or a turbine blade (T4B) overtemperature condition, the CITS was to record the out-of-limits parameter every quarter-second that the engine was in...cycles on the turbine blades . The PLA cycle has become the most important LCF measurement to the YF101 and F1O engines in the B-1 Flight Test Program

  19. The role of local wisdom in developing friendly city

    NASA Astrophysics Data System (ADS)

    Sibarani, Robert

    2018-03-01

    This present paper discusses the local wisdom which can be applied to build the character of people living in a friendly city. It aims at (1) finding the main local wisdom which can be used to construct the integrity of human beings dwelling in it and (2) describing the concept of developing the friendly city based on local wisdom. Anthropolinguistics is applied to study this topic by focusing on the performance, indexicality, and participation. The analytic parameters are interconnection, evaluability, and sustainability.

  20. The effect of air flow, panel curvature, and internal pressurization on field-incidence transmission loss. [acoustic propagation through aircraft fuselage

    NASA Technical Reports Server (NTRS)

    Koval, L. R.

    1975-01-01

    In the context of sound transmission through aircraft fuselage panels, equations for the field-incidence transmission loss (TL) of a single-walled panel are derived that include the effects of external air flow, panel curvature, and internal fuselage pressurization. These effects are incorporated into the classical equations for the TL of single panels, and the resulting double integral for field-incidence TL is numerically evaluated for a specific set of parameters.

  1. Exchange interactions in a dinuclear manganese (II) complex with cyanopyridine-N-oxide bridging ligands

    NASA Astrophysics Data System (ADS)

    Markosyan, A. S.; Gaidukova, I. Yu.; Ruchkin, A. V.; Anokhin, A. O.; Irkhin, V. Yu.; Ryazanov, M. V.; Kuz'mina, N. P.; Nikiforov, V. N.

    2014-01-01

    The magnetic properties of dinuclear manganese(II) complex [Mn(hfa)2cpo]2 (where hfa is hexafluoroacetylacetonate anion and cpo is 4-cyanopyridine-N-oxide) are presented. The non-monotonous dependence of magnetic susceptibility is explained in terms of the hierarchy of exchange parameters by using exact diagonalization. The thermodynamic behavior of pure cpo and [Mn(hfa)2(cpo)]2 is simulated numerically by an extrapolation to spin S=5/2. The Mn-Mn exchange integral is evaluated.

  2. High-speed microprocessor characterization. Final report/project accomplishments summary, CRADA Number KCP-94-1004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, L.W.

    The objective of the project was to characterize and document the critical operating parameters of an 0.8-micron, 350-MHz, 32-bit microprocessor prototype. The roles of FM and T and the participant company were: FM and T -- evaluation performance of the prototype 32-bit microprocessor using the IDS5000 and Tektronix S3260 Integrated Circuit Test System; Corda -- design and build the prototype microprocessor. This project was terminated with nearly all of the planned activities unaddressed.

  3. Process Integration and Optimization of ICME Carbon Fiber Composites for Vehicle Lightweighting: A Preliminary Development

    DOE PAGES

    Xu, Hongyi; Li, Yang; Zeng, Danielle

    2017-01-02

    Process integration and optimization is the key enabler of the Integrated Computational Materials Engineering (ICME) of carbon fiber composites. In this paper, automated workflows are developed for two types of composites: Sheet Molding Compounds (SMC) short fiber composites, and multi-layer unidirectional (UD) composites. For SMC, the proposed workflow integrates material processing simulation, microstructure representation volume element (RVE) models, material property prediction and structure preformation simulation to enable multiscale, multidisciplinary analysis and design. Processing parameters, microstructure parameters and vehicle subframe geometry parameters are defined as the design variables; the stiffness and weight of the structure are defined as the responses. Formore » multi-layer UD structure, this work focuses on the discussion of different design representation methods and their impacts on the optimization performance. Challenges in ICME process integration and optimization are also summarized and highlighted. Two case studies are conducted to demonstrate the integrated process and its application in optimization.« less

  4. Role of the combination of FA and T2* parameters as a new diagnostic method in therapeutic evaluation of parkinson's disease.

    PubMed

    Fang, Yuan; Zheng, Tao; Liu, Lanxiang; Gao, Dawei; Shi, Qinglei; Dong, Yanchao; Du, Dan

    2017-11-17

    Simple diffusion delivery (SDD) has attained good effects with only tiny amounts of drugs. Fractional anisotropy (FA) and relaxation time T2* that indicate the integrity of fiber tracts and iron concentration within brain tissue were used to evaluate the therapeutic effect of SDD. To evaluate therapeutic effect of SDD in the Parkinson's disease (PD) rat model with FA and T2* parameters. Prospective case-control animal study. Thirty-two male Sprague Dawley rats (eight normal, eight PD, eight SDD, and eight subcutaneous injection rats). Single-shot spin echo echo-planar imaging and fast low-angle shot T 2 WI sequences at 3.0T. Parameters of FA and T2* on the treated side of the substantia nigra were measured to evaluate the therapeutic effect of SDD in a PD rat model. The effects of time on FA and T2* values were analyzed by repeated measurement tests. A one-way analysis of variance was conducted, followed by individual comparisons of the mean FA and T2* values at different timepoints. The FA values on the treated side of the substantia nigra in the SDD treatment group and subcutaneous injection treatment group were significantly higher at week 1 and lower at week 6 than that of the PD control group (SDD vs. PD, week 1, adjusted P = 0.012; subcutaneous vs. PD, week 1, adjusted P < 0.001; SDD vs. PD, week 6, adjusted P = 0.004; subcutaneous vs. PD, week 6, adjusted P = 0.024). The T2* parameter in the SDD treatment group and subcutaneous injection treatment group was significantly higher than that in the PD control group at week 6 (SDD vs. PD, adjusted P = 0.032; subcutaneous vs. PD, adjusted P < 0.001). The combination of FA and T2* parameters can potentially serve as a new effective evaluation method of the therapeutic effect of SDD. 1 Technical Efficacy: Stage 4 J. Magn. Reson. Imaging 2017. © 2017 International Society for Magnetic Resonance in Medicine.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Hongyi; Li, Yang; Zeng, Danielle

    Process integration and optimization is the key enabler of the Integrated Computational Materials Engineering (ICME) of carbon fiber composites. In this paper, automated workflows are developed for two types of composites: Sheet Molding Compounds (SMC) short fiber composites, and multi-layer unidirectional (UD) composites. For SMC, the proposed workflow integrates material processing simulation, microstructure representation volume element (RVE) models, material property prediction and structure preformation simulation to enable multiscale, multidisciplinary analysis and design. Processing parameters, microstructure parameters and vehicle subframe geometry parameters are defined as the design variables; the stiffness and weight of the structure are defined as the responses. Formore » multi-layer UD structure, this work focuses on the discussion of different design representation methods and their impacts on the optimization performance. Challenges in ICME process integration and optimization are also summarized and highlighted. Two case studies are conducted to demonstrate the integrated process and its application in optimization.« less

  6. Integrating Design and Manufacturing for a High Speed Civil Transport Wing

    NASA Technical Reports Server (NTRS)

    Marx, William J.; Mavris, Dimitri N.; Schrage, Daniel P.

    1994-01-01

    The aerospace industry is currently addressing the problem of integrating design and manufacturing. Because of the difficulties associated with using conventional, procedural techniques and algorithms, it is the authors' belief that the only feasible way to integrate the two concepts is with the development of an appropriate Knowledge-Based System (KBS). The authors propose a methodology for an aircraft producibility assessment, including a KBS, that addresses both procedural and heuristic aspects of integrating design and manufacturing of a High Speed Civil Transport (HSCT) wing. The HSCT was chosen as the focus of this investigation since it is a current NASA/aerospace industry initiative full of technological challenges involving many disciplines. The paper gives a brief background of selected previous supersonic transport studies followed by descriptions of key relevant design and manufacturing methodologies. Georgia Tech's Concurrent Engineering/Integrated Product and Process Development methodology is discussed with reference to this proposed conceptual producibility assessment. Evaluation criteria are presented that relate pertinent product and process parameters to overall product producibility. In addition, the authors' integration methodology and reasons for selecting a KBS to integrate design and manufacturing are presented in this paper. Finally, a proposed KBS is given, as well as statements of future work and overall investigation objectives.

  7. Utilizing a Suited Manikin Test Apparatus and Spacesuit Ventilation Loop to Evaluate Carbon Dioxide Washout

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; Conger, Bruce; Korona, Adam; Kanne, Bryan; McMillin, Summer; Norcross, Jason; Jeng, Frank; Swickrath, Mike

    2014-01-01

    NASA is pursuing technology development of an Advanced Extravehicular Mobility Unit (AEMU) which is an integrated assembly made up of primarily a pressure garment system and a Portable Life Support System (PLSS). The PLSS is further composed of an oxygen subsystem, a ventilation subsystem, and a thermal subsystem. One of the key functions of the ventilation system is to remove and control the carbon dioxide delivered to the crewmember. Carbon dioxide washout is the mechanism by which CO2 levels are controlled within the spacesuit helmet to limit the concentration of CO2 inhaled by the crew member. CO2 washout performance is a critical parameter needed to ensure proper and robust designs that are insensitive to human variabilities in a spacesuit. A Suited Manikin Test Apparatus (SMTA) is being developed to augment testing of the PLSS ventilation loop in order to provide a lower cost and more controlled alternative to human testing. The CO2 removal function is performed by the regenerative Rapid Cycle Amine (RCA) within the PLSS ventilation loop and its performance is evaluated within the integrated SMTA and Ventilation Loop test system. This paper will provide a detailed description of the schematics, test configurations, and hardware components of this integrated system. Results and analysis of testing performed with this integrated system will be presented within this paper.

  8. Utilizing a Suited Manikin Test Apparatus and Space Suit Ventilation Loop to Evaluate Carbon Dioxide Washout

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; Conger, Bruce; Korona, Adam; Kanne, Bryan; McMillin, Summer; Paul, Thomas; Norcross, Jason; Alonso, Jesus Delgado; Swickrath, Mike

    2015-01-01

    NASA is pursuing technology development of an Advanced Extravehicular Mobility Unit (AEMU) which is an integrated assembly made up of primarily a pressure garment system and a portable life support subsystem (PLSS). The PLSS is further composed of an oxygen subsystem, a ventilation subsystem, and a thermal subsystem. One of the key functions of the ventilation system is to remove and control the carbon dioxide (CO2) delivered to the crewmember. Carbon dioxide washout is the mechanism by which CO2 levels are controlled within the space suit helmet to limit the concentration of CO2 inhaled by the crew member. CO2 washout performance is a critical parameter needed to ensure proper and robust designs that are insensitive to human variabilities in a space suit. A suited manikin test apparatus (SMTA) was developed to augment testing of the PLSS ventilation loop in order to provide a lower cost and more controlled alternative to human testing. The CO2 removal function is performed by the regenerative Rapid Cycle Amine (RCA) within the PLSS ventilation loop and its performance is evaluated within the integrated SMTA and Ventilation Loop test system. This paper will provide a detailed description of the schematics, test configurations, and hardware components of this integrated system. Results and analysis of testing performed with this integrated system will be presented within this paper.

  9. Potential of pedestrian protection systems--a parameter study using finite element models of pedestrian dummy and generic passenger vehicles.

    PubMed

    Fredriksson, Rikard; Shin, Jaeho; Untaroiu, Costin D

    2011-08-01

    To study the potential of active, passive, and integrated (combined active and passive) safety systems in reducing pedestrian upper body loading in typical impact configurations. Finite element simulations using models of generic sedan car fronts and the Polar II pedestrian dummy were performed for 3 impact configurations at 2 impact speeds. Chest contact force, head injury criterion (HIC(15)), head angular acceleration, and the cumulative strain damage measure (CSDM(0.25)) were employed as injury parameters. Further, 3 countermeasures were modeled: an active autonomous braking system, a passive deployable countermeasure, and an integrated system combining the active and passive systems. The auto-brake system was modeled by reducing impact speed by 10 km/h (equivalent to ideal full braking over 0.3 s) and introducing a pitch of 1 degree and in-crash deceleration of 1 g. The deployable system consisted of a deployable hood, lifting 100 mm in the rear, and a lower windshield air bag. All 3 countermeasures showed benefit in a majority of impact configurations in terms of injury prevention. The auto-brake system reduced chest force in a majority of the configurations and decreased HIC(15), head angular acceleration, and CSDM in all configurations. Averaging all impact configurations, the auto-brake system showed reductions of injury predictors from 20 percent (chest force) to 82 percent (HIC). The passive deployable countermeasure reduced chest force and HIC(15) in a majority of configurations and head angular acceleration and CSDM in all configurations, although the CSDM decrease in 2 configurations was minimal. On average a reduction from 20 percent (CSDM) to 58 percent (HIC) was recorded in the passive deployable countermeasures. Finally, the integrated system evaluated in this study reduced all injury assessment parameters in all configurations compared to the reference situations. The average reductions achieved by the integrated system ranged from 56 percent (CSDM) to 85 percent (HIC). Both the active (autonomous braking) and passive deployable system studied had a potential to decrease pedestrian upper body loading. An integrated pedestrian safety system combining the active and passive systems increased the potential of the individual systems in reducing pedestrian head and chest loading.

  10. Completely integrable 2D Lagrangian systems and related integrable geodesic flows on various manifolds

    NASA Astrophysics Data System (ADS)

    Yehia, Hamad M.

    2013-08-01

    In this study we have formulated a theorem that generates deformations of the natural integrable conservative systems in the plane into integrable systems on Riemannian and other manifolds by introducing additional parameters into their structures. The relation of explicit solutions of the new and the original dynamics to the corresponding Jacobi (Maupertuis) geodesic flow is clarified. For illustration, we apply the result to three concrete examples of the many available integrable systems in the literature. Complementary integrals in those systems are polynomial in velocity with degrees 3, 4 and 6, respectively. As a special case of the first deformed system, a new several-parameter family of integrable mechanical systems (and geodesic flows) on S2 is constructed.

  11. Integral parameters for characterizing water, energy, and aeration properties of soilless plant growth media

    NASA Astrophysics Data System (ADS)

    Chamindu Deepagoda, T. K. K.; Chen Lopez, Jose Choc; Møldrup, Per; de Jonge, Lis Wollesen; Tuller, Markus

    2013-10-01

    Over the last decade there has been a significant shift in global agricultural practice. Because the rapid increase of human population poses unprecedented challenges to production of an adequate and economically feasible food supply for undernourished populations, soilless greenhouse production systems are regaining increased worldwide attention. The optimal control of water availability and aeration is an essential prerequisite to successfully operate plant growth systems with soilless substrates such as aggregated foamed glass, perlite, rockwool, coconut coir, or mixtures thereof. While there are considerable empirical and theoretical efforts devoted to characterize water retention and aeration substrate properties, a holistic, physically-based approach considering water retention and aeration concurrently is lacking. In this study, the previously developed concept of integral water storage and energy was expanded to dual-porosity substrates and an analog integral oxygen diffusivity parameter was introduced to simultaneously characterize aeration properties of four common soilless greenhouse growth media. Integral parameters were derived for greenhouse crops in general, as well as for tomatoes. The integral approach provided important insights for irrigation management and for potential optimization of substrate properties. Furthermore, an observed relationship between the integral parameters for water availability and oxygen diffusivity can be potentially applied for the design of advanced irrigation and management strategies to ensure stress-free growth conditions, while conserving water resources.

  12. Creep deformation at crack tips in elastic-viscoplastic solids

    NASA Astrophysics Data System (ADS)

    Riedel, H.

    1981-02-01

    THE EVALUATION of crack growth tests under creep conditions must be based on the stress analysis of a cracked body taking into account elastic, plastic and creep deformation. In addition to the well-known analysis of a cracked body creeping in secondary (steady-state) creep, the stress field at the tip of a stationary crack is calculated for primary (strain-hardening) or tertiary (strain-softening) creep of the whole specimen. For the special hardening creep-law considered, a path-independent integral C∗h, can be defined which correlates the near-tip field to the applied load. It is also shown how, after sudden load application, creep strains develop in the initially elastic or, for a higher load level, plastic body. Characteristic times are derived to distinguish between short times when the creep-zones, in which creep strains are concentrated, are still small, and long times when the whole specimen creeps extensively in primary and finally in secondary and tertiary creep. Comparing the creep-zone sizes with the specimen dimensions or comparing the characteristic times with the test duration, one can decide which deformation mechanism prevails in the bulk of the specimen and which load parameter enters into the near-tip stress field and determines crack growth behavior. The governing load parameter is the stress intensity factor K 1 if the bulk of the specimen is predominantly elastic and it is the J-integral in a fully-plastic situation when large creep strains are still confined to a small zone. The C∗h-integral applies if the bulk of the specimen deforms in primary or tertiary creep, and C∗ is the relevant load parameter for predominantly secondary creep of the whole specimen.

  13. A study of the stress wave factor technique for evaluation of composite materials

    NASA Technical Reports Server (NTRS)

    Duke, J. C., Jr.; Henneke, E. G., II; Kiernan, M. T.; Grosskopf, P. P.

    1989-01-01

    The acousto-ultrasonic approach for nondestructive evaluation provides a measurement procedure for quantifying the integrated effect of globally distributed damage characteristic of fiber reinforced composite materials. The evaluation procedure provides a stress wave factor that correlates closely with several material performance parameters. The procedure was investigated for a variety of materials including advanced composites, hybrid structure bonds, adhesive bonds, wood products, and wire rope. The research program focused primarily on development of fundamental understanding and applications advancements of acousto-ultrasonics for materials characterization. This involves characterization of materials for which detection, location, and identification of imperfections cannot at present be analyzed satisfactorily with mechanical performance prediction models. In addition to presenting definitive studies on application potentials, the understanding of the acousto-ultrasonic method as applied to advanced composites is reviewed.

  14. Integrated effect of gamma radiation and biocontrol agent on quality parameters of apple fruit: An innovative commercial preservation method

    NASA Astrophysics Data System (ADS)

    Ahari Mostafavi, Hossein; Mahyar Mirmajlessi, Seyed; Fathollahi, Hadi; Shahbazi, Samira; Mohammad Mirjalili, Seyed

    2013-10-01

    Effects of gamma irradiation and biocontrol agent (Pseudomonas fluorescens) on the physico-chemical parameters (including moisture, total soluble solids, antioxidant activity, phenolic content and firmness) of cv. Golden Delicious apples were investigated for their ability to avoid the post-harvest blue mold caused by Penicillium expansum during cold storage. Freshly harvested apples were inoculated with P. expansum. Treated fruits were irradiated at doses of 0, 200, 400, 600 and 800 Gy and then inoculated with P. fluorescens suspension. Samples were evaluated at 3 month intervals. The results demonstrated a clear link between antioxidant activity and phenolic content, so that dose range of 200-400 Gy significantly increased phenolic content and antioxidant activity. Effect of P. fluorescens was similar to irradiation at 200 and 400 Gy that could prevent lesion diameter in pathogen-treated apples. As dose and storage time increased firmness decreased but, combination of P. fluorescens as well as irradiation (at 200-400 Gy) could decrease softening apple fruits during storage. In all parameters, P. fluorescens (as biocontrol agent) inhibited P. expansum similar to irradiation at 200-400 Gy. So, integrated treatment of irradiation and biocontrol agent explored the potential dual benefit of low doses (200 and 400 Gy) as a suitable method to sustain physico-chemical quality and conclusively reduce apple fruits losses during post-harvest preservation.

