Science.gov

Sample records for integral quadratic forms

  1. Normal forms for germs of vector fields with quadratic leading part. The polynomial first integral case

    NASA Astrophysics Data System (ADS)

    Stróżyna, Ewa

    2015-12-01

    We study the problem of formal classification of the vector fields of the form x ˙ = ax2 + bxy + cy2 + … , y ˙ = dx2 + exy + fy2 + … using formal changes of the coordinates, but not using the changes of the time. We focus on one special case (which is the most complex one): when the quadratic homogeneous part has a polynomial first integral. In the proofs we avoid complicated calculations. The method we use is effective and it is based on the method introduced in our previous work concerning the Bogdanov-Takens singularity.

  2. Integration of the Quadratic Function and Generalization

    ERIC Educational Resources Information Center

    Mitsuma, Kunio

    2011-01-01

    We will first recall useful formulas in integration that simplify the calculation of certain definite integrals with the quadratic function. A main formula relies only on the coefficients of the function. We will then explore a geometric proof of one of these formulas. Finally, we will extend the formulas to more general cases. (Contains 3…

  3. Evaluating the Contributions of Individual Variables to a Quadratic Form.

    PubMed

    Garthwaite, Paul H; Koch, Inge

    2016-03-01

    Quadratic forms capture multivariate information in a single number, making them useful, for example, in hypothesis testing. When a quadratic form is large and hence interesting, it might be informative to partition the quadratic form into contributions of individual variables. In this paper it is argued that meaningful partitions can be formed, though the precise partition that is determined will depend on the criterion used to select it. An intuitively reasonable criterion is proposed and the partition to which it leads is determined. The partition is based on a transformation that maximises the sum of the correlations between individual variables and the variables to which they transform under a constraint. Properties of the partition, including optimality properties, are examined. The contributions of individual variables to a quadratic form are less clear-cut when variables are collinear, and forming new variables through rotation can lead to greater transparency. The transformation is adapted so that it has an invariance property under such rotation, whereby the assessed contributions are unchanged for variables that the rotation does not affect directly. Application of the partition to Hotelling's one- and two-sample test statistics, Mahalanobis distance and discriminant analysis is described and illustrated through examples. It is shown that bootstrap confidence intervals for the contributions of individual variables to a partition are readily obtained.

  4. Space Time Clustering and the Permutation Moments of Quadratic Form.

    PubMed

    Zhou, Yi-Hui; Mayhew, Gregory; Sun, Zhibin; Xu, Xiaolin; Zou, Fei; Wright, Fred A

    2013-01-01

    The Mantel and Knox space-time clustering statistics are popular tools to establish transmissibility of a disease and detect outbreaks. The most commonly used null distributional approximations may provide poor fits, and researchers often resort to direct sampling from the permutation distribution. However, the exact first four moments for these statistics are available, and Pearson distributional approximations are often effective. Thus, our first goal is to clarify the literature and to make these tools more widely available. In addition, by rewriting terms in the statistics we obtain the exact first four permutation moments for the most commonly used quadratic form statistics, which need not be positive definite. The extension of this work to quadratic forms greatly expands the utility of density approximations for these problems, including for high-dimensional applications, where the statistics must be extreme in order to exceed stringent testing thresholds. We demonstrate the methods using examples from the investigation of disease transmission in cattle, the association of a gene expression pathway with breast cancer survival, regional genetic association with cystic fibrosis lung disease, and hypothesis testing for smoothed local linear regression.

  5. Classification of the quantum two-dimensional superintegrable systems with quadratic integrals and the Staeckel transforms

    SciTech Connect

    Daskaloyannis, C. Tanoudis, Y.

    2008-05-15

    The two-dimensional quantum superintegrable systems with quadratic integrals of motion on a manifold are classified by using the quadratic associative algebra of the integrals of motion. There are six general fundamental classes of quantum superintegrable systems corresponding to the classical ones. Analytic formulas for the involved integrals are calculated in all the cases. All the known quantum superintegrable systems with quadratic integrals are classified as special cases of these six general classes. The coefficients of the quadratic associative algebra of integrals are calculated and they are compared to the coefficients of the corresponding coefficients of the Poisson quadratic algebra of the classical systems. The quantum coefficients are similar to the classical ones multiplied by a quantum coefficient -{h_bar}{sup 2} plus a quantum deformation of order {h_bar}{sup 4} and {h_bar}{sup 6}. The systems inside the classes are transformed using Staeckel transforms in the quantum case as in the classical case. The general form of the Staeckel transform between superintegrable systems is discussed.

  6. Quantum integrals of motion for variable quadratic Hamiltonians

    SciTech Connect

    Cordero-Soto, Ricardo; Suazo, Erwin; Suslov, Sergei K.

    2010-09-15

    We construct integrals of motion for several models of the quantum damped oscillators in a framework of a general approach to the time-dependent Schroedinger equation with variable quadratic Hamiltonians. An extension of the Lewis-Riesenfeld dynamical invariant is given. The time-evolution of the expectation values of the energy-related positive operators is determined for the oscillators under consideration. A proof of uniqueness of the corresponding Cauchy initial value problem is discussed as an application.

  7. Two simple approximations to the distributions of quadratic forms.

    PubMed

    Yuan, Ke-Hai; Bentler, Peter M

    2010-05-01

    Many test statistics are asymptotically equivalent to quadratic forms of normal variables, which are further equivalent to T = sigma(d)(i=1) lambda(i)z(i)(2) with z(i) being independent and following N(0,1). Two approximations to the distribution of T have been implemented in popular software and are widely used in evaluating various models. It is important to know how accurate these approximations are when compared to each other and to the exact distribution of T. The paper systematically studies the quality of the two approximations and examines the effect of the lambda(i) and the degrees of freedom d by analysis and Monte Carlo. The results imply that the adjusted distribution for T can be as good as knowing its exact distribution. When the coefficient of variation of the lambda(i) is small, the rescaled statistic T(R) = dT/(sigma(d)(i=1) lambda(i)) is also adequate for practical model inference. But comparing T(R) against chi2(d) will inflate type I errors when substantial differences exist among the lambda(i), especially, when d is also large.

  8. Theoretical analysis of integral neutron transport equation using collision probability method with quadratic flux approach

    SciTech Connect

    Shafii, Mohammad Ali Meidianti, Rahma Wildian, Fitriyani, Dian; Tongkukut, Seni H. J.; Arkundato, Artoto

    2014-09-30

    Theoretical analysis of integral neutron transport equation using collision probability (CP) method with quadratic flux approach has been carried out. In general, the solution of the neutron transport using the CP method is performed with the flat flux approach. In this research, the CP method is implemented in the cylindrical nuclear fuel cell with the spatial of mesh being conducted into non flat flux approach. It means that the neutron flux at any point in the nuclear fuel cell are considered different each other followed the distribution pattern of quadratic flux. The result is presented here in the form of quadratic flux that is better understanding of the real condition in the cell calculation and as a starting point to be applied in computational calculation.

  9. Homogeneous systems with quadratic integrals, Lie-Poisson quasibrackets, and Kovalevskaya's method

    NASA Astrophysics Data System (ADS)

    Bizyaev, I. A.; Kozlov, V. V.

    2015-12-01

    We consider differential equations with quadratic right-hand sides that admit two quadratic first integrals, one of which is a positive-definite quadratic form. We indicate conditions of general nature under which a linear change of variables reduces this system to a certain 'canonical' form. Under these conditions, the system turns out to be divergenceless and can be reduced to a Hamiltonian form, but the corresponding linear Lie-Poisson bracket does not always satisfy the Jacobi identity. In the three-dimensional case, the equations can be reduced to the classical equations of the Euler top, and in four-dimensional space, the system turns out to be superintegrable and coincides with the Euler-Poincaré equations on some Lie algebra. In the five-dimensional case we find a reducing multiplier after multiplying by which the Poisson bracket satisfies the Jacobi identity. In the general case for n>5 we prove the absence of a reducing multiplier. As an example we consider a system of Lotka-Volterra type with quadratic right-hand sides that was studied by Kovalevskaya from the viewpoint of conditions of uniqueness of its solutions as functions of complex time. Bibliography: 38 titles.

  10. Solution of a fractional transport equation by using the generalized quadratic form

    NASA Astrophysics Data System (ADS)

    Kadem, Abdelouahab; Baleanu, Dumitru

    2011-08-01

    In this manuscript the one dimensional fractional transport equation in which the prescribed source and angular flux are spatially quadratic is investigated within the generalized quadratic form method. It is reported that the angular flux satisfies Fick's law and the corresponding scalar flux satisfies the fractional generalization of the classic diffusion equation.

  11. Integrability of Quadratic Non-autonomous Quantum Linear Systems

    NASA Astrophysics Data System (ADS)

    Lopez, Raquel

    The Quantum Harmonic Oscillator is one of the most important models in Quantum Mechanics. Analogous to the classical mass vibrating back and forth on a spring, the quantum oscillator system has attracted substantial attention over the years because of its importance in many advanced and difficult quantum problems. This dissertation deals with solving generalized models of the time-dependent Schrodinger equation which are called generalized quantum harmonic oscillators, and these are characterized by an arbitrary quadratic Hamiltonian of linear momentum and position operators. The primary challenge in this work is that most quantum models with timedependence are not solvable explicitly, yet this challenge became the driving motivation for this work. In this dissertation, the methods used to solve the time-dependent Schrodinger equation are the fundamental singularity (or Green's function) and the Fourier (eigenfunction expansion) methods. Certain Riccati- and Ermakov-type systems arise, and these systems are highlighted and investigated. The overall aims of this dissertation are to show that quadratic Hamiltonian systems are completely integrable systems, and to provide explicit approaches to solving the time-dependent Schr¨odinger equation governed by an arbitrary quadratic Hamiltonian operator. The methods and results established in the dissertation are not yet well recognized in the literature, yet hold for high promise for further future research. Finally, the most recent results in the dissertation correspond to the harmonic oscillator group and its symmetries. A simple derivation of the maximum kinematical invariance groups of the free particle and quantum harmonic oscillator is constructed from the view point of the Riccati- and Ermakov-type systems, which shows an alternative to the traditional Lie Algebra approach. To conclude, a missing class of solutions of the time-dependent Schrodinger equation for the simple harmonic oscillator in one dimension is

  12. Overpartitions and class numbers of binary quadratic forms

    PubMed Central

    Bringmann, Kathrin; Lovejoy, Jeremy

    2009-01-01

    We show that the Zagier–Eisenstein series shares its nonholomorphic part with certain weak Maass forms whose holomorphic parts are generating functions for overpartition rank differences. This has a number of consequences, including exact formulas, asymptotics, and congruences for the rank differences as well as q-series identities of the mock theta type. PMID:19336581

  13. Quadratic solid-shell elements for nonlinear structural analysis and sheet metal forming simulation

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Chalal, Hocine; Abed-Meraim, Farid

    2017-01-01

    In this paper, two quadratic solid-shell (SHB) elements are proposed for the three-dimensional modeling of thin structures. These consist of a 20-node hexahedral solid-shell element, denoted SHB20, and its 15-node prismatic counterpart, denoted SHB15. The formulation of these elements is extended in this work to include geometric and material nonlinearities, for application to problems involving large displacements and rotations as well as plasticity. For this purpose, the SHB elements are coupled with large-strain anisotropic elasto-plastic constitutive equations for metallic materials. Although based on a purely three-dimensional approach, several modifications are introduced in the formulation of these elements to provide them with interesting shell features. In particular, a special direction is chosen to represent the thickness, along which a user-defined number of integration points are located. Furthermore, for efficiency requirements and for alleviating locking phenomena, an in-plane reduced-integration scheme is adopted. The resulting formulations are implemented into the finite element software ABAQUS/Standard and, to assess their performance, a variety of nonlinear benchmark problems are investigated. Attention is then focused on the simulation of various complex sheet metal forming processes, involving large strain, anisotropic plasticity, and double-sided contact. From all simulation results, it appears that the SHB elements represent an interesting alternative to traditional shell and solid elements, due to their versatility and capability of accurately modeling selective nonlinear benchmark problems as well as complex sheet metal forming processes.

  14. Integrability and Dynamics of Quadratic Three-Dimensional Differential Systems Having an Invariant Paraboloid

    NASA Astrophysics Data System (ADS)

    Messias, Marcelo; Reinol, Alisson C.

    Invariant algebraic surfaces are commonly observed in differential systems arising in mathematical modeling of natural phenomena. In this paper, we study the integrability and dynamics of quadratic polynomial differential systems defined in ℝ3 having an elliptic paraboloid as an invariant algebraic surface. We obtain the normal form for these kind of systems and, by using the invariant paraboloid, we prove the existence of first integrals, exponential factors, Darboux invariants and inverse Jacobi multipliers, for suitable choices of parameter values. We characterize all the possible configurations of invariant parallels and invariant meridians on the invariant paraboloid and give necessary conditions for the invariant parallel to be a limit cycle and for the invariant meridian to have two orbits heteroclinic to a point at infinity. We also study the dynamics of a particular class of the quadratic polynomial differential systems having an invariant paraboloid, giving information about localization and local stability of finite singular points and, by using the Poincaré compactification, we study their dynamics on the Poincaré sphere (at infinity). Finally, we study the well-known Rabinovich system in the case of invariant paraboloids, performing a detailed study of its dynamics restricted to these invariant algebraic surfaces.

  15. On a method for constructing the Lax pairs for integrable models via a quadratic ansatz

    NASA Astrophysics Data System (ADS)

    Habibullin, I. T.; Khakimova, A. R.

    2017-07-01

    A method for constructing the Lax pairs for nonlinear integrable models is suggested. First we look for a nonlinear invariant manifold of the linearization of the given equation. Examples show that such an invariant manifold does exist and can effectively be found. Actually, it is defined by a quadratic form. As a result we get a nonlinear Lax pair consisting of the linearized equation and the invariant manifold. Our second step consists of finding an appropriate change of the variables to linearize the found nonlinear Lax pair. The desired change of the variables is again defined by a quadratic form. The method is illustrated by the well-known KdV equation, the modified Volterra chain and a less studied coupled lattice connected to the affine Lie algebra A^11 . New Lax pairs are found. The formal asymptotic expansions for their eigenfunctions are constructed around the singular values of the spectral parameter. By applying the method of the formal diagonalization to these Lax pairs, the infinite series of the local conservation laws are obtained for the corresponding nonlinear models.

  16. Closed-form solutions for a class of optimal quadratic regulator problems with terminal constraints

    NASA Technical Reports Server (NTRS)

    Juang, J.-N.; Turner, J. D.; Chun, H. M.

    1984-01-01

    Closed-form solutions are derived for coupled Riccati-like matrix differential equations describing the solution of a class of optimal finite time quadratic regulator problems with terminal constraints. Analytical solutions are obtained for the feedback gains and the closed-loop response trajectory. A computational procedure is presented which introduces new variables for efficient computation of the terminal control law. Two examples are given to illustrate the validity and usefulness of the theory.

  17. Efficient Calculation of P-value and Power for Quadratic Form Statistics in Multilocus Association Testing

    PubMed Central

    TONG, LIPING; YANG, JIE; COOPER, RICHARD S.

    2010-01-01

    SUMMARY We address the asymptotic and approximate distributions of a large class of test statistics with quadratic forms used in association studies. The statistics of interest take the general form D = XT AX, where A is a general similarity matrix which may or may not be positive semi-definite, and X follows the multivariate normal distribution with mean μ and variance matrix Σ, where Σ may or may not be singular. We show that D can be written as a linear combination of independent chi-square random variables with a shift. Furthermore, its distribution can be approximated by a chi-square or the difference of two chi-square distributions. In the setting of association testing, our methods are especially useful in two situations. First, when the required significance level is much smaller than 0.05 such as in a genome scan the estimation of p-values using permutation procedures can be challenging. Second, when an EM algorithm is required to infer haplotype frequencies from un-phased genotype data the computation can be intensive for a permutation procedure. In either situation, an efficient and accurate estimation procedure would be useful. Our method can be applied to any quadratic form statistic and therefore should be of general interest. PMID:20529017

  18. Space–time clustering and the permutation moments of quadratic forms

    PubMed Central

    Zhou, Yi-Hui; Mayhew, Gregory; Sun, Zhibin; Xu, Xiaolin; Zou, Fei; Wright, Fred A

    2013-01-01

    The Mantel and Knox space–time clustering statistics are popular tools to establish transmissibility of a disease and detect outbreaks. The most commonly used null distributional approximations may provide poor fits, and researchers often resort to direct sampling from the permutation distribution. However, the exact first four moments for these statistics are available, and Pearson distributional approximations are often effective. Thus, our first goals are to clarify the literature and make these tools more widely available. In addition, by rewriting terms in the statistics, we obtain the exact first four permutation moments for the most commonly used quadratic form statistics, which need not be positive definite. The extension of this work to quadratic forms greatly expands the utility of density approximations for these problems, including for high-dimensional applications, where the statistics must be extreme in order to exceed stringent testing thresholds. We demonstrate the methods using examples from the investigation of disease transmission in cattle, the association of a gene expression pathway with breast cancer survival, regional genetic association with cystic fibrosis lung disease and hypothesis testing for smoothed local linear regression. © The Authors. Stat published by John Wiley & Sons Ltd. PMID:25210205

  19. The use of quadratic forms in the calculation of ground state electronic structures

    SciTech Connect

    Keller, Jaime; Weinberger, Peter

    2006-08-15

    There are many examples in theoretical physics where a fundamental quantity can be considered a quadratic form {rho}={sigma}{sub i}{rho}{sub i}=vertical bar {psi} vertical bar{sup 2} and the corresponding linear form {psi}={sigma}{sub i}{psi}{sub i} is highly relevant for the physical problem under study. This, in particular, is the case of the density and the wave function in quantum mechanics. In the study of N-identical-fermion systems we have the additional feature that {psi} is a function of the 3N configuration space coordinates and {rho} is defined in three-dimensional real space. For many-electron systems in the ground state the wave function and the Hamiltonian are to be expressed in terms of the configuration space (CS), a replica of real space for each electron. Here we present a geometric formulation of the CS, of the wave function, of the density, and of the Hamiltonian to compute the electronic structure of the system. Then, using the new geometric notation and the indistinguishability and equivalence of the electrons, we obtain an alternative computational method for the ground state of the system. We present the method and discuss its usefulness and relation to other approaches.

  20. A plasticity integration algorithm motivated by analytical integration of a generalized quadratic function

    SciTech Connect

    Becker, R

    2006-03-03

    The goal is to examine the dependence of the plastic flow direction as a function of strain increment for a generalized quadratic flow potential; and from that, extract a scheme for constructing a plastic flow direction for a more general class of yield and flow surfaces.

  1. Supergravity actions with integral forms

    NASA Astrophysics Data System (ADS)

    Castellani, L.; Catenacci, R.; Grassi, P. A.

    2014-12-01

    Integral forms provide a natural and powerful tool for the construction of supergravity actions. They are generalizations of usual differential forms and are needed for a consistent theory of integration on supermanifolds. The group geometrical approach to supergravity and its variational principle are reformulated and clarified in this language. Central in our analysis is the Poincaré dual of a bosonic manifold embedded into a supermanifold. Finally, using integral forms we provide a proof of Gates' so-called "Ectoplasmic Integration Theorem", relating superfield actions to component actions.

  2. Robust reinforcement learning control using integral quadratic constraints for recurrent neural networks.

    PubMed

    Anderson, Charles W; Young, Peter Michael; Buehner, Michael R; Knight, James N; Bush, Keith A; Hittle, Douglas C

    2007-07-01

    The applicability of machine learning techniques for feedback control systems is limited by a lack of stability guarantees. Robust control theory offers a framework for analyzing the stability of feedback control loops, but for the integral quadratic constraint (IQC) framework used here, all components are required to be represented as linear, time-invariant systems plus uncertainties with, for IQCs used here, bounded gain. In this paper, the stability of a control loop including a recurrent neural network (NN) is analyzed by replacing the nonlinear and time-varying components of the NN with IQCs on their gain. As a result, a range of the NN's weights is found within which stability is guaranteed. An algorithm is demonstrated for training the recurrent NN using reinforcement learning and guaranteeing stability while learning.

  3. Quadratic algebras for three-dimensional superintegrable systems

    SciTech Connect

    Daskaloyannis, C. Tanoudis, Y.

    2010-02-15

    The three-dimensional superintegrable systems with quadratic integrals of motion have five functionally independent integrals, one among them is the Hamiltonian. Kalnins, Kress, and Miller have proved that in the case of nondegenerate potentials with quadratic integrals of motion there is a sixth quadratic integral, which is linearly independent of the other integrals. The existence of this sixth integral implies that the integrals of motion form a ternary parafermionic-like quadratic Poisson algebra with five generators. In this contribution we investigate the structure of this algebra. We show that in all the nondegenerate cases there is at least one subalgebra of three integrals having a Poisson quadratic algebra structure, which is similar to the two-dimensional case.

  4. Integrally formed radio frequency quadrupole

    DOEpatents

    Abbott, Steven R.

    1989-01-01

    An improved radio frequency quadrupole (10) is provided having an elongate housing (11) with an elongate central axis (12) and top, bottom and two side walls (13a-d) symmetrically disposed about the axis, and vanes (14a-d) formed integrally with the walls (13a-d), the vanes (14a-d) each having a cross-section at right angles to the central axis (12) which tapers inwardly toward the axis to form electrode tips (15a-d) spaced from each other by predetermined distances. Each of the four walls (13a-d), and the vanes (14a-d) integral therewith, is a separate structural element having a central lengthwise plane (16) passing through the tip of the vane, the walls (13a-d) having flat mounting surfaces (17, 18) at right angles to and parallel to the control plane (16), respectively, which are butted together to position the walls and vane tips relative to each other.

  5. On the time-weighted quadratic sum of linear discrete systems

    NASA Technical Reports Server (NTRS)

    Jury, E. I.; Gutman, S.

    1975-01-01

    A method is proposed for obtaining the time-weighted quadratic sum for linear discrete systems. The formula of the weighted quadratic sum is obtained from matrix z-transform formulation. In addition, it is shown that this quadratic sum can be derived in a recursive form for several useful weighted functions. The discussion presented parallels that of MacFarlane (1963) for weighted quadratic integral for linear continuous systems.

  6. Local hyperspectral data multisharpening based on linear/linear-quadratic nonnegative matrix factorization by integrating lidar data

    NASA Astrophysics Data System (ADS)

    Benhalouche, Fatima Zohra; Karoui, Moussa Sofiane; Deville, Yannick; Ouamri, Abdelaziz

    2015-10-01

    In this paper, a new Spectral-Unmixing-based approach, using Nonnegative Matrix Factorization (NMF), is proposed to locally multi-sharpen hyperspectral data by integrating a Digital Surface Model (DSM) obtained from LIDAR data. In this new approach, the nature of the local mixing model is detected by using the local variance of the object elevations. The hyper/multispectral images are explored using small zones. In each zone, the variance of the object elevations is calculated from the DSM data in this zone. This variance is compared to a threshold value and the adequate linear/linearquadratic spectral unmixing technique is used in the considered zone to independently unmix hyperspectral and multispectral data, using an adequate linear/linear-quadratic NMF-based approach. The obtained spectral and spatial information thus respectively extracted from the hyper/multispectral images are then recombined in the considered zone, according to the selected mixing model. Experiments based on synthetic hyper/multispectral data are carried out to evaluate the performance of the proposed multi-sharpening approach and literature linear/linear-quadratic approaches used on the whole hyper/multispectral data. In these experiments, real DSM data are used to generate synthetic data containing linear and linear-quadratic mixed pixel zones. The DSM data are also used for locally detecting the nature of the mixing model in the proposed approach. Globally, the proposed approach yields good spatial and spectral fidelities for the multi-sharpened data and significantly outperforms the used literature methods.

  7. How well do mean field theories of spiking quadratic-integrate-and-fire networks work in realistic parameter regimes?

    PubMed

    Grabska-Barwińska, Agnieszka; Latham, Peter E

    2014-06-01

    We use mean field techniques to compute the distribution of excitatory and inhibitory firing rates in large networks of randomly connected spiking quadratic integrate and fire neurons. These techniques are based on the assumption that activity is asynchronous and Poisson. For most parameter settings these assumptions are strongly violated; nevertheless, so long as the networks are not too synchronous, we find good agreement between mean field prediction and network simulations. Thus, much of the intuition developed for randomly connected networks in the asynchronous regime applies to mildly synchronous networks.

  8. Quadratic Damping

    ERIC Educational Resources Information Center

    Fay, Temple H.

    2012-01-01

    Quadratic friction involves a discontinuous damping term in equations of motion in order that the frictional force always opposes the direction of the motion. Perhaps for this reason this topic is usually omitted from beginning texts in differential equations and physics. However, quadratic damping is more realistic than viscous damping in many…

  9. Quadratic Damping

    ERIC Educational Resources Information Center

    Fay, Temple H.

    2012-01-01

    Quadratic friction involves a discontinuous damping term in equations of motion in order that the frictional force always opposes the direction of the motion. Perhaps for this reason this topic is usually omitted from beginning texts in differential equations and physics. However, quadratic damping is more realistic than viscous damping in many…

  10. Analytically reduced form of multicenter integrals from Gaussian transforms. [in atomic and molecular physics

    NASA Technical Reports Server (NTRS)

    Straton, Jack C.

    1989-01-01

    The four-dimensional Fourier-Feynman transformations previously used in analytically reducing the general class of integrals containing multicenter products of 1s hydrogenic orbitals, Coulomb or Yukawa potentials, and plane waves, are replaced by the one-dimensional Gaussian transformation. This reduces the previously required double-diagonalization of the quadratic form of the multicenter integrals to only one diagonalization, yielding a simpler reduced form of the integral. The present work also extends the result to include all s states and pairs of states with l not equal to zero summed over the m quantum number.

  11. Quadratic spline subroutine package

    USGS Publications Warehouse

    Rasmussen, Lowell A.

    1982-01-01

    A continuous piecewise quadratic function with continuous first derivative is devised for approximating a single-valued, but unknown, function represented by a set of discrete points. The quadratic is proposed as a treatment intermediate between using the angular (but reliable, easily constructed and manipulated) piecewise linear function and using the smoother (but occasionally erratic) cubic spline. Neither iteration nor the solution of a system of simultaneous equations is necessary to determining the coefficients. Several properties of the quadratic function are given. A set of five short FORTRAN subroutines is provided for generating the coefficients (QSC), finding function value and derivatives (QSY), integrating (QSI), finding extrema (QSE), and computing arc length and the curvature-squared integral (QSK). (USGS)

  12. A combined parametric quadratic programming and precise integration method based dynamic analysis of elastic-plastic hardening/softening problems

    NASA Astrophysics Data System (ADS)

    Hongwu, Zhang; Xinwei, Zhang

    2002-12-01

    The objective of the paper is to develop a new algorithm for numerical solution of dynamic elastic-plastic strain hardening/softening problems. The gradient dependent model is adopted in the numerical model to overcome the result mesh-sensitivity problem in the dynamic strain softening or strain localization analysis. The equations for the dynamic elastic-plastic problems are derived in terms of the parametric variational principle, which is valid for associated, non-associated and strain softening plastic constitutive models in the finite element analysis. The precise integration method, which has been widely used for discretization in time domain of the linear problems, is introduced for the solution of dynamic nonlinear equations. The new algorithm proposed is based on the combination of the parametric quadratic programming method and the precise integration method and has all the advantages in both of the algorithms. Results of numerical examples demonstrate not only the validity, but also the advantages of the algorithm proposed for the numerical solution of nonlinear dynamic problems.

  13. Macroscopic self-oscillations and aging transition in a network of synaptically coupled quadratic integrate-and-fire neurons

    NASA Astrophysics Data System (ADS)

    Ratas, Irmantas; Pyragas, Kestutis

    2016-09-01

    We analyze the dynamics of a large network of coupled quadratic integrate-and-fire neurons, which represent the canonical model for class I neurons near the spiking threshold. The network is heterogeneous in that it includes both inherently spiking and excitable neurons. The coupling is global via synapses that take into account the finite width of synaptic pulses. Using a recently developed reduction method based on the Lorentzian ansatz, we derive a closed system of equations for the neuron's firing rate and the mean membrane potential, which are exact in the infinite-size limit. The bifurcation analysis of the reduced equations reveals a rich scenario of asymptotic behavior, the most interesting of which is the macroscopic limit-cycle oscillations. It is shown that the finite width of synaptic pulses is a necessary condition for the existence of such oscillations. The robustness of the oscillations against aging damage, which transforms spiking neurons into nonspiking neurons, is analyzed. The validity of the reduced equations is confirmed by comparing their solutions with the solutions of microscopic equations for the finite-size networks.

  14. Macroscopic self-oscillations and aging transition in a network of synaptically coupled quadratic integrate-and-fire neurons.

    PubMed

    Ratas, Irmantas; Pyragas, Kestutis

    2016-09-01

    We analyze the dynamics of a large network of coupled quadratic integrate-and-fire neurons, which represent the canonical model for class I neurons near the spiking threshold. The network is heterogeneous in that it includes both inherently spiking and excitable neurons. The coupling is global via synapses that take into account the finite width of synaptic pulses. Using a recently developed reduction method based on the Lorentzian ansatz, we derive a closed system of equations for the neuron's firing rate and the mean membrane potential, which are exact in the infinite-size limit. The bifurcation analysis of the reduced equations reveals a rich scenario of asymptotic behavior, the most interesting of which is the macroscopic limit-cycle oscillations. It is shown that the finite width of synaptic pulses is a necessary condition for the existence of such oscillations. The robustness of the oscillations against aging damage, which transforms spiking neurons into nonspiking neurons, is analyzed. The validity of the reduced equations is confirmed by comparing their solutions with the solutions of microscopic equations for the finite-size networks.

  15. The Existence of Periodic Orbits and Invariant Tori for Some 3-Dimensional Quadratic Systems

    PubMed Central

    Jiang, Yanan; Han, Maoan; Xiao, Dongmei

    2014-01-01

    We use the normal form theory, averaging method, and integral manifold theorem to study the existence of limit cycles in Lotka-Volterra systems and the existence of invariant tori in quadratic systems in ℝ3. PMID:24982980

  16. The existence of periodic orbits and invariant tori for some 3-dimensional quadratic systems.

    PubMed

    Jiang, Yanan; Han, Maoan; Xiao, Dongmei

    2014-01-01

    We use the normal form theory, averaging method, and integral manifold theorem to study the existence of limit cycles in Lotka-Volterra systems and the existence of invariant tori in quadratic systems in ℝ(3).

  17. An improved integrally formed radio frequency quadrupole

    DOEpatents

    Abbott, S.R.

    1987-10-05

    An improved radio frequency quadrupole is provided having an elongate housing with an elongate central axis and top, bottom and two side walls symmetrically disposed about the axis, and vanes formed integrally with the walls, the vanes each having a cross-section at right angles to the central axis which tapers inwardly toward the axis to form electrode tips spaced from each other by predetermined distances. Each of the four walls, and the vanes integral therewith, is a separate structural element having a central lengthwise plane passing through the tip of the vane, the walls having flat mounting surfaces at right angles to and parallel to the control plane, respectively, which are butted together to position the walls and vane tips relative to each other. 4 figs.

  18. Properties of surjective real quadratic maps

    NASA Astrophysics Data System (ADS)

    Arutyunov, A. V.; Zhukovskiy, S. E.

    2016-09-01

    The properties of surjective real quadratic maps are investigated. Sufficient conditions for the property of surjectivity to be stable under various perturbations are obtained. Examples of surjective quadratic maps whose surjectivity breaks down after an arbitrarily small perturbation are constructed. Sufficient conditions for quadratic maps to have nontrivial zeros are obtained. For a smooth even map in a neighbourhood of the origin an inverse function theorem in terms of the degree of the corresponding quadratic map is obtained. A canonical form of surjective quadratic maps from {R}^3 to {R}^3 is constructed. Bibliography: 27 titles.

  19. Closed Forms for 4-Parameter Families of Integrals

    ERIC Educational Resources Information Center

    Dana-Picard, Thierry; Zeitoun, David G.

    2009-01-01

    We compute closed forms for two multiparameter families of definite integrals, thus obtaining combinatorial formulas. As a consequence, a surprising formula is derived between a definite integral and an improper integral for the same parametric function.

  20. Closed Forms for 4-Parameter Families of Integrals

    ERIC Educational Resources Information Center

    Dana-Picard, Thierry; Zeitoun, David G.

    2009-01-01

    We compute closed forms for two multiparameter families of definite integrals, thus obtaining combinatorial formulas. As a consequence, a surprising formula is derived between a definite integral and an improper integral for the same parametric function.

  1. Understanding the Integral: Students' Symbolic Forms

    ERIC Educational Resources Information Center

    Jones, Steven R.

    2013-01-01

    Researchers are currently investigating how calculus students understand the basic concepts of first-year calculus, including the integral. However, much is still unknown regarding the "cognitive resources" (i.e., stable cognitive units that can be accessed by an individual) that students hold and draw on when thinking about the integral. This…

  2. Understanding the Integral: Students' Symbolic Forms

    ERIC Educational Resources Information Center

    Jones, Steven R.

    2013-01-01

    Researchers are currently investigating how calculus students understand the basic concepts of first-year calculus, including the integral. However, much is still unknown regarding the "cognitive resources" (i.e., stable cognitive units that can be accessed by an individual) that students hold and draw on when thinking about the integral. This…

  3. Self-Replicating Quadratics

    ERIC Educational Resources Information Center

    Withers, Christopher S.; Nadarajah, Saralees

    2012-01-01

    We show that there are exactly four quadratic polynomials, Q(x) = x [superscript 2] + ax + b, such that (x[superscript 2] + ax + b) (x[superscript 2] - ax + b) = (x[superscript 4] + ax[superscript 2] + b). For n = 1, 2, ..., these quadratic polynomials can be written as the product of N = 2[superscript n] quadratic polynomials in x[superscript…

  4. Self-Replicating Quadratics

    ERIC Educational Resources Information Center

    Withers, Christopher S.; Nadarajah, Saralees

    2012-01-01

    We show that there are exactly four quadratic polynomials, Q(x) = x [superscript 2] + ax + b, such that (x[superscript 2] + ax + b) (x[superscript 2] - ax + b) = (x[superscript 4] + ax[superscript 2] + b). For n = 1, 2, ..., these quadratic polynomials can be written as the product of N = 2[superscript n] quadratic polynomials in x[superscript…

  5. Memetic computing through bio-inspired heuristics integration with sequential quadratic programming for nonlinear systems arising in different physical models.

    PubMed

    Raja, Muhammad Asif Zahoor; Kiani, Adiqa Kausar; Shehzad, Azam; Zameer, Aneela

    2016-01-01

    In this study, bio-inspired computing is exploited for solving system of nonlinear equations using variants of genetic algorithms (GAs) as a tool for global search method hybrid with sequential quadratic programming (SQP) for efficient local search. The fitness function is constructed by defining the error function for systems of nonlinear equations in mean square sense. The design parameters of mathematical models are trained by exploiting the competency of GAs and refinement are carried out by viable SQP algorithm. Twelve versions of the memetic approach GA-SQP are designed by taking a different set of reproduction routines in the optimization process. Performance of proposed variants is evaluated on six numerical problems comprising of system of nonlinear equations arising in the interval arithmetic benchmark model, kinematics, neurophysiology, combustion and chemical equilibrium. Comparative studies of the proposed results in terms of accuracy, convergence and complexity are performed with the help of statistical performance indices to establish the worth of the schemes. Accuracy and convergence of the memetic computing GA-SQP is found better in each case of the simulation study and effectiveness of the scheme is further established through results of statistics based on different performance indices for accuracy and complexity.

  6. Hypergeometric Forms for Ising-Class Integrals

    SciTech Connect

    Bailey, David H.; Borwein, David; Borwein, Jonathan M.; Crandall,Richard E.

    2006-07-01

    We apply experimental-mathematical principles to analyzecertain integrals relevant to the Ising theory of solid-state physics. Wefind representations of the these integrals in terms of MeijerG-functions and nested-Barnes integrals. Our investigations began bycomputing 500-digit numerical values of Cn,k,namely a 2-D array of Isingintegrals for all integers n, k where n is in [2,12]and k is in [0,25].We found that some Cn,k enjoy exact evaluations involving DirichletL-functions or the Riemann zeta function. In theprocess of analyzinghypergeometric representations, we found -- experimentally and strikingly-- that the Cn,k almost certainly satisfy certain inter-indicialrelations including discrete k-recursions. Using generating functions,differential theory, complex analysis, and Wilf-Zeilberger algorithms weare able to prove some central cases of these relations.

  7. Students' understanding of quadratic equations

    NASA Astrophysics Data System (ADS)

    López, Jonathan; Robles, Izraim; Martínez-Planell, Rafael

    2016-05-01

    Action-Process-Object-Schema theory (APOS) was applied to study student understanding of quadratic equations in one variable. This required proposing a detailed conjecture (called a genetic decomposition) of mental constructions students may do to understand quadratic equations. The genetic decomposition which was proposed can contribute to help students achieve an understanding of quadratic equations with improved interrelation of ideas and more flexible application of solution methods. Semi-structured interviews with eight beginning undergraduate students explored which of the mental constructions conjectured in the genetic decomposition students could do, and which they had difficulty doing. Two of the mental constructions that form part of the genetic decomposition are highlighted and corresponding further data were obtained from the written work of 121 undergraduate science and engineering students taking a multivariable calculus course. The results suggest the importance of explicitly considering these two highlighted mental constructions.

  8. Immediate lexical integration of novel word forms.

    PubMed

    Kapnoula, Efthymia C; Packard, Stephanie; Gupta, Prahlad; McMurray, Bob

    2015-01-01

    It is well known that familiar words inhibit each other during spoken word recognition. However, we do not know how and under what circumstances newly learned words become integrated with the lexicon in order to engage in this competition. Previous work on word learning has highlighted the importance of offline consolidation (Gaskell & Dumay, 2003) and meaning (Leach & Samuel, 2007) to establish this integration. In two experiments we test the necessity of these factors by examining the inhibition between newly learned items and familiar words immediately after learning. Participants learned a set of nonwords without meanings in active (Experiment 1) or passive (Experiment 2) exposure paradigms. After training, participants performed a visual world paradigm task to assess inhibition from these newly learned items. An analysis of participants' fixations suggested that the newly learned words were able to engage in competition with known words without any consolidation.

  9. Immediate lexical integration of novel word forms

    PubMed Central

    Kapnoula, Efthymia C.; McMurray, Bob

    2014-01-01

    It is well known that familiar words inhibit each other during spoken word recognition. However, we do not know how and under what circumstances newly learned words become integrated with the lexicon in order to engage in this competition. Previous work on word learning has highlighted the importance of offline consolidation (Gaskell & Dumay, 2003) and meaning (Leach & Samuel, 2007) to establish this integration. In two experiments we test the necessity of these factors by examining the inhibition between newly learned items and familiar words immediately after learning. Participants learned a set of nonwords without meanings in active (Exp 1) or passive (Exp 2) exposure paradigms. After training, participants performed a visual world paradigm task to assess inhibition from these newly learned items. An analysis of participants’ fixations suggested that the newly learned words were able to engage in competition with known words without any consolidation. PMID:25460382

  10. A Closed Form Solution for an Unorthodox Trigonometric Integral

    ERIC Educational Resources Information Center

    Wu, Yan

    2009-01-01

    A closed form solution for the trigonometric integral [integral]sec[superscript 2k+1]xdx, k=0,1,2,..., is presented in this article. The result will fill the gap in another trigonometric integral [integral]sec[superscript 2m+1] x tan[superscript 2n]xdx, which is neglected by most of the calculus textbooks due to its foreseeable unorthodox solution…

  11. A Closed Form Solution for an Unorthodox Trigonometric Integral

    ERIC Educational Resources Information Center

    Wu, Yan

    2009-01-01

    A closed form solution for the trigonometric integral [integral]sec[superscript 2k+1]xdx, k=0,1,2,..., is presented in this article. The result will fill the gap in another trigonometric integral [integral]sec[superscript 2m+1] x tan[superscript 2n]xdx, which is neglected by most of the calculus textbooks due to its foreseeable unorthodox solution…

  12. Quadratic eigenvalue problems.

    SciTech Connect

    Walsh, Timothy Francis; Day, David Minot

    2007-04-01

    In this report we will describe some nonlinear eigenvalue problems that arise in the areas of solid mechanics, acoustics, and coupled structural acoustics. We will focus mostly on quadratic eigenvalue problems, which are a special case of nonlinear eigenvalue problems. Algorithms for solving the quadratic eigenvalue problem will be presented, along with some example calculations.

  13. A new numerical approach to solve Thomas-Fermi model of an atom using bio-inspired heuristics integrated with sequential quadratic programming.

    PubMed

    Raja, Muhammad Asif Zahoor; Zameer, Aneela; Khan, Aziz Ullah; Wazwaz, Abdul Majid

    2016-01-01

    In this study, a novel bio-inspired computing approach is developed to analyze the dynamics of nonlinear singular Thomas-Fermi equation (TFE) arising in potential and charge density models of an atom by exploiting the strength of finite difference scheme (FDS) for discretization and optimization through genetic algorithms (GAs) hybrid with sequential quadratic programming. The FDS procedures are used to transform the TFE differential equations into a system of nonlinear equations. A fitness function is constructed based on the residual error of constituent equations in the mean square sense and is formulated as the minimization problem. Optimization of parameters for the system is carried out with GAs, used as a tool for viable global search integrated with SQP algorithm for rapid refinement of the results. The design scheme is applied to solve TFE for five different scenarios by taking various step sizes and different input intervals. Comparison of the proposed results with the state of the art numerical and analytical solutions reveals that the worth of our scheme in terms of accuracy and convergence. The reliability and effectiveness of the proposed scheme are validated through consistently getting optimal values of statistical performance indices calculated for a sufficiently large number of independent runs to establish its significance.

  14. Integration of a Decentralized Linear-Quadratic-Gaussian Control into GSFC's Universal 3-D Autonomous Formation Flying Algorithm

    NASA Technical Reports Server (NTRS)

    Folta, David C.; Carpenter, J. Russell

    1999-01-01

    A decentralized control is investigated for applicability to the autonomous formation flying control algorithm developed by GSFC for the New Millenium Program Earth Observer-1 (EO-1) mission. This decentralized framework has the following characteristics: The approach is non-hierarchical, and coordination by a central supervisor is not required; Detected failures degrade the system performance gracefully; Each node in the decentralized network processes only its own measurement data, in parallel with the other nodes; Although the total computational burden over the entire network is greater than it would be for a single, centralized controller, fewer computations are required locally at each node; Requirements for data transmission between nodes are limited to only the dimension of the control vector, at the cost of maintaining a local additional data vector. The data vector compresses all past measurement history from all the nodes into a single vector of the dimension of the state; and The approach is optimal with respect to standard cost functions. The current approach is valid for linear time-invariant systems only. Similar to the GSFC formation flying algorithm, the extension to linear LQG time-varying systems requires that each node propagate its filter covariance forward (navigation) and controller Riccati matrix backward (guidance) at each time step. Extension of the GSFC algorithm to non-linear systems can also be accomplished via linearization about a reference trajectory in the standard fashion, or linearization about the current state estimate as with the extended Kalman filter. To investigate the feasibility of the decentralized integration with the GSFC algorithm, an existing centralized LQG design for a single spacecraft orbit control problem is adapted to the decentralized framework while using the GSFC algorithm's state transition matrices and framework. The existing GSFC design uses both reference trajectories of each spacecraft in formation and

  15. Integration of a Decentralized Linear-Quadratic-Gaussian Control into GSFC's Universal 3-D Autonomous Formation Flying Algorithm

    NASA Technical Reports Server (NTRS)

    Folta, David C.; Carpenter, J. Russell

    1999-01-01

    A decentralized control is investigated for applicability to the autonomous formation flying control algorithm developed by GSFC for the New Millenium Program Earth Observer-1 (EO-1) mission. This decentralized framework has the following characteristics: The approach is non-hierarchical, and coordination by a central supervisor is not required; Detected failures degrade the system performance gracefully; Each node in the decentralized network processes only its own measurement data, in parallel with the other nodes; Although the total computational burden over the entire network is greater than it would be for a single, centralized controller, fewer computations are required locally at each node; Requirements for data transmission between nodes are limited to only the dimension of the control vector, at the cost of maintaining a local additional data vector. The data vector compresses all past measurement history from all the nodes into a single vector of the dimension of the state; and The approach is optimal with respect to standard cost functions. The current approach is valid for linear time-invariant systems only. Similar to the GSFC formation flying algorithm, the extension to linear LQG time-varying systems requires that each node propagate its filter covariance forward (navigation) and controller Riccati matrix backward (guidance) at each time step. Extension of the GSFC algorithm to non-linear systems can also be accomplished via linearization about a reference trajectory in the standard fashion, or linearization about the current state estimate as with the extended Kalman filter. To investigate the feasibility of the decentralized integration with the GSFC algorithm, an existing centralized LQG design for a single spacecraft orbit control problem is adapted to the decentralized framework while using the GSFC algorithm's state transition matrices and framework. The existing GSFC design uses both reference trajectories of each spacecraft in formation and

  16. Detail of parachute tower showing integration with main roof form, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of parachute tower showing integration with main roof form, facing southwest. - Albrook Air Force Station, Parachute & Armament Building, 200 feet north of Andrews Boulevard, Balboa, Former Panama Canal Zone, CZ

  17. Gravitational energy in quadratic-curvature gravities.

    PubMed

    Deser, S; Tekin, Bayram

    2002-09-02

    We define energy (E) and compute its values for gravitational systems involving terms quadratic in curvature. There are significant differences, both conceptually and concretely, from Einstein theory. For D=4, all purely quadratic models admit constant curvature vacua with arbitrary Lambda, and E is the "cosmological" Abbott-Deser (AD) expression; instead, E always vanishes in flat, Lambda=0, background. For combined Einstein-quadratic curvature systems without explicit Lambda-term vacuum must be flat space, and E has the usual Arnowitt-Deser-Misner form. A Lambda-term forces unique de Sitter vacuum, with E the sum of contributions from Einstein and quadratic parts to the AD form. We also discuss the effects on energy definition of higher curvature terms and of higher dimension.

  18. Quadratic formula for determining the drop size in pressure-atomized sprays with and without swirl

    SciTech Connect

    Lee, T.-W An, Keju

    2016-06-15

    We use a theoretical framework based on the integral form of the conservation equations, along with a heuristic model of the viscous dissipation, to find a closed-form solution to the liquid atomization problem. The energy balance for the spray renders to a quadratic formula for the drop size as a function, primarily of the liquid velocity. The Sauter mean diameter found using the quadratic formula shows good agreements and physical trends, when compared with experimental observations. This approach is shown to be applicable toward specifying initial drop size in computational fluid dynamics of spray flows.

  19. Quadratic formula for determining the drop size in pressure-atomized sprays with and without swirl

    NASA Astrophysics Data System (ADS)

    Lee, T.-W.; An, Keju

    2016-06-01

    We use a theoretical framework based on the integral form of the conservation equations, along with a heuristic model of the viscous dissipation, to find a closed-form solution to the liquid atomization problem. The energy balance for the spray renders to a quadratic formula for the drop size as a function, primarily of the liquid velocity. The Sauter mean diameter found using the quadratic formula shows good agreements and physical trends, when compared with experimental observations. This approach is shown to be applicable toward specifying initial drop size in computational fluid dynamics of spray flows.

  20. Master integrals for the four-loop Sudakov form factor

    NASA Astrophysics Data System (ADS)

    Boels, Rutger H.; Kniehl, Bernd A.; Yang, Gang

    2016-01-01

    The light-like cusp anomalous dimension is a universal function in the analysis of infrared divergences. In maximally (N = 4) supersymmetric Yang-Mills theory (SYM) in the planar limit, it is known, in principle, to all loop orders. The non-planar corrections are not known in any theory, with the first appearing at the four-loop order. The simplest quantity which contains this correction is the four-loop two-point form factor of the stress tensor multiplet. This form factor was largely obtained in integrand form in a previous work for N = 4 SYM, up to a free parameter. In this work, a reduction of the appearing integrals obtained by solving integration-by-parts (IBP) identities using a modified version of Reduze is reported. The form factor is shown to be independent of the remaining parameter at integrand level due to an intricate pattern of cancellations after IBP reduction. Moreover, two of the integral topologies vanish after reduction. The appearing master integrals are cross-checked using independent algebraic-geometry techniques explored in the Mint package. The latter results provide the basis of master integrals applicable to generic form factors, including those in Quantum Chromodynamics. Discrepancies between explicitly solving the IBP relations and the MINT approach are highlighted. Remaining bottlenecks to completing the computation of the four-loop non-planar cusp anomalous dimension in N = 4 SYM and beyond are identified.

  1. Differential Forms Basis Functions for Better Conditioned Integral Equations

    SciTech Connect

    Fasenfest, B; White, D; Stowell, M; Rieben, R; Sharpe, R; Madsen, N; Rockway, J D; Champagne, N J; Jandhyala, V; Pingenot, J

    2005-01-13

    Differential forms offer a convenient way to classify physical quantities and set up computational problems. By observing the dimensionality and type of derivatives (divergence,curl,gradient) applied to a quantity, an appropriate differential form can be chosen for that quantity. To use these differential forms in a simulation, the forms must be discretized using basis functions. The 0-form through 2-form basis functions are formed for surfaces. Twisted 1-form and 2-form bases will be presented in this paper. Twisted 1-form (1-forms) basis functions ({Lambda}) are divergence-conforming edge basis functions with units m{sup -1}. They are appropriate for representing vector quantities with continuous normal components, and they belong to the same function space as the commonly used RWG bases [1]. They are used here to formulate the frequency-domain EFIE with Galerkin testing. The 2-form basis functions (f) are scalar basis functions with units m{sup -2} and with no enforced continuity between elements. At lowest order, the 2-form basis functions are similar to pulse basis functions. They are used here to formulate an electrostatic integral equation. It should be noted that the derivative of an n-form differential form basis function is an (n+1)-form, i.e. the derivative of a 1-form basis function is a 2-form. Because the basis functions are constructed such that they have spatial units, the spatial units are removed from the degrees of freedom, leading to a better-conditioned system matrix. In this conference paper, we look at the performance of these differential forms and bases by examining the conditioning of matrix systems for electrostatics and the EFIE. The meshes used were refined across the object to consider the behavior of these basis transforms for elements of different sizes.

  2. Target manifold formation using a quadratic SDF

    NASA Astrophysics Data System (ADS)

    Hester, Charles F.; Risko, Kelly K. D.

    2013-05-01

    Synthetic Discriminant Function (SDF) formulation of correlation filters provides constraints for forming target subspaces for a target set. In this paper we extend the SDF formulation to include quadratic constraints and use this solution to form nonlinear manifolds in the target space. The theory for forming these manifolds will be developed and demonstrated with data.

  3. Asymptotic Normality of Quadratic Estimators.

    PubMed

    Robins, James; Li, Lingling; Tchetgen, Eric; van der Vaart, Aad

    2016-12-01

    We prove conditional asymptotic normality of a class of quadratic U-statistics that are dominated by their degenerate second order part and have kernels that change with the number of observations. These statistics arise in the construction of estimators in high-dimensional semi- and non-parametric models, and in the construction of nonparametric confidence sets. This is illustrated by estimation of the integral of a square of a density or regression function, and estimation of the mean response with missing data. We show that estimators are asymptotically normal even in the case that the rate is slower than the square root of the observations.

  4. Some Aspects of Quadratic Generalized White Noise Functionals

    NASA Astrophysics Data System (ADS)

    Si, Si; Hida, Takeyuki

    2009-02-01

    We shall discuss some particular roles of quadratic generalized white noise functionals. First observation is made from the viewpoint of the so-called "la passage du fini à l'infini". We then come to a dual pairing of spaces formed by quadratic generalized white noise functionals. In this line, we can further discuss quadratic forms of differential operators acting on the space of white noise functionals.

  5. On some new forms of lattice integrable equations

    NASA Astrophysics Data System (ADS)

    Babalic, Corina N.; Carstea, Adrian S.

    2014-05-01

    Inspired by the forms of delay-Painleve equations, we consider some new differential-discrete systems of KdV, mKdV and Sine-Gordon — type related by simple one way Miura transformations to classical ones. Using Hirota bilinear formalism we construct their new integrable discretizations, some of them having higher order. In particular, by this procedure, we show that the integrable discretization of intermediate sine-Gordon equation is exactly lattice mKdV and also we find a bilinear form of the recently proposed lattice Tzitzeica equation. Also the travelling wave reduction of these new lattice equations is studied and it is shown that all of them, including the higher order ones, can be integrated to Quispel-Roberts-Thomson (QRT) mappings.

  6. A Quadratic Spring Equation

    ERIC Educational Resources Information Center

    Fay, Temple H.

    2010-01-01

    Through numerical investigations, we study examples of the forced quadratic spring equation [image omitted]. By performing trial-and-error numerical experiments, we demonstrate the existence of stability boundaries in the phase plane indicating initial conditions yielding bounded solutions, investigate the resonance boundary in the [omega]…

  7. The Mystical "Quadratic Formula."

    ERIC Educational Resources Information Center

    March, Robert H.

    1993-01-01

    Uses projectile motion to explain the two roots found when using the quadratic formula. An example is provided for finding the time of flight for a projectile which has a negative root implying a negative time of flight. This negative time of flight also has a useful physical meaning. (MVL)

  8. The Mystical "Quadratic Formula."

    ERIC Educational Resources Information Center

    March, Robert H.

    1993-01-01

    Uses projectile motion to explain the two roots found when using the quadratic formula. An example is provided for finding the time of flight for a projectile which has a negative root implying a negative time of flight. This negative time of flight also has a useful physical meaning. (MVL)

  9. Quintessence with quadratic coupling to dark matter

    SciTech Connect

    Boehmer, Christian G.; Chan, Nyein; Caldera-Cabral, Gabriela; Lazkoz, Ruth; Maartens, Roy

    2010-04-15

    We introduce a new form of coupling between dark energy and dark matter that is quadratic in their energy densities. Then we investigate the background dynamics when dark energy is in the form of exponential quintessence. The three types of quadratic coupling all admit late-time accelerating critical points, but these are not scaling solutions. We also show that two types of coupling allow for a suitable matter era at early times and acceleration at late times, while the third type of coupling does not admit a suitable matter era.