  15. Improvements to Integrated Tradespace Analysis of Communications Architectures (ITACA) Network Loading Analysis Tool

    NASA Technical Reports Server (NTRS)

    Lee, Nathaniel; Welch, Bryan W.

    2018-01-01

    NASA's SCENIC project aims to simplify and reduce the cost of space mission planning by replicating the analysis capabilities of commercially licensed software which are integrated with relevant analysis parameters specific to SCaN assets and SCaN supported user missions. SCENIC differs from current tools that perform similar analyses in that it 1) does not require any licensing fees, 2) will provide an all-in-one package for various analysis capabilities that normally requires add-ons or multiple tools to complete. As part of SCENIC's capabilities, the ITACA network loading analysis tool will be responsible for assessing the loading on a given network architecture and generating a network service schedule. ITACA will allow users to evaluate the quality of service of a given network architecture and determine whether or not the architecture will satisfy the mission's requirements. ITACA is currently under development, and the following improvements were made during the fall of 2017: optimization of runtime, augmentation of network asset pre-service configuration time, augmentation of Brent's method of root finding, augmentation of network asset FOV restrictions, augmentation of mission lifetimes, and the integration of a SCaN link budget calculation tool. The improvements resulted in (a) 25% reduction in runtime, (b) more accurate contact window predictions when compared to STK(Registered Trademark) contact window predictions, and (c) increased fidelity through the use of specific SCaN asset parameters.

  16. Integrated hot-melt extrusion - injection molding continuous tablet manufacturing platform: Effects of critical process parameters and formulation attributes on product robustness and dimensional stability.

    PubMed

    Desai, Parind M; Hogan, Rachael C; Brancazio, David; Puri, Vibha; Jensen, Keith D; Chun, Jung-Hoon; Myerson, Allan S; Trout, Bernhardt L

    2017-10-05

    This study provides a framework for robust tablet development using an integrated hot-melt extrusion-injection molding (IM) continuous manufacturing platform. Griseofulvin, maltodextrin, xylitol and lactose were employed as drug, carrier, plasticizer and reinforcing agent respectively. A pre-blended drug-excipient mixture was fed from a loss-in-weight feeder to a twin-screw extruder. The extrudate was subsequently injected directly into the integrated IM unit and molded into tablets. Tablets were stored in different storage conditions up to 20 weeks to monitor physical stability and were evaluated by polarized light microscopy, DSC, SEM, XRD and dissolution analysis. Optimized injection pressure provided robust tablet formulations. Tablets manufactured at low and high injection pressures exhibited the flaws of sink marks and flashing respectively. Higher solidification temperature during IM process reduced the thermal induced residual stress and prevented chipping and cracking issues. Polarized light microscopy revealed a homogeneous dispersion of crystalline griseofulvin in an amorphous matrix. DSC underpinned the effect of high tablet residual moisture on maltodextrin-xylitol phase separation that resulted in dimensional instability. Tablets with low residual moisture demonstrated long term dimensional stability. This study serves as a model for IM tablet formulations for mechanistic understanding of critical process parameters and formulation attributes required for optimal product performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Determining the Partial Pressure of Volatile Components via Substrate-Integrated Hollow Waveguide Infrared Spectroscopy with Integrated Microfluidics.

    PubMed

    Kokoric, Vjekoslav; Theisen, Johannes; Wilk, Andreas; Penisson, Christophe; Bernard, Gabriel; Mizaikoff, Boris; Gabriel, Jean-Christophe P

    2018-04-03

    A microfluidic system combined with substrate-integrated hollow waveguide (iHWG) vapor phase infrared spectroscopy has been developed for evaluating the chemical activity of volatile compounds dissolved in complex fluids. Chemical activity is an important yet rarely exploited parameter in process analysis and control. Access to chemical activity parameters enables systematic studies on phase diagrams of complex fluids, the detection of aggregation processes, etc. The instrumental approach developed herein uniquely enables controlled evaporation/permeation from a sample solution into a hollow waveguide structure and the analysis of the partial pressures of volatile constituents. For the example of a binary system, it was shown that the chemical activity may be deduced from partial pressure measurements at thermodynamic equilibrium conditions. The combined microfluidic-iHWG midinfrared sensor system (μFLUID-IR) allows the realization of such studies in the absence of any perturbations provoked by sampling operations, which is unavoidable using state-of-the-art analytical techniques such as headspace gas chromatography. For demonstration purposes, a water/ethanol mixture was investigated, and the derived data was cross-validated with established literature values at different mixture ratios. Next to perturbation-free measurements, a response time of the sensor <150 s ( t 90 ) at a recovery time <300 s ( t recovery ) has been achieved, which substantiates the utility of μFLUID-IR for future process analysis-and-control applications.

  18. Relative Pose Estimation Using Image Feature Triplets

    NASA Astrophysics Data System (ADS)

    Chuang, T. Y.; Rottensteiner, F.; Heipke, C.

    2015-03-01

    A fully automated reconstruction of the trajectory of image sequences using point correspondences is turning into a routine practice. However, there are cases in which point features are hardly detectable, cannot be localized in a stable distribution, and consequently lead to an insufficient pose estimation. This paper presents a triplet-wise scheme for calibrated relative pose estimation from image point and line triplets, and investigates the effectiveness of the feature integration upon the relative pose estimation. To this end, we employ an existing point matching technique and propose a method for line triplet matching in which the relative poses are resolved during the matching procedure. The line matching method aims at establishing hypotheses about potential minimal line matches that can be used for determining the parameters of relative orientation (pose estimation) of two images with respect to the reference one; then, quantifying the agreement using the estimated orientation parameters. Rather than randomly choosing the line candidates in the matching process, we generate an associated lookup table to guide the selection of potential line matches. In addition, we integrate the homologous point and line triplets into a common adjustment procedure. In order to be able to also work with image sequences the adjustment is formulated in an incremental manner. The proposed scheme is evaluated with both synthetic and real datasets, demonstrating its satisfactory performance and revealing the effectiveness of image feature integration.

  19. Modeling the X-Ray Process, and X-Ray Flaw Size Parameter for POD Studies

    NASA Technical Reports Server (NTRS)

    Khoshti, Ajay

    2014-01-01

    Nondestructive evaluation (NDE) method reliability can be determined by a statistical flaw detection study called probability of detection (POD) study. In many instances the NDE flaw detectability is given as a flaw size such as crack length. The flaw is either a crack or behaving like a crack in terms of affecting the structural integrity of the material. An alternate approach is to use a more complex flaw size parameter. The X-ray flaw size parameter, given here, takes into account many setup and geometric factors. The flaw size parameter relates to X-ray image contrast and is intended to have a monotonic correlation with the POD. Some factors such as set-up parameters including X-ray energy, exposure, detector sensitivity, and material type that are not accounted for in the flaw size parameter may be accounted for in the technique calibration and controlled to meet certain quality requirements. The proposed flaw size parameter and the computer application described here give an alternate approach to conduct the POD studies. Results of the POD study can be applied to reliably detect small flaws through better assessment of effect of interaction between various geometric parameters on the flaw detectability. Moreover, a contrast simulation algorithm for a simple part-source-detector geometry using calibration data is also provided for the POD estimation.

  20. Modeling the X-ray Process, and X-ray Flaw Size Parameter for POD Studies

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay M.

    2014-01-01

    Nondestructive evaluation (NDE) method reliability can be determined by a statistical flaw detection study called probability of detection (POD) study. In many instances, the NDE flaw detectability is given as a flaw size such as crack length. The flaw is either a crack or behaving like a crack in terms of affecting the structural integrity of the material. An alternate approach is to use a more complex flaw size parameter. The X-ray flaw size parameter, given here, takes into account many setup and geometric factors. The flaw size parameter relates to X-ray image contrast and is intended to have a monotonic correlation with the POD. Some factors such as set-up parameters, including X-ray energy, exposure, detector sensitivity, and material type that are not accounted for in the flaw size parameter may be accounted for in the technique calibration and controlled to meet certain quality requirements. The proposed flaw size parameter and the computer application described here give an alternate approach to conduct the POD studies. Results of the POD study can be applied to reliably detect small flaws through better assessment of effect of interaction between various geometric parameters on the flaw detectability. Moreover, a contrast simulation algorithm for a simple part-source-detector geometry using calibration data is also provided for the POD estimation.

  1. Pseudodynamic systems approach based on a quadratic approximation of update equations for diffuse optical tomography.

    PubMed

    Biswas, Samir Kumar; Kanhirodan, Rajan; Vasu, Ram Mohan; Roy, Debasish

    2011-08-01

    We explore a pseudodynamic form of the quadratic parameter update equation for diffuse optical tomographic reconstruction from noisy data. A few explicit and implicit strategies for obtaining the parameter updates via a semianalytical integration of the pseudodynamic equations are proposed. Despite the ill-posedness of the inverse problem associated with diffuse optical tomography, adoption of the quadratic update scheme combined with the pseudotime integration appears not only to yield higher convergence, but also a muted sensitivity to the regularization parameters, which include the pseudotime step size for integration. These observations are validated through reconstructions with both numerically generated and experimentally acquired data.

  2. Discrimination Between Maturity and Composition from Integrated Clementine UltraViolet-Visible and Near-Infrared Data

    NASA Astrophysics Data System (ADS)

    Le Mouelic, S.; Langevin, Y.; Erard, S.; Pinet, P.; Daydou, Y.; Chevrel, S.

    1999-01-01

    The Clementine UV-VIS dataset has greatly improved our understanding of the Moon. The UV-VIS camera was limited to five spectral channels from 415 to 1000 nm. The Clementine near-infrared (NIR) camera was designed to complement this spectral coverage. The NIR filter at 2000 run allows the discrimination between olivine and pyroxene within identified mare basalts. In addition, we will show that the integration of Clementine UV-VIS and NIR datasets allows a better evaluation of the ferrous 1-micron absorption band depth and gives access to the slope of the continuum. The discrimination between maturity and FeO composition can be achieved by a principal component analysis performed on spectral parameters. We selected 952 Clementine UV-VIS and NIR images to compute a multispectral cube covering the Aristarchus Plateau. Aristarchus Plateau is one of the most heterogeneous areas on the Moon. Highland-type materials, mare basalts, and dark mantle deposits have previously been mentioned. The mosaic represents a set of about 500 x 600 nine-channel spectra. UV-VIS filters at 415, 750, 900, 950, and 1000 run were calibrated using the ISIS software. We applied the reduction method described elsewhere to reduce the NIR filters at 1100, 1250, 1500 and 2000 nm. Absolute gain and offset values were refined for the NIR images by using eight telescopic spectra acquired as references. With this calibration test, we were able to reproduce the eight telescopic spectra with a maximum error of 1.8%. The integration of UV-VIS and NIR spectral channels allows the visualization of complete low-resolution spectra. In order to investigate the spectral effects of the space-weathering processes, we focused our analysis on a small mare crater and its immediate surroundings. According to the small size of the crater (about 2-km) and its location on an homogeneous mare area, we can reasonably assume that the content in FeO is homogeneous. The impact event has induced a variation of the maturity of the soil by excavating fresh material. Graphs displays five absolute reflectance spectra extracted from this area. One graph displays the same spectra divided by a continuum, which is considered to be a right line fitting the spectra at 0.75 and 1.5 micron. Spectrum 1 is extracted from the brightest part of the crater interior, and spectrum 5 is extracted from the surrounding mare material. Spectra 2, 3, and 4 are extracted from intermediate distances between the two areas. The 1-and-2 micron absorption band depths and the overall reflectance increase from spectrum 5 (corresponding to a mature area) to spectrum 1 (the most immature area). Conversely, the continuum slope decreases from spectrum 5 to spectrum 1. These three spectral effects of maturity have also been identified on laboratory spectra of lunar samples. Most of the lunar soils exhibit a signature near 1 micron. This absorption band is due to the presence of Fe2+ in mafic minerals such as orthopyroxene, clinopyroxene, and olivine. In the case of Clementine UV-VIS data alone, the depth of the 1-micron feature is evaluated by the 950/750-nm reflectance ratio. This ratio combined to the reflectance at 750nm has been used to evaluate the global content in FeO of the lunar surface. Near-infrared data makes a more precise evaluation of the 1 micron band depth possible by providing the right side of the band. The continuum in the vicinity of the band can be evaluated by an arithmetic mean or a geometric interpolation of both sides of the band, which are taken at 750 and 1500nm. The geometric interpolation is less sensitive to residual calibration uncertainties. With this method, the 1-micron absorption band depth for the Aristarchus; Plateau can be refined by as much as 10%. The difference is maximum on Fe-poor, highland-type materials. Similarly, the NIR data provide the possibility to investigate the continuum slope of the spectra. The continuum slope is a key parameter in any spectral analysis. The continuum slope variations seem to be mainly dominated by maturity effects, as suggested by the high correlation with the independent evaluation of maturity (OMAT parameter). We have also found a good correlation between the continuum slope and the OMAT parameter on laboratory spectra of lunar samples of the J. B. Adams collection. The discrimination between maturity effects and composition effects can be achieved by using a principal component analysis (PCA) on three spectral parameters, which are the reflectance at 0.75 micron the depth of the 1-micron feature, and the continuum slope. These parameters are mostly affected by maturity and FeO content. The effects of various glass content are assimilated to maturity. The aim of the PCA is to decorrelate the FeO content and maturity effects in the three input parameters. The integration of UV-VIS and NIR datasets allows for a better understanding of the spectral properties of the lunar surface by giving access to key parameters such as the 1 and 2-micron band depths and the continuum slope. The continuum slope can be combined with the depth of the mafic 1-micron absorption feature and the reflectance at 750 nm to discriminate between maturity and composition. NIR images of the sample return stations will be very interesting to refine absolute FeO content and maturity evaluations. Additional information is available in original.

  3. Microcirculatory monitoring in septic patients: Where do we stand?

    PubMed

    Gruartmoner, G; Mesquida, J; Ince, C

    Microcirculatory alterations play a pivotal role in sepsis-related morbidity and mortality. However, since the microcirculation has been a "black box", current hemodynamic management of septic patients is still guided by macrocirculatory parameters. In the last decades, the development of several technologies has shed some light on microcirculatory evaluation and monitoring, and the possibility of incorporating microcirculatory variables to clinical practice no longer seems to be beyond reach. The present review provides a brief summary of the current technologies for microcirculatory evaluation, and attempts to explore the potential role and benefits of their integration to the resuscitation process in critically ill septic patients. Copyright © 2016 Elsevier España, S.L.U. y SEMICYUC. All rights reserved.

  4. Probabilistic Analysis of Solid Oxide Fuel Cell Based Hybrid Gas Turbine System

    NASA Technical Reports Server (NTRS)

    Gorla, Rama S. R.; Pai, Shantaram S.; Rusick, Jeffrey J.

    2003-01-01

    The emergence of fuel cell systems and hybrid fuel cell systems requires the evolution of analysis strategies for evaluating thermodynamic performance. A gas turbine thermodynamic cycle integrated with a fuel cell was computationally simulated and probabilistically evaluated in view of the several uncertainties in the thermodynamic performance parameters. Cumulative distribution functions and sensitivity factors were computed for the overall thermal efficiency and net specific power output due to the uncertainties in the thermodynamic random variables. These results can be used to quickly identify the most critical design variables in order to optimize the design and make it cost effective. The analysis leads to the selection of criteria for gas turbine performance.

  5. Evaluation of automated decisionmaking methodologies and development of an integrated robotic system simulation

    NASA Technical Reports Server (NTRS)

    Haley, D. C.; Almand, B. J.; Thomas, M. M.; Krauze, L. D.; Gremban, K. D.; Sanborn, J. C.; Kelly, J. H.; Depkovich, T. M.

    1984-01-01

    A generic computer simulation for manipulator systems (ROBSIM) was implemented and the specific technologies necessary to increase the role of automation in various missions were developed. The specific items developed are: (1) capability for definition of a manipulator system consisting of multiple arms, load objects, and an environment; (2) capability for kinematic analysis, requirements analysis, and response simulation of manipulator motion; (3) postprocessing options such as graphic replay of simulated motion and manipulator parameter plotting; (4) investigation and simulation of various control methods including manual force/torque and active compliances control; (5) evaluation and implementation of three obstacle avoidance methods; (6) video simulation and edge detection; and (7) software simulation validation.

  6. An evaluation of the relative quality of dike pools for benthic macroinvertebrates in the Lower Missouri River, USA

    USGS Publications Warehouse

    Poulton, B.C.; Allert, A.L.

    2012-01-01

    A habitat-based aquatic macroinvertebrate study was initiated in the Lower Missouri River to evaluate relative quality and biological condition of dike pool habitats. Water-quality and sediment-quality parameters and macroinvertebrate assemblage structure were measured from depositional substrates at 18 sites. Sediment porewater was analysed for ammonia, sulphide, pH and oxidation-reduction potential. Whole sediments were analysed for particle-size distribution, organic carbon and contaminants. Field water-quality parameters were measured at subsurface and at the sediment-water interface. Pool area adjacent and downstream from each dike was estimated from aerial photography. Macroinvertebrate biotic condition scores were determined by integrating the following indicator response metrics: % of Ephemeroptera (mayflies), % of Oligochaeta worms, Shannon Diversity Index and total taxa richness. Regression models were developed for predicting macroinvertebrate scores based on individual water-quality and sediment-quality variables and a water/sediment-quality score that integrated all variables. Macroinvertebrate scores generated significant determination coefficients with dike pool area (R2=0.56), oxidation–reduction potential (R2=0.81) and water/sediment-quality score (R2=0.71). Dissolved oxygen saturation, oxidation-reduction potential and total ammonia in sediment porewater were most important in explaining variation in macroinvertebrate scores. The best two-variable regression models included dike pool size + the water/sediment-quality score (R2=0.84) and dike pool size + oxidation-reduction potential (R2=0.93). Results indicate that dike pool size and chemistry of sediments and overlying water can be used to evaluate dike pool quality and identify environmental conditions necessary for optimizing diversity and productivity of important aquatic macroinvertebrates. A combination of these variables could be utilized for measuring the success of habitat enhancement activities currently being implemented in this system.

  7. Effects of titanium surface topography on bone integration: a systematic review.

    PubMed

    Wennerberg, Ann; Albrektsson, Tomas

    2009-09-01

    To analyse possible effects of titanium surface topography on bone integration. Our analyses were centred on a PubMed search that identified 1184 publications of assumed relevance; of those, 1064 had to be disregarded because they did not accurately present in vivo data on bone response to surface topography. The remaining 120 papers were read and analysed, after removal of an additional 20 papers that mainly dealt with CaP-coated and Zr implants; 100 papers remained and formed the basis for this paper. The bone response to differently configurated surfaces was mainly evaluated by histomorphometry (bone-to-implant contact), removal torque and pushout/pullout tests. A huge number of the experimental investigations have demonstrated that the bone response was influenced by the implant surface topography; smooth (S(a)<0.5 microm) and minimally rough (S(a) 0.5-1 mum) surfaces showed less strong bone responses than rougher surfaces. Moderately rough (S(a)>1-2 microm) surfaces showed stronger bone responses than rough (S(a)>2 microm) in some studies. One limitation was that it was difficult to compare many studies because of the varying quality of surface evaluations; a surface termed 'rough' in one study was not uncommonly referred to as 'smooth' in another; many investigators falsely assumed that surface preparation per se identified the roughness of the implant; and many other studies used only qualitative techniques such as SEM. Furthermore, filtering techniques differed or only height parameters (S(a), R(a)) were reported. * Surface topography influences bone response at the micrometre level. * Some indications exist that surface topography influences bone response at the nanometre level. * The majority of published papers present an inadequate surface characterization. * Measurement and evaluation techniques need to be standardized. * Not only height descriptive parameters but also spatial and hybrid ones should be used.