  10. Integrated particles sensor formed on single substrate using fringes formed by diffractive elements

    NASA Technical Reports Server (NTRS)

    Gharib, Morteza (Inventor); Fourguette, Dominique (Inventor); Modarress, Darius (Inventor); Taugwalder, Frederic (Inventor); Forouhar, Siamak (Inventor)

    2005-01-01

    Integrated sensors are described using lasers on substrates. In one embodiment, a first sensor forms a laser beam and uses a quartz substrate to sense particle motion by interference of the particles with a diffraction beam caused by a laser beam. A second sensor uses gradings to produce an interference. In another embodiment, an integrated sensor includes a laser element, producing a diverging beam, and a single substrate which includes a first diffractive optical element placed to receive the diverging beam and produce a fringe based thereon, a scattering element which scatters said fringe beam based on particles being detected, and a second diffractive element receiving scattered light.

  11. Guises and disguises of quadratic divergences

    NASA Astrophysics Data System (ADS)

    Cherchiglia, A. L.; Vieira, A. R.; Hiller, Brigitte; Baêta Scarpelli, A. P.; Sampaio, Marcos

    2014-12-01

    In this contribution, we present a new perspective on the control of quadratic divergences in quantum field theory, in general, and in the Higgs naturalness problem, in particular. Our discussion is essentially based on an approach where UV divergences are parameterized, after being reduced to basic divergent integrals (BDI) in one internal momentum, as functions of a cutoff and a renormalization group scale λ. We illustrate our proposal with well-known examples, such as the gluon vacuum self energy of QCD and the Higgs decay in two photons within this approach. We also discuss frameworks in effective low-energy QCD models, where quadratic divergences are indeed fundamental.

  12. Guises and disguises of quadratic divergences

    SciTech Connect

    Cherchiglia, A.L.; Vieira, A.R.; Hiller, Brigitte; Baêta Scarpelli, A.P.; Sampaio, Marcos

    2014-12-15

    In this contribution, we present a new perspective on the control of quadratic divergences in quantum field theory, in general, and in the Higgs naturalness problem, in particular. Our discussion is essentially based on an approach where UV divergences are parameterized, after being reduced to basic divergent integrals (BDI) in one internal momentum, as functions of a cutoff and a renormalization group scale λ. We illustrate our proposal with well-known examples, such as the gluon vacuum self energy of QCD and the Higgs decay in two photons within this approach. We also discuss frameworks in effective low-energy QCD models, where quadratic divergences are indeed fundamental.

  13. Integrated Forming Simulation Using State Of The Art Methodologies

    NASA Astrophysics Data System (ADS)

    Ling, David; Babeau, Jean-Luc; Skrikerud, Martin; Dammak, Younes; El Khaldi, Fouad

    2007-05-01

    Forming simulation technologies continues to develop at a rapid pace, to address formability, tolerance control, and product performance issues in an increasing range of processes, and in ever more detail. Springback prediction and compensation continue to evolve, with new concepts for improving the accuracy of the springback prediction for example by the incorporation of geometric drawbeads, and further refinement in compensation techniques. The paper highlights how the integration of simulation and geometry plays an ever more important role, in improving accuracy and reducing time. Other techniques which can help speed-up and improve simulation results for hydroforming, and tube bending are `classical' and more recently `in-process' optimization techniques. The paper will show the advantages on an industrial case, and the potential for the future. The paper will discuss how the PAM-STAMP 2G™ and PAM-TUBE 2G™ integrated solutions are successfully implemented to deliver a positive business impact, by providing virtual product quality assessment, tolerance control, and springback compensation. The paper will also discuss how new forming processes such as hot forming, superplastic forming, and tube hydroforming, can be accurately modeled using the new modules.

  14. Limit cycles near hyperbolas in quadratic systems

    NASA Astrophysics Data System (ADS)

    Artés, Joan C.; Dumortier, Freddy; Llibre, Jaume

    In this paper we introduce the notion of infinity strip and strip of hyperbolas as organizing centers of limit cycles in polynomial differential systems on the plane. We study a strip of hyperbolas occurring in some quadratic systems. We deal with the cyclicity of the degenerate graphics DI2a from the programme, set up in [F. Dumortier, R. Roussarie, C. Rousseau, Hilbert's 16th problem for quadratic vector fields, J. Differential Equations 110 (1994) 86-133], to solve the finiteness part of Hilbert's 16th problem for quadratic systems. Techniques from geometric singular perturbation theory are combined with the use of the Bautin ideal. We also rely on the theory of Darboux integrability.

  15. Curious Consequences of a Miscopied Quadratic

    ERIC Educational Resources Information Center

    Poet, Jeffrey L.; Vestal, Donald L., Jr.

    2005-01-01

    The starting point of this article is a search for pairs of quadratic polynomials x[superscript 2] + bx plus or minus c with the property that they both factor over the integers. The search leads quickly to some number theory in the form of primitive Pythagorean triples, and this paper develops the connection between these two topics.

  16. Curious Consequences of a Miscopied Quadratic

    ERIC Educational Resources Information Center

    Poet, Jeffrey L.; Vestal, Donald L., Jr.

    2005-01-01

    The starting point of this article is a search for pairs of quadratic polynomials x[superscript 2] + bx plus or minus c with the property that they both factor over the integers. The search leads quickly to some number theory in the form of primitive Pythagorean triples, and this paper develops the connection between these two topics.

  17. Modular Form Representation for Periods of Hyperelliptic Integrals

    NASA Astrophysics Data System (ADS)

    Eilers, Keno

    2016-06-01

    To every hyperelliptic curve one can assign the periods of the integrals over the holomorphic and the meromorphic differentials. By comparing two representations of the so-called projective connection it is possible to reexpress the latter periods by the first. This leads to expressions including only the curve's parameters λ_j and modular forms. By a change of basis of the meromorphic differentials one can further simplify this expression. We discuss the advantages of these explicitly given bases, which we call Baker and Klein basis, respectively.

  18. Quadratic Dynamical Systems and Algebras

    NASA Astrophysics Data System (ADS)

    Kinyon, M. K.; Sagle, A. A.

    1995-03-01

    Quadratic dynamical systems come from differential or discrete systems of the form Ẋ = Q(X) or X(k+1)=Q(X(k)), where Q:Rn→Rn is homogeneous of degree 2; i.e., Q(αX) = α2Q(X) for all α∈R, X∈Rn. Defining a bilinear mapping β:Rn × Rn→Rn by β(X, Y) ≔ {1}/{2}[Q(X+Y)-Q(X)-Q(Y)], we view XY≡β(X, Y) as a multiplication, and thus consider A=(Rn, β) to be a commutative, nonassociative algebra. The quadratic systems are then studied with the general theme that the structure of the algebras helps determine the behavior of the solutions. For example, semisimple algebras give a decoupling of the original system into systems occurring in simple algebras, and solvable algebras give solutions to differential systems via linear differential equations; the general three-dimensional example of the latter phenomenon is described. There are many classical examples and the scope of quadratic systems is large; every polynomial system can be embedded into a higher dimensional quadratic system such that solutions of the original system are obtained from the quadratic system. For differential systems, nilpotents of index 2 (N2=0) are equilibria and idempotents (E2=E) give ray solutions. The origin is never asymptotically stable, and the existence of nonzero idempotents implies that the origin is actually unstable. Nonzero equilibria are not hyperbolic, but can be studied by standard algebra techniques using nondegenerate bilinear forms as Lyapunov functions. Periodic orbits lie on "cones." They cannot occur in dimension 2 or in power-associative algebras. No periodic orbit can be an attractor but "limit cycles" (invariant cones) can exist. Automorphisms of the algebra A leave equilibria, periodic orbits, and domains of attraction invariant. Also, explicit solutions can be given by the action of automorphisms on an initial point; the general three-dimensional example of this is described. Thus if there are sufficient automorphisms, Hilbert‧s sixteenth problem in R3 has

  19. Effects of Classroom Instruction on Students' Understanding of Quadratic Equations

    ERIC Educational Resources Information Center

    Vaiyavutjamai, Pongchawee; Clements, M. A.

    2006-01-01

    Two hundred and thirty-one students in six Grade 9 classes in two government secondary schools located near Chiang Mai, Thailand, attempted to solve the same 18 quadratic equations before and after participating in 11 lessons on quadratic equations. Data from the students' written responses to the equations, together with data in the form of…

  20. Analysis of Students' Error in Learning of Quadratic Equations

    ERIC Educational Resources Information Center

    Zakaria, Effandi; Ibrahim; Maat, Siti Mistima

    2010-01-01

    The purpose of the study was to determine the students' error in learning quadratic equation. The samples were 30 form three students from a secondary school in Jambi, Indonesia. Diagnostic test was used as the instrument of this study that included three components: factorization, completing the square and quadratic formula. Diagnostic interview…

  1. The Random Quadratic Assignment Problem

    NASA Astrophysics Data System (ADS)

    Paul, Gerald; Shao, Jia; Stanley, H. Eugene

    2011-11-01

    The quadratic assignment problem, QAP, is one of the most difficult of all combinatorial optimization problems. Here, we use an abbreviated application of the statistical mechanics replica method to study the asymptotic behavior of instances in which the entries of at least one of the two matrices that specify the problem are chosen from a random distribution P. Surprisingly, the QAP has not been studied before using the replica method despite the fact that the QAP was first proposed over 50 years ago and the replica method was developed over 30 years ago. We find simple forms for C min and C max , the costs of the minimal and maximum solutions respectively. Notable features of our results are the symmetry of the results for C min and C max and their dependence on P only through its mean and standard deviation, independent of the details of P.

  2. A note on the fundamental unit in some types of the real quadratic number fields

    NASA Astrophysics Data System (ADS)

    Özer, Ö.

    2016-10-01

    Let k =Q (√{d }) be a real quadratic numbefield where d > 0 is a positive square-free integer. The map d →Q (√{d }) is a bijection from the set off all square-free integers d ≠ 0, 1 to the set of all quadratic fields Q (√{d })={ x +y √{d }|x ,y ∈Q } . Furthermore, integral basis element of algebraic integer's ring in real quadratic fields is determined by either wd=√{d }=[ a0;a1,a2,⋯,aℓ (d)-1,2 a0 ¯ ] in the case of d ≡ 2,3(mod 4) or wd=1/+√{d } 2 =[ a0;a1,a2,⋯,aℓ (d)-1,2 a0-1 ¯ ] in the case of d ≡ 1(mod 4) where ℓ (d ) is the period length of continued fraction expansion. The purpose of this paper is to obtain classification of some types of real quadratic fields Q (√{d }) , which include the specific form of continued fraction expansion of integral basis element wd, for which has all partial quotient elements are equal to each other and written as ξs (except the last digit of the period) for ξ positive even integer where period length is ℓ =ℓ (d ) and d ≡ 2,3(mod 4) is a square free positive integer. Moreover, the present paper deals with determining new certain parametric formula of fundamental unit ɛd=t/d+ud√{d } 2 >1 with norm N (ɛd)=(-1) ℓ (d ) for such types of real quadratic fields. Besides, Yokoi's d-invariants nd and md in the relation to continued fraction expansion of wd are calculated by using coefficients of fundamental unit. All supported results are given in numerical tables. These new results and tables are not known in the literature of real quadratic fields.

  3. Exact evaluation of the quadratic longitudinal response function for an unmagnetized Maxwellian plasma

    SciTech Connect

    Layden, B.; Cairns, Iver H.; Robinson, P. A.; Percival, D. J.

    2012-07-15

    The quadratic longitudinal response function describes the second-order nonlinear response of a plasma to electrostatic wave fields. An explicit expression for this function in the weak-turbulence regime requires the evaluation of velocity-space integrals involving the velocity distribution function and various resonant denominators. Previous calculations of the quadratic longitudinal response function were performed by approximating the resonant denominators to facilitate the integration. Here, we evaluate these integrals exactly for a non-relativistic collisionless unmagnetized isotropic Maxwellian plasma in terms of generalized plasma dispersion functions, and correct certain aspects of expressions previously derived for these functions. We show that in the appropriate limits the exact expression reduces to the approximate form used for interactions between two fast waves and one slow wave, such as the electrostatic decay of Langmuir waves into Langmuir waves and ion sound waves, and the scattering of Langmuir waves off thermal ions.

  4. New integrated approach for repairing and redesigning heavy forming tools

    NASA Astrophysics Data System (ADS)

    Bichmann, Stephan, II; Zacher, Michael; Glaser, Ulf; Pfeifer, Tilo

    2003-05-01

    Forging and sheet metal forming tools are subject to strong, partial wear in use. On the one hand wear-protection layers are applied before use, and on the other hand worn tools are repaired by manual build-up welding after use. At present the repair of such tools is carried out in separate work processes with a small degree of automation and a high proportion of manual activity. This leads to long running times and potential sources of error. Our approach to solve these problems is to develop a repair cell which will facilitate automated repairs, beginning with measurement of the worn tool areas through to the repaired, fully operational tool. This paper will describe the overall concept of this repair cell with a special focus on optical metrology. Challenges of integration and demands for different sensor types are presented as well as the specified interfaces between different processing stages during manufacturing.

  5. Neuronal oscillations form parietal/frontal networks during contour integration.

    PubMed

    Castellano, Marta; Plöchl, Michael; Vicente, Raul; Pipa, Gordon

    2014-01-01

    The ability to integrate visual features into a global coherent percept that can be further categorized and manipulated are fundamental abilities of the neural system. While the processing of visual information involves activation of early visual cortices, the recruitment of parietal and frontal cortices has been shown to be crucial for perceptual processes. Yet is it not clear how both cortical and long-range oscillatory activity leads to the integration of visual features into a coherent percept. Here, we will investigate perceptual grouping through the analysis of a contour categorization task, where the local elements that form contour must be linked into a coherent structure, which is then further processed and manipulated to perform the categorization task. The contour formation in our visual stimulus is a dynamic process where, for the first time, visual perception of contours is disentangled from the onset of visual stimulation or from motor preparation, cognitive processes that until now have been behaviorally attached to perceptual processes. Our main finding is that, while local and long-range synchronization at several frequencies seem to be an ongoing phenomena, categorization of a contour could only be predicted through local oscillatory activity within parietal/frontal sources, which in turn, would synchronize at gamma (>30 Hz) frequency. Simultaneously, fronto-parietal beta (13-30 Hz) phase locking forms a network spanning across neural sources that are not category specific. Both long range networks, i.e., the gamma network that is category specific, and the beta network that is not category specific, are functionally distinct but spatially overlapping. Altogether, we show that a critical mechanism underlying contour categorization involves oscillatory activity within parietal/frontal cortices, as well as its synchronization across distal cortical sites.

  6. Students' Understanding of Quadratic Equations

    ERIC Educational Resources Information Center

    López, Jonathan; Robles, Izraim; Martínez-Planell, Rafael

    2016-01-01

    Action-Process-Object-Schema theory (APOS) was applied to study student understanding of quadratic equations in one variable. This required proposing a detailed conjecture (called a genetic decomposition) of mental constructions students may do to understand quadratic equations. The genetic decomposition which was proposed can contribute to help…

  7. Students' Understanding of Quadratic Equations

    ERIC Educational Resources Information Center

    López, Jonathan; Robles, Izraim; Martínez-Planell, Rafael

    2016-01-01

    Action-Process-Object-Schema theory (APOS) was applied to study student understanding of quadratic equations in one variable. This required proposing a detailed conjecture (called a genetic decomposition) of mental constructions students may do to understand quadratic equations. The genetic decomposition which was proposed can contribute to help…

  8. A Sequential Quadratically Constrained Quadratic Programming Method of Feasible Directions

    SciTech Connect

    Jian Jinbao Hu Qingjie; Tang Chunming; Zheng Haiyan

    2007-12-15

    In this paper, a sequential quadratically constrained quadratic programming method of feasible directions is proposed for the optimization problems with nonlinear inequality constraints. At each iteration of the proposed algorithm, a feasible direction of descent is obtained by solving only one subproblem which consist of a convex quadratic objective function and simple quadratic inequality constraints without the second derivatives of the functions of the discussed problems, and such a subproblem can be formulated as a second-order cone programming which can be solved by interior point methods. To overcome the Maratos effect, an efficient higher-order correction direction is obtained by only one explicit computation formula. The algorithm is proved to be globally convergent and superlinearly convergent under some mild conditions without the strict complementarity. Finally, some preliminary numerical results are reported.

  9. An alternative method on quadratic programming problems

    NASA Astrophysics Data System (ADS)

    Dasril, Y.; Mohd, I. B.; Mustaffa, I.; Aminuddin, MMM.

    2015-05-01

    In this paper we proposed an alternative approach to find the optimum solution of quadratic programming problems (QPP) in its original form without additional information such as slack variable, surplus variable or artificial variable as done in other favourite methods. This approached is based on the violated constraints by the unconstrained optimum. The optimal solution of QPP obtained by searching from initial point to another point alongside of feasible region.

  10. Quadratic Generalized Scale Invariance

    NASA Astrophysics Data System (ADS)

    Lovejoy, S.; Schertzer, D.; Addor, J. B.

    Nearly twenty years ago, two of us argued that in order to account for the scaling strat- ification of the atmosphere, that an anisotropic "unified scaling model" of the atmo- sphere was required with elliptical dimension 23/9=2.555... "in between" the standard 3-D (small scale) and 2-D large scale model. This model was based on the formal- ism of generalized scale invariance (GSI). Physically, GSI is justified by arguing that various conserved fluxes (energy, buoyancy force variance etc.) should define the ap- propriate notion of scale. In a recent large scale satellite cloud image analysis, we directly confirmed this model by studying the isotropic (angle averaged) horizontal cloud statistics. Mathematically, GSI is based on a a group of scale changing opera- tors and their generators but to date, both analyses (primarily of cloud images) and nu- merical (multifractal) simulations, have been limited to the special case of linear GSI. This has shown that cloud texture can plausibly be associated with local linearizations. However realistic morphologies involve spatially avarying textures; the full non linear GSI is clearly necessary. In this talk, we first show that the observed angle averaged (multi)scaling statistics only give a realtively weak constraint on the nonlinear gner- ator: that the latter can be expressed by self-similar (isotropic) part, and a deviatoric part described (in two dimensions) by an arbitrary scalar potential which contains all the information about the cloud morphology. We then show (using a theorem due to Poincaré) how to reduce nonlinear GSI to linear GSI plus a nonlinear coordinate trans- formation numerically, using this to take multifractal GSI modelling to the next level of approximation: quadratic GSI. We show many examples of the coresponding simu- lations which include transitions from various morphologies (including cyclones) and we discuss the results in relation to satellite cloud images.

  11. Integrity and virtue: The forming of good character

    PubMed Central

    Mitchell, Louise A.

    2015-01-01

    be of good character one must not only know and desire the good, one must also pursue it in both private and public actions. Virtue is an aid in this; it is the act of good character. Growing in the virtues, especially prudence (knowing what to seek and what to avoid) forms good character. What is at stake is the integrity of the person. The physician who believes that use of contraception is immoral must also act in ways that display that belief and avoid actions that promote contraception use by his or her patients. PMID:25999613

  12. Integrity and virtue: The forming of good character.

    PubMed

    Mitchell, Louise A

    2015-05-01

    character one must not only know and desire the good, one must also pursue it in both private and public actions. Virtue is an aid in this; it is the act of good character. Growing in the virtues, especially prudence (knowing what to seek and what to avoid) forms good character. What is at stake is the integrity of the person. The physician who believes that use of contraception is immoral must also act in ways that display that belief and avoid actions that promote contraception use by his or her patients.

  13. Differential form of the collision integral for a relativistic plasma

    SciTech Connect

    Braams, B.J.; Karney, C.F.F.

    1987-08-01

    A differential formulation for the Beliaev and Budker relativistic collision integral is presented. This permits the rapid numerical evaluation of the collision integral. The decomposition into spherical harmonics allows the collision operator to be expressed in terms of one-dimensional integrals for simple background distributions. This is useful in carrying out analytical work. It also provides a convenient method for calculating the boundary conditions for the potentials. 6 refs.

  14. Equivalence of quadratic performance criteria.

    NASA Technical Reports Server (NTRS)

    Martin, C.

    1973-01-01

    Necessary and sufficient conditions are derived in terms of system parameters and quadratic weighting matrices for two quadratic cost functionals that are defined to be equivalent if they generate the same optimal control law. The derived conditions lie between the conditions of Tanaka and Asai (1971) and those of Kreindler and Hedrick (1970). Sufficient conditions for a vector valued function to attain an infimum are stated.

  15. Integrating Test-Form Formatting into Automated Test Assembly

    ERIC Educational Resources Information Center

    Diao, Qi; van der Linden, Wim J.

    2013-01-01

    Automated test assembly uses the methodology of mixed integer programming to select an optimal set of items from an item bank. Automated test-form generation uses the same methodology to optimally order the items and format the test form. From an optimization point of view, production of fully formatted test forms directly from the item pool using…

  16. Linear quadratic output tracking and disturbance rejection

    NASA Astrophysics Data System (ADS)

    Karimi-Ghartemani, Masoud; Khajehoddin, S. Ali; Jain, Praveen; Bakhshai, Alireza

    2011-08-01

    This article introduces the problem of linear quadratic tracking (LQT) where the objective is to design a closed-loop control scheme such that the output signal of the system optimally tracks a given reference signal and rejects a given disturbance. Different performance indices that have been used to address the tracking problem are discussed and an appropriate new form is introduced. It is shown that a solution to the proposed optimality index exists under very mild conditions of stabilisability and detectability of the plant state-space equations. The solution is formulated based on converting the LQT problem to a standard linear quadratic regulation problem. The method is applied to two examples, a first-order plant and a third-order plant, and their simulation results are presented and discussed.

  17. Curriculum Integration in Arts Education: Connecting Multiple Art Forms through the Idea of "Space"

    ERIC Educational Resources Information Center

    Bautista, Alfredo; Tan, Liang See; Ponnusamy, Letchmi Devi; Yau, Xenia

    2016-01-01

    Arts integration research has focused on documenting how the teaching of specific art forms can be integrated with "core" academic subject matters (e.g. science, mathematics and literacy). However, the question of how the teaching of multiple art forms themselves can be integrated in schools remains to be explored by educational…

  18. Curriculum Integration in Arts Education: Connecting Multiple Art Forms through the Idea of "Space"

    ERIC Educational Resources Information Center

    Bautista, Alfredo; Tan, Liang See; Ponnusamy, Letchmi Devi; Yau, Xenia

    2016-01-01

    Arts integration research has focused on documenting how the teaching of specific art forms can be integrated with "core" academic subject matters (e.g. science, mathematics and literacy). However, the question of how the teaching of multiple art forms themselves can be integrated in schools remains to be explored by educational…

  19. The simultaneous integration of many trajectories using nilpotent normal forms

    NASA Technical Reports Server (NTRS)

    Grayson, Matthew A.; Grossman, Robert

    1990-01-01

    Taylor's formula shows how to approximate a certain class of functions by polynomials. The approximations are arbitrarily good in some neighborhood whenever the function is analytic and they are easy to compute. The main goal is to give an efficient algorithm to approximate a neighborhood of the configuration space of a dynamical system by a nilpotent, explicitly integrable dynamical system. The major areas covered include: an approximating map; the generalized Baker-Campbell-Hausdorff formula; the Picard-Taylor method; the main theorem; simultaneous integration of trajectories; and examples.

  20. Exact solutions to quadratic gravity

    NASA Astrophysics Data System (ADS)

    Pravda, V.; Pravdová, A.; Podolský, J.; Švarc, R.

    2017-04-01

    Since all Einstein spacetimes are vacuum solutions to quadratic gravity in four dimensions, in this paper we study various aspects of non-Einstein vacuum solutions to this theory. Most such known solutions are of traceless Ricci and Petrov type N with a constant Ricci scalar. Thus we assume the Ricci scalar to be constant which leads to a substantial simplification of the field equations. We prove that a vacuum solution to quadratic gravity with traceless Ricci tensor of type N and aligned Weyl tensor of any Petrov type is necessarily a Kundt spacetime. This will considerably simplify the search for new non-Einstein solutions. Similarly, a vacuum solution to quadratic gravity with traceless Ricci type III and aligned Weyl tensor of Petrov type II or more special is again necessarily a Kundt spacetime. Then we study the general role of conformal transformations in constructing vacuum solutions to quadratic gravity. We find that such solutions can be obtained by solving one nonlinear partial differential equation for a conformal factor on any Einstein spacetime or, more generally, on any background with vanishing Bach tensor. In particular, we show that all geometries conformal to Kundt are either Kundt or Robinson-Trautman, and we provide some explicit Kundt and Robinson-Trautman solutions to quadratic gravity by solving the above mentioned equation on certain Kundt backgrounds.

  1. Forming of science teacher thinking through integrated laboratory exercises

    NASA Astrophysics Data System (ADS)

    Horváthová, Daniela; Rakovská, Mária; Zelenický, Ľubomír

    2017-01-01

    Within the three-semester optional course Science we have also included into curricula the subject entitled Science Practicum consisting of laboratory exercises of complementary natural scientific disciplines whose content exceeds the boundaries of relevant a scientific discipline (physics, biology, …). The paper presents the structure and selected samples of laboratory exercises of physical part of Science Practicum in which we have processed in an integrated way the knowledge of physics and biology at secondary grammar school. When planning the exercises we have proceeded from those areas of mentioned disciplines in which we can appropriately apply integration of knowledge and where the measurement methods are used. We have focused on the integration of knowledge in the field of human sensory organs (eye, ear), dolphins, bats (spatial orientation) and bees (ommatidium of faceted eye) and their modelling. Laboratory exercises are designed in such a way that they would motivate future teachers of natural scientific subjects to work independently with specialized literature of the mentioned natural sciences and ICT.

  2. Integrating Form and Meaning in L2 Pronunciation Instruction

    ERIC Educational Resources Information Center

    Isaacs, Talia

    2009-01-01

    One of the central challenges of ESL teaching is striking the right balance between form and meaning. In pronunciation pedagogy, this challenge is compounded because repetitive practice, which has been shown to enhance phonological acquisition and promote fluency, is widely viewed as being incompatible with communicative principles. This article…

  3. Laser programmable integrated circuit for forming synapses in neural networks

    DOEpatents

    Fu, C.Y.

    1997-02-11

    Customizable neural network in which one or more resistors form each synapse is disclosed. All the resistors in the synaptic array are identical, thus simplifying the processing issues. Highly doped, amorphous silicon is used as the resistor material, to create extremely high resistances occupying very small spaces. Connected in series with each resistor in the array is at least one severable conductor whose uppermost layer has a lower reflectivity of laser energy than typical metal conductors at a desired laser wavelength. 5 figs.

  4. Laser programmable integrated curcuit for forming synapses in neural networks

    DOEpatents

    Fu, Chi Y.

    1997-01-01

    Customizable neural network in which one or more resistors form each synapse. All the resistors in the synaptic array are identical, thus simplifying the processing issues. Highly doped, amorphous silicon is used as the resistor material, to create extremely high resistances occupying very small spaces. Connected in series with each resistor in the array is at least one severable conductor whose uppermost layer has a lower reflectivity of laser energy than typical metal conductors at a desired laser wavelength.

  5. Models of Anisotropic Creep in Integral Wing Panel Forming Processes

    NASA Astrophysics Data System (ADS)

    Oleinikov, A. I.; Oleinikov, A. A.

    2016-08-01

    For a sufficiently wide range of stresses the titanic and aluminummagnesium alloys, as a rule, strained differently in the process of creep under tension and compression along a fixed direction. There are suggested constitutive relations for the description of the steady-state creep of transversely isotropic materials with different tension and compression characteristics. Experimental justification is given to the proposed constitutive equations. Modeling of forming of wing panels of the aircraft are considered.

  6. Concretising Factorisation of Quadratic Expressions

    ERIC Educational Resources Information Center

    Hoong, Leong Yew; Fwe, Yap Sook; Yvonne, Teo Mei Lin; Subramaniam, Thilagam d/o; Zaini, Irni Karen Bte Mohd; Chiew, Quek Eng; Karen, Tan Kang Ling

    2010-01-01

    The way quadratic factorisation was usually taught to students in Bukit View Secondary was through the familiar "cross-method." However, some teachers felt that a significant number of students could not use the method effectively even after careful demonstration through repeated examples. In addition, many secondary mathematics teachers…

  7. Integrated Modelling of Damage and Fracture in Sheet Metal Forming

    NASA Astrophysics Data System (ADS)

    Peerlings, R. H. J.; Mediavilla, J.; Geers, M. G. D.

    2007-05-01

    A framework for finite element simulations of ductile damage development and ductile fracture during metal forming is presented. The damage evolution is described by a phenomenological continuum damage model. Crack growth and fracture are treated as the ultimate consequences of the damage process. Computationally, the initiation and growth of cracks is traced by an adaptive remeshing strategy, thereby allowing for opening crack faces. The application of the method to the fabrication of food-can lids demonstrates its capabilities, but also some of its limitations.

  8. Integral representations on supermanifolds: super Hodge duals, PCOs and Liouville forms

    NASA Astrophysics Data System (ADS)

    Castellani, Leonardo; Catenacci, Roberto; Grassi, Pietro Antonio

    2017-01-01

    We present a few types of integral transforms and integral representations that are very useful for extending to supergeometry many familiar concepts of differential geometry. Among them we discuss the construction of the super Hodge dual, the integral representation of picture changing operators of string theories and the construction of the super-Liouville form of a symplectic supermanifold.

  9. Computation of form factors in massless QCD with finite master integrals

    NASA Astrophysics Data System (ADS)

    von Manteuffel, Andreas; Panzer, Erik; Schabinger, Robert M.

    2016-06-01

    We present the bare one-, two-, and three-loop form factors in massless quantum chromodynamics as linear combinations of finite master integrals. Using symbolic integration, we compute their ɛ expansions and thereby reproduce all known results with an independent method. Remarkably, in our finite basis, only integrals with a less-than-maximal number of propagators contribute to the cusp anomalous dimensions. We report on indications of this phenomenon at four loops, including the result for a finite, irreducible, twelve-propagator form factor integral. Together with this article, we provide our automated software setup for the computation of finite master integrals.

  10. The integration of solid-form informatics into solid-form selection.

    PubMed

    Feeder, Neil; Pidcock, Elna; Reilly, Anthony M; Sadiq, Ghazala; Doherty, Cheryl L; Back, Kevin R; Meenan, Paul; Docherty, Robert

    2015-06-01

    To demonstrate how the use of structural informatics during drug development assists with the assessment of the risk of polymorphism and the selection of a commercial solid form. The application of structural chemistry knowledge derived from the hundreds of thousands of crystal structures contained in the Cambridge Structural Database to drug candidates is described. Examples given show the comparison of intermolecular geometries to database-derived statistics, the use of Full Interaction Maps to assess polymorph stability and the calculation of hydrogen bond propensities to provide assurance of a stable solid form. The software tools used are included in the Cambridge Structural Database System and the Solid Form Module of Mercury. The early identification of an unusual supramolecular motif in the development phase of maraviroc led to further experimental work to find the most stable polymorph. Analyses of two polymorphs of a pain candidate drug demonstrated how consideration of molecular conformation and intermolecular interactions were used for the assessment of relative stability. Informatics analysis confirmed that the solid form of crizotinib, a monomorphic system, had a low risk of polymorphism. The application of informatics-based assessment of new chemical entities complements experimental studies and provides a deeper understanding of the qualities of the structure. The information provided by structural analyses is incorporated into the assessment of risk. Informatics techniques are quick to apply and are straightforward to use, allowing an assessment of progressing drug candidates. © 2015 Royal Pharmaceutical Society.

  11. Exploration of Quadratic Expressions through Multiple Representations for Students with Mathematics Difficulties

    ERIC Educational Resources Information Center

    Strickland, Tricia K.; Maccini, Paula

    2013-01-01

    The current study focuses on the effects of incorporating multiple visual representations on students' conceptual understanding of quadratic expressions embedded within area word problems and students' procedural fluency of transforming quadratic expressions in standard form to factored-form and vice versa. The intervention included the…

  12. Digital image restoration using quadratic programming.

    PubMed

    Abdelmalek, N N; Kasvand, T

    1980-10-01

    The problem of digital image restoration is considered by obtaining an approximate solution to the Fredholm integral equation of the first kind in two variables. The system of linear equations resulting from the discretization of the integral equation is converted to a consistent system of linear equations. The problem is then solved as a quadratic programming problem with bounded variables where the unknown solution is minimized in the L(2) norm. In this method minimum computer storage is needed, and the repeated solutions are obtained in an efficient way. Also the rank of the consistent system which gives a best or near best solution is estimated. Computer simulated examples using spatially separable pointspread functions are presented. Comments and conclusion are given.

  13. Binary Inspiral in Quadratic Gravity

    NASA Astrophysics Data System (ADS)

    Yagi, Kent

    2015-01-01

    Quadratic gravity is a general class of quantum-gravity-inspired theories, where the Einstein-Hilbert action is extended through the addition of all terms quadratic in the curvature tensor coupled to a scalar field. In this article, we focus on the scalar Gauss- Bonnet (sGB) theory and consider the black hole binary inspiral in this theory. By applying the post-Newtonian (PN) formalism, we found that there is a scalar dipole radiation which leads to -1PN correction in the energy flux relative to gravitational radiation in general relativity. From the orbital decay rate of a low-mass X-ray binary A0600-20, we obtain the bound that is six orders of magnitude stronger than the current solar system bound. Furthermore, we show that the excess in the orbital decay rate of XTE J1118+480 can be explained by the scalar radiation in sGB theory.

  14. Orthogonality preserving infinite dimensional quadratic stochastic operators

    SciTech Connect

    Akın, Hasan; Mukhamedov, Farrukh

    2015-09-18

    In the present paper, we consider a notion of orthogonal preserving nonlinear operators. We introduce π-Volterra quadratic operators finite and infinite dimensional settings. It is proved that any orthogonal preserving quadratic operator on finite dimensional simplex is π-Volterra quadratic operator. In infinite dimensional setting, we describe all π-Volterra operators in terms orthogonal preserving operators.

  15. A transient, quadratic nodal method for triangular-Z geometry

    SciTech Connect

    DeLorey, T.F.

    1993-06-01

    Many systematically-derived nodal methods have been developed for Cartesian geometry due to the extensive interest in Light Water Reactors. These methods typically model the transverse-integrated flux as either an analytic or low order polynomial function of position within the node. Recently, quadratic nodal methods have been developed for R-Z and hexagonal geometry. A static and transient quadratic nodal method is developed for triangular-Z geometry. This development is particularly challenging because the quadratic expansion in each node must be performed between the node faces and the triangular points. As a consequence, in the 2-D plane, the flux and current at the points of the triangles must be treated. Quadratic nodal equations are solved using a non-linear iteration scheme, which utilizes the corrected, mesh-centered finite difference equations, and forces these equations to match the quadratic equations by computing discontinuity factors during the solution. Transient nodal equations are solved using the improved quasi-static method, which has been shown to be a very efficient solution method for transient problems. Several static problems are used to compare the quadratic nodal method to the Coarse Mesh Finite Difference (CMFD) method. The quadratic method is shown to give more accurate node-averaged fluxes. However, it appears that the method has difficulty predicting node leakages near reactor boundaries and severe material interfaces. The consequence is that the eigenvalue may be poorly predicted for certain reactor configurations. The transient methods are tested using a simple analytic test problem, a heterogeneous heavy water reactor benchmark problem, and three thermal hydraulic test problems. Results indicate that the transient methods have been implemented correctly.

  16. Analytic results for planar three-loop integrals for massive form factors

    NASA Astrophysics Data System (ADS)

    Henn, Johannes M.; Smirnov, Alexander V.; Smirnov, Vladimir A.

    2016-12-01

    We use the method of differential equations to analytically evaluate all planar three-loop Feynman integrals relevant for form factor calculations involving massive particles. Our results for ninety master integrals at general q 2 are expressed in terms of multiple polylogarithms, and results for fiftyone master integrals at the threshold q 2 = 4 m 2 are expressed in terms of multiple polylogarithms of argument one, with indices equal to zero or to a sixth root of unity.

  17. Comparing Two Forms of Concept Map Critique Activities to Facilitate Knowledge Integration Processes in Evolution Education

    ERIC Educational Resources Information Center

    Schwendimann, Beat A.; Linn, Marcia C.

    2016-01-01

    Concept map activities often lack a subsequent revision step that facilitates knowledge integration. This study compares two collaborative critique activities using a Knowledge Integration Map (KIM), a form of concept map. Four classes of high school biology students (n?=?81) using an online inquiry-based learning unit on evolution were assigned…

  18. Comparing Two Forms of Concept Map Critique Activities to Facilitate Knowledge Integration Processes in Evolution Education

    ERIC Educational Resources Information Center

    Schwendimann, Beat A.; Linn, Marcia C.

    2016-01-01

    Concept map activities often lack a subsequent revision step that facilitates knowledge integration. This study compares two collaborative critique activities using a Knowledge Integration Map (KIM), a form of concept map. Four classes of high school biology students (n?=?81) using an online inquiry-based learning unit on evolution were assigned…

  19. Tuning a fuzzy controller using quadratic response surfaces

    NASA Technical Reports Server (NTRS)

    Schott, Brian; Whalen, Thomas

    1992-01-01

    Response surface methodology, an alternative method to traditional tuning of a fuzzy controller, is described. An example based on a simulated inverted pendulum 'plant' shows that with (only) 15 trial runs, the controller can be calibrated using a quadratic form to approximate the response surface.

  20. Effects of classroom instruction on students' understanding of quadratic equations

    NASA Astrophysics Data System (ADS)

    Vaiyavutjamai, Pongchawee; Clements, M. A. (Ken)

    2006-05-01

    Two hundred and thirty-one students in six Grade 9 classes in two government secondary schools located near Chiang Mai, Thailand, attempted to solve the same 18 quadratic equations before and after participating in 11 lessons on quadratic equations. Data from the students' written responses to the equations, together with data in the form of transcripts of 36 interviews with 18 interviewees (a high performer, a medium performer, and a low performer from each of the six classes), were analysed. Using a rubric for assessing students' understanding, the analysis revealed that at the post-teaching stage students improved their performance on quadratic equations and had a better understanding of associated concepts than they had at the pre-teaching stage. However, many were still confused about the concepts of a variable and of a "solution" to a quadratic equation. After the lessons, most students had acquired neither an instrumental nor a relational understanding of the mathematics associated with solving elementary quadratic equations.

  1. Factorization method of quadratic template

    NASA Astrophysics Data System (ADS)

    Kotyrba, Martin

    2017-07-01

    Multiplication of two numbers is a one-way function in mathematics. Any attempt to distribute the outcome to its roots is called factorization. There are many methods such as Fermat's factorization, Dixońs method or quadratic sieve and GNFS, which use sophisticated techniques fast factorization. All the above methods use the same basic formula differing only in its use. This article discusses a newly designed factorization method. Effective implementation of this method in programs is not important, it only represents and clearly defines its properties.

  2. Spatiotemporal Form Integration: Sequentially presented inducers can lead to representations of stationary and rigidly rotating objects

    PubMed Central

    McCarthy, J. Daniel; Strother, Lars; Caplovitz, Gideon Paul

    2016-01-01

    Objects in the world are often occluded and in motion. The visible fragments of such objects are revealed at different times and locations in space. To form coherent representations of the surfaces of these objects, the visual system must integrate local form information over space and time. We introduce a new illusion in which a rigidly rotating square is perceived on the basis of sequentially presented Pacman inducers. The illusion highlights two fundamental processes that allow us to perceive objects whose form features are revealed over time: Spatiotemporal Form Integration (STFI) and Position Updating. STFI refers to the spatial integration of persistent representations of local form features across time. Position updating of these persistent form representations allows them to be integrated into a rigid global motion percept. We describe three psychophysical experiments designed to identify spatial and temporal constraints that underlie these two processes and a fourth experiment that extends these findings to more ecologically valid stimuli. Our results indicate that although STFI can occur across relatively long delays between successive inducers (i.e., greater than 500 ms), position updating is limited to a more restricted temporal window (i.e., ~300 ms or less) and to a confined range of spatial (mis)alignment. These findings lend insight into the limits of mechanisms underlying the visual system's capacity to integrate transient, piecemeal form information and support coherent object representations in the ever-changing environment. PMID:26269386

  3. Spatiotemporal Form Integration: sequentially presented inducers can lead to representations of stationary and rigidly rotating objects.

    PubMed

    McCarthy, J Daniel; Strother, Lars; Caplovitz, Gideon Paul

    2015-11-01

    Objects in the world often are occluded and in motion. The visible fragments of such objects are revealed at different times and locations in space. To form coherent representations of the surfaces of these objects, the visual system must integrate local form information over space and time. We introduce a new illusion in which a rigidly rotating square is perceived on the basis of sequentially presented Pacman inducers. The illusion highlights two fundamental processes that allow us to perceive objects whose form features are revealed over time: Spatiotemporal Form Integration (STFI) and Position Updating. STFI refers to the spatial integration of persistent representations of local form features across time. Position updating of these persistent form representations allows them to be integrated into a rigid global motion percept. We describe three psychophysical experiments designed to identify spatial and temporal constraints that underlie these two processes and a fourth experiment that extends these findings to more ecologically valid stimuli. Our results indicate that although STFI can occur across relatively long delays between successive inducers (i.e., greater than 500 ms), position updating is limited to a more restricted temporal window (i.e., ~300 ms or less), and to a confined range of spatial (mis)alignment. These findings lend insight into the limits of mechanisms underlying the visual system's capacity to integrate transient, piecemeal form information, and support coherent object representations in the ever-changing environment.

  4. Hidden Lessons: How a Focus on Slope-Like Properties of Quadratic Functions Encouraged Unexpected Generalizations

    ERIC Educational Resources Information Center

    Ellis, Amy B.; Grinstead, Paul

    2008-01-01

    This article presents secondary students' generalizations about the connections between algebraic and graphical representations of quadratic functions, focusing specifically on the roles of the parameters a, b, and c in the general form of a quadratic function, y = ax[superscript 2] + bx + c. Students' generalizations about these connections led…

  5. Hidden Lessons: How a Focus on Slope-Like Properties of Quadratic Functions Encouraged Unexpected Generalizations

    ERIC Educational Resources Information Center

    Ellis, Amy B.; Grinstead, Paul

    2008-01-01

    This article presents secondary students' generalizations about the connections between algebraic and graphical representations of quadratic functions, focusing specifically on the roles of the parameters a, b, and c in the general form of a quadratic function, y = ax[superscript 2] + bx + c. Students' generalizations about these connections led…

  6. Isolated and Integrated Form-Focused Instruction: Effects on Different Types of L2 Knowledge

    ERIC Educational Resources Information Center

    Spada, Nina; Jessop, Lorena; Tomita, Yasuyo; Suzuki, Wataru; Valeo, Antonella

    2014-01-01

    In this study we compared the effects of two types of form-focused instruction (FFI) on second language (L2) learning and their potential contributions to the development of different types of L2 knowledge. Both types of instruction were pre-emptive in nature, that is planned and teacher generated. In Integrated FFI attention to form was embedded…

  7. Isolated and Integrated Form-Focused Instruction: Effects on Different Types of L2 Knowledge

    ERIC Educational Resources Information Center

    Spada, Nina; Jessop, Lorena; Tomita, Yasuyo; Suzuki, Wataru; Valeo, Antonella

    2014-01-01

    In this study we compared the effects of two types of form-focused instruction (FFI) on second language (L2) learning and their potential contributions to the development of different types of L2 knowledge. Both types of instruction were pre-emptive in nature, that is planned and teacher generated. In Integrated FFI attention to form was embedded…

  8. Form factors in quantum integrable models with GL(3)-invariant R-matrix

    NASA Astrophysics Data System (ADS)

    Pakuliak, S.; Ragoucy, E.; Slavnov, N. A.

    2014-04-01

    We study integrable models solvable by the nested algebraic Bethe ansatz and possessing GL(3)-invariant R-matrix. We obtain determinant representations for form factors of off-diagonal entries of the monodromy matrix. These representations can be used for the calculation of form factors and correlation functions of the XXX SU(3)-invariant Heisenberg chain.

  9. Polarization Nonlinear Optics of Quadratically Nonlinear Azopolymers

    SciTech Connect

    Konorov, S.O.; Akimov, D.A.; Ivanov, A.A.; Petrov, A.N.; Alfimov, M.V.; Yakimanskii, A.V.; Smirnov, N.N.; Ivanova, V.N.; Kudryavtsev, V.V.; Podshivalov, A.A.; Sokolova, I.M.; Zheltikov, A.M.

    2005-07-15

    The polarization properties of second harmonic and sum-frequency signals generated by femtosecond laser pulses in films of polymers containing covalent groups of an azobenzothiazole chromophore polarized by an external electric field are investigated. It is shown that the methods of polarization nonlinear optics make it possible to determine the structure of oriented molecular dipoles and reveal important properties of the motion of collectivized {pi}electrons in organic molecules with strong optical nonlinearities. The polarization measurements show that the tensor of quadratic nonlinear optical susceptibility of chromophore fragments oriented by an external field in macromolecules of the noted azopolymers has a degenerate form. This is indicative of a predominantly one-dimensional character of motion of collectivized {pi} electrons along an extended group of atoms in such molecules.

  10. Compact stars with quadratic equation of state

    NASA Astrophysics Data System (ADS)

    Ngubelanga, Sifiso A.; Maharaj, Sunil D.; Ray, Subharthi

    2015-05-01

    We provide new exact solutions to the Einstein-Maxwell system of equations for matter configurations with anisotropy and charge. The spacetime is static and spherically symmetric. A quadratic equation of state is utilised for the matter distribution. By specifying a particular form for one of the gravitational potentials and the electric field intensity we obtain new exact solutions in isotropic coordinates. In our general class of models, an earlier model with a linear equation of state is regained. For particular choices of parameters we regain the masses of the stars PSR J1614-2230, 4U 1608-52, PSR J1903+0327, EXO 1745-248 and SAX J1808.4-3658. A comprehensive physical analysis for the star PSR J1903+0327 reveals that our model is reasonable.

  11. Single-photon quadratic optomechanics

    PubMed Central

    Liao, Jie-Qiao; Nori, Franco

    2014-01-01

    We present exact analytical solutions to study the coherent interaction between a single photon and the mechanical motion of a membrane in quadratic optomechanics. We consider single-photon emission and scattering when the photon is initially inside the cavity and in the fields outside the cavity, respectively. Using our solutions, we calculate the single-photon emission and scattering spectra, and find relations between the spectral features and the system's inherent parameters, such as: the optomechanical coupling strength, the mechanical frequency, and the cavity-field decay rate. In particular, we clarify the conditions for the phonon sidebands to be visible. We also study the photon-phonon entanglement for the long-time emission and scattering states. The linear entropy is employed to characterize this entanglement by treating it as a bipartite one between a single mode of phonons and a single photon. PMID:25200128

  12. Integration of adaptive process control with computational simulation for spin-forming

    SciTech Connect

    Raboin, P. J., LLNL

    1998-03-10

    Improvements in spin-forming capabilities through upgrades to a metrology and machine control system and advances in numerical simulation techniques were studied in a two year project funded by Laboratory Directed Research and Development (LDRD) at Lawrence Livermore National Laboratory. Numerical analyses were benchmarked with spin-forming experiments and computational speeds increased sufficiently to now permit actual part forming simulations. Extensive modeling activities examined the simulation speeds and capabilities of several metal forming computer codes for modeling flat plate and cylindrical spin-forming geometries. Shape memory research created the first numerical model to describe this highly unusual deformation behavior in Uranium alloys. A spin-forming metrology assessment led to sensor and data acquisition improvements that will facilitate future process accuracy enhancements, such as a metrology frame. Finally, software improvements (SmartCAM) to the manufacturing process numerically integrate the part models to the spin-forming process and to computational simulations.

  13. Large-scale sequential quadratic programming algorithms

    SciTech Connect

    Eldersveld, S.K.

    1992-09-01

    The problem addressed is the general nonlinear programming problem: finding a local minimizer for a nonlinear function subject to a mixture of nonlinear equality and inequality constraints. The methods studied are in the class of sequential quadratic programming (SQP) algorithms, which have previously proved successful for problems of moderate size. Our goal is to devise an SQP algorithm that is applicable to large-scale optimization problems, using sparse data structures and storing less curvature information but maintaining the property of superlinear convergence. The main features are: 1. The use of a quasi-Newton approximation to the reduced Hessian of the Lagrangian function. Only an estimate of the reduced Hessian matrix is required by our algorithm. The impact of not having available the full Hessian approximation is studied and alternative estimates are constructed. 2. The use of a transformation matrix Q. This allows the QP gradient to be computed easily when only the reduced Hessian approximation is maintained. 3. The use of a reduced-gradient form of the basis for the null space of the working set. This choice of basis is more practical than an orthogonal null-space basis for large-scale problems. The continuity condition for this choice is proven. 4. The use of incomplete solutions of quadratic programming subproblems. Certain iterates generated by an active-set method for the QP subproblem are used in place of the QP minimizer to define the search direction for the nonlinear problem. An implementation of the new algorithm has been obtained by modifying the code MINOS. Results and comparisons with MINOS and NPSOL are given for the new algorithm on a set of 92 test problems.

  14. Eigenvalue-based determinants for scalar products and form factors in Richardson-Gaudin integrable models coupled to a bosonic mode

    NASA Astrophysics Data System (ADS)

    Claeys, Pieter W.; De Baerdemacker, Stijn; Van Raemdonck, Mario; Van Neck, Dimitri

    2015-10-01

    Starting from integrable su(2) (quasi-)spin Richardson-Gaudin (RG) XXZ models we derive several properties of integrable spin models coupled to a bosonic mode. We focus on the Dicke-Jaynes-Cummings-Gaudin models and the two-channel (p + ip)-wave pairing Hamiltonian. The pseudo-deformation of the underlying su(2) algebra is here introduced as a way to obtain these models in the contraction limit of different RG models. This allows for the construction of the full set of conserved charges, the Bethe ansatz state, and the resulting RG equations. For these models an alternative and simpler set of quadratic equations can be found in terms of the eigenvalues of the conserved charges. Furthermore, the recently proposed eigenvalue-based determinant expressions for the overlaps and form factors of local operators are extended to these models, linking the results previously presented for the Dicke-Jaynes-Cummings-Gaudin models with the general results for RG XXZ models.

  15. Factorising a Quadratic Expression with Geometric Insights

    ERIC Educational Resources Information Center

    Joarder, Anwar H.

    2015-01-01

    An algorithm is presented for factorising a quadratic expression to facilitate instruction and learning. It appeals to elementary geometry which may provide better insights to some students or teachers. There have been many methods for factorising a quadratic expression described in school text books. However, students often seem to struggle with…

  16. An Unexpected Influence on a Quadratic

    ERIC Educational Resources Information Center

    Davis, Jon D.

    2013-01-01

    Using technology to explore the coefficients of a quadratic equation can lead to an unexpected result. This article describes an investigation that involves sliders and dynamically linked representations. It guides students to notice the effect that the parameter "a" has on the graphical representation of a quadratic function in the form…

  17. On Quantization of Quadratic Poisson Structures

    NASA Astrophysics Data System (ADS)

    Manchon, D.; Masmoudi, M.; Roux, A.

    Any classical r-matrix on the Lie algebra of linear operators on a real vector space V gives rise to a quadratic Poisson structure on V which admits a deformation quantization stemming from the construction of V. Drinfel'd [Dr], [Gr]. We exhibit in this article an example of quadratic Poisson structure which does not arise this way.

  18. Integrated Science Syllabus for Malaysia, Forms 1-111, Revised Version.

    ERIC Educational Resources Information Center

    Ministry of Education, Kuala Lumpur (Malaysia).

    As a revised version of the Scottish Integrated Science, an outline of the Malaysian science course is presented in this volume for use as a guideline for science teaching at the secondary level. A total of 16 sections is included in three forms which are intended to be covered in three years. The topics include: lab techniques, unit systems,…

  19. Combining Isolated and Integrated Form-Focused Instruction: Effects on Productive Skills

    ERIC Educational Resources Information Center

    Barrot, Jessie S.

    2014-01-01

    Previous studies revealed that isolated and integrated form-focused instruction (FFI) are two effective means of improving language proficiency of students, separately. However, few empirical studies have explored their complementarity in the context of English as a second language. This study, therefore, investigates the effects of combining…

  20. Calculation of the Displacement Current Using the Integral Form of Ampere's Law.

    ERIC Educational Resources Information Center

    Dahm, A. J.

    1978-01-01

    Derives the magnetic field as a function of position between two capacitor plates during discharge with the use of the integral form of Ampere's law and real currents only. The displacement current must be included to obtain the same result for arbitrary choices of contours. (Author/GA)

  1. Integrating Boolean Queries in Conjunctive Normal Form with Probabilistic Retrieval Models.

    ERIC Educational Resources Information Center

    Losee, Robert M.; Bookstein, Abraham

    1988-01-01

    Presents a model that places Boolean database queries into conjunctive normal form, thereby allowing probabilistic ranking of documents and the incorporation of relevance feedback. Experimental results compare the performance of a sequential learning probabilistic retrieval model with the proposed integrated Boolean probabilistic model and a fuzzy…

  2. Calculation of the Displacement Current Using the Integral Form of Ampere's Law.

    ERIC Educational Resources Information Center

    Dahm, A. J.

    1978-01-01

    Derives the magnetic field as a function of position between two capacitor plates during discharge with the use of the integral form of Ampere's law and real currents only. The displacement current must be included to obtain the same result for arbitrary choices of contours. (Author/GA)

  3. Quadratic nonlinear Klein-Gordon equation in one dimension

    NASA Astrophysics Data System (ADS)

    Hayashi, Nakao; Naumkin, Pavel I.

    2012-10-01

    We study the initial value problem for the quadratic nonlinear Klein-Gordon equation vtt + v - vxx = λv2, t ∈ R, x ∈ R, with initial conditions v(0, x) = v0(x), vt(0, x) = v1(x), x ∈ R, where v0 and v1 are real-valued functions, λ ∈ R. Using the method of normal forms of Shatah ["Normal forms and quadratic nonlinear Klein-Gordon equations," Commun. Pure Appl. Math. 38, 685-696 (1985)], we obtain a sharp asymptotic behavior of small solutions without the condition of a compact support on the initial data, which was assumed in the previous work of J.-M. Delort ["Existence globale et comportement asymptotique pour l'équation de Klein-Gordon quasi-linéaire á données petites en dimension 1," Ann. Sci. Ec. Normale Super. 34(4), 1-61 (2001)].