  8. Comparative evaluation of HMG CoA reductase inhibitors in experimentally-induced myocardial necrosis: Biochemical, morphological and histological studies.

    PubMed

    Variya, Bhavesh C; Patel, Snehal S; Trivedi, Jinal I; Gandhi, Hardik P; Rathod, S P

    2015-10-05

    The present study was carried out to evaluate the protective effect of different statins on isoproterenol (ISO) induced myocardial necrosis. Atorvastatin, rosuvastatin, fluvastatin, simvastatin and pravastatin (10 mg/kg/day) were administered for 12 weeks. After pretreatment of 12 weeks myocardial necrosis was induced by subsequent injection of ISO (85 mg/kg/day, s.c.) to wistar rats. Serum biochemical parameters like glucose, lipid profile, cardiac markers and transaminases were evaluated. Animals were killed and heart was excised for histopathology and antioxidant study. Statins pretreated rats showed significant protection against ISO induced elevation in serum biochemical parameters and serum level of cardiac marker enzymes and transaminase level as compared to ISO control group. Mild to moderate protection was observed in different statins treated heart in histopathology and TTC stained sections. Result from our study also revealed that statins could efficiently protect against ISO intoxicated myocardial necrosis by impairing membrane bound enzyme integrity and endogenous antioxidant enzyme levels. Amongst all statins used, rosuvastatin and pravastatin were found to have maximum cardio-protective activity against ISO induced myocardial necrosis as compared to other statins. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Period Estimation for Sparsely-sampled Quasi-periodic Light Curves Applied to Miras

    NASA Astrophysics Data System (ADS)

    He, Shiyuan; Yuan, Wenlong; Huang, Jianhua Z.; Long, James; Macri, Lucas M.

    2016-12-01

    We develop a nonlinear semi-parametric Gaussian process model to estimate periods of Miras with sparsely sampled light curves. The model uses a sinusoidal basis for the periodic variation and a Gaussian process for the stochastic changes. We use maximum likelihood to estimate the period and the parameters of the Gaussian process, while integrating out the effects of other nuisance parameters in the model with respect to a suitable prior distribution obtained from earlier studies. Since the likelihood is highly multimodal for period, we implement a hybrid method that applies the quasi-Newton algorithm for Gaussian process parameters and search the period/frequency parameter space over a dense grid. A large-scale, high-fidelity simulation is conducted to mimic the sampling quality of Mira light curves obtained by the M33 Synoptic Stellar Survey. The simulated data set is publicly available and can serve as a testbed for future evaluation of different period estimation methods. The semi-parametric model outperforms an existing algorithm on this simulated test data set as measured by period recovery rate and quality of the resulting period-luminosity relations.

  10. Modeling and experimental investigation of thermal-mechanical-electric coupling dynamics in a standing wave ultrasonic motor

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Yao, Zhiyuan; He, Yigang; Dai, Shichao

    2017-09-01

    Ultrasonic motor operation relies on high-frequency vibration of a piezoelectric vibrator and interface friction between the stator and rotor/slider, which can cause temperature rise of the motor under continuous operation, and can affect motor parameters and performance in turn. In this paper, an integral model is developed to study the thermal-mechanical-electric coupling dynamics in a typical standing wave ultrasonic motor. Stick-slip motion at the contact interface and the temperature dependence of material parameters of the stator are taken into account in this model. The elastic, piezoelectric and dielectric material coefficients of the piezoelectric ceramic, as a function of temperature, are determined experimentally using a resonance method. The critical parameters in the model are identified via measured results. The resulting model can be used to evaluate the variation in output characteristics of the motor caused by the thermal-mechanical-electric coupling effects. Furthermore, the dynamic temperature rise of the motor can be accurately predicted under different input parameters using the developed model, which will contribute to improving the reliable life of a motor for long-term running.

  11. Explicitly integrating parameter, input, and structure uncertainties into Bayesian Neural Networks for probabilistic hydrologic forecasting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xuesong; Liang, Faming; Yu, Beibei

    2011-11-09

    Estimating uncertainty of hydrologic forecasting is valuable to water resources and other relevant decision making processes. Recently, Bayesian Neural Networks (BNNs) have been proved powerful tools for quantifying uncertainty of streamflow forecasting. In this study, we propose a Markov Chain Monte Carlo (MCMC) framework to incorporate the uncertainties associated with input, model structure, and parameter into BNNs. This framework allows the structure of the neural networks to change by removing or adding connections between neurons and enables scaling of input data by using rainfall multipliers. The results show that the new BNNs outperform the BNNs that only consider uncertainties associatedmore » with parameter and model structure. Critical evaluation of posterior distribution of neural network weights, number of effective connections, rainfall multipliers, and hyper-parameters show that the assumptions held in our BNNs are not well supported. Further understanding of characteristics of different uncertainty sources and including output error into the MCMC framework are expected to enhance the application of neural networks for uncertainty analysis of hydrologic forecasting.« less

  12. Development of a Kinetic Assay for Late Endosome Movement.

    PubMed

    Esner, Milan; Meyenhofer, Felix; Kuhn, Michael; Thomas, Melissa; Kalaidzidis, Yannis; Bickle, Marc

    2014-08-01

    Automated imaging screens are performed mostly on fixed and stained samples to simplify the workflow and increase throughput. Some processes, such as the movement of cells and organelles or measuring membrane integrity and potential, can be measured only in living cells. Developing such assays to screen large compound or RNAi collections is challenging in many respects. Here, we develop a live-cell high-content assay for tracking endocytic organelles in medium throughput. We evaluate the added value of measuring kinetic parameters compared with measuring static parameters solely. We screened 2000 compounds in U-2 OS cells expressing Lamp1-GFP to label late endosomes. All hits have phenotypes in both static and kinetic parameters. However, we show that the kinetic parameters enable better discrimination of the mechanisms of action. Most of the compounds cause a decrease of motility of endosomes, but we identify several compounds that increase endosomal motility. In summary, we show that kinetic data help to better discriminate phenotypes and thereby obtain more subtle phenotypic clustering. © 2014 Society for Laboratory Automation and Screening.

  13. Parameter Validation for Evaluation of Spaceflight Hardware Reusability

    NASA Technical Reports Server (NTRS)

    Childress-Thompson, Rhonda; Dale, Thomas L.; Farrington, Phillip

    2017-01-01

    Within recent years, there has been an influx of companies around the world pursuing reusable systems for space flight. Much like NASA, many of these new entrants are learning that reusable systems are complex and difficult to acheive. For instance, in its first attempts to retrieve spaceflight hardware for future reuse, SpaceX unsuccessfully tried to land on a barge at sea, resulting in a crash-landing. As this new generation of launch developers continues to develop concepts for reusable systems, having a systematic approach for determining the most effective systems for reuse is paramount. Three factors that influence the effective implementation of reusability are cost, operability and reliability. Therefore, a method that integrates these factors into the decision-making process must be utilized to adequately determine whether hardware used in space flight should be reused or discarded. Previous research has identified seven features that contribute to the successful implementation of reusability for space flight applications, defined reusability for space flight applications, highlighted the importance of reusability, and presented areas that hinder successful implementation of reusability. The next step is to ensure that the list of reusability parameters previously identified is comprehensive, and any duplication is either removed or consolidated. The characteristics to judge the seven features as good indicators for successful reuse are identified and then assessed using multiattribute decision making. Next, discriminators in the form of metrics or descriptors are assigned to each parameter. This paper explains the approach used to evaluate these parameters, define the Measures of Effectiveness (MOE) for reusability, and quantify these parameters. Using the MOEs, each parameter is assessed for its contribution to the reusability of the hardware. Potential data sources needed to validate the approach will be identified.

  14. Assessment on the decolourization of textile dye (Reactive Yellow) using Pseudomonas sp. immobilized on fly ash: Response surface methodology optimization and toxicity evaluation.

    PubMed

    Roy, Uttariya; Sengupta, Shubhalakshmi; Banerjee, Priya; Das, Papita; Bhowal, Avijit; Datta, Siddhartha

    2018-06-18

    This study focuses on the investigation of removal of textile dye (Reactive Yellow) by a combined approach of sorption integrated with biodegradation using low cost adsorbent fly ash immobilized with Pseudomonas sp. To ensure immobilization of bacterial species on treated fly ash, fly ash with immobilized bacterial cells was characterized using Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and fluorescence microscopy. Comparative batch studies were carried out using Pseudomonas sp, fly ash and immobilized Pseudomonas sp on flyash and were observed that immobilized Pseudomonas sp on flyash acted as better decolourizing agent. The optimized pH, temperature, and immobilized adsorbent dosage for highest percentage of dye removal were observed to be pH 6, 303 K, 1.2 g/L in all the cases. At optimum condition, the highest percentage of dye removal was found to be 88.51%, 92.62% and 98.72% for sorption (flyash), biodegradation (Pseudomonas sp) and integral approach (Pseudomonas sp on flyash) respectively. Optimization of operating parameters of textile dye decolourization was done by response surface methodology (RSM) using Design Expert 7 software. Phytotoxicity evaluation with Cicer arietinum revealed that seeds exposed to untreated dye effluents showed considerably lower growth, inhibited biochemical, and enzyme parameters with compared to those exposed to treated textile effluents. Thus this immobilized inexpensive technique could be used for removal of synthetic dyes present in textile wastewater. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Early signs that predict later haemodynamically significant patent ductus arteriosus.

    PubMed

    Engür, Defne; Deveci, Murat; Türkmen, Münevver K

    2016-03-01

    Our aim was to determine the optimal cut-off values, sensitivity, specificity, and diagnostic power of 12 echocardiographic parameters on the second day of life to predict subsequent ductal patency. We evaluated preterm infants, born at ⩽32 weeks of gestation, starting on their second day of life, and they were evaluated every other day until ductal closure or until there were clinical signs of re-opening. We measured transductal diameter; pulmonary arterial diastolic flow; retrograde aortic diastolic flow; pulsatility index of the left pulmonary artery and descending aorta; left atrium and ventricle/aortic root ratio; left ventricular output; left ventricular flow velocity time integral; mitral early/late diastolic flow; and superior caval vein diameter and flow as well as performed receiver operating curve analysis. Transductal diameter (>1.5 mm); pulmonary arterial diastolic flow (>25.6 cm/second); presence of retrograde aortic diastolic flow; ductal diameter by body weight (>1.07 mm/kg); left pulmonary arterial pulsatility index (⩽0.71); and left ventricle to aortic root ratio (>2.2) displayed high sensitivity and specificity (p0.9). Parameters with moderate sensitivity and specificity were as follows: left atrial to aortic root ratio; left ventricular output; left ventricular flow velocity time integral; and mitral early/late diastolic flow ratio (p0.05) had low diagnostic value. Left pulmonary arterial pulsatility index, left ventricle/aortic root ratio, and ductal diameter by body weight are useful adjuncts offering a broader outlook for predicting ductal patency.

  16. Model reduction in integrated controls-structures design

    NASA Technical Reports Server (NTRS)

    Maghami, Peiman G.

    1993-01-01

    It is the objective of this paper to present a model reduction technique developed for the integrated controls-structures design of flexible structures. Integrated controls-structures design problems are typically posed as nonlinear mathematical programming problems, where the design variables consist of both structural and control parameters. In the solution process, both structural and control design variables are constantly changing; therefore, the dynamic characteristics of the structure are also changing. This presents a problem in obtaining a reduced-order model for active control design and analysis which will be valid for all design points within the design space. In other words, the frequency and number of the significant modes of the structure (modes that should be included) may vary considerably throughout the design process. This is also true as the locations and/or masses of the sensors and actuators change. Moreover, since the number of design evaluations in the integrated design process could easily run into thousands, any feasible order-reduction method should not require model reduction analysis at every design iteration. In this paper a novel and efficient technique for model reduction in the integrated controls-structures design process, which addresses these issues, is presented.

  17. Assessing environmental quality status by integrating chemical and biological effect data: The Cartagena coastal zone as a case.

    PubMed

    Martínez-Gómez, Concepción; Fernández, Beatriz; Robinson, Craig D; Campillo, J Antonio; León, Víctor M; Benedicto, José; Hylland, Ketil; Vethaak, A Dick

    2017-03-01

    Cartagena coastal zone (W Mediterranean) was chosen for a practical case study to investigate the suitability of an integrated indicator framework for marine monitoring and assessment of chemicals and their effects, which was developed by ICES and OSPAR. Red mullet (Mullus barbatus) and the Mediterranean mussel (Mytilus galloprovincialis) were selected as target species. Concentrations of contaminants in sediment and biota, and contaminant-related biomarkers were analysed. To assess environmental quality in the Cartagena coastal zone with respect to chemical pollution, data were assessed using available assessment criteria, and then integrated for different environmental matrices. A qualitative scoring method was used to rank the overall assessments into selected categories and to evaluate the confidence level of the final integrated assessment. The ICES/OSPAR integrated assessment framework, originally designed for the North Atlantic, was found to be applicable for Mediterranean species and environmental matrices. Further development of assessment criteria of chemical and biological parameters in sediments and target species from the Mediterranean will, however, be required before this framework can be fully applied for determining Good Environmental Status (GES) of the Marine Strategy Framework Directive in these regions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Quality of human spermatozoa: relationship between high-magnification sperm morphology and DNA integrity.

    PubMed

    Maettner, R; Sterzik, K; Isachenko, V; Strehler, E; Rahimi, G; Alabart, J L; Sánchez, R; Mallmann, P; Isachenko, E

    2014-06-01

    The aim of this work is to establish the relationship between the morphology of Intracytoplasmic Morphologically Selected Sperm Injection (IMSI)-selected spermatozoa and their DNA integrity. The 45 ejaculates were randomly distributed into three treatment groups: normozoospermic, oligoasthenozoospermic and oligoasthenotheratozoospermic samples. The evaluation of DNA integrity was performed using the sperm chromatin dispersion test. It was established that DNA integrity of spermatozoa is strongly dependent on ejaculate quality (P < 0.05). The count of spermatozoa with nonfragmented DNA in normozoospermic samples was high and independent from IMSI-morphological classes (Class 1 versus Class 3, respectively) (P > 0.1). With decreased ejaculate quality, the percentage of spermatozoa with nonfragmented DNA decreased significantly (P < 0.05) independent from morphological class. Nevertheless, the rate of IMSI-selected spermatozoa with fragmented DNA within of Class 1 in normozoospermic (Group 1), in oligoasthenozoospermic (Group 2) and in oligoasthenotheratozoospermic (Group 3) samples was 21.1%, 31.8% and 54.1%, respectively. In conclusion, there is a direct relationship between morphological parameters of spermatozoa and their DNA integrity. However, the IMSI technique alone is not enough for the selection of spermatozoa with intact nuclei. © 2013 Blackwell Verlag GmbH.

  19. Electromagnetic pulses, localized and causal

    NASA Astrophysics Data System (ADS)

    Lekner, John

    2018-01-01

    We show that pulse solutions of the wave equation can be expressed as time Fourier superpositions of scalar monochromatic beam wave functions (solutions of the Helmholtz equation). This formulation is shown to be equivalent to Bateman's integral expression for solutions of the wave equation, for axially symmetric solutions. A closed-form one-parameter solution of the wave equation, containing no backward-propagating parts, is constructed from a beam which is the tight-focus limit of two families of beams. Application is made to transverse electric and transverse magnetic pulses, with evaluation of the energy, momentum and angular momentum for a pulse based on the general localized and causal form. Such pulses can be represented as superpositions of photons. Explicit total energy and total momentum values are given for the one-parameter closed-form pulse.

  20. Rotorcraft system identification techniques for handling qualities and stability and control evaluation

    NASA Technical Reports Server (NTRS)

    Hall, W. E., Jr.; Gupta, N. K.; Hansen, R. S.

    1978-01-01

    An integrated approach to rotorcraft system identification is described. This approach consists of sequential application of (1) data filtering to estimate states of the system and sensor errors, (2) model structure estimation to isolate significant model effects, and (3) parameter identification to quantify the coefficient of the model. An input design algorithm is described which can be used to design control inputs which maximize parameter estimation accuracy. Details of each aspect of the rotorcraft identification approach are given. Examples of both simulated and actual flight data processing are given to illustrate each phase of processing. The procedure is shown to provide means of calibrating sensor errors in flight data, quantifying high order state variable models from the flight data, and consequently computing related stability and control design models.

  1. Nephelauxetic effect and 〈r(k)〉₄f radial integrals of Tm³⁺ in crystals.

    PubMed

    Petrov, Dimitar

    2015-12-05

    Bonding and covalency parameters have been evaluated from the nephelauxetic ratios βk=Fk (crystal)/Fk (free ion), with k=2, 4, 6, for 24 halide and chalcogenide crystals containing Tm(3+) ions. The radial expectation values for 4f electrons 〈r(k)〉4f of Tm(3+) ion in certain complex oxides, fluorides, and a sulfide have been determined by means of experimental Slater parameter shifts ΔFk relative to the Fk values for the free ion Tm IV. The 〈r(k)〉1f values derived in the dielectric screening model have been compared with those computed by different types of 4f wave functions as well as with other estimates. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Current guidelines for the evaluation and management of atopic dermatitis: A comparison of the Joint Task Force Practice Parameter and American Academy of Dermatology guidelines.

    PubMed

    Eichenfield, Lawrence F; Ahluwalia, Jusleen; Waldman, Andrea; Borok, Jenna; Udkoff, Jeremy; Boguniewicz, Mark

    2017-04-01

    Atopic dermatitis (AD) is a chronic pruritic inflammatory disease that commonly presents in the pediatric population. Although definitions and diagnosis of AD have largely been agreed upon, allergists and dermatologists have similar and divergent approaches to the management of AD. This review facilitated integration of the American Academy of Allergy, Asthma & Immunology/American College of Allergy, Asthma & Immunology Joint Task Force 2012 AD Practice Parameter and the 2014 American Academy of Dermatology guidelines to highlight the basic principles of AD management and discuss therapies and management of AD from the distinct perspectives of the allergist and dermatologist. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  3. Combining ability, heritability and genotypic relations of different physiological traits in cacao hybrids

    PubMed Central

    de Almeida, Alex-Alan Furtado; Branco, Márcia Christina da Silva; Costa, Marcio Gilberto Cardoso; Ahnert, Dario

    2017-01-01

    Selecting parents and evaluating progenies is a very important step in breeding programs and involves approaches such as understanding the initial stages of growth and characterizing the variability among genotypes for different parameters, such as physiological, growth, biomass partitioning and nutrient translocation to the aerial part. In these cases, facilitating tools can be used to understand the involved gene dynamics, such as diallel crosses and genetic and phenotypic correlations. Our main hypothesis is that the contrasting phenotypes of these parental genotypes of cocoa used are due to genetic factors, and progenies derived from crosses of these parental genotypes are useful for breeding programs related to plant architecture, physiological parameters and translocation of mineral nutrients. We aimed to evaluate the combining abilities in progenies of cacao (Theobroma cacao L) originating from contrasting parents for canopy vigor. Emphasis was given to the evaluation of morphological and physiological parameters and the phenotypic and genotypic correlations to understand the dynamics of the action of the genes involved, as well as in expression profile from genes of gibberellins biosynthesis pathway in the parents. Fifteen F1 progenies were obtained from crosses of six clones (IMC 67, P4B, PUCALA, SCA 6, SCA 24 and SJ 02) that were evaluated in a randomized complete block design with four replicates of 12 plants per progeny, in a balanced half table diallel scheme. It is possible to identify and select plants and progenies of low, medium and high height, as there is expressive genetic variability for the evaluated parameters, some of these on higher additive effects, others on larger nonadditive effects and others under a balance of these effects. Most physiological parameters evaluated show that for selection of plants with the desired performance, no complex breeding methods would be necessary due to the high and medium heritability observed. Strong genetic components were observed from many of the correlations, which indicate the possibility to formulate selection indices for multi-traits, such as dwarfism or semidwarfism, tolerance to increase of leaf sodium concentrations and maintenance of the photosynthetic apparatus integrity under these conditions. Additionally, plants with higher carbon fixation, better water use, higher carboxylation efficiency and greater magnesium accumulation in leaves can be selected. PMID:28628670

  4. Combining ability, heritability and genotypic relations of different physiological traits in cacao hybrids.

    PubMed

    Pereira, Allan Silva; de Almeida, Alex-Alan Furtado; Branco, Márcia Christina da Silva; Costa, Marcio Gilberto Cardoso; Ahnert, Dario

    2017-01-01

    Selecting parents and evaluating progenies is a very important step in breeding programs and involves approaches such as understanding the initial stages of growth and characterizing the variability among genotypes for different parameters, such as physiological, growth, biomass partitioning and nutrient translocation to the aerial part. In these cases, facilitating tools can be used to understand the involved gene dynamics, such as diallel crosses and genetic and phenotypic correlations. Our main hypothesis is that the contrasting phenotypes of these parental genotypes of cocoa used are due to genetic factors, and progenies derived from crosses of these parental genotypes are useful for breeding programs related to plant architecture, physiological parameters and translocation of mineral nutrients. We aimed to evaluate the combining abilities in progenies of cacao (Theobroma cacao L) originating from contrasting parents for canopy vigor. Emphasis was given to the evaluation of morphological and physiological parameters and the phenotypic and genotypic correlations to understand the dynamics of the action of the genes involved, as well as in expression profile from genes of gibberellins biosynthesis pathway in the parents. Fifteen F1 progenies were obtained from crosses of six clones (IMC 67, P4B, PUCALA, SCA 6, SCA 24 and SJ 02) that were evaluated in a randomized complete block design with four replicates of 12 plants per progeny, in a balanced half table diallel scheme. It is possible to identify and select plants and progenies of low, medium and high height, as there is expressive genetic variability for the evaluated parameters, some of these on higher additive effects, others on larger nonadditive effects and others under a balance of these effects. Most physiological parameters evaluated show that for selection of plants with the desired performance, no complex breeding methods would be necessary due to the high and medium heritability observed. Strong genetic components were observed from many of the correlations, which indicate the possibility to formulate selection indices for multi-traits, such as dwarfism or semidwarfism, tolerance to increase of leaf sodium concentrations and maintenance of the photosynthetic apparatus integrity under these conditions. Additionally, plants with higher carbon fixation, better water use, higher carboxylation efficiency and greater magnesium accumulation in leaves can be selected.

  5. USE OF CONTINUOUS MEASUREMENTS OF INTEGRAL AEROSOL PARAMETERS TO ESTIMATE PARTICLE SURFACE AREA

    EPA Science Inventory

    This study was undertaken because of interest in using particle surface area as an indicator for studies of the health effects of particulate matter. First, we wished to determine the integral parameter of the size distribution measured by the electrical aerosol detector. Secon...

  6. Implementing an extension of the analytical hierarchy process using ordered weighted averaging operators with fuzzy quantifiers in ArcGIS

    NASA Astrophysics Data System (ADS)

    Boroushaki, Soheil; Malczewski, Jacek

    2008-04-01

    This paper focuses on the integration of GIS and an extension of the analytical hierarchy process (AHP) using quantifier-guided ordered weighted averaging (OWA) procedure. AHP_OWA is a multicriteria combination operator. The nature of the AHP_OWA depends on some parameters, which are expressed by means of fuzzy linguistic quantifiers. By changing the linguistic terms, AHP_OWA can generate a wide range of decision strategies. We propose a GIS-multicriteria evaluation (MCE) system through implementation of AHP_OWA within ArcGIS, capable of integrating linguistic labels within conventional AHP for spatial decision making. We suggest that the proposed GIS-MCE would simplify the definition of decision strategies and facilitate an exploratory analysis of multiple criteria by incorporating qualitative information within the analysis.

  7. Evaluation of automated decisionmaking methodologies and development of an integrated robotic system simulation, volume 2, part 1. Appendix A: Software documentation

    NASA Technical Reports Server (NTRS)

    Lowrie, J. W.; Fermelia, A. J.; Haley, D. C.; Gremban, K. D.; Vanbaalen, J.; Walsh, R. W.

    1982-01-01

    Documentation of the preliminary software developed as a framework for a generalized integrated robotic system simulation is presented. The program structure is composed of three major functions controlled by a program executive. The three major functions are: system definition, analysis tools, and post processing. The system definition function handles user input of system parameters and definition of the manipulator configuration. The analysis tools function handles the computational requirements of the program. The post processing function allows for more detailed study of the results of analysis tool function executions. Also documented is the manipulator joint model software to be used as the basis of the manipulator simulation which will be part of the analysis tools capability.

  8. A New Energy-Critical Plane Damage Parameter for Multiaxial Fatigue Life Prediction of Turbine Blades.

    PubMed

    Yu, Zheng-Yong; Zhu, Shun-Peng; Liu, Qiang; Liu, Yunhan

    2017-05-08

    As one of fracture critical components of an aircraft engine, accurate life prediction of a turbine blade to disk attachment is significant for ensuring the engine structural integrity and reliability. Fatigue failure of a turbine blade is often caused under multiaxial cyclic loadings at high temperatures. In this paper, considering different failure types, a new energy-critical plane damage parameter is proposed for multiaxial fatigue life prediction, and no extra fitted material constants will be needed for practical applications. Moreover, three multiaxial models with maximum damage parameters on the critical plane are evaluated under tension-compression and tension-torsion loadings. Experimental data of GH4169 under proportional and non-proportional fatigue loadings and a case study of a turbine disk-blade contact system are introduced for model validation. Results show that model predictions by Wang-Brown (WB) and Fatemi-Socie (FS) models with maximum damage parameters are conservative and acceptable. For the turbine disk-blade contact system, both of the proposed damage parameters and Smith-Watson-Topper (SWT) model show reasonably acceptable correlations with its field number of flight cycles. However, life estimations of the turbine blade reveal that the definition of the maximum damage parameter is not reasonable for the WB model but effective for both the FS and SWT models.

  9. A New Energy-Critical Plane Damage Parameter for Multiaxial Fatigue Life Prediction of Turbine Blades

    PubMed Central

    Yu, Zheng-Yong; Zhu, Shun-Peng; Liu, Qiang; Liu, Yunhan

    2017-01-01

    As one of fracture critical components of an aircraft engine, accurate life prediction of a turbine blade to disk attachment is significant for ensuring the engine structural integrity and reliability. Fatigue failure of a turbine blade is often caused under multiaxial cyclic loadings at high temperatures. In this paper, considering different failure types, a new energy-critical plane damage parameter is proposed for multiaxial fatigue life prediction, and no extra fitted material constants will be needed for practical applications. Moreover, three multiaxial models with maximum damage parameters on the critical plane are evaluated under tension-compression and tension-torsion loadings. Experimental data of GH4169 under proportional and non-proportional fatigue loadings and a case study of a turbine disk-blade contact system are introduced for model validation. Results show that model predictions by Wang-Brown (WB) and Fatemi-Socie (FS) models with maximum damage parameters are conservative and acceptable. For the turbine disk-blade contact system, both of the proposed damage parameters and Smith-Watson-Topper (SWT) model show reasonably acceptable correlations with its field number of flight cycles. However, life estimations of the turbine blade reveal that the definition of the maximum damage parameter is not reasonable for the WB model but effective for both the FS and SWT models. PMID:28772873

  10. Ultra-large nonlinear parameter in graphene-silicon waveguide structures.

    PubMed

    Donnelly, Christine; Tan, Dawn T H

    2014-09-22

    Mono-layer graphene integrated with optical waveguides is studied for the purpose of maximizing E-field interaction with the graphene layer, for the generation of ultra-large nonlinear parameters. It is shown that the common approach used to minimize the waveguide effective modal area does not accurately predict the configuration with the maximum nonlinear parameter. Both photonic and plasmonic waveguide configurations and graphene integration techniques realizable with today's fabrication tools are studied. Importantly, nonlinear parameters exceeding 10(4) W(-1)/m, two orders of magnitude larger than that in silicon on insulator waveguides without graphene, are obtained for the quasi-TE mode in silicon waveguides incorporating mono-layer graphene in the evanescent part of the optical field. Dielectric loaded surface plasmon polariton waveguides incorporating mono-layer graphene are observed to generate nonlinear parameters as large as 10(5) W(-1)/m, three orders of magnitude larger than that in silicon on insulator waveguides without graphene. The ultra-large nonlinear parameters make such waveguides promising platforms for nonlinear integrated optics at ultra-low powers, and for previously unobserved nonlinear optical effects to be studied in a waveguide platform.

  11. TU-FG-201-09: Predicting Accelerator Dysfunction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Able, C; Nguyen, C; Baydush, A

    Purpose: To develop an integrated statistical process control (SPC) framework using digital performance and component data accumulated within the accelerator system that can detect dysfunction prior to unscheduled downtime. Methods: Seven digital accelerators were monitored for twelve to 18 months. The accelerators were operated in a ‘run to failure mode’ with the individual institutions determining when service would be initiated. Institutions were required to submit detailed service reports. Trajectory and text log files resulting from a robust daily VMAT QA delivery were decoded and evaluated using Individual and Moving Range (I/MR) control charts. The SPC evaluation was presented in amore » customized dashboard interface that allows the user to review 525 monitored parameters (480 MLC parameters). Chart limits were calculated using a hybrid technique that includes the standard SPC 3σ limits and an empirical factor based on the parameter/system specification. The individual (I) grand mean values and control limit ranges of the I/MR charts of all accelerators were compared using statistical (ranked analysis of variance (ANOVA)) and graphical analyses to determine consistency of operating parameters. Results: When an alarm or warning was directly connected to field service, process control charts predicted dysfunction consistently on beam generation related parameters (BGP)– RF Driver Voltage, Gun Grid Voltage, and Forward Power (W); beam uniformity parameters – angle and position steering coil currents; and Gantry position accuracy parameter: cross correlation max-value. Control charts for individual MLC – cross correlation max-value/position detected 50% to 60% of MLCs serviced prior to dysfunction or failure. In general, non-random changes were detected 5 to 80 days prior to a service intervention. The ANOVA comparison of BGP determined that each accelerator parameter operated at a distinct value. Conclusion: The SPC framework shows promise. Long term monitoring coordinated with service will be required to definitively determine the effectiveness of the model. Varian Medical System, Inc. provided funding in support of the research presented.« less

  12. Correlation between Initial BIC and the Insertion Torque/Depth Integral Recorded with an Instantaneous Torque-Measuring Implant Motor: An in vivo Study.

    PubMed

    Capparé, Paolo; Vinci, Raffaele; Di Stefano, Danilo Alessio; Traini, Tonino; Pantaleo, Giuseppe; Gherlone, Enrico Felice; Gastaldi, Giorgio

    2015-10-01

    Quantitative intraoperative evaluation of bone quality at implant placement site and postinsertion implant primary stability assessment are two key parameters to perform implant-supported rehabilitation properly. A novel micromotor has been recently introduced allowing to measure bone density at implant placement site and to record implant insertion-related parameters, such as the instantaneous, average and peak insertion torque values, and the insertion torque/depth integral. The aim of this study was to investigate in vivo if any correlation existed between initial bone-to-implant contact (BIC) and bone density and integral values recorded with the instrument. Twenty-five patients seeking for implant-supported rehabilitation of edentulous areas were consecutively treated. Before implant placement, bone density at the insertion site was measured. For each patient, an undersized 3.3 × 8-mm implant was placed, recording the insertion torque/depth integral values. After 15 minutes, the undersized implant was retrieved with a 0.5 mm-thick layer of bone surrounding it. Standard implants were consequently placed. Retrieved implants were analyzed for initial BIC quantification after fixation, dehydration, acrylic resin embedment, sections cutting and grinding, and toluidine-blue and acid fuchsine staining. Correlation between initial BIC values, bone density at the insertion site, and the torque/depth integral values was investigated by linear regression analysis. A significant linear correlation was found to exist between initial BIC and (a) bone density at the insertion site (R = 0.96, explained variance R(2)  = 0.92) and (b) torque/depth integral at placement (R = 0.81, explained variance R(2)  = 0.66). The system provided quantitative, reliable data correlating significantly with immediate postinsertion initial BIC, and could therefore represent a valuable tool both for clinical research and for the oral implantologist in his/her daily clinical practice. © 2015 Wiley Periodicals, Inc.

  13. BOKASUN: A fast and precise numerical program to calculate the Master Integrals of the two-loop sunrise diagrams

    NASA Astrophysics Data System (ADS)

    Caffo, Michele; Czyż, Henryk; Gunia, Michał; Remiddi, Ettore

    2009-03-01

    We present the program BOKASUN for fast and precise evaluation of the Master Integrals of the two-loop self-mass sunrise diagram for arbitrary values of the internal masses and the external four-momentum. We use a combination of two methods: a Bernoulli accelerated series expansion and a Runge-Kutta numerical solution of a system of linear differential equations. Program summaryProgram title: BOKASUN Catalogue identifier: AECG_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECG_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 9404 No. of bytes in distributed program, including test data, etc.: 104 123 Distribution format: tar.gz Programming language: FORTRAN77 Computer: Any computer with a Fortran compiler accepting FORTRAN77 standard. Tested on various PC's with LINUX Operating system: LINUX RAM: 120 kbytes Classification: 4.4 Nature of problem: Any integral arising in the evaluation of the two-loop sunrise Feynman diagram can be expressed in terms of a given set of Master Integrals, which should be calculated numerically. The program provides a fast and precise evaluation method of the Master Integrals for arbitrary (but not vanishing) masses and arbitrary value of the external momentum. Solution method: The integrals depend on three internal masses and the external momentum squared p. The method is a combination of an accelerated expansion in 1/p in its (pretty large!) region of fast convergence and of a Runge-Kutta numerical solution of a system of linear differential equations. Running time: To obtain 4 Master Integrals on PC with 2 GHz processor it takes 3 μs for series expansion with pre-calculated coefficients, 80 μs for series expansion without pre-calculated coefficients, from a few seconds up to a few minutes for Runge-Kutta method (depending on the required accuracy and the values of the physical parameters).

  14. Modelling the growth of Populus species using Ecosystem Demography (ED) model

    NASA Astrophysics Data System (ADS)

    Wang, D.; Lebauer, D. S.; Feng, X.; Dietze, M. C.

    2010-12-01

    Hybrid poplar plantations are an important source being evaluated for biomass production. Effective management of such plantations requires adequate growth and yield models. The Ecosystem Demography model (ED) makes predictions about the large scales of interest in above- and belowground ecosystem structure and the fluxes of carbon and water from a description of the fine-scale physiological processes. In this study, we used a workflow management tool, the Predictive Ecophysiological Carbon flux Analyzer (PECAn), to integrate literature data, field measurement and the ED model to provide predictions of ecosystem functioning. Parameters for the ED ensemble runs were sampled from the posterior distribution of ecophysiological traits of Populus species compiled from the literature using a Bayesian meta-analysis approach. Sensitivity analysis was performed to identify the parameters which contribute the most to the uncertainties of the ED model output. Model emulation techniques were used to update parameter posterior distributions using field-observed data in northern Wisconsin hybrid poplar plantations. Model results were evaluated with 5-year field-observed data in a hybrid poplar plantation at New Franklin, MO. ED was then used to predict the spatial variability of poplar yield in the coterminous United States (United States minus Alaska and Hawaii). Sensitivity analysis showed that root respiration, dark respiration, growth respiration, stomatal slope and specific leaf area contribute the most to the uncertainty, which suggests that our field measurements and data collection should focus on these parameters. The ED model successfully captured the inter-annual and spatial variability of the yield of poplar. Analyses in progress with the ED model focus on evaluating the ecosystem services of short-rotation woody plantations, such as impacts on soil carbon storage, water use, and nutrient retention.

  15. Developing R&D portfolio business validity simulation model and system.

    PubMed

    Yeo, Hyun Jin; Im, Kwang Hyuk

    2015-01-01

    The R&D has been recognized as critical method to take competitiveness by not only companies but also nations with its value creation such as patent value and new product. Therefore, R&D has been a decision maker's burden in that it is hard to decide how much money to invest, how long time one should spend, and what technology to develop which means it accompanies resources such as budget, time, and manpower. Although there are diverse researches about R&D evaluation, business factors are not concerned enough because almost all previous studies are technology oriented evaluation with one R&D technology based. In that, we early proposed R&D business aspect evaluation model which consists of nine business model components. In this research, we develop a simulation model and system evaluating a company or industry's R&D portfolio with business model point of view and clarify default and control parameters to facilitate evaluator's business validity work in each evaluation module by integrate to one screen.

  16. Developing R&D Portfolio Business Validity Simulation Model and System

    PubMed Central

    2015-01-01

    The R&D has been recognized as critical method to take competitiveness by not only companies but also nations with its value creation such as patent value and new product. Therefore, R&D has been a decision maker's burden in that it is hard to decide how much money to invest, how long time one should spend, and what technology to develop which means it accompanies resources such as budget, time, and manpower. Although there are diverse researches about R&D evaluation, business factors are not concerned enough because almost all previous studies are technology oriented evaluation with one R&D technology based. In that, we early proposed R&D business aspect evaluation model which consists of nine business model components. In this research, we develop a simulation model and system evaluating a company or industry's R&D portfolio with business model point of view and clarify default and control parameters to facilitate evaluator's business validity work in each evaluation module by integrate to one screen. PMID:25893209

  17. Systematic procedure for designing processes with multiple environmental objectives.

    PubMed

    Kim, Ki-Joo; Smith, Raymond L

    2005-04-01

    Evaluation of multiple objectives is very important in designing environmentally benign processes. It requires a systematic procedure for solving multiobjective decision-making problems due to the complex nature of the problems, the need for complex assessments, and the complicated analysis of multidimensional results. In this paper, a novel systematic procedure is presented for designing processes with multiple environmental objectives. This procedure has four steps: initialization, screening, evaluation, and visualization. The first two steps are used for systematic problem formulation based on mass and energy estimation and order of magnitude analysis. In the third step, an efficient parallel multiobjective steady-state genetic algorithm is applied to design environmentally benign and economically viable processes and to provide more accurate and uniform Pareto optimal solutions. In the last step a new visualization technique for illustrating multiple objectives and their design parameters on the same diagram is developed. Through these integrated steps the decision-maker can easily determine design alternatives with respect to his or her preferences. Most importantly, this technique is independent of the number of objectives and design parameters. As a case study, acetic acid recovery from aqueous waste mixtures is investigated by minimizing eight potential environmental impacts and maximizing total profit. After applying the systematic procedure, the most preferred design alternatives and their design parameters are easily identified.

  18. Friction Stir Welding in Wrought and Cast Aluminum Alloys: Weld Quality Evaluation and Effects of Processing Parameters on Microstructure and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Pan, Yi; Lados, Diana A.