  4. VICO: Ontology-based representation and integrative analysis of Vaccination Informed Consent forms.

    PubMed

    Lin, Yu; Zheng, Jie; He, Yongqun

    2016-01-01

    Although signing a vaccination (or immunization) informed consent form is not a federal requirement in the US and Canada, such a practice is required by many states and pharmacies. The content and structures of these informed consent forms vary, which makes it hard to compare and analyze without standardization. To facilitate vaccination informed consent data standardization and integration, it is important to examine various vaccination informed consent forms, patient answers, and consent results. In this study, we report a Vaccination Informed Consent Ontology (VICO) that extends the Informed Consent Ontology and integrates related OBO foundry ontologies, such as the Vaccine Ontology, with a focus on vaccination screening questionnaire in the vaccination informed consent domain. Current VICO contains 993 terms, including 248 VICO specific terms and 709 terms imported from 17 OBO Foundry ontologies. VICO ontologically represents and integrates 12 vaccination informed consent forms from the Walgreens, Costco pharmacies, Rite AID, University of Maryland College Park, and the government of Manitoba, Canada. VICO extends Informed Consent Ontology (ICO) with vaccination screening questionnaires and questions. Our use cases and examples demonstrate five usages of VICO. First, VICO provides standard, robust and consistent representation and organization of the knowledge in different vaccination informed consent forms, questionnaires, and questions. Second, VICO integrates prior knowledge, e.g., the knowledge of vaccine contraindications imported from the Vaccine Ontology (VO). Third, VICO helps manage the complexity of the domain knowledge using logically defined ontological hierarchies and axioms. VICO glues multiple schemas that represent complex vaccination informed consent contents defined in different organizations. Fourth, VICO supports efficient query and comparison, e.g., through the Description Language (DL)-Query and SPARQL. Fifth, VICO helps discover new

  5. Design of Linear Quadratic Regulators and Kalman Filters

    NASA Technical Reports Server (NTRS)

    Lehtinen, B.; Geyser, L.

    1986-01-01

    AESOP solves problems associated with design of controls and state estimators for linear time-invariant systems. Systems considered are modeled in state-variable form by set of linear differential and algebraic equations with constant coefficients. Two key problems solved by AESOP are linear quadratic regulator (LQR) design problem and steady-state Kalman filter design problem. AESOP is interactive. User solves design problems and analyzes solutions in single interactive session. Both numerical and graphical information available to user during the session.

  6. Design of Linear Quadratic Regulators and Kalman Filters

    NASA Technical Reports Server (NTRS)

    Lehtinen, B.; Geyser, L.

    1986-01-01

    AESOP solves problems associated with design of controls and state estimators for linear time-invariant systems. Systems considered are modeled in state-variable form by set of linear differential and algebraic equations with constant coefficients. Two key problems solved by AESOP are linear quadratic regulator (LQR) design problem and steady-state Kalman filter design problem. AESOP is interactive. User solves design problems and analyzes solutions in single interactive session. Both numerical and graphical information available to user during the session.

  7. Quadratic and Cubic Nonlinear Oscillators with Damping and Their Applications

    NASA Astrophysics Data System (ADS)

    Li, Jibin; Feng, Zhaosheng

    We apply the qualitative theory of dynamical systems to study exact solutions and the dynamics of quadratic and cubic nonlinear oscillators with damping. Under certain parametric conditions, we also consider the van der Waals normal form, Chaffee-Infante equation, compound Burgers-KdV equation and Burgers-KdV equation for explicit representations of kink-profile wave solutions and unbounded traveling wave solutions.

  8. Seven Wonders of the Ancient and Modern Quadratic World.

    ERIC Educational Resources Information Center

    Taylor, Sharon E.; Mittag, Kathleen Cage

    2001-01-01

    Presents four methods for solving a quadratic equation using graphing calculator technology: (1) graphing with the CALC feature; (2) quadratic formula program; (3) table; and (4) solver. Includes a worksheet for a lab activity on factoring quadratic equations. (KHR)

  9. Seven Wonders of the Ancient and Modern Quadratic World.

    ERIC Educational Resources Information Center

    Taylor, Sharon E.; Mittag, Kathleen Cage

    2001-01-01

    Presents four methods for solving a quadratic equation using graphing calculator technology: (1) graphing with the CALC feature; (2) quadratic formula program; (3) table; and (4) solver. Includes a worksheet for a lab activity on factoring quadratic equations. (KHR)

  10. Closed-form expressions for the Dirac-Coulomb radial rt integrals

    NASA Astrophysics Data System (ADS)

    Bessis, N.; Bessis, G.; Roux, D.

    1985-10-01

    A novel procedure is devised in order to obtain closed-form expressions of the Dirac-Coulomb radial rt integrals in terms of the Dirac energy ɛ=\\{1+Z2α2/[v+(k2-Z2 α2)1/2]2\\}-1/2, where v=n-||k||, and of the Dirac quantum number k=(-1)j+l+1/2(j+(1/2)). In this procedure, well adapted for symbolic computation, the fundamental array of the rt radial integrals is obtained from the rt-1 array.

  11. Bayesian integration of position and orientation cues in perception of biological and non-biological forms.

    PubMed

    Thurman, Steven M; Lu, Hongjing

    2014-01-01

    Visual form analysis is fundamental to shape perception and likely plays a central role in perception of more complex dynamic shapes, such as moving objects or biological motion. Two primary form-based cues serve to represent the overall shape of an object: the spatial position and the orientation of locations along the boundary of the object. However, it is unclear how the visual system integrates these two sources of information in dynamic form analysis, and in particular how the brain resolves ambiguities due to sensory uncertainty and/or cue conflict. In the current study, we created animations of sparsely-sampled dynamic objects (human walkers or rotating squares) comprised of oriented Gabor patches in which orientation could either coincide or conflict with information provided by position cues. When the cues were incongruent, we found a characteristic trade-off between position and orientation information whereby position cues increasingly dominated perception as the relative uncertainty of orientation increased and vice versa. Furthermore, we found no evidence for differences in the visual processing of biological and non-biological objects, casting doubt on the claim that biological motion may be specialized in the human brain, at least in specific terms of form analysis. To explain these behavioral results quantitatively, we adopt a probabilistic template-matching model that uses Bayesian inference within local modules to estimate object shape separately from either spatial position or orientation signals. The outputs of the two modules are integrated with weights that reflect individual estimates of subjective cue reliability, and integrated over time to produce a decision about the perceived dynamics of the input data. Results of this model provided a close fit to the behavioral data, suggesting a mechanism in the human visual system that approximates rational Bayesian inference to integrate position and orientation signals in dynamic form analysis.

  12. Bayesian integration of position and orientation cues in perception of biological and non-biological forms

    PubMed Central

    Thurman, Steven M.; Lu, Hongjing

    2014-01-01

    Visual form analysis is fundamental to shape perception and likely plays a central role in perception of more complex dynamic shapes, such as moving objects or biological motion. Two primary form-based cues serve to represent the overall shape of an object: the spatial position and the orientation of locations along the boundary of the object. However, it is unclear how the visual system integrates these two sources of information in dynamic form analysis, and in particular how the brain resolves ambiguities due to sensory uncertainty and/or cue conflict. In the current study, we created animations of sparsely-sampled dynamic objects (human walkers or rotating squares) comprised of oriented Gabor patches in which orientation could either coincide or conflict with information provided by position cues. When the cues were incongruent, we found a characteristic trade-off between position and orientation information whereby position cues increasingly dominated perception as the relative uncertainty of orientation increased and vice versa. Furthermore, we found no evidence for differences in the visual processing of biological and non-biological objects, casting doubt on the claim that biological motion may be specialized in the human brain, at least in specific terms of form analysis. To explain these behavioral results quantitatively, we adopt a probabilistic template-matching model that uses Bayesian inference within local modules to estimate object shape separately from either spatial position or orientation signals. The outputs of the two modules are integrated with weights that reflect individual estimates of subjective cue reliability, and integrated over time to produce a decision about the perceived dynamics of the input data. Results of this model provided a close fit to the behavioral data, suggesting a mechanism in the human visual system that approximates rational Bayesian inference to integrate position and orientation signals in dynamic form analysis

  13. Optimal Control Using Pontryagin's Maximum Principle in a Linear Quadratic Differential Game

    NASA Astrophysics Data System (ADS)

    Khakestari, Marzieh; Ibragimov, Gafurjan; Suleiman, Mohamed

    This paper deals with a class of two person zero-sum linear quadratic differential games, where the control functions for both players subject to integral constraints. Also the necessary conditions of the Maximum Principle are studied. Main objective in this work is to obtain optimal control by using method of Pontryagin's Maximum Principle. This method for a time-varying linear quadratic differential game is described. Finally, we discuss about an example.

  14. Integral Hot Gas Pressure Forming of an AA2219 Aluminum Alloy Ellipsoidal Shell

    NASA Astrophysics Data System (ADS)

    Yuan, S. J.; Zhang, R.; Zhang, W. W.

    2017-02-01

    To overcome the poor plastic deformation performance of AA2219 aluminum alloy sheet and its weld seam at room temperature, an integral hot gas pressure forming (IHGPF) process for a combined welded ellipsoidal shell was proposed. A simulation of the IHGPF process was conducted to analyze the axis length variation and thickness distribution during the forming process of the combined welded ellipsoidal shell at elevated temperature. The results demonstrated that lengths of the short and long axes were 150 mm and 220 mm, respectively, and that maximum wall thinning occurred at the pole. Furthermore, an experiment was conducted using IHGPF, and the forming accuracy was measured by three-dimensional video technology. A sound ellipsoidal shell with final axis length ratio of 1.5 was obtained with a shell diameter accuracy of more than 99.3%. It was experimentally proven that an aluminum alloy ellipsoidal shell can be formed using the proposed IHGPF technology.

  15. Master Integrals for Fermionic Contributions to Massless Three-Loop Form Factors

    SciTech Connect

    Heinrich, G.; Huber, T.; Maitre, D.

    2007-11-28

    In this letter we continue the calculation of master integrals for massless three-loop form factors by giving analytical results for those diagrams which are relevant for the fermionic contributions proportional to N{sub F}{sup 2}, N{sub F} {center_dot} N, and N{sub F}/N. Working in dimensional regularization, we express one of the diagrams in a closed form which is exact to all orders in {epsilon}, containing {Lambda}-functions and hypergeometric functions of unit argument. In all other cases we derive multiple Mellin-Barnes representations from which the coefficients of the Laurent expansion in {epsilon} are extracted in an analytical form. To obtain the finite part of the three-loop quark and gluon form factors, all coefficients through transcendentality six in the Riemann {zeta}-function have to be included.

  16. Integral Hot Gas Pressure Forming of an AA2219 Aluminum Alloy Ellipsoidal Shell

    NASA Astrophysics Data System (ADS)

    Yuan, S. J.; Zhang, R.; Zhang, W. W.

    2017-04-01

    To overcome the poor plastic deformation performance of AA2219 aluminum alloy sheet and its weld seam at room temperature, an integral hot gas pressure forming (IHGPF) process for a combined welded ellipsoidal shell was proposed. A simulation of the IHGPF process was conducted to analyze the axis length variation and thickness distribution during the forming process of the combined welded ellipsoidal shell at elevated temperature. The results demonstrated that lengths of the short and long axes were 150 mm and 220 mm, respectively, and that maximum wall thinning occurred at the pole. Furthermore, an experiment was conducted using IHGPF, and the forming accuracy was measured by three-dimensional video technology. A sound ellipsoidal shell with final axis length ratio of 1.5 was obtained with a shell diameter accuracy of more than 99.3%. It was experimentally proven that an aluminum alloy ellipsoidal shell can be formed using the proposed IHGPF technology.

  17. Process for forming integral edge seals in porous gas distribution plates utilizing a vibratory means

    NASA Technical Reports Server (NTRS)

    Feigenbaum, Haim (Inventor); Pudick, Sheldon (Inventor)

    1988-01-01

    A process for forming an integral edge seal in a gas distribution plate for use in a fuel cell. A seal layer is formed along an edge of a porous gas distribution plate by impregnating the pores in the layer with a material adapted to provide a seal which is operative dry or when wetted by an electrolyte of a fuel cell. Vibratory energy is supplied to the sealing material during the step of impregnating the pores to provide a more uniform seal throughout the cross section of the plate.

  18. Cortical hubs form a module for multisensory integration on top of the hierarchy of cortical networks.

    PubMed

    Zamora-López, Gorka; Zhou, Changsong; Kurths, Jürgen

    2010-01-01

    Sensory stimuli entering the nervous system follow particular paths of processing, typically separated (segregated) from the paths of other modal information. However, sensory perception, awareness and cognition emerge from the combination of information (integration). The corticocortical networks of cats and macaque monkeys display three prominent characteristics: (i) modular organisation (facilitating the segregation), (ii) abundant alternative processing paths and (iii) the presence of highly connected hubs. Here, we study in detail the organisation and potential function of the cortical hubs by graph analysis and information theoretical methods. We find that the cortical hubs form a spatially delocalised, but topologically central module with the capacity to integrate multisensory information in a collaborative manner. With this, we resolve the underlying anatomical substrate that supports the simultaneous capacity of the cortex to segregate and to integrate multisensory information.

  19. Cortical Hubs Form a Module for Multisensory Integration on Top of the Hierarchy of Cortical Networks

    PubMed Central

    Zamora-López, Gorka; Zhou, Changsong; Kurths, Jürgen

    2009-01-01

    Sensory stimuli entering the nervous system follow particular paths of processing, typically separated (segregated) from the paths of other modal information. However, sensory perception, awareness and cognition emerge from the combination of information (integration). The corticocortical networks of cats and macaque monkeys display three prominent characteristics: (i) modular organisation (facilitating the segregation), (ii) abundant alternative processing paths and (iii) the presence of highly connected hubs. Here, we study in detail the organisation and potential function of the cortical hubs by graph analysis and information theoretical methods. We find that the cortical hubs form a spatially delocalised, but topologically central module with the capacity to integrate multisensory information in a collaborative manner. With this, we resolve the underlying anatomical substrate that supports the simultaneous capacity of the cortex to segregate and to integrate multisensory information. PMID:20428515

  20. Schur Stability Regions for Complex Quadratic Polynomials

    ERIC Educational Resources Information Center

    Cheng, Sui Sun; Huang, Shao Yuan

    2010-01-01

    Given a quadratic polynomial with complex coefficients, necessary and sufficient conditions are found in terms of the coefficients such that all its roots have absolute values less than 1. (Contains 3 figures.)

  1. A Special Circle for Quadratic Equations.

    ERIC Educational Resources Information Center

    Patterson, Walter M.; Lubecke, Andre M.

    1991-01-01

    Discussed is a method of approximating the roots of a quadratic that allows the discovery of relationships between parabolas and circles and between the use of geometry and algebra. Included are the procedure and justification of the method. (KR)

  2. Linear quadratic optimal control for symmetric systems

    NASA Technical Reports Server (NTRS)

    Lewis, J. H.; Martin, C. F.

    1983-01-01

    Special symmetries are present in many control problems. This paper addresses the problem of determining linear-quadratic optimal control problems whose solutions preserve the symmetry of the initial linear control system.

  3. Schur Stability Regions for Complex Quadratic Polynomials

    ERIC Educational Resources Information Center

    Cheng, Sui Sun; Huang, Shao Yuan

    2010-01-01

    Given a quadratic polynomial with complex coefficients, necessary and sufficient conditions are found in terms of the coefficients such that all its roots have absolute values less than 1. (Contains 3 figures.)

  4. WHAT IS A SATISFACTORY QUADRATIC EQUATION SOLVER?

    DTIC Science & Technology

    The report discusses precise requirements for a satisfactory computer program to solve a quadratic equation with floating - point coefficients. The principal practical problem is coping with overflow and underflow.

  5. Computational attributes of the integral form of the equation of transfer

    NASA Technical Reports Server (NTRS)

    Frankel, J. I.

    1991-01-01

    Difficulties can arise in radiative and neutron transport calculations when a highly anisotropic scattering phase function is present. In the presence of anisotropy, currently used numerical solutions are based on the integro-differential form of the linearized Boltzmann transport equation. This paper, departs from classical thought and presents an alternative numerical approach based on application of the integral form of the transport equation. Use of the integral formalism facilitates the following steps: a reduction in dimensionality of the system prior to discretization, the use of symbolic manipulation to augment the computational procedure, and the direct determination of key physical quantities which are derivable through the various Legendre moments of the intensity. The approach is developed in the context of radiative heat transfer in a plane-parallel geometry, and results are presented and compared with existing benchmark solutions. Encouraging results are presented to illustrate the potential of the integral formalism for computation. The integral formalism appears to possess several computational attributes which are well-suited to radiative and neutron transport calculations.

  6. Computational attributes of the integral form of the equation of transfer

    NASA Technical Reports Server (NTRS)

    Frankel, J. I.

    1991-01-01

    Difficulties can arise in radiative and neutron transport calculations when a highly anisotropic scattering phase function is present. In the presence of anisotropy, currently used numerical solutions are based on the integro-differential form of the linearized Boltzmann transport equation. This paper, departs from classical thought and presents an alternative numerical approach based on application of the integral form of the transport equation. Use of the integral formalism facilitates the following steps: a reduction in dimensionality of the system prior to discretization, the use of symbolic manipulation to augment the computational procedure, and the direct determination of key physical quantities which are derivable through the various Legendre moments of the intensity. The approach is developed in the context of radiative heat transfer in a plane-parallel geometry, and results are presented and compared with existing benchmark solutions. Encouraging results are presented to illustrate the potential of the integral formalism for computation. The integral formalism appears to possess several computational attributes which are well-suited to radiative and neutron transport calculations.

  7. Test spaces and characterizations of quadratic spaces

    NASA Astrophysics Data System (ADS)

    Dvurečenskij, Anatolij

    1996-10-01

    We show that a test space consisting of nonzero vectors of a quadratic space E and of the set all maximal orthogonal systems in E is algebraic iff E is Dacey or, equivalently, iff E is orthomodular. In addition, we present another orthomodularity criteria of quadratic spaces, and using the result of Solèr, we show that they can imply that E is a real, complex, or quaternionic Hilbert space.

  8. Quantifying biological integrity of California sage scrub communities using plant life-form cover.

    SciTech Connect

    Hamada, Y.; Stow, D. A.; Franklin, J.

    2010-01-01

    The California sage scrub (CSS) community type in California's Mediterranean-type ecosystems supports a large number of rare, threatened, and endangered species, and is critically degraded and endangered. Monitoring ecological variables that provide information about community integrity is vital to conserving these biologically diverse communities. Fractional cover of true shrub, subshrub, herbaceous vegetation, and bare ground should fill information gaps between generalized vegetation type maps and detailed field-based plot measurements of species composition and provide an effective means for quantifying CSS community integrity. Remote sensing is the only tool available for estimating spatially comprehensive fractional cover over large extent, and fractional cover of plant life-form types is one of the measures of vegetation state that is most amenable to remote sensing. The use of remote sensing does not eliminate the need for either field surveying or vegetation type mapping; rather it will likely require a combination of approaches to reliably estimate life-form cover and to provide comprehensive information for communities. According to our review and synthesis, life-form fractional cover has strong potential for providing ecologically meaningful intermediate-scale information, which is unattainable from vegetation type maps and species-level field measurements. Thus, we strongly recommend incorporating fractional cover of true shrub, subshrub, herb, and bare ground in CSS community monitoring methods. Estimating life-form cover at a 25 m x 25 m spatial scale using remote sensing would be an appropriate approach for initial implementation. Investigation of remote sensing techniques and an appropriate spatial scale; collaboration of resource managers, biologists, and remote sensing specialists, and refinement of protocols are essential for integrating life-form fractional cover mapping into strategies for sustainable long-term CSS community management.

  9. Integrated Forming Simulations and Die Structural Analysis for Optimal Die Designs

    NASA Astrophysics Data System (ADS)

    Aitharaju, Venkat; Liu, Malcolm; Dong, Jennifer; Zhang, Jimmy; Wang, Chuan-tao

    2005-08-01

    After gaining a huge success in applying stamping simulations and formability analysis to validate die face developments, GM moves forward to winning total manufacturability in stamping process. Of which, ensuring die structure integrity and minimizing weight is one of the important initiatives. Stamping die design (or solid modeling of stamping dies) was traditionally conducted by following the die design manuals and standards. For any design changes beyond the standards, however, there are no math-based tools available to die designers to verify the outcome of the changes. Die structural analysis (DSA) provides a math-tool to validate the design changes and quantify the safety factors. Several years ago, GM Manufacturing Engineering — Die Center started die structural analysis to meet the increasing demands of customer needs in various areas: (1) to validate design changes; (2) to identify root cause of die breakage during the tryout and stamping operations and propose repair schemes; (3) to optimize the die design for weight reduction; (4) to improve press throughput via optimizing the scrap chute openings, and (5) to provide a math-based tool to validate revisions to the current die design standards. In the integrated forming and die structural analysis, after successful line die surface developments, the forming loads (binder force, pad force, and forming tonnages) are extracted from forming simulations and applied to solid die members for structural analyses of stress, strains, and deflections. In the past few years, Die Center conducted static, dynamic and fatigue analysis for many dies that covers the die design changes requested by die design, die construction and stamping plants. This paper presents some fundamentals and issues of integrated forming and die structural analysis and illustrates the significant impact of die structural analysis on die design, die construction and production stamping.

  10. Secondary Waste Cementitious Waste Form Data Package for the Integrated Disposal Facility Performance Assessment

    SciTech Connect

    Cantrell, Kirk J.; Westsik, Joseph H.; Serne, R Jeffrey; Um, Wooyong; Cozzi, Alex D.

    2016-05-16

    A review of the most up-to-date and relevant data currently available was conducted to develop a set of recommended values for use in the Integrated Disposal Facility (IDF) performance assessment (PA) to model contaminant release from a cementitious waste form for aqueous wastes treated at the Hanford Effluent Treatment Facility (ETF). This data package relies primarily upon recent data collected on Cast Stone formulations fabricated with simulants of low-activity waste (LAW) and liquid secondary wastes expected to be produced at Hanford. These data were supplemented, when necessary, with data developed for saltstone (a similar grout waste form used at the Savannah River Site). Work is currently underway to collect data on cementitious waste forms that are similar to Cast Stone and saltstone but are tailored to the characteristics of ETF-treated liquid secondary wastes. Recommended values for key parameters to conduct PA modeling of contaminant release from ETF-treated liquid waste are provided.

  11. An optimal consumption and investment problem with quadratic utility and negative wealth constraints.

    PubMed

    Roh, Kum-Hwan; Kim, Ji Yeoun; Shin, Yong Hyun

    2017-01-01

    In this paper, we investigate the optimal consumption and portfolio selection problem with negative wealth constraints for an economic agent who has a quadratic utility function of consumption and receives a constant labor income. Due to the property of the quadratic utility function, we separate our problem into two cases and derive the closed-form solutions for each case. We also illustrate some numerical implications of the optimal consumption and portfolio.

  12. The Factorability of Quadratics: Motivation for More Techniques

    ERIC Educational Resources Information Center

    Bosse, Michael J.; Nandakumar, N. R.

    2005-01-01

    Typically, secondary and college algebra students attempt to utilize either completing the square or the quadratic formula as techniques to solve a quadratic equation only after frustration with factoring has arisen. While both completing the square and the quadratic formula are techniques which can determine solutions for all quadratic equations,…

  13. First integrals and normal forms for germs of analytic vector fields

    NASA Astrophysics Data System (ADS)

    Chen, Jian; Yi, Yingfei; Zhang, Xiang

    For a germ of analytic vector fields, the existence of first integrals, resonance and the convergence of normalization transforming the vector field to a normal form are closely related. In this paper we first provide a link between the number of first integrals and the resonant relations for a quasi-periodic vector field, which generalizes one of the Poincaré's classical results [H. Poincaré, Sur l'intégration des équations différentielles du premier order et du premier degré I and II, Rend. Circ. Mat. Palermo 5 (1891) 161-191; 11 (1897) 193-239] on autonomous systems and Theorem 5 of [Weigu Li, J. Llibre, Xiang Zhang, Local first integrals of differential systems and diffeomorphism, Z. Angew. Math. Phys. 54 (2003) 235-255] on periodic systems. Then in the space of analytic autonomous systems in C2n with exactly n resonances and n functionally independent first integrals, our results are related to the convergence and generic divergence of the normalizations. Lastly for a planar Hamiltonian system it is well known that the system has an isochronous center if and only if it can be linearizable in a neighborhood of the center. Using the Euler-Lagrange equation we provide a new approach to its proof.

  14. An integrative method for testing form-function linkages and reconstructed evolutionary pathways of masticatory specialization.

    PubMed

    Tseng, Z Jack; Flynn, John J

    2015-06-06

    Morphology serves as a ubiquitous proxy in macroevolutionary studies to identify potential adaptive processes and patterns. Inferences of functional significance of phenotypes or their evolution are overwhelmingly based on data from living taxa. Yet, correspondence between form and function has been tested in only a few model species, and those linkages are highly complex. The lack of explicit methodologies to integrate form and function analyses within a deep-time and phylogenetic context weakens inferences of adaptive morphological evolution, by invoking but not testing form-function linkages. Here, we provide a novel approach to test mechanical properties at reconstructed ancestral nodes/taxa and the strength and direction of evolutionary pathways in feeding biomechanics, in a case study of carnivorous mammals. Using biomechanical profile comparisons that provide functional signals for the separation of feeding morphologies, we demonstrate, using experimental optimization criteria on estimation of strength and direction of functional changes on a phylogeny, that convergence in mechanical properties and degree of evolutionary optimization can be decoupled. This integrative approach is broadly applicable to other clades, by using quantitative data and model-based tests to evaluate interpretations of function from morphology and functional explanations for observed macroevolutionary pathways. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  15. Integrated assessment of acid deposition impacts using reduced-form modeling. Final report

    SciTech Connect

    Sinha, R.; Small, M.J.

    1996-05-01

    Emissions of sulfates and other acidic pollutants from anthropogenic sources result in the deposition of these acidic pollutants on the earth`s surface, downwind of the source. These pollutants reach surface waters, including streams and lakes, and acidify them, resulting in a change in the chemical composition of the surface water. Sometimes the water chemistry is sufficiently altered so that the lake can no longer support aquatic life. This document traces the efforts by many researchers to understand and quantify the effect of acid deposition on the water chemistry of populations of lakes, in particular the improvements to the MAGIC (Model of Acidification of Groundwater in Catchments) modeling effort, and describes its reduced-form representation in a decision and uncertainty analysis tool. Previous reduced-form approximations to the MAGIC model are discussed in detail, and their drawbacks are highlighted. An improved reduced-form model for acid neutralizing capacity is presented, which incorporates long-term depletion of the watershed acid neutralization fraction. In addition, improved fish biota models are incorporated in the integrated assessment model, which includes reduced-form models for other physical and chemical processes of acid deposition, as well as the resulting socio-economic and health related effects. The new reduced-form lake chemistry and fish biota models are applied to the Adirondacks region of New York.

  16. Indirect (source-free) integration method. I. Wave-forms from geodesic generic orbits of EMRIs

    NASA Astrophysics Data System (ADS)

    Ritter, Patxi; Aoudia, Sofiane; Spallicci, Alessandro D. A. M.; Cordier, Stéphane

    2016-12-01

    The Regge-Wheeler-Zerilli (RWZ) wave-equation describes Schwarzschild-Droste black hole perturbations. The source term contains a Dirac distribution and its derivative. We have previously designed a method of integration in time domain. It consists of a finite difference scheme where analytic expressions, dealing with the wave-function discontinuity through the jump conditions, replace the direct integration of the source and the potential. Herein, we successfully apply the same method to the geodesic generic orbits of EMRI (Extreme Mass Ratio Inspiral) sources, at second order. An EMRI is a Compact Star (CS) captured by a Super-Massive Black Hole (SMBH). These are considered the best probes for testing gravitation in strong regime. The gravitational wave-forms, the radiated energy and angular momentum at infinity are computed and extensively compared with other methods, for different orbits (circular, elliptic, parabolic, including zoom-whirl).

  17. Ultraflexible nanoelectronic probes form reliable, glial scar–free neural integration

    PubMed Central

    Luan, Lan; Wei, Xiaoling; Zhao, Zhengtuo; Siegel, Jennifer J.; Potnis, Ojas; Tuppen, Catherine A; Lin, Shengqing; Kazmi, Shams; Fowler, Robert A.; Holloway, Stewart; Dunn, Andrew K.; Chitwood, Raymond A.; Xie, Chong

    2017-01-01

    Implanted brain electrodes construct the only means to electrically interface with individual neurons in vivo, but their recording efficacy and biocompatibility pose limitations on scientific and clinical applications. We showed that nanoelectronic thread (NET) electrodes with subcellular dimensions, ultraflexibility, and cellular surgical footprints form reliable, glial scar–free neural integration. We demonstrated that NET electrodes reliably detected and tracked individual units for months; their impedance, noise level, single-unit recording yield, and the signal amplitude remained stable during long-term implantation. In vivo two-photon imaging and postmortem histological analysis revealed seamless, subcellular integration of NET probes with the local cellular and vasculature networks, featuring fully recovered capillaries with an intact blood-brain barrier and complete absence of chronic neuronal degradation and glial scar. PMID:28246640

  18. Fuchsia : A tool for reducing differential equations for Feynman master integrals to epsilon form

    NASA Astrophysics Data System (ADS)

    Gituliar, Oleksandr; Magerya, Vitaly

    2017-10-01

    We present Fuchsia - an implementation of the Lee algorithm, which for a given system of ordinary differential equations with rational coefficients ∂x J(x , ɛ) = A(x , ɛ) J(x , ɛ) finds a basis transformation T(x , ɛ) , i.e., J(x , ɛ) = T(x , ɛ) J‧(x , ɛ) , such that the system turns into the epsilon form : ∂xJ‧(x , ɛ) = ɛ S(x) J‧(x , ɛ) , where S(x) is a Fuchsian matrix. A system of this form can be trivially solved in terms of polylogarithms as a Laurent series in the dimensional regulator ɛ. That makes the construction of the transformation T(x , ɛ) crucial for obtaining solutions of the initial system. In principle, Fuchsia can deal with any regular systems, however its primary task is to reduce differential equations for Feynman master integrals. It ensures that solutions contain only regular singularities due to the properties of Feynman integrals. Program Files doi:http://dx.doi.org/10.17632/zj6zn9vfkh.1 Licensing provisions: MIT Programming language:Python 2.7 Nature of problem: Feynman master integrals may be calculated from solutions of a linear system of differential equations with rational coefficients. Such a system can be easily solved as an ɛ-series when its epsilon form is known. Hence, a tool which is able to find the epsilon form transformations can be used to evaluate Feynman master integrals. Solution method: The solution method is based on the Lee algorithm (Lee, 2015) which consists of three main steps: fuchsification, normalization, and factorization. During the fuchsification step a given system of differential equations is transformed into the Fuchsian form with the help of the Moser method (Moser, 1959). Next, during the normalization step the system is transformed to the form where eigenvalues of all residues are proportional to the dimensional regulator ɛ. Finally, the system is factorized to the epsilon form by finding an unknown transformation which satisfies a system of linear equations. Additional comments

  19. Waste Form Release Data Package for the 2005 Integrated Disposal Facility Performance Assessment. Erratum

    SciTech Connect

    Smith, Gary L.

    2016-09-06

    This report refers to or contains Kg values for glasses LAWA44, LAWB45 and LAWC22 affected by calculations errors as identified by Papathanassiu et al. (2011). The corrected Kg values are reported in an erratum included in the revised version of the original report. The revised report can be referenced as follows: Pierce E. M. et al. (2004) Waste Form Release Data Package for the 2005 Integrated Disposal Facility Performance Assessment. PNNL-14805 Rev. 0 Erratum. Pacific Northwest National Laboratory, Richland, WA, USA.

  20. Waste Form Release Calculations for the 2005 Integrated Disposal Facility Performance Assessment. Erratum

    SciTech Connect

    Smith, Gary L.

    2016-09-06

    This report refers to or contains Kg values for glasses LAWA44, LAWB45 and LAWC22 affected by calculations errors as identified by Papathanassiu et al. (2011). The corrected Kg values are reported in an erratum included in the revised version of the original report. The revised report can be referenced as follows: Pierce E. M. et al. (2004) Waste Form Release Data Package for the 2005 Integrated Disposal Facility Performance Assessment. PNNL-14805 Rev. 0 Erratum. Pacific Northwest National Laboratory, Richland, WA, USA.

  1. A Teflon microreactor with integrated piezoelectric actuator to handle solid forming reactions.

    PubMed

    Kuhn, Simon; Noël, Timothy; Gu, Lei; Heider, Patrick L; Jensen, Klavs F

    2011-08-07

    We present a general inexpensive method for realizing a Teflon stack microreactor with an integrated piezoelectric actuator for conducting chemical synthesis with solid products. The microreactors are demonstrated with palladium-catalyzed C-N cross-coupling reactions, which are prone to clogging microchannels by forming insoluble salts as by-products. Investigations of the ultrasonic waveform applied by the piezoelectric actuator reveal an optimal value of 50 kHz at a load power of 30 W. Operating the system at these conditions, the newly developed Teflon microreactor handles the insoluble solids formed and no clogging is observed. The investigated reactions reach full conversion in very short reaction times and high isolated yields are obtained (>95% yield).

  2. On stability of the Kasner solution in quadratic gravity

    NASA Astrophysics Data System (ADS)

    Toporensky, A.; Müller, D.

    2017-01-01

    We consider the dynamics of a flat anisotropic Universe filled by a perfect fluid near a cosmological singularity in quadratic gravity. Two possible regimes are described—the Kasner anisotropic solution and an isotropic "vacuum radiation" solution which has three sub cases depending on whether the equation of state parameter w is bigger, smaller or equals to 1 / 3. Initial conditions for numerical integrations have been chosen near a General Relativity anisotropic solution with matter (Jacobs solution). We have found that for such initial conditions there is a range of values of the coupling constants so that the resulting cosmological singularity is isotropic.

  3. Fast Approximate Quadratic Programming for Graph Matching

    PubMed Central

    Vogelstein, Joshua T.; Conroy, John M.; Lyzinski, Vince; Podrazik, Louis J.; Kratzer, Steven G.; Harley, Eric T.; Fishkind, Donniell E.; Vogelstein, R. Jacob; Priebe, Carey E.

    2015-01-01

    Quadratic assignment problems arise in a wide variety of domains, spanning operations research, graph theory, computer vision, and neuroscience, to name a few. The graph matching problem is a special case of the quadratic assignment problem, and graph matching is increasingly important as graph-valued data is becoming more prominent. With the aim of efficiently and accurately matching the large graphs common in big data, we present our graph matching algorithm, the Fast Approximate Quadratic assignment algorithm. We empirically demonstrate that our algorithm is faster and achieves a lower objective value on over 80% of the QAPLIB benchmark library, compared with the previous state-of-the-art. Applying our algorithm to our motivating example, matching C. elegans connectomes (brain-graphs), we find that it efficiently achieves performance. PMID:25886624

  4. Fast approximate quadratic programming for graph matching.

    PubMed

    Vogelstein, Joshua T; Conroy, John M; Lyzinski, Vince; Podrazik, Louis J; Kratzer, Steven G; Harley, Eric T; Fishkind, Donniell E; Vogelstein, R Jacob; Priebe, Carey E

    2015-01-01

    Quadratic assignment problems arise in a wide variety of domains, spanning operations research, graph theory, computer vision, and neuroscience, to name a few. The graph matching problem is a special case of the quadratic assignment problem, and graph matching is increasingly important as graph-valued data is becoming more prominent. With the aim of efficiently and accurately matching the large graphs common in big data, we present our graph matching algorithm, the Fast Approximate Quadratic assignment algorithm. We empirically demonstrate that our algorithm is faster and achieves a lower objective value on over 80% of the QAPLIB benchmark library, compared with the previous state-of-the-art. Applying our algorithm to our motivating example, matching C. elegans connectomes (brain-graphs), we find that it efficiently achieves performance.

  5. Restricted Quadratic Forms, Inertia Theorems and the Schur Complement,

    DTIC Science & Technology

    1985-01-01

    subspace S , the usual orthogonal complement of S. Definition 3.1. For an mxn matrix C, the generalized , or Moore - Penrose , inverse is the unique nym...References D. Carlson, E. Haynsworth and T. Markham (1974); A generalization of the Schur complement by means of the Moore - Penrose Inverse , SIAM 3...A The results of §2 are direct in the sense that they do not Involve any inversion of the matrix A. It will here be shown that when the Moore - Penrose

  6. On the Local Maxima of a Constrained Quadratic Form

    ERIC Educational Resources Information Center

    Bhowmik, Jahar L.

    2006-01-01

    This note presents a brief and partial review of the work of Broom, Cannings and Vickers [1]. It also presents some simple examples of an extension of the their formalism to non-symmetric matrices. (Contains 1 figure.)

  7. Global shape integration and illusory form perception in the absence of awareness.

    PubMed

    Jimenez, Mikel; Montoro, Pedro R; Luna, Dolores

    2017-08-01

    Previous research on perceptual organization operations still provides contradictory evidence on whether the integration of sparse local elements into coherently unified shapes and the construction of the illusory form are accomplished without the need of awareness. In the present study, three experiments were conducted in which participants were presented with masked (Experiment 1, SOA=27ms; Experiment 2; SOA=53ms) and unmasked (Experiment 3) primes consisting of geometric shapes (a square or a diamond) that could be congruent or incongruent with subsequent probe stimuli (square vs. diamond). Furthermore, the primes were divided into: a grouping condition (where local elements may group together into global shapes), an illusory condition (where the arrangement of local elements produced illusory shapes) and a hybrid condition (where both operations were presented simultaneously). While no priming effects were found for the shortest SOA (27ms), both grouping and illusory primes produced significant priming effects in the longer SOA (53ms). On the other hand, results in Experiment 3 (unmasked) showed strong priming effects for the grouping of the inducers in both the grouping and the hybrid conditions, and also a significant but weaker priming effect for the illusory condition. Overall, our results support the possibility of the integration of local visual features into a global shape in the absence of awareness and, likewise, they suggest an early -subliminal- construction of the illusory shape, implying that feedback projections from higher to lower visual areas are not crucial in the construction of the illusory form. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. The Weyl group and asymptotics: All supergravity billiards have a closed form general integral

    NASA Astrophysics Data System (ADS)

    Fré, Pietro; Sorin, Alexander S.

    2009-07-01

    In this paper we show that all supergravity billiards corresponding to σ-models on any U/H non-compact-symmetric space and obtained by compactifying supergravity to D=3 admit a closed form general integral depending analytically on a complete set of integration constants. The key point in establishing the integration algorithm is provided by an upper triangular embedding of the solvable Lie algebra associated with U/H into sl(N,R) which is guaranteed to exist for all non-compact symmetric spaces and also for homogeneous special geometries non-corresponding to symmetric spaces. In this context we establish a remarkable relation between the end-points of the time-flow and the properties of the Weyl group. The asymptotic states of the developing Universe are in one-to-one correspondence with the elements of the Weyl group which is a property of the Tits-Satake universality classes and not of their single representatives. Furthermore the Weyl group admits a natural ordering in terms of ℓ, the number of reflections with respect to the simple roots. The direction of time flows is always from the minimal accessible value of ℓ to the maximum one or vice versa.

  9. Limit Cycles of Planar Quadratic Differential Equations,

    DTIC Science & Technology

    1982-05-01

    A120 71g LIMIT CYCLES OF PLANAR QUADRATIC DIFFERENTIAL EQUATIONS i/i (U) VALE UNIV NEW~ HAVEN CT CENTER FOR SYSTEMS SCIENCE D E KODITSCHE( ET AL...MICROCOPY RESOLUTION TEST CHART ""OftAI IIMEA OF WSTMAIhSIItg0s3a NATIONA BUREAU OF -TANDtMAROga / - -w w w ~ S S S S S S S S LIMIT CYCLES OF PLANAR...pubta rolb=% DW*5UMato UnlIhd ... a.. . . . . . . . . .......- .lu uo . ,aK Limit Cycles of Planar Quadratic Differential Equations D. E. Koditschek

  10. On orthogonality preserving quadratic stochastic operators

    SciTech Connect

    Mukhamedov, Farrukh; Taha, Muhammad Hafizuddin Mohd

    2015-05-15

    A quadratic stochastic operator (in short QSO) is usually used to present the time evolution of differing species in biology. Some quadratic stochastic operators have been studied by Lotka and Volterra. In the present paper, we first give a simple characterization of Volterra QSO in terms of absolutely continuity of discrete measures. Further, we introduce a notion of orthogonal preserving QSO, and describe such kind of operators defined on two dimensional simplex. It turns out that orthogonal preserving QSOs are permutations of Volterra QSO. The associativity of genetic algebras generated by orthogonal preserving QSO is studied too.

  11. PSQP -- Puzzle Solving by Quadratic Programming.

    PubMed

    Andalo, Fernanda; Taubin, Gabriel; Goldenstein, Siome

    2016-03-25

    In this article we present the first effective global method for the reconstruction of image puzzles comprising rectangle pieces - Puzzle Solving by Quadratic Programming (PSQP). The proposed novel mathematical formulation reduces the problem to the maximization of a constrained quadratic function, which is solved via a gradient ascent approach. The proposed method is deterministic and can deal with arbitrary identical rectangular pieces. We provide experimental results showing its effectiveness when compared to state-of-the-art approaches. Although the method was developed to solve image puzzles, we also show how to apply it to the reconstruction of simulated strip-shredded documents, broadening its applicability.

  12. PSQP: Puzzle Solving by Quadratic Programming.

    PubMed

    Andalo, Fernanda A; Taubin, Gabriel; Goldenstein, Siome

    2017-02-01

    In this article we present the first effective method based on global optimization for the reconstruction of image puzzles comprising rectangle pieces-Puzzle Solving by Quadratic Programming (PSQP). The proposed novel mathematical formulation reduces the problem to the maximization of a constrained quadratic function, which is solved via a gradient ascent approach. The proposed method is deterministic and can deal with arbitrary identical rectangular pieces. We provide experimental results showing its effectiveness when compared to state-of-the-art approaches. Although the method was developed to solve image puzzles, we also show how to apply it to the reconstruction of simulated strip-shredded documents, broadening its applicability.

  13. An application of nonlinear programming to the design of regulators of a linear-quadratic formulation

    NASA Technical Reports Server (NTRS)

    Fleming, P.

    1983-01-01

    A design technique is proposed for linear regulators in which a feedback controller of fixed structure is chosen to minimize an integral quadratic objective function subject to the satisfaction of integral quadratic constraint functions. Application of a nonlinear programming algorithm to this mathematically tractable formulation results in an efficient and useful computer aided design tool. Particular attention is paid to computational efficiency and various recommendations are made. Two design examples illustrate the flexibility of the approach and highlight the special insight afforded to the designer. One concerns helicopter longitudinal dynamics and the other the flight dynamics of an aerodynamically unstable aircraft.

  14. Effects of quadrat size and shape, initial epidemic conditions, and spore dispersal gradient on spatial statistics of plant disease epidemics.

    PubMed

    Xu, X M; Ridout, M S

    2000-07-01

    ABSTRACT The spatiotemporal spread of plant diseases was simulated using a stochastic model to study the effects of initial conditions (number of plants initially infected and their spatial pattern), spore dispersal gradient, and size and shape of sampling quadrats on statistics describing the spatiotemporal dynamics of epidemics. The spatial spread of disease was simulated using a half-Cauchy distribution with median dispersal distance mu (units of distance). A total of 54 different quadrat types, including 23 distinct sizes ranging from 4 to 144 plants, were used to sample the simulated epidemics. A symmetric form of the binary power law with two parameters (alpha, beta) was fitted to the sampled epidemic data using each of the 54 quadrats for each replicate simulation run. The alpha and beta estimates were highly correlated positively with each other, and their estimates were comparable to those estimated from observed epidemics. Intraclass correlation (kappa) was calculated for each quadrat type; kappa decreased exponentially with increasing quadrat size. An asymmetric form of the binary power law with three parameters (alpha (1), beta(1), beta(2)) was used to relate kappa to the disease incidence (p); beta1 was highly correlated to beta: beta1 approximately beta - 1. In general, initial conditions and quadrat size affected alpha, beta, alpha(1), beta(1), and beta(2) greatly. The parameter estimates increased as quadrat size increased, and the relationships were described well by a linear regression model on the logarithm of quadrat size with the slope or intercept parameters dependent on initial conditions and mu. Compared with initial conditions and quadrat size, the overall effects of mu and quadrat shape were generally small, although within each quadrat size and initial condition they could be substantial. Quadrat shape had the greatest effect when the quadrat was long and thin. The relationship of the index of dispersion (D) to p and quadrat size was

  15. A common N400 EEG component reflecting contextual integration irrespective of symbolic form.

    PubMed

    Fogelson, Noa; Loukas, Constantinos; Brown, John; Brown, Peter

    2004-06-01

    Electroencephalographic (EEG) waves modulated by context have been identified about 400 ms after presentation of a new semantic stimulus, such as a word or a number, within a prior context. However, it is not known if any component of these waves arises from a common brain system activated by different symbolic forms. Multichannel EEG recordings were performed in 10 healthy subjects during the presentation of lexical and numerical series with congruent and incongruent endings. EEG was analysed using a combination of independent component and cluster analysis. Contextual integration of semantic stimuli elicited a negative independent component at around 400 ms that shared the same pattern of spatio-temporal covariation across numerical series and sentences within single subjects. This independent component was bigger following incongruent endings. These data provide evidence that one element of the activity contributing to the N400 is common to different symbolic forms. One component of the brain systems evaluating the semantic inter-relationship of new stimuli with prior context may be common to different symbolic forms.

  16. Waste Form Release Data Package for the 2005 Integrated Disposal Facility Performance Assessment

    SciTech Connect

    Pierce, Eric M.; McGrail, B. Peter; Rodriguez, Elsa A.; Schaef, Herbert T.; Saripalli, Prasad; Serne, R. Jeffrey; Krupka, Kenneth M.; Martin, P. F.; Baum, Steven R.; Geiszler, Keith N.; Reed, Lunde R.; Shaw, Wendy J.

    2004-09-01

    This data package documents the experimentally derived input data on the representative waste glasses; LAWA44, LAWB45, and LAWC22. This data will be used for Subsurface Transport Over Reactive Multi-phases (STORM) simulations of the Integrated Disposal Facility (IDF) for immobilized low-activity waste (ILAW). The STORM code will be used to provide the near-field radionuclide release source term for a performance assessment to be issued in July 2005. Documented in this data package are data related to 1) kinetic rate law parameters for glass dissolution, 2) alkali (Na+)-hydrogen (H+) ion exchange rate, 3) chemical reaction network of secondary phases that form in accelerated weathering tests, and 4) thermodynamic equilibrium constants assigned to these secondary phases. The kinetic rate law and Na+-H+ ion exchange rate were determined from single-pass flow-through experiments. Pressurized unsaturated flow (PUF) and product consistency (PCT) tests where used for accelerated weathering or aging of the glasses in order to determine a chemical reaction network of secondary phases that form. The majority of the thermodynamic data used in this data package were extracted from the thermody-namic database package shipped with the geochemical code EQ3/6, version 8.0. Because of the expected importance of 129I release from secondary waste streams being sent to IDF from various thermal treatment processes, parameter estimates for diffusional release and solubility-controlled release from cementitious waste forms were estimated from the available literature.

  17. Quadratic Gabor correlation filters for object detection

    NASA Astrophysics Data System (ADS)

    Weber, David; Casasent, David P.

    1996-10-01

    We present a new class of quadratic filters that are capable of creating spherical, elliptical, hyperbolic and linear decision surfaces which result in better detection and classification capabilities than the linear decision surfaces obtained from correlation filters. Each filter comprises of a number of separately designed linear basis filters. These filters are linearly combined into several macro filters; the output from these macro filters are passed through a magnitude square operation and are then linearly combined using real weights to achieve the quadratic decision surface. This nonlinear fusion algorithm is called the extended piecewise quadratic neural network (E-PQNN). For detection, the creation of macro filters allows for a substantial computational saving by reducing the number of correlation operations required. In this work, we consider the use of Gabor basis filters; the Gabor filter parameters are separately optimized; the fusion parameters to combine the Gabor filter outputs are optimized using the conjugate gradient method; they and the nonlinear combination of filter outputs are included in our E-PQNN algorithm. We demonstrate methods for selecting the number of macro Gabor filters, the filter parameters and the linear and nonlinear combination coefficients. We prove that our simple E-PQNN architecture is able to generate arbitrary piecewise quadratic decision surfaces. We present preliminary results obtained for an IR vehicle detection problem.

  18. Quadratic Gabor correlation filters for object detection

    NASA Astrophysics Data System (ADS)

    Weber, David; Casasent, David P.

    1997-04-01

    We present a new class of quadratic filters that are capable of creating spherical, elliptical, hyperbolic and linear decision surfaces which result in better detection and classification capabilities than the linear decision surfaces obtained from correlation filters. Each filter comprises of a number of separately designed linear basis filters. These filters are linearly combined into several macro filters; the output from these macro filters are passed through a magnitude square operation and are then linearly combined using real weights to achieve the quadratic decision surface. This non-linear fusion algorithm is called the extended piecewise quadratic neural network (E-PQNN). For detection, the creation of macro filters allows for a substantial computational saving by reducing the number of correlation operations required. In this work, we consider the use of Gabor basis filters; the Gabor filter parameters are separately optimized; the fusion parameters to combine the Gabor filter outputs are optimized using the conjugate gradient method; they and the non-linear combination of filter outputs are included in our E-PQNN algorithm. We demonstrate methods for selecting the number of macro Gabor filters, the filter parameters and the linear and non-linear combination coefficients. We prove that our simple E-PQNN architecture is able to generate arbitrary piecewise quadratic decision surfaces. We present preliminary results obtained for an IR vehicle detection problem.

  19. Investigating Students' Mathematical Difficulties with Quadratic Equations

    ERIC Educational Resources Information Center

    O'Connor, Bronwyn Reid; Norton, Stephen

    2016-01-01

    This paper examines the factors that hinder students' success in working with and understanding the mathematics of quadratic equations using a case study analysis of student error patterns. Twenty-five Year 11 students were administered a written test to examine their understanding of concepts and procedures associated with this topic. The…

  20. Primal-Dual Interior Methods for Quadratic Programming

    NASA Astrophysics Data System (ADS)

    Shustrova, Anna

    Interior methods are a class of computational methods for solving a con- strained optimization problem. Interior methods follow a continuous path to the solution that passes through the interior of the feasible region (i.e., the set of points that satisfy the constraints). Interior-point methods may also be viewed as methods that replace the constrained problem by a sequence of unconstrained problems in which the objective function is augmented by a weighted "barrier" term that is infinite at the boundary of the feasible region. Convergence to a solution of the constrained problem is achieved by solving a sequence of unconstrained problems in which the weight on the barrier term is steadily reduced to zero. This thesis concerns the formulation and analysis of interior methods for the solution of a quadratic programming (QP) problem, which is an optimization problem with a quadratic objective function and linear constraints. The linear constraints may include an arbitrary mixture of equality and inequality constraints, where the inequality constraints may be subject to lower and/or upper bounds. QP problems arise in a wide variety of applications. An important application is in sequential quadratic programming methods for nonlinear optimization, which involve minimizing a sequence of QP subproblems based on a quadratic approximation of the nonlinear objective function and a set of linearized nonlinear constraints. Two new interior methods for QP are proposed. Each is based on the properties of a barrier function defined in terms of both the primal and dual variables. The first method is suitable for a QP with all inequality constraints. At each iteration, the Newton equations for minimizing a quadratic model of the primal-dual barrier function are reformulated in terms of a symmetric indefinite system of equations that is solved using an inertia controlling factorization. This factorization provides an effective method for the detection and convexification of

  1. Integrable cosmological potentials

    NASA Astrophysics Data System (ADS)

    Sokolov, V. V.; Sorin, A. S.

    2017-05-01

    The problem of classification of the Einstein-Friedman cosmological Hamiltonians H with a single scalar inflaton field φ, which possess an additional integral of motion polynomial in momenta on the shell of the Friedman constraint H=0 , is considered. Necessary and sufficient conditions for the existence of the first-, second- and third-degree integrals are derived. These conditions have the form of ODEs for the cosmological potential V(φ) . In the case of linear and quadratic integrals we find general solutions of the ODEs and construct the corresponding integrals explicitly. A new wide class of Hamiltonians that possess a cubic integral is derived. The corresponding potentials are represented in parametric form in terms of the associated Legendre functions. Six families of special elementary solutions are described, and sporadic superintegrable cases are discussed.

  2. Integrable cosmological potentials

    NASA Astrophysics Data System (ADS)

    Sokolov, V. V.; Sorin, A. S.

    2017-09-01

    The problem of classification of the Einstein-Friedman cosmological Hamiltonians H with a single scalar inflaton field φ, which possess an additional integral of motion polynomial in momenta on the shell of the Friedman constraint H=0, is considered. Necessary and sufficient conditions for the existence of the first-, second- and third-degree integrals are derived. These conditions have the form of ODEs for the cosmological potential V(φ). In the case of linear and quadratic integrals we find general solutions of the ODEs and construct the corresponding integrals explicitly. A new wide class of Hamiltonians that possess a cubic integral is derived. The corresponding potentials are represented in parametric form in terms of the associated Legendre functions. Six families of special elementary solutions are described, and sporadic superintegrable cases are discussed.

  3. Estimating Parametric, Model Form, and Solution Contributions Using Integral Validation Uncertainty Quantification

    SciTech Connect

    Logan, R W; Nitta, C K; Chidester, S K

    2006-02-28

    One of the final steps in building a numerical model of a physical, mechanical, thermal, or chemical process, is to assess its accuracy as well as its sensitivity to input parameters and modeling technique. In this work, we demonstrate one simple process to take a top-down or integral view of the model, one which can implicitly reflect any couplings between parameters, to assess the importance of each aspect of modeling technique. We illustrate with an example of a comparison of a finite element model with data for violent reaction of explosives in accident scenarios. We show the relative importance of each of the main parametric inputs, and the contributions of model form and grid convergence. These can be directly related to the importance factors for the system being analyzed as a whole, and help determine which factors need more attention in future analyses and tests.

  4. Spatiotemporal integration and object perception in infancy: perceiving unity versus form.

    PubMed

    Van de Walle, G A; Spelke, E S

    1996-12-01

    3 experiments investigated 5-month-old infants' perception of an object whose center was fully occluded and whose ends were visible only in succession. Infants perceived this object as one connected whole when the ends of the object underwent a common motion behind the occluder, but not when the ends were stationary. Although infants perceived the connectedness of the object, they did not appear to perceive the object's shape. These findings suggest (a) that young infants are capable of integrating information over time to perceive object unity but not object form, (b) that young infants perceive object unity in accord with basic constraints on object motion, and (c) that a common process underlies infants' perception of objects that are fully visible, objects that are partly occluded, and objects that move fully out of view.

  5. Integrated Waste Management Strategy and Radioactive Waste Forms for the 21st Century

    SciTech Connect

    Dirk Gombert; Jay Roach

    2007-03-01

    The U. S. Department of Energy (DOE) Global Nuclear Energy Partnership (GNEP) was announced in 2006. As currently envisioned, GNEP will be the basis for growth of nuclear energy worldwide, using a closed proliferation-resistant fuel cycle. The Integrated Waste Management Strategy (IWMS) is designed to ensure that all wastes generated by fuel fabrication and recycling will have a routine disposition path making the most of feedback to fuel and recycling operations to eliminate or minimize byproducts and wastes. If waste must be generated, processes will be designed with waste treatment in mind to reduce use of reagents that complicate stabilization and minimize volume. The IWMS will address three distinct levels of technology investigation and systems analyses and will provide a cogent path from (1) research and development (R&D) and engineering scale demonstration, (Level I); to (2) full scale domestic deployment (Level II); and finally to (3) establishing an integrated global nuclear energy infrastructure (Level III). The near-term focus of GNEP is on achieving a basis for large-scale commercial deployment (Level II), including the R&D and engineering scale activities in Level I that are necessary to support such an accomplishment. Throughout these levels is the need for innovative thinking to simplify, including regulations, separations and waste forms to minimize the burden of safe disposition of wastes on the fuel cycle.

  6. Finite Element Simulation of Articular Contact Mechanics with Quadratic Tetrahedral Elements

    PubMed Central

    Maas, Steve A.; Ellis, Benjamin J.; Rawlins, David S.; Weiss, Jeffrey A.

    2016-01-01

    Although it is easier to generate finite element discretizations with tetrahedral elements, trilinear hexahedral (HEX8) elements are more often used in simulations of articular contact mechanics. This is due to numerical shortcomings of linear tetrahedral (TET4) elements, limited availability of quadratic tetrahedron elements in combination with effective contact algorithms, and the perceived increased computational expense of quadratic finite elements. In this study we implemented both ten-node (TET10) and fifteen-node (TET15) quadratic tetrahedral elements in FEBio (www.febio.org) and compared their accuracy, robustness in terms of convergence behavior and computational cost for simulations relevant to articular contact mechanics. Suitable volume integration and surface integration rules were determined by comparing the results of several benchmark contact problems. The results demonstrated that the surface integration rule used to evaluate the contact integrals for quadratic elements affected both convergence behavior and accuracy of predicted stresses. The computational expense and robustness of both quadratic tetrahedral formulations compared favorably to the HEX8 models. Of note, the TET15 element demonstrated superior convergence behavior and lower computational cost than both the TET10 and HEX8 elements for meshes with similar numbers of degrees of freedom in the contact problems that we examined. Finally, the excellent accuracy and relative efficiency of these quadratic tetrahedral elements was illustrated by comparing their predictions with those for a HEX8 mesh for simulation of articular contact in a fully validated model of the hip. These results demonstrate that TET10 and TET15 elements provide viable alternatives to HEX8 elements for simulation of articular contact mechanics. PMID:26900037

  7. Finite element simulation of articular contact mechanics with quadratic tetrahedral elements.

    PubMed

    Maas, Steve A; Ellis, Benjamin J; Rawlins, David S; Weiss, Jeffrey A

    2016-03-21

    Although it is easier to generate finite element discretizations with tetrahedral elements, trilinear hexahedral (HEX8) elements are more often used in simulations of articular contact mechanics. This is due to numerical shortcomings of linear tetrahedral (TET4) elements, limited availability of quadratic tetrahedron elements in combination with effective contact algorithms, and the perceived increased computational expense of quadratic finite elements. In this study we implemented both ten-node (TET10) and fifteen-node (TET15) quadratic tetrahedral elements in FEBio (www.febio.org) and compared their accuracy, robustness in terms of convergence behavior and computational cost for simulations relevant to articular contact mechanics. Suitable volume integration and surface integration rules were determined by comparing the results of several benchmark contact problems. The results demonstrated that the surface integration rule used to evaluate the contact integrals for quadratic elements affected both convergence behavior and accuracy of predicted stresses. The computational expense and robustness of both quadratic tetrahedral formulations compared favorably to the HEX8 models. Of note, the TET15 element demonstrated superior convergence behavior and lower computational cost than both the TET10 and HEX8 elements for meshes with similar numbers of degrees of freedom in the contact problems that we examined. Finally, the excellent accuracy and relative efficiency of these quadratic tetrahedral elements was illustrated by comparing their predictions with those for a HEX8 mesh for simulation of articular contact in a fully validated model of the hip. These results demonstrate that TET10 and TET15 elements provide viable alternatives to HEX8 elements for simulation of articular contact mechanics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Structure of steady state accretion shocks with several cooling functions: Closed integral-form solution

    NASA Technical Reports Server (NTRS)

    Wu, Kinwah; Chanmugam, G.; Shaviv, G.

    1994-01-01

    We present, for the first time, a closed integral-form solution to the accretion shock structures for the case where the cooling is due to optically thin bremsstrahlung emission and a series of power-law cooling functions of density and temperature. Our results can provide useful checks on numerical calculations and simple accurate estimates for valuable parameters such as the shock height. For the case where the cooling rate j = (2/3)Arho(exp 2)(P/rho)(exp 1/2)(1 + epsilon (sub s)(P/P(sub s)(exp alpha)(rho(sub s)/rho)(exp beta)), we find that a substantial amount of the accretion energy is released at the base of the accretion shock in the form of bremsstrahlung radiation. This implies that for a cyclotron-dominated shock (qualitatively given by alpha = 2.0, beta = 3.85, and epsilon(sub s) is much greater than 1), bremsstrahlung cooling still plays a crucial role in determining the shock structure. Our results are shown to be consistent with detailed numerical calculations.

  9. Extracellular matrix-associated proteins form an integral and dynamic system during Pseudomonas aeruginosa biofilm development

    PubMed Central

    Zhang, Weipeng; Sun, Jin; Ding, Wei; Lin, Jinshui; Tian, Renmao; Lu, Liang; Liu, Xiaofen; Shen, Xihui; Qian, Pei-Yuan

    2015-01-01

    Though the essential role of extracellular matrix in biofilm development has been extensively documented, the function of matrix-associated proteins is elusive. Determining the dynamics of matrix-associated proteins would be a useful way to reveal their functions in biofilm development. Therefore, we applied iTRAQ-based quantitative proteomics to evaluate matrix-associated proteins isolated from different phases of Pseudomonas aeruginosa ATCC27853 biofilms. Among the identified 389 proteins, 54 changed their abundance significantly. The increased abundance of stress resistance and nutrient metabolism-related proteins over the period of biofilm development was consistent with the hypothesis that biofilm matrix forms micro-environments in which cells are optimally organized to resist stress and use available nutrients. Secreted proteins, including novel putative effectors of the type III secretion system were identified, suggesting that the dynamics of pathogenesis-related proteins in the matrix are associated with biofilm development. Interestingly, there was a good correlation between the abundance changes of matrix-associated proteins and their expression. Further analysis revealed complex interactions among these modulated proteins, and the mutation of selected proteins attenuated biofilm development. Collectively, this work presents the first dynamic picture of matrix-associated proteins during biofilm development, and provides evidences that the matrix-associated proteins may form an integral and well regulated system that contributes to stress resistance, nutrient acquisition, pathogenesis and the stability of the biofilm. PMID:26029669

  10. Local analogues of high-redshift star-forming galaxies: integral field spectroscopy of green peas

    NASA Astrophysics Data System (ADS)

    Lofthouse, E. K.; Houghton, R. C. W.; Kaviraj, S.

    2017-10-01

    We use integral field spectroscopy, from the SWIFT and PALM3K instruments, to perform a spatially resolved spectroscopic analysis of four nearby highly star-forming 'green pea' (GP) galaxies, that are likely analogues of high-redshift star-forming systems. By studying emission-line maps in H α, [N II] λλ6548,6584 and [S II] λλ6716,6731, we explore the kinematic morphology of these systems and constrain properties such as gas-phase metallicities, electron densities and gas-ionization mechanisms. Two of our GPs are rotationally supported while the others are dispersion-dominated systems. The rotationally supported galaxies both show evidence for recent or ongoing mergers. However, given that these systems have intact discs, these interactions are likely to have low-mass ratios (i.e. minor mergers), suggesting that the minor-merger process may be partly responsible for the high star formation rates seen in these GPs. Nevertheless, the fact that the other two GPs appear morphologically undisturbed suggests that mergers (including minor mergers) are not necessary for driving the high star formation rates in such galaxies. We show that the GPs are metal-poor systems (25-40 per cent of solar) and that the gas ionization is not driven by active galactic nuclei (AGN) in any of our systems, indicating that the AGN activity is not coeval with star formation in these starbursting galaxies.

  11. Bôcher and Abstract Contractions of 2nd Order Quadratic Algebras

    NASA Astrophysics Data System (ADS)

    Escobar-Ruiz, Mauricio A.; Kalnins, Ernest G.; Miller, Willar, Jr.; Subag, Eyal

    2017-03-01

    Quadratic algebras are generalizations of Lie algebras which include the symmetry algebras of 2nd order superintegrable systems in 2 dimensions as special cases. The superintegrable systems are exactly solvable physical systems in classical and quantum mechanics. Distinct superintegrable systems and their quadratic algebras can be related by geometric contractions, induced by Bôcher contractions of the conformal Lie algebra {so}(4,C) to itself. In this paper we give a precise definition of Bôcher contractions and show how they can be classified. They subsume well known contractions of {e}(2,C) and {so}(3,C) and have important physical and geometric meanings, such as the derivation of the Askey scheme for obtaining all hypergeometric orthogonal polynomials as limits of Racah/Wilson polynomials. We also classify abstract nondegenerate quadratic algebras in terms of an invariant that we call a canonical form. We describe an algorithm for finding the canonical form of such algebras. We calculate explicitly all canonical forms arising from quadratic algebras of 2D nondegenerate superintegrable systems on constant curvature spaces and Darboux spaces. We further discuss contraction of quadratic algebras, focusing on those coming from superintegrable systems.

  12. Global asymptotic stability analysis for delayed neural networks using a matrix-based quadratic convex approach.

    PubMed

    Zhang, Xian-Ming; Han, Qing-Long

    2014-06-01

    This paper is concerned with global asymptotic stability for a class of generalized neural networks with interval time-varying delays by constructing a new Lyapunov-Krasovskii functional which includes some integral terms in the form of ∫(t-h)(t)(h-t-s)(j)ẋ(T)(s)Rjẋ(s)ds(j=1,2,3). Some useful integral inequalities are established for the derivatives of those integral terms introduced in the Lyapunov-Krasovskii functional. A matrix-based quadratic convex approach is introduced to prove not only the negative definiteness of the derivative of the Lyapunov-Krasovskii functional, but also the positive definiteness of the Lyapunov-Krasovskii functional. Some novel stability criteria are formulated in two cases, respectively, where the time-varying delay is continuous uniformly bounded and where the time-varying delay is differentiable uniformly bounded with its time-derivative bounded by constant lower and upper bounds. These criteria are applicable to both static neural networks and local field neural networks. The effectiveness of the proposed method is demonstrated by two numerical examples.

  13. Wind turbine power tracking using an improved multimodel quadratic approach.

    PubMed

    Khezami, Nadhira; Benhadj Braiek, Naceur; Guillaud, Xavier

    2010-07-01

    In this paper, an improved multimodel optimal quadratic control structure for variable speed, pitch regulated wind turbines (operating at high wind speeds) is proposed in order to integrate high levels of wind power to actively provide a primary reserve for frequency control. On the basis of the nonlinear model of the studied plant, and taking into account the wind speed fluctuations, and the electrical power variation, a multimodel linear description is derived for the wind turbine, and is used for the synthesis of an optimal control law involving a state feedback, an integral action and an output reference model. This new control structure allows a rapid transition of the wind turbine generated power between different desired set values. This electrical power tracking is ensured with a high-performance behavior for all other state variables: turbine and generator rotational speeds and mechanical shaft torque; and smooth and adequate evolution of the control variables. 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Geometric Approaches to Quadratic Equations from Other Times and Places.

    ERIC Educational Resources Information Center

    Allaire, Patricia R.; Bradley, Robert E.

    2001-01-01

    Focuses on geometric solutions of quadratic problems. Presents a collection of geometric techniques from ancient Babylonia, classical Greece, medieval Arabia, and early modern Europe to enhance the quadratic equation portion of an algebra course. (KHR)

  15. Geometric Approaches to Quadratic Equations from Other Times and Places.

    ERIC Educational Resources Information Center

    Allaire, Patricia R.; Bradley, Robert E.

    2001-01-01

    Focuses on geometric solutions of quadratic problems. Presents a collection of geometric techniques from ancient Babylonia, classical Greece, medieval Arabia, and early modern Europe to enhance the quadratic equation portion of an algebra course. (KHR)

  16. News at Biochemia Medica: research integrity corner, updated guidelines to authors, revised author statement form and adopted ICMJE Conflict-of-Interest Form.

    PubMed

    Simundic, Ana-Maria

    2013-01-01

    From the issue 23(1) we have implemented several major changes in the editorial policies and procedures. We hope that those changes will raise awareness of our potential authors and reviewers for research and publication integrity issues as well as to improve the quality of our submissions and published articles. Among those changes is the launch of a special journal section called Research Integrity Corner. In this section we aim to publish educational articles dealing with different research and publication misconduct issues. Moreover, we have done a comprehensive revision of our Instructions to authors. Whereas our former Instructions to authors have mostly been concerned with recommendations for manuscript preparation and submission, the revised document additionally describes the editorial procedure for all submitted articles and provides exact journal policies towards research integrity, authorship, copyright and conflict of interest. By putting these Guidelines into action, we hope that our main ethical policies and requirements are now visible and available to all our potential authors. We have also revised the former Authorship and copyright form which is now called the Author statement form. This form now contains statements on the authorship, originality of work, research ethics, patient privacy and confidentiality, and copyright transfer. Finally, Journal has adopted the ICMJE Form for Disclosure of Potential Conflicts of Interest. From this issue, for each submitted article, authors are requested to fill out the "ICMJE Form for Disclosure of Potential Conflicts of Interest" as well as the Author statement form and upload those forms during the online manuscript submission process. We honestly believe that our authors and readers will appreciate such endeavors. In this Editorial article we briefly explain the background and the nature of those recent major editorial changes.

  17. Solution to Projectile Motion with Quadratic Drag and Graphing the Trajectory in Spreadsheets

    ERIC Educational Resources Information Center

    Benacka, Jan

    2010-01-01

    This note gives the analytical solution to projectile motion with quadratic drag by decomposing the velocity vector to "x," "y" coordinate directions. The solution is given by definite integrals. First, the impact angle is estimated from above, then the projectile coordinates are computed, and the trajectory is graphed at various launch angles and…

  18. Solution to Projectile Motion with Quadratic Drag and Graphing the Trajectory in Spreadsheets

    ERIC Educational Resources Information Center

    Benacka, Jan

    2010-01-01

    This note gives the analytical solution to projectile motion with quadratic drag by decomposing the velocity vector to "x," "y" coordinate directions. The solution is given by definite integrals. First, the impact angle is estimated from above, then the projectile coordinates are computed, and the trajectory is graphed at various launch angles and…

  19. Use of quadratic components for buckling calculations

    SciTech Connect

    Dohrmann, C.R.; Segalman, D.J.

    1996-12-31

    A buckling calculation procedure based on the method of quadratic components is presented. Recently developed for simulating the motion of rotating flexible structures, the method of quadratic components is shown to be applicable to buckling problems with either conservative or nonconservative loads. For conservative loads, stability follows from the positive definiteness of the system`s stiffness matrix. For nonconservative loads, stability is determined by solving a nonsymmetric eigenvalue problem, which depends on both the stiffness and mass distribution of the system. Buckling calculations presented for a cantilevered beam are shown to compare favorably with classical results. Although the example problem is fairly simple and well-understood, the procedure can be used in conjunction with a general-purpose finite element code for buckling calculations of more complex systems.

  20. Bifurcations in biparametric quadratic potentials. II.

    PubMed

    Lanchares, V.; Elipe, A.

    1995-09-01

    Quadratic Hamiltonians with the phase space on the S (2) sphere represent numerous dynamical systems. There are only two classes of quadratic Hamiltonians depending on two parameters. We analyze the occurrence of bifurcations and we obtain the bifurcation lines in the parameter plane for one of these classes, thus complementing the work done in a previous paper where the other class was analyzed. As the parameters evolve, the appearance-disappearance of homoclinic orbits in the phase portrait is governed by four types of bifurcations: namely the pitchfork, the butterfly, the oyster and the pentadent bifurcations. We find also values where the system is degenerate, that is, there are nonisolated equilibria. (c) 1995 American Institute of Physics.

  1. Graphical Solution of the Monic Quadratic Equation with Complex Coefficients

    ERIC Educational Resources Information Center

    Laine, A. D.

    2015-01-01

    There are many geometrical approaches to the solution of the quadratic equation with real coefficients. In this article it is shown that the monic quadratic equation with complex coefficients can also be solved graphically, by the intersection of two hyperbolas; one hyperbola being derived from the real part of the quadratic equation and one from…

  2. THE EFFECTIVENESS OF QUADRATS FOR MEASURING VASCULAR PLANT DIVERSITY

    EPA Science Inventory

    Quadrats are widely used for measuring characteristics of vascular plant communities. It is well recognized that quadrat size affects measurements of frequency and cover. The ability of quadrats of varying sizes to adequately measure diversity has not been established. An exha...

  3. Graphical Solution of the Monic Quadratic Equation with Complex Coefficients

    ERIC Educational Resources Information Center

    Laine, A. D.

    2015-01-01

    There are many geometrical approaches to the solution of the quadratic equation with real coefficients. In this article it is shown that the monic quadratic equation with complex coefficients can also be solved graphically, by the intersection of two hyperbolas; one hyperbola being derived from the real part of the quadratic equation and one from…

  4. THE EFFECTIVENESS OF QUADRATS FOR MEASURING VASCULAR PLANT DIVERSITY

    EPA Science Inventory

    Quadrats are widely used for measuring characteristics of vascular plant communities. It is well recognized that quadrat size affects measurements of frequency and cover. The ability of quadrats of varying sizes to adequately measure diversity has not been established. An exha...

  5. Quadratic image destriping. [GOES photograph enhancement

    NASA Technical Reports Server (NTRS)

    Dalton, J. T.; Winkert, G. E.

    1979-01-01

    An algorithm for removing second-order detector banding effects (striping) from digital imagery is described. This quadratic destriping method is basically an extension of a linear method to one higher degree. It provides a nonlinear alternative between the two-parameter linear correction and a multilinear histogram equalization approach. The application of the proposed technique to GOES visible imagery is discussed, and its effectiveness is compared to existing methods.

  6. Monotone and convex quadratic spline interpolation

    NASA Technical Reports Server (NTRS)

    Lam, Maria H.

    1990-01-01

    A method for producing interpolants that preserve the monotonicity and convexity of discrete data is described. It utilizes the quadratic spline proposed by Schumaker (1983) which was subsequently characterized by De Vore and Yan (1986). The selection of first order derivatives at the given data points is essential to this spline. An observation made by De Vore and Yan is generalized, and an improved method to select these derivatives is proposed. The resulting spline is completely local, efficient, and simple to implement.

  7. Communications circuit including a linear quadratic estimator

    DOEpatents

    Ferguson, Dennis D.

    2015-07-07

    A circuit includes a linear quadratic estimator (LQE) configured to receive a plurality of measurements a signal. The LQE is configured to weight the measurements based on their respective uncertainties to produce weighted averages. The circuit further includes a controller coupled to the LQE and configured to selectively adjust at least one data link parameter associated with a communication channel in response to receiving the weighted averages.

  8. Characterization of a Quadratic Function in Rn

    ERIC Educational Resources Information Center

    Xu, Conway

    2010-01-01

    It is proved that a scalar-valued function "f"(x) defined in "n"-dimensional space must be quadratic, if the intersection of tangent planes at x[subscript 1] and x[subscript 2] always contains the midpoint of the line joining x[subscript 1] and x[subscript 2]. This is the converse of a result of Stenlund proved in this JOURNAL in 2001.

  9. Characterization of a Quadratic Function in Rn

    ERIC Educational Resources Information Center

    Xu, Conway

    2010-01-01

    It is proved that a scalar-valued function "f"(x) defined in "n"-dimensional space must be quadratic, if the intersection of tangent planes at x[subscript 1] and x[subscript 2] always contains the midpoint of the line joining x[subscript 1] and x[subscript 2]. This is the converse of a result of Stenlund proved in this JOURNAL in 2001.

  10. Stochastic Linear Quadratic Optimal Control Problems

    SciTech Connect

    Chen, S.; Yong, J.

    2001-07-01

    This paper is concerned with the stochastic linear quadratic optimal control problem (LQ problem, for short) for which the coefficients are allowed to be random and the cost functional is allowed to have a negative weight on the square of the control variable. Some intrinsic relations among the LQ problem, the stochastic maximum principle, and the (linear) forward-backward stochastic differential equations are established. Some results involving Riccati equation are discussed as well.

  11. Optimal Approximation of Quadratic Interval Functions

    NASA Technical Reports Server (NTRS)

    Koshelev, Misha; Taillibert, Patrick

    1997-01-01

    Measurements are never absolutely accurate, as a result, after each measurement, we do not get the exact value of the measured quantity; at best, we get an interval of its possible values, For dynamically changing quantities x, the additional problem is that we cannot measure them continuously; we can only measure them at certain discrete moments of time t(sub 1), t(sub 2), ... If we know that the value x(t(sub j)) at a moment t(sub j) of the last measurement was in the interval [x-(t(sub j)), x + (t(sub j))], and if we know the upper bound D on the rate with which x changes, then, for any given moment of time t, we can conclude that x(t) belongs to the interval [x-(t(sub j)) - D (t - t(sub j)), x + (t(sub j)) + D (t - t(sub j))]. This interval changes linearly with time, an is, therefore, called a linear interval function. When we process these intervals, we get an expression that is quadratic and higher order w.r.t. time t, Such "quadratic" intervals are difficult to process and therefore, it is necessary to approximate them by linear ones. In this paper, we describe an algorithm that gives the optimal approximation of quadratic interval functions by linear ones.

  12. Quadratic optimization in ill-posed problems

    NASA Astrophysics Data System (ADS)

    Ben Belgacem, F.; Kaber, S.-M.

    2008-10-01

    Ill-posed quadratic optimization frequently occurs in control and inverse problems and is not covered by the Lax-Milgram-Riesz theory. Typically, small changes in the input data can produce very large oscillations on the output. We investigate the conditions under which the minimum value of the cost function is finite and we explore the 'hidden connection' between the optimization problem and the least-squares method. Eventually, we address some examples coming from optimal control and data completion, showing how relevant our contribution is in the knowledge of what happens for various ill-posed problems. The results we state bring a substantial improvement to the analysis of the regularization methods applied to the ill-posed quadratic optimization problems. Indeed, for the cost quadratic functions bounded from below the Lavrentiev method is just the Tikhonov regularization for the 'hidden least-squares' problem. As a straightforward result, Lavrentiev's regularization exhibits better regularization and convergence results than expected at first glance.

  13. Quadratic Programming for Allocating Control Effort

    NASA Technical Reports Server (NTRS)

    Singh, Gurkirpal

    2005-01-01

    A computer program calculates an optimal allocation of control effort in a system that includes redundant control actuators. The program implements an iterative (but otherwise single-stage) algorithm of the quadratic-programming type. In general, in the quadratic-programming problem, one seeks the values of a set of variables that minimize a quadratic cost function, subject to a set of linear equality and inequality constraints. In this program, the cost function combines control effort (typically quantified in terms of energy or fuel consumed) and control residuals (differences between commanded and sensed values of variables to be controlled). In comparison with prior control-allocation software, this program offers approximately equal accuracy but much greater computational efficiency. In addition, this program offers flexibility, robustness to actuation failures, and a capability for selective enforcement of control requirements. The computational efficiency of this program makes it suitable for such complex, real-time applications as controlling redundant aircraft actuators or redundant spacecraft thrusters. The program is written in the C language for execution in a UNIX operating system.

  14. Quadratic Gabor filters for object detection.

    PubMed

    Weber, D M; Casasent, D P

    2001-01-01

    We present a new class of quadratic filters that are capable of creating spherical, elliptical, hyperbolic and linear decision surfaces which result in better detection and classification capabilities than the linear decision surfaces obtained from correlation filters. Each filter comprises of a number of separately designed linear basis filters. These filters are linearly combined into several macro filters; the output from these macro filters are passed through a magnitude square operation and are then linearly combined using real weights to achieve the quadratic decision surface. For detection, the creation of macro filters (linear combinations of multiple single filters) allows for a substantial computational saving by reducing the number of correlation operations required. In this work, we consider the use of Gabor basis filters; the Gabor filter parameters are separately optimized. The fusion parameters to combine the Gabor filter outputs are optimized using an extended piecewise quadratic neural network (E-PQNN). We demonstrate methods for selecting the number of macro Gabor filters, the filter parameters and the linear and nonlinear combination coefficients. We present preliminary results obtained for an infrared (IR) vehicle detection problem.

  15. Neutron Distribution in the Nuclear Fuel Cell using Collision Probability Method with Quadratic Flux Approach

    NASA Astrophysics Data System (ADS)

    Shafii, M. A.; Fitriyani, D.; Tongkukut, S. H. J.; Abdullah, A. G.

    2017-03-01

    To solve the integral neutron transport equation using collision probability (CP) method usually requires flat flux (FF) approach. In this research, it has been carried out in the cylindrical nuclear fuel cell with the spatial of mesh with quadratic flux approach. This means that the neutron flux at any region of the nuclear fuel cell is forced to follow the pattern of a quadratic function. The mechanism may be referred to as the process of non-flat flux (NFF) approach. The parameters that calculated in this study are the k-eff and the distribution of neutron flux. The result shows that all parameters are in accordance with the result of SRAC.

  16. Linear Quadratic Gaussian-Based Closed-Loop Control of Type 1 Diabetes

    PubMed Central

    Patek, Stephen D.; Breton, Marc D.; Chen, Yuanda; Solomon, Chad; Kovatchev, Boris

    2007-01-01

    Background We investigated the applicability of linear quadratic Gaussian (LQG) methodology to the subcutaneous blood glucose regulation problem. We designed an LQG-based feedback control algorithm using linearization of a previously published metabolic model of type 1 diabetes. A key feature of the controller is a Kalman filter used to estimate metabolic states of the patient based on continuous glucose monitoring. Insulin infusion is computed from linear quadratic regulator feedback gains applied to these estimates, generally seeking to minimize squared deviations from a target glucose concentration and basal insulin rate. We evaluated in silico subject-specific LQG control and compared it to preexisting proportional-integral-derivative control. PMID:19756210

  17. Contractions and deformations of quasiclassical Lie algebras preserving a nondegenerate quadratic Casimir operator

    SciTech Connect

    Campoamor-Stursberg, R.

    2008-05-15

    By means of contractions of Lie algebras, we obtain new classes of indecomposable quasiclassical Lie algebras that satisfy the Yang-Baxter equations in its reformulation in terms of triple products. These algebras are shown to arise naturally from noncompact real simple algebras with nonsimple complexification, where we impose that a nondegenerate quadratic Casimir operator is preserved by the limiting process. We further consider the converse problem and obtain sufficient conditions on integrable cocycles of quasiclassical Lie algebras in order to preserve nondegenerate quadratic Casimir operators by the associated linear deformations.

  18. Novel forms of structural integration between microbes and a hydrothermal vent gastropod from the Indian Ocean.

    PubMed

    Goffredi, Shana K; Warén, Anders; Orphan, Victoria J; Van Dover, Cindy L; Vrijenhoek, Robert C

    2004-05-01

    Here we describe novel forms of structural integration between endo- and episymbiotic microbes and an unusual new species of snail from hydrothermal vents in the Indian Ocean. The snail houses a dense population of gamma-proteobacteria within the cells of its greatly enlarged esophageal gland. This tissue setting differs from that of all other vent mollusks, which harbor sulfur-oxidizing endosymbionts in their gills. The significantly reduced digestive tract, the isotopic signatures of the snail tissues, and the presence of internal bacteria suggest a dependence on chemoautotrophy for nutrition. Most notably, this snail is unique in having a dense coat of mineralized scales covering the sides of its foot, a feature seen in no other living metazoan. The scales are coated with iron sulfides (pyrite and greigite) and heavily colonized by epsilon- and delta-proteobacteria, likely participating in mineralization of the sclerites. This novel metazoan-microbial collaboration illustrates the great potential of organismal adaptation in chemically and physically challenging deep-sea environments.

  19. Validity of Oxygen-Ozone Therapy as Integrated Medication Form in Chronic Inflammatory Diseases.

    PubMed

    Bocci, Velio; Zanardia, Iacopo; Valacchi, Giuseppe; Borrelli, Emma; Travagli, Valter

    2015-01-01

    The state-of-the-art of oxygen-ozone therapy is now clarified and all the mechanisms of action of medical ozone are within classical biochemistry and molecular biology. The outcomes of standard treatments in peripheral arterial occlusive disease (PAOD) and dry-form of age-related macular degeneration (AMD) have been compared with the documented therapeutic results achieved with ozonated autohemotherapy (O-AHT). On the other hand, the clinical data of O-AHT on stroke remain indicative. As the cost of O-AHT is almost irrelevant, its application in all public hospitals, especially those of poor Countries, would allow two advantages: the first is for the patient, who will improve her/his conditions, and the second is for Health Authorities burdened with increasing costs. The aim of this paper is to report to clinical scientists that O-AHT is a scientific-based therapeutic approach without side effects. The integration of O-AHT with effective approved drugs is likely to yield the best clinical results in several chronic inflammatory diseases.

  20. Novel Forms of Structural Integration between Microbes and a Hydrothermal Vent Gastropod from the Indian Ocean

    PubMed Central

    Goffredi, Shana K.; Warén, Anders; Orphan, Victoria J.; Van Dover, Cindy L.; Vrijenhoek, Robert C.

    2004-01-01

    Here we describe novel forms of structural integration between endo- and episymbiotic microbes and an unusual new species of snail from hydrothermal vents in the Indian Ocean. The snail houses a dense population of γ-proteobacteria within the cells of its greatly enlarged esophageal gland. This tissue setting differs from that of all other vent mollusks, which harbor sulfur-oxidizing endosymbionts in their gills. The significantly reduced digestive tract, the isotopic signatures of the snail tissues, and the presence of internal bacteria suggest a dependence on chemoautotrophy for nutrition. Most notably, this snail is unique in having a dense coat of mineralized scales covering the sides of its foot, a feature seen in no other living metazoan. The scales are coated with iron sulfides (pyrite and greigite) and heavily colonized by ɛ- and δ-proteobacteria, likely participating in mineralization of the sclerites. This novel metazoan-microbial collaboration illustrates the great potential of organismal adaptation in chemically and physically challenging deep-sea environments. PMID:15128570

  1. Ultrastructure, pharmacologic inhibition, and transport selectivity of aquaporin channel-forming integral protein in proteoliposomes.

    PubMed

    Zeidel, M L; Nielsen, S; Smith, B L; Ambudkar, S V; Maunsbach, A B; Agre, P

    1994-02-15

    Reconstitution of highly purified aquaporin CHIP (channel-forming integral protein) into proteoliposomes was previously shown to confer high osmotic water permeability (Pf) to the membranes [Zeidel et al. (1992) Biochemistry 31, 7436-7440]. Here we report detailed ultrastructural, pharmacologic, and transport studies of human red cell CHIP in proteoliposomes. Freeze-fracture and transmission electron microscopy revealed a uniform distribution of CHIP which was incorporated into the membranes in both native and inverse orientations. Morphometric analysis of membranes reconstituted at three different concentrations of CHIP revealed that the intramembrane particles correspond to tetramers or possible higher order oligomers, and the Pf increased in direct proportion to the CHIP density. Proteolytic removal of the 4-kDa C-terminal cytoplasmic domain of CHIP did not alter the Pf or oligomerization in red cell membranes. CHIP exhibited a similar conductance for water when reconstituted into membranes of varied lipid compositions. The sensitivities of CHIP-mediated Pf to specific sulfhydryl reagents were identical to known sensitivities of red cell Pf, including a delayed response to p-(chloromercuri)benzenesulfonate. CHIP did not increase the permeability of the proteoliposome membranes to H+/OH- or NH3. These studies demonstrate that CHIP proteoliposomes exhibit all known characteristics of water channels in native red cells and therefore provide a defined system for biophysical analysis of transmembrane water movements.

  2. Amphipathic polymers: tools to fold integral membrane proteins to their active form.

    PubMed

    Pocanschi, Cosmin L; Dahmane, Tassadite; Gohon, Yann; Rappaport, Fabrice; Apell, Hans-Jürgen; Kleinschmidt, Jörg H; Popot, Jean-Luc

    2006-11-28

    Among the major obstacles to pharmacological and structural studies of integral membrane proteins (MPs) are their natural scarcity and the difficulty in overproducing them in their native form. MPs can be overexpressed in the non-native state as inclusion bodies, but inducing them to achieve their functional three-dimensional structure has proven to be a major challenge. We describe here the use of an amphipathic polymer, amphipol A8-35, as a novel environment that allows both beta-barrel and alpha-helical MPs to fold to their native state, in the absence of detergents or lipids. Amphipols, which are extremely mild surfactants, appear to favor the formation of native intramolecular protein-protein interactions over intermolecular or protein-surfactant ones. The feasibility of the approach is demonstrated using as models OmpA and FomA, two outer membrane proteins from the eubacteria Escherichia coli and Fusobacterium nucleatum, respectively, and bacteriorhodopsin, a light-driven proton pump from the plasma membrane of the archaebacterium Halobacterium salinarium.

  3. Lipid dependencies, biogenesis and cytoplasmic micellar forms of integral membrane sugar transport proteins of the bacterial phosphotransferase system

    PubMed Central

    Aboulwafa, Mohammad

    2013-01-01

    Permeases of the prokaryotic phosphoenolpyruvate–sugar phosphotransferase system (PTS) catalyse sugar transport coupled to sugar phosphorylation. The lipid composition of a membrane determines the activities of these enzyme/transporters as well as the degree of coupling of phosphorylation to transport. We have investigated mechanisms of PTS permease biogenesis and identified cytoplasmic (soluble) forms of these integral membrane proteins. We found that the catalytic activities of the soluble forms differ from those of the membrane-embedded forms. Transport via the latter is much more sensitive to lipid composition than to phosphorylation, and some of these enzymes are much more sensitive to the lipid environment than others. While the membrane-embedded PTS permeases are always dimeric, the cytoplasmic forms are micellar, either monomeric or dimeric. Scattered published evidence suggests that other integral membrane proteins also exist in cytoplasmic micellar forms. The possible functions of cytoplasmic PTS permeases in biogenesis, intracellular sugar phosphorylation and permease storage are discussed. PMID:23985145

  4. The numerical integration of fundamental diffraction integrals for converging polarized spherical waves using a two-dimensional form of Simpson's 1/3 Rule

    NASA Astrophysics Data System (ADS)

    Cooper, I. J.; Sheppard, C. J. R.; Roy, M.

    2005-08-01

    A comprehensive matrix method based upon a two-dimensional form of Simpson's 1/3 rule (2DSC method) to integrate numerically the vector form of the fundamental diffraction integrals is described for calculating the characteristics of the focal region for a converging polarized spherical wave. The only approximation needed in using the 2DSC method is the Kirchhoff boundary conditions at the aperture. The 2DSC method can be used to study the focusing of vector beams with different polarizations and profiles and for different filters over a large range of numerical apertures or Fresnel numbers.

  5. Neural Integration of Information Specifying Human Structure from Form, Motion, and Depth

    PubMed Central

    Jackson, Stuart; Blake, Randolph

    2010-01-01

    Recent computational models of biological motion perception operate on ambiguous two-dimensional representations of the body (e.g., snapshots, posture templates) and contain no explicit means for disambiguating the three-dimensional orientation of a perceived human figure. Are there neural mechanisms in the visual system that represent a moving human figure’s orientation in three dimensions? To isolate and characterize the neural mechanisms mediating perception of biological motion, we used an adaptation paradigm together with bistable point-light (PL) animations whose perceived direction of heading fluctuates over time. After exposure to a PL walker with a particular stereoscopically defined heading direction, observers experienced a consistent aftereffect: a bistable PL walker, which could be perceived in the adapted orientation or reversed in depth, was perceived predominantly reversed in depth. A phase-scrambled adaptor produced no aftereffect, yet when adapting and test walkers differed in size or appeared on opposite sides of fixation aftereffects did occur. Thus, this heading direction aftereffect cannot be explained by local, disparity-specific motion adaptation, and the properties of scale and position invariance imply higher-level origins of neural adaptation. Nor is disparity essential for producing adaptation: when suspended on top of a stereoscopically defined, rotating globe, a context-disambiguated “globetrotter” was sufficient to bias the bistable walker’s direction, as were full-body adaptors. In sum, these results imply that the neural signals supporting biomotion perception integrate information on the form, motion, and three-dimensional depth orientation of the moving human figure. Models of biomotion perception should incorporate mechanisms to disambiguate depth ambiguities in two-dimensional body representations. PMID:20089892

  6. Discriminative learning quadratic discriminant function for handwriting recognition.

    PubMed

    Liu, Cheng-Lin; Sako, Hiroshi; Fujisawa, Hiromichi

    2004-03-01

    In character string recognition integrating segmentation and classification, high classification accuracy and resistance to noncharacters are desired to the underlying classifier. In a previous evaluation study, the modified quadratic discriminant function (MQDF) proposed by Kimura et al. was shown to be superior in noncharacter resistance but inferior in classification accuracy to neural networks. This paper proposes a discriminative learning algorithm to optimize the parameters of MQDF with aim to improve the classification accuracy while preserving the superior noncharacter resistance. We refer to the resulting classifier as discriminative learning QDF (DLQDF). The parameters of DLQDF adhere to the structure of MQDF under the Gaussian density assumption and are optimized under the minimum classification error (MCE) criterion. The promise of DLQDF is justified in handwritten digit recognition and numeral string recognition, where the performance of DLQDF is comparable to or superior to that of neural classifiers. The results are also competitive to the best ones reported in the literature.

  7. User's guide for SOL/QPSOL: a Fortran package for quadratic programming

    SciTech Connect

    Gill, P.E.; Murray, W.; Saunders, M.A.; Wright, M.H.

    1983-07-01

    This report forms the user's guide for Version 3.1 of SOL/QPSOL, a set of Fortran subroutines designed to locate the minimum value of an arbitrary quadratic function subject to linear constraints and simple upper and lower bounds. If the quadratic function is convex, a global minimum is found; otherwise, a local minimum is found. The method used is most efficient when many constraints or bounds are active at the solution. QPSOL treats the Hessian and general constraints as dense matrices, and hence is not intended for large sparse problems. This document replaces the previous user's guide of June 1982.

  8. Frequency-independent approach to calculate physical optics radiations with the quadratic concave phase variations

    NASA Astrophysics Data System (ADS)

    Wu, Yu Mao; Teng, Si Jia

    2016-11-01

    In this work, we develop the numerical steepest descent path (NSDP) method to calculate the physical optics (PO) radiations with the quadratic concave phase variations. With the surface integral equation method, the physical optics (PO) scattered fields are formulated and further reduced to the surface integrals. The high frequency physical critical points contributions, including the stationary phase points, the boundary resonance points and the vertex points are comprehensively studied via the proposed NSDP method. The key contributions of this work are twofold. One is that together with the PO integrals taking the quadratic parabolic and hyperbolic phase terms, this work makes the NSDP theory be complete for treating the PO integrals with quadratic phase variations. Another is that, in order to illustrate the transition effect of the high frequency physical critical points, in this work, we consider and further extend the NSDP method to calculate the PO integrals with the coalescence of the high frequency critical points. Numerical results for the highly oscillatory PO integral with the coalescence of the critical points are given to verify the efficiency of the proposed NSDP method. The NSDP method could achieve the frequency independent computational workload and error controllable accuracy in all the numerical experiments, especially for the case of the coalescence of the high frequency critical points.

  9. Frequency-independent approach to calculate physical optics radiations with the quadratic concave phase variations

    SciTech Connect

    Wu, Yu Mao; Teng, Si Jia

    2016-11-01

    In this work, we develop the numerical steepest descent path (NSDP) method to calculate the physical optics (PO) radiations with the quadratic concave phase variations. With the surface integral equation method, the physical optics (PO) scattered fields are formulated and further reduced to the surface integrals. The high frequency physical critical points contributions, including the stationary phase points, the boundary resonance points and the vertex points are comprehensively studied via the proposed NSDP method. The key contributions of this work are twofold. One is that together with the PO integrals taking the quadratic parabolic and hyperbolic phase terms, this work makes the NSDP theory be complete for treating the PO integrals with quadratic phase variations. Another is that, in order to illustrate the transition effect of the high frequency physical critical points, in this work, we consider and further extend the NSDP method to calculate the PO integrals with the coalescence of the high frequency critical points. Numerical results for the highly oscillatory PO integral with the coalescence of the critical points are given to verify the efficiency of the proposed NSDP method. The NSDP method could achieve the frequency independent computational workload and error controllable accuracy in all the numerical experiments, especially for the case of the coalescence of the high frequency critical points.

  10. Diagnostics of the inhomogeneous distribution of quadratic optical susceptibility over parametric scattering spectra

    SciTech Connect

    Kitaeva, G Kh; Penin, A N

    2004-07-31

    A new method is proposed for measuring the spatial distribution of the quadratic susceptibility of inhomogeneous nonlinear media. The method is based on the unique relation of the Fourier harmonics of this distribution with the shape of a signal-radiation line during parametric frequency conversion in a linear regime. The diagnostic possibilities of the method of spontaneous parametric scattering of light are analysed by simulating the spectra of nonlinear diffraction in layered structures with different profiles of variation in the quadratic susceptibility. The cases of step and smoothed variations in the susceptibility of periodically poled regular and irregular superlattices (structures formed by the layers of optically linear and nonlinear media) are considered and the effect of light absorption at an idler frequency is studied. The experimental spectra of periodically poled crystals are presented. Different methods for measuring the one-dimensional dependence of quadratic susceptibility on the coordinate in periodically poled structures and polydomain crystals are proposed. (invited paper)

  11. Quadratic finite elements and incompressible viscous flows.

    SciTech Connect

    Dohrmann, Clark R.; Gartling, David K.

    2005-01-01

    Pressure stabilization methods are applied to higher-order velocity finite elements for application to viscous incompressible flows. Both a standard pressure stabilizing Petrov-Galerkin (PSPG) method and a new polynomial pressure projection stabilization (PPPS) method have been implemented and tested for various quadratic elements in two dimensions. A preconditioner based on relaxing the incompressibility constraint is also tested for the iterative solution of saddle point problems arising from mixed Galerkin finite element approximations to the Navier-Stokes equations. The preconditioner is demonstrated for BB stable elements with discontinuous pressure approximations in two and three dimensions.

  12. Constrained neural approaches to quadratic assignment problems.

    PubMed

    Ishii, S; Sato, M

    1998-08-01

    In this paper, we discuss analog neural approaches to the quadratic assignment problem (QAP). These approaches employ a hard constraints scheme to restrict the domain space, and are able to obtain much improved solutions over conventional neural approaches. Since only a few strong heuristics for QAP have been known to date, our approaches are good alternatives, capable of obtaining fairly good solutions in a short period of time. Some of them can also be applied to large-scale problems, say of size N>/=300.

  13. A quadratic analog-to-digital converter

    NASA Technical Reports Server (NTRS)

    Harrison, D. C.; Staples, M. H.

    1980-01-01

    An analog-to-digital converter with a square root transfer function has been developed for use with a pair of CCD imaging detectors in the White Light Coronagraph/X-ray XUV Telescope experiment to be flown as part of the Internal Solar Polar Mission. It is shown that in background-noise-limited instrumentation systems a quadratic analog-to-digital converter will allow a maximum dynamic range with a fixed number of data bits. Low power dissipation, moderately fast conversion time, and reliability are achieved in the proposed design using standard components and avoiding nonlinear elements.

  14. A quadratic analog-to-digital converter

    NASA Technical Reports Server (NTRS)

    Harrison, D. C.; Staples, M. H.

    1980-01-01

    An analog-to-digital converter with a square root transfer function has been developed for use with a pair of CCD imaging detectors in the White Light Coronagraph/X-ray XUV Telescope experiment to be flown as part of the Internal Solar Polar Mission. It is shown that in background-noise-limited instrumentation systems a quadratic analog-to-digital converter will allow a maximum dynamic range with a fixed number of data bits. Low power dissipation, moderately fast conversion time, and reliability are achieved in the proposed design using standard components and avoiding nonlinear elements.

  15. Using quadratic simplicial elements for hierarchical approximation and visualization

    NASA Astrophysics Data System (ADS)

    Wiley, David F.; Childs, Henry R.; Hamann, Bernd; Joy, Kenneth I.; Max, Nelson

    2002-03-01

    Best quadratic simplicial spline approximations can be computed, using quadratic Bernstein-Bezier basis functions, by identifying and bisecting simplicial elements with largest errors. Our method begins with an initial triangulation of the domain; a best quadratic spline approximation is computed; errors are computed for all simplices; and simplices of maximal error are subdivided. This process is repeated until a user-specified global error tolerance is met. The initial approximations for the unit square and cube are given by two quadratic triangles and five quadratic tetrahedra, respectively. Our more complex triangulation and approximation method that respects field discontinuities and geometrical features allows us to better approximate data. Data is visualized by using the hierarchy of increasingly better quadratic approximations generated by this process. Many visualization problems arise for quadratic elements. First tessellating quadratic elements with smaller linear ones and then rendering the smaller linear elements is one way to visualize quadratic elements. Our results show a significant reduction in the number of simplices required to approximate data sets when using quadratic elements as compared to using linear elements.

  16. Some Randomized Algorithms for Convex Quadratic Programming

    SciTech Connect

    Goldbach, R.

    1999-01-15

    We adapt some randomized algorithms of Clarkson [3] for linear programming to the framework of so-called LP-type problems, which was introduced by Sharir and Welzl [10]. This framework is quite general and allows a unified and elegant presentation and analysis. We also show that LP-type problems include minimization of a convex quadratic function subject to convex quadratic constraints as a special case, for which the algorithms can be implemented efficiently, if only linear constraints are present. We show that the expected running times depend only linearly on the number of constraints, and illustrate this by some numerical results. Even though the framework of LP-type problems may appear rather abstract at first, application of the methods considered in this paper to a given problem of that type is easy and efficient. Moreover, our proofs are in fact rather simple, since many technical details of more explicit problem representations are handled in a uniform manner by our approach. In particular, we do not assume boundedness of the feasible set as required in related methods.

  17. A Community of Practice Facilitated by Facebook for Integrating New Online EFL Writing Forms into Assiut University College of Education

    ERIC Educational Resources Information Center

    Abdallah, Mahmoud Mohammad Sayed

    2013-01-01

    This paper reports on a design study conducted within the Egyptian context of pre-service EFL teacher education, which implemented a Community of Practice (CoP) design facilitated by Facebook, to integrate some new forms of online writing. Based on some preliminary empirical results triangulated with literature review, a preliminary design…

  18. INTEGRATED LABORATORY AND FIELD CHARACTERIZATION OF ORGANIC CARBON IN PM 2.5 FORMED THROUGH CHEMICAL REACTIONS

    EPA Science Inventory

    An integrated laboratory and field research program is underway at the National Exposure Research Laboratory (NERL) to characterize organic carbon in PM2.5 (particulate matter) formed through chemical reactions. Information from this study will provide critical data ne...

  19. Extrastriate visual areas integrate form features over space and time to construct representations of stationary and rigidly rotating objects

    PubMed Central

    McCarthy, J. Daniel; Kohler, Peter J.; Tse, Peter U.; Caplovitz, Gideon Paul

    2016-01-01

    When an object moves behind a bush, for example, its visible fragments are revealed at different times and locations across the visual field. Nonetheless, a whole moving object is perceived. Unlike traditional modal and amodal completion mechanisms known to support spatial form integration when all parts of a stimulus are simultaneously visible, relatively little is known about the neural substrates of the spatiotemporal form integration processes involved in generating coherent object representations from a succession visible fragments. We use fMRI to identify brain regions involved in two mechanisms supporting the representation of stationary and rigidly rotating objects whose form features are shown in succession: Spatiotemporal Form Integration (STFI) and Position Updating. STFI allows past and present form cues to be integrated over space and time into a coherent object even when the object is not visible in any given frame. STFI can occur whether or not the object is moving. Position updating allows us to perceive a moving object, whether rigidly rotating or translating, even when its form features are revealed at different times and locations in space. Our results suggest that STFI is mediated by visual regions beyond V1 and V2. Moreover, while widespread cortical activation has been observed for other motion percepts derived solely from form-based analyses (Krekelberg, Vatakis, & Kourtzi, 2005; Tse, 2006), increased responses for the position updating that leads to rigidly rotating object representations were only observed in visual areas KO and possibly hMT+, indicating that this is a distinct and highly specialized type of processing. PMID:26226075

  20. Frequency weighted system identification and linear quadratic controller design

    NASA Technical Reports Server (NTRS)

    Horta, Lucas G.; Phan, Minh; Juang, Jer-Nan; Longman, Richard W.; Sulla, Jeffrey L.

    1991-01-01

    Application of filters for frequency weighting of Markov parameters (pulse response functions) is described in relation to system/observer identification. The time domain identification approach recovers a model which has a pulse response weighted according to frequency. The identified model is composed of the original system and filters. The augmented system is in a form which can be used directly for frequency weighted linear quadratic controller design. Data from either single or multiple experiments can be used to recover the Markov parameters. Measured acceleration signals from a truss structure are used for system identification and the model obtained is used for frequency weighted controller design. The procedure makes the identification and controler design complementary problems.

  1. Design and analysis of constrained nonlinear quadratic regulator.

    PubMed

    Ding, BaoCang; Li, ShaoYuan

    2003-04-01

    A suboptimal dual-mode solution to constrained nonlinear quadratic regulator (CNLQR) problem is studied. In a neighborhood of the origin, the controller is formulated as an LQR based on a model obtained by linearizing the original model at the origin. Outside this neighborhood, the control law is obtained by solving a finite horizon optimization problem (FHOP) with additional terminal inequality constraints. The terminal inequality constraints make the terminal states of FHOP be driven into the neighborhood of the origin, which is a specially designed control invariant set with respect to LQR control law. The overall control law is obtained by combining that obtained by solving FHOP and that obtained form LQR. The feasibility aspect is analyzed and asymptotic stability is proven. The effectiveness of this suboptimal controller is demonstrated by simulation studies.

  2. Quadratic trigonometric B-spline for image interpolation using GA

    PubMed Central

    Abbas, Samreen; Irshad, Misbah

    2017-01-01

    In this article, a new quadratic trigonometric B-spline with control parameters is constructed to address the problems related to two dimensional digital image interpolation. The newly constructed spline is then used to design an image interpolation scheme together with one of the soft computing techniques named as Genetic Algorithm (GA). The idea of GA has been formed to optimize the control parameters in the description of newly constructed spline. The Feature SIMilarity (FSIM), Structure SIMilarity (SSIM) and Multi-Scale Structure SIMilarity (MS-SSIM) indices along with traditional Peak Signal-to-Noise Ratio (PSNR) are employed as image quality metrics to analyze and compare the outcomes of approach offered in this work, with three of the present digital image interpolation schemes. The upshots show that the proposed scheme is better choice to deal with the problems associated to image interpolation. PMID:28640906

  3. Near-infrared integral field spectroscopy of star-forming galaxies

    NASA Technical Reports Server (NTRS)

    Dale, D. A.; Roussel, H.; Contursi, A.; Helou, G.; Dinerstein, H. L.; Hunter, D. A.; Hollenbach, D. J.; Egami, E.; Matthews, K.; Murphy, T. W. Jr; Lafon, C. E.; Rubin, R. H.

    2004-01-01

    The Palomar Integral Field Spectrograph was used to probe a variety of environments in nine nearby galaxies that span a range of morphological types, luminosities, metallicities, and infrared-to-blue ratios.

  4. Closed-form integrator for the quaternion (euler angle) kinematics equations

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A. (Inventor)

    2000-01-01

    The invention is embodied in a method of integrating kinematics equations for updating a set of vehicle attitude angles of a vehicle using 3-dimensional angular velocities of the vehicle, which includes computing an integrating factor matrix from quantities corresponding to the 3-dimensional angular velocities, computing a total integrated angular rate from the quantities corresponding to a 3-dimensional angular velocities, computing a state transition matrix as a sum of (a) a first complementary function of the total integrated angular rate and (b) the integrating factor matrix multiplied by a second complementary function of the total integrated angular rate, and updating the set of vehicle attitude angles using the state transition matrix. Preferably, the method further includes computing a quanternion vector from the quantities corresponding to the 3-dimensional angular velocities, in which case the updating of the set of vehicle attitude angles using the state transition matrix is carried out by (a) updating the quanternion vector by multiplying the quanternion vector by the state transition matrix to produce an updated quanternion vector and (b) computing an updated set of vehicle attitude angles from the updated quanternion vector. The first and second trigonometric functions are complementary, such as a sine and a cosine. The quantities corresponding to the 3-dimensional angular velocities include respective averages of the 3-dimensional angular velocities over plural time frames. The updating of the quanternion vector preserves the norm of the vector, whereby the updated set of vehicle attitude angles are virtually error-free.

  5. A quadratic pulse height analyzer for space applications.

    NASA Technical Reports Server (NTRS)

    Burtis, D. W.; Aalami, D.; Evelyn-Veere, R. H.; Sarkady, A. A.

    1972-01-01

    A flight-worthy pulse height analyzer that has a quadratic transfer function is described. This quadratic function permits optimum usage of the entire PHA dynamic range due to the quadratic nature of the gamma ray spectrometer's resolution vs energy. After the theoretical design discussion, the implementation of the design is examined and test results described. The analyzer is part of the University of New Hampshire gamma ray monitor for OSO-H.