    2017-04-01

    Friction stir welding (FSW) is a solid-state process widely used for joining similar and dissimilar materials for critical applications in the transportation sector. Understanding the effects of the process on microstructure and mechanical properties is critical in design for structural integrity. In this study, four aluminum alloy systems (wrought 6061-T651 and cast A356, 319, and A390) were processed in both as-fabricated and pre-weld heat-treated (T6) conditions using various processing parameters. The effects of processing and heat treatment on the resulting microstructures, macro-/micro-hardness, and tensile properties were systematically investigated and mechanistically correlated to changes in grain size, characteristic phases, and strengthening precipitates. Tensile tests were performed at room temperature both along and across the welding zones. A new method able to evaluate weld quality (using a weld quality index) was developed based on the stress concentration calculated under tensile loading. Optimum processing parameter domains that provide both defect-free welds and good mechanical properties were determined for each alloy and associated with the thermal history of the process. These results were further related to characteristic microstructural features, which can be used for component design and materials/process optimization.

  19. Using Space Syntax to Assess Safety in Public Areas - Case Study of Tarbiat Pedestrian Area, Tabriz-Iran

    NASA Astrophysics Data System (ADS)

    Cihangir Çamur, Kübra; Roshani, Mehdi; Pirouzi, Sania

    2017-10-01

    In studying the urban complex issues, simulation and modelling of public space use considerably helps in determining and measuring factors such as urban safety. Depth map software for determining parameters of the spatial layout techniques; and Statistical Package for Social Sciences (SPSS) software for analysing and evaluating the views of the pedestrians on public safety were used in this study. Connectivity, integration, and depth of the area in the Tarbiat city blocks were measured using the Space Syntax Method, and these parameters are presented as graphical and mathematical data. The combination of the results obtained from the questionnaire and statistical analysis with the results of spatial arrangement technique represents the appropriate and inappropriate spaces for pedestrians. This method provides a useful and effective instrument for decision makers, planners, urban designers and programmers in order to evaluate public spaces in the city. Prior to physical modification of urban public spaces, space syntax simulates the pedestrian safety to be used as an analytical tool by the city management. Finally, regarding the modelled parameters and identification of different characteristics of the case, this study represents the strategies and policies in order to increase the safety of the pedestrians of Tarbiat in Tabriz.

  20. Evaluation of a pointwise microcirculation assessment method using liquid and multilayered tissue simulating phantoms

    NASA Astrophysics Data System (ADS)

    Fredriksson, Ingemar; Saager, Rolf B.; Durkin, Anthony J.; Strömberg, Tomas

    2017-11-01

    A fiber-optic probe-based instrument, designed for assessment of parameters related to microcirculation, red blood cell tissue fraction (fRBC), oxygen saturation (S), and speed resolved perfusion, has been evaluated using state-of-the-art tissue phantoms. The probe integrates diffuse reflectance spectroscopy (DRS) at two source-detector separations and laser Doppler flowmetry, using an inverse Monte Carlo method for identifying the parameters of a multilayered tissue model. Here, we characterize the accuracy of the DRS aspect of the instrument using (1) liquid blood phantoms containing yeast and (2) epidermis-dermis mimicking solid-layered phantoms fabricated from polydimethylsiloxane, titanium oxide, hemoglobin, and coffee. The root-mean-square (RMS) deviations for fRBC for the two liquid phantoms were 11% and 5.3%, respectively, and 11% for the solid phantoms with highest hemoglobin signatures. The RMS deviation for S was 5.2% and 2.9%, respectively, for the liquid phantoms, and 2.9% for the solid phantoms. RMS deviation for the reduced scattering coefficient (μs‧), for the solid phantoms was 15% (475 to 850 nm). For the liquid phantoms, the RMS deviation in average vessel diameter (D) was 1 μm. In conclusion, the skin microcirculation parameters fRBC and S, as well as, μs‧ and D are estimated with reasonable accuracy.

  1. Prospective study of bacteraemia in acute haemorrhagic diarrhoea syndrome in dogs.

    PubMed

    Unterer, S; Lechner, E; Mueller, R S; Wolf, G; Straubinger, R K; Schulz, B S; Hartmann, K

    2015-03-21

    In dogs with idiopathic acute haemorrhagic diarrhoea syndrome (AHDS), a serious loss of intestinal mucosal barrier integrity occurs. However, the incidence of bacterial translocation in dogs with idiopathic AHDS is not known. Thus, the objectives of this prospective study were to identify the incidence of bacteraemia, to evaluate the frequency of septic events and the influence of bacteraemia on various clinical and laboratory parameters, duration of hospitalisation and survival of dogs with idiopathic AHDS. The study included 87 dogs with idiopathic AHDS. Twenty-one healthy dogs served as control group. To evaluate clinical significance of bacterial translocation, blood culture results were compared between patients and controls. Clinical and laboratory parameters were compared between patients with positive and negative blood cultures. There was no significant difference in either incidence of bacteraemia between patients with idiopathic AHDS (11 per cent) and controls (14 per cent) or in severity of clinical signs, laboratory parameters, duration of hospitalisation or mortality between blood culture-positive and culture-negative dogs with idiopathic AHDS. The results of this study suggest that the incidence of bacteraemia in dogs with idiopathic AHDS is low and not different from that of healthy control dogs. Bacteraemia does not influence the clinical course or survival and thus antibiotic treatment is not indicated to prevent sepsis. British Veterinary Association.

  2. Integration of Energy Consumption and CO2 Emissions into the DES Tool with Lean Thinking

    NASA Astrophysics Data System (ADS)

    Nujoom, Reda; Wang, Qian

    2018-01-01

    Products are often made by accomplishing a number of manufacturing processes on a sequential flow line which is also known as manufacturing systems. In a traditional way, design or evaluation of a manufacturing system involves a determination or an analysis of the system performance by adjusting system parameters relating to such as system capacity, material processing time, material-handling and transportation and shop-floor layout. Environment related parameters, however, are not considered or considered as separate issues. In the past decade, there has been a growing concern about the environmental protection and governments almost in all over the world enforced certain rules and regulation to promote energy saving and reduce carbon dioxide (CO2) emissions in manufacturing industry. To date, development of a sustainable manufacturing system requires designers who need not merely to apply traditional methods of improving system efficiency and productivity but also examine the environmental issues in production of the developed manufacturing system. Most researchers, however, focused on operational systems, which do not incorporate the effect of environmental factors that may also affect the system performance. This paper presents a research work aiming to addresses these issues in design and evaluation of sustainable manufacturing systems incorporating parameters of energy consumption and CO2 emissions into a DES (discrete event simulation) tool.

  3. Short-term effects of benzalkonium chloride and atrazine on Elodea canadensis using a miniaturised microbioreactor system for an online monitoring of physiologic parameters.

    PubMed

    Vervliet-Scheebaum, Marco; Ritzenthaler, Raphael; Normann, Johannes; Wagner, Edgar

    2008-02-01

    The study evaluated the effects of benzalkonium chloride (BAC) and atrazine on the macrophyte Elodea canadensis (Michaux) using a miniaturised monitoring test system consisting of a microbioreactor of reduced volume and integrated sensors for the online measurement of physiologic parameters, like oxygen production and different parameters of fluorescence. Different concentrations of both chemicals were applied to leaves of E. canadensis and the physiologic endpoints evaluated after 1h. A concentration-dependent reduction of the oxygen production and of the effective quantum yield of energy conversion was recorded. The mini-PAM technique implemented in the presented system allowed for a clear monitoring of the kinetic of BAC and atrazine, showing their distinct mode of action. No observable adverse effects were recorded up to concentrations of 2.5 mg/L and 10 microg/L, for BAC and atrazine, respectively. These values are in accordance with available results in the literature, hence indicating that the microbioreactor test system might be suitable, on the one hand, for the laboratory screening of potential short-term toxicity of contaminants on aquatic plants, and on the other hand, serve as an in situ field biomonitoring system for the rapid detection of pollutants in water.

  4. Single neuron modeling and data assimilation in BNST neurons

    NASA Astrophysics Data System (ADS)

    Farsian, Reza

    Neurons, although tiny in size, are vastly complicated systems, which are responsible for the most basic yet essential functions of any nervous system. Even the most simple models of single neurons are usually high dimensional, nonlinear, and contain many parameters and states which are unobservable in a typical neurophysiological experiment. One of the most fundamental problems in experimental neurophysiology is the estimation of these parameters and states, since knowing their values is essential in identification, model construction, and forward prediction of biological neurons. Common methods of parameter and state estimation do not perform well for neural models due to their high dimensionality and nonlinearity. In this dissertation, two alternative approaches for parameters and state estimation of biological neurons have been demonstrated: dynamical parameter estimation (DPE) and a Markov Chain Monte Carlo (MCMC) method. The first method uses elements of chaos control and synchronization theory for parameter and state estimation. MCMC is a statistical approach which uses a path integral formulation to evaluate a mean and an error bound for these unobserved parameters and states. These methods have been applied to biological system of neurons in Bed Nucleus of Stria Termialis neurons (BNST) of rats. State and parameters of neurons in both systems were estimated, and their value were used for recreating a realistic model and predicting the behavior of the neurons successfully. The knowledge of biological parameters can ultimately provide a better understanding of the internal dynamics of a neuron in order to build robust models of neuron networks.

  5. Evaluating the safety impact of adaptive cruise control in traffic oscillations on freeways.

    PubMed

    Li, Ye; Li, Zhibin; Wang, Hao; Wang, Wei; Xing, Lu

    2017-07-01

    Adaptive cruise control (ACC) has been considered one of the critical components of automated driving. ACC adjusts vehicle speeds automatically by measuring the status of the ego-vehicle and leading vehicle. Current commercial ACCs are designed to be comfortable and convenient driving systems. Little attention is paid to the safety impacts of ACC, especially in traffic oscillations when crash risks are the highest. The primary objective of this study was to evaluate the impacts of ACC parameter settings on rear-end collisions on freeways. First, the occurrence of a rear-end collision in a stop-and-go wave was analyzed. A car-following model in an integrated ACC was developed for a simulation analysis. The time-to-collision based factors were calculated as surrogate safety measures of the collision risk. We also evaluated different market penetration rates considering that the application of ACC will be a gradual process. The results showed that the safety impacts of ACC were largely affected by the parameters. Smaller time delays and larger time gaps improved safety performance, but inappropriate parameter settings increased the collision risks and caused traffic disturbances. A higher reduction of the collision risk was achieved as the ACC vehicle penetration rate increased, especially in the initial stage with penetration rates of less than 30%. This study also showed that in the initial stage, the combination of ACC and a variable speed limit achieved better safety improvements on congested freeways than each single technique. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Soil-vegetation-atmosphere energy fluxes: Land Surface Temperature evaluation by Terra/MODIS satellite images

    NASA Astrophysics Data System (ADS)

    Telesca, V.; Copertino, V. A.; Scavone, G.; Pastore, V.; Dal Sasso, S.

    2009-04-01

    Most of the hydrological models are by now founded on field and satellite data integration. In fact, the use of remote sensing techniques supplies the frequent lack of field-measured variables and parameters required to apply evaluation models of the hydrological cycle components at a regional scale. These components are very sensitive to the climatic and surface features and conditions. Remote sensing represent a complementary contribution to in situ investigation methodologies, furnishing repeated and real time observations. Naturally, the interest of these techniques is tied up to the existence of a solid correlation among the greatness to evaluate and the remote sensing information obtainable from the images. In this context, satellite remote sensing has become a basic tool since it allows the regular monitoring of extensive areas. Different surface variables and parameters can be extracted from the combination of the multi-spectral information contained in a satellite image. Land Surface Temperature (LST) is a fundamental parameter to estimate most of the components of the hydrological cycle and the soil-atmosphere energy balance, such as the net radiation, the sensible heat flux and the actual evapotranspiration. Besides, LST maps can be used in models for the fire monitoring and prevention. The aim of this work is to realize, exploiting the contribution of the remote sensing, some Land Surface Temperature maps, applying different "Split Windows" algorithms and to compare them with the "Day/Night" LST/MODIS, to select the best algorithm to apply in a Two-Source Energy Balance model (STSEB). Integrated into a rainfall/runoff model, it can contribute to cope with problems of land management for the protection from natural hazards. In particular, the energy balance procedure will be included into a model for the ‘in continuous' simulation and the forecast of floods. Another important application of our model is tied up to the forecast of scenarios connected to drought problems. In this context, they can contribute to the planning and the realization of mitigation interventions for the desertification risk.

  7. Evaluation of performance of distributed delay model for chemotherapy-induced myelosuppression.

    PubMed

    Krzyzanski, Wojciech; Hu, Shuhua; Dunlavey, Michael

    2018-04-01

    The distributed delay model has been introduced that replaces the transit compartments in the classic model of chemotherapy-induced myelosuppression with a convolution integral. The maturation of granulocyte precursors in the bone marrow is described by the gamma probability density function with the shape parameter (ν). If ν is a positive integer, the distributed delay model coincides with the classic model with ν transit compartments. The purpose of this work was to evaluate performance of the distributed delay model with particular focus on model deterministic identifiability in the presence of the shape parameter. The classic model served as a reference for comparison. Previously published white blood cell (WBC) count data in rats receiving bolus doses of 5-fluorouracil were fitted by both models. The negative two log-likelihood objective function (-2LL) and running times were used as major markers of performance. Local sensitivity analysis was done to evaluate the impact of ν on the pharmacodynamics response WBC. The ν estimate was 1.46 with 16.1% CV% compared to ν = 3 for the classic model. The difference of 6.78 in - 2LL between classic model and the distributed delay model implied that the latter performed significantly better than former according to the log-likelihood ratio test (P = 0.009), although the overall performance was modestly better. The running times were 1 s and 66.2 min, respectively. The long running time of the distributed delay model was attributed to computationally intensive evaluation of the convolution integral. The sensitivity analysis revealed that ν strongly influences the WBC response by controlling cell proliferation and elimination of WBCs from the circulation. In conclusion, the distributed delay model was deterministically identifiable from typical cytotoxic data. Its performance was modestly better than the classic model with significantly longer running time.

  8. Proposal for a Conceptual Model for Evaluating Lean Product Development Performance: A Study of LPD Enablers in Manufacturing Companies

    NASA Astrophysics Data System (ADS)

    Osezua Aikhuele, Daniel; Mohd Turan, Faiz

    2016-02-01

    The instability in today's market and the emerging demands for mass customized products by customers, are driving companies to seek for cost effective and time efficient improvements in their production system and this have led to real pressure for the adaptation of new developmental architecture and operational parameters to remain competitive in the market. Among such developmental architecture adopted, is the integration of lean thinking in the product development process. However, due to lack of clear understanding of the lean performance and its measurements, many companies are unable to implement and fully integrate the lean principle into their product development process and without a proper performance measurement, the performance level of the organizational value stream will be unknown and the specific area of improvement as it relates to the LPD program cannot be tracked. Hence, it will result in poor decision making in the LPD implementation. This paper therefore seeks to present a conceptual model for evaluation of LPD performances by identifying and analysing the core existing LPD enabler (Chief Engineer, Cross-functional teams, Set-based engineering, Poka-yoke (mistakeproofing), Knowledge-based environment, Value-focused planning and development, Top management support, Technology, Supplier integration, Workforce commitment and Continuous improvement culture) for assessing the LPD performance.

  9. Fiber Optic Sensors for Health Monitoring of Morphing Aircraft

    NASA Technical Reports Server (NTRS)

    Brown, Timothy; Wood, Karen; Childers, Brooks; Cano, Roberto; Jensen, Brian; Rogowski, Robert

    2001-01-01

    Fiber optic sensors are being developed for health monitoring of future aircraft. Aircraft health monitoring involves the use of strain, temperature, vibration and chemical sensors. These sensors will measure load and vibration signatures that will be used to infer structural integrity. Sine the aircraft morphing program assumes that future aircraft will be aerodynamically reconfigurable there is also a requirement for pressure, flow and shape sensors. In some cases a single fiber may be used for measuring several different parameters. The objective of the current program is to develop techniques for using optical fibers to monitor composite cure in real time during manufacture and to monitor in-service structural integrity of the composite structure. Graphite-epoxy panels were fabricated with integrated optical fibers of various types. The panels were mechanically and thermally tested to evaluate composite strength and sensor durability. Finally the performance of the fiber optic sensors was determined. Experimental results are presented evaluating the performance of embedded and surface mounted optical fibers for measuring strain, temperature and chemical composition. The performance of the fiber optic sensors was determined by direct comparison with results from more conventional instrumentation. The facilities for fabricating optical fiber and associated sensors and methods of demodulating Bragg gratings for strain measurement will be described.

  10. Numerical Simulation and Experimental Validation of MIG Welding of T-Joints of Thin Aluminum Plates for Top Class Vehicles

    NASA Astrophysics Data System (ADS)

    Bonazzi, Enrico; Colombini, Elena; Panari, Davide; Vergnano, Alberto; Leali, Francesco; Veronesi, Paolo

    2017-01-01

    The integration of experiments with numerical simulations can efficiently support a quick evaluation of the welded joint. In this work, the MIG welding operation on aluminum T-joint thin plate has been studied by the integration of both simulation and experiments. The aim of the paper is to enlarge the global database, to promote the use of thin aluminum sheets in automotive body industries and to provide new data. Since the welding of aluminum thin plates is difficult to control due to high speed of the heat source and high heat flows during heating and cooling, a simulation model could be considered an effective design tool to predict the real phenomena. This integrated approach enables new evaluation possibilities on MIG-welded thin aluminum T-joints, as correspondence between the extension of the microstructural zones and the simulation parameters, material hardness, transient 3D temperature distribution on the surface and inside the material, stresses, strains, and deformations. The results of the mechanical simulations are comparable with the experimental measurements along the welding path, especially considering the variability of the process. The results could well predict the welding-induced distortion, which together with local heating during welding must be anticipated and subsequently minimized and counterbalance.

  11. Effect of automated tube voltage selection, integrated circuit detector and advanced iterative reconstruction on radiation dose and image quality of 3rd generation dual-source aortic CT angiography: An intra-individual comparison.

    PubMed

    Mangold, Stefanie; De Cecco, Carlo N; Wichmann, Julian L; Canstein, Christian; Varga-Szemes, Akos; Caruso, Damiano; Fuller, Stephen R; Bamberg, Fabian; Nikolaou, Konstantin; Schoepf, U Joseph

    2016-05-01

    To compare, on an intra-individual basis, the effect of automated tube voltage selection (ATVS), integrated circuit detector and advanced iterative reconstruction on radiation dose and image quality of aortic CTA studies using 2nd and 3rd generation dual-source CT (DSCT). We retrospectively evaluated 32 patients who had undergone CTA of the entire aorta with both 2nd generation DSCT at 120kV using filtered back projection (FBP) (protocol 1) and 3rd generation DSCT using ATVS, an integrated circuit detector and advanced iterative reconstruction (protocol 2). Contrast-to-noise ratio (CNR) was calculated. Image quality was subjectively evaluated using a five-point scale. Radiation dose parameters were recorded. All studies were considered of diagnostic image quality. CNR was significantly higher with protocol 2 (15.0±5.2 vs 11.0±4.2; p<.0001). Subjective image quality analysis revealed no significant differences for evaluation of attenuation (p=0.08501) but image noise was rated significantly lower with protocol 2 (p=0.0005). Mean tube voltage and effective dose were 94.7±14.1kV and 6.7±3.9mSv with protocol 2; 120±0kV and 11.5±5.2mSv with protocol 1 (p<0.0001, respectively). Aortic CTA performed with 3rd generation DSCT, ATVS, integrated circuit detector, and advanced iterative reconstruction allow a substantial reduction of radiation exposure while improving image quality in comparison to 120kV imaging with FBP. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Vortex conception of rotor and mutual effect of screw/propellers

    NASA Technical Reports Server (NTRS)

    Lepilkin, A. M.

    1986-01-01

    A vortex theory of screw/propellers with variable circulation according to the blade and its azimuth is proposed, the problem is formulated and circulation is expanded in a Fourier series. Equations are given for inductive velocities in space for crews, including those with an infinitely large number of blades and expansion of the inductive velocity by blade azimuth of a second screw. Multiparameter improper integrals are given as a combination of elliptical integrals and elementary functions, and it is shown how to reduce elliptical integrals of the third kind with a complex parameter to integrals with a real parameter.

  13. Effect of Helical Slow-Wave Circuit Variations on TWT Cold-Test Characteristics

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.; Dayton, James A., Jr.

    1998-01-01

    Recent advances in the state of the art of computer modeling offer the possibility for the first time to evaluate the effect that slow-wave structure parameter variations, such'as manufacturing tolerances, have on the cold-test characteristics of helical traveling-wave tubes (TWT's). This will enable manufacturers to determine the cost effectiveness of controlling the dimensions of the component parts of the TWT, which is almost impossible to do experimentally without building a large number of tubes and controlling several parameters simultaneously. The computer code MAxwell's equations by the Finite Integration Algorithm (MAFIA) is used in this analysis to determine the effect on dispersion and on-axis interaction impedance of several helical slow-wave circuit parameter variations, including thickness and relative dielectric constant of the support rods, tape width, and height of the metallized films deposited on the dielectric rods. Previous computer analyzes required so many approximations that accurate determinations of the effect of many relevant dimensions on tube performance were practically impossible.

  14. Application of parameter estimation to aircraft stability and control: The output-error approach

    NASA Technical Reports Server (NTRS)

    Maine, Richard E.; Iliff, Kenneth W.

    1986-01-01

    The practical application of parameter estimation methodology to the problem of estimating aircraft stability and control derivatives from flight test data is examined. The primary purpose of the document is to present a comprehensive and unified picture of the entire parameter estimation process and its integration into a flight test program. The document concentrates on the output-error method to provide a focus for detailed examination and to allow us to give specific examples of situations that have arisen. The document first derives the aircraft equations of motion in a form suitable for application to estimation of stability and control derivatives. It then discusses the issues that arise in adapting the equations to the limitations of analysis programs, using a specific program for an example. The roles and issues relating to mass distribution data, preflight predictions, maneuver design, flight scheduling, instrumentation sensors, data acquisition systems, and data processing are then addressed. Finally, the document discusses evaluation and the use of the analysis results.

  15. The Microscope Space Mission and the In-Orbit Calibration Plan for its Instrument

    NASA Astrophysics Data System (ADS)

    Levy, Agnès Touboul, Pierre; Rodrigues, Manuel; Onera, Émilie Hardy; Métris, Gilles; Robert, Alain

    2015-01-01

    The MICROSCOPE space mission aims at testing the Equivalence Principle (EP) with an accuracy of 10-15. This principle is one of the basis of the General Relativity theory; it states the equivalence between gravitational and inertial mass. The test is based on the precise measurement of a gravitational signal by a differential electrostatic accelerometer which includes two cylindrical test masses made of different materials. The accelerometers constitute the payload accommodated on board a drag-free micro-satellite which is controlled inertial or rotating about the normal to the orbital plane. The acceleration estimates used for the EP test are disturbed by the instruments physical parameters and by the instrument environment conditions on-board the satellite. These parameters are partially measured with ground tests or during the integration of the instrument in the satellite (alignment). Nevertheless, the ground evaluations are not sufficient with respect to the EP test accuracy objectives. An in-orbit calibration is therefore needed to characterize them finely. The calibration process for each parameter has been defined.

  16. Integrating medical imaging analyses through a high-throughput bundled resource imaging system

    NASA Astrophysics Data System (ADS)

    Covington, Kelsie; Welch, E. Brian; Jeong, Ha-Kyu; Landman, Bennett A.

    2011-03-01

    Exploitation of advanced, PACS-centric image analysis and interpretation pipelines provides well-developed storage, retrieval, and archival capabilities along with state-of-the-art data providence, visualization, and clinical collaboration technologies. However, pursuit of integrated medical imaging analysis through a PACS environment can be limiting in terms of the overhead required to validate, evaluate and integrate emerging research technologies. Herein, we address this challenge through presentation of a high-throughput bundled resource imaging system (HUBRIS) as an extension to the Philips Research Imaging Development Environment (PRIDE). HUBRIS enables PACS-connected medical imaging equipment to invoke tools provided by the Java Imaging Science Toolkit (JIST) so that a medical imaging platform (e.g., a magnetic resonance imaging scanner) can pass images and parameters to a server, which communicates with a grid computing facility to invoke the selected algorithms. Generated images are passed back to the server and subsequently to the imaging platform from which the images can be sent to a PACS. JIST makes use of an open application program interface layer so that research technologies can be implemented in any language capable of communicating through a system shell environment (e.g., Matlab, Java, C/C++, Perl, LISP, etc.). As demonstrated in this proof-of-concept approach, HUBRIS enables evaluation and analysis of emerging technologies within well-developed PACS systems with minimal adaptation of research software, which simplifies evaluation of new technologies in clinical research and provides a more convenient use of PACS technology by imaging scientists.

  17. LETTER TO THE EDITOR: Two-centre exchange integrals for complex exponent Slater orbitals

    NASA Astrophysics Data System (ADS)

    Kuang, Jiyun; Lin, C. D.

    1996-12-01

    The one-dimensional integral representation for the Fourier transform of a two-centre product of B functions (finite linear combinations of Slater orbitals) with real parameters is generalized to include B functions with complex parameters. This one-dimensional integral representation allows for an efficient method of calculating two-centre exchange integrals with plane-wave electronic translational factors (ETF) over Slater orbitals of real/complex exponents. This method is a significant improvement on the previous two-dimensional quadrature method of the integrals. A new basis set of the form 0953-4075/29/24/005/img1 is proposed to improve the description of pseudo-continuum states in the close-coupling treatment of ion - atom collisions.

  18. Artificial neural networks for defining the water quality determinants of groundwater abstraction in coastal aquifer

    NASA Astrophysics Data System (ADS)

    Lallahem, S.; Hani, A.

    2017-02-01

    Water sustainability in the lower Seybouse River basin, eastern Algeria, must take into account the importance of water quantity and quality integration. So, there is a need for a better knowledge and understanding of the water quality determinants of groundwater abstraction to meet the municipal and agricultural uses. In this paper, the artificial neural network (ANN) models were used to model and predict the relationship between groundwater abstraction and water quality determinants in the lower Seybouse River basin. The study area chosen is the lower Seybouse River basin and real data were collected from forty five wells for reference year 2006. Results indicate that the feed-forward multilayer perceptron models with back-propagation are useful tools to define and prioritize the important water quality parameters of groundwater abstraction and use. The model evaluation shows that the correlation coefficients are more than 95% for training, verification and testing data. The model aims to link the water quantity and quality with the objective to strengthen the Integrated Water Resources Management approach. It assists water planners and managers to better assess the water quality parameters and progress towards the provision of appropriate quantities of water of suitable quality.

  19. Innovative hyperchaotic encryption algorithm for compressed video

    NASA Astrophysics Data System (ADS)

    Yuan, Chun; Zhong, Yuzhuo; Yang, Shiqiang

    2002-12-01

    It is accepted that stream cryptosystem can achieve good real-time performance and flexibility which implements encryption by selecting few parts of the block data and header information of the compressed video stream. Chaotic random number generator, for example Logistics Map, is a comparatively promising substitute, but it is easily attacked by nonlinear dynamic forecasting and geometric information extracting. In this paper, we present a hyperchaotic cryptography scheme to encrypt the compressed video, which integrates Logistics Map with Z(232 - 1) field linear congruential algorithm to strengthen the security of the mono-chaotic cryptography, meanwhile, the real-time performance and flexibility of the chaotic sequence cryptography are maintained. It also integrates with the dissymmetrical public-key cryptography and implements encryption and identity authentification on control parameters at initialization phase. In accord with the importance of data in compressed video stream, encryption is performed in layered scheme. In the innovative hyperchaotic cryptography, the value and the updating frequency of control parameters can be changed online to satisfy the requirement of the network quality, processor capability and security requirement. The innovative hyperchaotic cryprography proves robust security by cryptoanalysis, shows good real-time performance and flexible implement capability through the arithmetic evaluating and test.

  20. Corrosion of silicon integrated circuits and lifetime predictions in implantable electronic devices.

    PubMed

    Vanhoestenberghe, A; Donaldson, N

    2013-06-01

    Corrosion is a prime concern for active implantable devices. In this paper we review the principles underlying the concepts of hermetic packages and encapsulation, used to protect implanted electronics, some of which remain widely overlooked. We discuss how technological advances have created a need to update the way we evaluate the suitability of both protection methods. We demonstrate how lifetime predictability is lost for very small hermetic packages and introduce a single parameter to compare different packages, with an equation to calculate the minimum sensitivity required from a test method to guarantee a given lifetime. In the second part of this paper, we review the literature on the corrosion of encapsulated integrated circuits (ICs) and, following a new analysis of published data, we propose an equation for the pre-corrosion lifetime of implanted ICs, and discuss the influence of the temperature, relative humidity, encapsulation and field-strength. As any new protection will be tested under accelerated conditions, we demonstrate the sensitivity of acceleration factors to some inaccurately known parameters. These results are relevant for any application of electronics working in a moist environment. Our comparison of encapsulation and hermetic packages suggests that both concepts may be suitable for future implants.

  1. Closed Forms for 4-Parameter Families of Integrals

    ERIC Educational Resources Information Center

    Dana-Picard, Thierry; Zeitoun, David G.

    2009-01-01

    We compute closed forms for two multiparameter families of definite integrals, thus obtaining combinatorial formulas. As a consequence, a surprising formula is derived between a definite integral and an improper integral for the same parametric function.

  2. Visual Criterion for Understanding the Notion of Convergence if Integrals in One Parameter

    ERIC Educational Resources Information Center

    Alves, Francisco Regis Vieira

    2014-01-01

    Admittedly, the notion of generalized integrals in one parameter has a fundamental role. En virtue that, in this paper, we discuss and characterize an approach for to promote the visualization of this scientific mathematical concept. We still indicate the possibilities of graphical interpretation of formal properties related to notion of…

  3. Optimal Parameter Design of Coarse Alignment for Fiber Optic Gyro Inertial Navigation System.

    PubMed

    Lu, Baofeng; Wang, Qiuying; Yu, Chunmei; Gao, Wei

    2015-06-25

    Two different coarse alignment algorithms for Fiber Optic Gyro (FOG) Inertial Navigation System (INS) based on inertial reference frame are discussed in this paper. Both of them are based on gravity vector integration, therefore, the performance of these algorithms is determined by integration time. In previous works, integration time is selected by experience. In order to give a criterion for the selection process, and make the selection of the integration time more accurate, optimal parameter design of these algorithms for FOG INS is performed in this paper. The design process is accomplished based on the analysis of the error characteristics of these two coarse alignment algorithms. Moreover, this analysis and optimal parameter design allow us to make an adequate selection of the most accurate algorithm for FOG INS according to the actual operational conditions. The analysis and simulation results show that the parameter provided by this work is the optimal value, and indicate that in different operational conditions, the coarse alignment algorithms adopted for FOG INS are different in order to achieve better performance. Lastly, the experiment results validate the effectiveness of the proposed algorithm.

  4. Dual-shaped offset reflector antenna designs from solutions of the geometrical optics first-order partial differential equations

    NASA Technical Reports Server (NTRS)

    Galindo-Israel, V.; Imbriale, W.; Shogen, K.; Mittra, R.

    1990-01-01

    In obtaining solutions to the first-order nonlinear partial differential equations (PDEs) for synthesizing offset dual-shaped reflectors, it is found that previously observed computational problems can be avoided if the integration of the PDEs is started from an inner projected perimeter and integrated outward rather than starting from an outer projected perimeter and integrating inward. This procedure, however, introduces a new parameter, the main reflector inner perimeter radius p(o), when given a subreflector inner angle 0(o). Furthermore, a desired outer projected perimeter (e.g., a circle) is no longer guaranteed. Stability of the integration is maintained if some of the initial parameters are determined first from an approximate solution to the PDEs. A one-, two-, or three-parameter optimization algorithm can then be used to obtain a best set of parameters yielding a close fit to the desired projected outer rim. Good low cross-polarization mapping functions are also obtained. These methods are illustrated by synthesis of a high-gain offset-shaped Cassegrainian antenna and a low-noise offset-shaped Gregorian antenna.

  5. Integration of Linear Dynamic Emission and Climate Models with Air Traffic Simulations

    NASA Technical Reports Server (NTRS)

    Sridhar, Banavar; Ng, Hok K.; Chen, Neil Y.

    2012-01-01

    Future air traffic management systems are required to balance the conflicting objectives of maximizing safety and efficiency of traffic flows while minimizing the climate impact of aviation emissions and contrails. Integrating emission and climate models together with air traffic simulations improve the understanding of the complex interaction between the physical climate system, carbon and other greenhouse gas emissions and aviation activity. This paper integrates a national-level air traffic simulation and optimization capability with simple climate models and carbon cycle models, and climate metrics to assess the impact of aviation on climate. The capability can be used to make trade-offs between extra fuel cost and reduction in global surface temperature change. The parameters in the simulation can be used to evaluate the effect of various uncertainties in emission models and contrails and the impact of different decision horizons. Alternatively, the optimization results from the simulation can be used as inputs to other tools that monetize global climate impacts like the FAA s Aviation Environmental Portfolio Management Tool for Impacts.

  6. High-order boundary integral equation solution of high frequency wave scattering from obstacles in an unbounded linearly stratified medium

    NASA Astrophysics Data System (ADS)

    Barnett, Alex H.; Nelson, Bradley J.; Mahoney, J. Matthew

    2015-09-01

    We apply boundary integral equations for the first time to the two-dimensional scattering of time-harmonic waves from a smooth obstacle embedded in a continuously-graded unbounded medium. In the case we solve, the square of the wavenumber (refractive index) varies linearly in one coordinate, i.e. (Δ + E +x2) u (x1 ,x2) = 0 where E is a constant; this models quantum particles of fixed energy in a uniform gravitational field, and has broader applications to stratified media in acoustics, optics and seismology. We evaluate the fundamental solution efficiently with exponential accuracy via numerical saddle-point integration, using the truncated trapezoid rule with typically 102 nodes, with an effort that is independent of the frequency parameter E. By combining with a high-order Nyström quadrature, we are able to solve the scattering from obstacles 50 wavelengths across to 11 digits of accuracy in under a minute on a desktop or laptop.

  7. CONDUIT: A New Multidisciplinary Integration Environment for Flight Control Development

    NASA Technical Reports Server (NTRS)

    Tischler, Mark B.; Colbourne, Jason D.; Morel, Mark R.; Biezad, Daniel J.; Levine, William S.; Moldoveanu, Veronica

    1997-01-01

    A state-of-the-art computational facility for aircraft flight control design, evaluation, and integration called CONDUIT (Control Designer's Unified Interface) has been developed. This paper describes the CONDUIT tool and case study applications to complex rotary- and fixed-wing fly-by-wire flight control problems. Control system analysis and design optimization methods are presented, including definition of design specifications and system models within CONDUIT, and the multi-objective function optimization (CONSOL-OPTCAD) used to tune the selected design parameters. Design examples are based on flight test programs for which extensive data are available for validation. CONDUIT is used to analyze baseline control laws against pertinent military handling qualities and control system specifications. In both case studies, CONDUIT successfully exploits trade-offs between forward loop and feedback dynamics to significantly improve the expected handling, qualities and minimize the required actuator authority. The CONDUIT system provides a new environment for integrated control system analysis and design, and has potential for significantly reducing the time and cost of control system flight test optimization.

  8. Evaluation of groundwater potentiality survey in south Ataqa-northwestern part of Gulf of Suez by using resistivity data and site-selection modeling

    NASA Astrophysics Data System (ADS)

    Sultan, Sultan Awad; Essa, Khalid Sayed Ahmed Tawfik; Khalil, Mohamed Hassan; El-Nahry, Alaa Eldin Hassan; Galal, Alaa Nayef Hasan

    2017-06-01

    The integration between advanced techniques for groundwater exploration is necessary to manage and protect the vital resources. Direct current (DC) resistivity geoelectrical technique, Enhanced Thematic Mapper Landsat (ETM+) images and a geographic information system (GIS) are integrated to identify the groundwater potentiality in the study area. The interpretation of the one-dimensional (1-D) inversion of the acquired resistivity data are implemented for mapping the fresh to slightly brackish water aquifer. This number of vertical electric sounding is quite enough for different geologic mapping. The depth to the top of the ground water table (obtained from the existing Water well) and subsurface lithological information are used to calibrate the results of the resistivity data inversion. This research discussed how the integration between the geoelectrical parameters and hydrological data, could be used to determine the appropriate locations of dams construction and recommend the appropriate methods for management and rehabilitation of the aquifer.

  9. A path-independent integral for the characterization of solute concentration and flux at biofilm detachments

    USGS Publications Warehouse

    Moran, B.; Kulkarni, S.S.; Reeves, H.W.

    2007-01-01

    A path-independent (conservation) integral is developed for the characterization of solute concentration and flux in a biofilm in the vicinity of a detachment or other flux limiting boundary condition. Steady state conditions of solute diffusion are considered and biofilm kinetics are described by an uptake term which can be expressed in terms of a potential (Michaelis-Menten kinetics). An asymptotic solution for solute concentration at the tip of the detachment is obtained and shown to be analogous to that of antiplane crack problems in linear elasticity. It is shown that the amplitude of the asymptotic solution can be calculated by evaluating a path-independent integral. The special case of a semi-infinite detachment in an infinite strip is considered and the amplitude of the asymptotic field is related to the boundary conditions and problem parameters in closed form for zeroth and first order kinetics and numerically for Michaelis-Menten kinetics. ?? Springer Science+Business Media, Inc. 2007.

  10. A Galerkin discretisation-based identification for parameters in nonlinear mechanical systems

    NASA Astrophysics Data System (ADS)

    Liu, Zuolin; Xu, Jian

    2018-04-01

    In the paper, a new parameter identification method is proposed for mechanical systems. Based on the idea of Galerkin finite-element method, the displacement over time history is approximated by piecewise linear functions, and the second-order terms in model equation are eliminated by integrating by parts. In this way, the lost function of integration form is derived. Being different with the existing methods, the lost function actually is a quadratic sum of integration over the whole time history. Then for linear or nonlinear systems, the optimisation of the lost function can be applied with traditional least-squares algorithm or the iterative one, respectively. Such method could be used to effectively identify parameters in linear and arbitrary nonlinear mechanical systems. Simulation results show that even under the condition of sparse data or low sampling frequency, this method could still guarantee high accuracy in identifying linear and nonlinear parameters.

  11. Global asymptotic stability of density dependent integral population projection models.

    PubMed

    Rebarber, Richard; Tenhumberg, Brigitte; Townley, Stuart

    2012-02-01

    Many stage-structured density dependent populations with a continuum of stages can be naturally modeled using nonlinear integral projection models. In this paper, we study a trichotomy of global stability result for a class of density dependent systems which include a Platte thistle model. Specifically, we identify those systems parameters for which zero is globally asymptotically stable, parameters for which there is a positive asymptotically stable equilibrium, and parameters for which there is no asymptotically stable equilibrium. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Application of Two-Parameter Stabilizing Functions in Solving a Convolution-Type Integral Equation by Regularization Method

    NASA Astrophysics Data System (ADS)

    Maslakov, M. L.