  6. A Mathematics Classroom for the Twenty-First Century: Exploring the Complete Story of Turning Points of Quadratics.

    ERIC Educational Resources Information Center

    Olmstead, Eugene

    1995-01-01

    Explores quadratic functions using the graphing calculator. Discoveries are made graphically whereas hypotheses are proven algebraically. Includes traditional quadratics, other algebraic quadratics, nonpolynomial quadratics, transcendental quadratics, and proofs. (MKR)

  7. Steller Structure Treatment of Quadratic Gravity

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Shao, C.; Chen, X.

    2001-07-01

    A scheme for considering stellar structure by taking advantage of the quadratic theory of gravitation in four-dimensions is proposed, citing the fact that the possible deviation of gravity in astrophysical systems from the Newtonian inverse square law can be explained through the use of this theory. A modified Lane-Emden equation is derived by making use of the linearized static field equation of quadratic gravity and the polytropic equation of state for a fluid. The influence on stellar structure of the additional force included in quadratic gravity is investigated. It is shown that the additional force can be treated as a perturbation of a bound system by solutions of the modified Lane-Emden equation and an order-of-magnitude analysis. %ZY. Fujii, Nature (London) 234 (1971), 5; Phys. Rev. D9 (1974), 874. D. R. Long, Phys. Rev. D 9 (1974), 850. J. O'Hanlon, Phys. Rev. Lett. 29 (1972), 137. D. R. Mikkelson and M. J. Newman, Phys. Rev. D 16 (1977), 919. R. V. Wagoner, Phys. Rev. D 1 (1970), 3209. J. Z. Xu and Y. H. Chen, Gen. Relat. Gravit. J. 23 (1991), 169. K. S. Stelle, Gen. Relat. Gravit. J. 8 (1978), 631. C. Xu and G. F. R. Ellis, Class. Quant. Grav. 8 (1991), 1747. A. Eddington, The Mathematical Theory of Relativity, 2nd ed. (Cambridge University Press, Cambridge, 1924). W. Pauli, Theory of Relativity (Pergamon Press, New York, 1921). H. A. Buchdahl, Proc. Edinburgh Math. Soc. 8 (1948), 89. J. D. Barrow and A. C. Ottewill, J. of Phys. A 16 (1983), 2757. M. B. Mijic, M. S. Morris and W. M. Suen, Phys. Rev. D 34 (1986), 2934. A. L. Berkin, Phys. Rev. D 42 (1990), 1017. N. D. Birrell and P. C. W. Davies, Quantum Field in Curved Space (Cambridge University Press, 1982). E. T. Tomboulis, Quantum Theory of Gravity, ed. S. M. Christensen (Bristol: Adam Hilger 1984). H. J. Treder, Ann. der Phys. 32 (1975), 383. S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (Wiley, New York 1972). E. N. Glass and G. Szamosi

  8. Extrastriate Visual Areas Integrate Form Features over Space and Time to Construct Representations of Stationary and Rigidly Rotating Objects.

    PubMed

    McCarthy, J Daniel; Kohler, Peter J; Tse, Peter U; Caplovitz, Gideon Paul

    2015-11-01

    When an object moves behind a bush, for example, its visible fragments are revealed at different times and locations across the visual field. Nonetheless, a whole moving object is perceived. Unlike traditional modal and amodal completion mechanisms known to support spatial form integration when all parts of a stimulus are simultaneously visible, relatively little is known about the neural substrates of the spatiotemporal form integration (STFI) processes involved in generating coherent object representations from a succession visible fragments. We used fMRI to identify brain regions involved in two mechanisms supporting the representation of stationary and rigidly rotating objects whose form features are shown in succession: STFI and position updating. STFI allows past and present form cues to be integrated over space and time into a coherent object even when the object is not visible in any given frame. STFI can occur whether or not the object is moving. Position updating allows us to perceive a moving object, whether rigidly rotating or translating, even when its form features are revealed at different times and locations in space. Our results suggest that STFI is mediated by visual regions beyond V1 and V2. Moreover, although widespread cortical activation has been observed for other motion percepts derived solely from form-based analyses [Tse, P. U. Neural correlates of transformational apparent motion. Neuroimage, 31, 766-773, 2006; Krekelberg, B., Vatakis, A., & Kourtzi, Z. Implied motion from form in the human visual cortex. Journal of Neurophysiology, 94, 4373-4386, 2005], increased responses for the position updating that lead to rigidly rotating object representations were only observed in visual areas KO and possibly hMT+, indicating that this is a distinct and highly specialized type of processing.

  9. Forced oscillations in quadratically damped systems

    NASA Technical Reports Server (NTRS)

    Bayliss, A.

    1978-01-01

    Bayliss (1975) has studied the question whether in the case of linear differential equations the relationship between the stability of the homogeneous equations and the existence of almost periodic solutions to the inhomogeneous equation is preserved by finite difference approximations. In the current investigation analogous properties are considered for the case in which the damping is quadratic rather than linear. The properties of the considered equation for arbitrary forcing terms are examined and the validity is proved of a theorem concerning the characteristics of the unique solution. By using the Lipschitz continuity of the mapping and the contracting mapping principle, almost periodic solutions can be found for perturbations of the considered equation. Attention is also given to the Lipschitz continuity of the solution operator and the results of numerical tests which have been conducted to test the discussed theory.

  10. On Coupled Rate Equations with Quadratic Nonlinearities

    PubMed Central

    Montroll, Elliott W.

    1972-01-01

    Rate equations with quadratic nonlinearities appear in many fields, such as chemical kinetics, population dynamics, transport theory, hydrodynamics, etc. Such equations, which may arise from basic principles or which may be phenomenological, are generally solved by linearization and application of perturbation theory. Here, a somewhat different strategy is emphasized. Alternative nonlinear models that can be solved exactly and whose solutions have the qualitative character expected from the original equations are first searched for. Then, the original equations are treated as perturbations of those of the solvable model. Hence, the function of the perturbation theory is to improve numerical accuracy of solutions, rather than to furnish the basic qualitative behavior of the solutions of the equations. PMID:16592013

  11. Security analysis of quadratic phase based cryptography

    NASA Astrophysics Data System (ADS)

    Muniraj, Inbarasan; Guo, Changliang; Malallah, Ra'ed; Healy, John J.; Sheridan, John T.

    2016-09-01

    The linear canonical transform (LCT) is essential in modeling a coherent light field propagation through first-order optical systems. Recently, a generic optical system, known as a Quadratic Phase Encoding System (QPES), for encrypting a two-dimensional (2D) image has been reported. It has been reported together with two phase keys the individual LCT parameters serve as keys of the cryptosystem. However, it is important that such the encryption systems also satisfies some dynamic security properties. Therefore, in this work, we examine some cryptographic evaluation methods, such as Avalanche Criterion and Bit Independence, which indicates the degree of security of the cryptographic algorithms on QPES. We compare our simulation results with the conventional Fourier and the Fresnel transform based DRPE systems. The results show that the LCT based DRPE has an excellent avalanche and bit independence characteristics than that of using the conventional Fourier and Fresnel based encryption systems.

  12. Mammogram enhancement using alpha weighted quadratic filter.

    PubMed

    Zhou, Yicong; Panetta, Karen; Agaian, Sos

    2009-01-01

    Mammograms are widely used to detect breast cancer in women. The quality of the image may suffer from poor resolution or low contrast due to the limitations of the X-ray hardware systems. Image enhancement is a powerful tool to improve the visual quality of mammograms. This paper introduces a new powerful nonlinear filter called the alpha weighted quadratic filter for mammogram enhancement. The user has the flexibility to design the filter by selecting all of the parameters manually or using an existing quantitative measure to select the optimal enhancement parameters. Computer simulations show that excellent enhancement results can be obtained with no apriori knowledge of the mammogram contents. The filter can also be used for automatic segmentation.

  13. A non-linear programming approach to the computer-aided design of regulators using a linear-quadratic formulation

    NASA Technical Reports Server (NTRS)

    Fleming, P.

    1985-01-01

    A design technique is proposed for linear regulators in which a feedback controller of fixed structure is chosen to minimize an integral quadratic objective function subject to the satisfaction of integral quadratic constraint functions. Application of a non-linear programming algorithm to this mathematically tractable formulation results in an efficient and useful computer-aided design tool. Particular attention is paid to computational efficiency and various recommendations are made. Two design examples illustrate the flexibility of the approach and highlight the special insight afforded to the designer.

  14. A non-linear programming approach to the computer-aided design of regulators using a linear-quadratic formulation

    NASA Technical Reports Server (NTRS)

    Fleming, P.

    1985-01-01

    A design technique is proposed for linear regulators in which a feedback controller of fixed structure is chosen to minimize an integral quadratic objective function subject to the satisfaction of integral quadratic constraint functions. Application of a non-linear programming algorithm to this mathematically tractable formulation results in an efficient and useful computer-aided design tool. Particular attention is paid to computational efficiency and various recommendations are made. Two design examples illustrate the flexibility of the approach and highlight the special insight afforded to the designer.

  15. Quality management tools: facilitating clinical research data integrity by utilizing specialized reports with electronic case report forms.

    PubMed

    Trocky, N M; Fontinha, M

    2005-01-01

    Data collected throughout the course of a clinical research trial must be reviewed for accuracy and completeness continually. The Oracle Clinical (OC) data management application utilized to capture clinical data facilitates data integrity through pre-programmed validations, edit and range checks, and discrepancy management modules. These functions were not enough. Coupled with the use of specially created reports in Oracle Discoverer and Integrated Review, both ad-hoc query and reporting tools, research staff have enhanced their ability to clean, analyze and report more accurate data captured within and among Case Report Forms (eCRFs) by individual study or across multiple studies.

  16. Effects of Bloom-Forming Algae on Fouling of Integrated Membrane Systems in Seawater Desalination

    ERIC Educational Resources Information Center

    Ladner, David Allen

    2009-01-01

    Combining low- and high-pressure membranes into an integrated membrane system is an effective treatment strategy for seawater desalination. Low-pressure microfiltration (MF) and ultrafiltration (UF) membranes remove particulate material, colloids, and high-molecular-weight organics leaving a relatively foulant-free salt solution for treatment by…

  17. Effects of Bloom-Forming Algae on Fouling of Integrated Membrane Systems in Seawater Desalination

    ERIC Educational Resources Information Center

    Ladner, David Allen

    2009-01-01

    Combining low- and high-pressure membranes into an integrated membrane system is an effective treatment strategy for seawater desalination. Low-pressure microfiltration (MF) and ultrafiltration (UF) membranes remove particulate material, colloids, and high-molecular-weight organics leaving a relatively foulant-free salt solution for treatment by…

  18. Using Multiple Forms of Data in Principal Evaluations: An Overview with Examples. Integrated Leadership Development Initiative

    ERIC Educational Resources Information Center

    Sanders, Nancy; Kearney, Karen; Vince, Scott

    2012-01-01

    The Integrated Leadership Development Initiative (ILDI) is a cross-agency partnership that focuses on collaboratively guiding and supporting leader development and improving conditions of leadership so that there are highly accomplished leaders in every district and school in California. In this brief, ILDI focuses on Principal Evaluations and…

  19. Mathematical Treats Form the Stars: Integrating Curricular Elements through Partnerships between NASA and Math Methods Faculty.

    ERIC Educational Resources Information Center

    Crawford, Caroline M.; Brown, Evelyn; Chilelli, Chris

    Mathematics methods coursework can be an innovative environment through which to emphasize the integration of real-world data structures and opportunities. These opportunities can create instructionally informative opportunities for learners, as well as inform teacher candidates of innovative teaching tools at their fingertips. NASA offers…

  20. Integrated Testlets: A New Form of Expert-Student Collaborative Testing

    ERIC Educational Resources Information Center

    Shiell, Ralph C.; Slepkov, Aaron D.

    2015-01-01

    Integrated testlets are a new assessment tool that encompass the procedural benefits of multiple-choice testing, the pedagogical advantages of free-response-based tests, and the collaborative aspects of a viva voce or defence examination format. The result is a robust assessment tool that provides a significant formative aspect for students.…

  1. Improved methods of forming monolithic integrated circuits having complementary bipolar transistors

    NASA Technical Reports Server (NTRS)

    Bohannon, R. O., Jr.; Cashion, W. F.; Stehlin, R. A.

    1971-01-01

    Two new processes form complementary transistors in monolithic semiconductor circuits, require fewer steps /infusions/ than previous methods, and eliminate such problems as nonuniform h sub FE distribution, low yield, and large device formation.

  2. Complex complete quadratic combination method for damped system with repeated eigenvalues

    NASA Astrophysics Data System (ADS)

    Yu, Ruifang; Zhou, Xiyuan; Abduwaris, Abduwahit

    2016-09-01

    A new response-spectrum mode superposition method, entirely in real value form, is developed to analyze the maximum structural response under earthquake ground motion for generally damped linear systems with repeated eigenvalues and defective eigenvectors. This algorithm has clear physical concepts and is similar to the complex complete quadratic combination (CCQC) method previously established. Since it can consider the effect of repeated eigenvalues, it is called the CCQC-R method, in which the correlation coefficients of high-order modal responses are enclosed in addition to the correlation coefficients in the normal CCQC method. As a result, the formulas for calculating the correlation coefficients of high-order modal responses are deduced in this study, including displacement, velocity and velocity-displacement correlation coefficients. Furthermore, the relationship between high-order displacement and velocity covariance is derived to make the CCQC-R algorithm only relevant to the high-order displacement response spectrum. Finally, a practical step-by-step integration procedure for calculating high-order displacement response spectrum is obtained by changing the earthquake ground motion input, which is evaluated by comparing it to the theory solution under the sine-wave input. The method derived here is suitable for generally linear systems with classical or non-classical damping.

  3. Geobiology of the Critical Zone: the Hierarchies of Process, Form and Life provide an Integrated Ontology

    NASA Astrophysics Data System (ADS)

    Cotterill, Fenton P. D.

    2016-04-01

    geomorphology characterize Africa's older surfaces, many of which qualify as palimpsests: overwritten and reshaped repeatedly over timescales of 10 000-100 000 000 yr. Inheritance, equifinality, and exhumation are commonly invoked to explain such landscape patterns, but are difficult to measure and thus test; here Africa's vast, deep regoliths epitomize the starkness of these challenges facing researchers across much of the continent. These deficiencies and problems are magnified when we consider the knowledge we seek of African landscape evolution toward resolving the complex history of the African plate since its individuation. The credentials of this knowledge are prescribed by the evidence needed to test competing hypotheses, especially invoking first order determinants of landscape dynamics e.g. membrane tectonics (Oxburgh ER & Turcotte DL 1974. Earth Planet. Sci. Lett. 22:133-140) versus plumes (Foulger G 2013. Plates vs Plumes: A Geological Controversy. Wiley Blackwell). The evidence needed to test such competing hypotheses demands robust reconstructions of the individuated histories of landforms; in the African context, robustness pertains to the representativeness of events reconstructed in form and space (up to continental scales) and back through time from the Neogene into the Late Mesozoic. The ideal map of quantitative evidence must aim to integrate salient details in the trajectories of individuated landforms representing the principal landscapes of all Africa's margins, basins and watersheds. This in turn demands measurements - in mesoscale detail - of relief, drainage and regolith back though time, wherever keystone packages of evidence have survived Gondwana break up and its aftermath. Such a strategy is indeed ambitious, and it may well be dismissed as impractical. Nevertheless, the alternatives fall short. If it is to be representative of the history it purports to explain, we need the mesoscale facts to inform any narrative of a larger landscape (regional

  4. Spectroscopy of one-dimensionally inhomogeneous media with quadratic nonlinearity

    SciTech Connect

    Golubkov, A A; Makarov, Vladimir A

    2011-11-30

    We present a brief review of the results of fifty years of development efforts in spectroscopy of one-dimensionally inhomogeneous media with quadratic nonlinearity. The recent original results obtained by the authors show the fundamental possibility of determining, from experimental data, the coordinate dependences of complex quadratic susceptibility tensor components of a onedimensionally inhomogeneous (along the z axis) medium with an arbitrary frequency dispersion, if the linear dielectric properties of the medium also vary along the z axis and are described by a diagonal tensor of the linear dielectric constant. It is assumed that the medium in question has the form of a plane-parallel plate, whose surfaces are perpendicular to the direction of the inhomogeneity. Using the example of several components of the tensors X{sup (2)}(z, {omega}{sub 1} {+-} {omega}{sub 2}; {omega}{sub 1}, {+-} {omega}{sub 2}), we describe two methods for finding their spatial profiles, which differ in the interaction geometry of plane monochromatic fundamental waves with frequencies {omega}{sub 1} and {omega}{sub 2}. The both methods are based on assessing the intensity of the waves propagating from the plate at the sum or difference frequency and require measurements over a range of angles of incidence of the fundamental waves. Such measurements include two series of additional estimates of the intensities of the waves generated under special conditions by using the test and additional reference plates, which eliminates the need for complicated phase measurements of the complex amplitudes of the waves at the sum (difference) frequency.

  5. Path integral approach to closed-form option pricing formulas with applications to stochastic volatility and interest rate models.

    PubMed

    Lemmens, D; Wouters, M; Tempere, J; Foulon, S

    2008-07-01

    We present a path integral method to derive closed-form solutions for option prices in a stochastic volatility model. The method is explained in detail for the pricing of a plain vanilla option. The flexibility of our approach is demonstrated by extending the realm of closed-form option price formulas to the case where both the volatility and interest rates are stochastic. This flexibility is promising for the treatment of exotic options. Our analytical formulas are tested with numerical Monte Carlo simulations.

  6. Path integral approach to closed-form option pricing formulas with applications to stochastic volatility and interest rate models

    NASA Astrophysics Data System (ADS)

    Lemmens, D.; Wouters, M.; Tempere, J.; Foulon, S.

    2008-07-01

    We present a path integral method to derive closed-form solutions for option prices in a stochastic volatility model. The method is explained in detail for the pricing of a plain vanilla option. The flexibility of our approach is demonstrated by extending the realm of closed-form option price formulas to the case where both the volatility and interest rates are stochastic. This flexibility is promising for the treatment of exotic options. Our analytical formulas are tested with numerical Monte Carlo simulations.

  7. Integration of active pharmaceutical ingredient solid form selection and particle engineering into drug product design.

    PubMed

    Ticehurst, Martyn David; Marziano, Ivan

    2015-06-01

    This review seeks to offer a broad perspective that encompasses an understanding of the drug product attributes affected by active pharmaceutical ingredient (API) physical properties, their link to solid form selection and the role of particle engineering. While the crucial role of active pharmaceutical ingredient (API) solid form selection is universally acknowledged in the pharmaceutical industry, the value of increasing effort to understanding the link between solid form, API physical properties and drug product formulation and manufacture is now also being recognised. A truly holistic strategy for drug product development should focus on connecting solid form selection, particle engineering and formulation design to both exploit opportunities to access simpler manufacturing operations and prevent failures. Modelling and predictive tools that assist in establishing these links early in product development are discussed. In addition, the potential for differences between the ingoing API physical properties and those in the final product caused by drug product processing is considered. The focus of this review is on oral solid dosage forms and dry powder inhaler products for lung delivery.

  8. Quadratic Hamilton-Poisson systems on $\\mathfrak{s}\\mathfrak{e}(1, 1)^{*}_{-}$: The homogeneous case

    NASA Astrophysics Data System (ADS)

    Barrett, Dennis I.; Biggs, Rory; Remsing, Claudiu C.

    2015-11-01

    In this paper we consider quadratic Hamilton-Poisson systems on the semi-Euclidean Lie-Poisson space {s}{e}(1, 1)*-. The homogeneous positive semidefinite systems are classified; there are exactly six equivalence classes. In each case, the stability nature of the equilibrium states is determined. Explicit expressions for the integral curves are found. A characterization of the equivalence classes, in terms of the equilibria, is identified. Finally, the relation of this work to optimal control is briefly discussed.

  9. Symmetries of the One-Dimensional Fokker-Planck-Kolmogorov Equation with a Nonlocal Quadratic Nonlinearity

    NASA Astrophysics Data System (ADS)

    Levchenko, E. A.; Trifonov, A. Yu.; Shapovalov, A. V.

    2017-06-01

    The one-dimensional Fokker-Planck-Kolmogorov equation with a special type of nonlocal quadratic nonlinearity is represented as a consistent system of differential equations, including a dynamical system describing the evolution of the moments of the unknown function. Lie symmetries are found for the consistent system using methods of classical group analysis. An example of an invariant-group solution obtained with an additional integral constraint imposed on the system is considered.

  10. Knowledge constructions in nursing practice: understanding and integrating different forms of knowledge.

    PubMed

    James, Inger; Andershed, Birgitta; Gustavsson, Bernt; Ternestedt, Britt-Marie

    2010-11-01

    In this combined ethnographic and hermeneutic study we examined which forms of knowledge nurses make use of and how they construct knowledge. We collected data using participant observations, informal conversations, and interviews. Nurses' knowledge construction took the form of a hermeneutic spiral, a journey in which the nurses moved up and down and horizontally, and in which they created understanding. The nurses constructed knowledge from reading the patient's record, the brief oral handover report, greeting the patient, and reading the patient. By being sensitive, using humor, and emotional involvement, they deepened their understanding. By being suspicious and self-critical, they sought interaction with nurse colleagues, the patient, doctor, and relatives, and obtained additional knowledge. They strove throughout the journey to be one step ahead in their efforts to attain an understanding of the patient's situation. We can relate the knowledge nurses make use of to intertwined forms of episteme, techne, and phronesis.

  11. Sketching the General Quadratic Equation Using Dynamic Geometry Software

    ERIC Educational Resources Information Center

    Stols, G. H.

    2005-01-01

    This paper explores a geometrical way to sketch graphs of the general quadratic in two variables with Geometer's Sketchpad. To do this, a geometric procedure as described by De Temple is used, bearing in mind that this general quadratic equation (1) represents all the possible conics (conics sections), and the fact that five points (no three of…

  12. Mixed-Integer Nonconvex Quadratic Optimization Relaxations and Performance Analysis

    DTIC Science & Technology

    2015-09-14

    problem as a cardinality constrained quadratic program and study its computational complexity. Furthermore, we develop novel semi - definite relaxation (SDR...each application scenario, we first characterize the computational complexity of the joint optimization problem, and then propose novel semi - definite ...cardinality constrained quadratic programs ( QP ) and the low rank matrix completion problems. The project addresses a fundamental question regarding the

  13. Visualising the Roots of Quadratic Equations with Complex Coefficients

    ERIC Educational Resources Information Center

    Bardell, Nicholas S.

    2014-01-01

    This paper is a natural extension of the root visualisation techniques first presented by Bardell (2012) for quadratic equations with real coefficients. Consideration is now given to the familiar quadratic equation "y = ax[superscript 2] + bx + c" in which the coefficients "a," "b," "c" are generally…

  14. Sketching the General Quadratic Equation Using Dynamic Geometry Software

    ERIC Educational Resources Information Center

    Stols, G. H.

    2005-01-01

    This paper explores a geometrical way to sketch graphs of the general quadratic in two variables with Geometer's Sketchpad. To do this, a geometric procedure as described by De Temple is used, bearing in mind that this general quadratic equation (1) represents all the possible conics (conics sections), and the fact that five points (no three of…

  15. Convexity preserving C2 rational quadratic trigonometric spline

    NASA Astrophysics Data System (ADS)

    Dube, Mridula; Tiwari, Preeti

    2012-09-01

    A C2 rational quadratic trigonometric spline interpolation has been studied using two kind of rational quadratic trigonometric splines. It is shown that under some natural conditions the solution of the problem exits and is unique. The necessary and sufficient condition that constrain the interpolation curves to be convex in the interpolating interval or subinterval are derived.

  16. Tangent Lines without Derivatives for Quadratic and Cubic Equations

    ERIC Educational Resources Information Center

    Carroll, William J.

    2009-01-01

    In the quadratic equation, y = ax[superscript 2] + bx + c, the equation y = bx + c is identified as the equation of the line tangent to the parabola at its y-intercept. This is extended to give a convenient method of graphing tangent lines at any point on the graph of a quadratic or a cubic equation. (Contains 5 figures.)

  17. Geometric quadratic stochastic operator on countable infinite set

    SciTech Connect

    Ganikhodjaev, Nasir; Hamzah, Nur Zatul Akmar

    2015-02-03

    In this paper we construct the family of Geometric quadratic stochastic operators defined on the countable sample space of nonnegative integers and investigate their trajectory behavior. Such operators can be reinterpreted in terms of of evolutionary operator of free population. We show that Geometric quadratic stochastic operators are regular transformations.

  18. A Constructive Transition from Linear to Quadratic Functions.

    ERIC Educational Resources Information Center

    Movshovitz-Hadar, Nitsa

    1993-01-01

    Presents an approach to quadratic functions that draws upon knowledge of linear functions by looking at the product of two linear functions. Then considers the quadratic function as the sum of three monomials. Potential advantages of each approach are discussed. (Contains 17 references.) (MDH)

  19. Tangent Lines without Derivatives for Quadratic and Cubic Equations

    ERIC Educational Resources Information Center

    Carroll, William J.

    2009-01-01

    In the quadratic equation, y = ax[superscript 2] + bx + c, the equation y = bx + c is identified as the equation of the line tangent to the parabola at its y-intercept. This is extended to give a convenient method of graphing tangent lines at any point on the graph of a quadratic or a cubic equation. (Contains 5 figures.)

  20. Mixed-Integer Nonconvex Quadratic Optimization Relaxations and Performance Analysis

    DTIC Science & Technology

    2016-10-11

    constrained quadratic programs, and the matrix completion problems with non-convex regularity. The project addresses a fundamental question how to...efficiently solve these problems, such as to find a provably high quality approximate solution or to fast find a local solution with probable structure ...applications in optimal and dynamic resource management, cardinality constrained quadratic programs, and the matrix completion problems with non

  1. Some Paradoxical Results for the Quadratically Weighted Kappa

    ERIC Educational Resources Information Center

    Warrens, Matthijs J.

    2012-01-01

    The quadratically weighted kappa is the most commonly used weighted kappa statistic for summarizing interrater agreement on an ordinal scale. The paper presents several properties of the quadratically weighted kappa that are paradoxical. For agreement tables with an odd number of categories "n" it is shown that if one of the raters uses the same…

  2. Waste Form Release Calculations for the 2005 Integrated Disposal Facility Performance Assessment

    SciTech Connect

    Bacon, Diana H.; McGrail, B PETER.

    2005-07-26

    A set of reactive chemical transport calculations was conducted with the Subsurface Transport Over Reactive Multiphases (STORM) code to evaluate the long-term performance of a representative low-activity waste glass in a shallow subsurface disposal system located on the Hanford Site. Two-dimensional simulations were run until the waste form release rates reached a quasi-stationary-state, usually after 2,000 to 4,000 yr. The primary difference between the waste form release simulations for the 2001 ILAW PA, and the simulations described herein, is the number of different materials considered. Whereas the previous PA considered only LAWABP1 glass, the current PA also describes radionuclide release from three different WTP glasses (LAWA44, LAWB45 and LAWC22), two different bulk vitrification glasses (6-tank composite and S-109), and three different grout waste forms (containing Silver Iodide, Barium Iodide and Barium Iodate). All WTP and bulk vitrification glasses perform well. However, the radionuclide release from the salt in the cast refractory surrounding the bulk vitrification waste packages is 2 to 170 times higher than the glass release rate, depending on the water recharge rate. Iodine-129 release from grouted waste forms is highly sensitive to the solubility of the iodine compound contained in the grout. The normalized iodine release rate from grout containing barium iodate is a factor of 10 higher than what the normalized release rate would be if the iodine were contained in LAWA44 glass.

  3. Novikov algebras with associative bilinear forms

    NASA Astrophysics Data System (ADS)

    Zhu, Fuhai; Chen, Zhiqi

    2007-11-01

    Novikov algebras were introduced in connection with the Poisson brackets of hydrodynamic-type and Hamiltonian operators in formal variational calculus. The goal of this paper is to study Novikov algebras with non-degenerate associative symmetric bilinear forms, which we call quadratic Novikov algebras. Based on the classification of solvable quadratic Lie algebras of dimension not greater than 4 and Novikov algebras in dimension 3, we show that quadratic Novikov algebras up to dimension 4 are commutative. Furthermore, we obtain the classification of transitive quadratic Novikov algebras in dimension 4. But we find that not every quadratic Novikov algebra is commutative and give a non-commutative quadratic Novikov algebra in dimension 6.

  4. Higher order explicit symmetric integrators for inseparable forms of coordinates and momenta

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Wu, Xin; Huang, Guoqing; Liu, Fuyao

    2016-06-01

    Pihajoki proposed the extended phase-space second-order explicit symmetric leapfrog methods for inseparable Hamiltonian systems. On the basis of this work, we survey a critical problem on how to mix the variables in the extended phase space. Numerical tests show that sequent permutations of coordinates and momenta can make the leapfrog-like methods yield the most accurate results and the optimal long-term stabilized error behaviour. We also present a novel method to construct many fourth-order extended phase-space explicit symmetric integration schemes. Each scheme represents the symmetric production of six usual second-order leapfrogs without any permutations. This construction consists of four segments: the permuted coordinates, triple product of the usual second-order leapfrog without permutations, the permuted momenta and the triple product of the usual second-order leapfrog without permutations. Similarly, extended phase-space sixth, eighth and other higher order explicit symmetric algorithms are available. We used several inseparable Hamiltonian examples, such as the post-Newtonian approach of non-spinning compact binaries, to show that one of the proposed fourth-order methods is more efficient than the existing methods; examples include the fourth-order explicit symplectic integrators of Chin and the fourth-order explicit and implicit mixed symplectic integrators of Zhong et al. Given a moderate choice for the related mixing and projection maps, the extended phase-space explicit symplectic-like methods are well suited for various inseparable Hamiltonian problems. Samples of these problems involve the algorithmic regularization of gravitational systems with velocity-dependent perturbations in the Solar system and post-Newtonian Hamiltonian formulations of spinning compact objects.

  5. Closed form expressions for a consistent stress material nonlinear finite element

    NASA Astrophysics Data System (ADS)

    Knipe, Richard Lee

    Finite element expressions for two dimensional elasto-plasticity problems were implemented in closed form. These closed form expressions are based upon a distribution of the elasto-plastic constitutive relationship that is consistent with the interpolating functions used for the displacement. Closed form expressions for the element tangent stiffness matrix and initial stress nodal load vector were developed for the non hierarchic constant, linear, and quadratic strain triangle. Decreased solution times were obtained when using the closed form expressions instead of expressions based on numerical integration. The quality of the solutions obtained from the closed form expressions was measured against published solutions for two dimensional elasto-plasticity problems.

  6. Chitosan, the deacetylated form of chitin, is necessary for cell wall integrity in Cryptococcus neoformans.

    PubMed

    Baker, Lorina G; Specht, Charles A; Donlin, Maureen J; Lodge, Jennifer K

    2007-05-01

    Cryptococcus neoformans is an opportunistic fungal pathogen that causes cryptococcal meningoencephalitis, particularly in immunocompromised patients. The fungal cell wall is an excellent target for antifungal therapies as it is an essential organelle that provides cell structure and integrity, it is needed for the localization or attachment of known virulence factors, including the polysaccharide capsule, melanin, and phospholipase, and it is critical for host-pathogen interactions. In C. neoformans, chitosan produced by the enzymatic removal of acetyl groups from nascent chitin polymers has been implicated as an important component of the vegetative cell wall. In this study, we identify four putative chitin/polysaccharide deacetylases in C. neoformans. We have demonstrated that three of these deacetylases, Cda1, Cda2, and Cda3, can account for all of the chitosan produced during vegetative growth in culture, but the function for one, Fpd1, remains undetermined. The data suggest a model for chitosan production in vegetatively growing C. neoformans where the three chitin deacetylases convert chitin generated by the chitin synthase Chs3 into chitosan. Utilizing a collection of chitin/polysaccharide deacetylase deletion strains, we determined that during vegetative growth, chitosan helps to maintain cell integrity and aids in bud separation. Additionally, chitosan is necessary for maintaining normal capsule width and the lack of chitosan results in a "leaky melanin" phenotype. Our analysis indicates that chitin deacetylases and the chitosan made by them may prove to be excellent antifungal targets.

  7. AccessMRS: integrating OpenMRS with smart forms on Android.

    PubMed

    Fazen, Louis E; Chemwolo, Benjamin T; Songok, Julia J; Ruhl, Laura J; Kipkoech, Carolyne; Green, James M; Ikemeri, Justus E; Christoffersen-Deb, Astrid

    2013-01-01

    We present a new open-source Android application, AccessMRS, for interfacing with an electronic medical record system (OpenMRS) and loading 'Smart Forms' on a mobile device. AccessMRS functions as a patient-centered interface for viewing OpenMRS data; managing patient information in reminders, task lists, and previous encounters; and launching patient-specific 'Smart Forms' for electronic data collection and dissemination of health information. We present AccessMRS in the context of related software applications we developed to serve Community Health Workers, including AccessInfo, AccessAdmin, AccessMaps, and AccessForms. The specific features and design of AccessMRS are detailed in relationship to the requirements that drove development: the workflows of the Kenyan Ministry of Health Community Health Volunteers (CHVs) supported by the AMPATH Primary Health Care Program. Specifically, AccessMRS was designed to improve the quality of community-based Maternal and Child Health services delivered by CHVs in Kosirai Division. AccessMRS is currently in use by more than 80 CHVs in Kenya and undergoing formal assessment of acceptability, effectiveness, and cost.

  8. Integration Of Heat Transfer Coefficient In Glass Forming Modeling With Special Interface Element

    SciTech Connect

    Moreau, P.; Gregoire, S.; Lochegnies, D.; Cesar de Sa, J.

    2007-05-17

    Numerical modeling of the glass forming processes requires the accurate knowledge of the heat exchange between the glass and the forming tools. A laboratory testing is developed to determine the evolution of the heat transfer coefficient in different glass/mould contact conditions (contact pressure, temperature, lubrication...). In this paper, trials are performed to determine heat transfer coefficient evolutions in experimental conditions close to the industrial blow-and-blow process conditions. In parallel of this work, a special interface element is implemented in a commercial Finite Element code in order to deal with heat transfer between glass and mould for non-meshing meshes and evolutive contact. This special interface element, implemented by using user subroutines, permits to introduce the previous heat transfer coefficient evolutions in the numerical modelings at the glass/mould interface in function of the local temperatures, contact pressures, contact time and kind of lubrication. The blow-and-blow forming simulation of a perfume bottle is finally performed to assess the special interface element performance.

  9. Integration Of Heat Transfer Coefficient In Glass Forming Modeling With Special Interface Element

    NASA Astrophysics Data System (ADS)

    Moreau, P.; César de Sá, J.; Grégoire, S.; Lochegnies, D.

    2007-05-01

    Numerical modeling of the glass forming processes requires the accurate knowledge of the heat exchange between the glass and the forming tools. A laboratory testing is developed to determine the evolution of the heat transfer coefficient in different glass/mould contact conditions (contact pressure, temperature, lubrication…). In this paper, trials are performed to determine heat transfer coefficient evolutions in experimental conditions close to the industrial blow-and-blow process conditions. In parallel of this work, a special interface element is implemented in a commercial Finite Element code in order to deal with heat transfer between glass and mould for non-meshing meshes and evolutive contact. This special interface element, implemented by using user subroutines, permits to introduce the previous heat transfer coefficient evolutions in the numerical modelings at the glass/mould interface in function of the local temperatures, contact pressures, contact time and kind of lubrication. The blow-and-blow forming simulation of a perfume bottle is finally performed to assess the special interface element performance.

  10. Local classifier weighting by quadratic programming.

    PubMed

    Cevikalp, Hakan; Polikar, Robi

    2008-10-01

    It has been widely accepted that the classification accuracy can be improved by combining outputs of multiple classifiers. However, how to combine multiple classifiers with various (potentially conflicting) decisions is still an open problem. A rich collection of classifier combination procedures -- many of which are heuristic in nature -- have been developed for this goal. In this brief, we describe a dynamic approach to combine classifiers that have expertise in different regions of the input space. To this end, we use local classifier accuracy estimates to weight classifier outputs. Specifically, we estimate local recognition accuracies of classifiers near a query sample by utilizing its nearest neighbors, and then use these estimates to find the best weights of classifiers to label the query. The problem is formulated as a convex quadratic optimization problem, which returns optimal nonnegative classifier weights with respect to the chosen objective function, and the weights ensure that locally most accurate classifiers are weighted more heavily for labeling the query sample. Experimental results on several data sets indicate that the proposed weighting scheme outperforms other popular classifier combination schemes, particularly on problems with complex decision boundaries. Hence, the results indicate that local classification-accuracy-based combination techniques are well suited for decision making when the classifiers are trained by focusing on different regions of the input space.

  11. Extremal Optimization for Quadratic Unconstrained Binary Problems

    NASA Astrophysics Data System (ADS)

    Boettcher, S.

    We present an implementation of τ-EO for quadratic unconstrained binary optimization (QUBO) problems. To this end, we transform modify QUBO from its conventional Boolean presentation into a spin glass with a random external field on each site. These fields tend to be rather large compared to the typical coupling, presenting EO with a challenging two-scale problem, exploring smaller differences in couplings effectively while sufficiently aligning with those strong external fields. However, we also find a simple solution to that problem that indicates that those external fields apparently tilt the energy landscape to a such a degree such that global minima become more easy to find than those of spin glasses without (or very small) fields. We explore the impact of the weight distribution of the QUBO formulation in the operations research literature and analyze their meaning in a spin-glass language. This is significant because QUBO problems are considered among the main contenders for NP-hard problems that could be solved efficiently on a quantum computer such as D-Wave.

  12. Linear quadratic regulator for laser beam shaping

    NASA Astrophysics Data System (ADS)

    Escárate, Pedro; Agüero, Juan C.; Zúñiga, Sebastián; Castro, Mario; Garcés, Javier

    2017-07-01

    The performance of an adaptive optics system depends on multiple factors, including the quality of the laser beam before being projected to the mesosphere. In general, cumbersome procedures are required to optimize the laser beam in terms of amplitude and phase. However, aberrations produced by the optics of the laser beam system are still detected during the operations due to, for example, uncertainty in the utilized models. In this paper we propose the use of feedback to overcome the presence of model uncertainty and disturbances. In particular we use a Linear Quadratic Regulator (LQR) for closed loop laser beam shaping using a setup of two deformable mirrors. The proposed method is studied and simulated to provide an automatic optimization of the Amplitude of the laser beam. The performance of the LQR control algorithm is evaluated via numerical simulations using the root mean square error (RMSE). The results show an effective amplitude correction of the laser system aberrations after 20 iterations of the algorithm, a RMSE less than 0.7 was obtained, with about 140 actuators per mirror and a separation of z=3 [m] among the mirrors.

  13. Approximate Graph Edit Distance in Quadratic Time.

    PubMed

    Riesen, Kaspar; Ferrer, Miquel; Bunke, Horst

    2015-09-14

    Graph edit distance is one of the most flexible and general graph matching models available. The major drawback of graph edit distance, however, is its computational complexity that restricts its applicability to graphs of rather small size. Recently the authors of the present paper introduced a general approximation framework for the graph edit distance problem. The basic idea of this specific algorithm is to first compute an optimal assignment of independent local graph structures (including substitutions, deletions, and insertions of nodes and edges). This optimal assignment is complete and consistent with respect to the involved nodes of both graphs and can thus be used to instantly derive an admissible (yet suboptimal) solution for the original graph edit distance problem in O(n3) time. For large scale graphs or graph sets, however, the cubic time complexity may still be too high. Therefore, we propose to use suboptimal algorithms with quadratic rather than cubic time for solving the basic assignment problem. In particular, the present paper introduces five different greedy assignment algorithms in the context of graph edit distance approximation. In an experimental evaluation we show that these methods have great potential for further speeding up the computation of graph edit distance while the approximated distances remain sufficiently accurate for graph based pattern classification.

  14. A Quadratic Closure for Compressible Turbulence

    SciTech Connect

    Futterman, J A

    2008-09-16

    We have investigated a one-point closure model for compressible turbulence based on third- and higher order cumulant discard for systems undergoing rapid deformation, such as might occur downstream of a shock or other discontinuity. In so doing, we find the lowest order contributions of turbulence to the mean flow, which lead to criteria for Adaptive Mesh Refinement. Rapid distortion theory (RDT) as originally applied by Herring closes the turbulence hierarchy of moment equations by discarding third order and higher cumulants. This is similar to the fourth-order cumulant discard hypothesis of Millionshchikov, except that the Millionshchikov hypothesis was taken to apply to incompressible homogeneous isotropic turbulence generally, whereas RDT is applied only to fluids undergoing a distortion that is 'rapid' in the sense that the interaction of the mean flow with the turbulence overwhelms the interaction of the turbulence with itself. It is also similar to Gaussian closure, in which both second and fourth-order cumulants are retained. Motivated by RDT, we develop a quadratic one-point closure for rapidly distorting compressible turbulence, without regard to homogeneity or isotropy, and make contact with two equation turbulence models, especially the K-{var_epsilon} and K-L models, and with linear instability growth. In the end, we arrive at criteria for Adaptive Mesh Refinement in Finite Volume simulations.

  15. Insulated Concrete Form Walls Integrated With Mechanical Systems in a Cold Climate Test House

    SciTech Connect

    Mallay, D.; Wiehagen, J.

    2014-09-01

    Transitioning from standard light frame to a thermal mass wall system in a high performance home will require a higher level of design integration with the mechanical systems. The much higher mass in the ICF wall influences heat transfer through the wall and affects how the heating and cooling system responds to changing outdoor conditions. This is even more important for efficient, low-load homes with efficient heat pump systems in colder climates where the heating and cooling peak loads are significantly different from standard construction. This report analyzes a range of design features and component performance estimates in an effort to select practical, cost-effective solutions for high performance homes in a cold climate.

  16. Long-lasting visual integration of form, motion, and color as revealed by visual masking.

    PubMed

    Pilz, Karin S; Zimmermann, Christina; Scholz, Janine; Herzog, Michael H

    2013-08-20

    When two similar visual stimuli are presented in rapid succession at the same location, they fuse. For example, a red and a green disk are perceived as one single yellow disk. Likewise, verniers with opposite offset directions are perceived as one vernier with an almost aligned vernier offset. In fusion, observers have no conscious access to the individual stimuli. Using transcranial magnetic stimulation (TMS), it has been shown that feature fusion for verniers can be modulated for about 400 ms in that either the first or the second vernier dominates the percept, depending on TMS onset. Here, we use light masks to modulate feature fusion for verniers, motion, and color. Our results are similar to the TMS experiment and show that individual visual features are stored for a substantial amount of time before they are integrated.

  17. On the time evolution operator for time-dependent quadratic Hamiltonians

    SciTech Connect

    Fernandez, F. M.

    1989-07-01

    The Schr/umlt o/dinger equation with a time-dependent quadratic Hamiltonian isinvestigated. The time-evolution operator is written as a product of exponentialoperators determined by the Heisenberg equations of motion. This productoperator is shown to be global in the occupation number representation when theHamiltonian is Hermitian. The success of some physical applications of theproduct-form representation is explained.

  18. Classification of constraints and degrees of freedom for quadratic discrete actions

    SciTech Connect

    Höhn, Philipp A.

    2014-11-15

    We provide a comprehensive classification of constraints and degrees of freedom for variational discrete systems governed by quadratic actions. This classification is based on the different types of null vectors of the Lagrangian two-form and employs the canonical formalism developed in Dittrich and Höhn [“Constraint analysis for variational discrete systems,” J. Math. Phys. 54, 093505 (2013); e-print http://arxiv.org/abs/arXiv:1303.4294 [math-ph

  19. Insulated Concrete Form Walls Integrated With Mechanical Systems in a Cold Climate Test House

    SciTech Connect

    Mallay, D.; Wiehagen, J.

    2014-09-01

    Transitioning from standard light frame to a thermal mass wall system in a high performance home will require a higher level of design integration with the mechanical systems. The much higher mass in the ICF wall influences heat transfer through the wall and affects how the heating and cooling system responds to changing outdoor conditions. This is even more important for efficient, low-load homes with efficient heat pump systems in colder climates where the heating and cooling peak loads are significantly different from standard construction. This report analyzes a range of design features and component performance estimates in an effort to select practical, cost-effective solutions for high performance homes in a cold climate. Of primary interest is the influence of the ICF walls on developing an effective air sealing strategy and selecting an appropriate heating and cooling equipment type and capacity. The domestic water heating system is analyzed for costs and savings to investigate options for higher efficiency electric water heating. A method to ensure mechanical ventilation air flows is examined. The final solution package includes high-R mass walls, very low infiltration rates, multi-stage heat pump heating, solar thermal domestic hot water system, and energy recovery ventilation. This solution package can be used for homes to exceed 2012 International Energy Conservation Code requirements throughout all climate zones and achieves the DOE Challenge Home certification.

  20. High energy density strategies: from hydride-forming materials research to battery integration

    NASA Astrophysics Data System (ADS)

    Notten, P. H. L.; Ouwerkerk, M.; van Hal, H.; Beelen, D.; Keur, W.; Zhou, J.; Feil, H.

    Two different strategies are outlined to develop both high energy density and space-efficient batteries, including the most widely applied rechargeable nickel-metal hydride (NiMH) and Li-ion batteries. The hydrogen storage capacity of fluorite-structured Mg-containing compounds are shown to have a reversible electrochemical storage capacity of more than four times that of the commonly used MischMetal-based AB 5 compounds in NiMH, i.e. 1500 mAh/g (5.6 wt.%). The formation of octahedral sites within the crystal lattice is argued to be very crucial for the improved kinetics of hydrogen absorption and desorption. It is shown that the fluorite-structure can be conserved with both precious Sc and the less expensive Ti up to a Mg content of 80 at.%. Both thermodynamic and kinetic data are presented in relation to the materials composition. In addition, the development of preshaped batteries, as the first step to battery integration, has contributed to a much higher level of design freedom for portable electronic equipment. The manufacturing process of preshaped batteries will be described together with their electrochemical characteristics. Advantageously, the mechanical stability is provided locally by polymer rivets, allowing to get rid of heavy metallic casings and to make use of a much wider range of battery shapes.

  1. Dichotomous branching: the plant form and integrity upon the apical meristem bifurcation

    PubMed Central

    Gola, Edyta M.

    2014-01-01

    The division of the apical meristem into two independently functioning axes is defined as dichotomous branching. This type of branching typically occurs in non-vascular and non-seed vascular plants, whereas in seed plants it presents a primary growth form only in several taxa. Dichotomy is a complex process, which requires a re-organization of the meristem structure and causes changes in the apex geometry and activity. However, the mechanisms governing the repetitive apex divisions are hardly known. Here, an overview of dichotomous branching is presented, occurring in structurally different apices of phylogenetically distant plants, and in various organs (e.g., shoots, roots, rhizophores). Additionally, morphogenetic effects of dichotomy are reviewed, including its impact on organogenesis and mechanical constraints. At the end, the hormonal and genetic regulation of the dichotomous branching is discussed. PMID:24936206

  2. Linear quadratic optimal controller for cable-driven parallel robots

    NASA Astrophysics Data System (ADS)

    Abdolshah, Saeed; Shojaei Barjuei, Erfan

    2015-12-01

    In recent years, various cable-driven parallel robots have been investigated for their advantages, such as low structural weight, high acceleration, and large work-space, over serial and conventional parallel systems. However, the use of cables lowers the stiffness of these robots, which in turn may decrease motion accuracy. A linear quadratic (LQ) optimal controller can provide all the states of a system for the feedback, such as position and velocity. Thus, the application of such an optimal controller in cable-driven parallel robots can result in more efficient and accurate motion compared to the performance of classical controllers such as the proportional- integral-derivative controller. This paper presents an approach to apply the LQ optimal controller on cable-driven parallel robots. To employ the optimal control theory, the static and dynamic modeling of a 3-DOF planar cable-driven parallel robot (Feriba-3) is developed. The synthesis of the LQ optimal control is described, and the significant experimental results are presented and discussed.

  3. Degenerate nonlinear programming with a quadratic growth condition.

    SciTech Connect

    Anitescu, M.; Mathematics and Computer Science

    2000-01-01

    We show that the quadratic growth condition and the Mangasarian-Fromovitz constraint qualification (MFCQ) imply that local minima of nonlinear programs are isolated stationary points. As a result, when started sufficiently close to such points, an L1 exact penalty sequential quadratic programming algorithm will induce at least R-linear convergence of the iterates to such a local minimum. We construct an example of a degenerate nonlinear program with a unique local minimum satisfying the quadratic growth and the MFCQ but for which no positive semidefinite augmented Lagrangian exists. We present numerical results obtained using several nonlinear programming packages on this example and discuss its implications for some algorithms.

  4. The quadratically damped oscillator: A case study of a non-linear equation of motion

    NASA Astrophysics Data System (ADS)

    Smith, B. R.

    2012-09-01

    The equation of motion for a quadratically damped oscillator, where the damping is proportional to the square of the velocity, is a non-linear second-order differential equation. Non-linear equations of motion such as this are seldom addressed in intermediate instruction in classical dynamics; this one is problematic because it cannot be solved in terms of elementary functions. Like all second-order ordinary differential equations, it has a corresponding first-order partial differential equation, whose independent solutions constitute the constants of the motion. These constants readily provide an approximate solution correct to first order in the damping constant. They also reveal that the quadratically damped oscillator is never critically damped or overdamped, and that to first order in the damping constant the oscillation frequency is identical to the natural frequency. The technique described has close ties to standard tools such as integral curves in phase space and phase portraits.

  5. On the classification of elliptic foliations induced by real quadratic fields with center

    NASA Astrophysics Data System (ADS)

    Puchuri, Liliana; Bueno, Orestes

    2016-12-01

    Related to the study of Hilbert's infinitesimal problem, is the problem of determining the existence and estimating the number of limit cycles of the linear perturbation of Hamiltonian fields. A classification of the elliptic foliations in the projective plane induced by the fields obtained by quadratic fields with center was already studied by several authors. In this work, we devise a unified proof of the classification of elliptic foliations induced by quadratic fields with center. This technique involves using a formula due to Cerveau & Lins Neto to calculate the genus of the generic fiber of a first integral of foliations of these kinds. Furthermore, we show that these foliations induce several examples of linear families of foliations which are not bimeromorphically equivalent to certain remarkable examples given by Lins Neto.

  6. Finite-element analysis of earing using non-quadratic yield surfaces

    SciTech Connect

    Logan, R.W.

    1995-06-18

    During deep draw cupping, the phenomenon known as earing may occur as the cup wall is formed, resulting in a periodic variation of cup wall height around the perimeter of the finished cup. This is generally due to planar anisotropy of flow in rolled sheet product. It is generally observed that the anisotropy parameter R will vary in the plane of the sheet when ears are observed in cupping, with a parameter {Delta}R describing the variation of R in the plane of the sheet. For many common textures in face-centered and body-centered materials, the ears form relative to the sheet rolling direction at 0{degrees} and 90{degrees} around the perimeter if {Delta}R>0, and at -45{degrees} and +45{degrees} if {Delta}R<0. There is extensive experimental evidence that ear height shows a linear correlation with {Delta}R/R, but attempts to duplicate this using the finite-element method are highly dependent on both the methodology and yield surface used. It was shown previously that using a coarse mesh and the quadratic Hill yield surface tends to greatly under predict earing. In this study, we have used two different finite-element codes developed at LLNL to examine the predicted earing using both quadratic Hill and alternative non-quadratic yield surfaces. These results are compared to experimental data and conclusions drawn about the most desirable closed-form yield surfaces to duplicate the observed earing phenomena.

  7. Laboratory Testing of Bulk Vitrified Low-Activity Waste Forms to Support the 2005 Integrated Disposal Facility Performance Assessment. Erratum

    SciTech Connect

    Smith, Gary L.

    2016-09-06

    This report refers to or contains Kg values for glasses LAWA44, LAWB45 and LAWC22 affected by calculations errors as identified by Papathanassiu et al. (2011). The corrected Kg values are reported in an erratum included in the revised version of the original report. The revised report can be referenced as follows: Pierce E. M. et al. (2004) Waste Form Release Data Package for the 2005 Integrated Disposal Facility Performance Assessment. PNNL-14805 Rev. 0 Erratum. Pacific Northwest National Laboratory, Richland, WA, USA.

  8. Exterior integrability: Yang-Baxter form of non-equilibrium steady-state density operator

    NASA Astrophysics Data System (ADS)

    Prosen, Tomaž; Ilievski, Enej; Popkov, Vladislav

    2013-07-01

    A new type of quantum transfer matrix, arising as a Cholesky factor for the steady-state density matrix of a dissipative Markovian process associated with the boundary-driven Lindblad equation for the isotropic spin-1/2 Heisenberg (XXX) chain, is presented. The transfer matrix forms a commuting family of non-Hermitian operators depending on the spectral parameter, which is essentially the strength of dissipative coupling at the boundaries. The intertwining of the corresponding Lax and monodromy matrices is performed by an infinitely dimensional Yang-Baxter R-matrix, which we construct explicitly and is essentially different from the standard 4 × 4 XXX R-matrix. We also discuss a possibility to construct Bethe ansatz for the spectrum and eigenstates of the non-equilibrium steady-state density operator. Furthermore, we indicate the existence of a deformed R-matrix in the infinite dimensional auxiliary space for the anisotropic XXZ spin-1/2 chain, which in general provides a sequence of new, possibly quasi-local, conserved quantities of the bulk XXZ dynamics.

  9. Elg1 forms an alternative RFC complex important for DNA replication and genome integrity.

    PubMed

    Bellaoui, Mohammed; Chang, Michael; Ou, Jiongwen; Xu, Hong; Boone, Charles; Brown, Grant W

    2003-08-15

    Genome-wide synthetic genetic interaction screens with mutants in the mus81 and mms4 replication fork-processing genes identified a novel replication factor C (RFC) homolog, Elg1, which forms an alternative RFC complex with Rfc2-5. This complex is distinct from the DNA replication RFC, the DNA damage checkpoint RFC and the sister chromatid cohesion RFC. As expected from its genetic interactions, elg1 mutants are sensitive to DNA damage. Elg1 is redundant with Rad24 in the DNA damage response and contributes to activation of the checkpoint kinase Rad53. We find that elg1 mutants display DNA replication defects and genome instability, including increased recombination and mutation frequencies, and minichromosome maintenance defects. Mutants in elg1 show genetic interactions with pathways required for processing of stalled replication forks, and are defective in recovery from DNA damage during S phase. We propose that Elg1-RFC functions both in normal DNA replication and in the DNA damage response.