    2018-04-01

    This paper examines the solution of convolution-type integral equations of the first kind by applying the Tikhonov regularization method with two-parameter stabilizing functions. The class of stabilizing functions is expanded in order to improve the accuracy of the resulting solution. The features of the problem formulation for identification and adaptive signal correction are described. A method for choosing regularization parameters in problems of identification and adaptive signal correction is suggested.

  13. Bayesian Multi-Trait Analysis Reveals a Useful Tool to Increase Oil Concentration and to Decrease Toxicity in Jatropha curcas L.

    PubMed Central

    Silva Junqueira, Vinícius; de Azevedo Peixoto, Leonardo; Galvêas Laviola, Bruno; Lopes Bhering, Leonardo; Mendonça, Simone; Agostini Costa, Tania da Silveira; Antoniassi, Rosemar

    2016-01-01

    The biggest challenge for jatropha breeding is to identify superior genotypes that present high seed yield and seed oil content with reduced toxicity levels. Therefore, the objective of this study was to estimate genetic parameters for three important traits (weight of 100 seed, oil seed content, and phorbol ester concentration), and to select superior genotypes to be used as progenitors in jatropha breeding. Additionally, the genotypic values and the genetic parameters estimated under the Bayesian multi-trait approach were used to evaluate different selection indices scenarios of 179 half-sib families. Three different scenarios and economic weights were considered. It was possible to simultaneously reduce toxicity and increase seed oil content and weight of 100 seed by using index selection based on genotypic value estimated by the Bayesian multi-trait approach. Indeed, we identified two families that present these characteristics by evaluating genetic diversity using the Ward clustering method, which suggested nine homogenous clusters. Future researches must integrate the Bayesian multi-trait methods with realized relationship matrix, aiming to build accurate selection indices models. PMID:27281340

  14. The application of a multi-parameter analysis in choosing the location of a new solid waste landfill in Serbia.

    PubMed

    Milosevic, Igor; Naunovic, Zorana

    2013-10-01

    This article presents a process of evaluation and selection of the most favourable location for a sanitary landfill facility from three alternative locations, by applying a multi-criteria decision-making (MCDM) method. An incorrect choice of location for a landfill facility can have a significant negative economic and environmental impact, such as the pollution of air, ground and surface waters. The aim of this article is to present several improvements in the practical process of landfill site selection using the VIKOR MCDM compromise ranking method integrated with a fuzzy analytic hierarchy process approach for determining the evaluation criteria weighing coefficients. The VIKOR method focuses on ranking and selecting from a set of alternatives in the presence of conflicting and non-commensurable (different units) criteria, and on proposing a compromise solution that is closest to the ideal solution. The work shows that valuable site ranking lists can be obtained using the VIKOR method, which is a suitable choice when there is a large number of relevant input parameters.

  15. Examination of total cross section resonance structure of niobium and silicon in neutron transmission experiments

    NASA Astrophysics Data System (ADS)

    Andrianova, Olga; Lomakov, Gleb; Manturov, Gennady

    2017-09-01

    The neutron transmission experiments are one of the main sources of information about the neutron cross section resonance structure and effect in the self-shielding. Such kind of data for niobium and silicon nuclides in energy range 7 keV to 3 MeV can be obtained from low-resolution transmission measurements performed earlier in Russia (with samples of 0.027 to 0.871 atom/barn for niobium and 0.076 to 1.803 atom/barn for silicon). A significant calculation-to-experiment discrepancy in energy range 100 to 600 keV and 300 to 800 keV for niobium and silicon, respectively, obtained using the evaluated nuclear data library ROSFOND, were found. The EVPAR code was used for estimation the average resonance parameters in energy range 7 to 600 keV for niobium. For silicon a stochastic optimization method was used to modify the resolved resonance parameters in energy range 300 to 800 keV. The improved ROSFOND evaluated nuclear data files were tested in calculation of ICSBEP integral benchmark experiments.

  16. Kinematic measures for upper limb robot-assisted therapy following stroke and correlations with clinical outcome measures: A review.

    PubMed

    Tran, Vi Do; Dario, Paolo; Mazzoleni, Stefano

    2018-03-01

    This review classifies the kinematic measures used to evaluate post-stroke motor impairment following upper limb robot-assisted rehabilitation and investigates their correlations with clinical outcome measures. An online literature search was carried out in PubMed, MEDLINE, Scopus and IEEE-Xplore databases. Kinematic parameters mentioned in the studies included were categorized into the International Classification of Functioning, Disability and Health (ICF) domains. The correlations between these parameters and the clinical scales were summarized. Forty-nine kinematic parameters were identified from 67 articles involving 1750 patients. The most frequently used parameters were: movement speed, movement accuracy, peak speed, number of speed peaks, and movement distance and duration. According to the ICF domains, 44 kinematic parameters were categorized into Body Functions and Structure, 5 into Activities and no parameters were categorized into Participation and Personal and Environmental Factors. Thirteen articles investigated the correlations between kinematic parameters and clinical outcome measures. Some kinematic measures showed a significant correlation coefficient with clinical scores, but most were weak or moderate. The proposed classification of kinematic measures into ICF domains and their correlations with clinical scales could contribute to identifying the most relevant ones for an integrated assessment of upper limb robot-assisted rehabilitation treatments following stroke. Increasing the assessment frequency by means of kinematic parameters could optimize clinical assessment procedures and enhance the effectiveness of rehabilitation treatments. Copyright © 2018 IPEM. Published by Elsevier Ltd. All rights reserved.

  17. Digital frequency synthesizer for radar astronomy

    NASA Technical Reports Server (NTRS)

    Sadr, R.; Satorius, E.; Robinett, L.; Olson, E.

    1990-01-01

    The digital frequency synthesizer (DFS) is an integral part of the programmable local oscillator (PLO) which is being developed for the NASA's Deep Space Network (DSN) and radar astronomy. Here, the theory of operation and the design of the DFS are discussed, and the design parameters in application for the Goldstone Solar System Radar (GSSR) are specified. The spectral purity of the DFS is evaluated by analytically evaluating the output spectrum of the DFS. A novel architecture is proposed for the design of the DFS with a frequency resolution of 1/2(exp 48) of the clock frequency (0.35 mu Hz at 100 MHz), a phase resolution of 0.0056 degrees (16 bits), and a frequency spur attenuation of -96 dBc.

  18. Studies regarding the quality of numerical weather forecasts of the WRF model integrated at high-resolutions for the Romanian territory

    DOE PAGES

    Iriza, Amalia; Dumitrache, Rodica C.; Lupascu, Aurelia; ...

    2016-01-01

    Our paper aims to evaluate the quality of high-resolution weather forecasts from the Weather Research and Forecasting (WRF) numerical weather prediction model. The lateral and boundary conditions were obtained from the numerical output of the Consortium for Small-scale Modeling (COSMO) model at 7 km horizontal resolution. Furthermore, the WRF model was run for January and July 2013 at two horizontal resolutions (3 and 1 km). The numerical forecasts of the WRF model were evaluated using different statistical scores for 2 m temperature and 10 m wind speed. Our results showed a tendency of the WRF model to overestimate the valuesmore » of the analyzed parameters in comparison to observations.« less

  19. Studies regarding the quality of numerical weather forecasts of the WRF model integrated at high-resolutions for the Romanian territory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iriza, Amalia; Dumitrache, Rodica C.; Lupascu, Aurelia

    Our paper aims to evaluate the quality of high-resolution weather forecasts from the Weather Research and Forecasting (WRF) numerical weather prediction model. The lateral and boundary conditions were obtained from the numerical output of the Consortium for Small-scale Modeling (COSMO) model at 7 km horizontal resolution. Furthermore, the WRF model was run for January and July 2013 at two horizontal resolutions (3 and 1 km). The numerical forecasts of the WRF model were evaluated using different statistical scores for 2 m temperature and 10 m wind speed. Our results showed a tendency of the WRF model to overestimate the valuesmore » of the analyzed parameters in comparison to observations.« less

  20. Analysis of shielded CPW discontinuities with air-bridges

    NASA Technical Reports Server (NTRS)

    Dib, N. I.; Katehi, P. B.; Ponchak, George E.

    1992-01-01

    The effect of air-bridges on the performance of various coplanar waveguides (CPW) discontinuities is studied. Specifically, the coupled open-end CPW's and the short-end shunt CPW stub discontinuities are considered. The high frequency effect of the air-bridge is evaluated using a hybrid technique. At first, the frequency dependent equivalent circuit of the planar discontinuity without the air-bridge is derived using the Space Domain Integral Equation (SDIE) method. Then, the circuit is modified by incorporating the air-bridge's parasitic inductance and capacitance which are evaluated using a simple quasi-static model. The frequency response of each discontinuity with and without the air-bridge is studied and the scattering parameters are plotted in the frequency range 30-50 GHz for typical CPW dimensions.

  1. Thermalization threshold in models of 1D fermions

    NASA Astrophysics Data System (ADS)

    Mukerjee, Subroto; Modak, Ranjan; Ramswamy, Sriram

    2013-03-01

    The question of how isolated quantum systems thermalize is an interesting and open one. In this study we equate thermalization with non-integrability to try to answer this question. In particular, we study the effect of system size on the integrability of 1D systems of interacting fermions on a lattice. We find that for a finite-sized system, a non-zero value of an integrability breaking parameter is required to make an integrable system appear non-integrable. Using exact diagonalization and diagnostics such as energy level statistics and the Drude weight, we find that the threshold value of the integrability breaking parameter scales to zero as a power law with system size. We find the exponent to be the same for different models with its value depending on the random matrix ensemble describing the non-integrable system. We also study a simple analytical model of a non-integrable system with an integrable limit to better understand how a power law emerges.

  2. Learning Aggregation Operators for Preference Modeling

    NASA Astrophysics Data System (ADS)

    Torra, Vicenç

    Aggregation operators are useful tools for modeling preferences. Such operators include weighted means, OWA and WOWA operators, as well as some fuzzy integrals, e.g. Choquet and Sugeno integrals. To apply these operators in an effective way, their parameters have to be properly defined. In this chapter, we review some of the existing tools for learning these parameters from examples.

  3. iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM

    PubMed Central

    Battye, T. Geoff G.; Kontogiannis, Luke; Johnson, Owen; Powell, Harold R.; Leslie, Andrew G. W.

    2011-01-01

    iMOSFLM is a graphical user interface to the diffraction data-integration program MOSFLM. It is designed to simplify data processing by dividing the process into a series of steps, which are normally carried out sequentially. Each step has its own display pane, allowing control over parameters that influence that step and providing graphical feedback to the user. Suitable values for integration parameters are set automatically, but additional menus provide a detailed level of control for experienced users. The image display and the interfaces to the different tasks (indexing, strategy calculation, cell refinement, integration and history) are described. The most important parameters for each step and the best way of assessing success or failure are discussed. PMID:21460445

  4. A framework for scalable parameter estimation of gene circuit models using structural information.

    PubMed

    Kuwahara, Hiroyuki; Fan, Ming; Wang, Suojin; Gao, Xin

    2013-07-01

    Systematic and scalable parameter estimation is a key to construct complex gene regulatory models and to ultimately facilitate an integrative systems biology approach to quantitatively understand the molecular mechanisms underpinning gene regulation. Here, we report a novel framework for efficient and scalable parameter estimation that focuses specifically on modeling of gene circuits. Exploiting the structure commonly found in gene circuit models, this framework decomposes a system of coupled rate equations into individual ones and efficiently integrates them separately to reconstruct the mean time evolution of the gene products. The accuracy of the parameter estimates is refined by iteratively increasing the accuracy of numerical integration using the model structure. As a case study, we applied our framework to four gene circuit models with complex dynamics based on three synthetic datasets and one time series microarray data set. We compared our framework to three state-of-the-art parameter estimation methods and found that our approach consistently generated higher quality parameter solutions efficiently. Although many general-purpose parameter estimation methods have been applied for modeling of gene circuits, our results suggest that the use of more tailored approaches to use domain-specific information may be a key to reverse engineering of complex biological systems. http://sfb.kaust.edu.sa/Pages/Software.aspx. Supplementary data are available at Bioinformatics online.

  5. Contribution of Heliborne Electro-Magnetic survey for landslide prediction: application to La Martinique (West Indies, France)

    NASA Astrophysics Data System (ADS)

    Thiery, Yannick; Reninger, Pierre-Alexandre; Vandromme, Rosalie; Nachbaur, Aude

    2017-04-01

    Landslide hazard and risk assessment (LHA & LRA) in French West Indies is a big challenge, because of several factors contributing to high sensitivity of slopes to landslide (complex weathered volcanic grounds, hurricane seasons, heavy land pressure).The initial step is to assess the spatial probability (and sometimes temporal) of failure (i.e. landslide susceptibility assessment; LSA) for a given area. LSA can be evaluated by several approaches (i.e. knowledge approach, data-driven approach, physically based approach). Physically based approaches are used to calculate a slope stability factor taking into account mechanical, geotechnical, hydrological and hydrogeological parameters. However, the parametrization of these models can be difficult because of a lack of information (i.e. soil depths, precipitations chronicles, lithology sometimes due to a difficult ground access, particularly in French Indies. Thus, HEM (Heliborne Electro-Magnetic Survey) appears as a solution to obtain specific information quickly and over large areas. Since 2000, the HEM method is increasingly used for environmental studies: geomorphological and hydrogeological studies. In 2013, The French Geological Survey conducted an HEM survey over La Martinique (West Indies). Resistivity contrasts were imaged up 250-300 meters depth with a horizontal resolution around 30 m and a vertical resolution between 3 and 8 m. Even if the resistivity has not a straightforward relationship with soil mechanical properties (which are key parameters for LHA) it provides relevant information on both the thickness and the extension of formations. The aim of this study is to evaluate the contribution of HEM survey to recognize landslide prone areas and landslide prone formations in volcanic environment. Once the different formations defined, they are introduced in a physically based model to assess the susceptibility of slope for different landslide types with hydrogeological control. The methodology is split in four steps: i. In the first step, the analysis of the HEM data to assess location and thicknesses of lithological and surficial formations is performed by comparisons and correlations with field data and drilling; ii. In the second step, given the numerous geotechnical parameters required (i.e. cohesion,angle of friction, specific bulk unit weight), a sensitivity analysis on representative cross sections is conducted to obtain the best set of geotechnical parameters adapted to the sites; iii. In the third step, a geological model, integrating surficial formation and lithology obtained after the first step, is built; iv. In the fourth step, the geological model is integrated in a physically based model called ALICE® (Assessment of Landslides Induced by Climatic Events) to assess and to map the landslide susceptibility of slopes for selected areas. Different simulations, integrating different type of failures (translational and rotational), different resolutions (i.e. 5m, 10 m, 25 m) and the variation of the ground water table, are performed. For each step, statistical and expert evaluation (by calculation of success rates, exchanges between field observations, boreholes and geomorphological features) are conducted allowing the models validation. Finally, this approach is a first step, though it shows promising results in assessing and forecasting landslide hazard by integration of precipitation thresholds, the contributions and weaknesses of the method are discussed, as well as proposals to improve the latters.

  6. An Improved Swarm Optimization for Parameter Estimation and Biological Model Selection

    PubMed Central

    Abdullah, Afnizanfaizal; Deris, Safaai; Mohamad, Mohd Saberi; Anwar, Sohail

    2013-01-01

    One of the key aspects of computational systems biology is the investigation on the dynamic biological processes within cells. Computational models are often required to elucidate the mechanisms and principles driving the processes because of the nonlinearity and complexity. The models usually incorporate a set of parameters that signify the physical properties of the actual biological systems. In most cases, these parameters are estimated by fitting the model outputs with the corresponding experimental data. However, this is a challenging task because the available experimental data are frequently noisy and incomplete. In this paper, a new hybrid optimization method is proposed to estimate these parameters from the noisy and incomplete experimental data. The proposed method, called Swarm-based Chemical Reaction Optimization, integrates the evolutionary searching strategy employed by the Chemical Reaction Optimization, into the neighbouring searching strategy of the Firefly Algorithm method. The effectiveness of the method was evaluated using a simulated nonlinear model and two biological models: synthetic transcriptional oscillators, and extracellular protease production models. The results showed that the accuracy and computational speed of the proposed method were better than the existing Differential Evolution, Firefly Algorithm and Chemical Reaction Optimization methods. The reliability of the estimated parameters was statistically validated, which suggests that the model outputs produced by these parameters were valid even when noisy and incomplete experimental data were used. Additionally, Akaike Information Criterion was employed to evaluate the model selection, which highlighted the capability of the proposed method in choosing a plausible model based on the experimental data. In conclusion, this paper presents the effectiveness of the proposed method for parameter estimation and model selection problems using noisy and incomplete experimental data. This study is hoped to provide a new insight in developing more accurate and reliable biological models based on limited and low quality experimental data. PMID:23593445

  7. A new approach to the extraction of single exponential diode model parameters

    NASA Astrophysics Data System (ADS)

    Ortiz-Conde, Adelmo; García-Sánchez, Francisco J.

    2018-06-01

    A new integration method is presented for the extraction of the parameters of a single exponential diode model with series resistance from the measured forward I-V characteristics. The extraction is performed using auxiliary functions based on the integration of the data which allow to isolate the effects of each of the model parameters. A differentiation method is also presented for data with low level of experimental noise. Measured and simulated data are used to verify the applicability of both proposed method. Physical insight about the validity of the model is also obtained by using the proposed graphical determinations of the parameters.

  8. Modelling of the X,Y,Z positioning errors and uncertainty evaluation for the LNE’s mAFM using the Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Ceria, Paul; Ducourtieux, Sebastien; Boukellal, Younes; Allard, Alexandre; Fischer, Nicolas; Feltin, Nicolas

    2017-03-01

    In order to evaluate the uncertainty budget of the LNE’s mAFM, a reference instrument dedicated to the calibration of nanoscale dimensional standards, a numerical model has been developed to evaluate the measurement uncertainty of the metrology loop involved in the XYZ positioning of the tip relative to the sample. The objective of this model is to overcome difficulties experienced when trying to evaluate some uncertainty components which cannot be experimentally determined and more specifically, the one linked to the geometry of the metrology loop. The model is based on object-oriented programming and developed under Matlab. It integrates one hundred parameters that allow the control of the geometry of the metrology loop without using analytical formulae. The created objects, mainly the reference and the mobile prism and their mirrors, the interferometers and their laser beams, can be moved and deformed freely to take into account several error sources. The Monte Carlo method is then used to determine the positioning uncertainty of the instrument by randomly drawing the parameters according to their associated tolerances and their probability density functions (PDFs). The whole process follows Supplement 2 to ‘The Guide to the Expression of the Uncertainty in Measurement’ (GUM). Some advanced statistical tools like Morris design and Sobol indices are also used to provide a sensitivity analysis by identifying the most influential parameters and quantifying their contribution to the XYZ positioning uncertainty. The approach validated in the paper shows that the actual positioning uncertainty is about 6 nm. As the final objective is to reach 1 nm, we engage in a discussion to estimate the most effective way to reduce the uncertainty.

  9. Kinetic Analysis of Isothermal Decomposition Process of Sodium Bicarbonate Using the Weibull Probability Function—Estimation of Density Distribution Functions of the Apparent Activation Energies

    NASA Astrophysics Data System (ADS)

    Janković, Bojan

    2009-10-01

    The decomposition process of sodium bicarbonate (NaHCO3) has been studied by thermogravimetry in isothermal conditions at four different operating temperatures (380 K, 400 K, 420 K, and 440 K). It was found that the experimental integral and differential conversion curves at the different operating temperatures can be successfully described by the isothermal Weibull distribution function with a unique value of the shape parameter ( β = 1.07). It was also established that the Weibull distribution parameters ( β and η) show independent behavior on the operating temperature. Using the integral and differential (Friedman) isoconversional methods, in the conversion (α) range of 0.20 ≤ α ≤ 0.80, the apparent activation energy ( E a ) value was approximately constant ( E a, int = 95.2 kJmol-1 and E a, diff = 96.6 kJmol-1, respectively). The values of E a calculated by both isoconversional methods are in good agreement with the value of E a evaluated from the Arrhenius equation (94.3 kJmol-1), which was expressed through the scale distribution parameter ( η). The Málek isothermal procedure was used for estimation of the kinetic model for the investigated decomposition process. It was found that the two-parameter Šesták-Berggren (SB) autocatalytic model best describes the NaHCO3 decomposition process with the conversion function f(α) = α0.18(1-α)1.19. It was also concluded that the calculated density distribution functions of the apparent activation energies ( ddfE a ’s) are not dependent on the operating temperature, which exhibit the highly symmetrical behavior (shape factor = 1.00). The obtained isothermal decomposition results were compared with corresponding results of the nonisothermal decomposition process of NaHCO3.

  10. Predictors of pneumothorax following endoscopic valve therapy in patients with severe emphysema.

    PubMed

    Gompelmann, Daniela; Lim, Hyun-Ju; Eberhardt, Ralf; Gerovasili, Vasiliki; Herth, Felix Jf; Heussel, Claus Peter; Eichinger, Monika

    2016-01-01

    Endoscopic valve implantation is an effective treatment for patients with advanced emphysema. Despite the minimally invasive procedure, valve placement is associated with risks, the most common of which is pneumothorax. This study was designed to identify predictors of pneumothorax following endoscopic valve implantation. Preinterventional clinical measures (vital capacity, forced expiratory volume in 1 second, residual volume, total lung capacity, 6-minute walk test), qualitative computed tomography (CT) parameters (fissure integrity, blebs/bulla, subpleural nodules, pleural adhesions, partial atelectasis, fibrotic bands, emphysema type) and quantitative CT parameters (volume and low attenuation volume of the target lobe and the ipsilateral untreated lobe, target air trapping, ipsilateral lobe volume/hemithorax volume, collapsibility of the target lobe and the ipsilateral untreated lobe) were retrospectively evaluated in patients who underwent endoscopic valve placement (n=129). Regression analysis was performed to compare those who developed pneumothorax following valve therapy (n=46) with those who developed target lobe volume reduction without pneumothorax (n=83). Low attenuation volume% of ipsilateral untreated lobe (odds ratio [OR] =1.08, P=0.001), ipsilateral untreated lobe volume/hemithorax volume (OR =0.93, P=0.017), emphysema type (OR =0.26, P=0.018), pleural adhesions (OR =0.33, P=0.012) and residual volume (OR =1.58, P=0.012) were found to be significant predictors of pneumothorax. Fissure integrity (OR =1.16, P=0.075) and 6-minute walk test (OR =1.05, P=0.077) were also indicative of pneumothorax. The model including the aforementioned parameters predicted whether a patient would experience a pneumothorax 84% of the time (area under the curve =0.84). Clinical and CT parameters provide a promising tool to effectively identify patients at high risk of pneumothorax following endoscopic valve therapy.

  11. Predictors of pneumothorax following endoscopic valve therapy in patients with severe emphysema

    PubMed Central

    Gompelmann, Daniela; Lim, Hyun-ju; Eberhardt, Ralf; Gerovasili, Vasiliki; Herth, Felix JF; Heussel, Claus Peter; Eichinger, Monika

    2016-01-01

    Background Endoscopic valve implantation is an effective treatment for patients with advanced emphysema. Despite the minimally invasive procedure, valve placement is associated with risks, the most common of which is pneumothorax. This study was designed to identify predictors of pneumothorax following endoscopic valve implantation. Methods Preinterventional clinical measures (vital capacity, forced expiratory volume in 1 second, residual volume, total lung capacity, 6-minute walk test), qualitative computed tomography (CT) parameters (fissure integrity, blebs/bulla, subpleural nodules, pleural adhesions, partial atelectasis, fibrotic bands, emphysema type) and quantitative CT parameters (volume and low attenuation volume of the target lobe and the ipsilateral untreated lobe, target air trapping, ipsilateral lobe volume/hemithorax volume, collapsibility of the target lobe and the ipsilateral untreated lobe) were retrospectively evaluated in patients who underwent endoscopic valve placement (n=129). Regression analysis was performed to compare those who developed pneumothorax following valve therapy (n=46) with those who developed target lobe volume reduction without pneumothorax (n=83). Finding Low attenuation volume% of ipsilateral untreated lobe (odds ratio [OR] =1.08, P=0.001), ipsilateral untreated lobe volume/hemithorax volume (OR =0.93, P=0.017), emphysema type (OR =0.26, P=0.018), pleural adhesions (OR =0.33, P=0.012) and residual volume (OR =1.58, P=0.012) were found to be significant predictors of pneumothorax. Fissure integrity (OR =1.16, P=0.075) and 6-minute walk test (OR =1.05, P=0.077) were also indicative of pneumothorax. The model including the aforementioned parameters predicted whether a patient would experience a pneumothorax 84% of the time (area under the curve =0.84). Interpretation Clinical and CT parameters provide a promising tool to effectively identify patients at high risk of pneumothorax following endoscopic valve therapy. PMID:27536088

  12. [Sensitivity analysis of AnnAGNPS model's hydrology and water quality parameters based on the perturbation analysis method].

    PubMed

    Xi, Qing; Li, Zhao-Fu; Luo, Chuan

    2014-05-01

    Sensitivity analysis of hydrology and water quality parameters has a great significance for integrated model's construction and application. Based on AnnAGNPS model's mechanism, terrain, hydrology and meteorology, field management, soil and other four major categories of 31 parameters were selected for the sensitivity analysis in Zhongtian river watershed which is a typical small watershed of hilly region in the Taihu Lake, and then used the perturbation method to evaluate the sensitivity of the parameters to the model's simulation results. The results showed that: in the 11 terrain parameters, LS was sensitive to all the model results, RMN, RS and RVC were generally sensitive and less sensitive to the output of sediment but insensitive to the remaining results. For hydrometeorological parameters, CN was more sensitive to runoff and sediment and relatively sensitive for the rest results. In field management, fertilizer and vegetation parameters, CCC, CRM and RR were less sensitive to sediment and particulate pollutants, the six fertilizer parameters (FR, FD, FID, FOD, FIP, FOP) were particularly sensitive for nitrogen and phosphorus nutrients. For soil parameters, K is quite sensitive to all the results except the runoff, the four parameters of the soil's nitrogen and phosphorus ratio (SONR, SINR, SOPR, SIPR) were less sensitive to the corresponding results. The simulation and verification results of runoff in Zhongtian watershed show a good accuracy with the deviation less than 10% during 2005- 2010. Research results have a direct reference value on AnnAGNPS model's parameter selection and calibration adjustment. The runoff simulation results of the study area also proved that the sensitivity analysis was practicable to the parameter's adjustment and showed the adaptability to the hydrology simulation in the Taihu Lake basin's hilly region and provide reference for the model's promotion in China.

  13. ISSLS prize winner: integrating theoretical and experimental methods for functional tissue engineering of the annulus fibrosus.

    PubMed

    Nerurkar, Nandan L; Mauck, Robert L; Elliott, Dawn M

    2008-12-01

    Integrating theoretical and experimental approaches for annulus fibrosus (AF) functional tissue engineering. Apply a hyperelastic constitutive model to characterize the evolution of engineered AF via scalar model parameters. Validate the model and predict the response of engineered constructs to physiologic loading scenarios. There is need for a tissue engineered replacement for degenerate AF. When evaluating engineered replacements for load-bearing tissues, it is necessary to evaluate mechanical function with respect to the native tissue, including nonlinearity and anisotropy. Aligned nanofibrous poly-epsilon-caprolactone scaffolds with prescribed fiber angles were seeded with bovine AF cells and analyzed over 8 weeks, using experimental (mechanical testing, biochemistry, histology) and theoretical methods (a hyperelastic fiber-reinforced constitutive model). The linear region modulus for phi = 0 degrees constructs increased by approximately 25 MPa, and for phi = 90 degrees by approximately 2 MPa from 1 day to 8 weeks in culture. Infiltration and proliferation of AF cells into the scaffold and abundant deposition of s-GAG and aligned collagen was observed. The constitutive model had excellent fits to experimental data to yield matrix and fiber parameters that increased with time in culture. Correlations were observed between biochemical measures and model parameters. The model was successfully validated and used to simulate time-varying responses of engineered AF under shear and biaxial loading. AF cells seeded on nanofibrous scaffolds elaborated an organized, anisotropic AF-like extracellular matrix, resulting in improved mechanical properties. A hyperelastic fiber-reinforced constitutive model characterized the functional evolution of engineered AF constructs, and was used to simulate physiologically relevant loading configurations. Model predictions demonstrated that fibers resist shear even when the shearing direction does not coincide with the fiber direction. Further, the model suggested that the native AF fiber architecture is uniquely designed to support shear stresses encountered under multiple loading configurations.

  14. An integrated system for dynamic control of auditory perspective in a multichannel sound field

    NASA Astrophysics Data System (ADS)

    Corey, Jason Andrew

    An integrated system providing dynamic control of sound source azimuth, distance and proximity to a room boundary within a simulated acoustic space is proposed for use in multichannel music and film sound production. The system has been investigated, implemented, and psychoacoustically tested within the ITU-R BS.775 recommended five-channel (3/2) loudspeaker layout. The work brings together physical and perceptual models of room simulation to allow dynamic placement of virtual sound sources at any location of a simulated space within the horizontal plane. The control system incorporates a number of modules including simulated room modes, "fuzzy" sources, and tracking early reflections, whose parameters are dynamically changed according to sound source location within the simulated space. The control functions of the basic elements, derived from theories of perception of a source in a real room, have been carefully tuned to provide efficient, effective, and intuitive control of a sound source's perceived location. Seven formal listening tests were conducted to evaluate the effectiveness of the algorithm design choices. The tests evaluated: (1) loudness calibration of multichannel sound images; (2) the effectiveness of distance control; (3) the resolution of distance control provided by the system; (4) the effectiveness of the proposed system when compared to a commercially available multichannel room simulation system in terms of control of source distance and proximity to a room boundary; (5) the role of tracking early reflection patterns on the perception of sound source distance; (6) the role of tracking early reflection patterns on the perception of lateral phantom images. The listening tests confirm the effectiveness of the system for control of perceived sound source distance, proximity to room boundaries, and azimuth, through fine, dynamic adjustment of parameters according to source location. All of the parameters are grouped and controlled together to create a perceptually strong impression of source location and movement within a simulated space.

  15. Risk profiles in type 2 diabetes (metabolic syndrome): integration of IL-10 polymorphisms and laboratory parameters to identify vascular damages related complications.

    PubMed

    Forte, G I; Pilato, G; Vaccarino, L; Sanacore, M; Candore, G; Romano, G C; Testa, R; Franceschi, C; Capri, M; Marra, M; Bonfigli, A R; Caruso, C; Scola, L; Lio, D

    2010-01-01

    Recently it has been reported that low serum IL-10 levels are associated with an increased susceptibility for metabolic syndrome and type 2 diabetes mellitus (T2DM). We investigated whether the -1087G/A (rs1800896), -824C/T (rs1800871), -597C/A (rs1800872) IL-10 polymorphisms were associated with type 2 diabetes in a study on a cohort of Italian Caucasians comprising 490 type 2 diabetic and 349 control subjects. Stratifying the data according to IL-10 genotypes, trends for the progressive increase of glucose and neutrophil levels were observed in -1087GG vs. -1087GA vs. -1087AA positive diabetic patients (-1087GG<-1087GA<-1087AA). In addition, evaluating the laboratory parameters according to the -597/-824/-1087 derived haplotypes a significant increase of neutrophils was found in diabetic vs. non-diabetic -597A/ -824T/-1087A positive subjects (Student t test = 3.707, p<0.01). In an attempt to integrate clinical laboratory and immunogenetic data to determine whether these factors taken together define sufficient risk sets for type 2 diabetes we performed the grade-of-membership analysis (GoM). GoM allowed to identify a population of subjects negative for IL-10 -824T allele, 74.4% of which were diabetic patients characterised by vascular damages (Chronic kidney failure and/or Myocardial Infarction), reduction of haematocrit, increase of blood urea nitrogen, creatinin and monocyte levels. These data seem to suggest that -597A/-824T/-1087A negative subjects are more prone to the major type 2 diabetic vascular damages and allow to hypothesise that the contemporary evaluation of some simple hematochemical parameters and IL-10 SNPs may allow identifying diabetic patients with the worse prognostic profile, needing both better complication prevention planning and therapeutic strategies.

  16. BGFit: management and automated fitting of biological growth curves.

    PubMed

    Veríssimo, André; Paixão, Laura; Neves, Ana Rute; Vinga, Susana

    2013-09-25

    Existing tools to model cell growth curves do not offer a flexible integrative approach to manage large datasets and automatically estimate parameters. Due to the increase of experimental time-series from microbiology and oncology, the need for a software that allows researchers to easily organize experimental data and simultaneously extract relevant parameters in an efficient way is crucial. BGFit provides a web-based unified platform, where a rich set of dynamic models can be fitted to experimental time-series data, further allowing to efficiently manage the results in a structured and hierarchical way. The data managing system allows to organize projects, experiments and measurements data and also to define teams with different editing and viewing permission. Several dynamic and algebraic models are already implemented, such as polynomial regression, Gompertz, Baranyi, Logistic and Live Cell Fraction models and the user can add easily new models thus expanding current ones. BGFit allows users to easily manage their data and models in an integrated way, even if they are not familiar with databases or existing computational tools for parameter estimation. BGFit is designed with a flexible architecture that focus on extensibility and leverages free software with existing tools and methods, allowing to compare and evaluate different data modeling techniques. The application is described in the context of bacterial and tumor cells growth data fitting, but it is also applicable to any type of two-dimensional data, e.g. physical chemistry and macroeconomic time series, being fully scalable to high number of projects, data and model complexity.

  17. Development of lithium diffused radiation resistant solar cells, part 2

    NASA Technical Reports Server (NTRS)

    Payne, P. R.; Somberg, H.

    1971-01-01

    The work performed to investigate the effect of various process parameters on the performance of lithium doped P/N solar cells is described. Effort was concentrated in four main areas: (1) the starting material, (2) the boron diffusion, (3) the lithium diffusion, and (4) the contact system. Investigation of starting material primarily involved comparison of crucible grown silicon (high oxygen content) and Lopex silicon (low oxygen content). In addition, the effect of varying growing parameters of crucible grown silicon on lithium cell output was also examined. The objective of the boron diffusion studies was to obtain a diffusion process which produced high efficiency cells with minimal silicon stressing and could be scaled up to process 100 or more cells per diffusion. Contact studies included investigating sintering of the TiAg contacts and evaluation of the contact integrity.

  18. Properties of the two-dimensional heterogeneous Lennard-Jones dimers: An integral equation study

    PubMed Central

    Urbic, Tomaz

    2016-01-01

    Structural and thermodynamic properties of a planar heterogeneous soft dumbbell fluid are examined using Monte Carlo simulations and integral equation theory. Lennard-Jones particles of different sizes are the building blocks of the dimers. The site-site integral equation theory in two dimensions is used to calculate the site-site radial distribution functions and the thermodynamic properties. Obtained results are compared to Monte Carlo simulation data. The critical parameters for selected types of dimers were also estimated and the influence of the Lennard-Jones parameters was studied. We have also tested the correctness of the site-site integral equation theory using different closures. PMID:27875894

  19. Integrating three tools for the environmental assessment of the Pardo River, Brazil.

    PubMed

    Machado, Carolina S; Alves, Renato I S; Fregonesi, Brisa M; Beda, Cassio F; Suzuki, Meire N; Trevilato, Rudison B; Nadal, Martí; Domingo, José L; Segura-Muñoz, Susana I

    2015-09-01

    There is a growing need for strategic assessment of environmental conditions in river basins around the world. In spite of the considerable water resources, Brazil has been suffering from water quality decrease in recent years. Pardo River runs through Minas Gerais and São Paulo, two of the most economically important states in Brazil, and is being currently promoted as a future drinking water source. This study aimed at integrating three different tools to conduct a hydromorphological assessment focused on the spatial complexity, connectivity, and dynamism of the Pardo River, Brazil. Twelve sampling stretches were evaluated in four sampling campaigns, in dry and rainy seasons. In each stretch, permanent preservation areas (PPAs), hydromorphological integrity by rapid assessment protocol (RAP), and physicochemical parameters were qualified. The kappa coefficient was used to assess statistical agreement among monitoring tools. The PPA analysis showed that in all stretches, the vegetation was modified. RAP results revealed environmental deterioration in stretches located near human activities and less variability of substrates available for aquatic fauna and sediment deposition as well. Low values for dissolved oxygen in the river mouth were noted in the rainy season. Electrical conductivity was higher in stretches near sugarcane crops. The poor agreement (k<0.35) between the RAP and physicochemical parameters indicates that the tools generate different and complementary information, while they are not replaceable. Potential changes of the hydromorphological characteristics and variations in physicochemical indicators must be related to extensive PPA modification.

  20. Rapid Reconstitution Packages (RRPs) implemented by integration of computational fluid dynamics (CFD) and 3D printed microfluidics.

    PubMed

    Chi, Albert; Curi, Sebastian; Clayton, Kevin; Luciano, David; Klauber, Kameron; Alexander-Katz, Alfredo; D'hers, Sebastian; Elman, Noel M

    2014-08-01

    Rapid Reconstitution Packages (RRPs) are portable platforms that integrate microfluidics for rapid reconstitution of lyophilized drugs. Rapid reconstitution of lyophilized drugs using standard vials and syringes is an error-prone process. RRPs were designed using computational fluid dynamics (CFD) techniques to optimize fluidic structures for rapid mixing and integrating physical properties of targeted drugs and diluents. Devices were manufactured using stereo lithography 3D printing for micrometer structural precision and rapid prototyping. Tissue plasminogen activator (tPA) was selected as the initial model drug to test the RRPs as it is unstable in solution. tPA is a thrombolytic drug, stored in lyophilized form, required in emergency settings for which rapid reconstitution is of critical importance. RRP performance and drug stability were evaluated by high-performance liquid chromatography (HPLC) to characterize release kinetics. In addition, enzyme-linked immunosorbent assays (ELISAs) were performed to test for drug activity after the RRPs were exposed to various controlled temperature conditions. Experimental results showed that RRPs provided effective reconstitution of tPA that strongly correlated with CFD results. Simulation and experimental results show that release kinetics can be adjusted by tuning the device structural dimensions and diluent drug physical parameters. The design of RRPs can be tailored for a number of applications by taking into account physical parameters of the active pharmaceutical ingredients (APIs), excipients, and diluents. RRPs are portable platforms that can be utilized for reconstitution of emergency drugs in time-critical therapies.

Top