  10. Integral equation and thermodynamic perturbation theory for a two-dimensional model of chain-forming fluid.

    PubMed

    Urbic, Tomaz

    2017-07-01

    In this paper we applied analytical theories for the two dimensional chain-forming fluid. Wertheims thermodynamic perturbation theory (TPT) and integral equation theory (IET) for associative liquids were used to study thermodynamical and structural properties of the chain-forming model. The model has polymerizing points at arbitrary position from center of the particles. Calculated analytical results were tested against corresponding results obtained by Monte Carlo computer simulations to check the accuracy of the theories. The theories are accurate for the different positions of patches of the model at all values of the temperature and density studied. The IET's pair correlation functions of the model agree well with computer simulations. Both TPT and IET are in good agreement with the Monte Carlo values of the energy, chemical potential and ratios of free, once and twice bonded particles.

  11. QUADrATiC: scalable gene expression connectivity mapping for repurposing FDA-approved therapeutics.

    PubMed

    O'Reilly, Paul G; Wen, Qing; Bankhead, Peter; Dunne, Philip D; McArt, Darragh G; McPherson, Suzanne; Hamilton, Peter W; Mills, Ken I; Zhang, Shu-Dong

    2016-05-04

    Gene expression connectivity mapping has proven to be a powerful and flexible tool for research. Its application has been shown in a broad range of research topics, most commonly as a means of identifying potential small molecule compounds, which may be further investigated as candidates for repurposing to treat diseases. The public release of voluminous data from the Library of Integrated Cellular Signatures (LINCS) programme further enhanced the utilities and potentials of gene expression connectivity mapping in biomedicine. We describe QUADrATiC ( http://go.qub.ac.uk/QUADrATiC ), a user-friendly tool for the exploration of gene expression connectivity on the subset of the LINCS data set corresponding to FDA-approved small molecule compounds. It enables the identification of compounds for repurposing therapeutic potentials. The software is designed to cope with the increased volume of data over existing tools, by taking advantage of multicore computing architectures to provide a scalable solution, which may be installed and operated on a range of computers, from laptops to servers. This scalability is provided by the use of the modern concurrent programming paradigm provided by the Akka framework. The QUADrATiC Graphical User Interface (GUI) has been developed using advanced Javascript frameworks, providing novel visualization capabilities for further analysis of connections. There is also a web services interface, allowing integration with other programs or scripts. QUADrATiC has been shown to provide an improvement over existing connectivity map software, in terms of scope (based on the LINCS data set), applicability (using FDA-approved compounds), usability and speed. It offers potential to biological researchers to analyze transcriptional data and generate potential therapeutics for focussed study in the lab. QUADrATiC represents a step change in the process of investigating gene expression connectivity and provides more biologically-relevant results than

  12. Integrative microRNA-gene expression network analysis in genetic hypercalciuric stone-forming rat kidney

    PubMed Central

    Lu, Yuchao; Qin, Baolong; Hu, Henglong; Zhang, Jiaqiao; Wang, Yufeng; Wang, Qing

    2016-01-01

    Background. MicroRNAs (miRNAs) influence a variety of biological functions by regulating gene expression post-transcriptionally. Aberrant miRNA expression has been associated with many human diseases. Urolithiasis is a common disease, and idiopathic hypercalciuria (IH) is an important risk factor for calcium urolithiasis. However, miRNA expression patterns and their biological functions in urolithiasis remain unknown. Methods and Results. A multi-step approach combining microarray miRNA and mRNA expression profile and bioinformatics analysis was adopted to analyze dysregulated miRNAs and genes in genetic hypercalciuric stone-forming (GHS) rat kidneys, using normal Sprague-Dawley (SD) rats as controls. We identified 2418 mRNAs and 19 miRNAs as significantly differentially expressed, over 700 gene ontology (GO) terms and 83 KEGG pathways that were significantly enriched in GHS rats. In addition, we constructed an miRNA-gene network that suggested that rno-miR-674-5p, rno-miR-672-5p, rno-miR-138-5p and rno-miR-21-3p may play important roles in the regulatory network. Furthermore, signal-net analysis suggested that NF-kappa B likely plays a crucial role in hypercalciuria urolithiasis. Conclusions. This study presents a global view of mRNA and miRNA expression in GHS rat kidneys, and suggests that miRNAs may be important in the regulation of hypercalciuria. The data provide valuable insights for future research, which should aim at validating the role of the genes featured here in the pathophysiology of hypercalciuria. PMID:27069814

  13. Integrated bicarbonate-form ion exchange treatment and regeneration for DOC removal: Model development and pilot plant study.

    PubMed

    Hu, Yue; Boyer, Treavor H

    2017-05-15

    The application of bicarbonate-form anion exchange resin and sodium bicarbonate salt for resin regeneration was investigated in this research is to reduce chloride ion release during treatment and the disposal burden of sodium chloride regeneration solution when using traditional chloride-form ion exchange (IX). The target contaminant in this research was dissolved organic carbon (DOC). The performance evaluation was conducted in a completely mixed flow reactor (CMFR) IX configuration. A process model that integrated treatment and regeneration was investigated based on the characteristics of configuration. The kinetic and equilibrium experiments were performed to obtain required parameters for the process model. The pilot plant tests were conducted to validate the model as well as provide practical understanding on operation. The DOC concentration predicted by the process model responded to the change of salt concentration in the solution, and showed a good agreement with pilot plant data with less than 10% difference in terms of percentage removal. Both model predictions and pilot plant tests showed over 60% DOC removal by bicarbonate-form resin for treatment and sodium bicarbonate for regeneration, which was comparable to chloride-form resin for treatment and sodium chloride for regeneration. Lastly, the DOC removal was improved by using higher salt concentration for regeneration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Geometric structure of pseudo-plane quadratic flows

    NASA Astrophysics Data System (ADS)

    Sun, Che

    2017-03-01

    Quadratic flows have the unique property of uniform strain and are commonly used in turbulence modeling and hydrodynamic analysis. While previous applications focused on two-dimensional homogeneous fluid, this study examines the geometric structure of three-dimensional quadratic flows in stratified fluid by solving a steady-state pseudo-plane flow model. The complete set of exact solutions reveals that steady quadratic flows have an invariant conic type in the non-rotating frame and a non-rotatory vertical structure in the rotating frame. Three baroclinic solutions with vertically non-aligned formulation disprove an earlier conjecture. All elliptic and hyperbolic solutions, except for the inertial ones, exhibit vertical concentricity. The rich geometry of quadratic flows stands in contrast to the depleted geometry of high-degree polynomial flows. A paradox in the steady solutions of shallow-water reduced-gravity models is also explained.

  15. Representing Representation: Integration between the Temporal Lobe and the Posterior Cingulate Influences the Content and Form of Spontaneous Thought

    PubMed Central

    Smallwood, Jonathan; Karapanagiotidis, Theodoros; Ruby, Florence; Medea, Barbara; de Caso, Irene; Konishi, Mahiko; Wang, Hao-Ting; Hallam, Glyn; Margulies, Daniel S.; Jefferies, Elizabeth

    2016-01-01

    When not engaged in the moment, we often spontaneously represent people, places and events that are not present in the environment. Although this capacity has been linked to the default mode network (DMN), it remains unclear how interactions between the nodes of this network give rise to particular mental experiences during spontaneous thought. One hypothesis is that the core of the DMN integrates information from medial and lateral temporal lobe memory systems, which represent different aspects of knowledge. Individual differences in the connectivity between temporal lobe regions and the default mode network core would then predict differences in the content and form of people’s spontaneous thoughts. This study tested this hypothesis by examining the relationship between seed-based functional connectivity and the contents of spontaneous thought recorded in a laboratory study several days later. Variations in connectivity from both medial and lateral temporal lobe regions was associated with different patterns of spontaneous thought and these effects converged on an overlapping region in the posterior cingulate cortex. We propose that the posterior core of the DMN acts as a representational hub that integrates information represented in medial and lateral temporal lobe and this process is important in determining the content and form of spontaneous thought. PMID:27045292

  16. Representing Representation: Integration between the Temporal Lobe and the Posterior Cingulate Influences the Content and Form of Spontaneous Thought.

    PubMed

    Smallwood, Jonathan; Karapanagiotidis, Theodoros; Ruby, Florence; Medea, Barbara; de Caso, Irene; Konishi, Mahiko; Wang, Hao-Ting; Hallam, Glyn; Margulies, Daniel S; Jefferies, Elizabeth

    2016-01-01

    When not engaged in the moment, we often spontaneously represent people, places and events that are not present in the environment. Although this capacity has been linked to the default mode network (DMN), it remains unclear how interactions between the nodes of this network give rise to particular mental experiences during spontaneous thought. One hypothesis is that the core of the DMN integrates information from medial and lateral temporal lobe memory systems, which represent different aspects of knowledge. Individual differences in the connectivity between temporal lobe regions and the default mode network core would then predict differences in the content and form of people's spontaneous thoughts. This study tested this hypothesis by examining the relationship between seed-based functional connectivity and the contents of spontaneous thought recorded in a laboratory study several days later. Variations in connectivity from both medial and lateral temporal lobe regions was associated with different patterns of spontaneous thought and these effects converged on an overlapping region in the posterior cingulate cortex. We propose that the posterior core of the DMN acts as a representational hub that integrates information represented in medial and lateral temporal lobe and this process is important in determining the content and form of spontaneous thought.

  17. AESOP- INTERACTIVE DESIGN OF LINEAR QUADRATIC REGULATORS AND KALMAN FILTERS

    NASA Technical Reports Server (NTRS)

    Lehtinen, B.

    1994-01-01

    AESOP was developed to solve a number of problems associated with the design of controls and state estimators for linear time-invariant systems. The systems considered are modeled in state-variable form by a set of linear differential and algebraic equations with constant coefficients. Two key problems solved by AESOP are the linear quadratic regulator (LQR) design problem and the steady-state Kalman filter design problem. AESOP is designed to be used in an interactive manner. The user can solve design problems and analyze the solutions in a single interactive session. Both numerical and graphical information are available to the user during the session. The AESOP program is structured around a list of predefined functions. Each function performs a single computation associated with control, estimation, or system response determination. AESOP contains over sixty functions and permits the easy inclusion of user defined functions. The user accesses these functions either by inputting a list of desired functions in the order they are to be performed, or by specifying a single function to be performed. The latter case is used when the choice of function and function order depends on the results of previous functions. The available AESOP functions are divided into several general areas including: 1) program control, 2) matrix input and revision, 3) matrix formation, 4) open-loop system analysis, 5) frequency response, 6) transient response, 7) transient function zeros, 8) LQR and Kalman filter design, 9) eigenvalues and eigenvectors, 10) covariances, and 11) user-defined functions. The most important functions are those that design linear quadratic regulators and Kalman filters. The user interacts with AESOP when using these functions by inputting design weighting parameters and by viewing displays of designed system response. Support functions obtain system transient and frequency responses, transfer functions, and covariance matrices. AESOP can also provide the user

  18. Quadratic bulk viscosity and the topology of space time.

    NASA Astrophysics Data System (ADS)

    Wolf, C.

    1997-12-01

    By considering a homogeneous isotropic universe admitting quadratic bulk viscosity the author shows that if the bulk viscosity coefficient is large the effective topology of space time attains an antiintuitive interpretation in the sense that a positive curvature space time is ever-expanding. This is true for all cosmologies studied except in the case of small quadratic bulk viscosity (3γ+1-kβ ≥ 0, 3γ+1 > 0).

  19. Quadratic function approaching method for magnetotelluric soundingdata inversion

    SciTech Connect

    Liangjun, Yan; Wenbao, Hu; Zhang, Keni

    2004-04-05

    The quadratic function approaching method (QFAM) is introduced for magnetotelluric sounding (MT) data inversion. The method takes the advantage of that quadratic function has single extreme value, which avoids leading to an inversion solution for local minimum and ensures the solution for global minimization of an objective function. The method does not need calculation of sensitivity matrix and not require a strict initial earth model. Examples for synthetic data and field measurement data indicate that the proposed inversion method is effective.

  20. Chaos synchronization based on quadratic optimum regulation and control

    NASA Astrophysics Data System (ADS)

    Gong, Lihua

    2005-03-01

    Based on the method of the quadratic optimum control, a quadratic optimal regulator used for synchronizing chaotic systems is constructed to realize chaos synchronization. The synchronization method can maintain the least error with less control energy, and then realize the optimization on both sides of energy and error synthetically. In addition, the control cost can also be reduced by using this method intermittently. The simulation results of the chaotic Chua's circuit and the Rossler chaos system prove that the method is effective.

  1. AdS waves as exact solutions to quadratic gravity

    SciTech Connect

    Guellue, Ibrahim; Sisman, Tahsin Cagri; Tekin, Bayram; Guerses, Metin

    2011-04-15

    We give an exact solution of the quadratic gravity in D dimensions. The solution is a plane-fronted wave metric with a cosmological constant. This metric solves not only the full quadratic gravity field equations but also the linearized ones which include the linearized equations of the recently found critical gravity. A subset of the solutions change the asymptotic structure of the anti-de Sitter space due to their logarithmic behavior.

  2. The Quadratic Spinor Lagrangian, Axial Torsion Current and Generalizations

    NASA Astrophysics Data System (ADS)

    Da Rocha, R.; Pereira, J. G.

    We show that the Einstein-Hilbert, the Einstein-Palatini, and the Holst actions can be derived from the Quadratic Spinor Lagrangian (QSL), when the three classes of Dirac spinor fields, under Lounesto spinor field classification, are considered. To each one of these classes, there corresponds an unique kind of action for a covariant gravity theory. In other words, it is shown to exist a one-to-one correspondence between the three classes of non-equivalent solutions of the Dirac equation, and Einstein-Hilbert, Einstein-Palatini, and Holst actions. Furthermore, it arises naturally, from Lounesto spinor field classification, that any other class of spinor field — Weyl, Majorana, flagpole, or flag-dipole spinor fields — yields a trivial (zero) QSL, up to a boundary term. To investigate this boundary term, we do not impose any constraint on the Dirac spinor field, and consequently we obtain new terms in the boundary component of the QSL. In the particular case of a teleparallel connection, an axial torsion one-form current density is obtained. New terms are also obtained in the corresponding Hamiltonian formalism. We then discuss how these new terms could shed new light on more general investigations.

  3. A comparative analysis of Painleve, Lax pair, and similarity transformation methods in obtaining the integrability conditions of nonlinear Schroedinger equations

    SciTech Connect

    Al Khawaja, U.

    2010-05-15

    We derive the integrability conditions of nonautonomous nonlinear Schroedinger equations using the Lax pair and similarity transformation methods. We present a comparative analysis of these integrability conditions with those of the Painleve method. We show that while the Painleve integrability conditions restrict the dispersion, nonlinearity, and dissipation/gain coefficients to be space independent and the external potential to be only a quadratic function of position, the Lax Pair and the similarity transformation methods allow for space-dependent coefficients and an external potential that is not restricted to the quadratic form. The integrability conditions of the Painleve method are retrieved as a special case of our general integrability conditions. We also derive the integrability conditions of nonautonomous nonlinear Schroedinger equations for two- and three-spacial dimensions.

  4. Plasmids in different strains of Streptomyces ambofaciens: free and integrated form of plasmid pSAM2.

    PubMed

    Pernodet, J L; Simonet, J M; Guérineau, M

    1984-01-01

    Five strains of Streptomyces ambofaciens were examined for their plasmid content. Among these strains, four belong to the same lineage (strains B) and the other was isolated independently (strain A). A large plasmid (ca. 80 kb), called pSAM1 in this paper and already described, was present in all B strains, and absent in strain A. A second plasmid, not described before, was found as covalently closed circular DNA in two of the four B strains. This plasmid with a size of 11.1 kb was called pSAM2. A restriction map for 14 enzymes was established. Hybridization experiments showed that a unique sequence homologous to this plasmid is integrated in a larger replicon, which is not pSAM1 and is probably the chromosome, in all B strains and not in strain A. It seems probable that the integrated sequence is the origin of the free plasmid found in two strains of the B family. It is noteworthy that the integrated form and the free plasmid may be found together. Transformation experiments proved that pSAM2 may be maintained autonomously in S. ambofaciens strain A and in S. lividans. pSAM2 is a self-transmissible plasmid, able to elicit the lethal zygosis reaction. pSAM2 was compared to the plasmids SLP1, pIJ110 and pIJ408, which all come from integrated sequences in three Streptomyces species and are found as autonomous plasmids after transfer to S. lividans. If pSAM2 resembles these plasmids in its origin, it does not appear to be related directly to them. Concerning their plasmid content, the two isolates of S. ambofaciens are very different.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. A quadratic regression modelling on paddy production in the area of Perlis

    NASA Astrophysics Data System (ADS)

    Goh, Aizat Hanis Annas; Ali, Zalila; Nor, Norlida Mohd; Baharum, Adam; Ahmad, Wan Muhamad Amir W.

    2017-08-01

    Polynomial regression models are useful in situations in which the relationship between a response variable and predictor variables is curvilinear. Polynomial regression fits the nonlinear relationship into a least squares linear regression model by decomposing the predictor variables into a kth order polynomial. The polynomial order determines the number of inflexions on the curvilinear fitted line. A second order polynomial forms a quadratic expression (parabolic curve) with either a single maximum or minimum, a third order polynomial forms a cubic expression with both a relative maximum and a minimum. This study used paddy data in the area of Perlis to model paddy production based on paddy cultivation characteristics and environmental characteristics. The results indicated that a quadratic regression model best fits the data and paddy production is affected by urea fertilizer application and the interaction between amount of average rainfall and percentage of area defected by pest and disease. Urea fertilizer application has a quadratic effect in the model which indicated that if the number of days of urea fertilizer application increased, paddy production is expected to decrease until it achieved a minimum value and paddy production is expected to increase at higher number of days of urea application. The decrease in paddy production with an increased in rainfall is greater, the higher the percentage of area defected by pest and disease.

  6. Numerical solution of quadratic matrix equations for free vibration analysis of structures

    NASA Technical Reports Server (NTRS)

    Gupta, K. K.

    1975-01-01

    This paper is concerned with the efficient and accurate solution of the eigenvalue problem represented by quadratic matrix equations. Such matrix forms are obtained in connection with the free vibration analysis of structures, discretized by finite 'dynamic' elements, resulting in frequency-dependent stiffness and inertia matrices. The paper presents a new numerical solution procedure of the quadratic matrix equations, based on a combined Sturm sequence and inverse iteration technique enabling economical and accurate determination of a few required eigenvalues and associated vectors. An alternative procedure based on a simultaneous iteration procedure is also described when only the first few modes are the usual requirement. The employment of finite dynamic elements in conjunction with the presently developed eigenvalue routines results in a most significant economy in the dynamic analysis of structures.

  7. On the reflection point where light reflects to a known destination on quadratic surfaces.

    PubMed

    Gonçalves, Nuno

    2010-01-15

    We address the problem of determining the reflection point on a specular surface where a light ray that travels from a source to a target is reflected. The specular surfaces considered are those expressed by a quadratic equation. So far, there is no closed form explicit equation for the general solution of this determination of the reflection point, and the usual approach is to use the Snell law or the Fermat principle whose equations are derived in multidimensional nonlinear minimizations. We prove in this Letter that one can impose a set of three restrictions to the reflection point that can impose a set of three restrictions that culminates in a very elegant formalism of searching the reflection point in a unidimensional curve in space. This curve is the intersection of two quadratic equations. Some applications of this framework are also discussed.

  8. A 3D Frictional Segment-to-Segment Contact Method for Large Deformations and Quadratic Elements

    SciTech Connect

    Puso, M; Laursen, T; Solberg, J

    2004-04-01

    Node-on-segment contact is the most common form of contact used today but has many deficiencies ranging from potential locking to non-smooth behavior with large sliding. Furthermore, node-on-segment approaches are not at all applicable to higher order discretizations (e.g. quadratic elements). In a previous work, [3, 4] we developed a segment-to-segment contact approach for eight node hexahedral elements based on the mortar method that was applicable to large deformation mechanics. The approach proved extremely robust since it eliminated the over-constraint that caused 'locking' and provided smooth force variations in large sliding. Here, we extend this previous approach to treat frictional contact problems. In addition, the method is extended to 3D quadratic tetrahedrals and hexahedrals. The proposed approach is then applied to several challenging frictional contact problems that demonstrate its effectiveness.

  9. An ultra-compact and low loss passive beam-forming network integrated on chip with off chip linear array

    SciTech Connect

    Lepkowski, Stefan Mark

    2015-05-01

    The work here presents a review of beam forming architectures. As an example, the author presents an 8x8 Butler Matrix passive beam forming network including the schematic, design/modeling, operation, and simulated results. The limiting factor in traditional beam formers has been the large size dictated by transmission line based couplers. By replacing these couplers with transformer-based couplers, the matrix size is reduced substantially allowing for on chip compact integration. In the example presented, the core area, including the antenna crossover, measures 0.82mm×0.39mm (0.48% the size of a branch line coupler at the same frequency). The simulated beam forming achieves a peak PNR of 17.1 dB and 15dB from 57 to 63GHz. At the 60GHz center frequency the average insertion loss is simulated to be 3.26dB. The 8x8 Butler Matrix feeds into an 8-element antenna array to show the array patterns with single beam and adjacent beam isolation.

  10. Motion-form interactions beyond the motion integration level: Evidence for interactions between orientation and optic flow signals

    PubMed Central

    Pavan, Andrea; Marotti, Rosilari Bellacosa; Mather, George

    2013-01-01

    Motion and form encoding are closely coupled in the visual system. A number of physiological studies have shown that neurons in the striate and extrastriate cortex (e.g., V1 and MT) are selective for motion direction parallel to their preferred orientation, but some neurons also respond to motion orthogonal to their preferred spatial orientation. Recent psychophysical research (Mather, Pavan, Bellacosa, & Casco, 2012) has demonstrated that the strength of adaptation to two fields of transparently moving dots is modulated by simultaneously presented orientation signals, suggesting that the interaction occurs at the level of motion integrating receptive fields in the extrastriate cortex. In the present psychophysical study, we investigated whether motion-form interactions take place at a higher level of neural processing where optic flow components are extracted. In Experiment 1, we measured the duration of the motion aftereffect (MAE) generated by contracting or expanding dot fields in the presence of either radial (parallel) or concentric (orthogonal) counterphase pedestal gratings. To tap the stage at which optic flow is extracted, we measured the duration of the phantom MAE (Weisstein, Maguire, & Berbaum, 1977) in which we adapted and tested different parts of the visual field, with orientation signals presented either in the adapting (Experiment 2) or nonadapting (Experiments 3 and 4) sectors. Overall, the results showed that motion adaptation is suppressed most by orientation signals orthogonal to optic flow direction, suggesting that motion-form interactions also take place at the global motion level where optic flow is extracted. PMID:23729767

  11. Cooperative Solutions in Multi-Person Quadratic Decision Problems: Finite-Horizon and State-Feedback Cost-Cumulant Control Paradigm

    DTIC Science & Technology

    2007-01-01

    u1, . . . , uN ) ∈ U1 × · · · × UN is a common finite-horizon integral quadratic form ( IQF ) payoff functional J : [t0, tf ]×Rn×U1×· · ·×UN 7→ R+ such...then given by dx(t) = [ A(t) + N∑ i=1 Bi(t)Ki(t) ] x(t)dt + G(t)dw(t) , x(t0) = x0 , (4) and its IQF cost also follows J(t0, x0; K1, . . . ,KN ) = xT...linear stochastic differential equa- tion (4) and is associated with finite-horizon IQF payoff functional (5). For k ∈ Z+ fixed and 1 ≤ r ≤ k, the

  12. Moments for general quadratic densities in n dimensions

    SciTech Connect

    Furman, Miguel A.

    2002-03-20

    We present the calculation of the generating functions and the rth-order correlations for densities of the form {rho}(x) {proportional_to} where g(s) is a non-negative function of the quadratic ''action'' s(x)={summation}{sub i,j}H{sub ij}x{sub i}x{sub j}, where x = (x{sub 1},x{sub 2}...,x{sub n}) is a real n-dimensional vector and H is a real, symmetric n x n matrix whose eigenvalues are strictly positive. In particular, we find the connection between the (r+2)th-order and rth-order correlations, which constitutes a generalization of the Gaussian moment theorem, which corresponds to the particular choice g(s)=e{sup -s/2}. We present several examples for specific choices for g(s), including the explicit expression for the generating function for each case and the subspace projection of {rho}(x) in a few cases. We also provide the straightforward generalizations to: (1) the case where g=g(s(x)+a {center_dot} x), where a=(a{sub 1},a{sub 2},...,a{sub n}) is an arbitrary real n-dimensional vector, and (2) the complex case, in which the action is of the form s(z) = {summation}{sub i,j}H{sub ij}z{sup *}{sub i} z{sub j} where z=(z{sub 1},z{sub 2}...z{sub n}) is an n-dimensional complex vector and H is a Hermitian n x n matrix whose eigenvalues are strictly positive.

  13. Optimal Linear Quadratic Regulators for Control of Nonlinear Mechanical Systems with Redundant Degrees-of-Freedom

    NASA Astrophysics Data System (ADS)

    Arimoto, Suguru

    An optimal regulator problem for endpoint position control of a robot arm with (or without) redundancy in its total degrees-of-freedom (DOF) is solved by combining Riemannian geometry with nonlinear control theory. Given a target point, within the task-space, that the arm endpoint should reach, a task-space position feedback with joint damping is shown to asymptotically stabilize reaching movements even if the number of DOF of the arm is greater than the dimension of the task space and thereby the inverse kinematics is ill-posed. Usually the speed of convergence of the endpoint trajectory is unsatisfactory, depending on the choice of feedback gains for joint damping. Hence, to speed up the convergence without incurring further energy consumption, an optimal control design for minimizing a performance index composed of an integral of joint dissipation energy plus a linear quadratic form of the task-space control input and output is introduced. It is then shown that the Hamilton-Jacobi-Bellman equation derived from the principle of optimality is solvable in control variables and the Hamilton-Jacobi equation itself has an explicit solution. Although the state of the original dynamics (the Euler-Lagrange equation) with DOF-redundancy contains uncontrollable and unobservable manifolds, the dynamics satisfies a nonlinear version of the Kalman-Yakubovich-Popov lemma and the task-space input-output passivity. An inverse problem of optimal regulator design for robotic arms under the effect of gravity is also tackled by combining Riemannian geometry with passivity-based control theory.

  14. Kinematics of the quadrate bone during feeding in mallard ducks.

    PubMed

    Dawson, Megan M; Metzger, Keith A; Baier, David B; Brainerd, Elizabeth L

    2011-06-15

    Avian cranial kinesis, in which mobility of the quadrate, pterygoid and palatine bones contribute to upper bill elevation, is believed to occur in all extant birds. The most widely accepted model for upper bill elevation is that the quadrate rotates rostrally and medially towards the pterygoid, transferring force to the mobile pterygoid-palatine complex, which pushes on the upper bill. Until now, however, it has not been possible to test this hypothesis in vivo because quadrate motions are rapid, three-dimensionally complex and not visible externally. Here we use a new in vivo X-ray motion analysis technique, X-ray reconstruction of moving morphology (XROMM), to create precise (±0.06 mm) 3-D animations of the quadrate, braincase, upper bill and mandible of three mallard ducks, Anas platyrhynchos. We defined a joint coordinate system (JCS) for the quadrato-squamosal joint with the axes aligned to the anatomical planes of the skull. In this coordinate system, the quadrate's 3-D rotations produce an elliptical path of pterygoid process motion, with medial and rostrodorsal then lateral and rostrodorsal motion as the upper bill elevates. As the upper bill depresses, the pterygoid process continues along the ellipsoidal path, with lateral and caudoventral then medial and caudoventral motion. We also found that the mandibular rami bow outwards (streptognathy) during mandibular depression, which may cause the lateral component of quadrate rotation that we observed. Relative to the JCS aligned with the anatomical planes of the skull, a second JCS aligned with quadrato-squamosal joint anatomy did not produce a simpler description of quadrate kinematics.

  15. Using thermodynamic integration to simulate the free-energy of bicontinuous phases formed by block copolymer/homopolymer blends

    NASA Astrophysics Data System (ADS)

    Padmanabhan, Poornima; Martinez-Veracoechea, Francisco; Escobedo, Fernando

    2014-03-01

    AB diblock copolymers can co-assemble with A-type homopolymers to form different bicontinuous phases whose 3D connectivity of both A and B domains is of interest for potential applications in nanolithography, photovoltaic cells and drug delivery. In this work, we use particle-based simulations to study the vicinity of a triple point where three bicontinuous phases (gyroid, double diamond and plumber's nightmare) were predicted to coexist by Self Consistent Field Theory. A key roadblock is that bicontinuous morphologies are highly sensitive to the commensurability of the simulation box size and the a-priori unknown unit cell size. Accurate estimation of free energies is thus crucial to the determination of the stable morphology. In this work, we apply thermodynamic integration over a constructed reversible path to calculate the free energies of these bicontinuous phases relative to a disordered phase and compare the predicted phase stability to results from alternative methods.

  16. Two Legendre-Dual-Petrov-Galerkin Algorithms for Solving the Integrated Forms of High Odd-Order Boundary Value Problems

    PubMed Central

    Abd-Elhameed, Waleed M.; Doha, Eid H.; Bassuony, Mahmoud A.

    2014-01-01

    Two numerical algorithms based on dual-Petrov-Galerkin method are developed for solving the integrated forms of high odd-order boundary value problems (BVPs) governed by homogeneous and nonhomogeneous boundary conditions. Two different choices of trial functions and test functions which satisfy the underlying boundary conditions of the differential equations and the dual boundary conditions are used for this purpose. These choices lead to linear systems with specially structured matrices that can be efficiently inverted, hence greatly reducing the cost. The various matrix systems resulting from these discretizations are carefully investigated, especially their complexities and their condition numbers. Numerical results are given to illustrate the efficiency of the proposed algorithms, and some comparisons with some other methods are made. PMID:24616620

  17. Operations Support of Phase 2 Integrated Demonstration In Situ Bioremediation. Volume 2, Final report: Data in tabular form, Disks 2,3,4

    SciTech Connect

    Hazen, T.C.

    1993-09-01

    This document consists solely of data acquired during phase 2 of the integrated demonstration project concerning in situ bioremediation performed at the Savannah River Site, Aiken, South Carolina. The data is presented in tabular form.

  18. The hematopoietic chemokine CXCL12 promotes integration of human endothelial colony forming cell-derived cells into immature vessel networks.

    PubMed

    Newey, Sarah E; Tsaknakis, Grigorios; Khoo, Cheen P; Athanassopoulos, Thanassi; Camicia, Rosalba; Zhang, Youyi; Grabowska, Rita; Harris, Adrian L; Roubelakis, Maria G; Watt, Suzanne M

    2014-11-15

    Proangiogenic factors, vascular endothelial growth factor (VEGF), and fibroblast growth factor-2 (FGF-2) prime endothelial cells to respond to "hematopoietic" chemokines and cytokines by inducing/upregulating expression of the respective chemokine/cytokine receptors. Coculture of human endothelial colony forming cell (ECFC)-derived cells with human stromal cells in the presence of VEGF and FGF-2 for 14 days resulted in upregulation of the "hematopoietic" chemokine CXCL12 and its CXCR4 receptor by day 3 of coculture. Chronic exposure to the CXCR4 antagonist AMD3100 in this vasculo/angiogenesis assay significantly reduced vascular tubule formation, an observation recapitulated by delayed AMD3100 addition. While AMD3100 did not affect ECFC-derived cell proliferation, it did demonstrate a dual action. First, over the later stages of the 14-day cocultures, AMD3100 delayed tubule organization into maturing vessel networks, resulting in enhanced endothelial cell retraction and loss of complexity as defined by live cell imaging. Second, at earlier stages of cocultures, we observed that AMD3100 significantly inhibited the integration of exogenous ECFC-derived cells into established, but immature, vascular networks. Comparative proteome profiler array analyses of ECFC-derived cells treated with AMD3100 identified changes in expression of potential candidate molecules involved in adhesion and/or migration. Blocking antibodies to CD31, but not CD146 or CD166, reduced the ECFC-derived cell integration into these extant vascular networks. Thus, CXCL12 plays a key role not only in endothelial cell sensing and guidance, but also in promoting the integration of ECFC-derived cells into developing vascular networks.

  19. Quadratic adaptive algorithm for solving cardiac action potential models.

    PubMed

    Chen, Min-Hung; Chen, Po-Yuan; Luo, Ching-Hsing

    2016-10-01

    An adaptive integration method is proposed for computing cardiac action potential models accurately and efficiently. Time steps are adaptively chosen by solving a quadratic formula involving the first and second derivatives of the membrane action potential. To improve the numerical accuracy, we devise an extremum-locator (el) function to predict the local extremum when approaching the peak amplitude of the action potential. In addition, the time step restriction (tsr) technique is designed to limit the increase in time steps, and thus prevent the membrane potential from changing abruptly. The performance of the proposed method is tested using the Luo-Rudy phase 1 (LR1), dynamic (LR2), and human O'Hara-Rudy dynamic (ORd) ventricular action potential models, and the Courtemanche atrial model incorporating a Markov sodium channel model. Numerical experiments demonstrate that the action potential generated using the proposed method is more accurate than that using the traditional Hybrid method, especially near the peak region. The traditional Hybrid method may choose large time steps near to the peak region, and sometimes causes the action potential to become distorted. In contrast, the proposed new method chooses very fine time steps in the peak region, but large time steps in the smooth region, and the profiles are smoother and closer to the reference solution. In the test on the stiff Markov ionic channel model, the Hybrid blows up if the allowable time step is set to be greater than 0.1ms. In contrast, our method can adjust the time step size automatically, and is stable. Overall, the proposed method is more accurate than and as efficient as the traditional Hybrid method, especially for the human ORd model. The proposed method shows improvement for action potentials with a non-smooth morphology, and it needs further investigation to determine whether the method is helpful during propagation of the action potential. Copyright © 2016 Elsevier Ltd. All rights

  20. Use of non-quadratic yield surfaces in design of optimal deep-draw blank geometry

    SciTech Connect

    Logan, R.W.

    1995-12-01

    Planar anisotropy in the deep-drawing of sheet can lead to the formation of ears in cylindrical cups and to undesirable metal flow in the blankholder in the general case. For design analysis purposes in non-linear finite-element codes, this anisotropy is characterized by the use of an appropriate yield surface which is then implemented into codes such as DYNA3D . The quadratic Hill yield surface offers a relatively straightforward implementation and can be formulated to be invariant to the coordinate system. Non-quadratic yield surfaces can provide more realistic strength or strain increment ratios, but they may not provide invariance and thus demand certain approximations. Forms due to Hosford and Badat et al. have been shown to more accurately address the earning phenomenon. in this work, use is made of these non-quadratic yield surfaces in order to determine the optimal blank shape for cups and other shapes using ferrous and other metal blank materials with planar anisotropy. The analyses are compared to previous experimental studies on non-uniform blank motion due to anisotropy and asymmetric geometry.

  1. Dressing method and quadratic bundles related to symmetric spaces. Vanishing boundary conditions

    NASA Astrophysics Data System (ADS)

    Valchev, T. I.

    2016-02-01

    We consider quadratic bundles related to Hermitian symmetric spaces of the type SU(m + n)/S(U(m) × U(n)). The simplest representative of the corresponding integrable hierarchy is given by a multi-component Kaup-Newell derivative nonlinear Schrödinger equation which serves as a motivational example for our general considerations. We extensively discuss how one can apply Zakharov-Shabat's dressing procedure to derive reflectionless potentials obeying zero boundary conditions. Those could be used for one to construct fast decaying solutions to any nonlinear equation belonging to the same hierarchy. One can distinguish between generic soliton type solutions and rational solutions.

  2. A linear quadratic tracker for Control Moment Gyro based attitude control of the Space Station

    NASA Technical Reports Server (NTRS)

    Kaidy, J. T.

    1986-01-01

    The paper discusses a design for an attitude control system for the Space Station which produces fast response, with minimal overshoot and cross-coupling with the use of Control Moment Gyros (CMG). The rigid body equations of motion are linearized and discretized and a Linear Quadratic Regulator (LQR) design and analysis study is performed. The resulting design is then modified such that integral and differential terms are added to the state equations to enhance response characteristics. Methods for reduction of computation time through channelization are discussed as well as the reduction of initial torque requirements.

  3. Quadratic algebra for superintegrable monopole system in a Taub-NUT space

    NASA Astrophysics Data System (ADS)

    Hoque, Md Fazlul; Marquette, Ian; Zhang, Yao-Zhong

    2016-09-01

    We introduce a Hartmann system in the generalized Taub-NUT space with Abelian monopole interaction. This quantum system includes well known Kaluza-Klein monopole and MIC-Zwanziger monopole as special cases. It is shown that the corresponding Schrödinger equation of the Hamiltonian is separable in both spherical and parabolic coordinates. We obtain the integrals of motion of this superintegrable model and construct the quadratic algebra and Casimir operator. This algebra can be realized in terms of a deformed oscillator algebra and has finite dimensional unitary representations (unirreps) which provide energy spectra of the system. This result coincides with the physical spectra obtained from the separation of variables.

  4. Singular linear quadratic control problem for systems with linear and constant delay

    NASA Astrophysics Data System (ADS)

    Sesekin, A. N.; Andreeva, I. Yu.; Shlyakhov, A. S.

    2016-12-01

    This article is devoted to the singular linear-quadratic optimization problem on the trajectories of the linear non-autonomous system of differential equations with linear and constant delay. It should be noted that such task does not solve the class of integrable controls, so to ensure the existence of a solution is needed to expand the class of controls to include the control impulse components. For the problem under consideration, we have built program control containing impulse components in the initial and final moments time. This is done under certain assumptions on the functional and the right side of the control system.

  5. New type of Weyl semimetal with quadratic double Weyl fermions

    DOE PAGES

    Huang, Shin -Ming; Xu, Su -Yang; Belopolski, Ilya; ...

    2016-01-19

    Weyl semimetals have attracted worldwide attention due to their wide range of exotic properties predicted in theories. The experimental realization had remained elusive for a long time despite much effort. Very recently, the first Weyl semimetal has been discovered in an inversion-breaking, stoichiometric solid TaAs. So far, the TaAs class remains the only Weyl semimetal available in real materials. To facilitate the transition of Weyl semimetals from the realm of purely theoretical interest to the realm of experimental studies and device applications, it is of crucial importance to identify other robust candidates that are experimentally feasible to be realized. Inmore » this paper, we propose such a Weyl semimetal candidate in an inversion-breaking, stoichiometric compound strontium silicide, SrSi2, with many new and novel properties that are distinct from TaAs. Here, we show that SrSi2 is a Weyl semimetal even without spin-orbit coupling and that, after the inclusion of spin-orbit coupling, two Weyl fermions stick together forming an exotic double Weyl fermion with quadratic dispersions and a higher chiral charge of ±2. Moreover, we find that the Weyl nodes with opposite charges are located at different energies due to the absence of mirror symmetry in SrSi2, paving the way for the realization of the chiral magnetic effect. Finally, our systematic results not only identify a much-needed robust Weyl semimetal candidate but also open the door to new topological Weyl physics that is not possible in TaAs« less

  6. New type of Weyl semimetal with quadratic double Weyl fermions

    PubMed Central

    Huang, Shin-Ming; Xu, Su-Yang; Belopolski, Ilya; Lee, Chi-Cheng; Chang, Guoqing; Chang, Tay-Rong; Wang, BaoKai; Alidoust, Nasser; Bian, Guang; Neupane, Madhab; Sanchez, Daniel; Zheng, Hao; Jeng, Horng-Tay; Bansil, Arun; Neupert, Titus; Lin, Hsin; Hasan, M. Zahid

    2016-01-01

    Weyl semimetals have attracted worldwide attention due to their wide range of exotic properties predicted in theories. The experimental realization had remained elusive for a long time despite much effort. Very recently, the first Weyl semimetal has been discovered in an inversion-breaking, stoichiometric solid TaAs. So far, the TaAs class remains the only Weyl semimetal available in real materials. To facilitate the transition of Weyl semimetals from the realm of purely theoretical interest to the realm of experimental studies and device applications, it is of crucial importance to identify other robust candidates that are experimentally feasible to be realized. In this paper, we propose such a Weyl semimetal candidate in an inversion-breaking, stoichiometric compound strontium silicide, SrSi2, with many new and novel properties that are distinct from TaAs. We show that SrSi2 is a Weyl semimetal even without spin–orbit coupling and that, after the inclusion of spin–orbit coupling, two Weyl fermions stick together forming an exotic double Weyl fermion with quadratic dispersions and a higher chiral charge of ±2. Moreover, we find that the Weyl nodes with opposite charges are located at different energies due to the absence of mirror symmetry in SrSi2, paving the way for the realization of the chiral magnetic effect. Our systematic results not only identify a much-needed robust Weyl semimetal candidate but also open the door to new topological Weyl physics that is not possible in TaAs. PMID:26787914

  7. Symmetric quadratic Hamiltonians with pseudo-Hermitian matrix representation

    SciTech Connect

    Fernández, Francisco M.

    2016-06-15

    We prove that any symmetric Hamiltonian that is a quadratic function of the coordinates and momenta has a pseudo-Hermitian adjoint or regular matrix representation. The eigenvalues of the latter matrix are the natural frequencies of the Hamiltonian operator. When all the eigenvalues of the matrix are real, then the spectrum of the symmetric Hamiltonian is real and the operator is Hermitian. As illustrative examples we choose the quadratic Hamiltonians that model a pair of coupled resonators with balanced gain and loss, the electromagnetic self-force on an oscillating charged particle and an active LRC circuit. -- Highlights: •Symmetric quadratic operators are useful models for many physical applications. •Any such operator exhibits a pseudo-Hermitian matrix representation. •Its eigenvalues are the natural frequencies of the Hamiltonian operator. •The eigenvalues may be real or complex and describe a phase transition.

  8. On Volterra quadratic stochastic operators with continual state space

    SciTech Connect

    Ganikhodjaev, Nasir; Hamzah, Nur Zatul Akmar

    2015-05-15

    Let (X,F) be a measurable space, and S(X,F) be the set of all probability measures on (X,F) where X is a state space and F is σ - algebraon X. We consider a nonlinear transformation (quadratic stochastic operator) defined by (Vλ)(A) = ∫{sub X}∫{sub X}P(x,y,A)dλ(x)dλ(y), where P(x, y, A) is regarded as a function of two variables x and y with fixed A ∈ F . A quadratic stochastic operator V is called a regular, if for any initial measure the strong limit lim{sub n→∞} V{sup n }(λ) is exists. In this paper, we construct a family of quadratic stochastic operators defined on the segment X = [0,1] with Borel σ - algebra F on X , prove their regularity and show that the limit measure is a Dirac measure.

  9. A Projection Neural Network for Constrained Quadratic Minimax Optimization.

    PubMed

    Liu, Qingshan; Wang, Jun

    2015-11-01

    This paper presents a projection neural network described by a dynamic system for solving constrained quadratic minimax programming problems. Sufficient conditions based on a linear matrix inequality are provided for global convergence of the proposed neural network. Compared with some of the existing neural networks for quadratic minimax optimization, the proposed neural network in this paper is capable of solving more general constrained quadratic minimax optimization problems, and the designed neural network does not include any parameter. Moreover, the neural network has lower model complexities, the number of state variables of which is equal to that of the dimension of the optimization problems. The simulation results on numerical examples are discussed to demonstrate the effectiveness and characteristics of the proposed neural network.

  10. Homotopy approach to optimal, linear quadratic, fixed architecture compensation

    NASA Technical Reports Server (NTRS)

    Mercadal, Mathieu

    1991-01-01

    Optimal linear quadratic Gaussian compensators with constrained architecture are a sensible way to generate good multivariable feedback systems meeting strict implementation requirements. The optimality conditions obtained from the constrained linear quadratic Gaussian are a set of highly coupled matrix equations that cannot be solved algebraically except when the compensator is centralized and full order. An alternative to the use of general parameter optimization methods for solving the problem is to use homotopy. The benefit of the method is that it uses the solution to a simplified problem as a starting point and the final solution is then obtained by solving a simple differential equation. This paper investigates the convergence properties and the limitation of such an approach and sheds some light on the nature and the number of solutions of the constrained linear quadratic Gaussian problem. It also demonstrates the usefulness of homotopy on an example of an optimal decentralized compensator.

  11. The generalized quadratic knapsack problem. A neuronal network approach.

    PubMed

    Talaván, Pedro M; Yáñez, Javier

    2006-05-01

    The solution of an optimization problem through the continuous Hopfield network (CHN) is based on some energy or Lyapunov function, which decreases as the system evolves until a local minimum value is attained. A new energy function is proposed in this paper so that any 0-1 linear constrains programming with quadratic objective function can be solved. This problem, denoted as the generalized quadratic knapsack problem (GQKP), includes as particular cases well-known problems such as the traveling salesman problem (TSP) and the quadratic assignment problem (QAP). This new energy function generalizes those proposed by other authors. Through this energy function, any GQKP can be solved with an appropriate parameter setting procedure, which is detailed in this paper. As a particular case, and in order to test this generalized energy function, some computational experiments solving the traveling salesman problem are also included.

  12. Pure double-layer bubbles in quadratic F (R ) gravity

    NASA Astrophysics Data System (ADS)

    Eiroa, Ernesto F.; Figueroa Aguirre, Griselda; Senovilla, José M. M.

    2017-06-01

    We present a class of spherically symmetric spacetimes corresponding to bubbles separating two regions with constant values of the scalar curvature, or equivalently with two different cosmological constants, in quadratic F (R ) theory. The bubbles are obtained by means of the junction formalism, and the matching hypersurface supports in general a thin shell and a gravitational double layer. In particular, we find that pure double layers are possible for appropriate values of the parameters of the model whenever the quadratic coefficient is negative. This is the first example of a pure double layer in a gravitational theory.

  13. Convergence properties of the softassign quadratic assignment algorithm.

    PubMed

    Rangarajan, A; Vuille, A; Mjolsness, E

    1999-08-15

    The softassign quadratic assignment algorithm is a discrete-time, continuous-state, synchronous updating optimizing neural network. While its effectiveness has been shown in the traveling salesman problem, graph matching, and graph partitioning in thousands of simulations, its convergence properties have not been studied. Here, we construct discrete-time Lyapunov functions for the cases of exact and approximate doubly stochastic constraint satisfaction, which show convergence to a fixed point. The combination of good convergence properties and experimental success makes the softassign algorithm an excellent choice for neural quadratic assignment optimization.

  14. Integral field spectroscopy of local LCBGs: NGC 7673, a case study. Physical properties of star-forming regions

    NASA Astrophysics Data System (ADS)

    Castillo-Morales, A.; Gallego, J.; Pérez-Gallego, J.; Guzmán, R.; Muñoz-Mateos, J. C.; Zamorano, J.; Sánchez, S. F.

    2011-03-01

    Physical properties of the star-forming regions in the local Luminous Compact Blue Galaxy (LCBG) NGC 7673 are studied in detail using 3D spectroscopic data taken with the PMAS fibre pack (PPAK) integral field unit at the 3.5-m telescope in the Centro Astronómico Hispano Alemán (CAHA). We derive integrated and spatially resolved properties such as extinction, star formation rate (SFR) and metallicity for this galaxy. Our data show an extinction map with maximum values located at the position of the main clumps of star formation showing small spatial variations [E(B-V)t= 0.12-0.21 mag]. We derive an Hα-based SFR for this galaxy of 6.2 ± 0.8 M⊙ yr-1 in agreement with the SFR derived from infrared and radio continuum fluxes. The star formation is located mainly in clumps A, B, C and F. Different properties measured in clump B make this region peculiar. We find the highest Hα luminosity with an SFR surface density of 0.5 M⊙ yr-1 kpc-2 in this clump. In our previous work, the kinematic analysis for this galaxy shows an asymmetrical ionized gas velocity field with a kinematic decoupled component located at the position of clump B. This region shows the absence of strong absorption features and the presence of a Wolf-Rayet stellar population indicating that this is a young burst of massive stars. Furthermore, we estimate a gas metallicity of 12 + log(O/H) = 8.20 ± 0.15 (0.32 solar) for the integrated galaxy using the R23 index. The values derived for the different clumps with this method show small metallicity variations in this galaxy, with values in the range 8.12 (for clump A) to 8.23 (for clump B) for 12 + log(O/H). The analysis of the emission-line ratios discards the presence of any active galactic nuclei (AGN) activity or shocks as the ionization source in this galaxy. Between the possible mechanisms to explain the starburst activity in this galaxy, our 3D spectroscopic data support the scenario of an on-going interaction with the possibility for clump B

  15. Host-Guest Chemistry in Integrated Porous Space Formed by Molecular Self-Assembly at Liquid-Solid Interfaces.

    PubMed

    Iritani, Kohei; Tahara, Kazukuni; De Feyter, Steven; Tobe, Yoshito

    2017-02-23

    Host-guest chemistry in two-dimensional (2D) space, that is, physisorbed monolayers of a single atom or a single molecular thickness on surfaces, has become a subject of intense current interest because of perspectives for various applications in molecular-scale electronics, selective sensors, and tailored catalysis. Scanning tunneling microscopy has been used as a powerful tool for the visualization of molecules in real space on a conducting substrate surface. For more than a decade, we have been investigating the self-assembly of a series of triangle-shaped phenylene-ethynylene macrocycles called dehydrobenzo[12]annulenes (DBAs). These molecules are substituted with six alkyl chains and are capable of forming hexagonal porous 2D molecular networks via van der Waals interactions between interdigitated alkyl chains at the interface of organic solvents and graphite. The dimension of the nanoporous space or nanowell formed by the self-assembly of DBAs can be controlled from 1.6 to 4.7 nm by simply changing the alkyl chain length from C6 to C20. Single molecules as well as homoclusters and heteroclusters are capable of coadsorbing within the host matrix using shape- and size-complementarity principles. Moreover, on the basis of the versatility of the DBA molecules that allows chemical modification of the alkyl chain terminals, we were able to decorate the interior space of the nanoporous networks with functional groups such as azobenzenedicarboxylic acid for photoresponsive guest adsorption/desorption or fluoroalkanes and tetraethylene glycol groups for selective guest binding by electrostatic interactions and zinc-porphyrin units for complexation with a guest by charge-transfer interactions. In this Feature Article, we describe the general aspects of molecular self-assembly at liquid/solid interfaces, followed by the formation of programmed porous molecular networks using rationally designed molecular building blocks. We focus on our own work involving host

  16. A Dynamical Systems Analysis of Semidefinite Programming with Application to Quadratic Optimization with Pure Quadratic Equality Constraints

    SciTech Connect

    Orsi, R. J.; Mahony, R. E.; Moore, J. B.

    1999-09-15

    This paper considers the problem of minimizing a quadratic cost subject to purely quadratic equality constraints. This problem is tackled by first relating it to a standard semidefinite programming problem. The approach taken leads to a dynamical systems analysis of semidefinite programming and the formulation of a gradient descent flow which can be used to solve semidefinite programming problems. Though the reformulation of the initial problem as a semidefinite pro- gramming problem does not in general lead directly to a solution of the original problem, the initial problem is solved by using a modified flow incorporating a penalty function.

  17. Laboratory Testing of Bulk Vitrified Low-Activity Waste Forms to Support the 2005 Integrated Disposal Facility Performance Assessment

    SciTech Connect

    Pierce, Eric M.; McGrail, B. Peter; Bagaasen, Larry M.; Rodriguez, Elsa A.; Wellman, Dawn M.; Geiszler, Keith N.; Baum, Steven R.; Reed, Lunde R.; Crum, Jarrod V.; Schaef, Herbert T.

    2006-06-30

    The purpose of this report is to document the results from laboratory testing of the bulk vitri-fied (BV) waste form that was conducted in support of the 2005 integrated disposal facility (IDF) performance assessment (PA). Laboratory testing provides a majority of the key input data re-quired to assess the long-term performance of the BV waste package with the STORM code. Test data from three principal methods, as described by McGrail et al. (2000a; 2003a), are dis-cussed in this testing report including the single-pass flow-through test (SPFT) and product con-sistency test (PCT). Each of these test methods focuses on different aspects of the glass corrosion process. See McGrail et al. (2000a; 2003a) for additional details regarding these test methods and their use in evaluating long-term glass performance. In addition to evaluating the long-term glass performance, this report discusses the results and methods used to provided a recommended best estimate of the soluble fraction of 99Tc that can be leached from the engineer-ing-scale BV waste package. These laboratory tests are part of a continuum of testing that is aimed at improving the performance of the BV waste package.

  18. Laboratory Testing of Bulk Vitrified Low-Activity Waste Forms to Support the 2005 Integrated Disposal Facility Performance Assessment

    SciTech Connect

    Pierce, Eric M.; McGrail, B. Peter; Bagaasen, Larry M.; Rodriguez, Elsa A.; Wellman, Dawn M.; Geiszler, Keith N.; Baum, Steven R.; Reed, Lunde R.; Crum, Jarrod V.; Schaef, Herbert T.

    2005-03-31

    The purpose of this report is to document the results from laboratory testing of the bulk vitri-fied (BV) waste form that was conducted in support of the 2005 integrated disposal facility (IDF) performance assessment (PA). Laboratory testing provides a majority of the key input data re-quired to assess the long-term performance of the BV waste package with the STORM code. Test data from three principal methods, as described by McGrail et al. (2000a; 2003a), are dis-cussed in this testing report including the single-pass flow-through test (SPFT) and product con-sistency test (PCT). Each of these test methods focuses on different aspects of the glass corrosion process. See McGrail et al. (2000a; 2003a) for additional details regarding these test methods and their use in evaluating long-term glass performance. In addition to evaluating the long-term glass performance, this report discusses the results and methods used to provided a recommended best estimate of the soluble fraction of 99Tc that can be leached from the engineer-ing-scale BV waste package. These laboratory tests are part of a continuum of testing that is aimed at improving the performance of the BV waste package.

  19. Integral Field Spectroscopy of High-Redshift Star-Forming Galaxies with Laser-Guided Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Law, David R.; Steidel, C. C.; Erb, D. K.; Larkin, J. E.; Pettini, M.; Shapley, A. E.; Wright, S. A.

    2007-12-01

    We present a selection of results from an ongoing study of the kinematic structure of star-forming galaxies at redshift z = 2 - 3 using integral-field spectroscopy of rest-frame optical nebular emission lines in combination with Keck laser guide star adaptive optics (LGSAO). We show kinematic maps of 10 target galaxies, each of which is spatially resolved with a PSF measuring approximately 0.1 - 0.2 arcseconds (750 - 1500 pc at the redshift of the target galaxies) after cosmetic smoothing. The majority of galaxies are dominated by a relatively high local velocity dispersion ( 80 km/s) while only two galaxies show evidence for spatially resolved velocity shear. Using extant multi-wavelength spectroscopy and photometry we relate these kinematic data to physical properties such as stellar mass, gas fraction, star formation rate, and outflow kinematics and consider the applicability of current galaxy formation models. While some gas cooling models reproduce the observed kinematics better than a simple rotating disk model, even these provide a poor overall description of the target galaxies, suggesting that our current understanding of gas cooling mechanisms in galaxies in the early universe is (at best) incomplete. This work has been supported in part by grants AST 06-06912 and AST 03-07263 from the US National Science Foundation.

  20. Ultra-compact photonic crystal integrated sensor formed by series-connected nanobeam bandstop filter and nanobeam cavity

    NASA Astrophysics Data System (ADS)

    Yang, Yujie; Yang, Daquan; Ji, Yuefeng

    2016-10-01

    A novel ultra-compact one dimensional (1D) photonic crystal (PC) nanobeam integrated sensor (1D PC NIS) is presented in this work, which is formed by series-connected 1D PC nanobeam bandstop filter (1D PC NBF) and 1D PC nanobeam cavity sensor (1D PC NCS). 1D PC NBF is based on an array of the same rectangular grating, with the photonics bandgap (PBG) range for 1538nm 1763nm. 1D PC NCS consists of a 1D PC nanobeam cavity, with the circle air-hole radius parabolically decreasing. By connecting these two parts above, the resonance within the stop band of 1D PC NBF will be filtered out, only the goal resonance used for refractive index sensing is left. Resonance wavelength position of the goal resonance remains the same basically. A high Q-factor of above 1.43×103 and a high sensitivity of 127.07nm/RIU can be obtained simultaneously, which agrees well with the 122.07nm/RIU obtained above without filter. Moreover, benefiting from the ultra-compact size (0.7μm×11μm), 1D PC NIS proposed in the paper is promising to be used for sensors array and multiplexed sensing.

  1. Integration of protein extraction with a stream of byproducts from marine macroalgae: A model forms the basis for marine bioeconomy.

    PubMed

    Gajaria, Tejal K; Suthar, Poornima; Baghel, Ravi S; Balar, Nikunj B; Sharnagat, Preeti; Mantri, Vaibhav A; Reddy, C R K

    2017-07-05

    The present study describes an advanced biorefinery model for marine macroalgae that assumes significant importance in the context of marine bio-economy. The method investigated in this study integrates the extraction of crude proteins with recovery of minerals rich sap, lipids, ulvan and cellulose from fresh biomass of Ulva lactuca. The protein content extracted was 11±2.12% on dry weight basis with recovery efficiency of 68.75±4.01%. The amino acid composition of crude protein fraction showed iso-leucine as the most abundant amino acid with 16.51±0.03% followed by histidine, arginine, tyrosine, serine, aspartic acid, threonine, phenyl alanine, leucine, alanine, lysine, glycine and glutamic acid (0.22±0.24%). The digestibility of protein was as high as 85.86±5.92% indicating its suitability for use in food supplements. The protein production with co-recovery of other products would not only result in effective utilisation marine macroalgal resources but also forms the basis for marine bio-economy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Partial quadratic eigenvalue assignment in vibrating structures using receptances and system matrices

    NASA Astrophysics Data System (ADS)

    Bai, Zheng-Jian; Wan, Qiu-Yue

    2017-05-01

    In this paper, we consider the partial quadratic eigenvalue assignment problem (PQEAP) in vibration by active feedback control. Based on the receptance measurements and system matrices, we propose a constructive method for solving PQEAP, where we only need to solve a small linear system and only a few undesired open-loop eigenvalues with associated eigenvectors are needed. Our method is designed for both single-input and multiple-input vibration controls of vibrating structures. The real form of our method is also presented. Numerical tests show that our method is effective for constructing a solution to PQEAP with both single-input and multiple-input vibration controls.

  3. Solving the transport equation with quadratic finite elements: Theory and applications

    SciTech Connect

    Ferguson, J.M.

    1997-12-31

    At the 4th Joint Conference on Computational Mathematics, the author presented a paper introducing a new quadratic finite element scheme (QFEM) for solving the transport equation. In the ensuing year the author has obtained considerable experience in the application of this method, including solution of eigenvalue problems, transmission problems, and solution of the adjoint form of the equation as well as the usual forward solution. He will present detailed results, and will also discuss other refinements of his transport codes, particularly for 3-dimensional problems on rectilinear and non-rectilinear grids.

  4. Solution of quadratic matrix equations for free vibration analysis of structures.

    NASA Technical Reports Server (NTRS)

    Gupta, K. K.

    1973-01-01

    An efficient digital computer procedure and the related numerical algorithm are presented herein for the solution of quadratic matrix equations associated with free vibration analysis of structures. Such a procedure enables accurate and economical analysis of natural frequencies and associated modes of discretized structures. The numerically stable algorithm is based on the Sturm sequence method, which fully exploits the banded form of associated stiffness and mass matrices. The related computer program written in FORTRAN V for the JPL UNIVAC 1108 computer proves to be substantially more accurate and economical than other existing procedures of such analysis. Numerical examples are presented for two structures - a cantilever beam and a semicircular arch.

  5. ORACLS - A linear-quadratic-Gaussian computer-aided design package

    NASA Technical Reports Server (NTRS)

    Armstrong, E. S.

    1982-01-01

    ORACLS, an acronym denoting Optimal Regular Algorithms for the Control of Linear Systems, is a collection of FORTRAN coded subroutines dedicated to the formulation and solution of the Linear-Quadratic-Gaussian (LQG) design problem modeled in both continuous and discrete form. The ORACLS system is under continuous development at the NASA Langley Research Center, Hampton, Virginia, and is widely used by universities and industry within the U.S.A. The current (operational) ORACLS version as well as new software under development is described.

  6. Ray-tracing simulation method using piecewise quadratic interpolant for aspheric optical systems.

    PubMed

    Morita, Shin-Ya; Nishidate, Yohei; Nagata, Takashi; Yamagata, Yutaka; Teodosiu, Cristian

    2010-06-20

    We present a new method for precise ray-tracing simulation considering form errors in the fabrication process of aspheric lenses. The Nagata patch, a quadratic interpolant for surface meshes using normal vectors, is adopted for representing the lens geometry with mid-spectral frequencies of surface profile errors. Several improvements in the ray-patch intersection calculation and its acceleration technique are also proposed. The developed algorithm is applied to ray-tracing simulation of optical disk pick-up aspheric objectives, and this technique requires 10(5) to 10(9) times fewer patches than a polygonal approximation. The simulation takes only several seconds on a standard PC.

  7. Visualising the Complex Roots of Quadratic Equations with Real Coefficients

    ERIC Educational Resources Information Center

    Bardell, Nicholas S.

    2012-01-01

    The roots of the general quadratic equation y = ax[superscript 2] + bx + c (real a, b, c) are known to occur in the following sets: (i) real and distinct; (ii) real and coincident; and (iii) a complex conjugate pair. Case (iii), which provides the focus for this investigation, can only occur when the values of the real coefficients a, b, and c are…

  8. Finding the Best Quadratic Approximation of a Function

    ERIC Educational Resources Information Center

    Yang, Yajun; Gordon, Sheldon P.

    2011-01-01

    This article examines the question of finding the best quadratic function to approximate a given function on an interval. The prototypical function considered is f(x) = e[superscript x]. Two approaches are considered, one based on Taylor polynomial approximations at various points in the interval under consideration, the other based on the fact…

  9. Analysis of Quadratic Diophantine Equations with Fibonacci Number Solutions

    ERIC Educational Resources Information Center

    Leyendekkers, J. V.; Shannon, A. G.

    2004-01-01

    An analysis is made of the role of Fibonacci numbers in some quadratic Diophantine equations. A general solution is obtained for finding factors in sums of Fibonacci numbers. Interpretation of the results is facilitated by the use of a modular ring which also permits extension of the analysis.

  10. Analysis of Quadratic Diophantine Equations with Fibonacci Number Solutions

    ERIC Educational Resources Information Center

    Leyendekkers, J. V.; Shannon, A. G.

    2004-01-01

    An analysis is made of the role of Fibonacci numbers in some quadratic Diophantine equations. A general solution is obtained for finding factors in sums of Fibonacci numbers. Interpretation of the results is facilitated by the use of a modular ring which also permits extension of the analysis.

  11. Radar Rainfall Estimation using a Quadratic Z-R equation

    NASA Astrophysics Data System (ADS)

    Hall, Will; Rico-Ramirez, Miguel Angel; Kramer, Stefan

    2016-04-01

    The aim of this work is to test a method that enables the input of event based drop size distributions to alter a quadratic reflectivity (Z) to rainfall (R) equation that is limited by fixed upper and lower points. Results will be compared to the Marshall-Palmer Z-R relation outputs and validated by a network of gauges and a single polarisation weather radar located close to Essen, Germany. The time window over which the drop size distribution measurements will be collected is varied to note any effect on the generated quadratic Z-R relation. The new quadratic algorithm shows some distinct improvement over the Marshall-Palmer relationship through multiple events. The inclusion of a minimum number of Z-R points helped to decrease the associated error by defaulting back to the Marshall-Palmer equation if the limit was not reached. More research will be done to discover why the quadratic performs poorly in some events as there appears to be little correlation between number of drops or mean rainfall amount and the associated error. In some cases it seems the spatial distribution of the disdrometers has a significant effect as a large percentage of the rain bands pass to the north of two of the three disdrometers, frequently in a slightly north-easterly direction. However during widespread precipitation events the new algorithm works very well with reductions compared to the Marshall-Palmer relation.

  12. Beam steering and routing in quadratic nonlinear media

    SciTech Connect

    Aceves, A.B.; Santos, M.C.; Torner, L.

    1997-04-01

    We show how the spatial phase modulation of weak second-harmonic signals controls the overall direction of propagation of spatial solitons in quadratic nonlinear media. We investigate numerically such a process and discuss its applications to all-optical beam routing. 5 refs., 3 figs.

  13. Confidence set interference with a prior quadratic bound. [in geophysics

    NASA Technical Reports Server (NTRS)

    Backus, George E.

    1989-01-01

    Neyman's (1937) theory of confidence sets is developed as a replacement for Bayesian interference (BI) and stochastic inversion (SI) when the prior information is a hard quadratic bound. It is recommended that BI and SI be replaced by confidence set interference (CSI) only in certain circumstances. The geomagnetic problem is used to illustrate the general theory of CSI.

  14. Solving the Quadratic Capacitated Facilities Location Problem by Computer.

    ERIC Educational Resources Information Center

    Cote, Leon C.; Smith, Wayland P.

    Several computer programs were developed to solve various versions of the quadratic capacitated facilities location problem. Matrices, which represent various business costs, are defined for the factors of sites, facilities, customers, commodities, and production units. The objective of the program is to find an optimization matrix for the lowest…

  15. A Model for Quadratic Outliers in Linear Regression.

    ERIC Educational Resources Information Center

    Elashoff, Janet Dixon; Elashoff, Robert M.

    This paper introduces a model for describing outliers (observations which are extreme in some sense or violate the apparent pattern of other observations) in linear regression which can be viewed as a mixture of a quadratic and a linear regression. The maximum likelihood estimators of the parameters in the model are derived and their asymptotic…

  16. Entanglement entropy of fermionic quadratic band touching model

    NASA Astrophysics Data System (ADS)

    Chen, Xiao; Cho, Gil Young; Fradkin, Eduardo

    2014-03-01

    The entanglement entropy has been proven to be a useful tool to diagnose and characterize strongly correlated systems such as topologically ordered phases and some critical points. Motivated by the successes, we study the entanglement entropy (EE) of a fermionic quadratic band touching model in (2 + 1) dimension. This is a fermionic ``spinor'' model with a finite DOS at k=0 and infinitesimal instabilities. The calculation on two-point correlation functions shows that a Dirac fermion model and the quadratic band touching model both have the asymptotically identical behavior in the long distance limit. This implies that EE for the quadratic band touching model also has an area law as the Dirac fermion. This is in contradiction with the expectation that dense fermi systems with a finite DOS should exhibit LlogL violations to the area law of entanglement entropy (L is the length of the boundary of the sub-region) by analogy with the Fermi surface. We performed numerical calculations of entanglement entropies on a torus of the lattice models for the quadratic band touching point and the Dirac fermion to confirm this. The numerical calculation shows that EE for both cases satisfy the area law. We further verify this result by the analytic calculation on the torus geometry. This work was supported in part by the NSF grant DMR-1064319.

  17. Visualising the Complex Roots of Quadratic Equations with Real Coefficients

    ERIC Educational Resources Information Center

    Bardell, Nicholas S.

    2012-01-01

    The roots of the general quadratic equation y = ax[superscript 2] + bx + c (real a, b, c) are known to occur in the following sets: (i) real and distinct; (ii) real and coincident; and (iii) a complex conjugate pair. Case (iii), which provides the focus for this investigation, can only occur when the values of the real coefficients a, b, and c are…

  18. Analyzing Quadratic Unconstrained Binary Optimization Problems Via Multicommodity Flows.

    PubMed

    Wang, Di; Kleinberg, Robert D

    2009-11-28

    Quadratic Unconstrained Binary Optimization (QUBO) problems concern the minimization of quadratic polynomials in n {0, 1}-valued variables. These problems are NP-complete, but prior work has identified a sequence of polynomial-time computable lower bounds on the minimum value, denoted by C(2), C(3), C(4),…. It is known that C(2) can be computed by solving a maximum-flow problem, whereas the only previously known algorithms for computing C(k) (k > 2) require solving a linear program. In this paper we prove that C(3) can be computed by solving a maximum multicommodity flow problem in a graph constructed from the quadratic function. In addition to providing a lower bound on the minimum value of the quadratic function on {0, 1}(n), this multicommodity flow problem also provides some information about the coordinates of the point where this minimum is achieved. By looking at the edges that are never saturated in any maximum multicommodity flow, we can identify relational persistencies: pairs of variables that must have the same or different values in any minimizing assignment. We furthermore show that all of these persistencies can be detected by solving single-commodity flow problems in the same network.

  19. Finding the Best Quadratic Approximation of a Function

    ERIC Educational Resources Information Center

    Yang, Yajun; Gordon, Sheldon P.

    2011-01-01

    This article examines the question of finding the best quadratic function to approximate a given function on an interval. The prototypical function considered is f(x) = e[superscript x]. Two approaches are considered, one based on Taylor polynomial approximations at various points in the interval under consideration, the other based on the fact…

  20. Confidence set interference with a prior quadratic bound. [in geophysics

    NASA Technical Reports Server (NTRS)

    Backus, George E.

    1989-01-01

    Neyman's (1937) theory of confidence sets is developed as a replacement for Bayesian interference (BI) and stochastic inversion (SI) when the prior information is a hard quadratic bound. It is recommended that BI and SI be replaced by confidence set interference (CSI) only in certain circumstances. The geomagnetic problem is used to illustrate the general theory of CSI.

  1. Solving quadratic programming problems by delayed projection neural network.

    PubMed

    Yang, Yongqing; Cao, Jinde

    2006-11-01

    In this letter, the delayed projection neural network for solving convex quadratic programming problems is proposed. The neural network is proved to be globally exponentially stable and can converge to an optimal solution of the optimization problem. Three examples show the effectiveness of the proposed network.

  2. Canonical realization of Bondi-Metzner-Sachs symmetry: Quadratic Casimir

    NASA Astrophysics Data System (ADS)

    Gomis, Joaquim; Longhi, Giorgio

    2016-01-01

    We study the canonical realization of Bondi-Metzner-Sacks symmetry for a massive scalar field introduced by Longhi and Materassi [J. Math. Phys. 40, 480 (1999)]. We construct an invariant scalar product for the generalized momenta. As a consequence we introduce a quadratic Casimir with the supertranslations.

  3. Password authentication scheme based on the quadratic residue problem

    NASA Astrophysics Data System (ADS)

    Ali, Muhammad Helmi; Ismail, Eddie Shahril

    2017-04-01

    In this paper, we propose a new password-authentication scheme based on quadratic residue problem with the following advantages: the scheme does not require a verification file, and the scheme can withstand replay attacks and resist from the guessing and impersonation attacks. We next discuss the advantages of our designated scheme over other schemes in terms of security and efficiency.

  4. Unravelling Student Challenges with Quadratics: A Cognitive Approach

    ERIC Educational Resources Information Center

    Kotsopoulos, Donna

    2007-01-01

    The author's secondary school mathematics students have often reported to her that quadratic relations are one of the most conceptually challenging aspects of the high school curriculum. From her own classroom experiences there seemed to be several aspects to the students' challenges. Many students, even in their early secondary education, have…

  5. Clustered Self Organising Migrating Algorithm for the Quadratic Assignment Problem

    NASA Astrophysics Data System (ADS)

    Davendra, Donald; Zelinka, Ivan; Senkerik, Roman

    2009-08-01

    An approach of population dynamics and clustering for permutative problems is presented in this paper. Diversity indicators are created from solution ordering and its mapping is shown as an advantage for population control in metaheuristics. Self Organising Migrating Algorithm (SOMA) is modified using this approach and vetted with the Quadratic Assignment Problem (QAP). Extensive experimentation is conducted on benchmark problems in this area.

  6. Optimization with quadratic support functions in nonconvex smooth optimization

    NASA Astrophysics Data System (ADS)

    Khamisov, O. V.

    2016-10-01

    Problem of global minimization of twice continuously differentiable function with Lipschitz second derivatives over a polytope is considered. We suggest a branch and bound method with polytopes as partition elements. Due to the Lipschitz property of the objective function we can construct a quadratic support minorant at each point of the feasible set. Global minimum of of this minorant provides a lower bound of the objective over given partition subset. The main advantage of the suggested method consists in the following. First quadratic minorants usually are nonconvex and we have to solve auxiliary global optimization problem. This problem is reduced to a mixed 0-1 linear programming problem and can be solved by an advanced 0-1 solver. Then we show that the quadratic minorants are getting convex as soon as partition elements are getting smaller in diameter. Hence, at the final steps of the branch and bound method we solve convex auxiliary quadratic problems. Therefore, the method accelerates when we are close to the global minimum of the initial problem.

  7. Robust and minimum norm partial quadratic eigenvalue assignment in vibrating systems: A new optimization approach

    NASA Astrophysics Data System (ADS)

    Bai, Zheng-Jian; Datta, Biswa Nath; Wang, Jinwei

    2010-04-01

    The partial quadratic eigenvalue assignment problem (PQEVAP) concerns reassigning a few undesired eigenvalues of a quadratic matrix pencil to suitably chosen locations and keeping the other large number of eigenvalues and eigenvectors unchanged (no spill-over). The problem naturally arises in controlling dangerous vibrations in structures by means of active feedback control design. For practical viability, the design must be robust, which requires that the norms of the feedback matrices and the condition number of the closed-loop eigenvectors are as small as possible. The problem of computing feedback matrices that satisfy the above two practical requirements is known as the Robust Partial Quadratic Eigenvalue Assignment Problem (RPQEVAP). In this paper, we formulate the RPQEVAP as an unconstrained minimization problem with the cost function involving the condition number of the closed-loop eigenvector matrix and two feedback norms. Since only a small number of eigenvalues of the open-loop quadratic pencil are computable using the state-of-the-art matrix computational techniques and/or measurable in a vibration laboratory, it is imperative that the problem is solved using these small number of eigenvalues and the corresponding eigenvectors. To this end, a class of the feedback matrices are obtained in parametric form, parameterized by a single parametric matrix, and the cost function and the required gradient formulas for the optimization problem are developed in terms of the small number of eigenvalues that are reassigned and their corresponding eigenvectors. The problem is solved directly in quadratic setting without transforming it to a standard first-order control problem and most importantly, the significant "no spill-over property" of the closed-loop eigenvalues and eigenvectors is established by means of a mathematical result. These features make the proposed method practically applicable even for very large structures. Results on numerical experiments show

  8. Electromagnetic tracking system with reduced distortion using quadratic excitation.

    PubMed

    Bien, Tomasz; Li, Mengfei; Salah, Zein; Rose, Georg

    2014-03-01

    Electromagnetic tracking systems, frequently used in minimally invasive surgery, are affected by conductive distorters. The influence of conductive distorters on electromagnetic tracking system accuracy can be reduced through magnetic field modifications. This approach was developed and tested. The voltage induced directly by the emitting coil in the sensing coil without additional influence by the conductive distorter depends on the first derivative of the voltage on the emitting coil. The voltage which is induced indirectly by the emitting coil across the conductive distorter in the sensing coil, however, depends on the second derivative of the voltage on the emitting coil. The electromagnetic tracking system takes advantage of this difference by supplying the emitting coil with a quadratic excitation voltage. The method is adaptive relative to the amount of distortion cause by the conductive distorters. This approach is evaluated with an experimental setup of the electromagnetic tracking system. In vitro testing showed that the maximal error decreased from 10.9 to 3.8 mm when the quadratic voltage was used to excite the emitting coil instead of the sinusoidal voltage. Furthermore, the root mean square error in the proximity of the aluminum disk used as a conductive distorter was reduced from 3.5 to 1.6 mm when the electromagnetic tracking system used the quadratic instead of sinusoidal excitation. Electromagnetic tracking with quadratic excitation is immune to the effects of a conductive distorter, especially compared with sinusoidal excitation of the emitting coil. Quadratic excitation of electromagnetic tracking for computer-assisted surgery is promising for clinical applications.

  9. The sources and time-integrated evolution of diamond-forming fluids - Trace elements and isotopic evidence

    NASA Astrophysics Data System (ADS)

    Klein-BenDavid, Ofra; Pearson, D. Graham; Nowell, Geoff M.; Ottley, Chris; McNeill, John C. R.; Logvinova, Alla; Sobolev, Nikolay V.

    2014-01-01

    Sub-micrometer inclusions in fibrous diamond growth zones carry high-density fluids (HDF) from which the host diamonds have precipitated. The chemistry of these fluids is our best opportunity of characterizing the diamond-forming environment. The major and trace element patterns of diamond-forming fluids vary widely. Such elemental signatures can be easily modified by a variety of mantle processes whereas radiogenic isotopes give a clear fingerprint of the time-integrated evolution of the fluid source region. Thus, the combination of elemental and isotope data is a powerful tool in constraining the origin of fluids from which diamonds precipitate. Here we present combined trace element composition (34 diamonds) and Sr isotopic data (23 diamonds) for fluid-rich diamonds from six worldwide locations. The Nd and Pb isotopic composition of two of the diamonds were also obtained. Several of the samples were analyzed in at least 2 locations to investigate variations in the fluid during diamond growth. The data was acquired using an off-line laser sampling technique followed by solution ICPMS and TIMS analysis. The Sr isotopic compositions of diamond fluids from the different suites range between convecting mantle values for Udachnaya (87Sr/86Sr363 = 0.70300 ± 16 to 0.70361 ± 4), to highly enriched values, up to 87Sr/86Sr = 0.72330 ± 3, for a diamond from Congo. No isochronous relationships were observed in any of the suites. The lowest Nd isotopic composition recorded so far in a diamond is from Congo (εNd71 = -40.4), which also contains the most radiogenic Sr isotopic composition. In contrast, a less enriched but still rather unradiogenic Nd isotope composition (εNd540 = -11) was obtained for a diamond from Snap Lake, which has moderately radiogenic Sr isotopic enrichment (87Sr/86Sr540 = 0.70821 ± 1). The Pb isotopic system measured in one diamond indicates a complex evolution for the fluid source, with extreme 207Pb/204Pb ratio (15.810 ± 3) and moderate

  10. Binary Quadratic Programing for Online Tracking of Hundreds of People in Extremely Crowded Scenes.

    PubMed

    Dehghan, Afshin; Shah, Mubarak

    2017-03-24

    Multi-object tracking has been studied for decades. However, when it comes to tracking pedestrians in extremely crowded scenes, we are limited to only few works. This is an important problem which gives rise to several challenges. Pre-trained object detectors fail to localize targets in crowded sequences. This consequently limits the use of data-association based multi-target tracking methods which rely on the outcome of an object detector. Additionally, the small apparent target size makes it challenging to extract features to discriminate targets from their surroundings. Finally, the large number of targets greatly increases computational complexity which in turn makes it hard to extend existing multi-target tracking approaches to high-density crowd scenarios. In this paper, we propose a tracker that addresses the aforementioned problems and is capable of tracking hundreds of people efficiently. We formulate online crowd tracking as Binary Quadratic Programing. Our formulation employs target's individual information in the form of appearance and motion as well as contextual cues in the form of neighborhood motion, spatial proximity and grouping, and solves detection and data association simultaneously. In order to solve the proposed quadratic optimization efficiently, where state-of art commercial quadratic programing solvers fail to find the solution in a reasonable amount of time, we propose to use the most recent version of the Modified Frank Wolfe algorithm, which takes advantage of SWAP-steps to speed up the optimization. We show that the proposed formulation can track hundreds of targets efficiently and improves state-of-art results by significant margins on eleven challenging high density crowd sequences.

  11. The forms and bioavailability of phosphorus in integrated vertical flow constructed wetland with earthworms and different substrates.

    PubMed

    Xu, Defu; Wang, Lin; Li, Huili; Li, Yingxue; Howard, Alan; Guan, Yidong; Li, Jiuhai; Xu, Hui

    2015-09-01

    A sequential extraction method was utilized to analyze seven forms of P in an integrated vertical-flow constructed wetland (IVFCW) containing earthworms and different substrates. The aluminum-bound P (Al-P) content was found to be lower, and the occluded P (Oc-P) content was higher in the IVFCW. The addition of earthworms into the influent chamber of IVFCW increased the exchange P (Ex-P), iron-bound P (Fe-P), calcium bound P (Ca-P), Oc-P, detritus-bound (De-P) and organic P (Org-P) content in the influent chamber, and also enhanced P content uptake by wetland plants. A significantly positive correlation between P content of above-ground wetland plants and the Ex-P, Fe-P, Oc-P and Org-P content in the rhizosphere was found (P<0.05), which indicated that the Ex-P, Fe-P, Oc-P and Org-P could be bio-available P. The Ex-P, Fe-P, De-P, Oc-P and Ca-P content of the influent chamber was higher where the substrate contained a mixture of Qing sand and river sand rather than only river sand. Also the IVFCW with earthworms and both Qing sand and river sand had a higher removal efficiency of P, which was related to higher P content uptake by wetland plants and P retained in IVFCW. These findings suggest that addition of earthworms in IVFCW increases the bioavailable P content, resulting in enhanced P content uptake by wetland plants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Geomorphology Toolbox for Assessing the Potential Effects of Land-use Change and Management Practices on Stream Form and Integrity

    NASA Astrophysics Data System (ADS)

    Raff, D. A.; Bledsoe, B. P.

    2004-12-01

    An important contribution that engineers and geomorphologists can make to environmental management is to develop techniques that empower non-specialists to make rational planning decisions within the context of a changing environment. Existing models can be used to assess the potential hydrologic effects of land-use change on receiving waters, but practical tools for translating these results into predictions regarding channel stability and effects on stream biota are currently unavailable to local planners. To improve watershed management in the context of changing land uses, we present a flexible, changeable package of mechanistic and statistical models to provide estimates of long-term changes in stream erosion potential, channel processes, and instream disturbance regime. These models are developed in Visual Basic for Applications/ Excel and contains a suite of stream / land-use management modules that are designed to operate with either continuous or single-event hydrologic input in a variety of formats. Based on input channel geometry and flow series, the various modules provide users with estimates of the following characteristics for pre- and post-land use change conditions: (1) the temporal distribution of hydraulic parameters including shear stress, specific stream power, and potential mobility of various particle sizes; (2) effective discharge / sediment yield; (3) potential changes in sediment transport and yield as a result of altered flow and sedimentation regimes; (4) frequency, depth, and duration of bed scour; (5) several geomorphically relevant hydrologic metrics relating to channel form, flow effectiveness and "flashiness". An attractive feature of this approach for stormwater management is a set of user-friendly tools to examine time-integrated sediment transport and scour characteristics across a range of flows and time periods associated with varying stormwater mitigation schemes. These modules give end users a suite of tools to compare the

  13. Modified Laplace-Beltrami quantization of natural Hamiltonian systems with quadratic constants of motion

    NASA Astrophysics Data System (ADS)

    Chanu, Claudia Maria; Degiovanni, Luca; Rastelli, Giovanni

    2017-03-01

    It is natural to investigate if the quantization of integrable or superintegrable classical Hamiltonian systems is still integrable or superintegrable. We study here this problem in the case of natural Hamiltonians with constants of motion quadratic in the momenta. The procedure of quantization here considered transforms the Hamiltonian into the Laplace-Beltrami operator plus a scalar potential. In order to transform the constants of motion into symmetry operators of the quantum Hamiltonian, additional scalar potentials, known as quantum corrections, must be introduced, depending on the Riemannian structure of the manifold. We give here a complete geometric characterization of the quantum corrections necessary for the case considered. In particular, Stäckel systems are studied in detail. Examples in conformally and non-conformally flat manifolds are given.

  14. "It's All Connected!" Nursing Students' Experiences of a New Form of Case Seminar Integrating Medical and Nursing Science

    ERIC Educational Resources Information Center

    Turunen Olsson, Pernilla; Weurlander, Maria; Mattiasson, Anne-Cathrine; Wärn Hede, Gunnel; Panagiotidis, Georgios; Broberger, Eva; Hult, Håkan; Wernerson, Annika

    2016-01-01

    Traditionally, nursing students learn medical subjects and nursing separately, which makes it difficult to develop an integrated understanding. This study aimed to explore nursing students' experiences of participating in a case seminar integrating medical and nursing sciences and if, and how, it contributed to their learning. A case seminar…

  15. "It's All Connected!" Nursing Students' Experiences of a New Form of Case Seminar Integrating Medical and Nursing Science

    ERIC Educational Resources Information Center

    Turunen Olsson, Pernilla; Weurlander, Maria; Mattiasson, Anne-Cathrine; Wärn Hede, Gunnel; Panagiotidis, Georgios; Broberger, Eva; Hult, Håkan; Wernerson, Annika

    2016-01-01

    Traditionally, nursing students learn medical subjects and nursing separately, which makes it difficult to develop an integrated understanding. This study aimed to explore nursing students' experiences of participating in a case seminar integrating medical and nursing sciences and if, and how, it contributed to their learning. A case seminar…

  16. [Integrity].

    PubMed

    Gómez Rodríguez, Rafael Ángel

    2014-01-01

    To say that someone possesses integrity is to claim that that person is almost predictable about responses to specific situations, that he or she can prudentially judge and to act correctly. There is a closed interrelationship between integrity and autonomy, and the autonomy rests on the deeper moral claim of all humans to integrity of the person. Integrity has two senses of significance for medical ethic: one sense refers to the integrity of the person in the bodily, psychosocial and intellectual elements; and in the second sense, the integrity is the virtue. Another facet of integrity of the person is la integrity of values we cherish and espouse. The physician must be a person of integrity if the integrity of the patient is to be safeguarded. The autonomy has reduced the violations in the past, but the character and virtues of the physician are the ultimate safeguard of autonomy of patient. A field very important in medicine is the scientific research. It is the character of the investigator that determines the moral quality of research. The problem arises when legitimate self-interests are replaced by selfish, particularly when human subjects are involved. The final safeguard of moral quality of research is the character and conscience of the investigator. Teaching must be relevant in the scientific field, but the most effective way to teach virtue ethics is through the example of the a respected scientist.

  17. Topological Classification of Quadratic Polynomial Differential Systems with a Finite Semi-Elemental Triple Saddle

    NASA Astrophysics Data System (ADS)

    Artés, Joan C.; Oliveira, Regilene D. S.; Rezende, Alex C.

    The study of planar quadratic differential systems is very important not only because they appear in many areas of applied mathematics but due to their richness in structure, stability and questions concerning limit cycles, for example. Even though many papers have been written on this class of systems, a complete understanding of this family is still missing. Classical problems, and in particular Hilbert’s 16th problem [Hilbert, 1900, 1902], are still open for this family. In this article, we make a global study of the family QTS¯ of all real quadratic polynomial differential systems which have a finite semi-elemental triple saddle (triple saddle with exactly one zero eigenvalue). This family modulo the action of the affine group and time homotheties is three-dimensional and we give its bifurcation diagram with respect to a normal form, in the three-dimensional real space of the parameters of this normal form. This bifurcation diagram yields 27 phase portraits for systems in QTS¯ counting phase portraits with and without limit cycles. Algebraic invariants are used to construct the bifurcation set and we present the phase portraits on the Poincaré disk. The bifurcation set is not just algebraic due to the presence of a surface found numerically, whose points correspond to connections of separatrices.

  18. Developing an Understanding of Quadratics through the Use of Concrete Manipulatives: A Case Study Analysis of the Metacognitive Development of a High School Student with Learning Disabilities

    ERIC Educational Resources Information Center

    Strickland, Tricia K.

    2014-01-01

    This case study analyzed the impact of a concrete manipulative program on the understanding of quadratic expressions for a high school student with a learning disability. The manipulatives were utilized as part of the Concrete-Representational-Abstract Integration (CRA-I) intervention in which participants engaged in tasks requiring them to…

  19. Spinor condensates with a laser-induced quadratic Zeeman effect

    SciTech Connect

    Santos, L.; Fattori, M.; Stuhler, J.; Pfau, T.

    2007-05-15

    We show that an effective quadratic Zeeman effect for trapped atoms can be generated by proper laser configurations and, in particular, by the dipole trap itself. The induced quadratic Zeeman effect leads to a rich ground-state phase diagram, e.g., for a degenerate {sup 52}Cr gas, can be used to induce topological defects by controllably quenching across transitions between phases of different symmetries, allows for the observability of the Einstein-de Haas effect for relatively large magnetic fields, and may be employed to create S=1/2 systems with spinor dynamics. Similar ideas could be explored in other atomic species opening an exciting new control tool in spinor systems.

  20. QUADRATIC SERENDIPITY FINITE ELEMENTS ON POLYGONS USING GENERALIZED BARYCENTRIC COORDINATES.

    PubMed

    Rand, Alexander; Gillette, Andrew; Bajaj, Chandrajit

    2014-01-01

    We introduce a finite element construction for use on the class of convex, planar polygons and show it obtains a quadratic error convergence estimate. On a convex n-gon, our construction produces 2n basis functions, associated in a Lagrange-like fashion to each vertex and each edge midpoint, by transforming and combining a set of n(n + 1)/2 basis functions known to obtain quadratic convergence. The technique broadens the scope of the so-called 'serendipity' elements, previously studied only for quadrilateral and regular hexahedral meshes, by employing the theory of generalized barycentric coordinates. Uniform a priori error estimates are established over the class of convex quadrilaterals with bounded aspect ratio as well as over the class of convex planar polygons satisfying additional shape regularity conditions to exclude large interior angles and short edges. Numerical evidence is provided on a trapezoidal quadrilateral mesh, previously not amenable to serendipity constructions, and applications to adaptive meshing are discussed.

  1. Quadratic grating apodized photon sieves for simultaneous multiplane microscopy

    NASA Astrophysics Data System (ADS)

    Cheng, Yiguang; Zhu, Jiangping; He, Yu; Tang, Yan; Hu, Song; Zhao, Lixin

    2017-10-01

    We present a new type of imaging device, named quadratic grating apodized photon sieve (QGPS), used as the objective for simultaneous multiplane imaging in X-rays. The proposed QGPS is structured based on the combination of two concepts: photon sieves and quadratic gratings. Its design principles are also expounded in detail. Analysis of imaging properties of QGPS in terms of point-spread function shows that QGPS can image multiple layers within an object field onto a single image plane. Simulated and experimental results in visible light both demonstrate the feasibility of QGPS for simultaneous multiplane imaging, which is extremely promising to detect dynamic specimens by X-ray microscopy in the physical and life sciences.

  2. Large Deviation Principle for Benedicks-Carleson Quadratic Maps

    NASA Astrophysics Data System (ADS)

    Chung, Yong Moo; Takahasi, Hiroki

    2012-11-01

    Since the pioneering works of Jakobson and Benedicks & Carleson and others, it has been known that a positive measure set of quadratic maps admit invariant probability measures absolutely continuous with respect to Lebesgue. These measures allow one to statistically predict the asymptotic fate of Lebesgue almost every initial condition. Estimating fluctuations of empirical distributions before they settle to equilibrium requires a fairly good control over large parts of the phase space. We use the sub-exponential slow recurrence condition of Benedicks & Carleson to build induced Markov maps of arbitrarily small scale and associated towers, to which the absolutely continuous measures can be lifted. These various lifts together enable us to obtain a control of recurrence that is sufficient to establish a level 2 large deviation principle, for the absolutely continuous measures. This result encompasses dynamics far from equilibrium, and thus significantly extends presently known local large deviations results for quadratic maps.

  3. Consistent spin-two coupling and quadratic gravitation

    SciTech Connect

    Hindawi, A.; Ovrut, B.A.; Waldram, D.

    1996-05-01

    A discussion of the field content of quadratic higher-derivative gravitation is presented, together with a new example of a massless spin-two field consistently coupled to gravity. The full quadratic gravity theory is shown to be equivalent to a canonical second-order theory of a massive scalar field, a massive spin-two symmetric tensor field, and gravity. The conditions showing that the tensor field describes only spin-two degrees of freedom are derived. A limit of the second-order theory provides a new example of a massless spin-two field consistently coupled to gravity. A restricted set of vacua of the second-order theory is also discussed. It is shown that flat space is the only stable vacuum of this type, and that the spin-two field around flat space is unfortunately always ghostlike. {copyright} {ital 1996 The American Physical Society.}

  4. Alignment of protein interaction networks by integer quadratic programming.

    PubMed

    Li, Zhenping; Wang, Yong; Zhang, Shihua; Zhang, Xiang-Sun; Chen, Luonan

    2006-01-01

    With more and more data on protein-protein interaction (PPI) network available, the discovery of conserved patterns in these networks becomes an increasingly important problem. In this paper, to find the conserved substructures, we develop an efficient algorithm for aligning PPI networks based on both the protein sequence similarity and the network architecture similarity, by using integer quadratic programming (IQP). Such an IQP can be relaxed into the corresponding quadratic programming (QP) which in the case of biological data sets almost always ensures the integer solution. Therefore, a QP algorithm can be adopted to efficiently solve this IQP with out any approximation, thereby making PPI network alignment tractable. From the viewpoint of graph theory, the proposed method can identify similar subsets between two graphs, which allow gaps for nodes and edges.

  5. Gravitomagnetic effects in quadratic gravity with a scalar field

    NASA Astrophysics Data System (ADS)

    Finch, Andrew; Said, Jackson Levi

    2016-10-01

    The two gravitomagnetic effects which influence bodies orbiting around a gravitational source are the geodetic effect and the Lense-Thirring effect. The former describes the precession angle of the axis of a spinning gyroscope while in orbit around a nonrotating gravitational source whereas the latter provides a correction for this angle in the case of a spinning source. In this paper we derive the relevant equations in quadratic gravity and relate them to their equivalents in general relativity. Starting with an investigation into Kepler's third law in quadratic gravity with a scalar field, the effects of an axisymmetric and rotating gravitational source on an orbiting body in a circular, equatorial orbit are introduced.

  6. Lifespan estimates for the semi-linear Klein-Gordon equation with a quadratic potential in dimension one

    NASA Astrophysics Data System (ADS)

    Zhang, Qidi

    2016-12-01

    We show for almost every m > 0, the solution to the semi-linear Klein-Gordon equation with a quadratic potential in dimension one, exists over a longer time interval than the one given by local existence theory, using the normal form method. By using an Lp -Lq estimate for eigenfunctions of the harmonic oscillator and by carefully analysis on the nonlinearity, we improve the result obtained by the author before.

  7. Development of a log-quadratic model to describe microbial inactivation, illustrated by thermal inactivation of Clostridium botulinum.

    PubMed

    Stone, G; Chapman, B; Lovell, D

    2009-11-01

    In the commercial food industry, demonstration of microbiological safety and thermal process equivalence often involves a mathematical framework that assumes log-linear inactivation kinetics and invokes concepts of decimal reduction time (D(T)), z values, and accumulated lethality. However, many microbes, particularly spores, exhibit inactivation kinetics that are not log linear. This has led to alternative modeling approaches, such as the biphasic and Weibull models, that relax strong log-linear assumptions. Using a statistical framework, we developed a novel log-quadratic model, which approximates the biphasic and Weibull models and provides additional physiological interpretability. As a statistical linear model, the log-quadratic model is relatively simple to fit and straightforwardly provides confidence intervals for its fitted values. It allows a D(T)-like value to be derived, even from data that exhibit obvious "tailing." We also showed how existing models of non-log-linear microbial inactivation, such as the Weibull model, can fit into a statistical linear model framework that dramatically simplifies their solution. We applied the log-quadratic model to thermal inactivation data for the spore-forming bacterium Clostridium botulinum and evaluated its merits compared with those of popular previously described approaches. The log-quadratic model was used as the basis of a secondary model that can capture the dependence of microbial inactivation kinetics on temperature. This model, in turn, was linked to models of spore inactivation of Sapru et al. and Rodriguez et al. that posit different physiological states for spores within a population. We believe that the log-quadratic model provides a useful framework in which to test vitalistic and mechanistic hypotheses of inactivation by thermal and other processes.

  8. Secondary School Mathematics, Chapter 23, Quadratic Functions, Chapter 24, Statistics. Student's Text.

    ERIC Educational Resources Information Center

    Stanford Univ., CA. School Mathematics Study Group.

    The first chapter in the twelfth unit of this SMSG series deals with the following topics involving quadratic functions: parabolas, translations of the parabola, completing the square, solving quadratic equations, "falling body" functions, and the use of quadratics in solving other equations. The chapter on statistics discusses…

  9. Quadratic performance index generation for optimal regular design.

    NASA Technical Reports Server (NTRS)

    Bullock, T. E.; Elder, J. M.

    1971-01-01

    Application of optimal control theory to practical problems has been limited by the difficulty of prescribing a performance index which accurately reflects design requirements. The task of deriving equivalent performance indices is considered in the present paper for a plant that is a completely controllable, scalar linear system with state feedback. A quadratic index is developed which leads to an optimal design performance satisfying some of the classical performance criteria.

  10. Observers for Systems with Nonlinearities Satisfying an Incremental Quadratic Inequality

    NASA Technical Reports Server (NTRS)

    Acikmese, Ahmet Behcet; Corless, Martin

    2004-01-01

    We consider the problem of state estimation for nonlinear time-varying systems whose nonlinearities satisfy an incremental quadratic inequality. These observer results unifies earlier results in the literature; and extend it to some additional classes of nonlinearities. Observers are presented which guarantee that the state estimation error exponentially converges to zero. Observer design involves solving linear matrix inequalities for the observer gain matrices. Results are illustrated by application to a simple model of an underwater.

  11. Observers for Systems with Nonlinearities Satisfying an Incremental Quadratic Inequality

    NASA Technical Reports Server (NTRS)

    Acikmese, Ahmet Behcet; Corless, Martin

    2004-01-01

    We consider the problem of state estimation for nonlinear time-varying systems whose nonlinearities satisfy an incremental quadratic inequality. These observer results unifies earlier results in the literature; and extend it to some additional classes of nonlinearities. Observers are presented which guarantee that the state estimation error exponentially converges to zero. Observer design involves solving linear matrix inequalities for the observer gain matrices. Results are illustrated by application to a simple model of an underwater.

  12. A generalized quadratic flow law for sheet metals

    NASA Astrophysics Data System (ADS)

    Jones, S. E.; Gillis, P. P.

    1984-01-01

    A planar quadratic flow law is proposed for anisotropic sheet materials. This law is similar to the anisotropic strength criterion of Tsai and Wu. It has six experimentally determinable coefficients as compared to four in Hill’s flow law and, thus, allows more experimental information to be accommodated. However, the resulting strain increment vector, while unique, is not necessarily normal to the flow surface.

  13. [The importance of an early accompanying evaluation of new care forms for the development of indicators for quality assurance in outpatient psychiatric integrated care].

    PubMed

    Hausen, A; Glaeske, G

    2015-05-01

    Aim of this contribution is to illustrate the imp-ortance of an early accompanying evaluation of new care forms for the development of indicators. The illustration uses the experience of the accompanying evaluation of the integrated care model for optimisation of outpatient psychiatric care. For the integrated care model we could develop potential indicators by using medical-psychiatric and insured-related routine data, but all potential indicators need further development to enable reliable statements about achieved quality targets. It is shown that the development of indicators in the outpatient psychiatric integrated care is affected by many different factors such as vague target agreements in the contract and missing contractual agreements for the data. As a result it is illustrated that in this project the evaluation was introduced after implementation of this new form of care and the already established contract and the data management impeded the development of indicators. © Georg Thieme Verlag KG Stuttgart · New York.

  14. Negligibility of small divisor effects in the normal form theory for nearly-integrable Hamiltonians with decaying non-autonomous perturbations

    NASA Astrophysics Data System (ADS)

    Fortunati, Alessandro; Wiggins, Stephen

    2016-06-01

    The paper deals with the problem of the existence of a normal form for a nearly-integrable real-analytic Hamiltonian with aperiodically time-dependent perturbation decaying (slowly) in time. In particular, in the case of an isochronous integrable part, the system can be cast in an exact normal form, regardless of the properties of the frequency vector. The general case is treated by a suitable adaptation of the finite order normalization techniques usually used for Nekhoroshev arguments. The key point is that the so called "geometric part" is not necessary in this case. As a consequence, no hypotheses on the integrable part are required, apart from analyticity. The work, based on two different perturbative approaches developed by Giorgilli et al., is a generalisation of the techniques used by the same authors to treat more specific aperiodically time-dependent problems.

  15. Quadratic canonical transformation theory and higher order density matrices.

    PubMed

    Neuscamman, Eric; Yanai, Takeshi; Chan, Garnet Kin-Lic

    2009-03-28

    Canonical transformation (CT) theory provides a rigorously size-extensive description of dynamic correlation in multireference systems, with an accuracy superior to and cost scaling lower than complete active space second order perturbation theory. Here we expand our previous theory by investigating (i) a commutator approximation that is applied at quadratic, as opposed to linear, order in the effective Hamiltonian, and (ii) incorporation of the three-body reduced density matrix in the operator and density matrix decompositions. The quadratic commutator approximation improves CT's accuracy when used with a single-determinant reference, repairing the previous formal disadvantage of the single-reference linear CT theory relative to singles and doubles coupled cluster theory. Calculations on the BH and HF binding curves confirm this improvement. In multireference systems, the three-body reduced density matrix increases the overall accuracy of the CT theory. Tests on the H(2)O and N(2) binding curves yield results highly competitive with expensive state-of-the-art multireference methods, such as the multireference Davidson-corrected configuration interaction (MRCI+Q), averaged coupled pair functional, and averaged quadratic coupled cluster theories.

  16. Measurement of quadratic electrogyration effect in castor oil

    NASA Astrophysics Data System (ADS)

    Izdebski, Marek; Ledzion, Rafał; Górski, Piotr

    2015-07-01

    This work presents a detailed analysis of electrogyration measurement in liquids with the usage of an optical polarimetric technique. Theoretical analysis of the optical response to an applied electric field is illustrated by experimental data for castor oil which exhibits natural optical activity, quadratic electro-optic effect and quadratic electrogyration effect. Moreover, the experimental data show that interaction of the oil with a pair of flat electrodes induces a significant dichroism and natural linear birefringence. The combination of these effects occurring at the same time complicates the procedure of measurements. It has been found that a single measurement is insufficient to separate the contribution of the electrogyration effect, but it is possible on the basis of several measurements performed with various orientations of the polarizer and the analyser. The obtained average values of the quadratic electrogyration coefficient β13 in castor oil at room temperature are from - 0.92 ×10-22 to - 1.44 ×10-22m2V-2 depending on the origin of the oil. Although this study is focused on measurements in castor oil, the presented analysis is much more general.

  17. Evaluation of a photovoltaic energy mechatronics system with a built-in quadratic maximum power point tracking algorithm

    SciTech Connect

    Chao, R.M.; Ko, S.H.; Lin, I.H.; Pai, F.S.; Chang, C.C.

    2009-12-15

    The historically high cost of crude oil price is stimulating research into solar (green) energy as an alternative energy source. In general, applications with large solar energy output require a maximum power point tracking (MPPT) algorithm to optimize the power generated by the photovoltaic effect. This work aims to provide a stand-alone solution for solar energy applications by integrating a DC/DC buck converter to a newly developed quadratic MPPT algorithm along with its appropriate software and hardware. The quadratic MPPT method utilizes three previously used duty cycles with their corresponding power outputs. It approaches the maximum value by using a second order polynomial formula, which converges faster than the existing MPPT algorithm. The hardware implementation takes advantage of the real-time controller system from National Instruments, USA. Experimental results have shown that the proposed solar mechatronics system can correctly and effectively track the maximum power point without any difficulties. (author)

  18. Vector dark energy models with quadratic terms in the Maxwell tensor derivatives

    NASA Astrophysics Data System (ADS)

    Haghani, Zahra; Harko, Tiberiu; Sepangi, Hamid Reza; Shahidi, Shahab

    2017-03-01

    We consider a vector-tensor gravitational model with terms quadratic in the Maxwell tensor derivatives, called the Bopp-Podolsky term. The gravitational field equations of the model and the equations describing the evolution of the vector field are obtained and their Newtonian limit is investigated. The cosmological implications of a Bopp-Podolsky type dark energy term are investigated for a Bianchi type I homogeneous and anisotropic geometry for two models, corresponding to the absence and presence of the self-interacting potential of the field, respectively. The time evolutions of the Hubble function, of the matter energy density, of the shear scalar, of the mean anisotropy parameter, and of the deceleration parameter, respectively, as well as the field potentials are obtained for both cases by numerically integrating the cosmological evolution equations. In the presence of the vector type dark energy with quadratic terms in the Maxwell tensor derivatives, depending on the numerical values of the model parameters, the Bianchi type I Universe experiences a complex dynamical evolution, with the dust Universes ending in an isotropic phase. The presence of the self-interacting potential of the vector field significantly shortens the time interval necessary for the full isotropization of the Universe.

  19. Integration

    ERIC Educational Resources Information Center

    Kalyn, Brenda

    2006-01-01

    Integrated learning is an exciting adventure for both teachers and students. It is not uncommon to observe the integration of academic subjects such as math, science, and language arts. However, educators need to recognize that movement experiences in physical education also can be linked to academic curricula and, may even lead the…

  20. Mechanism of spacer integration links the CRISPR/Cas system to transposition as a form of mobile DNA.

    PubMed

    Dyda, Fred; Hickman, Alison B

    2015-01-01

    It has recently become clear that many bacterial and archaeal species possess adaptive immune systems. These are typified by multiple copies of DNA sequences known as clustered regularly interspaced short palindromic repeats (CRISPRs). These CRISPR repeats are the sites at which short spacers containing sequences of previously encountered foreign DNA are integrated, and the spacers serve as the molecular memory of previous invaders. In vivo work has demonstrated that two CRISPR-associated proteins - Cas1 and Cas2 - are required for spacer integration, but the mechanism by which this is accomplished remained unclear. Here we review a recent paper describing the in vitro reconstitution of CRISPR spacer integration using purified Cas1 and Cas2 and place the results in context of similar DNA transposition reactions and the crystal structure of the Cas1/Cas2 complex.

  1. Formability evaluation for hot-rolled HB780 steel sheet based on 3-D non-quadratic yield function

    NASA Astrophysics Data System (ADS)

    Kim, Wonjae; Koh, Youngwoo; Kim, Hyunki; Chung, Youn-Il; Lee, Myoung-Gyu; Chung, Kwansoo

    2017-05-01

    A common practice to evaluate formability in the typical sheet metal forming process is to measure hardening behavior and a forming limit diagram as separate material properties, and perform numerical forming simulations utilizing various yield functions. The measured forming limit diagram is applied as the failure criterion. However, the performance of material properties such as hardening behavior and yield functions in predicting strain localization in the simple tension and forming limit diagram tests is seldom validated before their application to forming simulation. In this study, a new numerical formability evaluation procedure was proposed, in which not only hardening behavior but also measured forming limit data were employed in characterizing the input data for the hardening behavior and the yield function. Besides, strain localization was directly monitored to determine failure without employing any forming limit criterion. The new procedure was applied for rather thick advanced high strength hot-rolled steel sheet so that 3-D continuum elements were utilized along with 3-D non-quadratic Hosford and quadratic Hill yield functions.

  2. Projection-free parallel quadratic programming for linear model predictive control

    NASA Astrophysics Data System (ADS)

    Di Cairano, S.; Brand, M.; Bortoff, S. A.

    2013-08-01

    A key component in enabling the application of model predictive control (MPC) in fields such as automotive, aerospace, and factory automation is the availability of low-complexity fast optimisation algorithms to solve the MPC finite horizon optimal control problem in architectures with reduced computational capabilities. In this paper, we introduce a projection-free iterative optimisation algorithm and discuss its application to linear MPC. The algorithm, originally developed by Brand for non-negative quadratic programs, is based on a multiplicative update rule and it is shown to converge to a fixed point which is the optimum. An acceleration technique based on a projection-free line search is also introduced, to speed-up the convergence to the optimum. The algorithm is applied to MPC through the dual of the quadratic program (QP) formulated from the MPC finite time optimal control problem. We discuss how termination conditions with guaranteed degree of suboptimality can be enforced, and how the algorithm performance can be optimised by pre-computing the matrices in a parametric form. We show computational results of the algorithm in three common case studies and we compare such results with the results obtained by other available free and commercial QP solvers.

  3. Dynamics of SU(1, 1) coherent states for the time-dependent quadratic Hamiltonian system

    NASA Astrophysics Data System (ADS)

    Choi, Jeong Ryeol

    2009-09-01

    The dynamics of SU(1, 1) coherent states introduced by Perelomov are investigated for the time-dependent quadratic Hamiltonian system. SU(1, 1) generators we employed are closely related to the invariant operator theory while those of the previous work of Gerry et al. [C.C. Gerry, P.K. Ma, E.R. Vrscay, Phys. Rev. A 39 (1989) 668] are associated to the simple harmonic oscillator. This is the main difference between the two approaches. The merit of the method used in this paper is that it admits wide sphere of analytical description for quantum features of time-dependent quadratic Hamiltonian system. Our development is applied to the Caldirola-Kanai oscillator and compared the corresponding results with those of the Gerry et al. after correcting some miscalculations of theirs. We showed that the results of our theory are in good agreement with the results of the corrected work of Gerry et al. even if the form of the SU(1, 1) generators we employed are somewhat different from those of their work. The nontrivial zero-point energy plays a dominant role in the very low energy limit (ξ→0) for the Caldirola-Kanai oscillator, leading the system to exhibit pure quantum effects as expected. On the other hand, it turn out for sufficiently high energy limit (ξ→1) that the characteristic feature of dissipating quantum energy become very much the same as that of the classical energy.

  4. Impact of quadratic non-linearity on the dynamics of periodic solutions of a wave equation

    NASA Astrophysics Data System (ADS)

    Kolesov, Andrei Yu; Rozov, Nikolai Kh

    2002-02-01

    For the non-linear telegraph equation with homogeneous Dirichlet or Neumann conditions at the end-points of a finite interval the question of the existence and the stability of time-periodic solutions bifurcating from the zero equilibrium state is considered. The dynamics of these solutions under a change of the diffusion coefficient (that is, the coefficient of the second derivative with respect to the space variable) is investigated. For the Dirichlet boundary conditions it is shown that this dynamics substantially depends on the presence - or the absence - of quadratic terms in the non-linearity. More precisely, it is shown that a quadratic non-linearity results in the occurrence, under an unbounded decrease of diffusion, of an infinite sequence of bifurcations of each periodic solution. En route, the related issue of the limits of applicability of Yu.S. Kolesov's method of quasinormal forms to the construction of self-oscillations in singularly perturbed hyperbolic boundary value problems is studied.

  5. Impact of quadratic non-linearity on the dynamics of periodic solutions of a wave equation

    SciTech Connect

    Kolesov, Andrei Yu; Rozov, Nikolai Kh

    2002-02-28

    For the non-linear telegraph equation with homogeneous Dirichlet or Neumann conditions at the end-points of a finite interval the question of the existence and the stability of time-periodic solutions bifurcating from the zero equilibrium state is considered. The dynamics of these solutions under a change of the diffusion coefficient (that is, the coefficient of the second derivative with respect to the space variable) is investigated. For the Dirichlet boundary conditions it is shown that this dynamics substantially depends on the presence - or the absence - of quadratic terms in the non-linearity. More precisely, it is shown that a quadratic non-linearity results in the occurrence, under an unbounded decrease of diffusion, of an infinite sequence of bifurcations of each periodic solution. En route, the related issue of the limits of applicability of Yu.S. Kolesov's method of quasinormal forms to the construction of self-oscillations in singularly perturbed hyperbolic boundary value problems is studied.

  6. Quadratic programming-based approach for autonomous vehicle path planning in space

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Han, Jianda; Wu, Huaiyu

    2012-07-01

    Path planning for space vehicles is still a challenging problem although considerable progress has been made over the past decades. The major difficulties are that most of existing methods only adapt to static environment instead of dynamic one, and also can not solve the inherent constraints arising from the robot body and the exterior environment. To address these difficulties, this research aims to provide a feasible trajectory based on quadratic programming(QP) for path planning in three-dimensional space where an autonomous vehicle is requested to pursue a target while avoiding static or dynamic obstacles. First, the objective function is derived from the pursuit task which is defined in terms of the relative distance to the target, as well as the angle between the velocity and the position in the relative velocity coordinates(RVCs). The optimization is in quadratic polynomial form according to QP formulation. Then, the avoidance task is modeled with linear constraints in RVCs. Some other constraints, such as kinematics, dynamics, and sensor range, are included. Last, simulations with typical multiple obstacles are carried out, including in static and dynamic environments and one of human-in-the-loop. The results indicate that the optimal trajectories of the autonomous robot in three-dimensional space satisfy the required performances. Therefore, the QP model proposed in this paper not only adapts to dynamic environment with uncertainty, but also can satisfy all kinds of constraints, and it provides an efficient approach to solve the problems of path planning in three-dimensional space.

  7. Fast source optimization involving quadratic line-contour objectives for the resist image.

    PubMed

    Yu, Jue-Chin; Yu, Peichen; Chao, Hsueh-Yung

    2012-03-26

    In Abbe's formulation, source optimization (SO) is often formulated into a linear or quadratic problem, depending on the choice of objective functions. However, the conventional approach for the resist image, involving a sigmoid transformation of the aerial image, results in an objective with a functional form. The applicability of the resist-image objective to SO or simultaneous source and mask optimization (SMO) is therefore limited. In this paper, we present a linear combination of two quadratic line-contour objectives to approximate the resist image effect for fast convergence. The line-contour objectives are based on the aerial image on drawn edges using a constant threshold resist model and that of pixels associated with an intensity minimum for side-lobe suppression. A conjugate gradient method is employed to assure the convergence to the global minimum within the number of iterations less than that of source variables. We further compare the optimized illumination with the proposed line-contour objectives to that with a sigmoid resist-image using a steepest decent method. The results show a 100x speedup with comparable image fidelity and a slightly improved process window for the two cases studied.

  8. Quadratic function between arterial partial oxygen pressure and mortality risk in sepsis patients: an interaction with simplified acute physiology score.

    PubMed

    Zhang, Zhongheng; Ji, Xuqing

    2016-10-13

    Oxygen therapy is widely used in emergency and critical care settings, while there is little evidence on its real therapeutic effect. The study aimed to explore the impact of arterial oxygen partial pressure (PaO2) on clinical outcomes in patients with sepsis. A large clinical database was employed for the study. Subjects meeting the diagnostic criteria of sepsis were eligible for the study. All measurements of PaO2 were extracted. The primary endpoint was death from any causes during hospital stay. Survey data analysis was performed by using individual ICU admission as the primary sampling unit. Quadratic function was assumed for PaO2 and its interaction with other covariates were explored. A total of 199,125 PaO2 samples were identified for 11,002 ICU admissions. Each ICU stay comprised 18 PaO2 samples in average. The fitted multivariable model supported our hypothesis that the effect of PaO2 on mortality risk was in quadratic form. There was significant interaction between PaO2 and SAPS-I (p = 0.007). Furthermore, the main effect of PaO2 on SOFA score was nonlinear. The study shows that the effect of PaO2 on mortality risk is in quadratic function form, and there is significant interaction between PaO2 and severity of illness.

  9. Quadratic function between arterial partial oxygen pressure and mortality risk in sepsis patients: an interaction with simplified acute physiology score

    PubMed Central

    Zhang, Zhongheng; Ji, Xuqing

    2016-01-01

    Oxygen therapy is widely used in emergency and critical care settings, while there is little evidence on its real therapeutic effect. The study aimed to explore the impact of arterial oxygen partial pressure (PaO2) on clinical outcomes in patients with sepsis. A large clinical database was employed for the study. Subjects meeting the diagnostic criteria of sepsis were eligible for the study. All measurements of PaO2 were extracted. The primary endpoint was death from any causes during hospital stay. Survey data analysis was performed by using individual ICU admission as the primary sampling unit. Quadratic function was assumed for PaO2 and its interaction with other covariates were explored. A total of 199,125 PaO2 samples were identified for 11,002 ICU admissions. Each ICU stay comprised 18 PaO2 samples in average. The fitted multivariable model supported our hypothesis that the effect of PaO2 on mortality risk was in quadratic form. There was significant interaction between PaO2 and SAPS-I (p = 0.007). Furthermore, the main effect of PaO2 on SOFA score was nonlinear. The study shows that the effect of PaO2 on mortality risk is in quadratic function form, and there is significant interaction between PaO2 and severity of illness. PMID:27734905

  10. Minimization of the root of a quadratic functional under a system of affine equality constraints with application to portfolio management

    NASA Astrophysics Data System (ADS)

    Landsman, Zinoviy

    2008-10-01

    We present an explicit closed form solution of the problem of minimizing the root of a quadratic functional subject to a system of affine constraints. The result generalizes Z. Landsman, Minimization of the root of a quadratic functional under an affine equality constraint, J. Comput. Appl. Math. 2007, to appear, see , articles in press, where the optimization problem was solved under only one linear constraint. This is of interest for solving significant problems pertaining to financial economics as well as some classes of feasibility and optimization problems which frequently occur in tomography and other fields. The results are illustrated in the problem of optimal portfolio selection and the particular case when the expected return of finance portfolio is certain is discussed.

  11. Chemotherapy for tumors: an analysis of the dynamics and a study of quadratic and linear optimal controls.

    PubMed

    de Pillis, L G; Gu, W; Fister, K R; Head, T; Maples, K; Murugan, A; Neal, T; Yoshida, K

    2007-09-01

    We investigate a mathematical model of tumor-immune interactions with chemotherapy, and strategies for optimally administering treatment. In this paper we analyze the dynamics of this model, characterize the optimal controls related to drug therapy, and discuss numerical results of the optimal strategies. The form of the model allows us to test and compare various optimal control strategies, including a quadratic control, a linear control, and a state-constraint. We establish the existence of the optimal control, and solve for the control in both the quadratic and linear case. In the linear control case, we show that we cannot rule out the possibility of a singular control. An interesting aspect of this paper is that we provide a graphical representation of regions on which the singular control is optimal.

  12. Study on characteristics of 3-D translating-pulsating source green function of deep-water havelock form and its fast integration method

    NASA Astrophysics Data System (ADS)

    Xu, Yong; Dong, Wen-Cai

    2011-09-01

    The singularities, oscillatory performances and the contributing factors to the 3-D translating-pulsating source Green function of deep-water Havelock form which consists of a local disturbance part and a far-field wave-like part, are analyzed systematically. Relative numerical integral methods about the two parts are presented in this paper. An improved method based on LOBATTO rule is used to eliminate singularities caused respectively by infinite discontinuity and jump discontinuous node from the local disturbance part function, which makes the improvement of calculation efficiency and accuracy possible. And variable substitution is applied to remove the singularity existing at the end of the integral interval of the far-field wave-like part function. Two auxiliary techniques such as valid interval calculation and local refinement of integral steps technique in narrow zones near false singularities are applied so as to avoid unnecessary integration of invalid interval and improve integral accordance. Numerical test results have proved the efficiency and accuracy in these integral methods that thus can be applied to calculate hydrodynamic performance of floating structures moving in waves.

  13. A Low-Cost Demonstration Kit for Locating an Image Formed by a Plane Mirror Integrated with a Ray Diagram

    ERIC Educational Resources Information Center

    Kaewkhong, Kreetha; Chitaree, Ratchapak

    2015-01-01

    This article introduces a low-cost, easy to make apparatus that can be used to locate the position of an image formed by a plane mirror. The apparatus is combined with a method used to identify an image's position by drawing a ray diagram, based on the principle of reflection, to show how an image is formed. An image's distance and an object's…

  14. A Low-Cost Demonstration Kit for Locating an Image Formed by a Plane Mirror Integrated with a Ray Diagram

    ERIC Educational Resources Information Center

    Kaewkhong, Kreetha; Chitaree, Ratchapak

    2015-01-01

    This article introduces a low-cost, easy to make apparatus that can be used to locate the position of an image formed by a plane mirror. The apparatus is combined with a method used to identify an image's position by drawing a ray diagram, based on the principle of reflection, to show how an image is formed. An image's distance and an object's…

  15. Multireference correlation in long molecules with the quadratic scaling density matrix renormalization group

    NASA Astrophysics Data System (ADS)

    Hachmann, Johannes; Cardoen, Wim; Chan, Garnet Kin-Lic

    2006-10-01

    We have devised a local ab initio density matrix renormalization group algorithm to describe multireference correlations in large systems. For long molecules that are extended in one of their spatial dimensions, we can obtain an exact characterization of correlation, in the given basis, with a cost that scales only quadratically with the size of the system. The reduced scaling is achieved solely through integral screening and without the construction of correlation domains. We demonstrate the scaling, convergence, and robustness of the algorithm in polyenes and hydrogen chains. We converge to exact correlation energies (in the sense of full configuration interaction, with 1-10μEh precision) in all cases and correlate up to 100 electrons in 100 active orbitals. We further use our algorithm to obtain exact energies for the metal-insulator transition in hydrogen chains and compare and contrast our results with those from conventional quantum chemical methods.

  16. Propagation properties of hollow sinh-Gaussian beams in quadratic-index medium

    NASA Astrophysics Data System (ADS)

    Zou, Defeng; Li, Xiaohui; Pang, Xingxing; Zheng, Hairong; Ge, Yanqi

    2017-10-01

    Based on the Collins integral formula, the analytical expression for a hollow sinh-Gaussian (HsG) beam propagating through the quadratic-index medium is derived. The propagation properties of a single HsG beam and their interactions have been studied in detail with numerical examples. The results show that inhomogeneity can support self-repeating intensity distributions of HsG beams. With high-ordered beam order n, HsG beams could maintain their initial dark hollow distributions for a longer distance. In addition, interference fringes appear at the interactional region. The central intensity is a prominent peak for two in-phase beams, which is zero for two out-of phase beams. By tuning the initial beam phase shift, the distribution of the fringes can be controlled.

  17. The application of LQR synthesis techniques to the turboshaft engine control problem. [Linear Quadratic Regulator

    NASA Technical Reports Server (NTRS)

    Pfeil, W. H.; De Los Reyes, G.; Bobula, G. A.

    1985-01-01

    A power turbine governor was designed for a recent-technology turboshaft engine coupled to a modern, articulated rotor system using Linear Quadratic Regulator (LQR) and Kalman Filter (KF) techniques. A linear, state-space model of the engine and rotor system was derived for six engine power settings from flight idle to maximum continuous. An integrator was appended to the fuel flow input to reduce the steady-state governor error to zero. Feedback gains were calculated for the system states at each power setting using the LQR technique. The main rotor tip speed state is not measurable, so a Kalman Filter of the rotor was used to estimate this state. The crossover of the system was increased to 10 rad/s compared to 2 rad/sec for a current governor. Initial computer simulations with a nonlinear engine model indicate a significant decrease in power turbine speed variation with the LQR governor compared to a conventional governor.

  18. Singular linear-quadratic control problem for systems with linear delay

    SciTech Connect

    Sesekin, A. N.

    2013-12-18

    A singular linear-quadratic optimization problem on the trajectories of non-autonomous linear differential equations with linear delay is considered. The peculiarity of this problem is the fact that this problem has no solution in the class of integrable controls. To ensure the existence of solutions is required to expand the class of controls including controls with impulse components. Dynamical systems with linear delay are used to describe the motion of pantograph from the current collector with electric traction, biology, etc. It should be noted that for practical problems fact singularity criterion of quality is quite commonly occurring, and therefore the study of these problems is surely important. For the problem under discussion optimal programming control contained impulse components at the initial and final moments of time is constructed under certain assumptions on the functional and the right side of the control system.

  19. Creepers: Real quadratic orders with large class number

    NASA Astrophysics Data System (ADS)

    Patterson, Roger

    2007-03-01

    Shanks's sequence of quadratic fields Q(sqrt{S_{n}}) where S_{n}=(2^n+1)^2 + 2^{n+2} instances a class of quadratic fields for which the class number is large and, therefore, the continued fraction period is relatively short. Indeed, that period length increases linearly with n, that is: in arithmetic progression. The fields have regulator O(n^2). In the late nineties, these matters intrigued Irving Kaplansky, and led him to compute period length of the square root of sequences a^2x^{2n}+bx^{n}+c for integers a, b, c, and x. In brief, Kap found unsurprisingly that, generically, triples (a,b,c) are `leapers': they yield sequences with period length increasing at exponential rate. But there are triples yielding sequences with constant period length, Kap's `sleepers'. Finally, there are triples, as exemplified by the Shanks's sequence, for which the period lengths increase in arithmetic progression. Felicitously, Kaplansky called these `creepers'. It seems that the sleepers and creepers are precisely those for which one is able to detail the explicit continued fraction expansion for all n. Inter alia, this thesis noticeably extends the known classes of creepers and finds that not all are `kreepers' (of the shape identified by Kaplansky) and therefore not of the shape of examples studied by earlier authors looking for families of quadratic number fields with explicitly computable unit and of relatively large regulator. The work of this thesis includes the discovery of old and new families of hyperelliptic curves of increasing genus g and torsion divisor of order O(g^2). It follows that the apparent trichotomy leaper/sleeper/creeper coincides with the folk belief that the just-mentioned torsion is maximum possible.

  20. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    DOEpatents

    Cortright, Randy D.; Dumesic, James A.

    2013-04-02

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  1. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    DOEpatents

    Cortright, Randy D [Madison, WI; Dumesic, James A [Verona, WI

    2012-04-10

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  2. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    DOEpatents

    Cortright, Randy D [Madison, WI; Dumesic, James A [Verona, WI

    2011-01-18

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  3. A general integral form of the boundary-layer equation for incompressible flow with an application to the calculation of the separation point of turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Tetervin, Neal; Lin, Chia Chiao

    1951-01-01

    A general integral form of the boundary-layer equation, valid for either laminar or turbulent incompressible boundary-layer flow, is derived. By using the experimental finding that all velocity profiles of the turbulent boundary layer form essentially a single-parameter family, the general equation is changed to an equation for the space rate of change of the velocity-profile shape parameter. The lack of precise knowledge concerning the surface shear and the distribution of the shearing stress across turbulent boundary layers prevented the attainment of a reliable method for calculating the behavior of turbulent boundary layers.

  4. Solving the quadratic assignment problem with clues from nature.

    PubMed

    Nissen, V

    1994-01-01

    This paper describes a new evolutionary approach to solving quadratic assignment problems. The proposed technique is based loosely on a class of search and optimization algorithms known as evolution strategies (ES). These methods are inspired by the mechanics of biological evolution and have been applied successfully to a variety of difficult problems, particularly in continuous optimization. The combinatorial variant of ES presented here performs very well on the given test problems as compared with the standard 2-Opt heuristic and results with simulated annealing and tabu search. Extensions for practical applications in factory layout are described.

  5. Asymmetric Simple Exclusion Process with Open Boundaries and Quadratic Harnesses

    NASA Astrophysics Data System (ADS)

    Bryc, Włodek; Wesołowski, Jacek

    2017-04-01

    We show that the joint probability generating function of the stationary measure of a finite state asymmetric exclusion process with open boundaries can be expressed in terms of joint moments of Markov processes called quadratic harnesses. We use our representation to prove the large deviations principle for the total number of particles in the system. We use the generator of the Markov process to show how explicit formulas for the average occupancy of a site arise for special choices of parameters. We also give similar representations for limits of stationary measures as the number of sites tends to infinity.

  6. On a quadratic transformation due to Kummer and its generalizations

    NASA Astrophysics Data System (ADS)

    Shekhawat, Nidhi; Rathie, Arjun K.; Prakash, Om

    2016-05-01

    The aim of this paper is to obtain explicit expressions of (1-x ) -a2F1[a ,b 2 b +j ; -2/x 1 -x ] for j = 0, ±1,…, ±9. For j = 0, we have a well-known quadratic transformations formula of Kummer. The results are obtained by using the known hypergeometric identities available in the literature. Several known results obtained earlier by Kim, et al. follow special cases of our main findings. The results derived in this paper are simple, interesting and potentially useful in the applicable sciences.

  7. Reaction Wheel Control Design Using Linear Quadratic Controller

    NASA Astrophysics Data System (ADS)

    Nubli Muhamad, Nur; Susanto, Erwin; Syihabuddin, Budi; Prasetya Dwi Wibawa, Ig.

    2016-01-01

    This paper studies the design of active attitude control system of a nanosatellite in a single axis. In this paper, we consider dc motor based reaction wheel as an actuator, because of its pointing accuracy. However, the power consumption of the dc motor is often relatively large and needed to be optimized. Linear quadratic controller is supposed to have an ability to minimize power consumption and able to enhance the system performance. To show the advantage of this method, simulation result of attitude response, state trajectory, and trajectory of DC motor voltage are presented.

  8. Quadratic Feynman loop integrands from massless scattering equations

    NASA Astrophysics Data System (ADS)

    Gomez, Humberto

    2017-05-01

    Recently, the Cachazo-He-Yuan (CHY) approach has been extended to the loop level, but the resulting loop integrand has propagators that are linear in the loop momentum unlike Feynman's. In this paper, we present a new technique that directly produces quadratic propagators identical to Feynman's from the CHY approach. This paper focuses on the Φ3 theory, but extensions to other theories are briefly discussed. In addition, our proposal has an interesting geometric meaning; we can interpret this new formula as a unitary cut on a higher genus Riemann surface.

  9. Asymmetric Simple Exclusion Process with Open Boundaries and Quadratic Harnesses

    NASA Astrophysics Data System (ADS)

    Bryc, Włodek; Wesołowski, Jacek

    2017-02-01

    We show that the joint probability generating function of the stationary measure of a finite state asymmetric exclusion process with open boundaries can be expressed in terms of joint moments of Markov processes called quadratic harnesses. We use our representation to prove the large deviations principle for the total number of particles in the system. We use the generator of the Markov process to show how explicit formulas for the average occupancy of a site arise for special choices of parameters. We also give similar representations for limits of stationary measures as the number of sites tends to infinity.

  10. Frontogenesis driven by horizontally quadratic distributions of density

    NASA Technical Reports Server (NTRS)

    Jacqmin, David

    1991-01-01

    Attention is given to the quadratic density distribution in a channel, which has been established by Simpson and Linden to be the simplest case of the horizontally nonlinear distribution of fluid density required for the production of frontogenesis. The porous-media and Boussinesq flow models are examined, and their evolution equations are reduced to one-dimensional systems. While both the porous-media and the inviscid/nondiffusive Boussinesq systems exhibit classic frontogenesis behavior, the viscous Boussinesq system exhibits a more complex behavior: boundary-layer effects force frontogenesis away from the lower boundary, and at late times the steepest density gradients are close to mid-channel.

  11. Rigorous performance bounds for quadratic and nested dynamical decoupling

    SciTech Connect

    Xia, Yuhou; Uhrig, Goetz S.; Lidar, Daniel A.

    2011-12-15

    We present rigorous performance bounds for the quadratic dynamical decoupling pulse sequence which protects a qubit from general decoherence, and for its nested generalization to an arbitrary number of qubits. Our bounds apply under the assumptions of instantaneous pulses and of bounded perturbing environment and qubit-environment Hamiltonians such as those realized by baths of nuclear spins in quantum dots. We prove that if the total sequence time is fixed then the trace-norm distance between the unperturbed and protected system states can be made arbitrarily small by increasing the number of applied pulses.

  12. Restart-Based Genetic Algorithm for the Quadratic Assignment Problem

    NASA Astrophysics Data System (ADS)

    Misevicius, Alfonsas

    The power of genetic algorithms (GAs) has been demonstrated for various domains of the computer science, including combinatorial optimization. In this paper, we propose a new conceptual modification of the genetic algorithm entitled a "restart-based genetic algorithm" (RGA). An effective implementation of RGA for a well-known combinatorial optimization problem, the quadratic assignment problem (QAP), is discussed. The results obtained from the computational experiments on the QAP instances from the publicly available library QAPLIB show excellent performance of RGA. This is especially true for the real-life like QAPs.

  13. Compact stellar models obeying quadratic equation of state

    NASA Astrophysics Data System (ADS)

    Bhar, Piyali; Singh, Ksh. Newton; Pant, Neeraj

    2016-10-01

    In present paper we obtain a new model of compact star by considering quadratic equation of state for the matter distribution and assuming a physically reasonable choice for metric coefficient g_{rr}. The solution is singularity free and well behaved inside the stellar interior. Several features are described analytically as well as graphically. From our analysis we have shown that our model is compatible with the observational data of the compact stars. We have discussed a detail analysis of neutron star PSR J1614-2230 via different graphs after determining all the constant parameters from boundary conditions.

  14. Damage Prediction in Sheet Metal Forming

    NASA Astrophysics Data System (ADS)

    Saanouni, Khémais; Badreddine, Houssem

    2007-05-01

    Ductile (or plastic) damage often occurs during sheet metal forming processes due to the large plastic flow localization. Accordingly, it is crucial for numerical tools, used in the simulation of that processes, to use fully coupled constitutive equations accounting for both hardening and damage. This can be used in both cases, namely to overcome the damage initiation during some sheet metal forming processes as deep drawing, … or to enhance the damage initiation and growth as in sheet metal cutting. In this paper, a fully coupled constitutive equations accounting for combined isotropic and kinematic hardening as well as the ductile damage is implemented into the general purpose Finite Element code for metal forming simulation. First, the fully coupled anisotropic constitutive equations in the framework of Continuum Damage Mechanics are presented. Attention is paid to the strong coupling between the main mechanical fields as elasto-viscoplasticity, mixed hardening, ductile isotropic damage and contact with friction. The anisotropy of the plastic flow is taken into account using various kinds of quadratic or non quadratic yield criteria in the framework of non associative finite plasticity theory with two types of normality rules. The associated numerical aspects concerning both the local integration of the coupled constitutive equations as well as the (global) equilibrium integration schemes are presented. The local integration is outlined thanks to the Newton iterative scheme applied to a reduced system of 2 equations. For the global resolution of the initial and boundary value problem, the classical dynamic explicit (DE) scheme with an adaptive time step control is used. The numerical implementation of the damage is made in such a manner that calculations can be executed with or without damage effect, i.e. fully coupled or uncoupled calculations. For the 2D processes an advanced adaptive meshing procedure is used in order to enhance the numerical solution and

  15. An Algebraic Construction of the First Integrals of the Stationary KdV Hierarchy

    NASA Astrophysics Data System (ADS)

    Matsushima, Masatomo; Ohmiya, Mayumi

    2009-09-01

    The stationary KdV hierarchy is constructed using a kind of recursion operator called Λ-operator. The notion of the maximal solution of the n-th stationary KdV equation is introduced. Using this maximal solution, a specific differential polynomial with the auxiliary spectral parameter called the spectral M-function is constructed as the quadratic form of the fundamental system of the eigenvalue problem for the 2-nd order linear ordinary differential equation which is related to the linearizing operator of the hierarchy. By calculating a perfect square condition of the quadratic form by an elementary algebraic method, the complete set of first integrals of this hierarchy is constructed.

  16. Off-line form of the Michaelis-Menten equation for studying the reaction kinetics in a polymer microchip integrated with enzyme microreactor.

    PubMed

    Liu, Ai-Lin; Zhou, Ting; He, Feng-Yun; Xu, Jing-Juan; Lu, Yu; Chen, Hong-Yuan; Xia, Xing-Hua

    2006-06-01

    We firstly transformed the traditional Michaelis-Menten equation into an off-line form which can be used for evaluating the Michaelis-Menten constant after the enzymatic reaction. For experimental estimation of the kinetics of enzymatic reactions, we have developed a facile and effective method by integrating an enzyme microreactor into direct-printing polymer microchips. Strong nonspecific adsorption of proteins was utilized to effectively immobilize enzymes onto the microchannel wall, forming the integrated on-column enzyme microreactor in a microchip. The properties of the integrated enzyme microreactor were evaluated by using the enzymatic reaction of glucose oxidase (GOx) with its substrate glucose as a model system. The reaction product, hydrogen peroxide, was electrochemically (EC) analyzed using a Pt microelectrode. The data for enzyme kinetics using our off-line form of the Michaelis-Menten equation was obtained (K(m) = 2.64 mM), which is much smaller than that reported in solution (K(m) = 6.0 mM). Due to the hydrophobic property and the native mesoscopic structure of the poly(ethylene terephthalate) film, the immobilized enzyme in the microreactor shows good stability and bioactivity under the flowing conditions.

  17. Two integrable systems with integrals of motion of degree four

    NASA Astrophysics Data System (ADS)

    Tsiganov, A. V.

    2016-03-01

    We discuss the possibility of using second-order Killing tensors to construct Liouville-integrable Hamiltonian systems that are not Nijenhuis integrable. As an example, we consider two Killing tensors with a nonzero Haantjes torsion that satisfy weaker geometric conditions and also three-dimensional systems corresponding to them that are integrable in Euclidean space and have two quadratic integrals of motion and one fourth-order integral in momenta.

  18. Linear-Quadratic-Gaussian Regulator Developed for a Magnetic Bearing

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin B.

    2002-01-01

    Linear-Quadratic-Gaussian (LQG) control is a modern state-space technique for designing optimal dynamic regulators. It enables us to trade off regulation performance and control effort, and to take into account process and measurement noise. The Structural Mechanics and Dynamics Branch at the NASA Glenn Research Center has developed an LQG control for a fault-tolerant magnetic bearing suspension rig to optimize system performance and to reduce the sensor and processing noise. The LQG regulator consists of an optimal state-feedback gain and a Kalman state estimator. The first design step is to seek a state-feedback law that minimizes the cost function of regulation performance, which is measured by a quadratic performance criterion with user-specified weighting matrices, and to define the tradeoff between regulation performance and control effort. The next design step is to derive a state estimator using a Kalman filter because the optimal state feedback cannot be implemented without full state measurement. Since the Kalman filter is an optimal estimator when dealing with Gaussian white noise, it minimizes the asymptotic covariance of the estimation error.

  19. Confidence set inference with a prior quadratic bound

    NASA Technical Reports Server (NTRS)

    Backus, George E.

    1989-01-01

    In the uniqueness part of a geophysical inverse problem, the observer wants to predict all likely values of P unknown numerical properties z=(z sub 1,...,z sub p) of the earth from measurement of D other numerical properties y (sup 0) = (y (sub 1) (sup 0), ..., y (sub D (sup 0)), using full or partial knowledge of the statistical distribution of the random errors in y (sup 0). The data space Y containing y(sup 0) is D-dimensional, so when the model space X is infinite-dimensional the linear uniqueness problem usually is insoluble without prior information about the correct earth model x. If that information is a quadratic bound on x, Bayesian inference (BI) and stochastic inversion (SI) inject spurious structure into x, implied by neither the data nor the quadratic bound. Confidence set inference (CSI) provides an alternative inversion technique free of this objection. Confidence set inference is illustrated in the problem of estimating the geomagnetic field B at the core-mantle boundary (CMB) from components of B measured on or above the earth's surface.

  20. An Instability Index Theory for Quadratic Pencils and Applications

    NASA Astrophysics Data System (ADS)

    Bronski, Jared; Johnson, Mathew A.; Kapitula, Todd

    2014-04-01

    Primarily motivated by the stability analysis of nonlinear waves in second-order in time Hamiltonian systems, in this paper we develop an instability index theory for quadratic operator pencils acting on a Hilbert space. In an extension of the known theory for linear pencils, explicit connections are made between the number of eigenvalues of a given quadratic operator pencil with positive real parts to spectral information about the individual operators comprising the coefficients of the spectral parameter in the pencil. As an application, we apply the general theory developed here to yield spectral and nonlinear stability/instability results for abstract second-order in time wave equations. More specifically, we consider the problem of the existence and stability of spatially periodic waves for the "good" Boussinesq equation. In the analysis our instability index theory provides an explicit, and somewhat surprising, connection between the stability of a given periodic traveling wave solution of the "good" Boussinesq equation and the stability of the same periodic profile, but with different wavespeed, in the nonlinear dynamics of a related generalized Korteweg-de Vries equation.

  1. Wave propagation in elastic medium with heterogeneous quadratic nonlinearity

    SciTech Connect

    Tang Guangxin; Jacobs, Laurence J.; Qu Jianmin

    2011-06-23

    This paper studies the one-dimensional wave propagation in an elastic medium with spatially non-uniform quadratic nonlinearity. Two problems are solved analytically. One is for a time-harmonic wave propagating in a half-space where the displacement is prescribed on the surface of the half-space. It is found that spatial non-uniformity of the material nonlinearity causes backscattering of the second order harmonic, which when combined with the forward propagating waves generates a standing wave in steady-state wave motion. The second problem solved is the reflection from and transmission through a layer of finite thickness embedded in an otherwise linearly elastic medium of infinite extent, where it is assumed that the layer has a spatially non-uniform quadratic nonlinearity. The results show that the transmission coefficient for the second order harmonic is proportional to the spatial average of the nonlinearity across the thickness of the layer, independent of the spatial distribution of the nonlinearity. On the other hand, the coefficient of reflection is proportional to a weighted average of the nonlinearity across the layer thickness. The weight function in this weighted average is related to the propagating phase, thus making the coefficient of reflection dependent on the spatial distribution of the nonlinearity. Finally, the paper concludes with some discussions on how to use the reflected and transmitted second harmonic waves to evaluate the variance and autocorrelation length of nonlinear parameter {beta} when the nonlinearity distribution in the layer is a stochastic process.

  2. Hidden and Nonstandard Bifurcation Diagram of an Alternate Quadratic System

    NASA Astrophysics Data System (ADS)

    Pastor, G.; Romera, M.; Danca, M.-F.; Martin, A.; Orue, A. B.; Montoya, F.; Encinas, L. Hernández

    Alternate quadratic systems A : xn+1 = 1 - axn2,if n is even 1 - a∗xn2,if n is odd andB : xn+1 = 1 - a∗xn2,if n is even 1 - axn2, if n is odd, where a and a∗ are different parameters, seem to be interval maps in a range of the parameter values. However, after a careful graphical analysis of their bifurcation diagrams we conclude that this is true only for system B, but not for system A. In system A we find a hidden and nonstandard bifurcation diagram (“hidden” because it is not visible at normal resolution and “nonstandard” because the bifurcation diagram is empty for some ranges of the parameter values). The different behavior of the underlying critical polynomial in the range of parameter values in both alternate quadratic systems explains why the hidden and nonstandard bifurcation diagram is present in system A and not in system B. The analysis of the Lyapunov exponent also shows both the existence and the different behavior of the hidden bifurcation diagram of system A.

  3. Quadratic Reciprocity and the Group Orders of Particle States

    SciTech Connect

    DAI,YANG; BORISOV,ALEXEY B.; LONGWORTH,JAMES W.; BOYER,KEITH; RHODES,CHARLES K.

    2001-06-01

    The construction of inverse states in a finite field F{sub P{sub P{alpha}}} enables the organization of the mass scale by associating particle states with residue class designations. With the assumption of perfect flatness ({Omega}total = 1.0), this approach leads to the derivation of a cosmic seesaw congruence which unifies the concepts of space and mass. The law of quadratic reciprocity profoundly constrains the subgroup structure of the multiplicative group of units F{sub P{sub {alpha}}}* defined by the field. Four specific outcomes of this organization are (1) a reduction in the computational complexity of the mass state distribution by a factor of {approximately}10{sup 30}, (2) the extension of the genetic divisor concept to the classification of subgroup orders, (3) the derivation of a simple numerical test for any prospective mass number based on the order of the integer, and (4) the identification of direct biological analogies to taxonomy and regulatory networks characteristic of cellular metabolism, tumor suppression, immunology, and evolution. It is generally concluded that the organizing principle legislated by the alliance of quadratic reciprocity with the cosmic seesaw creates a universal optimized structure that functions in the regulation of a broad range of complex phenomena.

  4. Alignment of molecular networks by integer quadratic programming.

    PubMed

    Zhenping, Li; Zhang, Shihua; Wang, Yong; Zhang, Xiang-Sun; Chen, Luonan

    2007-07-01

    With more and more data on molecular networks (e.g. protein interaction networks, gene regulatory networks and metabolic networks) available, the discovery of conserved patterns or signaling pathways by comparing various kinds of networks among different species or within a species becomes an increasingly important problem. However, most of the conventional approaches either restrict comparative analysis to special structures, such as pathways, or adopt heuristic algorithms due to computational burden. In this article, to find the conserved substructures, we develop an efficient algorithm for aligning molecular networks based on both molecule similarity and architecture similarity, by using integer quadratic programming (IQP). Such an IQP can be relaxed into the corresponding quadratic programming (QP) which almost always ensures an integer solution, thereby making molecular network alignment tractable without any approximation. The proposed framework is very flexible and can be applied to many kinds of molecular networks including weighted and unweighted, directed and undirected networks with or without loops. Matlab code and data are available from http://zhangroup.aporc.org/bioinfo/MNAligner or http://intelligent.eic.osaka-sandai.ac.jp/chenen/software/MNAligner, or upon request from authors. Supplementary data are available at Bioinformatics online.

  5. Electric current quadratic in an applied electric field

    NASA Astrophysics Data System (ADS)

    Deyo, Eric

    The theory of the photogalvanic effect in a low frequency electric field is developed. We complete the semiclassical theory of the effect in bulk samples lacking inversion symmetry, taking into account contributions from the asymmetry of scattering, the shift current, and the effect of Berry's phase. We consider the effect in such samples both in the presence and absence of a constant magnetic field. It is found that by experimentally measuring this effect, that Berry's curvature and the average shift of the center of mass of an electron during a scattering event can be extracted. We also investigate the magnetic field dependence of the part of the electrical current which is quadratic in voltage in mesoscopic conductors. We find that the part of the current which is quadratic in bias voltage, and linear in an applied magnetic field can be related to the effective electron-electron interaction strength. We also find that in the case when the magnetic field is oriented parallel to the plane of a two dimensional sample, that the spin-orbit scattering rate can be measured.

  6. Sequential quadratic programming-based fast path planning algorithm subject to no-fly zone constraints

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Ma, Shunjian; Sun, Mingwei; Yi, Haidong; Wang, Zenghui; Chen, Zengqiang

    2016-08-01

    Path planning plays an important role in aircraft guided systems. Multiple no-fly zones in the flight area make path planning a constrained nonlinear optimization problem. It is necessary to obtain a feasible optimal solution in real time. In this article, the flight path is specified to be composed of alternate line segments and circular arcs, in order to reformulate the problem into a static optimization one in terms of the waypoints. For the commonly used circular and polygonal no-fly zones, geometric conditions are established to determine whether or not the path intersects with them, and these can be readily programmed. Then, the original problem is transformed into a form that can be solved by the sequential quadratic programming method. The solution can be obtained quickly using the Sparse Nonlinear OPTimizer (SNOPT) package. Mathematical simulations are used to verify the effectiveness and rapidity of the proposed algorithm.

  7. Quadratic Forms on Complex Random Matrices and Multi-Antenna Channel Capacity

    DTIC Science & Technology

    2004-03-16

    channel capacity and capacity versus outage of multiple - input multiple - output ( MIMO ) Rayleigh-distributed wireless communication channels. Both... output ( MIMO ) wireless communication systems.jointLet us denote the number of inputs (or transmitters) and formation theory. These densities are...be represented channel capacity and capacity versus outage of multiple - by an n, ×nt complex random matrix H - CN(0, Er®Et), input multiple - output

  8. A class of stochastic optimization problems with one quadratic & several linear objective functions and extended portfolio selection model

    NASA Astrophysics Data System (ADS)

    Xu, Jiuping; Li, Jun

    2002-09-01

    In this paper a class of stochastic multiple-objective programming problems with one quadratic, several linear objective functions and linear constraints has been introduced. The former model is transformed into a deterministic multiple-objective nonlinear programming model by means of the introduction of random variables' expectation. The reference direction approach is used to deal with linear objectives and results in a linear parametric optimization formula with a single linear objective function. This objective function is combined with the quadratic function using the weighted sums. The quadratic problem is transformed into a linear (parametric) complementary problem, the basic formula for the proposed approach. The sufficient and necessary conditions for (properly, weakly) efficient solutions and some construction characteristics of (weakly) efficient solution sets are obtained. An interactive algorithm is proposed based on reference direction and weighted sums. Varying the parameter vector on the right-hand side of the model, the DM can freely search the efficient frontier with the model. An extended portfolio selection model is formed when liquidity is considered as another objective to be optimized besides expectation and risk. The interactive approach is illustrated with a practical example.

  9. Chemical and biological integration of a mouldable bioactive ceramic material capable of forming apatite in vivo in teeth.

    PubMed

    Engqvist, H; Schultz-Walz, J-E J-E; Loof, J; Botton, G A; Mayer, D; Phaneuf, M W; Ahnfelt, N-O N-O; Hermansson, L

    2004-06-01

    Chemically bonded ceramics have several advantages compared with conventional ceramics to be used as biomaterials. Especially the possibilities to harden the material at room temperature and to control the rheology are very beneficial. This paper investigates the interface formed in vivo between a calcium aluminate based dental filling material and teeth. Class 1 occlusal fillings were made in wisdom teeth and extracted after up to four weeks. Polished cross-sections of the teeth were studied with scanning electron microscopy (SEM), focused ion beam microscopy (FIB) and transmission electron microscopy (TEM). In order to analyse the distribution of elements at the interface elemental mapping was performed using STEM and EDX. The results showed that a tight bond forms between the filling material and tooth and no gap could be found even at high magnification. A 100-200 nm wide zone with an increase in oxygen was detected in the enamel next to the filling. The zone was denser than the rest of the enamel. Elemental mapping indicated an increase of silicon and a decrease of Ca at the interface. Dark field imaging and EDX mapping showed that the calcium aluminate system formed apatite in situ during hardening through precipitation.

  10. Effects of quadratic and cubic nonlinearities on a perfectly tuned parametric amplifier

    NASA Astrophysics Data System (ADS)

    Neumeyer, S.; Sorokin, V. S.; Thomsen, J. J.

    2017-01-01

    We consider the performance of a parametric amplifier with perfect tuning (two-to-one ratio between the parametric and direct excitation frequencies) and quadratic and cubic nonlinearities. A forced Duffing-Mathieu equation with appended quadratic nonlinearity is considered as the model system, and approximate analytical steady-state solutions and corresponding stabilities are obtained by the method of varying amplitudes. Some general effects of pure quadratic, and mixed quadratic and cubic nonlinearities on parametric amplification are shown. In particular, the effects of mixed quadratic and cubic nonlinearities may generate additional amplitude-frequency solutions. In this case an increased response and a more phase sensitive amplitude (phase between excitation frequencies) is obtained, as compared to the case with either pure quadratic or cubic nonlinearity. Furthermore, jumps and bi-stability in the amplitude-phase characteristics are predicted, supporting previously reported experimental observations.

  11. Linear state feedback, quadratic weights, and closed loop eigenstructures. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Thompson, P. M.

    1979-01-01

    Results are given on the relationships between closed loop eigenstructures, state feedback gain matrices of the linear state feedback problem, and quadratic weights of the linear quadratic regulator. Equations are derived for the angles of general multivariable root loci and linear quadratic optimal root loci, including angles of departure and approach. The generalized eigenvalue problem is used for the first time to compute angles of approach. Equations are also derived to find the sensitivity of closed loop eigenvalues and the directional derivatives of closed loop eigenvectors (with respect to a scalar multiplying the feedback gain matrix or the quadratic control weight). An equivalence class of quadratic weights that produce the same asymptotic eigenstructure is defined, sufficient conditions to be in it are given, a canonical element is defined, and an algorithm to find it is given. The behavior of the optimal root locus in the nonasymptotic region is shown to be different for quadratic weights with the same asymptotic properties.

  12. Integrative Pericyclic Cascade: An Atom Economic, Multi C-C Bond-Forming Strategy for the Construction of Molecular Complexity.

    PubMed

    Tejedor, David; Delgado-Hernández, Samuel; Peyrac, Jesús; González-Platas, Javier; García-Tellado, Fernando

    2017-07-26

    An all-pericyclic manifold is developed for the construction of topologically diverse, structurally complex and natural product-like polycyclic chemotypes. The manifold uses readily accessible tertiary propargyl vinyl ethers as substrates and imidazole as a catalyst to form up to two new rings, three new C-C bonds, six stereogenic centers and one transannular oxo-bridge. The manifold is efficient, scalable and instrumentally simple to perform and entails a propargyl Claisen rearrangement-[1,3]H shift, an oxa-6π-electrocyclization, and an intramolecular Diels-Alder reaction. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Quantitative Analysis of Amyloid-Integrated Biofilms Formed by Uropathogenic Escherichia coli at the Air-Liquid Interface

    PubMed Central

    Wu, Cynthia; Lim, Ji Youn; Fuller, Gerald G.; Cegelski, Lynette

    2012-01-01

    Bacterial biofilms are complex multicellular assemblies, characterized by a heterogeneous extracellular polymeric matrix, that have emerged as hallmarks of persistent infectious diseases. New approaches and quantitative data are needed to elucidate the composition and architecture of biofilms, and such data need to be correlated with mechanical and physicochemical properties that relate to function. We performed a panel of interfacial rheological measurements during biofilm formation at the air-liquid interface by the Escherichia coli strain UTI89, which is noted for its importance in studies of urinary tract infection and for its assembly of functional amyloid fibers termed curli. Brewster-angle microscopy and measurements of the surface elasticity (Gs′) and stress-strain response provided sensitive and quantitative parameters that revealed distinct stages during bacterial colonization, aggregation, and eventual formation of a pellicle at the air-liquid interface. Pellicles that formed under conditions that upregulate curli production exhibited an increase in strength and viscoelastic properties as well as a greater ability to recover from stress-strain perturbation. The results suggest that curli, as hydrophobic extracellular amyloid fibers, enhance the strength, viscoelasticity, and resistance to strain of E. coli biofilms formed at the air-liquid interface. PMID:22947862

  14. Quantitative analysis of amyloid-integrated biofilms formed by uropathogenic Escherichia coli at the air-liquid interface.

    PubMed

    Wu, Cynthia; Lim, Ji Youn; Fuller, Gerald G; Cegelski, Lynette

    2012-08-08

    Bacterial biofilms are complex multicellular assemblies, characterized by a heterogeneous extracellular polymeric matrix, that have emerged as hallmarks of persistent infectious diseases. New approaches and quantitative data are needed to elucidate the composition and architecture of biofilms, and such data need to be correlated with mechanical and physicochemical properties that relate to function. We performed a panel of interfacial rheological measurements during biofilm formation at the air-liquid interface by the Escherichia coli strain UTI89, which is noted for its importance in studies of urinary tract infection and for its assembly of functional amyloid fibers termed curli. Brewster-angle microscopy and measurements of the surface elasticity (G(s)') and stress-strain response provided sensitive and quantitative parameters that revealed distinct stages during bacterial colonization, aggregation, and eventual formation of a pellicle at the air-liquid interface. Pellicles that formed under conditions that upregulate curli production exhibited an increase in strength and viscoelastic properties as well as a greater ability to recover from stress-strain perturbation. The results suggest that curli, as hydrophobic extracellular amyloid fibers, enhance the strength, viscoelasticity, and resistance to strain of E. coli biofilms formed at the air-liquid interface.

  15. Nonhydrostatic correction for shallow water equations with quadratic vertical pressure distribution: A Boussinesq-type equation

    NASA Astrophysics Data System (ADS)

    Jeschke, Anja; Behrens, Jörn

    2015-04-01

    In tsunami modeling, two different systems of dispersive long wave equations are common: The nonhydrostatic pressure correction for the shallow water equations derived out of the depth-integrated 3D Reynolds-averaged Navier-Stokes equations, and the category of Boussinesq-type equations obtained by an expansion in the nondimensional parameters for nonlinearity and dispersion in the Euler equations. The first system uses as an assumption a linear vertical interpolation of the nonhydrostatic pressure, whereas the second system's derivation includes an quadratic vertical interpolation for the nonhydrostatic pressure. In this case the analytical dispersion relations do not coincide. We show that the nonhydrostatic correction with a quadratic vertical interpolation yields an equation set equivalent to the Serre equations, which are 1D Boussinesq-type equations for the case of a horizontal bottom. Now, both systems yield the same analytical dispersion relation according up to the first order with the reference dispersion relation of the linear wave theory. The adjusted model is also compared to other Boussinesq-type equations. The numerical model with the nonhydrostatic correction for the shallow water equations uses Leapfrog timestepping stabilized with the Asselin filter and the P1-PNC1 finite element space discretization. The numerical dispersion relations are computed and compared by employing a testcase of a standing wave in a closed basin. All numerical values match their theoretical expectations. This work is funded by project ASTARTE - Assessment, Strategy And Risk Reduction for Tsunamis in Europe - FP7-ENV2013 6.4-3, Grant 603839. We acknowledge the support given by Geir K. Petersen from the University of Oslo.

  16. Scaling Laws for the Multidimensional Burgers Equation with Quadratic External Potential

    NASA Astrophysics Data System (ADS)

    Leonenko, N. N.; Ruiz-Medina, M. D.

    2006-07-01

    The reordering of the multidimensional exponential quadratic operator in coordinate-momentum space (see X. Wang, C.H. Oh and L.C. Kwek (1998). J. Phys. A.: Math. Gen. 31:4329-4336) is applied to derive an explicit formulation of the solution to the multidimensional heat equation with quadratic external potential and random initial conditions. The solution to the multidimensional Burgers equation with quadratic external potential under Gaussian strongly dependent scenarios is also obtained via the Hopf-Cole transformation. The limiting distributions of scaling solutions to the multidimensional heat and Burgers equations with quadratic external potential are then obtained under such scenarios.

  17. Inflammation-Induced CCR7 Oligomers Form Scaffolds to Integrate Distinct Signaling Pathways for Efficient Cell Migration.

    PubMed

    Hauser, Mark A; Schaeuble, Karin; Kindinger, Ilona; Impellizzieri, Daniela; Krueger, Wolfgang A; Hauck, Christof R; Boyman, Onur; Legler, Daniel F

    2016-01-19

    Host defense depends on orchestrated cell migration guided by chemokines that elicit selective but biased signaling pathways to control chemotaxis. Here, we showed that different inflammatory stimuli provoked oligomerization of the chemokine receptor CCR7, enabling human dendritic cells and T cell subpopulations to process guidance cues not only through classical G protein-dependent signaling but also by integrating an oligomer-dependent Src kinase signaling pathway. Efficient CCR7-driven migration depends on a hydrophobic oligomerization interface near the conserved NPXXY motif of G protein-coupled receptors as shown by mutagenesis screen and a CCR7-SNP demonstrating super-oligomer characteristics leading to enhanced Src activity and superior chemotaxis. Furthermore, Src phosphorylates oligomeric CCR7, thereby creating a docking site for SH2-domain-bearing signaling molecules. Finally, we identified CCL21-biased signaling that involved the phosphatase SHP2 to control efficient cell migration. Collectively, our data showed that CCR7 oligomers serve as molecular hubs regulating distinct signaling pathways.

  18. Campoletis sonorensis Endoparasitic Wasps Contain Forms of C. sonorensis Virus DNA Suggestive of Integrated and Extrachromosomal Polydnavirus DNAs

    PubMed Central

    Fleming, Jo-Ann G. W.; Summers, Max D.

    1986-01-01

    Campoletis sonorensis virus (CsV) (Polydnaviridae) previously was detected only in the calyx epithelial cells and lumen of the oviducts from female C. sonorensis (Ichneumonidae) endoparasitic wasps (Norton et al., Cell Tissue Res. 162:195-208, 1975). Using dot-blot hybridizations, we detected low amounts of CsV DNA in male and female wasp head and thorax tissues and in male abdominal tissues. Low amounts of extrachromosomal viral DNA were detected in Southern blots of undigested male wasp DNA and in male DNA purified by isopycnic centrifugation. High-molecular-weight male wasp DNA digested with any of several restriction endonucleases and hybridized with cloned viral DNAs from CsV superhelices B and Q under stringent conditions contained CsV-specific DNA fragments that differed significantly in size and number from the hybridizing fragments detected in comparably digested viral DNA. Identical offsize restriction fragments were detected in digested female head and thorax DNA. These data suggest that at least CsV DNAs B and Q are integrated in C. sonorensis cellular DNA and that the virus may be transmitted through the germline. Images PMID:16789255

  19. Surrender as a form of active acceptance among breast cancer survivors receiving Psycho-Spiritual Integrative Therapy.

    PubMed

    Rosequist, Lisa; Wall, Kathleen; Corwin, Diana; Achterberg, Jeanne; Koopman, Cheryl

    2012-11-01

    The purpose of this study was to describe a domain of spiritual coping known as "surrender," as experienced among women diagnosed with breast cancer who participated in Psycho-Spiritual Integrative Therapy (PSIT). Surrender is a concept similar to active acceptance, which has been studied extensively, but surrender in the context of spiritual supportive care has received little attention. After participating in PSIT, which includes exercises in surrender, 23 participants completed an open-ended questionnaire about their experiences of surrender. Twelve women whose responses were most complete and expressive were selected to be analyzed for this study. A thematic analysis was conducted to better understand how surrender experiences may contribute to supportive care. Four distinct themes were identified: experience of surrender, facilitation of surrender, inhibition of surrender, and ease and completeness of surrender. Although the manifestations of surrender varied, women were consistent in describing these experiences positively. These findings build upon previous evidence that spirituality, optimism, and active acceptance have a positive impact on well-being in cancer patients. The findings provide insight into the usefulness of PSIT for women with breast cancer and inform future research on the intervention.

  20. Closed-form solution of the convolution integral in the magnetic resonance dispersion model for quantitative assessment of angiogenesis.

    PubMed

    Turco, S; Janssen, A J E M; Lavini, C; de la Rosette, J J; Wijkstra, H; Mischi, M

    2014-01-01

    Prostate cancer (PCa) diagnosis and treatment is still limited due to the lack of reliable imaging methods for cancer localization. Based on the fundamental role played by angiogenesis in cancer growth and development, several dynamic contrast enhanced (DCE) imaging methods have been developed to probe tumor angiogenic vasculature. In DCE magnetic resonance imaging (MRI), pharmacokinetic modeling allows estimating quantitative parameters related to the physiology underlying tumor angiogenesis. In particular, novel magnetic resonance dispersion imaging (MRDI) enables quantitative assessment of the microvascular architecture and leakage, by describing the intravascular dispersion kinetics of an extravascular contrast agent with a dispersion model. According to this model, the tissue contrast concentration at each voxel is given by the convolution between the intravascular concentration, described as a Brownian motion process according to the convective-dispersion equation, with the interstitium impulse response, represented by a mono-exponential decay, and describing the contrast leakage in the extravascular space. In this work, an improved formulation of the MRDI method is obtained by providing an analytical solution for the convolution integral present in the dispersion model. The performance of the proposed method was evaluated by means of dedicated simulations in terms of estimation accuracy, precision, and computation time. Moreover, a preliminary clinical validation was carried out in five patients with proven PCa. The proposed method allows for a reduction by about 40% of computation time without any significant change in estimation accuracy and precision, and in the clinical performance.